U

FAKULTAT FUR INFORMATIK

TECHNISCHEN UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

Evaluation of On-Node GPU Interconnects
for Training Deep Neural Networks

Nane-Maiken Zarges

0

U

FAKULTAT FUR INFORMATIK

TECHNISCHEN UNIVERSITAT MUNCHEN

DEPARTMENT OF INFORMATICS

TECHNISCHE UNIVERSITAT MUNCHEN

Bachelor’s Thesis in Informatics

Evaluation of On-Node GPU Interconnects
for Training Deep Neural Networks

Evaluierung von On-Node GPU
Interconnects fiir das Training von Deep
Neural Networks

Author: Nane-Maiken Zarges
Supervisor: Prof. Dr. rer. nat. Martin Schulz
Adyvisor: M. Sc. Amir Raoofy

Submission Date: 15.01.2019

I confirm that this bachelor’s thesis in informatics is my own work and I have docu-
mented all sources and material used.

Garching bei Miinchen, 15.01.2019 Nane-Maiken Zarges

Abstract

Training deep neural networks is a computationally intensive task. The training time
can be shortened by using hardware accelerators such as Graphics Processing Units
(GPUs). Therefore, multi-GPU systems are used to speed up the training process.
During the training process data needs to be copied from the CPU to the GPU and also
between the GPUs. This thesis evaluates the performance of different on-node GPU
interconnects: PCle and NVLink.

Microbenchmarks are designed and conducted to measure the performance of these
interconnects for basic operations involved in training deep neural networks. The
practical impact of using different interconnects when training various deep neural
networks on multi-GPU systems is measured for using PCle interconnects and for
using NVLink interconnects. These experiments are conducted on different multi-GPU
systems that have distinct interconnect systems.

A classification approach is defined, which is used to classify the training work-
loads of deep neural networks into rather communication- or computation-intensive
workloads. This classification is necessary to understand how much a certain training
workload would benefit from a high-performance interconnect system.

1ii

Contents

Abstract

1.

Introduction

1.1. Motivation e e e
12, Purpose.
1.3. Thesis Structure e

Deep Learning and its Hardware Requirements

2.1. Introduction to Deep Learning
2.1.1. Learning Algorithms
2.1.2. Deep Neural Networks
2.1.3. Neural Network Architectures
2.1.4. Distributed Deep Learning
2.1.5. C(lassification of Deep Neural Networks

2.2. Hardware Accelerators for Deep Learning

Multi-GPU Computing Systems

3.1. NVIDIA DGX-1 with 8 NVIDIAP100GPUs
3.2. NVIDIA DGX-1 with 8 NVIDIA VI00GPUs
3.3. IBM Power System AC922 with 4 NVIDIA V1I00GPUs

Experiment Design

41. Microbenchmarks L
4.2. Benchmarks for DNN training

4.3. Methods and Parameter Settings

43.1. Microbenchmarks
4.3.2. Benchmarks for DNN training

Experiment Results

5.1. Microbenchmarks
51.1. DGX-1P100Results
512. DGX-1V100Results
513. AC922 Results.o

iii

W~ R

g U e R

12
13
15

19
19
21
23

25
25
26
27
27
30

v

Contents

5.2. Benchmarks for DNN Training
5.2.1. Workload Analysis using Nvprof
5.2.2. Training Performance with PCle only and with NVLink / PCle .

5.3. Discussion of Results . .

5.4. Limitations and Challenges

6. Future Work
6.1. Hardware Selection . . .

6.2. Deep Learning Workloads
6.3. Comparison of NVLink and PCle for DNN Training

7. Conclusion

A. Multi-GPU Computing Systems

B. Experiment Setup
B.1. Changes to mgbench . .

B.1.1. Runonlyrelevanttests.
B.1.2. RunthetestsusingPCle.
B.1.3. Run the tests using different message sizes

B.2. Changes to Tensorflow .

B.2.1. Changes in cuda_gpu_executor.cc
B.2.2. Compiling changed Tensorflow
B.2.3. Installing changed Tensorflow

C. Experiment Results

C.1. Microbenchmarks Results
C.1.1. nvidia-smi Topology Query Results
C.1.2. Mgbench DataCopies

C.13. Latency.
C.2. DL Benchmarks Results

C.2.1. Scaling Training using PCle and NVLink

C.2.2. Scaling Efficiency
List of Figures
List of Tables

Bibliography

52
52
52
53

54

56

57
57
57
58
58
60
60
60
62

63
63
63
65
73
77
77
82

88

91

92

1. Introduction

1.1. Motivation

Deep Learning as a part of Machine Learning is becoming increasingly important
in Artificial Intelligence (Al) research and application. Current applications range
from speech recognition to autonomous driving, medical diagnoses and many more.
Although research on deep learning goes back several decades, during the last 5-10
years it gained a lot more attention. One reason for that is that learning weights of
deep neural network models, known as training phase, is getting much faster thanks to
exploiting hardware accelerators such as Graphics Processing Units (GPUs).[1] As GPUs
are especially designed for highly parallel operations such as matrix multiplication, they
perform a lot better than CPUs not only in computer graphics tasks such as real-time
3D graphics but also in training deep neural networks as this requires repetitive and
highly parallel floating point operations.

Training a deep neural network can take hours to days, which can decelerate progress
in Deep Learning.[2] [1] Therefore, finding solutions to speed up the training process
has become crucial and the training is often parallelized on several GPUs. However,
with more and ever faster GPUs, communication between the GPUs and also between
GPU and CPU can become a bottleneck. Traditionally, PCle interconnects are used
to connect GPUs to the CPU. NVIDIA developed a high-performance, proprietary
interconnect: NVLink. NVLink can be used to connect GPUs and in some systems also
to connect the CPU with the GPUs. [3]

1.2. Purpose

The purpose of this thesis is to evaluate the performance of GPU interconnects for
training deep neural networks (DNNSs). Specifically, it is aimed at comparing the
performance of NVLink and PCle connections in the use case of training deep neural
networks. In order to achieve a meaningful comparison, it is crucial to understand how
the training process of DNNs works and what the differences of various neural network
architectures are. Based on this knowledge, appropriate benchmarks need to be defined
and a classification of deep neural networks based on their training workload has to be

1. Introduction

elaborated.
The investigation is based on literature research and experiments. The experiments
are performed on the following hardware setups:

e NVIDIA DGX-1, 8 Tesla P100 GPUs, NVLink 1.0 interconnect, Intel Xeon CPUs,
PClIe Gen3

e NVIDIA DGX-1, 8 Tesla V100 GPUs, NVLink 2.0 interconnect, Intel Xeon CPUs,
PCle Gen3

e IBM AC922, 4 Tesla V100 GPUs, NVLink 2.0 interconnect, Power9 CPUs, PCle
Gen4

The hardware chosen for the benchmarks is manifold with regards to the interconnect
systems: The two systems from NVIDIA use NVLink as GPU-to-GPU interconnects.
For the connection between the CPU and the GPUs PCle is used. The different NVLink
versions do not only deliver different nominal bandwidth, but the different GPU
versions also support a different number of NVLink connections, which enables further
improvements in the interconnect system. The third system, IBM AC922 offers another
specific characteristic: Not only the GPUs are connected via NVLink, but also the
CPU-to-GPU connections are NVLink connections.

The main research question to be answered in this study is:

e How do different GPU interconnects compare in terms of performance for training
Deep Neural Networks?

Consequentially, these subquestions need to be answered:

e Which metrics can be used to evaluate the performance of the interconnects for
Deep Learning workloads?

e How bandwidth-sensitive are different neural network architectures?
e How do different architectures behave in the sense of scaling for multi-GPUs?

e How do the findings about interconnects explain this?

1. Introduction

1.3. Thesis Structure

The remainder of this thesis is organized as follows:

In the second chapter, hardware requirements for efficiently performing deep learning
workloads are elaborated. Therefore, a short introduction into deep learning is given
including a description of different neural networks architectures. Also, a classification
of deep neural networks based on the training workloads is elaborated. It is discussed
why scaling to multi-GPUs is necessary and what kind of interconnects can be used to
connect GPUs and CPUs.

In chapter 3, we take a deeper look into the hardware architecture of the used systems.
All systems are presented focusing on the particular interconnect system.

Chapter 4 describes the experiment design in detail. At first, the general idea of two
classes of benchmarks is presented. Then, the microbenchmarks and the designated
deep neural network training benchmarks are explained in detail.

Chapter 5 presents the results of these benchmarks, discusses them and describes
challenges in the benchmark design and run as well as limitations that apply to the
results.

In chapter 6 prospects for future research are presented and chapter 7 concludes the
findings of this work.

2. Deep Learning and its Hardware
Requirements

2.1. Introduction to Deep Learning

Deep Learning (DL) "is part of the broad field of Artificial Intelligence (AI), which is the
science and engineering of creating intelligent machines that have the ability to achieve
goals like a human". [4, pp. 1-2] The term "Artificial Intelligence" was introduced
by John McCarthy in his 1955 proposal on a summer research project, in which he
explained some of the key aspects of Al, including "Neuron Nets" and how they can be
arranged to form concepts. [5, p. 12]

Within Al there is a subfield called Machine Learning (ML). It enables the computer
to learn from experience rather than to take take decisions based on hard-coded rules.
[4, p. 1] Traditional ML approaches often require careful engineering and domain
expertise to design a program that transforms raw data into representations, which can
be used by a classifier to to detect or classify patterns in the input. [6, p. 436]

Deep Learning can be seen as a class of Machine Learning that uses multi layer
(deep) neural networks to solve tasks without the need of predefined representations.
By using Deep Learning algorithms the computer is not only able to solve problems, for
which the process of solving can be described in a formal, mathematical way, but also
problems that are solved intuitively by humans. The layers of features are learned from
data. Deep Learning methods are so-called representation-learning methods, which
means that the representations that are needed to classify or detect a certain pattern in
the input data, are learned by the method itself. [6, p. 436] [7, pp. 1-4]

2.1.1. Learning Algorithms

A learning algorithm can be defined as "a mathematical framework or procedure that
calculates the best output given a particular set of data". The calculation is adjusted
based on the difference between the actual and the target output. [8] The learning
procedure for DNNSs is described in 2.1.2.

Mainly two different categories of learning are differentiated in Machine Learning:
Supervised learning and unsupervised learning [7, p. 102].

2. Deep Learning and its Hardware Requirements

/ Artificial Intelligence \

Machine Learning

Deep Learning

- /

Figure 2.1.: Deep Learning in the context of Artificial Intelligence

In supervised learning algorithms the training data is labeled. For example, in image
recognition we have a certain number of classes to which the images belong. In the
training set each image is labeled with the class it belongs to. Unsupervised learning
means that there is no target output given with the training set. This form of learning
can for example be used for clustering or noise reduction tasks. The model learns the
e.g. the classes during the training process itself. [7, p. 102]

Also some other categories exist, such as semi-supervised learning and reinforcement
learning. In semi-supervised training part of the training data is labeled and the rest is
not. [9, pp. 23] Reinforcement learning is based on a reward function. It is often used
if the number of solutions is huge or infinite and if data sets are not independent but
if there exist sequences of highly correlated states, a decision may influence all future
decisions. A very famous example of Deep Reinforcement Learning is the paper by
Mnih et. al. on "Playing Atari with Deep Reinforcement Learning".[10]

There are also hybrid approaches, especially the effect of unsupervised pretraining
has been studied a lot.[11] [12]

In this thesis the focus is on supervised learning.

2.1.2. Deep Neural Networks

The design of neural networks was inspired by the human brain. [7, p. 13] The
human brain consists of many neurons, which forward signals depending on their
inputs. A neuron forwards information to a neighbor neuron if it receives enough
impulses. At the point of entering the neighbor neuron, electric signals are converted to
chemical signals and the synapse can strengthen or weaken the information forwarding
depending on the chemical signal. [9, pp. 10]

The first algorithmically described neural network was the single layer perceptron
described by Rosenblatt. The model consists of one node summing up weighted inputs

2. Deep Learning and its Hardware Requirements

and an externally applied bias. The result of this operation is applied to a hard limiter
to output a binary value: -1 if the hard limiter input was negative and +1 if it was
positive. [13, pp. 78]

The Perceptron Convergence Algorithm was used to let the single layer perceptron
learn. After some time steps, the weight vector, which is applied to the inputs, is
updated based on the difference between the desired outcome and the actual outcome
of the previous step. [13, pp. 80]

Deep Neural Networks are multi-layer systems, which were built based on the single
layer perceptron. By using multiple non-linear layers, representations of the input data
can be transformed into more abstract levels with every layer, which enables to learn
more complex functions. [6, p. 436] As shown by Cybenko a so-called continuous
teedforward neural network (FFN) with only one hidden layer can already approximate
every continuous function. [14]

A feedforward deep neural network consists of at least three layers: The input and
output layer and one or more hidden layers in between. [7, p. 165] The hidden layers
compute a weighted sum on their inputs, perform a non-linear function on it, and then
pass the result to the next layer. Very often the non-linear function used is the Rectified
Linear Unit (ReLU) function f(z) = max(z,0). [6, p. 437]

Backpropagation of Error & Stochastic Gradient Descent

For deep neural networks the learning does not work as for a single layer perceptron
since the error for hidden layers is not known. For a classifier problem the neural
network would process the input through its layers and output a vector of scores for
each class. An error function is defined, which measures the distance between the
desired output vector (the label) and the actual output vector. The goal of the learning
process is to minimize this error to a certain threshold. This is done by adjusting the
internal parameters (also called weights) of the neural network by using a gradient
vector. Minimizing the error function is done in several steps and each step involves
two stages: The propagation of errors backwards and the weight adjustment using
optimization schemes such as gradient descent. [15, pp. 241]

Stochastic Gradient Descent is an extension of the gradient descent algorithm. The
gradient descent algorithm uses the derivatives of a function f(x) = y to find a
minimum. Because the derivative f’(x) gives the slope of the function f at point x,
it provides insights into how x needs to be changed to find the minimum: If f/(x) is
positive, x needs to be decreased, if f '(x) is negative, x needs to be increased. For
higher dimensional functions, partial derivatives are used. Partial derivatives measure

2. Deep Learning and its Hardware Requirements

how f changes as only one of the inputs changes. The partial derivatives for all input
variables are combined in the gradient vector.

s34

axl-g(x)

Vaf(x) = [%/

_ 9

Iy f (%)

Decreasing f by moving into the direction of negative gradient is called the gradient
descent method. The size of steps is defined by the learning rate €, so a new point is
proposed by:

Xpew = X — €V f(X)

[7, pp- 80]

The stochastic gradient descent algorithm uses an expectation value to make the
operation less cost-intensive. The outputs and errors are computed for a small set of
inputs instead of for the whole training data. For the small set of data, an average
gradient is computed. This process is repeated for several small test sets until the
average error does not decrease anymore. [6, pp. 436] [7, pp. 149]

An efficient way to obtain the partial derivatives needed for the gradient descent
algorithm is the backpropagation algorithm, which can be seen as a practical application
of the chain rule for derivatives. [6, p. 438]

The learning process can be summarized as follows:

1. The weight matrix is initialized with random values and forwarded through the
neural network

2. The labels are compared to the actual output and the difference is saved as error
of the network. If this error is bigger than a certain threshold, the third step is
applied. If not, the training is finished.

3. The error is propagated backwards through the network. [9, pp. 17]

2.1.3. Neural Network Architectures

There are different neural network architectures including Convolutional Neural Net-
works (CNNs) and Recurrent Neural Networks (RNNs). The basic parts of these two
architectures are described in the following sections.

2. Deep Learning and its Hardware Requirements

3|5 |7 |13

1 (01
45 |1 5 |45 | 6 26 | 28
* 1|0 -1 =
32 (42| 2 | 5 32 | 50
1 (01

5|22 3| 8

1%3 + 1%45 + 1%32 + 0%5 + 0%5 + 0%42 + (-1)*7 + (-1)*45 + (-1)*2 = 26 |

Figure 2.2.: Convolution operation, adapted from [9]

Convolutional Neural Networks

One of the earliest convolutional neural networks was presented by LeCun in 1998. He
showed that character recognition can be done by a CNN without using hand-crafted
heuristics, which was needed by fully-connected feed-forward networks. [16] The
network he used is now called LeNet and described in this chapter.

CNNs are mainly used for computer vision tasks with a lot of training data. [17]
[9, p. 26] Their main advantages over fully-connected neural networks are:
Sparse connectivity, which means that by applying filters that are smaller than the
input the number of parameters is reduced. This leads to less computation time and
less memory needed.
Weight sharing, which means that one weight is not only used once but applied to
different input values. This also reduces memory requirements.
Equivariance leads to detecting a certain feature independent from where this feature
is located in the input data. This makes the network resistant to local distortions.
[7, pp. 329-335] [16, pp. 5-6]

Convolutional neural networks consist of three different types of weight layers:
convolutional, pooling, fully-connected.

Each Convolutional Layer consists of several independent filters, which are used
to extract different features within a picture. Each filter is moved over the whole input
matrix of the respective layer in order to detect the respective feature in the whole
picture. Figure 2.2 shows an example of the convolution operation. The filter applied
to the input matrix would be a feature extractor for vertical edges. After that, a bias is
added and a non-linear function such as ReLU is applied. [16]

2. Deep Learning and its Hardware Requirements

45 | 5 |45 | 6 max pooling | 45 | 45
o>
32 42| 2 | 5 42 | 8

5(22]) 3 | 8

Figure 2.3.: Pooling operation, adapted from [9]

The Pooling Layer is used to drop unnecessary information. Examples for pooling
operations are average-pooling, where the average value of a certain area is kept or
max-pooling as shown in 2.3. [9, p. 25] In the original paper from LeCun [16] this
layer is called sub-sampling layer. As by pooling layers the numbers of parameters is
reduced, it leads to a reduced computation time and makes the network more robust
to distortions.

Fully-connected Layers are often used at the end of a CNN in order to classify the
resulting feature vectors.[6, p. 439]

LeNet5 is a five weight layer neural network, including three convolution layers and
two fully-connected layers. After the first two convolution layers average pooling layers
originally called subsampling layers) are used. One of the main advantages of LeNet
as a CNN for image recognition was that no hand-designed feature extractors were
needed anymore. Other ML algorithms used for recognizing handwritten digits still
needed predefined feature extractors. [16]

AlexNet has won the ILSVCR! competition for object detection and image classifi-
cation in 2012. It was the first neural network trained on multiple GPUs. It consists
of eight weight layers, out of which the first five are convolutional layers and the
remaining three are fully-connected ones. After each layer, ReLU is applied on the
output. Additionally, after the first and second convolutional layer, a normalization
and a max-pooling layer is added. The fifth convolutional layer is followed by another
max-pooling layer. As the model is trained in a model parallel way (see 2.1.4), the model
is split into two parts and at some points the GPUs need to exchange information:
The kernels of the second convolutional layer are connected to the kernels of the third

1ImageNet Large Scale Visual Recognition Challenge, http://image-net.org/challenges/LSVRC/2012/
results.html

http://image-net.org/challenges/LSVRC/2012/results.html
http://image-net.org/challenges/LSVRC/2012/results.html

2. Deep Learning and its Hardware Requirements

Filter
concatenation

ﬂv

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

)

)

1x1 convolutions

)

3x3 max pooling

wtims
P S—

Previous layer

Figure 2.4.: Inception module with dimensionality reduction using 1x1 convolutions,
[19]

convolutional layer on both GPUs and the fully-connected layers are also connected
from one GPU to the other. [18]

GoogLeNet is also one of the winner networks of ILSVCR. The network code named
Inception or Inception vl won the image recognition challenge in 2014. It consists of
22 weight layers: Different to former networks it uses a so-called "inception module".
The data going into the inception module has to go through several convolutions and a
pooling operation in parallel and the resulting output is concatenated to form the input
vector for the next layer. To reduce dimensions within the inception module, a 1x1
convolution is used before 3x3 and 5x5 convolutions as well as after 3x3 max pooling.
Figure 2.4 shows one inception module. By using this method, GoogLeNet achieved
higher accuracy than AlexNet two years earlier while having less parameters, which
makes it less computation intensive. [19]

VGG is also one of the neural networks that performed very well at the ILSVRC 2014
competition. There exist different configurations with a different number of weight
layers: eight to sixteen convolution layers and three fully-connected layers. Additionally,
tive maxpool layers follow some of the convolutional layers. VGG-11 consists of eight
convolutional layers, VGG-19 consists of sixteen convolutional layers. The number of
parameters range from 133 to 144 million. [20]

Inception networks (e.g. Inception v3 and Inception v4) are based on the architecture
of GoogLeNet, which already used inception modules. The goal of the newer Inception

10

2. Deep Learning and its Hardware Requirements

weight layer

HX)=Fx) +x @

F(x) identity

X

Figure 2.5.: A residual block, [23]

versions was to speed up computation by factorizing larger convolutions into several
smaller ones (e.g. 5x5 to two 3x3 convolutions or nxn to a nx1 and a 1xn convolution).
Another result of their research was that "the representation size should gently decrease
from the inputs to the outputs" in order to "avoid representational bottlenecks". [21] In
Inception v4 the inception modules were standardized to three different versions as
they figured out that the former non-uniformity makes the model more complicated
but does not add value in terms of performance or accuracy. [22]

ResNet has been developed by Microsoft Researchers and won several Computer
Vision competitions in 2015, e.g. ILSVCR & COCO. There are different variants of
ResNet with a different number of layers. The special thing about ResNet is that it can
become quite deep without becoming too difficult to train. This difficulty was tackled
by introducing "residual blocks". Each ResNet block has one identity mapping shortcut
connection, which skips one or even more layers. In this way, no extra parameter
or computational complexity is added. However, adding more depth to the network
resulted in more accurate results. [23]

Recurrent Neural Networks

In this section the basic building blocks of Recurrent Neural Networks are described.
As no RNNSs are used in the experiments of this study, there is no detailed description
of specific RNNSs.

Recurrent Neural Networks are commonly used for sequential input data.[6, p. 441]
For example, they are used in the fields of speech recognition, machine translation or
sentiment classification to only name a few. [24, p. 1]

One of the advantages of using RNNs for e.g. speech recognition is that they can
accept input vectors of variable length by using parameter sharing. As two sentences
can have the same meaning but still be composed of different words and also have a
different length, this is a very crucial characteristic. [7, pp. 367-368]

11

2. Deep Learning and its Hardware Requirements

[

O Of*I 0 Ot+l
\%4 W \74 Vv VT
Ty — Y, 0L OO
Unfold T w L w
U U U U
X X x X

t-1 t+1

Figure 2.6.: RNN and the unfolding in time of the computation involved in its forward
computation, [6, p. 442]

Figure 2.6 shows a simple RNN during forward propagation in the unfolded view.
to illustrate how the different parts of the input sequence x influence the output
computation of the following neurons. The artificial neuron s has time-depending
values s;. These depend on the value of the former neuron s;_; multiplied with weight
matrix W and the input x; multiplied with weight matrix U. The output o; of the
neuron is its value multiplied by weight matrix V. [6, p. 442] There are also other more
complex variants, but the basic principles remain the same.

One specific set of RNNs are Long Short Term Memory (LSTM) networks, which
have been designed to enable the network to memorize past information. In order to do
so, they use so-called memory or "LSTM" cells, which are special hidden units having
an internal recurrence and acting like accumulators. [7, pp. 404-406]

One of the disadvantages of RNNs for language-related tasks is that the model of
the network becomes very big when having a large vocabulary.[24, p. 1] Furthermore,
RNNSs are difficult to train and need a lot of computational power. Therefore, there is
also research on using CNNs for sequence modeling tasks and therefore a discussion
on the question if RNNs may be less important for these tasks in the future. [25][26]

2.1.4. Distributed Deep Learning

Distributed Deep Learning has become increasingly important as the size of DNNs
and the training datasets has grown. Therefore, to train DNNs either the data (Data
Parallelism) or the model (Model Parallelism) is distributed onto several GPUs. Those
GPUs could either be on the same node or even on different nodes. [2, p. 1, 3] In this
thesis, only multi-GPU training on one node is considered.

Data Parallelism

In the data parallelism strategy the neural network is copied onto every GPU and the
data set is split up into pieces that are distributed to the GPU. Thus, each GPU is using

12

2. Deep Learning and its Hardware Requirements

the same weights but different data. There are two parts of communication: First, the
worker machines send the gradients resulting from backward propagation to the master.
Then, out of the sub-gradients, the master computes the new weights and broadcasts
them to the workers. [2, p. 3][27] This is done after each forward and backward pass.
[28, p. 2] The synchronization can also be done via a multi-GPU communications
collective. An allreduce operation would compute the mean of all the weights and
then distribute the new weights. [29, p. 10] Data parallelism is an efficient method for
networks with few parameters or a high computation effort per parameter. [28, p. 2]

Model Parallelism

In the model parallelism strategy the model is split up and each part is distributed
to one GPU. Thus, each GPU is calculating part of each layer with all data. [2, p. 3]
Following this strategy, less memory is needed at each GPU as only part of the network
is stored there, and thus, very big models can be trained. For the convolution operation,
model parallelism is rather inefficient as each GPU needs the results of the other GPUs
to compute the final result of the layer. Therefore, communication is needed after every
layer. [30, pp. 20-21] However, it is an efficient strategy for fully-connected layers as
they have many parameters. [28, p. 2]

2.1.5. Classification of Deep Neural Networks

In order to select the right neural networks to benchmark on-node GPU interconnects,
we need to understand two main points:

e Which network architectures benefit from using GPUs for training?

e Out of these architectures, which ones rely on heavy communication during the
training process?

In the following different approaches found in literature and their results are pre-
sented.

In order to create a collection of deep learning workloads that can be used to evaluate
deep learning hardware performance, Adolf et al. have published Fathom. [31] They
analyzed not only convolutional neural networks but also fully-connected ones as well
as RNNs arguing that the latter architectures haven’t been included in HW research as
much as CNNs have. In figure 2.7 we can see how much the chosen eight networks
benefit from using a GPU instead of a CPU for training. It can be observed that
all CNNs (residual, vgg, alexnet, deepq) and the speech network, which consists of
recurrent and fully-connected layers, have a considerably shorter training time on the
GPU than on the CPU. Another interesting result from this work is the breakdown of

13

2. Deep Learning and its Hardware Requirements

EEl Training CPU Ell Training GPU
B Inference CPU 3 Inference GPU

Normalized execution time

seqg2seq
memnet
speech
autoenc
residual
vgg
alexnet
deepq

Figure 2.7.: FATHOM: normalized execution time, GPU vs. CPU [31]

execution time, which is presented in figure 2.8. The operation types that are highly
parallelizable on GPUs are the groups B (matrix operations) and D (convolution). The
networks, which benefit from using a GPU, spend 80-99% in these kinds of operations.

Another interesting group of operations from figure 2.8 is group G (data movement).
As the objective of this thesis is to analyze the performance of interconnects, network
architectures with a high amount of data movements are interesting. For the four
CNN s at the bottom of the table, data movements are insignificant in comparison to
the other operation groups. The RNN seq2seq as well as the memnet spend 24% of
their execution time in moving data, which suggests a dependence on high bandwidth
and low latency interconnects for training on multiple GPUs. The RNN speech spends
10% of its execution time with data movements. This implies that this network could
be an interesting model for this research.

Tallent et al. have performed quite a similar research on on-node GPU interconnects
as we do. They used GoogLeNet, AlexNet and a parameterized version of ResNet
in their research. The parameterized version of ResNet - called ResNet/x - used x
residual blocks as inner layers. In order to classify different DL workloads, a workload
intensity metric was defined, which is a measure of communication/computation.
For the training they used the data parallel approach. In their work they show that
GooglLeNet is a quite computation-intensive workload whereas AlexNet is a quite
communication-intensive workload. Depending on the depth of the ResNet variant, the
workload is more or less computation-intensive. [32]

In a paper on the topic of parallelism in deep learning, Dettmers stresses another
aspect, which affects the amount of communication while training on multiple GPUs:
The parallelism strategy. As described in 2.1.4 the model parallelism strategy in general
creates a lot more communication than the data parallelism strategy. [28]

14

2. Deep Learning and its Hardware Requirements

seq2seq |32 0/0|0 olo/2/o/o0|o0/0|0|0|3 o/1/0/0
memnet [2 |1 88 1 o[4f222 09 ofof[olo[5]/o0f9la3o/0/1]1 Group | OpClass
speech 0|0 |0]0]0]0 olo|ojo/o|o/o|ofofo|7Z|3|0|0]|0 A Efr?t‘:nr;‘;:iiie
autoenc (3/0/6|/0|5|0 olof2/0/0|0f5(8|ofol9lo|0|0]0 y—
residual [0 (oo /o /o|ofjojo|o|o ololofo|o|o|o|o]oO B Operations
vgglo|o|o|lo|lo|ojofjolo]|o ol2/ofo|o|olo|o]0 . | Reductionand
alexnet|o|o|o|o|o|o}j7fo|3|0 o/ojofo|o|o|of0O]|O Expansion
deepg(0|/0|0|0|0|0 ojofo olo/7zo|o|olo|o]0O b Convolution
o35 > 32 xX|sI>0 Qs 2w ol o 8 B U W
£2355¢23|6E5IS22E|52l8c8888 [[nanom
.t‘rubg C“-ES<(U)% [] £ < Sampling
ol=15 © 0¥ dlz|>slc v oV
n | i UruruEE.xE 24
n X% 0o s|la == F Optimization
O m 0O 0 o(< o
o = (NN = aQ
[g < G Data Movement
o O
O O
A Bl c D |EI F G

Figure 2.8.: Fathom: Breakdown of execution time by operation type, adapted from [31]

For this thesis, the used networks are classified based on their time spent in memory
copy operations as these operations stress the interconnects.

2.2. Hardware Accelerators for Deep Learning

As the Central Processing Unit (CPU) is designed to not only compute but also control
the system, it is helpful to transfer computationally intensive tasks such as the training
of neural networks to Graphics Processing Units (GPUs) or other specialized hardware
accelerators. The design of a GPU is useful for many parallel computations, especially
for vector and matrix operations. [9, pp. 20-21][33, pp. 563-570] [2, p. 1]

As training neural networks involves a lot of matrix multiplications, researchers began
to use GPUs to train their neural networks already in the early 2000s. [34, p. 89, p. 96]
[35, pp. 1390-1391]

Having only one GPU to train a neural network limited the size of the networks. In
2012 Krizhevsky et al. won the ImageNet LSVRC-2012 contest with a convolutional
neural network (see 2.1.3) that was trained on multiple NVIDIA GTX 580 GPUs,
specifically two. Because their model was too big to fit into one GPU’s memory (3 GB),
they used the model parallel approach and split their model into two parts, half of the
neurons being on each GPU. [18, p. 3]

Today, the most DL systems are a mix of CPU and GPU, where the GPU performs the
computation-intensive tasks, and the CPU is responsible for loading the data into/from
the memory of a graphics card and acting as a parameter server. [35] On top of having

15

2. Deep Learning and its Hardware Requirements

fast GPUs, it is necessary to have performant interconnects between the CPU and the
GPU to feed the GPU with training data as well as a fast connection between the GPUs
in order to harness multiple GPU memories. [32]

On-Node Interconnects

In this part, the processor interconnect types used in the studied systems are de-
scribed. All interconnects used for CPU-to-GPU as well as GPU-to-GPU connections
are described.

PCI Express

Peripheral Component Interconnect (PCI) Express or short PCle is a standard to connect
expansion cards such as sound or graphics cards to PC motherboards.

There are two main factors, which affect the performance of PCle slots: The number
of lanes and the generation. A PCle lane is a serial connection of differential signal pairs
(transmission and reception) for data transfer. PCle lanes can be bundled to increase
the number of lanes, a bundle is denoted as xN where N stands for the lane width.
By increasing the number of lanes, the bandwidth scales linearly. In the PCI Express
Base Specification operations for x1, x2, x4, x8, x16 and x32 are described. [36, p. 38]
The second factor is the generation: Over time, the bandwidth of one PCle lane has
increased as well. The first generation was launched in 2004 and had a bandwidth of
250 MB/s. At the time of writing, PCle 4.0, introduced in 2017, is the most up-to-date
release delivering a bandwidth of 1.97 GB/s for one lane.

The commonly used slot size for graphics cards is x16. Thus, a PCle 3.0 connection
to a graphics card delivers a bandwidth of 15.754 GB/s (985 MB/s per lane) and a PCle
4.0 connection has a bandwidth of 31.508 GB/s. [37, p. 288-289]

The systems used in this study are equipped with either PCle 3.0 or PCle 4.0 slots.
Table 2.1 shows the different PCle generations and their bandwidths with respect to
lane sizes. PCle 5.0 is currently being reviewed. [38][39]

A PCIe Switch is used to connect a number of peripheral devices such as GPUs or
Network Interface Cards (NIC) with the motherboard of a computer. It is defined as a
logical assembly of multiple virtual PCle-to-PCle bridge devices. Several PCle links are
connected to one PCle switch. [36, p. 45]

NVIDIA NVLink

NVLink is a proprietary system link architecture developed by NVIDIA, which was
designed as an alternative to the PCle connection, which can become a bottleneck for

16

2. Deep Learning and its Hardware Requirements

Table 2.1.: PCle bandwidths for different generations and lane widths

[40, p. 29] [41, p. 34][36, p. 40][42, p. 56][39, p. 234]
x1 x4 x8 x16
PCle 1.0 | 250 MB/s 1 GB/s 2GB/s 4 GB/s
PCle 2.0 | 500 MB/s 2 GB/s 4 GB/s 8 GB/s
PCle 3.0 | 984.6 MB/s | 394 GB/s | 7.88 GB/s | 15.75 GB/s
PCle 4.0 | 1969 MB/s | 7.88 GB/s | 1575 GB/s | 31.5 GB/s
PCle 5.0 | 3938 MB/s | 15.75 GB/s | 31.5GB/s | 63.0 GB/s

multi-GPU systems if data needs to be sent frequently. [43, p. 14]

In the first generation, NVLink delivers a unidirectional bandwidth of up to 20 GB/s.
NVLink 2.0 delivers a unidirectional bandwidth of up to 25 GB/s. [3]

NVLink is compatible with NVIDIA’s own GPU Instruction Set Architecture (ISA)
for multi-GPU systems, which enables direct access to the memory of another GPU in
the system. Thus, programs "can execute directly on data in the memory of another
GPU" and also atomic memory operations can be performed on remote GPU memory
addresses. [29, p. 6-7]

In systems with x86 CPUs, such as the DGX systems, NVLink is only used for GPU-
to-GPU connections. At the time of writing, the only usage of NVLink for CPU-to-GPU
connections is within IBM POWER systems. On NVIDIA’s GTC 2016, the POWERS
CPU with NVLink was announced, which enabled the IBM "Minsky" Platform to use
NVLink for CPU-to-GPU communication. The system is made of 2 POWERS8 CPUs and
4 NVIDIA Tesla P100 GPUs. The official name is IBM S822L.C. [44] [1]

For the study at hand, the IBM POWER System AC922 is used. This system uses
NVLink 2.0 as CPU-to-GPU connection and is explained in detail in chapter 3.3.

NVIDIA NVSwitch is used in NVIDIA’s DGX-2 systems to connect GPUs. One
NVSwitch supports up to 18 NVLinks and each port supports 25 GB/s unidirec-
tional bandwidth, which accounts for up to 900 GB/s bidirectional bandwidth for one
NVSwitch. In total, there are six NVSwitches used to connect every GPU with all other
GPUs within the system. [45]

NVSwitch is not part of the systems used in this study.

Intel Quick Path Interconnect

The Quick Path Interconnect (QPI) from Intel is used for point-to-point communication
in multi-processor systems. Data is sent in parallel across multiple lanes and packets are

17

2. Deep Learning and its Hardware Requirements

broken into multiple parallel transfers. The physical connectivity of each interconnect
link consists of twenty differential signal. Each port supports a link pair consisting of
two unidirectional links, which supports traffic in both directions simultaneously.

[46, p. 8]

X Bus

The X Bus is a symmetric multi processing (SMP) interconnect developed by IBM. It
is used in multi-CPU systems to connect several CPUs and enable communication as
well as provide a shared memory space. The interconnect works at 16 GHz and 4 bytes,
which results in a bandwidth of 64 GB/s per X Bus. [47, p. 12, 14]

18

3. Multi-GPU Computing Systems

This chapter presents the systems used in this study with an emphasis on the intercon-
nect systems. The two NVIDIA DGX-1 systems are similar in their architecture but use
different versions of NVLink. The IBM Power System AC922 is different from the DGX
systems in the fact that it uses NVLink not only for GPU-to-GPU connections but also
for CPU-to-GPU connections.

3.1. NVIDIA DGX-1 with 8 NVIDIA P100 GPUs

System Architecture

The core of this DGX-1 system are eight NVIDIA Tesla P100 GPUs, together with two
20-Core Intel Xeon E5-2698v4 CPUs running at 2.2 GHz.

The CPUs are mainly used for booting, storage management and deep learning
framework coordination. [29, p. 2] The workload activities of training neural networks
mainly take place on the GPUs. The host CPUs read the initial training data set into
memory and transfer it to the GPUs. Therefore, the CPUs are not discussed in detail.

The DGX-1 system has 512 GB DDR4 system memory and four SSDs with 1.92 TB of
storage. The whole system provides 170 TFLOPs computing power for single-precision
workloads. [48]

NVIDIA Tesla P100 GPU

The NVIDIA Tesla P100 GPUs consists of 56 streaming multiprocessors (SMs), each with
64 single-precision (FP32) CUDA cores. Thus, one GPU comprises 3584 single-precision
CUDA cores. Each GPU is equipped with 16 GB of High Bandwidth Memory 2 (HBM2)
memory, which delivers a bandwidth of 732 GB/s, and a L2 Cache of 4096 KB. Tesla
P100’s peak computational throughput is 5.3 TFLOP/s for double-precision (FP64), 10.6
TFLOP/s for single precision (FP32), and 21.2 TFLOP/s for half-precision FP16. [49]

The Tesla P100 GPU is available as PCle version [50] and as NVLink [51] version
(form factor SXM2). The DGX-1 is equipped with NVLink connected GPUs. Each GPU
supports up to four NVLink1.0 connections. [49, p. 20]

19

3. Multi-GPU Computing Systems

CPU CPU

B H
i niy

PCle Switches PCle Switches

Figure 3.1.: NVIDIA DGX-1 with 8 NVIDIA P100 GPUs network topology [29, p. 9]

Interconnect System

The interconnects in this system are NVLink 1.0, PCle 3.0 and QPI. Figure 3.1 shows
the interconnect system as network topology.

Each GPU is connected via PCle 3.0 x16 to one of the four PCle switches. Each PCle
switch connects two GPUs with one of the two CPUs. Three types of connections using
PCle can be differentiated: Each GPU is connected to one other GPU through a PCle
switch. Two other GPUs can be reached by traversing the own PCle switch, the CPU
and the other PCle switch connected to this CPU. The remaining four GPUs can only be
reached via PCle switches, the CPUs and the QPI connection between them. [29, p. 9]

Inside the DGX-1 system, the eight GPUs are connected in a hybrid cube-mesh
NVLink network topology. Each GPU is connected point-to-point to four other GPUs:
to all three in its own cluster and to one from the other cluster. Thus, the gap between
the two clusters of four GPUs, which exists for the PCle and QPI connections, is
closed. NVLink supports the GPU Instruction Set Architecture (ISA), which means that
programs cannot only execute on data on local memory but also on data, which is inside
another GPU’s memory. As each GPU supports up to four NVLink 1.0 connections, the
aggregate bidirectional bandwidth accounts for 160 GB/s per GPU. [29, pp. 6]

20

3. Multi-GPU Computing Systems

System Configuration

On the DGX machines the NVIDIA application cotainer "Tensorflow 18.07 PY3" is
preinstalled. Amongst other software packages it includes: [52]

e Ubuntu 16.04

Python 3.5

TensorFlow 1.8.0

NVIDIA CUDA 9.0.176

NVIDIA CUDA® Deep Neural Network library™ (cuDNN) 7.1.4

e NCCL 2.2.13

Changes to this configuration are described in detail in chapter 5.

3.2. NVIDIA DGX-1 with 8 NVIDIA V100 GPUs

System Architecture

Similiar to the DGX-1 system with P100 GPUs, this system also consists of eight GPUs
and two CPUs. The GPUs are NVIDIA Tesla V100 GPUs, the CPUs are the same as in
the system with P100 GPUs: two 20-Core Intel Xeon E5-2698v4 CPUs running at 2.2
GHz. This DGX-1 system also contains 512 GB DDR4 system memory and 4 SSDs with
1.92 TB of storage. [53, p. 4] The system provides 960 TFLOPS computing power for
single-precision workloads. [48]

NVIDIA Tesla V100 GPU

The NVIDIA Tesla V100 GPU consists of 80 streaming multiprocessors, each with
64 single-precision (FP32) CUDA cores and in contrast to NVIDIA P100 GPUS each
SM contains eight Tensor cores, which are especially important for the matrix-matrix
multiplication operations when training neural networks. [54, p. 14] One V100 GPU
comprises 5120 single-precision CUDA cores and 640 Tensor cores. Each GPU is
equipped with 16 GB of High Bandwidth Memory 2 (HBM2), which delivers a band-
width of 900 GB/s, and a L2 Cache of 6144 KB. [54, p. 8]

Tesla V100’s peak computational throughput is 7.8 TFLOP/s for double-precision
floating point (FP64), 17.7 TFLOP /s for single precision (FP32), and 125 Tensor TFLOP /s
for mixed precision. [53, p. 5] [47, pp. 25-26]

21

3. Multi-GPU Computing Systems

I

v IV

CPUOD CPU1

B B
aa UL

PCle Switches PCle Switches

Voo 1

G

X1

G

L1 I 1

— — NVLink PCle — QPI

=)

X

Figure 3.2.: NVIDIA DGX-1 with 8 NVIDIA V100 GPUs [53, p. 9]

The Tesla V100 GPU is available as PCle version and as NVLink [55] version (form
factor SXM2). The DGX-1 is equipped with NVLink connected GPUs. Each Tesla V100
GPU has six NVLink 2.0 connection points. [54, p. 19]

Interconnect System

The interconnects in this system are NVLink 2.0, PCle 3.0 and Intel Quick Path Inter-
connect (QPI). Figure 3.2 shows the interconnect system as network topology.

The PCle and QPI connections are the same as for the other DGX system, which is
described in section 3.1.

The NVLink connections differ from the ones in the system with P100 GPUs since
V100 GPUs support NVLink 2.0, thus a higher bandwidth, and have more NVLink
connection points: Each GPU has six instead of four NVLink connection points. The
GPUs are also ordered in a hybrid cube mesh topology, but some GPUs are connected to
each other by using a bonded set of two NVLink connections. For these connections the
theoretically achievable bandwidth accounts for 50 GB/s. The connections using one
NVLink can deliver a bandwidth of 25 GB/s. Some GPUs are not directly connected to
each other. This accounts for an aggregate bandwidth of 300 GB/s. [53, pp. 7-10]

22

3. Multi-GPU Computing Systems

PCIe NVMe Flash EDR Multi-Host Socket Direct
Storage PCIe Gen4, x16, CAPI 2.0 Infiniband

17OGB/S - X-Bus 4B . L. 170GB/s
= —

DDR4 4 TTT 4 DDR4
Coherent § NVLink NVLink NVLink NVLink conerent
y‘:‘;“m“i 150(;3/5 150GB/s 150GB/s 150GB/s } et
ZTE) i @em.

¥
Ar—
NVLmk NVLink
150GB/s 150GB/s

Figure 3.3.: IBM Power System AC922 with 4 V100 GPUs [56, p. 8]

System Configuration

The system configuration is consistent with the system configuration of the DGX-1 with
P100 GPUs. The preinstalled NVIDIA application container is described in section 3.1.

3.3. IBM Power System AC922 with 4 NVIDIA V100 GPUs

System Architecture

The IBM AC922 system is available in different models: 8355-GTG and 8355-GTW. The
main difference is the number of GPUs (four vs. six) and the cooling (air-cooled vs.
water-cooled). For this study, we use the 8355-GTG version, which consists of two
Power9 CPUs and four NVIDIA Tesla V100 GPUs. This system contains two Power9
processors, each of which has 20 cores that are based on a 64-bit architecture. The
clockspeed constitutes 2.0 GHz, 2.87 GHz turbo. Per core, 512 KB L2 cache and per
chip, 120 MB L3 cache is available. [47, pp. 4]

NVIDIA Tesla V100 GPU
The four Tesla V100 GPUs used in this system are the same graphics cards as described
in chapter 3.2.

Interconnect System

This system uses NVLink 2.0 and XBus as interconnects between GPUs and CPUs.
Figure 3.3 shows the interconnect system as network topology.

23

3. Multi-GPU Computing Systems

The main difference of this system compared to the other two are the NVLink
connections between the Power9 CPUs and the GPUs in the corresponding cluster. As
each V100 GPU supports up to six NVLink 2.0 connections, three of them are used
to connect to the respective CPU and the other three are used to connect to the other
GPU in the same cluster. This leads to a maximum unidirectional bandwidth of 150
GB/s for either of those connections. Another difference DGX systems is that the two
clusters are not connected via NVLink GPU-to-GPU connections, but only by going
over the XBus, which connects the two CPUs. XBus delivers a bandwidth of up to 64
GB/s. [47, pp. 12-14]

24

4. Experiment Design

The following chapter presents the experiments’ setup. At first, the general experiment
ideas are explained, then the implementation is presented in detail.

The experiments conducted in this study can be split into two categories: Microbench-
marks and designated DNN training benchmarks. The microbenchmarks are intended
to achieve an understanding of how small operations are affected by using NVLink or
PCle without any specific use case. The benchmarks for DNN training are designed to
understand the practical impact of using different GPU interconnects when training
deep neural networks on multi-GPU systems.

4.1. Microbenchmarks

As explained in chapter 2, deep neural networks can be trained on several GPUs by
splitting up the data to all nodes and then exchanging and adapting the resulting
weights.

This requires a lot of data to be copied from CPU to GPU, between the GPUs and
from GPU to CPU. Therefore, the microbenchmarks test the bandwidth and latency
for memory copies of different data sizes. These tests are performed with and without
enabling peer-to-peer access for the GPUs. If peer-to-peer access is enabled, one GPU
can directly copy data to another GPU without using the CPU. Thus, the NVLink
connection can be used. By using direct memory access (DMA), the GPUs are also able
to read and write directly from / into another GPU’s memory. DMA is only possible
between NVLink connected GPUs. If peer-to-peer access is not enabled, the memory
copies need to be performed over the CPU. This means, that the NVLink connections
cannot be used in the DGX systems. Instead, PCle and QPI are used to copy the data
from one GPU to another.

By enabling or not enabling peer-to-peer access, bandwidths and latencies can be
measured for NVLink or PCle in the DGX-1 systems. As there are no PCle connections
between GPUs and CPUs in the IBM AC922 system, the benchmarks are not run
without peer-to-peer access on this system.

25

4. Experiment Design

4.2. Benchmarks for DNN training

In this section, we want to explore three aspects about the interconnect performance of
PCle and NVLink:

1. How communication-intensive is the training of different DNNs?

2. What is the difference in the performance (measured as number of images pro-
cessed per second) for the same DNN, the same batch size and the same number
of GPUs using either PCle interconnects or NVLink interconnects?

3. What is the difference in scaling performance for scaling the workload over one
to eight GPUs either using PCle or NVLink?

To gain insights into these three aspects, different neural networks are trained on
different numbers of GPUs. Starting with the training on only one GPU and scaling
up to using eight GPUs. In order to measure PCle performance, again peer-to-peer
access needs to be disabled. Additionally, training on eight GPUs is profiled in order to
understand how communication-intensive the training of different DNNs is.

Neural Networks

The neural networks used for the benchmark tests are: AlexNet, GoogLeNet, Inception
v3, Inception v4, ResNet50, ResNet152, VGG11, VGG16, and LeNet5. The network
architectures of these CNNss are described in chapter 2.1.3.

The selection of neural networks is based on the following criteria:

¢ Communication-intensity versus computation-intensity
e Comparability and relevance for industry and research
e Availability of implementations for training on GPUs

From the study of related work about DNN classification (see chapter 2.1.5), it is
known that AlexNet is a communication-intensive workload while GoogLeNet is a
computation-intensive workload. Choosing these two networks ensures that both
workload types are covered and also enables a comparison to former work. In order
to have a broader set of neural networks, other networks who have or had a major
impact on research advances or performed well in competitions are chosen. The fact
that not all implementations of neural networks are suitable to be trained on mutli-GPU
systems without further adjustments also affects the selection.

The implementations used for the study are introduced in chapter 4.3.2.

26

4. Experiment Design

4.3. Methods and Parameter Settings

In this section, the used code is described in detail.

4.3.1. Microbenchmarks

For the microbenchmarks, we used parts of the Multi-GPU Computing Benchmark
Suite mgbench.!

The mgbench tests are divided into three categories: Level-0 tests, which are used
to get information about the used system. The output of these tests is information
about the CPUs, the GPUs and a DMA access matrix. It can be found in the log files 10-
info.log and 10-devices.log. Level-1 tests comprise bandwidth tests for unidirectional
data copies, bidirectional data exchanges, DMA between GPUs as well as between
the host and GPUs, scatter and scaling tests. Level-2 tests perform multi-GPU matrix
multiplications (sgemm) without using inter-GPU communications and game of life to
test the correctness and inter-GPU communications. [57]

For this study, only the Level-1 tests are used since the information about the systems
was already available and for the more practically-oriented tests, the NN benchmarks
are run. In the following, the used Level-1 tests are described in more detail:

halfduplex.cpp

This test performs unidirectional data copies from GPU-to-GPU, CPU-to-GPU and
GPU-to-CPU.

When running the test, some flags can be used to adjust the test setting including e.g.
the number of repetitions or fixing the GPU index defining from where to where the
data should be copied. In this study, only the size flag was changed to get bandwidth
and latency figures for different message sizes: 1 KB, 10 KB, 100 KB, 1 MB, 10 MB,
100 MB and 1000 MB were tested.

In the main method (the number of available devices is gotten (cudaGetDeviceCount),
and peer device memory access is enabled (cudaDeviceEnablePeerAccess(j, 0)). As
calling this method grants access only unidirectionally, the call must be done for all
pairs in both directions. In total, a device can have up to eight peer connections.[58]

After enabling the peer device memory access, the data copies are performed. There
are three copy variants that need to be differentiated: GPU-to-GPU, CPU-to-GPU and
GPU-to-CPU copies.

Imgbench repository on GitHub, master, commit ID: 6f12d3848020af8{718074a30c68e6f0b232bfb3: https:
//github. com/tbennun/mgbench

27

https://github.com/tbennun/mgbench
https://github.com/tbennun/mgbench

4. Experiment Design

For GPU-to-GPU copies the method CopySegment(int a, int b) (lines 57-127) is
called to copy data from GPU a to GPU b. First, memory is allocated on both devices
and the devices are synchronized to make sure all other tasks have completed before
the data copy is started. After that, a timer is started and the copy process begins. If
the chunksize flag is not changed, the data will be copied in one chunk. The actual
COpy process is done by Calling cudaMemcpyPeerAsync (void * dst, int dstDevice,
const void * src, int srcDevice, size_t count), where dst and src indicate the base
device pointers of the destination respectively source memory, dstDevice and srcDevice
specify the destination and source devices, and count defines the number of bytes to
copy. The copy is done asynchronously as the CPU is not involved. The copy process is
repeated as often as defined in the repetitions flag. At the end the timer is stopped and
an average copy time is calculated. Based on the data size the bandwidth is calculated.

For copies, in which the host is participating, the method CopyHostDevice (int dev,
bool d2h) is called. This method is very similar to the CopySegment method described
above. The main difference is that instead of calling cudaMemcpyPeerAsync the method
cudaMemcpyAsync(void * dst, const void * src, size_t count, enum cudaMemcpyKind
kind) is called. The last parameter specifies the used transfer type. In this case it is ei-
ther cudaMemcpyHostToDevice for CPU-to-GPU or cudaMemcpyDeviceToHost GPU-to-CPU
copies.

fullduplex.cpp

This test performs bidirectional data exchanges from GPU-to-GPU. In principle, the test
works similar to the one in halfduplex.cpp. The main difference is that only GPUs are
used and that copies are performed in two directions. The CopySegment (int a, int b)
method in this file creates two non-blocking CUDA streams and calls the method
cudaMemcpyPeerAsync twice: First, to copy data from device a to device b using stream
b, then to copy data from b to a using stream a.

uva.cu

This test performs unidirectional and bidirectional read and write DMA operations.
As in the other two files, there are some flags to adjust the test settings. The only
parameter that was changed for this study is the size of the messages.

As in the other two tests, first the device count is retrieved, then peer-to-peer access
is enabled. After that, four variants of the test are run:

For the unidirectional write test all possible pairs are tested in one direction. Using
the CopySegmentUVA(int a, int b) method, memory is allocated and the devices are
synchronized. Then the two device buffers are swapped and the method

28

4. Experiment Design

DispatchCopy(void *dst, const void *src, const size_t& sz, const size_t&
type_size, const dim3%& grid, const dim3& block, cudaStream_t stream) is called to
copy the kernel. The unidirectional read test is similar, but the device buffers are not
swapped.

In contrast to the unidirectional tests, the bidirectional tests exchange data between
GPUs. This means every pair is only tested once but swapping the buffers (for the
write test) and copying the data is done twice, to cover both directions.

Changes to Mgbench

As for this study, the goal is to compare the performance of the different interconnects
available in the systems, it was necessary to find a way to use either the NVLink or the
PCle connection. This paragraph is only relevant for the experiments run on the two
DGX-1 machines since the IBM AC922 only has NVLink as GPU interconnects and a
comparison of PCle versus NVLink is therefore not possible.

In order to measure performance using NVLink connections, the source code of
mgbench does not need to be changed. However, to measure PCle performance, the
CUDA peer-to-peer connection, which is described in chapter ??, needs to be disabled.
Therefore, the method cudaDeviceEnablePeerAccess must not be called. This can be
done by changing a small part of the mgbench code.

In listings 4.1 and 4.2, an example of this change is illustrated for the file fullduplex.cpp.
For halfduplex.cpp, the source code changes are listed in Appendix B. For the DMA read
and write tests, peer-to-peer access cannot be disabled. Thus, there are no changes
made to uva.cu.

Listing 4.1: original file - mgbench/src/L1/fullduplex.cpp
132 printf()s
133

134 // Enable peer-to-peer access
135 for(int i = 0; i < ndevs; ++i)

136 {

137 CUDA_CHECK (cudaSetDevice(i));

138 for(int j = 0; j < ndevs; ++j)

139 if (1 != j)

140 cudaDeviceEnablePeerAccess(j, 0);
141 3

Listing 4.2: changed file - mgbench/src/L1/fullduplex.c
g g g p pPp

29

4. Experiment Design

132 printf();
133 /#

134 // Enable peer-to-peer access

135 for(int ¢ = 0; © < ndevs; ++1)

136 {

137 CUDA_CHECK (cudaSetDevice(i));

138 for(int 7 = 0; j < ndevs; ++j)

139 if (i 1= j)

140 cudaDeviceEnablePeerdccess(j, 0);
141 * */

4.3.2. Benchmarks for DNN training

For the benchmarks for Deep Neural Network Training parts of the TensorFlow bench-
marks? were used.

The benchmarks repository consists of scripts for TensorFlow and keras benchmarks.
For this study, only the tensorflow benchmarks are used. The implementations of the
network models are designed to be as fast as possible, which is why they are interesting
for this research. [59]

The distributed tests were run using different networks and batch sizes. All networks
were trained on one to eight GPUs. The benchmark can be started using this python
program:
python tf_cnn_benchmarks.py --num_gpus=N --batch_size=B --model=M

--variable_update=parameter_server

The batch size that is specified by the batch size flag is the local batch size per
GPU. When scaling to more GPUs the global batch size is increased by the factor of
numbers of GPUs. The variable update method can be defined as well. For these tests
"parameter_server" is used. In table 4.1 the used batch sizes for the respective models
are listed.

Table 4.1.: Batch sizes for different neural network models

alexnet ‘ googlenet ‘ inception3 ‘ inception4
batchsize | 512 | 128 | 128 | 64

resnet50 ‘ resnet152 ‘ vggll ‘ vgglo ‘ lenet5
batchsize | 128 | 64 | 128 | 64 | 512

2TensorFlow benchmarks repository on GitHub: https://github.com/tensorflow/benchmarks

30

https://github.com/tensorflow/benchmarks

4. Experiment Design

Changes to Tensorflow

In order to not use the NVLink interconnects during the DNN training, it is neces-
sary to conduct a small change inside the TensorFlow source code in order disable
the peer-to-peer access similar to the approach with the microbenchmarks. As the
NVIDIA application container that is used for the measurements of PCle performance
contains TensorFlow 1.8.0, the change is done in the source code of the branch r1.8
to get comparable results.> The part that was changed can be found under the path
/tensorflow/tensorflow/stream_executor/cuda/cuda_gpu_executor.cc in lines 732
- 735. It corresponds to the same file in the current master branch (TF 1.12) lines 822 -
825. The changed code is presented in listing 4.3. Appendix B.2 shows the original and
the changed code lines.

Using this small adjustment, the peer-to-peer connection is invisible, which means
that all communication has to go over the host and therefore use the PCle interconnects.

Listing 4.3: changed file: - branch: r1.8 - cuda_gpu_executor.cc

732 bool CUDAExecutor::CanEnablePeerAccessTo(StreamExecutorInterface *other) {
733 CUDAExecutor *cuda_other = static_cast<CUDAExecutor *>(other);

734 return false;

735 }

The compilation of TensorFlow r1.8 with the mentioned change was done on the
DGX-1 P100 system using the NVIDIA application container Tensorflow 18.07 PY3.
First, the existing TensorFlow and Bazel installations were uninstalled. After that, the
compiler Bazel was installed in version 0.15.04

nccl2

| _include

lg,nccl.h

| 1ib
libnccl.so
libnccl.so.2
libnccl.s0.2.2.13

| _NCCL-SLA.txt

3TensorFlow repository on GitHub, branch r1.8: https://github.com/tensorflow/tensorflow/tree/

rl.8
4Bagzel 0.15.0 installation files: https://github.com/bazelbuild/bazel/releases/tag/0.15.0

31

https://github.com/tensorflow/tensorflow/tree/r1.8
https://github.com/tensorflow/tensorflow/tree/r1.8
https://github.com/bazelbuild/bazel/releases/tag/0.15.0

4. Experiment Design

In order to use NCCL version 2.2.13, which is installed inside the used NVIDIA
application container, some paths to the NCCL files need to be adjusted as they are split
up into different locations by default. Therefore, a directory called nccl2 was created
under /usr/lib. The content and structure of this directory is as shown above.

After setting the NCCL environment variable accordingly, the bazel build can be
configured. The next step is to build the package and finally install the resulting pip
package.

As a check that the new TensorFlow version is installed and used, one can run the
python code from section 4.3.2. Before the actual benchmark is run, a GPU interconnect
map is printed. Using the preinstalled TensorFlow, the matrix for the DGX-1 with P100
GPUs looks as shown in table 4.2.

Table 4.2.: GPU interconnect map - preinstalled TensorFlow version
GPU

NI NI
Z|Z|Z|<|<|<|<|Z|o
Z|Z|<|Z|<| <] Z| <] =
Z|<|Z|Z|<|Z| <=8
<R|Z|Z|Z| Z| K| K| <| @
<|=<|=<|Z|Z|Z| Z| <]~
IR Z| K| Z|Z|<|Z|»n
R Z| =<K Z|<|Z|Z|o
AR ESEEPAPAPAR

Using the changed TensorFlow version, the matrix for the same system looks like the
one in table 4.3

Table 4.3.: GPU interconnect map - changed TensorFlow version
GPU

NIESE NI
Z\Z|Z|Z|z|2|2|Z|=
z\z|Z|Z|z|z2Z2|Z|=
z\Z|Z|Z|z2|Z2|Z2|Z|N
z\Z|Z|Z|z|2|2|Z|*
Z\Z|Z|Z2|z2|2|Z2|Z| =
AV AV AV AVAVAPAP A
z\Z|Z|Z2|z2|2|Z|Z| o
AVAVAPAVAVAPAPAR

The change in the TensorFlow source code and step-by-step instructions on how to
compile and install the changed TensorFlow version are shown in appendix B.2.

32

5. Experiment Results

The following chapter presents the experiments’ results. First, the results from the
microbenchmarks are presented for each system. Then the results from the DNN
benchmarks are presented including the profiling of the workloads and the performance.
At the end of this chapter, the results are discussed and limitations and challenges
regarding the experiment design and realization are explained. In order to maintain
readability, not all figures are printed in this chapter. The full range of figures showing
the experiments’ results are to be found in appendix C.1 and C.2.

5.1. Microbenchmarks

Using the NVIDIA System Management Interface (nvidia-smi) one can query informa-
tion about the used system. The query nvidia-smi topo prints topology information on
the GPUs used in the system including the information how the GPUs are connected
to each other. To understand the microbenchmark results, the queries are run on all
systems. The results for DGX-1 P100 are shown in listing 5.1 and 5.2. To make it more
readable, only GPU connections are displayed. The full output of the queries for all
systems can be found in appendix C.1.1. The command nvidia-smi topo -m shows the
NVLink connections, nvidia-smi topo -mp shows ’Cle connections.

Listing 5.1: nvidia-smi topo -m DGX-1 P100

nvidia-smi topo -m

GPUO X NV1 NV1 NV1 NV1 SYS SYS SYS
GPU1 NV1 X NV1 NV1 SYS NV1 SYS SYS
GPU2 NV1 NV1 X NV1 SYS SYS NV1 SYS
GPU3 NV1 NV1 NV1 X SYS SYS SYS NVi
GPU4 NV1 SYS SYS SYS X NV1 NV1 NVi
GPU5 SYS NV1 SYS SYS NV1 X NV1 NVi
GPU6 SYS SYS NV1 SYS NV1 NV1 X NVi
GPU7 SYS SYS SYS NV1 NV1 NV1 NV1 X

The abbreviation NV# stands for a connection using a bonded set of # NVLinks, SYS
shows a connection traversing PCle as well as the SMP interconnect (e.g. QPI or XBus),

33

5. Experiment Results

SYS

PIX D J PHB

PCle Switches “ PCle Switches

B |-
- e

Figure 5.1.: Exemplary connection types used in nvidia-smi topo query result, adapted
from [29]

PHB is used for a connection traversing PCle as well as the CPU, and PIX displays a
connection between GPUs connected to the same PCle switch.
In figure 5.1 exemplary connections are shown.

Listing 5.2: nvidia-smi topo -mp DGX-1 P100

nvidia-smi topo -mp

GPUO X PIX PHB PHB SYS SYS SYS SYS
GPU1 PIX X PHB PHB SYS SYS SYS SYS
GPU2 PHB PHB X PIX SYS SYS SYS SYS
GPU3 PHB PHB PIX X SYS SYS SYS SYS
GPU4 SYS SYS SYS SYS X PIX PHB PHB
GPU5 SYS SYS SYS SYS PIX X PHB PHB
GPU6 SYS SYS SYS SYS PHB PHB X PIX
GPU7 SYS SYS SYS SYS PHB PHB PIX X

5.1.1. DGX-1 P100 Results

In figure 5.2 the bandwidths for unidirectional data copies of different sizes on the
DGX-1 with P100 GPUs are shown. The theoretical bandwidths for PCle 3.0 (15.754
GB/s) and NVLink 1.0 (20 GB/s) are also displayed. Even for small data copies (10-100
KB) the NVLink connection delivers more bandwidth than PCle. For large data copies

34

5. Experiment Results

DGX-1 P100: bandwidth for unidirectional data copies

18000

16000

14000 E -

12000 7

Bandwidth [MB/s]
o
g
g8 g
~
~
\

-z -
-

-
0 @—_--ﬂ’

1KB 10KB 100 KB 1MB 10MB 100 MB 1000 MB

-8~ Nv1 PIX PHB =O= SYS

NVLink theoretical bandwidth

Pde theoretical bandwidth

Figure 5.2.: DGX-1 P100 bandwidth for unidirectional data copies

(10 - 1000 MB) it achieves more bandwidth than the theoretical bandwidth of PCle and
at the largest data size tested, it achieves 17.626 GB/s, which is 88% of the theoretical
bandwidth.

In contrast to that, even the fastest PCle connection via a PCle switch and the CPU
(PHB) only achieves 9.987 GB/s, which is 62% of its theoretical bandwidth. It is also
interesting to see that even the closest connection (PIX), which only goes through one
PCle switch and thus should be the fastest one of the PCle connection types, is actually
the slowest one.

DGX-1 P100: bandwidth for bidirectional data copies
20000

18000

_@----8----1

16000 =

14000 ’
12000 £
10000 ,

8000 A D £
6000 ’ -

Bandwidth [MB/s]

4000 ’ -

/
2000 -

s -
-
0 @_-s:ﬂ"

1K8 10KB 100 kB 1MB 10MB 100 MB 1000 MB

—=8- nNv1 PIX PHB =O= SYS NVLink theoretical bandwidth

PCle theoretical bandwidth

Figure 5.3.: DGX-1 P100 bandwidth for bidirectional data copies

In figure 5.3 the bandwidths for bidirectional data copies of different sizes on the

35

5. Experiment Results

DGX-1 with P100 GPUs are shown. Similar to the unidirectional data copies, NVLink
outperforms PCle at all message sizes. For 1000 MB data copies, it achieves 88%
of its theoretical bandwidth, while PCle (PHB and SYS) only achieves 54% of its
theoretical bandwidth. The PIX connection again is the slowest, only achieving 29% of
the theoretical PCle bandwidth.

In figure 5.4 latencies for the unidirectional data copies are displayed. The latency
for a copy process from GPU 0 to all other GPUs is displayed. The figure does not
change a lot for other starting GPUs. A cluster of close GPUs can clearly be identified
for the NVLink figures. As shown in listing 5.1 GPU 0 is connected via one NVLink
to GPUs 1-4. For all other GPUs, the data is sent over PCle and QPI. For the tests, in
which peer-to-peer access was disabled, there is almost no difference in the latency.
Again we see that especially for the closest connection copying data needs the most
time. This behaviour is also very noticeable in figure C.6, which shows the latencies for
bidirectional data copies.

DGX-1 P100: GPU-to-GPU unidirectional memory copies - 1000 MB
120

100

0 I| I| I| I| || I| ||
0-1 0-2 03 0-4 0-5 0-6 0-7

GPU-GPU mem copy

Latency [ms]
N o ®
S} S o

N
o

mp2penabled mp2pdisabled

Figure 5.4.: Latency for GPU-to-GPU unidirectional memory copies on DGX-1 P100

In figure 5.5 the bandwidth for the DMA read operation is shown. As Direct Memory
Access is not possible without enabling peer-to-peer access, the bandwidth of PCle
could only be measured for unidirectional operations including the CPU (host). For
large data sizes the PCle connection from the host to the GPUs achieves a bandwidth
of 10.5 GB/s, which is 67% of its theoretical bandwidth. The NVLink connections
reach 75% of the theoretical bandwidth for unidirectional DMA reads and 62% for
bidirectional DMA reads. For the DMA write operation both connection types perform
better: the PCle connection reaches 76% of its theoretical bandwidth and the NVLink
connections 83% for unidirectional as well as bidirectional write operations.

36

5. Experiment Results

DGX-1 P100: DMA read
20000

17500

15000 [— A----4A
512500 /E___—-G-———'D'————E
d
£ 10000 PAOne e 0= == O --=--9
5 , - g
é 7500 A,’//’
5 -
8 - e
5000 55
'//
¢
2500 'uz,’
=
0 B--

1KB 10 KB 100 KB 1MB 10 MB 100 MB 1000 mMB

=0- hostuni =@~ GPUuNni =@~ GPUbi === PCletheoretical bandwidth e NVLink theoretical bandwidth

Figure 5.5.: DGX-1 P100 bandwidth for DMA read

5.1.2. DGX-1 V100 Results

In the DGX-1 system with V100 GPUs the connections between GPUs differ from
the ones in the DGX-1 system with P100 GPUs in two aspects: NVLink 2.0 has
higher bandwidth and there are more connections. In figure 5.6 the bandwidths for
unidirectional data copies on this system are shown. The theoretical bandwidth of
NV2 connections accounts for 50 GB/s, the one for NV1 connections for 25 GB/s and
PCle 3.0 remains at 15.754 GB/s. For small data sizes, NV1 and NV2 connections
achieve similar bandwidths and already outperform the PCle connections. For 1000
MB memory copies NV2 connections achieve a bandwidth of 46.23 GB/s, which is 92%
of its theoretical bandwidth, NV1 connections achieve 23.128 GB/s, which is 93% of
theoretical bandwidth. The PCle connections PHB and SYS again are quite similar and
achieve 63% of PCle’s theoretical bandwidth. PIX only achieves 56%.

Figure C.9 shows the bandwidths for bidirectional data copies on the DGX-1 V100
system. NV1 and NV2 connections achieve 93% of their theoretical bandwidth, while
PHB and SYS achieve 52%. Again, the PIX connection is the slowest, reaching only 28%
of the theoretical bandwidth. In figure C.12 the latencies for the unidirectional data
copies are displayed. As for the DGX-1 P100 test results, only memory copies from
GPU 0 to all other GPUs are illustrated as the figures for other sending GPUs look
very similar. Especially for large data copies three clusters of GPUs can be identified
when peer-to-peer access is enabled: Two are connected via two NVLink connections,
another two are connected via a single NVLink connection and the remaining three are
connected over PCle and QPI. Figure C.13 shows the latencies for bidirectional memory
copies. When peer-to-peer is disabled, there is almost no difference in latency when

37

5. Experiment Results

DGX-1 V100: bandwidth for unidirectional data copies

45000 _-B----- 3]
40000 ,
4
4

35000 ,
- 4
= 30000 ’
s 4
£ 25000 =
s B A --B------
3 , _g--- B 0
g 20000 / _-
a 2 -

15000 P ~

VA
10000 ’ P S °
P _ - -0 -
5000 - et __--8-
=T - -
L £ ="
1K8 10K8 100 KB 1m8 10 M8 100 M8 1000 MB
-0- Nv1 -0- Nnv2 PHB PIX

-0~ SYS ——NV1theoretical bandwidth —— NV2 theoretical bandwidth PCle theoretical bandwidth

Figure 5.6.: DGX-1 V100 bandwidth for unidirectional data copies

copying large data sizes. In C.13(e) the anomaly of the PIX connection is seen again.
It takes almost double the time to bidirectionally exchange data from GPUO to GPU1
than from GPUO to any other GPU.

Figure 5.7 presents the bandwidth for the DMA read operation. For large data sizes
the PCle connection from the host to the GPUs achieves a bandwidth of 10.6 GB/s,
which is 67% of its theoretical bandwidth. The NVLink connections over a bonded set
of 2 NVLinks reach 87% of the theoretical bandwidth (43.693 GB/s) for unidirectional
DMA reads and 79% (39.326 GB/s) for bidirectional DMA reads. The single NVLink
connections achieve 82% (20.485 GB/s) for unidirectional reads and 79% (19.666 GB/s)
for bidirectional reads. For the DMA write operation all connection types perform
better: the PCle connection reaches 76% of its theoretical bandwidth, the single NVLink
connections 82% for unidirectional and 87% for bidirectional write operations, and
the paired NVLink connections achieves 87% of the theoretical bandwidth for both,
unidirectional and bidirectional, DMA write operations.

38

5. Experiment Results

DGX-1 V100: bandwidth for DMA read
50000

45000

40000 -
L AN EAy A
-7 -

35000 p .7 P
— -
£ -
= 30000 //A
=) ’,
=
£ 25000
: 7
3 Y
£ 20000 4 ezl =====
; J g -

15000 3 =

v 7
10000 E - = G —-——— P, S -0
L4 d --"
e _ -
5000 — ’a’i‘— -G
e=-
0 g----- &
1KB 10 KB 100 kB 1MB 10 MB 100 MB 1000 MB
—0- host uni —O- GPUNV1 uni —& GPUNV1bi —O- GPUNV2 uni

=& GPUNV2bi ——PCle theoretical bandwidth ——NV1 theoretical bandwidth ——NV2 theoretical bandwidth

Figure 5.7.: DGX-1 V100 bandwidth for DMA read

5.1.3. AC922 Results

Figure 5.8 shows the bandwidths for unidirectional memory copies of different sizes
as well as the theoretical bandwidth of the triple NVLink 2.0 connections (75 GB/s)
and the theoretical bandwidth of the XBus between the two Power9 CPUs (64 GB/s).
Memory copies to directly connected GPUs achieve 67.175 GB/s or 90% of theoretical
bandwidth. Memory copies to GPUs connected to the other CPU only reach 27.847
GB/s or 44% of the theoretical XBus bandwidth. Memory copies from or to the closer
host achieve a bandwidth of 89% of the theoretical bandwidth, for copies from to
the other host, the bandwidth only accounts for 37.296 GB/s, which equals 58% of
theoretical bandwidth.

For the bidirectional copies directly connected GPUs also achieve 90%. However,
copies to other GPUs connected via SYS (XBus) only reach 16.484 GB/s of bandwidth,
which is 26% of theoretical bandwidth. The complete bandwidths for bidirectional
memory copies with different message sizes can be found in figure C.16.

The unidirectional DMA read operations achieve comparably high bandwidths: For
NV3 connected GPUs a bandwidth of 63.555 GB/s was measured, which equals 85% of
the theoretical bandwidth. The same is true for DMA read operations from a host to a
directly connected GPU: 85%. DMA reads from one GPU to a GPU in the other cluster
reaches a bandwidth of 33.434 GB/s, which is 52% of the theoretical bandwidth, and
the DMA read from a host to a GPU from the other cluster achieves 39.507 GB/s or 62%
of theoretical bandwidth. The bidirectional DMA reads show a little less performance:
For NV3 connections 57.201 GB/s (76%) were measured and for SYS connections 17.64
GB/s (28%) were measured.

39

5. Experiment Results

AC922: bandwidth for unidirectional memory copies
80000

70000

60000 -

50000 , D

40000

Bandwidth [MB/s]

30000 Ve

20000

10000 L
-=@7
2= ===
0 Ba-----@==
1KB 10 KB 100 KB 1MB 10 VB 100 MB 1000 VB
~0- NV3 —B- hostclose =Q= SYS host far NVLink theoretical bandwidth ———=SYS theoretical bandwidth

Figure 5.8.: AC922 bandwidth for unidirectional data copies

The bandwidths for DMA write operations account for: 85% of theoretical band-
widths for NV3 connections (GPU-to-GPU & CPU-to-GPU) and 56% respectively 44%
for hosts respectively GPUs from the other cluster at unidirectional writes. For bidirec-
tional DMA writes 63.555 GB/s (85%) was measured for NV3 connections and 16.402
GB/s (26%) was measured for SYS connections.

5.2. Benchmarks for DNN Training

In this section, the results of the benchmarks for Deep Neural Network training are
described. First, the results of the workload analysis using the NVIDIA profiling tool
nvprof ! are presented. These show, which workloads are more communication- or
more computation-bound.

Then, all networks are trained on the DGX-1 P100 and on the DGX-1 V100 using
one to eight GPUs and several batch sizes. The training is done using the preinstalled
TensorFlow version to see the performance using NVLink and using the changed Ten-
sorFlow version to obtain performance measurements for only using PCle interconnects.
The performance is measured in processed images per second.

5.2.1. Workload Analysis using Nvprof

All networks are trained on eight GPUs using the profiler nvprof. Only the CUDA mem-
copy commands are listed. CUDA memcpy DtoH refers to memory copies from one of the

lsee https://docs.nvidia.com/cuda/profiler-users-guide/index.html

40

https://docs.nvidia.com/cuda/profiler-users-guide/index.html

5. Experiment Results

hosts to a device, CUDA memcpy HtoD shows the percentage of total time used for copies
from one of the CPUs to on of the GPUs, CUDA memcpy PtoP refers to communication
between the GPUs.

CUDA CUDA CUDA sum
memcpy DtoH | memcpy HtoD memcpy PtoP

alexnet 11.25% 9.22% 5.44% 25,91%
googlenet 1.06% 1.19% 0.72% 2,97%
inception3 1.91% 1.86% 1.06% 4,83%
inception4 2.85% 2.77% 1.65% 7,27%
resnet50 3.39% 3.52% 1.94% 8,85%
resnet152 4.74% 5.03% 3.27% 13,04%
vggll 9.14% 7.44% 6.96% 23,54%
vggl6 13.79% 12.10% 6.57% 32,46%
lenet 6.00% 6.17% 3.44% 15,61%

Table 5.1.: Profiling results nvprof, 8 GPUs

From the results in table 5.1 it can be assumed that disabling the faster NVLink
connections should have more effect on AlexNet, VGG11, VGG16 and LeNet as on the
remaining networks, because these seem to be more communication-intensive. It can
also be assumed that the networks, which perform a lot communication from host to
device would benefit from being trained on AC922.

5.2.2. Training Performance with PCle only and with NVLink / PCIe

In the following sections the training performance using only PCle connections com-
pared to using NVLink is shown.

Because of clarity reasons not all figures are included in the text. The complete
collection of figures can be found in appendix C.2.

AlexNet was trained using a local batch size of 512. In figure 5.9 the number of
images per second is shown for training the network on one to eight GPUs. For the
training on the DGX-1 P100 we can see a performance decrease when using only PCle
and not the NVLink connections (p2p disabled) for all training sessions independent
from how many GPUs were used. On the DGX-1 V100 we can also see a performance
increase when using NVLink (p2p enabled). However, especially the numbers for
training on four and seven GPUs show some irregularities, which should be studied

41

5. Experiment Results

further. Another measurement, which is unexpected, is that training on the DGX-1
V100 for one GPU shows different results for p2p enabled and p2p disabled.

Alexnet Batchsize 512

18000
16000
14000

12000

10000 —D
8000 B

6000 - H u
AODOH -

2000

Img/s

(KD

1 2 3 4 5 6 7 8
of GPUs

8- V100 P2P enabled B~ V100 P2P disabled P100P2Penabled P100P2P disabled

Figure 5.9.: Scaling training of alexnet with (p2p enabled) and without NVLink (p2p
disabled)

GoogLeNet was trained using a local batch size of 128. The performance is shown in
tigure 5.10. On the DGX-1 P100 we can see almost no differences in performance for
scaling the training on up to five GPUs. When scaling beyond this, we see that training
the network with the changed TensorFlow version achieved even higher performance
than training it with the preinstalled version using the NVLink connections. This result
is surprising and should be studied further. On the DGX-1 V100 we can largely see the
same behavior.

42

5. Experiment Results

Googlenet Batchsize 128
6000
_a
-
-
-
-
5000 a3
_-
-
_-
- [
- -
P e — [P . N
o B-==" o
<
P cd
z
z
@ z
2
- o
-
E _-=
a-~-"
_ -
e
2000 - -
=
~
L d ”/’
-
g
1000
0
1 2 3 4 5 6 7 8
#0of GPUs
—=B8- V100 P2P enabled «=B- V100 P2P disabled P100P2Penabled P100 P2P disabled

Figure 5.10.: Scaling training of GoogLeNet with (p2p enabled) and without NVLink
(p2p disabled)

Inception v3 and Inception v4 Inception v3 was trained with a local batch size of 128
and Inception v4 was trained with a local batch size of 64. Figures 5.11(a) and 5.11(b)
show the scaling efficiency of using PCle interconnects versus NVLink interconnects
on DGX-1 P100. Less than 100% means that training the networks only with PCle is
slower than with NVLink. More than 100% means that disabling peer-to-peer access
makes training faster, which is a surprising result. Figures 5.12(a) and 5.12(b) show the
same measurements for training Inception on the DGX-1 V100 machine.

For both machines it can be observed that there is no effect for scaling to up to four
GPUs. Training on more than four GPUs shows surprising results as well.

43

5. Experiment Results

Scaling efficiency PCle / NVLink Scaling efficiency PCle / NVLink
inception3 batch size 128 inception4 batch size 64
160% 160%
140% 140%
120% 120%
100% 100%
80% 80%
60% 60%
40% 40%
20% 20%
0% 0%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
of GPUs # of GPUs
(a) inception3 batch size 128 (b) inception4 batch size 64

Figure 5.12.: Scaling efficiency using only PCle compared to using NVLink on DGX-1

V100
Scaling efficiency PCle / NVLink Scaling efficiency PCle / NVLink
inception3 batch size 128 inception4 batch size 64
140% 140%
120% 120%
100% 100%
80% 80%
60% 60%
40% 40%
20% 20%
0% 0%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
of GPUs # of GPUs
(a) inception3 batch size 128 (b) inception4 batch size 64

Figure 5.11.: Scaling efficiency using only PCle compared to using NVLink on DGX-1
P100

ResNet50 and ResNet152 The performance results for ResNet50 and ResNet152 show
similar behavior. ResNet50 was trained using a local batch size of 128, for ResNet152
the local batch size was 64. Of course, the absolute values of images processed per
second differ as ResNet152 has significantly more layers than ResNet50 but the scaling
behavior is similar: figure 5.13(a) shows scaling for ResNet50 and figure 5.13(b) shows
scaling for ResNet152. For the training on up to five GPUs the difference between using
NVLink and not using NVLink is marginal on both machines. For the training on six

44

5. Experiment Results

Resnet50 Batchsize 128

(a) ResNet50 batch size 128

Resnet152 Batchsize 64

(b) ResNet152 batch size 64

Figure 5.13.: Scaling efficiency with (p2p enabled) and without NVLink (p2p disabled)

or seven GPUs the same inconsistency occurs as could be observed for GooglLeNet
and Inception. Training on eight GPUs produced odd results for both networks on
the DGX-1 V100: Using the NVIDIA TensorFlow version with p2p enabled resulted in
lower performance than using the TensorFlow version where p2p was disabled. It even
processed less images than on the DGX-1 P100 machine.

VGG11 and VGG16 VGG11 was trained with a batch size of 128 and VGG16 was
trained using a batch size of 64. For both networks a decrease of performance is
observed when disabling NVLink on both DGX-1 machines. Figures 5.14(a) and 5.14(b)
show scaling of both networks on the DGX-1 P100. Figures 5.15(a) and 5.15(b) show
the same for the DGX-1 V100 machine. For all scaling options training without NVLink
is slower than with NVLink. In figure 5.15(a) it can be seen that training on one GPU
also earned different performances.

45

5. Experiment Results

Scaling efficiency PCle / NVLink Scaling efficiency PCle / NVLink
vggll batch size 128 vggl6 batch size 64
160% 160%
140% 140%
120% 120%
100% 100%
80% 80%
60% 60%
40% 40%
20% 20%
0% 0%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
of GPUs # of GPUs
(a) vggll batch size 128 (b) vggl6 batch size 64

Figure 5.15.: Scaling efficiency using only PCle compared to using NVLink on DGX-1

V100
Scaling efficiency PCle / NVLink Scaling efficiency PCle / NVLink
vggl1 batch size 128 vggl6 batch size 64
140% 140%
120% 120%
100% 100%
80% 80%
60% 60%
40% 40%
20% 20%
0% 0%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
of GPUs # of GPUs
(a) vggll batch size 128 (b) vggll batch size 64

Figure 5.14.: Scaling efficiency using only PCle compared to using NVLink on DGX-1
P100

LeNet The results for LeNet5 (batch size 512) are similar to the ones from AlexNet. For
all scaling options a decrease of performance can be observed if only PCle interconnects
are used. However, also in these measurements, irregularities can be seen for the
training on the DGX-1 V100 when using the preinstalled NVIDIA TensorFlow version.
Figure 5.16 shows the results.

46

5. Experiment Results

lenet5 Batchsize 512

1 2 3 4 5 6 7 8
of GPUs

=B V100 P2P enabled «=B- V100 P2P disabled P100P2Penabled P100P2P disabled

Figure 5.16.: Scaling training of lenet5 with (p2p enabled) and without NVLink (p2p
disabled)

5.3. Discussion of Results

The conducted experiments generated some interesting results, which are summarized
in the following.

Microbenchmarks

The microbenchmarks showed that NVLink achieves a higher bandwidth than PCle
for all tested operations. One aspect, which is interesting, is that NVLink’s practical
bandwidth for all operations is more than 61% of its nominal bandwidth (based on
the results for the largest message sizes). In all operations except for bidirectional data
copies on the DGX-1 P100, it is even higher than 74%. The highest percental bandwidth
measured is 93%.

For the PCle connections the highest percental bandwidth measured is 76% for DMA
write operations from the CPU to the GPU on both DGX-1 systems. The lowest is 28%
for the bidirectional data copies from one GPU to another GPU connected to the same
PCle switch. This is a surprising result, which can be observed on both DGX-1 systems
and which suggests that PCle switches might be a bottleneck for the data copies.

The XBus connection between the two CPUs in the AC922 system also by far does not

47

5. Experiment Results

achieve its nominal bandwidth of 64 GB/s: The lowest percental bandwidth measured
is 28%, the highest is 58%. However, this is still more than the nominal bandwidth of
PClIe3.0 (15.754 GB/s).

For data copies or DMA read / write operations that include the host, an advantage
of the AC922 system becomes clearly visible: The NVLink connections from the CPU
to the GPU achieve 85% to 89% of their nominal bandwidth, which is 75 GB/s. In the
DGX systems these operations are done via the PCle connections and achieve 66% to
75% of their nominal bandwidth, which is only 15.754 GB/s.

These results suggest that for communication-intensive one should derive benefits
from using NVLink instead of PCle interconnects. Especially for workloads, in which a
lot of communication occurs between GPU and CPU, the AC922 should show drastically
higher performance.

Benchmarks for DNN Training

Using the results from the profiling, we can now classify AlexNet, VGG11, VGG16 and
LeNet5 as communication-intensive neural networks. The remaining neural networks
can be classified as computation-intensive.

For the communication-intensive workloads the training performance results fit to
what one would expect: Using PCle instead of NVLink leads to less performance in
terms of fewer images processed per second.

However, for the computation-intensive workloads this behavior cannot be observed.
In some cases disabling peer-to-peer and using only PCle even lead to higher perfor-
mance. This is a finding, which should be studied further in future research. Ideas for
further study are presented in chapter 5.4.

However, these findings support the used approach using which neural networks can
be classified. It also shows that in order to decide if high-performance interconnects
such as NVLink are useful, the workloads should be well understood in terms of
operation types. If a system with high-performance interconnects is available, users
should put effort into optimizing their algorithms in a way that high bandwidth delivers
high performance.

In terms of scaling, it can be observed that for the communication-intensive work-
loads, scaling up to eight GPUs with p2p disabled has a more negative effect in terms
of reaching linear scaling than for the computation-intensive workloads. This can be
explained by the rather low bandwidth achieved for SYS connections over QPI.

48

5. Experiment Results

Scaling efficiency 4 GPUs vs 1 GPU

lenet5

vgg 16

vgg1l

resnet152

resnet50

inceptiond

inception3

googlenet

alexnet

Q
R

50% 100% 150% 200% 250% 300% 350% 400%

mV100nop2p WVI00p2p ®P100nop2p B P100p2p

Figure 5.17.: Scaling efficiency: Training on 4 GPUs compared to 1 GPU)

Scaling efficiency 8 GPUs vs 1 GPU

lenets

vgg 16

vgg1l

resnet152

resnet50

inceptiond

inception3

googlenet

alexnet

)
R
o
8
®

200% 300% 400% 500% 600% 700% 800%

mV100nop2p WVI00p2p ®P100nop2p B PI00p2p

Figure 5.18.: Scaling efficiency: Training on 8 GPUs compared to 1 GPU)

5. Experiment Results

5.4. Limitations and Challenges

During the design and run of the experiments, three major challenges needed to be
overcome:

e Getting access to the systems used for the experiments took longer than expected.
This was especially the case for the IBM Power system. Due to the system being
available only to early users, documentation about login and scheduling was not
yet available. For the two DGX-1 systems documentation and access was not
an issue but sometimes reservation time became a bottleneck especially on the
DGX-1 system with V100 GPUs.

e The workloads used in the Fathom paper described in chapter 2.1.5 are partly
outdated and not available for current Tensorflow versions. Also, the license
to use the TIMIT dataset, which was used to train the very interesting neural
network DeepSpeech requires an LDC membership, which TUM doesn’t hold.

e In order to compare the performance of training deep neural networks using
different interconnects NVLink needed to be disabled in the systems. This was
only possible by software changes in the DL library Tensorflow. Finding the
right lines of code to make the change was one of the challenges. Compiling the
changed Tensorflow version from source was another. First, it was tried to use the
NVIDIA application container "CUDA 9.0 CUDNN?7.1-DEVEL AND PGILINUX
2018-184", which has no Tensorflow installation, but CUDA and NCCL. Trying
to compile the Tensorflow version on this image generated numerous errors.
Finally, the NVIDIA application container "Tensorflow 18.07 PY3" was used and
Tensorflow was uninstalled. After some minor changes described in 4.3.2 the
compilation was straight-forward and the once compiled package could be easily
installed on the other DGX-1 system.

Due to these challenges and experiment design decisions, some limitations apply to
the results of this thesis:

e The benchmarks for DNN training could not be run on the IBM AC922 System
due to availability and time constraints.

e As research on hardware for neural network architectures other than CNN is
quite rare, benchmark implementations for other architectures were hard to find.
Therefore, the benchmarks for DNN training only comprise convolutional neural
networks.

50

5. Experiment Results

e The Tensorflow version used to measure NVLink bandwidth, is the version from
NVIDIA’s application container. One might get slightly different results if the
Github version used for PCle would be compiled without the changes for PCle
and used as comparison to the one where peer-to-peer is disabled.

e For the training of the neural networks from the Tensorflow Github repository
the variable update method parameter server was used, one could also use NCCL
allreduce, which might lead to better performance for the NVLink connections.

51

6. Future Work

6.1. Hardware Selection

The workloads used in this thesis should definitely be run on the IBM AC922 system
as well in order to have a holisitc comparison of the presented systems. Especially
the results of workloads with a high amount of device-to-host and host-to-device
communication could deliver insightful findings. Also, it would be interesting to
see how the scaling performance behaves for the training on more than two (8355-
GTG model) respectively three GPUS (8355-GTW model) since this would show the
practical performance of the XBus connection, which was slower than expected in the
microbenchmarks performed in this study.

Furthermore, the NVIDIA DGX-2 system could be included as it uses NVSwitch
with NVLink 2.0 and 16 V100 GPUs with 32GB of GPU memory instead of 16GB. It
would be interesting to see, which effects these changes in the system have. According
to NVIDIA, for certain workloads, this system delivers 10-times the performance of the
DGX-1 V100 system used here.!

6.2. Deep Learning Workloads

In this thesis only CNNs used for computer vision tasks are covered. In order to get a
broader and deeper understanding of how the performance of training neural networks
is affected by GPU interconnects, other domains, in which deep learning is currently
used, should be explored. Other domains could be speech recognition or machine
translation. The OpenNMT initiative could be used as a starting point.2

As it has been theoretically elaborated in chapter 2.1.5 that recurrent neural networks
and fully-connected neural networks stress the interconnects more than convolutional
neural networks, these network architectures should be covered by future research
as well. On top of that, hybrid models should be taken into account. For example,
DeepSpeech, which has been identified as an interesting model for the comparison of

lsee https://www.nvidia.com/content/dam/en-zz/es_em/Solutions/Data-Center/dgx-2/

nvidia-dgx-2-datasheet.pdf
2see http://opennmt . net/

52

https://www.nvidia.com/content/dam/en-zz/es_em/Solutions/Data-Center/dgx-2/nvidia-dgx-2-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/es_em/Solutions/Data-Center/dgx-2/nvidia-dgx-2-datasheet.pdf
http://opennmt.net/

6. Future Work

performance using different types of interconnects, has been released in two newer
versions, Deep Speech 2 and Deep Speech 3. It would be interesting to see how the
model architecture evolved and what impacts it has on this reseach.

Additionally, model-parallel training of deep neural networks should be brought
into focus.

Also, one could optimize a deep learning workload in order to stress the bandwidth
of interconnects. This will lead to a stronger This might lead to less comparability,
which was a key aspect of this thesis, but it

Having all these ideas in mind, the basis for further experiments should be a deeper
analysis of DNN training workloads. This could be achieved by a more exhaustive
profiling in order to determine which operations dominate the execution time, again
focusing on the data movements as done in this thesis.

6.3. Comparison of NVLink and PCle for DNN Training

As the test results for the training of Deep Neural Networks partly show inconsistency
to what was expected, the Tensorflow version used for comparison should be examined
again. It would be interesting to see if using the GitHub Tensorflow version of release
1.8.0° without changes delivers results different from the results that were gotten in the
presented experiments using the NVIDIA preinstalled Tensorflow version.

3see https://github.com/tensorflow/tensorflow/tree/r1.8

53

https://github.com/tensorflow/tensorflow/tree/r1.8

7. Conclusion

In this thesis different GPU interconnects were compared based on their performance
with regards to training deep neural networks. Therefore, different neural network
architectures were studied and an idea how to classify neural networks was developed.

The bandwidth for data copies and DMA read and write operations were identified
as metrics that can be used to evaluate the performance of interconnects for deep
learning workloads. Microbenchmarks were performed in order to figure out the
practically achievable bandwidth of interconnects. It was shown that NVLink can
deliver a higher percentage of its nominal bandwidth than PCle can and thus NVLink
delivers considerably higher bandwidths.

In the DNN benchmarks it was shown that the identified metrics are mainly important
for communication intensive workloads. A classification of deep neural networks based
on their training workloads was defined. It could be demonstrated that using PCle for
communication intensive workloads leads to a lower performance in terms of images
processed per second than using NVLink.

However, it was also shown that NVLink cannot outperform PCle for all studied
workloads. Only for four out of nine workloads a better performance in terms of images
processed per second is achieved. This stresses the importance of a classification for
deep learning workloads.

Regarding the comparison of multi-GPU systems, it could be evidenced for most
workloads that the DGX-1 V100 systems outperforms the DGX-1 P100 system if the
NVLink connections are used. When using the PCle connections this behavior could
also be seen for many workloads except for the scaling to eight GPUs. This might
be caused by the slow PIX connection, which also showed lower performance in the
microbenchmarks.

Based on the results of the microbenchmarks and the results from the profiling of
the training workloads, one could assume that AC922 would outperform the DGX-1
systems because of its fast interconnects between CPU and GPU. However, it must be
kept in mind that the AC922 system used in this study only has half of the GPUs that
the DGX-1 V100 system has. The assumption could neither be proven nor disproved and

54

7. Conclusion

should be studied in future research considering the classification of neural networks
developed in this thesis.

In summary, it can be said that NVLink outperforms the PCle interconnects for
communication-intensive workloads. However, for the majority of networks studied in
this thesis, the advantage of having higher bandwidth did not lead to a performance
increase in terms of speed of image processing during the training phase. This finding
suggests that there cannot be a single answer to the question if training deep neural
networks benefits from using high bandwidth interconnects but having an understand-
ing of how the algorithm works and especially how often data needs to be transferred
is still necessary.

55

A. Multi-GPU Computing Systems

56

B. Experiment Setup

B.1. Changes to mgbench

B.1.1. Run only relevant tests

Listing B.1: original file - mgbench/run.sh
83 # Run L1 tests

84 echo

85 echo

86 echo

87

88 echo

89 ./build/halfduplex > 1ll-halfduplex.log
90

91 echo

92 ./build/fullduplex > l1-fullduplex.log
93

94 echo

95 ./build/uva > ll-uvahalf.log

96

97 echo

98 ./build/uva --fullduplex > ll-uvafull.log
99

100 echo

101 ./build/uva --write > ll-uvawhalf.log
102

103 echo

104 ./build/uva --write --fullduplex > ll-uvawfull.log
105

106 #echo "7/8 Scatter-Gather"

107 #./butld/scatter > l1-scatter.log

108

109 #echo "8/8 Scaling”

110 #./butld/sgemm -n 4096 -k 4096 -m 4096 --repetitions=100 --regression=false
--scaling > l1-scaling.log

57

B. Experiment Setup

B.1.2. Run the tests using PCle

mgbench/src/L1/fullduplex.cpp

Listing B.2: changed file - mgbench/src/L1/fullduplex.cpp
132 printf()s
133 /+#
134 // Enable peer-to-peer access
135 for(int © = 0; i < ndevs; ++1)

136 {

137 CUDA_CHECK (cudaSetDevice (%)) ;

138 for(int 7 = 0; j < ndevs; ++7)

139 if (i 1= 3)

140 cudaDeviceEnablePeerdccess(j, 0);
141 } */

mgbench/src/L1/halfduplex.cpp

Listing B.3: changed file - mgbench/src/L1/halfduplex.cpp

224 printf();
225 /+*

226 // Enable peer-to-peer access

227 for(int % = 0; i < ndevs; ++1)

228 {

229 CUDA_CHECK (cudaSetDevice(i));

230 for(int 7 = 0; 7 < ndevs; ++7)

231 if (i 1= 3)

232 cudaDeviceEnablePeerdccess(j, 0);
233 } x/

B.1.3. Run the tests using different message sizes

halfduplex.cpp 10 MB

Listing B.4: changed file - mgbench/src/L1/halfduplex.cpp

37 DEFINE_uint64(size, 10%1024%1024,)
38 DEFINE_uint64(chunksize, O,
)
39 DEFINE_ uint64(repetitions, 100,)
40 DEFINE_bool(sync_chunks, false,
);

58

B. Experiment Setup

37
38
39
40
41

39
40
41
42
43
44
45
46

fullduplex.cpp 1 MB

Listing B.5: changed file - mgbench/src/L1/halfduplex.cpp

DEFINE_uint64(size, 1%1024%1024, "The amount of data jto transfer');
DEFINE_uint64(repetitions, 100, "Number of repetitions to_average");

DEFINE_int32(from, -1, "Only, copy_ from a single GPU_ index, jor -1 for all");
DEFINE_int32(to, -1, "Only, copy,to,a single GPU index, or -1 ,for all");

uva.cu 100 KB

Listing B.6: changed file - mgbench/src/L1/uva.cu

DEFINE_uint64(size, 0.1%1024%1024, "The jamount, of data, to transfer');
DEFINE_uint64(type_size, sizeof(float), "The size of jthe data chunk to."
"transfer, e.g. 4. for a 4-byte float");
DEFINE_uint64(repetitions, 100, "Number of repetitions to_ average");
DEFINE_uint64(block_size, 32, "Copy kernel block size'");
DEFINE_bool (fullduplex, false, "True_ for bi-directional copy");
DEFINE_bool(write, false, "Perform DMA write instead, of read");
DEFINE_bool(random, false, "Use random access instead, of coalesced");

59

B. Experiment Setup

B.2. Changes to Tensorflow

B.2.1. Changes in cuda_gpu_executor.cc

The following has been changed in the file /tensorflow/tensorflow/stream_executor/
cuda/cuda_gpu_executor.cc from branch r1.8 [60]

Listing B.7: original file - branch: r1.8 - cuda_gpu_executor.cc

732 bool CUDAExecutor::CanEnablePeerAccessTo(StreamExecutorInterface *other) {
733 CUDAExecutor *cuda_other = static_cast<CUDAExecutor *>(other);

734 return CUDADriver::CanEnablePeerAccess(context_, cuda_other->context_);
735 }

Listing B.8: changed file: - branch: r1.8 - cuda_gpu_executor.cc

732 bool CUDAExecutor::CanEnablePeerAccessTo(StreamExecutorInterface *other) {
733 CUDAExecutor *cuda_other = static_cast<CUDAExecutor *>(other);

734 return false;

735 }

B.2.2. Compiling changed Tensorflow

The compilation of Tensorflow r1.8 with the

Listing B.9: Step-by-step: Compile TensorFlow on DGX-1 P100

delete existing tf version
sudo rm -r /opt/tensorflow

delete existing bazel version
sudo rm -r /usr/local/lib/bazel
sudo rm -r /usr/local/bin/bazel

update apt-get
sudo apt-get update

install bazel werston 0.15.0 with
./bazel-0.15.0-installer-1linux-x86_64.sh --user
export PATH=

TEST_TMPDIR=/tmp/bazel/ bazel version

export LC_ALL=C

60

B. Experiment Setup

update / install several packages that are needed

sudo apt install python-pip

sudo apt install python-numpy python-scipy python-wheel python-mock python-six
sudo pip install --upgrade setuptools

sudo pip install keras

sudo pip install keras-preprocessing

in order to use the preinstalled NCCL version (2.2.13), some files need to be
reordered, because they are by default split into different locations

cd /usr/lib

sudo mkdir nccl2

cd nccl2

sudo mkdir 1ib

sudo mkdir include

sudo 1ln -s /usr/1lib/x86_64-linux-gnu/libnccl.so /usr/lib/nccl2/1ib/libnccl.so

sudo 1n -s /usr/include/nccl.h /usr/lib/nccl2/include/nccl.h

sudo 1ln -s /usr/1lib/x86_64-linux-gnu/libnccl.so0.2.2.13 /usr/lib/nccl2/1ib/
libnccl.so0.2.2.13

sudo 1ln -s /usr/1ib/x86_64-linux-gnu/libnccl.so.2 /usr/lib/nccl2/lib/libnccl.so
.2

sudo 1n -s /usr/ /usr/lib/nccl2/NCCL-SLA.txt

sudo chmod -R 777 nccl2

export TF_NCCL_VERSION=

export NCCL_INSTALL_PATH=/usr/lib/nccl?2

inside the temsorflow directory, configure the build
cd tensorflow
TEST_TMPDIR=/tmp/bazel/ ./configure

make tensorflow package builder
TEST_TMPDIR=/tmp/bazel/ bazel build --config=opt --config=cuda //tensorflow/
tools/pip_package:build_pip_package

butld the package
./bazel-bin/tensorflow/tools/pip_package/build_pip_package /tmp/tensorflow_pkg

install the changed tensorflow via pip (the package can be found in /tmp/
tensorflow_pkg)
sudo pip install tensorflow-1.8.0-cp27-cp27mu-linux_x86_64.whl

61

B. Experiment Setup

B.2.3. Installing changed Tensorflow

Listing B.10: Step-by-step: Install changed TensorFlow

delete existing TensorFlow verstion

sudo rm -r /opt/tensorflow

update / install several packages that are needed

sudo
sudo
sudo
sudo
sudo
sudo

apt-get update

apt
apt
pip
pip
pip

install
install
install
install
install

python-pip

python-numpy python-scipy python-wheel python-mock python-six
--upgrade setuptools

keras

keras-preprocessing

install the changed TensorFlow version
sudo pip install tensorflow-1.8.0-cp27-cp27mu-linux_x86_64.whl

62

C. Experiment Results

C.1. Microbenchmarks Results

C.1.1. nvidia-smi Topology Query Results

GPUO
GPU1
GPU2
GPU3
GPU4
GPU5
GPU6
GPU7
mlx5_0
mlx5_2
mix5_1
milx5_3

GPUO
GPU1
GPU2
GPU3
GPU4
GPU5
GPU6
GPU7
milx5_0
mlix5_2
mix5_1
mlix5_3

GPUO

NV1
NV1
NV1
NV1
SYS
SYS
SYS
PIX
SYS
PHB
SYS

GPU0

PIX
PHB
PHB
SYS
SYS
SYS
SYS
PIX
SYS
PHB
SYS

GPU1 GPU2
NVl NVl
X NV1
NVI X
NV1 NV1
SYS SYS
NVI SYS
SYS NVl
SYS SYS
PIX PHB
SYS SYS
PHB PIX
SYS SYS
Table C.1.:
GPU1 GPU2
PIX PHB
X PHB
PHB X
PHB PIX
SYS SYS
SYS SYS
SYS SYS
SYS SYS
PIX PHB
SYS SYS
PHB PIX
SYS SYS

GPU3
NV1
NV1
NV1
X
SYS
SYS
SYS
NV1
PHB
SYS
PIX
SYS

nvidia-smi topo DGX-1 P100; nvidia-smi topo

GPU3
PHB
PHB
PIX
X
SYS
SYS
SYS
SYS
PHB
SYS
PIX
SYS

GPU4
NV1
SYS
SYS
SYS
X
NV1
NV1
NV1
SYS
PIX
SYS
PHB

GPU4
SYS
SYS
SYS
SYS
X
PIX
PHB
PHB
SYS
PIX
SYS
PHB

GPU5
SYS
NV1
SYS
SYS
NV1
X
NV1
NV1
SYS
PIX
SYS
PHB

GPU5
SYS
SYS
SYS
SYS
PIX
X
PHB
PHB
SYS
PIX
SYS
PHB

GPU6
SYS
SYS
NV1
SYS
NV1
NV1
X
NV1
SYS
PHB
SYS
PIX

GPU6
SYS
SYS
SYS
SYS
PHB
PHB
X
PIX
SYS
PHB
SYS
PIX

GPU7
SYS
SYS
SYS
NV1
NV1
NV1
NV1
X
SYS
PHB
SYS
PIX

GPU7
SYS
SYS
SYS
SYS
PHB
PHB
PIX
X
SYS
PHB
SYS
PIX

mix5 0 milx52 mix5.1 mix5_3

PIX
PIX
PHB
PHB
SYS
SYS
SYS
SYS
X
SYS
PHB
SYS

mix5_0 mix5_2 mlx5_1

PIX
PIX
PHB
PHB
SYS
SYS
SYS
SYS
X
SYS
PHB
SYS

SYS
SYS
SYS
SYS
PIX
PIX
PHB
PHB
SYS
X
SYS
PHB

SYS
SYS
SYS
SYS
PIX
PIX
PHB
PHB
SYS
X
SYS
PHB

PHB
PHB
PIX
PIX
SYS
SYS
SYS
SYS
PHB
SYS
X
SYS

PHB
PHB
PIX
PIX
SYS
SYS
SYS
SYS
PHB
SYS
X
SYS

SYS
SYS
SYS
SYS
PHB
PHB
PIX
PIX
SYS
PHB
SYS
X

m

mlx5_3
SYS
SYS
SYS
SYS
PHB
PHB
PIX
PIX
SYS
PHB
SYS
X

Table C.2.: nvidia-smi topo DGX-1 P100; nvidia-smi topo -mp

CPU Affinity
0-19,40-59
0-19,40-59
0-19,40-59
0-19,40-59
20-39,60-79
20-39,60-79
20-39,60-79
20-39,60-79

CPU Affinity
0-19,40-59
0-19,40-59
0-19,40-59
0-19,40-59
20-39,60-79
20-39,60-79
20-39,60-79
20-39,60-79

63

C. Experiment Results

GPUO
GPU1
GPU2
GPU3
GPU4
GPU5
GPU6
GPU7
milx5_0
mlix5_2
mix5_1
mlix5_3

GPUO
GPU1
GPU2
GPU3
GPU4
GPU5
GPU6
GPU7
mlix5_0
mlx5_2
mix5_1
mix5_3

GPuU0

GPU1

GrU2

GPU3

mix5_1
milx5_0

GPU0

NV1
NV1
NV2
NV2
SYS
SYS
SYS
PIX
SYS
PHB
SYS

GPU0

PIX
PHB
PHB
SYS
SYS
SYS
SYS
PIX
SYS
PHB
SYS

GPU1l GPU2
NVI NV1
X NV2
NV2 X
NV NV2
SYS SYS
NV2 SYS
SYS NVl
SYS SYS
PIX PHB
SYS SYS
PHB PIX
SYS SYS
Table C.3.:
GPU1l GPU2
PIX PHB
X PHB
PHB X
PHB PIX
SYS SYS
SYS SYS
SYS SYS
SYS SYS
PIX PHB
SYS SYS
PHB PIX
SYS SYS

GPU3
NV2
NV1
NV2
X
SYS
SYS
SYS
NV1
PHB
SYS
PIX
SYS

GPU4
NV2
SYS
SYS
SYS
X
NV1
NV1
NV2
SYS
PIX
SYS
PHB

GPU5
SYS
NV2
SYS
SYS
NV1
X
NV2
NV1
SYS
PIX
SYS
PHB

GPU6
SYS
SYS
NV1
SYS
NV1
NV2
X
NV2
SYS
PHB
SYS
PIX

GPU7
SYS
SYS
SYS
NV1
NV2
NV1
NV2
X
SYS
PHB
SYS
PIX

miIx5_ 0 mix5_2 mix5_1 mix5_3 CPU Affinity
PIX SYS PHB SYS 0-19,40-59
PIX SYS PHB SYS 0-19,40-59
PHB SYS PIX SYS 0-19,40-59
PHB SYS PIX SYS 0-19,40-59
SYS PIX SYS PHB 20-39,60-79
SYS PIX SYS PHB 20-39,60-79
SYS PHB SYS PIX 20-39,60-79
SYS PHB SYS PIX 20-39,60-79

X SYS PHB SYS
SYS X SYS PHB
PHB SYS X SYS

SYS PHB SYS X

nvidia-smi topo DGX-1 V100; nvidia-smi topo -m

GPU3
PHB
PHB
PIX
X
SYS
SYS
SYS
SYS
PHB
SYS
PIX
SYS

GPU4
SYS
SYS
SYS
SYS
X
PIX
PHB
PHB
SYS
PIX
SYS
PHB

GPU5
SYS
SYS
SYS
SYS
PIX
X
PHB
PHB
SYS
PIX
SYS
PHB

GPU6
SYS
SYS
SYS
SYS
PHB
PHB
X
PIX
SYS
PHB
SYS
PIX

GPU7
SYS
SYS
SYS
SYS
PHB
PHB
PIX
X
SYS
PHB
SYS
PIX

mix5_0 mlx5_2 mix5_.1 mix5_3 CPU Affinity
PIX SYS PHB SYS 0-19,40-59
PIX SYS PHB SYS 0-19,40-59
PHB SYS PIX SYS 0-19,40-59
PHB SYS PIX SYS 0-19,40-59
SYS PIX SYS PHB 20-39,60-79
SYS PIX SYS PHB 20-39,60-79
SYS PHB SYS PIX 20-39,60-79
SYS PHB SYS PIX 20-39,60-79

X SYS PHB SYS
SYS X SYS PHB
PHB SYS X SYS

SYS PHB SYS X

Table C.4.: nvidia-smi topo DGX-1 V100; nvidia-smi topo -mp

GPUO GPU1
X NV3
NV3 X

SYS SYS
SYS SYS
SYS SYS
NODE NODE

GPU2
SYS

SYS

NV3

NODE
SYS

GPU3

SYS

SYS

NV3

NODE

SYS

milx5.1 mix5_0
SYS NODE
SYS NODE
NODE SYS
NODE SYS

X SYS
SYS X

CPU Affinity
0-0,4-4,8-8,12-12,16-16,20-20,24-24,28-28,
32-32,36-36,40-40,44-44,48-48,52-52,56-56,
60-60,64-64,68-68,72-72,76-76
0-0,4-4,8-8,12-12,16-16,20-20,24-24,28-28,
32-32,36-36, 40-40,44-44,48-48 52-52,56-56,
60-60,64-64,68-68,72-72,76-76
80-80,84-84,88-88,92-92,96-96,100-100,104-104,
108-108,112-112,116-116,120-120,124-124,
128-128,132-132,136-136,140-140,144-144
80-80,84-84,88-88,92-92,96-96,100-100,104-104,
108-108,112-112,116-116,120-120,124-124,
128-128,132-132,136-136,140-140,144-144

Table C.5.: nvidia-smi topo AC922; nvidia-smi topo -m

64

C. Experiment Results

C.1.2

Mgbench Data Copies

DGX-1 P100

Bandwidth [MB/s]

DGX-1 P100: bandwidth for unidirectional data copies

20000
18000 B -D- - E
16000 'l
—
14000 B/ -
3 /
@ 12000 7
2 ’
=
_-glOOOO ,l A--___A-—---A
©°
& 8000 4 ,'
4 P
6000 4 < ¢
/ .
4000 D - ’A
- g P -
2000 ' ” - ‘A
7 -
Z
0 n - - 'E
1KB 10KB 100 KB 1MB 10MB 100 MB 1000 MB
—8- NV1 PIX — &~ PHB -=0= SYS NVLink theoretical bandwidth e P (| € theoretical bandwidth
Figure C.1.: DGX-1 P100 bandwidth for unidirectional data copies
DGX-1 P100: bandwidth for bidirectional data copies
20000
18000
.o - o
16000 IT =
14000 ’
/
/7
12000 ,
/
10000 ,
’)
8000 ————&T T
A o
/ P
6000 ’ -
Vi -
4000 4 - -8
7/ _-
/
2000 - &
_ -
0 n -== =§
1KB 10KB 100 KB 1MB 10MB 100 MB 1000 MB
=B8- NV1 PIX - @~ PHB =0= SYS NVLink theoretical bandwidth e P C € theoretical bandwidth

Figure C.2.: DGX-1 P100 bandwidth for bidirectional data copies

65

C. Experiment Results

Bandwidth [MB/s]

Bandwidth [MB/s]

DGX-1 P100: DMA read
20000

17500

15000 _——A _____ A _____A
12500 'A -E----'D'----E

10000 ‘7
4
PREE

7500 £ -
rd

5000 s

2500

W\

_-n
0 |-

1 KB 10 KB 100 KB 1 MB 10 MB 100 MB 1000 MB

PCle theoretical bandwidth e NVLink theoretical bandwidth

=0- hostuni —&- GPUuni =B~ GPUbi

Figure C.3.: DGX-1 P100 bandwidth for DMA read

DGX-1 P100: DMA write

20000
17500

15000 s g

12500 ’

10000 2 4 -
7500
5000 ‘.

2500 ’

1KB 10 KB 100 KB 1MB 10 MB 100 MB 1000 MB

<O~ hostuni —@ GPUuni —@& GPUbi ———NVLinktheoretical bandwidth == PCle theoretical bandwidth

Figure C.4.: DGX-1 P100 bandwidth for DMA write

66

C. Experiment Results

DGX-1 P100: GPU-to-GPU unidirectional memory copies - 1 KB DGX-1 P100: GPU-to-GPU unidirectional memory copies - 10 KB

20 | | I I I I | I | I 20 | |
0 I I I I 0
0-1 0-2 0-3 0-4 0-5 0-6 0-7 0-1 0-2 03 0-4 0-5 0-6 0-7

GPU-GPU mem copy

Latency [ps]
e
o
Latency [ps]
s
e

,_.
o

=

o

«

GPU-GPU mem copy

mp2penabled mp2p disabled mp2penabled m p2p disabled

(a) data size: 1 KB (b) data size: 10 KB

DGX-1 P100: GPU-to-GPU unidirectional memory copies - 100 KB DGX-1 P100: GPU-to-GPU unidirectional memory copies - 1 MB

40 200
Z 150
100
I “nhnnl
[0
01 0-2 03 0-4 05 0-6 0-7 01 0-2 03 0-4 05 0-6 07

GPU-GPU mem copy

Latency [ps]
Now
5 8

Latency [ps]

=
5]

GPU-GPU mem copy

mp2penabled mp2p disabled mp2penabled mp2p disabled

(c) data size: 100 KB (d) data size: 1 MB

DGX-1 P100: GPU-to-GPU unidirectional memory copies - 10 MB DGX-1 P100: GPU-to-GPU unidirectional memory copies - 100 MB
1.400 12
1.200 10
_ 1.000 . 8
= 800 £
g z 6
£ 600 S
5 v
400
200 2
0 0
0-1 02 03 0-4 0-5 0-6 0-7 0-1 0-2 0-3 0-4 0-5 0-6 0-7
GPU-GPU mem copy GPU-GPU mem copy
mp2penabled mp2p disabled mp2penabled mp2p disabled
(e) data size: 10 MB (f) data size: 100 MB
DGX-1 P100: GPU-to-GPU unidirectional memory copies - 1000 MB
120
100
= 80
E
z 6
]
S a0

N
5]

0 | | | I I | | I |
0 I I I I
01 02 03 04 05 06 0-

GPU-GPU mem copy

7

mp2penabled mp2p disabled

(g) data size: 1000 MB

Figure C.5.: Latency for GPU-to-GPU unidirectional memory copies on DGX-1 P100

67

C. Experiment Results

Latency [ms]

Latency [us]

Latency (us]

= . ~ ~
1S5} G > &

«

BR NN W oW b
w o hoh&ndh

250

200

0

DGX-1 P100: GPU-to-GPU bidirectional memory copies - 1 KB

0-1 0-2 03 0-4 0-5 0-6 0-7

GPU-GPU mem copy
mp2penabled mp2p disabled

(a) data size: 1 KB

DGX-1 P100: GPU-to-GPU bidirectional memory copies - 100 KB

0-1 02 0-3 0-4 05 0-6 0-7

GPU-GPU mem copy
mp2penabled mp2p disabled

(c) data size: 100 KB

DGX-1 P100: GPU-to-GPU bidirectional memory copies - 10 MB

02 03 0-4 0-5 0-6 0-7

GPU-GPU mem copy
mp2penabled mp2p disabled

(e) data size: 10 MB

DGX-1 P100: GPU-to-GPU bidirectional memory copies - 1000 MB

03 0-4 0-5 0-6 0-7

0-1 02
GPU-GPU mem copy
mp2penabled mp2p disabled

(g) data size: 1000 MB

Latency [us]

1

y [

ten

Latency [ms]

-
@

=
5

«

0

.
v 9
S 3

0

25

20

15

10

DGX-1 P100: GPU-to-GPU bidirectional memory copies - 10 KB

0-1 02 03 0-4 0-5 0-6 0-7

GPU-GPU mem copy
mp2penabled m p2p disabled

(b) data size: 10 KB

DGX-1 P100: GPU-to-GPU bidirectional memory copies - 1 MB

2 03 0-4 0-5 0-6 0-7

0-1 0-:
GPU-GPU mem copy
mp2penabled mp2p disabled

(d) data size: 1 MB

DGX-1 P100: GPU-to-GPU bidirectional memory copies - 100 MB

0-2 03 0-4 0-5 0-6 0-7

GPU-GPU mem copy
mp2penabled m p2p disabled

(f) data size: 100 MB

Figure C.6.: Latency for GPU-to-GPU bidirectional memory copies on DGX-1 P100

68

C. Experiment Results

Latency [us]

Latency [us]

Latency [ms]

Latency [us]

DGX-1 P100: DMA read - 1 KB DGX-1 P100: DMA read - 10KB
8 8
7 7
6 6
H E
4 g a
3 33
2 2
1 1
0 o
01 02 03 0-4 01 02 03 0-4
GPU-GPU DMA read GPU-GPU DMA read
munidirectional m bidirectional W unidirectional W bidirectional
(a) data size: 1 KB (b) data size: 10 KB
DGX-1 P100: DMA read - 100 KB DGX-1 P100: DMAread- 1MB
14 80
12
10 E 60
=
8 g 4
6 3
4 20
2
o
0 01 02 03 04
0-1 0-2 03 0-4
GPU-GPU DMA read GPU-GPU DMA read
munidirectional m bidirectional W unidirectional m bidirectional
(c) data size: 100 KB (d) data size: 1 MB
DGX-1 P100: DMA read - 10 MB DGX-1 P100: DMA read - 100 MB
800 9
s
600 7
= 6
é 5
400 g
33
200 2
1
0 0
01 02 03 04 01 02 03 04
GPU-GPU DMA read GPU-GPU DMA read
W unidirectional M bidirectional munidirectional m bidirectional

(e) data size: 10 MB (f) data size: 100 MB

DGX-1 P100: DMA read - 1000 MB

8

0

60

40

20

0
0-1 0-2 03 0-4

GPU-GPU DMA read

m unidirectional m bidirectional

(g) data size: 1000 MB

Figure C.7.: Latency for GPU-to-GPU DMA read on DGX-1 P100

69

C. Experiment Results

DGX-1 V100: bandwidth for unidirectional data copies
50000
45000 - 8----- (3]
40000 >
’
Ve
35000 5
iy 4
= 30000 4
s /
= 25000 ‘
]
2 A o----- B8------ o]
< / -
2 20000 2 _-
& A = S
15000 TR
s 7
10000 ’ P V-
7 _o-- o- 2
P4 -
5000 _6 - -
-= - -~
- - -
0 B-----f="
1KB 10 KB 100 KB 1MB 10 MB 100 MB 1000 MB
-0- NV1 -0- NV2 —&- PHB PIX
-0~ SYS ——— NV1theoretical bandwidth === NV2 theoretical bandwidth PCle theoretical bandwidth

Figure C.8.: DGX-1 V100 bandwidth for unidirectional data copies

DGX-1 V100: bandwidth for bidirectional data copies

50000
45000 o----" B----- 3]
s
40000 4
4
rd
35000 s
2 P 4
S~
[=1)
g 30000 p
Vs
£ 25000 -
: / —B8----- O----- 0
g 20000 ’ g-- -
o ,,
15000 ~ -
v .7
10000 / 7
s
_z - A------ A
- -
5000 e -8
- - - -°‘ =
0 B-----dF=---
1KB 10 KB 100 KB 1MB 10 MB 100 MB 1000 MB
-0- NV1 -0 NV2 —4&- PHB PIX
-Q- SYS = NV1theoretical bandwidth == NV2theoretical bandwidth == PCle theoretical bandwidth

Figure C.9.: DGX-1 V100 bandwidth for bidirectional data copies

70

C. Experiment Results

Bandwidth [MB/s]

Bandwidth [MB/s]

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

50000

45000

40000

35000

30000

25000

20000

15000

10000

5000

=& GPUNV2 bi

DGX-1 V100: bandwidth for DMA read

,E ————— ‘E _____ 'D
”
Phd A ———— '& 'A
e ”
3 -
o 7
.-
A
‘s
Y2
//’
4
e ===l =====
S g J‘g
Z -
73 o
4 e
P G--——=-- G -—-—-— O == —-- -0
RS _--"
L22er
e2="
-0
1KB 10 KB 100 KB 1MB 10 MB 100 MB 1000 MB
=0~ host uni -0~ GPUNV1uni —& GPUNV1 bi —0- GPUNV2 uni
—& GPUNV2 bi = PCle theoretical bandwidth = NV1 theoretical bandwidth == NV2 theoretical bandwidth
Figure C.10.: DGX-1 V100 bandwidth for DMA read
DGX-1 V100: bandwidth for DMA write
&
P
-
’
P
B
4
‘I
v A A
,' é_ —_’_’_——_—é """ -6' """ é
{ Zz
S
z
—————— O - === = Q=== ===0
[4 -
¢
2227
i
1KB 10 KB 100 KB 1MB 10 MB 100 MB 1000 MB
~O- host uni <0~ GPUNV1 uni —&- GPUNV1 bi -0~ GPUNV2 uni
PCle theoretical bandwidth == NV1theoretical bandwidth == NV2 theoretical bandwidth

Figure C.11.: DGX-1 V100 bandwidth for DMA write

71

C. Experiment Results

72

C. Experiment Results

C.1.3. Latency

DGX-1 V100: GPU-to-GPU unidirectional memory copies - 1 KB DGX-1 V100: GPU-to-GPU unidirectional memory copies - 10 KB
30 35
25 30
) B 25
2 220
g1s g
] S1s
“ 10 s
10
° 5
0 0
02 03 04 05 06 07 o1 02 03 04 0-5 06 07 01
GPU-GPU mem copy GPU-GPU mem copy
mp2penabled mp2p disabled mp2penabled W p2p disabled
(a) data size: 1 KB (b) data size: 10 KB
DGX-1 V100: GPU-to-GPU unidirectional memory copies - 100 KB DGX-1 V100: GPU-to-GPU unidirectional memory copies - 1 MB
60 250
=0 200
_40 .
7 7 150
g 30 g
g % 100
%20 I I -
I I) I I
10 I I
0 0
0-2 0-3 0-4 05 06 0-7 0-1 02 03 0-4 05 0-6 0-7 01
GPU-GPU mem copy GPU-GPU mem copy
mp2penabled mp2p disabled mp2p enabled m p2p disabled
(c) data size: 100 KB (d) data size: 1 MB
DGX-1 V100: GPU-to-GPU unidirectional memory copies - 10 MB DGX-1 V100: GPU-to-GPU unidirectional memory copies - 100 MB
1.400 12
1.200 10
1.000
— o 8
2 80 E
g 36
g g
£ 600 g
5 2
400
I I i 2 I i1
0 0
0-2 03 0-4 05 0-6 07 01 01 02 03 0-4 0-5 0-6 07
GPU-GPU mem copy GPU-GPU mem copy
mp2penabled mp2p disabled mp2penabled mp2p disabled
(e) data size: 10 MB (f) data size: 100 MB
DGX-1 V100: GPU-to-GPU unidirectional memory copies - 1000 MB
120
100

Latency [ms]
s 2 ®
5 3 8

N
S

0 I | II I | I I I| | | |
01 02 3 04 05 06 0-

0- 7
GPU-GPU mem copy

mp2penabled mp2p disabled

(g) data size: 1000 MB

Figure C.12.: Latency for GPU-to-GPU unidirectional memory copies on DGX-1 V100
73

C. Experiment Results

DGX-1 V100: GPU-to-GPU bidirectional memory copies - 1 KB DGX-1 V100: GPU-to-GPU bidirectional memory copies - 10 KB
20 30
25 25
2 20
2 l
g g5
£r g
5 3
310 10
5 5
0 0
01 02 03 0-4 05 0-6 07 01 02 03 0-4 05 0-6 07
GPU-GPU mem copy GPU-GPU mem copy
mp2penabled m p2p disabled mp2penabled mp2p disabled

(a) data size: 1 KB (b) data size: 10 KB

DGX-1 V100: GPU-to-GPU bidirectional memory copies - 100 KB DGX-1 V100: GPU-to-GPU bidirectional memory copies - 1 MB
50 250
40 200
g 30 Z 150
g
£ % 100
10 % I I I I
0 0
01 02 03 04 05 0-6 07 01 02 03 04 05 0-6 07
GPU-GPU mem copy GPU-GPU mem copy
mp2penabled W p2p disabled mp2penabled W p2p disabled
(c) data size: 100 KB (d) data size: 1 MB
DGX-1V100: bandwidth for bidirectional memory copies - 10 MB DGX-1 V100: GPU-to-GPU bidirectional memory copies - 100 MB
2.500 12
2,000 0
— _ 8
& 1.500 é
g)
£ 1.000 2
5 S
500 5
, N IR uf = :
01 0-2 03 0-4 05 0-6 07 01 0-2 03 04 05 0-6 0-7
GPU-GPU mem copy GPU-GPU mem copy
mp2penabled m p2p disabled mp2penabled W p2p disabled
(e) data size: 10 MB (f) data size: 100 MB
DGX-1 V100: GPU-to-GPU bidirectional memory copies - 1000 MB
120

Latency [ms]
s o
5 3

N
5

80 | | I | | | || |
0 I I I I
0-1 0-2 0-3 0-4 0-5 0-6 0-

GPU-GPU mem copy

7

mp2penabled W p2p disabled

(g) data size: 1000 MB

Figure C.13.: Latency for GPU-to-GPU bidirectional memory copies on DGX-1 V100

74

C. Experiment Results

Latency [ys]

Latency (ps]

Latency [us]

Latency [ms]

o kN W s U oa N o

0

&

8

0

DGX-1 V100: DMA read - 1 KB DGX-1V100: DMA read - 10 kB

10

9

8

7

E 6

z 5

g 4

= 3

2

1

0

0-1 0-2 03 0-4 0-1 0-2 0-3 0-4
‘GPU-GPU DMA read GPU-GPU DMA read
W unidirectional m bidirectional munidirectional W bidirectional

(a) data size: 1 KB (b) data size: 10 KB

DGX-1 V100: DMA read - 100 KB DGX-1V100: DMAread-1 MB
70
60
s0
ER
z
§
3
20
10
0
01 02 03 04 01 02 03 04
GPU-GPU DMA read GPU-GPU DMIA read
munidirectional m bidirectional munidirectional m bidirectional

(c) data size: 100 KB (d) data size: 1 MB

DGX-1V100: DMAread-10 MB DGX-1V100: DMA read - 100 MB

6

5
£

i 3

1

I I I I 0

01 02 03 04 01 02 03 04
GPU-GPU DMA read GPU-GPU DMA read
munidirectional m bidirectional munidirectional m bidirectional

(e) data size: 10 MB (f) data size: 100 MB

DGX-1V100: DMA read - 1000 MB

01 0-2 03 04

GPU-GPU DMA read

munidirectional m bidirectional

(g) data size: 1000 MB

Figure C.14.: Latency for GPU-to-GPU DMA read on DGX-1 V100

75

C. Experiment Results

AC922
AC922: bandwidth for unidirectional memory copies
80000
70000 a
—— ===
60000 _- b -
g,
= Ve
= 50000
> ’
2 4 /D
< v
£ 40000 7/ A
z ’s A---""
£ 30000 7 -
(©
@ 7 pez=--0-----=0
rd
20000 s 5E =7
oY
772 -
10000 L.z
llz -
-2 =
0 a-----a==
1KB 10 KB 100 KB 1MB 10 MB 100 MB 1000 MB
—=0- NV3 =B~ hostclose =O= SYS —#&A- host far == NVLink theoretical bandwidth ==—SYS theoretical bandwidth
Figure C.15.: AC922 bandwidth for unidirectional data copies
AC922: bandwidth for bidirectional memory copies
80000
70000
S g8----- o]
60000 4
/
— ’
v ’
> 50000 ,
2 ’
=l /
3 40000 ;
e A
3 30000 7
’
20000 S
, 6----- G ——-=-- 6--=----0
10000 ’
/’ -
.-
0 6----0O--
1KB 10 KB 100 KB 1MB 10 MB 100 MB 1000 MB
—0- N\V3 =0- SYS ——NVLink theoretical bandwidth ~ ——SYS theoretical bandwidth

Figure C.16.: AC922 bandwidth for bidirectional data copies

76

C. Experiment Results

C.2. DL Benchmarks Results

C.2.1. Scaling Training using PCle and NVLink

Alexnet Batchsize 512

g
ap

A [~ S 3
10000 —D A D D i:'
E 8000 A B ﬁ T

g
oE0
i

1 2 3 4 5 6 7 8
#of GPUs

8- V100 P2P enabled 8- V100 P2P disabled &~ P100P2Penabled P100P2P disabled

Figure C.17.: Scaling training of alexnet with (p2p enabled) and without NVLink (p2p

Googlenet Batchsize 128
6000
.a
-
-
-
-
son0 e
_-
-
_-
B- a
4000 E_—_:'—’— —===-0--
2!
z
2z
P A
PA -
e g° .
» -
E -= _==- -~ _ -
-~ - b
e -
e - -
2000 - -8
E/ -
2%
- = C R
- : ~
10(mE - -
o
1 2 3 4 5 6 7 8
#0f GPUs
—=B8- V100 P2P enabled —B8- V100 P2P disabled — &~ P100P2Penabled P100P2P disabled

Figure C.18.: Scaling training of googlenet with (p2p enabled) and without NVLink
(p2p disabled)

77

C. Experiment Results

Inception3 Batchsize 128
1800
1600 - g
”
-
rd
~ td
1400 B
- -
-
-
1200 - 3
-
-
3 -a---"" B-----1
1000 _- _--
N - B--
oo - - - -
£ B-- ~A---
00 -z - ---A
== A -
== -
600 =% &r A==="" FAy
PR s == =
a- -
400 PR P Thy
- = =
- -
_-
200
0
1 2 3 4 5 6 7 8
of GPUs
—8- Vi00P2Penabled —@= V100 P2Pdisabled — A&~ P100P2Penabled P100P2P disabled

Figure C.19.: Scaling training of inception3 with (p2p enabled) and without NVLink
(p2p disabled)

Inception4 Batchsize 64
800
_- 0
700 =
rd
-
g
600 _--
a--
P -B
500 - -
-8 8
% P
& - - -
a0 400 td -
: g- &
= e
_==" - -A
-Z o~
300 8- -z =R
- -
P a ="
P = Tamm
P ==
P - =
=z~ - = e
P
P - /;\\
w3
0
1 2 3 4 5 6 7 8
of GPUs
=B V100P2Penabled —@= V100 P2P disabled = &= P100P2Penabled P100 P2P disabled

Figure C.20.: Scaling training of inception4 with (p2p enabled) and without NVLink
(p2p disabled)

78

C. Experiment Results

Img/s

Resnet50 Batchsize 128
3000
2500 - —D
-8-
-
-
-
_-
200 a
-
-
e -B-----" a.._
- - ~ ~ -
1500 - ~en
e -
-
== _ oD - P
-z A - - A,
B- £ i
1000 -z - ==
=2 ==
P =%
P - = "&b
—_ = —
— - -
- = P £
e -
500 o’ B e
g ----
A
0
1 2 3 4 5 6 7 8
of GPUs
=B- V100P2Penabled =M@= V100 P2P disabled = &= P100P2Penabled P100P2P disabled

Figure C.21.: Scaling training of resnet50 with (p2p enabled) and without NVLink (p2p
disabled)
Resnet152 Batchsize 64
1000
900
.o
800 a- -
700 e -
" PIISPEL Hg----- B
% s 222 R
- - :: "E //\\ ————— a- -
400 -~ ==
- 1’/& .

300 E’ A A== =
- . 2% A _=

a-._-
100

0

1 2 3 4 5 6 7 8
#of GPUs
=B V100 P2P enabled —B- V100 P2P disabled — & P100P2Penabled P100P2P disabled

Figure

C.22.: Scaling training of resnet152 with (p2p enabled) and without NVLink
(p2p disabled)

79

C. Experiment Results

VGG11 Batchsize 128
1800
1600
B
rd -~
z S E'— _____
1400 £ E~ - -~ E
7 - -
s S -~
e 8- ----A
1200 0 - A‘ - = /A— a
rd - ~ - - -
7 -~ - - - - -
. & e @---=-0
bd rd - ~
,, 1000 - - _-- -8
~ ' -
= D L= -
- G % -
800 ’ ——
4
’ -
rd rd
A -
600 -
.0 A
7 s
-
wB, %z
a°
-
200
0
1 2 3 4 5 6 7 8
of GPUs
—B- V100P2Penabled —@— V100 P2Pdisabled — & P100P2Penabled P100P2P disabled

Figure C.23.: Scaling training of vggl1 with (p2p enabled) and without NVLink (p2p

disabled)
VGG16 Batchsize 64
900
800
T - N
- ~
700 i S T~g----- G----- a
rd
td
S Y .. T
. -) A A
E/ ,—"’ Sso ,/’ ---8
P & _,El---__g«———--ﬂ-'
o, 2% P - g— ==
~ e L -
g P “°
~ a0 /B _ ,/‘,
L _-"_-
7’ 7 ’a -7
300 P A/
"/ - A
(2] -
200 2%
-
100
0
1 2 3 4 5 6 7 8
of GPUs
=8~ V100 P2P enabled =8~ V100 P2P disabled — & P100P2Penabled P100P2P disabled

Figure C.24.: Scaling training of vgg16 with (p2p enabled) and without NVLink (p2p

disabled)

80

C. Experiment Results

lenet5 Batchsize 512

450000

400000 p

350000 /

300000 ’
B A

250000 -

Img/s
\
\
\
\
[
\
|
\ \
|
|
i
\
)
W

200000 fm g - -
TR AR - S
- - -
150000 ’Df’ //’E’, =
PO |
100000 -7 r’E—
I-oliA
sooo0 fig =~
0
1 2 3 4 5 6 7 8
#0of GPUs

—=B- V100 P2Penabled —B- V100 P2P disabled ~ — &~ P100P2Penabled P100P2P disabled

Figure C.25.: Scaling training of lenet5 with (p2p enabled) and without NVLink (p2p
disabled)

81

C. Experiment Results

C.2.2. Scaling Efficiency

200% 250% 300% 350% 400%
H P100p2p

150%

Scaling efficiency 4 GPUs vs 1 GPU

EV100 nop2p MWV100p2p ®WP100no p2p

100%

50%

© L]
— —

-

0%

n o) -
= a n 2 S 2 g
2) 8 o B] o @ S
7} K s @ S 5 a w 3}
- G K @ @ o ©
2 o 5] 3 <1
b < =)

Figure C.26.: Scaling efficiency 4 GPUs versus 1 GPU with (p2p enabled) and without
NVLink (p2p disabled)

82

C. Experiment Results

400% 500% 600% 700% 800%
B P100p2p

Scaling efficiency 8 GPUs vs 1 GPU
300%

EmV100 nop2p MWV100p2p ®WP100no p2p

100% 200%

0%

n =] b -
s g g & 2 E: 2 g g
2 8 8 o 5 S S 5 £
(] > > |9 c a a))
2 2 G 2
& i @ @ o ©
O - Q o o
= £ £ oo

Figure C.27.: Scaling efficiency 8 GPUs versus 1 GPU with (p2p enabled) and without
NVLink (p2p disabled)

83

C. Experiment Results

Scaling efficiency PCle / NVLink Scaling efficiency PCle / NVLink
alexnet batch size 512 googlenet batch size 128
140%
120% 140%
u" 120%
100% 100%
80% 30%
60% 60%
40% 40%
20% 20%
0% 0%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
of GPUs # of GPUs
(a) alexnet batch size 512 (b) googlenet batch size 128
Scaling efficiency PCle / NVLink Scaling efficiency PCle / NVLink
inception3 batch size 128 inception4 batch size 64
140% 140%
120% 120%
100% 100%
80% 80%
60% 60%
40% 40%
20% 20%
0% 0%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
of GPUs # of GPUs
(c) inception3 batch size 128 (d) inception4 batch size 64
Scaling efficiency PCle / NVLink Scaling efficiency PCle / NVLink
resnet50 batch size 128 resnet152 batch size 64
0y
140% 100%
0y
120% 120%
100% 100%
80% 20%
60% 60%
40% 40%
20% 20%
0% 0%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
of GPUs # of GPUs
(e) resnet50 batch size 128 (f) resnet152 batch size 64

Figure C.28.: Scaling efficiency using only PCle compared to using NVLink on DGX-1
P100

84

C. Experiment Results

Scaling efficiency PCle / NVLink Scaling efficiency PCle / NVLink
vggl1 batch size 128 vgg1l6 batch size 64
140% 140%
120% 120%
100% 100%
80% 80%
60% 60%
40% 40%
20% 20%
0% 0%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
of GPUs # of GPUs
(a) vggll batch size 128 (b) vggl6 batch size 64

Scaling efficiency PCle / NVLink
lenet5 batch size 512

140%
120%
100%

80%
60%
40%
20%
1 2 3 4 5 6 7 8

0%

of GPUs

(c) lenet5 batch size 512

Figure C.29.: Scaling efficiency using only PCle compared to using NVLink on DGX-1
P100

85

C. Experiment Results

Scaling efficiency PCle / NVLink Scaling efficiency PCle / NVLink
alexnet batch size 512 googlenet batch size 128
160%
100% 160%
140%
120% 10
° B 100%
80% 80%
60% 60%
40% 40%
20% 20%
0% 0%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
of GPUs # of GPUs
(a) alexnet batch size 512 (b) googlenet batch size 128
Scaling efficiency PCle / NVLink Scaling efficiency PCle / NVLink
inception3 batch size 128 inception4 batch size 64
160% 160%
140% 140%
120% 120%
100% 100%
80% 80%
60% 60%
40% 40%
20% 20%
0% 0%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
of GPUs # of GPUs
(c) inception3 batch size 128 (d) inception4 batch size 64
Scaling efficiency PCle / NVLink Scaling efficiency PCle / NVLink

resnet50 batch size 128 resnet152 batch size 64

160% 160%
140% 140%
120% 120%
100% 100%
80% 80%
60% 60%
40% 40%
20% 20%
1 2 3 4 5 6 7 8

0% 0%
1 2 3 4 5 6 7 8
of GPUs # of GPUs
(e) resnet50 batch size 128 (f) resnet152 batch size 64

Figure C.30.: Scaling efficiency using only PCle compared to using NVLink on DGX-1
V100

86

C. Experiment Results

Scaling efficiency PCle / NVLink Scaling efficiency PCle / NVLink
vggll batch size 128 vggl6 batch size 64
160% 160%
140% 140%
120% 120%
100% 100%
80% 80%
60% 60%
40% 40%
20% I I 20% I I
0% 0%
1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
of GPUs # of GPUs
(a) vggll batch size 128 (b) vgglé batch size 64

Scaling efficiency PCle / NVLink
lenet5 batch size 512

160%
140%
120%
100%

80%
60%
40%
20%
1 2 3 4 5 6 7 8

0%

of GPUs

(c) lenet5 batch size 512

Figure C.31.: Scaling efficiency using only PCle compared to using NVLink on DGX-1
V100

87

List of Figures

2.1.
2.2.
2.3.
24.

2.5.
2.6.

2.7.
2.8.

3.1.
3.2
3.3.

5.1.

5.2.
5.3.
54.
5.5.
5.6.
5.7.
5.8.
5.9.

5.10.

5.12.

5.11.

Deep Learning in the context of Artificial Intelligence 5
Convolution operation, adapted from [9] 8
Pooling operation, adapted from [9] 9
Inception module with dimensionality reduction using 1x1 convolutions,

[19] . . o 10
Aresidual block, [23] 11
RNN and the unfolding in time of the computation involved in its
forward computation, [6, p. 442] oL 12
FATHOM: normalized execution time, GPU vs. CPU [31] 14
Fathom: Breakdown of execution time by operation type, adapted from

[B1] . e 15
NVIDIA DGX-1 with 8 NVIDIA P100 GPUs network topology [29, p. 9] 20
NVIDIA DGX-1 with 8 NVIDIA V100 GPUs [53,p. 9] 22
IBM Power System AC922 with 4 V100 GPUs [56,p. 8] 23
Exemplary connection types used in nvidia-smi topo query result, adapted
from [29] e 34
DGX-1 P100 bandwidth for unidirectional data copies 35
DGX-1 P100 bandwidth for bidirectional data copies 35
Latency for GPU-to-GPU unidirectional memory copies on DGX-1 P100 36
DGX-1 P100 bandwidth for DMA read 37
DGX-1 V100 bandwidth for unidirectional data copies 38
DGX-1 V100 bandwidth for DMAread 39
AC922 bandwidth for unidirectional data copies 40
Scaling training of alexnet with (p2p enabled) and without NVLink (p2p
disabled) e 42
Scaling training of GoogLeNet with (p2p enabled) and without NVLink
(p2pdisabled) 43
Scaling efficiency using only PCle compared to using NVLink on DGX-1

VI00 . . . e 44
Scaling efficiency using only PCle compared to using NVLink on DGX-1

P100 o 44

88

List of Figures

5.13.
5.15.

5.14.

5.16.

5.17.
5.18.

C.1
C.2.
C.3.
C4.
C5.
C.6.
C7.
C8.
C.o.

C.10.
C.11.
C.12.
C.13.
C.14.
C.15.
C.16.
C.17.

C.18.

C.19.

C.20.

C.21.

C.22.

Scaling efficiency with (p2p enabled) and without NVLink (p2p disabled) 45
Scaling efficiency using only PCle compared to using NVLink on DGX-1

V100 . . e 46
Scaling efficiency using only PCle compared to using NVLink on DGX-1

P100 e 46
Scaling training of lenet5 with (p2p enabled) and without NVLink (p2p

disabled) 47
Scaling efficiency: Training on 4 GPUs compared to 1 GPU) 49
Scaling efficiency: Training on 8 GPUs compared to 1 GPU) 49
DGX-1 P100 bandwidth for unidirectional data copies 65
DGX-1 P100 bandwidth for bidirectional data copies 65
DGX-1 P100 bandwidth for DMAread 66
DGX-1 P100 bandwidth for DMA write 66

Latency for GPU-to-GPU unidirectional memory copies on DGX-1P100 67
Latency for GPU-to-GPU bidirectional memory copies on DGX-1 P100 . 68

Latency for GPU-to-GPU DMA read on DGX-1P100 69
DGX-1 V100 bandwidth for unidirectional data copies 70
DGX-1 V100 bandwidth for bidirectional data copies 70
DGX-1 V100 bandwidth for DMAread 71
DGX-1 V100 bandwidth for DMA write 71

Latency for GPU-to-GPU unidirectional memory copies on DGX-1 V100 73
Latency for GPU-to-GPU bidirectional memory copies on DGX-1 V100 74

Latency for GPU-to-GPU DMA read on DGX-1 V100 75
AC922 bandwidth for unidirectional data copies 76
AC922 bandwidth for bidirectional data copies. 76
Scaling training of alexnet with (p2p enabled) and without NVLink (p2p
disabled) e 77
Scaling training of googlenet with (p2p enabled) and without NVLink
(p2pdisabled) 77
Scaling training of inception3 with (p2p enabled) and without NVLink
(p2p disabled) 78
Scaling training of inception4 with (p2p enabled) and without NVLink
(p2pdisabled) 78
Scaling training of resnet50 with (p2p enabled) and without NVLink
(p2pdisabled) 79
Scaling training of resnet152 with (p2p enabled) and without NVLink
(p2pdisabled) 79

89

List of Figures

C.23.Scaling training of vggll with (p2p enabled) and without NVLink (p2p
disabled)
C.24.Scaling training of vggl6 with (p2p enabled) and without NVLink (p2p
disabled) e
C.25.Scaling training of lenet5 with (p2p enabled) and without NVLink (p2p
disabled)
C.26.Scaling efficiency 4 GPUs versus 1 GPU with (p2p enabled) and without
NVLink (p2p disabled)
C.27.Scaling efficiency 8 GPUs versus 1 GPU with (p2p enabled) and without
NVLink (p2p disabled)
C.28.Scaling efficiency using only PCle compared to using NVLink on DGX-1
P100 e
C.29.Scaling efficiency using only PCle compared to using NVLink on DGX-1
PI100 o
C.30.Scaling efficiency using only PCle compared to using NVLink on DGX-1
VI00 . . .
C.31.Scaling efficiency using only PCle compared to using NVLink on DGX-1
VI00 . . .

90

List of Tables

2.1.

4.1.
4.2.
4.3.

5.1.

C.1.
C2.
C.3.
C4.
C5.

PCle bandwidths for different generations and lane widths 17
Batch sizes for different neural network models 30
GPU interconnect map - preinstalled TensorFlow version 32
GPU interconnect map - changed TensorFlow version 32
Profiling results nvprof, 8GPUs 41
nvidia-smi topo DGX-1 P100; nvidia-smi topo-m 63
nvidia-smi topo DGX-1 P100; nvidia-smi topo-mp 63
nvidia-smi topo DGX-1 V100; nvidia-smi topo-m 64
nvidia-smi topo DGX-1 V100; nvidia-smi topo-mp 64
nvidia-smi topo AC922; nvidia-smi topo-m 64

91

Bibliography

(1]

9]
[10]

M. Guignard, M. Schild, C. S. Bederidn, N. Wolovick, and A. J. Vega, “Performance
characterization of state-of-the-art deep learning workloads on an ibm "minsky"
platform,” Frontiers in Al and Software Engineering, Jan. 2018.

Y. You, A. Bulug, and J. Demmel, “Scaling deep learning on gpu and knights
landing clusters,” in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, ser. SC "17, Denver, Colorado: ACM,
2017, 9:1-9:12, 1sBN: 978-1-4503-5114-0. por: 10.1145/3126908.3126912. [Online].
Available: http://doi.acm.org/10.1145/3126908.3126912.

N. Corporation, Nulink fabric. [Online]. Available: https://www.nvidia.com/en-
us/data-center/nvlink/.

V. Sze, Y. Chen, T. Yang, and]. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295
2329, 2017, 1ssN: 0018-9219. por: 10.1109/JPROC.2017.2761740.

J. McCarthy, M. Minsky, N. Rochester, and C. E. Shannon, “A proposal for the
dartmouth summer research project on artificial intelligence, august 31, 1955,” Al
Magazine, vol. 27, pp. 12-14, 2006.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, p. 436,
May 2015. [Online]. Available: https://doi.org/10.1038/nature14539.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

2019. [Online]. Available: https : // www . nature . com/ subjects / learning -
algorithms.

R. Wartala, Praxiseinstieg Deep Learning. O'Reilly Media, Inc., 2018.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra,
and M. A. Riedmiller, “Playing atari with deep reinforcement learning,” CoRR,
vol. abs/1312.5602, 2013. arXiv: 1312.5602. [Online]. Available: http://arxiv.
org/abs/1312.5602.

92

https://doi.org/10.1145/3126908.3126912
http://doi.acm.org/10.1145/3126908.3126912
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://doi.org/10.1109/JPROC.2017.2761740
https://doi.org/10.1038/nature14539
http://www.deeplearningbook.org
https://www.nature.com/subjects/learning-algorithms
https://www.nature.com/subjects/learning-algorithms
https://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602
http://arxiv.org/abs/1312.5602

Bibliography

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Y. Bengio, “Deep learning of representations for unsupervised and transfer
learning,” in Proceedings of the 2011 International Conference on Unsupervised and
Transfer Learning Workshop - Volume 27, ser. UTLW’11, Washington, USA: JMLR.org,
2011, pp. 17-37. [Online]. Available: http://dl.acm.org/citation.cfm?id=
3045796 .3045800.

D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio,
“Why does unsupervised pre-training help deep learning?” J. Mach. Learn. Res.,
vol. 11, pp. 625-660, Mar. 2010, 1ssN: 1532-4435. [Online]. Available: http://dl.
acm.org/citation.cfm?id=1756006.1756025.

S. S. Haykin, Neural networks and learning machines, Third. Upper Saddle River, NJ:
Pearson Education, 2009.

G. Cybenko, “Approximation by superpositions of a sigmoidal function,” Math-
ematics of Control, Signals and Systems, vol. 2, no. 4, pp. 303-314, 1989, 1ssN:
1435-568X. pot1: 10.1007/BF02551274. [Online]. Available: https://doi.org/10.
1007/BF02551274.

C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and
Statistics). Berlin, Heidelberg: Springer-Verlag, 2006, 1sBN: 0387310738.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278-2324,
1998, 1ssN: 0018-9219. por: 10.1109/5.726791.

D. Mishkin, N. Sergievskiy, and J. Matas, “Systematic evaluation of CNN ad-
vances on the imagenet,” CoRR, vol. abs/1606.02228, 2016. arXiv: 1606 .02228.
[Online]. Available: http://arxiv.org/abs/1606.02228.

A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep
convolutional neural networks,” in Proceedings of the 25th International Conference
on Neural Information Processing Systems - Volume 1, ser. NIPS'12, Lake Tahoe,
Nevada: Curran Associates Inc., 2012, pp. 1097-1105. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=2999134.2999257.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Computer
Vision and Pattern Recognition (CVPR), 2015. [Online]. Available: http://arxiv.
org/abs/1409.4842.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” CoRR, vol. abs/1409.1556, 2014. arXiv: 1409 . 1556.
[Online]. Available: http://arxiv.org/abs/1409.1556.

93

http://dl.acm.org/citation.cfm?id=3045796.3045800
http://dl.acm.org/citation.cfm?id=3045796.3045800
http://dl.acm.org/citation.cfm?id=1756006.1756025
http://dl.acm.org/citation.cfm?id=1756006.1756025
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1007/BF02551274
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1606.02228
http://arxiv.org/abs/1606.02228
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://arxiv.org/abs/1409.4842
http://arxiv.org/abs/1409.4842
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556

Bibliography

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

C. Szegedy, V. Vanhoucke, S. Ioffe,]J. Shlens, and Z. Wojna, “Rethinking the
inception architecture for computer vision,” CoRR, vol. abs/1512.00567, 2015.
arXiv: 1512.00567. [Online]. Available: http://arxiv.org/abs/1512.00567.

C. Szegedy, S. Ioffe, and V. Vanhoucke, “Inception-v4, inception-resnet and the
impact of residual connections on learning,” CoRR, vol. abs/1602.07261, 2016.
arXiv: 1602.07261. [Online]. Available: http://arxiv.org/abs/1602.07261.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recogni-
tion,” CoRR, vol. abs/1512.03385, 2015. arXiv: 1512.03385. [Online]. Available:
http://arxiv.org/abs/1512.03385.

X. Li, T. Qin, J. Yang, and T. Liu, “Lightrnn: Memory and computation-efficient
recurrent neural networks,” CoRR, vol. abs/1610.09893, 2016. arXiv: 1610.09893.
[Online]. Available: http://arxiv.org/abs/1610.09893.

M. Elbayad, L. Besacier, and J. Verbeek, “Pervasive attention: 2d convolutional
neural networks for sequence-to-sequence prediction,” CoRR, vol. abs/1808.03867,
2018. arXiv: 1808 .03867. [Online]. Available: http://arxiv . org/abs/1808.
03867.

S. Bai, J. Z. Kolter, and V. Koltun, “An empirical evaluation of generic convolu-
tional and recurrent networks for sequence modeling,” CoRR, vol. abs/1803.01271,
2018. arXiv: 1803.01271. [Online]. Available: http://arxiv . org/abs/1803.
01271.

O. Yadan, K. Adams, Y. Taigman, and M. Ranzato, “Multi-gpu training of con-
vnets,” CoRR, vol. abs/1312.5853, 2013. arXiv: 1312.5853. [Online]. Available:
http://arxiv.org/abs/1312.5853.

T. Dettmers, “8-bit approximations for parallelism in deep learning,” CoRR,
vol. abs/1511.04561, 2015. arXiv: 1511.04561. [Online]. Available: http://arxiv.
org/abs/1511.04561.

“Nvidia dgx-1 system architecture,” NVIDIA Corporation, White Paper, 2017.
[Online]. Available: https : //www . azken . com/ images / dgx1 _ images / dgx1 -
system-architecture-whitepaperl.pdf.

T. Ben-Nun and T. Hoefler, “Demystifying parallel and distributed deep learning:
An in-depth concurrency analysis,” CoRR, vol. abs/1802.09941, 2018. arXiv: 1802.
09941. [Online]. Available: http://arxiv.org/abs/1802.09941.

R. Adolf, S. Rama, B. Reagen, G. Wei, and D. M. Brooks, “Fathom: Reference
workloads for modern deep learning methods,” CoRR, vol. abs/1608.06581, 2016.
arXiv: 1608.06581. [Online]. Available: http://arxiv.org/abs/1608.06581.

94

https://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://arxiv.org/abs/1602.07261
http://arxiv.org/abs/1602.07261
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://arxiv.org/abs/1610.09893
http://arxiv.org/abs/1610.09893
https://arxiv.org/abs/1808.03867
http://arxiv.org/abs/1808.03867
http://arxiv.org/abs/1808.03867
https://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
http://arxiv.org/abs/1803.01271
https://arxiv.org/abs/1312.5853
http://arxiv.org/abs/1312.5853
https://arxiv.org/abs/1511.04561
http://arxiv.org/abs/1511.04561
http://arxiv.org/abs/1511.04561
https://www.azken.com/images/dgx1_images/dgx1-system-architecture-whitepaper1.pdf
https://www.azken.com/images/dgx1_images/dgx1-system-architecture-whitepaper1.pdf
https://arxiv.org/abs/1802.09941
https://arxiv.org/abs/1802.09941
http://arxiv.org/abs/1802.09941
https://arxiv.org/abs/1608.06581
http://arxiv.org/abs/1608.06581

Bibliography

[32] N.R. Tallent, N. A. Gawande, C. Siegel, A. Vishnu, and A. Hoisie, “Evaluating
on-node gpu interconnects for deep learning workloads,” in High Performance
Computing Systems. Performance Modeling, Benchmarking, and Simulation, S. Jarvis,
S. Wright, and S. Hammond, Eds., Cham: Springer International Publishing, 2018,
pp- 3-21, 1sBN: 978-3-319-72971-8.

[33] D. A.P.J. L. Hennesy, Rechnerorganisation und Rechnerentwurf. DeGruyter, 2016.

[34] J.Schmidhuber, “Deep learning in neural networks: An overview,” CoRR, vol. abs/1404.7828,
2014. arXiv: 1404.7828. [Online]. Available: http://arxiv.org/abs/1404.7828.

[35] S.Shams, R. Platania, K. Lee, and S. Park, “Evaluation of deep learning frame-
works over different hpc architectures,” in 2017 IEEE 37th International Conference

on Distributed Computing Systems (ICDCS), 2017, pp. 1389-1396. por1: 10.1109/
ICDCS.2017.259.

[36] “Pci express base specification revision 3.0,” PCI-SIG, Specification, 2010.

[37] H. Roland, “Rechnerarchitektur, einfithrung in den aufbau moderner computer,”
2016. por: 10.1515/9783110496642. [Online]. Available: https://www.degruyter.
com/view/product/476754.

[38] NI, “Pci express — an overview of the pci express standard,” National Instruments,
White Paper, 2014. [Online]. Available: http://www.ni.com/white-paper/3767/
en/.

[39] “Pci express base specification revision 5.0,” PCI-SIG, Specification, 2018.

[40] “Pci express base specification revision 1.1,” PCI-SIG, Specification, 2005.

[41] “Pci express base specification revision 2.0,” PCI-SIG, Specification, 2006.

[42] “Pci express base specification revision 4.0,” PCI-SIG, Specification, 2017.

[43] P. Czarnul, Parallel Programming for Modern High Performance Computing Systems.
Feb. 2018, 1sBN: 9781138305953.

[44] D. Vandeth, Accelerating applications with cpu-gpu nolink, 2016. [Online]. Available:
http://on-demand . gputechconf . com/gtcdc /2016 /video/dcs16172 - drew -
vandeth-accelerating-applications.mp4.

[45] Noswitch technical overview, 2018. [Online]. Available: http://images.nvidia.
com/content/pdf/nvswitch-technical-overview.pdf.

[46] Intel, “An introduction to the intel quickpath interconnect,” Intel Corporation,
Tech. Rep., 2009. [Online]. Available: https://www.intel.com/content /www/
us/en/io/quickpath-technology/quick-path-interconnect-introduction-
paper.html.

95

https://arxiv.org/abs/1404.7828
http://arxiv.org/abs/1404.7828
https://doi.org/10.1109/ICDCS.2017.259
https://doi.org/10.1109/ICDCS.2017.259
https://doi.org/10.1515/9783110496642
https://www.degruyter.com/view/product/476754
https://www.degruyter.com/view/product/476754
http://www.ni.com/white-paper/3767/en/
http://www.ni.com/white-paper/3767/en/
http://on-demand.gputechconf.com/gtcdc/2016/video/dcs16172-drew-vandeth-accelerating-applications.mp4
http://on-demand.gputechconf.com/gtcdc/2016/video/dcs16172-drew-vandeth-accelerating-applications.mp4
http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
http://images.nvidia.com/content/pdf/nvswitch-technical-overview.pdf
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html
https://www.intel.com/content/www/us/en/io/quickpath-technology/quick-path-interconnect-introduction-paper.html

Bibliography

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

IBM, “Ibm power system ac922 - introduction and technical overview,” IBM
Corporation, Tech. Rep., 2016. [Online]. Available: http://www.redbooks.ibm.
com/redpapers/pdfs/redpb472.pdf.

Nvidia dgx-1 datasheet, 2017. [Online]. Available: https ://www .nvidia . com/
content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-ai-supercomputer-
datasheet-v4.pdf.

Nuidia tesla p100, White Paper, 2017. [Online]. Available: http://images.nvidia.
com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper-vi.2.
pdf.

Nuvidia tesla p100 gpu accelerator - pcie version, Data Sheet, 2016. [Online]. Available:
https://www.nvidia . com/ content/dam/en-zz/Solutions/Data- Center/
tesla-p100/pdf/nvidia-tesla-pl100-PCIe-datasheet.pdf.

Nvidia tesla p100 gpu accelerator - nvlink version, Data Sheet, 2016. [Online]. Avail-
able: https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/
tesla-pl00/pdf/nvidia-tesla-pl00-datasheet.pdf.

Tensorflow release 18.07, 2018. [Online]. Available: https://docs.nvidia.com/
deeplearning/dgx/tensorflow-release-notes/.

Nvidia dgx-1 with tesla v100 system architecture, 2017. [Online]. Available: http:

/ / images . nvidia . com/ content / pdf / dgx1 - v100 - system - architecture -
whitepaper.pdf.

Nuidia tesla v100 gpu architecture, 2017. [Online]. Available: https ://images .
nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.
pdf.

Nvidia tesla v100 gpu accelerator, 2018. [Online]. Available: https : / / images .
nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-
letter-fnl-web.pdfs8.

F. Manila, Ibm powerai deep learning platform. [Online]. Available: https://www.
slideshare.net/ganesannarayanasamy/powerai-deep-dive.

T. Ben-Nun, Mgbench: Multi-gpu computing benchmark suite. [Online]. Available:
https://github.com/tbennun/mgbench (visited on).

NVIDIA, Peer device memory access, 2018. [Online]. Available: https: //docs .
nvidia . com/cuda/cuda-runtime - api/group_ _CUDART _ _PEER . html#group _
_CUDART__PEER_1g2b0adabf90db37e5cfddc92cbb2589£3.

Google, Tensorflow benchmarks. [Online]. Available: https://github.com/tensorflow/
benchmarks.

96

http://www.redbooks.ibm.com/redpapers/pdfs/redp5472.pdf
http://www.redbooks.ibm.com/redpapers/pdfs/redp5472.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-ai-supercomputer-datasheet-v4.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-ai-supercomputer-datasheet-v4.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-1/dgx-1-ai-supercomputer-datasheet-v4.pdf
http://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper-v1.2.pdf
http://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper-v1.2.pdf
http://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper-v1.2.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-PCIe-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-datasheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-p100/pdf/nvidia-tesla-p100-datasheet.pdf
https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/
https://docs.nvidia.com/deeplearning/dgx/tensorflow-release-notes/
http://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
http://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
http://images.nvidia.com/content/pdf/dgx1-v100-system-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf8
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf8
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf8
https://www.slideshare.net/ganesannarayanasamy/powerai-deep-dive
https://www.slideshare.net/ganesannarayanasamy/powerai-deep-dive
https://github.com/tbennun/mgbench
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__PEER.html#group__CUDART__PEER_1g2b0adabf90db37e5cfddc92cbb2589f3
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__PEER.html#group__CUDART__PEER_1g2b0adabf90db37e5cfddc92cbb2589f3
https://docs.nvidia.com/cuda/cuda-runtime-api/group__CUDART__PEER.html#group__CUDART__PEER_1g2b0adabf90db37e5cfddc92cbb2589f3
https://github.com/tensorflow/benchmarks
https://github.com/tensorflow/benchmarks

Bibliography

[60] Tensorflow branch r1.8, 2018. [Online]. Available: https://github.com/tensorflow/
tensorflow/tree/r1.8.

97

https://github.com/tensorflow/tensorflow/tree/r1.8
https://github.com/tensorflow/tensorflow/tree/r1.8

	Abstract
	Contents
	Introduction
	Motivation
	Purpose
	Thesis Structure

	Deep Learning and its Hardware Requirements
	Introduction to Deep Learning
	Learning Algorithms
	Deep Neural Networks
	Neural Network Architectures
	Distributed Deep Learning
	Classification of Deep Neural Networks

	Hardware Accelerators for Deep Learning

	Multi-GPU Computing Systems
	NVIDIA DGX-1 with 8 NVIDIA P100 GPUs
	NVIDIA DGX-1 with 8 NVIDIA V100 GPUs
	IBM Power System AC922 with 4 NVIDIA V100 GPUs

	Experiment Design
	Microbenchmarks
	Benchmarks for DNN training
	Methods and Parameter Settings
	Microbenchmarks
	Benchmarks for DNN training

	Experiment Results
	Microbenchmarks
	DGX-1 P100 Results
	DGX-1 V100 Results
	AC922 Results

	Benchmarks for DNN Training
	Workload Analysis using Nvprof
	Training Performance with PCIe only and with NVLink / PCIe

	Discussion of Results
	Limitations and Challenges

	Future Work
	Hardware Selection
	Deep Learning Workloads
	Comparison of NVLink and PCIe for DNN Training

	Conclusion
	Multi-GPU Computing Systems
	Experiment Setup
	Changes to mgbench
	Run only relevant tests
	Run the tests using PCIe
	Run the tests using different message sizes

	Changes to Tensorflow
	Changes in cuda_gpu_executor.cc
	Compiling changed Tensorflow
	Installing changed Tensorflow

	Experiment Results
	Microbenchmarks Results
	nvidia-smi Topology Query Results
	Mgbench Data Copies
	Latency

	DL Benchmarks Results
	Scaling Training using PCIe and NVLink
	Scaling Efficiency

	List of Figures
	List of Tables
	Bibliography

