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Zusammenfassung

Neue Forschungsergebnisse haben gezeigt, dass die Bakterien Bacillus subtilis eine ge-
wisse Konzentration Pentapeptide (PhrA) benötigen um den Sporulationsprozess ein-
leiten zu können. Dieses PhrA wird von den Bakterien selbst produziert und wirkt
als Signalmolekül. Wir untersuchen unterschiedliche gewöhnliche Differentialgleichungs-
ansätze für den Aufnahme- und Produktionsprozess des PhrA, wobei die Verhaltensände-
rung der Bakterien durch Indikatorfunktionen der rechten Seite gesteuert werden. Da
wir Daten eines Schüttelkolben-Experimentes haben, wird die numerischen Lösungen an
diese angepasst. Für alle verwendeten Modelle kann die Existenz als auch Eindeutigkeit
einer nicht-negativen Lösung gezeigt werden. Das Modell wird um eine räumliche Kom-
ponente erweitert, sodass am Ende ein gekoppeltes PDE-ODE System entsteht. Die
Existenz einer schwachen Lösung kann gezeigt werden, die Eindeutigkeit nur für einen
Spezialfall. Das System wird numerisch mittels der Finiten Element Methode gelöst.
Auch hierzu gibt es experimentelle Daten. Das PDE Modell kann mittels dem ODE
Modell verifiziert werden. Allerdings lassen sich die experimentellen Beobachtungen
mittels dem PDE-ODE System nicht vollständig reproduzieren. Dies legt nahe, dass
man sowohl das räumliche Modell weiter anpassen muss als auch die umgerechneten
ODE Parameter nicht unmittelbar verwenden kann.
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Abstract

Recent research results have shown that the bacteria Bacillus subtilis need a certain
concentration of pentapeptides (PhrA) in order to initialise the sporulation process.
PhrA is produced by the bacteria itself and thus works as a signalling molecule. We
discuss different ordinary differential model equations for the uptake and production
process of PhrA whereas the changes in the behaviour are controlled by indicator func-
tions on the right hand side. Then the numerically solutions are fitted to experimental
data gained by shake flask experiments. For all utilized models existence and unique-
ness of solutions are proven. Then we expand the model by a spatial component leading
to a coupled PDE-ODE system. Existence of a weak solution can be shown, uniqueness
only for a special case. The system can be solved numerically using the finite element
method. Again, there are experimental data. The PDE model can be verified using
the ODE model. However, the experimental observations can not be fully reproduced
using the PDE-ODE system. This suggests that one must further adjust the spatial
model as well as use not immediately the converted ODE parameters.
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Chapter 1

Motivation

Bacillus subtilis is a very well investigated bacterium and has a wide range of industrial
applications due to their ability to ferment in the acid, neutral, and alkaline pH ranges.
In combination with the presence of thermophiles in the genus, this has lead to the
development of a variety of new commercial enzyme products with the desired tem-
perature, pH activity, and stability properties [25]. Additionally it is considered as a
GRAS organism (generally recognized as safe) and about 60% of the industrial-enzyme
market are produced by species of Bacillus subtilis [37]. Enzymes produced by Bacillus
subtilis are used in food industry (e.g. production of natto by solid-state fermentation
of soybeans) [25], in pesticide industry (e.g. as fungicide) [14] and as cleaning agents
[23][25]. However, there are still open questions as the initiation of sporulation, which
is a survival mechanism if environmental condition becomes harsh. Bischofs stated that
phosphatase regulator A (PhrA) acts as a quorum sensing molecule and is needed for
the initiation of the sporulation process [2]. There are mathematical models describing
the process of sporulation within the cell using ODE’s [5][12], but no mathematical
model which investigates the signalling molecule PhrA itself in the environment as a
communication tool for bacterial microcolonies. We know by personal communication
with Dr. Bischofs that some bacteria do not sporulate in specific experiments and
spatial effects might be the reason. Therefore, we will develop a PDE-ODE system
which describes the Bacillus subtilis’ production and absorption process of signalling
molecules diffusing through the environment serving as a communication tool between
bacterial colonies controlling the sporulation initialisation. Furthermore, we obtain due
to the mathematical modelling an in-depth look into the dependency of the production
and absorption processes with the signalling molecule PhrA.
Last but not least a further nice fact: Although Bacillus subtilis can survive danger-
ous environmental conditions on earth, it can not survive at the Mars. Because of the
UV flux, perchlorates becomes bacteriocidal and the sporulation process is to slow to
protect the DNA [34].
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Chapter 2

Basics

In this chapter, we give a background into the relevant biology in order to understand
the mechanisms which will be modelled mathematically. Afterwards, some mathemat-
ical theory is given regarding the theory of second order parabolic equation as well as
the finite element method.

2.1. Biological basics
A brief introduction into the mechanism of cell to cell communication and the bacterium
Bacillus subtilis itself is given.

2.1.1. Quorum sensing
In the beginning of the 20th century, bacteria were considered as autonomous, unicellu-
lar organisms without any interaction to other bacteria of the same strain. Nevertheless
it seems that a cooperative behaviour between bacteria regarding symbiosis, niche adop-
tion or the production of secondary metabolites are advantageously [38], [39]. Bacteria
produce among others pheromones which are secreted and diffuse through the envi-
ronment and can be sensed by the bacteria. These pheromones are sometimes called
autoinducers or signalling molecules. Of course, if the population grows then more
pheromones are produced and the higher is the accumulated concentration in the en-
vironment. If this pheromone concentration reaches a certain threshold (and thus the
population density as well), the bacteria change their behaviour respectively some spe-
cific action starts (e.g. luminescence in Vibrio harveyi [39]). The expression “Quorum
Sensing” was introduced by Fuqua et al. [10] to describe this cell to cell communication
in order to coordinate the behaviour. This term usually refers to a measurement of
cell density respectively to the number of cells. There are further terms as “Diffusion
Sensing” which measures the diffusibility of the surrounding space or “Compartment

3
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Sensing” which measures the degree of compartmentalization and the possibility to
distribute this information through the whole population. Both follow the same mech-
anism, but it has a different goal as described. In those cases bacteria sense environ-
mental changes, e.g. temperature, pH or nutrient deprivation, rather than changes in
population density [24], [39]. If bacteria do observe these environmental changes, they
are able to determine their optimal survival strategy [40]. Winzer et al. [39] postulates
four criteria a signalling molecule needs to fulfil and explains the reasons:

• The production of the signalling molecule occurs during specific stages of growth,
under certain physiological conditions, or in response to changes in the environ-
ment.

• The signalling molecule accumulates extracellularly and is recognised by a specific
receptor.

• Accumulation of the signalling molecule generates a concerted response, once a
critical threshold concentration has been reached.

• The cellular response extends beyond physiological changes required to metabolise
or detoxify the signalling molecule.

The first three criteria are fulfilled by various molecules e.g. toxic bacterial metabo-
lites resulting in a coordinated stress action of the bacteria if a certain threshold has
been reached. Henceforth, they are insufficient to define signalling molecules only.
Therefore the last criterion is crucial.
On the one hand the cell-to-cell communication enables the entire population or a
subpopulation to take either advantage of a rising population density or handle the
problems which may arise due to this growth. On the other hand it may inform the
population of environmental changes.

2.1.2. Bacillus subtilis, a gram-positive bacterium

Bacillus subtilis is a rod-shape Gram-positive bacterium which is well investigated es-
pecially genetically [18], [31]. There are phenotypes who can build spores in order to
protect its genetic information if environmental conditions become harsh. Instead of a
symmetric cell division for vegetative growth, the sporulation is an asymmetric division
resulting in a mother cell and a prespore. Later on the mother cell entwine the prespore
building a highly resistant coat protecting the DNA within the prespore [8], [18], [21],
[22], [38]. Spores can survive for many years and germinate if environmental conditions
become better again. This cycle is depicted in Figure 2.1.
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asymmetric cell division

Germination

Growth

Cell division
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environment
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membrane

Multilayered
coat

Figure 2.1.: Scheme of sporulation process.

There are various reasons why a bacterium starts the time- and energy expensive
process, e.g. nutrient limitation, pH, temperature, diseases, production of valuable
chemicals as e.g. biofuels [13], [18], [21]. The main sporulation factors of Bacillus sub-
tilis are on the one hand nutrient limitation and on the other hand population growth
[31]. Since the process is irreversible it is crucial to come to a right decision. Either
vegetative bacteria die if they do not sporulate when environmental conditions become
harsh or if the initiation of sporulation is too early, then the bacteria strain might be
out-competed by another vegetative strain which keeps on dividing longer.
Gram-positive bacteria work with post-translationally modified peptides, referred as
auto-inducing peptides (AIP’s) as signalling molecule to couple gene expression with
cell population density. Bacillus subtilis uses a family of isoprenylated tryptophan pep-
tides [38], more precisely the protein PhrA has been postulated as a quorum sensing
signal regarding the population size [6], [19]. Secreted PhrA can be absorbed by any
other Bacillus subtilis cell. Within the cell, see figure 2.2, it binds to RapA inhibit-
ing its phosphatase activity on Spo0F∼P leading to sporulation initiation [12]. There
is a further process which is called competence, that is the ability to take up exoge-
nous DNA. It is controlled by an additional autoinducing peptide [36]. The signalling
molecule PhrA inhibits competence phosphorylation cascades but this phenomenon will
be neglected in this work, we only focus on the sporulation process.

Remark 2.1.1. We always mean the same no matter if we write “quorum sensing sig-
nalling molecule”, “signalling molecule”, “quorum sensing molecule” or “quorum sens-
ing signal”.
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Wild type Mutant

PhrA
Pump

RapA

Figure 2.2.: Scheme of dynamical processes.

2.2. Mathematical basics
A brief introduction into some mathematical basics and notation is given which are
used later in this work. Since we are interested in spatial propagation of signalling
molecules, we need for the modelling part partial differential equations (PDE’s), in
particular second order parabolic equations. To solve such equations, the finite element
method (FEM) is a common approach and will be explained afterwards.

2.2.1. Second order parabolic equation
As a guideline for this section, we follow the book of Evans, [9], section 7.1., which
analyses a parabolic partial differential system with a homogeneous Dirichlet bound-
ary. This boundary condition ensures that the solution is zero at the boundary which
means that particles can leave the domain but not enter again. In our scenario, however,
this is not realistic. We want to have conservation of mass, that is, no particle should
leave the domain. Thus, we need a homogeneous Neumann boundary which means that
there is no flux at the boundary. With some small adjustments, we will obtain similar
results for a second order parabolic equation with a homogeneous Neumann boundary
condition.

For this chapter, we assume U to be an open, bounded subset of Rn and T ∈ R+ be
a positive fixed time. Before we introduce the parabolic equation, we introduce first
the common Lp spaces.

Definition 2.2.1 (Lp spaces). Assume U is an open subset of Rn and 1 ≤ p ≤ ∞. If
f : U → R is measurable, we define

‖f‖Lp(U) :=


(∫

U
|f |p dx

) 1
p

if 1 ≤ p <∞

ess sup
U
|f | if p =∞.

Remark 2.2.2. The space L2(U) is a Hilbert space with the scalar product

(f, g) :=
∫
U
fg dx.

6
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Then a parabolic partial differential system with homogeneous Neumann boundary
conditions is given by

∂

∂t
u+ Lu = f in (0, T ]× U

∂u

∂n
= 0 on (0, T ]× ∂U

u = g on {t = 0} × U

(2.1)

where f ∈ L2 ((0, T ]× U) and g ∈ L2(U) are given functions. Note that we have
here a homogeneous Neumann boundary condition instead of a homogeneous Dirichlet
condition compared to Evans book. The unknown u = u(t, x) depends on two variables
and u : (0, T ]× U → R. L denotes a second-order partial differential operator for each
time t. There is on the one hand a divergence form

Lu = −
n∑

i,j=1

(
aij(t, x)uxi

)
xj

+
n∑
i=1

bi(t, x)uxi + c(t, x)u (2.2)

and on the other hand a nondivergence form

Lu = −
n∑

i,j=1
aij(t, x)uxixj +

n∑
i=1

bi(t, x)uxi + c(t, x)u. (2.3)

We assume for now that aij, bi, c ∈ L∞((0, T ] × U) for i, j ∈ {1, . . . , n}, whereas
bi(t, x) differs in (2.2) and (2.3). Additionally we suppose the symmetric condition
aij = aji for all i, j. For reasons of generality, both forms are quoted. If the coefficients
aij (i, j ∈ {1, . . . , n}) are C1 functions, then the divergence operator can be rewritten
into the non-divergence form. Note that

n∑
i,j=1

(
aij(t, x)uxi

)
xj

=
n∑

i,j=1
aijxj(t, x)uxi + aij(t, x)uxixj ,

so we have a further divergence term compared to (2.3). From that follows the
definition of the types. Both are used for different approaches. The divergence form is
most natural for energy methods since we use there usually integration by parts. The
non-divergence form is most appropriate for maximum principle techniques. From now
on we will focus only on the divergence form (2.2) since we will derive solutions by
energy methods. Later in chapter 4, we choose aij(t, x) to be constant, so both types
coincides. If bi ≡ c ≡ 0 for all i, then the operator L is equal to the well known Laplace
operator ∇2u = −∑n

i,j=1 a
ij(t, x)uxixj describing a diffusion process. If bi ≡ 0 for all

i, the system (2.1) is also known as reaction-diffusion system whereas −c(t, x)u + f
accounts all local reactions. Let’s denote the time-dependent bilinear form by B[u, v; t]
which is defined as
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B[u, v; t] :=
∫
U

n∑
i,j=1

aij(t, ·)uxivxj +
n∑
i=1

bi(t, ·)uxiv + c(t, ·)uv dx (2.4)

for t ∈ [0, T ] a.e. and u, v ∈ H1(U).

The definition of an elliptic operator L as special case of a second-order partial
differential operator, that is, time independent, is given in [9], section 6.1.1. and is
defined as following:

Definition 2.2.3 (Elliptic condition). We say the partial differential operator L is
(uniformly) elliptic if there exists a constant θ > 0 such that

n∑
i,j=1

aij(t, x)ξiξj ≥ θ|ξ|2

for a.e. x ∈ U and ξ ∈ Rn.

There is also a definition when we call ∂
∂t

+ L parabolic, see [9], section 7.1.1..

Definition 2.2.4 (Parabolic condition). We say that the partial differential operator
∂
∂t

+ L is (uniformly) parabolic if there exists a constant θ > 0 such that
n∑

i,j=1
aij(t, x)ξiξj ≥ θ|ξ|2

for a.e. (t, x) ∈ (0, T ]× U , and ξ ∈ Rn.

A problem is called well-posed if it has in fact a solution which is unique and the
solution depends continuously on the data given in the problem. Additionally we could
require that this solution should be real analytical (a function that is locally given
by a convergent power series) or at least infinitely differentiable. Note that analytical
functions are infinitely differentiable functions but not vice versa. However, these are
very strong requirements. It might be more realistic to ask for a k times continuously
differentiable solution. In many cases, k = 2 is adequate. Then the derivatives of
the PDE will exist and be continuous, although higher derivatives do not. Let’s call
that solution with this much smoothness, i.e. of order 2, a classical solution of a
PDE. However, these are still strong assumptions to many PDE’s with their initial
and boundary conditions. That’s the reason to introduce a so called weak solution.
Therefore, some further spaces have to be introduced as well as the definition of weak
partial derivatives.

Definition 2.2.5 (Local summable functions Lploc(U)). Let U be an open subset of Rn

and 1 ≤ p ≤ ∞. If for each compact subsets V of U the function u belongs to Lp(V ),
then u is called locally p-integrable. The set of all such functions is denoted by

Lploc(U) := {u : U → Rn|u ∈ Lp(K), ∀K ⊂ U,K compact} .
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Definition 2.2.6 (Weak partial derivative). Suppose u, v ∈ L1
loc(Ω) and α ∈ NN is a

multiindex. Then, it is said that

v = Dαu in the weak sense

or, equivalently, that v is the weak derivative of order α of u, if∫
Ω
uDαΦ = (−1)|α|

∫
Ω

Φv for all Φ ∈ C∞(Ω).

Definition 2.2.7 (Sobolev space). Let U be an open subset of Rn, 1 ≤ p ≤ ∞, k be
a non-negative integer and Dαu exists in the weak sense. Then the Sobolev space is
defined by

Wk,p(U) := {u ∈ Lploc(U) : Dαu ∈ Lp(U) ∀|α| ≤ k}

endowed with the norm

‖u‖Wk,p(U) :=



 ∑
0≤|α|≤k

∫
U
|Dαu|p dx

 1
p

if 1 ≤ p <∞

∑
0≤|α|≤k

ess sup
U
|Dαu| if p =∞.

Remark 2.2.8. If p = 2, we usually write

Hk(U) =Wk,2(U)
for all k ∈ N.

To make the following definition of a weak solution plausible, we suppose that u(t, x)
is a smooth solution of (2.1), that is, u ∈ C2([0, T ]×U). Then we define a new mapping

u : [0, T ]→ H1(U)
by

[u(t)] (x) := u(t, x) with x ∈ U and t ∈ [0, . . . , T ] .
That means we consider a mapping of u(t) into the space H1(U) of functions of x.

That leads to an extension of the Lebesgue spaces

Definition 2.2.9. Let X be a real Banach space.

(i) A function s : [0, T ]→ X is called simple if it has the form

s(t) =
m∑
i=1

χEi(t)ui for t ∈ [0, T ],

9
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where each Ei is a Lebesgue measurable subset of [0, T ] and ui ∈ X for i ∈
{1, . . . ,m}.

(ii) A function f : [0, T ] → X is strongly measurable if there exist simple functions
sk : [0, T ]→ X such that

sk(t)→ f(t) for a.e. t ∈ [0, T ].

Definition 2.2.10 (Extended Lp). Let X denote a real Banach space with norm ‖·‖.
The space

Lp(0, T ;X)

consists of all strongly measurable functions u : [0, T ]→ X with

‖u‖Lp(0,T ;X) :=



(∫ T

0
‖u(t)‖p dt

) 1
p

<∞ for 1 ≤ p <∞

ess sup
t∈[0,T ]

‖u(t)‖ <∞ for p =∞.

Similarly we do the same for the right hand side:

f : [0, T ]→ L2(U)

with

[f(t)] (x) := f(t, x) with x ∈ U and t ∈ [0, T ] .

Let v ∈ H1(U). We multiply the PDE in (2.1) with v and integrate the equation over
the domain U . The same is done for the initial condition as well as for the boundary
condition in (2.1). Then it rewrites to

∫
U

d
dtuv dx+

∫
U
Luv dx =

∫
U
fv dx in (0, T ]× U∫

U

du
dnv dx = 0 on (0, T ]× ∂U∫
U
uv dx =

∫
U
gv dx on {t = 0} × U

(2.5)

Let’s consider the first equation from above. Plug in the definition of the operator in
divergence form (2.2) and integrate the first term by parts. Due to the homogeneous
boundary condition in (2.5), the boundary term which arises form the partial integration
vanishes then. At the end we obtain a weak formulation of the problem:
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∫
U

d
dtuv dx+

∫
U
Luv dx =

∫
U
fv dx

⇐⇒
∫
U

∂

∂t
uv dx−

 n∑
i,j=1

aij(t, x)uxiv

∂U︸ ︷︷ ︸

=0

+
∫
U

n∑
i,j=1

aij(t, x)uxivxj +
n∑
i=1

bi(t, x)uxiv + c(t, x)uv dx =
∫
U
fv dx

⇐⇒
(

d
dtu, v

)
+B[u, v; t] = (f , v) (2.6)

for each t ∈ [0, T ] with B[u, v; t] is the time-dependent bilinear form in (2.4). The
pairing (·, ·) denotes the inner product in L2(U).
With some reformulations, one can observe, that

∂

∂t
u = g0 +

n∑
j=1

gjxj in (0, T ]× U (2.7)

whereas g0 := f − ∑n
i=1 b

iuxi − cu and gj := ∑n
i=1 a

ijuxi for j ∈ {1, . . . , n}. The
coefficients of the bilinear form are in L∞((0, T ]×U) and u is assumed to be in C2((0, T ]×
U). Hence, gj ∈ L∞((0, T ] × U) for j ∈ {0, . . . , n}. Note that in general it holds
H1(U) ⊂ L∞(U) ⊂ L2(U) ' L2? ⊂ H−1(U) for open sets U . H−1(U) denotes the dual
space of H1(U) and is defined as following:

Definition 2.2.11 (Dual space H−1). We denote by H−1(U) the dual space to H1(U)
with norm

‖f‖H−1(U) := sup
{
〈f, v〉

∣∣∣ v ∈ H1(U), ‖v‖H1(U) ≤ 1
}
.

We will write 〈·, ·〉 to denote the pairing between H−1(U) and H1(U).

In other words, a function f ∈ H−1(U) denotes that f is a bounded linear functional
on H1(U).

Multiply equation (2.7) by a test function v ∈ H1(U) with ‖v‖H1(U) ≤ 1 and integrate
over the domain U . We obtain
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∫
U
ut(t, x)v(x) dx︸ ︷︷ ︸

=‖ut(t,·)‖H−1(U)

=
∫
U

g0(t, x) +
n∑
j=1

gjxj(t, x)
 v(x) dx

=
∫
U
g0(t, x)v(x) dx+

n∑
j=1

gj(t, x)v(x)
∣∣∣∣∣
∂U︸ ︷︷ ︸

=0 due to BC

−
n∑
j=1

∫
U
gj(t, x)vxj(x) dx

Cauchy Schwarz
≤

∥∥∥g0(t, ·)
∥∥∥
L2(U)

‖v‖L2(U)︸ ︷︷ ︸
=‖v‖H2(U)≤1

+
n∑
j=1

∥∥∥gj(t, ·)∥∥∥
L2(U)

∥∥∥vxj∥∥∥L2(U)︸ ︷︷ ︸
=‖v‖H2(U)≤1

≤
n∑
j=0

∥∥∥gj(t, ·)∥∥∥
L2(U)

for a.e. time t ∈ [0, T ]. Executing some standard estimates, it follows

‖ut(t, ·)‖H−1(U) ≤
n∑
j=0

∥∥∥∥∥f(t, ·) +
n∑
i=1

(
aij − bi

)
uxi(t, ·)− cu(t, ·)

∥∥∥∥∥
L2(U)

≤ ‖f(t, ·)‖L2(U) +
n∑
j=1

∥∥∥∥∥
n∑
i=1

(
aij − bi

)
uxi(t, ·)− cu(t, ·)

∥∥∥∥∥
L2(U)

≤ C
(
‖f(t, ·)‖L2(U) + ‖u(t, ·)‖H1(U)

)
Consequently, it might be reasonable to look for a weak solution with d

dt(u) ∈ H−1(U)
for a.e. time t ∈ [0, T ]. We can reexpress the first term in (2.6) with 〈 d

dtu, v〉. This
derivation motivates the definition of a weak solution, see [9], section 5.9.2. and 7.1.1..

Definition 2.2.12 (Weak solution of a parabolic PDE). We say a function

u ∈ L2
(
0, T ;H1(U)

)
, with d

dtu ∈ L
2
(
0, T ;H−1(U)

)
is a weak solution of the parabolic boundary problem (2.1) provided

(i)
〈

d
dtu, v

〉
+B [u, v; t] = (f , v)

for each v ∈ H1(U) and a.e. time t ∈ [0, T ], and

(ii) u(0) = g.

Instead of claiming a point wise validity as for a classical solution, a weak solution can
be seen as a mean integral with an arbitrary weighting function v. The same holds for
the initial and boundary condition. The weak formulation of our parabolic PDE with
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homogeneous Neumann boundary conditions (2.6) is similar as the weak formulation of
a parabolic PDE with homogeneous Dirichlet boundary conditions. The only difference
is, that our function u operates in L2 (0, T ;H1(U)) instead of L2(0, T ;H1

0(U)). The zero
index corresponds to the homogeneous Dirichlet boundary condition. The space Hk

0(U)
is defined as the closure of C∞(U) functions with compact support in U with respect
to the norm Hk(U). So functions in Hk

0(U) can be interpreted as functions in Hk(U)
such that “Dαu = 0 on ∂U” for all |α| ≤ k − 1. For more details see [9] section 5.2.2..
Thus, we can use some results of this book.

To find a weak solution of the parabolic boundary problem (2.1), we use the so
called Galerkin Method. The approach is to replace the function space by a finite-
dimensional subspace and taking afterwards the limits of the approximated solution.
In more detail, assume wk(x) are smooth orthogonal basis vectors of L2(U) and H1(U).
One can normalize the basis with respect to one of the spaces and we do this with
respect to the L2(U) space. Remember that it is not possible to normalize the basis for
both spaces. So we obtain

{wk}∞k=1 is an orthogonal basis of H1(U)

and

{wk}∞k=1 is an orthonormal basis of L2(U).

For a fixed integer m, we want to find a function um : [0, T ]→ H1(U) of the form

um(t) :=
m∑
k=1

dkm(t)wk. (2.8)

Later on in section 2.2.2, we refer to the basis wk as shape functions, since we use
them to approximate the shape of the solution. Additionally, the coefficients of the
approximation should satisfy

dkm(0) = 〈g, wk〉 (2.9)

and it should hold

〈
d
dtum, wk

〉
+B [um, wk; t] = (f , wk) . (2.10)

One can proof that there exists for each integer m a unique function um of the form
(2.8) satisfying (2.9) and (2.10). The proof can be found in [9], section 7.1.2..
In order to continue to send the limits to infinity, we need some uniform estimates which
can be found in [9] and are slightly adjusted to our problem. The next lemma and
proposition are given in [9], section 6.2.2., Theorem 2, respectively 7.1.2., Theorem 2.
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Lemma 2.2.13 (Energy estimation 1). There exist constants α, β > 0 and γ ≥ 0 such
that

β‖u‖2
H1(U) ≤ B [u, u] + γ‖u‖2

L2(U).

Proof. Using the elliptic condition, we have

θ
∫
U
|Du|2 dx ≤

∫
U

n∑
i,j=1

aijuxiuxj ds

= B [u, u]−
∫
U

n∑
i=1

biuxiu+ cu2 dx

≤ B [u, u] +
n∑
i=1

∥∥∥bi∥∥∥
L∞

∫
U
|Du| |u| dx+ ‖c‖L∞

∫
U
u2 dx.

(2.11)

With Cauchy’s inequality we observe for ε > 0∫
U
|Du| |u| dx ≤ ε

∫
U
|Du|2 dx+ 1

4ε

∫
U
u2 dx.

We choose ε so small such that ε∑n
i=1 ‖bi‖L∞ < θ

2 and insert this into (2.11). Then it
holds

θ

2

∫
U
|Du|2 dx ≤ B [u, u] + C̃

∫
U
u2 dx

⇐⇒ θ

2

∫
U
|Du|2 + |u|2 dx ≤ B [u, u] + C̃

∫
U
u2 dx+ θ

2

∫
U
|u|2 dx = B [u, u] + C

∫
U
u2 dx

for some appropriate constants C̃ and C. It easily follows the statement for appro-
priate constants β > 0, γ ≥ 0.

Proposition 2.2.14 (Energy estimation 2). There exists a constant C, depending only
on U, T and the coefficients of L, such that

max
t∈[0,T ]

‖um(t)‖L2(U) + ‖um‖L2(0,T ;H1(U)) +
∥∥∥∥∥ d

dtum
∥∥∥∥∥
L2(0,T ;H−1(U))

≤ C
(
‖f‖L2(0,T ;L2(U)) + ‖g‖L2(U)

)
for m = 1, 2, . . . .

Proof. We give here only a brief summary of the proof, only parts which are important
later on are more precisely. The complete proof is in [9], section 7.1.2..
By multiplying dkm(t) to (2.10), summing up for k and recalling (2.8), we find
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〈
d
dtum,um

〉
+B [um,um; t] = (f ,um) .

for a.e. t ∈ [0, T ]. Furthermore |(f ,um)| ≤ 1
2‖f‖

2
L2(U)+1

2‖um‖
2
L2(U) and 〈 d

dtum,um〉 =
d
dt

(
1
2‖um‖

2
L2(U)

)
. Consequently, these equations and Lemma 2.2.13 yields

d
dt
(
‖um‖2

L2(U)

)
+ 2β‖um‖2

H1(U) ≤ C1‖um‖2
L2(U) + C2‖f‖2

L2(U) (2.12)

for a.e. t ∈ [0, T ] and appropriate constants C1 and C2. Apply the differential form
of Gronwall’s inequality, that is Theorem A.2.2, to (2.12) and (2.9) yields

max
t∈[0,T ]

‖um(t)‖2
L2(U) ≤ C3

(
‖g‖2

L2(U) + ‖f‖2
L2(0,T ;L2(U))

)
.

Integrate (2.12) from 0 to T and employ the inequality above to find

‖um‖2
L2(0,T ;H1(U)) =

∫ T

0
‖um‖2

H1(U)dt

≤ C4
(
‖g‖2

L2(U) + ‖f‖2
L2(0,T ;L2(U))

)
.

We choose fixed v ∈ H1(U) with ‖v‖H1(U) ≤ 1 and write v = v1 + v2, where v1 ∈
span{wk}mk=1 and 〈v2, wk〉 = 0 for all k. Note that {wk}∞k are orthogonal in H1(U), thus
‖v1‖H1(U) ≤ ‖v‖H1(U) ≤ 1. Then this property yields with equations (2.10) and (2.8)

∫ T

0

∥∥∥∥∥ d
dtum

∥∥∥∥∥
2

H−1(U)
dt ≤ C5

(
‖g‖2

L2(U) + ‖f‖2
L2(0,T ;L2(U))

)
.

Now we take m→∞ to build a weak solution of our problem.

Theorem 2.2.15 (Existence and uniqueness). There exists an unique weak solution of
(2.1).

The following is no full proof, only a sketch of proof Theorem 2.2.15. Note that Evans
did a proof in his book [9] for a homogeneous Dirichlet Boundary Problem. Therefore,
the weak solution is in L2 (0, T ;H1

0(U)). However, the variational formulation of our
system (2.1) has the same form as the variational formulation of a homogeneous Dirich-
let Boundary Problem, except that it operates in L2 (0, T ;H1(U)). Thus, we replace
in our proof H1

0(U) by H1(U). Equivalently, H−1(U) denotes then the dual room of
H1(U). More interested readers can find details in [9], section 7.1.2, Theorem 3.
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Proof. Existence: First we denote um as a Galerkin approximation of the problem
(2.1). Then we send m to infinity and look for a subsequence that converges to a weak
solution of (2.1). An estimation is used which is referred to as Energy Estimation 2,
see Proposition 2.2.14. It follows that a subsequence uml respectively d

dtuml converges
weakly in L2(0, T ;H1(U)) respectively L2(0, T ;H−1(U)). Construct a test function
v ∈ C1([0, T ];H1(U)) as

v(t) =
N∑
k=1

dk(t)wk

with {dk}Nk=1 are given smooth functions, wk is a orthogonal basis of H1(U) and N
as a fixed integer. Functions of this form are dense in L2(0, T ;H1(U)) and using the
weak convergence of the subsequence, we obtain the weak formulation in (2.6) for each
v ∈ H1(U). Almost analogously, one obtains u(0) = g.

Uniqueness: We assume two weak solutions u1 and u2 of (2.5). Taking the difference
of (2.5) with u1 and u2 yield f ≡ 0 and g ≡ 0. Let’s define u := u1 − u2. For v = u
one obtains

d
dt

(1
2‖u‖

2
L2(U)

)
+B [u,u; t] =

〈
d
dtu,u

〉
+B [u,u; t] = 0.

One can find an estimation B [u,u; t] ≥ −γ‖u‖2
L2(U). That yields

d
dt

(1
2‖u‖

2
L2(U)

)
≤ γ‖u‖2

L2(U).

Now the generalised Gronwall’s inequality, Theorem A.2.3, leads to u ≡ 0 because
of the initial condition g ≡ 0.

If one assumes on the one hand stronger assumptions to the right hand side f and on
the other hand to the coefficients aij, bi, c to be smooth in U as well as the boundary
itself and aij do not depend on t for all i, j = 1, . . . , n, then one can find an improved
regularity of the weak solution of the parabolic problem (2.1).

For the proof, we need a higher regularity of the elliptic boundary value problem. Un-
fortunately, we can not rewrite Evans proof at this point. Solonnikov derived a general
theorem for higher regular weak solutions of elliptic problems in [30], p. 158-159. As an
example, he applied it for a second boundary value problem with Neumann boundary
conditions which is given here as a lemma.

Lemma 2.2.16. Assume aij ∈ W1
q (U), bi, c ∈ Lq(U), q > n, i, j = 1, . . . , n and

f ∈ Lq(U). Suppose that u is a weak solution of the elliptic boundary-value problem

16
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Lu = f in U

∂u

∂n
= 0 on ∂U.

Assume finally

∂U ∈ C2.

Then

u ∈ W2
q (U)

and we have the estimate

‖u‖W2
q (U) ≤ C

(
‖f‖Lq(U) + ‖u‖Lq(U)

)
.

Using this Lemma, we can prove the regularity theorem in [9], p. 360-361, for our
boundary setting.

Theorem 2.2.17 (Improved regularity for homogeneous Neumann condition). Assume
aij ∈ H2(U), bi, c ∈ L∞([0, T ] × U), g ∈ H1(U), f ∈ L2(0, T ;L2(U)) and ∂U ∈ C2.
Suppose also u ∈ L2(0, T ;H1(U)) with d

dtu ∈ L
2(0, T ;H−1(U)), is the weak solution of

the parabolic problem (2.1). Then in fact

u ∈ L2(0, T ;H2(U)) ∩ L∞(0, T ;H1(U)), d
dtu ∈ L

2(0, T ;L2(U)),

and we have the estimate

ess sup
t∈[0,T ]

‖u(t)‖H1(U) + ‖u‖L2(0,T ;H2(U)) +
∥∥∥∥∥ d

dtu
∥∥∥∥∥
L2(0,T ;L2(U))

≤ C
(∥∥∥fL2(0,T ;L2(U))

∥∥∥+ ‖g‖H1(U)

)
.

The constant C depends only on U, T and the coefficients of the Lebesgue spaces.

Proof. Again, we will give here a brief approach of the proof given in Evans book [9].
Similar as in Proposition 2.2.14, we multiply equation (2.10) now by d

dtd
k
m(t) for fixed

m and summing up for k to discover〈
d
dtum,

d
dtum

〉
+B

[
um,

d
dtum

]
=
(
f ,

d
dtum

)

for a.e. t ∈ [0, T ]. Recall the definition of B
[
um,

d
dtum

]
, see equation (2.4),

17
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B[um,
d
dtum] =

∫
U

n∑
i,j=1

aijum,xi
d
dtum,xi dx+

∫
U

n∑
i=1

bium,xi
d
dtum + cum

d
dtum dx

=: A1 + A2.

We assumed aij = aji and the coefficients do not depend on t, so one can derive

A1 = d
dt

(1
2A [um,um]

)
for A[u, v], u, v ∈ H1(U), being a symmetric bilinear form. Furthermore, applying
Young’s Theorem, that is Theorem A.2.1,

|A2| ≤
C

ε
‖um‖2

H1(U) + ε

∥∥∥∥∥ d
dtum

∥∥∥∥∥
2

L2(U)∣∣∣∣∣
(
f ,

d
dtum

) ∣∣∣∣∣ ≤ C

ε
‖f‖2

L2(U) + ε

∥∥∥∥∥ d
dtum

∥∥∥∥∥
2

L2(U)

for each ε > 0 and a constant C > 0 depending on the coefficients bi and c. Combining
both inequalities, choosing ε = 1

4 and integrating, we find

∫ T

0

∥∥∥∥∥ d
dtum

∥∥∥∥∥
2

L2(U)
dt+ sup

t∈[0,T ]
A [um(t),um(t)]

≤ C

(
A [um(0),um(0)] +

∫ T

0
‖um‖2

H1(U) + ‖f‖2
L2(U) dt

)
≤ C

(
‖g‖2

H1(U) +
∥∥∥f 2
L2(0,T ;L2(U))

∥∥∥) ,
according to Proposition 2.2.14. Since A[u, u] ≥ θ

∫
U |Du|2 dx for each u ∈ H1(U),

we obtain

sup
t∈[0,T ]

‖um(t)‖2
H1(U) ≤ C

(
‖g‖2

H1(U) + ‖f‖2
L2(0,T ;L2(U))

)
.

Passing to limits as m = ml → ∞, we deduce u ∈ L∞(0, T ;H1(U)) and d
dtu ∈

L2(0, T ;L2(U)) with the stated bounds. In particular, for a.e. t we have the identity〈
d
dtu, v

〉
+B [u, v] = (f , v)

for each v ∈ H1(U). We rewrite this into

B [u, v] = 〈h, v〉

18
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for h := f − d
dtu. Since h ∈ L2(U) for a.e. t ∈ [0, T ], we deduce from Lemma 2.2.16

that u(t) ∈ H2(U) for a.e. t ∈ [0, T ], with the estimate

‖u‖2
H2(U) ≤ C

‖f‖2
L2(U) +

∥∥∥∥∥ d
dtu

∥∥∥∥∥
2

L2(U)
+ ‖u‖2

L2(U)

 .
Integrating and utilizing the derived estimates, we complete the proof.

Let us investigate a more complex case. We assume a nonlinearity in the right hand
side of the system in (2.1), that is f = f(u), but suppose simultaneously that f(u) is
Lipschitz continuous.

Theorem 2.2.18 (Existence and uniqueness of a nonlinear reaction diffusion system).
Let U ⊂ Rn and u = (u1, . . . , um). Then there exists a unique weak solution of

∂

∂t
u+ Lu = f(u) in (0, T ]× U

∂u

∂n
= 0 on (0, T ]× ∂U

u = g on {t = 0} × U

(2.13)

with f ∈ L2([0, T ]× U) being nonlinear but Lipschitz continuous and g ∈ H1(U).

The following proof is an adjusted version of an example in [9] in Section 9.2.1..

Proof. Let’s define an operator A to apply Banach’s fixed point theorem in space X =
C([0, T ] ,L2(U ;Rm)) with norm

‖v‖ := max
t∈[0,T ]

‖v(t)‖L2(U ;Rm).

Let u ∈ X be a given function, then h(t) := f(u(t)) is in L2(0, T ;L2(U,Rm)) due to
the Lipschitz continuity. Consequently the linear parabolic PDE

d
dtw + Lw = f(w) in (0, T ]× U

∂w

∂n
= 0 on (0, T ]× ∂U

w = g on {t = 0} × U

has a unique weak solution with

w ∈ L2(0, T ;H1(U ;Rm)), with d
dtw ∈ L

2(0, T ;H−1(U ;Rm)),

see Theorem 2.2.15. Thus, w ∈ X fulfils
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〈
d
dtw,v

〉
+B [w,v; t] = (h,w) (2.14)

for a.e. t ∈ [0, T ] and for each v ∈ H1(U ;Rm) and w(0) = g. Hence we define

A : X → X, A [u] = w.

Next, we choose u, ũ ∈ X and define w = A[u], w̃ = A[ũ] as above. That means w
verifies (2.14) for h = f(u) respectively h̃ = f(ũ). Using the estimation (2.12) from
the proof of Theorem 2.2.14, we deduce for the difference of w − w̃

d
dt‖w − w̃‖

2
L2(U) + 2β‖w − w̃‖2

H1(U) ≤ C1‖w − w̃‖2
L2(U) + C2

∥∥∥h− h̃∥∥∥2

L2(U)

⇐⇒ d
dt‖w − w̃‖

2
L2(U) ≤ C3‖w − w̃‖2

L2(U)

because of the Lipschitz continuity of f . Integrate the inequality with respect to time
t and we obtain

‖w(s)− w̃(s)‖2
L2(U) ≤ C

∫ s

0
‖u(t)− ũ(t)‖2

L2(U) dt

≤ CT‖u− ũ‖2 (2.15)

for s ∈ [0, T ]. Maximizing of the left hand side yields

‖w − w̃‖2 ≤ CT‖u− ũ‖2.

Therefore

‖A[u]− A[ũ]‖ ≤ (CT ) 1
2‖u− ũ‖

and if T > 0 is so small such that (CT ) 1
2 < 1 then operator A is a strict contraction.

That means for any given T > 0, we select T1 > 0 so small such that (CT1) 1
2 < 1.

Then we can apply Banach’s fixed point theorem (Theorem A.1.1) to find a unique
weak solution u of (2.13) existing for t ∈ [0, T1]. We can then repeat the argument to
extend our solution to the interval [T1, 2T1]. Repeat this procedure and after finitely
many steps, we constructed a weak solution on the full interval [0, T ].

In order to show uniqueness, we assume two weak solutions u and ũ. Then we have
w = u and w̃ = ũ in (2.15). Thus,

‖u(s)− ũ(s)‖2
L2(U) ≤ C

∫ s

0
‖u(t)− ũ(s)‖2

L2(U) dt

for t ∈ [0, T ]. Gronwall’s inequality, Theorem A.2.3 yields u ≡ ũ.
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Later on in chapter 5, we will need some further results in order to proof existence
and uniqueness of our adjusted parabolic equation. These are not given any more in [9].
We start to introduce a regularisation of the Heaviside function such that it becomes
continuous.

Definition 2.2.19. For δ > 0, let Hδ denote the following regularisation of the Heavi-
side function:

Hδ(x) =



0 x ≤ 0

x

δ
0 < x < δ

1 x ≥ δ.

Then Hδ(x) ∈ C(R) ∩W1,∞(R), H ′δ(x) ≥ 0 a.e. and 0 ≤ Hδ(x) ≤ 1 for all ~x ∈ R.

The following proposition is useful to compare weak solutions of specific reaction
diffusion equations.

Proposition 2.2.20 (Monotony property). Let Ω ⊂ Rn be an open, bounded set and
T > 0 be a fixed time point. There are two parabolic systems given:

∂

∂t
u(t, ~x) =D∇2u(t, ~x)− αb(t, ~x)f(t, ~x)u(t, ~x)− γu(t, ~x)

+ βΠχ(h(t, ~x))g(t, ~x)b(t, ~x)
(2.16)

u(0, ~x) =u0(~x)
∂u

∂n
=0

and

∂

∂t
v(t, ~x) = D∇2v(t, ~x)− αb(t, ~x)Fv(t, ~x) + βΠGb(t, ~x)− γv(t, ~x) (2.17)

v(0, ~x) = v0(~x)
∂v

∂n
= 0

with

Πχ(h(t, ~x)) := Πmin +∆Πh(t, ~x)
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and f, g, h ∈ L∞((0, T ] × Ω), u0(~x), v0(~x) ∈ H1(Ω), b ∈ L∞((0, T ] × Ω) and
D,α, β, γ, σ,Π, F,G ∈ R+ are non-negative constants.

We assume that there exist weak solutions u(t, ~x) and v(t, ~x) of (2.16) and (2.17)
with u0(~x) ≤ v0(~x). If F ≤ f(t, ~x), G ≥ g(t, ~x) and Π ≥ Πχ(h(t, ~x)), then it holds
u(t, ~x) ≤ v(t, ~x) for almost every (t, ~x) in [0, T ]× Ω.

Proof. Let z := u− v be the difference of weak solutions of equations (2.16) and (2.17),
respectively. Consequently, z solves the difference of the equations, that is,

∂

∂t
z(t, ~x) =D∇2z(t, ~x)− αb(t, ~x) [f(t, ~x)u(t, ~x)− Fv(t, ~x))]

+ βb(t, ~x) [Πχ(h(t, ~x))g(t, ~x)− ΠG]− γz(t, ~x)
(2.18)

with

z(0, ~x) = u0(~x)− v0(~x)
∂z

∂n
= 0. (2.19)

We use Definition 2.2.19 to obtain with λ > 0

ϕ(t, ~x) := −e−λtHδ(z(t, ~x))

which we use as a test function since we can conclude that ϕ(t, ~x) is in H1((0, T ])×Ω)
because Hδ is in W1,∞ and weak differentiability follows from the chain rule of Sobolev
functions. Furthermore, the derivatives of ϕ with respect to t and ~x are in L2. That’s
because on the one hand ∂tz, ∇z ∈ L2 since this holds each for u and v. On the other
hand ∂t

(
−e−λtHδ(x)

)
= λe−λt 1

δ
≤ λ

δ
and ∂x

(
−e−λtHδ(x)

)
=≤ λ

δ
for all t and ~x.

Testing equation 2.18 with ϕ(t, ~x), applying Fubini’s Theorem, we obtain

−
∫

Ω

∫ t

0

∂

∂t
z(s, ~x)e−λsHδ(z(s, ~x)) ds d~x = (2.20)

−D
∫

Ω

∫ t

0
∇2z(s, ~x)e−λsHδ(z(s, ~x)) ds d~x (2.21)

+
∫

Ω

∫ t

0
αb(s, ~x) [f(s, ~x)u(s, ~x)− Fv(s, ~x))] e−λsHδ(z(s, ~x)) ds d~x (2.22)

−
∫

Ω

∫ t

0
βb(s, ~x) [Πχ(h(s, ~x))g(s, ~x)− ΠG] e−λsHδ(z(s, ~x)) ds d~x. (2.23)

+ γ
∫

Ω

∫ t

0
z(s, ~x)e−λsHδ(z(s, ~x)) ds d~x. (2.24)

We start with the left hand side (2.20). Partial integration yields
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(2.20) =−
∫

Ω

[
z(t, ~x)e−λtHδ(z(t, ~x))− z(0, ~x)Hδ(z(0, ~x))

]
d~x

+
∫

Ω

∫ t

0
z(s, ~x) d

ds

[
e−λsHδ(z(s, ~x))

]
ds d~x

=−
∫

Ω
z(t, ~x)e−λtHδ(z(t, ~x))− z(0, ~x)Hδ(z(0, ~x)) d~x

−
∫

Ω

∫ t

0
z(s, ~x)λe−λsHδ(z(s, ~x)) ds d~x

+
∫

Ω

∫ t

0
z(s, ~x)e−λsH ′δ(z(s, ~x)) ∂

∂s
z(s, ~x) ds d~x. (2.25)

We focus initially on (2.25). The derivative of the regularised Heaviside function
reads for a.e. s, ~x

H ′δ(z(s, ~x)) =


1
δ

for 0 < z(s, ~x) < δ

0 otherwise.

Therefore we obtain

|z(s, ~x)H ′δ(z(s, ~x))| = z(s, ~x)H ′δ(z(s, ~x)) ≤ δ
1
δ

= 1 for a.e. s, ~x

and in general it holds

H ′δ(z(s, ~x))χ(0,δ)(z(s, ~x)) = H ′δ(z(s, ~x)) for a.e. s, ~x.

Using this, we can conclude for the absolute value of (2.25) the following inequality:

∣∣∣∣∣
∫

Ω

∫ t

0
z(s, ~x)e−λsH ′δ(z(s, ~x)) ∂

∂s
z(s, ~x) ds d~x

∣∣∣∣∣
=
∣∣∣∣∣
∫

Ω

∫ t

0
z(s, ~x)e−λsH ′δ(z(s, ~x))χ(0,δ)(z(s, ~x)) ∂

∂s
z(s, ~x) ds d~x

∣∣∣∣∣
≤
∫

Ω

∫ t

0
|z(s, ~x)H ′δ(z(s, ~x))|︸ ︷︷ ︸

≤1

∣∣∣∣∣χ(0,δ)(z(s, ~x)) ∂
∂s
z(s, ~x)

∣∣∣∣∣ ds d~x
≤
∫

Ω

∫ t

0

∣∣∣∣∣χ(0,δ)(z(s, ~x)) ∂
∂s
z(s, ~x)

∣∣∣∣∣ ds d~x.
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Since ∂tz ∈ L2((0, T ] × Ω), we know that ∂tz ∈ L1((0, T ] × Ω). That means the
integrand is dominated by ∂tz, an integrable function. Additionally, it holds that

lim
δ→0

χ(0,δ)(z(s, ~x))→ 0

converges pointwise because ⋂δ>0(0, δ) = ∅. Finally, we can apply the dominated
convergence theorem A.4.3, yielding

lim
δ→0

∫
Ω

∫ t

0

∣∣∣∣∣χ(0,δ)(z(s, ~x)) ∂
∂s
z(s, ~x)

∣∣∣∣∣ ds d~x = 0.

Since lim
δ→0

Hδ(z(s, ~x)) → H(z(s, ~x)) converges pointwise, we obtain due to the domi-
nated convergence theorem that (2.20) can be written finally to

−
∫

Ω

∫ t

0

∂

∂s
z(s, ~x)e−λsH(z(s, ~x)) ds d~x

=−
∫

Ω
z(t, ~x)e−λtH(z(t, ~x))− z(0, ~x)H(z(0, ~x)) d~x

− λ
∫

Ω

∫ t

0
z(s, ~x)e−λsH(z(s, ~x)) ds d~x

=− e−λt
∫

Ω
[z(t, ~x)]+ d~x+

∫
Ω

[z(0, ~x)]+ d~x− λ
∫

Ω

∫ t

0
e−λs [z(s, ~x)]+ ds d~x.

Now we focus on the right hand side starting with the Laplace term (2.21). As in
previous calculation, partial integration and Neumann boundary condition (2.19) yields

−
∫ t

0

∫
Ω
∇2z(s, ~x)e−λsHδ(z(s, ~x)) d~x ds =

=
∫ t

0
e−λs

∫
Ω

(∇z(s, ~x)∇z(s, ~x))H ′δ(z(s, ~x))︸ ︷︷ ︸
≥0

d~x ds ≥ 0

for all δ > 0.

The dominated convergence theorem A.4.3 can be applied to (2.22), (2.23) and (2.24)
and allows us to replace Hδ by H. Additionally, the degradation term (2.24) can be
rewritten to

γ
∫

Ω

∫ t

0
z(s, ~x)e−λsHδ(z(s, ~x)) ds d~x = γ

∫
Ω

∫ t

0
e−λs [z(s, ~x)]+ ds d~x ≥ 0.

Summed up the results so far, we obtain
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−e−λt
∥∥∥[z(t, ·)]+

∥∥∥
L1(Ω)

+
∥∥∥[z(0, ·)]+

∥∥∥
L1(Ω)

+ (1− λ)
∫

Ω

∫ t

0
e−λs [z(s, ~x)]+ ds d~x

≥
∫

Ω

∫ t

0
αb(s, ~x) [f(s, ~x)u(s, ~x)− Fv(s, ~x)]︸ ︷︷ ︸

=:M1

H(z(s, ~x))e−λs ds d~x (2.26)

−
∫

Ω

∫ t

0
βb(s, ~x) [Πχ(h(s, ~x))g(s, ~x)− ΠG]︸ ︷︷ ︸

=:M2

e−λsH(z(s, ~x)) ds d~x. (2.27)

We instantaneously see that M2 ≤ 0 due to the assumptions. That leads to

−
∫

Ω

∫ t

0
βb(s, ~x)M2e

−λsH(z(s, ~x)) ds d~x ≥ 0. (2.28)

The term in (2.26) is a little bit trickier. We take a first look at M1. We can extend
this expression to obtain finally

M1 = f(s, ~x)u(s, ~x)− f(s, ~x)v(s, ~x)︸ ︷︷ ︸
=f(s,~x)z(s,~x)

+ f(s, ~x)v(s, ~x)− Fv(s, ~x).︸ ︷︷ ︸
≥0 due to assumption

Thus, the right hand side can be estimated to

(2.26) ≥
∫

Ω

∫ t

0
αb(s, ~x)f(s, ~x)z(s, ~x)H(z(s, ~x))e−λs ds d~x

≥C1

∫
Ω

∫ t

0
[z(s, ~x)]+ e

−λs ds d~x (2.29)

with C1 := αF min
(s,~x)∈[0,T ]×Ω

b(s, ~x)|Ω|.

Using the estimations (2.28) and (2.29) for (2.26) and (2.27), we obtain

−e−λt
∥∥∥[z(t, ·)]+

∥∥∥
L1(Ω)

+
∥∥∥[z(0, ·)]+

∥∥∥
L1(Ω)

≥(λ− 1)
∫

Ω

∫ t

0
e−λs [z(s, ~x)]+ ds d~x

+ C1

∫
Ω

∫ t

0
e−λs [z(s, ~x)]+ ds d~x.

(2.30)

We assumed for the initial condition u0(~x) ≤ v0(~x), that means [z(0, ·)]+ = 0 almost
everywhere. Thus,

∥∥∥[z(0, ·)]+
∥∥∥
L1(Ω)

= 0 and (2.30) simplifies to
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−e−λt
∥∥∥[z(t, ·)]+

∥∥∥
L1(Ω)

≥(λ− 1 + C1)
∫

Ω

∫ t

0
e−λs [z(s, ~x)]+ ds d~x

≥0, if λ ≥ C1 − 1 is chosen.

Thus, we can conclude ∥∥∥[z(t, ·)]+
∥∥∥
L1(Ω)

≤ 0.

The expression [z]+ = [u− v] ≤ 0 is equivalent to u ≤ v. That means we can finally
conclude that

∥∥∥[z(t, ·)]+
∥∥∥
L1(Ω)

≤ 0 is equivalent to u(t, ~x) ≤ v(t, ~x).

Corollary 2.2.21. We assume that there exist weak solutions u(t, ~x) and v(t, ~x) of
(2.16) and (2.17) with u0(~x) ≥ v0(~x). If F ≥ f(t, ~x), G ≤ g(t, ~x) and Π ≤ Πχ(h(t, ~x))
then it holds u(t, ~x) ≥ v(t, ~x).

The proof is analogously since one has just to change signs and inequality signs.

The next lemma states the solution of a PDE including diffusion and degradation
only.
Lemma 2.2.22. Let Ω ⊂ R2 and t ∈ [t0, T ]. Then the system

∂

∂t
Ψ(t, ~x) = ∇2Ψ(t, ~x)− γΨ(t, ~x)

Ψ(t0, ~x) = e−γt0 ζ̂(~x)
∂Ψ(t, ~x)
∂n

= 0 for ~x ∈ ∂Ω

with γ ∈ R+ being a non-negative constant and Ψt0(~x) ∈ H1(Ω) has a unique solution
which reads

Ψ(t, ~x) = e−γtζ(t, ~x)

whereas ζ(t, ~x) is a solution of ∂
∂t
ζ(t, ~x) = ∇2ζ(t, ~x) with ζ(t0, ~x) = ζ̂(~x) ∈ R+ and

∂ζ(t,~x)
∂n

= 0.
Proof. The existence can be proven by simply recalculating the derivatives of Ψ(t, ~x):

∂

∂t
Ψ(t, ~x) = −γe−γtζ(t, ~x) + e−γt ∂

∂t
ζ(t, ~x)

= −γe−γtζ(t, ~x) + e−γt∇2ζ(t, ~x)
∇Ψ(t, ~x) = e−γt∇ζ(t, ~x)
∇2Ψ(t, ~x) = e−γt∇2ζ(t, ~x).
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Inserting this into the PDE ∂
∂t

Ψ(t, ~x) = ∇2Ψ− γΨ yields

−γe−γtζ(t, ~x) + e−γt∇2ζ(t, ~x) = e−γt∇2ζ(t, ~x)− γe−γtζ(t, ~x).

Furthermore, the initial and boundary conditions are fulfilled, too:

Ψ(t0, ~x) = e−γt0ζ(t0, ~x) = e−γt0 ζ̂(~x)
Ψ(t, ~x)

(n) = e−γt ζ(t, ~x)
n

= 0.

To prove uniqueness, we first show that

∂

∂t
ζ(t, ~x) = ∇2ζ(t, ~x) (2.31)

has a unique solution. We assume that there exist two solutions ζ1 and ζ2 of (2.31).
The difference of these solutions z := ζ1 − ζ2 solves the difference of the PDEs, that is

∂

∂t
ζ1(t, ~x)− ∂

∂t
ζ2(t, ~x) = ∇2ζ1(t, ~x)−∇2ζ2(t, ~x)

⇐⇒ ∂

∂t
z(t, ~x) = ∇2z(t, ~x)

with

z(t0, ~x) = ζ̂1(~x)− ζ̂2(~x).
The equation is tested with z(t, ~x) and integrated by t. Integration on the left and

partial integration on the right hand side yields

∫ t

t0

∫
Ω

∂

∂t
z(s, ~x)z(s, ~x) d~x ds =

∫ t

t0

∫
Ω
∇2z(s, ~x)z(s, ~x) d~x ds

⇐⇒ 1
2‖z(t, ·)‖2

L2(Ω) + 1
2‖z(t0, ·)‖2

L2(Ω) = −
∫ t

t0
|∇z(s, ~x)|2 ds ≤ 0.

Therefore, if ζ1(~x) = ζ2(~x) then 1
2‖z(t, ·)‖2

L2(Ω) ≤ 0 which means that ζ1(t, ~x) = ζ2(t, ~x)
due to Gronwall’s inequality. Thus, the assumption was wrong leading to a unique so-
lution.

We do the same approach for Ψ(t, ~x). Assume that there are two solutions Ψ1 and
Ψ2. The difference of these solutions y(t, ~x) := Ψ1(t, ~x)− Ψ2(t, ~x) solves the difference
of the corresponding PDEs, that is
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∂

∂t
y(t, ~x) = ∇2y(t, ~x)− γy(t, ~x)

with

y(t0, ~x) = e−γt0
(
ζ̂1(~x)− ζ̂2(~x)

)
.

We use y(t, ~x) as a test function to test the equation and integration by t yields

∫ t

t0

∫
Ω

∂

∂t
y(s, ~x)y(s, ~x) d~x ds =

∫ t

0

∫
Ω
∇2y(s, ~x)y(s, ~x) d~x ds

− γ
∫ t

t0

∫
Ω
y(s, ~x)y(s, ~x) d~x ds

⇐⇒ 1
2‖y(t, ·)‖2

L2(Ω) + 1
2‖y(t0, ·)‖2

L2(Ω) ≤−
∫ t

0
|∇y(s, ~x)|2 ds− γ

∫ t

0
|y(s, ~x)|2 ds ≤ 0.

Choosing the same initial condition, meaning y(t0, ~x) = 0, we obtain by Gronwall’s
inequality that Ψ1(t, ~x) = Ψ2(t, ~x) and eventually a unique solution.

2.2.2. Finite Element Method (FEM) for a parabolic PDE
As a guideline for the concept, the text book of P. Knabner and L. Angermann [15] is
used and gives us a short introduction into application-oriented finite element method.
The paragraph of Linear Elements is based on O. C. Zienkiewicz, see [41].

In section 2.2.1 we derived the weak formulation of a parabolic partial differential
equation with homogeneous Neumann boundary condition, see Definition 2.2.12. In
order to solve the PDE numerically, there are a variety of methods to do so. In this
section we introduce the finite element method which is a more general approximation
technique containing many finite difference schemes as special cases. Due to its geo-
metric flexibility, practical implementation, and powerful and elegant theory, it is one
of the most successful discretization methods for PDE problems. For that reasons, we
concentrate on to solve the PDE with the finite element method.

One can distinguish between full discretizations, that is the application of so-called
space-time finite element method including the time variable, too, and semidiscretiza-
tions. The last one includes either the vertical method of lines, i.e. discretization starts
with respect to the spatial variable or the horizontal method of lines, i.e. the discretiza-
tion starts with respect to the time variable, illustrated in figure 2.3. Of course, both
methods need a further discretization step to obtain a fully discretized problem. The in-
tention of a semidiscretization is to deduce intermediate problems which are well known
and offer a wide variety of tools to solve. The horizontal method leads to a system of
elliptic boundary problems whereas the vertical method yields a system of ordinary
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differential equations. We will consider the vertical method in more detail.

x

t

t4

t3

t2

t1

Solve elliptic problem

So
lv

e
O

D
E

t

x
x1 x2 x4x3

Figure 2.3.: Scheme of the two semidiscretizations. x denotes the spatial variable, t is
the time variable. The left hand side shows the horizontal method, the right
hand side the vertical method.

We use again the Galerkin method to discretize the equation as introduced above in
section 2.2.1. We replace the function space V by a finite-dimensional subspace Vh ⊂ V
with dim(Vh) = N . Later on, N corresponds to the number of nodes of our space
discretisation. Then we look for a solution uh ∈ Vh with t ∈ [0, T ] such that

〈
d
dtuh, v

〉
+B [uh, v; t] = (f , v) (2.32)

for all v ∈ Vh and let u0h ∈ Vh be some approximation to u0. Let {φi}Ni=1 be a basis
of Vh, then the approximated solution reads

uh(t) =
N∑
i=1

ξi(t)φi (2.33)

and u0h = ∑N
i=1 ξ0iφi. As test functions we choose v = φi, then the discrete varia-

tional equality (2.32) is equivalent to

N∑
j=1
〈φj, φi〉

dξj(t)
dt +

N∑
j=1

B [φj, φi; t] ξj(t) = 〈f , φi〉 ∀i ∈ {1, . . . , N}. (2.34)

The ODE system (2.34) can be rewritten into a matrix form. We define the matrix
M := 〈φj, φi〉ij which is called mass matrix, K(t) := B [φj, φi; t]i,j as stiffness matrix
and F (t) := (f , φi)i is called load vector. The initial value is written as ξ0h := (ξ0i)i.
Then for ξh := (ξi(t))i we obtain
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M
d
dtξh(t) +K(t)ξh(t) = F (t)

ξh(0) = ξ0h.
(2.35)

To compute the element matrices it is necessary to find some appropriate test func-
tions respectively the so called shape functions. The next paragraph presents a brief
instruction how we choose acceptable elements for the approximation.

Linear Elements: First of all we need to discretize the area U into a proper mesh.
For reasons of simplicity as well as we don’t need higher dimensional cases, we just
consider a two-dimensional area U ⊆ R2. This dimension of area works best with
either triangular elements or rectangular elements. We will focus on triangular elements
since this element form is very flexible for geometrically challenging boundaries. A
triangulation should satisfy following properties which are stated in [15], section 2.2.

Definition 2.2.23. Let T be a partition of U into closed triangles K, including the
boundary ∂U . We call T a triangulation if

(1) Ū = ⋃
K∈T K

(2) For K,K ′ ∈ T , K 6= K ′,

K̊ ∩ K̊ ′ = ∅,

where K̊ denotes the open triangle (without the boundary ∂K).

If additionally holds

(3) If K 6= K ′ but K ∩K ′ 6= ∅, then K ∩K ′ is either a point or a common edge of K
and K ′.

then T is called a conforming triangulation.
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non confirmconfirm

Figure 2.4.: Scheme of a confirm and non confirm triangulation.

Usually one considers only conforming triangulation, e.g. see figure 2.4 and so do we
in this thesis. The vertices of a triangle are also called nodes. For linear finite elements,
the ansatz space Vh is defined as

Vh :=
{
u ∈ C(Ū) : u|K ∈ P1(K) ∀K ∈ T

}
.

P1(K) denotes the set of linear polynomials in 2 variables on K. Using Cartesian
coordinates x and y, a suitable approximation û for the unknown u for one triangle
element can be written as

û(x, y) = a1 + a2x+ a3y (2.36)

with constant parameters ai. That means at vertices of the triangle we require

u1 = a1 + a2x1 + a3y1

u2 = a1 + a2x2 + a3y2

u3 = a1 + a2x3 + a3y3

respectively written in matrix form

u1
u2
u3

 =

1 x1 y1
1 x2 y2
1 x3 y3


︸ ︷︷ ︸

=:Λ

a1
a2
a3

 .
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where ui is the approximated value at a node i, i.e. ui = ûi(xi, yi). Matrix Λ can be
inverted such that we obtain a solution for the parameters ai given by

a1
a2
a3

 = 1
2A4

x2y3 − x3y2 x3y1 − x1y3 x1y2 − x2y1
y2 − y3 y3 − y1 y1 − y2
x3 − x2 x1 − x3 x2 − x1


u1
u2
u3

 .
The symbol A4 denotes the area of the corresponding triangle and can be written as

A4 = 1
2 (x1 (y2 − y3) + x2 (y3 − y1) + x3 (y1 − y2)) .

Inserting the parameters ai into equation (2.36) and rearranging yields

û(x, y) = φ1(x, y)u1 + φ2(x, y)u2 + φ3(x, y)u3

with φi being test functions defined as

φ1(x, y) := 1
2A4

[(x2y3 − x3y2) + (y2 − y3)x+ (x3 − x2)y]

φ2(x, y) := 1
2A4

[(x3y1 − x1y3) + (y3 − y1)x+ (x1 − x3)y]

φ3(x, y) := 1
2A4

[(x1y2 − x2y1) + (y1 − y2)x+ (x2 − x1)y] .

So each approximated solution on a triangle element is given by its nodal values ui.
Note that the derivatives may not be continuous between elements such that the solution
provides only C0. Furthermore it typically holds the local properties of a shape function:

Let e be the set of edges of one triangle. Then it holds

φi(~xj) = δij

for i, j building an edge in e.

Additionally, the shape functions satisfy the following condition

∑
i

φi(x) = 1, ∀x ∈ e.

The derivatives of φi(x, y) can be easily written down and read
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∂φ

∂x
=


∂φ1
∂x

∂φ2
∂x

∂φ3
∂x

 = 1
2A4

y2 − y3
y3 − y1
y1 − y2

 and ∂φ

∂y
= 1

2A4

x3 − x2
x1 − x3
x2 − x1

 . (2.37)

33



Chapter 2. Basics

34



Chapter 3

ODE model

The probably most common way to model physical, chemical or biological processes in
time can be realized simplest by ordinary differential equations (ODEs). In order to
understand the processes, one can study the model analytically or simulate it numer-
ically to learn something about it. Even prediction of the behaviour is then possible.
Note that an ODE system usually does not consider spatial effects. A compartmental
approach could be used to describe a spatial structure and thus staying in the ODE
context, but would not be sufficient do describe this system including precise diffusion
processes. For that reason we use partial differential equations (PDEs) which will be
modelled in chapter 4 and analysed in chapter 5. Henceforth the variables of the ODEs
are often concentrations and densities. According to this, it seems reasonable to model
the quorum sensing process of Bacillus subtilis in form of ODEs as a first attempt to get
a first understanding of the process. The laboratory µCats of the BioQuant in Heidel-
berg with their group leader Dr. Ilka Bischofs provided experimental data for so called
“wild type” bacteria which produce and absorb signalling molecules and “mutant” bac-
teria which absorb signalling molecules only. After we have derived a suitable model,
we start to investigate the ordinary differential equations first analytically. Then we try
to fit the parameters with the given data of the experiments and if needed we change
the model equations to obtain a better result. All details of the best fit algorithm and
calculation confidence intervals are given in appendix B.
A review of ordinary differential equations will be not given here but can be found e.g.
in [32] or [35].
The upcoming informations, experimental approaches and data in section 3.1 and 3.2 are
given by personal communication with Dr. Ilka Bischofs. The corresponding manuscript
is not submitted yet.
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3.1. Experimental approach
The research group of Dr. Ilka Bischofs in the BioQuant laboratory in Heidelberg de-
veloped a bimolecular sensor which can report on PhrA-signalling in Bacillus subtilis
in more detail, a FRET reporter strain. It is necessary that PhrA reaches a certain
concentration such that the sporulation process of Bacillus subtilis can start. With-
out PhrA, Bacillus subtilis do not sporulate. The part “FRET” of the reporter means
“Förster resonance energy transfer” and describes a physical process of energy trans-
fer from one chromophore molecule, the “donor”, to a neighbouring chromophore, the
“acceptor” [3]. As donor, they use the fluorophores protein CFP which is fused to
RapA and as acceptor a fluorophores protein YFP which is fused to Spo0F. There have
been independent measurements from at least four biological replicates executed by the
µCats laboratory, seeing the results in figure 3.1. Fluorescence increases up to 30% if
YFP-CFP fusion protein is on the same promoter, see last bar in figure 3.1. A strain
with a YFP-CFP fusion protein serves as a positive control since a significantly amount
of FRET will occur in the YFP-CFP fusion protein highlighted as fluorescence of YFP.
If both proteins are separately on a strain, no FRET occurs meaning no bar in the figure
and one sees only the fluorescence of CFP. This will be used as a negative control. The
BioQuant laboratory concluded that the RapA and Spo0F fusion proteins interact and
form a FRET-complex in the cell whereas the fluorescence increases up to 11%. This
corresponds to the top bar in figure 3.1.

0 0.2 0.4
FRET

Spo0F-YFP
CFP-RapA

YFP CFP

YFP-CFP

Figure 3.1.: Bar-plot of the average FRET in the mutant cells for different configura-
tions of YFP and CFP.

The most important fact is that PhrA stimulated cells perturb the interaction of
YFP-CFP, thereby decreasing FRET. This is schematically depicted in figure 3.2.
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RapA

PhrA Spo0F

CFP YFP
FRET

PhrA
RapA

Spo0F

CFP YFP
FRET

Cell

Figure 3.2.: Scheme of the FRET process within a mutant cell.

Let’s briefly describe the experimental set-up to measure this perturbation. A dense
layer of induced cells is on a agarose gel pad illuminated permanently by a specific
blue light. After 60 seconds the YFP-acceptor is bleached for 20 seconds and abolishes
FRET, resulting in a higher emission of CFP fluorescence. The CFP fluorescence will
be measured by a photomultipler tube over time. The amount of FRET is quantified as
the ratio of CFP emissions before (CFPpre) and after the photobleaching (CFPpost).
A typical fluorescence trajectory form the Spo0F-RapA reporter strain is given in fig-
ure 3.3. There we see that the CFP emissions of unbleached cells are about 11% lower
than that of bleached cells.

FR
ET

0.7

0.8

0.9

1

50 100

post

pre

Acceptor
Bleaching

Time [s]

CFPpre

CFPpost

0

1− FRET0

Figure 3.3.: FRET between CFP-RapA and Spo0F-YFP of unstimulated mutant cells.

The next step of the biologists was to find out how much the reporter cells respond
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to RapA stimulated by signalling peptide PhrA. They incubated 10µmol
l

PhrA for 5
minutes into the shake flask, washed the cells and measured the FRET by acceptor-
photobleaching. A drop to about 4% FRET in PhrA stimulated cells compared to
the 11% of unstimulated cells have been observed, see figure 3.4. Thus, their FRET
reporter is a suitable tool to quantitatively study PhrA signalling in Bacillus subtilis.

Unstimulated

Stimulated

∆
FR

ET

0.7

0.8

0.9

1

0 50 100

Acceptor
Bleaching

Time [s]

CFPpre

CFPpost

1− FRET0

Figure 3.4.: FRET between CFP-RapA and Spo0F-YFP of 10nmol
l

PhrA stimulated mu-
tant cells (red line) compared to the prior case of unstimulated mutant cells
(grey line).

The BioQuant laboratory did three different experiments in order to obtain FRET
data sets. Let’s briefly describe these experiments.
In the first experiment, the uptake of synthetic PhrA signalling molecules by mutants
only is investigated and measured. We refer this part of the experiment as intracellu-
lar FRET kinetics. The experiments length of time was 20 minutes. The cell density
of mutants can be measured by Spectrophotometry. The optical density (OD) is di-
rectly proportional to the biomass in the cell suspension, but only for a specific range
depending on the cell type [16]. In our case, we can assume that the given range
of OD of Bacillus subitilis is proportional to the cell density. Mutants were cultured
to OD600nm = 1.6, whereas OD600nm = 1 corresponds to 1.19 · 108 cells

ml
, and concen-

trated 10-fold by centrifuging. This corresponds to OD600nm = 16. Then 50µl were
taken of that, this corresponds to 9.52 · 107 cells, and incubated into a reaction tube
of a growth medium volume of 500µl. They stimulated the mutants with 10nmol

l
of
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synthetic signalling molecules at time t = 0. To measure the FRET at some time
t ∈ {0, 1, 2, 3, 6, 11, 21} in minutes, the reaction mixture is centrifuged for one minute
in order to obtain on the one hand the mutants only and on the other hand a mutant
free supernatant. These mutants were bleached as described above and in that way the
intracellular FRET kinetics is determined at time point t. Into the mutant free super-
natant, we insert 50 µl of a OD600nm = 16 suspension of unstimulated mutants. After
5 minutes, the mixture is centrifuged for one minute and the mutants were bleached
again. The FRET of these mutants is referred as extracellular FRET kinetics at time
point t. The µCats did 20 test series at all for the intracellular FRET kinetics and
measured 14 times the extracellular FRET kinetics. The resulting data as well as the
mean and standard deviation are given in figure 3.5.
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Figure 3.5.: All data sets are from the µCats laboratory; (a): Experimental data of in-
tracellular FRET of mutants; (b): Experimental data of extracellular FRET
of mutants;

The second mutant experiment was a dose response experiment. The synthetic sig-
nalling molecule stimulus varies logarithmically from 0nmol

l
to 100nmol

l
at time t = 0.

The incubation time takes 6 minutes inclusively the time for centrifugation. The total
number of mutants and the external volume are the same as for the first experiment.
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The data and the mean with standard deviation are given in figure 3.6.
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Figure 3.6.: Data set is from the µCats laboratory; Experimental data of dose response
experiment of mutants;

The last experiment was performed with wild types in an initially signalling free envi-
ronment regarding the accumulation of extracellular PhrA during sporulation. Besides
the extracellular FRET, also the bacterial optical density was measured in time. Hence-
forth wild types were cultured up to OD600nm = 0.6 and suspended into a shake flask
with 100ml growth medium. Since the wild types are always cultured under the same
requirements, the intracellular concentration of signalling molecules is basically equal.
We shift this value to zero to work initially with a signalling molecule free cell. Of course
the extracellular signalling molecule concentration is zero initially. Within the first two
hours, they measured the FRET each 15 minutes, after that each 30 minutes. This
was done until the experiment lasts 6 hours. The procedure of measuring extracellular
FRET is similar as for experiment 1. Mutants were concentrated to OD600nm = 16.
Then 50µl of that were mixed with 1950µl of wild type free supernatant, incubated
for 20 minutes, centrifuged for one minute and bleached to determine the extracellular
FRET kinetics of wild types. Additionally the OD of the filtrated bacteria was mea-
sured to obtain bacterial growth data. The results are given in figure 3.7.
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Figure 3.7.: All data sets are from the µCats laboratory; (a): Experimental data of
extracellular FRET of wild types; (b): Experimental growth data of wild
types;
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3.2. Model equation of FRET response
So far we know that the intracellular quorum sensing signalling molecule concentration
in mutants, that is Ci,m alters negatively the FRET response. That means the more
signalling molecules PhrA are in the mutant cell, the less is the FRET response including
a saturation, see figure 3.5(a). Henceforth, the FRET curve could be modelled as

FRET (t) = FRET0 −∆FRET
Ci,m(t)

ξ + Ci,m(t) . (3.1)

FRET0 denotes the amount of FRET when there is no signalling molecule within
the mutant cell. The parameter ∆FRET corresponds to the decrease when signalling
molecules bind to RapA and alters FRET negatively. However, it does not decrease
permanently, only to some level which can be seen in the dose response data in fig-
ure 3.6. Thus, we need a parameter which controls the decline of FRET. This one
is denoted as ξ and describes the intracellular concentration where the half-maximal
response occurs.

In order to evaluate the FRET data of all experiments with equation (3.1), regardless
of whether intracellular or extracellular FRET, we need the intracellular and extracel-
lular signalling molecule kinetics of the mutants and wild types.

3.3. Dynamic of biological processes
After the description of the experimental approach, we describe the dynamic of bio-
logical process of peptide uptake and absorption of Bacillus subtilis mutants and wild
types and their consequences by introducing the relevant variables and parameters.
Note that all parameters are strictly positive in order to describe a biological fea-
sible behaviour unless we state it explicitly otherwise. Figure 3.8 is a graphical
illustration of the following dynamical description.
All three experiments are performed with a shake flask where we have a growth
medium within the flask for the bacteria. We denote the volume of the growth medium
as Ve. The use of such a shake flask ensures homogeneously distributed signalling
molecules and bacteria and justify the approach of ordinary differential equations.
Experiment 1 and 2 concern only the mutant population and their uptake of extracel-
lular quorum sensing signalling molecule concentration Ce(t) with rate σm per
bacterium. This becomes to an intracellular signalling molecule concentration
within a bacterium and is denoted by Ci,m(t). Most likely, we have natural degra-
dation rates for the extracellular as well as for the intracellular signalling molecule
concentration. These rates are denoted with γe and γi and are non-negative. In the
upcoming discussion, we will then distinguish between strictly positive and zero values.
The time duration of the experiment is short compared to the generation time of Bacil-
lus subtilis. Thus, we assume a constant number of mutant bacteria denoted by
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Nc in order to simplify calculations.
Experiment 3 concerns only the kinetics of a wild type population. The dynamic is the
same as for the mutants adding additionally a production term per cell of a prototype
of signalling molecule PhrA Pentapeptide. The experiment lasts six hours such that we
can’t neglect bacterial growth. We assume that the number of wild type bacteria,
denoted by bw(t), are homogeneously distributed within the shake flask as well. We
have to add a further ODE for the bacterial growth, e.g. logistic growth. This equation
is independent on the extracellular and intracellular signalling molecules.

Wild type

Mutant Shake flask

PhrA

Pump

RapA

or

either

Figure 3.8.: Scheme of the bacterial process and described dynamic.

A consequence of absorbing extracellular signalling molecules is that the intracellular
signalling molecule concentration increases. If the intracellular quorum sensing molecule
concentration reaches some certain threshold ξ we say that the necessary condition
is fulfilled. Then the bacterium changes its behaviour, e.g. production of signalling
molecules stops. In order to realize such a mechanism we introduce for the moment the
indicator function.

Definition 3.3.1 (Indicator function). Let A be a subset of a set X, then an indicator
function χA : X → {0, 1} is defined as

χA(x) :=


1 if x ∈ A

0 if x /∈ A.

Note that we want to have this switch in the bacteria’s behaviour only once in their
lifetime. Therefore, the indicator function has to be adjusted.

Definition 3.3.2 (Time-dependent indicator function). Let A be a subset of a set X,
then a time-dependent indicator function χ̂A×t∗ : X × R+ → {0, 1} is defined as
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χ̂A×t∗(x(t), t) :=


1 if t < t∗

0 if t ≥ t∗

with

t∗ = inf {t ∈ R+ : χA(x(t)) = 0} .

In the next few sections we will investigate some hypotheses regarding the absorption
and production process.

3.4. Mutant model: Negative feedback regarding
absorption

First we derive model equations for the mutant experiments for the intracellular peptide
uptake. In this section, we want to check the following hypothesis:

HM 1 When the intracellular concentration Ci,m has reached the threshold ξ then
we have a negative feedback regarding the absorption, that is, absorption of
signalling molecules stops.

In the next section, we formulate a suitable model for this hypothesis HM 1.

3.4.1. Model equations
Let’s briefly describe how we derive the ODEs for the extracellular quorum sensing
signalling molecule concentration Ce(t) and the intracellular signalling molecule con-
centration Ci,m(t) for the mutants. We deduce a negative change of quorum sensing
molecules due to the absorption of signalling molecules with rate σm by mutant bac-
teria of number Nc. The units of the rate is given per time and per cell. At that
point, we have to be aware that we work here with concentrations. As a result of
signalling molecule flux into the bacterium, the extracellular and intracellular quorum
sensing molecule concentration change in inverse proportion to the volume of the growth
medium Ve and the total volume of mutant bacteria Vi,m. Thus, the absorption rate
σm has to be divided by Ve modelling the extracellular signalling molecule concentra-
tion. In unison, the intracellular concentration of signalling molecule Ci,m(t) increases
for mutants with a rate σm

Vi,m
per bacterium. The total volume of mutant type bac-

teria is given by Vi,m = NcVbac. The parameter Vbac describes the volume of a single
bacterium. Furthermore, we assume a natural degradation for the extracellular and
intracellular quorum sensing molecules. The extracellular degradation rate is given as
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γe, the intracellular degradation rate is denoted as γi. The ODE for the extracellu-
lar quorum sensing molecule is given in (3.3), the ODE for the intracellular quorum
sensing molecule in (3.4). As long as the intracellular concentration does not reach its
threshold, that is,

t < tF := inf{t ∈ R+ : ξ = Ci,m(t)}, (3.2)

the time-dependent indicator function is 1. Otherwise, it is zero and the uptake
function vanishes due to the hypothesis HM 1. The initial amount of the extracellular
respectively intracellular signalling molecule concentration in the shake flask is denoted
as a constant Ce,0 and Ci,m,0 respectively, see (3.5) and (3.6). Gathering all differential
equations, we obtain

d
dtCe(t) =− χ̂[0,ξ]×tF (Ci,m(t), t) Nc

σm
Ve
Ce(t)− γe Ce(t) (3.3)

d
dtCi,m(t) =χ̂[0,ξ]×tF (Ci,m(t), t) Nc

σm
Vi,m

Ce(t)− γiCi,m(t)

=χ̂[0,ξ]×tF (Ci,m(t), t) σm
Vbac

Ce(t)− γiCi,m(t) (3.4)

with initial conditions

Ce(0) = Ce,0 (3.5)
Ci,m(0) = Ci,m,0. (3.6)

We used here freely selectable initial conditions in order to obtain a very general model
such that the following analysis becomes as general as possible. When we need better
suited initial conditions, especially for the intracellular signalling molecule concentration
since it is zero in experiment 1 and 2, we note that explicitly.

3.4.2. Analysis
Since the right hand sides of (3.3) and (3.4) are not continuous due to the time-
dependent indicator function, we can not apply the Picard-Lindelöf theorem, see Theo-
rem A.3.1. However, the right hand sides are piecewise continuous. Let’s briefly describe
the approach how we show existence and uniqueness for solutions of equations (3.3) and
(3.4) in [0,∞). Let’s consider the non-trivial case, that is, we assume ξ to be sufficiently
big such that the mutants do not reach the threshold initially, that is, Ci,m(t0) < ξ. It
means in effect that there is at least a small time interval such that the time-dependent
indicator function χ̂ is 1 until the necessary condition is fulfilled. It might be the case
that the threshold is never reached by Ci,m(t) in t ∈ [0,∞), then the time-dependent
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indicator function is always 1 and Picard-Lindelöf can be applied. Otherwise we al-
ready know the time point such that the necessary condition is fulfilled, that is, tF , see
(3.2). So we can apply the Picard-Lindelöf theorem to show existence and uniqueness
of equations (3.3) and (3.4) for t ∈ [0, tF ). We can even solve the equations explicitly
within that time interval. We then consider the “activated” system for t ∈ [tF ,∞), re-
gardless if some term is added or neglected. It just describes the fact that the necessary
condition is fulfilled. Consequently, the time-dependent indicator function is zero then
and the initial values become Ce(tF ) = Ĉe(tF ), Ci,m(tF ) = Ĉi,m(tF ), with ·̂ being the
solutions for t ∈ [0, tF ). For the activated system with t ∈ (tF ,∞), the Picard-Lindelöf
theorem can be applied again. At the end, we stick the solutions together and obtain for
each ODE a unique, piecewise continuous differentiable solution in [0,∞). All derived
interim results are registered as a lemma.

We consider the case Ci,m(t0) ≤ ξ as stated, that is, the necessary condition is not
fulfilled yet and the time-dependent indicator function is equal 1. That leads to a
auxiliary model with following result.

Lemma 3.4.1. Let’s consider following system

d
dtCe(t) =−

(
σm
Ve
Nc + γe

)
Ce(t) (3.7)

d
dtCi,m(t) = σm

Vbac
Ce(t)− γi Ci,m(t) (3.8)

with

Ce(t0) = Ce,0 (3.9)
Ci,m(t0) = Ci,m,0 (3.10)

for t ∈ [0,∞). Then there exists a unique and differentiable solution which reads
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Ce(t) =Ce,0e(t0 − t) β (3.11)

Ci,m(t) =



Ci,m,0 −
σm
Vbacβ

Ce,0

(
e(t0 − t)β − 1

)

for γi = 0

Ci,m,0e
−γi(t− t0) + σm

Vbac
Ce,0(t− t0)e−γi(t− t0)

for γi > 0 and γi = β

e−γi(t− t0)
(
Ci,m,0 −

σmCe,0β

Vbacβ(γi − β)

)
+ σmCe,0β

Vbacβ(γi − β)e
−β(t− t0)

for γi > 0 and γi 6= β

(3.12)

with β := σm
Ve
Nc + γe.

Proof. The right hand sides of (3.7) and (3.8) are linear functions in Ce and Ci,m and
thus globally Lipschitz continuous. Henceforth the Picard-Lindelöf theorem A.3.1 yields
existence and uniqueness for all t ∈ [0,∞). Furthermore, we can calculate solutions ex-
plicitly. Equation (3.7) with initial condition (3.9) can be solved e.g. by an exponential
ansatz yielding

Ce(t) =Ce,0 e
−
∫ t

t0

σm
Ve
Nc + γe dt̃

=Ce,0 e(t0 − t) β

with β := σm
Ve
Nc + γe. Now we are able to calculate the solution of the intracellular

quorum sensing molecule concentrations in equation (3.8). We first deal with the case
of no internal degradation of quorum sensing molecules, that is γi = 0. Integration of
the ODE leads to

Ci,m(t) = Ci,m,0 + σm
Vbac

∫ t

t0
Ce(s) ds.

The integral on the right hand side can be solved explicitly using (3.11):

∫ t

t0
Ce(s) ds =

∫ t

t0
Ce,0e

(t0 − s)β ds

=− Ce,0
β

(
e(t0 − t)β − 1

)
.
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Altogether, the solution reads

Ci,m(t) =Ci,m,0 −
σmCe,0
Vbacβ

(
e(t0 − t)β − 1

)
.

In case of γi > 0 the variation of constants yields

Ci,m(t) = e−γi(t− t0)
(
σm
Vbac

∫ t

t0
Ce(t̃)eγi(t̃− t0) dt̃+ Ci,m,0

)
. (3.13)

The integral in (3.13) can be solved by using (3.11):

∫ t

t0
Ce(t̃)eγi(t̃− t0) dt̃ =Ce,0

∫ t

t0
e(γi − β)(s− t0) ds. (3.14)

At that point we have to do a case differentiation. If and only if γi = β, then the
second integral of the right hand side becomes one. Otherwise it can be solved and
γi − β being a denominator.

Let’s continue first with the case γi = β. Then the integral on the left hand side is
equal Ce,0(t− t0) resulting to

Ci,m(t) =
(
Ci,m,0 + σm

Vbac
Ce,0(t− t0)

)
e−γi(t− t0).

Now we consider the other case γi 6= β. The integral on the right hand side of
equation (3.14) can be solved and reads

∫ t

t0
Ce(t̃)eγi(t̃− t0) dt̃ = Ce,0β

β(γi − β)

(
e(γi − β)(t− t0) − 1

)
. (3.15)

Then (3.15) is inserted in (3.13) and altogether, the solution of equation (3.8) for γi > 0
and γi 6= β reads

Ci,m(t) =e−γi(t− t0)
(
Ci,m,0 −

σm
Vbac

(
Ce,0β

β(γi − β)

))

+ σm
Vbac

(
Ce,0β

β(γi − β)

)
e−β(t− t0).
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As long as the necessary condition is not fulfilled, that means there exists no tF , the
quorum sensing molecule concentration Ce as well as the intracellular concentration Ci,m
may tend to steady states. The stability of those can be investigated by the eigenvalues
λ of the Jacobian. The steady states are locally asymptotically stable if and only if the
real parts of the eigenvalues λ of the Jacobian are negative, that is, Re{λ} < 0 for all
eigenvalues λ.

Lemma 3.4.2. For γi > 0, there exists an asymptotically stable steady state (C̄e, C̄i,w)
of system (3.7) - (3.10) for t ∈ [0,∞) with

C̄e = 0
C̄i,m = 0.

For γi = 0, there exists a stable line of steady states which reads

(C̄e, C̄i,m) = (0, C)

with C ∈ R being a positive constant.

Proof. We start with the simpler case γi > 0. In order to calculate the steady states
we set the right hand side of the ODE equations (3.7) and (3.8) equal zero. The steady
state of the external quorum sensing concentration reads

0 =− C̄e
(
σm
Ve
Nc + γe

)
= −C̄eβ

⇐⇒ C̄e =0.

The steady state of the intracellular quorum sensing concentration of the mutant is
given by

0 = σm
Vbac

C̄e − γi C̄i,m

⇐⇒ C̄i,w =0.

The stability can be derived by the Jacobian of
(

(3.7)
(3.8)

)
and reads

J(Ce, Ci,m) =


−σm
Ve
Nc − γe 0

σm
Vbac

−γi

 .
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It is independent of the steady states and all eigenvalues are negative due to the
positivity of all parameters. That means the steady states C̄e and C̄i,m are locally
asymptotically stable and the solutions of the system tend to these points if we start
close to these steady states.

For γi = 0, the steady state C̄e = 0 remains and is asymptotically stable. The
equation (3.7) for γi = 0 reads

d
dtCi,m(t) = σm

Vbac
Ce(t) != 0.

This equation is only fulfilled if Ce tends to its steady state C̄e = 0. That means we
obtain a line of steady states which is stable. It reads

(C̄e, C̄i,m) = (0, C)
with C ∈ R being a positive constant depending on the initial value Ci,m,0.

Yet we don’t know when and even if the necessary condition will be ever fulfilled.
Thus, we investigate if there exists an intersection of Ci,m(t) = ξ for all three different
cases in (3.12). This time point is denoted as tF and denotes the moment when the
necessary condition is fulfilled.

In order to simplify things, we assume Ci,m(0) = Ci,m,0 = 0 which means that the
cells are initially empty which corresponds also the experimental approach. That leads
to following lemma:

Lemma 3.4.3. Assume the following initial conditions for (3.7) and (3.8):

Ce(0) = Ce,0 > 0
Ci,m(0) = 0.

For γi = 0 there exists a unique feasible solution tF = − 1
β

ln
(

1− ξVbacβ

Ce,0σm

)
if and

only if Ce,0 ≥
ξVbacβ

σm
.

For γi > 0 and γi = β > 0 there exists a unique feasible solution tF if and only if
Ce,0 ≥

ξVbacγie

σm
.

For γi > 0 and γi 6= β there exists a unique feasible solution tF if and only if

Ce,0 ≥
ξVbacβ

σm

(
β

γi

) γi
β − γi .
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Proof. For γi = 0, we set the solution (3.12) with initial conditions Ce(0) = Ce,0 > 0
and Ci,m(0) = Ci,m,0 = 0 equal ξ, that is,

ξ
!= Ce,0

σm
Vbacβ

− Ce,0
σm
Vbacβ

e−tβ

⇐⇒ 1− ξVbacβ

Ce,0σm

!= e−tβ.

The right hand side is strictly monotonously decreasing from 1 but remains positive.
That means the left hand side must satisfy following inequality chain:

1 ≥ 1− ξVbacβ

Ce,0σm
> 0

⇐⇒ Ce,0 ≥
ξVbacβ

σm
> 0.

So there exists a unique solution tF if and only if Ce,0 ≥
ξVbacβ

σm
and reads

tF = − 1
β

ln
(

1− ξVbacβ

Ce,0σm

)
.

For γi > 0, γi = β and the corresponding initial conditions, we obtain

ξ
!= σm
Vbac

Ce,0te
−γit

⇐⇒ ξvbac
σmCe,0

!= te−γit =: g(t).

We briefly do curve sketching for g(t). The first derivative reads d
dtg(t) = e−γit(1−

γit) which has it root at t̄ = 1
γi

and its maximum reads g(t̄) = 1
eγi

. So in order to obtain
at least one solution it must hold

ξvbac
σmCe,0

≤ 1
eγi

⇐⇒ Ce,0 ≥
ξVbacγie

σm
.

For equality, we have only one solution tF otherwise there exist two solutions tF,1 and
tF,2. The minimum of both is the relevant solution, that is, tF = min{tF,1, tF,2}.

Finally we consider the last case, that is, the solution (3.12) for γi > 0 and γi 6= β
with the new suited initial conditions must be equal ξ. We get
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ξ
!= σm
Vbac

(
Ce,0β

β(γi − β)

)(
e−βt − e−γit

)

⇐⇒ ξVbacβ(γi − β)
σmβCe,0

!= e−βt − e−γit =: h(t).

If γi > β, then both sides are positive, otherwise they are negative. As above, we do
again a brief curve sketching of the right hand side which is denoted as h(t). The root
of the derivative d

dth(t) = −βe−βt + γie
−γit reads

t̄ =
ln
(
β

γi

)
β − γi

.

If γi > β, then we have a maximum at t̄ with

h(t̄) =
(
β

γi

)− β

β − γi −
(
β

γi

)− γi
β − γi =

(
β

γi

)− γi
β − γi

(
γi
β
− 1

)
.

If γi < β, then h(t̄) is a minimum. Additionally it holds h(0) = 0 = lim
t→∞

h(t). For an
intersection in case of γi > β, we require

ξVbacβ(γi − β)
σmβCe,0

≤
(
β

γi

)− γi
β − γi

(
γi
β
− 1

)

⇐⇒ Ce,0 ≥
ξVbacβ

σm

(
β

γi

) γi
β − γi .

Analogously, we obtain the same condition for γi < β. Similar as above, we obtain
up to two roots denoted as tF,1 and tF,2. The relevant one is the smaller one, that is,
tF = min{tF,1, tF,2}.

We have shown that there exists for specific parameter values a time point tF such
that the necessary condition is fulfilled. That means the time-dependent indicator
function in (3.3) and (3.4) is no longer 1. So the system equation changes and the
initial conditions have to be adjusted. The new solution for t ∈ [tF ,∞) should start
where the solution for t ∈ [0, tF ) ends. Let’s denote the solutions of Lemma 3.4.1 with ·̂
for the time period t ∈ [0, tF ). Before we derive the solution of equations (3.3) and
(3.4) with initial condition (3.5) and (3.5) we need a further intermediate result.

53



Chapter 3. ODE model

Lemma 3.4.4. Consider following system:

d
dtCe(t) =− γe Ce(t) (3.16)

d
dtCi,m(t) =− γi Ce(t) (3.17)

with initial conditions

Ce(tF ) = Ĉe(tF )
Ci,m(tF ) = Ĉi,m(tF ).

Then there exist unique solutions which read

Ce(t) = Ĉe(ttF )eγe(tF − t)

Ci,m(t) = Ĉi,m(tF )eγi(tF − t).

Proof. Since the right hand sides of (3.16) and (3.17) are Lipschitz continuous, we
obtain immediately existence and uniqueness of a solution by applying the Picard-
Lindelöf theorem. The solutions can be easily calculated by e.g. the exponential ansatz
and read as stated.

Remark 3.4.5. Note that the system in Lemma 3.4.4 and so do its results correspond
to the case when Ci,m(t0) > ξ. This was stated as the trivial case.

Now we have all tools to conclude the following result:

Theorem 3.4.6. Let’s consider the ODE system (3.3) and (3.4), that is,

d
dtCe(t) =− χ̂[0,ξ]×tF (Ci,m(t), t) Nc

σm
Ve
Ce(t)− γeCe(t)

d
dtCi,m(t) =χ̂[0,ξ]×tF (Ci,m(t), t) σm

Vbac
Ce(t)− γiCi,m(t)

with initial conditions

Ce(0) = Ce,0

Ci,m(0) = 0.

Then there exist unique and piecewise continuous differentiable solutions which read:

54



3.4. Mutant model: Negative feedback regarding absorption

If γi = 0 and Ce,0 ≥
ξVbacβ

σm
then

Ce(t) =


Ce,0e

−tβ for t ∈ [0, tF )

Ce(tF )eγe(tF − t) for t ∈ [tF ,∞)

Ci,m(t) =


− σm
Vbacβ

Ce,0
(
e−tβ − 1

)
for t ∈ [0, tF )

Ci,m(tF )eγi(tF − t) for t ∈ [tF ,∞)

else

Ce(t) = Ce,0e
−tβ

Ci,m(t) = − σm
Vbacβ

Ce,0

(
e−tβ − 1

)
for t ∈ [0,∞).

If γi > 0, β = γi and Ce,0 ≥
ξVbacγie

σm
then

Ce(t) =


Ce,0e

−tβ for t ∈ [0, tF )

Ce(tF )eγe(tF − t) for t ∈ [tF ,∞)

Ci,m(t) =


− σm
Vbac

Ce,0te
−tγi for t ∈ [0, tF )

Ci,m(tF )eγi(tF − t) for t ∈ [tF ,∞)

else

Ce(t) = Ce,0e
−tβ

Ci,m(t) = − σm
Vbac

Ce,0te
−tγi

for t ∈ [0,∞).

If γi > 0, β 6= γi and Ce,0 ≥
ξVbacβ

σm

(
β

γi

) γi
β − γi then
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Ce(t) =


Ce,0e

−tβ for t ∈ [0, tF )

Ce(tF )eγe(tF − t) for t ∈ [tF ,∞)

Ci,m(t) =


σmCe,0β

Vbacβ(γi − β)e
−tβ − e−tγi

(
σmCe,0β

Vbacβ(γi − β)

)
for t ∈ [0, tF )

Ci,m(tF )eγi(tF − t) for t ∈ [tF ,∞)

else

Ce(t) = Ce,0e
−tβ

Ci,m(t) = σmCe,0β

Vbacβ(γi − β)e
−tβ − e−tγi

(
σmCe,0β

Vbacβ(γi − β)

)

for t ∈ [0,∞).

Proof. Using Lemma 3.4.1, Lemma 3.4.2, Lemma 3.4.3 and Lemma 3.4.4, we obtain
on the one hand the unique existence of a solution and on the other hand an explicit
formula.

We see, there exists a unique solution, but we don’t know yet, if it is biologically
feasible, that is, the solution has to be non-negative.

Lemma 3.4.7 (Non-negativity). Trajectories of (3.3) and (3.4) with initial conditions
(3.5) and (3.6) are non-negative for t ∈ [0,∞).

Proof. We use Theorem A.3.2 to prove non-negativity of (3.3) and (3.4) with (3.5) and
(3.6). In Theorem 3.4.6 we have shown that there exists a unique solution. Furthermore
it holds

d
dtCe(t)

∣∣∣
Ce(t)=0

= 0
d
dtCi,m(t)

∣∣∣
Ci,m(t)=0

= χ̂[0,ξ]×tF (Ci,m(t), t) σm
Vbac

Ce(t) ≥ 0 for Ce(t) ≥ 0.

which means the vector field points inwards to the axis. Thus, we have fulfilled the
requirements of Theorem A.3.2 which yields non-negativity.

Next, we solve the equations numerically by MATLAB and perform a best fit sim-
ulation. Although we have an analytical solution, we solve the equations numerically
because it will be very tedious to implement all different cases. Additionally, some part
of the code can be used later, especially for the PDE-ODE approach in section 6.3.
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3.4.3. Best fit simulation
We choose the experimental parameters as described in section 3.1, that is, the volume
of the growth medium Ve = 500µl and the number of cell Nc = 9.53 · 107. Additionally,
the µCats laboratory extracted from the images the length and diameter of a Bacillus
subtilis cell. Modeling a cylindrical cell with hemispheres on both ends yields for the
cell volume Vb = 0.973fl. This value was given by personal communication. The initial
conditions are Ce(0) = 10nmol

l
and Ci,m(0) = 0µmol

l
. The remaining parameters of ODE

system (3.3) and (3.4) and FRET equation (3.1) have to be fitted, that is,

σm, ξ, FRET0, ∆FRET, γi, and γe.

The solver algorithm we use is described in appendix B as mentioned in the beginning
of this chapter and yields as best fit:

Parameter Lower bound Best fit Upper bound

σm [pl/min] 4.1 · 10−7 2.27 3.74

ξ [µmol/l] 0.36 113.85 147.77

FRET0 [−] 0.105 0.110 0.114

∆FRET [−] 0.109 0.122 0.135

γi [1/min] 2.4 · 10−9 2.6 · 10−9 0.036

γe [1/min] 8.1 · 10−8 3.0 · 10−4 0.683

Table 3.1.: Parameter confidence interval estimation of fit of model equations (3.3) and
(3.4).

The lower and upper bounds in table 3.1 correspond to the parameter confidence
interval estimation. The best fit of the intracellular degradation rate γi is very small.
Furthermore, experiments of the µCats laboratory have shown, that there is no intra-
cellular degradation within two hours. Thus, one can assume that there is no natural
intracellular degradation and neglect this parameter in future. We plot the best fit
solutions together with the mean values of the data sets. The results are given in fig-
ure 3.9(a), 3.9(b) and 3.10.
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Figure 3.9.: Best fit solutions of model equations (3.3) and (3.4) with best fit parame-
ters given in table 3.1; (a): Intracellular FRET kinetics of mutants; (b):
Extracellular FRET kinetics of mutants;
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Figure 3.10.: Best fit solution of FRET concerning the dose response data by using
model equations (3.3) and (3.4) with best fit parameters given in table 3.1.

Figure 3.9(a) represents the best fit for the intracellular kinetics. Due to the absorp-
tion of signalling molecules, the FRET is altered which reflects the fact that the curve
decreases. Figure 3.9(b) behaves vice versa. In the beginning of the experiment, there
is a high amount of signalling molecule in the supernatant after the centrifugation.
Thus, the new empty mutant absorbs the signalling molecules which alters the FRET
negatively. The amount of signalling molecules in the supernatant becomes less and
less which results in an increase of FRET since the signalling molecules PhrA do not
perturb the interaction. In figure 3.10, we see that the higher the stimulus of signalling
molecules becomes the less becomes the FRET. However it does not undercut the level
0.05. All best fit solutions fit the data very well verified by a small sum of squared
residuals SSR = 3.74 · 10−4, see equation (B.2.1), too. However, there is a further test
series of experiment 1 which investigates the uptake dynamics. Only the initial amount
of synthetic peptide was changed to 100nmol

l
. That means the initial condition (3.5)

reads Ce(0) = 100nmol
l

. So we use the parameters given in table 3.1 and evaluate our
model with this new initial data. We see that the fit for the intracellular kinetics, fig-
ure 3.11(a), is reasonable. It only decreases too fast which is a hint that the absorption
rate σm is too high or it may depend on the extracellular signalling molecule concen-
tration such that it is not a constant rate, rather a term with a sigmoid behaviour.
The fit for the extracellular kinetics, figure 3.11(b), is very bad. The best fit is just a
horizontal line and does not increase at all. The reason for that is our hypothesis HM 1.
A negative feedback regarding the absorption was assumed which means that when the
intracellular concentration has reached ξ, the mutants stop to absorb and a high con-
centration of extracellular peptides remains in the supernatant. This concentration is
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so high, such that the empty mutant cells, which where added into the cell free super-
natant, reach their threshold ξ again very fast and do not lower the extracellular level
significantly. Thus, the extracellular FRET curve is basically a horizontal line. So we
can conclude that when the extracellular concentration decreases, the FRET curve in
figure 3.11(b) increases. So the hypothesis HM 1 is at least not sufficient to explain the
observed behaviour and we reject it. In the next section, we will state a new hypothesis.

60



3.4. Mutant model: Negative feedback regarding absorption

(a)
0 2 4 6 8 10 12 14 16 18 20 22

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

(b)
0 2 4 6 8 10 12 14 16 18 20 22

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Figure 3.11.: Best fit solutions of model equations (3.3) and (3.4) with best fit parameters
given in table 3.1. In contrast to figure 3.9, we changed the initial condition
(3.5) to Ce(0) = 100nmol

l
; (a): Intracellular FRET kinetics of mutants;

(b): Extracellular FRET kinetics of mutants.
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3.5. Mutant model: No feedback regarding absorption
The result of the previous section was to scrap hypothesis HM 1. Thus, we formulate
a new one which reads:

HM 2 There is no feedback regarding the absorption. That means absorption of sig-
nalling molecules is continuous over time.

As in the previous chapter, we state a rectified model and analyse it afterwards. At
the end, a best fit procedure is performed.

3.5.1. Model equations
The descriptions of the model terms are the same as in section 3.4.1, except we neglect
the time-dependent indicator function which corresponds to the new hypothesis HM 2.
So the rectified system reads

d
dtCe(t) =−Nc

σm
Ve
Ce(t)− γe Ce(t) (3.18)

d
dtCi,m(t) = σm

Vbac
Ce(t)− γiCi,m(t) (3.19)

with unaltered initial conditions

Ce(0) = Ce,0 (3.20)
Ci,m(0) = Ci,m,0. (3.21)

3.5.2. Analysis
The model equations of this section coincide with the model equations in section 3.4.1
when the auxiliary model was considered. Thus, we can conclude from Lemma 3.4.1
existence and uniqueness of a solution.

Corollary 3.5.1. There exists a unique and differentiable solution of system (3.18) and
(3.19) with initial conditions (3.20) and (3.21). The solutions are given in (3.11) and
(3.12).

In order to obtain a biologically feasible solution, we can prove the non-negativity of
the system as before.

Lemma 3.5.2 (Non-negativity). Trajectories of (3.18) and (3.19) with initial condi-
tions (3.20) and (3.21) are non-negative for t ∈ [0,∞).
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Proof. The approach is analogously as in the previous section 3.4.2. Uniqueness of a
solution follows from Corollary 3.5.1. The vector field on the axis reads

d
dtCe(t)

∣∣∣
Ce(t)=0

= 0
d
dtCi,m(t)

∣∣∣
Ci,m(t)=0

= σm
Vbac

Ce(t) ≥ 0 for Ce(t) ≥ 0.

Henceforth, the solutions are non-negative.

3.5.3. Best fit simulation
The experimental parameters as well as the initial conditions are the same as in sec-
tion 3.4.3. That means Ve = 500µl, Nc = 9.53 · 107, Vb = 0.973fl, Ce(0) = 10nmol

l
and

Ci,m(0) = 0µmol
l

. Again we want to fit parameters σm, ξ, FRET0, ∆FRET, γi, and γe.
The results of the solver algorithm are given in table 3.2.

Parameter Lower bound Best fit Upper bound

σm [pl/min] 1.9 · 10−4 2.34 4.07

ξ [µmol/l] 1.3 · 10−6 38.93 56.20

FRET0 [−] 0.106 0.111 0.116

∆FRET [−] 0.059 0.066 0.074

γi [1/min] 4.7 · 10−7 5.1 · 10−7 0.01

γe [1/min] 2.0 · 10−8 0.005 1.0

Table 3.2.: Parameter confidence interval estimation of fit of model equations (3.18)
and (3.19).

As in section 3.4.3, we obtain a good fit for the data with initially 10nmol
l

of stimulus,
see figure 3.12 and 3.13. The SSR is a bit bigger with 4.16 · 10−4 as in section 3.4.3,
where we had 3.74 · 10−4, but still in the same order.
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Figure 3.12.: Best fit solutions of model equations (3.18) and (3.19) with best fit parame-
ters given in table 3.2; (a): Intracellular FRET kinetics; (b): Extracellular
FRET kinetics;
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Figure 3.13.: Best fit solution of FRET concerning the dose response data by model
equations (3.18) and (3.19) with best fit parameters given in table 3.2.

The problem with the model regarding hypothesis HM 1 was the evaluation of the
model with Ce(0) = 100nmol

l
. So we test the model with the new hypothesis HM 2, us-

ing the parameters in table 3.2. The fit for the intracellular kinetics in figure 3.14(a) is
again satisfying. One can note that the fit of the FRET for the extracellular kinetics in
figure 3.14(b) is now better but still not acceptable. The FRET curve finally increases
compared to figure 3.11(b) but it increases way too fast. Furthermore the FRET curve
reaches a level of approximately 0.11 at time t = 21 minutes which is significantly higher
than the FRET data point with approximately 0.09 at t = 21 minutes. Nevertheless
we can conclude that the model with hypothesis HM 2 is better than the model with
hypothesis HM 1. On the one hand it fits the data for Ce(0) = 10nmol

l
well and on the

other hand the fit regarding the 100nM stimulus is more realistic. However we have to
restrict our model to a low concentration of extracellular signalling molecules.
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Figure 3.14.: Best fit solutions of model equations (3.18) and (3.19) with best fit param-
eters given in table 3.2. In contrast to figure 3.12, we changed the initial
condition (3.20) to Ce(0) = 100nmol

l
; (a): Intracellular FRET kinetics;

(b): Extracellular FRET kinetics;

Finally, we do a bootstrap in order to find the confidence interval of the fitted curves.
The procedure is briefly described in appendix B. The results of the bootstrapping pro-
cedure are given in figures 3.15 and 3.16. In both figures, we can see that the range of
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the solutions is narrow and fits to the mean values and standard deviation well.
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Figure 3.15.: Best fit solutions model equations (3.18) and (3.19) depicted as solid blue
line. Confidence interval of the fitted curve depicted as dashed red line;
(a): Intracellular FRET kinetics; (b): Extracellular FRET kinetics;
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Figure 3.16.: Best fit solution of FRET concerning the dose response data by model
equations (3.18) and (3.19) depicted as solid blue line. Confidence interval
of the fitted curve depicted as dashed red line.

Both degradation rates are very small, especially for the intracellular degradation.
Thus, we set both degradation rates equal zero, that is γi = γe = 0 and run a best
fit simulation. The best fit parameter values and their bounds are given in table 3.3.
Furthermore, we obtain a sum of squared residuals of 4.17 ·10−4 which is slightly bigger
than with degradation rates. Additionally, we see that the results of the bootstrapping
and also for the best are equal, see figures 3.17 and 3.18. Therefore, we use this set of
parameter values for the next calculations in order to reduce the complexity.

Parameter Lower bound Best fit Upper bound

σm [pl/min] 1.34 2.23 3.65

ξ [µmol/l] 27.30 38.10 52.85

FRET0 [−] 0.107 0.111 0.116

∆FRET [−] 0.060 0.066 0.073

Table 3.3.: Parameter confidence interval estimation of fit of model equations (3.18)
and (3.19) with γi = γe = 0.
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Figure 3.17.: Comparison of bootstrapping with degradation rates and without degra-
dation rates; (a): Intracellular FRET kinetics; (b): Extracellular FRET
kinetics;
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Figure 3.18.: Comparison of bootstrapping with respect to the dose response data with
degradation rates and without degradation rates

3.6. Conclusion for mutant type
The key result of the mutant experiments 1 and 2 is to reject hypothesis HM 1, which
means that the mutants absorb signalling molecules over time. We also see that a
constant exponential absorption rate fits the data well. In a manuscript of I. Bischofs,
received personally, the data were fitted by a model with a sigmoidal absorption de-
pending on the extracellular signalling molecule concentration and without degradation
rates. The results are similar except for the evaluation test with the 100nmol

l
stimu-

lus. In this case, they provided a better fit for the extracellular kinetics which means
that they were able to fit the first four data points well in contrast to our fit, see fig-
ure 3.14(b). Afterwards the FRET curve increases as well quite fast and reaches the
same level as our fit, that is 0.11. The last data point, however, has its level at ap-
proximately 0.08. One reason to stop the increasing of FRET is that the absorption
stops at some point such that the intracellular concentration remains constant in time
and so do the FRET curve. For the bacterium, it makes no sense to absorb forever
signalling molecules. One simple reason could be that the cell is just full of signalling
molecules. Another reason might be that it is to expansive in context of energy to
absorb signalling molecules over a very long time. Or the absorption is described by
another time-dependant function. However to test such a hypothesis, one needs more
data points at the end to figure out in what kind of way the FRET curve increases. So
we can infer that for a low extracellular concentration of signalling molecules a constant
exponential absorption rate is an appropriate assumption. Additionally, we saw that
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the model with degradation rates and without degradation rate, that are figures 3.17
and 3.18, yields the same results of the bootstrap method. We can conclude eventually,
that the degradation rates can be neglected in order to simplify the analysis of the
models.

3.7. Wild type model: No feedback regarding
production

We adapt the key result of the mutant experiment 1 and 2 to the wild type experiment
3, that is, we have no feedback regarding the absorption. So the wild type do absorb
signalling molecules over the entire time. In contrast to mutants, wild types can produce
signalling molecules. As a first attempt, we assume that the production of signalling
molecules also does not stop reaching the intracellular concentration ξ. Formulated as
a hypothesis of the wild type it reads:

HW 1 There is no feedback at all regarding the absorption and production of signalling
molecules.

3.7.1. Model equations

A part of the description of the model equations of the wild types is equivalent to the
description of the model equations (3.18) and (3.19) of the mutant in section 3.5.1. So
we only elaborate the difference of the model in the following passage.
Due to the longer experimental time duration, the bacterial growth can not be neglected.
Therefore, the number of wild type bacteria is denoted as a time dependent variable
bw(t). Since the data yields no crucial hint regarding a dependency to the intracellular
signalling molecule concentration, we assume that the bacterial growth is not coupled
with the intracellular signalling molecule concentration. Since bacteria generally can’t
grow to infinity due to the limit of food respectively of space, bacterial growth is assumed
to be logistic. Thus, the exponential growth rate is denoted as α and the carrying
capacity as κ. Bacteria reproduce by cell division, the intracellular concentration
decreases with the same rate as the bacteria divides. This rate is denoted as f(bw(t))
and corresponds to the exponential growth rate of the wild type. The last and main
important difference it that the wild types produce signalling molecules with a
rate Π per bacterium with a unit given per volume and per time. So we have a positive
change of external signalling molecules Ce(t). Then the model for wild type bacteria
respectively experiment 3 reads
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d
dtCe(t) =bw(t)Π−

(
σw
Ve
bw(t) + γe

)
Ce(t) (3.22)

d
dtCi,w(t) = σw

Vbac
Ce(t)− (γi + f(bw(t))) Ci,w(t) (3.23)

d
dtbw(t) =αbw(t)

(
1− bw(t)

κ

)
=: bw(t)f(bw(t)) (3.24)

with initial conditions

Ce(0) = Ce,0 (3.25)
Ci,w(0) = Ci,w,0 (3.26)
bw(0) = bw0. (3.27)

3.7.2. Analysis
There are no time-dependent indicator functions in the right hand sides of (3.22) -
(3.24). Therefore we can show existence and uniqueness at once for t ∈ [0,∞) in
contrast to the mutant models in section 3.4 or 3.5. However, the integrals which arise
here are way more complicated to calculate. Hence, we do not derive here explicit
solution formulas for all ODEs. Afterwards, one can show again the non-negativity of
solutions.

Theorem 3.7.1. There exist unique solutions of (3.22) - (3.24) with initial conditions
(3.25) - (3.27).

Proof. The ODE with respect to the bacterial growth, (3.24), is uncoupled to the two
other equations and can be analysed for that reason separately. With the so called
“trick of Riccati” one can solve the ODE, see [17]. The solution reads

bw(t) = bw0κ

e−αt (κ− bw0) + bw0
(3.28)

and is bounded for all t ∈ [0,∞). With the solution for the bacterial number we can
continue with (3.22) and (3.23).

Let t1 ∈ (0,∞). First we prove that there exists a unique local solution in the compact
interval [0, t1]. The right hand sides of (3.22) and (3.23) are continuous differentiable
in Ce respectively Ci,w and thus Lipschitz continuous for t ∈ [0, t1]. Applying the
Picard-Lindelöf Theorem A.3.1 yields the existence of unique solutions in t ∈ [0, t1].
Integrating both sides of (3.22) over time we find following estimate:
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Ce(t) = Ce,0 +
∫ t1

0
Πbw(s) ds︸ ︷︷ ︸

=:g(t)

−
∫ t1

0

(
σw
Ve
bw(s) + γe

)
︸ ︷︷ ︸

=:h(s)

Ce(s) ds

≤ g(t) +
∫ t1

0
|h(s)|Ce(s) ds.

Note that g(t) is strictly increasing. Then we can apply the generalized Gronwall
inequality, that is Theorem A.2.3, and obtain that the solution Ce(s) is bounded in
t ∈ [0, t1]. One can show analogously the same for Ci,w(t). After that, we consider
the next time interval [t1, t2] with t2 ∈ (t1,∞) arbitrary. Since the solutions in [0, t1]
are bounded, we have feasible initial values for the new time interval. Thus, we obtain
iteratively a unique solution for t ∈ [0,∞).

Lemma 3.7.2 (Non-negativity). Trajectories of (3.22) - (3.24) with initial conditions
(3.25) - (3.27) are non-negative for t ∈ [0,∞).

Proof. The approach is analogous as in the previous sections for the mutant cases.
We use again Theorem A.3.2 to show non-negativity. From Theorem 3.7.1 we obtain
uniqueness of solutions. Then we can show

d
dtCe(t)

∣∣∣
Ce(t)=0

= bw(t)Π > 0
d
dtCi,w(t)

∣∣∣
Ci,w(t)=0

= σw
Vbac

Ce(t) ≥ 0 for Ce(t) ≥ 0

d
dtbw(t)

∣∣∣
bw(t)=0

=0.

Consequently, the solutions are non-negativity.

Let’s check if the system (3.22) - (3.24) may tend to steady states. Their stability can
be investigated by the eigenvalues λ of the Jacobian. The steady states are asymptoti-
cally stable if and only if the real part of all eigenvalues λ of the Jacobian are negative,
that is, Re{λ} < 0.

Proposition 3.7.3. For γi > 0, there exists an asymptotically stable steady state(
C̄e, C̄i,w, b̄w

)
of system (3.22) - (3.24) for t ∈ [0,∞) with

C̄e = ΠκVe
σwκ+ Veγe

C̄i,w = σwΠκVe
γiVbac(σwκ+ Veγe)

b̄w = κ
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and an unstable steady state

C̄e = 0
C̄i,w = 0
b̄w = 0.

For γi = 0, the system has no steady state.

Proof. In order to calculate the steady states we set the right hand side of the ODE
equations (3.22) - (3.24) equal zero. Since (3.24) is completely decoupled from (3.22)
and (3.23), we take a first glance of this equation.

0 =αb̄w
(

1− b̄w
κ

)
⇐⇒ b̄w = 0 ∨ b̄w = κ

Thus, the steady state of the bacterial number reads b̄w,1 = 0 and b̄w,2 = κ.
The steady state of the extracellular signalling molecule concentration reads

0 =Πb̄w − C̄e
(
σw
Ve
b̄w + γe

)

⇐⇒ C̄e = Πb̄wVe
σwb̄w + Veγe

.

Hence C̄e,1 = 0 for b̄w,1 or C̄e,2 = ΠκwVe
σwκw+Veγe for b̄w,2.

The steady state of the intracellular signalling molecule concentration is given by

0 = σw
Vbac

C̄e − C̄i,w
(
γi + f(b̄w)

)
⇐⇒ C̄i,w = σwΠb̄wVe(

γi + f(b̄w)
)
Vbac(σwb̄w + Veγe)

.

For b̄w,1, we obtain C̄i,w,1 = 0. Otherwise for b̄w,2 and γi > 0 the steady state reads
C̄i,w,2 = σwΠκVe

γiVbac(σwκ+Veγe) . If γi = 0 there exists no steady state. Summed up, we have
only two steady states which read (C̄e,1, C̄i,w,1, b̄w,1) and (C̄e,2, C̄i,w,2, b̄w,2).

The stability can be derived by the Jacobian of ((3.22), (3.23), (3.24))T and reads
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J(Ce, Ci,w, bw) =



−σw
Ve
b̄w − γe 0 0

σw
Vbac

−γi 0

0 0 α− 2αbw
κ


.

Thus, the trivial steady state (C̄e,1, C̄i,w,1, b̄w,1) is not stable since α − 2α b̄w,1
κ

= α

is positive and the non-trivial steady states (C̄e,2, C̄i,w,2, b̄w,2) is asymptotically stable
since α− 2α b̄w,2

κ
= −α is negative. The solution of the system tends to this point.

3.7.3. Best fit simulation

The data of bacterial growth given in figure 3.7(b) and is fitted first since we need
solution function bw(t) in order to fit Ce(t) and Ci,w(t). We will fit following parameters:

bw0, α, and κ.

The results of the best fit simulation is given in table 3.4 and the plot of the best fit
inclusive the estimated confidence interval of a fitted solution can be seen in figure 3.19.
The SSR of the logistic approach reads 0.0180.

Parameter Lower bound Best fit Upper bound

bw0 [−] 7.93 · 109 8.55 · 109 9.13 · 109

α [10−3/min] 3.01 4.30 5.67

κ [−] 3.84 · 1010 6.17 · 1010 7.03 · 1023

Table 3.4.: Parameter confidence interval estimation of fit of model equation (3.24).
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Figure 3.19.: Best fit of bacterial growth model equation (3.24) depicted as solid blue
line. Confidence interval of the fitted curve depicted as dashed red line.

Remark 3.7.4. Further data fits with an exponential and linear approach yield a bigger
SSR. The one of the exponential approach was 0.0289, the one of the linear approach
was 0.0511. Thus, the assumption of a logistic growth is confirmed.

Now we can start to fit the FRET data of the wild type experiment 3. The experi-
mental parameter Ve changes in this experiment to 100ml and the initial values reads
Ce(0) = 0µmol

l
, Ci,w(0) = 0µmol

l
and from above we obtained bw(0) = 8.55 · 109 cells.

After a while, we insert the mutants, in total 16·OD600nm ·50µl = 16·1.2·108 cells
ml
·50µl =

9.6 · 107 cells, into the cell free supernatant of size Ve = 1950 · 10−6l. As a first attempt,
we assume that the wild type bacteria has the same parameter values as the mutants
which are given in table 3.3. The only parameter which is left to fit is the production
rate Π.
Running the program code of the best fit simulation, we obtain the best fit values in
table 3.5 and the FRET curve is depicted in figure 3.20 which is not acceptable. One
can detect three problems considering the fit. First, for t = 0, the FRET curve does
not match the first data point and starts with a lower intercept. The consequence being
that we will also never reach the last five data points even if we change the hypothe-
sises. Second, the FRET curve does not decrease enough to reach the smallest mean
data points. Third, the FRET curves tend to a steady state and do not increase after
120 minutes in contrast to the data. Let’s discuss how these problems might be solved.
The first problem can be easily solved by shifting the parameter value FRET0. However
it is not sure if this is unison with the biology. But after personal communication with
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3.7. Wild type model: No feedback regarding production

Ilka Bischofs, we can do this shift since they also detected this phenomenon in their
experiments. It seems that the FRET0 depends on the way how the mutant types are
cultured. The parameter value ∆FRET is not affected by this coincidence.
From a mathematical point of view, it is obvious why the second problem arises, that
is, the extracellular signalling molecule concentration is (almost) constant after half an
hour, see figure 3.21, with a relative small amount of signalling molecules. But we need
more extracellular signalling molecules to lower the FRET curve in figure 3.20. One
possibility could be to increase the production rate. But that would also result in a
steeper slope of the FRET curve and the curve would never match the points at t = 100.
That’s why the best fit algorithm did not do that. However, there is a further possibility
to increase the level of signalling molecules: to reduce the absorption rate. We assumed
in the beginning that the absorption rate σw of the wild type is the same as for the
mutants. In the mutant experiments 1 and 2 only synthetic signalling molecules were
added into the environment. However, the wild types produce also further molecules
which are transported into the cell by the same oligopermease transporters, as we know
by personal communication with Dr. Bischofs. We can call this competition effect.
Thus, the net absorption rate of PhrA molecules is smaller. Luckily, these molecules
have no effect to the FRET reporter strain within the cell such that we can neglect
them in the model equations.
After that, it is obvious what we have to do such that the FRET curve increases: the
production has to stop in order to ensure the increase of FRET. So we will change the
hypothesis HW 1 appropriately and formulate a new hypothesis.

Parameter Lower bound Best fit Upper bound

Π [zmol/(l ·min)] 2.82 10.53 20.83

Table 3.5.: Parameter confidence interval estimation of fit of model equations (3.22)
and (3.23).
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Figure 3.20.: Best fit solution of extracellular FRET kinetics by model equations (3.22)
and (3.23) with best fit parameters of the mutants given in table 3.3, the
bacterial growth given in table 3.4 and wild types given in table 3.5.
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Figure 3.21.: Solution of (3.22) with best fit parameters given in table 3.3, 3.4 and 3.5.
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3.8. Wild type model: Negative feedback regarding
production

We concluded to reject hypothesis HW 1 since we need an increase of extracellular
FRET. Hence the new formulation reads:

HW 2 When the intracellular concentration Ci,w has reached the threshold ξn, then
there is a negative feedback regarding the production, but no feedback regarding
the absorption of signalling molecules at all.

Note that the threshold ξn is a different one as the threshold ξ of the mutant.

3.8.1. Model equations
Compared to the model equations (3.22) - (3.24) in section 3.7.1, we only add an time-
dependent indicator function to the production term. Then the system reads

d
dtCe(t) =χ̂[0,ξn]×tn(Ci,w(t), t) bw(t)Π−

(
σw
Ve
bw(t) + γe,w

)
Ce(t) (3.29)

d
dtCi,w(t) = σw

Vbac
Ce(t)− (γi,w + f(bw(t))) Ci,w(t) (3.30)

d
dtbw(t) =αbw(t)

(
1− bw(t)

κ

)
=: bw(t)f(bw(t)) (3.31)

with initial conditions

Ce(t0) = Ce,0 (3.32)
Ci,w(t0) = Ci,w,0 (3.33)
bw(t0) = bw0 (3.34)

and

tn := inf{t ∈ R+ : ξn = Ci(t)}.

3.8.2. Analysis
The approach to show existence and uniqueness of a solution is similar as in section 3.4.
In case of Ci,w ≥ ξn, the wild type model almost coincides with the mutant model in
section 3.5. The difference is the population dynamics for the wild types. Thus, the
ODE of the intracellular concentration is different and we can not use Lemma 3.4.1
immediately, but after a small change. If Ci,w < ξn, that means the time-dependent
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indicator function is one, the model coincides with the wild type model in the previous
section 3.7. One just has to know when the necessary condition is fulfilled and this is
nothing else than the intersection of Ci,w(t) = ξn yielding tn. However, to calculate the
solution of Ci,w(t) respectively Ce(t) explicitly is a difficult task to undertake. So in the
upcoming Corollary, we will have no requirements such that the necessary condition is
fulfilled.

Corollary 3.8.1. There exist unique and piecewise continuous differentiable solutions
of (3.29) - (3.31) with initial conditions (3.32) - (3.34). The solutions are non-negative.

Proof. If Ci,w(t0) < ξn then the model coincides with the model in section 3.7.1 for at
least a small time interval [t0, t1]. Theorem 3.7.1 yields existence and uniqueness for
that time interval. If there exists a ts ∈ [t0, t1] such that Ci,w(ts) ≥ ξn then Theo-
rem 3.7.1 yields again existence and uniqueness for t ∈ [t0, ts). The solutions for this
time interval are denoted as ·̂. As mentioned above, the model almost coincides with
the mutant system in section 3.5 and the existence and uniqueness of a solution can
be obtain by and adjusted proof of Lemma 3.4.1. One just has to replace in the ODE
γi by γi,w + f(bw(t)). The new ODE can be solved by variation of constants for both
cases γi,w = 0 and γi,w 6= 0. The resulting integral exists since bw(t) ∈ L∞ and so is
f(bw(t)) ∈ L∞. Henceforth, we obtain for t ∈ [ts,∞) existence and uniqueness of a
solution for given adjusted initial conditions Ce(ts) = Ĉe(ts), Ci,w(ts) = Ĉi,w(ts) and
bw(ts) = b̂w(ts). Joint together, there exists a unique and piecewise continuous differ-
entiable solution in t ∈ [t0,∞). If there exists no ts ∈ [t0, t1], we consider a further
interval [t1, t2] and check again if there exist a ts. This can be done iteratively until we
obtain a at least piecewise continuous differentiable solution in t ∈ [t0,∞).

If Ci,w(t0) > ξn then the model coincides with the model in section 3.5.1 for at least
a small time interval [t0, t1]. Then the approach is analogous to above.
Since it holds

d
dtCe(t)

∣∣∣
Ce(t)=0

= χ̂[0,ξn]×tn(Ci,w(t), t) bw(t)Π ≥ 0
d
dtCi,m(t)

∣∣∣
Ci,m(t)=0

= σw
Vbac

Ce(t) ≥ 0 for Ce(t) ≥ 0,

the system is non-negative because of Theorem A.3.2.

3.8.3. Best fit simulation
In the best fit simulation, the experimental parameters as well as the initial conditions
are the same as in the previous section 3.7. For the bacterial parameters, we use the
best fit data from table 3.19. For the mutants, we use the parameters given in table 3.3
except for FRET0 as discussed above. Instead, we use the mean value of the data which
is given by 0.117. We have concluded that the absorption rate of the wild type should
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3.8. Wild type model: Negative feedback regarding production

be smaller than that of a mutant, hence σw is beside the production rate Π a parameter
which has to be fitted. In addition, we test for wild types if there are degradation rates
of the signalling molecules as the “natural” signalling molecule might behave different
as “synthetic” signalling molecules. Summed up we will fit five parameters which read

Π, σw, ξn, γi,w and γe,w.

The results of the best fit simulation are given in table 3.6. As predicted, the ab-
sorption rate σw of a wild type is smaller than that of a mutant, see table 3.3. Again,
the absorption rates γi,w and γe,w are very small such that one can neglect them in the
wild type model as well. The SSR is of size 1.99 · 10−4 which is quite small.

Parameter Lower bound Best fit Upper bound

Π [zmol/(l ·min)] 2.08 5.06 58.31

σw [pl/min] 9.0 · 10−7 0.18 0.28

ξn [µmol/l] 10.47 28.60 68.98

γi,w [1/min] 1.3 · 10−9 1.3 · 10−9 3.2 · 10−5

γe,w [1/min] 1.6 · 10−8 1.7 · 10−6 0.005

Table 3.6.: Parameter confidence interval estimation of fit of model equations (3.29)
and (3.30).

The best fit in figure 3.22 seems very nice but can be still improved. On the one hand,
we do not really match the first data points, the curve decreases to fast. However, if
we lower the production rate by hand, then the curve would not reach the minimum.
So it seems that the production rate Π is time dependent. On the other hand, we have
a sharp angle when the initiation of sporulation starts and production of signalling
molecules stops. However, it is not realistic that all bacteria stop simultaneously. Each
bacterium is not identical to each other, there are small diversities from a biological
point of view. In the next chapter, we will implement these ideas to the model.
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Figure 3.22.: Best fit solution of extracellular FRET kinetics by model equations (3.29)
and (3.30) with best fit parameters table 3.3, 3.4 and 3.6.

3.9. Extended wild type model: Negative feedback
regarding time dependent production

We do not reject hypothesis HW 2, instead we extend the model as described above. In
place of a constant production rate Π we will deduce a production rate depending on
the intracellular signalling molecule concentration which itself depends on time. So in
the beginning when we have a low intracellular signalling molecule concentration, the
production rate should be low, too. If the intracellular signalling molecule concentration
increases, the production rate do so as well and tend to a constant value. Such a
behaviour can be described by a sigmoid function

Πs(Ci,w) =
ΠmaxC

m
i,w

Km + Cm
i,w

with Πmax as the maximal production rate of extracellular signalling molecules, n
being the curvature index and K is the “half-max-velocity constant”, that is the value
of Ci,w when Πs = 1

2Πmax. Since the intracellular concentration is usually zero in the
beginning, we have to add a minimal production rate Πmin such that the production of
signalling molecules starts. Summed up, a suitable function reads

ΠS(Ci,w) := Πmin +
ΠmaxC

m
i,w

Km + Cm
i,w

.
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Since we have small diversities in each bacterial cell, we assume a noise in the sporu-
lation threshold. That means we will consider subpopulations j ∈ W and due to
the diversity, each subpopulation has a different sporulation threshold ξn,j. The set
{w1, . . . , wn} =: W denotes the n wild type subpopulations. We assume that the noise
is normally distributed. The new extended hypothesis reads

HW 3 When the intracellular concentration Ci,j of subpopulation j has reached the
threshold ξn,j, then there is a negative feedback regarding the production but
no feedback regarding the absorption of signalling molecules at all.

Additionally, we concluded that the degradation rates γi,w and γe,w are very small.
Thus, we neglect them in the extended model.

3.9.1. Model equations
The description of the model parameters as well as the dynamic can be found in the
previous chapter 3.7.1. Here, we implement the new ideas from above.

d
dtCe(t) =

wn∑
j=w1

χ̂[0,ξn,j ]×tn,j(Ci,j(t), t) bj(t)ΠS (Ci,j(t))−
wn∑
j=w1

bj(t)
σw
Ve
Ce(t) (3.35)

d
dtCi,j(t) = σw

Vbac
Ce(t)− f(bj(t))Ci,j(t) for j ∈ W (3.36)

d
dtbj(t) =αbj(t)

(
1− bj(t)

κ

)
=: bj(t)f(bj(t)) for j ∈ W (3.37)

with initial conditions

Ce(t0) = Ce,0 (3.38)
Ci,j(t0) = Ci,j,0 for j ∈ W (3.39)
bj(t0) = bj0 for j ∈ W. (3.40)

The thresholds ξn,j should vary slightly from ξn. So it can be seen as a perturbed
parameter with a normal distributed perturbation. We could assume that the threshold
ξn,j varies up to around 20% of ξn. This can be achieved by ξn,j = ξn + 0.2 · ξnνj with
νj ∼ N (0, 1). The time point tn,j is defined as

tn,j := inf{t ∈ R+ : ξn,j = Ci,j(t)}

for all j ∈ W .
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3.9.2. Analysis
The approach to show existence and uniqueness of solutions of equations (3.35)-(3.37)
in t ∈ [t0,∞) is a combination of the proofs of Theorem 3.7.1 and Corollary 3.8.1.

Theorem 3.9.1. There exist unique and piecewise continuously differentiable solutions
of (3.35) - (3.37) with initial conditions (3.38) - (3.40). The solutions are non-negative.

Proof. The equations for the bacterial growth (3.37) are uncoupled to the other equa-
tions (3.35) and (3.36). As in the proof of Theorem 3.7.1, there exist unique bounded
solutions of (3.37) in t ∈ [t0,∞) for all j ∈ W .
We assume that Ci,j(t0) < ξn,j for all j ∈ W . That means there exists a small time in-
terval [t0, t1] such that all time-dependent indicator functions are one and the right hand
sides are continuously differentiable. This implies Lipschitz continuity and henceforth
existence and uniqueness of solutions by the Picard-Lindelöf Theorem. The generalized
Gronwall inequality yields boundedness of the solutions Ce and Ci,w. If there exists a
time point tn,k ∈ [t0, t1] such that the intracellular signalling molecule concentration of
a subpopulation k reaches its threshold ξn,k with k ∈ W , then one has to consider an
adjusted system for [tn,k, t1]. That means we do not sum over subpopulation k in the
production term and the initial values have to be adapted, that is, the solution evalu-
ated at tn,k. Since the solutions in [t0, t1] are bounded, we have feasible initial values for
the new time interval. With the same approach, we can show existence and uniqueness
for [tn,k, t1]. Afterwards, we consider the next time interval [t1, t2] with t2 ∈ (t1,∞)
arbitrary. The approach for that interval is analogous. Henceforth, we yield iteratively
a unique and continuous piecewise differentiable solution for t ∈ [0,∞).
If there exists a j ∈ W such that Ci,j(t0) > ξn,j, then we do not sum over all subpopu-
lations in [t0, t1]. The approach, however, is analogous to above.
The non-negativity can be shown as always with Theorem A.3.2. The trajectories are
non-negative since it holds

d
dtCe(t)

∣∣∣
Ce(t)=0

=
wn∑
j=w1

χ̂[0,ξn,j ]×tn,j(Ci,j(t), t) bj(t)ΠS (Ci,j(t)) ≥ 0

d
dtCi,j(t)

∣∣∣
Ci,j(t)=0

= σw
Vbac

Ce(t) ≥ 0 for Ce(t) ≥ 0, j ∈ W

d
dtbj(t)

∣∣∣
bj(t)=0

=0 for j ∈ W.

3.9.3. Best fit simulation
The experimental parameters Ve, Vb and the initial conditions are given in section 3.7
and the best fit parameters for the mutant can be found in table 3.3. We assume n = 10
subpopulations, that is W = {w1, . . . , w10} of equal size in the simulation. Then the
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3.9. Extended wild type model: Negative feedback regarding time dependent production

solution of a subpopulation (3.37) is given by the solution of the logistic function given
(3.28) divided by the number of supopulation. The noise ν = (νw1 , . . . , νw10) of the
threshold is given with ν = (−0.82,−1.58, 0.51, 0.28, 0.03,−1.33, 1.13, 0.35,−0.30, 0.023).
The remaining parameters will be fitted, that is,

Πmin, Πmax, K, σw, m and ξn.

The parameters of the best fit algorithm are given in table 3.7 and the corresponding
plot is depicted in figure 3.23. Now the solution fits the first data points better which
reflects also in a better SSR of 7.11 ·10−5. The sharp angle vanishes as predicted fitting
the minimal points also very good.

Πmin = 3.59 [zmol/(l ·min)] Πmax = 5.10 [zmol/(l ·min)] K = 4.90 [µmol/l]]

σw = 0.22 [pl/min] m = 16.70 [−] ξn = 37.31 [µmol/l]

Table 3.7.: Parameter choice of model equations (3.35) and (3.30) which yields a good
result.
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Figure 3.23.: Best fit solution of extracellular FRET kinetics by model equations (3.35)
and (3.36) with best fit parameters given in table 3.3, table 3.4 and ta-
ble 3.7.

However the estimation of parameter confidence intervals yields frequently warnings
of singular matrices solving the ODE system. Then we obtain finally the warning, that

85



Chapter 3. ODE model

the next step can not be chosen smaller than machine precision and the calculations
stops. Compared to the previous model in section 3.8, we changed only two things:
the number of equations and the production term. The change in number of equations
can not be the reason since the ODE’s are mostly decoupled. So it has to be the pro-
duction term. Plotting the sigmoid function ΠS (Ci,j(t)) using the best fit parameters
in table 3.7 for an arbitrary j ∈ W , see figure 3.24, reveals the problem: the slope of
the function is already very steep for the best fit solution. So running the algorithm to
estimate confidence intervals of the parameters by maximizing/minimizing them leads
probably to a even steeper slope such that numerical integration has problems to inte-
grate the function when calculating a solution. The idea to avoid these warnings is to
replace the sigmoidal production term ΠS (Ci,j(t)) with a step function which is a sum
of time-dependent indicator functions. This is done in the next section.
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Figure 3.24.: Best fit solution of extracellular FRET kinetics by model equations (3.22)
and (3.30) with best fit parameters of the mutants given in table 3.3, the
bacterial growth given in table 3.4 and the wild types given table 3.6.
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3.10. Extended wild type model: Positive and negative
feedback regarding time dependent production

In this section we only replace the sigmoidal production term with a step function.
So in the beginning, the production rate of signalling molecules is low and constant.
This is also called the basal phase. Then when the intracellular signalling molecule
concentration has reached a certain threshold ξp,j, the production rate jumps to a
higher constant rate. This is modelled with a time-dependent indicator function. That
also leads to a change in the hypothesis.

HW 4 When the intracellular concentration Ci,j has reached the threshold ξp,j, then
there is a positive feedback regarding the production, but if it has reached the
threshold ξn,j, then there is a negative feedback regarding the production. We
have no feedback regarding the absorption of signalling molecules at all.

3.10.1. Model equations
The description of the model parameters as well as the dynamic can be found in the
previous chapter 3.9. Here, we only implement the new production term. This can be
realized by

Πχ̂ (Ci,j(t)) := Πmin + χ̂(ξp,j ,∞)×tp,j(Ci,j(t), t)∆Π (3.41)

with

tp,j := inf{t ∈ R+ : ξp,j = Ci,j(t)}
for all j ∈ W. So the final improved model reads

d
dtCe(t) =

wn∑
j=w1

χ̂[0,ξn,j ]×tn,j(Ci,j(t), t)Πχ̂ (Ci,j(t)) bj(t)−
wn∑
j=w1

bj(t)
σw
Ve
Ce(t) (3.42)

d
dtCi,j(t) = σw

Vbac
Ce(t)− f(bj(t))Ci,j(t) for j ∈ W (3.43)

d
dtbj(t) =αbj(t)

(
1− bj(t)

κ

)
=: bj(t)f(bj(t)) for j ∈ W (3.44)

with initial conditions

Ce(t0) = Ce,0 (3.45)
Ci,j(t0) = Ci,j,0 for j ∈ W (3.46)
bj(t0) = bj0 for j ∈ W. (3.47)
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3.10.2. Analysis
The additional time-dependent indicator function in (3.42) leads to a more tedious
analysis. The approach is the same as for the proof of Theorem 3.9.1. Consequently,
we can conclude:

Corollary 3.10.1. There exist unique and piecewise continuous differentiable solutions
of (3.42) - (3.44) with initial conditions (3.45) - (3.47). The solutions are non-negative.

3.10.3. Best fit simulation
The setting is the same as in section 3.9.3, only the fitted parameters change to

Πmin, ∆Π, ξp,j, σw and ξn.

Now, the solver performs without any warning and yields reasonable results. The
parameters Πmin and ∆Π corresponds to the plateaus in in figure 3.24. The absorption
rate σw is still in the same range as in the other cases as well as the two thresholds.
We also have the same least squared residual of 7.1 · 10−5 as in section 3.9.3. All best
parameter fits and their estimated confidence intervals are given in table 3.8. A plot
of the best fit extracellular FRET can be seen in figure 3.25. Note that it is similar to
figure 3.23.

Parameter Lower bound Best fit Upper bound

Πmin [zmol/(l ·min)] 1.98 3.83 5.72

∆Π [zmol/(l ·min)] 0.87 5.39 13.51

ξp,j [µmol/l] 0.26 6.31 14.83

σw [pl/min] 0.15 0.22 0.27

ξn [µmol/l] 0.09 37.64 69.42

Table 3.8.: Parameter confidence interval estimation of fit of model equations (3.42)
and (3.43).
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Figure 3.25.: Best fit solution of extracellular FRET kinetics by model equations (3.42)
and (3.43) with best fit parameters of the mutants given in table 3.3, the
bacterial growth given in table 3.4 and of the wild types given in table 3.8.

At last, we run a bootstrap in order to find the confidence interval of the fitted
curves as in section 3.5.3. The result is given in figure 3.26. Within the narrow band
lie all mean values and most of the standard deviations. Note that the band at the
end is quite big which means that there are parameter constellations such that there
are signalling molecules left in the supernatant meaning a subpopulation still produces
signalling molecules. However, the production is then too little and due to the cell
division, the intracellular concentration increases very slowly or even decreases. That
means the threshold ξn can not be reached, at least not in the time interval we consid-
ered.
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Figure 3.26.: Best fit solution of extracellular FRET kinetics by model equations (3.42)
and (3.43) depicted as solid blue line. Confidence interval of the fitted
curve depicted as dashed red line.

3.11. Consequences of competition effect
In section 3.7.3, we concluded for the wild type a competition effect regarding the ab-
sorption rate σw since the rate was a factor of 10 smaller than the absorption rate of
the mutant σm. Then we improved the best fit step by step coming to the final result
in 3.10. What we did not consider is a competition effect of the mutants absorption
rate! That might be possible after consultation with Bischofs. So we perform a further
best fit with positive and negative feedback regarding the time dependent production
of signalling molecules but now choosing the mutants absorption rate as an additional
fitting parameter. The best fit parameters inclusively their estimated parameter con-
fidence interval is given in table 3.9, the graphical solution is given in figure 3.27. We
can see, that we can fit the data points as well and the confidence interval of fitted
curve is narrow and matches the standard deviation well. The parameter values of the
production as well as the thresholds for the feedbacks increase about the factor 5.
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3.11. Consequences of competition effect

Parameter Lower bound Best fit Upper bound

Πmin [zmol/(l ·min)] 2.83 19.00 19.12

∆Π [zmol/(l ·min)] 2 · 10−7 26.9 31.32

ξp,j [µmol/l] 0.03 29.99 32.13

σw [pl/min] 0.10 0.21 0.40

σm [pl/min] 0.12 0.18 0.31

ξn [µmol/l] 1.90 179.99 233.15

Table 3.9.: Parameter confidence interval estimation of fit of model equations (3.42)
and (3.43) with σm as additional fitting parameter.
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Figure 3.27.: Best fit solution depicted as solid blue line of extracellular FRET kinet-
ics by model equations (3.42) and (3.43) with best fit parameters of the
mutants given in table 3.3, except for the absorption rate σm, the bacte-
rial growth given in table 3.4 and of the wild types inclusively the mutant
absorption rate given in table 3.9. Confidence interval of the fitted curve
depicted as dashed red line.
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3.12. Conclusion for wild type
At the end, we can conclude three main results regarding production and absorption
process of Bacillus subtilis.
We found that the production of signalling molecules had to stop in order to ensure an
increase of extracellular FRET. With that data, we also can prove that it is important,
that Bacillus subtilis absorb (at least for our cases) signalling molecules over time.
But it is reasonable, that Bacillus subtilis stops some time the absorption of signalling
molecules. This new hypothesis needs further experimental data to confirm or exclude
it.
After that, we saw that the production period is separated in two stages. In the
first stage, the production rate is constant, but low. After we have reached a certain
intracellular signalling molecule concentration, the production rate jumps to a higher
rate which is still constant.
Last but not least, there might be a competition effect regarding the absorption of
signalling molecules. At first, the best fit absorption rate of the mutants was ten times
higher than of the wild types. We suggested that the reason might be the further
molecules the wild types produce and absorb together with the signalling molecule
PhrA. That means the net rate of PhrA decreases and so do the absorption rate. But
we didn’t apply that assumption for the mutants immediately. When we did so, we
were able to find a best fit solution but with higher parameter values in production
rates and feedback thresholds. So the data is not consistent in order to determine
the parameters of the production process. One needs further experiments to confirm
or exclude competition effects of the absorption process. Since the µCats laboratory
rather supports the idea of a competition effect, we will use the parameters in table 3.9
together with hypothesis HW 4 for further computations.
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Chapter 4

PDE model

In chapter 3, we introduced a system of ordinary differential equations to model on the
one hand the uptake process and on the other hand the production process of signalling
molecule PhrA of Bacillus subtilis. We assumed homogeneously distributed bacteria
within the shake flask as well as for the extracellular signalling molecule concentration.
Biological experiments on a pad, however, showed up a small sporulation delay of mu-
tant bacteria. Since mutants do not produce any signalling molecules, they have to
wait until signalling molecules produced by wild types reaches them. This motivates to
consider a spatial model of the signalling molecule uptake which is necessary to initiate
the sporulation process.

In this chapter, we only introduce the experimental approach and results, the dynamic
and the model equations. In contrast to the ODE case, the analysis of the PDE system
is done in a separate chapter, see chapter 5.

4.1. Experimental approach and results
The diameter of the pad is 9mm and the biologists put 4 · 104 cells on it. Each cell
forms then a microcolony. Then they performed two different experiments.
In the first experiment, they placed either only wild types on the pad and counted the
spores for 80 hours or they placed mutants on the pad stimulating them with different
concentrations of signalling molecule PhrA and counting spores again.
The second experiment is a wild type-mutant ratio experiment. Both types are placed
on the pad of different population ratios and spores were counted for 80 hours again.
In figure 4.1, we can see the results which we can use later in order to compare it with
the simulation results. Note that the experimental output is not the total number of
spores, it is the number of spores per cell.
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(a)

(b)

Figure 4.1.: (a): Number of spores per cell of the stimulation experiment; wt corresponds
to wild types and ∆phrA corresponds to mutants; (b): Number of spores per
cell for different wild type-mutant ratios; These data sets and plots are from
the µCats laboratory;

Additionally, they counted the number of cells of a microcolony such that we can
approximate the bacterial growth on the pad, see figure 4.2.
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4.2. Dynamic and model equations

Figure 4.2.: Bacterial growth of a microcolony; This data set and plot is from the µCats
laboratory;

4.2. Dynamic and model equations
As for the ODE system in chapter 3, the dynamic for the PDE system is similar and
illustrated in figure 4.3. We just have to include spatial effects on the pad Ω ⊂ R2

+ of
size A. On the pad, there is a thin agarose layer of hight h. Henceforth the volume of
the growth medium reads Ve := Ω × h. A consequence of the experimental approach
is that we consider now bacterial colonies within Ve and each colony exists of only
one type, that is either a wild type or a mutant. The colonies arise due to the cell
division and the assumption, that spontaneous mutations are very rare. That’s why
we have separated, not mixed colonies. The total number of wild type colonies is
given by Wmax, for mutant colonies by Mmax. The volume covered by Bacillus is
denoted as Vw (wild types) resp. Vm (mutants) with w ∈ W := {W1, . . . ,Wmax} and
m ∈M := {M1, . . . ,Mmax}. Obviously it holds Vw, Vm ⊂ Ve for all w ∈ W and m ∈M .
The density of wild type bacteria is denoted by bw(t, ~x) for ~x := (x, y, z) ∈ Vw
and mutant bacteria by bm(t, ~x) for ~x ∈ Vm for w ∈ W and m ∈ M . That means,
b(t, ~x) = 0 for ~x ∈ Ve\Vw∪Vm for all w ∈ W and m ∈M . Thus, the bacterial density
is denoted by

b(t, ~x) :=



bw(t, ~x) for ~x ∈ Vw

bm(t, ~x) for ~x ∈ Vm

0 for ~x ∈ Ve \ Vw ∪ Vm

for all w ∈ W and m ∈M . The signalling molecule can be absorbed from both types
with rate σ. We denote this intracellular signalling molecule concentration again
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by Ci(t, ~x). As for the ODE model in chapter 3, we assume that hypothesis HW 4
holds. That means only wild type bacteria produce PhrA Pentapeptide with basal rate
Πmin and a supplement rate ∆Π and will be then transported outside the cell, be-
coming the extracellular signalling molecule Ce(t, ~x). The transition from basal
to maximal production rate Πmin +∆Π is controlled by Ci. If it reaches the intracellu-
lar threshold ξp(~x) per bacterium, then the change to the maximal production rate is
initiated. The intracellular threshold such that the production of signalling molecules
by the wild type stops is denoted by ξn(~x) per bacterium. By deriving a suitable ODE
model, we had the suspicion, that at some time the absorption of signalling molecules
stops which is a contradiction to hypothesis HM 2. However, the ODE mutant ex-
periments last only 20 minutes (plus one minute for centrifugation), the experiments
regarding the PDE model takes much longer, though. Thus, we introduce for reasons of
generality an intracellular threshold ξa(~x) per bacterium such that the bacterium stops
absorbing signalling molecules. We assume again, that Ce(t, ~x) is degraded outside the
cell with rate γe. As in chapter 3, a logistic growth of bacteria is assumed with expo-
nential growth rate α,carrying capacity κ and independence of the intracellular
signalling molecule concentration. Additionally we assume a non-moving boundary of
the bacterial colony in the x-y plane, so we have only a movement induced by growth in
z direction. Of course this is a rough simplification but it simplifies the manageability a
lot. Last but not least, the most important term is missing, that is, the diffusion term
of the signalling molecules. Usually, the thickness of the layer is small compared to the
diameter of the entire pad. Thus, we assume that there is no gradient in z direction
which means we only have movement of the signalling molecule concentration in x-y
plane. This diffusion is constant with rate D. However, the signalling molecules can’t
diffuse through the solid boundary of the pad, so they do not leave the reaction volume.

Wild type

Mutant
PadBacillus subtilis

colonies and spores

PhrA

Pump

RapA

Spore

Figure 4.3.: Scheme of the bacterial process and explained dynamic. Instead of homo-
geneous distributed bacteria, we have here colonies.

As announced above, we consider now spatial effects for the extracellular signalling
molecule concentration Ce(t, ~x), leading to a PDE which is also known as Reaction-
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Diffusion equation. The intracellular signalling molecule concentration Ci(t, ~x) is de-
scribed by an ordinary differential equation for each ~x ∈ Vw ∪ Vm for all w,m. This
is sufficient, since we are not interested in the cascade transition. Both equations are
coupled which makes it difficult to solve. Since we assume only signalling molecules as a
trigger for sporulation, the bacterial growth is independent of it. Thus, the equation for
bacterial growth is decoupled from the PDE-ODE system. Let’s explain the equations
briefly.

We start to model the PDE. The propagation of quorum sensing signalling molecules,
or better known as diffusion, can be modelled with the Laplace Operator. The reaction
process contains on the one hand the production process, the plus term, and on the
other hand the absorption process, the minus term, of signalling molecules. Note that
only for wild type bacteria we have a production term of signalling molecules at ~x ∈ Ωw.
The hypothesis HW 4 from section 3.10 yields on the one hand two production phases
whereas the switch is controlled by threshold ξ̄p ∈ R+. On the other hand, the cells stop
to produce signalling molecules which are controlled by the threshold ξ̄n ∈ R+ and stop
to absorb signalling molecules controlled by the threshold ξ̄a ∈ R+. We assume, that the
thresholds are not constant in x-y plane. That means there is a noise for the thresholds
to model the diversity of bacterial individuals. The noise varies only in the x-y plane

yielding ξn(~x) =
∣∣∣ξ̄n + 0.2 · ξ̄nν(x, y)

∣∣∣ with ν ∼ N
((

0
0

)
,

(
1 0
0 1

))
, is chosen initially

and then fixed for the whole simulation. We choose the perturbation in a way, such that
68.27% of the thresholds vary up to around 20% of the mean value. The same approach
holds for the other thresholds ξp(~x) and ξa(~x), too. The switches in the right hand side
can be expressed by indicator functions, see Definition 3.3.1, and should switch exactly
once for each ~x. Here, the corresponding set of the indicator function is of interest as
well as the argument Ci(t, ~x). Since the thresholds are given per bacterium, we have to
multiply the thresholds with the bacterial density, e.g. ξa(~x)b (t(~x), ~x) =: ηa (t(~x), ~x).
Due to this fact, the indicator set changes in time caused by the bacterial growth. In
this case, the set reads then [0, ηa(t(~x), ~x)]. So we have only switches if

Ci(ta(~x), ~x) = ηa(ta(~x), ~x)

for ta(~x) ∈ [0, T ] and ~x ∈ Vw ∪ Vm. For our application, we are again only interested
in the first point in time when the switch arise. We use the same idea as for the ODE
models in chapter 3. Note that the solution of (4.2) for t ∈ [0, ta(~x)] reads

Ci(t, ~x) =
∫ t

0
σCe(s, ~x)b(s, ~x) ds(~x).

Thus, ta(~x) is defined implicitly by

ta(~x) := inf
{
t(~x) ∈ R+ :

∫ t(~x)

0
σCe(s(~x), ~x)b(s(~x), ~x) ds(~x) = ηa(t(~x), ~x)

}
.
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Note that inf{∅} =∞. The terms ηp(t, ~x) and ηn(t, ~x) as well as tp(~x) and tn(~x) are
defined analogously. Last but not least, we assume that degradation takes place all over
the pad and is modelled as a negative term. The entire PDE for Ce is given in (4.1).
Naturally, the ODE contains the same absorption part of the PDE, but with a changed
sign. When the intracellular concentration reach threshold ηa(t, ~x), absorption of sig-
nalling molecules stops. In contrast to the ODE model equations in chapter 3, we have
no negative term caused by bacterial growth. There, we modelled the intracellular con-
centration for a single cell and had to include the bacterial growth. Now, we consider
the intracellular concentration at a point ~x which is regardless of bacteria. Since we
consider no propagation of the internal quorum sensing molecules, we obtain an ODE
which is given in (4.2).
The bacteria grows according to the logistic equation and is given in (4.3) with the
corresponding initial condition (4.6). Note that the logistic equation is decoupled from
the other two equations.
Since signalling molecules can’t leave the pad, we assume homogeneous Neumann
boundary conditions, see (4.5). As initial condition, it is reasonable to assume no
signalling molecules in the dish and bacteria, which has no peptides consumed. That
leads to (4.4). Finally, for t ∈ [0, T ] and ~x ∈ Ve the system reads

∂

∂t
Ce(t, ~x) =∇


D 0 0

0 D 0
0 0 0

∇Ce(t, ~x)

− γeCe(t, ~x)

− χ[0,ηa(ta(~x),~x)](Ci(t, ~x))σCe(t, ~x)b(t, ~x)

+
Wmax∑
w=W1

χVw(~x)χ[0,ηn(tn(~x),~x)](Ci(t, ~x))Πχ (Ci(t, ~x)) b(t, ~x)

(4.1)

∂

∂t
Ci(t, ~x) =χ[0,ηa(ta(~x),~x)](Ci(t, ~x))σCe(t, ~x)b(t, ~x) (4.2)

∂

∂t
b(t, ~x) =αb(t, ~x)

(
1− b(t, ~x)

κ

)
(4.3)

with text

Ce(0, ~x) = Ci(0, ~x) = 0 (4.4)
∂Ce
∂n

= 0 for ~x ∈ ∂Ve (4.5)

b(0, ~x) =



bw(0, ~x) = bw0(~x) > 0 for ~x ∈ Vw

bm(0, ~x) = bm0(~x) > 0 for ~x ∈ Vm

0 for ~x ∈ Ve \ Vw ∪ Vm

(4.6)
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for all w ∈ W and m ∈M . n is the outer normal of ∂Ve and the production term

Πχ (Ci(t, ~x)) := Πmin + χ(ηp(tp(~x),~x),∞)(Ci(t, ~x))∆Π

is similar to the one in the ODE model, see (3.41).

We stated the model equations for ~x = (x, y, z) ∈ R3 but without movement in z
direction and thus, no change due to the thin layer assumption. So instead of considering
concentrations in R3, we want to work with surface densities in the x-y plane in R2,
more specifically, in the pad Ω. This can be realized if we multiply the variables and
initial conditions by the agarose layer height h, that is,

Ce(t, (x, y)) = h · Ce(t, (x, y, z))
Ci(t, (x, y)) = h · Ci(t, (x, y, z))
b(t, (x, y)) = h · b(t, (x, y, z)).

Consequently, we denote the covered area of bacteria on the pad as Ωw with w ∈ W
for wild types and Ωm with m ∈M for mutants. Then for t ∈ [0, T ] and ~x = (x, y) ∈ Ω,
the model equations simplify to

∂

∂t
Ce(t, ~x) =D∇2Ce(t, ~x)− γeCe(t, ~x)

− χ[0,ηa(ta(~x),~x)](Ci(t, ~x))σ
h
Ce(t, ~x)b(t, ~x)

+
Wmax∑
w=W1

χΩw(~x)χ[0,ηn(tn(~x),~x)](Ci(t, ~x))Πχ (Ci(t, ~x)) b(t, ~x)

(4.7)

∂

∂t
Ci(t, ~x) =χ[0,ηa(ta(~x),~x)](Ci(t, ~x))σ

h
Ce(t, ~x)b(t, ~x) (4.8)

∂

∂t
b(t, ~x) =αb(t, ~x)

(
1− b(t, ~x)

hκ

)
(4.9)

with

Ce(0, ~x) = Ci(0, ~x) = 0 (4.10)
∂Ce
∂n

= 0 for ~x ∈ ∂Ω (4.11)
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text

b(0, ~x) =



bw(0, ~x) = bw0(~x) > 0 for ~x ∈ ΩW1 ∪ . . . ∪ ΩWmax =: ΩW

bm(0, ~x) = bm0(~x) > 0 for ~x ∈ ΩM1 ∪ . . . ∪ ΩMmax =: ΩM

0 for ~x ∈ Ω \ {ΩW ∪ ΩM}

(4.12)

and

Πχ (Ci(t, ~x)) := Πmin + χ(ηp(tp(~x),~x),∞)(Ci(t, ~x))∆Π. (4.13)

Additionally, the first time point of the switches have to be rescaled to, that is e.g.

ta(~x) := inf
{
t(~x) ∈ R+ :

∫ t(~x)

0

σ

h
Ce(s(~x), ~x)b(s(~x), ~x) ds(~x) = ηa(t(~x), ~x)

}

with

ηa(t, ~x) = ξa(~x)b(t, ~x).
The approach is analogous for tp(~x) and tn(~x).
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Chapter 5

Analysis of the PDE-ODE system

After we have formulated the PDE-ODE system in chapter 4, we analyse the resulting
equations mathematically. We’ll be able to show the existence of a weak solution but the
uniqueness can be only shown for a time constant population, that means b(t, ~x) = b(~x).
However, if we mollify the discontinuity then we can show besides the existence also
the uniqueness of a weak solution for time dependent populations.

5.1. PDE-ODE system

We know that the coupled PDE-ODE system in (4.7) and (4.8) describing the quorum
sensing process is decoupled of the bacterial growth in (4.9). In section 3.7, we calculated
a solution of the logistic growth for the ODE, see equation (3.28). Using this approach,
the solution of (4.9) holds for each ~x ∈ Ω and tends to its steady state hκ for all initial
conditions, whether or not it is smaller or bigger than hκ. That means the bacterial
growth solution b(t, ~x) is positive and bounded, meaning that b(t, ~x) ∈ L∞((0, T ]×Ω) ⊂
L2((0, T ] × Ω). Henceforth it is sufficient to consider only the reduced system (4.7)
and (4.8) with its initial condition (4.10) and boundary condition (4.11) by using the
solution b(t, ~x). We show first that weak solutions of that system exist and that they
are non-negative for almost every ~x ∈ Ω. Note that we have an indicator function in
the right hand side, therefore there exists no ”classical“ or ”strong“ solution.
The existence of weak solutions can be shown by using Schauder’s fixed point theorem,
that is Theorem A.1.3.

Theorem 5.1.1 (Existence of weak solutions). There exists a non-negative weak solu-
tion of the coupled PDE-ODE system (4.7) and (4.8) with initial condition (4.10) and
homogeneous Neumann boundary condition (4.11).
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Proof. We transform the model equations (4.7), (4.8) into a fixpoint equation in order to
apply Schauder’s Fixed Point Theorem A.1.3. Choose Ce(t, ~x) = z(t, ~x) ∈ L2((0, T ]×Ω)
arbitrary but fixed and consider the ODE

∂

∂t
Ci(t, ~x) =χ[0,ηa(ta(~x),~x)](Ci(t, ~x))σ

h
z(t, ~x)b(t, ~x).

Integration by time yields

Ci(t, ~x) = Ci(0, ~x)︸ ︷︷ ︸
=0

+
∫ t

0
χ[0,ηa(ta(~x),~x)](Ci(t, ~x))σ

h
z(s, ~x)b(s, ~x) ds. (5.1)

The solution b(t, ~x) and the indicator function χ are Lebesgue integrable. Thus, the
integral in (5.1) exists and is also unique. If the indicator functions reach their jump
discontinuities, then the value at ~x does not change any more in time which means the
solution stay constant from that time point on. Note that this solution depends also
on z(t, ~x). Thus, we denote the solution of (5.1) from now on as Ci(z(t, ~x), t, ~x).

Now we insert solution Ci(z(t, ~x), t, ~x) into equation (4.7) leading to

∂

∂t
Ce(t, ~x) = D∇2Ce(t, ~x)− γeCe(t, ~x)

− χ[0,ηa(ta(~x),~x)](Ci(z(t, ~x), t, ~x))σ
h
Ce(t, ~x)b(t, ~x)

+
Wmax∑
w=W1

χΩw(~x)χ[0,ηn(tn(~x),~x)](Ci(z(t, ~x), t, ~x))Πχ (Ci(z(t, ~x), t, ~x)) b(t, ~x).


P (z)

We apply the existence and uniqueness Theorem 2.2.15 on P (z) and obtain the unique
weak solution C∗e ∈ L2((0, T ];H1(Ω)). We prove now that this solution is non-negative:

Let’s consider an auxiliary PDE system, given by

∂

∂t
v(t, ~x) = D∇2v(t, ~x)− σ

h
b(t, ~x)− γev(t, ~x)

v(0, ~x) = 0
∂v

∂n
= 0.

This system is solved by the trivial weak solution v(t, ~x) = 0. Using Corollary 2.2.21,
we obtain that the weak solution C∗e of P (z) is a.e. non-negative for all ~x ∈ Ω. Using
this fact, it is obvious that the ODE solution (5.1) is non-negative, too.
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Since z(t, ~x) was chosen arbitrarily we define a map

Φ : L2
+((0, T ];H1(Ω))→ L2

+((0, T ];H1(Ω))
z 7→ C∗e .

whereas the subscript + declares functions spaces considering only non-negative func-
tions, e.g. L2

+ := {f ∈ L2 : f ≥ 0 almost everywhere} endowed with the norm of L2.
Consequently the function C∗e is a non-negative weak solution of (4.7) if and only if C∗e
is a unique non-negative weak solution of P (z), that is Φ(C∗e ) = C∗e which means C∗e is
a fixed point of Φ. So we have to solve a fixed point equation. We will do this with the
second version of Schauder’s Theorem, see Theorem A.1.3.

As a first step, we have to find a convex, closed set and show that our defined operator
is invariant. In the first instance we derive the weak formulation for (4.7) with C∗e as a
test function. This reads

∫
Ω

∂

∂t
C∗e (t, ~x)C∗e (t, ~x) d~x︸ ︷︷ ︸

(1)

= D
∫

Ω
∇2C∗e (t, ~x)C∗e (t, ~x) d~x︸ ︷︷ ︸

(2)

−
∫

Ω
γeC

∗
e (t, ~x)C∗e (t, ~x) d~x︸ ︷︷ ︸

(3)

+
∫

Ω
−χ[0,ηa(ta(~x),~x)](Ci(t, ~x))σ

h
C∗e (t, ~x)b(t, ~x)C∗e (t, ~x) d~x︸ ︷︷ ︸

(4)

+
∫

Ω

Wmax∑
w=W1

χΩw(~x)χ[0,ηn(tn(~x),~x)](Ci(t, ~x))Πχ (Ci(t, ~x)) b(t, ~x)C∗e (t, ~x) d~x.
︸ ︷︷ ︸

(5)

(5.2)

The terms (1), (2) and (3) can be reformulated to

(1)⇔
∫

Ω

∂

∂t

1
2 (C∗e (t, ~x))2 d~x

(2) ⇔
p. I.

[D∇C∗e (t, ~x)C∗e (t, ~x)]∂Ω︸ ︷︷ ︸
=0

−
∫

Ω
D∇C∗e (t, ~x)∇C∗e (t, ~x) d~x

= −D‖∇C∗e (t, ~x)‖2
L2(Ω)

(3)⇔ γ‖C∗e (t, ·)‖2
L2(Ω).

Integrate the weak formulation (5.2) with respect to t. Since C∗e (t, ~x) ∈ L2((0, T ]×Ω)
we can apply Fubini’s Theorem A.4.1 and obtain
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(1)⇔ 1
2
∥∥∥C∗e (t̄, ·)

∥∥∥2

L2(Ω)
+ 1

2‖C
∗
e (0, ·)‖2

L2(Ω)︸ ︷︷ ︸
=0

(2)⇔
∫ t̄

0
−D‖∇C∗e (t, ·)‖2

L2(Ω) dt

(3)⇔
∫ t̄

0
γe‖C∗e (t, ·)‖2

L2(Ω) dt

(4)⇔
∫ t̄

0

∫
Ω
−χ[0,ηa(ta(~x),~x)](Ci(t, ~x))σ

h
C∗e

2(t, ~x)b(t, ~x) d~x dt

(5)⇔
∫ t̄

0

∫
Ω

Wmax∑
w=W1

χΩw(~x)χ[0,ηn(tn(~x),~x)](Ci(t, ~x))Πχ (Ci(t, ~x)) b(t, ~x)C∗e (t, ~x) d~x dt.

We can find an upper estimation of the weak formulation of the PDE by neglecting
(4) due to the negative integrand. This leads to

1
2
∥∥∥C∗e (t̄, ·)

∥∥∥2

L2(Ω)
+
∫ t̄

0
D‖∇C∗e (t, ·)‖2

L2(Ω) dt+
∫ t̄

0
γe‖C∗e (t, ·)‖2

L2(Ω) dt

≤
∫ t̄

0

∫
Ω

Wmax∑
w=W1

χΩw(~x)χ[0,ηn(tn(~x),~x)](Ci(t, ~x))Πχ (Ci(t, ~x)) b(t, ~x)C∗e (t, ~x) d~x dt.

(5.3)

Young’s inequality A.2.1 yields a further estimation for the right hand side of (5.3).
Assume εw > 0 ∀w ∈ [W1, . . . ,Wmax], then

∫ t̄

0

∫
Ω

Wmax∑
w=W1

χΩw(~x)χ[0,ηn(tn(~x),~x)](Ci(t, ~x))Πχ (Ci(t, ~x)) b(t, ~x)C∗e (t, ~x) d~x dt

≤
∫ t̄

0

∫
Ω

Wmax∑
w=W1

χΩw(~x)χ[0,ηn(tn(~x),~x)](Ci(t, ~x))εwC∗e
2 + (2εw)1−2

2 (b(t, ~x)Πχ (Ci(t, ~x)))2 d~x dt

≤
∫ t̄

0
εmax‖C∗e (t, ·)‖2

L2(Ω) +
∫ t̄

0

(2εmax)−
1
2 Π2

max

2 ‖b(t, ·)‖2
L2(Ω) dt

for εmax := max
w∈[W1,Wmax]

εw and Πmax := Πmin + ∆Π. Using this estimation, equation
(5.3) can be rewritten to

∫ t̄

0
(γe − εmax)‖C∗e (t, ·)‖2

L2(Ω) dt ≤
∫ t̄

0

(2εmax)−
1
2 Π2

max

2 ‖b(t, ·)‖2
L2(Ω) dt

− 1
2
∥∥∥C∗e (t̄, ·)

∥∥∥2

L2(Ω)
−
∫ t̄

0
D‖∇C∗e (t, ·)‖2

L2(Ω) dt

≤Q̃t̄
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with

Q̃ :=
∫ t̄

0

(2εmax)−
1
2 Π2

max

2 ‖b‖2
L∞((0,T ]×Ω) dt.

That is, if we choose εmax ∈ (0, γe) we obtain

∫ t̄

0
‖C∗e (t, ·)‖2

L2(Ω) dt ≤ Qt̄

whereas Q := Q̃

γe − εmax
. We immediately see, that

∫ t̄

0
‖C∗e (t, ·)‖2

L2(Ω) dt = ‖C∗e (t, ·)‖2
L2((0,t̄]×Ω) = ‖Φ(z)‖2

L2((0,t̄]×Ω).

So we choose t̄ ≤ 1
Q

such that ‖Φ(z)‖2
L2((0,t̄]×Ω) ≤ 1. That means the operator Φ maps

B1(0) into itself. That corresponds to a non-empty, convex, bounded and closed set.
That’s an assumption in order to apply Schauder’s second version, see Theorem A.1.3.
Note, that the solution can be continuously extended to the whole interval (0, T ] by
changing the integrals bounds first and repeat the approach analogously.

The second step is to show the compactness of Φ. Therefore one has to show that Φ
maps bounded subsets to relatively compact subsets and that Φ is continuous.
We start to proof the relative compactness. Since the right hand side, that is, f :=
−(3) + (4) + (5) is in L2((0, T ]×U), the weak solution C∗e (t, ~x) is in H1((0, T ]×Ω), see
Theorem 2.2.17. Then we apply the Rellich-Kondrachov Theorem, see Theorem A.4.2.
That meansW1,2((0, T ]×Ω) = H1((0, T ]×Ω) embedded continuously in L6((0, T ]×Ω)
and embedded compactly in Lq((0, T ]×Ω) with 1 ≤ q ≤ 6, especially in L2((0, T ]×Ω).
That is, C∗e is in a function space, which can be embedded compactly in L2((0, T ]×Ω).
Altogether, there is an operator J∗ : L2((0, T ]×Ω)→ H1((0, T ]×Ω). This operator is
bounded due to the improved regularity of the weak solution C∗e , see Theorem 2.2.17.
Moreover, H1((0, T ] × Ω) can be embedded compactly into L2((0, T ] × Ω), i.e. the
identity operator id : H1((0, T ] × Ω) → L2((0, T ] × Ω) is compact. By definition,
this operator maps bounded subsets of H1((0, T ] × Ω) into relatively compact subsets
of L2((0, T ] × Ω). That is, J := id ◦ J∗ maps bounded subsets of L2((0, T ] × Ω)
relatively compact into L2((0, T ]×Ω) respectively J : L2

+((0, T ]×Ω)→ L2
+((0, T ]×Ω)

. Now we show the continuity of J by definition in terms of limits of sequences. Let
zn ∈ L2((0, T ] × Ω) with zn → z ∈ L2((0, T ] × Ω). First and foremost we check
convergence of the ODE solution Ci(z, t, ~x). W.l.o.g. we assume Ci(zn, t, ~x) > Ci(z, t, ~x)
for a ~x ∈ Ω. Then it holds
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0 < Ci(zn, t, ~x)− Ci(z, t, ~x) =

=
∫ t

0

σ

h
b(t, ~x)χ[0,ηa(ta(~x),~x)](Ci(zn, s, ~x))zn(s, ~x) ds

−
∫ t

0

σ

h
b(t, ~x)χ[0,ηa(ta(~x),~x)](Ci(z, s, ~x))z(s, ~x) ds

=
∫ t

0

σ

h
b(t, ~x)

(
χ[0,ηa(ta(~x),~x)](Ci(zn, s, ~x))zn(s, ~x)− χ[0,ηa(ta(~x),~x)](Ci(zn, s, ~x))z(s, ~x)︸ ︷︷ ︸

→0 for zn→z

+χ[0,ηa(ta(~x),~x)](Ci(zn, s, ~x))z(s, ~x)− χ[0,ηa(ta(~x),~x)](Ci(z, s, ~x))z(s, ~x)
)
ds

=
∫ t

0

σ

h
b(t, ~x)︸ ︷︷ ︸
>0

(
χ[0,ηa(ta(~x),~x)](Ci(zn, s, ~x))z(s, ~x)− χ[0,ηa(ta(~x),~x)](Ci(z, s, ~x))z(s, ~x)

)
︸ ︷︷ ︸

→



0  if Ci(zn, t, ~x), Ci(z, t, ~x) ∈ [0, ηa(ta(~x), ~x)]

−1  if Ci(zn, t, ~x) /∈ [0, ηa(ta(~x), ~x)] , Ci(z, t, ~x) ∈ [0, ηa(ta(~x), ~x)]

⇔ Ci(zn, t, ~x) > Ci(z, t, ~x)

1 if Ci(zn, t, ~x) ∈ [0, ηa(ta(~x), ~x)] , Ci(z, t, ~x) /∈ [0, ηa(ta(~x), ~x)]

⇔ Ci(zn, t, ~x) < Ci(z, t, ~x).  

ds

Altogether, that is a contradiction, hence the assumption was wrong and Ci(zn, t, ~x)
converges strongly against Ci(z, t, ~x) in L2((0, T ]×Ω) for zn → z strong in L2((0, T ]×Ω).
Now we can check convergence of (C∗e )n → C∗e for n→∞ respectively (C∗e )n−C∗e → 0
for n → ∞. The sequence Ci(zn(t, ~x), t, ~x) is bounded, hence the right hand side f as
well. Thus, the solution C∗e (t, ~x) is bounded in H1((0, T ] × Ω) due to the same argu-
ment as before, that is, bounded subsets are embedded on relatively compact subsets.
H1((0, T ]×Ω) embedded compactly in L2((0, T ]×Ω) (Theorem of Rellich-Kondrachov),
that is, one can find one strong convergent subsequence (C∗e )nk in L2((0, T ] × Ω) with
limit C̄e. The approach for the weak formulation of (C∗e )nk − C

∗
e is analogously as in

(5.2) and (5.3). Then we obtain the following estimation
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lim
k→∞

1
2‖(C

∗
e )nk − C

∗
e‖L2(Ω) ≤∫ t̄

0

∫
Ω

Wmax∑
w=W1

{
χΩw(~x)χ[0,ηn(tn(~x),~x)](Ci(znk , t, ~x)) [Πχ (Ci(znkt, ~x)) b(t, ~x)]

− χ[0,ηa(ta(~x),~x)](Ci(znk , t, ~x))σ
h

(C∗e )nk b(t, ~x)

− χΩw(~x)χ[0,ηn(tn(~x),~x)](Ci(z, t, ~x)) [Πχ (Ci(z, t, ~x)) b(t, ~x)]

−χ[0,ηa(ta(~x),~x)](Ci(z, t, ~x))σ
h
C∗e b(t, ~x)

}(
(C∗e )nk − C

∗
e

)
d~x dt

⇐⇒
∥∥∥C̄e − C∗e ∥∥∥2

L2((0,T ]×Ω)
≤
∫ t̄

0
χ[0,ηa(ts(~x),~x)](Ci(z, t, ~x))σ

h
b(t, ~x)(C∗e − C̄e)(C̄e − C∗e ) d~x dt

≤ 0

Thus, we can conclude C̄e → C∗e for k → ∞. This construction works for every
arbitrary subsequence zn, especially znk . Hence, every subsequence of (Ce)∗n has a
subsequence (C∗e )nk that converges against C∗e . As a consequence, (C∗e )n converges
strongly against C∗e , which corresponds to the continuity of operator J .
Finally, we can apply the second version of Schauder’s fixed point theorem, i.e. Theorem
A.1.3, which states the existence of at least one fixed point.

Let’s consider a reduced system using the same arguments as for P (z). Note that we
can neglect the indicator function of the integral in (5.1) since all indicator functions of
the PDE need the ODE solution only for t ∈ [0, ta(~x)] because all switches have been
done and the PDE is then independent of the ODE solution. Then the reformulated
PDE equation reads

∂

∂t
Ce(t, ~x) =D∇2Ce(t, ~x)− γeCe(t, ~x)

− χ[0,ηa(ta(~x),~x)] (mCe(t, ~x)) σ
h
Ce(t, ~x)b(~x)

+
Wmax∑
j=W1

χΩj(~x)χ[0,ηn(tn(~x),~x)] (mCe(t, ~x)) Πχ (mCe(t, ~x)) b(~x)

(5.4)

with

mCe(t, ~x) :=
∫ t

0

σ

h
b(~x)Ce(s, ~x) ds

allowing for a shorter notation.
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We see, there exist a non-negative weak solution. But we don’t know yet, if this weak
solution of (4.7) and (4.8) is unique. Unfortunately, there is no proof of the uniqueness
of the coupled PDE-ODE system (4.7) and (4.8) with non constant function b(t, ~x) in
time t. However, one can show that the PDE-ODE system has a solution for a constant
function b(~x) in time.

Theorem 5.1.2 (Uniqueness of weak solutions for constant b). Let supp(b(0, ~x)) ⊂
Ω, b(0, ~x) ∈ L∞(Ω) and ∂

∂t
b(t, ~x) = 0. Then the weak solution of the coupled PDE-

ODE system (4.7) and (4.8) with initial condition (4.10) and homogeneous Neumann
boundary condition (4.11) is unique.

Proof. Let’s consider again the reformulated PDE (5.4). Since there is no bacterial
growth, we can write η(ti(~x), ~x) = η(~x) for i = a, n, p and obtain

∂

∂t
Ce(t, ~x) =D∇2Ce(t, ~x)− γeCe(t, ~x)

− χ[0,ηa(~x)] (mCe(t, ~x)) σ
h
Ce(t, ~x)b(~x)

+
Wmax∑
j=W1

χΩj(~x)χ[0,ηn(~x)] (mCe(t, ~x)) Πχ (mCe(t, ~x)) b(~x)

with

mCe(t, ~x) =
∫ t

0

σ

h
b(~x)Ce(s, ~x) ds.

When we have shown the uniqueness of the reformulated PDE solution, then we can
easily follow the uniqueness of the ODE equation (4.8).

Note that the production term Πχ is bounded since it was constructed as a step
function. So we can conclude that there exist constants K1, K2,M1,M2 > 0 such that
we obtain for all t and ~x ∈ ΩW ∪ ΩM

K1 ≤ b(~x) ≤ K2 (5.5)
M1 ≤ Πχ(mCe(t, ~x)) ≤M2. (5.6)

We assume that there exist two weak solutions of the PDE (5.4) called y1 and y2.
We define the difference of these solutions as z := y1 − y2 yielding
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∂

∂t
z(t, ~x) =D∇2z(t, ~x)− γez(t, ~x)−

[
χ[0,ηa(~x)] (my1(t, ~x)) y1(t, ~x)

−χ[0,ηa(~x)] (my2(t, ~x)) y2(t, ~x)
] σ
h
b(~x)

+
Wmax∑
j=W1

χΩj(~x)
[
χ[0,ηn(~x)] (my1(t, ~x)) Πχ (my1(t, ~x))

−χ[0,ηn(~x)] (my2(t, ~x)) Πχ (my2(t, ~x))
]
b(~x)

(5.7)

with

my1(t, ~x) =
∫ t

0

σ

h
b(~x)y1(s, ~x) ds

my2(t, ~x) =
∫ t

0

σ

h
b(~x)y2(s, ~x) ds.

Note that (5.7) has to be interpreted in the weak sense. Next, as a suitable test func-
tion, we choose a regularisation of the signum function such that we obtain a Lipschitz
continuous function. We already did the same in the proof of Proposition 2.2.20 for the
Heaviside function, see Definition 2.2.19. Analogously, we obtain for δ > 0 following
regularisation of the signum function:

signδ(z) =



−1 z < −δ

z

δ
−δ ≤ z ≤ δ

1 z > δ.

Then the weak formulation of (5.7) reads

∫
Ω

∂

∂s
z(t, ~x) signδ(z) d~x = D

∫
Ω

∇2z(t, ~x) signδ(z) d~x (5.8)

− γe
∫

Ω
z(t, ~x) signδ(z) d~x (5.9)

−
∫

Ω

[
χ[0,ηa(~x)] (my1(t, ~x)) y1(t, ~x)

−χ[0,ηa(,~x)] (my2(t, ~x)) y2(t, ~x)
] σ
h
b(~x) signδ(z) d~x

(5.10)

+
∫

Ω

Wmax∑
j=W1

χΩj(~x)
[
χ[0,ηn(~x)] (my1(t, ~x)) Πχ (my1(t, ~x))

−χ[0,ηn(~x)] (my2(t, ~x)) Πχ (my2(t, ~x))
]
b(~x) signδ(z) d~x.

(5.11)
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The main goal is to find a suitable estimation to apply Gronwall’s inequality A.2.3
in order to show uniqueness. We consider first the Laplacian term in (5.8). Partial
integration and chain rule leads to

D
∫

Ω
∇2z(t, ~x)z signδ(z) d~x = D

[∇z(t, ~x) signδ(z)]∂Ω︸ ︷︷ ︸
=0

−
∫

Ω
∇z(t, ~x)∇ ( signδ(z)) d~x


= −D

∫
Ω

(∇z(t, ~x))2 d
dz signδ(z)︸ ︷︷ ︸

≥0

d~x ≤ 0.

As a consequence, we can neglect this term and find an upper estimation of the right
hand side of the PDE. Then, we can replace eventually the regularisation by the actual
signum function due to the dominated convergence theorem, as we did in the proof of
Proposition 2.2.20. Integrating the left hand side of (5.8), (5.9), (5.10) and (5.11) with
respect to the time t we obtain

∫ t

0

∫
Ω

∂

∂s
z(s, ~x) sign (z) d~x ds ≤ −γe

∫ t

0

∫
Ω
z(s, ~x) sign (z) d~x ds (5.12)

−
∫ t

0

∫
Ω

[
χ[0,ηa(~x)] (my1(s, ~x)) y1(s, ~x)

−χ[0,ηa(~x)] (my2(s, ~x)) y2(s, ~x)
] σ
h
b(~x) sign (z) d~x ds

(5.13)

+
∫ t

0

∫
Ω

Wmax∑
j=W1

χΩj(~x)
[
χ[0,ηn(~x)] (my1(s, ~x)) Πχ (my1(s, ~x))

−χ[0,ηn(~x)] (my2(s, ~x)) Πχ (my2(s, ~x))
]
b(~x) sign (z) d~x ds.

(5.14)

We can simplify the integral on the left hand side of (5.12) leading to

∫ t

0

∫
Ω

∂

∂s
z(s, ~x) sign (z) d~x ds =

∫ t

0

∫
Ω

∂

∂s
|z(s, ~x)| d~x ds

=
∫

Ω
|z(t, ~x)| d~x−

∫
Ω
|z(0, ~x)| d~x

= ‖z(t, ·)‖L1(Ω) − ‖z(0, ·)‖L1(Ω). (5.15)

The term on the right hand side of (5.12) can be estimated upwards to

−γe
∫ t

0

∫
Ω
z(s, ~x) sign (z) d~x ds = −γe

∫ t

0

∫
Ω
|z(s, ~x)| d~x ds ≤ 0. (5.16)

The terms (5.13) and (5.14) are much more complicated to estimate. Nevertheless,
it is possible after some tedious work. Note that the integrals are only non-zero where
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we have some bacteria, that is, ~x ∈ ΩW ∪ ΩM . Otherwise the integrand becomes zero
and the integral vanishes eventually. We start with (5.13) and take the absolute value
of the term as well as use (5.5) in order to estimate the term upwards. Then it holds

|(5.13)| ≤σ
h
K2

∫ t

0

∫
Ω

∣∣∣ [χ[0,ηa(~x)] (my1(s, ~x)) y1(s, ~x)

−χ[0,ηa(~x)] (my2(s, ~x)) y2(s, ~x)
] ∣∣∣ d~x ds. (5.17)

The main part of this proof is to find a proper estimation of (5.17) regarding the
applicability of Gronwall’s Lemma. For this purpose, we try to find a suitable ap-
proximation of the integrand. The term in the bracket [. . .] in (5.17) can be rewritten
to

[. . .] =χ[0,ηa(~x)] (my1(s, ~x)) y1(s, ~x)− χ[0,ηa(~x)] (my1(s, ~x)) y2(s, ~x)︸ ︷︷ ︸
=χ[0,ηa(~x)](my1 (s,~x))z(s,~x)

+ χ[0,ηa(~x)] (my1(s, ~x)) y2(s, ~x)− χ[0,ηa(~x)] (my2(s, ~x)) y2(s, ~x).︸ ︷︷ ︸
=y2(s,~x)[χ[0,ηa(~x)](my1 (s,~x))−χ[0,ηa(~x)](my2 (s,~x))]

We can show that the absolute value of a solution y1 resp. y2 is bounded by a
constant. Let v(t) be the solution of v̇(t) = M2 with v(0) = 0 using the maximal
production rate, see (5.6). Since an indicator function is an element of L∞, we can
apply Proposition 2.2.20 and conclude eventually that y2(s, ~x) ≤ v(s) for all s ∈ [0, T ]
and ~x ∈ Ω. This solution v(s) also solves ∂

∂v
(t, ~x) = ∇2v(t, ~x) + M2 with ∂v(t,~x)

∂n
= 0

since v(s) is constant in ~x. Then we can conclude that v(s) ≤ v(0) + M2s leads to
y2(s, ~x) ≤ M2s for all (s, ~x) ∈ (0, T ]× Ω. Since s ∈ [0, T ], we obtain y2(s, ~x) ≤ C with
M2T =: C ∈ R+ is constant. Using this result, (5.17) can be estimated to

(5.17) ≤ σ

h
K2

∫ t

0

∫
Ω

∣∣∣χ[0,ηa(~x)] (my1(s, ~x)) z(s, ~x)
∣∣∣︸ ︷︷ ︸

≤|z(s,~x)|

d~x ds

+ C
∫ t

0

∫
Ω

∣∣∣χ[0,ηa(~x)] (my1(s, ~x))− χ[0,ηa(~x)] (my2(s, ~x))
∣∣∣ d~x ds. (5.18)

The last integral (5.18) is now of interest. In order to estimate it in a proper way,
we define the time points when the indicator functions become zero pointwise for all ~x,
that is,

my1(t1(~x), ~x) =
∫ t1(~x)

0

σ

h
b(~x)y1(s, ~x) ds = ηa(~x) (5.19)

my2(t2(~x), ~x) =
∫ t2(~x)

0

σ

h
b(~x)y2(s, ~x) ds = ηa(~x). (5.20)
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Then we have to distinguish the cases which of the indicator functions become first
zero.

Case 1: t1(~x) ≤ t2(~x)

The absolute value of (5.18) can be estimated to

∣∣∣χ[0,ηa(~x)] (my1(s, ~x))− χ[0,ηa(~x)] (my2(s, ~x))
∣∣∣ ≤ χ[t1(~x),t2(~x)](s).

If t ≤ t1(~x) ≤ t2(~x) then for (5.18) it holds

C
∫ t

0

∣∣∣χ[0,ηa(~x)] (my1(t, ~x))− χ[0,ηa(~x)] (my2(t, ~x))
∣∣∣ ds ≤ C

∫ t

0
χ[t1(~x),t2(~x)](s) ds

= 0.

For t1(~x) ≤ t ≤ t2(~x) the integral is non-zero. Since we integrate over a indicator
function, the integral is nothing else than the Lebesgue measure of the corresponding
domain, that is,

∫ t

0

∫
ΩA

∣∣∣χ[0,ηa(~x)] (my1(t, ~x))− χ[0,ηa(~x)] (my2(t, ~x))
∣∣∣ d~x ds

≤
∫ t

0

∫
ΩA
χ[t1(~x),t2(~x)](s) d~x ds

= λ

{(~x, s) ∈ Ω× [0, t] : t1(~x) ≤ s ≤ t2(~x)}︸ ︷︷ ︸
=:A(t)

 .
Due to the definition in (5.19) and (5.20) we obtain

0 ≥
∫ min{t,t2(~x)}

0

σ

h
b(~x)y2(s, ~x) ds−

∫ t1(~x)

0

σ

h
b(~x)y1(s, ~x) ds

=
∫ min{t,t2(~x)}

t1(~x)

σ

h
b(~x)y2(s, ~x) ds+

∫ t1(~x)

0

σ

h
b(~x) [y2(s, ~x)− y1(s, ~x)] ds.

The first integral can be estimated downwards by using Corollary 2.2.21. The solution
y2(s, ~x) can be compared with the solution of ∂

∂t
Ψ(t, ~x) = ∇2Ψ(t, ~x) − K2

σ
h
Ψ(t, ~x) −

γeΨ(t, ~x).
Lemma 2.2.22 yields a solution to that system. The second integral can be estimated

downwards by using (5.5) and the fact x− y ≥ −|x− y|. Altogether, we obtain

0 ≥
∫ min{t,t2(~x)}

t1(~x)

σ

h
K1Ψ(s, ~x) ds− σ

h
K2

∫ t

0
|y1(s, ~x)− y2(s, ~x)| ds (5.21)
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with Ψ(s, ~x) := e
−
(
K2

σ

h
+ γe

)
s
ζ(s, ~x). The function ζ(s, ~x) solves ∂

∂s
ζ(s, ~x) =

∇2ζ(s, ~x) with ζ(s0, ~x) = y2(s0, ~x) and s0 ∈ (0, t∗). The solution Ψ needs to be non-
zero, thus, we show that ζ(s, ~x) is a non-zero solution.

We have already shown that y2(s, ~x) ≤ M2s for all (s, ~x) ∈ (0, T ] × Ω. That means
the right hand side of the original PDE (5.4) performs no jumps as long as it holds

∫ t

0
b(~x)y2(s, ~x) ds ≤

∫ t

0
b(~x)M2s ds

≤
∫ t

0
K2M2s ds

!
≤ min

x∈ΩW∪ΩM
ηa (~x) . (5.22)

The left hand side of (5.22) is monotonously increasing. That means there exists a
t∗ > 0 which solves the equality of (5.22). This time point is the earliest time point
when changes in the right hand side of (5.4) appear. Until that, the reaction term is
non-zero and so is the solution y2(t, ~x) for (t, ~x) ∈ (0, t∗)W ∪ΩM . We choose s0 ∈ (0, t∗)
such that the initial value ζ(s0, ~x) = y2(s0, ~x) is non-zero for all ~x ∈ ΩW ∪ ΩM .

Let’s assume that ζ (t1, ~x1) = 0 for (t1, ~x1) ∈ (s0, T ]×Ω. Since ζ(s0, ~x) is non-zero for
~x ∈ Ωw ∪ ΩM and we have homogeneous Neumann boundary conditions, it is obvious
that ζ(s, ~x) ≥ 0 for (t, ~x) ∈ (s0, T )×Ω. Thus, we have a minimum at (t1, ~x1). Then the
strong maximum principle of Laplace, Theorem A.5.1, yields ζ (t, ~x) = 0 on (s0, t1]×Ω.
That’s a contradiction to ζ(s, ~x) > 0 for (t, ~x) ∈ (s0, T )×ΩW ∪ΩM . Thus, the solution
ζ(t, ~x) is non-zero in (s0, T ] × Ω. Since supp(b(0, ~x)) ⊂ Ω, it is sufficient that we have
this conclusion only for the inner of Ω. Then we choose a compact set K := supp(b(0, ~x)
such that

min
(s,~x)∈(t∗,T )×K

ζ(s, ~x) =: θ > 0 (5.23)

because of the continuity of ζ(s, ~x).

Case 2: t1(~x) ≥ t2(~x)
The approach of case 2 is similar to case 1. The absolute value of (5.18) can be estimated
again to

∣∣∣χ[0,ηa(~x)] (my1(s, ~x))− χ[0,ηa(~x)] (my2(s, ~x))
∣∣∣ ≤ χ[t2(~x),t1(~x)](s).

If t ≤ t2(~x) ≤ t1(~x) then (5.18) leads to

C
∫ t

0

∫
Ω

∣∣∣χ[0,ηa(~x)] (my1(t, ~x))− χ[0,ηa(~x)] (my2(t, ~x))
∣∣∣ d~x ds ≤ 0.
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For t2(~x) ≤ t ≤ t1(~x) we obtain the Lebesgue measure of the domain, that is,

∫ t

0

∫
Ω

∣∣∣χ[0,ηa(~x)] (my1(t, ~x))− χ[0,ηa(~x)] (my2(t, ~x))
∣∣∣ d~x ds

≤ λ

{(~x, s) ∈ Ω× [0, t] : t2(~x) ≤ s ≤ t1(~x)}︸ ︷︷ ︸
=:B(t)

 .
Again, the definition in (5.19) and (5.20) yields

0 ≥
∫ min{t,t1(~x)}

0

σ

h
b(~x)y1(s, ~x) ds−

∫ t2(~x)

0

σ

h
b(~x)y2(s, ~x) ds

=
∫ min{t,t1(~x)}

t2(~x)

σ

h
b(~x)y1(s, ~x) ds+

∫ t2(~x)

0

σ

h
b(~x) [y1(s, ~x)− y2(s, ~x)] ds.

Using the same arguments as for case 1, we obtain

0 ≥
∫ min{t,t1(~x)}

t2(~x)

σ

h
K1Ψ(s, ~x) ds− σ

h
K2

∫ t

0
|y2(s, ~x)− y1(s, ~x)| ds (5.24)

with Ψ(s, ~x) := e
−
(
K2

σ

h
+ γe

)
s
ζ(s, ~x) and ζ(s, ~x) solves ∂

∂s
ζ(s, ~x) = ∇2ζ(s, ~x) with

ζ(s0, ~x) = y1(s0, ~x) 6= 0.

Adding (5.21) and (5.24) we obtain an estimation for (5.18) for all t ∈ [0, T ] and
pointwise for almost all ~x ∈ Ω.

0 ≥
∫ min{t,t2(~x)}

t1(~x)
K1Ψ(s, ~x) ds+

∫ min{t,t1(~x)}

t2(~x)
K1Ψ(s, ~x) ds

− 2K2

∫ t

0
|y1(s, ~x)− y2(s, ~x)| ds.

(5.25)

Furthermore it holds

Ψ(t, ~x) = e
−
(
K2

σ

h
+ γe

)
s
ζ(s, ~x) ≥ e

−
(
K2

σ

h
+ γe

)
s
θ.

Then we can conclude

∫ min{t,t2(~x)}

t1(~x)
K1Ψ(s, ~x) ds ≥

∫ min{t,t2(~x)}

t1(~x)
K1θe

−
(
K
σ

h
+ γe

)
s
ds

≥ min
s∈[0,T ]

K1θe
−
(
K
σ

h
+ γe

)
s

︸ ︷︷ ︸
=:β

|min{t, t2(~x)} − t1(~x)|.
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Analogously,

∫ min{t,t1(~x)}

t2(~x)
K1Ψ(s, ~x) ds ≥ β|min{t, t1(~x)} − t2(~x)|.

Using these two inequalities, inequality (5.25) estimates to

0 ≥β|min{t, t2(~x)} − t1(~x)|+ β|min{t, t1(~x)} − t2(~x)|

− 2K2

∫ t

0
|y1(s, ~x)− y2(s, ~x)| ds.

Integration over the domain Ω leads to

K2

β

∫
Ω

∫ t

0
|y1(s, ~x)− y2(s, ~x)| ds d~x︸ ︷︷ ︸

‖z‖L1(Ω×[0,T ])

≥
∫

Ω
|min{t, t2(~x)} − t1(~x)| d~x︸ ︷︷ ︸

=λ(A(t))

+
∫

Ω
|min{t, t1(~x)} − t2(~x)| d~x.︸ ︷︷ ︸

=λ(B(t))

Finally we obtain a suitable estimation for (5.18)

C
∫ t

0

∫
Ω

∣∣∣χ[0,ηa(~x)] (my1(t, ~x))− χ[0,ηa(~x)] (my2(t, ~x))
∣∣∣ d~x ds ≤ C(λ(A(t)) + λ(B(t)))

≤ CK2

β
‖z‖L1(Ω×[0,t]) (5.26)

and thus, using (5.17), (5.18) and (5.26), we find a proper upper estimation for (5.13):

−
∫ t

0

∫
Ω

[
χ[0,ηa(~x)] (my1(s, ~x)) y1(s, ~x)

−χ[0,ηa(~x)] (my2(s, ~x)) y2(s, ~x)
] σ
h
b(~x) sign (z) d~x ds

≤ −σ
h
K2‖z‖L1(Ω×[0,t]) + CK2

β
‖z‖L1(Ω×[0,t]).

(5.27)

Last but not least, the production term (5.14) has to be estimated upwards. Taking
the absolute value and using the upper bound of b(~x), see inequality (5.5), we obtain

|(5.14)| ≤ K2

∫ t

0

∫
Ω
|χ[0,ηn(~x)] (my1(s, ~x)) Πχ (my1(s, ~x))

− χ[0,ηn(~x)] (my2(s, ~x)) Πχ (my2(s, ~x)) | d~x ds.
(5.28)
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The argument of the absolute value in (5.28) can be added with terms summing up to
zero. Then we can use the triangular inequality to estimate the absolute value upwards:

∣∣∣χ[0,ηn(~x)] (my1(t, ~x)) Πχ (my1(t, ~x))− χ[0,ηn(~x)] (my2(t, ~x)) Πχ (my2(t, ~x))
∣∣∣

= |χ[0,ηn(~x)] (my1(t, ~x)) Πχ (my1(t, ~x))− χ[0,ηn(~x)] (my2(t, ~x)) Πχ (my1(t, ~x))
+ χ[0,ηn(~x)] (my2(t, ~x)) Πχ (my1(t, ~x))− χ[0,ηn(~x)] (my2(t, ~x)) Πχ (my2(t, ~x)) |
≤
∣∣∣Πχ (my1(t, ~x))

[
χ[0,ηn(~x)] (my1(t, ~x))− χ[0,ηn(~x)] (my2(t, ~x))

]∣∣∣ (5.29)

+
∣∣∣χ[0,ηn(~x)] (my2(t, ~x)) [Πχ (my1(t, ~x))− Πχ (my2(t, ~x))]

∣∣∣. (5.30)

The function Πχ is bounded due to its construction:

0 ≤ |Πχ| ≤ Πmin + ∆Π := Πmax.

Additionally, the difference of functions Πχ reads

Πχ (my1(t, ~x))− Πχ (my2(t, ~x)) = ∆Π
[
χ[ηp(~x),∞] (my1(t, ~x))− χ[ηp(~x),∞] (my2(t, ~x))

]
.

Henceforth, the terms in (5.29) and (5.30) can be estimated to

(5.29) ≤Πmax

∣∣∣χ[0,ηn(~x)] (my1(t, ~x))− χ[0,ηn(~x)] (my2(t, ~x))
∣∣∣

(5.30) ≤∆Π
∣∣∣χ[ηp(~x),∞] (my1(t, ~x))− χ[ηp(~x),∞] (my2(t, ~x))

∣∣∣.
Using this estimations, inequality (5.28) becomes

(5.28) ≤K2

∫ t

0

∫
Ω

Πmax

∣∣∣χ[0,ηn(~x)] (my1(t, ~x))− χ[0,ηn(~x)] (my2(t, ~x))
∣∣∣ d~x ds

+K2

∫ t

0

∫
Ω

∆Π
∣∣∣χ[ηp(~x),∞] (my1(t, ~x))− χ[ηp(~x),∞] (my2(t, ~x))

∣∣∣ d~x ds. (5.31)

Both integrals are equivalent to (5.18) and for that integral, we have already a suitable
estimation. Therefore, we can estimate (5.31) upwards to

(5.31) ≤ K2

(
K2

2Πmax

β
‖z‖L1(Ω×[0,t]) + K2

2∆Π
β
‖z‖L1(Ω×[0,t])

)
= C̃‖z‖L1(Ω×[0,t]) (5.32)

with C̃ = K2
2
β

(Πmax + ∆Π).
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Summing up all estimations (5.15), (5.16), (5.27), (5.32), the weak formulation in
(5.12) to (5.14) can be estimated to

‖z(t, ·)‖L1(Ω) ≤ ‖z(0, ·)‖L1(Ω) +
(
C̃ + CK

β

)∫ t

0
‖z(s, ·)‖L1(Ω)

for all t ∈ [0, T ]. Then the Generalized Gronwall’s inequality A.2.3 leads to

‖z(t, ·)‖L1(Ω) ≤ ‖z(0, ·)‖L1(Ω)e

(
C̃ + CK

β

)
T
. (5.33)

If we assume that the solutions y1 and y2 have the same initial condition, then
z(0, ·) = 0 a.e. such that we can conclude due to (5.33) that z(t, ·) = 0 a.e. which
means that (5.4) has a unique weak solution.

To proof uniqueness for the ODE (4.8), we assume again two solutions y1 and y2.
Denote the difference as z := y1 − y2 and the corresponding ODE for each ~x ∈ Ω reads

∂

∂t
z(t, ~x) =

∫ t

0
χ[0,ηa(t,~x)] (mCe(t, ~x)) σ

h
b(t, ~x)Ce(t, ~x)

−
∫ t

0
χ[0,ηa(t,~x)] (mCe(t, ~x)) σ

h
b(t, ~x)Ce(t, ~x)

=0.
Hence we can conclude y1 = y2 meaning we have a unique ODE solution.

Altogether, this shows uniqueness for the whole system for the special case of a time
constant population b(~x).

So far, we have only shown uniqueness for a special case and this was much work.
The difficulty of the the proof of existence and uniqueness of a weak solution of our
system is caused by the non continuous right hand side which arises due to the indicator
function, e.g. χ[0,ηn(t,~x)](Ci(t, ~x)). We were not able to use other theorems as Banach’s
fixpoint theorem which proofs existence and uniqueness of a fixed point. Many other
theorems require some continuity of the right hand side. For that reason we want to
find a function looking similarly as the indicator function and in addition continuous.
That means the switch from 1 to 0 of χ[0,ηn(t,~x)](Ci(t, ~x)) has to be sufficiently steep.

5.2. PDE-ODE system with mollified right hand side
Let’s replace the indicator function, which corresponds to the feedbacks regarding pro-
duction of signalling molecules by bacteria, with a continuous function ψ(t, ~x) as an-
nounced in the previous section. This can be realized by so called mollifiers. We will
introduce such functions as next and use as a guideline [28], section 2.1.1.
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Definition 5.2.1 (Mollifiers). For each ε > 0, let φε ∈ C∞0 (Rn) be given with the
properties

(i) ϕε(x) ≥ 0

(ii) supp(ϕε) ⊂ {x ∈ Rn : |x| ≤ ε}

(iii)
∫
Rn ϕε(x)dx = 1.

An appropriate mollifier function for 0 < ε ≤ 1 is given by

ϕε(x) =


c exp

(
− 1
ε2−‖x‖2

)
for ‖x‖ < ε

0 for ‖x‖ ≥ ε

with c ∈ R+ being a proper constant to normalize the integral to 1, e.g.

c =
(∫ ε

−ε
exp

(
− 1
ε2 − ‖s‖2

)
ds

)−1

.

Let f ∈ L1(G) and G ⊂ Rn be an open subset. Suppose supp(f) is compact and
supp(f) ⊂ G. Furthermore, we extend f to zero on the complement of G. Then a
mollified function fε is the convolution of functions f and ϕε, that is,

fε(x) :=f ? ϕε =
∫
Rn
f(x− y)ϕε(y)dy.

Proposition 5.2.2. If f ∈ C0(G), then fε → f uniformly on G as ε→ 0. If f ∈ Lp(G),
1 ≤ p <∞, then ‖fε‖Lp(G) ≤ ‖f‖Lp(G) and fε → f in Lp(G) as ε→ 0.

This Proposition corresponds to Lemma 1.2 in [28]. Interested readers find the proof
there.

Since the bacterial growth is independent of the signalling molecules, it is sufficient
to consider only (4.7) and (4.8). In order to avoid the discontinuity of the right hand
side, we identify f = χ[0,ηn(t,~x)](Ci(t, ~x)) and obtain a Lipschitz continuous function

ψε(t, ~x, Ci) :=
∫
R
χ[0,b(t,~x)ξ̂n(~x)](Ci(t, ~x)− ~y)ϕε(~y)d~y

with ε > 0 sufficiently small. The model equations rewrite then to
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∂

∂t
Ce(t, ~x) =D∇2Ce(t, ~x)− γeCe(t, ~x)− σwCe(t, ~x)b(t, ~x)

+
Wmax∑
w=W1

χΩw(~x)ψε(t, ~x, Ci)(Πχ (Ci(t, ~x)) b(t, ~x))
(5.34)

∂

∂t
Ci(t, ~x) =σwCe(t, ~x)b(t, ~x)ψε(t, ~x, Ci)− γiCi(t, ~x)ψε(t, ~x, Ci) (5.35)

with

Ce(0, ~x) = Ci(0, ~x) = 0 (5.36)
∂Ce
∂n

= 0 for ~x ∈ ∂Ω. (5.37)

With the same arguments as in the proof of Theorem 5.1.1 showing non-negativity
of solution C∗e , we can conclude following statement:

Corollary 5.2.3 (Non-negativity). The solution of (5.34) and (5.35) with initial con-
dition (5.36) and boundary condition (5.37) remains non-negative for all t ∈ [0, T ] and
~x ∈ Ω.

Due to the Lipschitz continuity of ψε in Ci, we can use some standard theorems to
show existence and even uniqueness of system (5.34) to (5.37).

Theorem 5.2.4 (Existence and uniqueness of a weak solution). There exists a unique
weak solution of our system (5.34) to (5.37).

Proof. First of all, we consider the ODE (5.35) only. The theorem of Picard-Lindelöf,
see A.3.1, shows the existence and uniqueness of a solution in t ∈ [0, T ], since the right
hand side is now Lipschitz continuous in Ci. Thus, we find a solution Ci(Ce(t, ~x), t, ~x)
depending on function Ce(t, ~x). Insert this function into (5.34). Then we have decoupled
the system and can apply Theorem 2.2.18 which yields a unique weak solution of the
PDE.
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Chapter 6

Numerical approach

One of the main goals is to solve the system equations (4.7) to (4.9) with their corre-
sponding initial and boundary conditions given in (4.10), (4.12) and (4.11). We decided
to solve the corresponding PDE with the finite element method (FEM). This method
can be implemented in MATLAB. The main issue is the discontinuous right hand side
caused by the indicator functions. First of all, a suitable grid is needed. After we have
derived that, we implement the FEM for the PDE (4.7). As for the simulation results
of the ODE model in section 3, we use a self-adjusted version of the ode15s solver to
solve the entire system, not only the PDE. A very steep slope of the mollified function
will cause problems in the step size control, because near the sporulation we will be
unable to meet integration tolerances without reducing the step size below the smallest
value allowed by the step size control.

6.1. Grid generation
First of all the domain Ω has to be discretized. We require a fine-mesh in ΩM and ΩW ,
outside of the bacterial colony, the mesh can be coarser. We use the mesh generator
of Persson in [20]. The generator uses signed distance functions to decide if a node
resp. mesh point is inside the geometric boundary or outside. With these functions one
can create more complex objects. An appropriate force-displacement function is used to
move the nodes and a Delaunay triangulation algorithm adjusts the topology to obtain a
well shaped, high quality mesh with confirm triangulations. For more details, especially
the code itself, see [20]. Persson offers a website (http://persson.berkeley.edu/distmesh/)
where one can download the code and some further useful functions e.g. some functions
to construct complex distance functions. We use these functions to construct first a
mesh with holes for the bacteria. Afterwards we build meshes for each bacterial colony
and merged the grids. Now we would obtain double nodes and edges at the boundary
of the bacterial colony. So we remove these nodes and adjust the triangulation matrix
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such that we obtain finally a N×2 node matrix with N nodes and a T ×3 triangulation
matrix with T triangles. An example of a conform triangulation is given in figure 6.1.

Figure 6.1.: Grid of test area with ten randomly distributed bacterial colonies.

6.2. Numerical implementation of FEM
In order to solve the PDE, we use the FEM, which results into a system of ODEs. As
in (2.5), we multiply the partial differential equation (4.7) with the linear test function
φi(~x) as introduced in paragraph “Linear Elements” in section 2.2.2 and integrate over
the domain Ω. We assume that an approximated solution Ĉe(t, ~x) of Ce(t, ~x) reads

Ĉe(t, ~x) :=
N∑
j=1

φj(~x)cj(t),

see (2.33), and insert this as well into (4.7). Altogether, we obtain
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∫
Ω

∂

∂t

N∑
j=1

φj(~x)cj(t)φi(~x) d~x =

D
∫

Ω
∇2

N∑
j=1

φj(~x)cj(t)φi(~x) d~x
︸ ︷︷ ︸

(?)

−
∫

Ω
γe

N∑
j=1

φj(~x)cj(t)φi(~x) d~x

− σ

h

∫
Ω

N∑
j=1

χ[0,ηa(ta(~x),~x)](Ci(t, ~x))φj(~x)cj(t)b(t, ~x))φi(~x) d~x

+
∫

Ω

Wmax∑
w=W1

χΩw(~x)χ[0,ηn(tn(~x),~x)](Ci(t, ~x))Πχ(Ci(t, ~x))b(t, ~x)φi(~x) d~x

for all i ∈ {1, . . . , N}. Assembly the terms in order to obtain a system of ODE’s
as in equation (2.35). Note that partial integration for (?) is applied again. For i ∈
{1, . . . , N}, this yields

N∑
j=1

∫
Ω
φj(~x)φi(~x) d~x ∂

∂t
cj(t) = (6.1)

−D
N∑
j=1

(∫
Ω
∇φj(~x)∇φi(~x) + γeφj(~x)φi(~x) d~x

)
cj(t)

− σ

h

N∑
j=1

(∫
Ω
χ[0,ηa(ta(~x),~x)](Ci(t, ~x))b(t, ~x)φj(~x)φi(~x) d~x

)
cj(t)


(6.2)

+
∫

Ω

Wmax∑
w=W1

χΩw(~x)χ[0,ηn(t,~x)](Ci(t, ~x))Πχ(Ci(t, ~x))b(t, ~x)φi(~x) d~x. (6.3)

Since the area Ω is discretized by a triangulation, we approximate the integral by the
sum of integrals over each triangles, that means

∫
Ω
· d~x =

T∑
m=1

∫
∆m

· d~x.

Insert this discretization into the terms (6.1) to (6.3) and then solve one integral over
a triangle after another. In case we do not know an analytical solution, we use the
Gaussian quadrature for a triangle to approximate an integral. The approach can be
found in [15], section 3.5.2, and [41], section 6.8.3, and is given by

∫
∆
f(~x)d~x ≈ 2A∆

Ng∑
i=1

Wif(~̄xi)
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where Ng are the number of quadrature points, ~̄xi are quadrature points located inside
the triangle and Wi > 0 are the weights. The standard method is to use three quadra-
ture points to obtain a symmetrical Gaussian quadrature of degree 2, which solves
polynomials of degree 2 exactly. That means our integrals are solved exactly, since we
use linear elements. The weights have the value Wi = 1

6 for all i = {1, 2, 3} and the
quadrature points are a linear combination of the vertices {(x1, y1), (x2, y2), (x3, y3)},
that is

x̄1 ȳ1
x̄2 ȳ2
x̄3 ȳ3

 = L

x1 y1
x2 y2
x3 y3


with

L =

0.5 0.5 0
0 0.5 0.5

0.5 0 0.5

 .
Starting with (6.1), we have to solve the integral

∫
∆ φj(~x)φi(~x)d~x. In the book of

Zienkiewicz, [41], an analytical solution is given by

∫
∆
φai (~x)φbj(~x)φck(~x) d~x = a!b!c!

(a+ b+ c+ 2)!2|A∆|

where A∆ is the area of a triangle ∆. That means e.g.

∫
∆
φi(~x)φj d~x = 1!1!0!

(1 + 1 + 0 + 2)!2|A∆| =
1
12 |A∆|∫

∆
φ2
i (~x) d~x = 2!0!0!

(2 + 0 + 0 + 2)!2|A∆| =
1
6 |A∆|.

The property φi(~xj) = δij leads to a sparse symmetrical and nearly diagonal matrix.
This result corresponds to the mass matrix in (2.35) and thus reads M := 〈φj, φi〉i,j
while 〈·, ·〉 is the inner product in L2(Ω).

We will skip term (6.2) for the moment and handle these terms at last. Hence, we
continue with (6.3). In case the indicator functions χ are equally one, the integral has
to be calculated. Otherwise the integral is equally zero. Applying Gaussian quadrature
of degree 2 for triangles, equation (6.3) rewrites to

(6.3)⇐⇒
Wmax∑
w=W1

T∑
m=1

∫
∆m

χΩw(~x)χ[0,ηn(t,~x)](Ci(t, ~x))Πχ(Ci(t, ~x))2∆m

3∑
l=1

Wlb(t, ~̄xl)φi(~̄xl) d~x.
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6.3. The solver algorithm

This expression generates the load vector F (t). If there is no bacterium located on a
node, the entry of the vector is zero.

Now we can concern ourselves with the terms in (6.2). Note that the part of the
integral with respect to the gradient of the shape functions can be computed by pencil
and paper. Calculate the derivative of φ with respect to ~x, see equation (2.37). It
follows

∫
A∆m

∇φj(~x)∇φi(~x)d~x =
∫
A∆m

∂φj
∂x

∂φi
∂x

+ ∂φj
∂y

∂φi
∂y

dx dy

=
∫
A∆m

(yj − yl)(yl − yi)
4A2

∆m

+ (xl − xj)(xi − xl)
4A2

∆m

d~x

= 1
4A∆m

((yj − yl)(yl − yi) + (xj − xl)(xl − xi)) .

The rest is done analogously to the two previous calculations. This leads to a matrix
K(t) which is known as the stiffness matrix.

All in all the discretized ODE system reads

M
d
dtc(t) +K(t)c(t) = F (t)

c(0) = c0

with c0 as the initial value. The variables in bold are vectors with N entries because
we have N nodes. The stiffness matrix and the load vector change in time. On the
one hand it is caused by the bacterial growth, on the other hand, if we reach one of
the thresholds, let’s say the negative feedback, then we have also a change in the load
vector. The process was described by the indicator function χ[0,ηn(tn(~x),~x)](Ci(t, ~x)). So
if node l sporulates, the indicator function becomes zero and thus the entrie in the l’th
row in vector F (t).

6.3. The solver algorithm
Three equations have to be solved, that is the PDE (4.7) for the extracellular signalling
molecule equation, the ODE (4.8) for the intracellular signalling molecule concentration
and the bacterial growth ODE (4.9) using their initial conditions (4.10),(4.12) and
boundary condition (4.11). The ODE for bacterial growth can be considered point-
wise for each x ∈ Ωw ∪ Ωm. As for the ODE model in chapter 3, the ODE of the
bacterial growth is solved first since it neither depends on the PDE (4.7) nor on the
ODE (4.7). Using the solution of the ODE given in (3.28), a point-wise solution for
each x ∈ Ωw ∪ Ωm reads
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b(t, ~x) = b0(~x)hκ
exp(−α t) (hκ− b0(~x)) + b0(~x) for ~x ∈ Ωw ∪ Ωm.

The PDE (4.7) is coupled with the ODE (4.8) only with respect to the indicator
function. That means that Ci itself do not affect the solution of Ce, it just determines
when some terms in the right hand side vanish, that is when one of the thresholds are
reached. In contrast to that, the solution Ce of the PDE does affect the solution Ci
of ODE (4.8) directly. This basically means that we solve first the PDE for a certain
time interval [tn, tn+1] ∈ [0, T ] and then we solve the ODE for that interval [tn, tn+1].
After that, we check the feedback condition, e.g. Ci(t, ~x) ≤ ηn(t, ~x) for all t ∈ [tn, tn+1].
This corresponds to the so called “event driven method”, see appendix B or [7] for more
details. If the inequality holds, we can continue to calculate the solution for the next
time interval [tn+1, tn+2]. Otherwise, we determine the time-point tF ∈ [tn, tn+1] such
that Ci(tF , ~x) > ηn(tF , ~x). Then we recalculate the solution of Ce(t, ~x) for t ∈ [tn, tF ]
and the corresponding stiffness matrix or right hand side of the PDE (4.7) has to be
adjusted. That’s the idea how the algorithm works. Let’s go into more detail how we
solve the equations numerically.

As a basis for our solver, we use the stiff MATLAB solver ode15s. More details re-
garding the solver can be found in appendix B. Such a solver can solve ODE systems,
which arises from the FEM for PDE’s. In section 6.2, we have used the FEM to dis-
cretize the space variable of PDE (4.7), leading to system of ODEs with variable c.
Note that the number of these ODEs corresponds to the number of nodes in the grid.
Our new solver is called Bacillus solver and solves the derived ODE system c coupled
with the Ci ODE. Note that this ODE will be solved for each ~x ∈ ΩW ∪ΩM respectively
for each node in that area. Our solver needs the mass matrix M as well as a right hand
side of the derived ODE system, that is −K(t)c(t) + F (t). Then it solves the system
for a given interval in time, in our case [0, T ].

Let’s assume we calculated so far the solutions ck and (Ci)k for k ∈ {0, 1, . . . , n}
time steps. Then the solver derives a new, successful time-step tn+1 ≤ T with a new
solution cn+1. Successful just means that the estimated error is smaller than 103. At
that point it follows the main adjustment, that is the query of feedback. For this, we
calculate a solution of the Ci ODEs by using a linear approximation between cn and
cn+1. A suitable solver to solve such an ODE is ode45 solver. When we have this new
value (Ci)n+1, we check if we reach one of the thresholds, that is, the indicator functions
from above with Ci(tn+1, ~x) as its argument. If it becomes zero, we have to adjust the
stiffness matrix or load vector to obtain K((tn+1)) resp. F (tn+1). One has to be careful
here to change the entries in the right manner. That’s because one affected node affects
all other integrals using this node as a vertex of their domain of integration. After that,
the algorithm starts over again using this adjusted matrix resp. vector using cn+1 and
Ci(tn+1, ~x) as new initial conditions.
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6.4. Convert ODE parameters to PDE parameters
In chapter 3, we discussed the absorption process of the mutants and the produc-
tion/absorption process of wild types. As a result, we obtained best fit parameters, see
table 3.3 and table 3.9. However, these parameters can not be used immediately for
the coupled PDE-ODE model in (4.7) and (4.8). We have to convert them to suitable
PDE parameter values.

In the coupled PDE-ODE model, we projected the entire mass to the x-y plane, see
figure 6.2. Thus, the units of surface densities Ce and Ci are given with respect to m2,
that is, µmol

m2 in contrast to the pure ODE model in chapter 3 where it was given as
µmol
l

. For the units of bacteria it is similar. In the ODE, we modelled the number of
bacteria, in the PDE case, it is a surface density with unit

[
cells
m2

]
. To distinguish the

variables and parameters of both models, we denote these ones corresponding to the
PDE equations with ·̃. The following parameters of the ODE model are going to be
converted: the production rates Πmin and ∆Π, the absorption rate σ and the thresholds
ξp,j and ξn,j. Remember that the units of the ODE parameters read

[Πmin] = [∆Π] = µmol

l ·min · cells
, [σ] = l

min · cells
and [ξp,j] = [ξn,j] = µmol

l · cells
and for the PDE parameters, we need

[Π̃min] = [∆Π̃] = µmol

min · cells
, [σ̃] = m3

min · cells
and [ξ̃p,j] = [ξ̃n,j] = µmol

cells

to be consistent.

3D pad

2D pad

h

Figure 6.2.: Scheme of 3D to 2D conversion.

The approach to find suitable parameter values for the PDE based on the ODE pa-
rameters is following. For the ODE and PDE case each, we consider one bacterium in
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the corresponding environment and calculate the number of signalling molecules pro-
duced or absorbed in a small time interval [0, ε] with ε > 0. Since we consider a very
small time interval, we can assume that the number of bacteria as well as the number
of signalling molecules in the environment are constant in time. Then the number of
signalling molecules of each case should be equal after time ε. Then we can conclude
eventually the recalculation for the PDE parameter in terms of the ODE parameter.

Let’s start to recalculate the production rate Πmin. We consider only the production
process of signalling molecules in an initially signalling molecule free environment. Then
for the ODE model, the number of signalling molecules SM within the shake flask with
volume Ve reads

Ce(t) = Ce(0) +
∫ ε

0
Πminb(t) dt

=⇒ SM = Ce(t)Ve = Ve

Ce(0) +
∫ ε

0
Πmin b(t)︸︷︷︸

=1

dt


= ΠminVeε.

In the PDE case the population is usually not homogeneously distributed, instead
bacteria are gathered in colonies. Therefore, a bacterium is located at Ωbac ⊂ Ω and
the density b̃(t, ~x) is zero at ~x ∈ Ω \ Ωbac. Again we assume that the bacteria density,
and thus the number is constant in time. So we obtain∫

Ω
b̃(t, ~x) dA = 1.

We know that diffusion with homogeneous boundary conditions do not change the
total mass. That means we can neglect the diffusion term in our consideration. Then
the total number of signalling molecules SM in an initially signalling molecule free
environment Ω reads

SM =
∫

Ω
C̃e(ε, ~x) dA =

∫
Ω

∫ ε

0
Π̃minb̃(t, ~x) dt dA

=
∫ ε

0
Π̃min

∫
Ω
b̃(t, ~x) dA︸ ︷︷ ︸

=1

dt

= Π̃minε.

The two relations yield

ΠminVeε = Π̃minε

⇐⇒ Π̃min = VeΠmin.
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The approach for ∆Π̃ is analogously. We obtain

∆Π̃ = ∆ΠVe.

The approach for the absorption rate is slightly different. First, we start to calcu-
late the number of signalling molecules for the ODE. The concentration of signalling
molecule concentration reads Ce(t) and we consider still only one bacterium within the
shake flask of volume Ve. Both variables do not change in time due to the small time
interval. Thus, the constant signalling molecule concentration reads C. For the ODE
case we obtain

SM = VeCe(ε) = Ve

∫ ε

0

σ

Ve
b(t)︸︷︷︸
=1

Ce(t)︸ ︷︷ ︸
=C

dt

= σCε.

The signalling molecule surface density reads Ĉ(t, ~x) which is again constant C be-
cause of the small time interval considered as well as for the number of bacteria, that
means

∫
V̂e
b̂(t, ~x) dV = 1. This leads to following result:

SM =
∫
V̂e
Ĉe(ε, ~x)dV =

∫
V̂e

∫ ε

0
σ̂b̂(t, ~x)Ce(t, ~x) dt dV

=
∫ ε

0
σ̂C

∫
V̂e
b̂(t, ~x) dV︸ ︷︷ ︸

=1

dt

= σ̂Cε.

Both relations yield

σ̂ = σ.

The initial number of signalling molecule concentration reads SM0 and we consider
again only one bacterium on the pad. Both variables still do not change in time due
to the small time interval [0, ε]. For the 3D case, the signalling molecule concentration
reads SM0

V̂e
and we obtain

SM =
∫
V̂e
Ce(ε, ~x) dV =

∫
V̂e

∫ ε

0
σ̂b̂(t, ~x)SM0

V̂e
dt dV

=
∫ ε

0
σ̂
SM0

V̂e

∫
V̂e
b̂(t, ~x) dV︸ ︷︷ ︸

=1

dt

= σ̂
SM0

V̂e
ε.
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The situation for the 2D case is similar. Note that the reaction volume of the 3D
case reads V̂e = Ω×h and thus the size is A ·h. The variables and parameters of the 2D
PDE case are denoted with ·̃ as usual. We assume again an initial number of quorum
sensing molecules of SM0 which means, that the surface density reads C̃e(t, ~x) = SM0

A
.

The number of bacteria is still one, that means
∫

Ω b̃(t, ~x) dA = 1. Neither the signalling
molecule density nor the bacterial density changes. This leads to following equation:

SM =
∫

Ω
C̃e(ε, ~x)dA =

∫
Ω

∫ ε

0

σ̃

h
b̃(t, ~x)SM0

A
dt dA

=
∫ ε

0

σ̃

h

SM0

A

∫
Ω
b̃(t, ~x) dA︸ ︷︷ ︸

=1

dt

= σ̃

h

SM0

A
ε.

Thus, both relations yield

σ̃ = σ̂
Ah

V̂e
= σ̂ = σ.

Last but not least, we have to adjust the feedback thresholds. For the ODE case,
the thresholds are given per cell and we also considered the intracellular concentration
with respect to the bacterial volume Vbac. So the total number of signalling molecules
within a cell reads ξp,jVbac respectively ξn,jVbac. This is also the threshold for the PDE
since the coupled ODE measures the concentration of intracellular signalling molecules
at a given point ~x ∈ Ω with respect to the bacterial density. That means

ξ̃p,j = ξp,jVbac and ξ̃n,j = ξn,jVbac.
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Simulation results of PDE model

Before we try to reproduce the experimental pad results of the BioQuant laboratory
described in chapter 4 and depicted in figure 4.1 by our model, we first verify the PDE-
ODE system (4.7), (4.8), (4.10), and (4.11) as well as the conversion of parameters
from the ODE results. This works since a high diffusion rate diminishes spatial effects.
Then we vary the diffusion rate as well as the extracellular degradation of signalling
molecules and interpret the results. Since we simulate the behaviour of microcolonies,
we will check finally, if we see some new phenomena for bigger colony sizes. Remind,
that we add to the PDE-ODE system a further threshold ξ̄a ∈ R+ which is responsible
for the stop of absorption. Taking this value to infinity, ta(~x) = ∞, too, leading to an
indicator function which is equal to one. Thus, this part of the model dynamic coincides
with the assumptions regarding the ODE system in chapter 3. Note that this holds for
all simulations in chapter 7.

In section 4.1, we stated that on a pad of diameter 9mm, leading to a area of ap-
proximately 63.6 mm2, there are 4 · 104 cells initially. The height h of the agarose gel is
1mm. We, however, simulate only a small segment of the pad. On our segment Ω, we
consider 10 colonies and each colony consist initially of only one bacterium as we know
from data of the BioQuant laboratory, see figure 4.2. Henceforth, we can determine the
radius rp of our simulated pad as follows:

# initial population
area of pad = # bacterial colonies · colony size

area of Ω

⇐⇒ 4 · 104

(4.5 mm)2π
= 10 · 1

r2
pπ

=⇒ rp =
√

10
4 · 104 · (4.5 mm)2 ≈ 71µm.
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Furthermore, we need the spatial size of a colony. In our model, we consider a fixed
radius of the colony Ωw and Ωm for all w,m. In figure 4.2, the population growth of a
microcolony is given and we see that there are maximal 50 bacteria in one colony. For
that reason we assume very harshly that colony size in the simulations corresponds to
a size of a colony with an average of 25 bacteria. The size of a Bacillus subtilis cell was
given by personal communication from Dr. Ilka Bischofs and reads approximately 4.3µ
times 0.8µm. Thus, one bacterium covers an area of 3.44µm2. Then we can conclude
that the colony radius rcol reads

rcol =
√

25 · 3.44µm2

π
≈ 5.23µm.

These are always the geometric values of our simulated pad Ω as long as nothing else
is mentioned in the simulation results.

Yet, the µCats laboratory haven’t measured the diffusion of signalling molecules in the
pad. However, the diffusion of the signalling molecule in the agarose gel is comparable
with a pentapeptide in water due to the similar molecular weight. In [11], one can find
the diffusion coefficient of a pentapeptide in Leu-enkephalin which is like water due to
similar molecular weight. Consequently, we choose

D = 24.6 · 10−9 m2

min

as arranged with the µCats laboratory, too. Similar as above, as long as nothing else
is noted, we use this diffusion rate for the simulations.

7.1. Evaluation of the PDE model
As mentioned, we check first if the model equations as well as recalculated parameter
values yield feasible solutions. Necessary to that end is to perform the shake flask
experiments in section 3.1 now with the coupled PDE-ODE model equations (4.7) and
(4.8) with its corresponding boundary condition (4.11). The high diffusivity ensures
that the signalling molecule is almost equally distributed in our pad and thus the
results should be very similar. Additionally, we will test on the one hand the influence
of different diffusion and extracellular degradation rates and on the other hand the
change of geometrical parameters as the radii of the pad and colony to the simulated
solutions.

7.1.1. Reproduction of ODE results
We start with the evaluation of the mutant experiment using Hypothesis HM 2 which
states that there is no feedback regarding the absorption. For those mutant simulations,
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we assumed a constant number of bacteria with respect to time. Then the corresponding
PDE model reads

∂

∂t
Ce(t, ~x) =D∇2Ce(t, ~x)− σm

h
Ce(t, ~x)b(~x)− γeCe(t, ~x)

∂

∂t
Ci(t, ~x) =σm

h
Ce(t, ~x)b(~x)

with

Ce(0, ~x) = Ci(0, ~x) = 0
∂Ce
∂n

= 0 for ~x ∈ ∂Ω

b(~x) =


bm0 > 0 for ~x ∈ Ωm

0 for ~x ∈ Ω \ Ωm.

The shake flask had a reaction volume of Vode := 500ml and the experiments were
performed with a total number of bode := 9.52 ·107 mutants. So we need for each colony
in our simulated pad a cell number of

bcol := 1
10bode

A · h
Vode

≈ 252.

That means the initial surface density for each colony reads

bm0 = bcol
Acol

with Acol being the geometrical size of one colony on the pad.

We use the approach in section 6.4 and the parameter values in table 3.3 to find the
corresponding PDE parameter values yielding

σm = 2.23 · 10−12 l

min
= 2.23 · 10−15 m3

min

γe = 0 1
min

.

When we have solved the system for the given time interval [0, 21] minutes, we take
then the mean values of the intra- and extracellular concentrations, that is,

Ci(t) = 1
A

∫
Ω
Ci(t, ~x) d~x resp. Ce(t) = 1

A

∫
Ω
Ce(t, ~x) d~x
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in order to evaluate the FRET function (3.1) and compare it with the best fit FRET
solutions in section 3.5.3.

To evaluate the intracellular FRET, we can not use the FRET function immediately
because the FRET function (3.1) was build for the intracellular concentration in one
bacterium. We, however, calculate the intracellular surface density of all bacterial with
respect to the simulated surface area A. Henceforth, the adjusted FRET function for
the PDE case reads

FRET (C(t)) = FRET0 −∆FRET
C(t) A

10 · bcolVbac
E + C(t) A

10 · bcolVbac

with C(t) being the intracellular signalling molecule concentration.

r p

r
col

AAcol

AcolAcol

Figure 7.1.: Scheme to declare geometrical parameters.

Let’s briefly repeat how we obtain the extracellular FRET, see section 3.1: We stim-
ulate new, “empty” mutants with the extracellular signalling molecule concentration
Ce(t) after the centrifugation process. To calculate the extracellular FRET, we use the
ODE model approach of section 3.4 and section 3.5. If we would use here again the
PDE model, we somehow measure the spatial effects of the wild types (which we want)
and additionally the spatial effects mutants (which we do not want). Thus, we use the
ODE approach to obtain the intracellular signalling molecule concentration Ce

i (t). This
concentration can immediately be used to evaluate the FRET function (3.1) in order
to obtain the extracellular FRET for the mutants of the PDE case.
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Description Parameter Value Unite

Radius of simulated pad rp 71 µm

Area of simulated pad A r2
pπ µm2

Area of a single colony Acol r2
colπ µm2

Height of pad h 1 mm

Volume of single cell Vbac 0.973 · 10−15 l

Radius of single colony rcol 5.23 µm

Diffusion rate D 24.6·10−9 m2

min

Volume of shake flask in ODE
experiment (mutant/wild type)

Vode 500/100 ml

Number of cells in ODE
experiment (mutant/wild type)

bode 9.52 · 107/8.55 · 109 cells

Table 7.1.: Standard parameter values for simulations.

The corresponding results of the simulation with the derived parameter values are
given in figure 7.2. There we see that the intracellular FRET regarding the PDE model
is virtually identical to the intracellular and extracellular FRET regarding the ODE.
Due to the high diffusion, signalling molecules are transported from the surrounding
very fast to the bacteria and thus, spatial effects can be neglected. So we can conclude
that the PDE model and the chosen parameter values describe the uptake of signalling
molecules very well.

text
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Figure 7.2.: Comparison of mutant FRET for shake flask experiments, that is the ODE,
and PDE model, using ODE setting; (a) Intracellular FRET kinetics; (b):
Extracellular FRET kinetics;

The same procedure is realized for the wild type model using hypothesis HW 4 and
competition effects among the peptides regarding the uptake. The corresponding PDE
model reads

136



7.1. Evaluation of the PDE model

∂

∂t
Ce(t, ~x) =D∇2Ce(t, ~x)− γeCe(t, ~x)

− σw
h
Ce(t, ~x)b(t, ~x)

+
W10∑
w=W1

χΩw(~x)χ[0,ηn(tn(~x),~x)](Ci(t, ~x))Πχ (Ci(t, ~x)) b(t, ~x)

∂

∂t
Ci(t, ~x) =σw

h
Ce(t)b(t, ~x)

∂

∂t
b(t, ~x) =αb(t, ~x)

(
1− b(t, ~x)

κh

)

with initial and boundary conditions

Ce(0, ~x) = Ci(0, ~x) = 0
∂Ce
∂n

= 0 for ~x ∈ ∂Ω

b(0, ~x) =


bw0 > 0 for ~x ∈ ΩW1 ∪ . . . ∪ ΩW10 := ΩW

0 for ~x ∈ Ω \ ΩW .

Since the bacterial growth equation can be solved explicitly, we consider the corre-
sponding parameters first. The values are given in table 3.4. The size of the shake flask
was Vode := 0.1l and we had initially bode := 8.55 · 109 cells in the flask using the ODE
fit of bw0. That means the number of bacteria in each of the 10 bacterial colony reads

bcol = 1
10bode

A · h
Vode

≈ 113.4.

So the initial surface density of a colony of spatial size Acol is given by

bw0 = bcol
Acol

.

The parameter value of the exponential growth rate can be used for the PDE without
any changes. Only the carrying capacity κode has to be adjusted. Since this parameter
depends on the environmental conditions, we have to adjust it to the new reaction
volume and that they are gathered in colonies. We obtain

κ · Acol · h
A · h

= κode
Vode

=⇒ κ = κode
A · h

Vode · Acol · h
≈ 9.52 · 1013.
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For the other parameters, we use the values in table 3.9 and recalculate them with
the approach in section 6.4. Then one obtains

σw = 0.21 · 10−12 l

min
= 0.21 · 10−15 m

3

min

σm = 0.18 · 10−12 l

min
= 0.18 · 10−15 m

3

min

Πmin = 1.9 · 10−14 µmol

l ·min
· Vode = 1.9 · 10−15µmol

min

∆Π = 2.7 · 10−14 µmol

l ·min
· Vode = 2.7 · 10−15µmol

min

ξp = 29.99µmol
l
· Vbac = 2.92 · 10−14µmol

ξn = 179.99µmol
l
· Vbac = 1.75 · 10−13µmol

γe = 0 1
min

.

We solve the system for [0, 360] minutes and take the mean of the extracellular
concentration Ce(t, ~x), that is

Ce(t) = 1
A

∫
Ω
Ce(t, ~x) d~x.

Then for each t ∈ [0, 360] we use this concentration to stimulate new and empty mu-
tant cells by using the ODE approach as we did for the mutants above. We yield their
intracellular concentration denoted as Ce

i (t) and insert this into the FRET equation 3.1.

The comparison of the ODE result and PDE result using the derived parameter
values can be seen in figure 7.3. Note that we distinguish for the moment between
some noise in the threshold (a) and no noise (b). Usually, we consider always some
noise in the threshold and consider therefore initially the results with noise, that is,
figure 7.3(a). We see that the extracellular FRET curves are almost identically for the
first 115 minutes. Then the PDE FRET curve increases more slowly and also reaches
a lower end stage. That’s caused by the noise or put it another way, some bacteria
did not reach the negative feedback and still produce signalling molecules leading to
a higher concentration of signalling molecules and thus a lower stage of the FRET
curve. This can be proven by figure 7.3(b) where we see the FRET curve without any
noise. There, the FRET curve tends to the same level as the FRET regarding the
ODE. However, the FRET curve regarding the PDE model without noise decreases
further and leading finally to a sharp peak. The reason for the further decreasing is
that signalling molecules diffuses away form the bacterial colony and is not absorbed
everywhere on the pad. Thus, the concentration of signalling molecules is higher than in
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the ODE case. The peak in the curve symbolises the simultaneous stop of production of
signalling molecules for almost all bacteria. For all that, the PDE model and adjusted
parameter values yields reasonable results.
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Figure 7.3.: Comparison of wild type FRET kinetics for shake flask experiments, that
is the ODE, and PDE model, using ODE setting; (a) There is a noise
regarding the thresholds ξp and ξn; (b): There is no noise regarding the
thresholds;
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7.1.2. Variation of model parameters
In the beginning of this chapter, we assumed an educated guess of the diffusion rate
D = 24.6 · 10−9. However, we don’t know for sure if this is really true. Additionally,
we assumed no extracellular degradation rate since this was one conclusion of the ODE
results. However, there is no hint yet, that this also holds for the PDE respectively for
the pad experiments. Therefore, we vary on the one hand the order of the diffusion
parameter D, that is,

D ∈
{
D0 · 10−15, D0 · 10−12, D0 · 10−9, D0 · 10−6, D0 · 10−3

}
with D0 = 24.6 m2

min
and on the other hand the extracellular degradation rate γe with

[γe] = 1
min

as following:

γe ∈
{

0, 10−3, 10−2, 10−1, 1
}
.

All other parameters of the mutant and wild type simulations are chosen as in sub-
section 7.1.1. The results of the mutant simulations are given in figure 7.4 and 7.5, the
changes in the solutions for the wild type can be found in figure 7.6 and 7.7.
As usual we consider first the result of the mutant population and start with the in-
tracellular kinetics, see figure 7.4. For the moment we consider the first column, that
means the diffusion rate varies and γe = 0 is the standard value from the previous
setting. The third row corresponds to the standard diffusion rate. Starting from that
point, we see that if we increase the diffusion rate, we there are no changes. But de-
creasing the diffusion has the effect that FRET dos decrease slower and also dos not
reach the level of the ODE FRET coloured as blue line. This is reasonable since it takes
more time until signalling molecules from the surrounding area of the colony reach the
bacteria. If we consider the third row, then we change the degradation rate and the
diffusion rate is the standard one. Increasing the degradation leads to a similar result.
It seems that the FRET still decreases with the same magnitude but does not reach
the same low level. This just means that at the end, we run out of signalling molecules.
All other plots are a combination of both effects.

140



7.1. Evaluation of the PDE model

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

0 10 21
0.06

0.09

0.12

Figure 7.4.: We use the parameter setting of subsection 7.1.1 with varying diffusion rate
D and extracellular degradation rate γe. The red graphs corresponds to the
intracellular FRET of the PDE model, the blue graphs of the ODE model.

The plots of the extracellular FRET, figure 7.5 are also reasonable using the same
arguments. At a first glance, we consider the first column whereas the third row cor-
responds to the standard diffusion. Increasing the diffusion from that state, it has
no effect to the FRET. But as soon as we decrease the diffusion, we see that the y-
intercept increases. Furthermore, the curve increases slower respectively the curve is
almost a straight line in the last row. Both observations have the same reason: Due to
the smaller diffusion the bacteria have less to almost no signalling molecule to absorb.
Increasing the extracellular degradation rate leads to the effect that we run out of sig-
nalling molecules earlier. That means for the FRET that the y-intercept increases as
well and we always tend to the same end level as the standard FRET coloured in blue
which means there are no signalling molecules left.
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Figure 7.5.: We use the parameter setting of subsection 7.1.1 with varying diffusion rate
D and extracellular degradation rate γe. The red graphs corresponds to the
extracellular FRET of the PDE model, the blue graphs of the ODE model.

We start to discuss the results of the wild type with noise in figure 7.6 at first and con-
sider the first column. As usual, increasing the diffusion rate starting with the standard
diffusion shows no further effects. When we decrease the diffusion to D = D0 · 10−12,
there is hardly an effect notable, which is surprising, since we could see changes for the
mutant type quite clear. Decreasing the diffusion further to D = D0 ·10−15, there is only
a small minimum notable and we have almost a straight line. But here, it has different
reasons as for the extracellular FRET of the mutant type. For the mutant type, we
had an almost straight line because there were hardly signalling molecules available to
absorb. But the wild types produce their own signalling molecules. So because of the
small diffusion, the wild type has the chance to absorb almost immediately its recently
produced signalling molecules. Thus, the extracellular signalling molecule concentra-
tion barely increases which means we only have an extremely small decrease of FRET.
Note that the wild type reaches both feedback thresholds. Otherwise the FRET would
not reach the end level of the blue curve. Increasing the degradation rate, we see in the
first four rows that the minimum of FRET increases and moves to the right which just
means that the negative feedback regarding the production process is reached at later
time points. Note that in the last row, we can not say any longer that we have reached
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all feedbacks for all variation of γe’s, because now, a strong extracellular degradation
could be responsible that we run out of signalling molecules.
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Figure 7.6.: We use the parameter setting of subsection 7.1.1 with varying diffusion rate
D and extracellular degradation rate γe. Here we find the solutions of the
extracellular FRET of a wild type population with noise of the thresholds ξp
and ξn. The red graphs corresponds to the PDE model, the blue graphs to
the ODE.

The explanations for wild type kinetics without noise in the threshold, see figure 7.7,
is analogous. The FRET curve is only not so smooth which means we can see better
when the thresholds were reached. That means the noise smooths the curve which was
the reason to introduce it in the ODE model in section 3.9.
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Figure 7.7.: We use the parameter setting of subsection 7.1.1 with varying diffusion rate
D and extracellular degradation rate γe. Here we have no noise regarding
the thresholds. The red graphs corresponds to the PDE model, the blue
graphs to the ODE.

7.1.3. Variation of geometrical parameters
In the beginning of this chapter, we derived the geometrical parameters such as the
radius of the pad rp and the radius of a colony rcol. For the last one, we assumed that
the boundary of the colony does not change in time. Naturally, that is not true. If
bacteria grow, then of course they also grow spatially in x and y direction. So before we
start to model a free boundary problem which is difficult solve, we vary the colony radius
rcol and keep the number of bacteria equally to figure out if this change has a relevant
effect. After that, we increase the radius of the pad rp and of the colony rcol such that
we obtain so called “macrocolonies” and wonder if this leads to new phenomena.

Variation of colony size

The radius of the simulated pad is still rp = 71µm, but the radius of the colony size
rcol varies now with the dimensionless factor v = {0.5, 0.8, 1.3, 1.7} such that the ad-
justed colony size rcol,new lies in the set {0.5 · rcol, 0.8 · rcol, 1.3 · rcol, 1.7 · rcol} for each
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simulation run. Note that we distinguish between a constant number of bacteria for
each radii (case 1) and a changing number of bacteria according to the change of the
colony radius (case 2). For the simulation, we use the models and parameter values of
section 7.1.1.

Case 1: Let’s consider a constant number of bacteria for each colony having different
radii in each run. As always, we start with the mutant type to investigate if these
changes have any effects to the uptake kinetics. Since the model equations work with a
bacterial surface density, we need to adjust the density bm0 for each radii which reads
then

bm0 = bcol
r2
col,newπ

.

Note that we assumed no population growth within this simulation, thus the con-
centration of bacteria is constant in time. The result for the uptake kinetic is given
in figure 7.8. We see that the FRET curves, neither intracellular nor extracellular, are
equally for all radii. So for the moment, the change of the geometrical colony size has
no effect to the uptake process.
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Figure 7.8.: We use the parameter setting of subsection 7.1.1 with the same number of
bacteria for each radii; (a): Intracellular FRET kinetics of mutant types
with different radii; (b): Extracellular FRET kinetics of mutant types with
different radii;

We do the same approach for the wild type colonies and thus have to adjust for each
radius the initial number and the carrying capacity to
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bw0 = bcol
r2
col,newπ

κ = κode
A · h

Voder2
col,new · π · h

.

As for the uptake kinetics, the FRET curves of the wild type are equal when we have
no noise with respect to the thresholds, see figure 7.9(b). Figure 7.9(a) contains the
noise and we see that they are not equal in the end any more because of that noise.
However they behave altogether equally. That means the change of the colony radius
has no significant effect to the production process of the wild type.
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Figure 7.9.: We use the parameter setting of subsection 7.1.1 with the same number of
bacteria and an adjusted carrying capacity κ for each radius to plot the
extracellular FRET kinetics; (a) There is a noise regarding the thresholds
ξp and ξn; (b): There is no noise regarding the thresholds;

Henceforth, we can conclude that both processes, uptake and production, are invari-
ant regarding the change of the geometrical colony size. That means that a model with
a free boundary problem would not yield further insights of the kinetics, at least not
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for the current experimental setting.

Case 2: Now we adjust the number of mutants according to the factor of the colony
radius rcol such that the density of bacteria for varying colony sizes is the same. Starting
with the mutant type, we see when we adjust the colony size bcol according to the
corresponding factor v, this factor cancels and thus, the density is the same for all
simulation runs:

bm0 = v2bcol
r2
col,newπ

= bcol
r2
colπ

.

The results for all runs can be seen in figure 7.10. Let’s consider the intracellular
FRET kinetics results first. The bigger the colonies become and thus the total number
of bacteria, the bigger is the end level of FRET. That is reasonable since each bacterium
of a in total number bigger mutant colony has absorbed finally less signalling molecules.
That means by implication that the extracellular FRET curve increases faster for bigger
colonies since we have less signalling molecules in the environment.
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Figure 7.10.: We use the parameter setting of subsection 7.1.1 with a growing number of
bacteria according to each radii; (a): Intracellular FRET kinetics of mu-
tant types with different radii; (a): Extracellular FRET kinetics of mutant
types with different radii;

We do the same approach for the wild type colonies, but have to adjust for each
radius the initial number and the carrying capacity to
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bw0 = bcol
r2
colπ

κ = κode
A · h

Voder2
col,new · π · h

.

The simulation results are given in figure 7.11 whereas the plot in (a) contains the
noise, plot (b) the results without noise. As usual, the FRET curves with noise reach
different levels caused by the threshold noise. But for both cases, we can see the same
behaviour as for the extracellular FRET of the mutant colonies, that is, the bigger the
colony radius becomes, the steeper is the FRET curve. The explanation for that is
the same as for the mutants. Additionally, by increasing the colony size, the minimum
becomes smaller and is reached earlier.
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Figure 7.11.: We use the parameter setting of subsection 7.1.1 with an adjusted carrying
capacity κ and a growing initial number of bacteria according to each radii
to plot the extracellular FRET kinetics; (a) There is a noise regarding the
thresholds ξp and ξn; (b): There is no noise regarding the thresholds;

Henceforth, we can conclude that the model behaves as expected.

Macrocolonies

So far, we considered relatively small colony sizes. Let’s check if the results changes if
we consider macrocolonies. Therefore, we increase the radius of the simulated pad by a
factor of 5 which leads to a size of rp,macro = rp ·5 = 353µm. In paragraph “Variation of
colony size”, the colony radius was varied by a factor set v. We enlarge this set also by
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factor 5, leading to new radii rcol,macro ∈ {2.5 · rcol, 4.0 · rcol, 5.0 · rcol, 6.5 · rcol, 8.5 · rcol}.
Note that the ratio of the simulated pad and colony size is the same for macro- and
microcolonies.

In figure 7.12, we see that the mutant macrocolonies behave like the microcolonies.
There is only a very small difference which can only be caused by the spatial difference,
that is, in the macrocolony case, the signalling molecule has to cover bigger paths. That
means it takes a bit longer until neighbouring signalling molecules reach the colonies
resulting in steeper FRET slopes for microcolonies. This hypothesis can be supported
by the wild type macrocolony simulation, see figure 7.13. We detect no significant
difference of macro- and microcolonies. Since wild types produce their own signalling
molecules, the concentration of signalling molecules is higher there and they are not
that dependent on neighbouring signalling molecules than the mutant colonies.
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Figure 7.12.: We use the parameter setting of subsection 7.1.1 with a growing num-
ber of bacteria according to each radius. The dashed lines correspond to
microcolonies of a same simulated pad - colony size ratio; (a): Intracellu-
lar FRET kinetics of mutant types with different radii depicted in a solid
line; (b): Extracellular FRET kinetics of mutant types with different radii
depicted in a solid line.
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Figure 7.13.: We use the parameter setting of subsection 7.1.1 with an adjusted carrying
capacity κ and a growing initial number of bacteria according to each radii.
We see the solutions of the extracellular FRET of a wild type population
without noise regarding the thresholds. The solid curves correspond to the
macrocolonies, whereas the dashed lines correspond to microcolonies of a
same simulated pad - colony size ratio.

Finally, macrocolonies do not yield significantly different solutions. Moreover, it
seems that the FRET curve depends on the ratio of colony size and pad size as the
comparison of macro- and microcolonies in figure 7.13 represents.

7.2. Reproduction of pad experiments results
In this chapter we solve the PDE-ODE system (4.7)-(4.12) with the recalculated pa-
rameter values from table 3.9 and compare experimental and simulated results. Yet,
we don’t know when the cell comes to the decision to initiate the sporulation process.
It might be the threshold ξn(~x) or maybe some other trigger. In order to compare the
results, we introduce a feedback ratio which can be compared to the experimentally
observed sporulation ratios, see figure 4.1.

Definition 7.2.1 (Feedback ratios). The feedback ratio λi of colony i at time t is
given by

λi(t) := # of cells achieving threshold within colony i at time t
# of cells of colony i at time t0
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with t0 being the initial time point.

The general feedback ratio λ is given by

λ(t) := # of cells achieving threshold at time t
# of all cells at time t0

.

Remark 7.2.2. The general feedback ratio can also consider exclusively wild type re-
spectively mutant colonies. Then we will refer to this as λW (t) wild type respectively
λM(t) mutant.

In figure 4.2, there is some bacterial growth data of one colony given. We see that it
starts with one bacterium, that is, b(t0) = 1. The bacteria was counted regardless of its
location. So we fit the data to the solution of ODE logistic growth function, see (3.28).
The best fit solution is given in figure 7.14 and the corresponding parameters read

αode = 13.5 · 10−3 1
min

κode = 44.8.
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Figure 7.14.: The data is given in figure 4.2. Assuming logistic growth of the bacteria,
the best fit is depicted as a solid blue line.

The exponential reproduction rate αode can be used for the PDE equation (4.9)
without any changes, that is α = αode. But the carrying capacity κode has to be divided
by the reaction volume of one colony to use it for the PDE setting, that is κ = κode

Acol·h
.
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7.2.1. Wild type experiment
We assume that hypothesis HW 4 holds and use the corresponding parameter set in
table 3.9. These were recalculated with the approach in section 6.4. In this section, we
use the negative feedback that is, production of signalling molecules stops, as a trigger
for sporulation and calculate the feedback ratio with respect to that threshold. The
result of this simulation is given in figure 7.15(c). For the moment, this seems to be
a good result since the curve is similar to the black depicted solid curve in the top
plot of figure 4.1. Additionally, we can see in figure 7.15(a) that the mean extracellular
signalling molecule concentration is at most approximately 10nmol

m2 meaning that the
exponential absorption of signalling molecules in the PDE model is justified. Further-
more, all colonies have the same feedback ratio characteristic such that it seems there is
no spatial effect among wild types recognizable. In figure 7.16, we see the distribution
of the signalling molecule concentration and bacteria which has reached the negative
feedback threshold. Let’s start with (a). On the left, we see the signalling molecule
concentration and it seems, that it is spatially constant. However, if the Ce axis is
rescaled, that is the plot in the middle, we can see peaks arising due to the produc-
tion of signalling molecules by the bacteria. On the right, we see that in each colony
some bacteria has reached the negative threshold. It seems there is no structure which
bacteria in the colony reaches the threshold first. The plots in (b) shows the state
30 minutes later. More bacteria has reached the threshold meaning that less bacteria
produce signalling molecules and the peaks become smaller. After further 15 minutes,
that is (c), there is hardly bacteria left producing signalling molecules. Since they still
absorb them, we can see sinks at the distribution of signalling molecule concentration.
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Figure 7.15.: Simulation results of a wild type population with noise; (a): Mean extra-
cellular signalling molecule concentration in the pad; (b): Bacterial growth
of each colony; (c): Feedback ratio for each colony using the negative feed-
back; (d): General feedback ratio regarding wild types using the negative
feedback.
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Figure 7.16.: On the left and middle column, the distribution of the signalling molecule
concentration is given. On the right, we see the pad with the colonies. A
pink marked dot on the colony means that bacteria has reached there the
negative feedback; Plots correspond to (a) t ≈ 370 minutes, (b) t ≈ 400
minutes and (c) t ≈ 415 minutes;

We stated, that there are not really spatial effects noticeable. However, the noise
of the threshold somehow hides the spatial effects. Removing the noise, one can ob-
serve on the one hand that the feedback thresholds of the colonies are separated, see
figure 7.17(c). On the other hand, considering a colony, e.g. W1 in figure 7.18, the
bacteria in the middle reaches the threshold first evolving then to the outer bacteria.
We also note, that all bacteria reach the threshold in some seconds.
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Figure 7.17.: Same description as in figure 7.15, but now with no noise in the thresholds.
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Figure 7.18.: Same description as in figure 7.16but now without noise in the thresholds;
Plots correspond to (a) t ≈ 403.135 minutes, (b) t ≈ 403.136 minutes and
(c) t ≈ 403.137 minutes;

7.2.2. Mutant experiment

In this chapter, we concentrate on the experimental stimulus of 10µmol
l

only. The mu-
tant’s parameter set is given in table 3.3 and we assume hypothesis HM 2 which regards
to a continuous absorption of signalling molecules. We recalculate the parameters as
described in section 6.4. For the wild types, we used the negative feedback of the pro-
duction term as indicator to calculate the feedback ratio. We know that mutants were
characterised as bacteria producing no signalling molecules. However, we can still eval-
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uate when the intracellular concentration of the mutants reach in this case an imaginary
negative feedback. The plot of the feedback ratio is given in figure 7.19(d). One can see
that it starts way too early! A reason could be the exponential absorption of signalling
molecules since one restriction to the model approach was that it works only for small
extracellular concentrations in the range of nmol

l
. In a personally received manuscript

of the µCats laboratory, one can find an approach to model the uptake of the ODE
model with a sigmoidal function. We use their best fit values to find the parameter
for a linear absorption which reads finally σc = 0.2 · 10−12 l

min·cells . We do not go here
into further details how the model equations and numerical approach changes. Instead,
we consider immediately the result which is given in figure 7.20. One can see that the
extracellular concentration in (a) is more or less constant. That’s because of the linear
absorption. Again, the feedback ratio in (d) increases way too early meaning that the
absorption term is not the crucial factor of the phenomenon.

Figure 7.19.: Same description as in figure 7.15 but now for mutants.

text
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Figure 7.20.: Same description as in figure 7.19 but now with a linear absorption.

So far, we assumed no extracellular degradation rate γe. But the environmental
situation in the PDE is different as for the ODE experiments. Thus, the signalling
molecule might be degraded by extracellular peptidases. We run the simulation with a
linear absorption as above and a high extracellular degradation rate of γe = 1 1

min
. The

simulation results can be found in figure 7.21. Although the extracellular signalling
molecule concentration in (a) decreases very fast, there is still enough left such that the
feedback is reached very fast.
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Figure 7.21.: Same description as in figure 7.20, but now with a high extracellular degra-
dation rate γe = 1 1

min
.

However, we can detect a similar phenomenon as for the wild types. Assuming also
no noise in the threshold, we can see in figure 7.22, right column, that the bacteria on
the outside of the colony reaches the threshold first, evolving then to the inner bacteria.
So the feedback behaviour is, considered in a spatial way, vice versa compared to the
wild types.
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Figure 7.22.: Same description as in figure 7.16, but now for mutant colonies; Plots
correspond to (a) t ≈ 339.77 minutes, (b) t ≈ 339.78 minutes and (c)
t ≈ 340.5 minutes;

7.2.3. Wild type - mutant ratio experiment
Although the evaluation of the stimulation experiments of the mutant yields no sat-
isfying results, we still test the setting of different wild type - mutant ratios. We use
the parameter set of table 3.9 which corresponds to the wild type assuming hypothesis
HW 4 and table 3.3 with hypothesis HM 2 for the mutants. The results are given in
figure 7.23. There we see, that if we increase the number of mutants, the feedback ratio
starts to rise later. Also the slope of the feedback ratio decreases. Compared to the
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experimental result which is given in the second plot of figure 4.1, it is very different.
On the one hand, in the experiments, all ratios start to rise approximately at the same
time. On the other hand, the feedback ratios tend to different levels whereas in our
plot, all reach approximately the same level.
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Figure 7.23.: One can see the feedback ratios for different ratios of wild type - mutant
colonies.

Let’s consider anyway the 5 : 5 ratio experiment in figure 7.24 in more detail. We can
consider that the mutants do reach the threshold later than the wild types since the
slope of the general feedback ratio regarding the wild type is bigger than the one of the
mutant. This can be explained by the fact that the mutants have to wait until signalling
molecules diffuses to them. So we can detect a spatial effect here which coincides with
the observations of the µCats laboratory.
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Figure 7.24.: Same description as in figure 7.15 for a 5 : 5 ratio experiment.

7.3. Conclusion for the PDE model
After we have evaluated the PDE model, we checked the influence of the FRET kinetics
by varying the diffusion rate D and extracellular degradation rate γe. If we increase
the degradation rate, then we obtain a slower decrease of intracellular FRET with a
higher end level. The end level of the extracellular FRET increases as well and so do
the intercept. If we increase the diffusion rate, there is no significant change of the re-
sults. Decreasing the diffusion though, the spatial effects become more significant. The
intracellular FRET decreases slower and the end level increases, whereas the intercept
of the extracellular FRET increases and the end level decreases a bit.
Changing the geometrical colony size assuming the same number of bacteria leads sur-
prisingly to no change, neither for the absorption process nor for the production process.
Adjusting then the bacterial number to the corresponding colony size, the intracellu-
lar FRET level increases by increasing the mutant colony size. For the extracellular
FRET, the slope is steeper if the colony size is increased and all variations tend to the
same level. The results of the wild type macrocolonies is similar. The slope of the
extracellular FRET becomes steeper by increasing the colony size. Furthermore, an
increased bacteria size leads to a higher concentration of signalling molecules and thus,
the minimum becomes smaller. Additionally, both threshold feedbacks were reached
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earlier for the same reason.
The reproduction of the wild type experiments yield reasonable results. We see that spa-
tial effects are small since the feedback ratio starts to increase for (almost) all colonies
simultaneously after almost 6 hours. After 2 hours, all bacteria in each colony have
reached the negative feedback, see figure 7.25. That means, from initially 1 bacterium
we obtain at the end approximately 40 spores. Compared to the experimental results,
see the black curve of the second plot in figure 4.1, the result is acceptable, but not so
good. There it took at least 8 hours until we are nearby reach the maximum number
of spores.
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Figure 7.25.: If a point in the grid has reached the negative feedback, it is marked in pink.
Since each colony is fully pink, each bacterium has reached the negative
feedback.

The stimulation of the mutants completely failed since the negative feedback is
reached too early. The absorption rate σ is just to high and neither depend on the
exponential approach nor on the linear approach. Even a high extracellular degradation
rate γe yields no significant improvement. Also the simulation of the ratio experiment
generates no acceptable results. Instead of starting to increase at the same time and
reaching different levels, the different ratios start to increase later the more mutants
we have in the pad and all ratios have the same level. The one and only similarity is
the slope of the ratios: The more mutants we have, the lower is the slope of the ratios.
That is reasonable since mutants do not produce signalling molecules and therefore,
they have to wait until signalling molecules reaches them.
We were also not able to reproduce quantitatively the experimental results of the ratio
experiments. However, we found a spatial effect considering the 5 : 5 ratio experiment

168
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in more detail, that is, mutants reach the feedback later than wild types.
Nevertheless, it seems that the parameter values of the ODE models regarding to the
shake flask experiments can not be used for the PDE model regarding the pad exper-
iments. There is even the possibility to change the model equation which is discussed
in the conclusion chapter 8 in more detail.
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Chapter 8

Conclusion/Prospects

In the beginning of this thesis, we wonder if spatial effects regarding the initialisation of
sporulation in bacterial colonies can be explained by mathematical models. Before we
deal with PDEs, we consider first ODEs to obtain more informations of the production
and absorption processes of signalling molecules. After that, we imply the obtained
results into the PDE model.

As stated, the first approach was to model the signalling molecule kinetics with an
ODE model in chapter 3 to evaluate experimental results and obtain some insights in
the production and absorption process of signalling molecules. We stated various hy-
potheses regarding those processes leading to diverse models. For each model, we were
able to state existence and uniqueness of solutions and performed after that a best fit
simulation. Let’s start to recite the results of the absorption process of mutants. On
the one hand, we saw in section 3.5 that the absorption of signalling molecules with
a constant rate is maintained over the experimental time and yields very good FRET
fits for a stimulus of 10nmol

l
. On the other hand, the data of a higher stimulus of

100nmol
l

can not be fitted with the model given in section 3.5. Furthermore, changing
the absorption process from a linear function to a sigmoidal function yields better re-
sults for the first four data points, but then it failed, too. At a first glance, it seemed
that the absorption stops. However, a slower absorption of the signalling molecules by
the mutants could be also the reason for the slower increase of extracellular FRET.
Thus, we could gain further insights of the absorption kinetics if we have data points
for a wider time range and more data points at later time points. A side result while
testing the hypotheses with respect to the absorption process yields that there are nei-
ther an intracellular degradation nor an extracellular degradation on a relevant level.
The production process of signalling molecules by wild types yields very good results
if we include two switches, see section 3.11 respectively section 3.10. First, there is a
switch from an initially low, constant production rate to a higher, constant produc-
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tion rate. After a certain length of time, the production process stops. Both switches
are controlled by the intracellular signalling molecule concentration, reaching certain
thresholds. However, there is the open question of competition effects regarding the
absorption of signalling molecules since the wild type produces further molecules which
are absorbed by the same pump. Assuming a competition effect, we obtain still a very
good FRET, only the production rates and feedback threshold change. That means the
data is not consistent in order to determine the parameters. A different experiment is
required to decide if the competition effect can be rejected or not. Note that the µCats
laboratory rather supports the idea of a competition effect.

Then we stated a PDE-ODE model in chapter 4 using the informations from above.
Unfortunately, we were only able to prove uniqueness for a special case of the PDE-ODE
system (4.7) - (4.12), that is, for a time constant bacteria population. So far, unique-
ness of the full system can be shown only for a certain time interval whereas it is not
possible to state the range of this interval since it depends on the value θ in (5.23) and
for this value, we have no concrete estimation. The results in section 7.2 regarding the
absorption process of the mutants were quite bad. As we already concluded, it might be
wrong to use the parameter values from the ODE experiment. Thus, one could vary the
absorption rate σ and degradation rates γe and γi but also the production rates Π and
∆Π of the wild type bacteria. However, this costs quite much computation time to test.
A further attempt to improve the results is to change the model equations and/or con-
ditions. So far, we assumed homogeneous Neumann boundary condition, which means
nothing else that we do not lose any signalling molecules at the boundary. However, the
signalling molecules could “glue” on the boundary and bottom of the pad, which means
we “loose” these signalling molecules for the quorum sensing process. Due to the fast
diffusion, this would be a not negligible amount. Furthermore, we could implement an
absorption term which depends on the extracellular signalling molecule concentration
as discussed above. Such a dependency may be the case for the production term, too.
To prove this, one would need further special experiments. A further adjustment to
the model could be the change in the population dynamic of the bacteria regarding the
PDE case. We assumed a logistic growth motivated by the data. However, we never
took into account that the growth could be influenced by the signalling molecules. We
saw from data sets of the µCats that higher stimulated mutants grow faster and the
number of cells within a colony was higher. Moreover, it seems to be natural, that after
some certain signalling molecule concentration, the bacterium stops to reproduce itself
and initiate instead the sporulation process. That means we would add an indicator
function to the right hand side of the bacteria. Purely hypothetical, the threshold for
the absorption stop might be the same as the indicator for the bacterium to prolifer-
ate. For all this, more data is required. Additionally, the µCats concluded from the
experiments that sometimes, not the entire colony sporulates. Our present PDE-ODE
model can reproduce such a behaviour. Recall the wild type results in section 7.1.1.
There, we saw that the FRET curve with noise in the thresholds did not reach the
end level and we argued that some bacteria did not reach the threshold. The plots of
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the right column in figure 7.16 shows how a possible end state could look like. We just
have the “problem” that there are to much signalling molecules in the pad such that
each bacterium reaches the threshold.
A further reason for a mismatch of experimental data and simulation results might be
the fact that we neglected in all models the influence of nutrients. Especially in pad
experiments this could be a additional influencing factor for the initialisation of sporu-
lation.

Last but not least, we can conclude that the production process definitely depends on
the intracellular signalling molecule concentration and spatial effects can be detected by
the model. However, there are many open questions which require more experimental
data and new model assumptions to answer them.
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Appendix A

Theorems

A.1. Fixed point theorems
Theorem A.1.1 (Banach’s Fixed Point Theorem). Assume

A : X → X

is a nonlinear mapping, and suppose that

‖A〈u〉 − A〈ũ〉‖ ≤ γ‖u+ ũ‖ (u, ũ ∈ X)

for some constant γ < 1. Then A has a unique fixed point.

Theorem and proof can be found in [9], Chapter 9.2.1, Theorem 1.

Theorem A.1.2 (Schauder’s Fixed Point Theorem). Let X be a real Banach space.
Suppose K ⊂ X is compact and convex, and assume also

A : K → K

is continuous. Then A has a fixed point in K.

This theorem and its proof is stated in [9], chapter 9.2.2, Theorem 3. There’s also
a second version of Theorem A.1.2 which is given in [4], chapter 21.3, inclusively the
proof in the appendix, chapter 26.8.

Theorem A.1.3 (Schauder’s Fixed Point Theorem Second Version). A continuous
operator A in a Banach space X shall map a convex, closed set X into itself. Assume
that the image set AX is relatively compact, then A has at least one fixed point in M .

We will use only the second version of Schauder’s Fixed Point Theorem, the first
version is only given for reasons of completion.
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A.2. Inequalities

Theorem A.2.1 (Young’s Inequality with ε). Let 1 < p, q < ∞, 1
p

+ 1
q

= 1. Then
with a, b, ε > 0

ab ≤ εap + (pε)1−q

q
bq.

Young’s Inequality Theorem and its proof can be found in [9], Appendix B.2.d.

Theorem A.2.2 (Gronwall’s inequality differential form). Let x(·) be a non-negative,
absolutely continuous function on [0, T ], which satisfies for a.e. t the differential in-
equality

d
dtx(t) ≤ h(t)x(t) + g(t),

where h(t) and g(t) are non-negative, summable functions on [0, T ]. Then

x(t) ≤ e

∫ t

0
h(τ)dτ [

x(0) +
∫ t

0
g(τ)dτ

]

for all 0 ≤ t ≤ T .

Theorem A.2.3 (Generalized Gronwall’s inequality). Suppose x(t) satisfies

x(t) ≤ g(t) +
∫ t

0
h(τ)x(τ)dτ, τ ∈ [0, T ]

with g(t) ∈ R and h(t) ≥ 0. Then

x(t) ≤ g(t) +
∫ t

0
g(τ)h(τ)e

∫ t

τ
h(s)ds

dτ, τ ∈ [0, T ].

Moreover, if in addition g(τ) ≤ g(t) for τ ≤ t, then

x(t) ≤ g(t)e

∫ t

0
h(τ)dτ

, τ ∈ [0, T ].

Theorem A.2.2 is cited form [9], Appendix B.2.j., and Theorem A.2.3 is cited from
[32], Lemma 2.7. We just change the names of the variables to obtain a consistent
and comparable statement. The proofs can also be checked there, except for the last
statement of Theorem A.2.3. This will be proved here.
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Proof. We assume g(τ) ≤ g(t) for τ ≤ t. Then it holds

x(t) ≤ g(t) +
∫ t

0
g(τ)h(τ)e

∫ t

τ
h(s)ds

dτ

≤ g(t) + g(t)
∫ t

0
h(τ)e

−
∫ τ

t
h(s)ds

dτ

= g(t) + g(t)
∫ t

0

d
dτ − e

−
∫ τ

t
h(s)ds

dτ

= g(t) + g(t)

−e0 + e

∫ t

0 h(s)ds



= g(t)e

∫ t

0
h(τ)dτ

.

A.3. ODE solutions
Theorem A.3.1 (Picard-Lindelöf). Suppose f ∈ C(U,Rn), where U is an open subset
of Rn+1, and (t0, x0) ∈ U . If f(t, x) ∈ C(U,Rn) is locally Lipschitz continuous in the
second argument, uniformly with respect to the first, then there exists a unique local
solution x̄(t) ∈ C1(I) of ẋ = f(t, x), x(t0) = x0, where I is some interval around t0.
More specific, if V = [t0, t0 + T ]× Bδ(x0) ⊂ U and M denotes the maximum of |f | on
V . Then the solution exists at least for t ∈ [t0, t0 + T0] and remains in Bδ(x0), where
T0 = minT, δ

M
. The analogous result holds for the interval [t0 − T, t0]

Proof and theorem is given in [32], chapter 2, p. 36.
Theorem A.3.2 (Non-negativity of ODE solutions). Suppose that f in ẋ(t) = f(t, x)
has the property that solutions of initial value problems x(t0) = x0 ≥ 0 are unique and,
for all i, fi(t, x) ≥ 0 whenever x ≥ 0 satisfies xi = 0. Then x(t) ≥ 0 for all t ≥ t0 for
which it is defined, provided x(t0) ≥ 0.

The Theorem as well a proof can be found in [29], Proposition B.7.

A.4. Measure theory
Theorem A.4.1 (Fubini-Tonelli Theorem for Lebesgue and Riemann integrable func-
tions). Let (X,A, µ) be a measure space, and let f : X × [a, b] → C. Assume that
R
∫ b
a f(x, y) dy exists µ-a.e., f is µ-measurable for all y ∈ [a, b], and that there is

F ∈ L1
µ(X) for which

∀(x, y) ∈ X × [a, b], |f(x, y)| ≤ F (x).
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Then
∫
X f(x, t) dµ(x) is Riemann integrable and∫

X

(
R
∫ b

a
f(x, y) dy

)
dµ(x) = R

∫ b

a

(∫
X
f(x, y) dµ(x)

)
dy.

The Theorem and the corresponding proof is stated in [1], chapter 3.7, Theorem
3.7.12.

Theorem A.4.2 (Rellich-Kondrachov Compactness Theorem). Assume U is a bounded
open subset of Rn, and ∂U is C1. Suppose 1 ≤ p < n and p∗ = pn

n− p
. Then W1,p(U)

is compactly embedded in Lq(U) for each 1 ≤ q < p∗, written

W1,p(U) ⊂⊂ Lq(U), 1 ≤ q < p∗.

Rellich-Kondrachov’s Compactness Theorem and the corresponding proof can be
found in [9], chapter 5.7, Theorem 1.

Theorem A.4.3 (Dominated convergence theorem). Assume the functions {fk}∞k=1 are
integrable and

fk → f a.e..

Suppose also

|fk| ≤ g a.e.,

for some measurable function g with
∫
Rn |g| d~x <∞. Then∫

Rn
fk d~x→

∫
Rn
f d~x.

This is cited from Evans [9], Appendix E.3., Theorem 5.

A.5. Maximum principles

Theorem A.5.1 (Strong maximum principle). Assume u ∈ C2
1((0, T ]×U)∩C((0, T ]× U)

and

c ≡ 0 in (0, T ]× U
with Lu := −∑n

i,j=1 a
i,juxixj +∑n

i=1 b
iuxi + cu.

Suppose also U is connected.

(i) If

ut + Lu ≤ 0 in (0, T ]× U
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and u attains its maximum over (0, T ]× U at a point (t0, x0) ∈ (0, T ]×U , then

u is constant on (0, t0]× U .

(ii) Likewise, if

ut + Lu ≥ 0 in (0, T ]× U

and u attains its minimum over (0, T ]× U at a point (t0, x0) ∈ (0, T ]× U , then

u is constant on (0, t0]× U .

This result and its proof can be found in [9], chapter 7.1.4, Theorem 11.

179



Appendix A. Theorems

180



Appendix B

Background regarding best fit

simulations in chapter 3

In this chapter a brief summary is given of finding the best fit parameters and deriving
the confidence interval of the fitted curves in chapter 3.

B.1. ODE solver

First of all, one has to solve the ODE systems in chapter 3 in order to determine
the best parameters fitting the data best. If we have a continuous right hand side,
we use the MATLAB solver ode15s. It is a quasi-constant step size implementation
of the numerical differentiation formulas, briefly NDFs, in terms of backward differ-
ences. Additionally, ode15s can solve stiff problems which often arises after the space
discretization of parabolic problems. For more information see [27]. If we have a dis-
continuous right hand side, the system can be solved by applying the so called “event
driven method”. The discontinuities will be located, in our case the time when we fulfil
the necessary condition, and the solver restart at this point. For more details see [7].
Such a method can be implemented into the ode15s solver. Briefly described, after the
ode15s solver executed a successful step, we ask if the intracellular concentration has
reached the threshold. In case this holds, we change the right hand side and the solver
restart to solve the system with this adjusted right hand side. Note that one has to
do further adjustments regarding the solver such that we obtain no error message, e.g.
rewrite the output function.
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B.2. Best fit parameter
We want to fit the FRET data points with our computed solution as good as possible.
That means after we have solved the ODE systems and derived the numerical solution
of the intracellular signalling molecule concentration, we can evaluate the FRET func-
tion (3.1). The resulting curve should be as close as possible to the sampled FRET data
points. One possibility to realize this is to use the fsolve function of MATLAB. This
MATLAB function starts at a self-chosen point and tries to find the root of the object
function. One can choose between three different algorithms: the “trust-region-dogleg”
(default), the “trust-region” and “levenberg-marquardt” algorithm. More informations
can be found in the MATLAB documentation. As object function, we choose the differ-
ence of the mean and the evaluated function with the parameters being the argument.
However, the fsolve function admits also negative parameter solutions which contra-
dicts with the assumption biological feasible parameters, that means non-negativity.
Indeed this happens for the degradation rates γe and γi. Unfortunately, we can not set
lower bounds for the arguments using the fsolve function. Therefore we use the fmincon
function which has the option to set upper and lower bounds for the arguments. The
MATLAB function fmincon needs a starting point and attempts to find a minimizer
of the object function subjected to a constraint. Our problem can be realized by set-
ting the previous object function as a nonlinear constraint and minimizing a constant
function, e.g. zero. That means fmincon tries to find a parameter set such that the non-
linear constraint is fulfilled. The interior-point optimization uses first a “Newton step”
and if this fails it attempts a “conjugated gradient step” at each iteration. More details
to this topic are in the MATLAB documentation. The fmincon algorithm is used to
find the parameter set of our best fit solution. We denote this best fit parameter set as θ̂.

Next we want to estimate the parameter confidence intervals based on F distribu-
tion. That means we assume for the confidence region that the error terms are jointly
normally distributed. The goal of nonlinear regression is to find the optimal parameter
set θ to minimize the sum of squared residuals SSR defined by

SSR(θ) =
n∑
i=1

(yi − f(θ))2 (B.2.1)

whereas n denotes the number of fitted values, yi is the ith value of the variable to
be predicted, xi is the ith value of the explanatory variable, and f(xi) is the predicted
value of yi.
The confidence region for the parameter set is a set of points for which SSR(θ) is less
than or equal to a constant which reads

SSR(θ)− SSR
(
θ̂
)

SSR
(
θ̂
) ≤ p

n− p
Fα
p,n−p. (B.2.2)
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The number of parameters is given as p and the confidence level as α. The formula
and more information are given in [26], [33]. For the approach to estimate the confidence
interval we proceed as follows: We minimize and maximize each parameter separately
whereas the other best fit parameters are fixed. This is the object function for the
fmincon solver. As nonlinear constraint, the inequality (B.2.2) has to be fulfilled. We
use again the interior-point optimization as algorithm.

B.3. Confidence interval of the fitted curves
Since we do not have so many data points to estimate the confidence interval of the
fitted curves, we perform a bootstrapping procedure of the raw data to enlarge the data
set. The raw data points contained were sampled at random to generate 104 data sets.
For each random data set, we want to find a best fit solution by using the approach
described above. Then we calculate the limits of the 95% percent fits by the 0.025 and
0.975 quantiles of the best fits of each random data set.
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Appendix C

Some MATLAB code for solving

ODE systems

This code presents the implementation of the event driven method and is copied from
a solver solving the wild type ODE system derived by the finite element method.

1 x interp=[t,t new];
2 y interp=[Ce';Ce new'];
3

4 if t new-t<10ˆ(-3)
5 xq=linspace(t,t new,4);
6 nq=4;
7 else
8 xq=linspace(t,t new,40);
9 nq=40;

10 end
11

12 % Solve the ODE Ci';
13 [t2 new,Ci new]= ode45(@(t,y) ...

myodeabsorp(t,y,x interp,y interp,n,sigma,bac(t)), xq,y);
14

15 % Calculate the thresholds
16 Bacteria=bac(t2 new);
17

18 etan new all=xi n.*Bacteria(Bacindex,:);
19 etan new=repmat(etan,1,nq);
20 etan new(¬logical(Sn index old(end,Bacindex)),:)= ...

etan new all(¬logical(Sn index old(end,Bacindex)),:);
21 etan new=etan new';
22

23 etap new all=xi p.*Bacteria(Bacindex,:);
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24 etap new=repmat(etap,1,nq);
25 etap new(¬logical(Sp index old(end,Bacindex)),:)= ...

etap new all(¬logical(Sp index old(end,Bacindex)),:);
26 etap new=etap new';
27

28 % Find new nodes where feedback is reached
29 Sn index new=[];
30 Sp index new=[];
31

32 Sn index new(1:length(t2 new),Bacindex)= ...
Ci new(:,Bacindex)≥etan new(:,:);

33 Sn diff=Sn index new(:,Bacindex) ...
-repmat(Snr index old(Bacindex),length(xq),1);

34

35 Sp index new(1:length(t2new),Bacindex)= ...
Ci new(:,Bacindex)≥etap new(:,:);

36 Sp diff=Sp index new(:,Bacindex) ...
-repmat(Sp index old(Bacindex),length(xq),1);

37

38 Sn diff 2=any(any(Sn diff==1,2),1);
39 Sp diff 2=any(any(Sp diff==1,2),1);
40

41 % Check if feedback is reached and adjust equations as the case ...
may be

42 if Sn diff 2 | | Sp ediff 2
43

44 Feedback=true;
45

46 if Sn diff 2 && ¬Sp diff 2
47 [r1,c1]=find(Sn diff 6=0);
48 [r2,¬]=find(min(r1)==r1);
49

50 t new=t2 new(r1(r2(1)));
51 Ce new=interp1(x interp,y interp,t new)';
52 Ci new=Ci new(r1(r2(1)),:);
53

54 etan=etan new(r1(r2(1)),:)';
55 etan(c1(r2))=Ci new(Bacindex(c1(r2)));
56

57 Sn index old([Bacindex(c1(r2))])=1;
58

59 tF n=[tF n,t new];
60

61 elseif ¬Sn diff 2 && Sp diff 2
62

63 [r1,c1]=find(Sp diff 6=0);
64 [r2,¬]=find(min(r1)==r1);
65

66 t new=t2 new(r1(r2(1)));
67

68 Ce new=interp1(x interp,y interp,t new)';
69 Ci new=Ci new(r1(r2(1)),:);
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70

71 etap=etap new(r1(r2(1)),:)';
72 etap(c1(r2))=Ci new(Bacindex(c1(r2)));
73

74 Sp index old([Bacindex(c1(r2))])=1;
75

76 tF p=[tF p,tnew];
77

78

79 else
80

81 [ri1,ci1]=find(Sn diff 6=0);
82 [ri2,¬]=find(min(ri1)==ri1);
83

84

85 [rp1,cp1]=find(Sp diff 6=0);
86 [rp2,¬]=find(min(rp1)==rp1);
87

88

89 if ri1(ri2)<rp1(rp2)
90

91 t new=t2 new(ri1(ri2(1)));
92

93 Ce new=interp1(x interp,y interp,t new)';
94 Ci new=Ci new(ri1(ri2(1)),:);
95

96 etan=etan new(ri1(ri2(1)),:)';
97 etan(ci1(ri2))=Ci new(Bacindex(ci1(ri2)));
98

99 Sp index old([Bacindex(ci1(ri2))])=1;
100

101 tF n=[tF n,tnew];
102

103 elseif rp1(rp2)<ri1(ri2)
104

105 t new=t2 new(rp1(rp2(1)));
106

107 Ce new=interp1(x interp,y interp,t new)';
108 Ci new=Ci new(rp1(rp2(1)),:);
109

110 etap=etap new(rp1(rp2(1)),:)';
111 etap(cp1(rp2))=Ci new(Bacindex(cp1(rp2)));
112

113 Sp index old([Bacindex(cp1(rp2))])=1;
114

115 tF p=[tF p,tnew];
116 else
117

118 t new=t2 new(rp1(rp2(1)));
119

120 Ce new=interp1(x interp,y interp,t new)';
121 y2new=y2new(rp1(rp2(1)),:);
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122

123 etap=etap new(rp1(rp2(1)),:)';
124 etap(cp1(rp2))=Ci new(Bacindex(cp1(rp2)));
125 etan=etan new(ri1(ri2(1)),:)';
126 etan(ci1(ri2))=Ci new(Bacindex(ci1(ri2)));
127

128

129 Sn index old([Bacindex(ci1(ri2))])=1;
130 Sp index old([Bacindex(cp1(rp2))])=1;
131

132 tF n=[tF n,tnew];
133 tF p=[tF p,tnew];
134

135 end
136 end
137

138 Load new = @(t,y)Load F(Points,Triang bac w,Sn index old, ...
Sp index old,bac(t),Pi min,Pi ∆);

139

140 ode = @(t,y) Stiff(t,y)*y+Load new(t,y);
141 tspan=[t new,tspan(end)];
142 Ce 0=Ce new;
143 Ci 0=Ci new;
144 etan 0=etan;
145 etap 0=etap;
146 done=true;
147 done2=false;
148

149 end
150

151 % Calculate bacterial density and thresholds
152 bac new= bac(tnew);
153

154 if ¬Spore
155 etan=etan new(end,:)';
156 etap=etap new(end,:)';
157 end
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