
FAKULTÄT FÜR INFORMATIK
TECHNISCHEN UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Evaluation of On-Node GPU Interconnects
for Training Deep Neural Networks

Nane-Maiken Zarges



FAKULTÄT FÜR INFORMATIK
TECHNISCHEN UNIVERSITÄT MÜNCHEN

DEPARTMENT OF INFORMATICS
TECHNISCHE UNIVERSITÄT MÜNCHEN

Bachelor’s Thesis in Informatics

Evaluation of On-Node GPU Interconnects
for Training Deep Neural Networks

Evaluierung von On-Node GPU
Interconnects für das Training von Deep

Neural Networks

Author: Nane-Maiken Zarges
Supervisor: Prof. Dr. rer. nat. Martin Schulz
Advisor: M. Sc. Amir Raoofy
Submission Date: 15.01.2019



I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Garching bei München, 15.01.2019 Nane-Maiken Zarges



Abstract

Training deep neural networks is a computationally intensive task. The training time
can be shortened by using hardware accelerators such as Graphics Processing Units
(GPUs). Therefore, multi-GPU systems are used to speed up the training process.
During the training process data needs to be copied from the CPU to the GPU and also
between the GPUs. This thesis evaluates the performance of different on-node GPU
interconnects: PCIe and NVLink.

Microbenchmarks are designed and conducted to measure the performance of these
interconnects for basic operations involved in training deep neural networks. The
practical impact of using different interconnects when training various deep neural
networks on multi-GPU systems is measured for using PCIe interconnects and for
using NVLink interconnects. These experiments are conducted on different multi-GPU
systems that have distinct interconnect systems.

A classification approach is defined, which is used to classify the training work-
loads of deep neural networks into rather communication- or computation-intensive
workloads. This classification is necessary to understand how much a certain training
workload would benefit from a high-performance interconnect system.
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1. Introduction

1.1. Motivation

Deep Learning as a part of Machine Learning is becoming increasingly important
in Artificial Intelligence (AI) research and application. Current applications range
from speech recognition to autonomous driving, medical diagnoses and many more.
Although research on deep learning goes back several decades, during the last 5-10
years it gained a lot more attention. One reason for that is that learning weights of
deep neural network models, known as training phase, is getting much faster thanks to
exploiting hardware accelerators such as Graphics Processing Units (GPUs).[1] As GPUs
are especially designed for highly parallel operations such as matrix multiplication, they
perform a lot better than CPUs not only in computer graphics tasks such as real-time
3D graphics but also in training deep neural networks as this requires repetitive and
highly parallel floating point operations.

Training a deep neural network can take hours to days, which can decelerate progress
in Deep Learning.[2] [1] Therefore, finding solutions to speed up the training process
has become crucial and the training is often parallelized on several GPUs. However,
with more and ever faster GPUs, communication between the GPUs and also between
GPU and CPU can become a bottleneck. Traditionally, PCIe interconnects are used
to connect GPUs to the CPU. NVIDIA developed a high-performance, proprietary
interconnect: NVLink. NVLink can be used to connect GPUs and in some systems also
to connect the CPU with the GPUs. [3]

1.2. Purpose

The purpose of this thesis is to evaluate the performance of GPU interconnects for
training deep neural networks (DNNs). Specifically, it is aimed at comparing the
performance of NVLink and PCIe connections in the use case of training deep neural
networks. In order to achieve a meaningful comparison, it is crucial to understand how
the training process of DNNs works and what the differences of various neural network
architectures are. Based on this knowledge, appropriate benchmarks need to be defined
and a classification of deep neural networks based on their training workload has to be
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1. Introduction

elaborated.
The investigation is based on literature research and experiments. The experiments

are performed on the following hardware setups:

• NVIDIA DGX-1, 8 Tesla P100 GPUs, NVLink 1.0 interconnect, Intel Xeon CPUs,
PCIe Gen3

• NVIDIA DGX-1, 8 Tesla V100 GPUs, NVLink 2.0 interconnect, Intel Xeon CPUs,
PCIe Gen3

• IBM AC922, 4 Tesla V100 GPUs, NVLink 2.0 interconnect, Power9 CPUs, PCIe
Gen4

The hardware chosen for the benchmarks is manifold with regards to the interconnect
systems: The two systems from NVIDIA use NVLink as GPU-to-GPU interconnects.
For the connection between the CPU and the GPUs PCIe is used. The different NVLink
versions do not only deliver different nominal bandwidth, but the different GPU
versions also support a different number of NVLink connections, which enables further
improvements in the interconnect system. The third system, IBM AC922 offers another
specific characteristic: Not only the GPUs are connected via NVLink, but also the
CPU-to-GPU connections are NVLink connections.

The main research question to be answered in this study is:

• How do different GPU interconnects compare in terms of performance for training
Deep Neural Networks?

Consequentially, these subquestions need to be answered:

• Which metrics can be used to evaluate the performance of the interconnects for
Deep Learning workloads?

• How bandwidth-sensitive are different neural network architectures?

• How do different architectures behave in the sense of scaling for multi-GPUs?

• How do the findings about interconnects explain this?

2



1. Introduction

1.3. Thesis Structure

The remainder of this thesis is organized as follows:
In the second chapter, hardware requirements for efficiently performing deep learning

workloads are elaborated. Therefore, a short introduction into deep learning is given
including a description of different neural networks architectures. Also, a classification
of deep neural networks based on the training workloads is elaborated. It is discussed
why scaling to multi-GPUs is necessary and what kind of interconnects can be used to
connect GPUs and CPUs.

In chapter 3, we take a deeper look into the hardware architecture of the used systems.
All systems are presented focusing on the particular interconnect system.

Chapter 4 describes the experiment design in detail. At first, the general idea of two
classes of benchmarks is presented. Then, the microbenchmarks and the designated
deep neural network training benchmarks are explained in detail.

Chapter 5 presents the results of these benchmarks, discusses them and describes
challenges in the benchmark design and run as well as limitations that apply to the
results.

In chapter 6 prospects for future research are presented and chapter 7 concludes the
findings of this work.
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2. Deep Learning and its Hardware
Requirements

2.1. Introduction to Deep Learning

Deep Learning (DL) "is part of the broad field of Artificial Intelligence (AI), which is the
science and engineering of creating intelligent machines that have the ability to achieve
goals like a human". [4, pp. 1-2] The term "Artificial Intelligence" was introduced
by John McCarthy in his 1955 proposal on a summer research project, in which he
explained some of the key aspects of AI, including "Neuron Nets" and how they can be
arranged to form concepts. [5, p. 12]

Within AI there is a subfield called Machine Learning (ML). It enables the computer
to learn from experience rather than to take take decisions based on hard-coded rules.
[4, p. 1] Traditional ML approaches often require careful engineering and domain
expertise to design a program that transforms raw data into representations, which can
be used by a classifier to to detect or classify patterns in the input. [6, p. 436]

Deep Learning can be seen as a class of Machine Learning that uses multi layer
(deep) neural networks to solve tasks without the need of predefined representations.
By using Deep Learning algorithms the computer is not only able to solve problems, for
which the process of solving can be described in a formal, mathematical way, but also
problems that are solved intuitively by humans. The layers of features are learned from
data. Deep Learning methods are so-called representation-learning methods, which
means that the representations that are needed to classify or detect a certain pattern in
the input data, are learned by the method itself. [6, p. 436] [7, pp. 1-4]

2.1.1. Learning Algorithms

A learning algorithm can be defined as "a mathematical framework or procedure that
calculates the best output given a particular set of data". The calculation is adjusted
based on the difference between the actual and the target output. [8] The learning
procedure for DNNs is described in 2.1.2.

Mainly two different categories of learning are differentiated in Machine Learning:
Supervised learning and unsupervised learning [7, p. 102].
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2. Deep Learning and its Hardware Requirements

Figure 2.1.: Deep Learning in the context of Artificial Intelligence

In supervised learning algorithms the training data is labeled. For example, in image
recognition we have a certain number of classes to which the images belong. In the
training set each image is labeled with the class it belongs to. Unsupervised learning
means that there is no target output given with the training set. This form of learning
can for example be used for clustering or noise reduction tasks. The model learns the
e.g. the classes during the training process itself. [7, p. 102]

Also some other categories exist, such as semi-supervised learning and reinforcement
learning. In semi-supervised training part of the training data is labeled and the rest is
not. [9, pp. 23] Reinforcement learning is based on a reward function. It is often used
if the number of solutions is huge or infinite and if data sets are not independent but
if there exist sequences of highly correlated states, a decision may influence all future
decisions. A very famous example of Deep Reinforcement Learning is the paper by
Mnih et. al. on "Playing Atari with Deep Reinforcement Learning".[10]

There are also hybrid approaches, especially the effect of unsupervised pretraining
has been studied a lot.[11] [12]

In this thesis the focus is on supervised learning.

2.1.2. Deep Neural Networks

The design of neural networks was inspired by the human brain. [7, p. 13] The
human brain consists of many neurons, which forward signals depending on their
inputs. A neuron forwards information to a neighbor neuron if it receives enough
impulses. At the point of entering the neighbor neuron, electric signals are converted to
chemical signals and the synapse can strengthen or weaken the information forwarding
depending on the chemical signal. [9, pp. 10]

The first algorithmically described neural network was the single layer perceptron
described by Rosenblatt. The model consists of one node summing up weighted inputs
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2. Deep Learning and its Hardware Requirements

and an externally applied bias. The result of this operation is applied to a hard limiter
to output a binary value: -1 if the hard limiter input was negative and +1 if it was
positive. [13, pp. 78]

The Perceptron Convergence Algorithm was used to let the single layer perceptron
learn. After some time steps, the weight vector, which is applied to the inputs, is
updated based on the difference between the desired outcome and the actual outcome
of the previous step. [13, pp. 80]

Deep Neural Networks are multi-layer systems, which were built based on the single
layer perceptron. By using multiple non-linear layers, representations of the input data
can be transformed into more abstract levels with every layer, which enables to learn
more complex functions. [6, p. 436] As shown by Cybenko a so-called continuous
feedforward neural network (FFN) with only one hidden layer can already approximate
every continuous function. [14]

A feedforward deep neural network consists of at least three layers: The input and
output layer and one or more hidden layers in between. [7, p. 165] The hidden layers
compute a weighted sum on their inputs, perform a non-linear function on it, and then
pass the result to the next layer. Very often the non-linear function used is the Rectified
Linear Unit (ReLU) function f (z) = max(z, 0). [6, p. 437]

Backpropagation of Error & Stochastic Gradient Descent

For deep neural networks the learning does not work as for a single layer perceptron
since the error for hidden layers is not known. For a classifier problem the neural
network would process the input through its layers and output a vector of scores for
each class. An error function is defined, which measures the distance between the
desired output vector (the label) and the actual output vector. The goal of the learning
process is to minimize this error to a certain threshold. This is done by adjusting the
internal parameters (also called weights) of the neural network by using a gradient
vector. Minimizing the error function is done in several steps and each step involves
two stages: The propagation of errors backwards and the weight adjustment using
optimization schemes such as gradient descent. [15, pp. 241]

Stochastic Gradient Descent is an extension of the gradient descent algorithm. The
gradient descent algorithm uses the derivatives of a function f (x) = y to find a
minimum. Because the derivative f ′(x) gives the slope of the function f at point x,
it provides insights into how x needs to be changed to find the minimum: If f ′(x) is
positive, x needs to be decreased, if f ′(x) is negative, x needs to be increased. For
higher dimensional functions, partial derivatives are used. Partial derivatives measure
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2. Deep Learning and its Hardware Requirements

how f changes as only one of the inputs changes. The partial derivatives for all input
variables are combined in the gradient vector.

∇x f (x) =


∂

∂x1 f (x)
∂

∂x2 f (x)

...
∂

∂xn f (x)


Decreasing f by moving into the direction of negative gradient is called the gradient

descent method. The size of steps is defined by the learning rate ε, so a new point is
proposed by:

xnew = x− ε∇x f (x)

[7, pp. 80]
The stochastic gradient descent algorithm uses an expectation value to make the

operation less cost-intensive. The outputs and errors are computed for a small set of
inputs instead of for the whole training data. For the small set of data, an average
gradient is computed. This process is repeated for several small test sets until the
average error does not decrease anymore. [6, pp. 436] [7, pp. 149]

An efficient way to obtain the partial derivatives needed for the gradient descent
algorithm is the backpropagation algorithm, which can be seen as a practical application
of the chain rule for derivatives. [6, p. 438]

The learning process can be summarized as follows:

1. The weight matrix is initialized with random values and forwarded through the
neural network

2. The labels are compared to the actual output and the difference is saved as error
of the network. If this error is bigger than a certain threshold, the third step is
applied. If not, the training is finished.

3. The error is propagated backwards through the network. [9, pp. 17]

2.1.3. Neural Network Architectures

There are different neural network architectures including Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs). The basic parts of these two
architectures are described in the following sections.
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2. Deep Learning and its Hardware Requirements

Figure 2.2.: Convolution operation, adapted from [9]

Convolutional Neural Networks

One of the earliest convolutional neural networks was presented by LeCun in 1998. He
showed that character recognition can be done by a CNN without using hand-crafted
heuristics, which was needed by fully-connected feed-forward networks. [16] The
network he used is now called LeNet and described in this chapter.

CNNs are mainly used for computer vision tasks with a lot of training data. [17]
[9, p. 26] Their main advantages over fully-connected neural networks are:
Sparse connectivity, which means that by applying filters that are smaller than the
input the number of parameters is reduced. This leads to less computation time and
less memory needed.
Weight sharing, which means that one weight is not only used once but applied to
different input values. This also reduces memory requirements.
Equivariance leads to detecting a certain feature independent from where this feature
is located in the input data. This makes the network resistant to local distortions.
[7, pp. 329-335] [16, pp. 5-6]

Convolutional neural networks consist of three different types of weight layers:
convolutional, pooling, fully-connected.

Each Convolutional Layer consists of several independent filters, which are used
to extract different features within a picture. Each filter is moved over the whole input
matrix of the respective layer in order to detect the respective feature in the whole
picture. Figure 2.2 shows an example of the convolution operation. The filter applied
to the input matrix would be a feature extractor for vertical edges. After that, a bias is
added and a non-linear function such as ReLU is applied. [16]

8



2. Deep Learning and its Hardware Requirements

Figure 2.3.: Pooling operation, adapted from [9]

The Pooling Layer is used to drop unnecessary information. Examples for pooling
operations are average-pooling, where the average value of a certain area is kept or
max-pooling as shown in 2.3. [9, p. 25] In the original paper from LeCun [16] this
layer is called sub-sampling layer. As by pooling layers the numbers of parameters is
reduced, it leads to a reduced computation time and makes the network more robust
to distortions.

Fully-connected Layers are often used at the end of a CNN in order to classify the
resulting feature vectors.[6, p. 439]

LeNet5 is a five weight layer neural network, including three convolution layers and
two fully-connected layers. After the first two convolution layers average pooling layers
originally called subsampling layers) are used. One of the main advantages of LeNet
as a CNN for image recognition was that no hand-designed feature extractors were
needed anymore. Other ML algorithms used for recognizing handwritten digits still
needed predefined feature extractors. [16]

AlexNet has won the ILSVCR1 competition for object detection and image classifi-
cation in 2012. It was the first neural network trained on multiple GPUs. It consists
of eight weight layers, out of which the first five are convolutional layers and the
remaining three are fully-connected ones. After each layer, ReLU is applied on the
output. Additionally, after the first and second convolutional layer, a normalization
and a max-pooling layer is added. The fifth convolutional layer is followed by another
max-pooling layer. As the model is trained in a model parallel way (see 2.1.4), the model
is split into two parts and at some points the GPUs need to exchange information:
The kernels of the second convolutional layer are connected to the kernels of the third

1ImageNet Large Scale Visual Recognition Challenge, http://image-net.org/challenges/LSVRC/2012/
results.html
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2. Deep Learning and its Hardware Requirements

Figure 2.4.: Inception module with dimensionality reduction using 1x1 convolutions,
[19]

convolutional layer on both GPUs and the fully-connected layers are also connected
from one GPU to the other. [18]

GoogLeNet is also one of the winner networks of ILSVCR. The network code named
Inception or Inception v1 won the image recognition challenge in 2014. It consists of
22 weight layers: Different to former networks it uses a so-called "inception module".
The data going into the inception module has to go through several convolutions and a
pooling operation in parallel and the resulting output is concatenated to form the input
vector for the next layer. To reduce dimensions within the inception module, a 1x1
convolution is used before 3x3 and 5x5 convolutions as well as after 3x3 max pooling.
Figure 2.4 shows one inception module. By using this method, GoogLeNet achieved
higher accuracy than AlexNet two years earlier while having less parameters, which
makes it less computation intensive. [19]

VGG is also one of the neural networks that performed very well at the ILSVRC 2014
competition. There exist different configurations with a different number of weight
layers: eight to sixteen convolution layers and three fully-connected layers. Additionally,
five maxpool layers follow some of the convolutional layers. VGG-11 consists of eight
convolutional layers, VGG-19 consists of sixteen convolutional layers. The number of
parameters range from 133 to 144 million. [20]

Inception networks (e.g. Inception v3 and Inception v4) are based on the architecture
of GoogLeNet, which already used inception modules. The goal of the newer Inception

10



2. Deep Learning and its Hardware Requirements

Figure 2.5.: A residual block, [23]

versions was to speed up computation by factorizing larger convolutions into several
smaller ones (e.g. 5x5 to two 3x3 convolutions or nxn to a nx1 and a 1xn convolution).
Another result of their research was that "the representation size should gently decrease
from the inputs to the outputs" in order to "avoid representational bottlenecks". [21] In
Inception v4 the inception modules were standardized to three different versions as
they figured out that the former non-uniformity makes the model more complicated
but does not add value in terms of performance or accuracy. [22]

ResNet has been developed by Microsoft Researchers and won several Computer
Vision competitions in 2015, e.g. ILSVCR & COCO. There are different variants of
ResNet with a different number of layers. The special thing about ResNet is that it can
become quite deep without becoming too difficult to train. This difficulty was tackled
by introducing "residual blocks". Each ResNet block has one identity mapping shortcut
connection, which skips one or even more layers. In this way, no extra parameter
or computational complexity is added. However, adding more depth to the network
resulted in more accurate results. [23]

Recurrent Neural Networks

In this section the basic building blocks of Recurrent Neural Networks are described.
As no RNNs are used in the experiments of this study, there is no detailed description
of specific RNNs.

Recurrent Neural Networks are commonly used for sequential input data.[6, p. 441]
For example, they are used in the fields of speech recognition, machine translation or
sentiment classification to only name a few. [24, p. 1]

One of the advantages of using RNNs for e.g. speech recognition is that they can
accept input vectors of variable length by using parameter sharing. As two sentences
can have the same meaning but still be composed of different words and also have a
different length, this is a very crucial characteristic. [7, pp. 367-368 ]
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Figure 2.6.: RNN and the unfolding in time of the computation involved in its forward
computation, [6, p. 442]

Figure 2.6 shows a simple RNN during forward propagation in the unfolded view.
to illustrate how the different parts of the input sequence x influence the output
computation of the following neurons. The artificial neuron s has time-depending
values st. These depend on the value of the former neuron st−1 multiplied with weight
matrix W and the input xt multiplied with weight matrix U. The output ot of the
neuron is its value multiplied by weight matrix V. [6, p. 442] There are also other more
complex variants, but the basic principles remain the same.

One specific set of RNNs are Long Short Term Memory (LSTM) networks, which
have been designed to enable the network to memorize past information. In order to do
so, they use so-called memory or "LSTM" cells, which are special hidden units having
an internal recurrence and acting like accumulators. [7, pp. 404-406]

One of the disadvantages of RNNs for language-related tasks is that the model of
the network becomes very big when having a large vocabulary.[24, p. 1] Furthermore,
RNNs are difficult to train and need a lot of computational power. Therefore, there is
also research on using CNNs for sequence modeling tasks and therefore a discussion
on the question if RNNs may be less important for these tasks in the future. [25][26]

2.1.4. Distributed Deep Learning

Distributed Deep Learning has become increasingly important as the size of DNNs
and the training datasets has grown. Therefore, to train DNNs either the data (Data
Parallelism) or the model (Model Parallelism) is distributed onto several GPUs. Those
GPUs could either be on the same node or even on different nodes. [2, p. 1, 3] In this
thesis, only multi-GPU training on one node is considered.

Data Parallelism

In the data parallelism strategy the neural network is copied onto every GPU and the
data set is split up into pieces that are distributed to the GPU. Thus, each GPU is using

12
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the same weights but different data. There are two parts of communication: First, the
worker machines send the gradients resulting from backward propagation to the master.
Then, out of the sub-gradients, the master computes the new weights and broadcasts
them to the workers. [2, p. 3][27] This is done after each forward and backward pass.
[28, p. 2] The synchronization can also be done via a multi-GPU communications
collective. An allreduce operation would compute the mean of all the weights and
then distribute the new weights. [29, p. 10] Data parallelism is an efficient method for
networks with few parameters or a high computation effort per parameter. [28, p. 2]

Model Parallelism

In the model parallelism strategy the model is split up and each part is distributed
to one GPU. Thus, each GPU is calculating part of each layer with all data. [2, p. 3]
Following this strategy, less memory is needed at each GPU as only part of the network
is stored there, and thus, very big models can be trained. For the convolution operation,
model parallelism is rather inefficient as each GPU needs the results of the other GPUs
to compute the final result of the layer. Therefore, communication is needed after every
layer. [30, pp. 20-21] However, it is an efficient strategy for fully-connected layers as
they have many parameters. [28, p. 2]

2.1.5. Classification of Deep Neural Networks

In order to select the right neural networks to benchmark on-node GPU interconnects,
we need to understand two main points:

• Which network architectures benefit from using GPUs for training?

• Out of these architectures, which ones rely on heavy communication during the
training process?

In the following different approaches found in literature and their results are pre-
sented.

In order to create a collection of deep learning workloads that can be used to evaluate
deep learning hardware performance, Adolf et al. have published Fathom. [31] They
analyzed not only convolutional neural networks but also fully-connected ones as well
as RNNs arguing that the latter architectures haven’t been included in HW research as
much as CNNs have. In figure 2.7 we can see how much the chosen eight networks
benefit from using a GPU instead of a CPU for training. It can be observed that
all CNNs (residual, vgg, alexnet, deepq) and the speech network, which consists of
recurrent and fully-connected layers, have a considerably shorter training time on the
GPU than on the CPU. Another interesting result from this work is the breakdown of
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Figure 2.7.: FATHOM: normalized execution time, GPU vs. CPU [31]

execution time, which is presented in figure 2.8. The operation types that are highly
parallelizable on GPUs are the groups B (matrix operations) and D (convolution). The
networks, which benefit from using a GPU, spend 80-99% in these kinds of operations.

Another interesting group of operations from figure 2.8 is group G (data movement).
As the objective of this thesis is to analyze the performance of interconnects, network
architectures with a high amount of data movements are interesting. For the four
CNNs at the bottom of the table, data movements are insignificant in comparison to
the other operation groups. The RNN seq2seq as well as the memnet spend 24% of
their execution time in moving data, which suggests a dependence on high bandwidth
and low latency interconnects for training on multiple GPUs. The RNN speech spends
10% of its execution time with data movements. This implies that this network could
be an interesting model for this research.

Tallent et al. have performed quite a similar research on on-node GPU interconnects
as we do. They used GoogLeNet, AlexNet and a parameterized version of ResNet
in their research. The parameterized version of ResNet - called ResNet/x - used x
residual blocks as inner layers. In order to classify different DL workloads, a workload
intensity metric was defined, which is a measure of communication/computation.
For the training they used the data parallel approach. In their work they show that
GoogLeNet is a quite computation-intensive workload whereas AlexNet is a quite
communication-intensive workload. Depending on the depth of the ResNet variant, the
workload is more or less computation-intensive. [32]

In a paper on the topic of parallelism in deep learning, Dettmers stresses another
aspect, which affects the amount of communication while training on multiple GPUs:
The parallelism strategy. As described in 2.1.4 the model parallelism strategy in general
creates a lot more communication than the data parallelism strategy. [28]
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Figure 2.8.: Fathom: Breakdown of execution time by operation type, adapted from [31]

For this thesis, the used networks are classified based on their time spent in memory
copy operations as these operations stress the interconnects.

2.2. Hardware Accelerators for Deep Learning

As the Central Processing Unit (CPU) is designed to not only compute but also control
the system, it is helpful to transfer computationally intensive tasks such as the training
of neural networks to Graphics Processing Units (GPUs) or other specialized hardware
accelerators. The design of a GPU is useful for many parallel computations, especially
for vector and matrix operations. [9, pp. 20-21][33, pp. 563-570] [2, p. 1]

As training neural networks involves a lot of matrix multiplications, researchers began
to use GPUs to train their neural networks already in the early 2000s. [34, p. 89, p. 96]
[35, pp. 1390-1391]

Having only one GPU to train a neural network limited the size of the networks. In
2012 Krizhevsky et al. won the ImageNet LSVRC-2012 contest with a convolutional
neural network (see 2.1.3) that was trained on multiple NVIDIA GTX 580 GPUs,
specifically two. Because their model was too big to fit into one GPU’s memory (3 GB),
they used the model parallel approach and split their model into two parts, half of the
neurons being on each GPU. [18, p. 3]

Today, the most DL systems are a mix of CPU and GPU, where the GPU performs the
computation-intensive tasks, and the CPU is responsible for loading the data into/from
the memory of a graphics card and acting as a parameter server. [35] On top of having
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fast GPUs, it is necessary to have performant interconnects between the CPU and the
GPU to feed the GPU with training data as well as a fast connection between the GPUs
in order to harness multiple GPU memories. [32]

On-Node Interconnects

In this part, the processor interconnect types used in the studied systems are de-
scribed. All interconnects used for CPU-to-GPU as well as GPU-to-GPU connections
are described.

PCI Express

Peripheral Component Interconnect (PCI) Express or short PCIe is a standard to connect
expansion cards such as sound or graphics cards to PC motherboards.

There are two main factors, which affect the performance of PCIe slots: The number
of lanes and the generation. A PCIe lane is a serial connection of differential signal pairs
(transmission and reception) for data transfer. PCIe lanes can be bundled to increase
the number of lanes, a bundle is denoted as xN where N stands for the lane width.
By increasing the number of lanes, the bandwidth scales linearly. In the PCI Express
Base Specification operations for x1, x2, x4, x8, x16 and x32 are described. [36, p. 38]
The second factor is the generation: Over time, the bandwidth of one PCIe lane has
increased as well. The first generation was launched in 2004 and had a bandwidth of
250 MB/s. At the time of writing, PCIe 4.0, introduced in 2017, is the most up-to-date
release delivering a bandwidth of 1.97 GB/s for one lane.

The commonly used slot size for graphics cards is x16. Thus, a PCIe 3.0 connection
to a graphics card delivers a bandwidth of 15.754 GB/s (985 MB/s per lane) and a PCIe
4.0 connection has a bandwidth of 31.508 GB/s. [37, p. 288-289]

The systems used in this study are equipped with either PCIe 3.0 or PCIe 4.0 slots.
Table 2.1 shows the different PCIe generations and their bandwidths with respect to
lane sizes. PCIe 5.0 is currently being reviewed. [38][39]

A PCIe Switch is used to connect a number of peripheral devices such as GPUs or
Network Interface Cards (NIC) with the motherboard of a computer. It is defined as a
logical assembly of multiple virtual PCIe-to-PCIe bridge devices. Several PCIe links are
connected to one PCIe switch. [36, p. 45]

NVIDIA NVLink

NVLink is a proprietary system link architecture developed by NVIDIA, which was
designed as an alternative to the PCIe connection, which can become a bottleneck for
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Table 2.1.: PCIe bandwidths for different generations and lane widths
[40, p. 29] [41, p. 34][36, p. 40][42, p. 56][39, p. 234]

x1 x4 x8 x16
PCIe 1.0 250 MB/s 1 GB/s 2 GB/s 4 GB/s
PCIe 2.0 500 MB/s 2 GB/s 4 GB/s 8 GB/s
PCIe 3.0 984.6 MB/s 3.94 GB/s 7.88 GB/s 15.75 GB/s
PCIe 4.0 1969 MB/s 7.88 GB/s 15.75 GB/s 31.5 GB/s
PCIe 5.0 3938 MB/s 15.75 GB/s 31.5 GB/s 63.0 GB/s

multi-GPU systems if data needs to be sent frequently. [43, p. 14]
In the first generation, NVLink delivers a unidirectional bandwidth of up to 20 GB/s.

NVLink 2.0 delivers a unidirectional bandwidth of up to 25 GB/s. [3]
NVLink is compatible with NVIDIA’s own GPU Instruction Set Architecture (ISA)

for multi-GPU systems, which enables direct access to the memory of another GPU in
the system. Thus, programs "can execute directly on data in the memory of another
GPU" and also atomic memory operations can be performed on remote GPU memory
addresses. [29, p. 6-7]

In systems with x86 CPUs, such as the DGX systems, NVLink is only used for GPU-
to-GPU connections. At the time of writing, the only usage of NVLink for CPU-to-GPU
connections is within IBM POWER systems. On NVIDIA’s GTC 2016, the POWER8
CPU with NVLink was announced, which enabled the IBM "Minsky" Platform to use
NVLink for CPU-to-GPU communication. The system is made of 2 POWER8 CPUs and
4 NVIDIA Tesla P100 GPUs. The official name is IBM S822LC. [44] [1]

For the study at hand, the IBM POWER System AC922 is used. This system uses
NVLink 2.0 as CPU-to-GPU connection and is explained in detail in chapter 3.3.

NVIDIA NVSwitch is used in NVIDIA’s DGX-2 systems to connect GPUs. One
NVSwitch supports up to 18 NVLinks and each port supports 25 GB/s unidirec-
tional bandwidth, which accounts for up to 900 GB/s bidirectional bandwidth for one
NVSwitch. In total, there are six NVSwitches used to connect every GPU with all other
GPUs within the system. [45]

NVSwitch is not part of the systems used in this study.

Intel Quick Path Interconnect

The Quick Path Interconnect (QPI) from Intel is used for point-to-point communication
in multi-processor systems. Data is sent in parallel across multiple lanes and packets are
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broken into multiple parallel transfers. The physical connectivity of each interconnect
link consists of twenty differential signal. Each port supports a link pair consisting of
two unidirectional links, which supports traffic in both directions simultaneously.
[46, p. 8]

X Bus

The X Bus is a symmetric multi processing (SMP) interconnect developed by IBM. It
is used in multi-CPU systems to connect several CPUs and enable communication as
well as provide a shared memory space. The interconnect works at 16 GHz and 4 bytes,
which results in a bandwidth of 64 GB/s per X Bus. [47, p. 12, 14]
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This chapter presents the systems used in this study with an emphasis on the intercon-
nect systems. The two NVIDIA DGX-1 systems are similar in their architecture but use
different versions of NVLink. The IBM Power System AC922 is different from the DGX
systems in the fact that it uses NVLink not only for GPU-to-GPU connections but also
for CPU-to-GPU connections.

3.1. NVIDIA DGX-1 with 8 NVIDIA P100 GPUs

System Architecture

The core of this DGX-1 system are eight NVIDIA Tesla P100 GPUs, together with two
20-Core Intel Xeon E5-2698v4 CPUs running at 2.2 GHz.

The CPUs are mainly used for booting, storage management and deep learning
framework coordination. [29, p. 2] The workload activities of training neural networks
mainly take place on the GPUs. The host CPUs read the initial training data set into
memory and transfer it to the GPUs. Therefore, the CPUs are not discussed in detail.

The DGX-1 system has 512 GB DDR4 system memory and four SSDs with 1.92 TB of
storage. The whole system provides 170 TFLOPs computing power for single-precision
workloads. [48]

NVIDIA Tesla P100 GPU

The NVIDIA Tesla P100 GPUs consists of 56 streaming multiprocessors (SMs), each with
64 single-precision (FP32) CUDA cores. Thus, one GPU comprises 3584 single-precision
CUDA cores. Each GPU is equipped with 16 GB of High Bandwidth Memory 2 (HBM2)
memory, which delivers a bandwidth of 732 GB/s, and a L2 Cache of 4096 KB. Tesla
P100’s peak computational throughput is 5.3 TFLOP/s for double-precision (FP64), 10.6
TFLOP/s for single precision (FP32), and 21.2 TFLOP/s for half-precision FP16. [49]

The Tesla P100 GPU is available as PCIe version [50] and as NVLink [51] version
(form factor SXM2). The DGX-1 is equipped with NVLink connected GPUs. Each GPU
supports up to four NVLink1.0 connections. [49, p. 20]
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Figure 3.1.: NVIDIA DGX-1 with 8 NVIDIA P100 GPUs network topology [29, p. 9]

Interconnect System

The interconnects in this system are NVLink 1.0, PCIe 3.0 and QPI. Figure 3.1 shows
the interconnect system as network topology.

Each GPU is connected via PCIe 3.0 x16 to one of the four PCIe switches. Each PCIe
switch connects two GPUs with one of the two CPUs. Three types of connections using
PCIe can be differentiated: Each GPU is connected to one other GPU through a PCIe
switch. Two other GPUs can be reached by traversing the own PCIe switch, the CPU
and the other PCIe switch connected to this CPU. The remaining four GPUs can only be
reached via PCIe switches, the CPUs and the QPI connection between them. [29, p. 9]

Inside the DGX-1 system, the eight GPUs are connected in a hybrid cube-mesh
NVLink network topology. Each GPU is connected point-to-point to four other GPUs:
to all three in its own cluster and to one from the other cluster. Thus, the gap between
the two clusters of four GPUs, which exists for the PCIe and QPI connections, is
closed. NVLink supports the GPU Instruction Set Architecture (ISA), which means that
programs cannot only execute on data on local memory but also on data, which is inside
another GPU’s memory. As each GPU supports up to four NVLink 1.0 connections, the
aggregate bidirectional bandwidth accounts for 160 GB/s per GPU. [29, pp. 6]
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System Configuration

On the DGX machines the NVIDIA application cotainer "Tensorflow 18.07 PY3" is
preinstalled. Amongst other software packages it includes: [52]

• Ubuntu 16.04

• Python 3.5

• TensorFlow 1.8.0

• NVIDIA CUDA 9.0.176

• NVIDIA CUDA R© Deep Neural Network libraryTM (cuDNN) 7.1.4

• NCCL 2.2.13

Changes to this configuration are described in detail in chapter 5.

3.2. NVIDIA DGX-1 with 8 NVIDIA V100 GPUs

System Architecture

Similiar to the DGX-1 system with P100 GPUs, this system also consists of eight GPUs
and two CPUs. The GPUs are NVIDIA Tesla V100 GPUs, the CPUs are the same as in
the system with P100 GPUs: two 20-Core Intel Xeon E5-2698v4 CPUs running at 2.2
GHz. This DGX-1 system also contains 512 GB DDR4 system memory and 4 SSDs with
1.92 TB of storage. [53, p. 4] The system provides 960 TFLOPS computing power for
single-precision workloads. [48]

NVIDIA Tesla V100 GPU

The NVIDIA Tesla V100 GPU consists of 80 streaming multiprocessors, each with
64 single-precision (FP32) CUDA cores and in contrast to NVIDIA P100 GPUS each
SM contains eight Tensor cores, which are especially important for the matrix-matrix
multiplication operations when training neural networks. [54, p. 14] One V100 GPU
comprises 5120 single-precision CUDA cores and 640 Tensor cores. Each GPU is
equipped with 16 GB of High Bandwidth Memory 2 (HBM2), which delivers a band-
width of 900 GB/s, and a L2 Cache of 6144 KB. [54, p. 8]

Tesla V100’s peak computational throughput is 7.8 TFLOP/s for double-precision
floating point (FP64), 17.7 TFLOP/s for single precision (FP32), and 125 Tensor TFLOP/s
for mixed precision. [53, p. 5] [47, pp. 25-26]
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Figure 3.2.: NVIDIA DGX-1 with 8 NVIDIA V100 GPUs [53, p. 9]

The Tesla V100 GPU is available as PCIe version and as NVLink [55] version (form
factor SXM2). The DGX-1 is equipped with NVLink connected GPUs. Each Tesla V100
GPU has six NVLink 2.0 connection points. [54, p. 19]

Interconnect System

The interconnects in this system are NVLink 2.0, PCIe 3.0 and Intel Quick Path Inter-
connect (QPI). Figure 3.2 shows the interconnect system as network topology.

The PCIe and QPI connections are the same as for the other DGX system, which is
described in section 3.1.

The NVLink connections differ from the ones in the system with P100 GPUs since
V100 GPUs support NVLink 2.0, thus a higher bandwidth, and have more NVLink
connection points: Each GPU has six instead of four NVLink connection points. The
GPUs are also ordered in a hybrid cube mesh topology, but some GPUs are connected to
each other by using a bonded set of two NVLink connections. For these connections the
theoretically achievable bandwidth accounts for 50 GB/s. The connections using one
NVLink can deliver a bandwidth of 25 GB/s. Some GPUs are not directly connected to
each other. This accounts for an aggregate bandwidth of 300 GB/s. [53, pp. 7-10]
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Figure 3.3.: IBM Power System AC922 with 4 V100 GPUs [56, p. 8]

System Configuration

The system configuration is consistent with the system configuration of the DGX-1 with
P100 GPUs. The preinstalled NVIDIA application container is described in section 3.1.

3.3. IBM Power System AC922 with 4 NVIDIA V100 GPUs

System Architecture

The IBM AC922 system is available in different models: 8355-GTG and 8355-GTW. The
main difference is the number of GPUs (four vs. six) and the cooling (air-cooled vs.
water-cooled). For this study, we use the 8355-GTG version, which consists of two
Power9 CPUs and four NVIDIA Tesla V100 GPUs. This system contains two Power9
processors, each of which has 20 cores that are based on a 64-bit architecture. The
clockspeed constitutes 2.0 GHz, 2.87 GHz turbo. Per core, 512 KB L2 cache and per
chip, 120 MB L3 cache is available. [47, pp. 4]

NVIDIA Tesla V100 GPU

The four Tesla V100 GPUs used in this system are the same graphics cards as described
in chapter 3.2.

Interconnect System

This system uses NVLink 2.0 and XBus as interconnects between GPUs and CPUs.
Figure 3.3 shows the interconnect system as network topology.
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The main difference of this system compared to the other two are the NVLink
connections between the Power9 CPUs and the GPUs in the corresponding cluster. As
each V100 GPU supports up to six NVLink 2.0 connections, three of them are used
to connect to the respective CPU and the other three are used to connect to the other
GPU in the same cluster. This leads to a maximum unidirectional bandwidth of 150
GB/s for either of those connections. Another difference DGX systems is that the two
clusters are not connected via NVLink GPU-to-GPU connections, but only by going
over the XBus, which connects the two CPUs. XBus delivers a bandwidth of up to 64
GB/s. [47, pp. 12-14]
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The following chapter presents the experiments’ setup. At first, the general experiment
ideas are explained, then the implementation is presented in detail.

The experiments conducted in this study can be split into two categories: Microbench-
marks and designated DNN training benchmarks. The microbenchmarks are intended
to achieve an understanding of how small operations are affected by using NVLink or
PCIe without any specific use case. The benchmarks for DNN training are designed to
understand the practical impact of using different GPU interconnects when training
deep neural networks on multi-GPU systems.

4.1. Microbenchmarks

As explained in chapter 2, deep neural networks can be trained on several GPUs by
splitting up the data to all nodes and then exchanging and adapting the resulting
weights.

This requires a lot of data to be copied from CPU to GPU, between the GPUs and
from GPU to CPU. Therefore, the microbenchmarks test the bandwidth and latency
for memory copies of different data sizes. These tests are performed with and without
enabling peer-to-peer access for the GPUs. If peer-to-peer access is enabled, one GPU
can directly copy data to another GPU without using the CPU. Thus, the NVLink
connection can be used. By using direct memory access (DMA), the GPUs are also able
to read and write directly from / into another GPU’s memory. DMA is only possible
between NVLink connected GPUs. If peer-to-peer access is not enabled, the memory
copies need to be performed over the CPU. This means, that the NVLink connections
cannot be used in the DGX systems. Instead, PCIe and QPI are used to copy the data
from one GPU to another.

By enabling or not enabling peer-to-peer access, bandwidths and latencies can be
measured for NVLink or PCIe in the DGX-1 systems. As there are no PCIe connections
between GPUs and CPUs in the IBM AC922 system, the benchmarks are not run
without peer-to-peer access on this system.
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4.2. Benchmarks for DNN training

In this section, we want to explore three aspects about the interconnect performance of
PCIe and NVLink:

1. How communication-intensive is the training of different DNNs?

2. What is the difference in the performance (measured as number of images pro-
cessed per second) for the same DNN, the same batch size and the same number
of GPUs using either PCIe interconnects or NVLink interconnects?

3. What is the difference in scaling performance for scaling the workload over one
to eight GPUs either using PCIe or NVLink?

To gain insights into these three aspects, different neural networks are trained on
different numbers of GPUs. Starting with the training on only one GPU and scaling
up to using eight GPUs. In order to measure PCIe performance, again peer-to-peer
access needs to be disabled. Additionally, training on eight GPUs is profiled in order to
understand how communication-intensive the training of different DNNs is.

Neural Networks

The neural networks used for the benchmark tests are: AlexNet, GoogLeNet, Inception
v3, Inception v4, ResNet50, ResNet152, VGG11, VGG16, and LeNet5. The network
architectures of these CNNs are described in chapter 2.1.3.

The selection of neural networks is based on the following criteria:

• Communication-intensity versus computation-intensity

• Comparability and relevance for industry and research

• Availability of implementations for training on GPUs

From the study of related work about DNN classification (see chapter 2.1.5), it is
known that AlexNet is a communication-intensive workload while GoogLeNet is a
computation-intensive workload. Choosing these two networks ensures that both
workload types are covered and also enables a comparison to former work. In order
to have a broader set of neural networks, other networks who have or had a major
impact on research advances or performed well in competitions are chosen. The fact
that not all implementations of neural networks are suitable to be trained on mutli-GPU
systems without further adjustments also affects the selection.

The implementations used for the study are introduced in chapter 4.3.2.
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4.3. Methods and Parameter Settings

In this section, the used code is described in detail.

4.3.1. Microbenchmarks

For the microbenchmarks, we used parts of the Multi-GPU Computing Benchmark
Suite mgbench.1

The mgbench tests are divided into three categories: Level-0 tests, which are used
to get information about the used system. The output of these tests is information
about the CPUs, the GPUs and a DMA access matrix. It can be found in the log files l0-
info.log and l0-devices.log. Level-1 tests comprise bandwidth tests for unidirectional
data copies, bidirectional data exchanges, DMA between GPUs as well as between
the host and GPUs, scatter and scaling tests. Level-2 tests perform multi-GPU matrix
multiplications (sgemm) without using inter-GPU communications and game of life to
test the correctness and inter-GPU communications. [57]

For this study, only the Level-1 tests are used since the information about the systems
was already available and for the more practically-oriented tests, the NN benchmarks
are run. In the following, the used Level-1 tests are described in more detail:

halfduplex.cpp

This test performs unidirectional data copies from GPU-to-GPU, CPU-to-GPU and
GPU-to-CPU.

When running the test, some flags can be used to adjust the test setting including e.g.
the number of repetitions or fixing the GPU index defining from where to where the
data should be copied. In this study, only the size flag was changed to get bandwidth
and latency figures for different message sizes: 1 KB, 10 KB, 100 KB, 1 MB, 10 MB,
100 MB and 1000 MB were tested.

In the main method (the number of available devices is gotten (cudaGetDeviceCount),
and peer device memory access is enabled (cudaDeviceEnablePeerAccess(j, 0)). As
calling this method grants access only unidirectionally, the call must be done for all
pairs in both directions. In total, a device can have up to eight peer connections.[58]

After enabling the peer device memory access, the data copies are performed. There
are three copy variants that need to be differentiated: GPU-to-GPU, CPU-to-GPU and
GPU-to-CPU copies.

1mgbench repository on GitHub, master, commit ID: 6f12d3848020af8f718074a30c68e6f0b232bfb3: https:
//github.com/tbennun/mgbench
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For GPU-to-GPU copies the method CopySegment(int a, int b) (lines 57-127) is
called to copy data from GPU a to GPU b. First, memory is allocated on both devices
and the devices are synchronized to make sure all other tasks have completed before
the data copy is started. After that, a timer is started and the copy process begins. If
the chunksize flag is not changed, the data will be copied in one chunk. The actual
copy process is done by calling cudaMemcpyPeerAsync (void * dst, int dstDevice,
const void * src, int srcDevice, size_t count), where dst and src indicate the base
device pointers of the destination respectively source memory, dstDevice and srcDevice
specify the destination and source devices, and count defines the number of bytes to
copy. The copy is done asynchronously as the CPU is not involved. The copy process is
repeated as often as defined in the repetitions flag. At the end the timer is stopped and
an average copy time is calculated. Based on the data size the bandwidth is calculated.

For copies, in which the host is participating, the method CopyHostDevice(int dev,
bool d2h) is called. This method is very similar to the CopySegment method described
above. The main difference is that instead of calling cudaMemcpyPeerAsync the method
cudaMemcpyAsync(void * dst, const void * src, size_t count, enum cudaMemcpyKind
kind) is called. The last parameter specifies the used transfer type. In this case it is ei-
ther cudaMemcpyHostToDevice for CPU-to-GPU or cudaMemcpyDeviceToHost GPU-to-CPU
copies.

fullduplex.cpp

This test performs bidirectional data exchanges from GPU-to-GPU. In principle, the test
works similar to the one in halfduplex.cpp. The main difference is that only GPUs are
used and that copies are performed in two directions. The CopySegment(int a, int b)
method in this file creates two non-blocking CUDA streams and calls the method
cudaMemcpyPeerAsync twice: First, to copy data from device a to device b using stream
b, then to copy data from b to a using stream a.

uva.cu

This test performs unidirectional and bidirectional read and write DMA operations.
As in the other two files, there are some flags to adjust the test settings. The only
parameter that was changed for this study is the size of the messages.

As in the other two tests, first the device count is retrieved, then peer-to-peer access
is enabled. After that, four variants of the test are run:

For the unidirectional write test all possible pairs are tested in one direction. Using
the CopySegmentUVA(int a, int b) method, memory is allocated and the devices are
synchronized. Then the two device buffers are swapped and the method
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DispatchCopy(void *dst, const void *src, const size_t& sz, const size_t&
type_size, const dim3& grid, const dim3& block, cudaStream_t stream) is called to
copy the kernel. The unidirectional read test is similar, but the device buffers are not
swapped.

In contrast to the unidirectional tests, the bidirectional tests exchange data between
GPUs. This means every pair is only tested once but swapping the buffers (for the
write test) and copying the data is done twice, to cover both directions.

Changes to Mgbench

As for this study, the goal is to compare the performance of the different interconnects
available in the systems, it was necessary to find a way to use either the NVLink or the
PCIe connection. This paragraph is only relevant for the experiments run on the two
DGX-1 machines since the IBM AC922 only has NVLink as GPU interconnects and a
comparison of PCIe versus NVLink is therefore not possible.

In order to measure performance using NVLink connections, the source code of
mgbench does not need to be changed. However, to measure PCIe performance, the
CUDA peer-to-peer connection, which is described in chapter ??, needs to be disabled.
Therefore, the method cudaDeviceEnablePeerAccess must not be called. This can be
done by changing a small part of the mgbench code.

In listings 4.1 and 4.2, an example of this change is illustrated for the file fullduplex.cpp.
For halfduplex.cpp, the source code changes are listed in Appendix B. For the DMA read
and write tests, peer-to-peer access cannot be disabled. Thus, there are no changes
made to uva.cu.

Listing 4.1: original file - mgbench/src/L1/fullduplex.cpp

132 printf("Enabling␣peer-to-peer␣access\n");
133
134 // Enable peer-to-peer access
135 for(int i = 0; i < ndevs; ++i)
136 {
137 CUDA_CHECK(cudaSetDevice(i));
138 for(int j = 0; j < ndevs; ++j)
139 if (i != j)
140 cudaDeviceEnablePeerAccess(j, 0);
141 }

Listing 4.2: changed file - mgbench/src/L1/fullduplex.cpp
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132 printf("NOT␣Enabling␣peer-to-peer␣access\n");
133 /*
134 // Enable peer-to-peer access
135 for(int i = 0; i < ndevs; ++i)
136 {
137 CUDA_CHECK(cudaSetDevice(i));
138 for(int j = 0; j < ndevs; ++j)
139 if (i != j)
140 cudaDeviceEnablePeerAccess(j, 0);
141 } */

4.3.2. Benchmarks for DNN training

For the benchmarks for Deep Neural Network Training parts of the TensorFlow bench-
marks2 were used.

The benchmarks repository consists of scripts for TensorFlow and keras benchmarks.
For this study, only the tensorflow benchmarks are used. The implementations of the
network models are designed to be as fast as possible, which is why they are interesting
for this research. [59]

The distributed tests were run using different networks and batch sizes. All networks
were trained on one to eight GPUs. The benchmark can be started using this python
program:
python tf_cnn_benchmarks.py --num_gpus=N --batch_size=B --model=M

--variable_update=parameter_server
The batch size that is specified by the batch size flag is the local batch size per

GPU. When scaling to more GPUs the global batch size is increased by the factor of
numbers of GPUs. The variable update method can be defined as well. For these tests
"parameter_server" is used. In table 4.1 the used batch sizes for the respective models
are listed.

Table 4.1.: Batch sizes for different neural network models

alexnet googlenet inception3 inception4
batch size 512 128 128 64

resnet50 resnet152 vgg11 vgg16 lenet5
batch size 128 64 128 64 512

2TensorFlow benchmarks repository on GitHub: https://github.com/tensorflow/benchmarks
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Changes to Tensorflow

In order to not use the NVLink interconnects during the DNN training, it is neces-
sary to conduct a small change inside the TensorFlow source code in order disable
the peer-to-peer access similar to the approach with the microbenchmarks. As the
NVIDIA application container that is used for the measurements of PCIe performance
contains TensorFlow 1.8.0, the change is done in the source code of the branch r1.8
to get comparable results.3 The part that was changed can be found under the path
/tensorflow/tensorflow/stream_executor/cuda/cuda_gpu_executor.cc in lines 732
- 735. It corresponds to the same file in the current master branch (TF 1.12) lines 822 -
825. The changed code is presented in listing 4.3. Appendix B.2 shows the original and
the changed code lines.

Using this small adjustment, the peer-to-peer connection is invisible, which means
that all communication has to go over the host and therefore use the PCIe interconnects.

Listing 4.3: changed file: - branch: r1.8 - cuda_gpu_executor.cc

732 bool CUDAExecutor::CanEnablePeerAccessTo(StreamExecutorInterface *other) {
733 CUDAExecutor *cuda_other = static_cast<CUDAExecutor *>(other);
734 return false;
735 }

The compilation of TensorFlow r1.8 with the mentioned change was done on the
DGX-1 P100 system using the NVIDIA application container Tensorflow 18.07 PY3.
First, the existing TensorFlow and Bazel installations were uninstalled. After that, the
compiler Bazel was installed in version 0.15.0.4

nccl2
include

nccl.h
lib

libnccl.so
libnccl.so.2
libnccl.so.2.2.13

NCCL-SLA.txt

3TensorFlow repository on GitHub, branch r1.8: https://github.com/tensorflow/tensorflow/tree/
r1.8

4Bazel 0.15.0 installation files: https://github.com/bazelbuild/bazel/releases/tag/0.15.0
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In order to use NCCL version 2.2.13, which is installed inside the used NVIDIA
application container, some paths to the NCCL files need to be adjusted as they are split
up into different locations by default. Therefore, a directory called nccl2 was created
under /usr/lib. The content and structure of this directory is as shown above.

After setting the NCCL environment variable accordingly, the bazel build can be
configured. The next step is to build the package and finally install the resulting pip
package.

As a check that the new TensorFlow version is installed and used, one can run the
python code from section 4.3.2. Before the actual benchmark is run, a GPU interconnect
map is printed. Using the preinstalled TensorFlow, the matrix for the DGX-1 with P100
GPUs looks as shown in table 4.2.

Table 4.2.: GPU interconnect map - preinstalled TensorFlow version
GPU 0 1 2 3 4 5 6 7

0 N Y Y Y Y N N N
1 Y N Y Y N Y N N
2 Y Y N Y N N Y N
3 Y Y Y N N N N Y
4 Y N N N N Y Y Y
5 N Y N N Y N Y Y
6 N N Y N Y Y N Y
7 N N N Y Y Y Y N

Using the changed TensorFlow version, the matrix for the same system looks like the
one in table 4.3

Table 4.3.: GPU interconnect map - changed TensorFlow version
GPU 0 1 2 3 4 5 6 7

0 N N N N N N N N
1 N N N N N N N N
2 N N N N N N N N
3 N N N N N N N N
4 N N N N N N N N
5 N N N N N N N N
6 N N N N N N N N
7 N N N N N N N N

The change in the TensorFlow source code and step-by-step instructions on how to
compile and install the changed TensorFlow version are shown in appendix B.2.
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The following chapter presents the experiments’ results. First, the results from the
microbenchmarks are presented for each system. Then the results from the DNN
benchmarks are presented including the profiling of the workloads and the performance.
At the end of this chapter, the results are discussed and limitations and challenges
regarding the experiment design and realization are explained. In order to maintain
readability, not all figures are printed in this chapter. The full range of figures showing
the experiments’ results are to be found in appendix C.1 and C.2.

5.1. Microbenchmarks

Using the NVIDIA System Management Interface (nvidia-smi) one can query informa-
tion about the used system. The query nvidia-smi topo prints topology information on
the GPUs used in the system including the information how the GPUs are connected
to each other. To understand the microbenchmark results, the queries are run on all
systems. The results for DGX-1 P100 are shown in listing 5.1 and 5.2. To make it more
readable, only GPU connections are displayed. The full output of the queries for all
systems can be found in appendix C.1.1. The command nvidia-smi topo -m shows the
NVLink connections, nvidia-smi topo -mp shows PCIe connections.

Listing 5.1: nvidia-smi topo -m DGX-1 P100

nvidia-smi topo -m

GPU0 X NV1 NV1 NV1 NV1 SYS SYS SYS
GPU1 NV1 X NV1 NV1 SYS NV1 SYS SYS
GPU2 NV1 NV1 X NV1 SYS SYS NV1 SYS
GPU3 NV1 NV1 NV1 X SYS SYS SYS NV1
GPU4 NV1 SYS SYS SYS X NV1 NV1 NV1
GPU5 SYS NV1 SYS SYS NV1 X NV1 NV1
GPU6 SYS SYS NV1 SYS NV1 NV1 X NV1
GPU7 SYS SYS SYS NV1 NV1 NV1 NV1 X

The abbreviation NV# stands for a connection using a bonded set of # NVLinks, SYS
shows a connection traversing PCIe as well as the SMP interconnect (e.g. QPI or XBus),
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Figure 5.1.: Exemplary connection types used in nvidia-smi topo query result, adapted
from [29]

PHB is used for a connection traversing PCIe as well as the CPU, and PIX displays a
connection between GPUs connected to the same PCIe switch.

In figure 5.1 exemplary connections are shown.

Listing 5.2: nvidia-smi topo -mp DGX-1 P100

nvidia-smi topo -mp

GPU0 X PIX PHB PHB SYS SYS SYS SYS
GPU1 PIX X PHB PHB SYS SYS SYS SYS
GPU2 PHB PHB X PIX SYS SYS SYS SYS
GPU3 PHB PHB PIX X SYS SYS SYS SYS
GPU4 SYS SYS SYS SYS X PIX PHB PHB
GPU5 SYS SYS SYS SYS PIX X PHB PHB
GPU6 SYS SYS SYS SYS PHB PHB X PIX
GPU7 SYS SYS SYS SYS PHB PHB PIX X

5.1.1. DGX-1 P100 Results

In figure 5.2 the bandwidths for unidirectional data copies of different sizes on the
DGX-1 with P100 GPUs are shown. The theoretical bandwidths for PCIe 3.0 (15.754
GB/s) and NVLink 1.0 (20 GB/s) are also displayed. Even for small data copies (10-100
KB) the NVLink connection delivers more bandwidth than PCIe. For large data copies
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Figure 5.2.: DGX-1 P100 bandwidth for unidirectional data copies

(10 - 1000 MB) it achieves more bandwidth than the theoretical bandwidth of PCIe and
at the largest data size tested, it achieves 17.626 GB/s, which is 88% of the theoretical
bandwidth.

In contrast to that, even the fastest PCIe connection via a PCIe switch and the CPU
(PHB) only achieves 9.987 GB/s, which is 62% of its theoretical bandwidth. It is also
interesting to see that even the closest connection (PIX), which only goes through one
PCIe switch and thus should be the fastest one of the PCIe connection types, is actually
the slowest one.
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Figure 5.3.: DGX-1 P100 bandwidth for bidirectional data copies

In figure 5.3 the bandwidths for bidirectional data copies of different sizes on the
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DGX-1 with P100 GPUs are shown. Similar to the unidirectional data copies, NVLink
outperforms PCIe at all message sizes. For 1000 MB data copies, it achieves 88%
of its theoretical bandwidth, while PCIe (PHB and SYS) only achieves 54% of its
theoretical bandwidth. The PIX connection again is the slowest, only achieving 29% of
the theoretical PCIe bandwidth.

In figure 5.4 latencies for the unidirectional data copies are displayed. The latency
for a copy process from GPU 0 to all other GPUs is displayed. The figure does not
change a lot for other starting GPUs. A cluster of close GPUs can clearly be identified
for the NVLink figures. As shown in listing 5.1 GPU 0 is connected via one NVLink
to GPUs 1-4. For all other GPUs, the data is sent over PCIe and QPI. For the tests, in
which peer-to-peer access was disabled, there is almost no difference in the latency.
Again we see that especially for the closest connection copying data needs the most
time. This behaviour is also very noticeable in figure C.6, which shows the latencies for
bidirectional data copies.
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Figure 5.4.: Latency for GPU-to-GPU unidirectional memory copies on DGX-1 P100

In figure 5.5 the bandwidth for the DMA read operation is shown. As Direct Memory
Access is not possible without enabling peer-to-peer access, the bandwidth of PCIe
could only be measured for unidirectional operations including the CPU (host). For
large data sizes the PCIe connection from the host to the GPUs achieves a bandwidth
of 10.5 GB/s, which is 67% of its theoretical bandwidth. The NVLink connections
reach 75% of the theoretical bandwidth for unidirectional DMA reads and 62% for
bidirectional DMA reads. For the DMA write operation both connection types perform
better: the PCIe connection reaches 76% of its theoretical bandwidth and the NVLink
connections 83% for unidirectional as well as bidirectional write operations.
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Figure 5.5.: DGX-1 P100 bandwidth for DMA read

5.1.2. DGX-1 V100 Results

In the DGX-1 system with V100 GPUs the connections between GPUs differ from
the ones in the DGX-1 system with P100 GPUs in two aspects: NVLink 2.0 has
higher bandwidth and there are more connections. In figure 5.6 the bandwidths for
unidirectional data copies on this system are shown. The theoretical bandwidth of
NV2 connections accounts for 50 GB/s, the one for NV1 connections for 25 GB/s and
PCIe 3.0 remains at 15.754 GB/s. For small data sizes, NV1 and NV2 connections
achieve similar bandwidths and already outperform the PCIe connections. For 1000
MB memory copies NV2 connections achieve a bandwidth of 46.23 GB/s, which is 92%
of its theoretical bandwidth, NV1 connections achieve 23.128 GB/s, which is 93% of
theoretical bandwidth. The PCIe connections PHB and SYS again are quite similar and
achieve 63% of PCIe’s theoretical bandwidth. PIX only achieves 56%.

Figure C.9 shows the bandwidths for bidirectional data copies on the DGX-1 V100
system. NV1 and NV2 connections achieve 93% of their theoretical bandwidth, while
PHB and SYS achieve 52%. Again, the PIX connection is the slowest, reaching only 28%
of the theoretical bandwidth. In figure C.12 the latencies for the unidirectional data
copies are displayed. As for the DGX-1 P100 test results, only memory copies from
GPU 0 to all other GPUs are illustrated as the figures for other sending GPUs look
very similar. Especially for large data copies three clusters of GPUs can be identified
when peer-to-peer access is enabled: Two are connected via two NVLink connections,
another two are connected via a single NVLink connection and the remaining three are
connected over PCIe and QPI. Figure C.13 shows the latencies for bidirectional memory
copies. When peer-to-peer is disabled, there is almost no difference in latency when
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Figure 5.6.: DGX-1 V100 bandwidth for unidirectional data copies

copying large data sizes. In C.13(e) the anomaly of the PIX connection is seen again.
It takes almost double the time to bidirectionally exchange data from GPU0 to GPU1
than from GPU0 to any other GPU.

Figure 5.7 presents the bandwidth for the DMA read operation. For large data sizes
the PCIe connection from the host to the GPUs achieves a bandwidth of 10.6 GB/s,
which is 67% of its theoretical bandwidth. The NVLink connections over a bonded set
of 2 NVLinks reach 87% of the theoretical bandwidth (43.693 GB/s) for unidirectional
DMA reads and 79% (39.326 GB/s) for bidirectional DMA reads. The single NVLink
connections achieve 82% (20.485 GB/s) for unidirectional reads and 79% (19.666 GB/s)
for bidirectional reads. For the DMA write operation all connection types perform
better: the PCIe connection reaches 76% of its theoretical bandwidth, the single NVLink
connections 82% for unidirectional and 87% for bidirectional write operations, and
the paired NVLink connections achieves 87% of the theoretical bandwidth for both,
unidirectional and bidirectional, DMA write operations.

38



5. Experiment Results

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 KB 10 KB 100 KB 1 MB 10 MB 100 MB 1000 MB

Ba
nd

w
id

th
 [M

B/
s]

DGX-1 V100: bandwidth for DMA read

host uni GPU NV1 uni GPU NV1 bi GPU NV2 uni

GPU NV2 bi PCIe theoretical bandwidth NV1 theoretical bandwidth NV2 theoretical bandwidth

Figure 5.7.: DGX-1 V100 bandwidth for DMA read

5.1.3. AC922 Results

Figure 5.8 shows the bandwidths for unidirectional memory copies of different sizes
as well as the theoretical bandwidth of the triple NVLink 2.0 connections (75 GB/s)
and the theoretical bandwidth of the XBus between the two Power9 CPUs (64 GB/s).
Memory copies to directly connected GPUs achieve 67.175 GB/s or 90% of theoretical
bandwidth. Memory copies to GPUs connected to the other CPU only reach 27.847
GB/s or 44% of the theoretical XBus bandwidth. Memory copies from or to the closer
host achieve a bandwidth of 89% of the theoretical bandwidth, for copies from to
the other host, the bandwidth only accounts for 37.296 GB/s, which equals 58% of
theoretical bandwidth.

For the bidirectional copies directly connected GPUs also achieve 90%. However,
copies to other GPUs connected via SYS (XBus) only reach 16.484 GB/s of bandwidth,
which is 26% of theoretical bandwidth. The complete bandwidths for bidirectional
memory copies with different message sizes can be found in figure C.16.

The unidirectional DMA read operations achieve comparably high bandwidths: For
NV3 connected GPUs a bandwidth of 63.555 GB/s was measured, which equals 85% of
the theoretical bandwidth. The same is true for DMA read operations from a host to a
directly connected GPU: 85%. DMA reads from one GPU to a GPU in the other cluster
reaches a bandwidth of 33.434 GB/s, which is 52% of the theoretical bandwidth, and
the DMA read from a host to a GPU from the other cluster achieves 39.507 GB/s or 62%
of theoretical bandwidth. The bidirectional DMA reads show a little less performance:
For NV3 connections 57.201 GB/s (76%) were measured and for SYS connections 17.64
GB/s (28%) were measured.
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Figure 5.8.: AC922 bandwidth for unidirectional data copies

The bandwidths for DMA write operations account for: 85% of theoretical band-
widths for NV3 connections (GPU-to-GPU & CPU-to-GPU) and 56% respectively 44%
for hosts respectively GPUs from the other cluster at unidirectional writes. For bidirec-
tional DMA writes 63.555 GB/s (85%) was measured for NV3 connections and 16.402
GB/s (26%) was measured for SYS connections.

5.2. Benchmarks for DNN Training

In this section, the results of the benchmarks for Deep Neural Network training are
described. First, the results of the workload analysis using the NVIDIA profiling tool
nvprof 1 are presented. These show, which workloads are more communication- or
more computation-bound.

Then, all networks are trained on the DGX-1 P100 and on the DGX-1 V100 using
one to eight GPUs and several batch sizes. The training is done using the preinstalled
TensorFlow version to see the performance using NVLink and using the changed Ten-
sorFlow version to obtain performance measurements for only using PCIe interconnects.
The performance is measured in processed images per second.

5.2.1. Workload Analysis using Nvprof

All networks are trained on eight GPUs using the profiler nvprof. Only the CUDA mem-
copy commands are listed. CUDA memcpy DtoH refers to memory copies from one of the

1see https://docs.nvidia.com/cuda/profiler-users-guide/index.html
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hosts to a device, CUDA memcpy HtoD shows the percentage of total time used for copies
from one of the CPUs to on of the GPUs, CUDA memcpy PtoP refers to communication
between the GPUs.

CUDA
memcpy DtoH

CUDA
memcpy HtoD

CUDA
memcpy PtoP

sum

alexnet 11.25% 9.22% 5.44% 25,91%
googlenet 1.06% 1.19% 0.72% 2,97%
inception3 1.91% 1.86% 1.06% 4,83%
inception4 2.85% 2.77% 1.65% 7,27%
resnet50 3.39% 3.52% 1.94% 8,85%
resnet152 4.74% 5.03% 3.27% 13,04%

vgg11 9.14% 7.44% 6.96% 23,54%
vgg16 13.79% 12.10% 6.57% 32,46%
lenet 6.00% 6.17% 3.44% 15,61%

Table 5.1.: Profiling results nvprof, 8 GPUs

From the results in table 5.1 it can be assumed that disabling the faster NVLink
connections should have more effect on AlexNet, VGG11, VGG16 and LeNet as on the
remaining networks, because these seem to be more communication-intensive. It can
also be assumed that the networks, which perform a lot communication from host to
device would benefit from being trained on AC922.

5.2.2. Training Performance with PCIe only and with NVLink / PCIe

In the following sections the training performance using only PCIe connections com-
pared to using NVLink is shown.

Because of clarity reasons not all figures are included in the text. The complete
collection of figures can be found in appendix C.2.

AlexNet was trained using a local batch size of 512. In figure 5.9 the number of
images per second is shown for training the network on one to eight GPUs. For the
training on the DGX-1 P100 we can see a performance decrease when using only PCIe
and not the NVLink connections (p2p disabled) for all training sessions independent
from how many GPUs were used. On the DGX-1 V100 we can also see a performance
increase when using NVLink (p2p enabled). However, especially the numbers for
training on four and seven GPUs show some irregularities, which should be studied

41



5. Experiment Results

further. Another measurement, which is unexpected, is that training on the DGX-1
V100 for one GPU shows different results for p2p enabled and p2p disabled.
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Figure 5.9.: Scaling training of alexnet with (p2p enabled) and without NVLink (p2p
disabled)

GoogLeNet was trained using a local batch size of 128. The performance is shown in
figure 5.10. On the DGX-1 P100 we can see almost no differences in performance for
scaling the training on up to five GPUs. When scaling beyond this, we see that training
the network with the changed TensorFlow version achieved even higher performance
than training it with the preinstalled version using the NVLink connections. This result
is surprising and should be studied further. On the DGX-1 V100 we can largely see the
same behavior.

42



5. Experiment Results

0

1000

2000

3000

4000

5000

6000

1 2 3 4 5 6 7 8

Im
g 

/ s

# of GPUs

Googlenet Batchsize 128

V100 P2P enabled V100 P2P disabled P100 P2P enabled P100 P2P disabled

Figure 5.10.: Scaling training of GoogLeNet with (p2p enabled) and without NVLink
(p2p disabled)

Inception v3 and Inception v4 Inception v3 was trained with a local batch size of 128
and Inception v4 was trained with a local batch size of 64. Figures 5.11(a) and 5.11(b)
show the scaling efficiency of using PCIe interconnects versus NVLink interconnects
on DGX-1 P100. Less than 100% means that training the networks only with PCIe is
slower than with NVLink. More than 100% means that disabling peer-to-peer access
makes training faster, which is a surprising result. Figures 5.12(a) and 5.12(b) show the
same measurements for training Inception on the DGX-1 V100 machine.

For both machines it can be observed that there is no effect for scaling to up to four
GPUs. Training on more than four GPUs shows surprising results as well.
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Figure 5.12.: Scaling efficiency using only PCIe compared to using NVLink on DGX-1
V100
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Figure 5.11.: Scaling efficiency using only PCIe compared to using NVLink on DGX-1
P100

ResNet50 and ResNet152 The performance results for ResNet50 and ResNet152 show
similar behavior. ResNet50 was trained using a local batch size of 128, for ResNet152
the local batch size was 64. Of course, the absolute values of images processed per
second differ as ResNet152 has significantly more layers than ResNet50 but the scaling
behavior is similar: figure 5.13(a) shows scaling for ResNet50 and figure 5.13(b) shows
scaling for ResNet152. For the training on up to five GPUs the difference between using
NVLink and not using NVLink is marginal on both machines. For the training on six
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Figure 5.13.: Scaling efficiency with (p2p enabled) and without NVLink (p2p disabled)

or seven GPUs the same inconsistency occurs as could be observed for GoogLeNet
and Inception. Training on eight GPUs produced odd results for both networks on
the DGX-1 V100: Using the NVIDIA TensorFlow version with p2p enabled resulted in
lower performance than using the TensorFlow version where p2p was disabled. It even
processed less images than on the DGX-1 P100 machine.

VGG11 and VGG16 VGG11 was trained with a batch size of 128 and VGG16 was
trained using a batch size of 64. For both networks a decrease of performance is
observed when disabling NVLink on both DGX-1 machines. Figures 5.14(a) and 5.14(b)
show scaling of both networks on the DGX-1 P100. Figures 5.15(a) and 5.15(b) show
the same for the DGX-1 V100 machine. For all scaling options training without NVLink
is slower than with NVLink. In figure 5.15(a) it can be seen that training on one GPU
also earned different performances.
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Figure 5.15.: Scaling efficiency using only PCIe compared to using NVLink on DGX-1
V100
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Figure 5.14.: Scaling efficiency using only PCIe compared to using NVLink on DGX-1
P100

LeNet The results for LeNet5 (batch size 512) are similar to the ones from AlexNet. For
all scaling options a decrease of performance can be observed if only PCIe interconnects
are used. However, also in these measurements, irregularities can be seen for the
training on the DGX-1 V100 when using the preinstalled NVIDIA TensorFlow version.
Figure 5.16 shows the results.
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Figure 5.16.: Scaling training of lenet5 with (p2p enabled) and without NVLink (p2p
disabled)

5.3. Discussion of Results

The conducted experiments generated some interesting results, which are summarized
in the following.

Microbenchmarks

The microbenchmarks showed that NVLink achieves a higher bandwidth than PCIe
for all tested operations. One aspect, which is interesting, is that NVLink’s practical
bandwidth for all operations is more than 61% of its nominal bandwidth (based on
the results for the largest message sizes). In all operations except for bidirectional data
copies on the DGX-1 P100, it is even higher than 74%. The highest percental bandwidth
measured is 93%.

For the PCIe connections the highest percental bandwidth measured is 76% for DMA
write operations from the CPU to the GPU on both DGX-1 systems. The lowest is 28%
for the bidirectional data copies from one GPU to another GPU connected to the same
PCIe switch. This is a surprising result, which can be observed on both DGX-1 systems
and which suggests that PCIe switches might be a bottleneck for the data copies.

The XBus connection between the two CPUs in the AC922 system also by far does not
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achieve its nominal bandwidth of 64 GB/s: The lowest percental bandwidth measured
is 28%, the highest is 58%. However, this is still more than the nominal bandwidth of
PCIe3.0 (15.754 GB/s).

For data copies or DMA read / write operations that include the host, an advantage
of the AC922 system becomes clearly visible: The NVLink connections from the CPU
to the GPU achieve 85% to 89% of their nominal bandwidth, which is 75 GB/s. In the
DGX systems these operations are done via the PCIe connections and achieve 66% to
75% of their nominal bandwidth, which is only 15.754 GB/s.

These results suggest that for communication-intensive one should derive benefits
from using NVLink instead of PCIe interconnects. Especially for workloads, in which a
lot of communication occurs between GPU and CPU, the AC922 should show drastically
higher performance.

Benchmarks for DNN Training

Using the results from the profiling, we can now classify AlexNet, VGG11, VGG16 and
LeNet5 as communication-intensive neural networks. The remaining neural networks
can be classified as computation-intensive.

For the communication-intensive workloads the training performance results fit to
what one would expect: Using PCIe instead of NVLink leads to less performance in
terms of fewer images processed per second.

However, for the computation-intensive workloads this behavior cannot be observed.
In some cases disabling peer-to-peer and using only PCIe even lead to higher perfor-
mance. This is a finding, which should be studied further in future research. Ideas for
further study are presented in chapter 5.4.

However, these findings support the used approach using which neural networks can
be classified. It also shows that in order to decide if high-performance interconnects
such as NVLink are useful, the workloads should be well understood in terms of
operation types. If a system with high-performance interconnects is available, users
should put effort into optimizing their algorithms in a way that high bandwidth delivers
high performance.

In terms of scaling, it can be observed that for the communication-intensive work-
loads, scaling up to eight GPUs with p2p disabled has a more negative effect in terms
of reaching linear scaling than for the computation-intensive workloads. This can be
explained by the rather low bandwidth achieved for SYS connections over QPI.
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Figure 5.17.: Scaling efficiency: Training on 4 GPUs compared to 1 GPU)
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5.4. Limitations and Challenges

During the design and run of the experiments, three major challenges needed to be
overcome:

• Getting access to the systems used for the experiments took longer than expected.
This was especially the case for the IBM Power system. Due to the system being
available only to early users, documentation about login and scheduling was not
yet available. For the two DGX-1 systems documentation and access was not
an issue but sometimes reservation time became a bottleneck especially on the
DGX-1 system with V100 GPUs.

• The workloads used in the Fathom paper described in chapter 2.1.5 are partly
outdated and not available for current Tensorflow versions. Also, the license
to use the TIMIT dataset, which was used to train the very interesting neural
network DeepSpeech requires an LDC membership, which TUM doesn’t hold.

• In order to compare the performance of training deep neural networks using
different interconnects NVLink needed to be disabled in the systems. This was
only possible by software changes in the DL library Tensorflow. Finding the
right lines of code to make the change was one of the challenges. Compiling the
changed Tensorflow version from source was another. First, it was tried to use the
NVIDIA application container "CUDA 9.0 CUDNN7.1-DEVEL AND PGILINUX
2018-184", which has no Tensorflow installation, but CUDA and NCCL. Trying
to compile the Tensorflow version on this image generated numerous errors.
Finally, the NVIDIA application container "Tensorflow 18.07 PY3" was used and
Tensorflow was uninstalled. After some minor changes described in 4.3.2 the
compilation was straight-forward and the once compiled package could be easily
installed on the other DGX-1 system.

Due to these challenges and experiment design decisions, some limitations apply to
the results of this thesis:

• The benchmarks for DNN training could not be run on the IBM AC922 System
due to availability and time constraints.

• As research on hardware for neural network architectures other than CNN is
quite rare, benchmark implementations for other architectures were hard to find.
Therefore, the benchmarks for DNN training only comprise convolutional neural
networks.
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• The Tensorflow version used to measure NVLink bandwidth, is the version from
NVIDIA’s application container. One might get slightly different results if the
Github version used for PCIe would be compiled without the changes for PCIe
and used as comparison to the one where peer-to-peer is disabled.

• For the training of the neural networks from the Tensorflow Github repository
the variable update method parameter server was used, one could also use NCCL
allreduce, which might lead to better performance for the NVLink connections.
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6.1. Hardware Selection

The workloads used in this thesis should definitely be run on the IBM AC922 system
as well in order to have a holisitc comparison of the presented systems. Especially
the results of workloads with a high amount of device-to-host and host-to-device
communication could deliver insightful findings. Also, it would be interesting to
see how the scaling performance behaves for the training on more than two (8355-
GTG model) respectively three GPUS (8355-GTW model) since this would show the
practical performance of the XBus connection, which was slower than expected in the
microbenchmarks performed in this study.

Furthermore, the NVIDIA DGX-2 system could be included as it uses NVSwitch
with NVLink 2.0 and 16 V100 GPUs with 32GB of GPU memory instead of 16GB. It
would be interesting to see, which effects these changes in the system have. According
to NVIDIA, for certain workloads, this system delivers 10-times the performance of the
DGX-1 V100 system used here.1

6.2. Deep Learning Workloads

In this thesis only CNNs used for computer vision tasks are covered. In order to get a
broader and deeper understanding of how the performance of training neural networks
is affected by GPU interconnects, other domains, in which deep learning is currently
used, should be explored. Other domains could be speech recognition or machine
translation. The OpenNMT initiative could be used as a starting point.2

As it has been theoretically elaborated in chapter 2.1.5 that recurrent neural networks
and fully-connected neural networks stress the interconnects more than convolutional
neural networks, these network architectures should be covered by future research
as well. On top of that, hybrid models should be taken into account. For example,
DeepSpeech, which has been identified as an interesting model for the comparison of

1see https://www.nvidia.com/content/dam/en-zz/es_em/Solutions/Data-Center/dgx-2/
nvidia-dgx-2-datasheet.pdf

2see http://opennmt.net/
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performance using different types of interconnects, has been released in two newer
versions, Deep Speech 2 and Deep Speech 3. It would be interesting to see how the
model architecture evolved and what impacts it has on this reseach.

Additionally, model-parallel training of deep neural networks should be brought
into focus.

Also, one could optimize a deep learning workload in order to stress the bandwidth
of interconnects. This will lead to a stronger This might lead to less comparability,
which was a key aspect of this thesis, but it

Having all these ideas in mind, the basis for further experiments should be a deeper
analysis of DNN training workloads. This could be achieved by a more exhaustive
profiling in order to determine which operations dominate the execution time, again
focusing on the data movements as done in this thesis.

6.3. Comparison of NVLink and PCIe for DNN Training

As the test results for the training of Deep Neural Networks partly show inconsistency
to what was expected, the Tensorflow version used for comparison should be examined
again. It would be interesting to see if using the GitHub Tensorflow version of release
1.8.03 without changes delivers results different from the results that were gotten in the
presented experiments using the NVIDIA preinstalled Tensorflow version.

3see https://github.com/tensorflow/tensorflow/tree/r1.8
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7. Conclusion

In this thesis different GPU interconnects were compared based on their performance
with regards to training deep neural networks. Therefore, different neural network
architectures were studied and an idea how to classify neural networks was developed.

The bandwidth for data copies and DMA read and write operations were identified
as metrics that can be used to evaluate the performance of interconnects for deep
learning workloads. Microbenchmarks were performed in order to figure out the
practically achievable bandwidth of interconnects. It was shown that NVLink can
deliver a higher percentage of its nominal bandwidth than PCIe can and thus NVLink
delivers considerably higher bandwidths.

In the DNN benchmarks it was shown that the identified metrics are mainly important
for communication intensive workloads. A classification of deep neural networks based
on their training workloads was defined. It could be demonstrated that using PCIe for
communication intensive workloads leads to a lower performance in terms of images
processed per second than using NVLink.

However, it was also shown that NVLink cannot outperform PCIe for all studied
workloads. Only for four out of nine workloads a better performance in terms of images
processed per second is achieved. This stresses the importance of a classification for
deep learning workloads.

Regarding the comparison of multi-GPU systems, it could be evidenced for most
workloads that the DGX-1 V100 systems outperforms the DGX-1 P100 system if the
NVLink connections are used. When using the PCIe connections this behavior could
also be seen for many workloads except for the scaling to eight GPUs. This might
be caused by the slow PIX connection, which also showed lower performance in the
microbenchmarks.

Based on the results of the microbenchmarks and the results from the profiling of
the training workloads, one could assume that AC922 would outperform the DGX-1
systems because of its fast interconnects between CPU and GPU. However, it must be
kept in mind that the AC922 system used in this study only has half of the GPUs that
the DGX-1 V100 system has. The assumption could neither be proven nor disproved and
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should be studied in future research considering the classification of neural networks
developed in this thesis.

In summary, it can be said that NVLink outperforms the PCIe interconnects for
communication-intensive workloads. However, for the majority of networks studied in
this thesis, the advantage of having higher bandwidth did not lead to a performance
increase in terms of speed of image processing during the training phase. This finding
suggests that there cannot be a single answer to the question if training deep neural
networks benefits from using high bandwidth interconnects but having an understand-
ing of how the algorithm works and especially how often data needs to be transferred
is still necessary.
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B.1. Changes to mgbench

B.1.1. Run only relevant tests

Listing B.1: original file - mgbench/run.sh

83 # Run L1 tests
84 echo ""
85 echo "L1␣Tests"
86 echo "--------"
87
88 echo "1/8␣Half-duplex␣(unidirectional)␣memory␣copy"
89 ./build/halfduplex > l1-halfduplex.log
90
91 echo "2/8␣Full-duplex␣(bidirectional)␣memory␣copy"
92 ./build/fullduplex > l1-fullduplex.log
93
94 echo "3/8␣Half-duplex␣DMA␣Read"
95 ./build/uva > l1-uvahalf.log
96
97 echo "4/8␣Full-duplex␣DMA␣Read"
98 ./build/uva --fullduplex > l1-uvafull.log
99

100 echo "5/8␣Half-duplex␣DMA␣Write"
101 ./build/uva --write > l1-uvawhalf.log
102
103 echo "6/8␣Full-duplex␣DMA␣Write"
104 ./build/uva --write --fullduplex > l1-uvawfull.log
105
106 #echo "7/8 Scatter-Gather"
107 #./build/scatter > l1-scatter.log
108
109 #echo "8/8 Scaling"
110 #./build/sgemm -n 4096 -k 4096 -m 4096 --repetitions=100 --regression=false

--scaling > l1-scaling.log
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B.1.2. Run the tests using PCIe

mgbench/src/L1/fullduplex.cpp

Listing B.2: changed file - mgbench/src/L1/fullduplex.cpp

132 printf("NOT␣Enabling␣peer-to-peer␣access\n");
133 /*
134 // Enable peer-to-peer access
135 for(int i = 0; i < ndevs; ++i)
136 {
137 CUDA_CHECK(cudaSetDevice(i));
138 for(int j = 0; j < ndevs; ++j)
139 if (i != j)
140 cudaDeviceEnablePeerAccess(j, 0);
141 } */

mgbench/src/L1/halfduplex.cpp

Listing B.3: changed file - mgbench/src/L1/halfduplex.cpp

224 printf("NOT␣Enabling␣peer-to-peer␣access\n");
225 /*
226 // Enable peer-to-peer access
227 for(int i = 0; i < ndevs; ++i)
228 {
229 CUDA_CHECK(cudaSetDevice(i));
230 for(int j = 0; j < ndevs; ++j)
231 if (i != j)
232 cudaDeviceEnablePeerAccess(j, 0);
233 } */

B.1.3. Run the tests using different message sizes

halfduplex.cpp 10 MB

Listing B.4: changed file - mgbench/src/L1/halfduplex.cpp

37 DEFINE_uint64(size, 10*1024*1024, "The␣amount␣of␣data␣to␣transfer");
38 DEFINE_uint64(chunksize, 0, "If␣not␣zero,␣fragments␣the␣data␣into␣chunksize-

byte␣chunks");
39 DEFINE_uint64(repetitions, 100, "Number␣of␣repetitions␣to␣average");
40 DEFINE_bool(sync_chunks, false, "If␣true,␣synchronizes␣at␣the␣end␣of␣each␣

fragment␣transfer");
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fullduplex.cpp 1 MB

Listing B.5: changed file - mgbench/src/L1/halfduplex.cpp

37 DEFINE_uint64(size, 1*1024*1024, "The␣amount␣of␣data␣to␣transfer");
38 DEFINE_uint64(repetitions, 100, "Number␣of␣repetitions␣to␣average");
39
40 DEFINE_int32(from, -1, "Only␣copy␣from␣a␣single␣GPU␣index,␣or␣-1␣for␣all");
41 DEFINE_int32(to, -1, "Only␣copy␣to␣a␣single␣GPU␣index,␣or␣-1␣for␣all");

uva.cu 100 KB

Listing B.6: changed file - mgbench/src/L1/uva.cu

39 DEFINE_uint64(size, 0.1*1024*1024, "The␣amount␣of␣data␣to␣transfer");
40 DEFINE_uint64(type_size, sizeof(float), "The␣size␣of␣the␣data␣chunk␣to␣"
41 "transfer,␣e.g.␣4␣for␣a␣4-byte␣float");
42 DEFINE_uint64(repetitions, 100, "Number␣of␣repetitions␣to␣average");
43 DEFINE_uint64(block_size, 32, "Copy␣kernel␣block␣size");
44 DEFINE_bool(fullduplex, false, "True␣for␣bi-directional␣copy");
45 DEFINE_bool(write, false, "Perform␣DMA␣write␣instead␣of␣read");
46 DEFINE_bool(random, false, "Use␣random␣access␣instead␣of␣coalesced");
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B.2. Changes to Tensorflow

B.2.1. Changes in cuda_gpu_executor.cc

The following has been changed in the file /tensorflow/tensorflow/stream_executor/
cuda/cuda_gpu_executor.cc from branch r1.8 [60]

Listing B.7: original file - branch: r1.8 - cuda_gpu_executor.cc

732 bool CUDAExecutor::CanEnablePeerAccessTo(StreamExecutorInterface *other) {
733 CUDAExecutor *cuda_other = static_cast<CUDAExecutor *>(other);
734 return CUDADriver::CanEnablePeerAccess(context_, cuda_other->context_);
735 }

Listing B.8: changed file: - branch: r1.8 - cuda_gpu_executor.cc

732 bool CUDAExecutor::CanEnablePeerAccessTo(StreamExecutorInterface *other) {
733 CUDAExecutor *cuda_other = static_cast<CUDAExecutor *>(other);
734 return false;
735 }

B.2.2. Compiling changed Tensorflow

The compilation of Tensorflow r1.8 with the

Listing B.9: Step-by-step: Compile TensorFlow on DGX-1 P100

# delete existing tf version
sudo rm -r /opt/tensorflow

# delete existing bazel version
sudo rm -r /usr/local/lib/bazel
sudo rm -r /usr/local/bin/bazel

# update apt-get
sudo apt-get update

# install bazel version 0.15.0 with
./bazel-0.15.0-installer-linux-x86_64.sh --user
export PATH="$PATH:$HOME/bin"
TEST_TMPDIR=/tmp/bazel/ bazel version
export LC_ALL=C
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# update / install several packages that are needed
sudo apt install python-pip
sudo apt install python-numpy python-scipy python-wheel python-mock python-six
sudo pip install --upgrade setuptools
sudo pip install keras
sudo pip install keras-preprocessing

# in order to use the preinstalled NCCL version (2.2.13), some files need to be
reordered, because they are by default split into different locations

cd /usr/lib
sudo mkdir nccl2
cd nccl2
sudo mkdir lib
sudo mkdir include
sudo ln -s /usr/lib/x86_64-linux-gnu/libnccl.so /usr/lib/nccl2/lib/libnccl.so
sudo ln -s /usr/include/nccl.h /usr/lib/nccl2/include/nccl.h
sudo ln -s /usr/lib/x86_64-linux-gnu/libnccl.so.2.2.13 /usr/lib/nccl2/lib/

libnccl.so.2.2.13
sudo ln -s /usr/lib/x86_64-linux-gnu/libnccl.so.2 /usr/lib/nccl2/lib/libnccl.so

.2
sudo ln -s /usr/ /usr/lib/nccl2/NCCL-SLA.txt
sudo chmod -R 777 nccl2
export TF_NCCL_VERSION=’2.2.13’
export NCCL_INSTALL_PATH=/usr/lib/nccl2

# inside the tensorflow directory, configure the build
cd tensorflow
TEST_TMPDIR=/tmp/bazel/ ./configure

# make tensorflow package builder
TEST_TMPDIR=/tmp/bazel/ bazel build --config=opt --config=cuda //tensorflow/

tools/pip_package:build_pip_package

# build the package
./bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

# install the changed tensorflow via pip (the package can be found in /tmp/
tensorflow_pkg)

sudo pip install tensorflow-1.8.0-cp27-cp27mu-linux_x86_64.whl
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B.2.3. Installing changed Tensorflow

Listing B.10: Step-by-step: Install changed TensorFlow

# delete existing TensorFlow version
sudo rm -r /opt/tensorflow

# update / install several packages that are needed
sudo apt-get update
sudo apt install python-pip
sudo apt install python-numpy python-scipy python-wheel python-mock python-six
sudo pip install --upgrade setuptools
sudo pip install keras
sudo pip install keras-preprocessing

# install the changed TensorFlow version
sudo pip install tensorflow-1.8.0-cp27-cp27mu-linux_x86_64.whl
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C.1. Microbenchmarks Results

C.1.1. nvidia-smi Topology Query Results

GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 mlx5_0 mlx5_2 mlx5_1 mlx5_3 CPU Affinity
GPU0 X NV1 NV1 NV1 NV1 SYS SYS SYS PIX SYS PHB SYS 0-19,40-59
GPU1 NV1 X NV1 NV1 SYS NV1 SYS SYS PIX SYS PHB SYS 0-19,40-59
GPU2 NV1 NV1 X NV1 SYS SYS NV1 SYS PHB SYS PIX SYS 0-19,40-59
GPU3 NV1 NV1 NV1 X SYS SYS SYS NV1 PHB SYS PIX SYS 0-19,40-59
GPU4 NV1 SYS SYS SYS X NV1 NV1 NV1 SYS PIX SYS PHB 20-39,60-79
GPU5 SYS NV1 SYS SYS NV1 X NV1 NV1 SYS PIX SYS PHB 20-39,60-79
GPU6 SYS SYS NV1 SYS NV1 NV1 X NV1 SYS PHB SYS PIX 20-39,60-79
GPU7 SYS SYS SYS NV1 NV1 NV1 NV1 X SYS PHB SYS PIX 20-39,60-79
mlx5_0 PIX PIX PHB PHB SYS SYS SYS SYS X SYS PHB SYS
mlx5_2 SYS SYS SYS SYS PIX PIX PHB PHB SYS X SYS PHB
mlx5_1 PHB PHB PIX PIX SYS SYS SYS SYS PHB SYS X SYS
mlx5_3 SYS SYS SYS SYS PHB PHB PIX PIX SYS PHB SYS X

Table C.1.: nvidia-smi topo DGX-1 P100; nvidia-smi topo -m

GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 mlx5_0 mlx5_2 mlx5_1 mlx5_3 CPU Affinity
GPU0 X PIX PHB PHB SYS SYS SYS SYS PIX SYS PHB SYS 0-19,40-59
GPU1 PIX X PHB PHB SYS SYS SYS SYS PIX SYS PHB SYS 0-19,40-59
GPU2 PHB PHB X PIX SYS SYS SYS SYS PHB SYS PIX SYS 0-19,40-59
GPU3 PHB PHB PIX X SYS SYS SYS SYS PHB SYS PIX SYS 0-19,40-59
GPU4 SYS SYS SYS SYS X PIX PHB PHB SYS PIX SYS PHB 20-39,60-79
GPU5 SYS SYS SYS SYS PIX X PHB PHB SYS PIX SYS PHB 20-39,60-79
GPU6 SYS SYS SYS SYS PHB PHB X PIX SYS PHB SYS PIX 20-39,60-79
GPU7 SYS SYS SYS SYS PHB PHB PIX X SYS PHB SYS PIX 20-39,60-79
mlx5_0 PIX PIX PHB PHB SYS SYS SYS SYS X SYS PHB SYS
mlx5_2 SYS SYS SYS SYS PIX PIX PHB PHB SYS X SYS PHB
mlx5_1 PHB PHB PIX PIX SYS SYS SYS SYS PHB SYS X SYS
mlx5_3 SYS SYS SYS SYS PHB PHB PIX PIX SYS PHB SYS X

Table C.2.: nvidia-smi topo DGX-1 P100; nvidia-smi topo -mp
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GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 mlx5_0 mlx5_2 mlx5_1 mlx5_3 CPU Affinity
GPU0 X NV1 NV1 NV2 NV2 SYS SYS SYS PIX SYS PHB SYS 0-19,40-59
GPU1 NV1 X NV2 NV1 SYS NV2 SYS SYS PIX SYS PHB SYS 0-19,40-59
GPU2 NV1 NV2 X NV2 SYS SYS NV1 SYS PHB SYS PIX SYS 0-19,40-59
GPU3 NV2 NV1 NV2 X SYS SYS SYS NV1 PHB SYS PIX SYS 0-19,40-59
GPU4 NV2 SYS SYS SYS X NV1 NV1 NV2 SYS PIX SYS PHB 20-39,60-79
GPU5 SYS NV2 SYS SYS NV1 X NV2 NV1 SYS PIX SYS PHB 20-39,60-79
GPU6 SYS SYS NV1 SYS NV1 NV2 X NV2 SYS PHB SYS PIX 20-39,60-79
GPU7 SYS SYS SYS NV1 NV2 NV1 NV2 X SYS PHB SYS PIX 20-39,60-79
mlx5_0 PIX PIX PHB PHB SYS SYS SYS SYS X SYS PHB SYS
mlx5_2 SYS SYS SYS SYS PIX PIX PHB PHB SYS X SYS PHB
mlx5_1 PHB PHB PIX PIX SYS SYS SYS SYS PHB SYS X SYS
mlx5_3 SYS SYS SYS SYS PHB PHB PIX PIX SYS PHB SYS X

Table C.3.: nvidia-smi topo DGX-1 V100; nvidia-smi topo -m

GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 mlx5_0 mlx5_2 mlx5_1 mlx5_3 CPU Affinity
GPU0 X PIX PHB PHB SYS SYS SYS SYS PIX SYS PHB SYS 0-19,40-59
GPU1 PIX X PHB PHB SYS SYS SYS SYS PIX SYS PHB SYS 0-19,40-59
GPU2 PHB PHB X PIX SYS SYS SYS SYS PHB SYS PIX SYS 0-19,40-59
GPU3 PHB PHB PIX X SYS SYS SYS SYS PHB SYS PIX SYS 0-19,40-59
GPU4 SYS SYS SYS SYS X PIX PHB PHB SYS PIX SYS PHB 20-39,60-79
GPU5 SYS SYS SYS SYS PIX X PHB PHB SYS PIX SYS PHB 20-39,60-79
GPU6 SYS SYS SYS SYS PHB PHB X PIX SYS PHB SYS PIX 20-39,60-79
GPU7 SYS SYS SYS SYS PHB PHB PIX X SYS PHB SYS PIX 20-39,60-79
mlx5_0 PIX PIX PHB PHB SYS SYS SYS SYS X SYS PHB SYS
mlx5_2 SYS SYS SYS SYS PIX PIX PHB PHB SYS X SYS PHB
mlx5_1 PHB PHB PIX PIX SYS SYS SYS SYS PHB SYS X SYS
mlx5_3 SYS SYS SYS SYS PHB PHB PIX PIX SYS PHB SYS X

Table C.4.: nvidia-smi topo DGX-1 V100; nvidia-smi topo -mp

GPU0 GPU1 GPU2 GPU3 mlx5_1 mlx5_0 CPU Affinity
GPU0 X NV3 SYS SYS SYS NODE 0-0,4-4,8-8,12-12,16-16,20-20,24-24,28-28,

32-32,36-36,40-40,44-44,48-48,52-52,56-56,
60-60,64-64,68-68,72-72,76-76

GPU1 NV3 X SYS SYS SYS NODE 0-0,4-4,8-8,12-12,16-16,20-20,24-24,28-28,
32-32,36-36, 40-40,44-44,48-48,52-52,56-56,
60-60,64-64,68-68,72-72,76-76

GPU2 SYS SYS X NV3 NODE SYS 80-80,84-84,88-88,92-92,96-96,100-100,104-104,
108-108,112-112,116-116,120-120,124-124,
128-128,132-132,136-136,140-140,144-144

GPU3 SYS SYS NV3 X NODE SYS 80-80,84-84,88-88,92-92,96-96,100-100,104-104,
108-108,112-112,116-116,120-120,124-124,
128-128,132-132,136-136,140-140,144-144

mlx5_1 SYS SYS NODE NODE X SYS
mlx5_0 NODE NODE SYS SYS SYS X

Table C.5.: nvidia-smi topo AC922; nvidia-smi topo -m
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C.1.2. Mgbench Data Copies
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Figure C.1.: DGX-1 P100 bandwidth for unidirectional data copies
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Figure C.2.: DGX-1 P100 bandwidth for bidirectional data copies
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Figure C.3.: DGX-1 P100 bandwidth for DMA read
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Figure C.4.: DGX-1 P100 bandwidth for DMA write
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Figure C.5.: Latency for GPU-to-GPU unidirectional memory copies on DGX-1 P100

67



C. Experiment Results

0

5

10

15

20

25

0-1 0-2 0-3 0-4 0-5 0-6 0-7

La
te

nc
y 

[µ
s]

GPU-GPU mem copy

DGX-1 P100: GPU-to-GPU bidirectional memory copies - 1 KB

p2p enabled p2p disabled

(a) data size: 1 KB

0

5

10

15

20

25

0-1 0-2 0-3 0-4 0-5 0-6 0-7

La
te

nc
y 

[µ
s]

GPU-GPU mem copy

DGX-1 P100: GPU-to-GPU bidirectional memory copies - 10 KB

p2p enabled p2p disabled

(b) data size: 10 KB

0
5

10
15
20
25
30
35
40
45

0-1 0-2 0-3 0-4 0-5 0-6 0-7

La
te

nc
y 

[µ
s]

GPU-GPU mem copy

DGX-1 P100: GPU-to-GPU bidirectional memory copies - 100 KB

p2p enabled p2p disabled

(c) data size: 100 KB

0

50

100

150

200

250

300

350

400

0-1 0-2 0-3 0-4 0-5 0-6 0-7

La
te

nc
y 

[µ
s]

GPU-GPU mem copy

DGX-1 P100: GPU-to-GPU bidirectional memory copies - 1 MB

p2p enabled p2p disabled

(d) data size: 1 MB

0

500

1.000

1.500

2.000

2.500

0-1 0-2 0-3 0-4 0-5 0-6 0-7

La
te

nc
y 

[µ
s]

GPU-GPU mem copy

DGX-1 P100: GPU-to-GPU bidirectional memory copies - 10 MB

p2p enabled p2p disabled

(e) data size: 10 MB

0

5

10

15

20

25

0-1 0-2 0-3 0-4 0-5 0-6 0-7

La
te

nc
y 

[m
s]

GPU-GPU mem copy

DGX-1 P100: GPU-to-GPU bidirectional memory copies - 100 MB

p2p enabled p2p disabled

(f) data size: 100 MB

0

50

100

150

200

250

0-1 0-2 0-3 0-4 0-5 0-6 0-7

La
te

nc
y 

[m
s]

GPU-GPU mem copy

DGX-1 P100: GPU-to-GPU bidirectional memory copies - 1000 MB

p2p enabled p2p disabled

(g) data size: 1000 MB

Figure C.6.: Latency for GPU-to-GPU bidirectional memory copies on DGX-1 P100
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Figure C.7.: Latency for GPU-to-GPU DMA read on DGX-1 P100
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Figure C.8.: DGX-1 V100 bandwidth for unidirectional data copies
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Figure C.9.: DGX-1 V100 bandwidth for bidirectional data copies
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Figure C.10.: DGX-1 V100 bandwidth for DMA read
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Figure C.11.: DGX-1 V100 bandwidth for DMA write

71



C. Experiment Results

72



C. Experiment Results

C.1.3. Latency
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Figure C.12.: Latency for GPU-to-GPU unidirectional memory copies on DGX-1 V100
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Figure C.13.: Latency for GPU-to-GPU bidirectional memory copies on DGX-1 V100
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Figure C.14.: Latency for GPU-to-GPU DMA read on DGX-1 V100
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Figure C.15.: AC922 bandwidth for unidirectional data copies
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Figure C.16.: AC922 bandwidth for bidirectional data copies
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C.2. DL Benchmarks Results

C.2.1. Scaling Training using PCIe and NVLink
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Figure C.17.: Scaling training of alexnet with (p2p enabled) and without NVLink (p2p
disabled)
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Figure C.18.: Scaling training of googlenet with (p2p enabled) and without NVLink
(p2p disabled)
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Figure C.19.: Scaling training of inception3 with (p2p enabled) and without NVLink
(p2p disabled)
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Figure C.20.: Scaling training of inception4 with (p2p enabled) and without NVLink
(p2p disabled)
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Figure C.21.: Scaling training of resnet50 with (p2p enabled) and without NVLink (p2p
disabled)
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Figure C.22.: Scaling training of resnet152 with (p2p enabled) and without NVLink
(p2p disabled)
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Figure C.23.: Scaling training of vgg11 with (p2p enabled) and without NVLink (p2p
disabled)
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Figure C.24.: Scaling training of vgg16 with (p2p enabled) and without NVLink (p2p
disabled)
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Figure C.25.: Scaling training of lenet5 with (p2p enabled) and without NVLink (p2p
disabled)
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C.2.2. Scaling Efficiency
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Figure C.26.: Scaling efficiency 4 GPUs versus 1 GPU with (p2p enabled) and without
NVLink (p2p disabled)
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Figure C.27.: Scaling efficiency 8 GPUs versus 1 GPU with (p2p enabled) and without
NVLink (p2p disabled)
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Figure C.28.: Scaling efficiency using only PCIe compared to using NVLink on DGX-1
P100
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Figure C.29.: Scaling efficiency using only PCIe compared to using NVLink on DGX-1
P100
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Figure C.30.: Scaling efficiency using only PCIe compared to using NVLink on DGX-1
V100
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