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Abstract

Robotic manipulators are extensively used in industries, such as automobile, laser-cutting,
assembly lines and printed circuit boards. They have the ability to perform a variety of
tasks with low cost, high precision, fast production and working in a hazardous environ-
ment. A lot of research has been conducted to improve the performance and precision of
robotic manipulators. Some major issues in controlling a robot manipulator are the dynam-
ical complexity, the strong coupling between the various joints, input saturation, peaking
effect and controller tuning. In addition, modeling of manipulators, especially for higher
degree-of-freedom robots is a difficult task and prone to uncertainties. This work presents
a novel robust-adaptive control design that does not require system parameters for control.
Furthermore, implementation issues present in experiments are addressed for performance
enhancement. The other distinctive features of the proposed controller are model-free with
easy controller tuning, performance analysis in terms of transient and steady-state, robust-
ness, optimality, the inclusion of input constraints and suppressing peaking effect.

The model-free controller consists of two feedback loops: the inner loop evaluates the
robot dynamics to linearize the system and the outer loop is a simple proportional-derivative
control. The feedback linearization is performed without using system parameters, instead
the estimated model starts from zero and reaches the real system model in finite time. The
controller has the same structure as computed-torque control except that the inner loop
is model-free. Thus it can be called as an adaptive inverse-dynamics control. Two-players
zero-sum using the H∞ technique is used to find the stability and robustness of the proposed
controller. Quantitative performance analysis is also formulated in terms of steady-state joint
errors using the input-to-state-stability approach. The controller guarantees that the state
error at steady-state always remains in predefined limits. The parameters of the controller are
evaluated using the performance analysis and the input-to-state-stability. Inverse-optimal
approach is utilized to find the optimal cost for the proposed controller.

The proposed controller is further improved by addressing the implementation issues,
such as peaking and input saturation. Since the proposed controller guarantees a predefined
accuracy at steady-state, the unknown time-varying input saturation can be indirectly sensed
using the error values. A trajectory-scaling formulation is introduced to modify the desired
trajectory such that the performance criterion is satisfied. This dissertation also addresses
the issue of peaking effect by using two techniques: the first method uses a variable gain for
the controller and the second method adds an extra term in the controller to improve the
transient response.

The system is controlled using few tuning parameters along with an intuitive procedure
to find the controller parameters. Based on the proposed adaptive controller and the persis-
tent of excitation trajectory, parameters of the system are identified using the least squares
technique. The proposed adaptive controller is validated using two, three and seven degree-
of-freedom robots. For system parameters identification, two and three degree-of-freedom
manipulators are used that result in accurate estimation.
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Zusammenfassung

Roboter Manipulatoren sind kaum mehr wegzudenken aus Industrieapplikationen, wie dem
Automobilbereich, Laserschneiden, Fertigungslinien und Platinen. Sie ermöglichen es Ar-
beiten mit niedrigen Kosten, hoher Präzision, schnell und in gefährlichen Umgebungen
durchzuführen. Viele Forschungsvorhaben beschäftigten sich damit, die Leistungsfähigkeit
und Präzision von Robotern zu verbessern. Einige der großen Schwierigkeiten der Roboter-
regelung sind die dynamische Komplexität, die starke Verkopplung zwischen Gelenken, Ein-
gangsbeschränkungen, Peaking-Effekt und die Reglereinstellung. Außerdem ist die Mod-
ellierung von Manipulatoren eine schwierige Aufgabe und anfällig für Unsicherheiten, vor
allem für Roboter mit hohen Freiheitsgraden. Diese Arbeit stellt ein neues Design für ro-
buste, adaptive Regler dar, welches keine Systemparameter zur Regelung benötigt. Weiter-
hin werden Möglichkeiten zur Leistungssteigerung bei der Implementierung für Experimente
aufgezeigt. Weitere Merkmale des vorgestellten Reglers sind die Modellfreiheit, eine einfache
Reglereinstellung, eine Leistungsanalyse bzgl. des Einschwingvorgangs und des eingeschwun-
genen Vorgangs, Robustheit, Optimalität, Berücksichtigung von Eingangsnebenbedingungen
und eine Unterdrückung des Peaking-Effekt.

Der modellfreie Regler besteht aus zwei Rückkopplungsschleifen, einer inneren Schleife, die
die Roboterdynamik evaluiert, um das System zu linearisieren und einer äußeren Schleife,
die einen proportional-ableitenden Regler darstellt. Die Feedback-Linearisierung geschieht
ohne Systemparamter zu nutzen, stattdessen startet das geschätzte Modell von Null und
erreicht das reale Modell in endlicher Zeit. Der Regler hat die gleiche Struktur wie die
Drehmomentenregelung, außer dass die innere Schleife modellfrei ist. Deshalb kann man den
Regler als adaptiven Inversdynamikregler bezeichnen. Ein Zwei-Personen-Nullsummenspiel
wird zusammen mit der H∞ Technik genutzt, um Stabilität und Robustheit zu zeigen. Eine
quantitative Leistungsanalyse mit Hilfe eines Ansatzes zur Eingangszustandsstabilität wird
ebenso durchgeführt, in Bezug auf den Gelenkfehler im eingeschwungenen Zustand. Der
Regler garantiert, dass sich der Zustandsfehler im eingeschwungenen Zustand in einem vorher
festgelegten Bereich befindet. Die Reglerparameter werden mit Hilfe der Leistungsanalyse
und der Eingangszustandsstabilität ausgewertet. Eine inversoptimale Methode wird genutzt,
um die optimalen Kosten für den vorgestellten Regler zu finden.

Der vorgeschlagene Regler wird weiter verbessert, indem Implementierungsprobleme, wie
Peaking und Eingangssättigung, behandelt werden. Da der vorgestellte Regler eine vorher
definierte Genauigkeit im eingeschwungenen Zustand garantiert, kann die unbekannte zeit-
variante Eingangssättigung indirekt durch die Fehlerwerte festgestellt werden. Es wird ein
trajektorienskalierender Ansatz vorgestellt, um die gewünschte Trajektorie so zu verändern,
dass die Leistungskriterien erfüllt werden. Im Rahmen der Dissertation wird auch der
Peaking-Effekt behandelt, indem zwei Techniken angewandt werden, zum einen eine Meth-
ode mit variabler Reglerverstärkung und zum anderen eine Methode, die einen zusätzlichen
Term in den Regler einfügt, um das Einschwingverhalten zu verbessern.

Das System wird mit wenigen Einstellparametern geregelt. Das Vorgehen, um die Re-
glerparameter zu finden, ist intuitiv. Basierend auf dem vorgeschlagenen adaptiven Regler
und der [permanenten Anregung] werden die Systemparameter mit der Methode der kle-
insten Quadrate identifiziert. Der vorgeschlagene Regler wird mit Robotern mit zwei, drei
und sieben Freiheitsgraden validiert. Roboter mit zwei und drei Freiheitsgraden werden zur
Parameteridentifikation genutzt, was zu genauen Schätzungen führt.
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Notation

Vectors, Matrices and Functions

M (·) ∈ R
n×n inertial matrix

C(·) ∈ R
n×n Coriolis and centrifugal matrix

G(·) ∈ R
n×1 gravity vector

F (·) ∈ R
n×n viscous friction matrix

τ ∈ R
n×1 total torque

τ d ∈ R
n×1 disturbance

τ in ∈ R
n×1 input torque vector

N (·) ∈ R
n×1 Coriolis, centrifugal and gravity vector

vPD ∈ R
n×1 computed-torque augmented variable vector

vSL ∈ R
n×1 Slotine and Li’s controller variable vector

f(q, q̇) ∈ R
n×1 general system representation

q ∈ R
n×1 joint angle vector

qd ∈ R
n×1 desired angle vector

Kp ∈ R
n×n proportional gain

Kd ∈ R
n×n derivative gain

KD ∈ R
n×n Slotine and Li controller gain

e ∈ R
n×1 joint error vector

Y (·) ∈ R
n×p regressor matrix, where p depends on number of parameters

p ∈ R
p×1 system parameters vector

A′ ∈ R
2n×2n transition matrix for regressor-based controller

B′ ∈ R
2n×n input matrix for regressor-based controller

x′ ∈ R
2n×1 states for regressor-based controller

xC ∈ R
3×1 Cartesian coordinate vector

φ ∈ R
n×1 vector representing system

φ̂ ∈ R
n×1 estimation of system vector

φ̃ ∈ R
n×1 error in estimation of system vector

A ∈ R
(m+2)n×(m+2)n transition matrix
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L ∈ R
n×(m+1)n part of transition matrix

B ∈ R
(m+2)n×n input matrix

x ∈ R
(m+2)n×1 state vector

u ∈ R
n×1 system input

d ∈ R
n×1 disturbance input

x̄ ∈ R
2n×1 state vector

z ∈ R
mn×1 state vector

Ā ∈ R
2n×2n transition matrix

H ∈ R
mn×mn transition matrix

B̄ ∈ R
2n×mn input matrix

In ∈ R
n×n identity matrix

s ∈ R
n×1 vector

J(q) ∈ R
2×2 Jacobian Matrix

ζ ∈ R
n constant vector

△ ∈ R
n×n positive definite matrix

f(x) ∈ R
n nonlinear affine system

g(x) ∈ R
n×r input function

k(x) ∈ R
n×p disturbance function

R ∈ R
n×n positive definite matrix of proper dimensions

K̃ ∈ R
n×n positive definite matrix

f(x,d) ∈ R
n nonlinear system

τ ∈ R
n×1 torque saturation

xmax(·)
maximum allowed error vector at steady-state

P (·) positive definite matrices

Q positive definite matrix

µ kinematic parameter vector

ZM basis function approximation of inertia matrix

ZF basis function approximation of friction matrix

xvi



Notation

ZN basis function approximation of N matrix

W T
M weights for basis function approximation of inertia matrix

W T
F weights for basis basis function approximation of friction matrix

W T
N weights for basis basis function approximation of N matrix

QM cost function for inertial matrix

QF cost function for friction matrix

QN cost function for Coriolis, centrifugal and gravity vector

∇V partial derivative of V with respect to x

Y least squares regressor matrix with N sampled data

B least squares input matrix with N sampled data

Derivatives and Integrals

dx
dt

total derivative

dmx
dtm mth order total derivative
∫

xdt integral of x with respect to t
∫

m edtm mth integral of e

More Conventions

K∞ a class K∞ is a function α : R≥0 → R≥0, which is continuous, unbounded,
increasing and satisfies α(0) = 0

KL a class KL is a function β : R≥0 × R≥0 → R≥0, such that β(., t) ∈ K∞ for all t and
β(r, t) ց 0 as t → ∞, where r is a constant

|| · ||∞ infinity norm

| · | vector norm 1

, by definition “equal to”

minu minimize u

maxd maximize d

(̂·) estimation of (·)
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(̃·) difference between real and estimated value of (·)

|| · || Euclidean norm

|xperf(2)| maximum allowed error at steady-state

|eperf | maximum allowed error at steady-state
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Introduction

In industries, the demand for increased productivity, uniform quality end-product and low
manufacturing cost have paved the way for high-performance robots. Recent advancements
in the field of computer-based automation and reliable feedback sensing have made it possible
to automate industries [6]. Earlier robots, also known as ’Hard Automation’, were designed
for mass production of specific products. However, even a slight change in the product design
required new hardware manufacturing setup, thus increasing the production cost. With the
help of computer-controlled robots, it is now possible to re-program a robot to perform a
variety of tasks [7]. This also led to the use of robots in many non-industrial fields, such as
hospitals and homes.

A robot manipulator is a combination of revolving and sliding joints, controlled electroni-
cally to manipulate objects. These robot manipulators have gained overwhelming attention
in the past few decades. Controlling a robotic manipulator, especially at high speed, is a chal-
lenging task because of the strong coupling between the joints, complex nonlinear dynamics,
unknown input saturation and uncertainties [8, 9]. The presence of uncertainties, unmod-
eled dynamics and disturbances make the control operation difficult for high-performance
requirements, such as assembly, machining and laser cutting. In literature, a vast variety of
control approaches are available to control a robot, such as robust control [5, 10–12], adap-
tive control [3,13–22], neural network control [23–26], observer-based control [27,28], orbital
stabilization based control [29,30], model predictive control (MPC) [31–35], GPI control [36],
active disturbance rejection control [37] and sliding mode control [4, 38, 39]. Some of these
control schemes are model-free but the lack of system information limits their performance.

In literature, model-based control schemes are extensively used to control robot manip-
ulators. Thus, prior information about the system model is required to implement such
controllers [40, 41]. The number of system parameters expands with the increase of degree-
of-freedom (DoF) and consequently, the parameter identification becomes a difficult pro-
cess. These parameters are also highly sensitive to factors, such as, load and temperature
variations, which make the control process extremely challenging. Due to the significant
difference between the experimental and simulation results, a simplified model approach for
model-based control results in a deteriorating performance. Another issue with model-based
methods is the need for a trade-off between the system’s performance and robustness because
of uncertainties and unmodeled dynamics.

Unlike robust control with a fixed control law, adaptive control has the ability to adapt
to changes in the system. The main focus of this dissertation is the design and implemen-
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tation of a novel model-free adaptive controller. The basic idea is related to reinforcement
learning, where the controller gives an optimal result without knowing the system dynamics
parameters. In fact, the system dynamics are estimated online by using a simple differential
equation that only requires the state information. A number of mathematical tools, such
as input-to-state-stability and inverse optimal control have been used to prove the stability,
optimality and robustness of the proposed control method.

In Section 1.1, an overview of the challenges associated with controlling a robot manip-
ulator is presented. We explored the literature for the solution of identified challenges and
compared the related studies in Section 1.2. The state-of-the-art control methods are ex-
plained in two categories for better understanding: model-base and model-free. Finally, a
short overview of the main contributions of our work is given in Section 1.3.

1.1 Challenges in Control of Manipulators

A manipulator dynamics consist of inertia, Coriolis, centrifugal, gravity and friction forces.
Actuation in robots is usually performed by current controlled motors. In the following, the
main challenges in the control of robot manipulators are summarized:

Coupled Dynamical Model

The robot dynamics are often not accurately known, especially for 6- or 7-DoF robots with
a large number of system parameters. These parameters are dependent on the masses,
lengths and frictions of different joints. Inertia, gravity, Coriolis and centrifugal forces are
the reasons for the coupling effect. At low speeds, these coupling can be ignored and a
decoupled controller can be utilized to achieve high performance. A model-based control
method usually relies on the dynamics of the controller and hence, the performance of many
state-of-the-art control schemes are dependent on the estimation of the system dynamics.

Complex Friction Model

In general, a linear friction model is used in literature for control design [42, 43]. The real
friction model is complex and highly nonlinear, e.g., static friction, Stribeck friction and
Coulomb’s friction [7, 44, 45]. The effect of these friction models is often dominating and
thus can not be ignored. Furthermore, the friction parameters are sensitive to disturbances,
such as temperature and orientation of the robot manipulator. Makkar et al. proposed a
continuously differentiable friction model that estimates the nonlinear friction model [46].
The state-of-the-art control approaches usually use only the viscous friction model because
of its linear behavior.

Torque Saturation

The motors and the actuator dynamics have a significant impact on the performance of the
system. Input saturation in robotics is state-dependent because of back-electromotive force
and it is challenging to predict the precise time-varying input saturation. This saturation
affects the performance of the system in terms of joint errors. Another problem is the first-
order behavior of the motor drives that force the current/torque to reach the desired value
in finite time and not instantaneously. Fortunately, this phenomenon is useful in adaptive
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control to suppress the high-frequency noise caused by the encoders as will be explained
later.

Uncertainties and Unmodel Dynamics

As discussed, most of the friction models are not considered during controller design due to
their complexity. Load and temperature variations also affect the parameters of the system.
There are also uncertainties in the input provided by the motor drives. Furthermore, because
of the high turn ratios, small inertial values of the gears and rotors are amplified by the square
of the turn ratios and hence play a vital role in the system dynamics.

Controller Parameters

In general, a controller requires the states, desired states and system information along with
some constant controller parameters that significantly affect the performance. It is often
not feasible to tune the controller parameters during operation because of safety. Usually,
the control tuning is a laborious and troublesome task in controlling a robot manipulator.
Additionally, the appropriate controller parameters acquired from simulation results are often
not applicable in experiments due to uncertainties and unmodeled dynamics.

Physical Safety

Uncertain transient phase in robot manipulators is an implementation issue, especially when
using an adaptive controller. The unpredictable yet stable behavior during this phase is
caused because of the challenges mentioned above. A sudden overshoot, also called peaking
effect, can sometimes lead to physical danger for users or it can damage the robot.

Performance

Apart from the challenges mentioned above, there are other controlling concerns, such as
optimality and guaranteed performance. Most of the controllers only guarantee the stability
of the closed-loop system and lack optimality.

Unlike linear systems with known dynamics, steady and transient-state performance anal-
ysis for robotic systems are difficult because of the uncertainties and unmodeled dynam-
ics [47, 48]. Such performance analysis are also not covered in literature because of the
challenges previously mentioned.

To address these challenges and concerns, some state-of-the-art control methods are dis-
cussed in the next section.

1.2 State of the Art

For robot manipulators, high-speed performance and accuracy are the basic requirements in
industrial applications. Model-based control approaches usually deliver high performance in
terms of user-defined steady-state and transient-state response. Unfortunately, an accurate
model of the system is required to achieve high performance. On the other hand, model-free
controllers are usually robust, at the same time, compromising the system performance. In
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this chapter, a number of state-of-the-art control approaches are analyzed on the basis of
the following performance criteria:

• Model-based/model-free

• Optimality

• Tuning of controller parameters

• Quantitative performance analysis

The control design techniques for robots are divided into two main classes: (1) model-based
and (2) model-free. The state-of-the-art controllers for robots are (but not limited to):

1.2.1 Model-Based Control

In literature, the majority of the control techniques for manipulators are model-based. These
techniques show acceptable performance for low DoF robots. For a 6- or 7-DoF manipulator,
the system uncertainties deteriorate the performance of these controllers. Following are the
model-based control approaches available in the literature, categorized according to their
design methods for easy understanding.

Lyapunov-Based Control

The Lyapunov-based control methods use the Lyapunov stability equation to design con-
trollers. The focus of this approach is to find a controller that keeps the derivative of
Lyapunov equation negative, thus guaranteeing the stability. However, the approach does
not consider any performance criterion.

The dynamics of a manipulator is generally represented by Euler-Lagrange (E-L) equa-
tions, as explained in Chapter 2. Since the structure of the system is known and only the
constant parameters of the system are prone to uncertainties, such as masses and lengths
of joints, the E-L equations can be alternatively represented by a known regressor matrix
and an unknown parameter vector. A large number of adaptive control methods use this
linear-in-parameters representation along with Lyapunov stability technique to design the
controller [20, 49–57]. The Lyapunov equation is utilized to estimate the unknown vector
such that the system is stable [49]. The basic idea is to cancel cross terms in the Lyapunov
stability equation. The drawback is the slow convergence rate that makes the transient
response long and unpredictable. Besides, the regressor matrix has too many parameters,
which complicates the matrix evaluation for a high DoF robot.

The Lyapunov-based controllers, such as Slotine and Li’s adaptive control perform well for
a low DoF robot [49]. Finding suitable controller gains is also a drawback of the Lyapunov-
based controller. As a result, implementation on higher DoF robots requires much trial and
error to achieve the desired performance.

Robust Control

Robust control design deals with disturbances and uncertainties provided that they are
within some bounds. Sharma et al. proposed a predictive-based control method for E-L
systems, where the controller can deal with long input delays [58]. Fortunately, recent robotic
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systems usually do not have severe delay issues. A robust-adaptive controller is proposed
in [59] that is much similar to Slotine and Li’s adaptive control [49]. The advantage of the
controller is fast parameter convergence for better transient response; thus, high gains are
not required for convergence. Nonetheless, the controller requires many tuning parameters
and like Lyapunov-based controller, there is a problem of scalability to higher order systems.

An inverse-optimal proportional-integral-derivative (PID) controller based on H∞ optimal-
ity is proposed by Chung et al. [5,10], which uses the Hamilton-Jacobi-Isaacs (HJI) equations
to design the controller. The controller is easy to implement with few tuning parameters,
however, an estimate of the system dynamics is required for the control implementation.
Similarly, a finite-time H∞ control is implemented in [60] that ensures a quantitative per-
formance in terms of stability. Tuning and model information are the main concerns in the
implementation of the controller. Furthermore, a linear parameter-varying modeling (LPV)
and identification method is proposed by Hashemi et al. [61]. Principle component analysis
is used to obtain the LPV models with tighter parameter sets and H∞ technique is used for
the controller tuning. The primary challenge in the LPV approach is scheduling parame-
ters for higher order systems. Another drawback is a large number of system parameters,
especially for a 6- or 7-DoF manipulator.

Orbital Stable Control

An optimal control for periodic trajectories is proposed by Shiriaev et al. [30], which trans-
forms the robotic system dynamics into a lower dimension system. The controller also
considers the input constraints and can be implemented on under-actuated systems. Un-
fortunately, the proposed method does not show the performance in the presence of distur-
bances. Furthermore, the time-varying input saturation is assumed to be known, which in
reality is difficult to be evaluated because of the challenges explained in Section 1.1.

A similar control technique is introduced by Pchelkin et al. [29], which is based on trans-
verse dynamics that ensures the states to remain in a vicinity around the desired trajectory.
The controller relies on the estimated model of the system and also assumes that the input
saturation is available.

Model Predictive Control

Model predictive control is a numerical optimization technique that evaluates the optimal
input for the next time-step by considering a finite horizon. The advantage of MPC is that the
controller gives an optimal solution with input constraints embedded in the controller [62].
Hedjar et al. proposed a nonlinear MPC method using Taylor approximation [33], where an
integral action was introduced into the loop to enhance the robustness of the controller in
the presence of disturbances and uncertainties.

It has been shown in [3,31] that the computation cost of MPC is much higher for systems
that usually requires 1 kHz sampling-time, such as manipulators. MPCs are more helpful
for path planning, mobile robots and chemical industries, etc.

Neural Network Control

Neural network is a universal approximation technique for nonlinear systems. It has been
used for identification and control in robotics. In [23, 24], a nominal system model, similar
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to inverse-dynamics control, is used to control a robot. The unknown mismatch between
nominal and real model is approximated by using radial basis functions neural network.
H∞ is then used to validate the robustness of the control method. The advantage is an
improvement upon the conventional inverse-dynamics control, where no compensation is
provided for the mismatch.

1.2.2 Model-Free Control

The model-based adaptive control design depends on apriori knowledge of the system dynam-
ics. As a result, if the modeling errors become large, the system will exhibit poor transient
and steady-state performance. To improve the tracking response, the design requires high
controller gains in order to minimize the modeling uncertainties. This requirement of high
controller gains makes the model-based control design even more complicated in real-time
application as they may cause high-frequency chattering. In contrast, model-free controllers
are, in general, easy to implement and do not rely on parameter variations. A comparison
between basic model-free and model-based controllers is given in [63]. Following are some
model-free control methods:

Adaptive Control

The Lyapunov based controllers require a difficult task of finding the regressor matrix. This
matrix can have hundreds of parameters depending on the DoF of robot manipulators. To
avoid the use of system model, function approximation technique (FAT) approximates the
system dynamics with linear orthogonal basis functions [13,14,64]. For an accurate approx-
imation of the system, a large number of basis functions are required, which increase the
computation time of the FAT-based control. Also, the nonlinear dynamics of a manipulator
is approximated by linear functions.

Furthermore, for the estimation of the system dynamics, two robust-adaptive laws are
proposed by Safaei et al. [65]. The Lyapunov method is used in this technique to validate the
stability of the system. A significant issue in the controller is the scalability of the controller
to higher order manipulators. Both adaptive controllers exhibit the same drawbacks of
Lyapunov-based controller design.

Sliding-Mode Control (SMC)

SMC consists of two steps: first, a sliding surface is designed with some predefined specifica-
tion, and then a control law is selected that will force the system states towards the surface.
SMC keeps the states in the close neighborhood of the sliding surface. An advantage of SMC
is the model-free and robust behavior [38,39,66–69].

Sun et al. [4] proposed a sliding mode observer to estimate the external and internal
disturbances, and a SMC that deals with small disturbances. In addition, a protective
control strategy is used when there is strong disturbances, e.g., external faults or collisions.
The focus is more on the disturbances rather than the performance of the controller. A
switching sliding-mode control method is proposed in [39] with multiple Lyapunov functions
for stability.

The drawback is that SMC usually have chattering effects that is often not acceptable in
robots. Similarly, another issue is the implementation on high DoF manipulators. To the
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best of our knowledge, most of the SMC schemes use two or three DoF manipulators for
validation.

Fuzzy and Neural Network Control

A discrete fuzzy estimator approach is proposed by Fateh et al. [70, 71]. An adaptive fuzzy
cerebellar model articulation controller is proposed by Guan et al. [72]. A contouring control
scheme is introduced in [73], where the controller considers task space for better contour
tracking. Radial basis functions neural networks is used to approximate the system dynamics.
The above controllers have no steady-state or transient phase performance analysis. A
model-free discrete fuzzy control is introduced in [70] that uses fuzzy estimator to estimate
the system parameters. The main concept is to decouple the system equations into multiple
single-input-single-output systems. The decoupling will deteriorate the performance further
as we increase the order of the system. Similarly, a multi-dimensional Taylor network inverse
control method was proposed by Zhang and Yan [74] that has a low computational cost.

Robust Control

Bechlioulis et al. [75] proposed a robust controller that ensures a prescribed steady-state
and transient-state performance. The controller is only applied on a 2-DoF robot by using
linear filters. An issue with the controller is the decoupled joints approach, which affects the
performance of the feedback system. Furthermore, a PID controller with a delay compensator
is proposed by Alibeji et al. [76]. The compensator estimates the delay present in the input of
an E-L system. A drawback of the controller is the number of controller tuning parameters,
which limits the scalability to higher order systems.

Fractional-Order Control

Compared to classical PID control, which has three tuning parameters, the fraction-order
control method consists of five turning parameters and hence providing more flexibility to
design a controller [77].

A fractional-order PID controller for manipulators is designed in [78]. Due to the PID
nature, the controller is easy to implement, however, there is no consideration of disturbance
or uncertainties in the system. Another fractional-order control based on back-stepping
control method is introduced by Nikdel et al. [79, 80]. Implementation on higher order
systems and tuning are the major issues with the controller.

Intelligent PID control

Based on the operating region of a system and model variations, the classical PID controllers
require re-tuning for better performance. In model-free intelligent controllers, a single PID
is sufficient because of online estimation of the system dynamics. A generalized intelligent
PID (iPID) controller with straightforward tuning is proposed by Fliess et al. [81–83]. The
basic idea is the same as inverse-dynamics control, where the system dynamics are canceled
and eventually, a linear error model is obtained. The system dynamics are approximated by
piecewise constant functions using operational calculus.

So far, the iPID controller lacks any quantitative performance analysis. It will be shown in
Chapter 3 that the proposed controller uses the same idea of the intelligent PID controller.
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A major difference lies in the evaluation of the system dynamics for linearization. Moreover,
the proposed controller is validated by optimality and performance analysis.

The control schemes discussed above are summarized in Table 1.1 with the following
features for comparison: (a) quantitative performance (Q-P), (b) easy tuning, (c) optimality
and (d) model-free.

1.3 Main Contribution and Thesis Outline

Adaptive control methods are extensively used in control systems because of their less de-
pendence on the system dynamics. In addition, internal and external disturbances can be
considered as part of unknown dynamics as long as they are bounded. However, the clas-
sical adaptive controllers are not usually optimal and do not provide performance analysis.
Recently, optimal adaptive control using reinforcement learning is utilized to control robot
manipulators. An advantage of this method is that the controller does not require system
dynamics [86–89]. This dissertation proposed an adaptive controller that has the following
features:

• Model-free: The only assumption is that the inertia, Coriolis and centrifugal, gravity
and friction matrices are bounded.

• Optimal: Inverse optimal control method is used to show the optimality of the con-
troller.

• Robust: Since the controller is model-free, it is robust to any bounded disturbances
or parameter variations.

• Quantitative performance analysis: The steady-state behavior of the system sat-
isfies predefined performance criterion. The criterion is to keep the steady-state errors
below a predefined value, which is 0.01 rad in this dissertation.

• Easy tuning: Tuning is intuitive and straightforward because of few controller pa-
rameters. A procedure is also formulated to find the control parameters.

• Improved transient response: The transient response is qualitatively improved
using some augmentations in the proposed controller. Peaking is also reduced by using
variable controller gains.

• Include input saturation: The unknown input saturation is incorporated in the
control design with the help of quantitative performance analysis. Since the controller
keeps the steady-state errors below 0.01 rad, this information is used to deal with the
torque saturation.

As discussed earlier, the dynamics of a robot is complex and coupled, and finding the robot
parameters is a complicated task. The underlying motivation is to find a controller that does
not require a dynamical model with comparable performance as a model-based control. The
controller requires only the states information, i.e., joint velocities, joint angles, and integral
of joint angles, which is readily available from the encoder sensors. Hence, the controller is
independent of the estimated model or regressor matrix. Based on intuition, simple linear
differential equations are proposed to identify system dynamics during run-time.

8



1.3 Main Contribution and Thesis Outline

Table 1.1: Comparison: (-) means not completely true/known. Q-P stands for Quantitative
Performance.

Approach Reference(s) Q-P
Easy
tuning

Optimal
Model
free

Lyapunov-based Slotine et al. [49] ✖ ✖ ✖ ✖

Lyapunov-based Arteaga et al. [59] ✓ ✖ ✖ ✖

Lyapunov-based Kai et al. [13] ✖ ✖ ✖ ✓

Riccati inequality Bascetta et al. [51] ✖ - ✖ ✖

Lyapunov-based two
controllers

Wang [54] - ✖ ✖ ✖

Regressor-based Pagilla et al. [20] ✖ ✖ ✖ ✖

Computed-torque with
modified outer-loop

Peng et al. [52] - ✓ ✖ ✖

Lyapunov-based with an
extra compensated term

Na et al. [53] - ✖ ✖ ✖

Robust control using
PID-type delay compen-
sator

Alibeji et al. [76] ✖ ✖ ✖ ✓

Sliding-mode Yang et al. [66] - ✖ ✖ ✓

Sliding-mode Yu et al. [23,24,39,
84]

✖ ✓ ✖ ✖

Sliding-mode Sun et al. [4] ✖ ✖ ✖ ✓

Radial basis function
networks

Wang et al. [73] ✖ - ✖ ✓

Finite-time Liu et al. [60] ✓ ✖ ✓ ✖

Orbital stability Pchelkin et al. [29] ✓ ✖ - ✖

PID control using HJI Chung et al. [5, 10] ✓ ✖ ✓ ✓

Inverse control Zhang and Yan [74] ✖ ✖ ✖ ✓

Fuzzy control Fateh et al. [70] ✖ ✖ ✖ ✓

Robust-adaptive control Safaei et al. [65] ✖ ✖ ✓ ✓

Intelligent PID control
Fliess et al. [81–83] ✖ ✓ ✖ ✓

Robust control Bechlioulis et al.
[75, 85]

✓ ✖ ✖ ✓

Inverse optimal control
using H∞

Proposed [1–3] ✓ ✓ ✓ ✓
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Figure 1.1: Feedback Linearization.

To understand the motivation behind the proposed controller, a brief explanation for
computed-torque is first given in Chapter 2. Computed-torque is a control method that
consists of two loops: the inner loop is the feedback linearization loop, which strives to
cancel the nonlinear terms in the system model provided that the system dynamics are
known. The outer loop is a simple proportional-derivative control that is applied on a
linearized system. The proposed adaptive controller uses the same analogy of two feedback
loops as shown in Fig. 1.1. The difference lies in the inner loop with the assumption that
the system dynamics are unavailable. The adaptive inner loop tries to estimate the system
dynamics using ordinary differential equations. In summary, the controller is designed using
intuition of adaptive feedback linearization or adaptive computed-torque.

The optimality and robustness of the controller is validated by using the inverse-optimal
control technique. The procedure is “to find the optimal cost function given the proposed
controller”. The manipulator is represented as an L2-gain problem and HJI formulation
is used to find the optimal cost function. The stability and parameters of the controller
are evaluated using the input-to-state-stability (ISS) approach [90–92]. ISS is also used to
reduce the effect of external disturbance. An important aspect of the proposed controller
is the quantitative performance analysis. The controller guarantees that the steady-state
error for the joint angles never exceeds a predefined maximum value. The dissertation also
proposes techniques to incorporate input saturation and improve the transient response of
the controller.

We have compared the proposed control method with twelve state-of-the-art controllers,
where experimental evaluation is performed on five of these controllers [1, 3]. Simulations
and experiments for some of the controllers were not feasible because of qualitative issues
that can’t be shown in comparison, e.g., how difficult it is to tune the controller or whether
a controller is highly dependent on nominal model. The rest of the dissertation is divided
as follows.

Chapter 2 starts with an introduction of computed-torque and some state-of-the-art
adaptive control schemes. Next, an overview of the proposed adaptive control and system
identification using least squares approach based on the adaptive control are given. Finally,
a comparison of the proposed controller with a few state-of-the-art controllers is presented.

The design of a model-free adaptive control is explained in detail in Chapter 3. Ro-
bustness and stability of the controller are also proved using the H∞ approach. We further
devised a quantitative performance analysis for the controller in terms of the state error.
Simulation and experiments are also performed to validate the proposed adaptive controller.

Chapter 4 is dedicated to the performance improvement methods and addressing the
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implementation issues. To improve the transient response, which is often the bottleneck
of an adaptive controller, a few techniques are discussed. A simplified first-order adaptive
controller is discussed for easy implementation without compromising the performance. The
desired trajectory is also modified using a feedback loop to incorporate the input saturation.
Finally, these enhancements in the adaptive controller are validated using experiments and
simulations on a 3-DoF robot manipulator. In the end, conclusion and future work are
summarized in Chapter 5.
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2
Adaptive Control

After many decades of research, the control design for a robot manipulator is still a contem-
porary field of research [10,13,14,64,93]. The difficulty associated with robot control is due
to the complexity of the robot dynamics and the strong coupling between the joints [8, 9].
Thus, high performance is often not achieved using a simple computed-torque technique due
to the challenges mentioned in the previous chapter. For instance, only linear friction models
are used in many control designs [42, 43], and as a consequence, many traits of friction are
ignored, such as Coulomb and static friction. In addition, there are many reasons for pa-
rameter uncertainties, e.g., lumped parameter models or the effect of temperature variation
on friction. The state-of-the-art control techniques for robots usually lack one or many of
the following: optimality, robustness, easy-tuning, quantitative performance analysis, inclu-
sion of input saturation and implementation on higher-order robots. Some state-of-the-art
adaptive control schemes are discussed in this chapter that will give a motivation for the
proposed controller.

The objective of this dissertation is to design and implement a simple robust-adaptive
controller with few tuning parameters. Furthermore, the controller also addresses the chal-
lenges mentioned in Chapter 1. Similar to computed-torque, the proposed control system
has two feedback loops: the inner loop is the adaptive part that performs the linearization.
After the transient response, the outer loop performs like a proportional-derivative (PD)
control for the linear system. The controller can alternatively be viewed as an intelligent
proportional-integral-derivative (iPID) controller, where a single PID controller with fixed
parameters is sufficient for any fully actuated manipulator [81,83].

The control design has two main perspectives. The first objective is based on intuition,
where simple state-dependent differential equations are used to achieve feedback lineariza-
tion. The linearization does not require any system knowledge. In fact, the process starts
with zero system information and during the execution of the controller, it tries to follow the
real system trajectory. One advantage is that the system dynamics in such a case will also
include all the unmodeled dynamics and external or internal disturbances, as long as they
are bounded. Another advantage is that the controller only requires joint errors, joint veloc-
ities and their integrals for feedback loops. The second perspective of the controller is the
mathematical validation of the control method, which is thoroughly explained in Chapter 3.
It has been shown that the control design yields robustness and optimality with quantitative
performance analysis.

The manipulator model used in the rest of the dissertation is introduced in Section 2.1.
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2 Adaptive Control

The implementation of various adaptive controllers on robot manipulators is extensively
available in literature and a complete review of all the controllers is not possible in the dis-
sertation. In this chapter, a basic understanding of adaptive controllers is explained, starting
with the model-reference inverse-dynamics control in section 2.2. Next, the regressor-based
and regressor-free adaptive controllers are discussed in Section 2.3 and 2.4, respectively.
In Section 2.5, the proposed controller is introduced along with the motivation, which is
based on intuition. Since the inner loop of the proposed controller performs as a feedback
linearization, closed-loop identification can be applied on the system data. For experimen-
tal validation of the proposed controller, a 2-degree-of-freedom (DoF) manipulator is used,
which is described in Section 2.6. The section also shows a comparison with the state-of-
the-art control schemes. The identification process using the least squares (LS) is explained
in Section 2.7. For identification, 2- and 3-DoF manipulators are used in simulations and
experiments.

2.1 Euler-Lagrange (E-L) Representation

The dynamics of a robot manipulator, in general, is represented by the E-L equations. For
an n-link robot manipulator, the dynamics can be represented as

M (q)q̈ +C(q, q̇)q̇ +G(q) + F q̇ = τ , (2.1)

where M (q) ∈ R
n×n is a symmetric positive definite inertia matrix, C(q, q̇) ∈ R

n×n is a
matrix of centrifugal and Coriolis terms,G ∈ R

n×1 contains the gravitational terms acting on
the robot, F ∈ R

n×n is a diagonal matrix representing approximate values of viscous friction,
q ∈ R

n×1 is a vector of joint angles and τ ∈ R
n×1 is a vector of input torques applied at each

joint. In the presence of external disturbances, τ = τ d + τ in, where τ d is the disturbance
term and τ in is the input torque. Throughout the dissertation, this representation of system
dynamics is used. Following are the assumptions for the control system:

Assumption 1. The desired trajectory qd is selected such that qd, q̇d and q̈d ∈ L∞.

Assumption 2. If qd and q̇d ∈ L∞, then M (q),C(q, q̇),G(q) and F q̇ are bounded.

Assumption 3. The disturbance term τ d is bounded, i.e., τ d ∈ L∞.

Remark 1. Only viscous friction, which is a linear model is used in simulation results.
Coulomb and Stribeck frictions are not considered in the dynamical model, as they are
usually considered as part of external disturbance. A continuous friction model is proposed
in [46] to easily incorporate the complex friction characteristics.

2.2 Computed-Torque

Computed-torque is a feedback linearization technique that is easy to implement and ensures
stability in the presence of system mismatch and disturbances. The concept is to find an
input torque for the system (2.1)

τ in = f(q, q̇), (2.2)
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qd, q̇d PD

q̈d

τ

Feedback Linearization

Mq̈ +N + F q̇ q, q̇
+ ++

−
−

−

N (q, q̇) + F q̇

M(q)

Figure 2.1: Computed-torque in the absence of disturbances.

such that the nonlinear dynamics of the manipulators are canceled by the inverse-dynamics
of the controller. Such kind of feedback linearization might not be possible because of the
challenges outlined in Chapter 1. The basic structure of the computed-torque control is
shown in Fig. 2.1. The inner loop cancels the nonlinearities in the system and the outer
loop is a simple PD control.

The linearization can only be achieved for manipulators assuming that the external dis-
turbance is zero and the system dynamics are exactly known. Let

τ in = Mv̈PD +N (q, q̇) + F q̇, (2.3)

where N (q, q̇) = C(q, q̇)q̇ +G(q). By using (2.3), a new input v̈PD is introduced, which
makes the overall system decoupled and linear. Next for a smooth performance with desired
transient and steady-state, v̈PD must be selected such that the feedback system dynamics
become a second-order linear differential equation. Let

v̈PD = q̈d −Kdė−Kpe, (2.4)

where qd is the desired trajectory, e = q − qd, and Kd and Kp ∈ R
n×n are PD gains [8].

Substituting (2.3) and (2.4) into (2.1), the following error dynamics are achieved:

ë+Kdė+Kpe = 0. (2.5)

Since the motors are controlled by current, τ in can be replaced by

nrkτia = M (q̈d −Kdė−Kpe) +N + F q̇, (2.6)

where kτ is the torque constant, ia is the current vector and nr is a vector that represents
the gear ratio for individual joints.

As we assume, if there are no unmodeled dynamics, the desired performance in terms
of steady-state error, percent overshoot etc., can be achieved by using the pole-placement
technique [94]. If there is any mismatch, which is inevitable in experiments, the right-hand
side of (2.5) will be non-zero. Although the stability can still be assured, nevertheless, the
performance will be deteriorated.

2.3 Regressor-Based Adaptive Control

As the system dynamics are not entirely known, a proper feedback linearization like computed-
torque is not possible. Therefore, the new input torque with an estimated model can be
represented as

τ in = M̂(q̈d −Kdė−Kpe) + N̂ + F̂ q̇, (2.7)
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2 Adaptive Control

where (̂·) represents the estimate of the corresponding matrices or vectors. By using the
estimated model (2.7), the system dynamics are described by

ë+Kdė+Kpe = −M̂−1(M̃q̈ + Ñ + F̃ q̇), (2.8)

where
M̃ = M − M̂ ,

Ñ = N − N̂
and

F̃ = F − F̂ .

In this section, the disturbance τ d is assumed to be zero. In the presence of any mismatch,
the above equation (2.8) can still give a stable result using the Lyapunov stability equation.
The major issue is the poor performance of the system and depending on the mismatch, the
performance deteriorates.

Many of the state-of-the-art control schemes use the regressor approach to deal with
uncertainties. The structure of the system is known from the E-L equations. Ignoring the
external disturbances and unmodeled dynamics, the uncertainties lie only in the constant
parameters of the system. A regressor-based control converts system dynamics into a known
regressor matrix and an unknown parameter vector. The parameter vector usually consists
of masses, lengths and friction constants of each joint. For the system equation (2.1), the
regressor form is

Y (q, q̇, q̈)p = M(q)q̈ +N (q, q̇) + F q̇, (2.9)

where Y (q, q̇, q̈) be a nonlinear, known regression matrix with proper dimensions and p
is the unknown constant parameter vector. An example of a 2-degree-of-freedom (DoF)
manipulator is given in Appendix B1.

Using the regressor matrix (2.9) with p̂ as estimation of p in (2.7), and let p̃ = p − p̂ is
the estimation error, then the error dynamics become

ë+Kdė+Kpe = −M̂−1
Y (q, q̇, q̈)p̃. (2.10)

To get a stable system i-e., e → 0, a suitable value for the estimated parameter vector p̂
must be selected. Let x′ = [eT ėT ]T represents the state error, then (2.10) can be written as

ẋ′ = A′x′ −B′M̂
−1
Y (q, q̇, q̈)p̃, (2.11)

where

A′ =

[
0 In

−Kp −Kd

]
∈ R

2n×2n,B′ =

[
0
In

]
∈ R

2n×n

and In is the identity matrix. Consider the following Lyapunov function

V (x′, p̃) =
1
2
x′TP 1x

′ +
1
2
p̃TP 2p̃, (2.12)

where P 1 and P 2 are symmetric, positive definite matrices. Taking the derivative of (2.12)
along (2.11) yields

V̇ = −1
2
x′TQ′x′ − p̃T [(M̂

−1
Y )TB′TP 1x

′ + P 2
˙̂p]. (2.13)

16



2.3 Regressor-Based Adaptive Control

Since A′ is a Hurwitz matrix [31], there exists a symmetric positive definite matrix Q′

satisfying A′TP 1 + P 1A
′ = −Q′. In order to cancel the possibly non-negative terms, the

update law for p̂ must be selected as

˙̂p = −P−1
2 (M̂

−1
Y )TB′TP 1x

′. (2.14)

For an asymptotic stable system, the function V̇ must be negative. Substituting ˙̂p in (2.13),
the Lyapunov function derivative becomes V̇ = −1

2
x′TQ′x′ 6 0, which ensures asymptotic

tracking of the reference trajectory.

2.3.1 Slotine and Li’s Adaptive Control

The main problem with the regressor technique presented above is that the inverse of the
inertia matrix is often not feasible and in some cases results into a singular matrix. Similarly,
the use of joint-acceleration in the feedback loop results in noisy output. Although nowadays,
the joint encoders have a high-resolution, however, the second derivative of the joint angle
still results in noisy data because of high sampling time. To address the above issues, Slotine
et al. [49] proposed a modification to the regressor technique.

The Coriolis and centrifugal matrix C(q, q̇) can be determined to make Ṁ(q)−2C(q, q̇)
a skew-symmetric [9]. Let s = ė+ △e, where △ ∈ R

n×n is a diagonal matrix with positive
eigenvalues, the system dynamics in (2.1) transform into

Mṡ+N + Fs+Mv̇SL + FvSL = τ in (2.15)

and vSL = q̇d − △e. Taking the torque τ in as

τ in = M̂v̇SL + F̂ vSL + N̂ −KDs, (2.16)

where KD is a positive definite matrix, and (2.15) takes the form

Mṡ+ Fs+KDs = −M̃v̇SL − F̃ vSL − Ñ . (2.17)

Replacing the right-hand side of (2.17) with the regressor form, we get

Mṡ+ Fs+KDs = −Y (q, q̇,vSL, v̇SL)p̃. (2.18)

Since M is a positive definite matrix, the Lyapunov function can be chosen as

V (x′, p̃) =
1
2
sTMs+

1
2
p̃TP 2p̃. (2.19)

The derivative of the cost function

V̇ = −sTKDs− p̃T
(
P 2

˙̃p+ Y Ts
)
. (2.20)

will be negative if p̂ is formulated such that the possible positive terms are canceled:

˙̂p = −P−1
2 Y

T (q, q̇,vSL, v̇SL)s. (2.21)

An extension of the above adaptive control is presented by Ciliz and Narendra [95], where
an indirect approach is used to separate identification and control. For that purpose, mul-
tiple models switching control was used. Although the controller improves the transient
performance, the joint acceleration requirement in the feedback is the main drawback.
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2 Adaptive Control

2.4 Regressor-Free Adaptive Control

The regressor matrix requires an estimated model of the system and also the evaluation of
the regressor matrix is difficult, especially for a higher DoF robot. To avoid the use of the
regressor matrix and to make the adaptive control model-free, Huang et al. [64] proposed a
function approximation technique (FAT)-based adaptive control. This approach is based on
approximation of system dynamics by linear orthogonal basis functions. The matrices M ,
N and F are approximated by weighted sums of some orthogonal linear functions

M = W T
MZM , F = W T

FZF , N = W T
NZN ,

where WM ∈ R
n2βM ×n, W F ∈ R

n2βF ×n and WN ∈ R
nβN ×n are weighting matrices and

ZM ∈ R
n2βM ×n, ZF ∈ R

n2βF ×n and ZN ∈ R
nβN ×n are matrices of the basis functions. The

number β(.) represents the number of basis functions used for approximation. The input in
(2.16) is modified accordingly as

τ in = Ŵ
T

MZM v̇SL + Ŵ
T

FZFvSL + Ŵ
T

NZN −KDs. (2.22)

Based on the Lyapunov function with W̃ (.) = W (.) − Ŵ (.),

V (s, W̃M , W̃N , W̃ F ) =
1
2
sTMs+

1
2

tr(W̃
T

MQMW̃M + W̃
T

FQFW̃ F + W̃
T

NQNW̃N),

the update laws are derived as [11]

˙̂
WM = −Q−1

M ZM v̇SLs
T ,

˙̂
W F = −Q−1

F ZFvSLs
T ,

˙̂
WN = −Q−1

N ZNs
T . (2.23)

To further improve the control law, Kai et al. [13] replaced M−1Y (q, q̇, q̈)p by ψ, where
ψ = W TZ. Following the same procedure for finding the control law by analyzing the
Lyapunov function, we obtain

˙̂
W = −Q−1ZxTPB, (2.24)

where P ∈ R
2n×2n is a positive definite matrix. The FAT method can be a linear combination

of cosine and sine functions with proper weights. The regressor-free approach does not require
a system model, so the uncertainties and external disturbances can be considered as part of
the basis functions.

In theory, the controller should perform robustly for bounded disturbances. A drawback
of the approach is that it requires a high computational cost because of large number of
orthogonal basis functions. Another major drawback in the Lyapunov based control is the
tuning of the controller parameters and it would require trial and error to find feasible
controller parameters.
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2.5 Proposed Model-Free Robust-Adaptive Control

2.5 Proposed Model-Free Robust-Adaptive Control

The adaptive controllers explained so far were designed using the Lyapunov stability tech-
nique. Lyapunov-based controllers make sure that the joint error approaches zero, however,
there is no assurance of p̂ to approach p. These control approaches only focus on the sta-
bility of the system and the performance is compromised. In this section, we give a brief
introduction to the proposed adaptive controller.

Let φ = M(q)q̈+N (q, q̇)+F q̇−q̈−τd, where τd represents disturbances and unmodeled
parameters. Then the input torque is selected as [13]

τ in = φ̂+ q̈d −Kdė−Kpe. (2.25)

Using input as (2.25) for the robotic system (2.1), the error dynamics become

ë+Kdė+Kpe = φ̂− φ, (2.26)

where φ̂ is the estimate of φ. Next step is to find the input φ̂ for the error dynamics (2.26).

Remark 2. The error dynamics (2.26) is an alternate representation of the dynamics in
(2.8).

Remark 3. Similar to the intelligent PD (iPD) controller [83], the proposed input torque
(2.25) has two important terms along with the desired joint acceleration. The first part
is the system estimation vector φ̂ and the second is the PD controller −Kdė − Kpe.
However, we have used a different approach for the approximation of the system dynamics
φ. The advantage of an iPD controller is that a single controller gain is sufficient for
any bounded system parameters variations or disturbances. The reason is that after lin-
earization using the online system estimation, all systems end up into same linear error
dynamics of (2.5).

Theorem 1 (Adaptive law). Let φ̃ = φ̂− φ and

dmφ̂

dtm = −
m−1∑

i=0

ai
diφ̃

dti
, (2.27)

with the assumption that dmφ
dtm = 0, then the control law (2.25) leads to asymptotic stability

of the system (2.1) with respect to joint and estimation error.

Proof. The stability of the proposed adaptive law is proven by using the Lyapunov equation.

Using (2.27) and the assumption dmφ
dtm = 0, we get

m∑

i=0

ai
diφ̃

dti
= 0, (2.28)

where am = 1. By selecting proper values of ai (see Chapter 3), it is clear that φ̃ will
approach zero according to the above equation providing that all the poles of (2.28) are in
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the left half of the s-plane (Laplace [94, 96]). The next step is to prove the stability of the
controller using the above equation.

Equation (2.28) can be represented in matrix form as

ż = Hz,

where

z = [φ̃
T dφ̃

T

dt
...

dm−1φ̃
T

dtm−1 ]T ∈ R
mn×1

andH ∈ R
mn×mn is the Jordan canonical form of (2.28). Similarly the error dynamics (2.26)

can be expressed in the state space form as

˙̄x = Āx̄+ B̄z,

where

Ā =

[
0 In

−Kp −Kd

]
∈ R

2n×2n,

B̄ =

[
0 0 ... 0
In 0 ... 0

]
∈ R

2n×mn

and
x̄ =

[
eT ėT

]T ∈ R
2n×1.

Let
V (x̄,z) =

1
2
x̄TP 1x̄+

1
2
zTP 2z,

be a Lyapunov candidate, where P 1 and P 2 are symmetric, positive definite matrices with
proper dimensions. The derivative of the above Lyapunov function is

V̇ (x̄,z) = −1
2
x̄TQ1x̄− 1

2
zTQ2z + zT B̄

T
P 1x̄. (2.29)

As Ā and H are Hurwitz matrices, Ā
T
P 1 + P 1Ā = −Q1 and HTP 2 + P 2H = −Q2

with positive definite matrices Q1 and Q2. It is shown in the Appendix B2 that (2.29) is
indeed negative. From the above equation, it is evident that both the joint errors and system
mismatches are decreasing and the equilibrium point is x̄, φ̃ = 0.

Remark 4. For m = 1 and m = 2, the control laws are found by combining (2.26) and
(2.27):

m = 1 : φ̂ = −a0

(
ė+Kde+Kp

∫
e dt

)
, (2.30)

m = 2 : φ̂ = −a1(ė+Kde+Kp

∫
e dt)−

a0(e+Kd

∫
e dt +Kp

∫∫
e dt2).

(2.31)

A thorough stability proof is given in the next chapter. The main motivation in selecting
the control law as in (2.27) is to ensure that φ̃ converges to zero. The intuition for using
such a controller is given in Appendix B2.
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2.6 Results

Remark 5. The motivation behind Theorem 1 is not to prove stability as it is thoroughly
proved in the next chapter. Here, only an intuitive understanding of the proposed controller
is given, which is, “for high values of ai, the mismatch will eventually approach to zero.
Hence, resulting in a feedback linearized or iPD controller” as discussed in Section 2.6.

Remark 6. The assumption in Theorem 1, is not essential for the stability of the system
with the proposed controller. The motivation is to show that both the state error and
system mismatch approach to zero for better performance.

The first-order controller m = 1 can be alternatively represented as a classical PID con-
troller using the linear quadratic regulator technique. Let

τ in = φ̂+ q̈d. (2.32)

Using (2.32) for the robotic system (2.1), the error dynamics are

ë = φ̂− φ. (2.33)

Remark 7. From the viewpoint of the pole placement technique [96], the two terms
−Kdė−Kpe from (2.25) will now be part of input φ̂.

Let 

e

ė

ë


 =



0 I 0
0 0 I

0 0 0







∫
e

e

ė


 +




0
0
I


 φ̂−




0
0
I


φ,

which can be written as
ẋ′′ = A′′x′′ +B′′u+B′′d. (2.34)

By using the optimal control (Appendix A2), the input is

u = −K ′′x′′, K ′′ = [k′′
1 k′′

2 k′′
3]. (2.35)

Equating (2.30) and (2.35) along with their corresponding τin,

k′′
1 = a0Kp,

k′′
2 = a0Kd +Kp,

k′′
3 = a0I +Kd.

Remark 8. A similar analogy can be used to find the optimal controls for the second and
higher-order controllers. Although, the above proof simplifies the stability of the adaptive
controller but to get the insight on the performance analysis, (2.25) is used in the rest of
the dissertation.

2.6 Results

In this section, we have shown the simulation and experimental results of the proposed
adaptive controller on a 2-DoF robot manipulator (Fig. 2.2 and Appendix B1). A comparison
with other control techniques is also included in Section 2.6.1 and 2.6.2. The results are
already published in [3]. The desired trajectory is a circle in Cartesian coordinates and the
corresponding joint-space trajectory is shown in Fig. 2.3.
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Figure 2.2: Two-DoF serial robot used in experiments.
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Figure 2.3: Joint angles for the desired circular trajectory.
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(a) First joint: Y1 is the 1st row of regressor matrix.
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Figure 2.4: Results of regressor-based adaptive control: this technique requires inverse of
inertia matrix (M̂ ). Tracking of the desired trajectory is sensitive to any change
in controller parameters.

2.6.1 Simulation Results

For the regressor-based method of Section 2.3, the inverse of the inertial matrix limits the
overall performance of the controller. The matrices in (2.12) are chosen as P 2 = I and

P 1 =




6.05 0 0.008 0
0 2.13 0 0.0025

0.008 0 0.01 0
0 0.0025 0 0.01


 .

Fig. 2.4-a represents Y (q, q̇, q̈)p and Y (q, q̇, q̈)p̂ while their difference is shown in Fig.
2.8. An upper bound on the joint torques should be applied to avoid singularity problems.
Although Fig. 2.4-b shows that the joint angle tries to follow the desired trajectory to satisfy
the Lyapunov criteria, there is no guarantee on Y (q, q̇, q̈)p̃ to approach zero (see Fig. 2.8).
The approach by Slotine et al. in Fig. 2.5 shows an improved performance as compared
to the simple regression because the inverse of the inertia matrix is not required. However,
there are various design parameters in this approach, which require trial and error to adjust
the controller. From Section 2.3.1, P 2 = I and

△ =

[
10 0
0 10

]
, KD =

[
200 0
0 150

]
.

The function approximation technique (FAT)-based control from Section 2.4 in Fig. 2.6 has
the advantage of using linear approximated models of the system. However, this technique
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Figure 2.5: Results of Slotine and Li’s adaptive control. As clear from Fig. (a), the estimated
model dynamics do not follow the original model. Reason is that Lyapunov
function only shows the tracking error to be a decreasing function.

uses large matrices for the approximation, thus increasing the complexity of the controller.
Also, some information is lost because of linearization. The design parameters of the FAT-
based approach are taken from [13].

As shown in Fig. 2.8, Y (q, q̇, q̈)p̃, Y (q, q̇,vSL, v̇SL)p̃ and W T
(.)Z(.) for regressor-based,

Slotine and FAT-based approaches, respectively, never converge to zero. For this reason,
these approaches cannot be used to identify the system coefficients.

In the proposed adaptive method (Fig. 2.7), if one can ignore values at higher derivatives
of the original model φ, the error φ̃ converges to zero and also evident from Fig. 2.8.
Considering a critically damped system, ai can be easily evaluated using the pole-placement
technique. P 1 and P 2 are taken as identity matrices. The results in this section only show
one aspect for comparison, which is the approximation of the system dynamics. In the
next chapter, we showed that the proposed controller is optimal, easy to tune and has a
quantitative performance analysis.

2.6.2 Experimental Results

The experimental results for all of the controllers are shown in Fig. 2.9. m = 1 is considered
for experiments to avoid high-frequency noise. A low-pass filter is also used to remove noise
in the joint acceleration. Apart from the PD gains Kd and Kp, the proposed technique
requires only one variable a to adjust the adaptive controller. However, a large value of a
gives higher torques, which introduces high-frequency oscillation. In experiments a = 80,
thus ensuring that the performance of the PD control is not disturbed by the convergence
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Figure 2.6: Results of FAT-based adaptive control. Approximation of system parameters by
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Figure 2.8: Error (φ̃) comparison of all the four controllers for the first joint angle of 2-DoF
robot. As shown, the error for the FAT, regressor and Slotine/Li’s controllers
are not zero.

of system error. The values for the PD gain are

Kd =

[
10 0
0 10

]
, Kp =

[
100 0
0 100

]

The poles for the PD gain are at −10, while a is selected eight times faster than the poles
of the PD control. Because of the reason that the mismatch tends to zero in the proposed
adaptive controller, the end-effector follows the trajectory satisfying equation (2.5) as clear
from Fig. 2.9. Note that the proposed adaptive control technique also deals with disturbances
because τ d is also considered as part of the unknown system dynamics.
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Figure 2.9: Experimental results: position of end effectors starting from 0.5x̂ + 0ŷ m.
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2.7 System Identification

2.7 System Identification

System parameter identification has long been a major interest in industrial applications.
The identification of dynamical model improves the performance of a model-based control.
It is also beneficial for a realistic simulation of a control method on a system. Computing
the system dynamics using computer-aided design methods are not often accurate. Many
researchers have contributed to the identification of robotic systems [3,97–105]. An overview
of the offline and online identification methods is presented in [106]. In [107], a few set
membership estimation techniques are implemented to identify the parameters of the system.
A sequential procedure is proposed in [108], where the parameters are identified sequentially,
in order of friction, gravity and rest of the parameters.

Remark 9. The proposed adaptive controller is model-free and hence the system identi-
fication is not required for the controller. The identified values could be only useful for
finding the initial value of φ̂, which can improve the transient response.

It has been shown in [109] that a simple model with a focus on the most influential
parameters of the system gives better simulation results. The adaptive controllers usually
use model-reference control with parametrized model and the parameters are referred to as
the adaptive weights. Due to lack of persistence of excitation, these parameters often do not
approach real parameters [110]. The structure of robot manipulators can be evaluated using
the Euler-Lagrange equation and the uncertainties lie only in the constant coefficients of the
system parameters. Using the proposed controller, z → 0, we eventually get

ë+Kdė+Kpe = 0.

To find the unknown parameters, take the values of φ̂ whenever the above equation is true
at each time step (since φ = φ̂ at that sample). Once φ is known, the LS technique can
be used to determine the system parameters. The essential requirement for identifying the
system model using LS is by having a proper excitation trajectory. There are techniques
that assure the identification is valid without the use of persistence of excitation. For that
reason, the following criterion is required to be fulfilled [111]:

∫ tf

t0

R(t)R(t)T dt > γI, (2.36)

where R(t) is the regressor matrix, t0 and tf are the initial time and final time, respectively
and γ is a positive number. Because of the increasing computational power, concurrent
learning approaches gained more attention [112], where recorded data and current data are
used to identify the system parameters online. To identify model parameters experimentally,
it is necessary to have position, velocity and acceleration at each joint to get a rich regressor
matrix. Once a large number of data points for φ̂ is available, which in our experiments are
nearly 5000 data points, LS can be applied to estimate the model parameters [9]:

Yp̂ = B,

p̂ = (YT Y)−1YTB, (2.37)

where, Y = [Y T
1 Y

T
2 ... Y T

N ]T , B = [φ̂
T

1 φ̂
T

2 ... φ̂
T

N ]T , and N is the total number of sampled
data points. The columns of the matrix Y should be linearly independent for LS to accurately
approximate the parameters.
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Table 2.1: Calculated, simulation and experimental estimation of parameters for 2-DoF ma-
nipulator.

Var. Equivalent Cal. Sim. Exp.

m11
1
3
m1l

2
1 + 1

3
m2l

2
2 + m2l

2
1 0.442 0.442 0.590

m
′

11 m2l1l2 0.028 0.027 0.027
m12

1
3
m2l

2
2 0.009 0.008 0.006

m
′

12
1
2
m2l1l2 0.014 0.015 0.010

n11
1
2
m2l1l2 0.014 0.014 0.216

n12 m2l1l2 0.030 0.028 0.041
f11 − 0.001 0.004 0.001
m21

1
3
m2l

2
2 0.009 0.009 0.005

m
′

21
1
2
m2l1l2 0.014 0.015 0.009

m22
1
3
m2l

2
2 0.222 0.222 0.282

n21
1
2
m2l1l2 0.014 0.013 0.282

f22 − 0.001 0.006 0.001

Table 2.2: Parameter estimation for 3-DoF.
Var. Cal. Est. Var. Cal. Est. Var. Cal. Est.

m11 0.7089 0.7003 m
′′

21 0.0457 0.0414 n11 0.1636 0.6585
m

′

11 0.0457 0.0375 m
′′′

21 0.2470 0.2427 n12 0.0837 0.0501
m

′′

11 0.0457 0.0510 m22 0.2493 0.2490 n13 0.0228 0.0112
m

′′′

11 0.4940 0.5012 m
′

22 0.0457 0.0437 n14 0.0228 0.0244
m12 0.2493 0.2444 m23 0.0130 0.0126 n15 0.0837 0.0384
m

′

12 0.0228 0.0203 m
′

23 0.0228 0.0225 n16 0.0228 0.0226
m

′′

12 0.0457 0.0503 n21 0.2470 0.2478 n17 0.0228 0.0233
m

′′′

12 0.2470 0.2462 n22 0.0228 0.0248 f11 0.0010 0.0017
m13 0.0130 0.0120 n23 0.0228 0.0214 m21 0.2493 0.2510
m

′

13 0.0228 0.0236 n24 0.0228 0.0219 m
′

21 0.0228 0.0264
m

′′

13 0.0228 0.0199 f22 0.0010 0.0020 m31 0.0130 0.0133
m

′′

31 0.0228 0.0223 m
′

31 0.0228 0.0224 m33 0.0130 0.0141
m

′

32 0.0228 0.0228 m32 0.0130 0.129 n31 0.0228 0.0232
f33 0.0010 0.0050 n32 0.0228 0.0228 - - -
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2.8 Summary

Using the LS approximation with an adequate excitation trajectory, the unknown param-
eters of 2-DoF manipulator are estimated as shown in Table 2.1. The table consists of three
sets of parameters: (1) calculated parameters using the geometry of the manipulator, (2)
identified parameters using the simulation data with calculated parameters used as the sys-
tem model and (3) identified parameters using the experimental data. The simulations for
parameter estimations produce good results, nevertheless, because in experiments, the real
model is not known, we can only assume that the experimentally identified parameters must
be close to the calculated values. Moreover, the identification process can be improved by
adding torque boundedness and unmodeled parameters in terms of disturbances. Both in
simulations and experiments, τ d is ignored for the identification process.

Following the same procedure for the 3-DoF manipulator, the system parameters are shown
in Table 2.2. The white box model of the 3-DoF manipulator is

M =




m11 + m
′
11c3 + m

′′
11c23 + m

′′′
11c2 m

′′′
12 + m

′
12c23 + m

′′
12c3 + m12c2 m13 + m

′
13c3 + m

′′
13c23

m
′′′
21 + m

′
21c23 + m

′′
21c3 + m21c2 m22 + m

′
22c3 m23 + m

′
23c3

m31 + m
′
31c3 + m

′′
31c23 m32 + m

′
32c3 m33


 ,

(2.38)

N =




n11

((
q̇2

1 −
(

q̇1 + q̇2

)2
)

s2

)
− n12

((
q̇1 + q̇2

)2
s2

)
+ n13

((
q̇1 + q̇2

)2
s3

)
− n14

((
q̇1 + q̇2 + q̇3

)2
s3

)
+ n15

(
q̇2

1s2

)
−

n16

((
q̇1 + q̇2 + q̇3

)2
s23

)
+ n17

(
q̇2

1s23

)

n21

(
q̇2

1s2

)
+ n22

(
q̇2

1s23

)
+ n23

((
q̇1 + q̇2

)2
s3

)
− n24

((
q̇1 + q̇2 + q̇3

)2
s3

)

n31

(
q̇2

1s23

)
+ n32

((
q̇1 + q̇2

)2
s3

)




,

(2.39)

N =



f11 0 0
0 f22 0
0 0 f33


 , (2.40)

where c and s represent cosine and sine, respectively. The MATLAB code for the parameters
identification of the 3-DoF manipulator is given in Appendix B4.

2.8 Summary

A well-known state-of-the-art control design technique known as computed-torque is briefly
explained that uses feedback linearization. By using such a controller, a simple proportional-
derivative (PD) controller can be utilized to achieve desired tracking performance. However,
computed-torque is a model-based controller and its performance depend on the estimated
system parameters.

The dynamics of a robot is given by the E-L equations. If uncertainties in the system
dynamics appear only in the constant coefficients, e.g. masses or lengths of joints, we can
reformulate the E-L equations into a state-dependent regressor matrix and an unknown
constant coefficient vector. Many of the existing adaptive controllers are Lyapunov-based
and take advantage of this fact, and Lyapunov’s descent property is then used to find the
unknown coefficient vector. Calculation of the regressor matrix, especially for a high degree-
of-freedom manipulator, is a complicated task if there are many system parameters. The
function approximation technique approximates the system dynamics by linear orthogonal
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basis functions to avoid the evaluation of the regressor matrix. This technique relies on
intensive computation because of a large number of basis-functions required to replace the
system dynamics. It also sacrifices the non-linear structure of the robot’s dynamical equa-
tions by approximating it with linear basis-functions. The above mentioned control schemes
focus only on the stability of the feedback system. These control methods lack optimality,
quantitative performance, easy tuning, the inclusion of input constraints and implementation
on high DoF manipulators.

The proposed adaptive control technique guarantees convergence of any mismatch in the
system by adjusting a single controller parameter for a first order controller. Once the
mismatch is eliminated, there is an accurate feedback linearization and a simple PD control
will achieve the desired performance. Using the adaptive control law, the model parameters
are approximated applying LS approximation. After the identification of system parameters,
the adaptive control can be replaced by a simple PD control.

Compared to existing algorithms involving regressor-based approaches or FAT, the pre-
sented algorithm requires less computational cost. Furthermore, design parameters are few
and more easily tuned in the proposed algorithm. Both simulation and experimental re-
sults show better and more precise tracking performance as compared to existing adaptive
methods.

Open problem

This chapter explains a novel control method with the aim of removing both the state
errors and system mismatch for better performance. Since the controller is designed on the
basis of intuition and not mathematical proofs, a detailed stability and optimality proofs
are not given. In the next chapter, we have shown that the proposed control method is
H∞ optimal and guarantees a predefined steady-state accuracy. Furthermore, a systematic
procedure is also devised to evaluate the parameters of the controller. For fast removal
of mismatch, a higher-order controller is required, however, that will bring high-frequency
noise. A modification in the feedback system is formulated in Chapter 4 to apply high-order
controller without deteriorating the performance because of the noise.
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3
Stability, Optimality and Performance Analy-
sis

In this chapter, the stability and robust optimality of the proposed adaptive controller is
elaborated with mathematical validations. In addition, a performance analysis of the adap-
tive controller in terms of steady-state error is also explained using input-to-state stability
(ISS). The controller assures that the joint errors at steady-state do not exceed a predefined
maximum limit.

Like an inverse-dynamical control, the proposed controller has two feedback loops as shown
in Fig. 3.1: the inner loop is adaptive and estimates the system dynamics for cancellation
of the nonlinearities and the outer loop is a proportional-derivative (PD) control. A simple
linear differential equation is formulated to evaluate the adaptive part. An advantage of the
proposed controller is that it neither requires an estimated system model nor a regressor
matrix and acts like a model-free adaptive control. Moreover, the controller only uses the
joint velocities, joint angles and integrals of joint angles to calculate the control input.

The control design considers two aspects: first, the H∞ approach and ISS are used to
ensure the stability, robustness and a prescribed quantitative performance. Second, the
adaptation of the estimated system dynamics towards the real dynamics is ensured without
any initial knowledge about the actual system. The estimation of system dynamics is es-
sential in the control because it is then used to linearize the overall feedback system, hence
winding up as an adaptive computed-torque method. The robotic system is represented as
an L2-gain problem and using the Hamilton-Jacobi-Isaacs (HJI) equations, we proved that
the controller is robust optimal with predefined steady-state. An inverse-optimal control
method is used to find the matrices for the HJI equations, i.e., "given a controller, evalu-
ation of the L2-gain that satisfies the robustness". Thus, we get a simple controller with
only a few controller parameters. The effect of external disturbances is significantly reduced
using the ISS. It is also the tool used in this chapter to derive a general form of the adaptive
control. Another advantage of using ISS is that the parameters of the controller can be
determined depending on desired performance specifications.

In summary, the state-of-the-art robust/adaptive control schemes have one or more of
the following limitations: no optimality, high computational cost, dependence on system
parameters, no quantitative performance analysis and challenging control’s tuning. This
chapter addresses the issues mentioned along with stability, robustness and straightforward
implementation. However, the primary focus is the performance and relatively simple im-
plementation of the controller, especially for high degree-of-freedom (DoF) manipulators.
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Figure 3.1: Robust-adaptive control.

The performance of the proposed controller is validated by experiments using a 3-DoF and
a 7-DoF robotic manipulator. Further improvements relating to the transient response and
input saturation are described qualitatively in the next chapter.

The remainder of the chapter is organized as follows: the main contribution of the disserta-
tion, which is a novel robust-adaptive control, is summarized in Section 3.1. The robustness
shown by the H∞ inverse-optimal control is discussed in Section 3.2. Section 3.3 investigates
ISS of the proposed controller. Performance and evaluation of controller parameters is pre-
sented in Section 3.4. In Section 3.5, simulation and experimental results for a 3-DoF and a
7-DoF robotic arm are shown. In the end, conclusions are drawn in Section 3.6.

3.1 Proposed Controller

The system dynamics used for the proposed adaptive controller is given in (2.1) with the
assumptions introduced in Section 2.1.

Second-Order Adaptive Controller

The basic idea of the proposed controller is that a single vector φ is used to represent the
system dynamics. The major concern is evaluation of the estimated vector φ̂, which is later
used to calculate the input torque. The estimated system dynamics φ̂ starts from zero and
converges to the real system dynamics, which is used for feedback linearization. Hence the
controller can be seen as an adaptive computed-torque method.

Let φ summarizes the system dynamics

φ = M (q)q̈ +N (q, q̇) + F q̇ − q̈ − τ d, (3.1)

where τ d represents external disturbances and unmodeled dynamics [3, 13].
If the input torque is chosen as follows,

τ in = φ̂+ q̈d −Kdė−Kpe (3.2)

with the assumption that the desired trajectory is twice differentiable, then by using (2.1),
(3.1) and (3.2), we obtain the error dynamics

ë+Kdė+Kpe = φ̂− φ. (3.3)
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3.1 Proposed Controller

To find the input torque τ in, we need to evaluate φ̂, which will be shown as a function of
only the states of the system (Section 3.2). It is obvious here that if φ̂ = φ, we end up
with (2.5), which is an ideal response. However, φ, which includes all the system dynamics
along with disturbances in a single column (vector), is not known. The following Theorem
provides the control law for the estimation of φ̂.

Theorem 2 (Adaptation). Let φ̃ = φ̂− φ and

dmφ̂

dtm
= −

m−1∑

i=0

ai

diφ̃

dti
, (3.4)

then the control law (3.2) leads to stability of the joint error e ≈ 0 and estimation error
φ̃ ≈ 0 for the system (2.1).

Proof. The stability of the proposed adaptive law is proved in Section 3.4.

The update law (3.4) does not require a regression matrix and can be implemented with
low computational cost. The input torque τ in is a function of only the state of the system
(2.1), which is explained in Lemma 1 and also shown in (2.30) and (2.31). The constant
coefficients ai decide the rate of convergence of φ̂ towards φ, explained in Section 3.4.

Fig. 3.1 shows a block diagram representation of the proposed controller. The adaptive
control is applied in the inner loop that linearizes the overall feedback system. The reason
for defining the controller as adaptive computed-torque is that, after φ̂ converges to φ, the
controller acts as a feedback linearization method or intelligent PD controller [83].

Remark 10 (High-frequency problem). Adaptive control, in general, suffers from high-
frequency noise during the transient response. Fortunately, the motor drives and the power
supplies act like low pass filters, and suppress the effect of noise.

Remark 11 (Noise). The only purpose of including q̈ in (3.1) is to avoid the estimation
of joint-acceleration when evaluating input torques.

Remark 12 (Approximation of φ). For a better estimation of φ, it is desired to select a
large m. However, the system will require large torques during the transient, which will be
shown in the results section (3.5). These high torques result in peaking which can affect
the performance, see [113]. For that reason, we have determined that m = 2 along with
proper controller gains is sufficient to achieve the desired performance.

Remark 13 (Tuning Parameters). The only tuning parameters are ai,Kp and Kd and it
will be shown in Section 3.4 on how to select these controller parameters while satisfying
the desired performance.

Remark 14. In our previous work [3], a term f(e, ė) was included on the right-hand side
of (3.4) that was necessary for the stability proof. Fortunately, here a modified proof is
presented that does not need this extra term.
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Remark 15. The proposed adaptive controller uses the same concept of intelligent PID
(iPID) controller proposed by Fliess et al. [81–83]. The controller parameters do not
require a re-calibration if there are variations in the system.
The iPID controller estimates the system dynamics φ with piece-wise constants which are
then used in the identification of system dynamics. In the proposed controller, the system
is approximated by constants for first-order controller, ramps for 2nd-order controller and
so on. Moreover, we have shown the optimality, and the quantitative performance analysis
of the proposed controller.

3.2 Robustness Analysis

The proposed adaptive control method eventually constitutes an H∞ robust-optimal control.
In this section, we will show that there exist matrices Q and R such that the system (2.1)
along with the control law (3.4) satisfies the L2-gain condition (A.3) in Appendix A1. From
the H∞ perspective, the main idea is that we consider the system shown in Fig. 3.1 as a
linear system with all the nonlinearities, disturbances and unknown parameters as external
disturbances as shown in Fig. 3.2. Some important mathematical techniques, used in this
chapter, are discussed in Appendix A.

Robustness Proof

An inverse-optimal control method is used to prove the robustness of the proposed controller.
So, the objective of this section is: given the control law (3.4), find the matrices S and Q
such that the game-algebraic Riccati equation (GARE) (A.8) is satisfied.

The state-space form of the closed-loop equation for the Euler-Lagrange representation
(3.3) can be written in the form of (A.7) as

ẋ = Ax+Bφ̂−Bφ. (3.5)

Based on the value of m in (3.4), the matrices are

A =

[
0(m+1)n×n I(m+1)n×(m+1)n

0n×n Ln×(m+1)n

]
∈ R

(m+2)n×(m+2)n,

L =
[
0n×(m−1)n −Kp −Kd

]
∈ R

n×(m+1)n,

B =
[
0n×(m+1)n In×n

]T ∈ R
(m+2)n×n,

x = [
∫

m
eT dtm

∫

m−1
eT dtm−1 . . . eT ėT ]T ,

where
∫

m represents the mth integral with respect to time. Since φ̂ determines the input
torque according to (3.2), we can consider −φ as disturbance ‘d’. In the remainder of
this chapter, we will use the conventional input symbol ‘u’ and disturbance ‘d’ variables
interchangeably for ‘φ̂’ and ‘−φ’, respectively.

The following Lemma describes a different representation of (3.4) that will make it possible
to apply the HJI equation on our system.
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3.2 Robustness Analysis
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Figure 3.2: Adaptive control from the perspective of H∞ optimal control.

Lemma 1 (Alternative form for (3.4)). Let

φ̂ = −
m+2∑

i=1

(
ai−1Kp + ai−2Kd + ai−3

)
x[i] , −Kx, (3.6)

where x[i] is the ith element of the state vector, with the condition

E1: ai = 0 ∀ i < 0, i > m − 1.

Then (3.6) is equivalent to (3.4).

Proof. Equation (3.6) can be rearranged by taking advantage of condition E1 to get the
following form:

φ̂ = −
m+2∑

i=1

(
ai−1Kpx[i] + ai−1Kdx[i + 1] + ai−1x[i + 2]

)
,

φ̂ = −
m∑

i=1

ai−1

(
Kpx[i] +Kdx[i + 1] + x[i + 2]

)
,

Integrating (3.3), we get

∫

m−i+1
φ̃dtm−i+1 = Kpx[i] +Kdx[i + 1] + x[i + 2]. (3.7)

Taking the mth derivative, we get the control law (3.4).

Remark 16. For second-order (m = 2), the controller (3.6) can be written as

d2φ̂

dt2
= −a1

d
dt

(ë+Kdė+Kpe) − a0(ë+Kdė+Kpe). (3.9)

It is evident from the example m = 1 in (2.30) and m = 2 in (2.31) that φ̂ can be written
as a state feedback φ̂ = −Kx with appropriate choice of K. The general case is treated in
Lemma 1. This will allow us a comparison of (A.9) and (3.6). The next Theorem gives the
optimality of the proposed adaptive control method for the appropriate choice of R and Q.
Here, only the matrices S and Q are evaluated using inverse-optimal control.
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Remark 17. The matrix R is chosen as

R−1 = αK̃ + I/γ2 , am−1I, α> 0, K̃ > 0, (3.10)

which is proved by ISS (Section 3.4). Note that α, K̃ and γ are intermediate terms and
they are only used to prove the optimality. In the above equation, only am−1 is required
for the tuning of the proposed controller.

For proving the robust optimality, m = 2 is assumed. The reason is that there is no
generalized procedure to proof the robustness for all m. But fortunately, the proof can be
extended for any value of m. Another intuition for m = 2 is explained in Section 3.5.3.

Theorem 3 (Robust-optimal controller m = 2). For a system (3.5), the proposed adaptive
controller (2.31) or (3.9) gives an optimal solution that satisfies the GARE (A.8) under
the following conditions:

• A1: a0, a1, Kp and Kd > 0

• A2: K2
d > 2Kp

• A3: a1K̃ > 2a0I

Proof. If the above controller (3.9) is optimal, that means it satisfies the L2-gain condition
of (A.3), there exist Q, R and S symmetric, positive definite satisfying (A.8).

To find the values of Q and S, we follow the steps below:

• assume Q to be a diagonal matrix

• find the last column/row of matrix S using −Kx = −R−1BTSx

• find the remaining entries of S and diagonal elements of Q using (A.8), see (3.8)

From the Q matrix (3.8), required to be positive definite, we can deduce conditions A1-
A3.

There exists more than one solution for Q and S that fulfills the positive definiteness
criterion but using the form (3.6) and (3.10), after some mathematical manipulation, we

Q =




K̃b2
0K

2
p 0 0 0

0 K̃b2
0(K2

d−2Kp)+K2
p(K̃−2b0I) 0 0

0 0 K̃b2
0+(K̃−2b0I)(K2

d−2Kp) 0

0 0 0 K̃−2b0I


 , b0 =

a0

a1

, S =




b0K̃K
2
p+b2

0K̃KpKd b0K
2
p+b2

0K̃Kp+b0K̃KpKd b0K̃Kp+b0KpKd b0Kp

b0K
2
p+b2

0K̃Kp+b0K̃KpKd b2
0K̃Kd+b0K̃K

2
d+K̃KpKd+K2

p b0(K2
d+K̃Kd−Kp)+K̃Kp+KpKd Kp+b0Kd

b0K̃Kp+b0KpKd b0K
2
d+K̃Kp+b0K̃Kd+KpKd−b0Kp K2

d+b0K̃+K̃Kd Kd+b0I

b0Kp Kp+b0Kd Kd+b0I I




(3.8)
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can evaluate the matrices (3.8). To facilitate the analysis, we assume α = 1 as explained in
Section 3.3.1.

Since the control law satisfies the Hamilton-Jacobi-Bellman equation, we can conclude
that the L2-gain is always less than γ. From the definition of the L2-gain problem, it is also
clear that the system remains stable for φ ∈ L2[0, ∞) [114]. In the results section, it will be
shown that condition A2 is a sufficient but not necessary for stability. For m = 2, K can be
written as

K = a1[b0Kp Kp + b0Kd Kd + b0I I], (3.11)

where b0 = a0/a1. The reason for writing the a1 out of BTSx is that R−1 = a1I, see Section
3.3. Disturbance attenuation depends on the value of γ that is included in the R−1 matrix.

Remark 18 (Special case). For a first order approximation, that is m = 1, the robust-
adaptive controller proposed in this chapter is similar to the H∞ inverse-optimal Control
[5, 10]. The Q matrix in this case is

Q =



K̃K2

p 0 0

0 K̃(K2
d − 2Kp) 0

0 0 K̃


 . (3.12)

The conditions for this Q matrix are

• B1: a0, Kp and Kd > 0

• B2: K2
d > 2Kp

If we let a0I = R−1 where R−1 is given by equation (3.10), then the control law is
represented as (2.30), which is equivalent to the controller proposed by Chung et al. [5,
115, 116]. Of course, φ̂ 6= τ in, so the controllers are not exactly equal. Because of that,
the performance analysis is different, and we can show that the mismatch approaches zero.
Similar to that H∞ controller, the proposed adaptive control method can be applied on a
robot manipulator without any knowledge about the system dynamics.

3.3 Stability

So far, we have introduced a novel adaptive control method and showed its robustness using
the H∞ and inverse-optimal approach. In this section, we use ISS to derive the proposed
controller (3.4) along with stability. In addition, the matrix R (3.10), which we have used
in Theorem 3 is also derived using the theory of two-player zero-sum optimal control.

3.3.1 Derivation of Proposed Controller

To obtain the control law, the basic idea here is to consider u = φ̂ and use equation (A.15)
as explained in the next Theorem.
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Theorem 4 (Derivation). For the control law

φ̂ = −
(

αK̃ +
ρ−1(|x|)

|x△|

)
x△, K̃ > 0, (3.13)

the system (3.5) is ISS, where ρ ∈ K∞, α > 1/2 and x△ is

b0Kpx[1] + (b0Kd +Kp)x[2] + (b0I +Kd)x[3] + x[4],

which is equal to BTSx. Also there exists an ISS-Lyapunov function

V (x) =
1
2
xTSx (3.14)

with S from (3.8) and if conditions A1-A3 are satisfied.

Proof. For the stability of (3.5), the derivative of the Lyapunov function has to satisfy the
following condition:

V̇ (x) = ∇VAx+ ∇VBφ̂− ∇VBφ ≤ 0. (3.15)

∇VAx from (3.15) can be rewritten as

∇VAx =
1
2
xT (ATS + SA)x,

=
1
2

[
K̃xT

△x△ − xT [4](K̃ − 2b0I)x[4]

− xT [2]
(
K̃b2

0(K
2
d − 2Kp) +K2

p(K̃ − 2b0I)
)
x[2]

− xT [3]
(

(K̃ − 2b0I)(K2
d − 2Kp) + K̃b2

0

)
x[3]

]
.

(3.16)

and
∇VxB = xTSB , xT

△, (3.17)

V̇ < 0 is thus satisfied if

1
2
K̃xT

△x△ + x△φ̂− x△φ ≤
1
2

[
xT [2]

(
K̃b2

0(K
2
d − 2Kp) +K2

p(K̃ − 2b0I)
)
x[2]

+ xT [3]
(

(K̃ − 2b0I)(K2
d − 2Kp) + K̃b2

0

)
x[3]

+ xT [4](K̃ − 2b0I)x[4]
]
.

(3.18)

From the above equation, if conditions A1-A3 from Theorem 3 are satisfied, then the right-
hand side of (3.18) is positive. To prove that the Lyapunov function (3.15) is an ISS-
Lyapunov function, the left-hand side of (3.18) must be at least negative semi-definite.
Taking advantage of (A.15), we get

K̃

2
xT

△x△ + x△φ̂− x△φ ≤ K̃

2
xT

△x△ + x△φ̂+ |x△|ρ−1(|x|). (3.19)
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To make sure that the above equation is negative definite or semi-definite, φ̂ is chosen as

φ̂ = −
(

αK̃ +
ρ−1(|x|)

|x△| I

)
x△. (3.20)

Remark 19 (Special case [5]). For m = 1, we get a similar solution as suggested by
Chung et al. [5].

3.3.2 Evaluation of the Matrix R

It is now obvious, how R has to be chosen. Comparing (A.9) and (3.13), we get

R = (αK̃ +
ρ−1(|x|)

|x△| I)−1. (3.21)

To show the H∞ optimality for the proposed controller, we choose the following performance
index (PI) [114]:

J =
∫ t

0
xTQx+ uTRu− γ2dTd dτ (3.22)

To proof the optimality of the robust-adaptive controller, we use inverse-optimal control as
explained in [92]. For m = 1, the inverse-optimality is also proved in [5, 10]. The above
performance equation as illustrated in Section 3.2 requires the HJI (A.8) equation to be
solved.

Theorem 5 (Optimality [5]). For a control law (3.20), applied to a robot manipulator
(2.1), we get an optimal solution if the following condition is satisfied

ρ−1(|x|)
|x△| =

1
γ2

,

where without loss of generality α = 1 is considered for simplicity.

Proof. It is already proved under conditions A1-A3 that matrix Q (3.8) is positive definite.
Condition 2 is evident because we select R−1 such that 1/γ2 cancels out the disturbance
term. The HJI equations can be used in the performance equation (3.22) as

J(x) = − lim
t→∞

∫ t

0
xT (ATS + SA− SBK̃BTS)x dτ +

∫ t

0
uTRu− γ2dTd dτ,

= −
∫ ∞

0
xT (ATS + SA)x+ 2xTSBu dτ

+
∫ ∞

0
uTRu+ 2xTSBu+ xTSBK̃BTSx dτ

+
∫ ∞

0
−γ2dTd+ 2xTSBd− 2xTSBd dτ
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3 Stability, Optimality and Performance Analysis

= −
∫ ∞

0
2VxAx+ 2VxBu+ 2VxBd dτ

+
∫ ∞

0
(u+R−1BTSx)TR(u+R−1BTSx) dτ

− γ2
∫ ∞

0
(d− 1

γ2
BTSx)T (d− 1

γ2
BTSx) dτ,

−
∫ ∞

0
(
ρ−1(|x|)

|x△| − 1
γ2

)xTSBBTSx dτ,

= −2V (x(0))+

−
∫ ∞

0
(u+R−1BTSx)TR(u+R−1BTSx) dτ

− γ2
∫ ∞

0
(d− 1

γ2
BTSx)T (d− 1

γ2
BTSx) dτ,

−
∫ ∞

0
(
ρ−1(|x|)

|x△| − 1
γ2

)|x△|2 dτ.

In the last step, we assume that the final state fulfills V (x(∞)) = 0. Considering u to be
equal to (A.9), we get the optimal solution with respect to the PI mentioned above. Note
that

d =
1
γ2
BTSx

is the worst case disturbance as explained in [114]. To achieve the minimum cost function,
the following should be satisfied:

ρ−1(|x|)
|x△| =

1
γ2

.

Hence it is proved that

R−1 = K̃ +
ρ−1(|x|)

|x△| I = K̃ +
I

γ2

gives the optimal solution. By considering R−1 = am−1I, we get to the proposed controller
from Theorem 2.

3.4 Performance Analysis and Stability

In this section, the primary focus is to discuss and quantify the performance of the controller.
Then based on a performance criterion, the parameters of the proposed controller are eval-
uated. The performance criterion in this dissertation is an upper bound on the absolute
values of the joint errors at steady-state.

Theorem 6 (Performance). For the control law

φ̂ =
(
K̃ +

I

γ2

)
x△, x△ = BTSx (3.23)

with the conditions given in Theorem 3, the performance limitation is given as

|x|P,L ≤ 2|SB|
λmin

|φmax|, (3.24)
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where

λmin = λmin

(
Q+ (2am−1 − K̃)SBBTS

)
,

and |x|P,L is the maximum allowed error in steady-state.

Proof. The derivative of the Lyapunov function (3.14) is given as

V̇ =
1
2
xT (ATS + SA)x+ xTSBφ̃. (3.25)

The above equation can also be written as

V̇ =
1
2
xT (ATS + SA− SBK̃BT

S)x+
1
2
xTSBK̃B

T
Sx+ xTSBφ̃,

Applying (3.23), we get

φ̃ = −R−1BTSx−
∫

m

dmφ

dtm
.

For the sake of simplicity, let K̃ be a scalar quantity. The derivative of the Lyapunov function
is

V̇ = −1
2
xT (Q+ (2am−1 − K̃)SBBTS)x− xTSB

∫

m

dmφ

dtm
, (3.26)

where am−1I = R−1. To find the performance limitation of the controller in terms of errors,
(3.26) can be written as

V̇ ≤ −1
2

λminx
Tx− xTSBφ. (3.27)

According to that, V̇ < 0 is possible if and only if

|x| ≤ 2|SB|
λmin

|φmax|.

This also proves Theorem 2.

Remark 20. The disturbance term φ is a function of q, q̇ and q̈. It is relatively easy to
find the estimate of the maximum value of |φ|, so to ensure that the joint errors never
exceed a predefined value. For that reason, the above equation must be satisfied. From
equation (3.27), it can also be concluded that the proposed control method is indeed ISS.

3.4.1 Evaluation of Controller parameters

After discussing the performance limitation, the next step is to use (3.24) for the identifica-
tion of the controller parameters. Based on the previous Theorem, we can find the minimum
permissible values for the controller parameters Kp,Kd and ai. For m = 1, it is possible to
find the parameters analytically, however, for m ≥ 2, there is no analytical solution, but the
parameters can be determined using numerical techniques for solving systems of nonlinear
equations, such as the Newton-Raphson method. We start with m = 1,

V̇ ≤ −1
2
xTQx− xTSBφ < 0.
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3 Stability, Optimality and Performance Analysis

To find an analytical solution for the parameters, the term −(2am−1 − K̃)xTSBBTSx is
ignored because V̇ < 0 if am−1 > K̃/2. To satisfy the inequality, the following equations
must hold:

1
2
Q|x| > SB|φmax| (3.28)

1
2



K̃K2

p 0 0

0 K̃(K2
d − 2Kp) 0

0 0 K̃


x >



Kp

Kd

I


 |φmax|.

Solving the above system of equations, we get

K̃(i, i) >
2|φmax|
ė(i)

,

Kp(i, i) >
2|φmax|

K̃(i, i)
∫
e(i) dt

,

Kd(i, i) >

√√√√2Kp(i, i) +
( |φmax|
K̃(i, i)e(i)

)2

− |φmax|
K̃(i, i)e(i)

,

where K̃(i, i),Kp(i, i) and Kd(i, i) are scalars representing the ith diagonal elements of the
corresponding matrices. Similarly, e(i) is the ith element of the vector e. Hence, for a
given scenario, the controller parameters can be easily identified by specifying the maximum
acceptable e, ė and

∫
edt. As mentioned earlier, −(2am−1 − K̃)xTSBBTSx is ignored

to find the controller parameters. This term can be used to find the minimum values of
parameters that will satisfy stability criteria for the system. However, there is no analytical
solution in that case. The same procedure can be used to find the controller parameters for
m ≥ 2. More about the parameters of the adaptive control is presented in the next section.

3.4.2 Discussion on φ̂ → φ

As discussed, for an intelligent PD controller, the estimated model must approach the real
model. As a result, we get a linear error dynamics with predefined performance as (2.5).
The performance is then set by using proper values for Kp and Kd.

The system dynamical vector φ is approximated with piecewise constant functions for the
first-order controller. This kind of approximation is common in mathematical analysis [83].
The proposed first-order differential equation is

dφ̃
dt

+ a0φ̃ = 0. (3.29)

Since φ̇ is assumed to be zero for a short time interval, (3.29) is equivalent to (2.30) and φ̃
will eventually approach zero.

Similarly, the system vector φ can be approximated by a ramp function for a small time
interval

φ(to + h) ≈ φ(to) + hφ̇(to), (3.30)

where h > 0 and we consider the case when the controller order m = 2, the control law (3.4)
can be written as

d2φ̃(to)
dt2

+ a1
dφ̃(to)

dt
+ a0φ̃(to) = 0. (3.31)

42



3.5 Results

Figure 3.3: 3-DoF (left) and 7-DoF (right) robot manipulators used in experiments.

From basic root-locus technique [94], the values for a0 and a1 can be chosen such that φ̃ → 0.
A similar analogy can be used for the third-order controller, where the Taylor approximation
will consider even the second-derivative of φ and hence the convergence will be faster. The
condition (3.30) can be satisfied if the gains ai are high enough to converge during the time
h. We have shown the convergence of the estimated model towards the real model in the
simulation results.

3.5 Results

A 3-DoF and a 7-DoF robot manipulator (see Fig. 3.3) is considered to validate the proposed
robust-adaptive controller. MATLAB Simulink with a sampling rate of 1 ms is used to
implement the controller. The minimum allowed values for the controller are calculated
using equation (3.28) and thus satisfy the performance criteria. In finding the controller
parameters, ignoring the term −xTSBBTSx will still provide us with the optimal values.
Although to find the absolute minimum parameters, this term should be included and the
Newton-Raphson method can be used to find the minimum values for acceptable controller
parameters. An easy and intuitive way to find the controller parameters is to follow the
steps mentioned below:

1. Find the minimum values for the controller parameters using (3.24) that satisfy the
condition for the maximum allowed joint-error at steady-state.

2. Find the values of Kp and Kd using a performance criterion like rise-time, settling-
time, etc.

3. Take ai such that the gain of (3.31) is 3-5 times higher than (2.5).
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3 Stability, Optimality and Performance Analysis

Table 3.1: Controller parameters: (a) ignoring −xTSBBTSx, (b) including
−xTSBBTSx, (c) values used in controller.

Var. m = 1 m = 2

(A) (B) (C) (A) (B) (C)

K̃ 222 3.3 68.9 174.7 63.4 68.9

Kp 200 78 400 57 100 400

Kd 32.3 0.0 40 39.9 20 40

b0 - - - 0 20 69.6

The next two subsections present the simulation and experimental results for the 3-DoF
manipulator. Because of the horizontal setup, the planar robot dynamics has no gravity
term. Section 3.5.3 discusses the effect of the order and gain of the controller. The results
for the 7-DoF manipulator are shown in Section 3.5.4.

3.5.1 Simulation Results

The desired trajectory for the end-effector of the manipulator is shown in Fig. 3.4. It was
chosen heuristically and is in the workspace of the manipulator. The end-effector starts on
the x-axis at 0.88 m from the base of the robot and it takes 6.17 s to complete one rotation.
In this study, m = 1 and m = 2 is investigated. The threshold values for the state errors are

xmax1 = [10−3 10−2 10−1]T , (3.32)

xmax2 = [10−4 10−3 10−2 10−1]T , (3.33)

where xmax1 and xmax2 are the maximum allowed errors in steady-state for m = 1 and m = 2,
respectively.

The performance of the robot manipulator is shown in Fig. 3.5. The controller for m = 2
suffers from peaking and as a consequence, the trajectory of the end-effector shows a larger
overshoot during the transient phase, see Fig. 3.5 and 3.6. Under the controller parameters
mentioned in Table 3.1, the maximum permissible error after the transient response does not
exceed (3.32) and (3.33), see Fig. 3.7. Because the selected values for the controller param-
eters are higher than the required values for the specified performance, the maximum error
emax is much smaller than the threshold value, which is 0.01 radians in our case (xmax1 [2] = e

and xmax2 [3] = e).
Fig. 3.8 shows the mismatch between the real and approximated model. Considering

the same convergence rate for m = 1 and m = 2, the mismatch φ̃ is getting smaller as
we increase the order of the controller. The obvious reason is that a higher order Taylor
approximation gives better results, see Section 3.4.2. However, the limitation of taking a
higher order approximation is the peaking effect during the transient. One way of dealing
with this problem is to start with m = 1 and as the mismatch approaches zero, we shift to a
higher order approximation, because after the transient response, the torques for any order
m are equal.
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Figure 3.4: Top view of the 3-DoF robot manipulator along with the desired trajectory. The
lengths are: l1 = 0.30 m, l2 = 0.24 m and l3 = 0.34 m.
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Figure 3.5: Simulation results: trajectory tracking in Cartesian space. The end-effector starts
from (0.88 m,0) in the x-y coordinate system.
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Figure 3.6: Simulation results: (a), (b) and (c) represent the three joint angles with respect
to time. (d), (e) and (f) represent the three joint torques with respect to time.
Dashed line: m = 1, solid line: m = 2.
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q2, blue line: q3. These figures show that the controller parameters satisfy the
performance criteria of (3.32) and (3.33).
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3.5.2 Experimental Results

In simulations, we did not consider input saturation, disturbances and unmodeled parame-
ters. Fortunately, they do not deteriorate the performance during steady-state because these
disturbances can be considered as part of φ, which is estimated by the controller during run-
time. In experiments, the joint space result for the 3-DoF robot manipulator (Fig. 3.3) is
shown in Fig. 3.9, and the trajectory tracking is shown in Fig. 3.10. The long transient
response is because of the torque-saturation; nevertheless, the performance criterion during
steady-state is satisfied for both simulations and experiments. The errors in the joint angles
are shown in Fig. 3.11, which satisfy the performance criteria (3.32) and (3.33). In the ex-
periments, a comparison between real and approximated dynamics cannot be shown because
we do not know the exact values of the actual system dynamics φ. As long as φ is bounded,
φ̃ will approach zero even in experiments.
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Figure 3.9: Experimental results: (a), (b) and (c) represent the three joint angles for m = 1
with respect to time. (d), (e) and (f) represent the three joint angles for m = 2.
Dashed line: q, solid line: qd.

3.5.3 Effects of Order and Gain of the Controller

For the proposed adaptive controller, the system dynamics φ is approximated by a Taylor
series of order m − 1. Thus, for a first order approximation, the approximated system
dynamics φ̂ can only approach the true dynamics if φ is constant. However, φ depends on
joint angles, velocities and acceleration, so unless the desired trajectory is slowly moving or
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Figure 3.10: Experimental results: trajectory tracking in Cartesian space. Dashed line:
m = 1, solid line: m = 2. The end-effector starts from (0.88 m,0) in the
x-y coordinate system.
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Figure 3.11: Experimental results for joint errors: (a) m = 1 (b) m = 2. Red line: q1, green
line: q2, blue line: q3. These figures show that the controller parameters satisfy
the performance criteria of (3.32) and (3.33).
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Figure 3.12: First order approximation with different a0.
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Figure 3.13: Various orders of control law with same convergence rate.

Figure 3.14: Errors in the joint angles: – PD control, – robust control [5] and – proposed
control.

Table 3.2: Error in the joint angles (rad).
joint PD Chung et al. proposed

1 0.798 × 10−4 0.537 × 10−4 0.123 × 10−4

2 1.910 × 10−4 14.40 × 10−4 1.240 × 10−4

3 4.230 × 10−4 1.440 × 10−4 0.269 × 10−4

4 2.050 × 10−4 2.550 × 10−4 0.276 × 10−4

5 1.220 × 10−4 0.731 × 10−4 0.182 × 10−4

6 2.660 × 10−4 1.090 × 10−4 0.548 × 10−4

7 2.350 × 10−4 1.260 × 10−4 0.519 × 10−4
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the gain a0 is high, there will always be a slight difference between φ̂ and φ, as shown in
Fig. 3.12.

By increasing the gain a0, the estimated dynamics will converge faster, but more torque is
required if the error is high. Also, if φ is approaching a constant value, the estimated value
approaches the real system dynamics because the system acts like a Type 1 system [94].
However, if φ is varying with time, the first-order will never reach the real system dynamics
as shown in Fig. 3.13.

To sum up, a first order approximation has no error for a constant φ, a second order has
no error for a ramp φ, a third order approximation has no error for a hyperbolic φ and so on.
However, by selecting a sufficiently high gain ai along with a second order approximation is
quantitatively suitable to approximate the system dynamics. Fig. 3.13 shows the response
of various orders for the same convergence rate.

The next point of interest is the effect of the order of the controller on the input torque.
Once the error φ̃ approaches zero, then the torques will be equal for any order because the
input torque is equal to

τ in = φ̂+ q̈d −Kdė−Kpe. (3.34)

As long as φ̂ ≈ φ, the torques for different m will remain equal.

3.5.4 Experimental Results for 7-DoF Robot

The proposed adaptive controller is also used to control a 7-DoF manipulator, see Fig. 3.3.
The motivation is to show that the performance criterion of (3.24) is satisfied for a 7 DoF
robot. We performed experiments under the assumption that the system parameters are not
known, and for that reason, we compared our proposed controller with a couple of model-free
control methods. The performance in terms of the integral square error for the proposed
controller is shown along with a simple PD and robust controller proposed by Chung et al.
[5]. A more detailed comparison is given in [3]. The values of Kp and Kd are the same

for the proposed and PD control for the experiment. For the robust control [5], a trial and
error method is chosen to tune the controller parameters because of the assumption that the
system parameters are not available. The integral square error

I(i) =
1

T2 − T1

∫ T2

T1

e(i)2dt, i = 1, 2, .., 7 (3.35)

for the three control methods are shown in Table 3.2. Fig. 3.14 shows the error for each
joint angle for sinusoidal references of different frequency and amplitude. During the steady-
state, the integral square error for the proposed controller is much smaller compared to the
other control schemes. The order of the controller is m = 1, and the error reduction can be
improved by taking higher order controller, however, the transient response will be worse.
The gain of parameters of the adaptive controller can be reduced during the transient phase
for improved response.

3.6 Summary

The main contribution of this chapter is to implement an adaptive controller that satisfies
a predefined performance with few tuning parameters. Apart from the PD parameters, the
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3 Stability, Optimality and Performance Analysis

total number of control parameters are equal to the order of the controller. Ideally, a higher-
order controller converges quickly, however, introducing noise in the system states. It has
been shown that a second-order controller is sufficient to achieve the desired performance.
For bounded disturbance, the controller is shown to be robust using the HJI equations.
An inverse-optimal control method is utilized to evaluate an optimal cost function for the
proposed controller. The control law is derived by using input-to-state-stability analysis
that also ensures the stability of the system. The parameters of the proposed controller
are identified using a quantitative performance analysis, which put an upper bound on the
absolute values of the joint errors. The adaptive controller also ensures the removal of
mismatch between real and estimated system model during feedback linearization to get
better performance in terms of joint errors. Once the mismatch is removed, a PD control
can perform well to get the desired performance.

Open problem

There are two major implementation issues that are usually not considered in many state-
of-the-art control schemes: (a) unknown state-dependent input saturation and (b) peaking
during transient-phase. Further improvements in the performance of the controller is pro-
posed in the next chapter.
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4
Performance Enhancement of Adaptive Con-
troller

Almost all of the state-of-the-art trajectory tracking control methods do not consider input
saturation, although saturation decisively affect the performance of the control system in
terms of state errors. The input constraints are usually state dependent and uncertain,
which makes it difficult to include them in the control loop. One way of considering input
constraints is to adjust the speed of the reference path such that the required inputs are
within the allowed range. Such approaches are called time-optimal path tracking [117].
Bobrow et al. [118] showed different techniques to find the minimum or optimal-time for the
tracking of the end-effector while satisfying the input constraints. The optimal-time for the
reference trajectory is usually evaluated from the inverse-dynamics of the manipulator, which
allows finding the maximum allowed joint-acceleration under the permitted torques. The
speed of the trajectory is adjusted according to the maximum joint-acceleration. However,
these techniques require information about the input constraints and the system model for
the inverse-dynamics [119–121].

Usually one of the design objectives is that the end-effector follows the desired trajectory
even if time is compromised. An approach to include the input constraints by using time
scaling is proposed by Shiriaev et al. [29, 122–124]. This method focuses on the orbital
stability of the desired path. The technique converts the system dynamics into a transverse
dynamics using a moving Poincare section [125]. Any trajectory starting in the vicinity of
the desired periodic solution is forced to follow the desired trajectory. In orbital stability, the
primary objective is to ensure that the closed-loop system converges to an orbit of the desired
trajectory rather than considering the stability as a function of time. But again, the design
of such a controller requires an estimated model and information about the time-varying
input constraints. Furthermore, for constant input constraints, Lewis et al. [126] proposed a
technique that uses online H∞ control. This technique uses a quasi-norm to transform the
constrained control problem to an unconstrained problem. Ahanda et al. [127] proposed an
adaptive back-stepping approach, applied on a manipulator using a support vector machine.
The controller is robust to system uncertainties and external disturbances. The above-
mentioned techniques require that the input constraints are known. Unfortunately, input
constraints are not easy to estimate because of many reasons. For example, torque saturation
varies with joint velocity because of back electromotive force in the motors, the motors have a
maximum voltage rating that limits the maximum current, the drives have gain uncertainty,
and also there is always some offset.
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4 Performance Enhancement of Adaptive Controller

The next issue in control implementation is to ensure safety during the transient phase. In
theory, it is feasible to use a high gain adaptive control for fast convergence. But this leads
to peaking effects [113, 128] because of the large initial state error and high controller gain.
Furthermore, there is high-frequency noise, which is partially suppressed by the intrinsic
property of motor drives that act as low pass filters. One of the remedies is to choose
a trade-off between fast response and high performance by selecting mid-range values for
the controller parameters. Another critical issue is the tuning of the controller parameters.
Tuning is a complicated task [1,49], and in some cases, it is not desirable to tune the controller
by trial and error method. A detailed discussion about controllers tuning is given in Hayat
et al. [1].

The objective of this chapter is the use of the model-free robust-adaptive controller that
(a) gives an improved transient and steady-state response by incorporating unknown input
saturation, (b) reduces the peaking effect during the transient phase, (c) provides robustness
of the system under parameter variations and (d) allows intuitive tuning of the controller
parameters. A second-order robust-adaptive controller was proposed in Chapter 3. As a
first contribution, we present a simpler first-order version of this robust-adaptive controller
with robust optimality and stability proofs. The advantage of the first-order controller is
the ease of implementation and avoiding high-frequency noise. Two-players zero-sum game
theory [129] is used to form a performance index (PI) that must be minimized and maximized
with respect to inputs and disturbances, respectively. H∞ optimality is used to perform the
analysis, where an inverse-optimal approach is applied to find the PI for the given adaptive
control.

This adaptive control allows for performance analysis in terms of the state errors. This
means, in steady-state, the error only exceeds the maximum allowed value if there is input
saturation. The second contribution of this chapter is the introduction of a trajectory-
scaling formulation that modifies the desired trajectory depending on the input saturation.
The desired trajectory is altered only when the motor drives are unable to generate the
required torques for the nominal trajectory. The advantage of the proposed method is that
no constraints information is needed and only states are used in the feedback loop. The
proposed trajectory scaling is only applicable for control techniques that offer quantitative
performance at steady-state.

For an improved transient response, and to avoid peaking without compromising the
performance of the system, two techniques are presented in this chapter. The first procedure
adds an extra term to the controller that is a filtered value of the system states [130].
The second method uses the well-known gain scheduling technique to improve the transient
response. An analytical expression is introduced that modifies the controller gains to avoid
peaking during transient phase by using only the state error.

Finally, the adaptive control [3] parameters can be evaluated with little information re-
quirements, e.g., rise time, settling time, maximum allowed steady-state error, etc [94]. In
general, most of the state-of-the-art control schemes have no tuning mechanism [1]. Tuning
by trial and error might not be a feasible solution for experiments because of safety issues.
The fourth contribution is the evaluation of the controller parameters for the adaptive control
using performance limitations.

The rest of the chapter is organized as follows: Section 4.1 covers the contributions of the
chapter. The validation of the proposed techniques using simulations and experiments is
presented in Section 4.2. Conclusions are drawn in Section 4.3.
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Figure 4.1: Adaptive control with speed adjustment.

4.1 Contribution

The contributions of the chapter are presented in four parts:

• Robustness and stability of the first-order adaptive control (2.30), see Section 4.1.1

• Compensation for unknown input saturation to improve the steady-state response, see
Section 4.1.2

• Improvement of transient response, see Section 4.1.3

• Controller parameters tuning, see Section 4.1.4

As shown in Fig 4.1, the proposed controller has three feedback loops. The inner-loop in the
‘Feedback Linearization’ removes the mismatch in the estimation of φ. By considering a high
value for the controller gain ‘a’, the mismatch will vanish quickly [3]. Once the vector φ̂ → φ,
the outer-loop will achieve the desired specification by tuning the Proportional-Derivative
(PD) gains Kd and Kp.

To follow the desired trajectory, the controller might require inputs that are higher than
the maximum allowed torques. Unfortunately, it is not easy to identify the bounds for input
torques, so a third loop is devised ‘Speed Control’ that will modify the speed of the desired
trajectory whenever the end-effector moves away from the predefined vicinity of the desired
path. Finally, an intuitive approach is given to find the controller parameters after finding
the minimum allowed values.

4.1.1 Robustness and Stability

Before we proof robustness of the control system (3.3), (2.30), we start with a brief in-
troduction of game-algebraic Riccati (GARE) and HJI equations using the H∞ optimality
approach. Let a system be given in the state-space form as

ẋ = Ax+Bu+Dd, (4.1)
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4 Performance Enhancement of Adaptive Controller

where x,A,u and d are the states, transition matrix, input and disturbance, respectively.
The H∞ PI is

V (x) = min
u

max
d

∫ ∞

τ
(xTQx+ uTRu− γ2||d||2)dt. (4.2)

The matrices Q and R are positive definite and γ > 0 is the sensitivity of the system with
respect to the disturbance. The above optimal min-max control problem is also called two-
players zero-sum problem, where one player (u) tries to minimize the cost function, and the
other player (d) tries to maximize it [114]. The input to the system (4.1) that results in an
optimal solution is

u∗ = −R−1BTSx , −Kx. (4.3)

Considering the worst-case disturbance, the GARE for the system is

ATS + SA− SBR−1BTS + 1/γ2SDDTS +Q = 0. (4.4)

In the following, we use an inverse optimal approach to determine weighting matrices Q, S
and R given the controller (2.30) for (3.3).

Theorem 7. Robustness: The controller (2.30) for the error dynamics (3.3) is a robust
H∞ control with the PI (4.2), if

Q =



K̃K2

p 0 0

0 K̃(K2
d − 2Kp) 0

0 0 K̃


 , K̃ > 0. (4.5)

Proof. To rewrite (3.3) and (2.30) in the form (4.1) and (4.3), let u = φ̂, d = −φ, D = B

and x = [
∫
eT dt eT ėT ]T ∈ R

3n×1. As a consequence,

A =



0 I 0
0 0 I

0 −Kp −Kd


 ∈ R

3n×3n, B =




0
0
I


 ∈ R

3n×1. (4.6)

The control input (2.30) can be written as

φ̂ = −a
[
Kp Kd I

]



∫
edt
e

ė


 , −Kx. (4.7)

From K defined in (4.7), using the inverse optimal control technique, the matrices S and
Q can be evaluated by (4.3) and (4.4) (Appendix B3). With the assumption, that Q is a
diagonal matrix, we obtain (4.5) and

S =



K2

p + K̃KpKd K̃Kp +KpKd Kp

K̃Kp +KpKd K2
d + K̃Kd Kd

Kp Kd I


 . (4.8)
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Remark 21. The matrix

R−1 = αK̃ + I/γ2 , aI, α, K̃ > 0 (4.9)

is identified using the input-to-state stability (ISS) approach [90, 131]. The procedure for
finding R is similar as in Chapter 3.

Remark 22. The requirement that Q and R are positive definite, delivers the following
conditions for K̃,Kp, and Kd:

• K̃,Kp, and Kd ≥ 0

• K2
d ≥ 2Kp

Theorem 7 shows that the adaptive control along with the matrices given byQ andR leads
to a robust-optimal solution. Theorem 8 explains how to choose the controller parameters
that will satisfy the maximum allowed joint errors at steady-state. For the quantitative
performance analysis, we define the maximum error |xperf | that is allowed in the steady-
state. K̃ is assumed to be scalar for the sake of simplicity.

Theorem 8. For the control law (2.30) with the conditions given in Remark 22, the
performance limitation |xperf | is provided as [1]

|xperf | ≤ 2|SB|

λmin

|φmax|, (4.10a)

where

λmin = λmin

(
Q+ (2a − K̃)SBBTS

)
. (4.10b)

Proof. Let the Lyapunov function for the GARE along with worst-case disturbance (4.4) be
given by

V (x) =
1
2
xTSx. (4.11)

Using (4.1), the first derivative of (4.11) delivers

V̇ =
1
2
xT (ATS + SA)x+ xTSBφ̂− xTSBφ. (4.12)

Using (4.4) and (4.9) with scalar K̃ we obtain

V̇ = −1
2
xT (Q+ (2a − K̃)SBBTS)x− xTSBφ. (4.13)

The first term is negative if 2a > K̃, which is obvious from (4.9). With (4.10b), we get

V̇ ≤ −1
2

λminx
Tx− xTSBφ. (4.14)

Using that V̇ < 0, we obtain a performance limitation

|xperf | ≤ 2|SB|
λmin

|φmax|.
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4 Performance Enhancement of Adaptive Controller

To summarize, the state vector |x| will decrease until |x| ≤ |xperf | because of the perfor-
mance limitation explained in Theorem 8.

Theorem 8 illustrates that the adaptive control achieves stability using the GARE if
the performance limitation of (4.10a) is considered. As long as |xP,L| > 2 |SB|

λmin
|φmax| the

derivative of the Lyapunov function will be negative. Next, we proposed a remedy for
unknown input saturation. An HJI-based control with input saturation is proposed by Abu-
Khalaf [132, 133]. The input constraints are encoded as quasi-norm than enables using L2

gain technique. The controller also formulates a procedure to solve the HJI equation by
using a sequence of linear equations. A quadratic programming implementation of a control
Lyapunov function based control is proposed in [134]. However, the input constraints must
be known for both the feedback controllers.

4.1.2 Modified Desired Trajectory

The joint errors will not exceed the maximum allowed error |xperf(2)| = |eperf | during steady-
state if the controller parameters are selected according to (4.10a). However, (4.10a) might
not be satisfied because the controller does not consider input constraints,

|τ in| < |τ |.

For the trajectory scaling, we selected the state error e as a design feature, since the
proposed adaptive control offers quantitative performance analysis. The desired trajectory
is modified whenever e exceeds a maximum allowed value at steady-state. |xperf | is a function
of the system dynamics φ(q, q̇, q̈) and input torques are dependent on the estimate of φ.
So, to deal with the unknown saturation, the speed of the desired trajectory should be
compromised whenever the error at steady-state exceeds the maximum allowed |eperf |. Next,
we explain how to modify the desired trajectory by making the path a function of a variable
θ rather than time [29, 117]. Intuitively, the trajectory is tracked slower when the motor
drives cannot deliver the required current/torque. At times when the torque requirements
are low, the speed of the trajectory can be increased to achieve the task in a prescribed span
of time. A scalar differential equation is proposed to perform a variable speed scaling for
the desired trajectory.

Trajectory scaling: Given a desired trajectory xd(θ), where θ = t only when the torque
required for generating the desired motion does not saturate |τ̄ |. Otherwise,

dθ

dt
= 0.5 − f(e)︸ ︷︷ ︸

θ̇des

+g(θ, t), θ(t0) = 0, (4.15)

where
f(e) = 0.5 tanh(K1(|e(t)|∞ − xoff)),

g(θ, t) = K2(t − θ),

where |e(t)|∞ = |x(2)perf |∞ is a scalar representing the maximum joint error, K1 and K2 are
positive gains and xoff is an offset. The function f(e) can be derived from Fig. 4.2 using
curve fitting technique. From the above differential equation, there are three conditions,
these are
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Figure 4.2: User-defined specification for f(e).

1. if |e(t)|∞ ≤ |x(2)perf |∞ for all t, then θ = t because f(e) = −0.5 and g(θ, t) = 0

2. if |e(t)|∞ > |x(2)perf |∞, then θ < t because −0.5 < f(e) ≤ 0.5, hence decreasing the
speed of trajectory

3. if |e(t)|∞ ≤ |x(2)perf |∞ and θ(t) < t, then

θ(t) = t + θ(t0)e
−K2t,

where t0 is the time instant where |e(t)|∞ > |x(2)perf |∞ → |e(t)|∞ ≤ |x(2)perf |∞.

The function f(e) returns an output in the range of −0.5 to 0.5. If the error in the joint angle
is above the allowed maximum error during the steady-state, θ will slow down according to
the magnitude of the error. Once the trajectory is slowed down enough that the adaptive
control can follow the desired trajectory, f(e) → −0.5. The term g(θ, t) always tries to
reduce the error between θ and t. Depending on the value of the gain K2, θ will move
faster to approach t. The functions f(e) and g(θ, t) have conflicting objectives. The former
tries to slow down the trajectory and the latter tries to increase the speed of trajectory.
The domination of f(e) depends on the speed of the desired trajectory. If τ in > |τ̄ | for
the most part of the trajectory tracking, then g(θ, t) will not have enough time to force
θ → t, and one complete circular rotation would take more time compared to the original
trajectory. Although the trajectory modification improves both the transient and steady-
state performance, however, if the starting position of the end-effector is far away from the
desired trajectory, there will be peaking.

The state-of-the-art methods use time-optimal control methods [117,118]. However, these
techniques require knowledge about the input saturation.

Remark 23. The function f(e) can be selected differently, e.g., a ramp function or a step
function. The only conditions are that f(e) = −0.5 if |e|∞ ≤ |xperf(2)|∞ and f(e) = 0.5 if
|e|∞ >> |xperf(2)|∞. Equation (4.15) can be customized and velocities of the joint-errors
can also be included in defining the trajectory modification.

Remark 24. The trajectory scaling method devised in this section is not specific to the
adaptive control (2.30) because the method only modifies the reference signal and not the
controller.
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4.1.3 Improve Transient Response

The trajectory scaling explained in the previous subsection improves both the transient and
steady-state performance as it will be evident in Section 4.2. But there might be a peaking
effect if the initial conditions for the joint angles are not in the region of attraction, i.e.,
|e(0)|∞ >> |x(2)perf |∞.

To improve the performance in terms of joint-errors, we will first discuss the cause of the
peaking effect. For the proposed adaptive controller, a high gain a for the control equation
(2.30) is required to remove the mismatch as quickly as possible and thus have a system
with performance similar to (2.5). To show the necessity of high controller gains, we use the
Bellman equation [114]

V̇ +
1

2
(xTQx+ uTRu− γ2dTd) = 0. (4.16)

Using (4.3), we can rewrite the Bellman equation in ISS form as

V̇ ≤ −1

2
λQk

xTx+
1

2
γ2dTd := −γ1||x||2 + γ2||d||2 γ1, γ2 > 0, (4.17)

where λQk
is the minimum eigenvalue of the matrix Q + KTK. From the above equa-

tion, we can also set the maximum allowed steady-state error as explained in Section 4.1.1.
Integrating the previous equation,

||x||22 ≤ 2

λQk

V (0) +
γ2

λQk

||d||22, (4.18)

where − ∫ ∞
0 V̇ dt = −V (∞) + V (0) ≤ V (0). Under the assumption that, at any time the

cost function is given by

V (0) =
1

2
xT (0)Sx(0),

the L2 norm of states is given by

||x||22 ≤ λS

λQk

||x(0)||2 +
γ2

λQk

||d||22, (4.19)

where λS is the maximum eigenvalue of S. From the above result, it is evident that the joint-
error decreases as we increase the controller gains λQk

. Also, the offset in the steady-state
reduces with higher controller gain.

We have shown quantitatively that high gains are essential to achieving better performance
regarding tracking error. Next, we will present the adverse effect of high gains, which is also
called peaking effect in literature. High gains introduce high-frequency oscillations during
the transient phase, which might make the system unstable. Some of this influence is reduced
naturally because of the input saturation. Also, the motor drives have a first-order response
that limits high-frequency torque. The oscillations in transient response can be reduced by
using low gains [130]:

u̇ = −Kẋ. (4.20)

After some computation, the L2 norm of input u is given by

||u̇||22 ≤ λkmax||Ax+Bφ̃||22, (4.21)
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where λkmax is the maximum eigenvalue of KTK. From (4.20), we conclude that the os-
cillations, which deteriorate the transient response dependents on the controller gain K,
joint-errors and the mismatch. Of course, once the system reaches steady-state and the
mismatch φ̃ → 0, the effect of oscillations is minimal and can be ignored.

Remark 25. To summarize, we need a low controller gain during the transient response
because the initial conditions are usually unknown and can be anywhere in the workspace
of the robot end-effector.

Next, a couple of techniques for the improvement of the transient response are presented.

Procedure 1

This procedure is inspired from Na et al. [130], where a model-reference adaptive control is
used. An extra term is added to the input torque, which depends on the filtered values of
the states.

Let xf is the filtered values of states,

kẋf + xf = x (4.22)

and
E = Axf − x− xf

k
= −B(φ̃f ). (4.23)

By adding the term E in the input torque, the state space representation of (3.3) is given
by

ẋ = Ax+Bφ̃+E. (4.24)

The above equation can be written as

ẋ = Ax+B(φ̃− φ̃f ). (4.25)

Considering the new system dynamics, the oscillations in the systems can be related to

||u̇||22 ≤ λkmax||Ax+B(φ̃− φ̃f )||22. (4.26)

As it is clear that u̇ is reduced because of the factor φ̃ − φ̃f . The value of k is selected as
low as possible such as to avoid oscillations.

Procedure 2

To reduce the oscillation, one method is to use small values of gains a during the transient
response. For that purpose, after selecting minimum and maximum values of a, the gains
for the controller can be adjusted as follows:

Let
a(|e|∞) = amax − amax − amin

1 + σ
(|e|∞−σ2)
1

, (4.27)

the values for σ1 and σ2 can be easily identified using Fig. 4.3.

Remark 26. The minimum value for a can be acquired from (4.10a) and the maximum
value is evaluated using the procedure given in Section 4.1.4. The gain scheduling (4.27)
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Figure 4.3: Specifications for the gain scheduling used in the results.

is not a unique function and the only objective was to get a smooth a(|e|∞). Furthermore,
we can also use variable Kp and Kd as long as the conditions in Remark 22 and (4.10a)
are satisfied.

Theorem 9. The system (3.3) and control law (2.30) along with the modified gain a(|e|∞)
of (4.27), result in a stable closed-loop system.

Proof. The stability of the modified controller is easily verified using (4.16). The control
vector K is now a function of the states, but there is an upper and lower bound because of
amax and amin. We get

V̇ = −1

2
xT

(
Q+KT (e)K(e)

)
x+

1

2
γ2dTd. (4.28)

BecauseK(e) is bounded, V̇ is always negative with respect to the states if condition (4.10a)
is satisfied for all a(|e|∞) [135]. The characteristic equation for the feedback system (3.3)
represented in the state-space form (4.6) along with the inputs (4.7) and (4.27) is

(s+ a(|e|∞)I)(s2 +Kds+Kp) = 0. (4.29)

The poles of the closed-loop system are always negative as long as a(|e|∞) is positive.
Another way to prove the stability is by considering K̃ in (4.5). The matrix Q will always

be positive definite if K̃ > 0. The relation between K̃ and a is given in Remark 21.

The controller gain K becomes a constant as x approaches to zero. More details about
the state-dependent controller gains are available in references [136,137].

4.1.4 Easy Tuning for the Controller

This subsection explains a systematic and intuitive strategy to find the parameters for the
controller (2.30).

1. Evaluate the minimum values for the controller parameters using (4.10a) that satisfy
the condition for the allowed maximum joint-error at steady-state.
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Figure 4.4: Simulation: Tracking without input constraints. (a) Position of the end-effector
in Cartesian coordinates, (b) joint errors.

2. Find the values of Kp and Kd satisfying a performance criterion such as settling time,
rise time, etc.

3. Choose a such that the value of the pole of [3]

˙̃
φ+ aφ̃ = 0

is 3-5 times higher than the poles of (2.5).

The intuition for the above procedure is that the PD gains will perform in a deterministic
way by choosing a proper rise time, settling time, etc. The PD control will perform linearly
only if the mismatch is removed. For that reason, the pole location for the convergence of
mismatch to zero (a) must be faster than the PD gains (Kp andKd). Finally, to compensate
for the peaking effect during the transient phase, a is selected as a variable with upper and
lower bounds, see Section 4.1.2.

4.2 Results

A 3-degree-of-freedom (DoF) planar robot is used to validate the proposed controller in
both simulations and experiments. For experiments, 10 Amp Maxon drives along with 150
Watts motors are used (Fig. 3.3). The desired end-effector trajectory qd is a circle in the
first quadrant of the x-y plane with radius 0.24 m and center 0.3x̂ m + 0.3ŷ m and the
corresponding joint-space trajectory is shown in Fig. 4.5. The values for the controller gains
are Kp = 40I, Kd = 400I, a = 80 and |eperf |∞ = 0.01 radians. The end-effector starts at
x̂ 0.83 m. The dynamical equations of the 3-DoF robot manipulator used in experiments are
calculated from the real robot, see Table 4.1 and Appendix C. Since the adaptive control is
model-free, the dynamics are only used for simulations.

4.2.1 Simulation Results

The simulation results are divided into three parts. The objective of the first result is to show
that using (4.10a), the joint-error at steady-state is always less than |eperf |∞ = 0.01 rad/s.
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Table 4.1: 3-DoF planar robot dynamical equations.

Var. Equivalent

M(1, 1) 1.04 + 0.08cos(q2 + q3) + 0.34cos(q2) + 0.05cos(q3)

M(1, 2) 0.43 + 0.04cos(q2 + q3) + 0.17cos(q2) + 0.05cos(q3) = M(2, 1)

M(1, 3) 0.17 + 0.04cos(q2 + q3) + 0.023cos(q3) = M(3, 1)

M(2, 2) 0.43 + 0.05cos(q3)

M(2, 3) 0.17 + 0.03cos(q3) = M(3, 2)

M(3, 3) 0.17

N(1, 1) − 0.17sin(q2)q̇
2
2 − 0.04sin(q2 + q3)q̇

2
2 − 0.03sin(q3)q̇

2
3 − 0.04sin(q2 + q3)q̇

2
3

− 0.34sin(q2)q̇1q̇2 − 0.08sin(q2 + q3)q̇1q̇2 − 0.05sin(q3)q̇1q̇3

− 0.08sin(q2 + q3)q̇1q̇3 − 0.05sin(q3)q̇2q̇3 − 0.08sin(q2 + q3)q̇2q̇3

N(2, 1) 0.17sin(q2)q̇
2
1 + 0.04sin(q2 + q3)q̇

2
1 − 0.03sin(q3)q̇

2
3 − 0.05sin(q3)q̇1q̇3

− 0.05sin(q3)q̇2q̇3

N(3, 1) 0.028sin(q3)q̇
2
1 + 0.03sin(q3)q̇

2
2 + 0.04sin(q2 + q3)q̇

2
1 + 0.05sin(q3)q̇1q̇2

F (i, j) 2.6 × 104 ∀ i = j

F (i, j) 0 ∀ i 6= j

Fig. 4.4 shows that the error at steady-state is much lower than 0.01 rad/s for all time
during steady-state. For one complete rotation of the end-effector, the desired trajectory
requires 3.14 seconds. Here the assumption is that the torque requirements for the desired
trajectory are lower than the saturation.

The second set of simulations shows, how the torque saturation affects the trajectory
tracking. We have increased the speed of the desired path until input saturation is reached,
and as a result, the manipulator could not follow the trajectory for most of the desired
trajectory as shown in Fig. 4.6-a. The desired trajectory span was 1.62 seconds for one
complete rotation. After applying the path scaling, the trajectory slowed down in the region
where the input torque requirement is higher than the saturation Fig. 4.6-b. The modified
desired trajectory makes sure that the error is much lower compared to the previous results.
The parameters for the trajectory modification (4.15) are evaluated using Fig. 4.2.

Fig. 4.7 shows that the parameter θ, which ideally is equal to time, slowed down during
the first 1000 ms because of the function f(e). In the last half of the desired trajectory, the
function g(θ, t) reduces the difference between θ and t. At the end of one complete circle,
the total time is equal for both the trajectories in Fig. 4.6, as evident from Fig. 4.7.

The third result provides the improvement of the transient response by using the two
techniques of Section 4.1.3. Fig. 4.8 shows the effect of variable gain to improve the transient
response. The maximum and minimum values for the parameter a = 20 − 80 as in Fig. 4.3.
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4.2.2 Experimental Results

The adaptive control includes all the uncertainties and disturbance in the vector φ, and as
long as φ is bounded, the controller will force the system to follow the desired trajectory
with an accuracy of 0.01 radians. Fig. 4.9 shows the results of two experiments with the
same desired trajectory but with different speeds. The first experiment, Fig. 4.9 (a-blue
and b) satisfies the |eperf |∞ = 0.01 bound because the torques for the desired trajectory
are less than the saturation. This condition is not satisfied if the torque saturation is lower
than the required torque as evident in Fig. 4.9 (a-green and c). The desired trajectory took
3.1/1.2 seconds for one complete rotation for blue/green trajectories. To make sure that the
end-effector follows the orbit of the desired trajectory, the second experiment is improved
by modifying the desired trajectory. Fig. 4.10 (a-blue and b) shows that the performance
limitations are now satisfied but the total time required for the circular trajectory is higher
than the original time Fig. 4.9 (c). The transient response is further improved by using the
variable gain technique from Section 4.1 as shown in Fig. 4.9 (a-green).
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4.3 Summary

Robust optimality of the first-order adaptive controller is evaluated using H∞ technique.
The stability is proved by using the inverse-optimal method, where the matrices for the
optimized cost function are identified using the adaptive control. To compensate for the
unknown torque saturation, a solution is proposed that modifies the speed of the desired
trajectory such that the error in the joint angles remains within certain bounds at steady-
state. For the transient response improvement, two methods are discussed that can be used to
improve the high-frequency noise and peaking effect during the transient phase. And lastly,
an intuitive procedure for the identification of the minimum allowed controller parameters is
formalized. This chapter is aimed at the practical implementation of the proposed controller,
we improved the following:

• Consideration of unknown input saturation: The previous chapter assumed no
input saturation, which affects both steady-state and transient-state performance. In
this chapter, a systematic procedure is proposed to incorporate the unknown input
saturation in the feedback loop and reduces its effect in both transient and steady
state error. Usually, in state-of-the-art controllers, the assumption is that the input
saturation is known as discussed in the introduction section of the manuscript.

• Improving transient-response: The original controller also has the peaking effect
during the transient response, since, adaptive controllers require some time to estimate
the system dynamics. This peaking effect is not acceptable in many cases because of
physical and safety constraints on robot manipulators. Two procedures are proposed
in this chapter to reduce the peaking.

• Simplified controller: Chapter 3 proposed a second-order controller with robust
optimality proof. In theory, a higher order controller will give better approximation
of the system. Because of input saturation and the time that the motor drives take
to produce high currents during transient phase is limited, which makes the higher-
order proposed adaptive controller noisy at high speeds. To avoid the noise, this
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chapter proposed that a first-order controller can also perform better provided that the
controller gains are selected properly. The robust optimality of the first-order controller
is also proved, while Chapter 3 only has a proof for the second-order controller.

• Easy-tuning: The proposed adaptive controller can be tuned easily because of very
few parameters. The first-order adaptive controller is a model-free control method
with only three tuning parameters. One parameter is used to remove the mismatch
between the estimated and the real system dynamics. The other two parameters are
used to achieve the desired response. An intuitive approach is used to find the control
parameters.

Open problem

The proposed adaptive controller in its current form is only applicable on a fully actuated
system. Further modification is required to implement the controller on an under-actuated
system.
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5
Conclusion and Future Directions

A reliable control technique is important for robotic manipulators, especially with the in-
creasing demand for robots. With the advent of powerful computers and latest control
techniques, the use of robots has extended from industries to different fields of life. In
the last few decades, many control methods had been proposed but there is still much im-
provements required in the performance of those control schemes. The major challenges are
highly coupled nonlinear dynamics, unmodeled dynamics, parameters uncertainties, variable
load, input saturation and complex friction model. In this dissertation, a robust-adaptive
control method is proposed with guaranteed quantitative performance and easy tuning. Im-
plementation issues, such as input saturation and peaking are also addressed to enhance the
performance of the controller.

5.1 Discussion

For low operational speed, decoupled control techniques can be used to independently control
the joints of a robot by considering the coupling effect as a disturbance. However, at high
speed, the influence of nonlinear coupling among the joints is inevitable and must be included
in control design [50]. Similarly, a proportional-derivative (PD) controller can be applied
on a planar robot that is not influenced by gravity. The stability proofs of such controllers
are available in literature [8]. In addition, for a system that involves gravity, a PD control
with gravity compensation gives a stable result. The derivative of a Lyapunov function for
such a controller will be negative as long as the joint velocity is not zero. Any mismatch
in the gravity terms will affect the system state errors and performance. Inverse-dynamics
control, also known as computed-torque, takes advantage of the full system’s knowledge. It
is based on feedback linearization, where all the nonlinear terms in the system are canceled
using a feedback loop. A PD control is then used to achieve the desired performance.
However, computed-torque is a model-based control method and its performance depends
on the estimated system parameters.

In robot manipulators, the uncertainties in the inertia and the Coriolis matrices and the
unmodeled friction models limit the performance of computed-torque in terms of joint errors.
Adaptive controllers are extensively used in such situations, where the system dynamics have
uncertainties and disturbances. The aim of an adaptive or robust controller is to maintain
the desired performance in the presence of uncertainties, unmodeled dynamics and external
or internal disturbances.
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Robust-Adaptive Control

A model-free robust-adaptive control is proposed for robot manipulators. The adaptive con-
trol considers the system dynamics and disturbances as an unknown vector and a feedback
loop is used to estimate them without any system information. A two-player zero-sum ap-
proach is utilized by using the game-algebraic-Riccati equation to prove the optimality of the
controller. Input-to-state-stability is used for finding the appropriate controller parameters
values. An advantage of the proposed method is the quantitative performance analysis that
is achieved by using the robust optimal approach. This means that the state errors will not
exceed a predefined maximum value during the steady-state, thus guaranteeing a certain
amount of accuracy. The main features of the proposed controller are

• Model-free: Finding parameters of a robot dynamics is a difficult task because of
uncertainties, unmodeled dynamics and load variation. Furthermore, for a higher-
order manipulator, the number of system parameters is large, thus prone to large
mismatch. The proposed adaptive controller is model-free and the system dynamics
are estimated online using simple differential equations. The controller considers the
system dynamics, internal and external disturbance as part of an unknown vector, and
using a simple differential equation, that vector is estimated. A feedback linearization
is then utilized to cancel the nonlinearities and eventually results in a linear system
with a proportional-derivative controller in the second feedback loop.

• Optimal: Inverse-optimal control using the H∞ method is used to show the robust
optimality of the controller. Unlike conventional optimal control, where the controller
is designed using a cost function, the proposed controller uses the inverse approach,
“finding the cost function using the given controller.”

• Robust: Two-player zero-sum approach is used to prove the robustness of the con-
troller. It has been shown that any bounded disturbance will not affect the quantitative
performance of the feedback control system.

• Quantitative steady-state performance: The steady-state behavior of the system
satisfies predefined performance criterion. The state errors is guaranteed to ensure a
used-defined specification of maximum errors during the steady-state. H∞ method is
used to identify the minimum values of the controller parameters such that the joint
errors are bounded at steady-state. For example, if the maximum allowed steady-state
error is 10 milli-radians, the controller will make sure to keep the joint angles under
the predefined bounds.

• Easy tuning: There are only three tuning parameters for the first-order and four
parameters for a second-order proposed adaptive controller. An intuitive approach is
proposed to find proper control values to satisfy the performance criterion.

• Intelligent controller: The proposed adaptive controller is also shown as an intelli-
gent controller, similar to the intelligent PID controller [83]. An advantage of such a
controller is the universal control parameters for any system variations or disturbances.
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5.1 Discussion

Improvements

We introduced a robust adaptive controller in Chapter 2 and 3, which addresses unmod-
eled dynamics, system uncertainties, optimality, easy tuning and quantitative performance
analysis in terms of steady-state error. The state-of-the-art controller do not consider all
the above features in the controller design. To further improve the performance of the pro-
posed controller, some important implementation issues are also solved by augmenting the
controller. The two major issues in the control system, which is often ignored in literature
are the input saturation and the peaking effect.

Input saturation is a highly nonlinear phenomenon and in robotics, it is not easy to find
the saturation values. These constraints are time-varying and depend on many parameters,
such as maximum voltage and current rating of the motors and the back electromotive force.
Since the proposed control method guarantees a predefined accuracy, which means that the
steady-state error is always less than a maximum allowed value, the error will exceed the
limit only if the desired input is not achievable because of input saturation. A feedback loop
is used to modify the input trajectory by scaling it down such that the maximum allowed
state errors are below the defined threshold.

In theory, high gains are used in adaptive control for better reference tracking. The
drawback is that the transient response has high-frequency noise because of high gains and
an overshoot, which is also called peaking effect [113]. Nonlinearities and large input torques
during the transient phase is the reason for the peaking effect. In robotics, this phenomenon
is usually avoided because of the safety precautions. The high-frequency noise up to some
extent is suppressed by the natural property of motor drives, which act as a low-pass filter.
However, some unmodeled dynamics can be excited because of high gains and it can cause
instability in the system. A trade-off between high performance and noise suppression can
be one of a solution for the above-mentioned problem by selected mid-range gains for the
controller. In adaptive control, peaking is a major issue, which occurs during the transient
phase. Peaking in general is caused by the difference between initial states and desired
states. For robots, this phenomenon is often not acceptable because of safety reasons for
both humans and robots. Two techniques are used to suppress the peaking effect. The first
technique is a variable controller gain approach, where a low-gain controller is used and once
the transient response is over, the nominal gains are used. The second method uses an extra
term in the controller to compensate for the peaking effect. Following are the improvements
in the proposed controller:

• Qualitative transient-state performance: The major issues during transient-state
are peaking and input saturation. The proposed adaptive controller is slightly modi-
fied to improve the transient-state. However, this improvement cannot be quantized
because of random initial states and unknown input saturation.

• Include input saturation: Most of the state-of-the-art control schemes do not con-
sider the input saturation or assume that the input saturation is known. However,
finding the input saturation is not possible because of uncertainties, actuators un-
modeled dynamics and back electromotive force in the motors. In this dissertation,
the unknown time-varying input saturation is incorporated in control design using the
quantitative performance analysis. When the state errors exceed the maximum al-
lowed error at steady-state, the trajectory is scaled down to give more time for the
end-effector to follow the desired trajectory.
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System Identification

The dynamics of robot manipulators can be represented in regressor form, which is also
called linear-in-parameters systems. Although the proposed adaptive controller does not
require system dynamics, it is still useful to improve the transient response by incorporating
the system information during initial states. The input-output data from the robotic system
with the proposed adaptive controller is used to find the parameters of the system. For this
purpose, the system dynamics represented in the Euler-Lagrange format is first transformed
into a known regressor matrix and an unknown parameter vector. Since the new system
is linear in parameters, the least-squares technique is used to identify the system dynamics
parameters. The parameters of a two- and three-degree-of-freedom robots are identified
using this method.

5.2 Outlook

The proposed adaptive controller introduced in this dissertation is applicable only on fully
actuated systems. An under-actuated system has fewer actuators than the degree-of-freedom
to be controlled. Some systems intrinsically have under-actuation, such as legged robots and
swimming/flying robots. Others are designed with under-actuation to reduce the cost or
some practical purposes e.g., satellites with two thrusters, flexible-joints manipulators, etc.
In the last couple of decades, many control schemes have been developed for under-actuated
robots. Using the proposed control method for under-actuated robotic systems is an open
problem.
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A

Mathematical Background

The essential mathematical tools that are used in the proposed controller are explained in
this appendix. The advantage of the H∞ technique and ISS is the incorporation of the
quantitative performance and optimality in the control design.

A1 H∞ Control

Consider a nonlinear control affine system

ẋ = f(x) + g(x)u+ k(x)d, (A.1)

where x ∈ R
n, f(x) ∈ R

n, u ∈ R
r, g(x) ∈ R

n×r, d ∈ R
p and k(x) ∈ R

n×p are the state,
transition, input and disturbance vectors/functions, respectively. We can shift the state
variables so that f(0) = 0, such that x = 0 is an equilibrium point.

According to two-player zero-sum games [129], one can get optimal control values for u
and d that will minimize the cost function mentioned below. A cost function associated with
this system can be expressed as [11,114]

V (x) = min
u

max
d

∫ ∞

τ
l(x,u,d)dt

= min
u

max
d

∫ ∞

τ
(xTQx+ uTRu− γ2dTd)dt,

(A.2)

where Q ∈ R
n×n and R ∈ R

r×r are positive definite matrices.
For a system to be robust, the L2-gain from disturbance to the performance index is less

than or equal to some positive constant γ2:

∫ ∞
τ (xTQx+ uTRu)dt

∫ ∞
τ ||d||2dt

≤ γ2. (A.3)

There also exists a smallest value γ∗ > 0 such that (A.3) is satisfied for all γ > γ∗.
The primary objective is to find values of u and d, that will respectively, minimize and

maximize the cost function. Taking the derivative of the cost function, we get the Bellman
equation

V̇ + l(x(t),u(t),d(t)) = 0,
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A Mathematical Background

xTQx+ uTRu− γ2dTd+ (
∂V

∂x
)T (f + gu+ kd) = 0, (A.4)

which is also written as

H(x,
∂V

∂x
,u,d) = 0. (A.5)

To find a saddle of the Hamiltonian equation (A.5), we set

∂H

∂u
= 0,

∂H

∂d
= 0.

We get the equations for u(t) and d(t), which is given by

u∗ = −R
−1

2
gT ∇V ∗, d∗ =

1

2γ2
kT ∇V ∗, (A.6)

the asterisk represents optimal values and ∇V = ∂V/∂x. The cost function associated with
these optimized inputs yields the HJI equation, which is given by

Q+ ∇V Tf(x) − 1

4
∇V T (x)g(x)R−1gT (x)∇V (x) +

1

4γ2
∇V T (x)kkT ∇V (x) = 0.

Since disturbance cannot be controlled, therefore, the objective of the L2-gain problem is to
find the control law u such that, for a Lipschitz system, and all d(t) ∈ L2[0, ∞), the L2-gain
of (A.3) is satisfied.

A2 Game-Algebraic Riccati Equation (GARE)

Solving the HJI equation for a nonlinear system is a tedious job. Fortunately, if a robot
manipulator is expressed in the following form:

ẋ = Ax+Bu+Dd, (A.7)

which is the linear case of (A.1), the HJI equation associated with the L2-gain (A.3) reduces
to the GARE

ATS + SA− SBR−1BTS + 1/γ2SDDTS +Q = 0. (A.8)

Calculating S from (A.8), leads the equation (A.6) to reduce to a static state feedback form

u∗ = −R−1BTSx , −Kx. (A.9)

Remark 27. It can be shown that the input choice (A.9) yields an asymptotically stable
system (A.7), provided that d ∈ L2[0, ∞) [114]. The disturbance input given in (A.6) is
called the worst-case disturbance.
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A3 Input-to-State-Stability

For a linear system, the bounded-input-bounded-output stability is not affected by inputs or
disturbances provided that they are bounded. However, for nonlinear systems, an internally
stable system can become unstable if certain inputs are applied. Because of that, Sontag

proposed a definition called input-to-state-stability that also considers inputs to find the sta-
bility of a nonlinear system [90,91,131,138,139]. Since disturbances and model uncertainties
can be considered as part of input disturbance, ISS can also be used to evaluate the stability
and robustness of a system.

For a general nonlinear control system

ẋ = f(x,d), (A.10)

where x and d are the state and disturbance vectors, respectively, the ISS stability is defined
as

|x(t)| ≤ β(|x(0)|, t) + γ(||d||∞), ∀t ≥ 0, (A.11)

where β ∈ KL , γ ∈ K∞ [131] and x(0) is the initial state. A class K∞ is a function
α : R≥0 → R≥0, which is continuous, unbounded, increasing and satisfies α(0) = 0. A class
KL is a function β : R≥0 × R≥0 → R≥0, such that β(., t) ∈ K∞ for all t and β(r, t) ց 0 as
t → ∞, where r is a constant.

In case of a linear system, we get

β(t) = |x(0)| ||eAt||, γ = ||B||
∫ ∞

0
||eAt||dτ . (A.12)

A result that will later be used to find the proposed control law is given in [131]: “A system
is ISS if and only if it admits a smooth ISS-Lyapunov function.” This suggests that there
exists a positive definite function V (x) ∈ R and α1, α2 ∈ K∞ such that

α1(|x|) ≤ V (x) ≤ α2(|x|). (A.13)

ISS stability of (A.10) can then be concluded from

V̇ (x) ≤ −γ1(|x|) + γ2(|d|), ∀ x,d, (A.14)

where γ(.) ∈ K∞. Further, let there exist V (x) such that the following condition is satisfied
for all x and u [92]:

|x| ≥ ρ(|d|) ⇒ V̇ (x) ≤ −γ3(|x|), (A.15)

where γ3 and ρ ∈ K∞. In this case, not only is the system ISS but also asymptotically stable.
The last result is important, since it is used to find the controller parameters that satisfy
the predefined performance specifications.
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B

Proofs and Codes

B1 Regressor form

For a 2-DoF manipulator, consider the white-box model
[

m11 + m
′

11 cos q2 m12 + m
′

12cos q2

m21 + m
′

21 cos q2 m22

] [
q̈1

q̈2

]
+

[
−n11q̇

2
2 sin q2 − n12q̇1q̇2 sin q2

n21q̇2
1 sin q2

]
.

The above model can be represented in the regressor form as
[

q̈1 q̈1 cos q2 q̈2 q̈2 cos q2 q̈2
2 sin q2 q̇1q̇2 sin q2 0 0

0 0 q̈1 q̈1 cos q2 0 0 q̈2 q̇2
1 sin q2

]
×

[
m11 m

′

11 m12 m
′

12 −n11 −n12 m22 n21

]T

The regressor matrix is not unique and can be optimized by removing any dependent vari-
ables. Constructing the regressor matrix for high DoF manipulator is difficult because of
large number of system parameters.

B2 Proof of V̇ (x) < 0

There can be many inverse-dynamics solution for the control law suggested in Chapter 2. The
matrices Q(.) can be selected as diagonal with positive real values on its diagonal to achieve
the positive definiteness. Taking advantage of this fact, it can be proved that V̇ (x̄,z) < 0
in (2.29), To avoid mathematical complications, let

Q1 = diag(qii), ∀ qii > 0,

Q2 = diag(rii), ∀ rii > 0.

are matrices of proper dimensions, then equation (2.29) takes the form

V̇ = −q11||e||2 − q22||ė||2 − r11||φ̃||2 + 2p21φ̃
T
e+ 2p22φ̃

T
ė− l1, (B.1)

where l1 > 0 consists of all derivatives of φ̃. We assumed p(.), q(.), Kd and Kp to be scalar
to make the proof simple. If m > 1, p21 and p22 are the elements of matrix P 1 and can be
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evaluated from Ā
T
P 1 + P 1Ā = Q1:

p21 =
q11

2Kp

p22 =
q22

2Kd

+
q11

2KpKd

.

Completing squares for (B.1), we get

V̇ ≤ −||√q11e−
√

αφ̃||2 − ||√q22ė−
√

βφ̃||2 − l2 − l1, (B.2)

where l2 consists of residuals and is positive if the following conditions are satisfied:

α =
q11

4K2
p

,

β =
1

4q22

(
q22

Kd

+
q11

KpKd

)2

,

where
|r11| ≥ α + β.

Since matrices Q1 and Q2 are independent of each other, the above conditions can be easily
satisfied. Intuitively it is important that the gains of φ̃, rii should be greater than some
fraction of the tracking gains qii. Otherwise the controller is not able to make the estimated
system dynamics converge to the real dynamics. Hence, it completes the proof which is

V̇ < 0.

Remark 28. The control law proposed in this dissertation uses Lyapunov’s equation only
for the proof of stability and not for the design of the control parameters.

Remark 29 (Assumption). To evaluate φ̂, which is required for the input torque, the real
system dynamics φ is approximated by a (m−1)th order Taylor series and m can be selected
depending on the maximum frequencies of the desired joint angles. We have shown in Chap-
ters 3 and 4 that the approximation of φ using a Taylor series expansion will not affect the
stability of the overall feedback system.

B3 Evaluation of S and Q

An easy way to identify the matrices is first to consider Q =diag(q11, q22, q33). From (4.3),
(4.7) and (4.9), R−1,BT and K are known, which can be used to find

S =




s11 s12 Kp

s21 s22 Kd

Kp Kd I


 , (B.3)

where s12 = s21. Using all of the above matrices and vectors, (4.4) can be utilized to find
the unknown terms of matrix S:

s11 = K2
p + K̃KpKd,

s12 = K̃Kp +KpKd,

s22 = K2
d + K̃Kd.

Once the matrix S is identified, matrix Q is readily available from (4.4).
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B4 MATLAB Code for 3-DoF Manipulator Identifica-

tion

Unlike the regressor form of the 2-DoF robot (Appendix B1), the regressor form for 3-DoF
can not be expressed on paper. Therefore, a MATLAB code is given with individual elements
of the regressor matrix.

for i = 1 : length(Q1(1, :)) − 1 % Length of total trajectory
% Q1(1,:) is the desired trajectory for joint 1
% Joint 1 identification, % Y is the regressor matrix

if abs (Xs(1, i)) < 0.001 % Xs = ë+Kdė+Kpe

Y 1(i, 1) = qdds(1, i); % i represents sampling time (ms)
Y 1(i, 2) = cos(qs(2, i) + qs(3, i)) ∗ qdds(1, i); % qdds = q̈, qds = q̇, qs = q
Y 1(i, 3) = cos(qs(3, i)) ∗ qdds(1, i); %
Y 1(i, 4) = cos(qs(2, i)) ∗ qdds(1, i); %
Y 1(i, 5) = qdds(2, i); %
Y 1(i, 6) = cos(qs(2, i) + qs(3, i)) ∗ qdds(2, i); %
Y 1(i, 7) = cos(qs(3, i)) ∗ qdds(2, i); %
Y 1(i, 8) = cos(qs(2, i)) ∗ qdds(2, i); %
Y 1(i, 9) = qdds(3, i); %
Y 1(i, 10) = cos(qs(2, i) + qs(3, i)) ∗ qdds(3, i); %
Y 1(i, 11) = cos(qs(3, i)) ∗ qdds(3, i); %
Y 1(i, 12) = sin(qs(2, i)) ∗ (qds(1, i)2 %

−(qds(1, i) + qds(2, i))2);
Y 1(i, 13) = sin(qs(2, i)) ∗ qds(1, i)2; %
Y 1(i, 14) = sin(qs(2, i)+ %

qs(3, i)) ∗ qds(1, i)2;
Y 1(i, 15) = sin(qs(3, i)) ∗ (qds(1, i)+ %

qds(2, i))2;
Y 1(i, 16) = −sin(qs(2, i)) ∗ (qds(1, i)+ %

qds(2, i))2;
Y 1(i, 17) = −sin(qs(3, i)) ∗ (qds(1, i)+ %

qds(2, i) + qds(3, i))2;
Y 1(i, 18) = −sin(qs(2, i) + qs(3, i))∗ %

(qds(1, i) + qds(2, i) + qds(3, i))2;
Y 1(i, 19) = qds(1, i); %
B1(i) = Uhats(1, i); % Uhats = φ̂

end %
% Joint 2 identification

if abs (Xs(2, i)) < 0.01 %
Y 2(i, 1) = qdds(1, i); %
Y 2(i, 2) = cos(qs(2, i) + qs(3, i)) ∗ qdds(1, i); %
Y 2(i, 3) = cos(qs(3, i)) ∗ qdds(1, i); %
Y 2(i, 4) = cos(qs(2, i)) ∗ qdds(1, i); %
Y 2(i, 5) = qdds(2, i); %
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Y 2(i, 6) = cos(qs(3, i)) ∗ qdds(2, i); %
Y 2(i, 7) = qdds(3, i); %
Y 2(i, 8) = cos(qs(3, i)) ∗ qdds(3, i); %
Y 2(i, 9) = sin(qs(2, i)) ∗ qds(1, i)2; %
Y 2(i, 10) = sin(qs(2, i) + qs(3, i)) ∗ qds(1, i)2; %
Y 2(i, 11) = sin(qs(3, i)) ∗ (qds(1, i) + qds(2, i))2; %
Y 2(i, 12) = −sin(qs(3, i)) ∗ (qds(1, i)+ %

qds(2, i) + qds(3, i))2;
Y 2(i, 13) = qds(2, i); %
B2(i) = Uhats(2, i); %
end %

% Joint 3 identification
if abs (Xs(3, i)) < 0.01 %
Y 3(i, 1) = qdds(1, i); %
Y 3(i, 2) = cos(qs(2, i) + qs(3, i)) ∗ qdds(1, i); %
Y 3(i, 3) = cos(qs(3, i)) ∗ qdds(1, i); %
Y 3(i, 4) = qdds(2, i); %
Y 3(i, 5) = cos(qs(3, i)) ∗ qdds(2, i); %
Y 3(i, 6) = qdds(3, i); %
Y 3(i, 7) = sin(qs(2, i) + qs(3, i)) ∗ qds(1, i)2; %
Y 3(i, 8) = sin(qs(3, i)) ∗ (qds(1, i) + qds(2, i))2; %
Y 3(i, 9) = qds(3, i); %
B3(i) = Uhats(3, i); %
end %
i = i + 1; %

end %
% P1 consists of parameters of joint 1

P1 = inv(Y ′
1 ∗ Y 1) ∗ Y ′

1 ∗ B1′ %
% P2 consists of parameters of joint 2

P2 = inv(Y ′
2 ∗ Y 2) ∗ Y ′

2 ∗ B2′ %
% P3 consists of parameters of joint 3

P3 = inv(Y ′
3 ∗ Y 3) ∗ Y ′

3 ∗ B3′ %
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C

Details of the 3-DoF Manipulator

The inertia of each component for the 3-DoF manipulator (Fig. C.1) is calculated using basic
mathematical tools. Apart from motors and gears, the rest of the components are made of
aluminum with density 2700 kg/km3. Maxon motors are used along with harmonic drives
with turn ratios of 100 : 1. The motor torques are controlled by PWM amplifiers, operating
in current control mode with the reference given by a voltage from the D/A converter output
of the I/O board (Sensoray 626). The position of each joint is measured by an optic pulse
incremental encoder on the motor shaft and then processed by a quadrature encoder on the
I/O board.

L1

M1

l1 M2

L2
G2

N1

L3

l2 L4

G3

M3

N2

L5

l3

0.3 m

0.24 m

0.34 m

z1

z2

z3

x1

x2

x3

Figure C.1: Details of the 3-DoF manipulator used in the dissertation.

C1 Forward Kinematics

The location of the third link with respect to the base is given by

T 3
0 =

[
R p

0 1

]
, (C.1)
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where T 3
0 is computed using the link homogeneous matrices as in [8]:

T 3
0 = A1

0A
2
1A

3
2. (C.2)

The matrices A(·)
(·) are given as

A1
0 =




cos(q1) −sin(q1) 0 0
sin(q1) cos(q1) 0 0

0 0 1 0
0 0 0 1


 , A2

1 =




cos(q2) −sin(q2) 0 l1
sin(q2) cos(q2) 0 0

0 0 1 0
0 0 0 1


 ,

A3
2 =




cos(q3) −sin(q3) 0 l2
sin(q3) cos(q3) 0 0

0 0 1 0
0 0 0 1


 . (C.3)

C2 Mass Properties

Following are the inertia matrices:

J =




∫
x2dm

∫
xydm

∫
xzdm

∫
xdm∫

yxdm
∫

y2dm
∫

yzdm
∫

ydm∫
zxdm

∫
zydm

∫
z2dm

∫
zdm∫

xdm
∫

ydm
∫

zdm
∫

dm


 =




Jxx Jxy Jxz Jx

Jyx Jyy Jyz Jy

Jzx Jzy Jzz Jz

Jx Jy Jz Jm


 (C.4)

I =




∫
(y2 + z2)dm − ∫

xydm − ∫
xzdm

− ∫
yxdm

∫
(x2 + z2)dm − ∫

yzdm
− ∫

zxdm − ∫
zydm

∫
(x2 + y2)dm


 (C.5)

The Euler-Lagrange (E-L) representation of the manipulator is acquired using the procedure
given in [140]. We used matrix J and the conventional inertia matrix I can be evaluated
from the matrix J . In the following figures, all the dimensions are in meters. Also, the
inertia of each component is taken with respect to its frame of reference.
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Table C.1: Details of L1.
Link 1 L1

Mass (Kg) 0.485
Jx 0.0058

[kgm] Jy 0
Jz −0.0058

Inertia Jxx 0.0004
[kgm2] Jyy 0.0004

Jzz 0.0003
Jxy 0
Jxz −0.0015
Jyz 0

Figure C.2: Dimensions of L1.

Table C.2: Details of L2, L3, L4 and L5.
Link 1, 2, 3 L2 and L4 L3 and L5

Mass (Kg) 0.395 0.395
Jx 0.1132 0.0090

[kgm] Jy 0 0
Jz 0.009 −0.0090

Inertia Jxx 0.0327 0.0004
[kgm2] Jyy 0.0003 0.0003

Jzz 0.0004 0.0004
Jxy 0 0
Jxz 0.0028 −0.0001
Jyz 0 0

Figure C.3: Dimensions of L2, L3, L4 and L5.
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Table C.3: Details of l1.
Link 1 l1

Mass (Kg) 0.398
Jx 0.0583

[kgm] Jy 0
Jz 0

Inertia Jxx 0.0109
[kgm2] Jyy 0.0001

Jzz 0.0001
Jxy 0
Jxz 0
Jyz 0 Figure C.4: Dimensions of l1.

Table C.4: Details of l2.
Link 2 l2

Mass (Kg) 0.3028
Jx 0.0387

[kgm] Jy 0
Jz 0

Inertia Jxx 0.0058
[kgm2] Jyy 0.0001

Jzz 0.0001
Jxy 0
Jxz 0
Jyz 0

Figure C.5: Dimensions of l2.

Table C.5: Details of l3.
Link 3 l3

Mass (Kg) 0.5015
Jx 0.0951

[kgm] Jy 0
Jz 0

Inertia Jxx 0.0227
[kgm2] Jyy 0.0001

Jzz 0.0001
Jxy 0
Jxz 0
Jyz 0

Figure C.6: Dimensions of l3.
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Table C.6: Details of M1, M2 and M3.
Link 1, 2, 3 M1, M2 and M3

Mass (Kg) 0.28
Jx 0.084

[kgm] Jy 0
Jz 0

Inertia Jxx 0.0252
[kgm2] Jyy 0

Jzz 0
Jxy 0
Jxz 0
Jyz 0

Figure C.7: Dimensions of M1, M2 and M3.

Table C.7: Details of G1, G2 and G3.
Link 1, 2, 3 G1, G2 and G3

Mass (Kg) 0.65
Jx 0.195

[kgm] Jy 0
Jz 0.0432

Inertia Jxx 0.0585
[kgm2] Jyy 0

Jzz 0.0029
Jxy 0
Jxz 0.013
Jyz 0

Figure C.8: Dimensions of G1, G2 and G3.

Table C.8: Details of N1 and N2.
Link 2, 3 N1 and N2

Mass (Kg) 0.1113
Jx 0

[kgm] Jy 0
Jz −0.0002

Inertia Jxx 0
[kgm2] Jyy 0

Jzz 0.0003
Jxy 0
Jxz 0
Jyz 0

Figure C.9: Dimensions of N1 and N2.
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