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Chapter 1

Introduction

Many practical problems of science and technology boil down to determining quantities of
interest from measured information. Be it in Physics, Engineering, Chemistry or Biology,
sensors are everywhere and measure signals (like sound waves or images), structure of
materials, and concentration of substances. Since measurements cost time and money,
one is in general interested in reducing the amount necessary to identify the quantity of
interest.
In principle, a measurement process can be regarded as a set of questions whose answers
are used to guess the unknown quantity. The number of questions one has to ask may
be considerably decreased by a smart design which uses preliminary knowledge on the
unknown quantity. Have a look at the old family picture in Figure 1.1 showing five
children, two boys and three girls. I select one of them and ask you to guess my choice by
posing yes/no questions. A possible question of yours might be

Have you selected the boy who sits left? (Q1)

But (Q1) is not an optimal choice in general. If by chance you picked the correct child,
you would win. But in the more probable case of making the wrong choice (I selected the
other boy), you gained almost no information. The number of possible correct answers
has just been reduced by one. A better question to ask would be

Have you selected a child who is sitting? (Q2)

In this case you eliminate at least two wrong possibilities independent of my concrete
choice. Let us assume now that you are given some preliminary information before asking
any questions, namely, that I selected a boy. The situation drastically changes as both
questions, (Q1) and (Q2), consequently yield the same amount of information; they de-
termine the correct solution.
This simple example illustrates two important aspects. First, if one wishes to use, inde-
pendent of the unknown quantity, as few questions as possible, it is crucial to design the
questions such that the gain of information does not depend on the answer. Second, any
preliminary information on the unknown quantity influences effectiveness of questions and
may allow to obtain a solution from considerably less inquiries.
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CHAPTER 1. INTRODUCTION

Figure 1.1: Family picture

Measurement processes are usually modeled by a function f mapping the unknown
quantity x to observed measurements y. If f is linear, x ∈ RN a real-valued vector, and
there are m measurements, we can write y = Ax, for some matrix A ∈ Rm×N . One
may think of posing m questions of the form 〈ai,x〉, i = 1, ...,m, and guessing x from
the answers yi. On the one hand, it is in general not possible to recover x from A and y
if m < N . On the other hand, in applications N might be exceedingly large while m is
often restricted due to budget or technical feasibility. To solve the dilemma one must use
preliminary knowledge on x meaning that x belongs to some relatively small subset K of
RN and m measurements suffice to distinguish points in K. A popular choice for K is the
set of sparse vectors, i.e., vectors which have only few non-zero entries. Indeed, in many
applications this is a realistic assumption.
A demonstrative example from everyday life are digital cameras. Let us consider a ten
megapixel camera which nowadays can be found in every smartphone. ”Ten megapixel”
means that in order to capture the picture (here the unknown quantity is an image), the
camera takes ten million measurements corresponding to one color value per image point.
In raw format the digital picture uses around 30MB. However, widespread compression
techniques like JPEG allow to reduce the size to less than 4MB keeping the relevant in-
formation (the picture in Figure 1.1, which has been compressed to JPEG, substantiates
the point). Image compression like JPEG is based on the following idea. A ten megapixel
picture can be stored as a ten million-dimensional vector x̄. Each entry of x̄ corresponds
to the color value of one pixel. In general, x̄ is dense, i.e., almost all entries are non-zero.
Yet, vectors corresponding to pictures are not spread in the whole space. They mainly
concentrate around a union of low-dimensional subspaces. Rotating the coordinate sys-
tem by applying a suitable Wavelet transformation leads to a sparsified representation of
x̄ such that most of the entries are close to zero and thus negligible. Setting those entries
to zero one obtains a good approximation x of x̄ which is sparse. Instead of storing x̄,
JPEG stores the non-zero entries of x and their locations. Quality of the JPEG image
depends on the required compression rate which regulates the number of thresholded en-

8



tries. Since 80 − 90% of the measurements are cast away in the end, one wonders if the
measurement process could be optimized such that a camera with one megapixel outputs
the same picture. While maybe of moderate interest for hobby photographers, in mag-
netic resonance imaging (MRI) a measurement reduction of 90% massively decreases the
duration of examinations reducing costs and supporting the well-being of patients.
And not only images but also sound waves and electromagnetic waves become sparse un-
der suitable orthogonal transformations like Wavelet or Fourier transform. Early works
on sparse frequency estimation [122], signal recovery [51], and image processing [146] con-
sidered sparsity promoting regularization to de-noise signals and to recover sparse signals
from underdetermined measurements. In statistics, the Least Absolute Shrinkage and
Selection Operator (LASSO) became popular for obtaining sparse and thus interpretable
solutions to regression problems [160]. While already in the 1990s sparse approximation
algorithms have been analyzed [33, 124] and conditions for successful recovery of sparse
signals have followed in the early 2000s [50, 70], only the seminal works [30] and [48] carved
out effectiveness of sparse regularization in combination with random measurement matri-
ces to solve underdetermined systems of equations. By stressing the importance for signal
processing applications they have founded the field of compressed sensing resulting in the
improved design of measurement devices in, e.g., MRI [82, 129] and radar [85].
Though the above described linear measurement model, on which classical compressed
sensing theory relies, has proven useful in various applications, it omits a peculiarity all
digital measurement processes have in common. Single measurements yi are not real num-
bers but only elements of a finite alphabet. A computer could not even store one single
real number with infinite precision and thus quantizes, i.e., it projects real numbers to
a finite subset of R and just stores the approximation. (Quantization theory dates back
to Shannon’s fundamental work [150, 151, 134] on information theory in 1948 and exam-
ines the influence of quantizers on signal distortion.) Even if the underlying measurement
model behaves linear, additional quantization leads to non-linearity and discontinuity. As
long as the quantization has a high resolution, it may be modeled in compressed sensing
as additive noise on the perfect measurements y, a situation which is handled anyway
by classical results. However, in the case of rough quantization – a popular example are
user recommendation systems like in the Netflix Prize [19] where each measurement corre-
sponds to a natural number between one and five – it is crucial to exploit knowledge on the
quantization process for obtaining optimal performance when recovering from compressed
measurements. Especially one-bit quantization rouse a lot of interest in the past few years.
In this extreme setting, each linear measurement is quantized to one bit, namely, its sign.
One-bit compressed sensing is attractive as sensors measuring only one bit of information
are cheap to produce and quite robust to pre-quantization noise. However, compressed
sensing algorithms need to be adapted/extended to exploit knowledge on the quantization
process and to work properly in this highly non-linear setting.

Contribution In this self-contained thesis we present novel algorithmic approaches to
quantized compressed sensing and matrix recovery, their theoretical analysis, and em-
pirical experiments demonstrating their performance as well as the validity of theoretical
results. The essential theoretical contribution is the generalization and non-trivial adaption
of restricted isometry properties to treat nonlinear extensions of compressed sensing (dis-
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CHAPTER 1. INTRODUCTION

tributed quantization and manifold quantization) and non-convex programs (A-T-LAS2,1).
Starting from a detailed introduction into compressed sensing and quantization, the thesis
embeds [63, 64, 108, 91, 125], extracts from the Master’s thesis [169], and some yet un-
published insights into recent research. While Chapter 2 and 3 are a review of established
results, Chapter 4-7 and the Appendix consist of original work.

In Chapter 2, we provide a brief overview over the fundamental concepts of com-
pressed sensing. We explain how the problem of sparse reconstruction provoked definition
of null space properties and restricted isometry properties, how those properties are con-
nected to stable and robust recovery, and present different popular recovery strategies of
compressed sensing.

In Chapter 3, we introduce the concept of quantization and discuss the challenges
it imposes on classical compressed sensing theory. We present generalized notions of di-
mensionality to capture intrinsic complexity of signal sets and report on recent progress
in recovery from one-bit and multi-bit quantized compressed sensing measurements.

In Chapter 4, we propose a suitable signal class for distributed compressed sensing
and provide the first theoretical justification for numerically observed performance of joint
signal recovery from one-bit measurements. The results of this chapter have been pub-
lished in [125].

In Chapter 5, we propose the first tractable algorithm for recovering signals living
on low-dimensional manifolds from one-bit measurements. We proof approximation guar-
antees which resemble recent theoretical but algorithmicly intractable results and apply
them to manifolds learned from samples. The results of this chapter have been published
in [108, 91].

In Chapters 6 & 7, we explain how multi-bit compressed sensing relates to classifica-
tion problems in machine learning and how this relation led to the problem of recovering
matrices having multiple structures. We propose a novel algorithm for matrix sensing
which profits from sparsity and low-rankness simultaneously and introduce signal sets of
matrices which have effectively sparse and non-orthogonal low-rank decompositions to an-
alyze its performance. The results of Chapter 7 have been published in [63, 64].

In the Appendix, we discuss a parameter choice strategy for the Least Absolute
Shrinkage and Selection Operator (LASSO) by using an elementary sparse recovery algo-
rithm, work that has been published in [169], and provide some technical and straight-
forward proofs from Chapter 7.

Notation Let us fix some notational conventions for the rest of the thesis. We abbreviate
[n] = {1, ..., n}. We use lowercase and uppercase bold letters for vectors and matrices,
respectively. Hence, a matrix A ∈ Rn1×n2 can be clearly distinguished from its rows ai
and its entries ai,j , for i ∈ [n1], j ∈ [n2]. We denote rank and kernel of A by rank(A) and
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ker(A).
By singular value decomposition (SVD), any matrix A ∈ Rn1×n2 can be decomposed
into the product UΣVT where U ∈ Rn1×n1 ,V ∈ Rn2×n2 are orthogonal matrices and
Σ ∈ Rn1×n2 is diagonal. The diagonal entries σi ≥ 0, for i ∈ [min{n1, n2}], are called
singular values and the columns of U and V are called singular vectors. If rank(A) = R,
we can use the rank-reduced SVD UΣVT where U ∈ Rn1×R,V ∈ Rn2×R have orthonormal
columns and Σ ∈ RR×R with σi > 0, for all i ∈ [R].
We use a variety of norms in this work: let ‖·‖p, for p > 0, denote the `p-(quasi)-norm
of a vector. For p = ∞ we get the supremum norm and by abuse of notation, for p = 0,
the `0-norm which is not a norm but counts the number of non-zero entries of a vector (it
can be interpreted as the limit p → 0). All `p-(quasi)-norms are transferred to matrices
by applying them to the vector of singular values. In this case, they are called Schatten-
`p-(quasi)-norms. Moreover, the `∞-norm becomes the operator norm and is denoted by
‖·‖2→2 while the `1-norm becomes the nuclear norm and is denoted by ‖·‖∗. The Schatten-
`2-norm is also called Frobenius norm and written as ‖·‖F . In addition to those, we will
use the mixed matrix norms ‖·‖2,1 and ‖·‖1,2 which are defined as the sum of the `2-norms
of the columns resp. rows.
We write Bp(z, r) to denote the `p-ball of radius r > 0 at z ∈ RN and SN−1 to denote the
(N − 1)-dimensional Euclidean unit sphere.
An (ε, ‖·‖)-net K̃ of a set K ⊂ RN is a subset K̃ ⊂ K such that for any z ∈ K there exists
z̃ ∈ K̃ with ‖z− z̃‖ ≤ ε. The covering number N(K, ‖·‖ , ε) denotes the cardinality of a
minimal (ε, ‖·‖)-net of K. If the underlying metric is clear, we write ε-net and N(K, ε).
We denote the support of a vector z ∈ RN by supp(z) = {i ∈ [N ] : zi 6= 0} and define the
set of s-sparse vectors ΣN

s = {z ∈ RN : | supp(z)| ≤ s}. For any set S ⊂ [N ], zS ∈ RN
is the restriction of z to S, i.e., all entries not in S are set to zero. The best s-term
approximation of x in `p is defined as σs(x)p := inf{‖x− z‖p : z ∈ ΣN

s }
The probability of an event A and the expectation of a random variable W are written as
Pr[A] and E[W ]. For K ⊂ RN , let U(K) be the uniform distribution on K and denote
the normal distribution with expectation µ ∈ RN and covariance matrix Σ ∈ RN×N by
N (µ,Σ).
We use a & b and a . b to express a & Cb and a . Cb, for some absolute constant C > 0.
If a & b and a . b, we write a ' b.
We write dist(K,K ′) = infz∈K,z′∈K′ ‖z − z′‖2 for the distance of two sets K,K ′ ⊂ RN
and by abuse of notation dist(0,K) = infz∈K ‖z‖2. We denote the diameter of a set by
diam(K) = supz∈K−K ‖z‖2.
We use dre and brc to denote the smallest z ∈ Z with r ≤ z and the largest z ∈ Z with
z ≤ r.
Let Vold(K) be the d-dimensional volume of a set K ⊂ RN and write Vol(K) if d = N .
For K ⊂ RN , PK denotes the projection onto K whenever it is uniquely defined. If
K = SN−1, we simply write PS.
We work with various distance measures: for z, z′ ∈ RN , the Hamming distance is defined
as dH(z, z′) = |{i ∈ [N ] : zi 6= z′i}|. The normalized geodesic distance is denoted by
dG(z, z′) = 1

π arccos(〈z, z′〉), for any z, z′ ∈ SN−1, and fulfills dG(z,−z) = 1. It can be
extended to RN \ {0} by defining dG(z, z′) := dG(PS(z),PS(z′)). The distance dA is more
involved and can be found in Definition 3.3.4.
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CHAPTER 1. INTRODUCTION

We denote the vectorization of a matrix Z ∈ Rn1×n2 by vec(Z) ∈ Rn1n2 .
The indicator function 1K(z) of a set K ⊂ RN is one if z ∈ K and zero if z /∈ K.
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Chapter 2

Compressed Sensing

In this chapter we introduce in detail the basic concepts of compressed sensing and provide
a collection of well-known definitions and results. Starting with theoretical lower bounds on
the minimal number of measurements necessary to identify sparse signals from their linear
measurements, the chapter leads the way to efficient algorithms which are guaranteed to
approximate sparse signals from noisy measurements.

2.1 Sparsity and Under-determined Linear Systems

As already mentioned in Chapter 1, we are interested in recovering high-dimensional sig-
nals x ∈ RN from few linear measurements of the form

y = Ax, (2.1)

where A ∈ Rm×N models the measurement process and y ∈ Rm is a vector containing the
measurements. In general, the problem is ill-posed as soon as m < N . To allow reconstruc-
tion one needs additional assumptions. Though living in a high-dimensional space, many
signals in real-world applications are concentrated on lower dimensional manifolds, i.e.,
their intrinsic dimension is small in comparison to the ambient dimension N , cf. Section
1. (We will discuss more general measures of dimensionality than the linear dimension in
Section 3.2.) In the simplest case we may assume x to be s-sparse which means that the
support supp(x) := |{i ∈ [N ] : xi 6= 0}| of x is of size s at most. Under knowledge of the
support this corresponds to an intrinsic signal dimension s which is independent of N . We
will see later that even without any knowledge of the support the ambient dimension N
has just a mild influence on this. From now on we denote the set of s-sparse vectors in
RN by ΣN

s .

The first interesting question is, how many measurements are necessary to uniquely
identify each s-sparse signal. To be more precise, what is the minimal m, such that
Az 6= Az′ implies z 6= z′, for all z, z′ ∈ ΣN

s ? The following observation, which relies on
basic linear algebra, provides an answer.

Lemma 2.1.1 ([34, Lemma 3.1]). Given A ∈ Rm×N , the following properties are equiva-
lent:

13



CHAPTER 2. COMPRESSED SENSING

(i) Every s-sparse vector x ∈ RN is the unique s-sparse solution of Az = Ax, that is,
if Ax = Az and both x and z are s-sparse, then x = z.

(ii) The nullspace ker(A) does not contain any 2s-sparse vector other than the zero
vector, i.e., ker(A) ∩ ΣN

2s = {0}

(iii) Every set of 2s columns of A is linearly independent.

Proof : (i) ⇒ (ii): Assume (i) holds and z ∈ ker(A) ∩ ΣN
2s. Then z can be written

as z = z1 − z2 where z1, z2 ∈ ΣN
s and supp(z1) ∩ supp(z2) = ∅. As Az1 −Az2 =

Az = 0, (a) implies z1 = z2. But as z1 and z2 have disjoint supports we get
z1 = z2 = z = 0.
(ii) ⇒ (iii): Assume (ii) and that z ∈ RN encodes a linear combination of 2s
columns of A which yields zero, i.e., z ∈ ΣN

2s with Az = 0. Property (ii) implies
z = 0.
(iii) ⇒ (i): Assume (iii) and that x, z ∈ ΣN

s yield the same measurements Ax =
Az. As x− z ∈ ΣN

2s and A(x− z) = 0, property (iii) implies x = z.

The third property of Lemma 2.1.1 shows that at least m ≥ 2s linear measurements
are necessary to uniquely recover s-sparse signals from their measurements. In fact, one
can construct matrices A ∈ Rm×N for m = 2s and arbitrary N ≥ 2s such that (iii) is
fulfilled (see [66, Theorem 2.14]). It is even possible to provide a program which recovers
any s-sparse signal x from its measurements y in that case. One just asks for the sparsest
signal fulfilling the measurements, that is

min
z∈RN

‖z‖0 , subject to Az = y, (2.2)

where the `0-norm is defined as ‖z‖0 = | supp(z)| (by abuse of notation we write and call
‖·‖0 a norm). It is straight-forward to check that if we assume (i) in Lemma 2.1.1 for the
measurement operator A, the signal x is the unique solution to (2.2).

This could be the end of the story as we obtained a procedure for recovering s-sparse
signals in arbitrarily high dimensions from m = 2s linear measurements. However, the
program (2.2) has several drawbacks. First, it is in general NP-hard to solve (cf. [130]).
To find a solution one has to solve a linear system for all possible support combina-
tions, the number of which grows like

(
N
s

)
≈ (N/s)s. Second, the program is neither

stable nor robust. Being stable means that under small sparsity defects the approxi-
mation still works, i.e., if for any x ∈ RN the best s-term approximation is denoted by
σs(x)1 := inf{‖x− z‖1 : z ∈ ΣN

s } then the error in recovery of x is at most O(σs(x)1).
Vectors x for which σs(x)1 is small are often called compressible. Being robust means
that under unknown noise η ∈ Rm on the measurements, i.e., y = Ax + η, the error
in recovery of x is at most O(‖η‖2). In case of Fourier measurements (if A computes a
subset of coefficients of the discrete Fourier transform) the first issue can be avoided by
using Prony’s method which identifies supp(x) by identifying the zeros of a well-chosen
polynomial (see [66, Theorem 2.15] and references therein). Nonetheless, Prony’s method
suffers by construction the same lack of stability and robustness as (2.2) provoking the
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2.2. NSP AND RIP - STABILITY AND ROBUSTNESS

Az = Ax

Figure 2.1: Interplay between `1-ball and ker(A).

question if one can recover all s-sparse signals in polynomial time in a stable and robust
way from m = 2s measurements or, if this is not possible, how many measurements will
suffice.

Remark 2.1.2. We restrict ourselves in this chapter to uniform recovery of signals, that is
we are interested in measurement operators A which work for all s-sparse signals at once.
There has also been research on non-uniform recovery where one specific but unknown
s-sparse signal x is fixed and A may be designed in a way to perform especially well for
the recovery of x. In this setting it is possible to guarantee unique recovery by (2.2) for
m = s+ 1 as shown in [168, Theorem 2.1].

2.2 NSP and RIP - Stability and Robustness

The last section showed that recovery of sparse signals from few measurements is in theory
possible but also that it is not obvious how to recover in practice. A possible approach is
to relax (2.2) to a tractable program by noting that ‖z‖pp → ‖z‖0 for p → 0 with p > 0.
However, using ‖·‖p, for 0 < p < 1, yields a non-convex optimization problem which is
hard to solve. Choosing p = 1 leads to

min
z∈RN

‖z‖1 , subject to Az = y, (2.3)

which is often called basis pursuit and can be viewed as convex relaxation of (2.2). One
might wonder if solutions to (2.2) and (2.3) agree. The sketch in Figure 2.1 suggests that
the solutions to both problems are identical if ker(A) is not aligned with high dimensional
faces (here the one-dimensional faces) of the `1-ball. In this case the inflated `1-ball hits
the affine space Az = y in exactly one point which corresponds to a sparse solution.

The observation that the kernel geometry plays a key role (recall (ii) in Lemma 2.1.1)
motivates the following definition of null space property. In a more general form it was
introduced under this name in [34] but we state the commonly known version in [66]. For
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any z ∈ RN and S ⊂ [N ] we denote by zS ∈ RN the vector which has set to zero all entries
not contained in S.

Definition 2.2.1 (NSP, [66, Definition 4.1]). A matrix A ∈ Rm×N is said to satisfy the
null space property relative to a set S ⊂ [N ] if

‖zS‖1 < ‖zSc‖1 for all z ∈ ker(A) \ {0}.

It is said to satisfy the null space property of order s if it satisfies the null space property
relative to any set S ⊂ [N ] with |S| ≤ s.

Remark 2.2.2. The NSP of order s implies property (ii) in Lemma 2.1.1.

It turns out that A satisfies the NSP if and only if (2.2) and (2.3) are equivalent, i.e.,
the NSP fully characterizes when (2.2) can be solved by convex relaxation.

Theorem 2.2.3 ([66, Theorem 4.5]). Given a matrix A ∈ Rm×N , every s-sparse vector
x ∈ RN is the unique solution of `1-minimization subject to y = Az if and only if A
satisfies the null space property of order s.

Proof : Consider first one fixed support set S ⊂ [N ] with |S| ≤ s. Assume that every
x ∈ RN with supp(x) ⊂ S is the unique minimizer of (2.3). Hence, for any v ∈
ker(A) \ {0}, the vector vS is the unique minimizer of ‖z‖1 subject to Az = AvS .
This implies ‖vS‖1 < ‖vSc‖1 as −vSc 6= vS and by A(vS + vSc) = Av = 0 one
has A(−vSc) = AvS .
Conversely, let us assume that the NSP relative to S holds. Given x ∈ RN with
supp(x) ⊂ S and z ∈ RN such that x 6= z and Ax = Az, define v = x−z ∈ ker(A).
We get

‖x‖1 ≤ ‖x− zS‖1 + ‖zS‖1 = ‖vS‖1 + ‖zS‖1
< ‖vSc‖1 + ‖zS‖1 = ‖z‖1 ,

which shows that x is the unique minimizer of (2.3). The claim follows by varying
over all possible support sets.

Theorem 2.2.3 implies the equivalence of (2.2) and (2.3) as, for x ∈ ΣN
s minimizing

(2.3), any minimizer x′ of (2.2) fulfills ‖x′‖0 ≤ ‖x‖0 and hence x′ = x. (The proof
illustrates why linearity of A is a crucial assumption for classical compressed sensing and
indicates that considering non-linear measurement processes poses a non-trivial challenge.)
Let us defer the question of how many measurementsm are necessary to guarantee the NSP
for A and first concentrate on the second issue of (2.2), namely stability and robustness of
reconstruction. The NSP as defined in Definition 2.2.1 does not suffice to ensure stability
of (2.3) and the linear constraints of (2.3) are too strict to allow noisy measurements of
type

y = Ax + η, (2.4)

where η ∈ Rm is the unknown noise. We hence introduce for η ≥ 0 the convex program

min
z∈RN

‖z‖1 , subject to ‖Az− y‖2 ≤ η. (2.5)
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The minimization in (2.5) is a relaxation of (2.3) and commonly known as basis pursuit de-
noising. In combination with the following stronger NSP it guarantees stable and robust
recovery in polynomial time if η is suitably chosen in dependence on the noise level ‖η‖2.

Definition 2.2.4 (Stable and robust NSP, [66, Definition 4.17]). A matrix A ∈ Rm×N
is said to satisfy the stable and robust null space property with constants 0 < ρ < 1 and
τ > 0 relative to a set S ⊂ [N ] if

‖zS‖1 < ρ ‖zSc‖1 + τ ‖Az‖2 for all z ∈ RN .

It is said to satisfy the stable and robust null space property of order s if it satisfies the
stable and robust null space property with constants 0 < ρ < 1 and τ > 0 relative to any
set S ⊂ [N ] with |S| ≤ s.

Theorem 2.2.5 ([66, Theorem 4.19]). Suppose that A ∈ Rm×N satisfies the stable and
robust NSP of order s with constants 0 < ρ < 1 and τ > 0. Then, for any x ∈ RN with
measurements (2.4), a solution x̂ of (2.5) with η ≥ ‖η‖2 fulfills

‖x− x̂‖1 ≤
2(1 + ρ)

1− ρ
σs(x)1 +

4τ

1− ρ
η. (2.6)

Theorem 2.2.5 is the consequence of the stronger statement [66, Theorem 4.20] which
provides an equivalence relation, not only an implication of the stable and robust NSP.
The parameters ρ and τ in Definition 2.2.4 control stability and robustness as can be seen
from Theorem 2.2.5. For ρ = 1 and z ∈ ker(A) \ {0} one recovers the NSP.

Though null space properties yield valuable insights into the solvability of (2.2) it is
in many situations convenient to work with a stronger condition, the so-called restricted
isometry property. This property of a matrix A ∈ Rm×N has been introduced in [31] under
the name ”uniform uncertainty principle” and implies the stable and robust NSP.

Definition 2.2.6 (RIP, [66, Definition 6.1]). A matrix A ∈ Rm×N satisfies the restricted
isometry property of order s (s-RIP) with RIP constant 0 < δ < 1 if, for all z ∈ ΣN

s ,

(1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22. (2.7)

Remark 2.2.7. There exists an alternative definition of s-RIP without squares in which
(2.7) is replaced by

(1− δ)‖z‖2 ≤ ‖Az‖2 ≤ (1 + δ)‖z‖2. (2.8)

Both definitions are equivalent up to a slight modification of the RIP constant as, for
0 < δ < 1, (2.7) implies (2.8) and (2.8) with RIP constant δ/3 implies (2.7).

Theorem 2.2.8. If A ∈ Rm×N satisfies the 2s-RIP with δ < 4/
√

41 ≈ 0.6, A also satisfies
the stable and robust NSP with constants ρ = cδ and τ =

√
sc′δ where 0 < cδ < 1 and

c′δ > 0 only depend on δ.

Theorem 2.2.8 is a consequence of [66, Theorem 6.13]. The idea behind Definition 2.2.6
is that A cannot preserve the whole geometry (distances and angles) of RN if m � N .
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Distinct points will fall together. If A satisfies an RIP, however, it acts almost like an
isometry when restricted to sparse vectors. In other words, A preserves the geometry of
ΣN
s . It is straight-forward to verify that two different s-sparse vectors can be distinguished

by their measurements if A has the 2s-RIP.
In Theorem 2.2.8 a 2s-RIP is used. There exist various other stability and robustness
guarantees under assumption of ts-RIPs, for t ≥ 4/3. Cai and Zhang showed in [26] that
δ <

√
(t− 1)/t is a sharp upper bound on the ts-RIP constant of A to guarantee exact

recovery of all s-sparse signals in the noiseless case.

We have characterized matrices which will allow stable and robust recovery of signals
in RN in polynomial time. So far we ignored how many measurements are necessary to
construct such matrices. Is it sufficient to have m = 2s as in Lemma 2.1.1? Unfortunately,
the answer is no. By relating the problem of stable recovery to Gelfand widths of `p-balls
it has been shown that (cf. [34] and references therein), for some absolute constant C > 0,

m ≥ Cs log

(
eN

s

)
(2.9)

linear measurements are necessary to guarantee stable estimates as (2.6). In contrast to
Lemma 2.1.1 the ambient dimension N has now a mild influence. However, up to the
log-factor the necessary number of measurements still scales linear in s. The condition
in (2.9) is not only necessary but also sufficient for the existence of s-RIP matrices. The
following result has been first derived in [31]. We report the proof presented in [13] as it
is elementary and illustrates the main tools for deriving RIPs of random matrices.

Theorem 2.2.9. Let A ∈ Rm×N have standard Gaussian iid entries ai,j ∼ N (0, 1) and
assume that (2.9) holds for C = C ′δ−2 with 0 < δ < 1 and an absolute constant C ′. Then
with probability at least 1 − exp(−cδ2m), for some absolute constant c > 0, the matrix

1√
m

A satisfies the s-RIP with RIP constant δ.

Proof : We show the alternative RIP in Remark 2.2.7. The claim follows by equivalence
of both definitions. As (2.8) is invariant under `2-norm scaling we restrict the proof
to ‖x‖2 = 1. Note that, for all z ∈ RN , the matrix 1√

m
A fulfills

Pr
[∣∣∣‖Ax‖22 − ‖z‖

2
2

∣∣∣ ≥ ε ‖z‖22] ≤ 2e−cmε
2
, (2.10)

for some absolute constant c > 0 (see, e.g., [164, Proposition 5.16]). Let us fix a
support set S ⊂ [N ] with |S| = s and define the set ΣS := {x ∈ SN−1 : supp(x) =
S}. Choose a minimal δ/4-cover QS ⊂ ΣS , i.e., for all x ∈ ΣS there exists q ∈ QS
with ‖q‖2 = 1 and ‖x− q‖2 ≤ δ/4. One can find such a cover of cardinality
|QS | ≤ (12/δ)s (see [28, Section 3]). By setting ε = δ/2 and applying a union
bound to (2.10) we get with probability at least 1− 2(12/δ)s exp(−cmδ2/4) that(

1− δ

2

)
‖q‖22 ≤

∥∥∥∥ 1√
m

Aq

∥∥∥∥2

2

≤
(

1 +
δ

2

)
‖q‖22 ,
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for all q ∈ QS which implies(
1− δ

2

)
‖q‖2 ≤

∥∥∥∥ 1√
m

Aq

∥∥∥∥
2

≤
(

1 +
δ

2

)
‖q‖2 .

Define now A ≥ 0 to be the smallest number such that∥∥∥∥ 1√
m

Ax

∥∥∥∥
2

≤ (1 +A) ‖x‖2 ,

for all x ∈ ΣS . For any x ∈ ΣS , we can choose a q ∈ QS of minimal distance. As
x− q ∈ ΣS , we get∥∥∥∥ 1√

m
Ax

∥∥∥∥
2

≤
∥∥∥∥ 1√

m
Aq

∥∥∥∥
2

+

∥∥∥∥ 1√
m

A(x− q)

∥∥∥∥
2

≤ 1 +
δ

2
+ (1 +A)

δ

4
.

By minimality of A this implies A ≤ δ/2 + (1 + A)δ/4 and, hence, A ≤ δ. The
lower bound can be obtained in a similar way.
We have now proven the RIP on a fixed support set S ⊂ [N ] with probability at
least 1 − 2(12/δ)s exp(−cmδ2/4). To conclude it suffices to bound the number of
possible supports by

(
N
s

)
≤ (eN/s)s, apply a union bound, and use the assumption

(2.9).

Theorem 2.2.8 shows that there exist RIP matrices for m = O(s log(eN/s)) and that
they can be obtained with exceedingly high probability by drawing the matrix entries at
random. Similar results have been derived as well for other distributions which follow
concentration laws like (2.10), e.g., all sub-gaussian distributions (cf. [13]). As the 2s-RIP
implies stable and robust recovery of s-sparse signals in polynomial time, we have resolved
all aforementioned issues of the `0-minimization in (2.2).
The proof of Theorem 2.2.8 reveals the main ingredients of proving an RIP for random
matrices. One starts with a concentration inequality which is extended to all points in
the signal set. In the above proof this happened by combining a elementary calculation
with union bounds. The reader will rediscover this basic strategy in the proofs of the
generalized RIPs of Chapter 4 and 7 as both rely on a covering of the signal set. Only the
extension to the whole set is done by more sophisticated methods.
It is still an open problem to prove RIPs for deterministic matrices in the optimal mea-
surement regime m = O(s log(eN/s)). The best obtained results need m ≥ Cs2 which is
in terms of s substantially worse than (2.9).

As we initially were interested in practical signal recovery from compressed sensing
measurements, Theorem 2.2.8 is still unsatisfactory. Matrices with subgaussian entries
are almost surely dense. Consequently, they are expensive to store and matrix-vector cal-
culations become time-consuming in high dimensions. Moreover, it is hard to construct
measurement devices which correspond to such random matrices. Because of these short-
comings other types of measurement operators have been examined. Under slightly worse
log-factors the RIP has been proven for randomly subsampled Fourier matrices in [31, 145]
and partial random circulant matrices in [107]. These matrices can be efficiently stored
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and allow fast matrix-vector multiplications. Moreover, Fourier measurements naturally
appear in many imaging applications.

All above results remain valid if stated for complex-valued signal vectors. As we restrict
ourselves in the following to the real-valued case, we refrain from presenting them in full
generality.

2.3 Recovery Methods

Basis pursuit de-noising is not the sole polynomial time method to solve (2.2) in a stable
and robust way. Over the years, a vast amount of algorithms has been proposed to effi-
ciently find sparse solutions to (2.1) and (2.4). They can be split into three main groups:
greedy methods, e.g., the orthogonal matching pursuit (OMP) [44, 163], iterative thresh-
olding algorithms, e.g., the iterative soft thresholding algorithm [39] and convex optimiza-
tion approaches as basis pursuit. All groups exhibit different advantages and drawbacks.
Roughly spoken, greedy methods, which search for global solutions by successively making
locally optimal choices, are in general simple to implement and extremely fast but need
a good stopping criterion to prevent them from overshooting. Iterative thresholding al-
gorithms, which alternate between gradient descent and projection steps, are also simple
to implement but their convergence rate might depend heavily on a suitable parameter
choice. Optimization approaches, which combine data fidelity with regularization terms,
are convenient to analyze but can become hard to solve efficiently for high-dimensional
problems. In the rest of this chapter we present three popular methods which belong to
the first two groups and will reappear in later chapters.

2.3.1 Orthogonal Matching Pursuit

As already mentioned, orthogonal matching pursuit (OMP) belongs to the group of greedy
algorithms. It is popular for its speed, performance and simplicity and aims at approxi-
mating x in (2.4) by some s-sparse xOMP ∈ RN where the desired support size s has to
be known in advance as it defines the stopping criterion of OMP (cf. Algorithm 1).
The algorithm starts with the residuum e := y, the solution vector x0

OMP = 0, and the
support set Λ0 := ∅ which will be greedily built in s steps. In each iteration step l one index
is added to Λl−1, namely, the index maximizing the scalar product between the columns of
A and the current residuum. After having enlarged the support, the target vector xl+1

OMP

is updated by a least squares fit and the new residuum is given by el+1 = y −Axl+1
OMP.

After s steps OMP terminates.
If A satisfies the RIP, the following statements hold for OMP. Note that Theorem 2.3.1
requires more iterations for recovery than Theorem 2.3.2 but is based on less restrictive
assumptions.

Theorem 2.3.1 ([66, Proposition 6.24]). Let A ∈ Rm×N fulfill the RIP of order 13s and
y = Ax + η, for some s-sparse x ∈ RN with Λ = supp(x) and η ∈ Rm. Let (xlOMP)l
denote the sequence defined by Algorithm 1 started at the index set Λ0 = ∅. If the 13s-RIP
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Algorithm 1 : OMP(y,A, s)

Require: A ∈ Rm×N , y ∈ Rm, s ∈ N
1: e0 = y, x0

OMP = 0 ∈ RN , Λ0 = ∅, l = 0 . initialize

2: while l < s do
3: hl = ATel . match
4: Λl+1 = Λl ∪ {arg maxj | hl(j) |} . identify

5: xl+1
OMP = arg minz:supp(z)⊂Λl+1 ‖y −Az‖2, el+1 = y −Axl+1

OMP . update
6: l = l + 1
7: end while

8: return xOMP = xlOMP = arg minz:supp(z)⊂Λl ‖y −Az‖2

constant satisfies δ < 1/6, there is a constant C > 0 depending only on δ, such that

‖y −Ax12s
OMP‖2 ≤ C‖η‖2.

Note that, if η = 0, this implies exact s-sparse recovery via OMP in 12s iterations.

If the signal fulfills an additional decay condition and there is no noise on the mea-
surements, one can guarantee recovery in s iterations.

Theorem 2.3.2 ([41, Theorem 4.1]). Suppose that the matrix A ∈ Rm×N satisfies the
RIP of order s + 1 with RIP constant δ < 1

3 . Suppose x ∈ RN is s-sparse and for all
j ∈ {1, 2, ..., s− 1} it holds that

rj(x)

rj+1(x)
≥ α,

where rj(x) denotes the j-th largest entry of x in absolute value. If

α >
1 + 2 δ

1−δ
√
k − 1

1− 2 δ
1−δ

,

then OMP recovers x exactly from y = Ax in s steps.

In both cases it is important to stop OMP after a specific number of iterations which
depends on the exact and, in general, unknown support size of x. Moreover, without
special structure of the signal, OMP is not able to provide guaranteed recovery in s steps
(cf. [49, Theorem 7.3]).

2.3.2 Iterative Hard-Thresholding

By its name it is obvious that iterative hard-thresholding (IHT) belongs to the group of
iterative thresholding algorithms. Similar to OMP it is a simple and efficient method
which requires knowledge on the sparsity s of the signal to be recovered (cf. Algorithm
2).
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Algorithm 2 : IHT(y,A, s)

Require: A ∈ Rm×N , y ∈ Rm, s ∈ N, number of iterations L
1: x0 = 0 ∈ RN , l = 0 . initialize

2: while l < L do
3: xl+1 = Hs(x

l + AT (Axl − y)) . gradient and hard thresholding step
4: l = l + 1
5: end while

6: return xIHT = xL

Algorithm 3 : ISTA(y,A, α, L)

Require: A ∈ Rm×N , y ∈ Rm, α > 0, number of iterations L
1: x0 = 0 ∈ RN , l = 0 . initialize

2: while l < L do
3: xl+1 = Sα/2(xl + AT (Axl − y)) . gradient and soft thresholding step
4: l = l + 1
5: end while

6: return xISTA = xL

The algorithm alternates between gradient descent steps of the least squared error function
z 7→ ‖y −Az‖22 and back-projections to the set ΣN

s . The name IHT comes from the
projection operator Hs which is called hard-thresholding operator. It only keeps the s in
magnitude largest entries of a vector and sets the rest to zero.
As before the RIP of A can be used to deduce stable and robust recovery.

Theorem 2.3.3 ([66, Theorem 6.21]). Suppose that A ∈ Rm×N satisfies the RIP of order
6s with RIP constant δ < 1/

√
3 ≈ 0.6. Then, for x ∈ RN and η ∈ Rm, the sequence xl

defined by Algorithm 2 with y = Ax + η, x0 = 0, and s replaced by 2s satisfies, for any
l ≥ 0, ∥∥∥x− xl

∥∥∥
1
≤ Cσs(x)1 +D

√
s ‖η‖2 + 2ρl

√
s ‖x‖2 ,

where the constants C,D > 0 and 0 < ρ < 1 depend only on δ.

The error bound in Theorem 2.3.3 is similar to (2.6) if one replaces the NSP as-
sumption by an RIP assumption and uses Theorem 2.2.8. The difference lies within the
additional error term 2ρl

√
s ‖x‖2 which linearly converges to 0. Moreover, the result does

not guarantee convergence of the sequence xl.

2.3.3 Iterative Soft-Thresholding and LASSO

With the iterative soft-thresholding algorithm (ISTA) we have another representative of
the thresholding algorithms. We will see, however, that ISTA is also closely related to a

22



2.3. RECOVERY METHODS

convex relaxation approach which provides additional tools for analysis. In contrast to
IHT, ISTA does not require the signal’s sparsity as input. Instead there is a free parameter
α > 0 to choose, which controls sparsity of the approximation (cf. Algorithm 3).
ISTA is a proximal gradient descent algorithm, i.e., it approximates the minimizer of
a convex but partially non-smooth functional by alternating between gradient descent
steps of the smooth component and proximal mappings of the non-smooth component
(for further details on proximal mappings and proximal gradient descent refer to [136]).
Similar to IHT the gradient descent step is computed for z 7→ ‖y −Az‖22. Proximal
mapping of ISTA is the soft-thresholding operator

(Sα(z))i =


zi − α zi > α

0 |zi| ≤ α
zi + α zi < −α,

(2.11)

which acts component-wise on vectors and motivates the algorithm’s name. The soft-
thresholding operator iteratively shrinks all components to zero. One might view it as a
smoothened version of the hard-thresholding operator. As Sα/2 is the proximal mapping
of z 7→ α ‖z‖1, the underlying optimization problem of ISTA is given by

min
z∈RN

‖y −Az‖22 + α ‖z‖1 , (2.12)

which is commonly known as least absolute shrinkage and selection operator (LASSO) in
statistics and is, for suitable choice of α > 0, equivalent to the basis pursuit denoising in
(2.5), see [66, Proposition 3.2]. This can be used to transfer theoretical results obtained
for (2.5) to ISTA. (As proximal mappings are generalized projections, IHT may also be
interpreted as proximal gradient descent algorithm but for a non-convex problem.)
The analysis of ISTA can be splitted in two independent parts. First, convergence of the
iterates is established under mild assumptions on A. Second, by equivalence of (2.12) and
(2.5) we can use Theorem 2.2.5 to bound the worst case distance between minimizers of
(2.12) and the original signal x depending on sparsity defect and noise level.

Theorem 2.3.4. Let A ∈ Rm×N and y ∈ Rm. If ‖A‖2→2 <
√

2, the sequence of iterates
xl in Algorithm 3 converges to a minimizer of (2.12).

The convergence of Algorithm 3 has been established in [39] for ‖A‖2→2 < 1. In [36]
the authors could relax the condition ‖A‖2→2 < 1 to ‖A‖2→2 <

√
2. In the end, the

assumption on ‖A‖2→2 is always fulfilled by a proper rescaling of (2.12). If one replaces
A, y, and α by A/ ‖A‖2→2, y/ ‖A‖2→2, and α/ ‖A‖22→2, the minimizers of (2.12) do not
change but Theorem 2.3.4 applies.

Theorem 2.3.5. Suppose that the 2s-th RIP constant of A ∈ Rm×N satisfies δ < 4/
√

41 ≈
0.6. Then, for any x ∈ RN and y ∈ Rm with ‖Ax− y‖2 ≤ η the following holds. Denote
by xα a minimizer of (2.12). If α > 0 such that ηα := ‖y −Axα‖2 ≥ η, one has

‖x− xα‖1 ≤ Cσs(x)1 +D
√
sηα,

for constants C and D depending on the RIP constant δ of A.
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Proof : Theorem 2.3.5 is a re-statement of Theorem 2.2.5 where we use Theorem 2.2.8
and that by [66, Proposition 3.2] the minimizer xα is a solution to (2.5) with η
replaced by ηα.

Under suitable choice of α (such that ηα = η), Theorem 2.3.5 provides stable and
robust approximation guarantees which are similar to the ones in Theorem 2.2.5. In com-
bination with Theorem 2.3.4 they apply to ISTA.
A notable property of ISTA is that it does not require an RIP of A to converge. Even if
the measurements do not allow unique identification of sparse signals, ISTA still produces
solutions which have a small error in measurements and small `1-norm (we further elabo-
rate on the connection of small `1-norm and sparsity in Section 3.2).
We conclude by illustrating how α regulates the trade-off between data fidelity and `1-
norm/sparsity. Let x ∈ RN with noisy measurements y = Ax + η be the signal and let
xα be the minimizer of (2.12). Then,

‖y −Axα‖22 ≤ ‖y −Axα‖22 + α ‖xα‖1
≤ ‖y −Ax‖22 + α ‖x‖1 = ‖η‖22 + α ‖x‖1

and

‖xα‖1 ≤
1

α

(
‖y −Axα‖22 + α ‖xα‖1

)
≤ 1

α

(
‖y −A · 0‖22 + α ‖0‖1

)
=
‖y‖22
α

by using x and 0 as competitors in (2.12). Hence, a small α promotes data fidelity and
a large α small `1-norm/sparsity. We discuss parameter choice strategies for ISTA in
Appendix A.
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Chapter 3

Quantized Compressed Sensing

In this chapter we explore limitations of the classical compressed sensing model which has
been presented in the last chapter. We start with a short introduction on quantization
and modify the measurement model to better reflect reality. By generalizing the notion
of sparsity we build a bridge to more general signal sets and probabilistic definitions of
dimension and complexity. The last two sections detail one-bit and multi-bit quantization
in compressed sensing and discuss several important recent results.

3.1 A Measurement Model Meets the Real World

The last chapter showed that s-sparse signals can be recovered in a stable and robust
way from few linear measurements. As already indicated in Chapter 1, the measurement
model in (2.1) does not directly apply to real-world applications. The assumption of hav-
ing real (or complex) valued measurements does not incorporate the limitation of finite
data storage. To illustrate this point consider a single real number r ∈ R which shall be
saved to a computer. The computer does not memorize r but rounds to a fixed number of
digits, i.e., it quantizes r to a finite subset of Q. By dictionary definition, quantization is
the division of a quantity into small but measurable increments (Merriam-Webster). We
define a quantizer Q : Z → F to be a function mapping a continuous and infinite set Z to
a discrete and finite alphabet F = {zi : i ∈ [n]} ⊂ Z, where n ∈ N and the zi are called
quantization values. We call R = log2(n) the rate of Q such that an R-bit quantizer has
2R quantization values.
If Z ⊂ R the quantizer Q is normally defined by a set of intervals Si = (ai−1, ai] ⊂ R such
that Q(r) = zi if and only if r ∈ Si. The interval limits a0 < ... < an are often called
quantization thresholds. A quantizer is called uniform if all finite Si have the same length
and zi = (ai − ai−1)/2. The thresholds a1 and an−1 define the quantizer’s range. We say
that Q saturates outside its range, i.e., if Q(r) ∈ {z1, zn} and Z is unbounded we have no
information on the quantization error |Q(r)− r|. A uniform quantizer is fully determined
by its range and ∆ := |Si|. Figure 3.1 shows two examples of one-dimensional quantizers.
It is straight-forward to generalize those concepts to the higher dimensional case Z ⊂ RD
by replacing the intervals Si by connected subsets of RD.
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z1 z2 z3 z4

a1 a2 a3

(a) Non-uniform

z1 z2 z3 z4

a1 a2 a3

∆
2

(b) Uniform

Figure 3.1: One-dimensional quantizers with a0 = −∞ and a4 =∞

A key quantity of a quantizer Q is the worst-case distortion

ε := sup
z∈Z
‖z−Q(z)‖2 (3.1)

which measures the worst-case error caused by applying Q. For given rate R a quantizer
is optimal if the choice of F ⊂ Z and the mapping Q are minimizing ε in (3.1). Obviously,
ε = ∞ for all finite quantizer if Z is unbounded. If Z ⊂ RD, a simple volume argument
(cf. [22]) shows that

ε & 2−
R
D . (3.2)

The best one can hope for is hence an exponential decay of quantization error in the rate.
For a detailed survey on the history of quantization, which dates back to Shannon’s fun-
damental work [150, 151, 134] on information theory in 1948 and the following years, and
a collection of important results on quantizer design and quantization methods refer to [77].

We will concentrate in this work on uniform scalar quantizers. Scalar quantization is
a straight-forward approach to design quantizers in RD. Instead of quantizing the whole
vector z ∈ RD, one defines a one-dimensional quantizer Q and applies it independently
to each component of z. We call Q an B-bit quantizer if its rate per entry is B which
corresponds to an overall rate R = DB. If Q is uniform, we speak of uniform scalar
quantization. It has been shown that uniform scalar quantizers approach optimality when
the bit-rate increases (see [77]).

Let us modify (2.1) by introducing a uniform scalar quantizer Q : Rm → Rm. The
quantized compressed sensing model hence reads

y = Q(Ax). (3.3)

As Q neither has to be linear nor even continuous, we loose several favorable properties
of the measurement process. Moreover, in addition to the number of measurements m
we have the bit-rate per entry B of Q as a free parameter which influences reconstruc-
tion quality. At first sight, the role of both parameters seems clear. Increasing m leads
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Rm

Az = Ax

∆

Figure 3.2: Only a small fraction of the quantization cells is used by the
measurements.

to stronger compressed sensing guarantees while increasing B reduces measurement per-
turbations. But the interplay of both quantities has to be considered as well (cf. [24]).
Assume for simplicity that x, instead of being s-sparse, lies on an s-dimensional subspace
U of RN . In this case AU is an s-dimensional subspace of Rm. As m is typically a multiple
of s due to oversampling of the intrinsic dimension of x, the measurements of signals in U
only use a small fraction of the quantization cells provided by Q (see Figure 3.2). When
transferring this fact to the set ΣN

s which consists of
(
n
s

)
different s-dimensional subspaces,

one can show (see [22]) that for an B-bit quantizer Q the number Is,m,B of quantization
cells which are intersected by AΣN

s is bounded by

Is,m,B .

(
2Bmn

s2

)s
.

Consequently, a volume argument similar to the one used for obtaining (3.2) shows (see
[22]) that the worst-case distortion of Z = AΣN

s can be lower bounded by

ε &
2−Bs
m

=
2−

R
m s

m
. (3.4)

Enhancing stability and robustness of reconstruction by increasing the number of measure-
ments hence degrades the exponential error decay in the overall bit-rate R of Q. Moreover,
the lower bound in (3.4) shows that for a fixed one-dimensional bit-rate B the quantiza-
tion resolution on AΣN

s (and with it the worst-case reconstruction error) decay at most
linearly in m.

When it comes to reconstructing signals from their quantized measurements in (3.3),
one could treat the quantization distortion as additive bounded noise. In this case (3.3)

27



CHAPTER 3. QUANTIZED COMPRESSED SENSING

is replaced by (2.4) with η = Q(Ax)−Ax. If we assume for simplicity that Q is uniform
with quantization intervalls of length ∆ and that the range of Q is sufficiently large, the
noise is bounded by ‖η‖2 ≤

√
m ‖Q(Ax)−Ax‖∞ ≤

√
m∆

2 . To recover one applies (2.5)
and uses the stability and robustness results presented in Chapter 2, cf. [22, 26]. This ap-
proach, however, suffers certain drawbacks as mentioned in [97]. Most important it does
not guarantee measurement consistency, i.e., the `2-constraint of (2.5) does not guarantee
that ‖Q(Az)−Az‖∞ ≤

∆
2 , which means a loss of information in the recovery process.

Already the seminal work on compressed sensing [31] suggested to enforce measurement
consistency when dealing with quantized measurements. Since then, it has been shown
that measurement consistency helps in reaching the lower bound in (3.4), cf. [141, 73]. We
will discuss in this chapter several recovery algorithms which are tailored to the measure-
ment model (3.3).

There are two ways to deal with saturation in compressed sensing: one either assumes
that the quantizer’s range is sufficiently large to cover the measurements of all signals
of interest or one mistrusts and dismisses any measurements which are quantized to the
boundary of the range. In the first case, the quantizer can be assumed to be infinite and
is, if working with uniform quantizers, only characterized by ∆, e.g., [94]. In the second
case, one uses democracy of the measurement matrix A to rely only on parts of the mea-
surements. Democracy is a property which guarantees RIP even for submatrices of A (cf.
[111, 27, 79]) and is with high probability fulfilled by Gaussian random matrices, see [42].
Note that in the one-bit setting we mainly focus on in later chapters, saturation is not an
issue by coarseness of the quantization (there are only two quantization intervalls in each
measurement which are both of infinite length).

A more sophisticated approach to quantization in compressed sensing, we only like
to mention here, are so-called feedback quantizers which recursively compute the bit se-
quence encoding the measurements. This line of work originated from Sigma-Delta modu-
lation of bandlimited signals [76, 133] and frame expansions [18, 17] in the sparse recovery
framework. In [80], they introduced and analyzed such an approach for Gaussian measure-
ments and subsequent works generalized the results to subgaussian random measurements
[106, 61]. Recovery guarantees for subgaussian measurements based on convex optimiza-
tion were proven in [147] and extended to partial random circulant matrices in [62]. As
can be seen in [15], feedback quantizers are able to exceed the linear decay in m of (3.4).
For further details we refer the reader to the overview chapter [22].

3.2 General Signal Sets

Before discussing one-bit and multi-bit compressed sensing in detail we take a closer look
at our signal model. So far we only considered the signal set ΣN

s ⊂ RN and used its in-
trinsic low-dimensionality to justify (almost) loss-less compression into lower dimensional
spaces Rm. We already saw how restrictive it is to assume sparsity of signals and ex-
tended recovery results to compressible vectors. Moreover, as mentioned in Chapter 1,
one normally needs a suitable transform to sparsify the representation of signals. This
transformation or sparsifying dictionary is in general hard to find; if existent at all. It
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might even be possible that the signals of interest lie on low-dimensional sub-manifolds of
the ambient space and do not fit the linear subspace framework of sparse vectors.
Several works [138, 21, 65] replaced ΣN

s by the set of effectively sparse vectors containing
vectors which are not necessarily sparse but lie close to sparse vectors [138, Lemma 3.2].

Definition 3.2.1 (Effectively Sparse Vectors). Let

KN,s = {z ∈ RN : ‖z‖2 ≤ 1, ‖z‖1 ≤
√
s} = B2(0, 1) ∩ B1(0,

√
s).

We call all z ∈ RN with ‖z‖1/‖z‖2 ∈ KN,s effectively s-sparse.

Note that ΣN
s ∩B2(0, 1) ⊂ KN,s as ‖z‖1 ≤

√
s ‖z‖2 for all z ∈ ΣN

s and that all s-sparse
vectors are effectively s-sparse as well. By [138, Lemma 3.1] one has

conv(ΣN
s ∩ B2(0, 1)) ⊂ KN,s ⊂ 2 conv(ΣN

s ∩ B2(0, 1)), (3.5)

that is the set KN,s can be interpreted as the convex hull of ΣN
s ∩B2(0, 1). Plan and Ver-

shynin showed in [138] that the covering numbers of ΣN
s ∩B2(0, 1) and KN,s are equivalent

in dependence on s and N .

Lemma 3.2.2 ([138, Lemma 3.3 & 3.4]). For ε ∈ (0, 1) and s ≤ N we have

log
(
N(ΣN

s ∩ B2(0, 1), ε)
)
≤ s log

(
3N

εs

)
and

log (N(KN,s, ε)) ≤

{
N log

(
6
ε

)
, 0 < ε < 2

√
s
N ,

4s
ε2

log
(

9εN
s

)
, else

.
s

ε2
log

(
2N

s

)
.

They used this equivalence to extend their results to effectively sparse signals while
keeping the sufficient number of measurements linear in s up to log-factors. It is a crucial
observation that the logarithm of the covering number directly relates to the number of
linear measurements needed for compressing the sets ΣN

s and KN,s (and hence to their
intrinsic dimension resp. complexity). To elaborate on this relation we have to understand
the geometry of convex sets in high dimensions.

3.2.1 Convex Sets in High Dimensions and the Gaussian Mean Width

Phenomena which seem counter-intuitive at first sight are common in infinite-dimensional
vector spaces. For instance, the existence of non-continuous linear functions. There are,
however, similar counter-intuitive effects in high- but finite-dimensional spaces. A beau-
tiful example is the geometry of convex sets which we illustrate by means of the `1-ball
B1(0, 1) ⊂ RN . Accustomed to three dimensions at most, our idea of B1(0, 1) is two-
dimensional as depicted in Figure 3.3 (a).
When moving to higher dimensions the spread of volume in space changes. This can
be seen by comparing (a) and (b) in Figure 3.3. While the outer `2-ball depending on
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2
2√
2

(a) R2

2
2√
N

(b) RN

Figure 3.3: Geometry of B1(0, 1) in different dimensions

the maximum width of B1(0, 1) remains unchanged, the inner `2-ball carrying most of
the volume mass of B1(0, 1) shrinks to zero (as noted in [165], one can easily check that

Vol(B1(0, 1))
1
N ' Vol(B2(0, 1/

√
N))

1
N ' 1

N ). This observation can be transferred to gen-
eral convex sets and heuristically stated as follows: in high-dimensional spaces, convex sets
consist of bulks, which are small in diameter but contain most of the volume, and outliers,
which have almost no volume but reach out far into space, cf. [127, 165]. Note that the non-
convex looking shape of Figure 3.3 (b) is not contradicting convexity of B1(0, 1). It just
emphasizes the special topological structure of high-dimensional spaces which approaches
as a limit the structure of sequence spaces. (In the space R|N| of real-valued sequences,
any scaled unit vector εei, for ε ∈ (0, 1) and i ∈ N, lies within the unit `2-ball while any
scaled vector pointing into space (ε, ε, ...), for ε > 0, lies outside of any `2-ball.)
Those rather informal considerations are supported by rigourous mathematical results. In
[78] the authors show that the volume of isotropic convex bodies concentrates around the
sphere of an `2-ball. As all convex sets are isotropic up to an invertible linear transforma-
tion, this implies for general convex sets that the volume is mainly concentrated around the
boundary of an ellipsoid. Dvoretzky’s theorem [53, 52] characterizes the shape of random
cuts of low-dimensional subspaces through certain convex bodies like the `1-ball with high
probability as `2-balls. The intuition behind Dvoretzky’s theorem is that low-dimensional
random subspaces miss with high-probability the outliers of convex sets and only detect
the bulk which carries the mass.

In order to capture the complexity of a general set K ⊂ RN it, hence, might be
interesting to look at intersections ofK with randomly oriented low-dimensional subspaces.
We define for u ∼ U(SN−1) the spherical mean width of a set K ⊂ RN

w̃(K −K) := E

[
sup

z∈K−K
〈u, z〉

]
.

As illustrated in Figure 3.4, the inner term supz∈K−K〈u, z〉 = supz1,z2∈K〈u, z1 − z2〉
measures the maximum width of K in direction u. By picking u ∈ SN−1 uniformly at
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u

K

z1

z2

Figure 3.4: The width of a set K in direction u.

random and averaging over all choices, the spherical mean width measures an averaged
one-dimensional cut length through K. This definition has a drawback. The entries of u
are not independent. It is convenient to replace u by a Gaussian vector g ∼ N (0, IdN ).

Definition 3.2.3 (Gaussian mean width, [165]). Let g ∼ N (0, IdN ) be a standard Gaus-
sian vector with iid entries. The Gaussian mean width of a set K ⊂ RN is defined as

w(K −K) := E

[
sup

z∈K−K
〈g, z〉

]
.

Remark 3.2.4. If g ∼ N (0, IdN ), the vector g/ ‖g‖2 is uniformly distributed on the unit
sphere. As ‖g‖2 and g/ ‖g‖2 are independent and E[‖g‖2] '

√
N , we obtain

w(K −K) = E[‖g‖2] w̃(K −K) '
√
Nw̃(K −K),

that is w and w̃ are equivalent up to
√
N , cf. [165].

In the following, we examine if w(K −K) is a suitable measure of complexity for K ∈
RN , collect several properties of w(K −K) including alternative but basically equivalent
definitions, and analyze the relation between w(K−K) and N(K, ε). For a more detailed
introduction on the geometry of convex sets and further discussion of the above mentioned
results refer to [10, 69].

3.2.2 Properties of the Gaussian Mean Width

It is clear from Definition 3.2.3 that the Gaussian mean width w(K−K) is invariant under
translations and orthogonal transformations of K. In these points it behaves similar to
the linear dimension of subspaces. In contrast to the linear dimension, the Gaussian mean
width scales with the diameter of K, i.e., for α > 0 one has w(α(K −K)) = αw(K −K).
When comparing the width of different sets we thus have to take their scaling into account.
Let’s have a look at some concrete examples, cf. [139].

Lemma 3.2.5. The following bounds hold:

(i) If K = B2(0, 1) ⊂ RN , we have that w(K −K) ≤ 2
√
N

(ii) If L ⊂ RN is a subspace with dim(L) = d and K = L ∩ B2(0, 1), we have that
w(K −K) ≤ 2

√
d

(iii) If K ⊂ RN is a finite set, we have that w(K −K) . diam(K)
√

log(|K|).
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Proof : The first statement follows from w(B2(0, 1) − B2(0, 1)) = 2 E[‖g‖2] ≤ 2
√
N .

To show the second statement first note that without loss of generality we can set
L to be the subspace spanned by the first d canonical basis vectors which restricts
the inner product 〈g, z〉 to the first d entries of g. Now use the argumentation of
(i) where N is replaced by d. The third statement is by

w(K −K) ≤ diam(K) E

[
max

z∈K−K
〈g, z

‖z‖2
〉
]
. diam(K)

√
log(|K|)

the direct consequence of a standard bound [66, Proposition 8.1] on the expected
maximum of |K|(|K| − 1) standard Gaussians.

Lemma 3.2.5 confirms that w(K − K)2 is up to constants a valid generalization of
the linear dimension to arbitrary sets. Point (iii) is especially interesting in view of the
Johnson-Lindenstrauss lemma and its extensions [100, 1] which state that n points in RN
can be embedded linearly and almost isometrically into Rm if m & log(n). Hence, up to
a constant w(K − K)2 exactly describes the number of linear measurements which are
sufficient to guarantee compression of finite sets into low dimensions.
In the literature several variations of Gaussian width appeared which are basically equiv-
alent. As the results we are going to use depend on different definitions, we present and
relate them to each other in the following lemma.

Lemma 3.2.6 ([91, Definition 4.1]). Let g ∼ N (0, IdN ). For a subset K ⊂ RN define

(i) the Gaussian width: w(K) := E[supx∈K〈g,x〉]

(ii) the Gaussian complexity: γ(K) = E[supx∈K |〈g,x〉|].

By combining Properties 5. and 6. of Proposition 2.1 in [139] on has

w(K −K) ≤ 2w(K) ≤ 2γ(K) ≤ 2

(
w(K −K) +

√
2

π
dist(0,K)

)
, (3.6)

where dist(0,K) = infz∈K ‖z‖2.

If restricted to a bounded region of RN , Gaussian width and Gaussian complexity are
up to multiplicative and additive constants equivalent to the Gaussian mean width by
(3.6). The Gaussian width has several useful properties in addition to ones named above.

Lemma 3.2.7 ([166, Proposition 7.5.2]). Let K ⊂ RN . Then,

(i) the Gaussian width is finite if and only if K is bounded and, for α > 0,

w(αK) = αw(K),

(ii) the Gaussian width is invariant under affine orthogonal transformations, i.e., for
any orthogonal matrix U ∈ RN×N and b ∈ RN ,

w(UK + b) = w(K),
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(iii) the Gaussian width is invariant under taking the convex hull, i.e.,

w(conv(K)) = w(K),

(iv) the Gaussian width fulfills

0 ≤ 1√
2π

diam(K) ≤ w(K) ≤
√
N

2
diam(K).

In the beginning of Section 3.2, we observed a connection between the sufficient number
of linear measurements for almost lossless compression of the sets ΣN

s and KN,s to lower
dimensions and the covering numbers of ΣN

s and KN,s. Moreover, Lemma 3.2.5 showed
a connection between the sufficient number of linear measurements for almost lossless
compression of finite sets K ⊂ RN to lower dimensions and the Gaussian mean width.
There is a close relation between the covering number N(K, ε) of a set K and its Gaussian
width w(K).

Theorem 3.2.8 (Sudakov’s minoration and Dudley’s inequality). Let K ⊂ RN be bounded.
Then,

sup
ε>0

ε
√

log (N(K, ε)) . w(K) .
∫ ∞

0

√
log (N(K, ε)) dε. (3.7)

The lower bound is called Sudakov minoration [114, Theorem 3.18], the upper bound is
called Dudley’s inequality [114, Theorem 11.17].

Remark 3.2.9. As N(K, ε) = 1 for ε ≥ diam(K), integral’s upper boundary may be
replaced by diam(K).

Sudakov minoration and Dudley’s inequality are in their original form more general
bounds on the expected suprema of Gaussian processes. Theorem 3.2.8 states them for the
special case of w(K), a quite simple Gaussian process. The proofs are based on the theory
of stochastic processes and are well-presented in [166]. For Sudakov’s minoration inequality
one compares w(K) to an even simpler Gaussian process whose expected supremum can
be controlled by the left hand side of (3.7). For Dudley’s inequality one uses a chaining
argument which controlls the supremum on K by a chain of coverings which refine in a
dyadic way.
The bounds in (3.7) are not tight. Sophisticated methods like generic chaining [157, 158]
produce tight but more complicated bounds. Comparison theorems [114, Section 3.3] like
the one used to prove Sudakov’s minoration inequality can be applied to get different
estimates. As (3.7) suffices for our purpose, we do not detail the just mentioned tools any
further.
The quantity log(N(K, ε)), which appears in Theorem 3.2.8, is also called metric entropy
of K. It characterizes the necessary number of bits to encode K in a way that any z ∈ K
can be decoded with error at most ε in the Euclidean metric, see [166, Proposition 4.3.1].
Consequently, the expected diameter of random one-dimensional cuts through a set K
given by w(K) is equivalent to the intrinsic complexity of K in terms of coding.
There is even more evidence that one-dimensional random cuts provide a good measure
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of intrinsic complexity for signal sets in compressed sensing. The so-called M∗-bound
[137, 114], an important result in asymptotic convex geometry, states that, for a set
K ⊂ RN , the expected diameter of a random cut through K, by a hyperplane E of
codimension m, is bounded from above by w(K)/

√
m (up to a constant). If x ∈ K is an

unknown signal in a signal set K ⊂ RN , the entries of A ∈ Rm×N are iid Gaussian, and
y ∈ Rm is obtained from (2.1), the M∗-bound implies that the expected worst-case error
E[supx∈K ‖x̂− x‖2] of

x̂ ∈ K, subject to Ax̂ = y,

can be upper bounded by w(K)/
√
m (choose E = ker(A), cf. [126]). Consequently,

m & w(K)2 measurements suffice to obtain reasonable uniform approximation guarantees.

Let us come back to our initial observation, namely that the signal sets ΣN
s and KN,s

need in terms of s and N similar amounts of linear measurements for almost loss-less
compression and that their covering numbers are of similar order. Combining Lemma
3.2.2 and Theorem 3.2.8, one obtains

w(ΣN
s ∩ B2(0, 1)) .

√
s log

(
3eN

s

)
.

By (3.5) and Lemma 3.2.7 (iii) the same bound holds for w(KN,s). As ΣN
s and KN,s

share the same intrinsic complexity, they need a similar amount of linear measurements
to be compressed. Having the Gaussian width as a complexity measure at hand, we can
consider general sets K ⊂ RN as signal sets from now on.

3.3 One-bit Quantization

In the thesis, we mainly concentrate on the one-bit compressed sensing model

y = sign(Ax), (3.8)

where x ∈ RN , A ∈ Rm×N , and y ∈ {−1, 1}m. This extreme case of uniform scalar
quantization (3.3) was introduced to the compressed sensing framework in [25]. Each
measurement is quantized to one single bit. Note that (3.8) looses any scaling information
of x and Ax, i.e., one can only hope to recover x up to its norm. Though the loss of infor-
mation in (3.8) seems overwhelming, one-bit measurement devices are simple and cheap
to produce and make (3.8) appealing in hardware implementations, cf. [25]. Moreover,
numerical studies [25, 23, 92] showed successful approximation of sparse, unit norm sig-
nals from one-bit measurements via modified greedy compressed sensing algorithms and
`1-minimization with non-convex constraints (restriction to SN−1). In [92] the authors
provided near-optimal – with respect to (3.4) – approximation guarantees for sparse, unit
norm vectors by consistent reconstruction

x̂ ∈ ΣN
s ∩ SN−1, subject to sign(Ax̂) = y, (3.9)
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SN−1

Figure 3.5: Tessellation of the sphere by random hyperplanes.

where the approximation of x is picked from all signals yielding the correct measurements,
a non-tractable procedure in general. To get a intuition for those results one should see
(3.8) from a geometric point of view. Each row ai ∈ RN of A can be interpreted as normal
vector of a hyperplane Hai splitting RN into two half-spaces. The one bit measurements
yi = sign(〈ai,x〉) specify on which side of Hai the signal x is located. All hyperplanes
together yield a tessellation of SN−1 as depicted in Figure 3.5, which is taken from [108],
and y encodes in which of the tessellation cells x lies.

A dither τ ∈ RN with uniformly distributed iid entries τi can be introduced to (3.8)
to obtain the slightly modified model

y = sign(Ax + τ ). (3.10)

Dithering is a common tool to improve the statistical properties of the quantization process
by randomizing the unquantized input [77]. In the one-bit compressed sensing model it
adds affine shifts to the hyperplanes Hai and thus enables reconstruction of the signal
norm [104, 15].

3.3.1 Recovery via Linear Programming and Single Backprojection

To provide a tractable alternative to (3.9), Plan and Vershynin suggested in [138] to recover
signals from their one-bit measurements (3.8) by the convex program

min
z∈RN

‖z‖1 , subject to sign(Az) = y and ‖Az‖1 = m. (3.11)

The optimization in (3.11) is a modification of basis pursuit. The additional constraint on
‖Az‖1 = m enforces a minimal distance to zero on the minimizer and replaces the non-
convex constraint z ∈ SN−1 in [25] (the right-hand side of the equation can be chosen as
an arbitrary constant greater than zero). Plan and Vershynin proved the following result.

Theorem 3.3.1 ([138, Theorem 1.1]). Let δ > 0 and A ∈ Rm×N be a random matrix with
iid Gaussian entries ai,j ∼ N (0, 1) where

m & ε−5s log

(
2N

s

)
log

(
2N

m
+

2m

N

)
. (3.12)
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Then with probability at least 1 − C exp(−cδm) (c, C > 0 denote absolute constants) the
following holds uniformly for all x ∈ RN with ‖x‖1 / ‖x‖2 ≤

√
s. If y is defined as in

(3.8), the approximation x̂ computed by (3.11) fulfills∥∥∥∥ x̂

‖x̂‖2
− x

‖x‖2

∥∥∥∥
2

≤ ε.

Theorem 3.3.1 not only holds for s-sparse vectors but all vectors which are effectively
sparse (cf. Section 3.2) and thus guarantees uniform and stable approximation of sparse
vectors from one-bit measurements.
In comparison to [92] the error decay is not near-optimal anymore. As up to log-factors
ε = O

(
5
√

s
m

)
, the error decays much slower than predicted by (3.4). In contrast to [92],

Theorem 3.3.1 comes with a tractable approach.
The optimization in (3.11) is especially attractive because it can be stated as the linear
program [138]

min
z,u∈RN

N∑
i=1

ui, subject to


−ui ≤ zi ≤ ui, ∀i ∈ [N ],

yi〈ai, z〉 ≥ 0, ∀i ∈ [N ],
1
m

∑N
i=1 yi〈ai, z〉 ≥ 1,

which is efficient to solve. Here ai, for i ∈ [N ], again denote the rows of A and u is a
vector of dummy variables replacing the `1-norm.

Foucart provided in [65] a slightly improved version of Theorem 3.3.1. He could drasti-
cally shorten the proof by assuming an `1/`2-RIP for A. Instead of being a near-isometry
between (RN , ‖·‖2) and (Rm, ‖·‖2), the matrix A is in this case a near-isometry between
(RN , ‖·‖2) and (Rm, ‖·‖1) when restricted to sparse signals, that is

(1− δ) ‖z‖2 ≤ ‖Az‖1 ≤ (1 + δ) ‖z‖2 , (3.13)

for δ > 0 and z ∈ ΣN
s . By combining (3.13) with a simple relation between y = sign(Ax)

and ‖Ax‖1, Foucart was able reduce the number of sufficient measurements from (3.12)
to

m & ε−4s log(eN/s). (3.14)

In the same work, he showed with a similar strategy the following result for the single
backprojection algorithm

x̂ = Hs(A
Ty), (3.15)

leading to (3.14) as well.

Theorem 3.3.2 ([65, Theorem 8]). If A satisfies (3.13) for all z ∈ ΣN
2s with constant

ε > 0, then every x ∈ ΣN
s ∩SN−1 with one-bit measurements y as in (3.8) is approximated

by (3.15) with error

‖x− x̂‖2 ≤ 2
√

5ε.

Both results, Theorem 3.3.1 and Theorem 3.3.2, show the possibility of compressed
sensing even under heavy quantization by very simple means. However, they do not
consider robustness against measurement defects. The optimization (3.11) might even
become infeasible if just a single one-bit measurement is flipped.
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3.3.2 Uniform Tessellation by Random Hyperplanes

Apart from guaranteeing near-optimal recovery in the noiseless case by consistent re-
construction (as discussed in the beginning of Section 3.3), a core result of [92] was
to show that under suitable assumptions, the map z 7→ sign(Az) behaves almost like
an isometry between (SN−1, dG) and ({−1, 1}m, dH) where dG(z, z′) = 1

π arccos(〈z, z′〉)
denotes the normalized geodesic distance, i.e., poles have distance dG(z,−z) = 1, and
dH(y,y′) = |{i ∈ [m] : yi 6= y′i}| the Hamming distance. To be more precise, they intro-
duced the following concept.

Definition 3.3.3 ([92, Definition 1]). Let ε ∈ (0, 1). A mapping F : RN → {−1, 1}m is a
binary ε-stable embedding of order s if

dG(z, z′)− ε ≤ 1

m
dH(F (z), F (z′)) ≤ dG(z, z′) + ε, (3.16)

for all z, z′ ∈ SN−1 with | supp(z) ∪ supp(z′)| ≤ s.

Definition 3.3.3 is closely related to the concept of RIPs. In contrast to a multiplicative
influence of δ in the definition of the s-RIP, the influence of ε is additive. Consequently,
F (z) = F (z′) does not imply z = z′, but only dG(z, z′) ≤ ε. For F (z) = sign(Az) and
A ∈ Rm×N having iid Gaussian entries [92, Theorem 3] shows that

m & ε−2s log(N) (3.17)

measurement suffice to guarantee (3.16) with high probability.
The geometrical meaning of Definition 3.3.3 and [92, Theorem 3] is twofold. First, if m
satisfies (3.17), then m randomly oriented hyperplanes provide with high probability a
tessellation of ΣN

s ∩SN−1 such that the diameter of tessellation cells is uniformly bounded
by ε. This could be deduced for approximately sparse vectors in [138] from Theorem 3.3.1
as well (the result was improved and generalized in [21]). Second and more important,
the distance of two points in z, z′ ∈ ΣN

s ∩ SN−1 is encoded in the number of hyperplanes
which separate z and z′. This allows robust recovery of signals x ∈ ΣN

s ∩ SN−1 from their
one-bit measurements y by the non-tractable program

min
z∈RN

dH(y, sign(Az)), subject to z ∈ ΣN
s ∩ SN−1. (3.18)

In [140] Definition 3.3.3 was generalized to arbitrary subsets of SN−1 and formulated from
the geometric point of view.

Definition 3.3.4 ([140, Definition 1.1]). Let K ⊂ SN−1 and an arrangement of m hy-
perplanes in RN be given via a matrix A (i.e., the i-th row of A is the normal to the i-th
hyperplane). Let dA(z, z′) = 1

mdH(sign(Az), sign(Az′)) denote the fraction of hyperplanes
separating z and z′ in K. Given ε > 0, the hyperplanes provide an ε-uniform tessellation
of K if

|dA(z, z′)− dG(z, z′)| ≤ ε

holds for all z, z′ ∈ K.
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The authors could show that Gaussian matrices have with high probability this more
general property (if the normal vector a of a hyperplane has iid entries ai,j , the hyperplane
is drawn from a uniform distribution according to the Haar measure). For later usage, we
state it as in [91].

Theorem 3.3.5 ([140, Theorem 1.2]). Consider a subset K ⊂ SN−1 and let ε > 0. Let

m ≥ C̄ε−6 max{w(K)2, 2/π} (3.19)

and consider an arrangement of m independent random hyperplanes in RN uniformly
distributed according to the Haar measure. Then with probability at least 1−2 exp(−cδ2m),
these hyperplanes provide an ε-uniform tessellation of K. Here, C̄ > 0 denotes an absolute
constant.

Having the considerations on the Gaussian mean width and its equivalent variants in
mind, Theorem 3.3.5 states that if the number of one-bit measurements (3.8) scale at least
linearly in intrinsic dimension of a set K ⊂ SN−1 then with high probability the percent-
age of different measurements of two points z, z′ ∈ K is closely related to their distance
on the sphere. Note the exceedingly worse dependence on ε in (3.19).
In its original form Theorem 3.3.5 uses γ(K) instead of w(K). However, note that by (3.6)
we know that γ(K) ≤ w(K −K) +

√
2/π ≤ 3w(K), for K ⊆ SN−1 and w(K) ≥

√
2/π

which is reasonable to assume. Changing C̄ by a factor of 9, Theorem 3.3.5 can be stated
as above.
As (3.8) is blind to scaling, Definition 3.3.3 and Definition 3.3.4 are restricted to SN−1.
By considering the dithered measurement model (3.10) in [47], Dirksen and Mendelson re-
cently removed this restriction, improved (3.19) and generalized the statement of Theorem
3.3.5 to subgaussian and heavy-tailed measurement matrices A, i.e., the entries of A are
iid subgaussian/heavy-tailed random variables. After providing a definition of subgaussian
random variables we state the result in the subgaussian case.

Definition 3.3.6 (Subgaussian Random Variable). A random variable ξ ∈ R is called
K-subgaussian if the tail bound Pr[|ξ| > t] ≤ C exp(−ct2/K2) holds where c, C > 0 are
absolute constants. The smallest possible number for K > 0 is called subgaussian norm of
ξ and denoted by ‖ξ‖ψ2.

Remark 3.3.7. The class of subgaussian random variables covers many special cases as
Gaussian, Bernoulli, and more generally all bounded random variables (see [164]).

Theorem 3.3.8 ([47, Theorem 1.1]). Let A ∈ Rm×N be a matrix with iid K-subgaussian
entries. There exist constants c0, ..., c4 depending only on K such that the following holds.
Fix R > 0 and ε ∈ (0, R). If K ⊂ B2(0, R), τ ∈ Rm with iid entries τi ∼ U([−λ, λ]), for
λ = c0R, and

m ≥ c1
R log

(
eR
ε

)
ε3

γ(K)2,

then with probability at least 1 − 8 exp(−c2mε/R), for any z, z′ ∈ conv(K) such that
‖z− z′‖2 ≥ ε, one has

c3
‖z− z′‖2

R
≤ 1

m
dH(sign(Az + τ ), sign(Az′ + τ )) ≤ c4

√
log

(
eR

ε

)
‖z− z′‖2

R
. (3.20)
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Apart from treating more general signal sets and measurement matrices, Theorem
3.3.8 reduces the sufficient number of measurements from m & O(ε−6) to O(ε−3 log(ε−1)).
Note that by assuming ‖z− z′‖2 ≥ ε the isometric relation in (3.20) is just like (3.16) of
additive nature and that there is a mild dependence on ε in the upper bound of (3.20).

3.3.3 Recovery from Noisy Measurements

While Section 3.3.2 shows the possibility of faithfully approximating signals from noisy
one-bit measurements, it provides no efficient recovery strategy. As mentioned above,
the convex one-bit basis pursuit in (3.11) cannot handle bit-flips. If y is obtained from a
signal x ∈ K ⊂ RN via (3.8) where some measurements are corrupted, Plan and Vershynin
proposed in [139] to approximate x by a solution of

max
z∈RN

m∑
i=1

yi〈ai, z〉, subject to z ∈ K, (3.21)

where ai is the i-th row of A. If K is convex, the program (3.21) is convex, too. Its main
idea is to maximize the correlation between quantized measurements of the signal and
unquantized measurements of the approximation. In [47] the authors elaborately describe
how (3.21) can be interpreted as a convex relaxation of (3.18). A geometric interpretation
is the following, cf. [91]. The optimization in (3.21) may be re-stated equivalently as

min
z∈K

 ∑
i : yi 6=sign(〈ai,z〉)

‖ai‖2
∥∥∥z− PHai

z
∥∥∥

2

−
∑

i : yi=sign(〈ai,z〉)
‖ai‖2

∥∥∥z− PHai
z
∥∥∥

2

 ,

(3.22)

where PHai
denotes the orthogonal projection onto the N − 1 dimensional subspace Hai

perpendicular to ai. To see this note that 〈ai, z〉/‖ai‖2 = sign(〈ai, z〉)‖z−PHai
‖2. Hence,

(3.21) punishes incorrect measurements of a feasible point z ∈ K by its distance to
the ‘measurements border’ Hai while rewarding correct ones. Plan and Vershynin also
provided robust approximation guarantees for Gaussian matrices A, K ⊂ B2(0, 1), and
x ⊂ K ∩ SN−1.

Theorem 3.3.9 ([139, Theorem 1.3]). Let A ∈ Rm×N have iid Gaussian entries ai ∼
N (0, 1) and let K be a subset of the Euclidean unit ball in RN . Let ε > 0 and suppose that

m ≥ C ′ε−6w(K)2.

Then with probability at least 1 − 8 exp(−cε2m), the following event occurs. Consider a
signal x ∈ K satisfying ‖x‖2 = 1 and its (unknown) uncorrupted one-bit measurements
y as defined in (3.8). Let ỹ = (ỹ1, ..., ỹm) ∈ {−1, 1}m be any (corrupted) measurements
satisfying dH(ỹ,y) ≤ τm. Then

x̂ = arg max
z∈RN

m∑
i=1

ỹi〈ai, z〉, subject to z ∈ K,
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with input ỹ satisfies

‖x̂− x‖22 ≤ ε
√

log
(e
ε

)
+ 11τ

√
log
( e
τ

)
.

Similar to Theorem 3.3.5 the result shows an optimal dependence on the intrinsic
dimension of K but a suboptimal dependence on ε. Note that in order to reach ‖x̂− x‖2 =
O(ε) in the noiseless case, the measurements have to be O(ε−12w(K)2).
Considering the dithered model (3.10) and adding a regularization term to (3.21), Dirksen
and Mendelson were able to improve and generalize Theorem 3.3.9 in [47] as well. To be
precise, they examined

max
z∈RN

m∑
i=1

yi〈ai, z〉 −
1

2λ
‖z‖22 , subject to z ∈ K, (3.23)

for λ > 0, and extended Theorem 3.3.9 to subgaussian and heavy-tailed measurement
matrices. We again restrict ourselves to the subgaussian case. Moreover, we do not treat
pre-quantization noise which is covered by their result.

Theorem 3.3.10 ([47, Theorem 1.1]). Let A ∈ Rm×N be a matrix with iid K-subgaussian
entries. There exist constants c0, ..., c4 depending only on K such that the following holds.
Fix R > 0 and ε ∈ (0, R). Let K ⊂ RB2(0, 1), τ ∈ Rm with iid entries τi ∼ U([−λ, λ]),
for λ ≥ c0R+ ε, and put r = c1ε/

√
log(eλ/ε). Assume that

m ≥ c2λ

(
w ((K −K) ∩ rB2(0, 1))2

ε3
+

log(N(K, r))

ε

)

and that the fraction of corrupted bits β in y is bounded by β ≤ c3ε/λ.
Then with probability at least 1 − 10 exp(−c4mε/λ), for any x ∈ K, any solution x̂ of
(3.23) satisfies

‖x̂− x‖2 ≤ ε.

Remark 3.3.11. As r = O(ε/ log(ε−1)), the quantity w((K − K) ∩ B(0, r)) can be in-
terpreted as a local Gaussian mean width (cf. [165]) which characterizes the intrinsic
complexity of K on small balls. It is naturally upper-bounded by w(K −K). By applying
Sudakov’s minoration in Theorem 3.2.8 to the metric entropy, we get

log(N(K, r)) .
w(K)2

r2
≤ c

log
(
e
ε

)
ε2

w(K)2,

for c > 0 only depending on K. One can thus replace the sufficient number of measurements
in Theorem 3.3.10 by

m ≥ cc2λ
log
(
e
ε

)
ε3

w(K)2.
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Remark 3.3.11 shows that Theorem 3.3.10 massively improves on Theorem 3.3.9. It
reduces the lower bound on m from O(ε−12w(K)2) to less than O(ε−4w(K)2).

The results presented so far assume A to be a dense random matrix. As already men-
tioned in Chapter 2, this assumption is not practical in view of storage and computation.
There are only few results on structured measurement matrices in the uniform scalar one-
bit setting we are interested in. Gaussian circulant matrices have been considered in [46]
and the announced follow-up work of [47] shall extend Theorem 3.3.8 and Theorem 3.3.10
to this regime.

3.4 Multi-bit Quantization

As the last section showed it is expensive to obtain with one-bit measurements high preci-
sion in signal estimation. Letting ε to zero blows up the required number of measurements.
The lower bound (3.4), however, suggests that a slight increase in the number of bits per
measurement should cause a notable decrease of ε. We thus consider the multi-bit com-
pressed sensing model

y = U(Az), (3.24)

where U : R → R is a uniform scalar B-bit quantizer which is applied to Az componen-
twise, for B ∈ N. Together with B the range of U determines the entrywise worst-case
distortion ∆ of U . The results we present in this section assume the range of U to be
sufficiently large, i.e., they work with an infinite range and only depend on ∆. This as-
sumption is reasonable as signals of interest and, hence, their measurements usually lie in
a ball of finite radius (see also Section 3.1). As in the one-bit case, one may introduce a
dither τ ∈ Rm to obtain

y = U(Az + τ ). (3.25)

Let us extend the geometric intuition of one-bit compressed sensing (3.8) illustrated in
Figure 3.5 to our new setting. By replacing sign with U , each hyperplane Hai , represent-
ing one single measurement, gets replaced by a bundle of parallel hyperplanes. Figure
3.6 depicts this situation for a 2-bit quantizer U which is centered at 0. Note that the
distances between hyperplanes in different bundles vary depending on the norm of the
corresponding measurement vector ai.

A first important step towards understanding the influence of the number of bits
per measurement on the approximation quality in uniformly scalar quantized compressed
sensing was done in [93]. The author transferred the Johnson-Lindenstrauss lemma into
the uniformly quantized setting and characterized the relation between ∆ and how close
the Johnson-Lindenstrauss embedding is to an isometry.
Building upon this work, the author could show in [95] a multi-bit tessellation result in
flavor of Theorem 3.3.5 for Gaussian measurement matrices and the signal set of sparse
vectors (subgaussian measurements and general signal sets are also treated but require
rather involved assumptions). We state it here in simplified form.
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β∆

0

SN−1

α∆

Figure 3.6: Tessellation of the sphere by parallel bundles of hyperplanes.

Theorem 3.4.1 ([95, Proposition 1]). Fix δ ∈ (0, 1), ∆ > 0, and K = ΣN
s ∩ B(0, 1).

Assume that A ∈ Rm×N has iid Gaussian entries ai,j ∼ N (0, 1) and that τ ∈ Rm has iid
entries τi ∼ U([0,∆]). If

m &
1

δ2
w(K)2 log

(
1 +

1

∆
√
δ3

)
,

one has with probability at least 1− exp(−c′δm) for all pairs z, z′ ∈ K that

(1− cδ)
∥∥z− z′

∥∥
2
− cδ∆ ≤ 1

m

√
π

2

∥∥U(Az + τ )− U(Az′ + τ )
∥∥

1
≤ (1 + cδ)

∥∥z− z′
∥∥

2
+ cδ∆,

for absolute constants c, c′ > 0.

It is striking that Theorem 3.4.1 bridges between uniform one-bit tessellations and
`1/`2-RIPs. For ∆ = 1 the result looks similar to (3.16) while for ∆ � 1 we recover the
RIP in (3.13) (the scaling

√
π/2 is necessary for Gaussian matrices A to have an `1/`2-

RIP).
In addition, [95] deduced an approximation guarantee for consistent reconstruction from
Theorem 3.4.1. We again refrain from presenting the result in full generality but restrict
ourselves to the special case of Gaussian measurements and sparse vectors, a case for which
the result already appeared in [94].

Theorem 3.4.2 ([94, Theorem 2]). Fix δ ∈ (0, 1), ∆ > 0, θ ∈ (0, 1), and K = ΣN
s ∩

B(0, 1). Assume that A ∈ Rm×N has iid Gaussian entries ai,j ∼ N (0, 1) and that τ ∈ Rm
has iid entries τi ∼ U([0,∆]). If

m ≥ 4∆ + 2δ

δ

(
2s log

(
56N√
sδ

)
+ log

(
1

2θ

))
,
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one has with probability at least 1 − θ for all x ∈ K that any x̂ ∈ K with U(Ax̂ + τ ) =
U(Ax + τ ) satisfies

‖x̂− x‖2 ≤ δ.

Consequently, one can recover up to quantizer refinement ∆ with m & s log(N/
√
K∆)

measurements which is for small ∆ way better than the one-bit recovery guarantees pre-
sented in Section 3.3.
The above results led the way to recovery guarantees for multi-bit basis pursuit [128] and
single backprojection [171] which are straight-forward adaptions of the algorithms in Sec-
tion 3.3.1. We will discuss multi-bit basis pursuit and its connections to support vector
machines more detailed in Chapter 6.
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Chapter 4

Joint Recovery with One-bit
Measurements

As seen in Chapter 3, one-bit compressed sensing is relevant from a practical point of
view but requires many measurements when aiming for precise approximation. In this
chapter, we examine one-bit quantization in the framework of distributed compressed
sensing, i.e., joint recovery of signals. After introducing the concept of joint recovery and
providing a brief review of recent developments, we define our problem setting and present
the main results. We conclude the chapter with numerical experiments which support the
theoretical considerations. All results and all numerical experiments stated in this chapter
are joint work with Lars Palzer and have been published in [125].

4.1 Distributed Compressed Sensing

We discussed in Chapter 2 that in order to reconstruct s-sparse signals x ∈ RN in a stable
and robust way from linear measurements of type (2.1), we need at least m & s log(eN/s)
measurements. This lower bound consists of two parts. It requires s measurements to
identify the entries under knowledge of supp(x) and an additional factor of log(eN/s)
to find the support. Having knowledge of supp(x) hence would reduce the number of
necessary measurements. However, this assumption is not practical. A more practical
assumption, which appears naturally, is we do not only recover one signal x but several
signals x1, ...,xL ∈ RN that share a common support. For example, in MRI [170] a sig-
nal that is sparse in Fourier basis may be measured at different locations, which leads
to different attenuations and phase shifts at every node. Another application is MIMO
communications [143]. By exploiting the joint support structure one would hope to reduce
the number of measurements per signal from O(s log(N/s)) to O(s).

Two main measurement models for joint recovery from compressed measurements have
been established. The first one is commonly known as Multiple Measurement Vectors
(MMV). All signals are measured by the same measurement matrix A ∈ Rm×N (resp. the
same sensor) and the model in (2.1) becomes

Y = AX, (4.1)

45



CHAPTER 4. JOINT RECOVERY WITH ONE-BIT MEASUREMENTS

where X ∈ RN×L and Y ∈ Rm×L are matrices containing the signals and their correspond-
ing measurement vectors as columns. For this model one can only improve the average
performance when compared to single vector compressed sensing, while the worst-case
analysis shows no improvement, see [58].

In the second model, one considers distinct measurement matrices A(1), ...,A(L) ∈
Rm×N (resp. distinct sensors) for each signal xl ∈ RN , l ∈ [L]. Hence, there are seperate
measurement processes of type (2.1) for each l ∈ [L] yielding L different measurement
vectors yl ∈ Rm. We may write

vec(Y) = A · vec(X), (4.2)

where A ∈ RmL×NL is block diagonal and built from the blocks A(l), and vec(·) denotes
the vectorization of a matrix. Jointly sparse signal ensembles X can be recovered from
measurements of type (4.2) via `2,1-minimization if A satisfies a certain block RIP [57].
Moreover, the authors of [56] relate the number of measurements to guarantee block RIPs
for random matrices to properties of the signal ensembles X. They show that one can
profit from joint structure if the information in X is spread among multiple signals xl.
For instance, if all xl but one are zero one will need m = O(s log(eN/s)) measurements
per signal and joint recovery becomes useless. To obtain meaningful recovery guarantees
for distributed compressed sensing one thus needs assumptions beyond a joint support set.

The idea to jointly recover several signals has been introduced to compressed sensing
in [16] under the name distributed compressed sensing. We refer the reader to [16, 43] for
a more detailed introduction to distributed compressed sensing. Joint recovery is closely
related to model-based compressed sensing [14, 57] where one assumes certain structures
of the signal support in addition to sparsity. Joint sparsity of several signals appears in
this framework also under the name block sparsity of one signal.

4.2 A Distributed One-Bit Model

The papers [159, 103, 81] numerically exemplify increased performance of jointly sparse
signal recovery from one-bit measurements as in the unquantized setting, but they do not
provide theoretical justification for the improvements. To close this gap let us consider
the following model which corresponds to (4.2) above. Suppose we are given one-bit
measurements Y ∈ Rm×L obtained from L signals xl ∈ RN , l ∈ [L], that form the
columns of a matrix X ∈ RN×L. For simplicity we write x = vec(X) = (xT1 , ...,x

T
L)T and

y = vec(Y) = (yT1 , ...,y
T
L)T . The linear measurement process can then be described by

y = sign
(
Ax
)
, (4.3)

46



4.3. AN APPROPRIATE RIP

where A ∈ RmL×NL is a block diagonal measurement matrix built from the submatrices

A(l) ∈ Rm×N , l ∈ [L], which have iid Gaussian entries A
(l)
i,j ∼ N (0, 1), such that

A =

A(1)

. . .

A(L)

 . (4.4)

We denote the i-th column of (A(l))T by a
(l)
i , i.e., a

(l)
i is the transposed i-th row of A(l).

Let θ > 0 be an appropriate scaling to be determined later. We aim to approximate x by
a single back-projected hard-thresholding step (cf. Section 3.3.1)

x̂ = H̃s

(
(θA)Ty

)
, (4.5)

where the modified matrix hard-thresholding operator H̃s(z) = H̃s(vec(Z)) = vec(Hs(Z))
keeps only the s rows of largest `2-norm, for all z = vec(Z) ∈ RNL with Z ∈ RN×L. We
denote the support of a signal ensemble Z ∈ RN×L, i.e., the set of non-zero rows of Z, by
supp(Z) ⊂ [N ] and define the set Ss,L of admissible signal ensembles

Ss,L =

{
z = vec(Z) : Z =

 | |
z1 · · · zL
| |

 ∈ RN×L, | supp(Z)| ≤ s, ‖zl‖2 = ‖z‖2 /
√
L

}
(4.6)

which contains all ensembles sharing a common support of size at most s and a common
`2-norm. As the non-dithered sign-bit measurements (4.3) are invariant under scaling,
we only ask for approximation of the directions of the individual signals. Consequently,
whenever we use the terms ”approximation of signals” or ”recovery of signals” we implicitly
mean ”approximation/recovery of each signal up to the scaling” and restrict the results
to signals of fixed norm.

4.3 An Appropriate RIP

In preparation, we show that Gaussian measurements of the form (4.4) fulfill under suitable
scaling with high probability an `1/`2,1-restricted isometry property (`1/`2,1-RIP) on

Ks,L =

{
z = vec(Z) : Z ∈ RN×L, | supp(Z)| ≤ s

}
(4.7)

if mL & s(log(eN/s) +L). Note that Ks,L is a relaxation of Ss,L. Let us first define what
we mean by `1/`2,1-RIP. Recall that, for z = vec(Z), ‖z‖2,1 = ‖Z‖2,1 =

∑
l ‖zl‖2.

Definition 4.3.1 (`1/`2,1-RIP). A matrix B ∈ RmL×NL satisfies the `1/`2,1-RIP on Ks,L
with RIP-constant δ ∈ (0, 1) if

‖z‖2,1√
L
− δ ‖z‖2 ≤ ‖Bz‖1 ≤

‖z‖2,1√
L

+ δ ‖z‖2 , (4.8)

for all z ∈ Ks,L.
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As ‖z‖2,1 ≤
√
L ‖z‖2, the upper bound in (4.8) can be replaced by (1 + δ) ‖z‖2. More-

over, we know that ‖x‖2,1 =
√
L ‖x‖2, for x ∈ Ss,L. Consequently, the `1/`2,1-RIP in (4.8)

becomes a full `1/`2-RIP if restricted to Ss,L, i.e.,

(1− δ) ‖x‖2 ≤ ‖Bx‖1 ≤ (1 + δ) ‖x‖2 .

The signal model Ss,L appears to be well-chosen as the ensembles in Ss,L when multiplied
to block-diagonal Gaussian measurement matrices behave like single vectors multiplied
to dense Gaussian measurement matrices. The following lemma characterizes a sufficient
number of measurements for θA, with A defined as in (4.4), to fulfill the above introduced
`1/`2,1-RIP. Its proof is inspired by [140, Cor. 2.3].

Lemma 4.3.2 (`1/`2,1-RIP). For θ =
√
π/(2Lm2) and mL & δ−2s(log(eN/s) + L) the

operator θA, with A defined as in (4.4), has the `1/`2,1-RIP on Ks,L with RIP-constant δ
with probability at least 1− 2 exp

(
−δ2mL/(4π)

)
.

For L = 1 the above result resembles known bounds on the sufficient number of
measurements to have `1/`2-RIPs for random Gaussian matrices with high probabil-
ity as in this case m & s log(eN/s) is required. If L ≥ log(eN/s), we may estimate
(log(eN/s) + L)/L ≤ 2 and Lemma 4.3.2 instead requires m & δ−2s, i.e., only O(s) mea-
surements per signal.
In [56] the authors examined classical `2-RIPs for random Gaussian block matrices A and
showed that the sufficient number of measurements depends on how the information of
sparse signals is distributed on the different blocks of A. Lemma 4.3.2 extends their result
to `1/`2,1-RIPs in the special case that all signals have the same support.

To prove Lemma 4.3.2, we have to control the Gaussian width of Ks,L when intersected
with the unit ball B2(0, 1) ⊂ RNL.

Lemma 4.3.3 (Metric entropy of Ks,L ∩ B2(0, 1)). For ε ∈ (0, 1) we have

log (N(Ks,L ∩ B2(0, 1), ε)) ≤ s log

(
eN

s

)
+ sL log

(
3

ε

)
.

Proof : As Ks,L ∩B2(0, 1) is the union of
(
N
s

)
unit `2-balls in RsL embedded into RNL

and each unit ball can be covered by an ε-net of cardinality at most (3/ε)sL (see
[28, Section 3]), we know that

N (Ks,L ∩ B2(0, 1), ε) ≤
(
N

s

)(
3

ε

)sL
≤
(
eN

s

)s(3

ε

)sL
.

Lemma 4.3.3 leads to a direct bound for w(Ks,L ∩ B2(0, 1)).

Lemma 4.3.4 (Gaussian width of Ks,L ∩ B2(0, 1)). We have

w(Ks,L ∩ B2(0, 1)) .

√
s

(
log

(
eN

s

)
+ L

)
.
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Proof : We obtain

w(Ks,L ∩ B2(0, 1))
(i)

≤ 24

∫ 1

0

√
log (N(Ks,L ∩ B2(0, 1), ε)) dε

(ii)

≤ 24

√∫ 1

0
12 dε ·

√∫ 1

0
log (N(Ss,L ∩ B2(0, 1), ε)) dε

(iii)

≤ 24

√
s

(
log

(
eN

s

)
+ L(1 + log 3)

)
,

where (i) follows from Theorem 3.2.8, (ii) from Hölder’s inequality and (iii) from
Lemma 3.2.2.

The main part of the proof of Lemma 4.3.2 is accomplished in the following technical
result. It states a concentration inequality for bounded subsets of RNL and is a slightly
adapted version of [140, Lemma 2.1]. Recall that γ(K) denotes the Gaussian complexity
of K.

Lemma 4.3.5. Consider a bounded subset K ⊂ RNL and let a
(l)
i ∼ N (0, IdN ), i ∈ [m],

l ∈ [L] be independent Gaussian vectors in RN . Define

Z := sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈a
(l)
i ,xl

〉∣∣∣− 1√
L
‖x‖2,1

∣∣∣∣∣ . (4.9)

Then we have

E[Z] ≤
√

8π
γ(K)√
mL

and

Pr

[
Z >

√
8πγ(K)√
mL

+ u

]
≤ 2 exp

(
− mLu2

πd(K)2

)
, (4.10)

where d(K) := maxx∈K ‖x‖2.

Proof : Let g ∼ N (0, 1) and note that E[|g|] =
√

2/π. Then, we have

E

[
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈a
(l)
i ,xl

〉∣∣∣] =
m∑
i=1

L∑
l=1

√
π

2Lm2
E[|g|] ‖xl‖2 =

‖x‖2,1√
L

.

Define now for i ∈ [m], l ∈ [L] the random variables ϑ
(l)
i =

√
π/(2Lm2)

∣∣∣〈a
(l)
i ,xl

〉∣∣∣,
identically distributed independent copies ϑ̂

(l)

i , and independent Rademacher vari-
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ables εi,l, i.e., Pr[εi,l = 1] = Pr[εi,l = −1] = 1/2. We obtain

E[Z] = Eϑ

[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

(ϑ
(l)
i − Eϑ

[
ϑ

(l)
i

]
)

∣∣∣∣∣
]

= Eϑ

[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

(
ϑ

(l)
i − Eϑ

[
ϑ

(l)
i

])
− Eϑ̂

[
ϑ̂

(l)

i − Eϑ̂

[
ϑ̂

(l)

i

]]∣∣∣∣∣
]

= Eϑ

[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

Eϑ̂

[
ϑ

(l)
i − ϑ̂

(l)

i

]∣∣∣∣∣
]

(i)

≤ Eϑ

[
Eϑ̂

[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

ϑ
(l)
i − ϑ̂

(l)

i

∣∣∣∣∣
]]

= Eϑ,ε

[
Eϑ̂

[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

εi,l

(
ϑ

(l)
i − ϑ̂

(l)

i

)∣∣∣∣∣
]]

(ii)

≤ 2 Eϑ,ε

[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

εi,lϑ
(l)
i

∣∣∣∣∣
]

= 2

√
π

2Lm2
E

[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

εi,l

∣∣∣〈a
(l)
i ,xl

〉∣∣∣∣∣∣∣∣
]

(iii)

≤ 4

√
π

2Lm2
E

[
sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

εi,l

〈
a
(l)
i ,xl

〉∣∣∣∣∣
]

= 4

√
π

2Lm2
E

[
sup
x∈K

∣∣∣∣∣
L∑
l=1

〈
m∑
i=1

εi,la
(l)
i ,xl

〉∣∣∣∣∣
]

= 4

√
π

2Lm2
E

[
sup
x∈K

∣∣∣∣∣
〈

m∑
i=1

(
εi,1(a

(1)
i )T , ..., εi,L(a

(L)
i )T

)T
,x

〉∣∣∣∣∣
]

(iv)
= 4

√
π

2Lm2
E

[
sup
x∈K

∣∣〈√mg,x
〉∣∣] =

√
8π

γ(K)√
mL

,

(4.11)

where (i) follows from Jensen’s inequality, (ii) from the triangle inequality, (iii) is
a consequence of [114, Thm. 4.12], and in (iv) we let g ∼ N (0, IdNL).To prove the
deviation inequality (4.10) we will first show that Z, as defined in (4.9), is Lipschitz
continuous in A. Consider two block diagonal matrices A,B as in (4.4) and define
the operator

Z(A) := sup
x∈S

∣∣∣∣∣
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈a
(l)
i ,xl

〉∣∣∣− ‖x‖2,1√
L

∣∣∣∣∣ .
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Then, we have

|Z(A)− Z(B)| = sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈a
(l)
i ,xl

〉∣∣∣− ‖x‖2,1√
L

∣∣∣∣∣
− sup

x∈S

∣∣∣∣∣
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈b
(l)
i ,xl

〉∣∣∣− ‖x‖2,1√
L

∣∣∣∣∣
≤ sup

x∈K

{∣∣∣∣∣
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈a
(l)
i ,xl

〉∣∣∣− ‖x‖2,1√
L

∣∣∣∣∣
−

∣∣∣∣∣
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈b
(l)
i ,xl

〉∣∣∣− ‖x‖2,1√
L

∣∣∣∣∣
}

≤ sup
x∈K

∣∣∣∣∣
m∑
i=1

L∑
l=1

√
π

2Lm2

∣∣∣〈a
(l)
i − b

(l)
i ,xl

〉∣∣∣∣∣∣∣∣
≤ sup

x∈K

√
π

2Lm2

m∑
i=1

L∑
l=1

∥∥∥a(l)
i − b

(l)
i

∥∥∥
2
‖xl‖2

≤ sup
x∈K

√
π

2Lm2
‖A−B‖F

(
m∑
i=1

L∑
l=1

‖xl‖22

) 1
2

≤
√

π

2Lm2

√
m ‖A−B‖F d(K)

=
d(K)√
mL

√
π

2
‖A−B‖F .

Hence, Z(·) is Lipschitz continuous with constant d(K)√
mL

√
π
2 . Using the measure

concentration of Lipschitz functions evaluated on Gaussian random vectors [114,
Eq. (1.6)], we see that

Pr[|Z − E[Z] | > u] ≤ 2 exp

(
− 2u2mL

2πd(K)2

)
.

Using (4.11), we have

Pr

[
Z −
√

8π
γ(K)√
mL

> u

]
≤ Pr[Z − E[Z] > u] ≤ Pr[|Z − E[Z] | > u]

≤ 2 exp

(
− mLu2

πd(K)2

)
,

which yields the claim.

Proof of Lemma 4.3.2 : As (4.8) is invariant under scaling of the `2-norm, it suffices
to show (4.8) for all z ∈ Ks,L ∩ SNL−1. By origin symmetry, we have that γ(Ks,L ∩
SNL−1) = w(Ks,L ∩ SNL−1).
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Lemma 4.3.2 is a direct consequence of Lemmas 4.3.4 and 4.3.5. Just choose u =
δ/2 and mL ≥ 8π(δ/2)−2w(Ks,L ∩ B2(0, 1))2 and note that w(Ks,L ∩ B2(0, 1)) ≥
w(Ks,L∩SNL−1). Then, with probability at least 1−2 exp

(
−mLδ2/(4π)

)
, we have

for all z ∈ Ks,L ∩ SNL−1

∣∣∣∣√ π

2Lm2
‖Az‖1 −

‖z‖2,1√
L

∣∣∣∣ ≤ √8π
w
(
Ks,L ∩ SNL−1

)
√
mL

+
δ

2
≤ δ.

The statement follows for z ∈ Ks,L by applying the above statement to z
‖z‖2

∈
Ks,L ∩ SNL−1.

4.4 Approximation of Signal Ensembles

We are ready to state the main result of this chapter. It guarantees uniform recovery of
all signal ensembles x ∈ Ss,L by a simple hard-thresholding step and can be regarded as a
generalization of Theorem 3.3.2 to joint recovery of signals sharing a common support.

Theorem 4.4.1. Let A be a random mL×NL matrix as defined in (4.4). Set

mL & δ−2s(log(eN/s) + L) (4.12)

and θ =
√
π/(2Lm2).Then with probability at least 1 − 2 exp

(
−δ2mL/(4π)

)
(over the

entries of A), we have for all x ∈ Ss,L with ‖x‖2 = 1 that

‖x− x̂‖2 .
√
δ, (4.13)

where x̂ is defined in (4.5) and δ is the `1/`2,1-RIP constant of θA.

If L ≥ log(N/s), the required number of measurements per signal does not depend on
s log(N/s) but only on s (cf. discussion in Section 4.3). Consequently, when recovering sev-
eral signals that share a common support from sign-measurements collected independently
for each single signal, one can significantly reduce the necessary number of measurements
by using the support structure.
For unit norm signals ‖xl‖ = 1 the error per single signal xl is on average bounded by

√
δ

as (4.13) becomes

‖x− x̂‖2 .
√
Lδ.

In the worst case the error is concentrated on one signal. However, if the signals all are
dense on shared support set T ⊂ [n], the support will be recovered even in this case as
a worse error on one signal implies less error on the remaining signals. Obviously, one
needs a dense support of all signals to profit from joint recovery. If just one signal is
dense on its support while the rest contains mostly zeros on T , most of the signals do
not carry valuable support information and joint recovery cannot be expected to improve
performance (see also the discussion of distributed compressed sensing in Section 4.1).
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The proof of Theorem 4.4.1 follows the argument of Theorem 3.3.2 (developed in [65])
but relies on the assumption that all signals xl share a common `2-norm. By assumption,
we have that supp(X) = supp(x) ⊂ T for some T ⊂ [N ] with |T | ≤ s. For z = vec(Z) ∈
RNL let zT = vec(ZT ) with ZT being the matrix in which all rows not in T are set to
zero.

Lemma 4.4.2. If the operator θA satisfies the `1/`2,1-RIP on Ks,L, then all x ∈ Ss,L with
‖x‖2 = 1 satisfy ∥∥((θA)T sign(Ax)

)
T − x

∥∥2

2
≤ 5δ.

Proof : Define θb = θAT sign(Ax) ∈ RNL to be the backprojected quantized mea-
surements. We then have∥∥((θA)T sign(Ax)

)
T − x

∥∥2

2
= ‖(θb)T ‖22 − 2〈(θb)T ,x〉+ ‖x‖22

and

‖(θb)T ‖22 = 〈(θb)T , (θb)T 〉 = 〈(θA)T sign(Ax), (θb)T 〉
= 〈sign(Ax), (θA)(θb)T 〉 ≤ ‖(θA)(θb)T ‖1

≤
‖(θb)T ‖2,1√

L
+ δ ‖(θb)T ‖2 ≤ (1 + δ) ‖(θb)T ‖2 .

Hence, we have ‖(θb)T ‖2 ≤ 1 + δ and

〈(θb)T ,x〉 = 〈sign(Ax), (θA)x〉 = ‖(θA)x‖1 ≥
‖x‖2,1√

L
− δ ‖x‖2 = (1− δ),

where we used that ‖x‖2,1 =
√
L ‖x‖2 =

√
L by assumption. We can conclude that

∥∥((θA)T sign(Ax)
)
T − x

∥∥2

2
≤ (1 + δ)2 − 2(1− δ) + 1 ≤ 5δ.

Proof of Theorem 4.4.1 : Choose mL & δ−22s(log(en/(2s))+L) such that by Lemma
4.3.2, θA satisfies the `1/`2,1-RIP on K2s,L with high probability. Let T = supp(x)

and T̂ = supp(x̂) where x̂ = H̃s((θA)Ty). Note that x̂ is also the best s-row
approximation of ((θA)Ty)T ∪T̂ . Hence,

‖x− x̂‖2 ≤
∥∥((θA)Ty)T ∪T̂ − x̂

∥∥
2

+
∥∥((θA)Ty)T ∪T̂ − x

∥∥
2

≤ 2
∥∥((θA)Ty)T ∪T̂ − x

∥∥
2
≤ 2
√

5δ.

where we applied Lemma 4.4.2 for K2s,L in the last inequality (note that |T ∪ T̂ | ≤
2s).
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One might argue that the proof of Theorem 4.4.1 hardly differs from the one of Theorem
3.3.2. First, an `1/`2-RIP for θA is proven and then a simple computation shows the claim.
However, the model selection Ss,L is crucial and one has to treat the matrix θA as a whole
to reach the sample complexity in (4.12). Comparison with the following naive approach
clarifies this point: If we have m & δ−2s log(eN/s) for some δ > 0, we know that for each
l ∈ [L] and Gaussian A(l) ∈ Rm×N with probability exceeding 1− C exp(−cδ2m)

(1− δ) ‖z‖2 ≤
√

2

m
√
π

∥∥∥A(l)z
∥∥∥

1
≤ (1 + δ) ‖z‖2 , (4.14)

for all s-sparse z ∈ RN (see [148]). Applying a union bound and summing over (4.14) for
l ∈ [L] one has with probability at least 1− C exp(−cδ2m+ log(L)) that

(1− δ) ‖x‖2 ≤ ‖(θA)x‖1 ≤ (1 + δ) ‖x‖2 ,

for all x ∈ Ss,L and θ =
√

2/(m
√
πL). The specific choice δ′ =

√
Lδ leads to comparable

probabilities of success and shows that this straight-forward approach causes a worse
sample complexity than (4.12).
When proving Theorem 4.4.1 we rely on the assumption that x ∈ Ss,L which corresponds
to the equivalence of `1/`2,1-RIP and `1/`2-RIP on Ss,L (see Section 4.3). One may relax
the restriction a little by defining, for ε ∈ (0, 1), the set

Sε =

{
z = vec(Z) : Z ∈ RN×L, supp(Z) ≤ s, ‖zl‖2 ∈

[
1− ε√
L
‖z‖2 ,

1 + ε√
L
‖z‖2

]}
of signal ensembles which differ in norm by a bounded perturbation. Let B be a matrix
which satisfies the `1/`2,1-RIP on Ks,L with RIP-constant δ > 0. As ‖x‖2,1 ∈ [1 − ε, 1 +

ε]
√
L ‖x‖2 if x ∈ Sε, this implies

(1− δ)(1− ε) ‖x‖2 ≤ ‖Bx‖1 ≤ (1 + δ)(1 + ε) ‖x‖2 . (4.15)

If we wish to express (4.15) as an `1/`2-RIP on Sε for some δ′ ∈ (0, 1), i.e.,

(1− δ′) ‖x‖2 ≤ ‖Bx‖1 ≤ (1 + δ′) ‖x‖2 , (4.16)

for all x ∈ Sε, it would suffice to choose δ′ such that

(1− δ′) ≤ (1− δ)(1− ε)

which can be reformulated as

ε ≤ δ′ − δ
1− δ

.

Since the right-hand side is positive only for δ < δ′ and a decreasing function in δ for
0 ≤ δ < δ′ it can be upper bounded by δ′. The more general `1/`2,1-RIP thus becomes
an `1/`2-RIP on Sε for ε ≤ δ′ meaning that perturbations ε are only tolerated if they are
sufficiently small as compared to the aspired approximation error in (4.13). Anyway, the
assumption of all signals xl sharing the same norm is a mild condition in our setting as
the one-bit model (3.8) is blind to scaling and norm variations in signal ensembles.
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Algorithm 4 : sHT(y,A, s)

Require: Y ∈ {−1, 1}m×L, A ∈ RmL×NL

1: x̂← H̃s(A
Tvec(Y)) . H̃s is defined in (4.5)

2: X̂← reshape(x, n, L) . reshape(·) reverses vec(·)
3: return X̂

4.5 Numerical Simulation

Let us conclude the chapter by numerically illustrating the theoretical results of Section
4.4. We recover an unknown signal ensemble X ∈ RN×L from its one-bit measurements
Y ∈ Rm×L by a single hard-thresholding step which needs the measurements Y, the
block diagonal measurement matrix A and the sparsity level s = | supp(X)|. Algorithm
4 presents this simple approximation procedure. We show two experiments which sub-
stantiate the asymptotically linear dependence of m = O(s) measurements per signal.
As required in Lemma 4.3.2, the block diagonal measurement matrix A has iid Gaussian
entries and is scaled by θ =

√
π/(2Lm2). To create signal ensembles X ∈ RN×L with

| supp(X)| = s, we draw a support set T ⊂ [N ] uniformly at random, determine the single
entries as iid Gaussians of mean 0 and variance 1, and finally normalize all single signals
xl, l ∈ [L].
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10−1

100

measurement rate m/N

av
er

ag
e
∥ ∥ ∥X−

X̂
∥ ∥ ∥ F

L = 1
L = 2
L = 5
L = 20

Figure 4.1: Simulated error ‖X − X̂‖F averaged over 500 experiments
for s = 5 and N = 100.

In the first experiment we recover signal ensembles X ∈ RN×L of signal dimension
N = 100, ensemble size L = 1, 2, 5, 20, and support size s = 5 from their one-bit mea-
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surements Y ∈ Rm×L. Figure 4.1 depicts the obtained approximation error ‖X − X̂‖F
in Frobenius norm over the measurement rate r = m/N (averaged over 500 random real-
izations of X). One clearly observes an improvement for larger ensembles and a sharper
transition from no recovery to practical approximation.
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Figure 4.2: Simulated error ‖X − X̂‖F averaged over 500 experiments
with N = 100. The red contour lines correspond to ‖X− X̂‖F = 2/3.

The second experiment (see Figure 4.2) illustrates the dependence of m and s. We
again approximate signal ensembles X ∈ RN×L of signal dimension N = 100 and ensemble
size L = 1, 2, 5, 20 from their one-bit measurements Y ∈ Rm×L. The support size of X is
varied from s = 1 to s = 50 while the measurement rate r = m/N ranges from r = 0.01
up to r = 3. For any parameter pair (s, r) we recovered 500 random realizations of X.
The average approximation error ‖X− X̂‖F is plotted in color while a selected error level
is highlighted. Comparing the different choices of L, the linear dependence of m on s for
L = 20 and fixed error levels is clearly visible and different from the s ln(eN/s) behavior
for L = 1.

Note that the measurement rate does not behave linearly in the plots L = 2 and
L = 5 for s/N ≥ e1−L which corresponds to the case L ≥ log(eN/s). Though we claimed
an O(s) behaviour in Section 4.3 in this case, the observation is no contradiction as in
the theoretical argument it suffices to bound (log(eN/s) + L)/L ≤ 2. The numerical
experiments with fixed L, however, show the transition from (log(eN/s) + L)/L ≈ 2 for
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small values of s/N (corresponding to large values of log(eN/s)) to (log(eN/s)+L)/L ≈ 1
for large values of s/N (corresponding to small values of log(eN/s)) causing a non-linear
shape as long as L is not clearly dominating (cf. L = 20).

4.6 Discussion

After having examined in this chapter how the two concepts of heavily quantized measure-
ments and distributed compressed sensing can be combined to obtain performance bounds
for one-bit measurements which match corresponding unquantized distributed compressed
sensing results, we see several possible directions for further research.
First, sophisticated alternatives to a single hard-thresholding step have been proposed (see
[103]) which numerically outperform Algorithm 4. Explaining their improved performance
in theory seems promising.
Second, the proof of Theorem 4.4.1 relies on noiseless measurements to use the equivalence
of 〈sign(Ax),Ax〉 and ‖Ax‖1. We suppose that it is not possible to easily modify the
above proof to tolerate noise on y. However, the noisy one-bit algorithm (3.23) could
be applied in the distributed setting as well. Adapting Theorem 3.3.10 to block-diagonal
measurement matrices would then lead to corresponding theoretical approximation guar-
antees. Moreover, the dithered one-bit model (3.10) might allow to generalize the results
to subgaussian measurements.
Finally, relaxing the quantization level to multi-bit quantizers is desirable as it should
decrease the approximation error (cf. [96, 94]) and thus bridges the wide performance gap
between unquantized measurements and one-bit measurements.
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Chapter 5

One-bit Recovery on General
Manifolds

In this chapter we propose an algorithm to recover signals lying on a low-dimensional
manifold M⊂ SN−1 from their one-bit measurements. The recovery strategies presented
in Section 3.3.3 work for general signal sets K ⊂ RN . However, they become intractable if
K is non-convex. One could relax K to its convex hull but there are two drawbacks. First,
it is not clear if conv(K) can be computed in a simple way and, second, one might throw
away a lot of structural information. Our approach combines geometric multi-resolution
analysis, a locally linear manifold approximation, with the noisy one-bit results in Section
3.3.3 to guarantee tractable recovery even for non-convex signal sets K. After introducing
geometric multi-resolution analysis, we present our algorithm and analyze its performance.
Finally, we support the theoretical results by numerical simulations. The content of this
chapter is joint work with Mark Iwen, Felix Krahmer, and Sara Krause-Solberg and has
been published in [91] and [108].

5.1 The Geometric Multi-Resolution Analysis

Learning manifolds from samples and representing them in an efficient way is an im-
portant problem in many fields, ranging from image processing [86, 35], to analysis of
electroencephalography signals [142] and computer vision [156]. It has strong connec-
tions to estimation of intrinsic dimensionality of point clouds [121, 37] and constructing
dictionaries adapted to data [2]. In [5] the authors approached this problem by intro-
ducing the geometric multi-resolution analysis (GMRA), a locally linear approximation
of manifolds. The GMRA of a d-dimensional manifold M has a number of refinement
levels which approximateM on different scales by anchor points and corresponding affine
d-dimensional spaces. Figure 5.1 illustrates two different refinement levels for a simple
1-dimensional manifold. To make this precise, we first present an axiomatic definition of
GMRA as given in [89]. This definition proves useful in deducing theoretical results but
lacks connection to concrete applications where the structure ofM is not known a priori.
Hence, in the following we describe the original definition of a probabilistic GMRA which
is well approximated by empirical data (see [5, 32, 123]) and connected to the axiomatic
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M M

Figure 5.1: Two possible refinement levels of GMRA.

definition by applying results from [123].

5.1.1 Axiomatic GMRA

Let us begin with the axiomatic definition of GMRA as given in [89]. We denote the
tube of radius r around a given subset M⊂ RN by

tuber(M) :=

{
x ∈ RN : inf

y∈M
‖x− y‖2 ≤ r

}
(5.1)

and let M⊂ RN from now on be a d-dimensional manifold.

Definition 5.1.1 (GMRA Approximation toM, [89]). Let J ∈ N and K0,K1, ...,KJ ∈ N.
Then a geometric multi resolution analysis (GMRA) of M is a collection {(Cj ,Pj)},
j ∈ [J ], of sets Cj = {cj,k}

Kj
k=1 ⊂ RN of centers and

Pj =
{
Pj,k : RN → RN

∣∣ k ∈ [Kj ]
}

of affine projectors which approximate M at scale j, such that the following assumptions
(1)-(3) hold.

(1) Affine Projections: Every Pj,k ∈ Pj has both an associated center cj,k ∈ Cj and
an orthogonal matrix Φj,k ∈ Rd×N , such that

Pj,k(z) = ΦT
j,kΦj,k(z− cj,k) + cj,k,

i.e., Pj,k is the projector onto some affine d-dimensional linear subspace Pj,k con-
taining cj,k.

(2) Dyadic Structure: The number of centers at each level is bounded by |Cj | = Kj ≤
CC2dj for an absolute constant CC ≥ 1. There exist C1 > 0 and C2 ∈ (0, 1], such
that following conditions are satisfied:

(a) Kj ≤ Kj+1, for all j ∈ [J − 1].

(b) ‖cj,k1 − cj,k2‖2 > C1 · 2−j, for all j ∈ [J ] and k1 6= k2 ∈ [Kj ].

(c) For each j ∈ [J ]\{0} there exists a parent function pj : [Kj ]→ [Kj−1] with

‖cj,k − cj−1,pj(k)‖2 ≤ C2 · min
k′∈[Kj−1]\{pj(k)}

‖cj,k − cj−1,k′‖2.
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(3) Multiscale Approximation: The projectors in Pj approximate M at scale j, i.e.,
whenM is sufficiently smooth the affine spaces Pj,k locally approximateM pointwise
with error O

(
2−2j

)
. More precisely:

(a) There exists j0 ∈ [J − 1], such that cj,k ∈ tubeC1·2−j−2(M), for all j > j0 ≥ 1
and k ∈ [Kj ].

(b) For each j ∈ [J ] and z ∈ RN let cj,kj(z) be one of the centers closest to z, i.e.,

kj(z) ∈ arg min
k∈[Kj ]

‖z− cj,k‖2. (5.2)

Then, for each z ∈M there exists a constant Cz > 0 such that

‖z− Pj,kj(z)(z)‖2 ≤ Cz · 2−2j ,

for all j ∈ [J ]. Moreover, for each z ∈M there exists C̃z > 0 such that

‖z− Pj,k′(z)‖2 ≤ C̃z · 2−j ,

for all j ∈ [J ] and k′ ∈ [Kj ] satisfying

‖z− cj,k′‖2 ≤ 16 ·max
{
‖z− cj,kj(z)‖2, C1 · 2−j−1

}
.

By property (1), GMRA is a combination of several anchor points (the centers cj,k) and
corresponding low dimensional affine spaces Pj,k. The levels j control the accuracy of the
approximation. All centers are organized in a tree-like structure, cf. property (2). Property
(3) then characterizes approximation criteria to be fulfilled on different refinement levels.
Note that centers do not have to lie on M (compare Figure 5.1) but their distance to M
is controlled by property (3a).
As the above axioms do not provide means of constructing a GMRA we now define it
using probability measures on M.

5.1.2 Probabilistic GMRA

A probabilistic GMRA ofM with respect to a Borel probability measure Π, as introduced
in [123], is a family of (piecewise linear) operators {Pj : RN → RN}j≥0 of the form

Pj(x) =

Kj∑
k=1

1Cj,k(x)Pj,k(x).

Here, 1M denotes the indicator function of a set M and, for each refinement level j ≥ 0,

the collection of pairs of measurable subsets and affine projections {(Cj,k,Pj,k)}
Kj
k=1 has

the following structure.
The subsets Cj,k ⊂ RN for k = 1, . . . ,Kj form a partition of RN , i.e., they are pairwise

disjoint and their union is RN . The affine projectors are defined by

Pj,k(z) = c′j,k + PVj,k(z− c′j,k),
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where, for zΠ ∼ Π, c′j,k = E[zΠ|zΠ ∈ Cj,k] =: Ej,k[zΠ] ∈ RD and

Vj,k := arg min
dim(V )=d

Ej,k
[
‖zΠ − (c′j,k + ProjV (zΠ − c′j,k))‖22

]
,

where the minimum is taken over all linear spaces V of dimension d. From now on we
assume uniqueness of the subspaces Vj,k. If one thinks of Π being supported on the tube
of a d-dimensional manifold, parallels to the axiomatic GMRA definition become clear.
The axiomatic centers cj,k are in this case considered to be approximately equal to the
conditional means c′j,k of some cells Cj,k partitioning the space, and the corresponding
affine projection spaces Pj,k are spanned by eigenvectors of the d leading eigenvalues of
the conditional covariance matrix

Σj,k = Ej,k
[
(zΠ − c′j,k)(zΠ − c′j,k)

T
]
.

Defined in this way, the Pj correspond to projectors onto the GMRA approximationsMj

introduced above if cj,k = c′j,k. From [123] we adopt the following assumptions on the
entities defined above, and hence, on the distribution Π. When working with the prob-
abilistic GMRA, we assume for all integers jmin ≤ j ≤ jmax that (A1)-(A4) (see Table
5.1) hold true.

Assumption (A1) ensures that each partition element contains a reasonable amount
of Π-mass. Assumption (A2) guarantees that all samples from Πj,k will lie close to its ex-
pection/center. As a result, each c′j,k must be geometrically central within Cj,k. Together,
(A1) and (A2) have the combined effect of ensuring that the probability mass of Π is
equally distributed onto the different sets Cj,k, i.e., the number of points in each set Cj,k
is approximately the same, at each scale j. The third and fourth assumptions (A3) and
(A4) constrain the geometry of the support of Π to being effectively d-dimensional and
regular (e.g., close to a smooth d-dimensional submanifold of RN ). We refer the reader to
[123] for more detailed information regarding these assumptions.

An important class of probability measures Π fulfilling (A1)-(A4) is presented in
[123]. For illustration of applicability we repeat it here and also discuss a method of

constructing the partitions {Cjk}
Kj
k=1 from such probabilities measures. LetM be a smooth

d-dimensional submanifold of RN for the rest of this section.

Definition 5.1.2 ([123, Definition 3]). Assume that 0 ≤ σ < τ . The distribution Π is
said to satisfy the (τ, σ)-model assumption if (i) there exists a smooth, compact subman-
ifold M ↪→ RN with reach τ such that supp(Π) = tubeσ(M), (ii) the distributions Π
and Utubeσ(M) are absolutely continuous with respect to each other so the Radon-Nikodym

derivative dΠ
dUtubeσ(M)

exists and satisfies

0 < φ1 ≤
dΠ

dUtubeσ(M)
≤ φ2 <∞ Utubeσ(M) − almost surely.

The constants φ1 and φ2 are implicitly assumed to only depend on a slowly growing function
of N , compare [123, Remark 4].
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(A1) There exists an integer 1 ≤ d ≤ N and a positive constant θ1 = θ1(Π) such
that for all k = 1, . . . ,Kj ,

Π(Cj,k) ≥ θ12−jd.

(A2) Define the restricted measure Πj,k by Πj,k(S) := Π(S ∩Cj,k)/Π(Cj,k) for mea-
surable S ⊂ RN . There is a positive constant θ2 = θ2(Π) such that for all
k = 1, . . . ,Kj , if zΠ is drawn from Πj,k then, Πj,k-almost surely,

‖zΠ − c′j,k‖2 ≤ θ22−j .

(A3) Denote the eigenvalues of the covariance matrix Σj,k by λj,k1 ≥ · · · ≥ λ
j,k
N ≥ 0.

Then there exists σ = σ(Π) ≥ 0, θ3 = θ3(Π), θ4 = θ4(Π) > 0, and some α > 0
such that for all k = 1, . . . ,Kj ,

λj,kd ≥ θ3
2−2j

d
and

N∑
l=d+1

λj,kl ≤ θ4(σ2 + 2−2(1+α)j) ≤ 1

2
λj,kd .

(A4) There exists θ5 = θ5(Π) such that

‖Id− Pj‖∞,Π ≤ θ5(σ + 2−(1+α)j),

where ‖T‖∞,Π = supx∈supp(Π) ‖T (x)‖2, for T : RN → RN .

Table 5.1: The assumption set on Π.
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Obviously, the uniform distribution on a smooth compact submanifold of RN or its σ-
tube satisfies the (τ, σ)-model assumption. Let us now discuss the construction of suitable
partitions {Cj,k} by making use of cover trees. A cover tree T on a finite set of samples
S ⊂ M is a hierarchy of levels with the starting level containing the root point and the
last level containing every point in S. To every level a set of nodes is assigned which is
associated with a subset of points in S. To be precise, given a set S of n distinct points in
some metric space (X, dX), a cover tree T on S is a sequence of subsets Ti ⊂ S, i = 0, 1, . . .
that satisfies the following, see [20]:

(i) Nesting: Ti ⊂ Ti+1, i.e., once a point appears in Ti it is in every Tj for j ≥ i.

(ii) Covering: For every x ∈ Ti+1 there exists exactly one y ∈ Ti such that dX(x,y) ≤
2−i. Here y is called the parent of x.

(iii) Separation: For all distinct points x,y ∈ Ti, dX(x,y) > 2−i.

The set Ti denotes the set of points in S associated with nodes at level i. Note that there
exists n ∈ N such that Ti = S for all i ≥ n. We assume that S is sufficiently large to
contain an ε-cover of M for ε > 0 sufficiently small.
Note that the axioms characterizing cover trees are strongly connected to the dyadic
structure of GMRA. For a given cover tree with respect to the Euclidean distance (for
construction see [20]) on a set Xn = {X1, . . . Xn} of i.i.d. samples from the distribution
Π, let aj,k for k = 1, . . . ,Kj be the elements of the jth level of the cover tree, i.e. Tj =

{aj,k}
Kj
k=1 and define

κj(x) = arg min
1≤k≤Kj

‖x− aj,k‖2.

With this a partition of RN into Voronoi regions

Cj,k = {x ∈ RN : κj(x) = k} (5.3)

can be defined. Maggioni et. al. showed in [123, Theorem 7] that by this construction all
assumptions (A1)-(A4) can be fulfilled.

The question arises if the properties of the axiomatic definition of GMRA in Definition
5.1.1 are equally met. As only parts of the axioms are relevant for our analysis, we refrain
from giving rigorous justification for all properties.

1. GMRA property (1) holds by construction if the matrices Φj,k are defined, s.t.
ΦT
j,kΦj,k = PVj,k along with any reasonable choice of centers cj,k.

2. The dyadic structure axioms (2a) – (2c) also hold as a trivial consequence of the
cover tree properties (i) – (iii) above if the axiomatic centers cj,k are chosen to
be the elements of the cover tree set Tj (i.e., the aj,k elements). By the (ρ, σ)-
model assumption samples drawn from Π will have a quite uniform distribution all
over supp(Π). Hence, the probabilistic centers c′j,k of each Cj,k-set will also tend
to be close to the axiomatic centers cj,k = aj,k proposed here for small σ (see, e.g.,
assumption (A2) above).
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3. One can deduce GMRA property (3a) from the fact that our chosen centers aj,k
belong to M if supp(Π) =M (or to a small tube around M if σ is small).

4. The first part of (3b) is implied by (A4) with the uniform constant θ5 for all x ∈M
if aj,k is sufficiently close to c′j,k. To show the second part of (3b) note that

‖x− Pj,k′(x)‖2 ≤ ‖x− cj,k′‖2 + ‖cj,k′ − Pj,k′(x)‖2 = ‖x− cj,k′‖2 + ‖PVj,k′ (x− cj,k′)‖2
≤ 2‖x− cj,k′‖2 ≤ 32 max{‖x− cj,kj(x)‖2, C12−j−1}
≤ 32 max{Cε2−j , C12−j−1} ≤ C · 2−j ,

where in the second last step we used our cover tree properties (recall that cj,k =
aj,k). Again, the constants C,Cε > 0 do not depend on the chosen x ∈ M as long
as S is well chosen (e.g., contains a sufficiently fine cover of M).

Considering the GMRA axioms above we can now see that only the first part of (3b)
may not hold in a satisfactory manner if we choose to set ΦT

j,kΦj,k = PVj,k and cj,k = aj,k.
And, even when it doesn’t hold with Cz being independent of j it will still at least still
hold with a worse j dependence due to assumption (A2).

5.1.3 Empirical GMRA

The axiomatic properties only hold as argued above if the probabilistic GMRA is con-
structed under knowledge of the true PVj,k -subspaces. In reality this won’t be the case
and we are rather given training data consisting of n samples fromM, Xn = {X1, ..., Xn},
which we assume to be iid with distribution Π. These samples are used to approximate
the real GMRA subspaces based on Π such that the operators Pj can be replaced by their
estimators

P̂j(z) =

Kj∑
k=1

1{z∈Cj,k}P̂j,k(z),

where {Cj,k}
Kj
k=1 is a suitable partition of RN obtained from the data,

P̂j,k(z) = ĉj,k + P
V̂j,k

(z− ĉj,k),

ĉj,k =
1

|Xk,j |
∑

z∈Xj,k
z,

V̂j,k = arg min
dim(V )=d

1

|Xj,k|
∑

z∈Xj,k
‖z− ĉj,k − PV (z− ĉj,k)‖22,

and Xj,k = Cj,k ∩ Xn. In other words, working with above model we have one perfect
GMRA that cannot be computed (unless Π is known) but fulfills all important axiomatic
properties, and an estimated GMRA that is at hand but that is only an approximation to
the perfect one. Thankfully, the main results of [123] give error bounds on the difference
between perfect and estimated GMRA with cj,k = ĉj,k ≈ c′j,k ≈ aj,k that only depend on
the number of samples from Π one can acquire.
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SN−1

(a) Tessellation of the sphere by
random hyperplanes.

M

(b) Submanifold M of SN−1 and one
level of GMRA.

Figure 5.2: One-bit measurements and GMRA.

Theorem 5.1.3 ([123, Theorem 2]). Suppose that assumptions (A1)-(A3) are satisfied

(see Table 5.1). Let X,X1, . . . Xn be an i.i.d. sample from Π and set d̄ = 4d2 θ
4
2

θ2
3

. Then,

for any t ≥ 1 such that t+ log(max{d̄, 8}) ≤ 1
2θ1n2−jd,

E
[
‖X − P̂j(X)‖22

]
≤ 2θ4

(
σ2 + 2−2j(1+α)

)
+ c12−2j (t+ log(max{d̄, 8}))d2

n2−jd

and, if in addition (A4) is satisfied,

∥∥∥Id− P̂j
∥∥∥
∞,Π
≤ θ5

(
σ + 2−(1+α)j

)
+

√
c1

2
2−2j

(t+ log(max{d̄, 8}))d2

n2−jd

with probability ≥ 1− 2jd+1

θ1

(
e−t + e−

θ1
16
n2−jd

)
, where c1 = 2

(
12
√

2
θ3
2

θ3
√
θ1

+ 4
√

2 θ2
d
√
θ1

)2
.

5.2 The One-Bit Manifold Sensing Algorithm

The problem we address is the following. We consider, for d � N , a given union of d-
dimensional manifoldsM that is a subset of the unit sphere SN−1 of a higher dimensional
space RN (by scaling blindness of (3.8) this restriction is reasonable). Furthermore, we
imagine that we do not know M perfectly, and so instead we only have approximate
information about M represented in terms of a GMRA of the manifold. Our goal is to
recover an unknown signal x ∈M from m one-bit measurements

y = sign(Ax), (5.4)

where A ∈ Rm×N has Gaussian iid entries of variance 1/
√
m, using as few measurements,

m, as possible. In order to succeed using only m � N such one-bit measurements we
will use the fact that the GMRA provides structural constraints for the signal x to be
recovered. Thus the setup connects to recent generalizations of the quantized compressed
sensing problem [139] which we will exploit in our proof. Figure 5.2 illustrates the setting.

As one might expect, the complexity and structure of the GMRA forM will depend on
the complexity ofM itself. We work with two different measures of complexity. First, the
Gaussian width and, second, the reach ofM [60]. The Gaussian width and its geometrical
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understanding have comprehensively been discussed in Section 3.2. The notion of reach
is, in contrast, more obviously linked to the geometry of M. First, recall the definition
of tube in (5.1). The domain of the nearest neighbor projection onto the closure of M is
denoted by

D(M) :=

{
x ∈ RN : ∃!y ∈M such that ‖x− y‖2 = inf

z∈M
‖z− y‖2

}

and allows to define the reach of M⊂ RN as

reach(M) := sup{r ≥ 0 : tuber(M) ⊂ D(M)}.

The reach is thus the largest distance r aroundM for which the nearest neighbor projec-
tion onto the closure of M is well defined. Given this definition one sees, e.g., that the
reach of any d < N dimensional sphere of radius r in RN is r, and that the reach of any
d ≤ N dimensional convex subset of RN is∞. Note that the concept of reach is connected
to the concept of manifold condition numbers in [12] where it was used to characterize
embeddings of smooth manifolds by random linear projections.

To simplify notation we denote the scale-j GMRA approximation to M by

Mj := {Pj,kj(z)(z) : z ∈ B2(0, 2)} ∩ B2(0, 2).

Note that we restrict the GMRA, for each fixed j, to the portions of the affine sub-
spaces introduced in Definition 5.1.1 which are potentially relevant as approximations
to some portion of M ⊂ SN−1. To prevent the Mj above from being empty we will
further assume in our results that we only use scales j > j0 large enough to guarantee
that tubeC12−j−2(M) ⊂ B2(0, 2). Hence we will have cj,k ∈ B2(0, 2) for all k ∈ Kj , and
so Cj ⊂ Mj . This further guarantees that no sets Pj,k ∩ B2(0, 2) are empty, and that
Pj,k ∩ B2(0, 2) ⊂ Mj for all k ∈ Kj . The choice of B2(0, 2) is motivated by simplifying
later calculations. One may instead take B2(0, r), for any r > 1. This only changes the
required quality of the GMRA in Theorem 5.3.1 along with the constants E and E′.

Considering GMRA-based compressed sensing results in [89] and the noisy one-bit re-
sult Theorem 3.3.9, we suggest the following strategy for recovering an unknown x ∈ M
from the measurements given in (5.4): First, choose a center cj,k′ whose one-bit measure-
ments agree with as many one-bit measurements of x as possible. As illustrated in Figure
5.3, this is not an optimal choice in general. Nevertheless, one can hope Pj,k′ to be a good
approximation to M near x. Thus, apply in the second step the noisy one-bit recovery
method (3.21) on Pj,k′ to obtain an approximation of Pj,k′(x) which is close to x. Note
that in this second step the given measurements y of x are interpreted as noisy measure-
ments of Pj,k′(x). The algorithm One-bit-Manifold-Sensing-Simple is stated explicitly in
Algorithm 5.
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cj,kj(x)

cj,k′

x

Pj,kj(x)

Pj,k′

M

Pj,k′(x)

Figure 5.3: The closest center cj,kj(x) is not identified by measurements.
Dotted lines represent one-bit hyperplanes.

Algorithm 5 : OMS-Simple

I. Identify a center cj,k′ close to x via

cj,k′ ∈ arg min
cj,k∈Cj

dH(sign(Acj,k),y), (5.5)

where dH is the Hamming distance, i.e., dH(z, z′) := |{l : zl 6= z′l}|. If
dH(sign(Acj,k′),y) = 0, directly choose x∗ = cj,k′ and omit II.

II. If there is no center in the same cell as x (as in Figure 5.3), solve the noisy one-bit
recovery problem (3.21), i.e.,

x∗ = arg min
z∈RN

m∑
l=1

(−yl)〈al, z〉, subject to z = Pj,k′(z) and ‖z‖2 ≤ R, (5.6)

where R is a suitably chosen parameter.

Remark 5.2.1. The minimization in (5.5) can be efficiently calculated by exploiting tree
structures in Cj. Numerical experiments (see Section 5.5) suggest this strategy to yield
adequate approximation for the center cj,kj(x) in (5.2), while being considerably faster (we
observed differences in runtime up to a factor of 10).

Though simple to understand, the constraints in (5.6) cause an issue we have to address:
any optimal choice of R in (5.6) depends on x such that OMS-Simple requires parameter
tuning, making it less practical than one might wish for.
We hence modify the constraints in (5.6) and instead minimize over the convex hull of the
projection of Pj,k′ ∩ B2(0, 2) onto SN−1 (recall the shorthand notation PS = PSN−1),

conv
(
PS(Pj,k′ ∩ B2(0, 2))

)
.
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If 0 ∈ Pj,k′ one has conv
(
PS(Pj,k′ ∩ B2(0, 2))

)
= Pj,k′ ∩ B2(0, 1). If 0 /∈ Pj,k′ the set

conv
(
PS(Pj,k′ ∩ B2(0, 2))

)
is described by the following set of convex constraints which

are straightforward to implement in practice. Denote by Pc the projection onto the linear
space spanned by c = Pj,k′(0). Then,

z ∈ conv
(
PS(Pj,k′ ∩ B2(0, 2))

)
⇔


‖z‖2 ≤ 1,

ΦT
j,k′Φj,k′z + Pc(z) = z,

〈z, c〉 ≥ 1
2‖c‖

2
2.

(5.7)

0
0

Pj,k′(0)

1
2

(
Pj,k′ ∩ B(0, 2)

)

Pj,k′ ∩ B(0, 2) Pj,k′(0)

Figure 5.4: Two views of an admissible set conv(PS(Pj,k′∩B(0, 2))) from
(5.7) for a case with ‖c‖2 = ‖Pj,k′(0)‖2 < 1.

The first two conditions above restrict z to B2(0, 1) and span(Pj,k′), respectively. The
third condition then removes all points that are too close to the origin (see Figure 5.4).
This is made explicit in the following lemma.

Lemma 5.2.2. Let Pj,k′ be the affine subspace chosen in step I. of OMS-Simple. Define
c = Pj,k′(0). If 0 /∈ Pj,k′, the equivalence in (5.7) holds.

Proof : First, assume z ∈ conv
(
PS(Pj,k′ ∩ B2(0, 2))

)
. Obviously, ‖z‖2 ≤ 1. As project-

ing onto the sphere is a simple rescaling, conv
(
PS(Pj,k′ ∩ B2(0, 2))

)
⊂ span(Pj,k′)

implying that ΦT
j,k′Φj,k′z + Pc(z) = z. For showing the third constraint note that

any z′ ∈ Pj,k′ can be written as z′ = c + (z′ − c) where z′ − c is perpendicular to
c. If in addition ‖z′‖2 ≤ 2, we get

〈PS(z′), c〉 =

〈
z′

‖z′‖2
, c

〉
=
〈c, c〉
‖z′‖2

≥ 1

2
‖c‖22.

As z is a convex combination of different PS(z′) the constraint also holds for z.
Let z fulfill the three constraints. Then z′ = (‖c‖22/〈z, c〉) · z satisfies z′ ∈ Pj,k′

because of the second constraint and 〈z′, c〉 = ‖c‖22. Furthermore, by the first and
third constraint ‖z′‖2 ≤ (‖c‖22/〈z, c〉) ≤ 2 and hence z′ ∈ Pj,k′ ∩ B2(0, ‖c‖22/〈z, c〉)-
⊂ Pj,k′ ∩ B2(0, 2). As Pj,k′ ∩ B2(0, ‖c‖22/〈z, c〉) is the convex hull of Pj,k′ ∩
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(‖c‖22/〈z, c〉) · SN−1 , there are z1, ..., zn ∈ Pj,k′ and λ1, ..., λn ≥ 0 with ‖zk‖2 =
‖c‖22/〈z, c〉 and

∑
λk = 1 such that (‖c‖22/〈z, c〉) · z =

∑
λkzk. Hence, z =∑

λk(〈z, c〉/‖c‖22) · zk. As (〈z, c〉/‖c‖22) · zk ∈ PS(Pj,k′ ∩ B2(0, 2)) we get z ∈
conv

(
PS(Pj,k′ ∩ B2(0, 2))

)
.

Our analysis uses that the noisy one-bit recovery results of Plan and Vershynin apply to
arbitrary subsets of the unit ball B2(0, 1) ⊂ RN which will allow us to adapt our recovery
approach. Replacing the constraints in (5.6) with those in (5.7) we obtain the following
modified recovery approach, One-bit-Manifold-Sensing (see Algorithm 6).

Algorithm 6 : OMS

I. Identify a center cj,k′ close to x via

cj,k′ ∈ arg min
cj,k∈Cj

dH(sign(Acj,k),y). (5.8)

where dH is the Hamming distance, i.e., dH(z, z′) := |{l : zl 6= z′l}|. If
dH(sign(Acj,k′),y) = 0, directly choose x∗ = cj,k′ and omit II.

II. If there is no center lying in the same cell as x (see Figure 5.3), recover the
projection of x onto Pj,k′ , i.e., Pj,k′(x). To do so solve the convex optimization

x∗ = arg min
z∈RN

m∑
l=1

(−yl)〈al, z〉, subject to z ∈ conv
(
PS(Pj,k′ ∩ B2(0, 2))

)
. (5.9)

5.3 Recovery Guarantees for OMS

We are ready to state the core result of this chapter which provides for OMS recovery
guarantees similar to the ones in Theorem 3.3.9 if one has access to a GMRA ofM fulfilling
the axioms in Definition 5.1.1. This section is devoted to the proof of Theorem 5.3.1 and
concludes with a short discussion on the Gaussian width of Riemannian manifolds.

Theorem 5.3.1. There exist absolute constants E,E′, c > 0 such that the following
holds. Let ε ∈ (0, 1) and assume a GMRA of M according to Definition 5.1.1 is given
up to maximum refinement level J ≥ j := dlog(1/ε)e. Further suppose that one has
dist(0,Mj) ≥ 1/2, 0 < C1 < 2j, and supx∈M C̃x < 2j−1. If

m ≥ EC−6
1 ε−6 max

{
w(M),

√
d log(e/ε)

}2
, (5.10)

then with probability at least 1− 12 exp(−cC2
1ε

2m) for all x ∈M ⊂ SN−1 the approxima-
tions x∗ obtained by OMS satisfy

‖x− x∗‖22 ≤ E′
(

1 + C̃x + C1 max
{

1, log(C−1
1 )
})2

ε log
( e

2ε

)
. (5.11)
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Remark 5.3.2. The restrictions on C1 and C̃x are easily satisfied, e.g., if the centers form
a maximal 2−j packing of M at each scale j or if the GMRA is constructed from manifold
samples as discussed in Section 5.1. In both these cases C1 and C̃x are in fact bounded by
absolute constants. We discuss Theorem 5.3.1 for empirical GMRAs in Section 5.4.
Note that Theorem 5.3.1 is up to the additional ε-log-factors in (5.10) and (5.11) similar
to Theorem 3.3.9. We thus extended Theorem 3.3.9 by a tractable approach for non-convex
signal sets under mildly worse conditions.
Numerical simulations (see Section 5.5) suggest that a slightly modified version of OMS
performs better in some scenarios even though we cannot provide a rigorous theoretical
justification for the modification’s improved performance at present.

For proving Theorem 5.3.1 we need two technical lemmas. The first controls the
Gaussian width of the union of manifold and its scale-j GMRA approximation M∪Mj .

Lemma 5.3.3. For Mj, the subspace approximation in the GMRA of level j > j0 for M
of dimension d ≥ 1, the Gaussian width of M∪Mj can be bounded from above and below
by

max{w(M), w(Mj)} ≤ w(M∪Mj) ≤ 2w(M) + 2w(Mj) + 3 ≤ 2w(M) + C
√
dj.

Remark 5.3.4. Note that the first inequality holds for general sets, not only M and Mj.
Moreover, one only uses Mj ⊂ B2(0, 2) to prove the second inequality. It thus holds for
Mj replaced with arbitrary subsets of B2(0, 2). We might use both variations referring to
Lemma 5.3.3.

Proof : The first inequality follows by noting that

max{w(M), w(Mj)} = max

{
E

[
sup
z∈M
〈z,g〉

]
, E

[
sup
z∈Mj

〈z,g〉

]}

≤ E

[
sup

z∈M∪Mj

〈z,g〉

]
= w(M∪Mj).

To obtain the second inequality observe that

w(M∪Mj) ≤ γ(M∪Mj) ≤ E

[
sup
z∈M

|〈z,g〉|+ sup
z∈Mj

|〈z,g〉|

]
= γ(M) + γ(Mj)

≤ 2w(M) + 2w(Mj) +

√
2

π
dist(0,M) +

√
2

π
dist(0,Mj)

≤ 2

(
w(M) + w(Mj) + 1.5

√
2

π

)
,

(5.12)

where we used (3.6), the fact that M⊂ SN−1, and that Mj ⊂ B2(0, 2).
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For the last inequality we bound w(Mj). First, note that

w(Mj) = E

[
sup
z∈Mj

〈z,g〉

]
= E

 sup
z∈{Pj,kj(z′)(z′) : z′∈B2(0,2)}∩B2(0,2)

〈z,g〉


≤ E

 sup
z′∈⋃k∈[Kj ] Pj,k∩B2(0,2)

〈z′,g〉

 .
For all k ∈ [Kj ] there exist d-dimensional Euclidean balls Lj,k ⊂ Pj,k of radius
2 such that Pj,k ∩ B2(0, 2) ⊂ Lj,k. Hence,

⋃
k∈[Kj ]

(Pj,k ∩ B2(0, 2)) ⊂ Lj :=⋃
k∈[Kj ]

Lj,k. By definition the ε-covering number of Lj (a union ofKj d-dimensional

balls) can be bounded by N(Lj , ε) ≤ Kj(6/ε)
d which implies logN(Lj , ε) ≤

dj log(12CC/ε) by GMRA property (2). By Dudley’s inequality in Theorem 3.2.8
and Jensen’s inequality we conclude that

w(Mj) ≤ w(Lj) ≤ CDudley

∫ 2

0

√
logN(Lj , ε) dε

≤ CDudley

√
dj

∫ 2

0

√
log(12CC)− log(ε) dε

≤ CDudley

√
dj

√
2 log(12CC)−

∫ 2

0
log(ε) dε

≤ C ′
√
dj,

where C ′ is a constant depending on CDudley and CC . Choosing C = 2C ′+ 3 yields
the claim as 3

√
2/π ≤ 3

√
dj.

The second lemma quantifies the equivalence of `2-norm and normalized geodesic dis-
tance on the unit sphere.

Lemma 5.3.5. For z, z′ ∈ SN−1 one has

dG(z, z′) ≤ ‖z− z′‖2 ≤ πdG(z, z′).

Proof : First observe that 〈z, z′〉 = cos](z, z′) = cos(πdG(z, z′)). This yields

‖z− z′‖2 − dG(z, z′) =
√

2− 2 cos(πdG(z, z′))− dG(z, z′) ≥ 0

as the function f(x) =
√

2− 2 cos(πx)− x is non-negative on [0, 1].
For the upper bound note the relation between the geodesic distance d̃G and the
normalized geodesic distance dG

d̃G(z, z′) = πdG(z, z′)

which yields
‖z− z′‖2 ≤ d̃G(z, z′) = πdG(z, z′).
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We can now turn to the proof of Theorem 5.3.1. We show the following more detailed
result which directly implies Theorem 5.3.1.

Theorem 5.3.6 (Uniform Recovery - Axiomatic Case). Let M ⊂ SN−1 be given by its
GMRA for some levels j0 < j ≤ J , such that C1 < 2j0+1 where C1 is the constant from
GMRA properties (2b) and (3a). Fix j and assume that dist(0,Mj) ≥ 1/2. Further, let
d ≥ 1 and

m ≥ 16 max{C ′, C̄}C−6
1 26(j+1)(w(M) + C

√
dj)2, (5.13)

where C ′ is the constant from Theorem 3.3.9, C̄ from Theorem 3.3.5, and C > 3 from
Lemma 5.3.3. Then, with probability at least 1 − 12 exp(−c(C12−j−1)2m) the following
holds for all x ∈ M with one-bit measurements y = sign(Ax) and GMRA constants C̃x

from property (3b) satisfying C̃x < 2j−1: The approximations x∗ obtained by OMS fulfill

‖x− x∗‖2 ≤(
2C̃x2−

j
2 +

√
C1

2
4

√
log

(
4e

min{C1, 1}

)
+
√

11C ′x
4

√
log

(
2e

min{C ′x, 1}

))
4
√
j2−

j
2 .

Here C ′x := 2C̃x + C1.

Proof of Theorem 5.3.1 : As j = dlog(1/ε)e, we know that 2−j ≤ ε ≤ 2−j+1. This
implies

m ≥ EC−6
1 ε−6 max

{
w(M),

√
d

(
log

(
1

ε

)
+ 1

)}2

≥ 16 max{C ′, C̄}C−6
1 26(j+1)(w(M) + C

√
dj)2,

for suitably chosen E > 0. The result follows by applying Theorem 5.3.6.

To prove Theorem 5.3.6 we show that the center cj,k′ identified in step I. of OMS
satisfies ‖x − cj,k′‖2 ≤ 16 max{‖x − cj,kj(x)‖2, C12−j−1}. Therefore, the GMRA prop-
erty (3b) provides an upper bound on ‖x − Pj,k′(x)‖2. What remains is to then bound
the gap between Pj,k′(x) and the approximation x∗. This happens in two steps. First,
Theorem 3.3.9 is applied to (5.9) bounding the distance between Pj,k′(x)/

∥∥Pj,k′(x)
∥∥

2
and

x∗ (the true measurements y are interpreted as noisy version of the non-accessible one-
bit measurements of Pj,k′(x)/

∥∥Pj,k′(x)
∥∥

2
). Second, the distance between Pj,k′(x) and

Pj,k′(x)/
∥∥Pj,k′(x)

∥∥
2

is bounded and a union bound concludes the proof.

Lemma 5.3.7. If m ≥ C̄C−6
1 26(j+1) max{w(M∪PS(Cj))2, 2/π} the center cj,k′ chosen in

step I. of OMS fulfills

‖x− cj,k′‖2 ≤ 16 max{‖x− cj,kj(x)‖2, C12−j−1}.

for all x ∈M ⊂ SN−1 with probability at least 1− 2 exp(−c(C12−j−1)2m).
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Proof : Recall that dA(z, z′) = 1
mdH(sign(Az), sign(Az′)). By definition of cj,k′ in

(5.8) we have that

dH(sign(Acj,k′),y) ≤ dH(sign(Acj,kj(x)),y).

As, for all z, z′ ∈ RN , dH(sign(Az), sign(Az′)) = m·dA(z, z′) = m·dA(PS(z),PS(z′)),
this is equivalent to

dA(PS(cj,k′),x) ≤ dA(PS(cj,kj(x)),x).

Noting that Gaussian random vectors and Haar random vectors yield identically
distributed hyperplanes, Theorem 3.3.5 transfers this bound to the normalized
geodesic distance, namely

dG(PS(cj,k′),x) ≤ dG(PS(cj,kj(x)),x) + 2δ

with probability at least 1 − 2 exp(−cδ2m) where δ = C12−j−1. Recall that, by
Lemma 5.3.5, dG(z, z′) ≤ ‖z − z′‖2 ≤ πdG(z, z′), for all z, z′ ∈ SN−1, which leads
to

‖PS(cj,k′)− x‖2 ≤ πdG(PS(cj,kj(x)),x) + 2πδ

≤ π‖PS(cj,kj(x))− x‖2 + 2πδ.

As by property (3a) the centers are close to the manifold, they are also close to
the sphere and we have ‖PS(cj,k) − cj,k‖2 < C12−j−2, for all cj,k ∈ Cj . Hence, we
conclude

‖cj,k′ − x‖2 ≤ ‖cj,k′ − PS(cj,k′)‖2 + ‖PS(cj,k′)− x‖2
≤ C12−j−2 + π(‖cj,kj(x) − x‖2 + C12−j−2) + 2πδ

≤
(
π +

π

2
+ 2π +

1

2

)
max{‖cj,kj(x) − x‖2, C12−j−1}

≤ 16 max{‖cj,kj(x) − x‖2, C12−j−1}.

Proof of Theorem 5.3.6 : Recall that k′ is the index chosen by OMS in (5.8). The
proof consists of three steps. First, we apply Lemma 5.3.7 in (I). By the GMRA
axioms this supplies an estimate for ‖x− Pj,k′(x)‖2 with high probability. In (II)
we use Theorem 3.3.9 to bound the distance between Pj,k′(x)/‖Pj,k′(x)‖2 and the
minimizer x∗ given by

x∗ = arg min
z

m∑
l=1

(−yl)〈al, z〉, subject to z ∈ K := conv(PS(Pj,k′ ∩ B2(0, 2))),

(5.14)

with high probability. By a union bound over all events, part (III) concludes with
an estimate of the distance ‖x− x∗‖2 combining (I) and (II).
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(I) Set δ := C12−j−1. Observing that C12−j−2 < 1/2 by assumption, GMRA
property (3a) yields that all centers in Cj are closer to SN−1 than 1/2, i.e., 1/2 ≤
‖cj,k‖2 ≤ 3/2. Hence, by (3.6)

0 ≤ w(PS(Cj)) ≤ γ(PS(Cj)) ≤ 2γ(Cj)

≤ 4w(Cj) + 2

√
2

π
dist(0, Cj) ≤ 4w(Cj) + 4.

(5.15)

As Cj ⊂Mj we know by Lemma 5.3.3, (5.15), and Remark 5.3.4 that

m ≥ 4C̄δ−6(2w(M) + 2C
√
dj)2 ≥ 4C̄δ−6(2w(M) + 4w(Cj) + 6)2

≥ 4C̄δ−6(2w(M) + w(PS(Cj)) + 2)2 = C̄δ−6(4w(M) + 2w(PS(Cj)) + 4)2

≥ C̄δ−6(w(M∪ PS(Cj)) + 1)2 ≥ C̄δ−6 max{w(M∪ PS(Cj))2, 2/π}.
(5.16)

Hence, Lemma 5.3.7 implies that

‖x− cj,k′‖2 ≤ 16 max{‖x− cj,kj(x)‖2, C12−j−1}.

with probability at least 1 − 2 exp(−cδ2m). By GMRA property (3b) we now get
that

‖x− Pj,k′(x)‖2 ≤ C̃x2−j , (5.17)

for some constant C̃x.

(II) Define α := ‖Pj,k′(x)‖2 and note that one has 1/2 ≤ α ≤ 3/2 as x ∈ SN−1

and ‖x − Pj,k′(x)‖2 ≤ C̃x2−j ≤ 1/2 by (5.17) and assumption. We now create
the setting of Theorem 3.3.9. Define x̃ := Pj,k′(x)/α ∈ SN−1, ỹ := sign(Ax̃) =
sign(APj,k′(x)), K = conv(PS(Pj,k′ ∩ B2(0, 2))), and τ := (2C̃x + C1)2−j . If suc-
cessfully applied with these quantities Theorem 3.3.9 will bound ‖x̃− x∗‖2 by

‖x̃− x∗‖2 ≤

√
δ

√
log
(e
δ

)
+ 11τ

√
log
( e
τ

)
≤

(√
C1

2
4

√
log

(
4e

min{C1, 1}

)

+

√
11(2C̃x + C1) 4

√
log

(
2e

min{(2C̃x + C1), 1}

))
4
√
j2−

j
2 .

(5.18)

All that remains is to verify that the conditions of Theorem 3.3.9 are met so
that (5.18) is guaranteed with high probability. (Note that in our case the true
measurements y are interpreted as corrupted version of ỹ and x̃ is interpreted as
the signal which shall be approximated by (5.14).)
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We first have to check dH(ỹ,y) ≤ τm. Recall that 1
α ≤ 2 and for α > 0 one has

αw(K) = w(αK). Applying Lemma 5.3.3 and (3.6) we have, in analogy to (5.16),
that

m ≥ C̄δ−6(4w(M) + 4w(Mj) + 12)2 ≥ C̄δ−6

(
2w(M) + 2w

(
Mj

α

)
+ 12

)2

≥ C̄δ−6

(
w

(
M∪ Mj

α

)
+ 7

)2

≥ C̄δ−6

(
w

((
M∪ Mj

α

)
∩ B2(0, 1)

)
+ 7

)2

.

Note that in the third inequality a slight modification of the second inequality in
Lemma 5.3.3 is used. As Mj/α ⊂ B2(0, 4) one has w(M∪Mj/α) ≤ 2w(M) +
2w(Mj/α) + 5 by adapting (5.12). We can now use Theorem 3.3.5, Lemma 5.3.5,
and the fact that |1− α| = |‖x‖2 − ‖Pj,k′(x)‖2| ≤ ‖x− Pj,k′(x)‖2 to obtain

dH(ỹ,y)

m
= dA(x̃,x) ≤ dG(x̃,x) + δ ≤ ‖x̃− x‖2 + δ

≤ ‖x̃− Pj,k′(x)‖2 + ‖Pj,k′(x)− x‖2 + δ

= |1− α|+ ‖Pj,k′(x)− x‖2 + δ ≤ 2‖Pj,k′(x)− x‖2 + δ

≤ (2C̃x + C1)2−j = τ

with probability at least 1− 2 exp(−cδ2m). Furthermore, by a similar argumenta-
tion as in (5.15) one gets

w(K) = w(PS(Pj,k′ ∩ B2(0, 2))) ≤ 4w(Mj) + 4, (5.19)

where one uses invariance of the Gaussian width under taking the convex hull (see
Theorem 3.2.7), the fact that Pj,k′ ∩ B2(0, 2) ⊂ Mj , and the assumption that
1/2 ≤ dist(Mj ,0) ≤ 2. In combination with Lemma 5.3.3 we have, in analogy to
(5.16), that

m ≥ 4C ′δ−6(2w(M) + 4w(Mj) + 6)2 ≥ 4C ′δ−6(w(K) + 2)2 ≥ C ′δ−6w(K)2.

Hence, we can apply Theorem 3.3.9 to obtain with probability at least 1−8 exp(−cδ2m)
that

‖x̄− x̃‖22 ≤ δ
√

log
(e
δ

)
+ 11τ

√
log
( e
τ

)
.

The estimate (5.18) now follows.

(III) To conclude the proof we apply a union bound and obtain with probability
at least 1− 12 exp(−cδ2m) that

‖x− x∗‖2 ≤ ‖x− Pj,k′(x)‖2 + ‖Pj,k′(x)− x̃‖2 + ‖x̃− x∗‖2
= ‖x− Pj,k′(x)‖2 + |1− α|+ ‖x̃− x∗‖2
≤ 2‖x− Pj,k′(x)‖2 + ‖x̃− x∗‖2.

GMRA property (3b) combined with (5.18) yields the final desired error bound.
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Theorem 5.3.1 depends on the Gaussian width of M. For general sets this quan-
tity provides a useful measure of the set’s complexity. If M is a compact Riemannian
submanifold of RN it might be more convenient to have a dependence on the geometric
properties ofM instead (e.g., its volume and reach). It is straight-forward then to deduce
from [55] that w(M) can be upper bounded in terms of the manifold’s intrinsic dimension
d, its d-dimensional volume Vold(M), and the inverse of its reach. These dependencies
are intuitively to be expected as a manifold with fixed intrinsic dimension d can become
more complex as either its volume or curvature (which can be bounded by the inverse
of its reach) grows. The following theorem is a combination of different results in [55]
and formalizes the intuition by bounding the Gaussian width of a manifold in terms of its
geometric properties.

Theorem 5.3.8. AssumeM⊂ RN is a compact d-dimensional Riemannian manifold with
d-dimensional volume Vold(M) where d ≥ 1. Then one can replace w(M) in Theorem
5.3.1 by

w(M) ≤ C·diam(M)·

√√√√d ·max

{
log

(
c

√
d

min{1, reach(M)}

)
, 1

}
+ log(max{1,Vold(M)}).

where C, c > 0 are absolute constants.

Proof : Denote by τ the reach and by ρ the diameter of M. From [55, Lemma 14] we
know that the covering number N(M, ε) of a d-dimensional Riemannian manifold
M can be bounded by

N(M, ε) ≤

 2

ε
√

1−
(
ε

4τ

)2
d

Vold(M)

Vold(Bd)
.

for ε ≤ τ
2 . After noting that Vold(Bd) ≥ β−1

(
2π
d

) d
2 for all d ≥ 1 for an absolute

constant β > 1, this expression may be simplified to

N(M, ε) ≤ β

 √
2d

√
πε
√

1−
(
ε

4τ

)2
d

Vold(M) ≤ β

 √
d

ε
√

1−
(
ε

4τ

)2
d

Vold(M).

We can combine these facts with Dudley’s inequality in Theorem 3.2.8 to obtain

w(M) ≤ C ′
∫ ρ

0

√
log(N(M, ε)) dε

≤ C ′
(
ρ

∫ ρ

0
log(N(M, ε)) dε

) 1
2

= C ′
√
ρ

(∫ τ
2

0
log(N(M, ε)) dε+

∫ ρ

τ
2

log(N(M, ε)) dε

) 1
2

,
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using Cauchy-Schwarz for the second inequality. We now bound the first integral
by

∫ τ
2

0
log(N(M, ε)) dε ≤

∫ τ
2

0
−d log

 ε

β
√
d

√
1−

( ε
4τ

)2

︸ ︷︷ ︸
≥ 1

2
, as ε≤ τ

2

+ log(Vold(M)) dε

≤
∫ τ

2

0
−d log

(
ε

2β
√
d

)
dε+

τ

2
log(Vold(M))

= −d
[
ε log

(
ε

2β
√
d

)
− ε
] τ

2

0

+
τ

2
log(Vold(M))

=
dτ

2

(
log

(
4
β
√
d

τ

)
+ 1

)
+
τ

2
log(Vold(M)).

As the covering number is decreasing with increasing ε, the second integral can be
bounded as follows.∫ ρ

τ
2

log(N(M, ε)) dε ≤
∫ ρ

τ
2

log
(
N
(
M,

τ

2

))
dε

=
(
ρ− τ

2

)[
−d log

(
τ

4β
√
d

)
+ log(Vold(M))

]
= d

(
ρ− τ

2

)
log

(
4
β
√
d

τ

)
+
(
ρ− τ

2

)
log(Vold(M)).

Both together yield

w(M) ≤ C√ρ

(
dτ

2

(
log

(
4β

√
d

τ

)
+ 1

)
+ d

(
ρ− τ

2

)
log

(
4β

√
d

τ

)
+ ρ log(Vold(M))

) 1
2

≤ C√ρ

(
dτ ·max

{
log

(
4β

√
d

τ

)
, 1

}

+d (2ρ− τ) ·max

{
log

(
4β

√
d

τ

)
, 1

}
+ 2ρ log(Vold(M))

) 1
2

= C
√
ρ

(
2dρ ·max

{
log

(
4β

√
d

τ

)
, 1

}
+ 2ρ log(Vold(M))

) 1
2

≤ Cρ

√√√√2d ·max

{
log

(
4β

√
d

τ

)
, 1

}
+ 2 log(Vold(M)).
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5.4 OMS and the Empirical GMRA

We have noted in the beginning of this chapter that GMRAs are normally computed from
samples of M and do not necessarily fulfill all axioms of Definition 5.1.1 perfectly, an
assumption we make in Theorem 5.3.1. In this section we provide an alternative version
of Theorem 5.3.6 which holds for empirical GMRAs and extends Theorem 5.3.1 as long
as the sampling distribution onM behaves well and a sufficient number of samples is taken.

Recall from Section 5.1.2 and Section 5.1.3 the assumptions of the empirical setting.
There is a probability distribution Π supported on M which behaves well in the sense
that the assumptions (A1)-(A4) are fulfilled. Moreover, we are given a set of n points
X = {X1, ..., Xn} which are sampled iid from Π. The difference between probabilistic
GMRA fulfilling the axioms in Definition 5.1.1 and empirical GMRA can thus be controlled
by Theorem 5.1.3. OMS has to be slightly modified to conform with the empirical GMRA
notation of Section 5.1.3. To this end, replace (5.8) and (5.9) by

ĉj,k′ ∈ arg min
ĉj,k∈Ĉj

dH(sign(Aĉj,k),y). (5.20)

{
x∗ = arg minz∈RN

∑m
l=1(−yl)〈al, z〉,

subject to z ∈ conv
(
PS(P̂j,k′ ∩ B2(0, 2))

)
.

(5.21)

To stay consistent with the axiomatic notation we denote the sets containing the centers
c′j,k and ĉj,k by C′j and Ĉj respectively. We denote the empirical GMRA approximation at

level j, i.e., the set P̂j projects onto, by

M̂j = {P̂j(z) : z ∈ B2(0, 2)} ∩ B2(0, 2)

and the affine subspaces by P̂j,k = {P̂j,k(z) : z ∈ RN}. We again restrict the approximation
to B2(0, 2). The single affine spaces will be non-empty as all ĉj,k lie by definition close to
B2(0, 1) if supp(Π) is close to M, which we assume.

For the proof of our adapted theorem we do not need Theorem 5.1.3 in its full extent
but only the following two bounds which can be deduced from (20) and (21) in [123] by
setting t = 2jd. As both appear in the proof of Theorem 5.1.3, we state them as a corollary.
The interested reader may note that nj,k appearing in the original statements can be lower
bounded by θ1n2−jd.

Corollary 5.4.1. Under the assumptions of Theorem 5.1.3 the following holds for any
C1 > 0 as long as j and α are sufficiently large and σ is sufficiently small:

Pr

[
max
k∈Kj

∥∥∥PVj,k − P
V̂j,k

∥∥∥ ≥ C1

12
2−j−2

]
≤ 2

θ2
2jde

−2jd min

{
1,

32θ22d
2

C2
1

}

Pr

[
max
k∈Kj

∥∥c′j,k − ĉj,k
∥∥

2
≥ C1

12
2−j−2

]
≤ 2

θ2
2jde

−2jd min

{
1,

32θ22d
2

C2
1

}

if n ≥ nmin =
(
2jd + log(max{d̄, 8})

)
min

{
144

θ2
2d

C1θ1θ3
2(d+1)j+3, 96 θ2

C1θ1
2dj+1

}2
.
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By Corollary 5.4.1 with probability at least 1−O(2jd exp(−2jd)) the empirical centers
ĉj,k of one level j have a worst case distance to the perfect centers c′j,k of at most O(2−j−2)

if n & O(23jd). As a result, the empirical centers ĉj,k will also be at mostO(2−j−2) distance
from their associated cover tree centers aj,k if n & O(23jd) by assumption (A2). The same
holds true for the projectors PVj,k and P

V̂j,k
in operator norm. In addition to Corollary

5.4.1 we need a modified version of Lemma 5.3.3.

Lemma 5.4.2. The Gaussian width of M∪Mj ∪ M̂j can be bounded from above by

max{w(M), w(Mj), w(M̂j)} ≤ w(M∪Mj ∪ M̂j) ≤ 2w(M) + 2w(Mj) + 2w(M̂j) + 5

≤ 2w(M) + C
√
dj.

Proof : The proof follows directly the lines of the proof of Lemma 5.3.3. The additional
term w(M̂j) can be bounded in the same way as w(Mj).

Remark 5.4.3. By structure of the proof one can easily obtain several subversions of the
inequalities, e.g., w(M ∪ M̂j) ≤ 2w(M) + 2w(M̂j) + 5. We will use them while only
referring to Lemma 5.4.2. Moreover, similar generalizations as in Lemma 5.3.3 apply (cf.
Remark 5.3.4).

We are ready to state an empirical version of Theorem 5.3.6 which automatically
extends Theorem 5.3.1.

Theorem 5.4.4. Let M ⊂ SN−1 be given by its empirical GMRA for some levels j0 ≤
j ≤ J from samples X1, ..., Xn for n ≥ nmin (defined in Corollary 5.4.1), such that 0 <
C1 < 2j0+1 where C1 is the constant from GMRA properties (2b) and (3a) for a GMRA
structure constructed with centers c′j,k and projectors ΦT

j,kΦj,k = PVj,k . Fix j and assume

that dist(0,M̂j) ≥ 1/2. Further let

m ≥ 64 max{C ′, C̄}C−6
1 26(j+1)(w(M) + C

√
dj)2.

where C ′ is the constant from Theorem 3.3.9, C̄ from Theorem 3.3.5 and C from Lemma
5.4.2. Then, with probability at least 1 − O

(
2jd exp(−2jd) + exp(2−2jm)

)
the following

holds for all x ∈ M with one-bit measurements y = sign(Ax) and GMRA constants C̃x

from property (3b) satisfying C̃x < 2j−1: The approximations x∗ obtained by OMS with
(5.20) and (5.21) fulfill

‖x− x∗‖2

≤

2

(
C̃x +

C1

8

)
2−

j
2 +

√
C1

4

√
log

(
4e

C1

)
+

√
22C̃x +

55

4
C1

4

√√√√log

(
2e

(2C̃x + 5
4C1)

) 4
√
j2−

j
2 .

The proof of Theorem 5.4.4 follows the same steps as before. First, we give an em-
pirical version of Lemma 5.3.7. Then we link x and x∗ as in the proof of Theorem 5.3.6
while controlling the difference between empirical and axiomatic but unknown GMRA by
Corollary 5.4.1.
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Lemma 5.4.5. Fix j sufficiently large. Under the assumptions of Theorem 5.1.3 and
n ≥ nmin (defined in Corollary 5.4.1) if m ≥ C̄C−6

1 26(j+1) max{w(M∪ PS(Ĉj))2, 2/π} the
index k′ of the center ĉj,k′ chosen in step I of the algorithm fulfills

‖x− c′j,k′‖2 ≤ 16 max{‖x− c′j,kj(x)‖2, C12−j−1}.

for all x ∈M with probability at least 1−O
(
2jd exp(−2jd) + exp(δ2m)

)
.

Proof : The proof will be similar to the one of Lemma 5.3.7. By definition we have

dH(sign(Aĉj,k′),y) ≤ dH(sign(Aĉj,kj(x)),y).

As, for all z, z′ ∈ SN−1, dH(sign(Az), sign(Az′)) = m · dA(z, z′), this is equivalent
to

dA(PS(ĉj,k′),x) ≤ dA(PS(ĉj,kj(x)),x).

Theorem 3.3.5 transfers the bound to normalized geodesic distance, namely

dG(PS(ĉj,k′),x) ≤ dG(PS(ĉj,kj(x)),x) + 2δ

with probability at least 1 − 2 exp(−cδ2m) where δ = C12−j−1. By Lemma 5.3.5,
dG(z, z′) ≤ ‖z− z′‖2 ≤ πdG(z, z′), for all z, z′ ∈ SN−1, which leads to

‖PS(ĉj,k′)− x‖2 ≤ πdG(PS(ĉj,kj(x)),x) + 2πδ

≤ π‖PS(ĉj,kj(x))− x‖2 + 2πδ.

We will now use the fact that by Corollary 5.4.1

‖ĉj,k − c′j,k‖2 ≤
C1

12
2−j−2,

for all k ∈ Kj with probability at least 1 − O(2jd exp(−2jd)). From this we first
deduce by GMRA property (3a) that ‖ĉj,k − PS(ĉj,k)‖2 ≤ ‖ĉj,k − PS(c′j,k)‖2 ≤
‖ĉj,k − c′j,k‖2 + ‖c′j,k − PS(c′j,k)‖2 < (C1 + C1/2)2−j−2 for all ĉj,k ∈ Ĉj . Combining
above estimates and using triangle inequality we obtain

‖c′j,k′ − x‖2 ≤ ‖c′j,k′ − ĉj,k′‖2 + ‖ĉj,k′ − PS(ĉj,k′)‖2 + ‖PS(ĉj,k′)− x‖2
< 2C12−j−2 + π‖PS(ĉj,kj(x))− x‖2 + 2πδ

≤ C12−j−1 + π(‖ĉj,kj(x) − PS(ĉj,kj(x))‖2 + ‖ĉj,kj(x) − c′j,kj(x)‖2
+ ‖c′j,kj(x) − x‖2) + 2πδ

< C12−j−1 + πC12−j−1 + π‖cj,kj(x) − x‖2 + 2πδ

≤ (4π + 1) max{‖c′j,kj(x) − x‖2, C12−j−1}

≤ 16 max{‖c′j,kj(x) − x‖2, C12−j−1}.

A union bound over both probabilities yields the result.
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Proof of Theorem 5.4.4 : The proof consists of the same three steps as the one of
Theorem 5.3.6. First, we apply Lemma 5.4.5 in (I). By the GMRA axioms this
supplies an estimate for ‖x − Pj,k′(x)‖2 with high probability (recall that Pj,k′(x)
will be PVj,k′ (x− c′j,k′) + c′j,k′ in this case). In (II) we use (I) to deduce a bound

on ‖x − P̂j,k′(x)‖2, and then use Theorem 3.3.9 to bound the distance between

P̂j,k′(x)/‖P̂j,k′(x)‖2 and the minimizer x∗ of

x∗ = arg min
z

m∑
l=1

(−yl)〈al, z〉,

subject to z ∈ K := conv
(
PS(P̂j,k′ ∩ B2(0, 2))

)
,

(5.22)

with high probability. Taking the union bound over all events, part (III) then
concludes with an estimate of the distance ‖x− x∗‖2 by combining (I) and (II).

(I) Set δ = C12−j−1 and recall that C12−j−2 < 1/2 by assumption which implies
by GMRA property (3a) that all centers in C′j are closer to SN−1 than 1/2, i.e.
1/2 ≤ ‖c′j,k‖2 ≤ 3/2. Moreover, Corollary 5.4.1 holds with probability at least

1−O(2jd exp(−2jd)) and implies ‖ĉj,k − c′j,k‖2 ≤ (C1/12)2−j−2 ≤ 1/4. Hence, by
triangle inequality 1/4 ≤ ‖ĉj,k‖2 ≤ 7/4. From this and (3.6) we deduce

w(PS(Ĉj)) ≤ γ(PS(Ĉj)) ≤ 4γ(Ĉj) ≤ 8w(Ĉj) + 4

√
2

π
dist(0, Ĉj)

≤ 8w(Ĉj) + 8.

(5.23)

As Ĉj ⊂ M̂j we know by Lemma 5.4.2 and (5.23) that

m ≥ 16C̄δ−6(2w(M) + 2C
√
dj)2 ≥ 16C̄δ−6(2w(M) + 4w(Ĉj) + 10)2

≥ 4C̄δ−6(4w(M) + 8w(Ĉj) + 20)2 ≥ 4C̄δ−6(4w(M) + w(PS(Ĉj)) + 12)2

≥ C̄δ−6(8w(M) + 2w(PS(Ĉj)) + 24)2 ≥ C̄δ−6(w(M∪ PS(Ĉj)) + 19)2

≥ C̄δ−6 max

{
w(M∪ PS(Ĉj))2,

2

π

}
.

(5.24)

Hence, Lemma 5.4.5 implies

‖x− c′j,k′‖2 ≤ 16 max
{∥∥∥x− c′j,kj(x)

∥∥∥
2
, C12−j−1

}
with probability at least 1 − O

(
2jd exp(−2jd) + exp(δ2m)

)
. By GMRA property

(3b) we get

‖x− Pj,k′(x)‖2 ≤ C̃x2−j , (5.25)

for some constant C̃x.
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(II) Define α̂ :=
∥∥∥P̂j,k′(x)

∥∥∥
2
. Note that ‖x− c′j,k′‖2 ≤ 4 as x ∈ SN−1 and all c′j,k

are close to the sphere by assumption. Hence,

‖Pj,k′(x)− P̂j,k′(x)‖2 = ‖c′j,k′ + PVj,k′ (x− c′j,k′)− ĉj,k′ − P
V̂j,k′

(x− ĉj,k′)‖2

≤ ‖c′j,k′ − ĉj,k′‖2 + ‖PVj,k′ − P
V̂j,k′
‖‖x− c′j,k′‖2 + ‖c′j,k′ − ĉj,k′‖2

≤ 2

12
C12−j−2 +

1

12
C12−j−2‖x− c′j,k′‖2 ≤

1

2
C12−j−2

by application of Corollary 5.4.1. This implies 1/4 ≤ α̂ ≤ 7/4 as x ∈ SN−1 and

‖x− P̂j,k′(x)‖2 ≤ ‖x− Pj,k′(x)‖2 + ‖Pj,k′(x)− P̂j,k′(x)‖2

≤ C̃x2−j +
1

2
C12−j−2 ≤ 3

4

(5.26)

by (5.25) and the assumption that max{C̃x, C1/4} ·2−j ≤ 1/2. As before we create
the setting of Theorem 3.3.9.
Define x̃ := P̂j,k′(x)/α̂ ∈ SN−1, ỹ := sign(Ax̃) = sign(AP̂j,k′(x)), K = conv(PS(P̂j,k′∩
B2(0, 2))) and τ := (2C̃x + 5

4C1)2−j . If applied to this, Theorem 3.3.9 would give
the desired bound on ‖x̃−x∗‖2. We first have to check dH(ỹ,y) ≤ τm. Recall that
1
α̂ ≤ 4 and as α̂ > 0 one has α̂w(K) = w(α̂K). By applying Lemma 5.4.2 again we
have that

m ≥ 64C̄δ−6(w(M) + C
√
dj)2 ≥ 16C̄δ−6(2w(M) + 2w(M̂j) + 5)2

= C̄δ−6(8w(M) + 8w(M̂j) + 20)2 ≥ C̄δ−6

(
8w(M) + 2w

(
M̂j

α̂

)
+ 20

)2

≥ C̄δ−6 max

w
((
M∪ M̂j

α̂

)
∩B(0, 1)

)2

,
2

π

 .

We may now use Theorem 3.3.5, Lemma 5.3.5 and ‖x̃ − P̂j,k′(x)‖2 = |1 − α̂| ≤
‖x− P̂j,k′(x)‖2 to obtain

dH(ỹ,y)

m
= dA(x̃,x) ≤ dG(x̃,x) + 2δ ≤ ‖x̃− x‖2 + 2δ

≤ ‖x̃− P̂j,k′(x)‖2 + ‖P̂j,k′(x)− x‖2 + 2δ

≤ 2‖P̂j,k′(x)− x‖2 + 2δ ≤ 2C̃x2−j + C12−j−2 + 2δ

≤ (2C̃x +
5

4
C1)2−j = τ

with probability at least 1 − 2 exp(−cδ2m). Assuming the above events hold true
we can apply Theorem 3.3.9 as by Lemma 5.4.2, in analogy to (5.24) and (5.19),
that

m ≥ 4C ′δ−6(2w(M) + 4w(Mj) + 4w(M̂j) + 10)2

≥ C ′δ−6w(PS(P̂j,k′ ∩ B2(0, 2)))

≥ C ′δ−6w(K)2
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and obtain with probability at least 1− 8 exp(−cδ2m)

‖x̃− x∗‖22 ≤ δ
√

log
(e
δ

)
+ 11τ

√
log
( e
τ

)
. (5.27)

(III) We conclude as in Theorem 5.3.6. Recall that ‖x̃ − P̂j,k′(x)‖2 = |1 − α| ≤
‖x − Pj,k′(x)‖2 ≤ (C̃x + C1

8 )2−j . By union bound we obtain with probability at
least 1−O

(
2jd exp(−2jd) + exp(δ2m)

)
‖x− x∗‖2 ≤ ‖x− P̂j,k′(x)‖2 + ‖P̂j,k′(x)− x̃‖2 + ‖x̃− x∗‖2

≤ 2‖x− P̂j,k′(x)‖2 +

√
δ

√
log
(e
δ

)
+ 11τ

√
log
( e
τ

)
≤ 2

(
C̃x +

C1

8

)
2−j +

√
C12

−j−1
2

4

√
log

(
e

C12−j−1

)

+

√
22C̃x +

55

4
C12−

j
2

4

√√√√log

(
e

(2C̃x + 5
4C1)2−j

)

≤

(
2

(
C̃x +

C1

8

)
2−

j
2 +

√
C1

4

√
log

(
4e

C1

)

+

√
22C̃x +

55

4
C1

4

√√√√log

(
2e

(2C̃x + 5
4C1)

) 4
√
j2−

j
2 .

5.5 Numerical Simulation

In this section we present various numerical experiments to benchmark OMS. The GM-
RAs we work with are constructed using code provided by Maggioni1. We compared the
performance of OMS for two exemplary choices ofM, namely, a simple 2-dim sphere em-
bedded in R20 (20000 data points sampled from the 2-dimensional sphereM embedded in
S20−1) and the MNIST data set [113] of handwritten digits ”1” (3000 data points in R784)
where the restriction to the single digit 1 was done to keep the underlying manifold as
simple as possible. In each of the experiments in Sections 5.5.1-5.5.4 we first computed a
GMRA up to refinement level jmax = 10 and then recovered 100 randomly chosen x ∈M
from their one-bit measurements by applying OMS. Depicted is the averaged relative error
between x and its approximation x∗, i.e., ‖x − x∗‖2/‖x‖2 which is equal to the absolute
error ‖x − x∗‖2 for M ⊂ SN−1. Note the different approximation error ranges of the
sphere and the MNIST experiments when comparing both settings.

1The code is available at http://www.math.jhu.edu/~mauro/#tab_code.
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5.5. NUMERICAL SIMULATION

5.5.1 OMS-simple vs. OMS

The first test illustrates recovery performance of the two algorithms presented above,
namely OMS-Simple for R ∈ {0.5, 1, 1.5} and OMS. The results are depicted in Figure
5.5. Note that only R = 1.5 and, in the case of the 2-sphere, R = 1 are depicted as in the
respective other cases for each number of measurements most of the trials did not yield
a feasible solution in (5.6) so the average was not well-defined. One can observe that for
both data sets OMS outperforms OMS-Simple which is not surprising as OMS does not
rely on a suitable parameter choice. This observation is also the reason for us to restrict
the theoretical analysis to OMS. The more detailed approximation of the toy example
(2-dimensional sphere) is due to its simpler structure and lower dimensional setting. This
difference in approximation quality can also be observed in Sections 5.5.2-5.5.4.
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Figure 5.5: Comparison of OMS-Simple for R = 1 (dotted-dashed, yel-
low), R = 1.5 (dashed, blue) and OMS (solid, red).

5.5.2 Modifying OMS

In the second experiment we compared OMS to a slightly different version in which
(5.9) is replaced by

x∗ = arg min
z∈RN

m∑
l=1

[(−yl)〈al, z〉]+ , subject to z ∈ conv
(
PS(Pj,k′ ∩ B2(0, 2))

)
,

where [t]+ = max{0, t} denotes the positive part of t ∈ R. This is motivated by the
observation that (3.21) can be re-stated equivalently as (3.22). Hence, (3.21) punishes
incorrect measurements of a feasible point z ∈ K by its distance to the ‘measurements
border’ Hal while rewarding correct ones. The second part which rewards might cause
problems as it pushes minimizers away from the hyperplanes Hal of correct measurements.
If the true x, however, lies close to one of them, this may be suboptimal. Hence, we dropped
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the rewarding term in (3.22) leading to

arg min
z∈RD

m∑
l=1

[(−yl)〈al, z〉]+ , subject to z ∈ K, (5.28)

which is still convex but performs better numerically in some cases. As depicted in Figure
5.6, the version with [·]+ clearly outperforms the one without if M is the 2-dimensional
sphere. In contrast, if M is more complex (MNIST data), the [·]+ formulation clearly
fails. We have no satisfactory explanation for this difference in behavior so far.
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Figure 5.6: Comparison of OMS (dashed, blue) and a modified version
(solid, red) as described in (5.28).

5.5.3 Are Two Steps Necessary?

One might wonder if the two steps in OMS-Simple and OMS are necessary at all.
Wouldn’t it be sufficient to use the center cj,k′ determined in step I. as an approximation
of x? If the GMRA is fine enough, this indeed is the case. If one only has access to
a rather rough GMRA, the simulations in Figure 5.7 show that the second step makes a
notable difference in approximation quality. This behavior suits Lemma 5.3.7. The lemma
guarantees a good approximation of x by cj,k′ as long as x is well approximated by an
optimal center. In the MNIST case, one can observe that the second step only improves
performance if the number of one-bit measurements is sufficiently high. For a small set
of measurements the centers might yield better approximation as they lie close to M by
GMRA property (3a). On the other hand, only parts of the affine spaces (the ones inside
B2(0, 2)) are practical for approximation and a certain number of measurements is neces-
sary to restrict II. to the relevant parts.

86



5.5. NUMERICAL SIMULATION

Number of Measurements

A
ve

ra
ge

E
rr

or

10 50 10
0

50
0

10
00

50
00

10
00
0

10−2

10−1

1

(a) 2-Sphere

Number of Measurements

A
ve

ra
ge

E
rr

or

10 50 10
0

50
0

10
00

50
00

10
00
0

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85
0.9

0.95

(b) MNIST

Figure 5.7: Comparison of the following: Approximation by step I. of
OMS when using tree structure (dashed, blue) and when comparing all
centers (solid, red); approximation by step I.+II. of OMS when using tree
structure (dashed with points, yellow) and when comparing all centers
(solid with points, purple).

5.5.4 Tree vs. No Tree

In the fourth test we checked if approximation still works when not all possible centers
are compared in step I. of OMS but their tree structure is used. This means to find an
optimal center one compares on the first refinement level all centers, and then continues
in each subsequent level solely with the children of the k best centers (in the presented
experiments we chose k = 10). Of course, the chosen center will not be optimal as not all
centers are compared (see Figure 5.7). In the simple 2-dimensional sphere setting, step II.
can compensate the worse approximation quality of I. with tree search. Figure 5.7 hardly
shows a difference in final approximation quality in both cases. In the MNIST setting one
can observe a considerable difference even when performing two steps.

5.5.5 A Change of Refinement Level

The last experiment (see Figure 5.8) examines the influence of the refinement level
j on the approximation error. For small j (corresponding to a rough GMRA) a high
number of measurements can hardly improve the approximation quality while for large
j (corresponding to a fine GMRA) the approximation error decreases with increasing
measurement rates. This behavior is as expected. A rough GMRA cannot profit much
from many measurements as the GMRA approximation itself yields a lower bound on
obtainable approximation error. For fine GMRAs the behavior along the measurement
axis is similar to above experiments. Note that further increase of j for the same range of
measurements does not improve accuracy.
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Figure 5.8: Approximation error of OMS for different refinement levels
j and numbers of measurements.

5.6 Alternative Width Bounds

For obtaining the lower bounds on m in (5.13) and (5.10) we made use of Lemma 5.3.3
leading to the influence of j which is suboptimal for fine scales (i.e., j large). To improve
on this for large j one can exploit two alternative versions of the lemma which apply to a
more restrictive definition of Mj , namely,

Mrel
j := {Pj,kj(z)(z) : z ∈M} ∩ B2(0, 2).

In order to derive the bounds three technical tools are needed. Recall the definition of Cz

in GMRA property (3b).

Lemma 5.6.1. Set CM := supz∈MCz. Then, Mrel
j ⊂ tubeCM2−2j (M).

Proof : If x ∈ Mrel
j there exists zx ∈ M such that x = Pj,kj(zx)(zx). The Euclidean

distance d(x,M) therefore satisfies

d(x,M) = inf
z∈M

‖x− z‖2 ≤ ‖Pj,kj(zx)(zx)− zx‖2 ≤ CM2−2j

by property (3b).

Given a subset S ⊂ R
N , we let P (S, ε) denote the maximal packing number of S

(i.e., the maximum cardinality of a subset of S whose elements are all separated from one
another with Euclidean distance ε > 0).

Lemma 5.6.2. Set CM := supz∈MCz. Then N(Mrel
j , ε) ≤ N(M, ε/2) for all ε ≥

2CM2−2j.

Proof : First note that for all η ≥ ρ := CM2−2j Lemma 5.6.1 implies that

Mrel
j ⊂ tubeρ(M) ⊂

⋃
z∈Mη

B2(z, 2η),
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where Mη is an η-cover of M. Thus, for all ε ≥ 2η ≥ 2ρ

N(Mrel
j , ε) ≤ N

 ⋃
z∈Mη

B2(z, 2η), ε

 ≤ N(M, η) = N
(
M,

ε

2

)
.

Lemma 5.6.3. N(Mrel
j , ε) ≤ (6/ε)dN(M, ε) for all ε ≤ 1

4C12−j as long as j > j0 (see
properties (3a) and (2b)).

Proof : By properties (3a) and (2b) every center cj,k has an associated pj,k ∈ M
such that both B2

(
pj,k, C12−j−2

)
⊂ B2

(
cj,k, C12−j−1

)
and B2

(
pj,k, C12−j−2

)
∩

B2

(
cj,k′ , C12−j−1

)
= ∅ for all k 6= k′. Let P̃j := {pj,k | k ∈ [Kj ]}. Consequently,

we have that Kj = |P̃j | and ‖pj,k − pj,k′‖2 ≥ C12−j−1 for all k 6= k′. Since P̃j is a
C12−j−1-packing of M we can further see that

Kj ≤ P
(
M, C12−j−1

)
≤ N

(
M, C12−j−2

)
≤ N(M, ε),

for all ε ≤ C12−j−2. Now, Mrel
j ⊂ Lj , where Lj is defined as in the proof of

Lemma 5.3.3 (this proof also discusses its covering numbers). As a result we have
that

N(Mrel
j , ε) ≤ N(Lj , ε) ≤ Kj(6/ε)

d ≤ N(M, ε) · (6/ε)d

holds for all ε ≤ C12−j−2.

We can now show the first alternative version of Lemma 5.3.3 which is independent of
the refinement level j.

Lemma 5.6.4 (A Bound of the Gaussian Width for Fine Scales). If j ≥ log2(N) and
max{1, supz∈MCz} =: CM <∞, we obtain

max{w(M), w(Mrel
j )} ≤ w(M∪Mrel

j ) ≤ 2w(M) + 2w(Mrel
j ) + 3

≤ C(w(M) + 1) log(N).

Proof : We aim to bound w(Mrel
j ) in terms of w(M). By the two-sided Sudakov

inequality [166] and Lemma 5.6.1 we get that

w(Mrel
j ) ≤ C log(N) sup

ε≥0
ε
√

logN(Mrel
j , ε))

≤ C log(N)

(
sup

0≤ε≤2CM2−2j

ε
√

logN(tubeCM2−2j (M), ε)

+ sup
ε≥2CM2−2j

ε
√

logN(Mrel
j , ε)

)

≤ C log(N)

(
sup

0≤ε≤2CM2−2j

ε
√

logN(B2(0, 1 + CM), ε))

+ sup
ε≥2CM2−2j

ε
√

logN(M, ε/2)

)
,
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where the last inequality follows from tubeCM2−2j (M) ⊂ B2(0, 1+CM) and Lemma 5.6.2.
Appealing to the Sudakov inequality once more to bound the second term above
we learn that

w(Mrel
j ) ≤ C log(N)

(
sup

0≤ε≤2CM2−2j

ε
√

logN(B2(0, 1 + CM), ε))

+2 sup
ε≥0

ε

2

√
logN(M, ε/2)

)
≤ C log(N)

(
sup

0≤ε≤2CM2−2j

ε
√

logN(B2(0, 1 + CM), ε)) + 2c w(M)

)
.

To bound the first term above we note that the covering number of B2(0, 1 +CM)
can be bounded as

N (B2(0, 1 + CM), ε) = N

(
B2(0, 1),

ε

1 + CM

)
≤
(

1 +
2 + 2CM

ε

)N
≤
(

4CM + 4

ε

)N
.

As ε 7→ ε
√

log(4CM+4
ε ) is non decreasing for ε ∈ (0, 2CM2−2j), we obtain by

assuming that log2(N) ≤ j

sup
0≤ε≤2CM2−2j

ε
√

logN(B2(0, 1 + CM), ε)) ≤ sup
0≤ε≤2CM2−2j

ε

√
N log

(
4CM + 4

ε

)

≤ 2CM2−2j

√
N log

((
4 +

4

CM

)
· 22j−1

)

≤ CA
(√

2j − 1

2j

)(√
N

2j

)
≤ C ′,

where C ′ is an absolute constant. The computation in (5.12) finishes the proof.

It is no surprise that for general M ∈ SN−1 the width bound for w(Mj) (resp.
w(Mrel

j )) depends on either j or log(N). The proximity of Mrel
j to M in Lemma 5.6.4

only implies Mrel
j ⊂ tubeCM2−2j and a large ambient dimension N will lead to a higher

complexity of the tube. In Lemma 5.3.3 the proximity argument is omitted using the
maximal number of affine d-dimensional spaces in Mj . This argument does consequently
not depend on N but on the refinement level j.
The next lemma requires more geometric structure by assuming that M is a Riemannian
Manifold. It improves on both Lemma 5.3.3 and 5.6.4 for such M by yielding a width
bound which is independent of both j and N for all j sufficiently large.

Lemma 5.6.5 (A Bound of the Gaussian Width for Approximations to Riemannian
Manifolds). Let M ⊂ SN−1 be a compact d-dimensional Riemannian manifold with d-
dimensional volume Vold(M) where d ≥ 1. Suppose that j > max{j0, log2(8CM/C1)} for
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CM := max{1, supz∈MCz}. Then, there exist absolute constants C, c > 0 such that

max{w(M), w(Mrel
j )} ≤ w(M∪Mrel

j )

≤ C

√√√√d

(
1 + log

(
c

√
d

reach(M)

))
+ log(max{1,Vold(M)}).

Here the constants Cz and C1 come from GMRA properties (3b) and (3a).

Proof : Let 2CM2−2j ≤ ε̃ ≤ 1
4C12−j . We aim to bound w(Mrel

j ) in terms of covering
numbers forM. To do this we will use Dudley’s inequality in combination with the
knowledge that Mrel

j ⊂ B2(0, 2) (by definition). By Dudley’s inequality (Theorem
3.2.8)

w(Mrel
j ) ≤ C ′

∫ 4

0

√
log(N(Mrel

j , ε)) dε

≤ C ′
(∫ ε̃

0

√
log(N(Mrel

j , ε)) dε+

∫ 4

ε̃

√
log(N(Mrel

j , ε)) dε

)
,

where C ′ is an absolute constant. Appealing to Lemmas 5.6.3 and 5.6.2 for the
first and second terms above, we can see that

w(Mrel
j ) ≤ C ′

(∫ ε̃

0

√
log((6/ε)dN(M, ε)) dε+

∫ 4

ε̃

√
log(N(M, ε/2)) dε

)
≤ C ′

∫ 4

0

√
log((6/ε)dN(M, ε/2)) dε

= 2C ′
∫ 2

0

√
d log(3/η) + log(N(M, η)) dη

≤ 2C ′

√∫ 2

0
d log(3/η) dη +

∫ 2

0
log(N(M, η)) dη,

where the last step follows from the Cauchy-Schwarz inequality. We may bound
the second term as in the proof of Theorem 5.3.8. Doing so we obtain

w(Mrel
j ) ≤ C ′′

√√√√∫ 2

0
d log(3/η) dη + d

(
1 + log

(
c′
√
d

τ

))
+ log(Vold(M))

≤ C ′′′
√√√√d

(
1 + log

(
c′
√
d

τ

))
+ log(Vold(M)),

where τ is the reach ofM, and C ′′′, c′ are an absolute constants. The computation
in (5.12) together with Theorem 5.3.8 concludes the proof.

As the above lemmas only apply to Mrel
j , using these alternatives makes some modi-

fications in the proof of Theorem 5.3.6 necessary:
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In (I), e.g., one has to guarantee that Cj ⊂ Mrel
j , i.e., that each center cj,k is a best

approximation for some part of the manifold. This assumption is reasonable if the centers
are constructed as means of small manifold patches, a common approach in empirical
applications (cf. Section 5.1.3).
When working with Mrel

j one has to guarantee in (II) that k′ obtained in (I) fulfills

k′ ≈ kj(x) as Mrel
j does not include many near-optimal centers for each point on M.

In addition, the optimization which has to be performed in this case in step II. of OMS
becomes more involved. We will leave such variants to future work.

5.7 Discussion

In this chapter we proposed a tractable algorithm to approximate data lying on low-
dimensional manifolds from compressive one-bit measurements to complement the theo-
retical results of Plan and Vershynin on one-bit sensing for general sets in [139]. We linked
the theoretical understanding of one-bit measurements as tessellations of the sphere [140]
to the GMRA techniques introduced in [5] and analyzed the interplay between a given
manifold and its GMRA approximation’s complexity measured in terms of the Gaussian
mean width. To illustrate applicability of our results we showed that they even hold for
manifolds learned from samples. Several interesting questions remain for future research:

First, it is straight-forward to generalize and improve the theory by replacing Theorem
3.3.5 and Theorem 3.3.9 with the quite recent results Theorem 3.3.8 and Theorem 3.3.10.
In Theorem 5.3.1 this would allow M to be not on the sphere and reduce the sufficient
number of measurements to obtain a squared error of ε > 0 from O(ε−6) to O(ε−2).
As the dithered one-bit model (which has to be used then) causes additional notational
complexity, we defer those considerations to the near future.

Second, the experiments in Section 5.5.4 suggest the use of tree structure within Cj
to reduce computational complexity. Indeed OMS does still yield comparable results if
I. is replaced by a tree based search which has the advantage of being computable much
faster than the minimization over all possible centers. Obtaining theoretical error bounds
in this case would be desirable, as well as considering the use of other related fast nearest
neighbor methods from computer science [87].

Third, the reader might have noticed in the empirical setting of GMRA and in Section
5.4, that (A2) in combination with Lemma 5.4.5 seemingly renders II. of OMS useless. As
Section 5.5.3 though shows, the second step of OMS yields a notable improvement even
with an empirically constructed GMRA. Seemingly, even with (A2) not strictly fulfilled
the empirical GMRA techniques remain valid, and II. of OMS of value. Understanding
this phenomenon should lead to more relaxed assumptions than (A1)-(A4).

Fourth, one might consider versions of OMS for additional empirical GMRA variants
including those which rely on adaptive constructions [117], GMRA constructions in which
subspaces that minimize different criteria are used to approximate the data in each par-
tition element (see, e.g., [88]), and distributed GMRA constructions which are built up
across networks using distributed clustering [11] and SVD [90] algorithms. Such variants
could reduce the overall computational storage and/or runtime requirements of OMS in
different practical situations.

Finally, as already pointed out in Section 5.5.2 we do not yet understand the influence
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of an inserted positive part [·]+ in II.. There seem to be cases in which a massive improve-
ment can be observed and others in which the performance completely deteriorates. The
explanation is probably decoupled from this work and OMS.
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Chapter 6

Interlude: From Multi-Bit
Recovery to Matrix Sensing

In this short chapter we discuss numerical experiments motivating our study of multi-
bit recovery. We then point out that quantized compressed sensing and classification in
machine learning are two sides of the same coin. Building upon this relation we describe
how our work on matrix sensing (presented in Chapter 7) originated from the multi-bit
recovery problem described in Section 3.4. This chapter contains unpublished joint work
with Lars Palzer.

6.1 The Influence of Bit-Depth

Figure 6.1 and Figure 6.2 show the outcomes of different numerical experiments which
consist in recovering randomly drawn s-sparse unit-norm signals x ∈ RN , for N = 100,
from uniformly quantized Gaussian measurements. We use for recovery multi-bit basis
pursuit (cf. Section 3.4), which we describe in detail in the next section.
Comparing approximation quality in mean-squared and worst case error shows an expo-
nential decrease of both errors in bit-depth, i.e. number of bits per measurement. This
observation matches the theoretical performance of multi-bit compressed sensing predicted
in Theorem 3.4.2. Figure 6.1 depicts for different quantization levels the mean squared er-

ror ‖x̂− x‖22 in dB when recovering x from m measurements (n dB = 10
−n
10 , i.e., 0 dB = 1,

−10 dB = 0.1, −20 dB = 0.01, etc.). The sparsity s of x varies from 1 to 100 and m from
0 to 400. Note that the measurement rate is defined as m/N . The experiment illustrates
two important facts. First, one-bit quantization only works well under very strong spar-
sity assumptions. Second, the different multi-bit quantizer improve approximation quality
step-by-step and lead to an almost smooth connection between one-bit compressed sensing
and classical un-quantized compressed sensing.
In the second experiment, we are interested in the trade-off between number of measure-
ments and bit-depth per measurement. We let the sparsity s vary from 0 to 100 and the
number of available bits R (measured in Bits/N) from 0 to 400. The eight diagrams in
Figure 6.2 depict empirical probabilities of obtaining a mean squared error ‖x̂− x‖22 < 0.1
for different choices of B bits per measurement (note that m = R/B). The results suggest
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Figure 6.1: Median MSE over 500 experiments.

to choose a certain number of bits per measurement to maximize the region of successful
recovery if some given approximation error shall be attained. Both experiments showed
the qualitatively same behavior in worst case error.

In [112] the authors examine the trade-off between number of measurements and bit-
depth per measurement when considering a fixed bit budget and draw the conclusion that
an optimal choice depends on the concrete application. If high noise is expected, one
should reduce the number of bits per measurement to have more measurements and hence
more robust recovery. If the expected noise level is small it pays off to increase the number
of bits per measurement to improve approximation quality. They observe as well that for
obtaining a certain approximation error one should neither choose too few nor too many
bits per measurement, the former only yielding rough approximation while the latter re-
ducing the number of measurement below the lower bound necessary to apply compressed
sensing techniques (cf. Figure 6.2).
In order to profit from bit-depth in the low-noise regime, it is crucial to have reliable recon-
struction methods which exploit the improved accuracy best possible. When compared to
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Figure 6.2: Empirical probability of MSE< −10 dB over 500 experi-
ments.
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Figure 6.3: Comparison of AMP and Multi-Bit BP

approximate message passing algorithms (a class of more sophisticated algorithms we do
not explain in detail here), the multi-bit basis pursuit performs poorly, see Figure 6.3. Is
it possible to explain this performance gap or to find a simple alternative to basis pursuit
coming with better worst-case approximation guarantees?

6.2 The Relation Between Quantized Compressed Sensing
and Machine Learning

Recall from Sections 3.3 and 3.4 how we imagined one-bit and multi-bit quantization. Each
quantized measurement characterizes one or several hyperplanes such that the collection
of all measurements provides a tessellation of the space into quantization cells. Let us
change our perspective. For simplicity, we concentrate on the one-bit setting first. Instead
of identifying the measurement vectors ai (rows of A) with hyperplanes, we might see
them as points in space which are labeled by yi = sign(〈ai,x〉) ∈ {−1,+1} as depicted in
Figure 6.4 (a).

We are now in the setting of binary classification problems where the unknown classifier
is the hyperplane Hx = {z ∈ RN : 〈z,x〉 = 0} defined by x. It is well-known that linear
binary classification problems can be solved by support vector machines (SVM) [154] which
search for a hyperplane separating the points according to their labels and maximize the
margin between hyperplane and point clouds by computing

w = arg min
ŵ∈RN ,τ∈R

‖ŵ‖22, subject to yi (〈ŵ,ai〉 − τ) ≥ 1, for all i ∈ [m]. (6.1)

Note that τ controls offset of the hyperplaneHw while the right-hand side of the constraints
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x

ai

(a) One-bit measurements

x

ai

(b) Multi-bit measurements

Figure 6.4: Quantized compressed sensing as classification problem.

w

1
‖w‖2

τ
‖w‖2

Figure 6.5: Separation of two point clouds with maximal margin.

causes the margin (cf. Figure 6.5). If in addition sparsity of the wanted support vector is
assumed, one can replace the squared `2-norm in (6.1) by ‖·‖1, a setting which has been
studied in [105]. Comparing Figure 6.4 (a) to Figure 6.5 it is clear that τ and the right-
hand side of the constraints in (6.1) are zero when one considers quantized compressed
sensing as classification problem. This leads from (6.1) to

w = arg min
ŵ∈RN

‖ŵ‖1, subject to yi〈ŵ,ai〉 ≥ 0, for all i ∈ [m] (6.2)

which is equivalent to (3.11) (up to the additional constraint ‖Az‖1 = m).

Let us consider the multi-bit quantization depicted in Figure 6.4 (b). Instead of having
two classes of points, we get depending on the number of bits per measurement B ∈ N,
2B classes we can distinguish. Moreover, we know that there exists a bundle of parallel
hyperplanes which separate the points and share x as normal vector. If we write Ib for
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the set of ai which belong to class b ∈ [2B] and introduce the auxiliary variables

zbi :=

{
−1 if ai ∈ Ib̃, for b̃ ≤ b,
1 else,

(6.2) can be generalized to

w = arg min
ŵ∈RN

‖ŵ‖1, subject to

{
zbi (〈ŵ,ai〉 − τ(∆, b, ‖x‖2)) ≥ 0,

for all i ∈ [m], b ∈ [2B]
(6.3)

where the shifts τ(∆, b, ‖x‖2) depend on the quantizers refinement level ∆ and the norm
of x (if those parameters are unknown, one may also optimize over τ as in (6.1)). To put
it simply, (6.3) minimizes the `1-norm with respect to the quantized measurements and is
thus equivalent to multi-bit basis pursuit [128].

Remark 6.2.1. The just observed relation can be used to transfer results on quantized
compressed sensing in Section 3.3 and 3.4 to the framework of classification problems in
machine learning. Theorem 3.3.1, for example, characterizes how many Gaussian samples
are necessary to solve a binary classification problem up-to expected misclassification error
O(ε) in RN when the classifier is linear and orthogonal to some sparse vector while Theo-
rem 3.3.9 additionally respects misclassifications on the training data. These are valuable
results if one assumes that affiliation with a class only depends on few relevant parameters
(corresponding to sparsity of the classifier’s normal vector).
Interpreting the dithered results Theorem 3.3.10 and 3.4.2 is more involved. Here the
dither adds a specific random perturbation to each of the ai which might be hard to justify
if the ai resemble empirical data.

Interpreting quantized compressed sensing as classification problem clearly shows that
only a small fraction of the measurements is used in obtaining the estimate of x. As
support vector machines mainly rely on the points closest to the classifying hyperplane
(called support vectors), only those ai which lie close to Hx determine the approximation
quality of (6.2) and (6.3).
But Figure 6.4 (b) illustrates an interesting geometric property of x. If one centers the
point clouds Ib around the origin and writes the resulting points into a matrix, one of the
singular vectors will be close to x, a sparse vector. Consequently, it might be possible
to improve on the support vector machine ansatz by efficiently calculating singular value
decompositions of matrices which have sparse singular vectors.
Unfortunately, numerical simulations show that this strategy does not yield practical re-
sults. The problem is that sparsity of x implies only sparsity on one singular vector and
that this specific singular vector belongs to the smallest singular value which is most sen-
sitive to noise. However, the algorithm we have examined performs well in recovery of
low-rank matrices with sparse singular vectors from unquantized compressed sensing mea-
surements. Therefore, let us leave in the following chapter the framework of quantized
compressed sensing and turn to matrix sensing.
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Chapter 7

ATLAS: Matrix Sensing with
Combined Structures

In the last chapter we discuss recovery of matrices with multiple structures, in particu-
lar low-rankness and sparsity, from unquantized compressed sensing measurements. We
present recent work on this topic including sparse power factorization, the so far stand-
alone algorithm for recovery of matrices which are low-rank and sparse. After proposing
a new algorithm, A-T-LAS2,1, we analyze its behavior, compare it numerically to sparse
power factorization, and discuss its potential generalizations. The content of the chapter
is joint work with Massimo Fornasier and Valeriya Naumova, and has been published in
[63] and [64].

7.1 Matrix Sensing and Multiple Structures

Starting with [29, 144] the theory of compressed sensing has been generalized to matrix
signals. Motivated by applications as low-dimensional embedding of data into Euclidean
space [120] and low-order realizations of linear systems [59], one is interested in finding a
matrix X ∈ Rn1×n2 of minimal rank fulfilling

y = A(X), (7.1)

where the linear measurement operator A : Rn1×n2 → Rm and the measurements y ∈ Rm
are given. Just like `0-minimization (2.2), solving

min
Z∈Rn1×n2

rank(Z), subject to A(Z) = y, (7.2)

is NP-hard in general. In order to solve (7.1), one has to replace (7.2) with a tractable pro-
gram. By singular value decomposition we can write Z = UΣVT where U ∈ Rn1×n1 ,V ∈
Rn2×n2 are orthogonal matrices and Σ ∈ Rn1×n2 is diagonal. Let us denote by σ ∈
Rmin{n1,n2} the vector of singular values σ1 ≥ ... ≥ σmin{n1,n2} ≥ 0. Based on the observa-
tion that rank(Z) = ‖σ‖0, the idea of [144] is to relax (7.2) to

min
Z∈Rn1×n2

‖Z‖∗ , subject to A(Z) = y, (7.3)
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where ‖Z‖∗ = ‖σ‖1 denotes the so-called nuclear norm. When transferring the concepts
presented in Chapter 2 to this setting, one can show that certain random operators A
satisfy with high probability a restricted isometry property on the set of n1 × n2 rank-R
matrices for

m & Rmax{n1, n2}. (7.4)

Consequently, any low-rank matrix X can be uniquely recovered from (7.1) by the convex
program (7.3). Moreover, the bound in (7.4) corresponds up-to a constant to the number
of parameters which are necessary to describe an n1 × n2 rank-R matrix and thus scales
optimally in the intrinsic dimension of the set of low-rank matrices. As in Chapter 2, the
RIP allows to obtain robust and stable recovery results.

Things become interesting as soon as sparsity is considered in addition. By viewing
X ∈ Rn1×n2 as vector in Rn1n2 , the classical compressed sensing machinery can be applied
as well. If X, for example, has only s1 � n1 non-zero rows and s2 � n2 non-zero columns,
the results in Chapter 2 guarantee that X can be recovered from

m & (s1s2) log

(
e(n1n2)

(s1s2)

)
(7.5)

measurements of type (7.1) in a stable and robust way. But is it possible to profit of both
structures, low-rankness and sparsity, at once if X is (s1, s2)-column/row-sparse and has
rank R� min{s1, s2}? To describe a matrix of this type, less than R(s1 + s2) parameters
are sufficient which can be considerably less than (7.4) and (7.5).

One might wonder if the assumption of combined structures is useful. A practical
motivation is given by blind deconvolution [84]. In blind deconvolution one is interested
in recovering two unknown vectors w and p solely from their convolutional product

y = w ∗ p =

(
m∑
i=1

wip(k−i) modm

)m
k=1

(7.6)

In imaging applications p represents the picture and w an unknown blurring kernel
[155]. In signal transmission p is a coded message and w models the properties of the
transmission channel [71]. Independent of the concrete application (7.6) is highly under-
determined and contains ambiguities which might be reduced and handled by sparsity and
low-rankness assumptions.
Let us focus here on the transmission of signals to elaborate on the last statement. In
[3] the authors used that, by bilinearity of the convolution, (7.6) can be represented as
a linear map acting on the outer product wpT , a technique commonly known as lifting.
They assumed in addition that the channel properties w and the message p lie in lower
dimensional subspaces and are of the form w = Bh and p = Cx with h ∈ Cn1 and
x ∈ Cn2 being coefficient vectors encoding channel and message (B and C are suitable
transformation matrices). They could hence re-write (7.6) as

y = A(hx∗)
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Algorithm 7 : SPF(y,A,V0, s1, s2, R, L)

Require: A : Rn1×n2 → Rm, y ∈ Rm, V0 ∈ Rn2×R, s1, s2, R ∈ N, number of iterations L
1: l = 0 . initialize

2: while l < L do
3: Vl ← orth([Vl,V0]) . orthonormalize
4: if s1 < n1 then
5: Ũ = HTP(AVl

,y, s1) . fix Vl and apply HTP
6: else
7: Ũ = arg minU∈Rn1×R ‖y −AVl

(U)‖22 . fix Vl and solve least squares
8: end if
9: Let Ul+1 be the best rank-R approximation of Ũ

10: Ul+1 ← orth([Ul+1,U0]) . orthonormalize
11: if s2 < n2 then
12: Ṽ = HTP(AUl+1

,y, s2) . fix Ul+1 and apply HTP
13: else
14: Ṽ = arg minV∈Rn2×R

∥∥y −AUl+1
(V)

∥∥2

2
. fix Ul+1 and solve least squares

15: end if
16: Let Vl+1 be the best rank-R approximation of Ṽ

17: l = l + 1
18: end while

19: return XSPF = UlV
T
l

where a rank-1 matrix hx∗ ∈ Cn1×n2 has to be recovered from m linear measurements.
As explained above, this can be solved by nuclear norm minimization under suitable
assumptions on A.
In blind demixing [118, 119, 102] or MIMO channel identification [45] a receiver gets
the overlay of R different convolutions which translates in the lifted formulation into the
recovery of rank-R matrices from linear measurements of type

y = A

(
R∑
r=1

hrx
∗
r

)
.

As already mentioned in [102], one can typically impose extra structure like sparsity on
the channel impulse responses h to further reduce the number of measurements m. In this
case one hopes to profit from low-rankness and sparsity at the same time.

A first throwback is an observation of Oymak et. al. in [135]: the mere convex combina-
tion of regularizers for different sparsity structures does not allow in general outperforming
the recovery guarantees of the “best” one of them alone. Consequently, in order to im-
prove recovery further, one has to go beyond linear combinations of already known convex
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Algorithm 8 : HTP(y,Φ, s, L)

Require: Φ: Rn×R → Rm, y ∈ Rm, s ∈ N, number of iterations L
1: l = 0, Z0 = 0 ∈ Rn×R . initialize

2: while l < L do
3: Z̃ = Zl + Φ∗(y − Φ(Zl)) . gradient step
4: Let J ⊂ [n] be the index set of the s rows of Z̃
5: with largest `2-norm and ΠJ the projection onto the row set.
6: Zl+1 = arg minZ : ΠJZ=Z ‖y − Φ(Z)‖22 . least square fit
7: l = l + 1
8: end while

9: return ZHTP = Zl

regularizers.
In [9] the authors overcome the aforementioned limitations of purely convex approaches by
assuming a nested structure of the measurement operator A and applying basic solvers for
low-rank resp. row-sparse recovery in two consecutive steps which is an elegant approach
but clearly restricts possible choices for A.
Lee et. al. in contrast proposed and analyzed in [116] the so-called sparse power factor-
ization (SPF) to recover X from noisy measurements

y = A(X) + η =

 〈A1,X〉F
...

〈Am,X〉F

+ η

where 〈·, ·〉F denotes the Frobenius scalar product, η ∈ Rm models additive noise, and the
matrices Ai ∈ Rn1×n2 , for i ∈ [m], characterize the operator A. SPF is a modified version
of Power Factorization (see [99]) which recovers low-rank matrices by representing them
as product of two matrices X = UVT and then applying alternating minimization over
the (de)composing matrix U,V. In addition to power factorization, SPF introduces hard-
thresholding pursuit (HTP) to each of the alternating steps to enforce additional sparsity
of the columns of U and/or V. HTP is closely related to iterative hard-thresholding and
presented in Algorithm 8. Be aware in Algorithm 7 that orth(Z) computes an orthonormal
basis of span(Z) and that

AV(U) :=

 〈A1V,U〉F
...

〈AmV,U〉F

 and AU(V) :=

〈A
T
1 U,V〉F

...
〈AT

mU,V〉F


fulfill A(UVT ) = AV(U) = AU(V). To analyze SPF, Lee et. al. introduce the following
RIP.

Definition 7.1.1 (Rank-R and (s1, s2)-jointly-sparse RIP). A linear operator A : Rn1×n2 →
Rm satisfies the rank-R and (s1, s2)-jointly-sparse RIP with isometry constant δ ∈ (0, 1) if

(1− δ)‖Z‖2F ≤ ‖A(Z)‖22 ≤ (1 + δ)‖Z‖2F , (7.7)
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for all Z ∈ Rn1×n2 such that rank(Z) ≤ R, ‖Z‖0,2 ≤ s1, and ‖ZT ‖0,2 ≤ s2 where ‖ · ‖0,2
denotes, by abuse of notation, the number of nonzero rows of a matrix.

They show that Gaussian measurement operators fulfill above RIP with high proba-
bility if the number of measurements satisfies

m & R(s1 + s2) log

(
max

{
en1

s1
,
en2

s2

})
(7.8)

and that up to the log-factor this is at the information theoretical limit. Based on the
RIP they give a recovery guarantee for SPF.

Theorem 7.1.2 ([116, Theorem 7]). Suppose the following:

(i) X = UΣVT denotes the singular value decomposition of a rank-R matrix X ∈
Rn1×n2, where U ∈ Rn1×R and V ∈ Rn2×R are row-s1-sparse and row-s2-sparse,
respectively.

(ii) The condition number of X (restricted to the non-zero singular values) is not greater
than τ .

(iii) A satisfies the rank-2R and (3s1, 3s2)-jointly-sparse RIP with isometry constant δ =
0.04/τ .

(iv) y = A(X) + η where η and A(X) satisfy

‖X‖F
‖X‖

· ‖η‖2
‖A(X)‖2

≤ ν

with ν = 0.04/τ .

(v) The initialization (U0,V0) satisfies

max
{
‖PR(U)⊥PR(U0)‖, ‖PR(V)⊥PR(V0)‖

}
< 0.95

where P denotes the orthogonal projection and R(U) the range of the columns of U.

Then the output (Xl)l∈N of SPF satisfies

lim sup
l→∞

‖Xl −X‖F
‖X‖F

≤ (55τ2 + 3τ + 3)
‖η‖2
‖A(X)‖2

.

Moreover, the convergence is linear, i.e. for any ε > 0, there exists l0 = O(log(1/ε)) that
satisfies

‖Xl0 −X‖F
‖X‖F

≤ (55τ2 + 3τ + 3)
‖η‖2
‖A(X)‖2

+ ε.

Remark 7.1.3. Sparse power factorization has been introduced and analyzed in the more
general complex setting. To conform with the rest of the thesis, we restrict it here to real
valued matrices.
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Theorem 7.1.2 states that using suitable initialization and assuming the noise level to
be sufficiently small, SPF approximates low-rank and row- and/or column-sparse matrices
X from a nearly optimal number of measurements. If X is rank-R, has s1-sparse columns
and s2-sparse rows, m & R(s1 + s2) log(max{en1/s1, en2/s2}) measurements suffice which
is up to the log-factor at the information theoretical bound. Note that all columns (resp.
rows) need to share a common support in this setting. As it has been shown in [116]
that SPF outperforms methods based on convex relaxation, we will use it as a benchmark
for recovery. However, SPF and its analysis are heavily based on the assumption that
the operator A possesses a suitable restricted isometry property and cannot be applied
to arbitrary inverse problems of type (7.1). As we will see in the next sections, this
shortcoming can be dealt with by considering soft-thresholding instead.

7.2 Alternating Tikhonov Regularization and LASSO

Let us first clarify our problem setting. We recall that the reduced singular value decom-
position of a matrix Z ∈ Rn1×n2 is given by

Z = UΣVT =

rank(Z)∑
r=1

σru
r(vr)T , (7.9)

where Σ is a diagonal matrix containing the singular values σ1 ≥ ... ≥ σrank(Z) > 0 while

U ∈ Rn1×rank(Z) and V ∈ Rn2×rank(Z) have orthonormal columns which are called left and
right singular vectors. Hence, each non-zero singular value σr has one left singular vector
ur and one right singular vector vr.
In contrast to [116] where the singular vectors of the signal have to be sparse and share
a common support, we just assume the unknown signal X̂ of rank R > 0 to possess a
decomposition of the form

X̂ =

R∑
r=1

ûr(v̂r)T , (7.10)

where the vectors ûr and v̂r are effectively s1/s2-sparse (recall Definition 3.2.1). Note
that we require ûr and v̂r neither to be exactly sparse nor to share a common support.
We call the vectors ûr (resp. v̂r) the left (resp. right) component vectors of X̂. From the
context it will be clear to which decomposition they are referred. As we do not require
orthogonality of the components, (7.10) does not need to be the SVD of X̂, although this
case is also covered by our analysis. If X̂ of rank R > 0 possesses an SVD as in (7.10) for
‖v̂r‖2 = σr, r ∈ [R], then for any 0 < p <∞

‖X̂‖pp =
R∑
r=1

(‖ûr‖2‖v̂r‖2)p. (7.11)

If the decomposition (7.10) does not coincide with the SVD of X̂, then û1, . . . , ûR are
anyhow linearly independent by rank(X̂) = R and assuming that the eigenvalues of the
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Gramian of the vectors û1/‖û1‖2, . . . , ûR/‖ûR‖2 are in some positive bounded interval,
one has

‖X̂‖2F =

n2∑
j=1

n1∑
i=1

∣∣∣∣∣
R∑
r=1

ûri v̂
r
j

∣∣∣∣∣
2

=

n2∑
j=1

∥∥∥∥∥
R∑
r=1

ûr

‖ûr‖2
‖ûr‖2v̂rj

∥∥∥∥∥
2

2

'
n2∑
j=1

R∑
r=1

‖ûr‖22|v̂rj |2 =
R∑
r=1

(‖ûr‖2‖v̂r‖2)2.

From this equivalence and the equivalence of `p-quasi-norms and Schatten-p-quasi-norms
for 0 < p ≤ 2, one further obtains as a relaxation of (7.11)

c−1

Û
Rp/2−1

R∑
r=1

(‖ûr‖2‖v̂r‖2)p ≤ ‖X‖pp ≤ CÛR
1−p/2

R∑
r=1

(‖ûr‖2‖v̂r‖2)p, (7.12)

for positive constants cÛ, CÛ > 0, which depend on the largest and smallest eigenvalues
of the Gramian of the vectors û1/‖û1‖2, . . . , ûR/‖ûR‖2. We use (7.12) mainly for p = 2/3
below.

Remark 7.2.1. For simplicity, we focus in the following on decompositions (7.10) with
effectively sparse right component vectors and arbitrary left component vectors. Concep-
tually straight-forward, but perhaps tedious modifications of the arguments lead to similar
results in the left-sided and both-sided sparse case. We will comment on this whenever
appropriate.

As in the last section, we are given some linear measurement operatorA : Rn1×n2 → Rm
and the vector of measurements y ∈ Rm, which is obtained from X̂ by

y = A(X̂) + η =
1√
m

 〈A1, X̂〉F
...

〈Am, X̂〉F

+ η. (7.13)

The operator A is completely characterized by the m matrices Ai ∈ Rn1×n2 and individual
measurements correspond to Frobenius products 〈Ai, X̂〉F = trace(AiX̂

T ). Additive noise
is modeled by η ∈ Rm of which only the `2-norm is assumed to be known.

We propose to recover and decompose X̂ by a variational approach and to minimize
the following multi-penalty functional JRα,β : Rn1 × ...× Rn1 × Rn2 × ...× Rn2 → R which
is defined, for α, β > 0, by

JRα,β(u1, . . . ,uR,v1, . . . ,vR) :=

∥∥∥∥∥y −A
(

R∑
r=1

ur(vr)T

)∥∥∥∥∥
2

2

+ α

R∑
r=1

‖ur‖22 + β

R∑
r=1

‖vr‖1,

(7.14)

where α, β are regularization parameters. The functional in (7.14) is motivated by the
success of multi-penalty regularization in recent works [131, 75, 40]. We denote a global
minimizer of (7.14) by

(u1
α,β, . . . ,u

R
α,β,v

1
α,β, . . . ,v

R
α,β).
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Note that JRα,β also applies to matrices by viewing each 2R-tuple (u1, . . . ,uR,v1, . . . ,vR)

as the matrix X =
∑R

r=1 ur(vr)T . Let us denote by

Xα,β =
R∑
r=1

urα,β(vrα,β)T

the matrix corresponding to (u1
α,β, . . . ,u

R
α,β,v

1
α,β, . . . ,v

R
α,β). The functional JRα,β has a

restricted domain (the decomposition can only consist of R vector pairs) to enforce low-
rankness of Xα,β and uses a non-smooth term ‖ · ‖1 to promote sparsity in right singular

vectors of Xα,β. Despite the convex multi-penalty regularization term α
∑R

r=1 ‖ur‖22 +

β
∑R

r=1 ‖vr‖1, the functional (7.14) is highly non-convex, hence, it is not affected by the
above mentioned negative results of Oymak et. al. [135].
We approach its minimization by using the following alternating algorithm based on sim-
ple iterative soft-thresholding, to which we refer as Alternating Tikhonov regularization
and Lasso (A-T-LAS2,1). However, for simplicity and ease of notation we write ATLAS
throughout the chapter.

(A-T-LAS2,1)



u1
k+1 = arg minu

∥∥∥(y −A
(∑R

r=2 urkv
r
k
T
))
−A(uv1

k
T

)
∥∥∥2

2

+α‖u‖22 + 1
2λ1
k
‖u− u1

k‖22,

v1
k+1 = arg minv

∥∥∥(y −A
(∑R

r=2 urkv
r
k
T
))
−A(u1

k+1v
T )
∥∥∥2

+β‖v‖1 + 1
2µ1
k
‖v − v1

k‖22,
...

uRk+1 = arg minu

∥∥∥(y −A
(∑R−1

r=1 urk+1v
r
k+1

T
))
−A(uvRk

T
)
∥∥∥2

2

+α‖u‖22 + 1
2λRk
‖u− uRk ‖22,

vRk+1 = arg minv

∥∥∥(y −A
(∑R−1

r=1 urk+1v
r
k+1

T
))
−A(uRk+1v

T )
∥∥∥2

+β‖v‖1 + 1
2µRk
‖v − vRk ‖22,

In each iteration above, the terms ‖u − urk‖22 and ‖v − vrk‖22 are added to provide theo-
retical convergence guarantees for the sequence (u1

k, ...,v
R
k ) under suitable choice of the

2R positive sequences of parameters (λ1
k)k∈N, . . . , (λ

R
k )k∈N, (µRk )k∈N, . . . , (µRk )k∈N > 0. In

practice, ATLAS converges without those terms.
As most of the non-convex minimization algorithms, empirical performances of ATLAS
likely depends on a proper initialization (u1

0, . . . ,u
R
0 ,v

1
0, . . . ,v

R
0 ). Initialization by the

leading right singular vectors of A∗(y), where A∗ denotes the adjoint of A, ensures empir-
ically stable recovery in the experiments (Section 7.7). However, we do not provide any
theoretical guarantees for this observation.
One of the virtues of the algorithm is the explicit formulas for computation of the succes-
sive iterations, resulting in low computational complexity. Although relying on alternating
minimization as SPF, at first glance, ATLAS may seem to be quite similar to SPF, it ex-
hibits important positive differences: by using convex relaxation (`1-norm minimization)
at each iteration, instead of solving a non-convex problem (`0-minimization) as in SPF,
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we can extend the approximation guarantees to the case of a high level of noise and ef-
fective sparsity of decomposition vectors, which are cases not covered by the theoretical
guarantees of SPF. By virtue of the Lipschitz-continuity of soft-thresholding, we obtain
approximation guarantees, also for the situation where neither restricted isometry prop-
erty of the measurement operator A nor conditions on the support distribution of X̂ are
assumed. In particular, while SPF can be considered as an alternating minimization over
matrices, ATLAS alternates on R pairs of vectors. This enable us to drop the assumption
of a common support for all columns (resp. rows) as in SPF.

7.3 Properties of Minimizers

Let us begin with some basic properties which minimizers of JRα,β have under very general
assumptions. The first result bounds the error which is caused in measurements by Xα,β

in comparison to X̂.

Proposition 7.3.1. Assume (u1
α,β, ...,v

R
α,β) is a global minimizer of JRα,β and X̂ is fulfilling

the noisy measurements y = A(X̂) + η. Then,

‖y −A(Xα,β)‖22 ≤ ‖η‖22 + C2,1
3
√
αβ2

R∑
r=1

(‖ûr‖2‖v̂r‖1)
2
3 , (7.15)

where C2,1 is the constant from Lemma 7.3.2.

To prove Proposition 7.3.1, we need the following technical lemma.

Lemma 7.3.2. Let α, β, a, b, p, q > 0. Then

f : R+ → R, f(λ) := λpαa+
1

λq
βb,

attains its minimum at λ̃ =
(
q
p
βb
αa

) 1
p+q

and has the minimal value

min f = f(λ̃) = Cp,q(αa)
q
p+q (βb)

p
p+q ,

where Cp,q =
(
q
p

) p
p+q

+
(
p
q

) q
p+q

.

Proof : The result is obtained by differentiation of f and by searching for its deriva-
tive’s zeros.

Proof of Proposition 7.3.1 : By applying Lemma 7.3.2 R times using p = 2, q = 1, a =
‖ûr‖22, b = ‖v̂r‖1 we get λ̃1, ..., λ̃R, such that

JRα,β(λ̃1û
1, ..., λ̃RûR,

1

λ̃1

v̂1, ...,
1

λ̃R
v̂R) = ‖y −A(X̂)‖22 +

R∑
r=1

C2,1
3
√
αβ2 3

√
‖ûr‖22‖v̂r‖21

= ‖η‖22 + C2,1
3
√
αβ2

R∑
r=1

(‖ûr‖2‖v̂r‖1)
2
3 .

(7.16)
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Note that, although not explicitly labeled, each λ̃r depends on the choice of α and
β as well as on a, b, p, and q. The minimality of (u1

α,β, ...,v
R
α,β) implies

‖y −A(Xα,β)‖22 ≤ JRα,β(u1
α,β, ...,v

R
α,β) ≤ JRα,β(λ̃1û

1, ..., λ̃RûR,
1

λ̃1

v̂1, ...,
1

λ̃R
v̂R)

= ‖η‖22 + C2,1
3
√
αβ2

R∑
r=1

(‖ûr‖2‖v̂r‖1)
2
3

which is the claim.

By similar proof techniques, one can also control the norms of the components urα,β
and vrα,β, for r ∈ [R].

Lemma 7.3.3. Assume (u1
α,β, ...,v

R
α,β) is a global minimizer of JRα,β and X̂ is fulfilling

the noisy measurements y = A(X̂) + η. If ‖y −A(Xα,β)‖2 ≥ ‖η‖2, we have

R∑
r=1

‖urα,β‖22 ≤ C2,1
3

√
β2

α2

R∑
r=1

(‖ûr‖2‖v̂r‖1)
2
3 ,

R∑
r=1

‖vrα,β‖1 ≤ C2,1
3

√
α

β

R∑
r=1

(‖ûr‖2‖v̂r‖1)
2
3 ,

(7.17)

and

R∑
r=1

(
‖urα,β‖2‖vrα,β‖1

) 2
3 ≤

R∑
r=1

(‖ûr‖2‖v̂r‖1)
2
3

where C2,1 is the constant from Lemma 7.3.2.

Proof : From (7.16) in the proof of Proposition 7.3.1 we obtain

‖y −A(Xα,β)‖22 +

R∑
r=1

(
α‖urα,β‖22 + β‖vrα,β‖1

)
= JRα,β(u1

α,β, ...,v
R
α,β) ≤ JRα,β(λ̃1û

1, ..., λ̃RûR,
1

λ̃1

v̂1, ...,
1

λ̃R
v̂R)

= ‖η‖22 + C2,1
3
√
αβ2

R∑
r=1

(‖ûr‖2‖v̂r‖1)
2
3

The first part of the claim follows by subtracting ‖y − A(Xα,β)‖22 on both sides,
leaving out half of the terms on the left-hand side, and dividing by α (resp. β). To
show the second part, note that by minimality of (u1

α,β, ...,v
R
α,β) and Lemma 7.3.2

R∑
r=1

(
α‖urα,β‖22 + β‖vrα,β‖1

)
= C2,1

3
√
αβ2

R∑
r=1

(
‖urα,β‖2‖vrα,β‖1

) 2
3
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and hence

‖y −A(Xα,β)‖22 + C2,1
3
√
αβ2

R∑
r=1

(
‖urα,β‖2‖vrα,β‖1

) 2
3

= JRα,β(u1
α,β, ...,v

R
α,β) ≤ JRα,β(λ̃1û

1, ..., λ̃RûR,
1

λ̃1

v̂1, ...,
1

λ̃R
v̂R)

= ‖η‖22 + C2,1
3
√
αβ2

R∑
r=1

(‖ûr‖2‖v̂r‖1)
2
3 .

Subtracting ‖y − A(Xα,β)‖22 on both sides and dividing by C2,1
3
√
αβ2 concludes

the proof.

The two estimates in (7.17) point out an interesting property of JRα,β. If one chooses
the parameters α and β of different magnitude, either the left or the right components of
a minimizer (u1

α,β, ...,v
R
α,β) can be forced to become smaller in norm, while the grip on

the others is lost. If α and β are chosen to be equal the norm bounds are balanced and
one obtains

R∑
r=1

(
‖urα,β‖22 + ‖vrα,β‖1

)
≤ C2,1

R∑
r=1

(‖ûr‖2‖v̂r‖1)
2
3 .

The assumption ‖y −A(Xα,β)‖2 ≥ ‖η‖2 is not restrictive. As soon as ‖y −A(Xα,β)‖2 =
‖η‖2 one doesn’t have to diminish α and β any further. There is no hope in obtaining
an accuracy below noise level and any smaller parameter choice will lead to overfitting
phenomena.

The `1-regularization in JRα,β provides means to bound ‖vrα,β‖1, for r ∈ [R]. By this,
one can control effective sparsity of the minimizer’s right components.

Lemma 7.3.4. Assume A : Rn1×n2 → Rm is a linear operator and y ∈ Rm. Let (u1
α,β, ...,

vRα,β) be a minimizer of JRα,β. For all r ∈ [R] we have that if ‖vrα,β‖2 ≥ ‖y‖22/γ for some
γ > 0, then

‖vrα,β‖1
‖vrα,β‖2

<
γ

β
.

Proof : By comparing JRα,β(u1
α,β, ...,v

r
α,β) to JRα,β(0, ..., 0), we get

R∑
r=1

(
α‖urα,β‖22 + β‖vrα,β‖1

)
≤ JRα,β(u1

α,β, ...,v
R
α,β) ≤ JRα,β(0, ..., 0) = ‖y‖22.

This implies ‖vrα,β‖1 < ‖y‖22/β. As by assumption ‖vrα,β‖2 ≥ ‖y‖22/γ, we conclude

‖vrα,β‖1
‖vrα,β‖2

<
‖y‖22
β

γ

‖y‖22
=
γ

β
.
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Lemma 7.3.4 states that those vectors vrα,β which lie not too close to zero are effec-

tively sparse. Numerical experiments suggest that if X̂ has s-sparse right components v̂r,
ATLAS leads to solutions with sparse right components vrα,β. The theoretical necessity
of considering not only sparsity but effective sparsity in this case is caused by a missing
bound on the support size of the vectors vrα,β.

Considering (7.10) and (7.13), Proposition 7.3.1 and Lemma 7.3.4 state that Xα,β is

even without any requirements on A a reasonable approximation of X̂, i.e., it is of rank R,
yields similar measurements, and has effectively sparse right components. However, the
parameters α and β have to be chosen with care, neither too small nor too large. Moreover,
Lemma 7.3.3 shows that α and β have to be chosen of similar magnitude. Otherwise either
left or right components of Xα,β cannot be controlled.

7.4 Signal Sets and Stable Embeddings

Though applicable in general, the results of Section 7.3 do not provide approximation
guarantees comparable to Theorem 7.1.2. To obtain a statement of similar flavor, we have
to make the definition of our signal set more precise and to find operators which embed
the signal sets in a stable way like the RIP in Definition 7.1.1. Let us first characterize
a set of matrices allowing decompositions of the form (7.10) with sparse left and right
components. We define, for Γ ≥ 1,

SR,Γs1,s2 = {Z ∈ Rn1×n2 : ∃ u1, ...,uR ∈ Rn1 , v1, ...,vR ∈ Rn2 ,

and σ = (σ1, . . . , σR)T ∈ RR, s.t.

Z =

R∑
r=1

σru
r(vr)T ,

where | supp(ur)| ≤ s1, | supp(vr)| ≤ s2,

‖ur‖2 = ‖vr‖2 = 1, for all r ∈ [R],

and ‖σ‖2 ≤ Γ}.

(7.18)

It contains all matrices Z which can be decomposed into three matrices UΣVT such that
U ∈ Rn1×R and V ∈ Rn2×R have s1-sparse (resp. s2-sparse) unit norm columns and
Σ ∈ RR×R is the diagonal matrix defined by σ. The set is restricted to decompositions
with ‖Σ‖F ≤ Γ. The important difference w.r.t. [116] is that the columns do not need to
share a common support. Moreover, we do not require U and V to be orthogonal matrices.
In particular, all matrices X with rank less or equal R, s1-sparse (resp. s2-sparse) left
and right singular vectors, and ‖X‖F ≤ Γ are in SR,Γs1,s2 . In this case ‖Σ‖F = ‖X‖F . We
call such an admissible decomposition UΣVT in (7.18) a Sparse Decomposition (SD) of
Z. Note that the SD is not unique and that the SVD of Z is not necessarily a SD of Z.
The second set is a further generalization of SR,Γs1,s2 . We drop the sparsity assumption and
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replace it by effective sparsity. Define, for Γ ≥ 1,

KR,Γ
s1,s2 = {Z ∈ Rn1×n2 : ∃ u1, ...,uR ∈ Kn1,s1 , v1, ...,vR ∈ Kn2,s2 ,

and σ = (σ1, . . . , σR)T ∈ RR, s.t.

Z =
R∑
r=1

σru
r(vr)T ,

where ‖ur‖2 = ‖vr‖2 = 1, for all r ∈ [R],

and ‖σ‖2 ≤ Γ}

(7.19)

which is a relaxed version of SR,Γs1,s2 as SR,Γs1,s2 ⊂ KR,Γ
s1,s2 . The class of matrices KR,Γ

s1,s2 is to a

certain extent closed under summation: in fact if Z ∈ KR,Γ
s1,s2 and Ẑ ∈ KR,Γ̂

ŝ1,ŝ2
then

Z− Ẑ ∈ K2R,
√

Γ2+Γ̂2

max{s1,ŝ1},max{s2,ŝ2}. (7.20)

We call such an admissible decomposition Z = UΣVT in (7.19) an effectively Sparse
Decomposition of Z and use the same shorthand notation, i.e., SD. The context makes
clear which decomposition is meant. Any X̂ decomposed as in (7.10) belongs to KR,Γ

n1,s

if
∑R

r=1 ‖ûr‖22‖v̂r‖22 ≤ Γ2. Having the sets SR,Γs1,s2 and KR,Γ
s1,s2 at hand we now define

corresponding RIPs.

Definition 7.4.1 (Additive Rank-R and (effectively) (s1, s2)-sparse RIPΓ). A linear oper-
ator A : Rn1×n2 → Rm satisfies the additive rank-R and (s1, s2)-sparse RIPΓ with isometry
constant δ > 0 if ∣∣‖A(Z)‖22 − ‖Z‖2F

∣∣ ≤ δ, (7.21)

for all Z ∈ SR,Γs1,s2. If (7.21) holds for all Z ∈ KR,Γ
s1,s2, we say A has the additive rank-R and

effectively (s1, s2)-sparse RIPΓ. Note that the rank-R and effectively (s1, s2)-sparse RIPΓ

implies the rank-R and (s1, s2)-sparse RIPΓ as SR,Γs1,s2 ⊂ K
R,Γ
s1,s2.

We comment on the additive form of (7.21) in Remark 7.4.3 below.
A linear operator A of the form (7.13) which is drawn from a subgaussian distribution
fulfills the above introduced RIPs with high probability. This is stated in the following
Lemma. Recall the definition of subgaussian random variables in Definition 3.3.6.

Lemma 7.4.2 (RIP for Subgaussian Operators). Let Γ ≥ 1 and let A : Rn1×n2 → Rm be
the linear measurement operator of form (7.13). Assume, all Ai, for 1 ≤ i ≤ m, have iid
K-subgaussian entries ai,j,k with mean 0 and variance 1. If

m &

(
δ

Γ2R

)−2

R(s1 + s2) log (max{n1, n2}) (7.22)

then A has the additive rank-R and (s1, s2)-sparse RIPΓ with isometry constant δ ∈
(0,Γ2R) with probability at least 1 − 2 exp(−C(δ/Γ2R)2m) where C > 0 is a constant
depending on K. If

m &

(
δ

Γ2R

)−2

R(s1 + s2) log3 (max{n1, n2}) (7.23)
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then A has the additive rank-R and effectively (s1, s2)-sparse RIPΓ with isometry constant
δ ∈ (0,Γ2R) with probability at least 1−2 exp(−C ′(δ/Γ2R)2m) where C ′ > 0 is a constant
depending on K.

Lemma 7.4.2 states, for δ = d(Γ2R), d ∈ (0, 1), that m ≈ O
(
d−2R(s1 + s2)

)
subgaus-

sian measurements are sufficient to have δ-stable embeddings of SR,Γs1,s2 and KR,Γ
s1,s2 (cf. [140,

Def. 1.1 & Thm. 1.5]). Note that Γ2R is the squared Frobenius diameter of SR,Γs1,s2 and

KR,Γ
s1,s2 . As we restrict ourselves below to s-effective sparse right component vectors of X̂,

we only use the rank-R and (effectively) (n1, s)-sparse RIPΓ. For the presented results
to have some meaning, a typical dimensional setting is R � s ≈ n1 � n2. In fact, if
n1 were close to n2 in magnitude, the sparsity s of the right component vectors would
not be useful to reduce the order of the measurements, as they would already be of order
n1 ≈ n2. Moreover, if R were close to n1, the matrix would not be low-rank as n1 would
be the maximal possible rank.
Definition 7.4.1 and Lemma 7.4.2 allow more general settings. In [116] the authors give
information theoretical lower bounds on the necessary number of measurements for re-
constructing low-rank matrices with sparse singular vectors (sharing a common support),
namely m & R(s1 + s2). As we do not require orthogonality of SDs in SR,Γs1,s2 resp. KR,Γ

s1,s2

(excluding a scaling invariant RIP which is independent of the set diameter, see Remark
7.4.3), the bounds in (7.22) and (7.23) are close to information theoretic limits. We are
not aware of any information theoretical lower bounds for our more general setting.

Remark 7.4.3. The additive RIP in (7.21) differs from the commonly used multiplicative
RIPs of the form

(1− δ)‖Z‖2F ≤ ‖A(Z)‖22 ≤ (1 + δ)‖Z‖2F (7.24)

as it is not scaling invariant and A(Z) = A(Z′) does not imply Z = Z′ but only ‖Z−Z′‖22 ≤
δ. In fact it is not possible to derive a classical scaling invariant RIP like (7.24) on KR,Γ

s1,s2

under similar conditions as (7.23). The main problem is non-orthogonality of the SD. A
simple example illustrates this point: Assume m ' (n1 + s) log3 (max{n1, n2}) and the
linear operator A fulfills (7.24) for all Z ∈ K2,1

n1,s. Choose some u ∈ Rn1 ,v1 ∈ Rn2 of unit
norm and ‖v1‖1 ≤

√
s/2. Define v2 := −v1 + εw for any w ∈ Rn2 and choose ε > 0

sufficiently small to ensure ‖v2‖1 ≤
√
s and ‖v2‖2 ≈ 1. Then Z := (1/2)uvT1 +(1/2)uvT2 ∈

K2,1
n1,s and (7.24) holds. But this implies by definition of Z and scaling invariance of (7.24)

that

(1− δ)‖uwT ‖2F ≤ ‖A(uwT )‖22 ≤ (1 + δ)‖uwT ‖2F

which means the RIP directly extends to all rank-1 matrices (not only those with sparse
right component). If n1, s � n2, this is a clear contradiction to information theoretical
lower bounds, as corresponding RIPs would require at least m ' max{n1, n2} (see [28,
Section 2.1]).

For proving Lemma 7.4.2 we need bounds on the covering numbers of SR,Γs1,s2 and KR,Γ
s1,s2 .

The bound for N(SR,Γs1,s2 , ‖ · ‖F , ε) below is an adaption of [28, Lemma 3.1].
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Lemma 7.4.4. Let SR,Γs1,s2 be the set defined in (7.18). Then, for all 0 < ε < 1, one has

log(N(SR,Γs1,s2 , ‖ · ‖F , ε))

≤ R(s1 + s2 + 1) log

(
18ΓR

ε

)
+Rs1 log

(
en1

s1

)
+Rs2 log

(
en2

s2

)
.

(7.25)

Proof : Recall, each Z ∈ SR,Γs1,s2 can be represented as Z = UΣVT with U = (u1, ...,uR),
V = (v1, ...,vR) where all unit norm columns ur ∈ Rn1 are s1-sparse, all unit
norm columns vr ∈ Rn2 are s2-sparse, and ‖Σ‖F ≤ Γ. Let us first consider the
larger set S = {Z = UΣVT : U ∈ QRn1,s1 ,Σ ∈ DΓ, and V ∈ QRn2,s2} where DΓ

is the set of R × R diagonal matrices with Frobenius norm less or equal Γ and
QRn,s = {W ∈ Rn×R : ‖W‖F ≤

√
R and all columns wr are s-sparse}. Then, we

know that SR,Γs1,s2 ⊂ S. We construct an (ε/2)-net S̃ of S by covering the sets of
permissible U, Σ, and V and conclude the proof by applying the well-known rela-
tion N(K, ‖ · ‖, ε) ≤ N(K ′, ‖ · ‖, ε/2) which holds whenever K ⊂ K ′.

Recall that if B is a unit ball in D dimensions (with respect to some norm ‖·‖B)
there exists an ε-net B̃ (i.e., for all b ∈ B there is some b̃ ∈ B̃ with ‖b− b̃‖B ≤ ε)
with B̃ ⊂ B and |B̃| ≤ (3/ε)D. See for example [28, Section 3]. Moreover, note
that N(K, ‖ · ‖, ε) = N(cK, ‖ · ‖, cε) for any set K and c > 0. Hence, for any scaled
unit ball cB there exists an ε-net B̃ ⊂ cB and |B̃| ≤ (3c/ε)D.

Let D̃Γ be an (ε/(6R))-net of DΓ which is of size |D̃Γ| ≤ (18ΓR/ε)R. For
W ∈ Rn×R denote by supp(W) = {supp(w1), ..., supp(wR)} and by supp(W) b
supp(W′) that supp(wr) ⊂ supp((w′)r), for all r ∈ [R]. Define the set of all
possible supports of maximal size

TRn,s = {supp(W) : W ∈ Rn×R and all columns wr have exactly s non-zero entries}.

For any fixed θ ∈ TRn,s the set {W ∈ QRn,s : supp(W) b θ} is an Rs×R Frobenius ball

of radius
√
R embedded into Rn×R and QRn,s =

⋃
θ∈TRn,s{W ∈ QRn,s : supp(W) b θ}.

Hence, there is an (ε/(6Γ
√
R))-net Q̃Rn,s of QRn,s with

|Q̃Rn,s| ≤ |TRn,s|
(

18ΓR

ε

)Rs
≤
(
n

s

)R(18ΓR

ε

)Rs
≤
(en
s

)Rs(18ΓR

ε

)Rs
We define now S̃ = {Z̃ = ŨΣ̃ṼT : Ũ ∈ Q̃Rn1,s1 , Σ̃ ∈ D̃Γ, and Ṽ ∈ Q̃Rn2,s2}. It is
clear that

|S̃| ≤ |Q̃Rn1,s1 | · |D̃Γ| · |Q̃Rn2,s2 | ≤
(

18ΓR

ε

)R(s1+s2+1)(en1

s1

)Rs1 (en2

s2

)Rs2
.

Let us conclude by showing S̃ is indeed an (ε/2)-net for S. Given any Z = UΣVT ∈
S, there exists Z̃ = ŨΣ̃ṼT ∈ S̃ with ‖U−Ũ‖F ≤ ε/(6Γ

√
R), ‖Σ−Σ̃‖F ≤ ε/(6R),
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and ‖V − Ṽ‖F ≤ ε/(6Γ
√
R). We can estimate

‖Z− Z̃‖F ≤ ‖(U− Ũ)ΣVT ‖F + ‖Ũ(Σ− Σ̃)VT ‖F + ‖ŨΣ̃(V − Ṽ)T ‖F
≤ ε

6Γ
√
R

Γ
√
R+
√
R
ε

6R

√
R+
√
RΓ

ε

6Γ
√
R

≤ ε

2

where we used triangle inequality in the first line and ‖AB‖F ≤ ‖A‖F ‖B‖F in the
second.

To derive a similar bound on N(KR,Γ
s1,s2 , ‖·‖F , ε) recall Lemma 3.2.2 which characterizes

the covering number of Kn,s ⊂ Rn.

Lemma 7.4.5. Let KR,Γ
s1,s2 be the set defined in (7.19). Assume w.l.o.g. that s1/n1 ≤ s2/n2.

Then, for all 0 < ε < 6Γ
√
R, one has

log(N(KR,Γ
s1,s2 , ‖ · ‖F , ε))

≤


R(n1 + n2 + 1) log

(
36ΓR
ε

)
0 < ε < 12Γ

√
Rs1
n1
,

144Γ2R2s1
ε2

log
(

9εn1

6Γ
√
Rs1

)
+R(n2 + 1) log

(
36ΓR
ε

)
12Γ

√
Rs1
n1
≤ε < 12Γ

√
Rs2
n2
,

144Γ2R2(s1+s2)
ε2

log
(

9εn1

6Γ
√
Rs1

)
+R log

(
18ΓR
ε

)
12Γ

√
Rs2
n2
≤ε < 6Γ

√
R.

(7.26)

Proof : Let K̃n,s be a minimal ε/(6Γ
√
R)-net for Kn,s in Euclidean norm. Let DΓ

be the set of R × R diagonal matrices with Frobenius-norm less or equal Γ. As
discussed in the proof of Lemma 7.4.4, one has that N(DΓ, ‖ · ‖F , ε) ≤ (3Γ/ε)R.
Denote by D̃Γ a minimal (ε/(6R))-net of DΓ and define the sets

K = {Z ∈ Rn1×n2 : Z = UΣVT

with ur ∈ Kn1,s1 , vr ∈ Kn2,s2 for all r ∈ [R], and ‖Σ‖F ≤ Γ}
K̃ = {Z̃ ∈ Rn1×n2 : Z̃ = ŨΣ̃ṼT

with ũr ∈ K̃n1,s1 , ṽr ∈ K̃n2,s2 for all r ∈ [R], and Σ̃ ∈ D̃Γ}.

We first show that K̃ is an (ε/2)-net of K. Let Z = UΣVT ∈ K be given.
There exists Z̃ = ŨΣ̃ṼT ∈ K̃ with ‖ur − ũr‖2 ≤ ε/(6Γ

√
R), ‖vr − ṽr‖2 ≤

ε/(6Γ
√
R), for all r ∈ [R], and ‖Σ − Σ̃‖F ≤ ε/(6R). Therefore, ‖U − Ũ‖2F =∑R

r=1 ‖ur − ũr‖22 ≤ (ε/(6Γ))2 and ‖V − Ṽ‖2F ≤ (ε/(6Γ))2. Moreover, ‖U‖2F =∑R
r=1 ‖ur‖22 ≤ R (the same holds for V, Ũ, Ṽ) and ‖UΣ‖F ≤ ‖Σ‖F (the same

holds for ΣVT , ŨΣ,ΣṼT ). We now obtain by triangle inequality and the fact
that ‖AB‖F ≤ ‖A‖F ‖B‖F

‖Z− Z̃‖F ≤ ‖(U− Ũ)ΣVT ‖F + ‖Ũ(Σ− Σ̃)VT ‖F + ‖ŨΣ̃(V − Ṽ)T ‖F
≤ ε

6Γ
Γ +
√
R
ε

6R

√
R+ Γ

ε

6Γ
≤ ε

2
.

Since KR,Γ
s1,s2 ⊂ K one has N(KR,Γ

s1,s2 , ‖ · ‖F , ε) ≤ N(K, ‖ · ‖F , ε/2). Hence,

N(KR,Γ
s1,s2 , ‖ · ‖F , ε) ≤ |K̃| ≤ |K̃n1,s1 |R|D̃Γ||K̃n2,s2 |R
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which yields the claim by applying Lemma 3.2.2.

Lemma 7.4.2 can now be proven by applying the following bound on suprema of chaos
processes [107, Theorems 1.4 & 3.1] in combination with the bounds on the covering
numbers N(SR,Γs1,s2 , ‖ · ‖F , ε) and N(KR,Γ

s1,s2 , ‖ · ‖F , ε) in Lemma 7.4.4 and 7.4.5. We recall
below the relevant result in the form presented in [102]. The appearing γ2-functional is
defined in [107] and can be bounded by

γ2 (H, ‖ · ‖2→2) .
∫ d2→2(H)

0

√
logN (H, ‖ · ‖2→2, ε) dε, (7.27)

in the case of a set of matrices H equipped with the operator norm. Here and below
d�(H) = supH∈H ‖H‖�, where � is a generic norm.

Theorem 7.4.6. Let H be a symmetric set of matrices, i.e., H = −H, and let ξ be
a random vector whose entries ξi are independent K-subgaussian random variables with
mean 0 and variance 1. Set

E = γ2 (H, ‖ · ‖2→2) (γ2 (H, ‖ · ‖2→2) + dF (H))

V = d2→2 (H) (γ2 (H, ‖ · ‖2→2) + dF (H))

U = d2
2→2 (H)

Then, for t > 0,

Pr

[
sup
H∈H

∣∣‖Hξ‖2`2 − E
[
‖Hξ‖22

] ∣∣ ≥ c1E + t

]
≤ 2 exp

(
−c2 min

(
t2

V 2
,
t

U

))
.

The constants c1 and c2 are universal and only depend on K.

We refer the reader to [107] and [102] for further details.

Proof of Lemma 7.4.2 : The proof consists of three main parts. We start in (I) by
fitting our setting into the one of Theorem 7.4.6. In (IIa) resp. (IIb) the γ2-
functional gets bounded for SR,Γs1,s2 and KR,Γ

s1,s2 , and in (III) we conclude by applying
Theorem 7.4.6. Note that the computations of (IIa) and (IIb) can be found in
the Appendix.

(I) We first switch the roles of our random measurement operator A applied to
the fixed matrices Z to have fixed operators HZ applied to a random vector ξ.
Observe, for all Z ∈ Rn1×n2 , that

A(Z) =
1√
m

 〈vec(A1), vec(Z)〉
...

〈vec(Am), vec(Z)〉


=

1√
m

vec(Z)T 0 · · ·
. . .

· · · 0 vec(Z)T

 ·
vec(A1)

...
vec(Am)

 = HZ · ξ,
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where HZ ∈ Rm×mn1n2 is a matrix depending on Z and ξ ∈ Rmn1n2 has i.i.d. K-
subgaussian entries ξl of mean 0 and variance 1. We define HS = {HZ : Z ∈ SR,Γs1,s2}.
Note that the mapping Z 7→ HZ is an isometric linear bijection. In particular,
we have ‖HZ‖F = ‖Z‖F and ‖HZ‖2→2 = ‖Z‖F /

√
m. For Z ∈ SR,Γs1,s2 it holds

that ‖Z‖F ≤ ‖U‖F ‖ΣVT ‖F ≤ Γ
√
R. Hence, dF (HS) ≤ Γ

√
R and d2→2(HS) ≤

Γ
√
R/
√
m.

(IIa) Since ‖HZ‖2→2 = ‖Z‖F /
√
m and Z 7→ HZ is a linear bijection, it follows

that N(HS , ‖·‖2→2, ε) = N(S, ‖·‖F ,
√
mε). We can estimate by (7.27) and Lemma

B.1.1

γ2 (HS , ‖ · ‖2→2) .
∫ Γ

√
R√
m

0

√
logN (HS , ‖ · ‖2→2, ε)dxε

=

∫ Γ
√
R√
m

0

√
logN

(
SR,Γs1,s2 , ‖ · ‖F ,

√
mε
)
dε

≤
√
CSΓ2R2(s1 + s2) log (max {n1, n2})

m
=: LS ,

for some constant CS > 0.

(IIb) In the same manner we obtain a bound on γ2(HK , ‖ · ‖2→2) where HK =
{HZ : Z ∈ KR,Γ

s1,s2}. Recall that ‖HZ‖F = ‖Z‖F , ‖HZ‖2→2 = ‖Z‖F /
√
m and Z 7→

HZ is an linear bijection. This implies N(HK , ‖ · ‖2→2, ε) = N(KR,Γ
s1,s2 , ‖ · ‖F ,

√
mε).

Note that dF (HK) ≤ Γ
√
R and d2→2(HK) ≤ Γ

√
R/
√
m. We obtain by (7.27) and

Lemma B.1.1

γ2(HK , ‖ · ‖2→2) .
∫ Γ

√
R√
m

0

√
logN(HK , ‖ · ‖2→2, ε) dε

=

∫ Γ
√
R√
m

0

√
logN(KR,Γ

s1,s2 , ‖ · ‖F ,
√
mε) dxε

≤

√
CKΓ2R2(s1 + s2) log3(max{n1, n2})

m
=: LK ,

for some constant CK > 0.

(III) The final part of the proof is now equal for both sets SR,Γs1,s2 and KR,Γ
s1,s2 . We

write L for LS resp. LK and assume m & CSd−2R(s1 + s2) log (max {n1, n2}) resp.
m & CKd

−2R(s1 + s2) log3(max{n1, n2}), for some 0 < d < 1. Then, L ≤ Γ
√
Rd

and

L2 + Γ
√
RL ≤ Γ2R(d2 + d) ≤ 2Γ2Rd. (7.28)

We obtain the following bounds on the quantities (cf. Theorem 7.4.6):

E ≤ L2 + Γ
√
RL, V ≤ Γ

√
RL+ Γ2R√

m
, U ≤ Γ2R

m
. (7.29)
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Observing now that E
[
‖HZξ‖22

]
= ‖HZ‖2F = ‖Z‖2F and recalling Γ ≥ 1 we finally

get, for δ ≥ 3c1Γ2Rd (which implies by (7.28) that δ ≥ c1E + c1Γ2Rd),

Pr

[
sup
Z∈S

∣∣‖A(Z)‖22 − ‖Z‖2F
∣∣ ≥ δ]

≤ Pr

[
sup

HZ∈H

∣∣‖HZξ‖22 − E
[
‖HZξ‖22

]∣∣ ≥ c1E + c1Γ2Rd

]

≤ 2 exp

(
−c2 min

{
m

c2
1Γ4R2d2

Γ2R(L+ Γ
√
R)2

,m
c1Γ2Rd

Γ2R

})
≤ 2 exp

(
−Cd2m

)
,

where C > 0 is a positive constant which depends on K. In the last step we used
that L+ Γ

√
R ∈ [Γ

√
R, 2Γ

√
R] (because 0 < L < Γ

√
R).

7.5 Approximation Under RIP Assumptions

We are ready state an approximation result which we introduce as follows: If one assumes
RIP, any appropriate global minimizer of JRα,β provides a good approximation to X̂ depend-
ing on the magnitude of α and β, the sparsity s, the RIP constant δ and the magnitude
of X̂ measured in an appropriate Schatten quasi-norm. The approximation is worsened in
an additive way by noise level. For a given minimizer (u1

α,β, ...,u
R
α,β,v

1
α,β, ...,v

R
α,β) of JRα,β

we denote

Xα,β = Uα,βΣα,βV
T
α,β =

R∑
r=1

(σα,β)r
urα,β
‖urα,β‖2

(
vrα,β
‖vrα,β‖2

)T
, (7.30)

where (σα,β)r = ‖urα,β‖2‖vrα,β‖2, for all r ∈ [R], and Σα,β is the diagonal matrix defined
by the vector σα,β.

Theorem 7.5.1. Fix the positive constants α, β > 0, Γ ≥ 1, and the effective sparsity in-
dicator level 1 ≤ s ≤ n2. Let A have the additive rank-2R effectively (n1,max{s, (γ/β)2})-
sparse RIP(c+1)Γ with RIP-constant 0 < δ < 1, for a fixed choice of γ > 0 and c ≥ 1.

If X̂ ∈ KR,Γ
n1,s of rank R and y = A(X̂) + η ∈ Rm, then

‖X̂−Xα,β‖F ≤
√
s

1
3R

2
3C2,1cÛ

6
√
αβ2‖X̂‖

1
3
2
3

+ 2‖η‖2 +
√
δ, (7.31)

for any global minimizer (u1
α,β, ...,v

R
α,β) of JRα,β that fulfills ‖vrα,β‖2 ≥ (‖X̂‖F + ‖η‖2 +√

δ)2/γ for all r ∈ [R] and ‖σα,β‖F ≤ cΓ in (7.30). In this case, in particular, Xα,β ∈
KR,cΓ
n1,(γ/β)2 with the SD in (7.30).

Proof : As ‖y‖2 ≤ ‖A(X̂)‖2 + ‖η‖2 ≤ (‖X‖F +
√
δ) + ‖η‖2, Lemma 7.3.4 applies

and yields that Xα,β is in KR,cΓ
n1,(γ/β)2 . Combined with X̂ ∈ KR,Γ

n1,s, we know from

119



CHAPTER 7. ATLAS: MATRIX SENSING WITH COMBINED STRUCTURES

(7.20) that the difference X̂−Xα,β ∈ K
2R,(c+1)Γ
n1,max{s,(γ/β)2}. Hence, we apply the rank-

2R and effectively (n1,max{s, (γ/β)2})-sparse RIP(c+1)Γ of A to obtain (note that

|a2 − b2| ≤ δ implies |a− b| ≤
√
δ, for a, b > 0)

‖X̂−Xα,β‖F ≤ ‖A(X̂)−A(Xα,β)‖2 +
√
δ ≤ (‖y −A(Xα,β)‖2 + ‖η‖2) +

√
δ

≤
√
s

1
3R

2
3C2,1cÛ

3
√
αβ2‖X̂‖

2
3
2
3

+ ‖η‖22 + ‖η‖2 +
√
δ

≤
√
s

1
3R

2
3C2,1cÛ

6
√
αβ2‖X̂‖

1
3
2
3

+ 2‖η‖2 +
√
δ.

In the third inequality we used Proposition 7.3.1 in combination with ‖v̂r‖1 ≤√
s‖v̂r‖2 and

R∑
r=1

(‖ûr‖2‖v̂r‖1)
2
3 ≤ s

1
3

R∑
r=1

(‖ûr‖2‖v̂r‖2)
2
3 ≤ cÛR

2
3 s

1
3 ‖X̂‖

2
3
2
3

,

where we used again (7.12) for p = 2/3.

There are some aspects of this result we would like to stress:
If we could take the limits α→ 0 and β → 0, the error in (7.31) would vanish up to noise-
level and RIP-constant. However, this limit cannot be performed as there are important
restrictions dictated by the need of fulfilling simultaneously the RIP and the assumptions
on Xα,β. If β is getting small the conditions for having RIP degenerate, i.e., reconstruction
for a fixed number of measurements only works up to a minimal β. Letting α to zero while
keeping β fixed leads to minimizers which violate the lower bound on ‖vrα,β‖2 or the upper
bound on ‖σα,β‖2. To see this, note that by Lemma 7.3.3 small α leads to strict bounds
on ‖vrα,β‖2 and weak bounds on ‖urα,β‖2.

If X̂ ∈ KR,Γ
n1,s and the SD of X̂ coincides with its SVD, then in view of the identity (7.11)

the factor cÛR
2/3 in the error estimates (7.31) and (7.32) can be substituted by 1, hence

there would be no dependence on the rank R.
In order to clarify how (γ/β)2 and s are related in the RIP in Theorem 7.5.1 and Corollary
7.5.2, let us assume for simplicity that the SD of X̂ coincides with its SVD and α = β.
Consequently, to get a meaningful approximation result, in (7.31) α and β have to be cho-

sen of order O(s−
1
3 ), i.e., (γ/β)2 is of order O(s

2
3 ) which means that an (n1, γ

2s)-sparse
RIP(c+1)Γ is sufficient for recovery.
The result only applies to minimizers whose scaling matrix Σα,β is bounded in Frobenius
norm and whose right components vrα,β are not too close to zero. The first requirement
is necessary as the RIP is restricted to SDs with scaling matrices within a ball around
zero. The second one is needed to show some level of effective sparsity of the minimizers
Xα,β. While effective sparsity of (right) component vectors of Xα,β is naturally wished

and expected if X̂ ∈ KR,Γ
n1,s, we were not able in all cases to show exact sparsity of (right)

component vectors of Xα,β if X̂ ∈ SR,Γn1,s, but again only their effective sparsity. Hence, we
are bound to using as an artifact of the proof the stronger effectively (s1, s2)-sparse RIPΓ

for theoretical analysis also in this case. In numerical experiments, however, for X̂ ∈ SR,Γn1,s

the obtained minimizers Xα,β are empirically exactly sparse (not just effectively sparse)
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and, hence, the weaker rank-2R (s1, s2)-sparse RIPΓ might suffice in practice. The latter
can already be guaranteed for a smaller number of measurements.
As the reader may notice, all technical results of Section 7.3 can be adapted to effective
sparsity on the left components (u1

α,β, ...,u
R
α,β). This can be done by replacing `2-norms

by corresponding `1-norms in JRα,β. The proof of Lemma 7.3.4, which guarantees effective
sparsity of the right components, is independent of the minimization of the left compo-
nents. Therefore, Lemma 7.3.4 applies also to the left components if `2-norms are replaced
by `1-norms in JRα,β. Theorem 7.5.1 then can be adapted to this setting in a straightfor-
ward way.
It is important to require rank(X̂) = R as otherwise the equivalence of Schatten-norm
and normed SD cannot be guaranteed as (7.12). If the SD of X̂ coincides with its SVD
though, the rank condition may be dropped.

By choosing α and β in relation to the noise-to-signal ratio ‖η‖22/‖X̂‖
2
3
2
3

we obtain the

following version of Theorem 7.5.1, which has the form of a typical compressed sensing
recovery bound. Assuming the RIP, the approximation error is linear in noise level while
the slope of the linear function depends on sparsity level and possibly the rank. However,
for fixed number of measurements the RIP fails for exceedingly small noise. Hence, the
result is valid only for sufficiently small signal-to-noise ratio. As we will show in Section
7.7, this apparently counter-intuitive result is factual and not an artifact of the proof
technique. A possible intuitive explanation is that JRα,β becomes a mere least-squares
without sparsifying effect for α and β close to zero, which is caused by vanishing noise.

Corollary 7.5.2. Let X̂ ∈ KR,Γ
n1,s with rank(X̂) = R fulfill the noisy measurements y =

A(X̂) + η and let α = β = ‖η‖22/‖X̂‖
2
3
2
3

< 1. Assume A has for some γ > 0 and c ≥ 1 the

additive rank-2R effectively

(
n1,max{s, γ2(‖X̂‖

2
3
2
3

/‖η‖22)2}
)

-sparse RIP(c+1)Γ with RIP-

constant 0 < δ < 1. Then, for Xα,β with ‖Σα,β‖F ≤ cΓ and ‖vrα,β‖2 ≥ (‖X̂‖F + ‖η‖2 +√
δ)2/γ, r ∈ [R], we have

‖X̂−Xα,β‖F ≤
(

2
√
cÛR

2/3s1/3 + 2

)
‖η‖2 +

√
δ. (7.32)

Remark 7.5.3. One could object that the simple zero solution X̄ = 0 is already a com-
petitor in case of large noise ‖η‖2 ≥ Ξ(m)‖X̂‖F , i.e.,

‖X̂− X̄‖F ≤ Ξ(m)−1‖η‖2. (7.33)

However, for a larger number m of measurements we can consider lower level of noise,
i.e., Ξ(m)→ 0 and the bound (7.33) would explode, while (7.32) would remain effective.

7.6 Local Convergence of ATLAS

So far an important question has not been posed. The above results only apply to global
minimizers of JRα,β which is a highly non-convex functional. One wonders if the alternating
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minimization defined in (A-T-LAS2,1) is able to provide minimizers. We give a partial
answer to this issue. By adapting results of Attouch et. al. in [7] we show convergence of
ATLAS and that there is a neighborhood U(u1

α,β ,...,v
R
α,β) of a global minimizer (u1

α,β, ...,v
R
α,β)

such that the sequence (u1
k, ...,v

R
k ) defined by (A-T-LAS2,1) converges to (u1

α,β, ...,v
R
α,β)

of JRα,β if the initialization lies within U(u1
α,β ,...,v

R
α,β). However, we do not give proof for

any initialization to fulfill the requirement. This is an open issue for future research, but
recent promising results [68, 67] may shed light on how to attack the problem also for
ATLAS. The techniques in [7] provide tools to analyze the rate of convergence of ATLAS
as well. However, additional work is necessary to estimate the appearing parameters for
JRα,β.
We begin by a generalization of the basic conditions of [7]. Let L be a functional of the
following form:

(H)


L(u1, . . . ,uR,v1, . . . ,vR) =

∑R
r=1 fr(u

r) +Q(u1, . . . ,vR) +
∑R

r=1 gr(v
r),

fr : Rn1 → R ∪ {∞}, gr : Rn2 → R ∪ {∞} are proper lower semicontinuous, for 1 ≤ r ≤ R,
Q : Rn1 × · · · × Rn1 × Rn2 × · · · × Rn2 → R is a C1 function,

∇Q is Lipschitz continuous on bounded subsets of Rn1 × · · · × Rn1 × Rn2 × · · · × Rn2 .

For given (u1
0, . . . ,v

R
0 ) ∈ (Rn1)R × (Rn2)R and fixed sequences (λ1

k)k∈N, . . . , (λ
R
k )k∈N,

(µRk )k∈N, . . . , (µRk )k∈N assume that

(H1)


inf L > −∞,
L(·,u2

0, . . . ,v
R
0 ) is proper,

for some positive r− < r+ the sequences λ1
k, . . . , µ

R
k belong to (r−, r+).

The adapted main result of [7] guarantees convergence of the so-called Proximal Alternat-
ing Minimization

(PAM)



u1
k+1 = arg minu∈Rn1 L(u,u2

k, . . . ,u
R
k ,v

1
k, . . . ,v

R
k ) + 1

2λ1
k
‖u− u1

k‖22,

v1
k+1 = arg minv∈Rn2 L(u1

k+1,u
2
k, . . . ,u

R
k ,v,v

2
k . . . ,v

R
k ) + 1

2µk
‖v − v1

k‖22,
...

uRk+1 = arg minu∈Rn1 L(u1
k+1, . . . ,u

R−1
k+1 ,u,v

1
k+1, . . . ,v

R−1
k+1 ,v

R
k ) + 1

2λk
‖u− uRk ‖22,

vRk+1 = arg minv∈Rn2 L(u1
k+1, . . . ,u

R
k+1,v

1
k+1, . . . ,v

R−1
k+1 ,v) + 1

2µk
‖v − vRk ‖22,

(7.34)

to a stationary point of L if L fulfills (H), (H1), and the so called Kurdyka-Lojasiewicz
property, which requires L to behave well around stationary points. If the initialization
(u1

0, . . . ,v
R
0 ) of (PAM) lies, in addition, sufficiently close to a global minimizer (u1

∗, . . . ,v
R
∗ )

of L, (PAM) converges to a global minimizer of L.

Definition 7.6.1 (Kurdyka-Lojasiewicz Property). A proper lower semicontinuous func-
tion f : Rn → R ∪ {∞} is said to have the Kurdyka-Lojasiewicz property (KL-property) at
x̄ ∈ dom ∂f (here ∂f denotes the subdifferential of f and dom ∂f the domain on which
∂f takes finite values) if there exist η ∈ (0,∞], a neighborhood U of x̄ and a continuous
concave function ϕ : [0,∞)→ R+ such that
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- ϕ(0) = 0,

- ϕ is C1 on (0, η),

- ϕ′(t) > 0, for all t ∈ (0, η),

- and, for all x ∈ U ∩ {x ∈ Rn : f(x̄) < f(x) < f(x̄) + η}, the KL-inequality holds:

ϕ′(f(x)− f(x̄)) dist(0, ∂f(x)) ≥ 1.

Theorem 7.6.2. Assume that L satisfies (H) and (H1). If L has the Kurdyka-Lojasiewicz
property at its global minimizer (u1

∗, . . . ,v
R
∗ ), then there exist ε, η > 0, such that the initial

conditions

‖(u1
0, . . . ,v

R
0 )− (u1

∗, . . . ,v
R
∗ )‖2 < ε, minL < L(u1

0, . . . ,v
R
0 ) < minL+ η,

imply that the iterations (u1
k, . . . ,v

R
k ) generated by (PAM) converge to a point in arg minL.

If L has the Kurdyka-Lojasiewicz property at each point of its domain, then, independent
of initialization, either ‖(u1

k, . . . ,v
R
k )‖2 → ∞ or (u1

k, . . . ,v
R
k ) converges to a stationary

point of L.

By applying Theorem 7.6.2 to L = JRα,β and ATLAS we obtain convergence to sta-

tionary points and local convergence to global minimizers as the sequence (u1
k, . . . ,v

R
k )

is bounded by coercivity of JRα,β. One can check that conditions (H), (H1) are ful-

filled by JRα,β and ATLAS for a suitable choice of the sequences (λ1
k)k∈N, . . . , (λ

R
k )k∈N,

(µRk )k∈N, . . . , (µRk )k∈N. It remains to validate the KL-property. As mentioned in [7, Section
4.3], all semialgebraic functions satisfy the KL-property at each point with ϕ(t) = ct1−θ for
some θ ∈ [0, 1)∩Q and c > 0. Hence, by showing that JRα,β is semialgebraic, we get the KL-
property for free. But we pay the price of having no better knowledge on the parameters
ε and η in Theorem 7.6.2, which characterize the convergence radius. Let us conclude by
showing that JRα,β is semialgebraic, i.e., graph(JRα,β) ⊂ RRn1+Rn2×R is a semialgebraic set.

A set in Rn is called semialgebraic if it can be written as a finite union of sets of the
form

{x ∈ Rn : pi(x) = 0, qi(x) > 0, i = 1, . . . , k},

where pi, qi are real polynomials and k ∈ N. First, the absolute value of one component
of a vector h(x) := |xl| is a semialgebraic function as

graph(h) = {(x, r) ∈ Rn × R : xi + r = 0, xi < 0} ∪ {(x, r) ∈ Rn × R : xi = 0, r = 0}
∪{(x, r) ∈ Rn × R : xi − r = 0, −xi < 0}.

Second, it is clear that polynomials p are semialgebraic as graph(p) = {(x, r) ∈ Rn × R :
p(x) − r = 0} and, third, composition, finite sums and finite products of semialgebraic
functions are semialgebraic. The semialgebraicity of JRα,β follows as

JRα,β(u1, . . . ,vR) =

m∑
l=1

|yl −
R∑
r=1

〈Al,u
rvrT 〉F |2 + α

R∑
r=1

n1∑
l=1

|url |2 + β
R∑
r=1

n2∑
l=1

|vrl |
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is just a finite composition of semialgebraic basic units.

If one can estimate the Kurdyka-Lojasiewicz parameters, the above considerations
characterize convergence rates of ATLAS as the following theorem states.

Theorem 7.6.3. Assume that L satisfies (H) and (H1). Assume further that (u1
k, . . . ,v

R
k )

converges to (u1
∞, . . . ,v

R
∞) and L has the Kurdyka-Lojasiewicz property at (u1

∞, . . . ,v
R
∞)

with ϕ(t) = ct1−θ, for θ ∈ [0, 1) and c > 0. Then the following hold:

(i) If θ = 0, the sequence (u1
k, . . . ,v

R
k ) converges in a finite number of steps.

(ii) If θ ∈ (0, 1
2 ], there exist c′ > 0 and τ ∈ [0, 1) such that∥∥(u1

k, . . . ,v
R
k )− (u1

∞, . . . ,v
R
∞
∥∥

2
≤ c′τk.

(iii) If θ ∈ (1
2 , 1), there exists c′ > 0 such that∥∥(u1

k, . . . ,v
R
k )− (u1

∞, . . . ,v
R
∞
∥∥

2
≤ c′k−

1−θ
2θ−1 .

We refrain from presenting the proofs of Theorem 7.6.2 and 7.6.3 here as they are
straight-forward modifications of the arguments in [7]. The interested reader finds them
in the Appendix.

7.7 Numerical Simulation

After having obtained some theoretical insight on the proposed optimization problem,
we provide an implementation of ATLAS and discuss its predicted behavior in numerical
experiments. Therefore, we begin by presenting the implementation that has been used
in all experiments. As in practice ATLAS converges even without the auxiliary terms
introduced in (A-T-LAS2,1), for sake of simplicity we drop those terms. By the alternating
form of ATLAS one must solve several Tikhonov regularization resp. `1-LASSO problems.
Note that for the Tikhonov regularization

u = arg min
z∈Rn

‖y −Az‖22 + α‖z‖22,

with A ∈ Rm×n,y ∈ Rm, and α > 0, the solution is explicitly given by u = (αId +
ATA)−1ATy. Solutions to `1-LASSO

v = arg min
z∈Rn

‖y −Az‖22 + β‖z‖1,

for some A ∈ Rm×n,y ∈ Rm and β > 0 can be well approximated by Iterative Soft-
Thresholding Algorithm (ISTA) as seen in Section 2.3.3. Hence, a suitable implementa-
tion of ATLAS is given in Algorithm 9. Necessary modifications in case of sparse left
component vectors of X̂ are straightforward.
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Let us turn toward numerical simulations. First, we check if the approximation results
stated in Theorem 7.5.1 and Corollary 7.5.2 describe the qualitative and quantitative
behavior of the approximation error well. Then, we compare ATLAS to Sparse Power
Factorization (SPF), see Section 7.1. We used the leading singular vectors of A∗(y) to
initialize both algorithms, which is likely not an optimal choice and certainly may cause
loss of performance for both algorithms, but it is nevertheless sufficient to illustrate certain
comparisons numerically.

Algorithm 9 : ATLAS(y,A, R,v1
0, ...,v

R
0 , α, β, L)

Require: y ∈ Rm, A : Rn1×n2 → Rm, rank R, v1
0, ...,v

R
0 ∈ Rn2 , α, β > 0, and number of

iterations L
1: l = 0 . initialize

2: while l < L do
3: for r = 1, ..., R do
4: ỹ = y −A

(∑
r̃<r ur̃l (v

r̃
l )
T +

∑
r̃>r ur̃l−1(vr̃l−1)T

)
. Fix ur̃, vr̃ with r̃ 6= r

5: url =
(
αId + Av(vrl−1)TAv(vrl−1)

)−1
Av(vrl−1)T ỹ . A(uvT ) = Av(v) · u

6: vrl = ISTA(ỹ,Au(url ),v
r
l−1, β) . A(uvT ) = Au(u) · v

7: end for
8: end while

return (u1
ATLAS, ...,v

R
ATLAS) = (u1

L, ...,v
R
L )

7.7.1 Validation of Corollary 7.5.2

Figure 7.1 shows the average approximation error of 100 randomly drawn X̂ ∈ R16×100,
‖X̂‖F = 10, with rank(X̂) = 1 (resp. rank(X̂) = 5) and 10-sparse right singular vector(s)
from m = 90 (resp. m = 400) noisy measurements y = A(X̂) + η. The parameters have
been chosen exemplarily for purpose of illustration. The operator A is drawn once at
random. The error bound from Corollary 7.5.2 is plotted as dashed red line, whereas the
average approximation errors are in blue. Though not tight, the theoretical bound seems
to describe the linear dependence of the approximation error on noise level appropriately.
In addition, Figure 7.1 (b) shows a breakdown of approximation for noise to signal ratios
below ≈ 0.25. This occurrence is not surprising as the assumptions of Corollary 7.5.2
include a lower-bound on the noise-to-signal ratio for a fixed number of measurements.
Below a certain value the RIP requirements will be too strong for A to fulfill it, the RIP
breaks down, and the recovery guarantees fail.

7.7.2 Validation of Theorem 7.5.1

In the second experiment, we study the influence of parameters α and β on the reconstruc-
tion accuracy. In particular, we vary the parameters α and β when reconstructing one
randomly drawn X̂ ∈ R16×100, ‖X̂‖F = 10, with rank(X̂) = 1 and 10-sparse right singular
vector from 90 measurements without noise. Again parameter choice is exemplary. We
compare the three settings: (a) α = β, (b) α = 0.01β and (c) α = 100β in Figure 7.2.
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(a) R = 1 (b) R = 5

Figure 7.1: Approximation quality depending on noise level. The x-
axis shows noise to signal ratio ‖η‖2/‖X̂‖F while the y-axis presents
approximation error relative to ‖X̂‖F . One can see the comparison of
approximation results (solid blue) and theoretical bound (dashed red)

One can observe a decrease of approximation error for α, β → 0 up to a certain threshold,
under which the approximation seemingly fails. While this threshold lies at β ≈ 0.15 in
(a) and (b) it is hardly recognizable in (c). At the same time (a) and (b) show a much
smaller approximation error. These observations suggest that the choice of α strongly
influences the approximation quality of ATLAS. This is consistent with Theorem 7.5.1, as
a smaller α leads to a smaller theoretical approximation error bound.
Even though (a) and (b) show a linear decrease in approximation error which is in contrast
to the square-root behavior of the theoretical bound, (c) suggests that the error, indeed,
behaves similar to the theoretical bound.
Figure 7.2 shows that the sparsity level remains stable for sufficiently large β and breaks
down precisely at the same threshold as the approximation error, coinciding with the vi-
olation of the RIP conditions.

For a better understanding of ATLAS we made a third experiment reconstructing
one randomly drawn X̂ ∈ R16×100 with rank(X̂) = 1 and 10-sparse right singular vector
for different values of ‖X̂‖F from 90 measurements. The noise level was set to 0 and the
parameters to α = β = 0.5. The outcome is depicted in Figure 7.3. One can see the relative
approximation error decreasing with the magnitude of X̂ as expected from the bound of
Theorem 7.5.1. This seemingly confirms the theoretical dependence of reconstruction error

on ‖X̂‖
1
3
2
3

.

7.7.3 ATLAS vs SPF

After confirming the theoretical results numerically, we now turn to the comparison of
ATLAS with its state-of-the-art counterpart SPF. To our knowledge, SPF is the only
algorithm available so far in matrix sensing, which exploits low-rankness and sparsity
constraints together and comes with near-optimal recovery guarantees (not relying on a
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(a) α = β

(b) α = 0.01β (c) α = 100β

Figure 7.2: Approximation quality and sparsity depending on parameter
size. The approximation error (solid blue) and the theoretical bound
(dashed red) are measured relative to ‖X̂‖F while sparsity of the right
singular vector (dotted yellow) is relative to n2.

Figure 7.3: Approximation error depending on the magnitude of X̂ in
Frobenius norm. Approximation error (solid blue) and theoretical bound
(dashed red) are relative to ‖X̂‖F .
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special structure of A as in [9]). As [116] contains exhaustive numerical comparisons of
SPF and low-rank (resp. sparse) recovery strategies based on convex relaxation, SPF
suffices for numerical benchmark tests. From the structure of the algorithms and their re-
spective theoretical analysis one would expect SPF to yield more accurate reconstruction
in the noiseless-to-low-noise setting, while ATLAS should prove to be more reliable if noise
becomes large. This theoretical expectation is confirmed by the following experiments.

In Figure 7.4 we compare for s/n2 ∈ [0, 1] and m/(n1n2) the number of successful
recoveries of 30 randomly drawn X̂ ∈ R4×128, ‖X̂‖F = 10, with rank(X̂) = 1 and s-sparse
right singular vectors from m measurements. The dimensions of X̂ are chosen accordingly
to similar experiments in [116]. We set the noise level to 0 (resp. 0.3‖X̂‖F ) and count
the recovery successful if ‖X̂−Xappr‖F /‖X̂‖F ≤ 0.2 (resp. 0.4). In order to compare the
noisy and noiseless cases, we fix α = β = 0.5 for both, which is a reasonable choice for
high noise level, but perhaps sub-optimal if the noise level is low. Selected quantiles are
directly compared in Figure 7.5 for convenience.
As expected, SPF outperforms ATLAS if there is no noise. In case of strong noise on the
measurements, the situation changes. In particular, we observe the improved performance
of ATLAS, whereas the SPF performance remarkably deteriorates.

To further quantify this effect, we perform the experiments reflected in Figure 7.6. For
varying number of measurements we compare average approximation error and recovery
probability of SPF and ATLAS for 30 randomly chosen X̂ ∈ R16×100, ‖X̂‖F = 10, with
rank(X̂) = 5 and 10-sparse right singular vectors which either share a common support
or may have various support sets. The parameters are chosen as α = β = 0.5. One can
clearly see that SPF outperforms ATLAS even in the noisy case for common support sets
of the singular vectors. This is not surprising as ATLAS makes no use of the additional
information provided by shared support sets. If the singular vectors, however, do not share
a common support set, ATLAS shows its strength in the noisy setting. SPF which needs
pre-information on the row-/column-sparsity s̃ of X̂ has to be initialized with s̃ = Rs as
in the general case all support sets may differ.

7.7.4 Initialization

We close the section by a simple test on the influence of initialization. The plots in Figure
7.7 compared for s/n2 ∈ [0, 0.5] and m/(n1n2) ∈ [0, 1] the number of successful recoveries
of 20 randomly drawn X̂ ∈ R8×128, ‖X̂‖F = 10, with rank(X̂) ∈ {1, 3} and s-sparse right
singular vectors from m measurements. The noise level was set to 0.3‖X̂‖F and recovery
was counted successful if ‖X̂ − Xappr‖F /‖X̂‖F ≤ 0.4. We compare initialization by the
leading singular vectors of A∗(y) and by the leading singular vectors of X + Z where Z
is drawn at random, and scaled to ‖Z‖F = 100 (strong perturbation) resp. ‖Z‖F = 0.2
(mild perturbation).
For rank(X̂) = 1 we note remarkably that the convergence radius of ATLAS is seemingly
very large (yet not global), as the phase transition diagrams in Figure 7.7 do not show
significant variations from choosing as initialization the leading singular vectors of A∗(y)
and those of small random perturbation. Instead for rank(X̂) = 3, initialization plays a
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(a) SPF, no noise (b) ATLAS, no noise

(c) SPF, with relatively strong noise (d) ATLAS, with relatively strong noise

Figure 7.4: Phase transition diagrams comparing SPF and ATLAS with
and without noise on the measurements. Empirical recovery probability
is depicted by color from zero (blue) to one (yellow)

(a) No noise (b) Noise

Figure 7.5: Recovery probability comparison of SPF (dashed) and AT-
LAS (solid). Plotted are the thresholds for 90% (red), 70% (blue) and
30% (yellow) successful recoveries. A recovery was counted successful if
‖X̂−Xappr‖F /‖X̂‖F ≤ 0.2 (resp. 0.4)
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Figure 7.6: Comparison of SPF and ATLAS with and without common
support for R = 5. Depicted are average approximation error relative to
‖X‖F and empirical recovery probabilities of SPF (dashed) and ATLAS
(solid). Common Support: SPF (red) vs ATLAS (blue). Arbitrary
Support: SPF (green) vs ATLAS (cyan).

more important role in performance and the initialization by leading singular vectors of
A∗(y) does not yield optimal performance.

7.8 Discussion

In this chapter we deduced general bounds on the performance of the proposed algorithm,
ATLAS, and a necessary number of measurements for subgaussian measurements to ap-
proximate effectively sparse and low-rank matrices. The theoretical results were confirmed
in numerical experiments. ATLAS is especially effective in the most realistic setting of
ineliminable noise and, hence, it complements the state-of-the-art algorithm SPF of Lee
et. al. in [116], which works well for low level of noise or exact measurements. Moreover,
ATLAS tackles the recovery of a significantly larger class of matrices than SPF, matrices
with non-orthogonal rank-1 decompositions and effectively sparse components.
We wish to conclude by emphasizing the last point. In Section 7.1 we motivated the
recovery of sparse and low-rank matrices by blind demixing, a specific signal processing
application. The more general setting we consider for ATLAS, however, notably enlarges
the scope of possible applications.

Principal Component Analysis (PCA) [101] is a classical tool for processing large
amounts of data and performing data analysis such as dimensionality reduction and factor
extraction. It has been widely used in various areas ranging from engineering and technol-
ogy to social sciences and biology. We illustrate PCA by considering a simple example of
a grocery store, which has n1 regular customers and n2 products. Let X ∈ Rn1×n2 be such
that Xi,j is the probability of customer i buying product j. It is reasonable to assume that
there are only R� min{n1, n2} underlying basic factors like age, income, family size, etc.
which govern the customer’s purchase behavior. For each basic factor r ∈ [R] := {1, ..., R}
one defines two vectors: a vector ur ∈ Rn1 of components uri encoding for each user i ∈ [n1]
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(a) R = 1

(b) R = 3

Figure 7.7: Comparison of different initializations for ATLAS for (7.13)
with noise η 6= 0 on the measurements, namely, initialization with a
strongly perturbed approximation X0 ≈ X̂ (left), initialization by the
leading singular vectors of A∗(y) (middle), and initialization with a
mildly perturbed approximation X0 ≈ X̂ (right). Empirical recovery
probability is depicted by color from zero (blue) to one (yellow).
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how much they are affected by the factor r, and a vector vr ∈ Rn2 encoding the probability
of buying product j if having factor r. Then, one can decompose

X ≈ UVT =
R∑
r=1

ur(vr)T (7.35)

as the product of two matrices U ∈ Rn1×R and V ∈ Rn2×R with columns ur and vr. Even
if the product UVT is only approximately X, the decomposition into orthogonal principal
components U and loadings V is appealing for more interpretability and having less data
to store (O(n1R + n2R) instead of O(n1n2)). Both, U and V can be simply obtained by
calculating a rank-reduced SVD of X.
However, if we want to understand which factors mostly affect customer’s behavior, PCA
might not be the best option, since principal components are usually a linear combination
of all original variables. To further improve interpretability and reduce the number of
explicitly used variables, sparse PCA [173, 38], which promotes sparsity of the loadings
vr in (7.35), has been proposed. Sparse PCA trades orthogonality of the principal com-
ponents for sparse solutions. In the aforementioned example of the grocery store, it is
quite reasonable to assume sparsity of the probability distributions vr, as certain factors
normally are more correlated with the probability of purchase of few specific items.
For some applications one may not have access to the complete matrix X but only to a
partial indirect information, i.e., one has only m� n1n2 pieces of information describing
X. In the example of the grocery store this may model the situation where customers do
not possess all a fidelity card, which allows to identify them individually. Each day d ∈ [D]
the store caches in a certain amount of money ydl corresponding to purchases of a random
subset Td ⊂ [n1] of its customers (l ∈ N is a fixed index, whose role will soon become
clear). If pl ∈ Rn2 is a vector encoding the prices plj of each product j and Pi,d ⊂ [n2] is
the set of products purchased by customer i on a day d, we can express the takings as

ydl =
∑
i∈Td

∑
j∈Pi,d

plj ,

If we assume that each customer i visits the grocery store with probability qi, we can
compute the expected takings as

ETd,P·,d

∑
i∈Td

∑
j∈Pi,d

plj

 =

n1∑
i=1

qi

n2∑
j=1

Xi,jp
l
j .

Choosing D sufficiently large, the law of large numbers guarantees that

lim
D→∞

1

D

D∑
d=1

ydl = ETd,P·,d

∑
i∈Td

∑
j∈Pi,d

plj

 ,
in probability and almost surely. Moreover, by Central Limit Theorem, we may model the
average takings of D days as

1

D

D∑
d=1

ydl =

n1∑
i=1

qi

n2∑
j=1

Xi,jp
l
j + ηDl ,
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for a suitable Gaussian noise ηDl . By defining yl = 1
D

∑D
d=1 y

d
l , we can rewrite the above

equation as

yl =

n1∑
i=1

n2∑
j=1

(qip
l
j)Xi,j + ηDl = 〈Al,X〉F + ηDl

where the matrix Al ∈ Rn1×n2 has entries (qip
l
j)i,j , and 〈·, ·〉F is the Frobenius scalar

product.
Tracking the daily sales over a time period of m ·D days and perturbing the prizes in each
subperiod l ∈ [m] randomly would result in m inaccurate linear measurements, where
each single measurement is a random average over the entries of X with an ineliminable
additive noise ηDl . (The random fluctuation of prizes is applied by groceries also for
rotating promotions on products. Periodic price reductions, or sales, constitute a widely
observed phenomenon in retailing. Sales occur on a regular basis, which suggests that
they are not entirely due to random variations such as shocks to inventory holdings or
demand.) The whole measurement process can be written as

y = A(X) + η

where A : Rn1×n2 → Rm is a linear operator defined by the matrices A1, ...,Am and
η = (ηD1 , . . . , η

D
m)T ∈ Rm models the noise.

Since the probability distributions vr cannot be expected to share a common support,
the sparse principal components are not necessarily orthogonal, and there is a consid-
erable amount of noise induced by the model, ATLAS should proof more useful than
SPF in performing sparse PCA from inaccurate and incomplete measurements. Moreover,
we have several promising extensions of ATLAS in mind which can be tackled by our tools.

First, replacing the `2- and `1-norms by `p- and `q-(quasi)-norms, for p ≥ 2 and
0 < q < 2, yields the functional

JR,p,qα,β (u1, . . . ,uR,v1, . . . ,vR) :=

∥∥∥∥∥y −A
(

R∑
r=1

ur(vr)T

)∥∥∥∥∥
2

2

+ α
R∑
r=1

‖ur‖pp + β
R∑
r=1

‖vr‖qq.

and, in turn, the algorithm

(A-T-LASp,q)



u1
k+1 = arg minu

∥∥∥(y −A
(∑R

r=2 urkv
r
k
T
))
−A(uv1

k
T

)
∥∥∥2

2

+α‖u‖pp + 1
2λ1
k
‖u− u1

k‖22,

v1
k+1 = arg minv

∥∥∥(y −A
(∑R

r=2 urkv
r
k
T
))
−A(u1

k+1v
T )
∥∥∥2

+β‖v‖qq + 1
2µ1
k
‖v − v1

k‖22,
...

uRk+1 = arg minu

∥∥∥(y −A
(∑R−1

r=1 urk+1v
r
k+1

T
))
−A(uvRk

T
)
∥∥∥2

2

+α‖u‖pp + 1
2λRk
‖u− uRk ‖22,

vRk+1 = arg minv

∥∥∥(y −A
(∑R−1

r=1 urk+1v
r
k+1

T
))
−A(uRk+1v

T )
∥∥∥2

+β‖v‖qq + 1
2µRk
‖v − vRk ‖22,
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As for q < 1 even the single component minimizations become non-convex, this setting
needs special care. One would need non-standard iterative thresholding methods, which
have been developed and studied, e.g., in [131]. As q-quasi-norms, for q < 1, have proved
particularly effective in enforcing sparsity, this additional technical difficulties are worth
to overcome.

Second, in recommendation systems, one usually imposes additionally non negativity
constraints on the obtained matrices. We could easily implement them in ATLAS by
asymmetric `1-regularization. Define for z ∈ Rn and θ > 0

‖z‖+1,θ :=

n∑
i=1

|zi|+θ , |x|+θ :=

{
x x ≥ 0

θ|x| else.

For θ becoming large, the regularization by ‖ · ‖+1,θ enforces sparsity and non-negativity.

Replacing the `1-norm in ATLAS by ‖ · ‖+1,θ would result in the simple modification of
ISTA (Algorithm 3) where the soft-thresholding operator Sβ is substituted with

Sβ,θ(z) =

 Sβ,θ(z1)
...

Sβ,θ(zn2)

 , where Sβ,θ(zi) =


zi − β

2 zi >
β
2

0 −θ β2 ≤ zi ≤
β
2

zi + θ β2 zi < −θ β2

.

Note that in the limit case θ →∞ the operator Sβ,θ is a shifted ReLU function. Choosing
θ sufficiently large or considering the limit θ →∞ would lead to non-negative sparse PCA
[172] from incomplete and inaccurate measurements with further applications in economics
[98], biology [8], and computer vision [115].

Third, as a byproduct of our generalization of sparse PCA, we introduce, in our view,
the right class of matrices and corresponding RIPs which might allow to study SPF in the
more general setting of matrices having non-orthogonal, effectively sparse decompositions.

Apart from those extensions of algorithm and theory, there are two issues one has to
deal with in future work.
The current results demand a careful choice of parameters at noise level. This draw-
back of multi-penalty regularization is well-known and could be attacked by implementing
LASSO-path. LASSO-path has been recently extended to the multi-penalty setting in
case of superposition of the signals [74], where the authors provided an efficient procedure
for the construction of regions containing structurally similar solutions. In addition, JRα,β
depends by construction heavenly on pre-knowledge of the rank R. One might ask how to
get good estimates for R in case the rank is unknown.
As mentioned above, initialization is crucial for good performances of the algorithm. It
is currently unclear how a good initialization can be obtained to guarantee convergence
of the whole procedure to global minimizers. This question is closely connected to the
fundamental problem in non-convex optimization how to initialize gradient-descent meth-
ods. In fact, alternating minimization is somewhat related to gradient-descent. While in
gradient-descent one determines an optimal descent direction and then approximates the
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optimal step size, alternating minimization strongly restricts the directions in space in
order to calculate optimal step sizes. Lee et. al. proposed an initialization, which worked
in their setting if one assumes a strong decay of the singular values. Possibly one could
prove this initialization to be sufficiently good in our setting as well, also in the light of
recently improved analysis [67].
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Appendix A

Parameter Choice for LASSO via
OMP

In this chapter we examine a parameter choice strategy for LASSO, introduced in (2.12),
based on a first approximation by OMP, see Algorithm 1. The idea is to find a parameter
for LASSO minimizing the least squared distance between the LASSO solution and the
OMP approximation. We provide theoretical guarantees that the additional application
of LASSO with automatically tuned parameter cannot worsen the first approximation of
OMP. Moreover, numerical experiments suggest LASSO to improve approximation results
as soon as signals are not perfectly sparse and there is noise on the measurements. The
results of this section are joint work with Judith Wewerka and were presented in similar
form in her Master’s thesis [169].

A.1 Problem Setup

Recall from Section 2.3.3 that LASSO is closely related to Basis Pursuit and provides
sparse solutions to (2.4) by minimizing the weighted sum of a squared data fidelity and
an `1-regularization term. Moreover, its minimizers can be approximated by ISTA, see
Algorithm 3. Let us denote minimizers of LASSO by

xα = arg min
z∈RN

‖y −Az‖22 + α‖z‖1, (A.1)

where α > 0 is a regularization parameter that trades off between accuracy in fitting y
and sparsity of the solution. A proper choice of α is crucial in order to neither overfitting
the noise nor producing too sparse solutions [109]. If one chooses a large α, the solution
x will be shrinking to zero; conversely, a small α leads to an ordinary least squares fit (cf.
Section 2.3.3).

There are various approaches to select the regularization parameter of LASSO: cross-
validation [54] and generalized cross-validation [72], Stein’s unbiased estimate of risk [160],
L-curve [83] and U-curve [109] criteria, Akaike Information Criterion [4] and Bayesian In-
formation Criterion [149]. The correct parameter choice is still a current problem. A fixed
choice of α is effective as long as the dimension N is small. However, with large dimension
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we get a large selection bias [152].

Inspired by parameter choice strategies for Tikhonov regularization in [167], we exam-
ine how to choose α from the given noisy data y without relying on any knowledge of the
noise level. To do so, we start with the observation that under mild conditions on A the
regularized solution xα is unique [161, Lemma 4] for all α > 0 and the optimal choice of
α to recover x can be described by

α∗ = arg min
α>0

‖xα − x‖2. (A.2)

Of course, the original signal x is unknown. Hence, we compute a first approximation
xOMP by using the greedy Orthogonal Matching Pursuit (OMP) and approximate α∗ by

α̂ = arg min
α>0

‖xα − xOMP‖2. (A.3)

By this approach we aim at exploiting the advantages of OMP, overcome its downsides and
additionally profit from the positive aspects of LASSO. OMP is known for its speed [132],
its ease of implementation, and its efficiency when the signal is highly sparse [162]. The
major advantage of LASSO is that it is quite robust to noise and not restricted to exactly
sparse solutions (in contrast to OMP) but may be computationally intensive [153].

A.2 Theoretical Considerations

We provide now a simple theoretical justification for sequentially applying OMP and
LASSO using the basic result Theorem 2.3.5. To be precise, we show that given an
RIP of A and a first approximation xOMP computed by OMP with approximation error
‖xOMP−x‖2 ≤ ε, for some ε > 0, the LASSO solution xα̂ with α̂ defined in (A.3) satisfies
‖xα̂ − x‖2 ≤ 2ε + Cσk(x)2 + Dη where C and D are the constants from Theorem 2.3.5.
This means choosing the LASSO parameter by OMP will produce a solution at least as
good as the first OMP guess (keeping in mind that one in general cannot hope for a smaller
error than best k-term approximation σk(x) and noise level η). Moreover, when having
strong noise and/or recovering effectively sparse x one might expect LASSO to improve
on OMP as LASSO is known to be robust and does not enforce sparsity as strictly as
OMP (the numerical experiments in Section A.3 fortify this intuition).
First recall the definitions of xα, α∗ and α̂ in (A.1), (A.2) and (A.3). We additionally
define, for α > 0,

ηα = ‖y −Axα‖2,

as in Theorem 2.3.5. Note that, under the reasonable assumption η ≤ ‖y‖2, Theorem
2.3.5 applies to all sufficiently large α as ηα → ‖y‖2 for α→∞ (xα → 0 for α→∞) and
ηα → 0 for α→ 0. One plain observation is that α lower bounds ηα.

Lemma A.2.1. Under the assumptions of Theorem 2.3.5, we have that

ηα ≥
1

1 + δ
α,

for all α > 0 with xα 6= 0.
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Proof : Using the Karush-Kuhn-Tucker conditions on (A.1) we get

AT (Axα − y) = −α sign(xα). (A.4)

As xα 6= 0 there exists i ∈ {1, ..., N} s.t. (xα)i 6= 0. Hence, (A.4) yields

〈ai,Axα − y〉 = −α sign((xα)i)

where ai ∈ Rm denotes the i-th column of A. Taking absolute value on both sides
and applying Cauchy-Schwarz, we obtain

α = |〈ai,Axα − y〉| ≤ ‖ai‖2‖Axα − y‖2
≤ (1 + δ)ηα.

In the last line, we used that by the RIP of A and ai = Aei

(1− δ) ≤ ‖ai‖2 ≤ (1 + δ)

Lemma A.2.1 implies that Theorem 2.3.5 applies to all α ≥ (1 + δ1)η for which xα 6=
0. This, however, does not lead to the desired approximation, as the magnitude of ηα
(appearing in the error bound of Theorem 2.3.5) might be considerably larger than η.
A second, and more helpful, observation is that under mild assumptions there exists some
ᾱ > 0 for which ηᾱ = η.

Lemma A.2.2. If η ≤ ‖y‖2, there exists ᾱ > 0 with ηᾱ = η.

Proof : Observe that for any convergent parameter sequence αn → α, the LASSO
functionals

Jαn(z) = ‖y −Az‖22 + α‖z‖1

Γ-converge to Jα. Hence, the mapping α 7→ ηα is continuous (this still holds true if
minimizers of the LASSO problem are not unique as by [161, Lemma 1] the value
of ηα is invariant under the choice of minimizer). By the considerations above and
the intermediate value theorem, the claim follows.

We are ready to state and prove the main result of this section as already outlined above.

Theorem A.2.3. Suppose that the 2s-th restricted isometry constant of A ∈ Rm×N satis-
fies δ < 4/

√
41 ≈ 0.6246. Then, for any x ∈ RN and y ∈ Rm with ‖Ax− y‖2 ≤ η ≤ ‖y‖2

the following holds.
If the first OMP approximation xOMP satisfies ‖xOMP − x‖2 ≤ ε, for some ε > 0, the
solution xα̂ of problem (A.1) with α̂ defined in (A.3) approximates x with the error

‖xα̂ − x‖2 ≤ 2ε+ Cσk(x)2 +Dη

where C and D are the constants from Theorem 2.3.5.
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Proof : By definition xα∗ satisfies

‖xα∗ − x‖2 ≤ ‖xᾱ − x‖2 ≤ Cσk(x)2 +Dη

where we applied Theorem 2.3.5 to ᾱ from Lemma A.2.2 in the second inequality.
By triangle inequality we obtain

‖xα̂ − x‖2 ≤ ‖xα̂ − xOMP‖2 + ‖xOMP − x‖2 ≤ ‖xα∗ − xOMP ‖2 + ε

≤ ‖xα∗ − x‖2 + ‖x− xOMP‖2 + ε

≤ 2ε+ Cσk(x)2 +Dη.

A.3 Numerical Simulation

The last section showed that LASSO whose parameter is adapted to a first OMP ap-
proximation does approximate the true signal at least as good as OMP. In this section
we want to provide numerical evidence that the additional application of LASSO can im-
prove approximation quality. To this end, we both ran a toy example with signals drawn
randomly from an `q-ball and tested recovery of MRI images from subsampled Fourier
measurements. For solving LASSO we always use ISTA and for determining α̂ a simple
grid search over different α ∈ (0, 1).

A.3.1 Sampling on `q-balls

In an artificial setting, we test how reliable OMP is in finding a good parameter α for
LASSO and if LASSO can improve on the OMP approximation when the original signal
is not exactly sparse but only effectively sparse. To this end, we draw signals x ∈ RN at
random from `q-balls, for 0 < q ≤ 1 (cf. Section 3.2 and refer to [110] for further details
on sampling uniform distributions on `q-balls).

In the first experiment we compare the optimal LASSO parameter α∗ to α̂ obtained
from (A.3) for 100 random realizations of x ∈ Bq(0, 1), N = 200, q = 0.7, and m = 50
Gaussian measurements, see Figure A.1. The noise level η is here set to zero. One can see
that α̂ approximates α∗ quite well in all realizations.
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Figure A.1: Optimal parameter α∗ (dashed blue) and corresponding
approximation α̂ (solid red) for 100 `q-samples.

Figure A.2: Effective sparsity of x versus relative error of reconstruction
by OMP (red circles) and LASSO (blue dots) for all samples (left) and
in average (right).

In a second experiment we compared how well OMP and LASSO with α̂ reconstruct
the signals x from their Gaussian measurements. Here, N = 200, m = 80, q = 1, and
η = 0. We grouped signals of similar effective sparsity. As the `1-ball signals were mainly of
effective sparsity 80−120, we artificially added sparse random signals with sparsity 1−50 to
cover regimes for which the measurements satisfy the RIP. Figure A.2 depicts the outcome.
Observe that LASSO with α̂ always performs at least as good as OMP. Moreover, as soon
as OMP fails (sparsity ≥ 20) LASSO notably improves the approximation.
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A.3.2 Compressed Sensing of MRI

After promising results in the toy scenario, we move to more realistic data. We now aim
at recovering MRI images from randomly subsampled Fourier measurements by OMP and
LASSO. To reduce the computational effort, a small 32 × 32 batch from an MRI brain
image is picked as x (see Figure A.3), i.e. the ambient dimension is N = 1024. The
measurement vector y consists of m Fourier coefficients of the discrete Fourier transform
of our batch which are drawn uniformly at random from the N possible ones.

Figure A.3: Original MRI. The sample we reconstruct is inside the or-
ange square (left) and the enlarged sample in the right image.

When transforming x to W(x) in a suitable Wavelet domain, we may assume it to
become close to sparse. We used Haar-wavelets in our experiments and computed the
signals effective sparsity s by (‖W(x)‖1/‖W(x)‖2)2 yielding s = 145. On the one hand,
this rather high value shows that Haar-wavelets are a suboptimal choice for representing
the images. On the other hand, in real applications one normally has not a perfect repre-
sentation domain at hand. So let us check how OMP and LASSO with α̂ perform here.

Figure A.4 depicts the reconstruction of the patch from m = N/2 = 512 measurements
where 10% noise is added. OMP has been stopped after s = 145 iterations. LASSO with
α̂ clearly improves on the OMP reconstruction. In Figure A.5 similar results are shown
for m = N/3 ≈ 340 measurements with 5% noise added.
Knowing s in advance is, in general, not possible. One might only have a very rough
estimate of the expected sparsity. The last experiment (see Figure A.6) suggests LASSO
with α̂ to be quite robust with respect to different stopping criteria k of OMP. This confirms
the observations of the previous section and makes the automatically tuned LASSO a
valuable postprocessing step for OMP. Here, m = N/3 ≈ 340 measurements have been
distorted by 10% noise.
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Figure A.4: Reconstruction of the original image via OMP with s iter-
ations (left) and additional application of LASSO (right).

Figure A.5: Reconstruction of the original image via OMP with s iter-
ations (left) and additional application of LASSO (right).
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Figure A.6: Comparison of OMP (left) and LASSO (right) reconstruc-
tion for different stopping points of OMP.
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Appendix B

Auxiliary Results

In this chapter we present the proofs of two results used in Chapter 7. They are joint
work with Massimo Fornasier and Valeriya Naumova and have been published in [64].

B.1 Bounds for Gamma Functional

We calculate here the two integral estimates which are needed in the proof of Lemma
7.4.2.

Lemma B.1.1. If Γ ≥ 1, we have for the sets SR,Γs1,s2 and KR,Γ
s1,s2 defined in (7.18) and

(7.19) that∫ Γ
√
R√
m

0

√
logN

(
SR,Γs1,s2 , ‖ · ‖F ,

√
mε
)

dε ≤
√
CSΓ2R2(s1 + s2) log (max {n1, n2})

m∫ Γ
√
R√
m

0

√
logN(KR,Γ

s1,s2 , ‖ · ‖F ,
√
mε) dε ≤

√
CKΓ2R2(s1 + s2) log3(max{n1, n2})

m

where CS , CK > 0 are constants.

Proof : For the first estimate apply Lemma 7.4.4 to obtain∫ Γ
√
R√
m

0

√
logN

(
SR,Γs1,s2 , ‖ · ‖F ,

√
mε
)

dε

≤

√∫ Γ
√
R√
m

0
1 dε

∫ Γ
√
R√
m

0
logN

(
SR,Γs1,s2 , ‖ · ‖F ,

√
mε
)

dε

≤

√√√√Γ2R2(s1 + s2 + 1)
(

1 + log
(

18
√
R
))

+ Γ2R2s1 log
(
en1
s1

)
+ Γ2R2s2 log

(
en2
s2

)
m

≤
√
CSΓ2R2(s1 + s2) log (max {n1, n2})

m
,

where we used Cauchy-Schwarz inequality in the first step and the fact that
√
R ≤

max{n1, n2} in the last inequality. CS > 0 is an appropriate constant.
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To obtain the second estimate let us first assume s1/n1 ≤ s2/n2. We apply Lemma
7.4.5 and find

∫ Γ
√
R√
m

0

√
logN(KR,Γ

s1,s2 , ‖ · ‖F ,
√
mε) dε

≤
∫ 12Γ

√
Rs1
mn1

0

√
R(n1 + n2 + 1) log

(
36ΓR√
mε

)
dε

+

∫ 12Γ
√

Rs2
mn2

12Γ
√

Rs1
mn1

√
144Γ2R2s1

mε2
log

(
9
√
mεn1

6Γ
√
Rs1

)
dε

+

∫ 12Γ
√

Rs2
mn2

12Γ
√

Rs1
mn1

√
R(n2 + 1) log

(
36ΓR√
mε

)
dε

+

∫ Γ
√
R√
m

12Γ
√

Rs2
mn2

√
144Γ2R2(s1 + s2)

mε2
log

(
9
√
mεn1

6Γ
√
Rs1

)
dε

+

∫ Γ
√
R√
m

12Γ
√

Rs2
mn2

√
R log

(
18ΓR√
mε

)
= I1 + I2 + I3 + I4 + I5.

We now estimate the five integrals. We use the short notation ai = 12Γ
√

Rsi
mni

for

i = 1, 2 and b = Γ
√
R√
m

. The first integral can be bounded by

I1 ≤
(∫ a1

0
1 dε

∫ a1

0
R(n1 + n2 + 1) log

(
36ΓR√
mε

)
dε

) 1
2

≤
(
a1R(n1 + n2 + 1)

[
ε

(
1 + log

(
36ΓR√
mε

))]a1

ε=0

) 1
2

=

(
144Γ2R2s1(n1 + n2 + 1)

mn1

(
1 + log

(
3

√
Rn1

s1

))) 1
2

≤


(

432Γ2R2s1
m

(
1 + log

(
3
√

Rn1
s1

))) 1
2

n1 ≥ n2(
432Γ2R2s2

m

(
1 + log

(
3
√

Rn1
s1

))) 1
2

else

where we used in the last step the assumption s1/n1 ≤ s2/n2. As can be seen
later, the case distinction is irrelevant in the final estimate. Let us now turn to the
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second integral.

I2 =

√
144Γ2R2s1

m

∫ a2

a1

1

ε

√
log

(
9
√
mεn1

6Γ
√
Rs1

)
dε

=

√
144Γ2R2s1

m

[
2

3
log

3
2

(
9
√
mεn1

6Γ
√
Rs1

)]a2

ε=a1

=

(
64Γ2R2s1

m

) 1
2
(

log
3
2

(
18
√
s2n1√
n2s1

)
− log

3
2

(
18
√
n1√
s1

))
≤
(

64Γ2R2s1

m
log3(18n1)

) 1
2

The third integral is similar to the first. Again the case distinction does not play
a major role in the end.

I3 ≤

(
(a2 − a1)R(n2 + 1)

[
ε

(
1 + log

(
36ΓR√
mε

))]a2

ε=a1

) 1
2

=

(
(a2 − a1)R(n2 + 1)

[
a2

(
1 + log

(
3

√
Rn2

s2

))
− a1

(
1 + log

(
3

√
Rn1

s1

))]) 1
2

≤

(
(a2 − a1)2R(n2 + 1)

(
1 + log

(
3

√
Rn1

s1

))) 1
2

≤

(
(a2

2 + a2
1)R(n2 + 1)

(
1 + log

(
3

√
Rn1

s1

))) 1
2

=

(
144Γ2R2

m

(
s2(n2 + 1)

n2
+
s1(n2 + 1)

n1

)(
1 + log

(
3

√
Rn1

s1

))) 1
2

≤


(

432Γ2R2(s1+s2)
m

(
1 + log

(
3
√

Rn1
s1

))) 1
2

n1 ≥ n2,(
432Γ2R2s2

m

(
1 + log

(
3
√

Rn1
s1

))) 1
2

else.

In the third and the last line we again used s1/n1 ≤ s2/n2. The fourth integral is
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similar to the second.

I4 =

√
144Γ2R2(s1 + s2)

m

∫ b

a2

1

ε

√
log

(
9
√
mεn1

6Γ
√
Rs1

)
dε

=

√
144Γ2R2(s1 + s2)

m

[
2

3
log

3
2

(
9
√
mεn1

6Γ
√
Rs1

)]b
ε=a2
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(
64Γ2R2(s1 + s2)

m
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2
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log
3
2

(
3n1

2s1

)
− log

3
2

(
18
√
s2n1√
n2s1

))
≤
(

64Γ2R2(s1 + s2)

m
log3(18n1)

) 1
2

The last integral is similar to the third.

I5 ≤

(
(b− a2)R

[
ε

(
1 + log

(
18ΓR√
mε

))]b
ε=a2

) 1
2

≤

(
(b− a2)2R

(
1 + log

(
18

√
Rn2

s2

))) 1
2

≤

(
(b2 + a2

2)R

(
1 + log

(
18

√
Rn2

s2

))) 1
2

=

((
Γ2R2

m
+

144Γ2R2s2

mn2

)(
1 + log

(
18

√
Rn2

s2

))) 1
2

≤

(
145Γ2R2

m

(
1 + log

(
18

√
Rn2

s2

))) 1
2

Let us put all estimates together. If s1/n1 ≥ s2/n2, the involved entities would
just switch their roles. Hence, we obtain

∫ Γ
√
R√
m

0

√
logN(K, ‖ · ‖F ,

√
mε) dε ≤

√
CKΓ2R2(s1 + s2) log3(max{n1, n2})

m

for some constant CK > 0.

B.2 ATLAS: Proof of Convergence

In this section we show the convergence of ATLAS to global minimizers as presented in
Theorem 7.6.2 and 7.6.3 by adapting results from [7]. In particular, we first present two
technical lemmas (Lemma B.2.1 & Lemma B.2.2), which are essentially generalizations
of results in [7]. These lemmas are used to prove the central theorem (here Theorem
B.2.3) of Attouch et. al. in our slightly more general setting. Finally, the theorem on local
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convergence, Theorem 7.6.2, and the theorem on convergence rates, Theorem 7.6.3, can
be derived from Theorem B.2.3. We refer the interested reader to [7] for further details
and provide references to the original work in brackets. Recall the assumption sets (H)
and (H1) from Section 7.6.

Lemma B.2.1 ([7, Lemma 5]). Under assumptions (H) and (H1) the sequences u1
k, . . . ,v

R
k

are well-posed in the sense that all minimizations in (7.34) have unique and finite solutions.
Moreover,

(i)

L(u1
k, . . . ,v

R
k ) +

R∑
r=1

1

2λrk−1

‖urk − urk−1‖22 +
R∑
r=1

1

2µrk−1

‖vrk − vrk−1‖22 ≤ L(u1
k−1, . . . ,v

R
k−1),

for all k ≥ 1, hence L(u1
k, . . . ,v

R
k ) is non-increasing.

(ii)

∞∑
k=1

(
‖u1

k − u1
k−1‖22 + · · ·+ ‖vRk − vRk−1‖22

)
<∞,

hence limk→∞
(
‖u1

k − u1
k−1‖2 + · · ·+ ‖vRk − vRk−1‖2

)
= 0.

(iii) For k ≥ 1, define

(ũ1
k, . . . , ṽ

R
k ) :=


∇u1Q(u1

k, . . . ,v
R
k )−∇u1Q(u1

k,u
2
k−1, . . . ,v

R
k−1)

∇v1Q(u1
k, . . . ,v

R
k )−∇v1Q(u1

k,u
2
k−1, . . . ,v

1
k,v

2
k−1, . . . ,v

R
k−1)

...
0



−


1

λ1
k−1

(u1
k − u1

k−1)
1

µ1
k−1

(v1
k − v1

k−1)

...
1

µRk−1

(vRk − vRk−1)

 .

Then (ũ1
k, . . . , ṽ

R
k ) ∈ ∂L(u1

k, . . . ,v
R
k ) and for all bounded subsequences (u1

k′ , . . . ,v
R
k′) we

have (ũ1
k′ , . . . , ṽ

R
k′)→ 0, hence dist(0, ∂L(u1

k′ , . . . ,v
R
k′))→ 0, for k′ →∞.

Proof : From inf L > −∞ and (H) it follows that the functions to be minimized in
(7.34) are bounded below, coercive and lower semicontinuous and, therefore, the
sequence (u1

k, . . . ,v
R
k ) is well-posed.
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(i) Using the minimizing properties of u1
k, . . . ,v

R
k from (7.34), we obtain

L(u1
k−1, . . . ,v

R
k−1) ≥ L(u1

k,u
2
k−1, . . . ,v

1
k−1, . . . ,v

R
k−1) +

1

2λ1
k−1

‖u1
k − u1

k−1‖22

≥

(
L(u1

k,u
2
k−1, . . . ,u

R
k−1,v

1
k,v

2
k−1, . . . ,v

R
k−1) +

1

2µ1
k−1

‖v1
k − v1

k−1‖22

)
+

1

2λ1
k−1

‖u1
k − u1

k−1‖22

...

≥ L(u1
k, . . . ,v

R
k ) +

R∑
r=1

1

2λrk−1

‖urk − urk−1‖22 +

R∑
r=1

1

2µrk−1

‖vrk − vrk−1‖22.

(ii) From (i) and (H1) one has, for every K ∈ N,

1

2r+

K∑
k=1

(
‖u1

k − u1
k−1‖22 + · · ·+ ‖vRk − vRk−1‖22

)
≤

K∑
k=1

(
L(u1

k−1, . . . ,v
R
k−1)− L(u1

k, . . . ,v
R
k )
)

= L(u1
0, . . . ,v

R
0 )− L(u1

K , . . . ,v
R
K)

< L(u1
0, . . . ,v

R
0 )− inf L <∞.

By letting K →∞ we get the claim.

(iii) By definition of u1
k, 0 must lie in the subdifferential of ξ 7→ L(ξ,u2

k−1, . . . ,v
R
k−1)+

1
2λ1
k−1
‖ξ − u1

k−1‖22 at u1
k. As a similar fact holds true for the other sequences, one

gets, for all 1 ≤ r ≤ R

0 ∈ 1

λrk−1

(urk − urk−1) + ∂urL(u1
k, . . . ,u

r
k,u

r+1
k−1, . . . ,u

R
k−1,v

1
k, . . . ,v

r−1
k ,vrk−1, . . . ,v

R
k−1),

0 ∈ 1

µrk−1

(vrk − vrk−1) + ∂vrL(u1
k, . . . ,u

r
k,u

r+1
k−1, . . . ,u

R
k−1,v

1
k, . . . ,v

r
k,v

r+1
k−1, . . . ,v

R
k−1).

The structure of L implies ∂urL(u1
k, . . . ,u

r
k,u

r+1
k−1 . . . ,u

R
k−1,v

1
k, . . . ,v

r−1
k ,vrk−1, . . . ,v

R
k−1) =

∂fr(u
r
k)+∇urQ(u1

k, . . . ,u
r
k,u

r+1
k−1 . . . ,u

R
k−1,v

1
k, . . . ,v

r−1
k ,vrk−1, . . . ,v

R
k−1) and a sim-

ilar equation for the v-components. Hence, one may rewrite the inclusions above:

− 1

λ1
k−1

(u1
k − u1

k−1)− (∇u1Q(u1
k,u

2
k−1, . . . ,v

R
k−1)−∇u1Q(u1

k, . . . ,v
R
k ))

∈ ∂f1(u1
k) +∇u1Q(u1

k, . . . ,v
R
k ),

...

− 1

µRk−1

(vRk − vRk−1) ∈ ∂gR(vRk ) +∇vRQ(u1
k, . . . ,v

R
k ).

Together with [7, Proposition 3] this yields the claim.
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Lemma B.2.2 ([7, Proposition 6]). Assume (H) and (H1) hold. Let (u1
k, . . . ,v

R
k ) be a

sequence defined by (7.34) and ω(u1
0, . . . ,v

R
0 ) be a (possibly empty) set of limit points.

Then,

(i) if (u1
k, . . . ,v

R
k ) is bounded, then ω(u1

0, . . . ,v
R
0 ) is nonempty, compact and connected

and dist((u1
k, . . . ,v

R
k ), ω(u1

0, . . . ,v
R
0 ))→ 0 as k →∞,

(ii) ω(u1
0, . . . ,v

R
0 ) ⊂ critL, where critL denotes a set of critical points of L,

(iii) L is finite and constant on ω(u1
0, . . . ,v

R
0 ), and equal to infk∈N L(u1

k, . . . ,v
R
k ) =

limk→∞ L(u1
k, . . . ,v

R
k ).

Proof : (i) If (u1
k, . . . ,v

R
k ) is bounded, there exists a convergent subsequence, which

implies ω(u1
0, . . . ,v

R
0 ) is nonempty. It also follows ω(u1

0, . . . ,v
R
0 ) is bounded.

Let now (û1, . . . , v̂R) /∈ ω(u1
0, . . . ,v

R
0 ) be given. There must exist some ε > 0

with (u1
k, . . . ,v

R
k ) /∈ B((û1, . . . , v̂R), ε), for all k ∈ N. But then ω(u1

0, . . . ,v
R
0 ) ∩

B((û1, . . . , v̂R), ε) = ∅. This proves ω(u1
0, . . . ,v

R
0 ) is closed and, hence, compact.

Let us assume ω(u1
0, . . . ,v

R
0 ) is not connected and let ωc(u

1
0, . . . ,v

R
0 ) ⊂ ω(u1

0, . . . ,v
R
0 )

be a connected component. Then, ω(u1
0, . . . ,v

R
0 ) \ ωc(u1

0, . . . ,v
R
0 ) 6= ∅ and there

exists some ε > 0 such that

ωεc(u
1
0, . . . ,v

R
0 ) ∩ ω(u1

0, . . . ,v
R
0 ) \ ωc(u1

0, . . . ,v
R
0 ) = ∅,

where ωεc(u
1
0, . . . ,v

R
0 ) is an ε-neighborhood of ωc(u

1
0, . . . ,v

R
0 ). We know from

Lemma B.2.1 (ii) that

lim
k→∞

(
‖u1

k − u1
k−1‖2 + · · ·+ ‖vRk − vRk−1‖2

)
= 0.

Combined with ωc(u
1
0, . . . ,v

R
0 ) and ω(u1

0, . . . ,v
R
0 )\ωc(u1

0, . . . ,v
R
0 ) being sets of limit

points of (u1
k, . . . ,v

R
k ), it implies the existence of a subsequence (u1

k′ , . . . ,v
R
k′) ⊂

ωεc(u
1
0, . . . ,v

R
0 ) \ ω

ε
2
c (u1

0, . . . ,v
R
0 ). As this subsequence is bounded, it must have a

limit point and ω(u1
0, . . . ,v

R
0 )∩ωεc(u1

0, . . . ,v
R
0 )\ω

ε
2
c (u1

0, . . . ,v
R
0 ) 6= ∅. Contradiction.

The last part of (i) can be proven in a similar way. If dist((u1
k, . . . ,v

R
k ), ω(u1

0, . . . ,v
R
0 ))

9 0, there must exist a subsequence that keeps distance to ω(u1
0, . . . ,v

R
0 ). But this

subsequence again must have a limit point which obviously lies in ω(u1
0, . . . ,v

R
0 ).

Contradiction.

(ii) We have, for all k ≥ 1, ξr ∈ Rn1 , ζr ∈ Rn2 , that

L(u1
k,u

2
k−1, . . . ,v

R
k−1) +

1

2λ1
k−1

‖u1
k − u1

k−1‖22 ≤ L(ξ1,u2
k−1, . . . ,v

R
k−1) +

1

2λ1
k−1

‖ξ1 − u1
k−1‖22

...

L(u1
k, . . . ,v

R
k ) +

1

2µRk−1

‖vRk − vRk−1‖22 ≤ L(u1
k, . . . ,v

R−1
k , ζR) +

1

2µRk−1

‖ζR − vRk−1‖22
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Using the bounds on λrk and µrk and the special form of L one gets

f1(u1
k) +Q(u1

k,u
2
k−1, . . . ,v

R
k−1) +

1

2r+
‖u1

k − u1
k−1‖22

≤ f1(ξ1) +Q(ξ1,u2
k−1, . . . ,v

R
k−1) +

1

2r−
‖ξ1 − u1

k−1‖22
...

gR(vRk ) +Q(u1
k, . . . ,v

R
k ) +

1

2r+
‖vRk − vRk−1‖22

≤ gR(ζR) +Q(u1
k, . . . ,v

R−1
k , ζR) +

1

2r−
‖ζR − vRk−1‖22

Let (u1, . . . ,vR) ∈ ω(u1
0, . . . ,v

R
0 ). There exists a subsequence (u1

k′ , . . . ,v
R
k′) of

(u1
k, . . . ,v

R
k ) with (u1

k′ . . . ,v
R
k′) → (u1, . . . ,vR). Together with Lemma B.2.1.(ii)

this gives

lim inf
k′→∞

fr(u
r
k′) +Q(u1, . . . ,vR) ≤ fr(ξr) +Q(u1, . . . , ξr, . . . ,vR) +

1

2r−
‖ξr − ur‖22,

for all 1 ≤ r ≤ R. We can now set ξr = ur to obtain

lim inf
k′→∞

fr(u
r
k′) ≤ fr(ur).

This and fr being lower semicontinuous yields

lim
k′→∞

fr(u
r
k′) = fr(u

r).

Repeating the argument for gr, 1 ≤ r ≤ R, and recalling the continuity of Q we
obtain L(u1

k′ , . . . ,v
R
k′) → L(u1, . . . ,vR). Combined with Lemma B.2.1 (iii) and

the closedness properties of ∂L(see Remark 1(b) in [7]) proves 0 ∈ ∂L(u1, . . . ,vR).

(iii) As we just seen, for any point (u1, . . . ,vR) ∈ ω(u1
0, . . . ,v

R
0 ), there exists

a subsequence (u1
k′ , . . . ,v

R
k′) of (u1

k, . . . ,v
R
k ) with L(u1

k′ . . . ,v
R
k′) → L(u1, . . . ,vR).

Then L(u1, . . . ,vR) = inf L(u1
k, . . . ,v

R
k ) as L(u1

k, . . . ,v
R
k ) is non-increasing. This

holds for every limit point. Hence, L is finite and constant on the set of limit
points.

Following the notation in [7] we write

zk := (u1
k, . . . ,v

R
k ), lk := L(zk),

z := (u1, . . . ,vR), l := L(z).

The next theorem essentially asserts that a sequence zk starting in the neighborhood of a
point z, as described in (B.2), and not improving L(z), as given in (B.1), converges to a
critical point near z.
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Theorem B.2.3 ([7, Theorem 8]). Let L satisfy (H), (H1) and have the KL-property at
some z. Denote by U , η and ϕ : [0, η)→ R the objects connected to the KL-property of L
at z. Let ρ > 0 be chosen such that B(z, ρ) ⊂ U . Let zk be generated by (7.34) with z0 as
initial point. Let us assume that

l < lk < l + η, (B.1)

for all k ≥ 0, and

Mϕ(l0 − l) + 2
√

2r+

√
l0 − l + ‖z0 − z‖2 < ρ (B.2)

where M = 2r+(C
√

2R+ 1
r−

) and C is a Lipschitz-constant for ∇Q on B(z,
√

2Rρ). Then,
the sequence zk converges to a critical point of L and the following holds, for all k ≥ 0:

(i) zk ∈ B(z, ρ)

(ii)
∑∞

i=k+1 ‖zi+1 − zi‖2 ≤Mϕ(lk − l) +
√

2r+

√
lk − l.

Proof : We may without loss of generality assume L(z) = 0 (replace L by L− L(z) ).
With Lemma B.2.1.(i) we have

li − li+1 ≥
1

2r+
‖zi+1 − zi‖22, (B.3)

for all i ≥ 0. Moreover, ϕ′(li) makes sense in view of (B.1) and ϕ′(li) > 0. Hence,

ϕ′(li)(li − li+1) ≥ ϕ′(li)
2r+

‖zi+1 − zi‖22.

Owing to ϕ being concave, we obtain

ϕ(li)− ϕ(li+1) ≥ ϕ′(li)
2r+

‖zi+1 − zi‖22, (B.4)

for all i ≥ 0. Let us first check (i) for k = 0 and k = 1. We know from (B.2) that
z0 lies in B(z, ρ). Furthermore, (B.3) yields

1

2r+
‖z1 − z0‖22 ≤ l0 − l1 ≤ l0

which gives

‖z1 − z‖2 ≤ ‖z1 − z0‖2 + ‖z0 − z‖2 ≤
√

2r+

√
l0 + ‖z0 − z‖2 < ρ.

Let us now prove by induction that zk ∈ B(z, ρ), for all k ≥ 0. We assume
this holds true up to some k ≥ 0. Hence, for 0 ≤ i ≤ k, using zi ∈ B(z, ρ) and
0 < li < η we can write the KL-inequality

ϕ′(li) dist(0, ∂L(zi)) ≥ 1.
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Lemma B.2.1.(iii) states that

z∗i :=

∇u1Q(u1
i , . . . ,v

R
i )−∇u1Q(u1

i ,u
2
i−1, . . . ,v

R
i−1)

...
0

−


1
λ1
i−1

(u1
i − u1

i−1)

...
1

µRi−1
(vRi − vRi−1)

 .

is an element of ∂L(zi). So, we have

ϕ′(li)‖z∗i ‖2 ≥ 1, (B.5)

for all 1 ≤ i ≤ k. Let us now examine ‖z∗i ‖2, for 1 ≤ i ≤ k. On the one hand,∥∥∥∥∥
(

1

λ1
i−1

(u1
i − u1

i−1), . . . ,
1

µRi−1

(vRi − vRi−1)

)∥∥∥∥∥
2

≤ 1

r−
‖zi − zi−1‖2.

On the other hand, for arbitrary st ∈ {i− 1, i}, t ∈ {1, . . . , 2R},

‖(u1
s1 , . . . ,v

R
s2R

)− (u1, . . . ,vR)‖22 = ‖u1
s1 − u1‖22 + · · ·+ ‖vRs2R − vR‖22

≤ ‖zs1 − z‖22 + · · ·+ ‖zs2R − z‖22 ≤ 2Rρ2.

Hence, (u1
s1 , . . . ,v

R
s2R

) and zi lie in B(z,
√

2Rρ). We can use Lipschitz-continuity
of ∇Q to obtain

‖∇ξQ(u1
s1 , . . . ,v

R
s2R

)−∇ξQ(u1
i , . . . ,v

R
i )‖2 ≤ C‖zi − zi−1‖2,

for any ξ ∈ {u1, . . . ,vR}, which implies∥∥∥∥∥∥∥
∇u1Q(u1

i , . . . ,v
R
i )−∇u1Q(u1

i ,u
2
i−1, . . . ,v

R
i−1)

...
0


∥∥∥∥∥∥∥

2

≤ C
√

2R‖zi − zi−1‖2.

We get

‖z∗i ‖2 ≤ (C
√

2R+
1

r−
)‖zi − zi−1‖2, (B.6)

for all 1 ≤ i ≤ k. Now (B.5) yields

ϕ′(li) ≥
1

C
√

2R+ 1
r−

‖zi − zi−1‖−1
2 , 1 ≤ i ≤ k,

and combined with (B.4)

ϕ(li)− ϕ(li+1) ≥ 1

M

‖zi+1 − zi‖22
‖zi − zi−1‖2

, 1 ≤ i ≤ k.

This is equivalent to

‖zi − zi−1‖
1
2
2 (M(ϕ(li)− ϕ(li+1)))

1
2 ≥ ‖zi+1 − zi‖2
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and, using ab ≤ (a2 + b2)/2, gives

‖zi − zi−1‖2 +M(ϕ(li)− ϕ(li+1)) ≥ 2‖zi+1 − zi‖2, 1 ≤ i ≤ k. (B.7)

Summation over i leads to

‖z1 − z0‖2 +M(ϕ(l1)− ϕ(lk+1)) ≥
k∑
i=1

‖zi+1 − zi‖2 + ‖zk+1 − zk‖2.

Therefore, by using the monotonicity properties of ϕ and lk

‖z1 − z0‖2 +Mϕ(l0) ≥
k∑
i=1

‖zi+1 − zi‖2.

Finally,

‖zk+1 − z‖2 ≤
k∑
i=1

‖zi+1 − zi‖2 + ‖z1 − z‖2 ≤Mϕ(l0) + 2
√

2r+

√
l0 + ‖z0 − z‖2 < ρ

which closes the induction and proves (i). Moreover, (B.7) holds for all i ≥ 1. We
can sum from k to K and get

‖zk − zk−1‖2 +M(ϕ(lk)− ϕ(lK+1)) ≥
K∑
i=k

‖zi+1 − zi‖2 + ‖zK+1 − zK‖2.

For K →∞, this becomes

∞∑
i=k

‖zi+1 − zi‖2 ≤ ‖zk − zk−1‖2 +Mϕ(lk). (B.8)

We conclude with (B.3) proving (ii)

∞∑
i=k

‖zi+1 − zi‖2 ≤Mϕ(lk) +
√

2r+

√
lk−1 ≤Mϕ(lk−1) +

√
2r+

√
lk−1.

This implies zk is convergent and, therefore, its limit is a critical point as guaranteed
by Lemma B.2.2.

We can now prove Theorem 7.6.2 and Theorem 7.6.3 which are straight-forward adap-
tions of the original results Theorem 10 and Theorem 11 in [7]. We state them for the
sake of completeness.

Proof of Theorem 7.6.2 : To show the first part of the statement, note that by The-
orem B.2.3 we get convergence of (u1

k, ...,v
R
k ) to some (ū1, ..., v̄R) ∈ critL with

L(ū1, ..., v̄R) ∈ [minL,minL + η). If L(u1
∗, ...,v

R
∗ ) 6= L(ū1, ..., v̄R), we get by ap-

plying the KL-inequality that

ϕ′
(
L(u1

∗, ...,v
R
∗ )− L(ū1, ..., v̄R)

)
dist(0, ∂(u1

∗, ...,v
R
∗ )) ≥ 1

which contradicts 0 ∈ ∂(u1
∗, ...,v

R
∗ ). The second part follows directly from Theorem

B.2.3.
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Proof of Theorem 7.6.3 : We use the notations of Theorem B.2.3 and assume for sim-
plicity that lk → 0. Hence, by Lemma B.2.2 we have L(u1

∞, ...,v
R
∞) = 0.

Assume first that θ = 0. If (lk) is stationary, then the same holds for (u1
k, ...,v

R
k )

by Lemma B.2.1 (i). If (lk) is not stationary, then the KL-inequality yields for any
sufficiently large k that

c dist(0, ∂L(u1
k, ...,v

R
k )) ≥ 1

which contradicts Lemma B.2.1 (iii).
Assume θ > 0. For any k ∈ N, set ∆k =

∑∞
i=k ‖zi+1 − zi‖2 which is finite by

Theorem B.2.3. Since ‖zk − z∞‖2 ≤ ∆k it suffices to bound ∆k. By (B.8) we know
that

∆k ≤Mϕ(lk) + (∆k−1 −∆k). (B.9)

The KL inequality yields

ϕ′(lk) dist(0, ∂L(u1
k, ...,v

R
k )) = c(1− θ)l−θk dist(0, ∂L(u1

k, ...,v
R
k )) ≥ 1

and thus

lθk ≤ c(1− θ) dist(L(u1
k, ...,v

R
k )).

Using (B.6) and the definition of z∗k, we get

dist(0, ∂L(u1
k, ...,v

R
k )) ≤

(
C +

1

r−

)
(∆k−1 −∆k).

By combining the above estimates we obtain for some K > 0

ϕ(lk) = cl1−θk ≤ K(∆k−1 −∆k)
1−θ
θ .

which shows with (B.9) that

∆k ≤MK(∆k−1 −∆k)
1−θ
θ + (∆k−1 −∆k).

The statements (ii) and (iii) now follow from [6, Theorem 2].
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