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1 Introduction

“Is it better to move first, or second — to innovate, or to imitate?”’ The answer to this
question asked by Rasmusen and Yoon [38] is key to managerial decision-making when
firms face the opportunity to expand into a new, unexplored economic market which is
accessible also to other competitors. Being first in a new market can yield important
strategic advantages [24], such as having the possibility to create exclusive contracts or to
establish a monopoly. At the same time, however, the first-moving firm has to bare the costs
and risks associated with exploring and shaping the market. Contrary to the (potential)
strategic advantage of the first-mover, a firm can gain a significant informational advantage
by waiting until sufficient information about the new market becomes observable due to
the first-mover’s initial investments and market exploration. In the end, the informational
advantage can result in higher profits for the second-mover. Generally, it is difficult to
balance advantages and disadvantages associated with the timing of market entry and to
rate whether moving first is an economically advisable strategy.

In the context of industrial organization, first- and second-mover scenarios that require an
(almost) irreversible action or irreversible commitment are commonly studied by modelling
them as sequential-move duopoly competition [40]. Prominent examples are the former
decision of the Austrian Airline Group to serve the Eastern European and Iraqi markets [29]
or the international market of DRAM [40]. Both endeavor require huge initial investments
and long-term contracts and are therefore irreversible in the short run once the decision
to expand has been made. To analyse such non-cooperative sequential-move duopoly
competition, where two identical and rivaling firms successively implement their optimal
strategic decisions (usually output quantity or price), it is commonly assumed that both
firms aim to individually maximize their profits. The resulting equilibrium payoffs of the
firms in sequential-move duopoly competition and their rating, however, depend on the
specific form of competition. In this thesis, focus thus lies on the analysis and discussion of
various forms of sequential-move duopoly market competition from industrial organization
and to investigate whether they result in payoff advantages for the first- or second-mover.

As a starting point, the analysis of the classical Stackelberg competition [43] — a sequential-
move quantity duopoly competition — yields a general first-mover advantage. This first-
mover advantage even holds for a wide and economically reasonable class of nonlinear
market demand and production cost functions. In contrast the analysis of a sequentialized
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Hotelling competition [27] — a sequential-move price duopoly competition with differen-
tiated supply — exhibits a general second-mover advantage. Thus, naturally the question
on the fundamental difference between Stackelberg, sequentialized Hotelling and other
forms of sequential-move market competition in the context of first- and second-mover
advantages arises.

In 1985 Gal-Or gave a characterization of first- and second-mover advantages for a broad
range of deterministic payoff functions [17]. Among other things her characterization in-
cludes Stackelberg and sequentialized Hotelling competition as special cases. The Theorem
of Gal-Or proves that first- and second-mover advantages in environments of complete
information only arise due to the specific form of the firms’ payoff functions, more pre-
cisely due to the sign of their cross derivatives. A bottleneck of Gal-Or’s Theorem is that
it requires both firms to have access to complete information yielding their deterministic
payoff functions. In the context of industrial organization, however, model parameters can
often be determined only vaguely or underlie market uncertainties. Thus, it is much more
reasonable to assume that some model parameters are stochastically distributed rather than
being fixed-valued.

Two years after characterizing first- and second-mover advantages in environments of
complete information, Gal-Or showed that the assumption of complete information is
indeed crucial and cannot be dropped from the preconditions of her theorem [20]. Gal-Or
extended Stackelberg competition to include uncertainties in the marked demand in an
economically reasonable and stochastically general manner. Therein, both firms have access
to individual private information about the actual market demand, i.e., they individually
draw samples from the stochastic distribution of the market demand. The distribution of
the market demand itself, however, is not known to the firms. By definition, the first-mover
decides on its (optimal) output quantity first. The second-mover can subsequently infer the
private information of the first-mover from its optimal output quantity. Consequently, the
second-mover has access to both private observations and thus has a significant information
advantage. Using this information advantage, the second-mover can increase his payoff
which enables (under some conditions on the distribution of the market demand) an
expected second-mover advantage. This observation shows that the information asymmetry
in the case of uncertainties can generally advantage the second-mover compared to the case
of complete information. Yet, only few generalizations and extensions to more complex
forms of competition or other model parameters were achieved [11, 35, 40].

Due to their great importance to the field, the first aim of this thesis is to review two
key publications by Gal-Or [17, 20] in detail. Subsequently, the stochastic framework
introduced by Gal-Or is used to investigate the influence of uncertainties in further model
parameters of Stackelberg and sequentialized Hotelling competition. As second goal,
important further literature [1-3, 5, 6, 9—11, 13, 16, 23, 25, 31, 35, 40] is reviewed with a
special focus on their connection to the publications by Gal-Or. Throughout this thesis,
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implications of the presented theoretical results to problems from industrial organization
are discussed.

Accordingly, the remainder of this thesis is structured as follows: In Chapter 2 the Theorem
of Gal-Or [17] characterizing first- and second-mover advantages under complete informa-
tion is reviewed. At first, required definitions and assumptions, the necessity of continuous
strategy spaces as well as the proof of the Theorem are presented in Sections 2.1, 2.2
and 2.3, respectively. Subsequently, the Theorem’s implications to Stackelberg and sequen-
tialized Hotelling competition are studied in Section 2.4.

Chapter 3 deals with the analysis of uncertainties in various model parameters analog to
the publication by Gal-Or [20]. In Section 3.1, Stackelberg competition is generalized
to the case of an uncertain market demand as done by Gal-Or. Furthermore, the intro-
duced stochastic framework is employed to also investigate uncertainties in the marginal
costs of Stackelberg and sequentialized Hotelling competition in Sections 3.2 and 3.3,
respectively.

In Chapter 4, important further literature and their connections to the publications by
Gal-Or are reviewed. To this end, direct extensions of the work by Gal-Or to tripoly and
oligopoly competition are discussed in Section 4.1. Subsequently, in Sections 4.2 and 4.3,
related forms of competition in which the first-mover completely reveals uncertainties and
the occurrence of Natural Stackelberg Situations are reviewed.

Finally, an overall summary and a comprehensive discussion of the initial question is given
in Chapter 5.



2 First- and Second-Mover
Advantage under Complete
Information

Game theory is an important tool to analyze strategic interactions between non-cooperating
economics agents (players). In this chapter, important game theoretical concepts are
reviewed with a special focus on symmetric extensive two-player games. The game
theoretical results are used to address the question of first- and second-mover advantages
in industrial organization under the premise of complete information. The assumption of
complete information is dropped in the subsequent Chapter 3.

2.1 Definitions and Assumptions

In this section, key definitions and assumptions concerning symmetric extensive two-
player games are reviewed. Further details on game theory and its applications to industrial
organization can be found in the textbooks by Belleflamme and Peitz [8], Osborne and
Rubinstein [36] or Shy [41].

Analyzing first- and second-mover scenarios using sequential-move (extensive) games, it is
usually assumed that the sequential movement and the order of the players is exogenously
determined (cf. Section 4.3 for a discussion of these assumptions). Denoting the two
non-cooperative players by player I and player II, the following general assumption (GA)
on their order and behaviour is made:

General assumption 1 (Assumtions on players)

In extensive two-player games, without loss of generality, player 1 moves first and player 11
moves second. Furthermore, both players are non-cooperative, act perfectly rational and
all information (if not stated otherwise) is common knowledge.

The profits of player I and player II let be defined by the deterministic payoff functions m,
and 7o, respectively. In this chapter, the players’ payoffs only depend on their strate-
gies s; € S and s; € S (usually output quantity or price) chosen from the total strategy
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space S. Both players aim at maximizing their individual payoffs 7 (sq, s2) and mo(s1, $2)
by implementing their optimal strategic decisions, where both player assume that the other
player mutually does the same. Thus, the common equilibrium concept of non-cooperative
extensive games is applied:

Definition 2.1 (Subgame Perfect Equilibrium)

Under GA 1, a Subgame Perfect Equilibrium (SPE) (st s5) € 8% of an extensive two-
player game with mutual strategy space S and payoff functions w, T : S* — R is defined
by:

sy = g(s¥) := argmax my(s¥, s9) (2.1)
S2ES
and
st 1= argmax 7 (s1, g(51)). (2.2)

s1€ES

The function g : S — S is called the reaction function of the second-mover, i.e., of
player 11.

With an appropriate equilibrium concept at hand, first- and second-mover advantages of
symmetric extensive two-player games can be defined in a straight-forward manner:

Definition 2.2 (First- and second-mover advantage)
Under GA 1, the SPE payoffs 71 (s%, sb) and 75(s%, s5) of a symmetric extensive two-player
game yield
el L F L F
e a first-mover advantage iff ' 7 (sy, s5) > ma(sy, S5 ).
e a second-mover advantage iff 7, (s}, s5) < mo(sh, sb).

First- and second-mover advantage are called weak if equal SPE payoffs are possible too.

2.2 Strategy Spaces

The strategy space S is either discrete or continuous. Both possibilities are considered and
discussed in the following.
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Player I

Player I1 Player II

Figure 2.1 Symmetric extensive two-player game with two strategies. At first, player I
chooses between strategy A or B. Subsequently, player II chooses strategy A or B as
reaction to the strategic descision of player I. The realized payoffs 7, of player I and 75 of
player II are given by o, 3,7,6 € R.

2.2.1 Discrete Strategy Spaces
As a starting point, symmetric extensive two-player games with a two-element strategy
space S = { A, B} are considered, see Figure 2.1. It holds the following Proposition:

Proposition 2.3 (Weak first mover-advantage)
Symmetric extensive two-player games with two strategies as given in Figure 2.1 yield a
weak first mover-advantage.

Proof. The reaction function g : {A, B} — {A, B} of player Il depends on «, 3,7,0 € R
and is given by?

A ifa> A ifpg>9d
gy =0 TP g gy =4 . 2.3)
B iffa<y B ifg<d

Distinguishing the cases o < v and 3 < § the SPEs (s}, s}) are estimated by simple
algebraic comparisons:

Suppose o > v and 3 > 4. Then

(s%,sg) = (A, A) and hence 7T1(81f, 35) =a= 7r2(sIf, 55), (2.4)

Abbreviation for “if and only if”.
In the reaction function g of player II, the cases & = « and S = § can be arbitrarily assigned to the
strategies A or B. Here and in the follwing, theses special cases are omitted to simplify the exposition.

2
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such that both players I and II have equal SPE payoffs.
Suppose o > vy and 5 < 9. Then

(sh, 5F) = (A;A) ifa>§ and hence (s}, sh) = a = m(st, sh), 25
b (B,B) ifa < § andhence mi(st,sh) = = my(sk, sh),
such that both players I and II have equal SPE payoffs.
Suppose o < vy and 8 < §. Then
(s, s5) = (B, B) and hence ,(st,s5) =6 = my(sk, sh), (2.6)
such that both players I and II have equal SPE payoffs.
Suppose o« < v and 3 > 4. Then
(sh,sF) = (A,B) if 8>~ and hence m (s}, s5) = >~ =m(sk, sh), o7
b2 (B,A) if 3 <~ andhence (st s5) =~ > B8 =my(s}, sh),

such that player I has a higher SPE payoffs than player II.

Thus, independent of «, 5,7, 6 € R the first-mover always earns at least as much as the
second-mover, i.e., m (st, s5) > mo (s}, sb).

]

To prove Proposition 2.3, besides the alikeness of the players (and thus the symmetry
of their payoffs), no assumptions on the payoffs o, 3,7, € R are required. Despite the
simplicity of symmetric extensive two-player games with two strategies, Proposition 2.3
shows that the weak advantage of the first-mover is induced by the asymmetry due to the
players’ sequential movement.

This weak first-mover advantage, however, can already vanish when the strategy space
is enlarged to a three-element strategy space S = {A, B, C'}. Using simple algebraic
comparisons it is straight-forward to show that the strategy pair (C,B) is the unique SPE
of the example given in Figure 2.2 together with the restriction 3 < p < 10. The resulting
SPE payoffs of player I and player Il are 71 (C, B) = p and mo(C, B) = 7, respectively.
Thus, depending on the specific value of p, there is a first- or second-mover advantage.

The previous examples with discrete strategy space S show that symmetric extensive
two-player games can but do not have to yield an advantage for one of the players. If a
first- or second-mover advantage exists, however, it is determined by the specific structure
of the payoff functions m; and 7,. Hence, no general game theoretical results can be
used to investigate the question of first- and second-mover advantages even under the
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Player I

B

Player II Player 11 Player I1

B\C

10 4 2 9 7 1 [ 5

1.3
w2 3 2 1 10 9 L 4 7 5

Figure 2.2 Example of a symmetric extensive two-player game with three strategies which
can yield a first- or second-mover advantage. At first, player I chooses between strategy A,
B and C. Subsequently, player II chooses strategy A, B and C' as reaction to the strategic
descision of player I. The realized payoffs m; of player I and 75 of player II are specified,
whereby 1 € R. If 3 < p < 10, the unique SPE is given by the strategy pair (C,B5).

assumption of complete information. In the remainder of this thesis, thus, only specific
payoff functions and continuous strategy spaces are considered that are reasonable in the
context of industrial organization.

2.2.2 Continuous Strategy Spaces

Following Gal-Or [17], continuous strategies spaces and payoff functions in this thesis are
restricted by the following assumptions:

General assumption 2 (Properties of strategies and payoff functions)
(i) The strategies s; (i = 1,2) are continuous and within a non-empty interval, i.e.,

S1,80 €S = [s,5|, where s,5 € R, s < 5. (2.8)

(ii) The payoff functions T, and w4 are two times continuously differentiable with respect
to both strategies, i.e.,

w1, € C*([s,3)% R). (2.9)

(iii) The players 1 and 11 are identical, i.e.,

m(u,v) = m(v,u), Yu,v € [s,3]. (2.10)
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(iv) The payoff functions 7; (i = 1,2) are strictly concave in their own strategy s;, i.e.>

8815171'1(81,82)78525277'2(81782) <0 Vsl,SQ €]§,§[. (211)

(v) m; and Os,;m; (i = 1,2) are both strictly monotone in their rival’s strategy s_i* e,

8827T1(51752)7881327T1(81782) 7£ 07 v51,52 E]§7§[7 (2 12)

8517T2<81782)7881527r2(81782) 7& 07 vslng €]§7§[ .
The assumptions made on the strategies s, so and payoff functions 7y, 75 in GA 2 allow
to give a characterization of first- and second-mover advantages. GA 2 (i) — (iii) are
required to proof significant results and to allow a meaningful comparison of the players’
payoffs. The validity of 2 (iv) — (v) is addressed in the context of industrial organization in
Section 2.4.

The assumed smoothness of the payoff functions m; and 75 in GA 2 (ii) allows to derive
necessary conditions for interior SPEs, i.e., (s}, s5) €]s, 5[%, from Definition 2.1:

Proposition 2.4 (FOC and characterization of reaction function)
Under GA 1 — 2, an interior SPE (st sY) satisfies the following first order condition
(FOC)’:

8827T1 (5%7 512:>85182772(31fv 85)

0 =0, m(sh sE) —
(ST 52) 052327T2(81f,85)

Y

(2.13)

0 = O,,ma(sT, 55).

Furthermore, the reaction function g :|s, 5[—]s, 5[, s1 — g(s1) of player 1L is a well-defined
and continuously differentiable mapping satisfying:

851527'(2(81, 9(51))
8528277-2(817 9(81)) ’

05,9(s1) = — Vsy €]s, 3] (2.14)

Proof. Cf.[17]. Let s; €|s, S| be arbitrary. For 75(s1, s2), the standard FOC of an interior
extremum [39] s} with respect to maximizing s, and fixed s; yields 0s,m2(s1, s5) = 0. In
addition, from Equation (2.11) it follows Oy, (0s,m2(s1, 53)) # 0 Vsy, s5 € [s, 5]. Together,

Os,m; (i, j = 1,2) denotes the partial derivative of ; with respect to s;. Js, s
the second partial derivative of 7; with respect to s; and sy.

s_; (¢ = 1, 2) denotes the rival’s strategy, i.e., in a two-player game s_; := S3,S_9 := S1.

The respective second order conditions of an interior SPE can be found in the publication by Gal-
Or [17].

m; (i, j, k = 1, 2) denotes

k
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the arbitrariness of s; and the smoothness of 7y allow to apply the Implicit Function
Theorem [39] which yields that 3; g € C'(]s, s[;]s,5]), s1 — g(s1) = s} such that

85271'2(81,9(31)) = 07 v51 G]ﬁ,g[. (215)

Setting s; = s and using s5 = g(s') results in the stated FOC for 75 in Equation (2.13).
Furthermore, by taking the total derivative with respect to s; it follows

d

0= d_sl(aSQ,/TQ(Shg(sl))) = 851527T2(Slag<81)> + 682827T2(317g(sl))aslg<81>' (216)

Thus, by simple rearrangement (Js,s,m2(S1, S2)) # 0 Vsy, s2 €]s, 5]) Equation (2.14) is
shown. Due to

85 s L F
aslg(SL) (Zé()) _ 1 27T2(81 ? 82) (2.17)

! 8523277'2(8%, Sg) 7

the FOC for 7, in Equation (2.13) follows by the standard FOC of an interior extremum [39]

d L _F d L

0= d_817T1(51782) = d_Slﬂ-l(SIlJag(Sl))
= 05, m1(sY, g(sY)) + Os,mi (5T, g(s7)) D, g () (2.18)
as s L _F
@D Dg,m1 (Y, 55) — Ogym (T, 55 ) =2 272(51, 5)

a5252 W2(8%7 85) '
]

The Theorem of Gal-Or characterizes payoff advantages of first- and second-mover based
on strategic substitutes and complements defined as follows:

Definition 2.5 (Strategic substitutes and complements)
Strategy sy of player 11

(i) is a strategic substitute to strategy s, of player 1, iff they mutually offset each other,
ie.,

Os,9(s51) <0, Vs €]s,3][. (2.19)

(ii) is a strategic complement to strategy s of player 1, iff they mutually reinforce each
other, i.e.,

0s,9(s1) >0, Vs €]s, 3] (2.20)

10
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Under the considered general assumptions, strategic substitutes and complements are
characterized by the players’ payoff functions 7; and 7:

Proposition 2.6 (Characterization of strategic substitutes and complements)
Under GA 1 — 2, strategy ss is

(i) a strategic substitute to strategy s iff Ju,v €|s,3[: Os,s,m2(u,v) < 0.
(ii) a strategic complement to strategy s, iff Ju,v €|s,5[: Og,s,m2(u,v) > 0.

Proof. Cf. [17]. Since 0,5, (51, 52) < 0 and Oy, 5,m2(51, $2) # 0 Vsy, sy € [s,35], both
equivalences are a direct consequence of Proposition 2.4, Equation (2.14).

]

2.3 Theorem of Gal-Or

The characterization of first- and second-mover advantages under complete information by
Gal-Or reads as follows:

Theorem 2.7 (Gal-Or, 1985)
Under GA 1 - 2, an interior SPE (sV, s%) yields:

(i) If so is a strategic substitute to strategy sy (iff Os,s,m2 < 0), then there is a first-mover
advantage, i.e.,

Wl(s%, 32) > 7r2(s]f, 35) (2.21)

(ii) If so is a strategic complement to strategy sy (iff Os,s,m2 > 0), then there is a
second-mover advantage, i.e.,

Ta(sY, s5) > mi(sy, s5). (2.22)

The following lemma ensures the exposition of the proof.

Lemma 2.8
Under GA 1 - 2, an interior SPE (sY, s%) satisfies:

(i) If s, 5,ma (ST, 85) < 0 and Oy, (Y, s5) < 0, then st > g(sh).
(ii) If Os,5,m2(sY, s5) < 0 and d,,m1(s%, s5) > 0, then st < g(sb).
F
2-

(iii) If O, 5,m2(s%, 85) > 0 and 0,71 (s, s8) > 0, then st > s

11
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(iv) If Oy, 5,28V, 85) > 0 and O,,m (s, s5) < 0, then st < k.

Proof. Cf. [17]. (i) is shown by a proof by contradiction. Thus, suppose g(s5) > s¥. It
follows

(2.13)

2.11)
5),s5) 2 9, ma(sh, g(s5)) V0. (2.23)

85177'1 (S%a 35) > 8817T1 <g<32 ) S
Together with Os,5,m2(51, 52) < 0 and O, 5,m2(51, 52) < 0 Vs, s2 € [s,35] it follows from
the FOC of the SPE in Equation (2.13) that d,,7; (s, s5') > 0. This lies in contradiction to

the presumptions and thus s} > g(s5), finishing the proof of (i). The proof of (ii) results
by a replacement of the previous greater-equal signs by smaller-equal signs.

The proof of (iii) is performed also by a proof by contradiction. Thus, suppose s5 > sb. It
follows

@.11)
88171-1(5%755) > 88171-1(557‘95)

Os o >0
(2 10) 5152
652 2(52752> > a827T2(31

(2.24)
P o) 2.13)

= 0.

Together with Os, 5, (51, s2) < 0 and O, 5,m2(S1, S2) > 0 Vs, s9 € [s, 5] it follows from
Equation (2.13) that 0, (s}, s5) < 0. This lies in contradiction to the presumptions
and thus s} > s&, finishing the proof of (iii). The proof of (iv) results by an appropriate
replacement of greater-equal and smaller-equal signs in the proof of (iii).

]
As a consequence of Lemma 2.8, the proof of the Theorem of Gal-Or follows:
Proof of theorem 2.7. Cf. [17]. (i) is shown by
L F L Lyy &2 F F
mi(sy,83) = m(sy,g9(s7)) = mi(s3,9(s3)) (2.25)
L. 2.8 (1),(#) FoLy@10) 1 F '
(2?2) Ti(sy,81) = Ta(sy,83),
whereas (ii) follows by
@.1) 2.10) L. 2.8 (iii),(iv)
(3%7 35) > 72(5%7 5%) = 7T1<811", 3%) (2>12) (S%> 31;) (2.26)
]

12
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The Theorem of Gal-Or shows that there is — depending on the sign of the cross deriva-
tive Oy, 5,2 — a first- or second-mover advantage in symmetric extensive two-player games
under the premise of deterministic payoff functions and continuous strategy spaces. The
validity of the indispensable presumptions given in GA 2 (iv) and (v), however, are yet
not assessed. In the following, two fundamental examples from industrial organization are
presented, analyzed and reflected with a special focus towards the respective applicability
of the Theorem of Gal-Or.

2.4 Examples from Industrial Organization

In this section, two fundamental examples from industrial organization are reviewed. In an
industrial organization context, the beforehand introduced abstract symmetric extensive
games of player I and player II correspond to a sequential-move (market) competition
of identical firm I and firm II. Further, the strategies s; and s represent either the firms’
individual output quantities or their respective price decisions.

2.4.1 Stackelberg Competition

In this section, the sequential-move Stackelberg competition under complete information
is considered [43]. Therein, both firms produce non-differentiable products under identical
premises. As strategic variables firms I and II individually determine their output quantity,
denoted by ¢; and g9, respectively. Denoting the inverse market demand and production
cost functions by P(q) and C'(q), respectively, the payoff functions of firms I and IT read:

m(q1.q2) = Pl + @2)1 — C(qn),

2.27
7T2(q17 q2) = P(Ch + QQ)QQ — C(QQ) ( )

To show the validity of GA 2 (i) — (v) in the context of Stackelberg competition, it is
assumed that the output quantities ¢; and g2 can be varied continuously in between [0, g,
where g > 0 is a sufficiently large real number®. Moreover, it is assumed that the inverse
marked demand function P(q) and production cost function C'(¢) are sufficiently smooth,
1.e., at least two times continuously differentiable. Due to the saturation of markets with
respect to products it can naturally be inferred that the inverse marked demand P(q) is
strictly decreasing and concave. In addition, convexity of the production cost C'(¢) can be
assumed due to limited production capabilities. Together, these assumption yield

9,P(q) <0, 0,4P(q) <0, ¥q €]0,2q[ and 9,,C(q) >0, Yq €]0,7], (2.28)

®  In the case of large output quantities, e.g. in mass production, this assumption is not a restriction. It

rather corresponds to a relaxation of the outputs to continuous output quantities.

13
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leading to the following conclusion:

Corollary 2.9 (First-mover advantage in Stackelberg competition)

Let the inverse market demand P(q) and production cost C(q) satisfy the conditions
given by Equation (2.28). Then any interior SPE’ of Stackelberg competition with payoff
functions defined in Equations (2.27) yields a first-mover advantage.

Proof. Using Equation (2.28) it directly follows (z = 1, 2):

(2.27) (2.27)
T(q,q) = Pl + @) — Clge) = ma(qe, q1),

(2.27) (2.28)
O4ia:Ti(q1,G2) =" 00 P(q1 + q2)¢i + 20, P(q1 + q2) — 0gqC (¢:) S 0,
228) (2.29)

2.27)
Og.milq1,q2) =" 0,P(q1 + q2)ai in 0,

2.27) (2.28) 3
OgiqiTi(q1, @2) =" 04 P + q2)qi + Oy P(q1 + q2) q<>0 0, Vaqi,q €]0,7].

In particular, all requirements from GA 2 are satisfied and 0,4, m2(q1,¢2) < 0. Thus,

output quantity g, of firm II is a strategic substitute to output quantity ¢; of firm I, cf.

Proposition 2.6. Applying Theorem 2.7, it further follows that any interior SPE yields a

first-mover advantage.

]

Corollary 2.9 shows, that Stackelberg competition yield a first-mover advantage under
quite general and natural assumptions on the market, products and payoffs. This finding is
further assessed by the following example.

Example 1 (Stackelberg competition under complete information)

A frequently found special case of Equation (2.28) fulfilling all requirements of GA 2, is
given by a linear inverse marked demand function P(q) = a — bq and a linear production
cost function C'(q) = cq with a,b,c¢ > 0,a > c. The resulting payoff functions of Stack-
elberg competition (with linear inverse market demand and production cost functions)
are

(g1, q2) = (@ —blq1 + ¢2))n — cq1 = ((a — ¢) — b(q1 + ¢2)) a1,

Ta(q1, @2) = (a = b(q1 + @2))q2 — cq2 = ((a — ¢) — b(q1 + 42)) - (2.30)

Taking the plausible assumptions that the production cost function is upward sloping (9,C(g) > 0)
and that the inverse marked demand tends to zero for a large production surplus (P(q) Pz 0),
it follows that the payoff functions of both firms have to decrease for large production quantities
(0jmi(q1,92) <0, 4,5 =1,2 for g1,g2 — 00). Since no restrictions on P are required, thus, with-
out loss of generality, each profit-maximizing SPE can in fact be assumed to be an interior SPE,
ie.. (pr.p3) €0,
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2 First- and Second-Mover Advantage under Complete Information

Therein, the parameters a and c can be interpreted as market demand and marginal cost,
respectively. Using the FOC given by Equation (2.13), the unique interior SPE output
quantities (g1, ¢5 ) are given by

a—c
qlLZQ—ba

a— ¢ qL 0 (2.31)
¢ =glq) = -5 = :

2b 2 4b
which results in SPE payoffs

(a—c)?
( )2 (2.32)
a—c

(0, 4) = g

It is important to note that the SPE output quantities ¢\*, ¢} are realized iff they and the
SPE payoffs m(¢¥, ¢5 ), m2(¢¥, ¢t') are positive. Thus, they are realized iff @ > ¢ which
had been assumed a posteriori. This condition corresponds to the indispensable condition
that the market allows to at least sell a single quantity with a price above the marginal cost
and thus with profit.

Moreover, it holds 0,,9(¢1) = —% < 0 and thus output quantity ¢, of firm II is a strate-
gic substitute to output quantity ¢; of firm I. There hence is a first-mover advantage in
accordance with the Theorem of Gal-Or (Theorem 2.7): m1(qt, ¢5) = 2 ma(qt, ¢&).

2.4.2 Sequentialized Hotelling Competition

In this section, a sequentialization of the classical Hotelling competition [27] is introduced
and analyzed with respect to first- and second-mover advantages.

Example 2 (Sequentialized Hotelling competition under complete information)

Two identical firms I and II compete at selling their maximally differentiated products
along a “street” with equally distributed customers by sequentially deciding on the prices
of their products, denoted by p; and p», respectively. Without loss of generality, the street
is represented by the collection of all positions x in the interval [0, 1], the total amount of
customers is 1, and firms I and II are located at the edge positions 1 = 0 and x5 = 1,
respectively. Furthermore, it is assumed that the net utility u of the products for a customer
at position 0 < z < 11s given by

(2.33)

(2) {ﬂ —t(x — 0)%> — p;  if product of firm I is consumed
u(z) =

u—t(1 —x)* — py if product of firm IT is consumed

15



2 First- and Second-Mover Advantage under Complete Information

Therein, © > 0 corresponds to the gross utility of the products and the influence of the
quadratic transport costs is represented by the transport cost t > (0. Customers naturally
prefer products with highest net utility and thus the utility-indifferent marginal customer &
is determined by

T—t(z—02—p 2 u—t(1-1) - p, (2.34)
which is equivalent to
A L p2—m
= — . 2.
B(pr,p2) = 5+ T (2.35)

Denoting the marginal cost by c, the payoff functions of the sequentialized Hotelling
competition (with quadratic transport cost and linear production cost functions) are®

. @33 (1 p2—p
ulprop) = (o) = 00— ) 27 (54 222 ) o =)

(2.36)

ralprop) = (1= oo =) 2 (5= P =

Using the FOC given by Equation (2.13), the unique interior SPE prices (pY, p}) are given
by

L 3
pl = §t + C,
L (2.37)
=gy = B2
2 2 4 ’
which results in SPE payoffs
9
m(pYspy) = 16t
95 (2.38)
L Fy _
Ta(p1sp2) = o5t

32
The SPE prices p}', p} are realized since they and the SPE payoffs 71 (pY, pb), m(p}, p5)
are strictly positive given that the transport costs are non-vanishing, i.e., if ¢ > 0.

Concerning the Theorem of Gal-Or (Theorem 2.7), it is straight-forward to verify that
the payoff functions given by Equation (2.36) satisfy all conditions stated in GA 2. In
particular, it holds 0,,,,m2(p1, p2) = % > 0. Thus, price p, of firm II is a strategic
complement to price p; of firm I in accordance with Proposition 2.6: 0,, g(p1) = % > 0.
As a consequence of the Theorem of Gal-Or, there has to be a second-mover advantage:

m(pY, p5) = 0.72 my(pk, P ).

8 A more general model assuming a linear production cost structure and a general market demand (being

equivalent to a general utility function) is developed and analyzed by Amir and Stepanova [4].
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3 First- and Second-Mover
Advantage under Uncertainty

In the previous Chapter 2, first- and second-mover advantages were characterized under
the assumption of deterministic payoff functions. The aim of this section is to drop this
prerequisite by assuming (market) competition environments of incomplete information.
More precisely, the influence of uncertainties to first- and second-mover advantages in
sequential-move duopoly competition is addressed. Here, a special focus lies on uncertain-
ties in model parameters which are assumed to be (stochastically) distributed. It is assumed
that both firms I and II act under equal premises and initially have access to equivalent
information. To account for uncertainties in model parameters, the following (abstract)
stochastic framework introduced by Gal-Or [20] is used:

The stochastic variation of a model parameter is represented by a random variable, denoted
by u. The random variable u is a superposition of the random variables u; and 1y, which
correspond to the distribution of the uncertain parameter in the respective market segments
of the players I and II, respectively. Both players observe private signals as estimates
for the uncertain parameter in their market segments, denoted by z; and x5. Further, the
random variables and private signals fulfill:

General assumption 3 (Properties of random variables and private signals)

(i) The random variable u of the uncertain parameter is the mean of the random
variables u; and us of the market segments, i.e.,

u = W 3.1)

(ii) The random variables u, and us of the market segments are distributed according to
identical prior probability distributions, such that

E[u] = E[ug] =6, Var|u] = Var[us) =0 and Cov [uj,us]) =h, (3.2)

where 0 < 0 and 0 < h < o°.

h cannot exceed o, in order to not violate the positive definiteness of the variance-covariance matrix.
When h = o, both private signals are the sum of the market demand € and additional “white noise”. This
case can be interpreted as both firms having access to the same market segment. When 0 < h < o, firms
have access to possibly different market segments that, however, are at least partially correlated [20].
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3 First- and Second-Mover Advantage under Uncertainty

(iii) The private signals x; (i = 1, 2) are unbiased estimators of the random variables u;

of the market segments with variance 0 < m; < 0o'”, i.e.,

E [z;|w;) = u; and Var|z;|u;] =m;, 1=1,2. (3.3)

Furthermore, conditional on the random variables u;, the private signals x; are
distributed according to identical posterior probability distributions.

(iv) The prior and posterior probability distributions yield linear posterior expected
values with

[u|z1, 3] = ag + a1x1 + agxs,
E [u|z1] = by + by,
E [u]z] = co + ¢, (3.4)
[z2]21] = do + dyy,
[71]|22] = fo + frza,

where aq, . .., f1 € R.

In the context of industrial organization, GA 3 (i) and (ii) correspond to the assumption
of equal premises for both players which includes the quantitative equality of the market
segments «; and uy in size and structure. GA 3 (iii) implies that the private signals are
observed using unbiased methods, such as carefully performed and analyzed market
surveys. The latter assumption GA 3 (iv) possesses a restriction to the applicability of the
stochastic framework in industrial organization. The validity of GA 3 (iv) requires strong
assumptions on the prior and posterior probability distributions that generally do not have
to be satisfied. However, several pairs of prior-posterior probability distributions satisfy
the linearity assumption, such as the Gamma-Poisson, Beta-Binomial and Normal-Normal
distributions [12, 20, 40].

The coefficients ay, . . ., f1 of the posterior expected values in Equation (3.4) are uniquely
determined by the assumptions in GA 3.

Proposition 3.1 (Properties of private signals and parameters of posterior expected values)
Under GA 3, it holds:

10" Tn this thesis the variance of the market segments is restricted to finite values, i.e., m; < oo (2 = 1, 2).

This corresponds to the reasonable assumption that the private observations of both players are not
indefinitely noisy and possess at least some connection to the actual market segments. Some aspects of
the cases my1 = oo or my = oo are discussed in [20].
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3 First- and Second-Mover Advantage under Uncertainty

(i) The private signals x1 and x4 of both players 1 and 11 have the following expected

values (1 = 1,2):
E [x?] = 0>+ 0+ m,,
E [xlxg] = Qz + h.

(ii) The coefficients ay, . .., f1 € R in GA 3 (iv) are uniquely determined by

0 (o —h)(my+mg)+2mmy 1 (0+h)(c+mg—h)

(3.5)

E|u|zy, 29| = = —
s, ) 2 (o+m)(o+my)—h2 " 2(c+m)o+my) -k
=ao —a1
1 (o4 h)(c+my—h)
+ = 5 ZT9,
2 (0 +mq)(o+mg) — h?
—ao
Qo+2m;—h 1 o+h
E =_ Z
[ul] 2 o+m /+ga+mbxl’
=bo b
Qo+2ms—h 1 o+h
E == = 3.6
[U|$2] 2 o+ Moy +20+m2 2 ( )
A ~~ A ﬂ
=co =c1
+my —h h
E[IL‘Q|ZE1] :90 ! + Ty,
o+ m o+ m
——
=do =dy
—h h
E[.ﬁljlyfﬂg] :90+m2 + 9.
o+ my o+ My
——
=fo =f1
3.7
Proof. Using the Law of Total Expectation [44], the expected private signals are
Elz,] =E[E[xlw] 2 En] 20, i=1,2 (3.8)
Applying the Law of Total Variance [44] results in
Var [;] = E [Var [z;]u,] + Var [E [u;]2]] 2’:2 o+my, i=1,2, (3.9)
and thus by the definition of the variance it holds:
E [22] = E [z:])* + Var [,] 2—_23 0 +ot+m, i=1,2 (3.10)

)
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3 First- and Second-Mover Advantage under Uncertainty

By the definition of the covariance it follows
E [2125] = E [11] E [22] + Cov [z1, 23] 2:3 6> + h, 3.11)

which finishes the proof of (i). The proof of (ii) is based on equations (3.8)—(3.11) and
results in [14]. Since it is only of technical nature it is omitted in this thesis. A detailed
proof can be found in the appendix of [20].

O

In the case of complete information, the payoff functions 7; and 7, of the player I and II
only depend on the players’ strategies s; and s». Introducing uncertainties, however,
the payoffs additionally depend on the random variable u, i.e., 7 = m($1, S2,u) and
Tg = 71'2(81, S2, U)

Both players have access to their private signals z; and x5 as estimates for the uncertain
parameter in their market segment u; and us. In a non-cooperative Bayesian extensive
two-player game, both players aim to maximize their expected payoffs under the knowl-
edge of their private signals. Hence, profit-maximizing optimal strategies under uncer-
tainty (7", s5™") of player I and player II are in fact functions of the observed private
signals x; and x», respectively. Thus, the SPE introduced in Definition 2.1 for environments

of complete information must be generalized in the case of uncertainties:

Definition 3.2 (Perfect Bayesian Equilibrium)
Under GA 1, a Perfect Bayesian Equilibrium (PBE) (5™, s5""™) of a Bayesian extensive
two-player game with random variable u and private signals x1 and x5 is defined by:

sy = G, s7™) 1= argn‘lgax E | ma(s7™, s2,u) sy, @) (3.12)
s2€
and
st = H(zy) := argmax E [1(s1, G(22, 51), u)|z1] , (3.13)
s1ES

where G and H denote the reaction functions of player 1 and player 11, respectively.

The definition of PBEs is not based on restricting requirements on the strategy space S.
In particular, the strategy space can be discrete or continuous. Discrete strategy spaces,
however, do not to yield further insight if uncertainties in the payoffs are introduced. More
precisely, in the previous examples with discrete strategy spaces (Figures 2.1 and 2.2)
all results were gained by simple algebraic comparisons of the specific discrete payoff
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3 First- and Second-Mover Advantage under Uncertainty

values. Introducing uncertainties in the players’ payoffs would hence only shift the payoffs
under complete information by the expected values of the random variables. Thus, the
consideration of potential uncertainties in the payoffs does not lead to any alteration
of first- and second-mover advantages compared to the case of complete information.
Summarizing, discrete strategy spaces remain inappropriate to address the question of first-
and second-mover advantage also in the case of uncertain model parameters.

An analog to the Theorem of Gal-Or (Theorem 2.7) characterizing expected first- and
second-mover advantages under the premise of uncertainties in model parameters and
continuous strategy spaces does not exist and is beyond the scope of this thesis. Thus, in
this chapter, the beforehand introduced Stackelberg and sequentialized Hotelling compe-
tition (Examples 1 and 2) are generalized by introducing uncertainties in various model
parameters. The resulting competitions under uncertainty are analyzed with respect to first-
and second-mover advantages.

3.1 Stackelberg Competition under Uncertain
Market Demand

As a first step, Stackelberg competition under complete information (Example 1) is gener-
alized to include uncertainties in the market demand as done by Gal-Or [20]. In particular,
the following example is concerned with the question of whether the general first-mover
advantage of Stackelberg competition under complete information (cf. Corollary 2.9)
remains valid also in the case of incomplete information. In the context of industrial
organization, the symmetric extensive Bayesian games of player I and player II correspond
to the sequential-move competition of identical firm I and firm II under uncertainty.

Example 3 (Stackelberg competition under uncertain market demand)

Stackelberg competition under uncertain market demand are frequently considered [6, 11,
15, 16, 18, 20, 22, 24-26, 31, 33, 34, 37, 40, 45]. As proposed by Gal-Or [20], the market
demand is decomposed into a static and a stochastic contribution. Denoting the static
contribution by a and the stochastic contribution by u, the payoff functions of Stackelberg
competition (with linear inverse market demand and production cost functions) under
uncertain demand are given by

(g1, g2, u) = ((a+u) — b1 + @2))qn —cqp = ((a — c+u) — b(g1 + @2))

ma(a1,42,10) = (@ + 1) = b(@s + @) — ca2 = (@ — e+ 1) = b(er + @)

cf. Equation (2.30). Therein, a, b,c > 0 are fixed-valued model parameters. Analog to
the case of complete information (cf. Example 1), it is assumed that the static market
demand exceeds the marginal cost, i.e., a > c¢. The expected payoff E [m2(q1, g2, ©)|q1, x2]
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3 First- and Second-Mover Advantage under Uncertainty

of firm II under the knowledge of the private signal x5 and the output quantity ¢; = H(x1)
of firm I is required to compute the FOCs of the PBE. To this end, it is assumed that the
reaction function H of firm I is continuously differentiable and invertible'!. Together with
the linearity of the present model the FOC of Equation (3.12) for firm II is:

d
0=—1UE [71'2<Q1, g2, u)|Q17 x2]

dga
"2a — o)~ bla + 202) + Elulgr, 2] s
=(a—¢) = bqy +202) + E [ula1 = H (), 2] (3.15)
Giﬁ)(a —¢) —b(q1 + 2q2) + ap + a1y + asxs
=(a —¢) = b(q1 + 2q2) + ao + arH ' (q1) + aga.
By simple rearrangement, the reaction function G(x2, ¢1) of firm IT follows
a—c q | ap+aH '(q)+ aswy
=G = - = _ 3.16
@ =G120)=—7—— 5 (3.16)
and its partial derivative with respect to ¢; follows:
1 aq _ 1 a1 1
0,,G =— 4+ —0,H =——4+ —
wGlez @) = =5 4 g 0l a) = =5+ S 1)
(3.17)
. 1 i aq 1
2 200, H(xy)
Using Equation (3.16), the FOC of Equation (3.13) for firm I is given by:
d
0 :d_E [m1(q1, G (22, 1), u)|21]
41
"=a —0) = b2q + E[Glrn, 0] — 0 B0y Glaz, qn)la]) + B fuld)
(3.16)0 — C ag + a1y + as E [za]21] a 1 (3.18)
D bgy — el N ST o)
am 2 0 2 'S o H Gy B
3.6 —C Qo +ajx + ag(do + dll'l) aq 1
=—— —bq — —@1—————— + (bp + b1x1).
9 q1 5 71 D, H (1) + (bo + by1)

Finally, the substitution of ¢; by H (z) and the multiplication with 0,, H (x;) results in an
ordinary differential equation (ODE) determining the reaction function H(x;) of firm I:

(a—c—ao—agdo—f-Qbo
0= 5

) Op, H(x1) + (—0)H (21)0,, H(x1)

T (—a1 — a;dl + 261

> .Z‘lale(l’l) -+ (—g)H(ZEI)

' 1In fact, it is possible to prove that H under no circumstances is a decreasing function, see [20]. In the

context of industrial organization, however, it reasonable to assume smooth one-to-one relationships
between the PBE output quantities and the firms’ private signals.
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3 First- and Second-Mover Advantage under Uncertainty

The solution of the nonlinear ODE is a special case of the following proposition:

Proposition 3.3 (Solution of nonlinear ODE)
The nonlinear ODE

0 :ﬂlale(xl) + :UQH(‘Il)amH(xl) + M3xlax1H(xl)

(3.20)
+ LL4H([L’1) + usx1 + U,
with coefficients [y, . . ., g € R has two linear solutions
H(Z’l) - Ao + All‘l, (321)
Therein, the coefficients Ay and A, are:
I 2 ffha — Hafle
P p2 pg — gz £/ (pa + pi3)? — Apaps (3.22)
9 B )
A, = _H3 1 H3fta — 2 lts

P p2 pg — gz \/(pa + pi3)? — paps

where both discriminants have to be introduced with equal signs.

Proof. By introducing Equations (3.21) and (3.22) into the ODE given by Equation (3.20),
the validity of the proposition is verified in a straight-forward manner.

]

The solution of the ODE determining the reaction function H(x;) of firm I in Equa-
a—c—ag—aadg+2bg

tion (3.19) follows from Proposition 3.3 by substituting j1; = , [lo = —D,

2
[y = %M, py = —% and ps = pg = 0. Since the linear solution with positive dis-

criminants results in the trivial solution H(x;) = 0, the sought PBE output quantity qlL o
of firm I is'?

g™ = H(x1) = Ag + Ay, (3.23)

where the coefficients Ay and A; possess negative discriminants and thus after some
manipulations:

2 a3 n 2b (0' + ml)(a + mo

1 fafia Ge) R o+my—h 0o +2my —h
Ay = = — a—c+—-——-—-—7-—1,
)—h2 2 o+ my
A——@—E(%)ﬁ oc+mqy—h o+ h
! Ho  fo 4b (o +my)(o +mg) —h? o +my

(3.24)

12 The linearity of the reaction function H of firm I a posteriori reinforces the presumed smoothness and

invertibility of H.
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3 First- and Second-Mover Advantage under Uncertainty

Introducing the inverse reaction function H!(¢q;) = @ of firm I into the definition of

A
the reaction function G(z, ¢;"™) yields the PBE output quantity g5 """ of firm I

L,un
L,un g —4Ao
F,un Luny G16) @ —C g7 0o+ Q1= —r— + Aoy
’ — G ’ — _ 1
‘D) (ZE27 a1 ) 2 2 + 2b
1 i AO + a9 4 1 aq 1 L,un (325)
=—la—c+ay—a;— — — — ==
2% T )T T\, 2) N
~ -~ =~ S———
=:Byp =:B1 =:By
where after some manipulations:
a6 h o+my —h 0 o—nh
= — a—c—— ,
0 324 2b (0 +my)(o +mg) — h? 2 h
a9 gth o+m —h , (3.26)
324y 4b (0 +my)(o +mg) — h?
gy 1 o+mg—hot+m
624 2 o4+mi—h h
Using Proposition 3.1 (i), the expected PBE output quantity of firm I is'?
2 [%L’un] 2 Ao+ Ay E [z4] = Ay + A0
(3.27)

a2 h o+my—h
N 2b (U+m1)(0+m2) — h?

(a—c+0).

Using By + B0 2222 Ag+ A0 2 E [q%’un] it follows the expected PBE output quantity
of firm II: |

B [qg ’un] C2) B4 B Elws) + B E [q%v““}

B+ B0+ B, E [q%’“n} —F [q?’“n} (1+ By)

321 h o+my—h (3.28)
(326) 2b (0 +mq)(o + mgy) — h? (a=c+6)
1 o+me—h o+my
(§+0+m1—h h )

L,un L,un

Substituting ¢;""" = H(x;) and ¢;"" = G(x2, H(x1)) into the payoff functions in
Equation (3.14), taking their expected value (with respect to x; and z5) and using the

13" It is important to note that the following expected values are taken with respect to z; and x5. The

previous expected values were taken with respect to u.
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properties of the expected private signals in Proposition 3.1 (i) yields the expected payoff
of firms I

H - L o+ —h o+
E [”1(19 (xl), G(m, (xl)),u)|x1] (2 + ﬂmi 3 hm1>
(3.29)

h_2 (0 +my — h)? (a—ct0) + 1(0—|—h)2
4b ((0’ —I—ml)(a+m2) — h2)2 4 0 +my
and the expected payoff of firm II
E [mo(H (1), G2, H(x1)), w)[H(21), 22] =

1 o+my—ho+
E [mi(H (21), G(x, H(21)), u)|z1] (5 tor Zi - hml) (3.30)

1 (0 + h)? (o0 +ml — h)?
16b o +my (o +my)(o+ma) —h%

Comparing the PBE output quantities and payoffs of both firms leads to the following
observations:

Proposition 3.4 (First- and second-mover advantage in Stackelberg competition under
uncertain market demand)
Under GA I and 3, the unique interior PBE output quantities ("™, ¢5""™) of Stackelberg
competition under uncertain market demand (Example 3) satisfying a > c yields:

2

(i) If€<4(a—c)and2(ac+0 3

and q2 " are realized if the observed private signals x1 and x4 are sufficiently large,
in particular if they are positive, i.e.,

¢ =H(x) >0 and g™ = G(z2,q7"™) > 0,

,un

o < h < %0, then the PBE output quantities qL

Ay B,
_ = 3.31
Vo, > A 5 > B (3.3D)
~—~ S~~~
<0 <0

L,un

(ii) If 0 < h < %a, then the reaction function G(xs,q;""") of the second-mover is

upward sloping with respect to the output quantity of the first-mover, i.e.,

0y, G (22, 7™™) = By > 0. (3.32)

(iii) If 0 < h < %0, then there is an expected second-mover advantage induced by a

higher expected PBE output quantity of the second-mover, i.e.,
E [q§ “n} > F [q% ““} =)

L, F, L L, F, (3.33)
E [mlar™, a5 wlgh ™ w) > B [mi( ™ 6" wla ] > 0.
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Proof. (i) Letbe x1 > — , Ty > —22. Since a > cand 0 < h < ¢ it follows that A,
and A, are positive. Thus

¢ = H(zy) %2 4y + Az > 0, (3.34)
due to 21 > —42. Since By > 0 and ¢""™ > 0, the positivity of

& = G2, ) 2 By + Bizy + Baght™ (3.35)

follows for all o > —g—? if By and B, are positive too. The positivity of By and B, are
equivalent to

ho+ my — h
———o0<h and ——— < o+mg—h. 3.36
2(a—c)+6 2 o+m 2 (3-36)
Since g”if—nllh is an increasing function with respect to m, and o +mqy — h is an increasing

function with respect to ms, the latter inequality is satisfied for all values of m; > 0 and
mo > 0 if

h 2
§<0—h & h<§a. (3.37)

Thus, it is required that —(a 70

With the positivity of ¢i"™ and ¢5 ™™ the positivities of the payoffs follow immediately
from Equation (3.14). Thus, both firms seek to realize their PBE output quantities to expect

(positive) profits.

o < h < 20, which only is satisfiable iff § < 4(a — ¢).

(i1) The slope of the reaction function of firm II is given by

05, G (22, 1) = B, (3.38)
and its positivity follows iff By > 0. As shown in the proof of (i), B is positive for all
values of m; > 0 and my > 0 given that 0 < h < 20.
(o+h)? (c+ml1—h)?

(ii1) Since = 16b el et e s g 0, Equations (3.28) and (3.30) directly reveal the
expected second-mover advantage given that

1 o+me—ho+my
— =14+ By > 1. 3.39
<2+a—|—m1—h h ) e (3-39)

Again, the positivity of B, is guaranteed for all m; > O and my > 0if 0 < h < %a.
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3 First- and Second-Mover Advantage under Uncertainty

If the firms’ private signals z; and - (that estimate the stochastic contributions of the mar-
ket demand) are not restricted to positive values, e.g., if the prior and posterior probability
distributions of the random variables are normal distributed (and thus x,, x5 € R), the esti-
mated PBE output quantities ¢;""" and g5 ™" can be negative preventing their realization by
the firms'*. In addition, the output quantity q2F " of the second-mover can be negative if a
precondition of Proposition 3.4 (i) is violated. In particular, the scenario of a large expected
market demand « compared to its static fraction a, more precisely E [u] = 0 > 4(a — ¢),
can be of great practical relevance. It is important to note, however, that the PBE output
quantity ¢;""" of firm I is already realizable if a + 6 > ¢ and z; > —i—f. Hence, forms of
competition under such premises violating a precondition of Proposition 3.4 (i) can lead to
a non-participation of the second-mover and a monopoly situation for the first-mover.

According to Proposition 3.4 (iii), however, if the second-mover participates in Stackelberg
competition under uncertain market demand, he can expect a higher profit (independent
of the variances m, and my of the observed private signals x; and z) if the observed
market segments u; and us are sufficiently uncorrelated, i.e., if Cov [uy,us] = h < %U.
In such cases, the informative value for the second-mover gained by the inference of
the first-mover’s private signal z; from the first-mover’s PBE output quantity qlL o
by zy = H™'(q"™) is significant. This “better information effect” [20] enables the second-
mover to overcome the first-mover’s advantage shown for environments of complete
information (cf. Example 1). Moreover, there exists an additional “conjectural vari-
ation effect” [20] that is beneficial to the second-mover. This effect is captured by

By + % = Ziz—f:z%, which measures the amount by which the slope of the reaction

L,un

function 0,, G(x2, ¢;""") of the second-mover in Stackelberg competition under uncertain
marked demand exceeds the slope 9, g(q7') in the respective competition under complete
information. This conjectural effect alters the sign of the slope of the reaction function
of firm II in the case of 0 < h < %a to positive. Thus, the statement of the Theorem
of Gal-Or (Theorem 2.7) remains valid in the present example under uncertainty, i.e.,
the output quantities of both firms are strategic complements and there is an expected

second-mover advantage.

4 To (almost always) enforce the positivity of normal distributed private singals ; and x5 (with a

Eg(;bablhty of 99.7%) one can restrict their standard deviation by assuming /o < %, cf. [11, 35,
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3 First- and Second-Mover Advantage under Uncertainty

3.2 Stackelberg Competition under Uncertain
Marginal Cost

As another example under incomplete information, Stackelberg competition under complete
information (Example 1) is generalized to include uncertainties in the marginal cost. To
this end, the stochastic framework as introduced by Gal-Or [20] is employed.

Example 4 (Stackelberg competition under uncertain marginal cost)

Stackelberg competition under uncertain marginal cost are studied in few publications [1,
2,7,19, 21, 32]. As in the previous Example 3, the marginal cost is decomposed into a
static and a stochastic contribution which are denoted by c and u, respectively. The payoff
functions of Stackelberg competition (with linear inverse market demand and production
cost functions) under uncertain marginal cost are thus given by

m1(q1, @2, u) = (a = b(q1 + @)1 — (c +u)qr = ((a — c —u) — b(q1 + ¢2))q1,

(g1, q2,u) = (@ — b(q1 + ¢2)) g2 — (c + u)g2 = ((@a — ¢ — u) — b(q1 + ¢2)) o, (3.40)

cf. Equations (2.30). Therein, a,b,c > 0,a > c are fixed-valued model parameters.
Comparing the payoff functions under uncertain marginal cost with the beforehand payoff
function under uncertain marked demand in Equation (3.14), the only difference lies in the
reversal of the sign of the random variable w. Thu% in an analog manner as in Example 3,

it follows that the PBE output quantities (q%’u .Gy of Stackelberg competition under
uncertain marginal cost are given by

d%’un =H(x,) = /10 + 1211331,

F.un Loun ~ . = Lun (3.41)
QQE = G(fﬁ%(l%’ ) = By + Byxzs + BQQ{J’ :

Therein, the coefficients flo, fll, BO, Bl, Bg are estimated by reversing the signs of ay,
ay, as, by and by compared to the calculation of the coefficients Ay, A;, By, By, B in
Equations (3.24) and (3.26). Thus, they are given by:

i _ﬁ o+my—h a_c_ga—i-Zml—h
"2 (04 m)(o +my) — h? 2 o+my ’
- h o+mi—h o+h
AIZ__ )
4b (o +my)(oc +mg) —h? o+ my
~ h 0+m1—h 0 oc—h
By =— — — 3.42
0 b(0+m1)(0+m2)—h2(a ¢ty — >, (3.42)
- o+ h oc+mi—h
Blz—

4b (a+m1)(0—|—m2)—h2’
- 1 o+meg—h o+m
2 o+mi—h h
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3 First- and Second-Mover Advantage under Uncertainty

Besides in the term a — ¢, the first four coefficients AO, fll, BO and B; have reversed signs
compared to Ay, A1, By and By, respectively. It is important to note, however, that the last
coefficient B is identical to the coefficient Bs.

Analog to the estimations in Example 3, Equations (3.41) and (3.42) yield the expected
PBE output quantities of both firms

E |:~L,un:| (3.41) ﬁ oc+mi—h (a . 9)
1 3.42) 2b (0 4+my)(o +my) — h? )
~ . h o+my — h
E |: F,un] G4h v el |
2 342 2b (0 +my)(o + my) — h? (a—c—0) (3.43)

2 U+m1—h h

(1 o+mg—h U+m1)
+ :

and their expected PBE payoffs:

E[m(H (21), G(zg, H(z1)), u)|21]

(341) (1 oc+ms—h a+m1>

Ga2)\2 o+mi—h h
2 )2 2
U (0 +mi —h) (a—c— g3+ LOHDTY
4b ((o + my)(o + mgy) — h?)? 4 04+ m
B [ma(H (1), Gy, H (1) w)|H (1), 22) ) (3.44)

1 o+my—ho+
Elm (H(x1), Gz, H(21)), u)|] (5 " Z+Zi —h i hm1>

1 (o+h)? (0 +ml— h)?
16b o +my (0 +my)(o+mg) —h?

Comparing the PBE output quantities and payoffs of both firms leads to observations
similar to Proposition 3.4:

Proposition 3.5 (First- and second-mover advantage in Stackelberg competition under
uncertain marginal cost)

Under GA I and 3, the unique interior PBE output quantities ("™, G5 ""™) of Stackelberg
competition under uncertain marginal cost (Example 4) satisfying 0 < 0 < a — c yields:

(i) If 0 < h < %0, then the PBE output quantities @™ and @™ are realized if the
observed private signals x1 and x5 are sufficiently small, i.e.,

qf’un = H(r;) >0 and q%’un = G(xa, qf’un) > 0,

A B

Al Bl
~—~—~~ S~~~

>0 >0
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3 First- and Second-Mover Advantage under Uncertainty

(ii) If 0 < h < %O’, then the reaction function G(x, q~1L’un) of the second-mover is

upward sloping with respect to the output quantity of the first-mover, i.e.,

0y G (2, G™) = By > 0. (3.46)

(iii) If 0 < h < %O‘, then there is an expected second-mover advantage induced by a

higher expected PBE output quantity of the second-mover, i.e.,

E [g§ v““} > E [q%““} >0,
L F L L F (3:47)
E [72(61 ,1111’62 71111’“) C’]vl 7UH,$2i| > E |:7T1(6il ,UH7Q'2 ’unuu)|x1i| > O

Proof. (i) Letbe z; < _-’i:_(l) and x4 < —g—?. Since a > ¢+ 60 and 0 < h < o it follows that
flo > (0 and 1211 < 0. Hence, it follows
G = H(xy) %20 Ay + Ayay > 0, (3.48)

~L,un

due to x1 < —‘::—i’. Since Bo >0,q¢" >0and Bl < 0, the positivity of

~F,un (3:41) ~L,un D, D, » ~L,un
&= Glay, ™) = Bo+ Bira + Bady (3.49)
follows for all zo < —g—? if By is positive. Following the proof for the positivity of

B, = B, in Proposition 3.4 (i), the positivity of B, is ensured if 0 < h < %a. With
the positivity of ¢;™" and g, the positivities of the payoffs follow immediately from
Equation (3.40). Thus, both firms seek to realize their PBE output quantities to expect

(positive) profits.

Due to Bg = B, the proofs of (i1) and (ii1) are matching the proofs of Proposition 3.4 (ii)
and (iii), respectively.

]

Note that —‘3—3 > 0 and —g—? > (. Thus, both firms realize their PBE output quanti-
ties if their private signals x; and x5 (that estimate the stochastic contributions of their
marginal costs) have sufficiently small positive values. The reaction functions H(x;) and
G(z2, q~1L’un) of both firms are downward sloping with respect to the private signals. Thus,
a restriction of the private signals to positive values, e.g., if their prior-posterior probability
distributions are Gamma-Poisson or Beta-Binomial distributed, easily results in negative
PBE output quantities ¢,"™ and ¢, "™ which prevents their realization by the firms. Fur-
thermore, it is important to note that — in contrast to environments of uncertain market
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3 First- and Second-Mover Advantage under Uncertainty

demand (cf. Example 3) — the feasibility of the firms’ PBE output quantities does not favor
the first-mover. Stackelberg competition under uncertain marginal cost does not allow the
first-mover to establish a monopoly situation by a non-participation of the second-mover.

According to Proposition 3.5 (iii), if both firms participate in Stackelberg competition
under uncertain marginal cost, a second-mover advantage is expected if the observed
market segments u; and u, are sufficiently uncorrelated, i.e., if Cov [uy, us] = h < %a.
The coefficient B, determining the slope Ogy G (22, qf’un) of the reaction function of firm II
is identical to the coefficient By of the competition under an uncertain market demand
(cf. Example 3). Thus, the discussion of the latter in terms of the better information effect
and the conjectural variation effect remains valid without restrictions and is not repeated

here.

3.3 Sequentialized Hotelling Competition under
Uncertain Marginal Cost

The analyses of Examples 1, 3 and 4 have shown that incomplete information in Stackelberg
quantity competition give an information advantage to the second-mover. Independent of
the parameter in which uncertainty is assumed, the second-mover can be enabled to earn
higher expected profits compared to the first-mover as opposed to the case of complete
information.

This section is concerned with the question of whether this observation remains valid
also in the case of price competition in which a general second-mover advantage already
exists under the premise of complete information. To this end, the stochastic framework
developed by Gal-Or [20] is employed to investigate the effects of uncertainty in the
marginal cost of the sequentialized Hotelling competition introduced in Examples 2.

Example S (Sequentialized Hotelling competition under uncertain marginal cost)

As in the previous Examples 3 and 4, the uncertain marginal cost is decomposed into a
static and a stochastic contribution, denoted by c and u, respectively. Thus, the payoff
functions of the sequentialized Hotelling competition (with quadratic transport cost and
linear production cost functions) under uncertain marginal cost are given by

1 —
mlpopn) = (5 + 252 (- e+ )
(3.50)

o (p1, P2, u) = (% -2 Q_tpl) (p2 = (c+w)),
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3 First- and Second-Mover Advantage under Uncertainty

cf. Equation (2.36). Therein, ¢ > 0 and ¢ > 0 are fixed-valued model parameters. The
reaction functions, expected PBE prices and expected PBE payoffs of both firms are
derived analog to the procedure in Example 3. Here, only key steps and the main results
are reviewed.

The FOCs of the PBE defined by

d
0 :d_pQE [Wz(p1,p2,u)|l71,$2] )

d
=—0F
0 I [m1(p1, G(22, p1), u)|21]

(3.51)

yield the governing equations for the reaction function G (s, p;) of firm IT and its derivative
with respect to p;

t+c ap+aH™! + asx
. +]£_|_ 0 1 (p1) 222

G(z2,p1) 9 5 9 ,
1 1 (3.52)
OnGloap) = 54 5 5 i)
as well as a nonlinear ODE determining the reaction function H (z;) of firm I:
0 =(3t + 2¢ + ag + axdy + by) 0z, H(z1) — 2H (21)0,, H(1) (3.53)

+ (a1 -+ agdl + bl) 1‘18x1H($1) + (ZlH([El) — CL1b1[L’1 — aic — a,lbo.

Two linear solutions of the ODE are follow from Proposition 3.3 by substituting
p1 = 3t + 2¢ + ag + azdg + bo, p12 = =2, pz = ay + azdy + by, gy = ay, ps = —aqby,
[ = —aic — aibg. Noting that p3py = o5, however, only the linear solution

p%,un = H(SL’1> = zzl(] + fllxl (354)

with positive discriminants signs in the coefficients A, and A, remains as well-defined
solution. Hence, the two coefficients are computed to:

- 1 — 1 2mq, — h
O A ”2“6(32)—(31t+2@+9—”+ ml )
fo o 4 — 3 2 o+ m
L3 (0 +mi)(o +ma — D) . (3.55)
2 h(oc+my —h)+ (0 +my)(o +my) — h?
_ _@(3;6)1 o+ h

A1: .
%) 2 0+ m

By introducing the PBE price pi™™" of firm I into Equation (3.52), the PBE price p5 ™ of
firm II follows

Py = G2, py"™) = By + By + Bopy™, (3.56)
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where the coefficients By, B, and B, are given by:

A 1 Ay o t+c 0 (0 —h)(my+my) —2mims
B —_— t — _ = -
’ 2( et CL1A1), 2 4 (o+mq)(oc+m2)— h?
1 (o +mi)(o+my—h) (3t+20+90+2m1—h
4 (0 +m)(o +mgy) — h? o+m
ey (0 +my)(oc+mg—h) )7 (3.57)
h(o +mq) + (6 4+ mq)(o + my) — h?
_ as 36 0+ h o+my—h
Bl = = )
2 4 (o +my)(oc+my)— h?
- 1 a gl o+m o+my—h
By=c+— = < )
2 2A1 3.55) 2 2 (U + ml)(a + mg) — h?

As a consequence of the PBE prices p}"™ = H(x) and py™™ = G(xo, H(x;)), which
depend on the observed private signals x; and x5, the expected PBE prices are estimated
to:

E [Plf’un] G2h Ao+ A E [21] = Ay + A0

(3iS)§t+c+0+ﬁ (0 +mq)(o +mg —h) N
2 2h(a+m1—h)+(a+m1)(a+m2)—h

E [pg,un] (326) BO + Bl E [.’172] + B2 E |:p]1_4,uni| (3;5) BO + Blé + BQ E [leJ’un] (358)

) 3t —h
GSn D, gy St (0 +my)(o +my—h)

4 4 h(o+mi—h)+ (o +mi)(oc+me) —h*

=X

Substituting p;"™ = H(z1) and py™ = G(z9, H(z,)) into the payoff functions in
Equation (3.50), taking their expected value (with respect to x; and z5) and using the
properties of the expected private signals in Proposition 3.1 (i), the expected payoffs of
both firms follow. Using the above introduced abbreviation Y, they are:

B (H (1), Gloa, (), wlar] = 1o (1=
E [mo(H(21), G(zo, H(z1)),w)|H(21), 22] = %t (1 + gx + %Xz) (3.59)
1 (o + h)* (o0 +my — h)?

32t (o +my)((o 4+ my)(o +msg) — h2)

The analysis of the PBE prices and payoffs of both firms yields the following observa-
tions:
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Proposition 3.6 (Second-mover advantage in sequentialized Hotelling competition under
uncertain marginal cost)

Under GA 1 and 3, the unique interior PBE prices (py™, py'™) of the sequentialized
Hotelling competition under uncertain marginal cost (Example 5) yields:

(i) The PBE prices py™ and py'™ are realized if the observed private signals x, and -
are sufficiently large, in particular if they are positive, i.e.,

pr’un = H(z;) >0 and pg’un = G(:Eg,pr’un) > 0,

AO BO
Ve, > _ 0 B 3.60)
xr1 > Al, T > Bl
S~~~ ~—~
<0 <0

(ii) The reaction function G(xs, p%’un) of the second-mover is upward sloping with

respect to the price of the first-mover, i.e.,

3y, G2, py™) = By > 0. (3.61)

(iii) There is an expected second-mover advantage induced by a lower expected PBE
price of the second-mover, i.e.,

0<Epp"| <E[p™].
L F L L F (3.62)
B [mah™ o5 ™ 0ot ] > E [m (™, o™ w)laa] > 0.

Proof. Since 0 < h < o, the coefficients Ay, Ay, By, By and B, are positive. Hence, (i)
and (ii) follow from Equations (3.54) and (3.56) similar to the proof of Proposition 3.4 (i)
and (i), respectively.

The prove of (iii) results from Equations (3.58) and (3.59) by noting that

1 (o+h)2(oc+m1—h)? . _ (o+m1)(c+ma—h)
e (a+ml)((a+m1)(;+m2)_h2) > ( and given that 0 < y = h(0+m1—h)+1(g+m1)2(0—+m2)—h2 < 1.

The positivity of x follows from 0 < A < ¢ and also does its boundedness by 1 which is
equivalent to:

(0 +my)(o +mg—h) < h(oc+my —h)+ (o0 +my)(o+my) — h?

&  —ho — hmy < ho + hmy — 2h* (3.63)
& 0<2h(c+my—nh).
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Proposition 3.6 shows that the second-mover retains his second-mover advantage indepen-
dent of the properties of the random variable u. Given that the observed private signals x;
and x5 (that estimate the stochastic contributions of the firms’ marginal costs) are positive,
e.g., if their prior-posterior probability distributions are Gamma-Poisson or Beta-Binomial
distributed, both firms realize their PBE prices. As in Examples 3 and 4, the informative
value for the second-mover gained by the inference of the first-mover’s private signal z;
from the first-mover’s PBE price p;""" by z; = H ' (py"™) is significant. This information
advantage allows the second-mover to further increase his expects profit (by a factor of
g X + % x?) and decrease the first-mover’s expected profits (by a factor of —x?) compared
to environments of complete information, cf. Equations (2.38) and (3.59).

The enlarged second-mover advantage by the better information effect is again supported

by the conjectural variation effect captured by By — % = ”+2m1 @ +m"1)+(7:i:n}; S The

conjectural variation effect measures the amount by which the slope of the reaction
function 0,, Gz, p%"m) of the second-mover in the sequentialized Hotelling competition
under uncertain marginal cost exceeds the slope 9,, g(p}) of the respective competition
under complete information. In the previous Examples 3 and 4 the conjectural effect could
alter the sign of the slope of the reaction function of firm II from negative to positive. In the
present Example 5, it further increases the slope of the reaction function in which explains

the enlarged payoff advantage of the second-mover.

It is important to note that the statement of the Theorem of Gal-Or (Theorem 2.7) remains
valid also in the present example under uncertainty, i.e., the prices of both firms are strategic
complements and there is an expected second-mover advantage.
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The previous Chapters 2 and 3 reviewed two major contributions by Gal-Or addressing
the question of first- and second-mover advantages. The developed theoretical concepts
and results were applied to various forms of Stackelberg and sequentialized Hotelling
competition. Since the later publication by Gal-Or in 1987 [20] further work related to
first- and second-mover advantages has been published which is briefly summarized and
discussed in this chapter.

4.1 Tripoly and Oligopoly Competition

A conceptual simple extension of work by Gal-Or presented in this thesis [20] (cf. Exam-
ple 3) was performed by Shinkai [40] who considered a three-firm Stackelberg competition
under uncertainty. Shinkai used a very similar stochastic framework as introduced by
Gal-Or (but without market segmentation) to investigate a sequential-move tripoly quantity
competition under uncertain market demand. Nevertheless, his results are surprising. The
results show that the conjecture that the second-mover can generally expect higher profits
compared to the first-mover due to his information advantage is no longer valid a the
three-firm scenario. In contrast, the second-mover earns the lowest expected profits while
the third-mover earns the highest. Shinkai explains this surprising non-monotone expected
payoff pattern “by the fact that the first-mover and the third-mover are strategic substitutes
at the equilibrium in our three player Stackelberg game under incomplete information,
although the first- and the second-movers or the second- and the third-movers are strategic
complements, respectively” [40]'5.

The study of sequential-move n-player Stackelberg oligopoly competition under complete
information (generalization of Example 1) by Boyer and Moreaux [9], and Anderson and
Engers [5] yield that the strategies of all n firms are substitutes with respect to the prior

Following the working paper by Cumbul [11], the latter observation by Shinkai remains valid also in
the sequential-move n-firm generalization. While the strategies of succeeding firms are complements,
the strategies with respect to the remaining prior firms are substitutes. Cumbul, however, claims that the
expected last-mover advantage found by Gal-Or and Shinkai breaks down and alters into an expected
first-mover advantage if the number of sequential-move firms n is bigger or equal to five.
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firms. In analogy to the Theorem of Gal-Or (cf. Theorem 2.7) it is thus not surprising (but
is yet not proven under general preconditions on the payoff functions of the n-players)
that there is a strictly monotonically decreasing payoff pattern with respect to the ranking
of the firms, which leaves the first-mover with the highest and the last-mover the least
profits. In comparison with the three-firm competition under uncertain market demand by
Shinkai [40] it is evident that the information advantage of the non-first-movers remains
even if more than two firms participate in Stackelberg competition under uncertainty. This
advantage, however, is only predominant for the last-mover and the intermediate firms
suffer from the strategic dominance of prior firms!®.

Another important extension of work by Gal-Or was performed by Nakamura [35], where
a sequential-move quantity competition of a single first-mover and n simultaneous-moving
second-movers was studies. All firms act under an uncertain market demand which is
represented by a very similar stochastic framework as developed by Gal-Or (but without
market segmentation). In contrast to the results by Gal-Or, the first-mover’s and second-
movers’ estimates for the spread of the market demand from their private signals (in this
thesis denoted by m, and ms) can yield a non-positive payoff for the first-mover. Thus, the
single first-mover may not participate in the sequential-move competition if the number of
second-movers is too large. Moreover, the spread of the private signals determines if the
strategies of the first-mover and the second-movers are strategic substitutes or complements,
and if there is a resulting first- or second-mover advantage, respectively. The findings
by Nakamura agree with conclusions from Gal-Or [20] that a second-mover benefits
in a sequential-move competition from the better information effect and the conjectural
variation effect (cf. Examples 3 and 4). Thus, the accumulated information advantage
of the second-movers is strong and enables them to enforce a non-participation of the
first-mover in the sequential-move competition.

The discussed Stackelberg-type forms of competition with an uncertain market demand
by Cumbul [11], Gal-Or [20], Nakamura [35] and Shinkai [40] have in common that the
concept of strategic substitutes and complements remains key to rate the expected payofts
of the firms and thus to address the question of first-, second- and last-mover advantages. As
shown by Shinkai [40], however, uncertainties can lead to complex reaction functions where
the strategy of a firm can be a strategic substitute with respect to the strategies of some
firms and a strategic complement with respect to others. Yet, a characterization of strategic
substitutes and complements for general non-deterministic payoff functions (comparable
to Proposition 2.6 for deterministic payoff functions) is not achieved. Furthermore, a rating
of first-, second- and last-mover advantages under the premise of uncertainties comparable
to the Theorem of Gal-Or (cf. Theorem 2.7) remains to be shown.

16 According to the working paper by Cumbul [11], the expected profits of firms are strictly decreasing

with respect to their ranking until the second last-mover which thus always earns the least. Depending
on the number of participating firms n, the expected profit of the last-mover can can range from the
most (if n < 4) down to the second least (if n is large).
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4.2 Revelation of Uncertainty by First-Mover’s
Action

The stochastic framework developed by Gal-Or assumes that the two firms individually
observe private signals as estimates for the uncertain parameter. The realized value of the
distributed parameter, however, is unknown to both firms. It is drawn from the probability
distribution a posteriori to the players’ strategic decisions. In the context of industrial
organization, this assumption is reasonable for the first-mover which has to explore the new
market. The entry and exploration of the first-mover, however, might lead to a revelation
of the market’s uncertainties such that the second-mover might act under the premise of
complete information.

Liu [31] and Ferreira et al. [16] investigated such a revealing Stackelberg competition
under the assumption of an uniformly distributed uncertain market demand. Their works
show that the complete revelation of the uncertainty by the first-mover’s action generally
still favors the first-mover (as does the case of complete information). There only is an
expected second-mover advantage iff the market demand is sufficiently spread and the
revealed demand (after the first-mover’s action) is far from its expected value. On the first
glance, this results seems surprising since having complete information represents an even
stronger information advantage for the second-mover compared to “just” being able to
infer the private signal of the first-mover from its output quantity decision. Still, this lies in
line with the observation by Gal-Or [20] that the first-mover can higher his and reduce the
second-mover’s expected payoff by directly revealing his private instead of letting it be
inferred by the second-mover. Following Gal-Or, the incentive of the first-mover to directly
reveal his private information to the follower is explained by the fact that “the follower
1s as well informed as he would have been with direct revelation, but the leader loses
his preemptive capability when indirect inferences arise” [20]. Analog, the preemptive
capability of the first-mover is preserved when the second-mover is provided directly with
complete information about the market demand.

4.3 Natural Stackelberg Situation

Following Shinkai [40], Stackelberg competition is appropriate to describe situations with
irreversible action or irreversible commitment. They can, however, also occur when they
are beneficial for both firms and if they can agree on a mutually advantageous distribution
of roles, called a Natural Stackelberg Situation (NSS) [1]. In the literature, the existence of
NSSs are commonly studied by following the approaches of Dowrick [13] or Hamilton and
Slutsky [23], where games with a structure as shown in Figure 4.1 were considered. At first,
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Player 11
Player I Move first (F) Move second(S)

Cournot competition
Move first (F) or Stackelberg competition
Stackelberg warfare

Delayed competition
Move second (S) Stackelberg competition or
Cournot competition

Figure 4.1 Structures of games of leadership commonly found in the literature: At first,
both firms simultaneously choose between moving first (F) or moving second (S). Subse-
quently, the strategy pairs (F,S) or (S,F) result in sequential-move Stackelberg competition
subgames. The choices (F,F) or (S,S) either lead to a simultaneous-move Cournot com-
petition, Stackelberg warfare or delayed competition as subgames, respectively. If (F,S)
or (S,F) is the only Subgame Perfect (Bayesian) Equilibrium of the game, it is called a
Natural Stackelberg Situation.

both firms simultaneously choose between the strategies of moving first (F) or moving
second (S). If the firms mutually agree on a distribution of their roles, i.e., if they either
choose the strategy pair (E,S) or (S,F), the firms subsequently participate in a sequential-
move Stackelberg competition subgame where the strategies are actually implemented.
If the firms do not mutually agree on their roles and if there is an observable delay [23]
between the choosing of roles and the subsequent subgame, both firms either enter a
simultaneous-move Cournot competition (strategy pair (FF)) or delay their competition
(strategy pair (S,S)). If the choosing of roles already induces an action commitment, i.e., if
the firms’ strategy implementations are done simultaneous to their choosing of roles, both
firms either enter a Stackelberg warfare [13] (strategy pair (F,F)) or a Cournot competition
(strategy pair (S,S)). Modelling the entry timing of two firms by such games of leadership,
a mutually beneficial NSS corresponds to a situation where the strategy pair (F,S) or (S,F)
is the only Subgame Perfect (Bayesian) Equilibrium.

The existence of a NSSs strongly depends on the specific expected payoffs of the respective
subgames. If the two firms I and II are identical the payoff structure of the game of
leadership is symmetric, i.e., 71 (u, v) = mo(v, u) Yu,v = F, S. Thus, both firms will come
to the same conclusion that being the first- or second-mover is beneficial. Hence, absolutely
equal firms will naturally not agree on a sequential-move competition unless they are
exogenously forced into it [13]. A minimum differentiation between the two firms must
thus exist to yield a NSS.
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As one of the first analyzing NSSs, Boyer and Moreaux [10] considered a game of leader-
ship where the subgames were price competition under complete information with varying
marginal costs (in this thesis denoted by c) of the two firms. In their work they “show that
if costs are identical or similar, then both firms will prefer the role of follower; if there is a
significant cost differential between the firms, then the non-cooperative equilibrium can
only be of two types: either the less efficient firm will act as the leader, selling a limited
quantity at a low price, and the more efficient firm as the follower, selling to the residual
demand at a higher price, or the more efficient firm acting as leader will drive the less
efficient firm out of the market by adopting a limit pricing strategy, but in so doing that
firm makes less profits than if it acts as follower” [10]. An extension of the work by Boyer
and Moreaux to more general inverse market demand and production cost functions was
done by Amir and Grillo [3] showing that the beforehand conclusion can remain valid
also under the presumption of more complex market models fulfilling log-concavity and
log-convexity conditions.

Similar results were found by Albek [1, 2] when he investigated quantity and price
competition subgames with differentiable goods produced under uncertainty in their
marginal costs. The assumed difference in the costs, however, is not on its expected
value but only on the spread of its uncertainty, i.e., the variance of the random variable.
The firms are thus identical when removing the assumption of incomplete information and
replacing it by their completely informed antagonists. Still, this small distinction of the
two firms can be sufficient to yield a NSS in quantity competition (but not price), where
the firm with the greater cost variance is the first-mover [1]. It is important to note that
the expected profits of both firms resulting from sequential-move Stackelberg competition
under uncertainty are greater than the expected profits in the simultaneous-move Cournot
competition under uncertainty.

Appelbaum and Weber studied the existence of NSSs in quantity competition in which
there is an uncertainty in the inverse market demand function [6]. The employed market
model is a generalization of Example 3. They assumed a linear cost structure and an
abstract inverse market demand with a positive slope with respect to the random variable.
In contrast to the previous works under uncertainties in the marginal cost, the analysis
of their game of leadership shows that uncertainties in the market demand generally do
not result in NSSs but only the simultaneous-move subgames are subgame PBEs. More
precisely, Appelbaum and Weber showed that the strategy-pair (L,L) always is a subgame
PBE, whereas (E,E) requires a small marginal costs to be another equilibrium strategy-pair.
This result is in line with the finding by Gal-Or [20] (cf. Example 3) that the expected
second-mover advantage in Stackelberg competition under uncertain demand is induced by
the information advantage of the second-mover. Thus, this naturally leads to the waiting
strategy (L) for both firms to avoid a sequential-move competition in which he expects to
earns less than the second-mover.
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NSSs arising from an uncertain market demand were also investigated by Hirokawa and
Sasaki [25] under the assumption that the market demand is completely revealed after the
first-mover (cf. Section 4.2). In addition, the subgame determined by the choices of both
firms is a multiperiod competition which is repeated infinitely (with a discount on future
payoffs). Under these assumptions Hirokawa and Sasaki showed that — in contrast to the
results by Appelbaum and Weber [6] — NSSs can also arise in the case of an uncertain
market demand.

The results concerned the existence of NSSs rely on the specific choices of the market model
and the stochastic framework in a complex manner. Nevertheless, the works by the various
authors show that “it is not unreasonable to expect that firms in a duopoly framework will
tend to coordinate on their mutually advantageous role distribution even if they compete in
a non-cooperative strategic way in terms of both prices and quantities” [10].
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In this thesis, various forms of sequential-move competition were analyzed with respect to
first- and second-mover advantages in the context of industrial organization.

As a first step, symmetric extensive two-player games with only two strategic options
were investigated showing that they generally favor the first-mover independent of the
players’ payoff functions. This observation, however, is no longer valid in the case of
larger discrete or continuous strategic spaces. Subsequently, the Theorem of Gal-Or [17]
(cf. Theorem 2.7) characterizing first- and second-mover advantages under the premise
of complete information by the slope of the reaction function of the second-mover was
reviewed in detail. As a consequence of the theorem it is evident that under the assumption
of complete information only the specific form of the firms’ payoff functions determines
the favorable market entry timing. Hence, in environments of complete information no
payoff asymmetry due to firms’ sequential movement is introduced. The analysis of the
classic Stackelberg competition (cf. Example 1) and a sequentialized Hotelling competition
(cf. Example 2) indicates that duopoly quantity competition generally favor the first-mover,
while duopoly price competition yield a benefit for the second-mover.

In industrial organizations, however, complete information is barely available and managers
usually have to act in environments of uncertainty. To respect this lack of complete
information, it is much more reasonable to assume that model parameters are stochastically
distributed, rather than being fixed-valued. Thus, as a second step, the stochastic framework
developed by Gal-Or [20] was introduced and applied to Stackelberg competition under
uncertain marked demand (cf. Example 3), Stackelberg competition uncertain marginal
cost (cf. Example 4) and sequentialized Hotelling competition under uncertain marginal
cost (cf. Example 5). In contrast to complete information, the study of different forms of
competition under uncertainty indicates that the asymmetry due to the firms’ sequential
movement generally favors the second-mover independent the specific market structure
(Stackelberg or Hotelling), the strategic variable (quantity or price) or the parameter which
is uncertain (market demand or marginal cost).

The comparison of various forms of Stackelberg competition (Examples 1, 3 and 4) shows
that incomplete information may enable the second-mover to earn higher expected profits
compared to the first-mover (if the market segments are sufficiently uncorrelated) as
opposed to the case of complete information. Similar, the investigation of sequentialized
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Hotelling competition under complete information and uncertainty (Examples 2 and 5)
shows that the second-mover can further increase his payoff advantage under incomplete
information. In all shown examples under uncertainty, the second-mover benefits from the
firms’ asymmetric movement by the better information effect [20] which he gains from
the inference of the first-mover’s private signal from the first-mover’s profit-maximizing
strategic decision.

Accompanied by the information advantage of the second-mover comes the conjectural
variation effect [20], which measures the increase of the slope of the reaction function
of the second-mover under uncertainty compared to the competition under complete
information. More precisely, the study of Examples 3 — 5 shows that the slope of the
reaction functions of the second-mover under uncertainty s, G(x2, 3%’““) differs to the
slope of the respective reaction functions under complete information d,, g(s%) only by
some positive, fixed-valued constant K (u) which only depends on properties of the random
variable u, 1.e.,

05, G (4, s%’un) = 8319(3%) + K(u). (5.1)

Together, the better information effect and the conjectural variation effect lead to the con-
clusion that the statement of the Theorem of Gal-Or remains valid in all of the presented
examples under uncertainty. Thus, in all examples, strategic substitutes imply a first-mover
advantage, whereas strategic complements induce a second-mover advantage. This is
not straight-forward to see from the Theorem of Gal-Or since one of its major require-
ments is violated by the non-parity of the de facto payoff functions E [m(s1, s2, u)|z]
and E [ma(s1, $2, u)|s1, 22| of the firms. If the Theorem of Gal-Or remains valid also for
more general non-deterministic payoff functions or if the observation only is a consequence
of the simple payoff functions that were considered in the examples cannot be answered
within the scope of this thesis. It seems reasonable, however, that the concept of strategic
substitutes and complements remains key to address the question of first- and second-mover
advantages also under the precondition of incomplete information.

As final step, important further literature addressing the question of first- and second-
mover advantages was reviewed. It is remarkable that in the literature many results on first-
and second-mover advantages under uncertainty are based on the study of Stackelberg
competition under uncertain market demand [6, 11, 15, 16, 18, 20, 22, 24-26, 31, 33, 34,
37, 40, 45]. Only few publications consider an uncertain marginal cost [1, 2, 7, 19, 21, 32].
Even less studied are sequential-move forms of price competition under uncertainty [1, 2],
such as the developed sequentialized Hotelling competition (cf. Example 5). Moreover,
no appropriate and applicable theoretical foundation yet exists for competitions under
incomplete information, which is even close to the relevance of the Theorem of Gal-Or for
environments of complete information.
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Important extensions of work by Gal-Or are by Shinkai [40] and Cumbul [11] who
studied tripoly and oligopoly Stackelberg competition under uncertain market demand.
Their work shows that if the information advantage exceeds the strategic advantage of
the first-mover (such as in Stackelberg competition with sufficiently uncorrelated market
segments or sequentialized Hotelling competition), then it is beneficial to a firm that
all information is revealed to it. This observation thus generally results in a last-mover
advantage. Furthermore it follows that if a firm is not able to be the very last-mover, e.g. if
new firms always enter the market, then it is economically favorable for the firm to be the
first- or early-mover instead of being an intermediate- or late-mover. Similar, the works
by Liu [31] and Ferreira et al. [16] show that it is generally more beneficial for a firm to
be the first-mover if the uncertainty is completely revealed by its action. As in the case of
complete information, the first-mover’s preemptive capability is preserved in a revealing
competiton such that his strategic advantage usually prevails the information advantage of
the second-mover.

Much of the related literature and the examples that were studied in this thesis assumed a
sequential-move structure of the competition that was exogenously given. As investigated
by many authors [1-3, 6, 10, 13, 23, 25, 40], however, this exogenously given structure
does not have to represent a restriction to the applicability of the results. Sequential-move
forms of competition can occur not only due to differences in the implementation speeds
of firms’ market entry, but they can also be a natural consequence of the (not perfectly
identical) firms’ strive for maximizing their individual profits.

The initial question of whether it is economically advisable to be the first- or second-
moving firm in a new market is often intuitively answered by the “long-standing hypothesis
that firms that enter a market early tend to have higher performance than their follow-
ers” [42]. Many findings of this thesis, however, support the view by Kerin et al. that
“the belief that entry order automatically endows first movers with immutable competi-
tive advantages and later entrants with overwhelming disadvantages is naive in light of
conceptual and empirical evidence” [28]. “Thus, pioneering may prove advantageous to
some firms in some circumstances, but it is not necessarily a superior strategy for all
entrants” [30]. Summarized, the answer to this question strongly depends on the specific
market conditions.
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