@ Fakultat fir Informatik
Technische Universitat Minchen

Technische Universitat Miinchen
Fakultat fur Informatik

Lehrstuhl fiir Informatik mit Schwerpunkt
Wissenschaftliches Rechnen

Resource-Aware and Elastic Parallel Software Development
for Distributed-Memory HPC Systems

Ao Mo-Hellenbrand

Vollstandiger Abdruck der von der Fakultét fiir Informatik der Technische Universitét
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Bernd Briigge, Ph.D.

Priifende der Dissertation:
1. Prof. Dr. Hans-Joachim Bungartz
2. Prof. Dr. Martin Schulz

Die Dissertation wurde am 15.01.2019 bei der Technischen Universitat Miinchen
eingereicht und durch die Fakultét fir Informatik am 26.03.2019 angenommen.

@ Fakultat fir Informatik
Technische Universitat Minchen

Technical University of Munich

Department of Computer Science

Chair of Scientific Computing in Computer Science

Resource-Aware and Elastic Parallel Software Development
for Distributed-Memory HPC Systems

Ao Mo-Hellenbrand

Full imprint of the dissertation approved by the Department of Computer Science of
Technical University of Munich to obtain the academic degree of

Doctor of Natural Sciences (Dr. rer. nat.).

Chairman:
Prof. Dr. Bernd Briigge

Examiners of the dissertation:
1. Prof. Dr. Hans-Joachim Bungartz
2. Prof. Dr. Martin Schulz

The dissertation was submitted to the Technical University of Munich on 15.01.2019 and
was accepted by the Department of Computer Science on 26.03.2019.

Abstract

As the exascale computing era is soon be to expected, computational resource and energy
efficiency have become an important theme in HPC research. Indeed, most of the current
HPC challenges such as resource/energy inefficiency are rooted from the incompatibility
of the traditional static resource management and programming model with the dynamic
behavior of modern HPC applications as well as the increasing computing power and com-
plexity in HPC systems. Motivated to overcome such challenges, we propose a solution
that aims to achieve optimal system throughput or resource/energy efficiency via a flexi-
ble resource management infrastructure and a resource-elastic programming framework —
Elastic MPI. This project is part of the Transregional Collaborative Research Center 89:
Invasive Computing research effort.

Realizing resource awareness and elasticity in HPC requires support from both sys-
tems and applications, i.e., HPC systems should support dynamic resource allocation and
resource-elastic execution, and parallel applications should have the ability to adapt their
execution at runtime to fit different amounts of resources. Efficient malleable applications
that can quickly adapt to resource changes are the keys to eliminating idling and inef-
ficiently utilized resources in the system. The major challenges of introducing resource
adaptivity to HPC applications are that it requires flexible data decomposition and load
balancing schemes, and that it might introduce significant overhead due to frequent data
redistribution and migration.

This work presents our pilot study in malleable parallel software development for dis-
tributed-memory HPC systems using the Elastic MPI programming framework. We dis-
cuss elastic programming models for different application types, including those based on
the SPMD or the master-worker execution model as well as those with single or multiple
resource-elastic computational phases. We implemented three malleable applications rang-
ing from the classical grid-based simulations to the embarrassingly parallel problems. To
assess the impacts of runtime resource adaptivity, we conduct performance analysis on each
application individually to measure the resource adaptation overhead as well as comparing
their runtime and resource efficiency with those of their static MPI counterparts.

Contents

Abstract v
Contents vii
List of Algorithms ix
List of Figures xi
List of Tables xiii
Glossary XV
I Introduction 1

1 Introduction 3
1.1 Current Challenges in HPC 3
1.2 Resource Awareness and Elasticity as a Solution 5
1.3 Invasive Computing 5
1.4 Elastic MPI 0 e 7
1.5 Contribution of the Current Work 8
1.6 Outline e 8

2 Related Work 11
2.1 Dynamic Processes Support by the MPI Standard 11
2.2 MPI Sessions 13
2.3 User-level Fault Tolerance in MPT 13
2.4 Charm+-+ and Adaptive MPI 14
2.5 High Performance ParallelX (HPX) 15
2.6 Invasive X10 (¢X10) oL 16
2.7 SALSA and PCM Extensions with IOS. 17
2.8 Parallel Virtual Machine (PVM) 17
2.9 Cloud Computing e 18
2.10 Summary .. o. oL 19

Il Elastic MPI Framework 21

3 Elastic MPI Infrastructure 23
3.1 Overview 23

vii

CONTENTS

3.2 Elastic MPI Library 25
3.3 Elastic Resource Manager 29
3.4 Limitations and Known Issues 36
3.5 Summary ... 38
4 Parallel Programming with Elastic MPI 39
4.1 Classification of HPC Applications 39
4.2 SPMD with Single Computation Phase 40
4.3 SPMD with Multiple Computation Phases 44
4.4 Master-Worker with Single Computation Phase 44
4.5 Master-Worker with Multiple Computation Phases 49
4.6 SUMMATYo e e 51
IIl Resource-Aware and Elastic Parallel Software Development 53
5 Elastic Parallel Tsunami Simulation with Adaptive Mesh Refinement 55
5.1 Sierpinski Space-filling Curves oL 56
5.2 Tsunami Simulation in sam(oa)? 58
5.3 Resource-elastic Transformation 64
5.4 Performance Evaluation 0L 66
5.5 Summary ... Lo 72
6 Elastic Parallel Oil Reservoir Simulation with Adaptive Mesh Refinement 75
6.1 The SPE10 Benchmark Simulation Scenario 76
6.2 Porous Media Flow Simulation in sam(oa)? 78
6.3 Resource-elastic Transformation 85
6.4 Performance Evaluation 0000 89
6.5 SUmMmAary 96
7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction 99
7.1 Statistical Inverse Problems oL 99
7.2 Surrogate Model Construction with Sparse Grids 106
7.3 Case Study: Inference of Obstacle Locations in Laminar Flow 111
7.4 Performance Evaluation 118
75 Summary e e 124
IV Conclusion 127
8 Conclusion and Outlook 129
8.1 Conclusion e 129
8.2 Outlook e e 131
Bibliography 133

viii

List of Algorithms

4.1
4.2
4.3
4.4
4.5
4.6
4.7
5.1
5.2
5.3
6.1
6.2
6.3
7.1
7.2
7.3
7.4

MPI program: SPMD Single Phase
Elastic MPI program: SPMD Single Phase
Elastic MPI program: SPMD Multiple Phases
MPI program: M-W Single Phase
Elastic MPI program: M-W Single Phase (Main function)
Elastic MPI program: M-W Single Phase (Master & Worker functions) . . .
Elastic MPI program: M-W Multiple Phases (Main function)
Main algorithm of the parallel tsunami simulation from sam(oa)?
Main algorithm of the Elastic MPI tsunami simulation
Resource adaptation function of the Elastic MPI tsunami simulation
Main algorithm of the oil reservoir simulation from sam(oa)?
Main algorithm of the Elastic MPI oil reservoir simulation
Resource adaptation of the Elastic MPI oil reservoir simulation
Metropolis-Hastings Algorithm
Parallel Tempering Algorithm
Main algorithm for locating obstacles in a fluid channel
Master and Worker functions for surrogate construction

ix

List of Figures

1.1 Abstract overview of subprojects in Invasive Computing 6
3.1 Overview of the Elastic MPI System 24
3.3 SLURM overview v it it e e e 32
3.4 SLURM-based Elastic MPI infrastructure overview 33
5.1 Creation of adaptive mesh with Sierpinski curve. 57
5.2 Demonstration of streams- and stacks-based data access scheme 58
5.3 Demonstration of parallelization and load balancing 61
5.4 Benchmark simulation of the Tohoku tsunami 69
5.5 Resource change profile during a test run 70
5.6 Tsunami simulation performance analysis 71
6.1 Permeability field of the simulation domain 76
6.2 Full-sized SPE10 simulation with 85 layers 7
6.3 2.5-D adaptive prismatic grid in sam(oa)? 7
6.4 Reduced SPE10 simulation with 16 layers 91
6.5 Resource and workload profile of Elastic MPI test with random scheduler . 92
6.6 Average execution time of one step vs. number of processes 94
6.7 Resource and workload profile of Elastic MPI test with stepping scheduler . 95
6.8 Resource profile vs. execution time and CPU hours of three test runs. . . . 95
7.1 1-D function interpolation on unit interval 107
7.2 A 2-D full grid, hierarchical decomposition and sparse grid 108
7.3 2-D adaptive sparse grid o 110
7.4 A 2-D fluid channel with four obstacles at unknown locations 112
7.5 Staggered grid 113
7.6 A forward simulation of 2-D fluid channel with four obstacles 119
7.7 Resource profile of one test run of the obstacle location inverse problem . . 120
7.8 Most probable obstacle locations 123
7.9 Histogram of the MCMC output samples per dimension 123
7.10 Resource profile vs. execution time and CPU hours of two test runs 124

xi

List of Tables

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
74
7.5

8.1

The SuperMUC CPU cluster specifications 67
Average execution time of elastic MPI functions 70
Average exec. time percentage of computational tasks 70
Comparison of execution time and CPU hours. 70
Specifications of the VM cluster and its host machine 89
Execution time of Elastic MPI functions 93
Execution time of computational tasks 93
Execution time and CPU hours of three test runs 96
Execution time distribution of three test runs 96
Comparison of number of grid points of [= 5 full grids and sparse grids . . 109
Execution time of each phase, 121
Execution time of Elastic MPI functions 121
Computational efforts comparison 121
Execution time and CPU hours of two testruns 124
Characteristics summary of Elastic MPI applications 129

xiii

Glossary

Definition and explanation of important terms used in this thesis are listed below.

Glossary

communication-intensive
A parallel application is said to be communication-intensive if there are non-trivial
data dependency and requirements for communication and synchronization among
its subtasks.

compute-bound / CPU-bound
An application is compute-bound or CPU-bound when its progress is limited by the
processor speed.

Elastic MPI
An infrastructure and programming framework providing resource awareness and
elasticity for distributed-memory HPC systems.

embarrassingly parallel
A parallel application is considered embarrassingly parallel if there is little to none
data dependency or requirement for communication among its subtasks.

Invasive Computing
A DFG funded research project focuses on the development of resource-aware pro-
gramming for future parallel computing systems.

invasive
Being resource-aware and elastic.

communication-bound / bandwidth-bound
An application is communication-bound or bandwidth-bound when its progress is
limited by the networking due to intensive communication among the executing pro-
cesses.

malleable
Able to adapt the execution to fit different amount of resources.
This term is interchangeable with resource-elastic for applications.

process
An executing instance of a computer program with a private memory space. It
is unaware of information located outside of its own memory and requires explicit
communication in order to obtain such information.

XV

LIST OF TABLES

resource adaptation window
The period between the MPI_Comm_adapt_begin and MPI_Comm_adapt_commit func-
tions. It is a time window in which all resource adaptation-related operations should
be performed.

resource-aware
Knowing the amount and types of resources that can be utilized and be sensible to
their real-time changes.

resource-elastic
For systems, it means having support for dynamic resource allocation and resource-
elastic execution. For applications, it means able to adapt the execution to fit differ-
ent amount of resources. This term is interchangeable with malleable for applications.

resource-static
Having no change in regards of resources.

SuperMUC
The supercomputer of the Leibniz Supercomputing Centre (Leibniz-Rechenzentrum,
LRZ) in Munich, Germany.

thread
An executing instance of a computer program with a shared memory space. Its
information is shared with other threads that have access to the same shared memory
space, therefore, explicit communication between threads is not required for exchange
of information.

Acronyms

ALU Arithmetic Logic Unit

AMR Adaptive Mesh Refinement

APl Application Programming Interface

CPU Central Processing Unit

DFG German Research Foundation (Deutsche Forschungsgemeinschaft)
flops Floating Point Operations Per Second

FPGA Field Programmable Gate Array

GPGPU General Purpose GPU

GPU Graphics Processing Unit

HPC High Performance Computing

LRZ Leibniz Supercomputing Centre (Leibniz-Rechenzentrum)

MPI Message Passing Interface

xvi

LIST OF TABLES

NUMA Non-Uniform Memory Access

PDE Partial Differential Equation

PGAS Partitioned Global Address Space

PMI Process Management Interface

SFC Space-filling Curve

SLURM Simple Linux Utility for Resource Management
SPMD Single Program Multiple Data

SWE Shallow Water Equations

TCPA Tightly-Coupled Processor Array

xvii

PART I

INTRODUCTION

Introduction

High Performance Computing (HPC) refers to the practice of aggregating computing power
to solve complex problems efficiently. For more than three decades, HPC systems have been
prevailing platforms in the fields of science and engineering. They are tailored for large
applications that are data-intensive and require a lot of computational power and resources.
In recent years, however, technological advancements in both computer hardware and
software development have posed several challenges in HPC. Research has been carried
out in search of remedies for these challenges. Many approaches have been attempted. In
this work, we attempt to find a solution that can resolve some urgent HPC problems with
canonical tools and a novel programming paradigm.

1.1 Current Challenges in HPC

The current trend in computer hardware development tends towards increasing the amount
of computational resources and the degree of heterogeneity. It is likely that thousands of
processing units will be integrated on a single chip device in the imminent future [1]. With
the performance of current supercomputers measured in petaflops (10'% Floating Point
Operations Per Second), we are expected to soon enter the exascale (exaflops, or 108
flops) era. In addition to the growth in size, modern HPC systems also grow in complexity
as they include a wider variety of architectures, such as many-core CPUs, GPUs, GPGPUs,
FPGAs! and other special purpose accelerators. The number of processing units and the
heterogeneity make it hard to achieve optimal resource usage with traditional programming
models, as they are not designed to handle such complexity.

Challenges also arise from HPC software development. Many modern parallel applica-
tions are dynamic, i.e., their computational workload depends on the input and runtime.
An example would be a simulation with adaptive mesh refinement (AMR), whose workload
constantly changes due to its underlying grid being refined at runtime, which in turn de-
pends on intermediate simulation outputs. For such dynamic applications, static resource
allocation causes suboptimal resource utilization due to load imbalances and frequently
changing resource requirements. With static resource allocation, applications with multi-
ple phases that have different scalability, as well as applications with limited information
on its parallel performance can also suffer from resource inefficiency.

! For unexplained abbreviations refer to the Glossary list.

1 Introduction

The predominant programming model for distributed-memory system is Message Pass-
ing. Message Passing Interface (MPI) [2, 3, 4], a standardized programming interface for
Message Passing, was first released in 1994 and has since played an important role in HPC.
The programming model behind MPI is mostly based on the configuration that resources
do not change during program execution, which is in accordance with the static resource
management scheme implemented on most HPC systems. Present-day HPC systems typi-
cally operate in space sharing mode [5] in combination with static resource management,
which gives parallel tasks exclusive, constant access to the requested resources for their
entire execution period. Based on these premises, MPI applications are normally designed
and optimized for a fixed set of resources.

While this resource-static management and programming approach provides a very sta-
ble and predictable execution environment, it has several shortcomings such as

e resource utilization inefficiency,

e no support for fault tolerance,

e increased difficulties and complexity in code development,
e low compatibility and portability across systems,

and more. These deficiencies have become more prominent with recent development in
HPC hardware and software.

Problems of Resource-Static Models for Applications

In the batch environment of an HPC system, task execution is only possible after resource
allocation. The turnaround time of a task refers to the period from the task being submitted
to it being completed, which includes the wait time for obtaining the requested resources
and the actual execution time, i.e.,

ﬂurnaround = TWalt + TBXGC'

Twait is dependent on the availability of resources, which is in turn affected by several
factors such as job priority, current workload on the system, and most importantly, the
amount of resources requested by the task. The smaller the request, the quicker it can be
fulfilled such that task execution can be started. With the resource-static model, applica-
tions are designed and optimized for a fixed resource amount, which means the amount of
requested resources cannot be manipulated arbitrarily to reduce Tyajt-

Users of HPC systems usually have a limited computational budget that is in general
measured in resource usage, e.g., CPU-hours. Resource-static models cause suboptimal
resource utilization for dynamic applications, applications with multiple phases that have
different scalability, and applications with limited information on its parallel performance.
Resource utilization inefficiency leads to higher computational costs (CPU hours) for run-
ning the application and longer Tixec-

Problems of Resource-Static Models for HPC Systems

With the resource-static model, idling resources can be created during resource accumula-
tion for a task, i.e., some resources that are available cannot be utilized until an adequate
amount is accumulated to fulfill a task’s resource request. Idling resources can also be

1.2 Resource Awareness and Elasticity as a Solution

generated during task execution due to load imbalances and changes of resource require-
ments. Since idling and inefficiently utilized sources operate on different power levels,
resource inefficiency causes power fluctuations that are inherently dangerous to the system
hardware.

Resource inefficiency is economically unfriendly. Performance of large HPC systems such
as supercomputers are currently measured in petaflops scale. Powering such a system re-
quires megawatts of electricity, which translates into an annual operating cost of millions of
US Dollars. A popular metric for measuring energy efficiency is the performance-to-power
ratio, i.e., petaflops per megawatt. Resource inefficiency degrades system performance,
which could result in energy waste worth many million dollars. Therefore, minimizing
resource inefficiency and maximizing system performance are imperative tasks in the HPC
world.

1.2 Resource Awareness and Elasticity as a Solution

Most of the current HPC problems are caused by the incompatibility of the traditional
static resource management and programming model with the dynamic behavior of modern
HPC applications as well as the increasing size and complexity of HPC systems. Resource
awareness and elasticity arise as natural solutions.

Resource awareness refers to the ability to identify the amount and types of resources
that can be utilized and being sensible to their real-time changes. Resource elasticity is
the ability to adapt the execution to fit the amount of allocated resources that may vary at
runtime. Both terms can be applied to systems and applications. For a system, resource-
elastic means it supports dynamic resource allocation and resource-elastic execution.

As a general concept, we would like systems and applications to quickly react to the
real-time changes of computational workload and resource availability. Resource aware-
ness allows them to sense changes, while resource elasticity gives them the ability to react.
Theoretically, this solution can maximize resource utilization, and thus, resolves those
problems induced by resource usage inefficiency. To a certain extent, it also provide a rem-
edy for fault tolerance, since systems and applications can sense or detect faulty hardware
and adapt accordingly.

1.3 Invasive Computing

The Transregional Collaborative Research Center 89: Invasive Computing [6, 1] is a re-
search project funded by the German Research Foundation (Deutsche Forschungsgemein-
schaft, DFG). It focuses on the investigation and development of resource-aware program-
ming for future parallel computing systems. It has a wide research scope ranging from
embedded devices to large HPC systems in terms of computer architecture. It also covers
multiple areas from hardware, system software to applications. The term invasive refers
to being resource-aware and elastic.

The Invasive Computing project first started in 2010. After the completion of two
successful funding phases of four years each, it has been extended with a third phase
until 2022. The project is a collaboration between three institutions — Friedrich-Alexander

1 Introduction

z
Project Group D : : D3
Applications : D1 :
.. A3
C3 A4
Project Group C : Cs
OS, Runtime, ’ CZI
Compiler, Security :
: C1 Al
: BS
Project Group B By B3
Hardware : :
Bl B4

ALU TCPA CPU HPC

Figure 1.1: Abstract overview of subprojects in Invasive Computing

University Erlangen-Niirnberg (FAU), Karlsruhe Institute of Technology (KIT) and the
Technical University of Munich (TUM).

Invasive Computing is organized in multiple smaller research groups called subprojects,
each of which investigates a certain functional area with the focus on a specific component.
Subprojects are clustered in five groups under the letters A, B, C, D and Z. Figure 1.1
provides an abstract overview of all the subprojects.

The horizontal axis enumerates the hardware abstractions including Arithmetic Logic
Unit (ALU), Tightly-Coupled Processor Array (TCPA), CPU and HPC, of which TCPA is
a novel invention by Invasive Computing . The vertical axis enumerates three development
abstraction layers: hardware, system software (operating system, runtime, compiler), and
applications. Subproject groups B, C and D mount to each of these layers respectively.
Subproject groups A and Z reside outside of the plane spanned by the axes, because they
do not belong to specific areas due to some overall governing or aggregation properties.
The following list provides a summary of the research contents of each subproject group?:

e Group A: Subproject Al focuses on resource-aware programming language and
framework development. A3 develops efficient scheduling and load balancing meth-
ods. And A4 investigates in application pattern characterization, which helps with
runtime scheduling decisions.

e Group B: Subprojects Bl through B5 cover the hardware level topics of invasive
microarchitectures, invasive TCPAs, invasive general-purpose cores (iCores), moni-
toring and power management, and networks on-chip.

e Group C: Subprojects C1, C2, C3 and C5 cover the invasive support for runtime
and operating systems, code compilation and generation, as well as system securities.

e Group D: Subproject D1 develops robotic applications. And D3 focuses on invasive
infrastructure and software development for HPC.

e Group Z: Subprojects in the Z group cover general administrative tasks, and coor-
dinate the aggregation and validation of research results from other subprojects.

2 Subproject numbers are not necessarily continuous due to discontinuation of certain subprojects.

1.4 FElastic MPI

The present work is part of subproject D3: Invasive Computing and HPC, which focuses
on extending and applying the Invasive computing concepts to the HPC realm. Section 1.4
elaborates on our research activities, and Section 1.5 illustrates the contributions of this
work in detail.

1.4 Elastic MPI: Realization of Resource Awareness and
Elasticity on Distributed-Memory HPC Systems

Replacing the conventional static resource management and programming model has be-
come a compelling task in HPC due to recent advancements in technology, such as increase
in the amount of computing units and heterogeneity in hardware and increasing dynamic
workload behaviors in modern software. Motivated to overcome the some of the HPC
challenges, and as part of the Invasive Computing research effort, we propose a solution
that aims to optimize system performance by realizing resource awareness and elasticity on
HPC systems. Indeed, an earlier effort targeted for shared-memory architectures has been
successful: a thread-based elastic infrastructure named {OMP [7, 8] was implemented, and
applications developed upon it have demonstrated improved performance [9, 10, 11].

To extend beyond shared-memory architectures, we have been focusing on implement-
ing resource awareness and elasticity on distributed-memory HPC systems. Our Message
Passing-based solution, named Flastic MPI, consists of two major components:

e Elastic MPI infrastructure, and

e Elastic MPI applications.

The Elastic MPI infrastructure, implemented by Comprés [12], is the first pillar of our
solution. It supports both normal (resource-static) and malleable (resource-elastic) parallel
tasks. It consists of a resource manager and a communication library. The resource
manager oversees all resources as well as waiting and running tasks. It monitors parallel
performance of the running malleable tasks and estimates their scalability. It decides
periodically how to reallocate resources for running tasks and launching new tasks, with
the goal of optimizing system throughput or energy efficiency. The communication library
allows malleable tasks to communicate with the resource manager and reacts on its resource
change decisions.

The second pillar of our solution is malleable applications implemented upon the Elastic
MPI infrastructure. Developing these applications is the major contribution of the current
work. Efficient malleable applications that can quickly adapt to resource changes is the
key to eliminating idling and inefficiently utilized resources in the system.

Elastic MPI is designed for general HPC systems. The infrastructure can be installed on
conventional Linux clusters with GNU compiler support, transforming the cluster into a
resource-elastic environment. The resource manager is an extension to SLURM [13], a pop-
ular open-source cluster management and job scheduling system that is widely used among
the TOP500 supercomputers. The communication library is an extension of MPICH [14],
a popular open-source implementation of the MPI standard. Like MPI, it provides inter-
faces for both C/C++ and Fortran languages. Normal MPI programs written in C/C++
or Fortran can be transformed into malleable applications using the Elastic MPI library.

1 Introduction

1.5 Contribution of the Current Work

This dissertation contributes to the second of the two components in the Elastic MPI so-
lution: developing and analyzing Elastic MPI applications. This is our pilot study in
malleable parallel software development for distributed-memory HPC systems.

We abstract Elastic MPI programming models for the Single Program Multiple Data
(SPMD) and master-worker execution models, which are usually implemented for commu-
nication-intensive and embarrassingly parallel applications respectively. We also discuss
how to handle applications with single or multiple resource-elastic computational phases.

With the goal of covering a variety of applications, we implement three malleable software
of different parallel characteristics.

e The first application is a tsunami simulation implemented with Adaptive Mesh Re-
finement (AMR). This is a classical grid-based HPC application implementing a
SPMD model. It is compute-bound (CPU-bound) and has a very dynamic compu-
tational workload.

e The second application is a oil reservoir simulation, which is also a classical grid-
based HPC application and has a very similar computational workflow as the tsunami
simulation. The differences are that it is communication-bound (bandwidth-bound)
and has a static workload.

e The third application is a statistical inverse problem solver with surrogate construc-
tion. This is an embarrassingly parallel application implementing a master-worker
model. It has multiple resource-elastic phases and a different workload for each phase.

For each application, we first discuss its theory and malleable implementation with Elas-
tic MPI, then we conduct a series of performance tests to analyze the impact of introducing
runtime resource adaptivity, e.g., the overhead from Elastic MPI function calls and data
migration due to resource changes, the execution time, performance, and resource uti-
lization efficiency in a static and elastic environment. With each application possessing
certain representative characteristics, we generalize conclusions for Elastic MPI software
development for specific applications types.

1.6 Outline

This dissertation is organized into four parts.

Part I provides introductory information. Chapter 2 reviews a few related research
efforts that aim to solve similar problems.

Part II builds a foundation for understanding the Elastic MPI programming frame-
work. Chapter 3 discusses the elastic MPI infrastructure including the Elastic MPI library
programming API as well as the supporting implementation of the resource manager. This
chapter provides necessary knowledge for all the following chapters. Chapter 4 summarizes
generic programming models for different types of parallel applications. It also discusses
how to handle applications with single and multiple resource-elastic phases.

Part III introduces three parallel applications developed in the Elastic MPI frame-
work. Chapter 5 presents a malleable 2-D tsunami simulation that is transformed from a
resource-static software. Chapter 6 presents a malleable 3-D oil reservoir simulation that

1.6 Outline

is also taken from the same resource-static software as the tsunami simulation. Despite the
similarities, this application demonstrated very different behaviors with resource adaptiv-
ity. Chapter 7 discusses a statistical inverse problem solver with resource-elastic surrogate
model construction.

Part IV consists of one chapter (Chapter 8), which summarizes our findings and gives
an outlook for future Elastic MPI development.

Related Work

There have been several past and ongoing research efforts in elastic execution models. In
this chapter, we cover some of the related work done in recent years. Since the present
work is focusing on distributed-memory systems, we cover only research projects that
support distributed-memory architectures, and leave out those aimed at shared-memory
architectures as they are not so comparable with this work. Besides research projects, we
also cover a very relevant but different technology — Cloud computing, which has gained
vast popularity in recent years and is often compared or seen as an alternative to HPC.

Conventional HPC programming languages and models are resource-static: they operate
with the configuration that resources never change during program execution, and therefore
have no support for runtime resource changes. Any attempt to change this must provide
some abstractions to represent resource changes. Reconfiguring resources and moving data
over communication network must be taken care of very carefully, because these operations
can introduce significant overhead that defeats the purpose of achieving high performance.
In addition, support for resource elasticity must be added to applications as well as the
system’s resource management components. It is not uncommon that research on elastic
execution models are coupled with scheduling research.

2.1 Dynamic Processes Support by the MPI Standard

Different implementations (both open-source and proprietary) of the MPI standard exist,
such as MPICH [14], Open MPT [15], Intel MPI Library [16] and IBM Spectrum MPI [17].
Though their internal implementations differ, they all provide the same set of standard
operations with the same interfaces. The standardization of MPI allows for source code
level compatibility and portability across HPC systems.

The original MPI programming model is designed to be static in terms of number of
processes, i.e., the number of processes that an MPI program starts with remains un-
changed until the end of program execution. Since the MPI standard version 2.0, support
for dynamic processes has been added, mainly through two additional operations, i.e., the
MPI_Comm_spawn and the MPI_Comm_spawn_multiple. With these two and a few other
auxiliary operations, additional processes can be added to MPI applications at runtime.
However, there are limitations and shortcomings in the MPI standard:

11

2 Related Work

e Resource expansion is initiated by applications, which have neither informa-
tion on available resources nor the current state of other running applications. If the
system is fully loaded, spawn operations could result in delay of execution, operation
failure or creation of virtual processes depending on the implementation.

e The spawn operations are blocking operations. The parent processes' are

blocked while the child processes? are being created. The delay in process creation
can be significant and can degrade performance.

e The spawn operations produce intercommunicators based on disjoint pro-
cess groups (parent and child), each of which has its own MPI_COMM_WORLD, which
means that the global communicator no longer reflects the global view of resources
after spawn operations. Variables related to MPI_COMM_WORLD such as the communi-
cator size and rank ID are no longer valid. This introduces complications to software
development, and limits the re-usage of preexisting code.

e Subsequent usage of spawn operations produce multiple intercommunica-
tors and disjoint process groups, which makes it hard to manage resources from
a programming standpoint, especially for dynamic applications in which the number
of spawn operations is runtime-dependent.

e Processes created with spawn operations are typically run in the same
resource allocation, which limits the usefulness of these operations. This is not a
deficiency of the MPI standard itself, but most implementations that support these
spawn operations implement them in such a way that the spawned processes are
created within the already allocated resources. In other words, there are no physical
resources added but merely virtual processes that share the same resources.

e Last but not least, runtime resource reduction is not supported. Destruc-
tion of processes is only possible with MPI_Finalize, which means removing pro-
cesses is not possible during runtime. Expansion-only resource elasticity is of little
help for most of the current HPC problems.

Compared to the dynamic processes support from the MPI standard, Elastic MPI excels
in design and implementation. Elastic MPI implements a centralized design, in which the
resource manager, being aware of the state of all resources as well as the running and
awaiting applications, initiates all resource adaptations. This eliminates the situations
that no resources are available for resource expansion. In Elastic MPI, child processes
are created asynchronously, while parent processes can continue to work without blocking.
This implementation purposely hides latency to minimize resource adaptation overhead.
Resource adaptation in Elastic MPI produces no additional communicators or process
groups. It directly modifies MPI_COMM_WORLD to reflect resource changes, allowing for
unlimited numbers of resource adaptations without complicating code development and
maximizing re-usage of preexisting code. Successful expansion in Elastic MPI results in the
inclusion of additional compute nodes (physical resources). And, last but not least, Elastic
MPI supports resource reduction. The resource manager can freely instruct applications
to expand and shrink to achieve optimal resource utilization efficiency.

IProcesses in the parent process group, which is the group of original processes that call spawn operations.
2Processes in the child process group, which is the group being created due to spawn operations.

12

2.2 MPI Sessions

2.2 MPI Sessions

MPT Sessions [18] is a proposed interface extension for a future version MPI standard (MPI
4.0 or 4.1). It is currently under active development by a dedicated working group from
the MPI Forum [4]. The key idea of this new interface is to introduce a concept of isolation
in order to eliminate the requirement of a global communicator.

Holmes et al. pointed out that the management of a potentially massive process space
is one of the major challenges that current MPI implementation and applications are fac-
ing [18]. The current requirement that all communication peers must be included in an
immutable global communicator MPI_COMM_WORLD has become a scalability and perfor-
mance barrier. With the observation that the common communication patterns in most
MPI applications do not span all MPI processes, Holmes et al. proposed a fundamental
change in MPI process management by introducing a layer of isolation for process spaces
and relaxing the requirement for a global communicator.

MPI_Sessions are immutable local handles that contain no global states. They are
intended to be light-weight and inexpensive to create or maintain. Each MPI Session
forms an isolation domain, in which communicators and process groups are created. While
an MPI Session itself is immutable, it can be created and destroyed at any time during the
execution of a program. This introduces a lot of flexibility in MPI process management.

Even though resource elasticity is not the direct goal or motivation of MPI Sessions,
its approach to addressing the MPI scalability issues — by introducing a flexible layer in
MPI process management — overlaps with the goal of this work. With a proper elastic
infrastructure support (on physical resources management), the MPI Sessions interface
can be adopted for resource-awareness and elasticity realization. For instance, resource
representation can be built upon an MPI Session. Whenever there is a change in physical
resources, a new MPI Session (representing the new resource assignment) can be created
and the old one can be destroyed.

With that said, there are fundamental differences between the MPI Sessions interface
and the Elastic MPI framework. First of all, MPI Sessions is an interface only, it does not
include or tie to any resource management infrastructure. Secondly, the interface of MPI
Sessions eliminates the global communicator. Resource changes can be represented by the
creation and destruction of MPI Sessions. On the other hand, the Elastic MPI framework
preserves all current MPI interfaces including the global communicator. Resource changes
are represented by a transmuted global communicator MPI_COMM_WORLD.

2.3 User-level Fault Tolerance in MPI

There have been many research work in fault-tolerant programming models for MPI appli-
cations. Some of the most recent ones include ULFM [19, 20], Fenix [21], FA-MPI [22, 23],
Reinit [24], EReinit [25] and FMI [26]. Some of these methods have been proposed for the
MPI standard, but none is yet adopted.

The User-level Failure Migration (ULFM) is a set of extension APIs to introduce fault-
tolerance constructs to MPI. It provides interfaces for detecting process failures and re-
pairing (rebuilding) communicators. The Fenix framework uses the ULFM interface to
implement a global-restart model. It recovers damaged communicators via the PMPI in-
terface such as the shrink, spawn, merge and split operations. It relies on user-registered

13

2 Related Work

checkpoints for data recovery. Fault-aware MPI (FA-MPI) is also a set of extension APIs
that provide fault detection and notification, assistance for isolation, and recovery proce-
dures. Reinit also implements a global-restart model. After faults have been detected,
it provides a mechanism to reinitialize MPI that returns a state similar to that returned
by MPI_Init. EReinit uses the Reinit interface and takes advantage of the resource man-
ager to implement failure detection, propagation, and recovery primitive. Fault Tolerant
Messaging Interface (FMI) provides a messaging runtime that can survive process failures.
It provides fast recovery via in-memory checkpoint-restart, scalable failure detection and
dynamic spare node allocation.

All these fault-tolerant approaches provide mechanisms to facilitate the underlying re-
source changes at runtime, which is that some resources become unavailable during program
execution due to hardware failure. In this regard, they overlap with the approach taken in
this work to a certain extend. However, these fault-tolerant interfaces can only facilitate
removal and replacement of resources. They lack support for resource expansion.

2.4 Charm++ and Adaptive MPI

Charm++ [27, 28, 29, 30] and Adaptive MPI [31, 32, 33] are parallel programming research
projects aimed at providing dynamic load balancing support. Charm++ is a C++ based
parallel programming system that implements the message-driven execution model with
migratable objects. It provides a runtime system that can mitigate load imbalances caused
by the dynamic behavior of applications. Adaptive MPI is the implementation of MPI on
the Charm++ system.

In message-driven execution, processes are activated by messages. A process may utilize
resources (processors) for execution only when it receives a message and that it can continue
to work. If it blocks due to waiting for messages, other processes may utilize its processor
for execution. If each processor is deposited with multiple processes, this strategy overlaps
communication with computation seamlessly, as blocking communication no longer block
resources.

In Adaptive MPI, ranks are implemented as lightweight user-level migratable threads
instead of operating system processes, they are associated with Charm-++ objects. The
runtime system of Charm++ schedules multiple ranks to each processor, and moves them
among processors or nodes when necessary to achieve good load balance. With the support
for rank migration, fault tolerance can be achieved via a checkpoint-restart scheme.

Resource elasticity can also be achieved thanks to the rank migration capability. Kale et
al. [34] presented a programming system for creating malleable jobs using Charm++ and
Adaptive MPI. This scheme was based on a time-shared concept, in which performance
of the system would improve with the number of jobs submitted. They demonstrated
their concept with a molecular dynamics application which was embarrassingly parallel.
Gupta et al. [35] proposed a scheme to realize runtime resource expansion and reduction
via a combination of task migration, load balancing, Linux shared memory (SHM) and
checkpoint-restart, under the assumption that there were always more tasks than proces-
sors. They demonstrated their approach with four mini-applications, three of which were
2-D or 3-D Cartesian grid based and one was embarrassingly parallel.

The Charm++ and Adaptive MPI projects strive to maximize system performance by
providing dynamic execution support with a novel parallel programing system that in-

14

2.5 High Performance Paralle]X (HPX)

cludes a runtime scheduler and a programming Application Programming Interface (API).
In this regard, it is very similar to our work. However, it is very different by design and by
implementation. In Elastic MPI, ranks are normal operating system processes, just like in
a normal MPI program. Indeed, Elastic MPI preserves everything from the the MPI stan-
dard, and achieve resource elasticity by an extension of four additional functions. Resource
adaptation in Elastic MPI does not rely on SHM or checkpoint-restart. In Charm++-, real-
ization of dynamic load balancing replies on the over-decomposition of tasks to processors.
This restriction does not exist in Elastic MPI. However, Elastic MPI does not provide
automatic data migration and load balancing. Like in normal MPI programming, it is the
programmer’s responsibility to manage data movement and load balancing.

2.5 High Performance ParallelX (HPX)

The High Performance ParallelX (HPX) [36, 37, 38] is a general purpose task-based run-
time system that strives for scalability on distributed-memory systems. It implements the
ParallelX execution model [39, 40] and provides a programming framework that allows for
transparent utilization of available resources. It is designed for conventional architectures
with strict adherence to the C++11/14 standard.

HPX utilizes the governing principles of latency hiding, fine-grained parallelism, con-
straint based synchronization, adaptive locality control, work following data® and message
driven?, the combination of which allows for dynamic resource management, elastic execu-
tion, and in principle, efficient utilization of petascale and exascale machines.

HPX provides a single global address space across the system, enabling seamless load-
balancing and dynamic adaptive resource management. The concept of locality is its means
to express Non-Uniform Memory Access (NUMA): a locality is equivalent to a cluster node,
intra-locality refers to local memory access, and inter-locality refers to remote memory ac-
cess. First class objects such as threads and processes are decoupled from their locality
and made migratable. Workloads are expressed as HPX-threads with immutable global
names, which allow for remote task management. The HPX thread manager schedules
HPX-threads onto a pool of OS threads (usually pinned to physical cores), removing over-
heads associated to OS thread creation. Blocking of a HPX-thread does not block the OS
thread, allowing resources to be efficiently utilized by other workloads. The concept of
a parcel, the remote semantic equivalent to a local HPX-thread, is used for inter-locality
communication. Parcels can be used to move the work to the data or to gather data back
to the caller.

Anderson et al. [41] presented an AMR based application with HPX implementations
to eliminate global barriers. They showed that HPX is better capable of expressing finer-
grained dependencies than MPI, at a cost of higher overhead and the use of more HPX-
threads. The performance results, obtained on a 20-core machine, showed that the HPX
version outscales and outperforms the MPI version when the two competing factors are
properly balanced.

3 Instead of moving data to the processor that executes the task (that requires the data), move the task
to the processor that holds the data it needs. Moving tasks (a collection of program commands) instead
of data is more efficient if the size of data is large.

4 a computing style in which computation is invoked by the presence of messages, which convey both
instructions and data

15

2 Related Work

Compared to Elastic MPI, HPX employs a very different approach for resource efficiency.
Elastic MPI takes the conventional practice of pinning parallel processes to resources. The
realization of resource elasticity and efficiency is through dynamic resource allocation, i.e.,
adding and removing processes to applications at runtime. HPX decouples its workloads
(threads) from resources. It schedules threads dynamically and moves them across re-
sources. Threads do not block resources. Resource efficiency is achieved by managing
threads dynamically.

2.6 Invasive X10 (iX10)

X10 [42, 43, 44] is an open-source object-oriented programming language that follows a
Partitioned Global Address Space (PGAS) programming model. The development of X10
is an ongoing research project by IBM Research with the goal of providing a programming
model that can address the modern architectural challenges. X10 shares many similarities
with its peer PGAS languages, such as the concept of distributed arrays, constructs for
parallel execution and synchronization, a two-layered memory model for local and remote
memory, and more. Native X10 has potential for resource-elastic support, because it
provides abstractions to represent resources in a NUMA domain.

X10 is one of the core programming languages supported by the Invasive Comput-
ing project. To achieve resource awareness and elasticity, the project extended X10 by
adding function interfaces to support the action of resource inclusion and exclusion, as
well as the interactions between elastic applications and runtime system. The invasive
version of X10 is called iX10 [45, 46, 47]. Other constructs are also added to represent
different resource types available in the hardware architecture developed by the Invasive
Computing project. Dynamic resource management support is provided by the operating
and runtime system developed by the project.

The major functions that enable the resource awareness and elasticity concept are
invade, infect and retrieve invade allows applications to request more resources from
the runtime system. They may or may not get the requested amount, depending on
resource availability. If they do get additional resources, infect allows them to adapt
execution to new resources. retrieve allows applications to release excess resources that
are no longer needed. Applications can expand and reduce in resources multiple times by
calling these functions as many times as necessary.

Though both ¢X10 and Elastic MPI are part of the Invasive Computing research project,
Elastic MPI differs from ¢X10 in both design and implementation:

e {X10 implements a de-centralized design, in which applications initiate resource
changes, and the runtime system reacts to their resource requests and makes final de-
cisions. Elastic MPI implements a centralized design, in which the resource manager
makes and casts resource decisions, and applications react to these decisions.

e 7X10 and its paired operating and runtime systems are implemented for the special
NUMA architecture developed by Invasive Computing . Elastic MPI is implemented
for general distributed-memory HPC systems.

e iX10 implements a PGAS model while Elastic MPI implements the Message Passing
programming model.

16

2.7 SALSA and PCM Extensions with I0S

2.7 SALSA and PCM Extensions with 10S

Desell et al. [48] described a framework for application malleability, which enables appli-
cations to dynamically redistribute data as well as add and remove processing entities at
runtime. For programming API, they implemented two language extensions, each of which
was demonstrated with a scientific application. For dynamic resource management, they
extended the Internet Operating System (IOS) [49] as a modular middleware. By com-
paring their implementations to a stop-restart scheme, Desell et al. showed that resource
reconfiguration using their malleable framework were significantly faster.

The first malleable programming interface was an extension to SALSA (Simple Actor
Language System and Architecture) [50, 51], which is a JAVA based actor-oriented pro-
gramming language designed to facilitate the development of dynamic distributed applica-
tions. An astronomy application that uses linear regression techniques was made malleable
with the extended SALSA. This application is embarrassingly parallel and it implements
a master-worker model.

The second malleable programming interface was an extension to the PCM (Process
Checkpointing and Migration) [52], which was a library previously developed by the same
research group to enable process migration in MPI. In this interface, a master process
(usually rank 0) is responsible for initiating data redistribution and updating all the neces-
sary references. Resource adaptation occurs only at synchronization points. A grid-based
application that models heat transfer in a solid was made malleable with the extended
PCM. This application was of SPMD type with spatial data dependency.

The work by Desell et al. allowed for resource elasticity by providing programming
interfaces and a supporting resource management infrastructure. In this regard, it is very
similar to our work. And the PCM extension is a more comparable part to Elastic MPI,
as it is also MPI based. The Difference is, in Elastic MPI, there is no need for a master
process to initiate data redistribution. Data migration is orchestrated by all processes.
Another difference lies in the evaluation focus. They evaluated their work by comparing
the performance between their malleable framework and a stop-restart scheme. In this
thesis, we are focused on the impacts of malleability on resource utilization efficiency on
both the application- and system-level. We are more interested in comparing the malleable
executions with the resources-static counterparts.

2.8 Parallel Virtual Machine (PVM)

The Parallel Virtual Machine (PVM) [53, 54, 55, 56] is a framework that connects a collec-
tion of Unix and Windows computers together by a network to be used as a single parallel
machine. The project is designed to facilitate computation of large problems in a more cost
efficient way by enabling users to exploit and aggregate their existing computer hardware.

The nodes (computers) in a PVM parallel machine is managed by users and can be
modified at runtime, which provides support for resource elasticity and fault tolerance
to some extent. PVM implements the Message Passing model and supports distributed-
memory systems. Operations to spawn tasks, coordinate tasks and modify the parallel
machine itself are provided. Applications can initiate resource expansion by requesting
new tasks.

17

2 Related Work

In a PVM parallel machine, a daemon is started before an application can be run on a
node. The daemon acts as a local resource manager for the application. The application
is linked to PVM’s runtime library, which provides the implementation of the PVM API.
Once the application is started, it can request to spawn more new tasks. Like in MPI, each
task has a unique identifier and can exchange messages with other tasks.

The fact that PVM provides no coordination with resource managers makes it inadequate
for resource-elastic systems with multiple users. However, resource-elastic behavior can be
achieved on single jobs.

2.9 Cloud Computing

Cloud computing refers to utilizing computing services over the Internet (“the Cloud”).
It has gained immense popularity in recent years due to its highly competitive cost-
effectiveness. There exist both resource management and programming models in Cloud
computing that allow for resource elasticity [57, 58, 59] and fault tolerance. Indeed, these
technologies are mature and have been quite successful. On the contrary, development on
resource-elastic support and fault tolerance in HPC are still in the early stages. The reason
for this can be ascribed to the differences in application requirements on these systems.

Parallel applications run on Clouds have low requirements on communication and syn-
chronization. Most of them are embarrassingly parallel to a certain extent. And many of
them follow the client-server or MapReduce model. The client-server model [60, 61] refers
to the parallel structure that partitions workloads between servers (service providers) and
clients (service requesters). It is mostly used in web services. No dependency or syn-
chronization requirements across user sessions makes it possible to employ this model.
MapReduce [62, 63, 64] is a programming model that consists of a map operation, which
performs tasks such as filtering or sorting, and a reduce operation, which performs summary
or aggregation tasks such as counting the total number. Both map and reduce operations
can be executed in parallel with no requirements for communication or synchronization.
The model is mostly used in data analysis and processing algorithms.

Low requirements on communication and synchronization allow Cloud computing plat-
forms to be designed more economically with commodity networks. Many Cloud service
providers offer computation services in time sharing mode, in which resources are shared
among multiple concurrent users. These designs cut down service costs by trading off pre-
dictability and reliability of the execution environment, which is tolerable by Cloud users
due to the nature of their applications.

For many years, HPC systems have been prevalent platforms for large complex appli-
cations from science and engineering. These parallel applications have strong demand for
communication and synchronization. Typically, computation domains in these applica-
tions are decomposed and distributed across processing units. Due to the nature of these
scientific applications, data dependency usually exists and often requires periodic commu-
nication and synchronization between processing units. This is the major reason why HPC
applications do not fit well in those programming models in Cloud computing.

To minimize the impact of communication and synchronization, HPC systems are de-
signed with high performance networks that have lower latencies and higher bandwidths.
Moreover, they typically operate in space sharing mode, in which applications have exclu-
sive access to preallocated resources. These designs provide a very reliable and predictable

18

2.10 Summary

execution environment, however, they introduce higher purchase and maintenance costs
compared to Cloud services.

In summary, even though resource elasticity is available in both resource management
and programming models in Cloud computing, these technologies are not directly trans-
ferable to HPC due to the nature of most HPC applications. More research efforts are

expected to advance technologies for resource-elastic execution and fault tolerance in the
HPC world.

2.10 Summary

In this chapter, we discussed related research work that pursue similar goals or take similar
approaches.

The MPI dynamic process support allows for spawning more processes at run-
time. However, it does not support removal of processes and it introduces complexity
and difficulties in the programming experience. It is a pure interface that is not linked
to any resource management infrastructure. Many MPI implementations create the
spawned processes upon the already allocated resources, which means these is no
actual change in physical resources.

MPI Sessions is a proposed interface extension for the MPI standard to address
the scalability issues by introducing an isolation layer for process management and
relaxing the requirement for a global communicator. It has the potential to support
resource elasticity if it is integrated with an elastic resource management infrastruc-
ture.

Many MPI fault-tolerant programming models/interfaces, such as ULFM, Fenix,
FA-MPI, Reinit, EReinit and FMI, provide mechanisms to facilitate runtime re-
source changes, i.e., certain resources become unavailable due to hardware failure
and must be removed or replaced from the communication process group. Though
allowing for resource removal and replacement, none of them supports resource ex-
pansion.

The Charm++/Adaptive MPI project is a task-based parallel framework that
implements a message-driven programming model. Its realization of resource effi-
ciency relies on over-decomposition of tasks to processors, and resource elasticity is
achieved with SHM and a checkpoint-restart scheme.

HPX is also a task-based parallel system that implements a ParallelX programming
model. It realizes resource elasticity and efficiency by implementing fine-grained
tasks and moving them among resources automatically.

1X10 is a parallel programming framework that directly supports resource awareness
and elasticity. It implements a PGAS programming model and is designed for a
specific multiprocessor system-on-chip architecture.

The PCM extension with IOS provides an elastic MPI programming model. Its
resource adaptivity is initiated by a master process.

19

2 Related Work

e PVM connects a set of computers to work as a parallel machine, in which resource
expansion for an application is supported. However, it is disconnected from the
resource manager and does not support multiple users.

Compared to all of these projects, Elastic MPI is unique as it implements a universal
Message-Passing programming model by extending the MPI standard library. Like MPI,
it provides interfaces for both C/C++ and Fortran languages, and is designed for gen-
eral Linux-based architectures. It realizes resource elasticity and efficiency based on true
dynamic resource (de)allocation and the support for runtime acquisition and removal of
physical resources. It does not rely on checkpoint-restart or SHM. The system supports
both elastic and static MPI tasks and multiple concurrent tasks (users).

Cloud computing, as a different technology, is often compared to HPC. Even though
technologies for resource elasticity in Cloud computing have matured, they are not directly
transferable to HPC as they are designed for applications that possess characteristics that
most HPC applications do not. Elastic execution support tailored for HPC systems and
applications are still in development.

20

PART 11

ELASTIC MPI FRAMEWORK

21

Elastic MPI Infrastructure

An infrastructure supporting resource awareness and elastic execution is one of the two
key components of our solution to achieving resource efficiency in distributed-memory HPC
systems. In this chapter, we cover the high-level design, functionality and implementation
of the Elastic MPT infrastructure, which was first introduced in [12, 65]. This information
lays a foundation for malleable parallel software development.

First, we take an overview of the infrastructure design. Then we discuss the Elastic
MPI library and the elastic execution support in the resource manager, following with
topics on pattern detection, performance monitoring and runtime scheduling. More im-
plementation details of the Elastic MPI library (discussed in Section 3.2) and resource
manager (discussed in Section 3.3) can be found in [12]. Lastly, we cover the assumptions
and limitations in the current infrastructure implementation.

3.1 Overview

System-level optimization on throughput and energy efficiency is the ultimate goal of Elas-
tic MPI. Compliant to this objective, the Elastic MPI infrastructure implements a central-
ized design, in which resources and applications are managed by a central component that
oversees all workload and resource dynamics. This central component, in HPC systems,
is called the resource manager or the scheduler, which is implemented as a separate soft-
ware package from the operating system. In Elastic MPI, the resource manager takes care
of launching and running parallel tasks, making decisions for resource assignments, and
initiates all runtime resource changes.

The opposite of the centralized design is the de-centralized design, in which each parallel
task optimizes for its own need by initiating resource change requests. In this scenario,
the resource management unit merely reacts to the resource requests instead of making
proactive decisions. While the de-centralized design offers opportunities for optimizing
on the application level, it lacks the means to facilitate system-level optimization. In
contrast, the centralized design pursues system-level optimality by trading off application-
level optimality, which aligns with our objective.

Figure 3.1 presents an overview of the Elastic MPI system, its major components and
their interactions between one another. In the center of the figure lies the resource manager,
which interacts with resources and applications (batch jobs).

23

3 Elastic MPI Infrastructure

All Resources

Node
5
Node Node
6 7

S LY)
& ™ </
OOO \ Qversee & manage __-~
. \ -
e Elastic Resource Manager all resources -~
. \ P -
stic Offer -~
. -
Elastic £source -
Job
Elastic Queue Forwar
Jobs
S Node 0, 1,2, 17
>
@©
|
[N Job C
(static)

Node 3,4, 12,13
Node 11, 14, 15, 16
Node 8,9,10 Node 5,6,7

Figure 3.1: Overview of the Elastic MPI System: interactions between resource manager, re-
sources and batch jobs. The resource manager consists of an elastic batch scheduler
(EBS) and an elastic runtime scheduler (ERS). The EBS manages a static and an
elastic job queue, and interacts with the ERS, i.e., if the ERS offers resources for
launching new jobs, it decides which jobs to launch and forwards them to the ERS.
The ERS oversees and manages all resources, and takes care of launching and running
jobs. When resources become available, it makes decisions on either offering them
for launching new jobs, assigning them to some of the running elastic jobs, or both.
It also makes runtime decisions on resource reallocation according to the scalability
of the running elastic jobs. It communicates its decisions with the EBS and all the
running elastic jobs, which are expected to take actions accordingly. For static jobs,
it only launches them and let them run to completion without interaction.

24

3.2 Elastic MPI Library

When a parallel task is submitted to a HPC system for computation, it first waits in a job
queue for resource assignment, as it is required before execution. A dedicated component
called the batch scheduler inside the resource manager handles the in-coming jobs. It
manages two job queues: one for normal (static) jobs, and the other for elastic jobs. Its
main functionality is to select the right jobs to launch. When there are resource offerings
for new launches, it picks jobs from both queues based on their sizes (requested resources),
priority, fairness (e.g. how long has the job been waiting) and other policies enforced by
the system administrator. The goal is to fully utilize the resource offerings under policy
constraints.

The selected jobs are then forwarded to another component of the resource manager —
the runtime scheduler, which oversees and manages all resources in the system. It allocates
resources and launches the forwarded jobs. For the static ones, it simply lets them run
to completion without interaction. For the elastic ones, it periodically monitors their
parallel performance and makes runtime resource change decisions accordingly. When
more resources become available, it decides between offering them for launching new jobs
and/or assigning them to currently running elastic jobs that have good scalability.

The periodic resource allocation decision is made for all running elastic jobs at once.
For some jobs, their resource allocations stay the same, therefore, no actions are required
from them. For others, there are resource changes, and thereby, taking immediate actions
to adapt is required. These decisions from the runtime scheduler are communicated via
probing actions by the jobs. Elastic jobs are expected to communicate with (probe) the
resource manager frequently and take prompt actions accordingly. These communication
and resource adapt actions are facilitated by the Elastic MPI library.

3.2 Elastic MPI Library

Designed with the goals of latency hiding, minimal collective latency and ease of program-
ming, the Elastic MPI library is implemented upon an MPICH v3.2 base [14] with a set of
four new operations:

e MPI_Init_adapt: for initializing MPI processes in adaptive mode,
e MPI_Probe_adapt: for probing for resource change decisions,
e MPI_Comm_adapt_begin: to indicate the beginning of resource adaptation,

e MPI_Comm_adapt_commit: to indicate end of adaptation and commit resource changes,

as well as the supporting code for their integration with the resource manager.

The new operations are exposed to programmers, as they serve to facilitate resource
adaptation as well as the communication between applications and the resource manager.
They overcome the limitations of the dynamic processes support by the MPI standard (dis-
cussed in Section 2.1), and realize efficient physical resource adaptation. Their supporting
code for integration with the resource manager, on the other hand, is purposely hidden
from programmers and excluded from the API.

The following subsections explain the interface of each of these new operations, as they
are the premises for understanding the Elastic MPI programming models discussed in
Chapter 4. Explanations and demonstration on how to use these operations to assemble
resource-elastic applications can be found in Sections 4.2 through 4.5.

25

3 Elastic MPI Infrastructure

3.2.1 MPI Initialization in Adaptive Mode

The MPI_Init_adapt operation allows applications to initialize MPI processes in adaptive
mode. This is how the resource manager distinguishes elastic applications from the static
ones, i.e., only those initialized with MPI_Init_adapt are considered elastic, and would be
monitored and interacted with for resource changes during execution.

int MPI_Init_adapt(
int sargc, char sxxargv, int sproc_status);

Listing 3.1: MPI_INIT_ADAPT C interface

SUBROUTINE MPI_INIT_ ADAPT(proc_status, ierror)
INTEGER proc_status
INTEGER ierror

END SUBROUTINE MPI INIT ADAPT

Listing 3.2: MPI_INIT_ADAPT Fortran interface

Listings 3.1 and 3.2 show the operation’s C and Fortran interfaces respectively. It has
a similar interface as the MPI_Init operation, except for one additional output parameter
proc_status, which returns the status of the process.

In Elastic MPI, we define four states (status) of processes:

e MPI_ADAPT_STATUS_NEW, which indicates that the process is created during the launcher
command provided by the resource manager, e.g., mpiexec, srun, etc;

e MPI_ADAPT_STATUS_JOINING, which indicates that the process is created as part of
a resource expansion;

e MPI_ADAPT_STATUS_STAYING, which indicates that the process will remain after a
resource adaptation (expansion or reduction);

e MPI_ADAPT_STATUS_LEAVING, which indicates that the process will retire after a re-
source reduction.

It is crucial to distinguish between different status of processes, because different actions are
required from each type to orchestrate a successful data migration and process integration
in case of resource expansion. More details on this subject is discussed in Section 4.2
through Section 4.5, where generic Elastic MPI programming patterns are abstracted for
different types of applications.

The output parameter proc_status in MPI_Init_adapt can take two possible values:
either MPI_ADAPT STATUS_NEW or MPI_ADAPT STATUS_ JOINING.

3.2.2 Probing for Resource Change Decision

The MPI_Probe_adapt operation allows the preexisting processes to probe the resource
manager for resource change decisions. Runtime resource allocations are determined peri-
odically by the resource manager for all running elastic applications. An elastic application
might or might not need to adapt depending on whether its new resource allocation is the

26

3.2 Elastic MPI Library

same as the current one. In order to get such information, it is expected to probe the
resource manager periodically and react to the decision accordingly.

int MPI_Probe_adapt(
int xadapt_flag, int sproc_status, MPI_Info xinfo);

Listing 3.3: MPI_PROBE_ADAPT C interface

SUBROUTINE MPI PROBE _ADAPT(adapt_flag, proc_status, info, ierror)
INTEGER adapt_ flag
INTEGER proc_ status
INTEGER. info
INTEGER ierror
END SUBROUTINE MPI PROBE_ADAPT

Listing 3.4: MPI_PROBE_ADAPT Fortran interface

The operation’s C and Fortran interfaces are shown in Listings 3.3 and 3.4 respectively.
The output parameter adapt_flag tells the application whether or not it should adapt.
It gives the value MPI_ADAPT_FALSE for no adaptation, or MPI_ADAPT_TRUE to signify a
pending adaptation.

The output parameter proc_status returns the status of the process, which is explained
in Section 3.2.1. In case of resource adaptation, different actions are required from different
types of processes in order to successfully perform data movement as well as process integra-
tion or exclusion. This parameter takes three possible values: MPI_ADAPT_STATUS_JOINING,
MPI_ADAPT STATUS_STAYING, or MPI_ADAPT_ STATUS_LEAVING.

The output parameter info is optional and can be set to NULL. It returns an MPI_Info
object that provides additional information from the resource manager.

3.2.3 Beginning Resource Adaptation

When the MPI_Probe_adapt operation returns a positive signal for resource adaptation,
the application is expected to react promptly. To ensure a safe adaptation environment,
in which the application has stable access to all resources, i.e., the STAYING, LEAVING and
JOINING processes, the concept of adaptation window is introduced.

The adaptation window refers to the period between operations MPI_Comm_adapt_begin
and MPI_Comm_adapt_commit, during which all actions related to resource adaptation
should be performed. By calling MPI_Comm_adapt_begin, the application informs the
resource manager that it begins the adaptation process and that all resources (STAYING,
LEAVING and JOINING processes) should be ensured accessible until the process is com-
pleted. Within the adaptation window, the preexisting (STAYING and LEAVING) processes
and the world communicator MPI_COMM_WORLD are preserved; the JOINING processes (if
there are any) come as a separate group with their own world communicator.

27

3 Elastic MPI Infrastructure

int MPI_Comm_ adapt_ begin (
MPI Comm xintercomm , MPI Comm *new comm world,
int xstaying count, int xleaving count, int *joining_ count);

Listing 3.5: MPI_COMM_ADAPT_BEGIN C interface

SUBROUTINE MPI_ COMM_ADAPT BEGIN(inter_comm , new_comm_ world,&
staying_count, leaving_ count, joining count, ierror)
INTEGER, intercomm
INTEGER new_comm_ world
INTEGER staying_ count
INTEGER. leaving_ count
INTEGER joining count
INTEGER ierror
END SUBROUTINE MPL COMM_ADAPT BEGIN

Listing 3.6: MPI_COMM_ADAPT_BEGIN Fortran interface

The C and Fortran interfaces of the operation are shown in Listings 3.5 and 3.6 respec-
tively. The first two output parameters provide two temporary communicators that can be
used for data migration and synchronization. The intercomm returns an intercommunica-
tor that includes both the preexisting and the joining process groups. The new_comm_world
returns a communicator that represents the new resource allocation, i.e., the union of the
STAYING and JOINING processes (if any) excluding the LEAVING processes (if any). Both of
these communicators are intended to provide convenience for data movement during adap-
tation. Figure 3.2 shows the communicators before, during and after resource adaptation.
The last three output parameters return the counts of the STAYING, LEAVING and JOINING
processes respectively, from which the application can determine whether it should perform
resource expansion or reduction.

3.2.4 Committing Resource Adaptation

The operation MPI_Comm_adapt_commit signifies the ending of the adaptation window and
commits the resource changes. It does not have any return parameter. Listings 3.7 and
3.8 show the C and Fortran interfaces of the operation respectively.

Upon return, the world communicator MPI_COMM_WORLD would be updated with the tem-
porary communicator new_comm_world, as shown in Figure 3.2. The LEAVING processes (if
any) would be released and made available to other applications. The temporary communi-
cators intercomm and new_comm_world from the MPI_Comm_adapt_begin operation would
be deleted. The programmer must update the rank and size of the world communicator,
since it has been changed. In addition, the programmer should also manually update the
process status, i.e., assign MPI_ADAPT_STATUS_STAYING to proc_status for each process,
so that they can be clearly distinguished from the JOINING and LEAVING processes in the
next adaptation.

28

3.3 Elastic Resource Manager

Preexisting ranks

MPI_COMM_WORLD

MPI_Comm_adapt_begin (...)

Leaving ranks Staying ranks Joining ranks

MPI_COMM_WORLD \ MPI_COMM_WORLD

New_comm_world

Intercomm

MPI_Comm_adapt_commit ()

Preexisting ranks

MPI_COMM_WORLD

Figure 3.2: Elastic MPI communicators before, during and after resource adaptation

int MPI_Comm_ adapt_ commit () ;

Listing 3.7: MPI_COMM_ADAPT_COMMIT C interface

SUBROUTINE MPL COMM_ADAPT COMMIT(ierror)
INTEGER ierror
END SUBROUTINE MPI COMM ADAPT COMMIT

Listing 3.8: MPI_COMM_ADAPT_COMMIT Fortran interface

3.3 Elastic Resource Manager

HPC systems are designed to deliver high performance, therefore, they are expected to
provide reliable and predictable execution environments. For this reason, most HPC sys-
tems operate in space-sharing mode, in which parallel jobs are guaranteed exclusive access
to requested resources for their entire execution.

The counterpart of space-sharing mode is time-sharing, in which computational resources
are shared among multiple concurrent users, tasks or programs. A common example of
time-sharing is an everyday computer, which runs background system tasks, renders graph-
ics, performs user tasks such as web browsing and gaming, all at the same time.

Under space-sharing mode, jobs must be first assigned resources before they can be
executed. When a job is submitted to an HPC system, it is not started immediately.
Instead, it is queued and executed at some time in the future when the resources it needs

29

3 Elastic MPI Infrastructure

become available. The starting time is not guaranteed as it is dependent on the workload
on the system and the availability of resources. Once the job is started, it would run to
completion without being interfered with.

In order to deliver performance that is commensurate to its hardware resources, an HPC
system must optimize on these performance metrics, which is often a task delegated to the
resource management component. The terms resource manager and scheduler is often
used interchangeably. A resource manager takes a set of jobs to be executed and a set of
available resources as input, and produces a performance optimizing order for launching
jobs as output. These orders are referred to as schedules (hence the name scheduler), which
affect the performance of the HPC system.

3.3.1 Requirements for Elastic Resource Management

Scheduling of job launches is the only decision logic in resource management required in
current HPC systems. For runtime resource-elastic execution support, however, additional
functions must be added to the resource manager:

e Besides batch scheduling (order to launch jobs), runtime scheduling must be provided.
System-wide performance optimizing decisions on which applications are to expand
and which ones are to shrink, as well as on when more resources become available,
should they be added to running jobs or used to launch new ones, must be determined
based on the scalability of the running elastic jobs.

e Elastic jobs need continuous performance monitoring. As most of them are expected
to have dynamic workload behaviors, their parallel performance and scalability would
change over time. Runtime resource decisions must be made based on their most
updated performance measurements.

e Current HPC infrastructures operate under the configuration that a job’s resource
allocation is constant. To support runtime elastic execution, the infrastructure must
allow modifications to resource allocations and reconfiguration of the running sys-
tems.

e Last but not least, communication between the resource manager and elastic appli-
cations must be supported. This is needed for the propagation of runtime resource
decisions to elastic applications as well as coordination between the two parties to
achieve successful resource adaptation.

3.3.2 SLURM: Base of the Elastic Resource Manager

The Simple Linux Utility for Resource Management (SLURM) [13] is an open-source re-
source management and job scheduling system for Linux and Unix-like clusters. It is a
highly scalable solution and currently quite popular in HPC systems, especially among the
world’s TOP500 supercomputers [13]. It provides three key functions: allocate resources
to jobs for some duration of time; start, execute and monitor parallel jobs on the set of
allocated resources; manage a pending job queue and arbitrate contention for resources.
After careful evaluation on popular HPC schedulers, SLURM was chosen as a base for the
Elastic MPI infrastructure implementation.

30

3.3 Elastic Resource Manager

SLURM can be seen as a collection of binaries that shares a single configuration file.
It consists of the following major components: the controller daemon (SLURMCTLD), node
daemons (SLURMD), application launchers (SRUN), and job step daemons (SLURMSTEPD). It
also provides plug-in interfaces for extended functions such as scheduling, topology, MPI
and Process Management Interface (PMI) support, database support, and more. Figure 3.3
shows an abstraction of SLURM internal organization of components, as well as the links
between PMI and MPI libraries and MPI processes.

A daemon is a background process that acts as an agent to performance dedicated tasks.
The controller daemon SLURMCTLD, including the batch scheduler as a modular plug-in,
manages the security, user accounts, tracks individual nodes, and so forth. It is the only
centralized component of SLURM, and is generally run on a dedicated node. Other user
controls and binaries such as SRUN, SBATCH, SCANCEL, among others, interact with it over
the network.

There is a node daemon SLURMD running on each node. Node daemons are used for
controlling and monitoring individual nodes. They are also responsible for starting the job
step daemons.

A job step is an application started with SRUN on a set of allocated resources. The
resources of a job step are managed through an instance of the application launcher SRUN
and a set of job step daemons SLURMSTEPD. Per job step, there is an instance of SRUN
running on the master node (node that contains MPI rank 0) and a SLURMSTEPD running
on each node.

3.3.3 Support for the Elastic MPI Library

SLURM manages resources by orchestrating the interactions and communication between
the centralized daemon and the node-local and job-local components. It is implemented
under the assumption that resource allocations are constant. To provide support for the
extended elastic operations presented in Section 3.2 as well as the required functionality
described in Section 3.3.1, modifications and extensions are made to various parts of the
original SLURM.

Figure 3.4 provides an overview of the SLURM-based elastic resource manager, which
also consists of centralized and local components. Interactions between components are
demonstrated with a resource expansion case. The original controller daemon SLURMCTLD is
replaced with two components: the Elastic Batch Scheduler (EBS) and the Elastic Runtime
Scheduler (ERS). The EBS manages the batch scheduling and security that was originally
provided by the controller daemon. The ERS provides various dynamic runtime supports
that do not exist previously, such as runtime scheduling, performance monitoring, resource
allocation modification, runtime communication, and many more.

For the MPI_Init_adapt operation, the application launcher SRUN receives the initial
resource allocation and credentials from the ERS. It then creates MPI processes by inter-
acting with the node daemons SLURMD of the allocated nodes. The information of process
status proc_status are propagated to each process with its initialization metadata.

With the MPI_Probe_adapt operation, resource change decisions are forwarded from
the ERS to the preexisting processes. This operation is coordinated by the SRUN. In
case of resource expansion, preexisting processes continue with work while the expansion
processes are being created. The preexisting processes are notified only when the expansion

31

3 Elastic MPI Infrastructure

e
(2]
—
a

g Static
Jq Job

Job Queue

SLURMCTLD Scheduler

/ Plugin \\
// Manage resourceg \\

7

/ A
4)
All Nodes
Node 0 }/| Node 1 Node 2 Node 3
:,/
gmm
/7 AY
,1 Node 4 Node 5 Node 6 Node 7 \
// \\
/7 eoe \
e _ Y, \\
/ \
4 ‘ DCAT) nf= ‘ O (¢ =Y \
7/ ~ J L C J UCLcC = U =
/7 \
Node 1 (master node) Node 2

SLURMD SLURMD

CPU @; CPU

Rank 0 Rank 1

Node 6 Node 7 World communicator
SLURMD SLURMD oo
[SLURM PD SLURMSTEPD

CPU &3 CPU %

Rank 4 Rank 5

Figure 3.3: SLURM overview: abstract organization of SLURM components (SLURMCTLD, SLURMD,
SRUN and SLURMSTEPD) on a cluster.

32

3.3 Elastic Resource Manager

Cr4 C
Elastic Static
Job Job
Elastic Job Queue Static Job Queue
Elastic Batch Scheduler (EBS)
Forward Offer
6 Jobs Resources
Elastic Runtime Scheduler (ERS)
/ AN
/ N
// Manage resources AN
. ~
All Nodes
Node O/’ Node 1 Node 2 Node 3
Lo SLuRMD)
, '/Node 4 Node 5 Node 6 Node 7 ‘\\
/1 \
/ eeoe AN
VAN J \
// \\
/ Allocation detailed view \
/ \
e New allocation™
2 Dy
R e e S Tttt
: N¢de 1 (master node)
| R »
I
1 P SLURMSTEPD SLURMSTEPD

World communicator
before adaptation

World communicator

Expansion communicatér
before adaptation i

Expansion nodes

Figure 3.4: SLURM-based Elastic MPI infrastructure overview: internal component organization
and interactions demonstrated with a case of resource expansion.

33

3 Elastic MPI Infrastructure

processes are ready. This latency hiding design minimizes the overhead induced by resource
adaptation.

For completion of an adaptation window, the following six steps take place in the elastic
resource manager:

1. The ERS makes a decision and sends a reallocation message to the SRUN instance of
the job step.

2. The SRUN then sends instructions the SLURMD of the preexisting nodes. In case of
resource reduction, these instructions tell some of the processes to leave the process
group. Via operation MPI_Probe_adapt, SLURMD updates the metadata of each local
MPI processes,

3. In case of expansion, SRUN sends a launch command with other required instructions
to the SLURMD of each participating expansion node.

4. After the MPI processes in expansion nodes are created, SLURMD of the leading ex-
pansion node notifies SRUN in the MPI_Comm_adapt_begin operation.

5. Once the adaptation window is completed, upon calling MPI_Comm_adapt_commit,
the SLURMD of the master node notifies SRUN that adaptation is completed.

6. SRUN notifies the ERS that resource changes are applied to the job step, and receives
an updated credential with added nodes or leaving nodes removed from the allocation.

Fach of the fore mentioned steps is marked in Figure 3.4 with an arrow pointing from
the component that performs the action to the component that receives the action. Steps
3 and 4 only take place in case of resource expansion. Notice that there are two ranks
associated with each MPI process: the one in the yellow communicator denotes the rank
before adaptation commit, and the one in the purple communicator denotes the rank after.

3.3.4 Pattern Detection, Performance Monitoring and Runtime Scheduling

Optimizing system performance metrics relies on accurate performance prediction of jobs.
For elastic jobs, this requires continuous real-time performance monitoring, which is a
task delegated to the ERS in the Elastic MPI infrastructure. The ERS detects patterns
of applications such as their parallel execution models and loop structures, collects their
performance data, and periodically makes resource (re)allocation decisions based on these
data.

Pattern Detection

In Elastic MPI, pattern detection [66, 67, 68] is achieved by the introduction of markers
by the compilation wrappers, i.e., mpicc, mpicxx and mpifort, which currently work with
GNU and Intel compilers. Using these markers as identifiers, structures of computation
workflow, such as loops, can be identified. Minimization of performance impact is of great
importance because pattern detection is intended to occur real-time in production runs
of elastic applications. The injection of markers at compile time eliminates the overhead
related to back-tracing.

The wrapper-based technique relies on the generated function calls in the emitted assem-
bly. Once an MPI or PMI call is identified, a unique integer ID is computed and inserted

34

3.3 Elastic Resource Manager

before the function call. This is done by an internal (not exposed to users) operation pro-
vided by the Elastic MPI library. Thanks to the fact that MPI and PMI operations can
be easily identified, it is guaranteed that only these operations are intercepted.

Using these unique IDs (markers), structures of computation can be extracted at runtime.
There are several algorithms for detecting patterns in sequences [69, 70, 71, 72, 73]. The
one adopted in Elastic MPI is based on [74], which was originally designed to analyze
programs from decompilation. The algorithm performs the following:

Generate a Control Flow Graph (CFG) based on detection.
Annotate each node of the CFG with its number of revisits.
Mark the head of each unique loop.

Mark the tail of each unique loop.

Rl o

Mark the reentry points from each nested loop.

The CFG is represented in a text-based tabular form. MPI functions are categorized
into different types such as point-to-point, one-sided, collectives, MPI-IO, among others.
With its type and unique ID, a relevant MPI function call triggers update to the CFG.
The detection logic is only available to elastic applications, i.e., the ones initialized with
MPI_Init_adapt. Pattern detection is by default disabled, and is enabled after the first
function call to MPI_Probe_adapt.

Performance Monitoring

Performance monitoring works side-by-side with pattern detection. MPI processes of an
elastic application start to record performance data locally once any loop is detected with
its head and tail identified. In the current implementation, two performance metrics are
recorded: the Total MPI Time (TMT) and the Total Loop Time (TLT). The TMT is the
total time spent on MPI operations. It is computed by accumulating the difference between
the exit and entry time of each MPI function call. The TLT is the total time spent on
the detected loop, which is inclusive of its TMT. It is computed by subtracting the loop
creation time from the time of its last visit. The ratio of TMT to TLT of the critical loops
gives a very good estimate of the real-time scalability of the application, on a process-level.

Each process serializes its local CFG data and sends it to the local node daemon SLURMD.
SLURMD keeps track of the CFG data and their updates from all node-local processes. It
performs CFG reduction whenever CFG data or an update is received. The TMT and
TLT metrics of each process in a loop are added to the reduced loop head nodes.

The ERS periodically generates a performance data request that reaches all nodes of an
elastic application. Indeed, the ERS requests performance data from all currently running
elastic jobs at the same time. These requests and responses are routed by the application
launcher SRUN of each elastic application. The ERS then performs a final reduction on the
received node-local performance data and generates a performance model for each elastic
application. The set of performance models are then used by the ERS to make resource
reallocation decisions.

Runtime Scheduling

On each resource evaluation, the ERS performs the following operations. It first iterates the
running job list and selects the elastic ones with available performance data. It generates a

35

3 Elastic MPI Infrastructure

performance model for each selected job, and computes a range of mandatory and optional
resource adaptation. It makes a resource offer to the EBS (for launching new jobs) based
on the computed range. It then performs FElastic Backfilling [12], an algorithm designed
to reduce the number of idle nodes. Via the SRUNs, it applies its resource change decisions
to every elastic job. Then it launches the new jobs forwarded by the EBS, if there is
any. Finally, it waits until the system reaches a steady state before moving on to the next
evaluation.

The computation of the resource adaptation range is a heuristic based on empirical
data from initial experimentation. In this algorithm, a Resource Range Vector (RRV) is
generated based on a metric called MPI to Compute Time (MTCT) of the current loop
of an application. A high MTCT ratio indicates large communication time, thus hints for
resource reduction. On the contrary, a low MTCT ratio hints for resource expansion. An
average and a trend value of the MTCT are computed.

The RRYV is generated based on the following rules:

e If any of the MTCT values is above the upper threshold, then reduce the application’s
resources to half.

e If one value falls in between the upper and lower thresholds and one is blow the lower
threshold, then the application should stay unchanged and is thus removed from the
set of candidates for changes.

e If both values are below the lower threshold, then double the application’s resources.

The upper and lower thresholds can be changed in the Elastic MPI configuration. They
create a bandwidth that helps prevent resource adaptation oscillations. The doubling
and halving of resources can be replaced by more precise values if more sophisticated
performance models are supported in the future. This algorithm tries to keep both MCTC
values blow the upper threshold for all elastic applications, which means it reduces more
aggressively. This is due to a design decision that we want to prioritize the launch of new
applications over the expansion of running applications.

3.4 Limitations and Known lIssues

3.4.1 Node-level Resource Granularity

The current Elastic MPI implementation supports node-level resource allocation and adap-
tation. Regardless of how MPI processes are mapped to physical resources, a node is either
completely included to or excluded from a resource allocation. It cannot be utilized par-
tially, nor be shared among multiple applications.

It is possible to modify the resource metadata representation stored on the node daemons
to support finer granularity, e.g., core-level resource allocation. However, the impact of
finer resource granularity on overall system performance requires further investigation.
There is currently no plan to add such feature to a future Elastic MPI release.

3.4.2 Constant Master Node

The current Elastic MPI infrastructure supports arbitrary resource expansion and reduc-
tion, with one exception where the master node (on which SRUN is located) of an application

36

3.4 Limitations and Known Issues

must remain in the allocation. This is due to the fact that SRUN cannot be migrated given
the inherent design from SLURM. Adding a migration feature to SRUN would enable arbi-
trary migration of full elastic applications.

All elastic applications presented in this dissertation are implemented under the assump-
tion that the master process (Rank 0) of an application remains unchanged throughout its
execution. This is a safe and valid assumption in the current release, given that the master
node, which contains Rank 0, remains in the allocation.

3.4.3 Rank to Process Mapping Strategy

In order to minimize data migration in resource adaptation, the current rank to process
mapping algorithm is designed to minimize rank changes, i.e., the ranks of the STAYING
processes are preserved. This is achieved by selecting the largest ranks for removal in case
of resource reduction, and assigning the JOINING processes with ranks greater than the
highest STAYING rank in case of resource expansion. Furthermore, to simplify the design
and implementation, the current Elastic MPI version does not support the case of mixing
reduction and expansion in one adaptation. An adaptation is either a pure expansion or a
pure reduction.

All presented elastic applications in this work are implemented with such assumptions.
Let N be the total number of current (preexisting) processes, N; the number of JOINING
processes, Ns; the number of STAYING processes and N; the number of LEAVING processes.
In case of a reduction, N; = 0 and N = N+ Ny; it is assumed that Rank 0 to Rank N, —1
are staying, and Rank N, to Rank N — 1 are leaving. In case of an expansion, N; = 0 and
N = Ng; it is assumed that Rank 0 to Rank N — 1 are unchanged, and Rank N to Rank
N + N; — 1 are the new joining ranks.

While this strategy guarantees minimal changes in STAYING ranks, it does not allow arbi-
trary removal of processes, which would be a requirement for fault-tolerant support. Should
fault-tolerant support be implemented in a future Elastic MPI release, these assumptions
would not hold true anymore.

3.4.4 Incomplete Functionalities of the Elastic Resource Manager

While the elastic resource execution support, i.e., the integration of the Elastic MPI library
and the resource manager, is fully implemented, the following functionalities of the resource
manager are not yet complete:

e The batch scheduler EBS is not provided in the current release.

e Only the SPMD execution model is implemented for pattern detection and perfor-
mance monitoring in the runtime scheduler ERS. Other models (such as master-
worker) are not yet supported. Application implementing a model other than SPMD
would be treated as a static MPI application.

For these reasons, in this dissertation we could not include integration tests, in which
multiple elastic applications run concurrently in the same environment to compete for
resources. In the presented tests of individual applications, we used different pre-defined
scheduling logic instead of the runtime scheduling based on pattern and performance data.
This is partially due the specific needs of different tests, partially due to the incomplete
support for different execution models, and partially due to some existing implementation
defects in the infrastructure.

37

3 Elastic MPI Infrastructure

3.4.5 Stability Issues and Limited Scalability

Besides the MPI library and resource manager, other components are needed in the Elastic
MPI infrastructure for the communication and interaction between different hardware and
software layers. This increases the development complexity and difficulty.

There have been known stability issues that are unresolved or only partially resolved in
different components, especially problems in the fan-out functionality in the PMI layer and
problems with the internal metadata organization. Most of these issues are rooted in the
original design for static resources in the SLURM and MPI bases, which makes it difficult
to find radical solutions unless replacing the old design entirely. These issues majorly affect
and limit the scalability of the infrastructure.

So far, tests on scalability (not presented in this work) have been successfully conducted
on up to 128 and 64 nodes on two CPU clusters in the SuperMUC Petascale System [75],
and those beyond that scale have failed. This is why tests presented in this dissertation
were conducted on limited nodes. Resolving the scalability issues is the utmost important
task in future Elastic MPI releases.

3.5 Summary

In this chapter, we discussed the high-level design and implementation of the Elastic
MPI infrastructure, which consists of two major components: the Elastic MPI library
and the elastic resource manager. The extended API provides four additional functions
to facilitate resource adaptation operations as well as communications between elastic ap-
plications and the resource manager. The resource manager is implemented based on
SLURM with modifications and extensions to provide required functionality for runtime
resource changes. Limitations and known issues of the current Elastic MPI release were
also elaborated.

38

Parallel Programming with
Elastic MPI

In this chapter, we discuss resource-elastic programming abstractions. In particular, we
investigate the two types of resource changes currently supported in Elastic MPI: pure
expansion and pure reduction. A pure expansion consists of STAYING and JOINING pro-
cesses, while a pure reduction consists of STAYING and LEAVING processes. In the current
implementation of Elastic MPI, a mixture of STAYING, JOINING and LEAVING processes in
one adaptation is not supported.

While the treatment for reduction is straight forward, i.e., saving the data from the
LEAVING processes before they are released, more efforts are required to handle expansion
as the JOINING processes start executing from the very beginning of the program with an
empty function stack. The key is to integrate them with the preexisting processes with the
least amount of work and time, which requires not only proper data preparation but also
a correct routing strategy to bypass unnecessary operations.

4.1 Classification of HPC Applications

One of the fundamental steps in parallel computing is to decompose the problem into a
set of tasks to be executed concurrently. Many decomposition techniques exist. As a wide
classification, they can be domain decomposition or functional decomposition [76], which
are also known as data parallelism and model parallelism respectively.

In a domain decomposition approach, the data (or computation domain) associated with
the problem is divided into smaller subdomains, which can be processed concurrently. In
contrast, in a functional decomposition approach, the computational tasks are decomposed
into smaller subtasks, each of which can operate on the same set or different sets of data.
In this work, we focus on data-parallel applications.

On distributed-memory systems, each parallel process has its own private memory space
and is isolated from other processes in terms of data. It requires communication between
parallel processes to exchange information. Such inter-process communication plays a key
role in parallel performance due to the additional overhead introduced by sending and
receiving data over the communication network.

Some problems can be decomposed in such a way that the parallel subtasks require
little to no communication between one another. These types of problem are called em-
barrassingly parallel. On the contrary, computation of parallel subtasks in some problems
requires non-trivial inter-process communication. Some refer to this type of problems as

39

4 Parallel Programming with Elastic MPI

communication-intensive. For data-parallel problems, the requirement for communication
is determined by data dependency among processes.

Function interpolation is an example of embarrassingly parallel problems. The goal
in this problem is to find a proper linear combination of a known set of basis functions
span{¢1,..., ¢y} in a certain finite function space V, such that the resulting function
f= Z;-‘Zl ¢;j ¢j(x) is equivalent to or approximates a given target function g. The solution
to this problem is to compute all the coefficients {ci,...,c,}, which can be obtained by
evaluating the target function g at each point in V associated with a basis function. This
problem can be decomposed into n subtasks of each computing a coefficient. There is no
data dependency between these subtasks, therefore, they can be executed concurrently or
asynchronously, in any order. The only place in the program that requires communication
is in the end, where results from all processes are aggregated.

A computational fluid dynamics (CFD) simulation is a typical example of communi-
cation-intensive problems. The simulation domain is partitioned into a number of sub-
domains, upon each of which computation is carried out by a process. The simulation
advances in time. The computation of one time step of a subdomain requires information
from its adjacent subdomains, which means, in each time step, a process must communicate
with its corresponding neighbor processes. Inter-process communication for such problems
is intensive in terms of message size and frequency. It is much more difficult to incorporate
resource elasticity into such problems, because when there are changes in resources, data
must be redistributed carefully such that a correct communication topology is preserved.

In the following sections, we discuss Elastic MPI programming models for communica-
tion-intensive and embarrassingly parallel problems.

4.2 SPMD with Single Computation Phase

SPMD refers to the execution model in which the same program is executed on multiple
data sets. In the parallel context, it means every process performs the same operations to
its local data. This model is widely used among MPI applications.

In communication-intensive problems such as grid-based simulations, the computation
domain is decomposed and distributed among processes. Processes perform the same or
similar operations to their local data and communicate with one another periodically. Their
computation-communication cycles must be synchronized, otherwise performance would
suffer due to large communication overhead from waiting for messages. The SPMD model
is suitable for such problems that require frequent communication and synchronization.

Algorithm 4.1 presents a schematic MPI program with a single computation loop imple-
menting the SPMD model. This program has a typical workflow of an HPC application:
starting with certain initialization steps, it does the major computation in a loop, then
it finalizes and terminates. We can divide such a workflow into 3 phases: initialization,
computation, and finalization. The distinction of phases is practical in parallel program-
ming, because these phases have different scalability and we normally parallelize only the
computation phase. In Elastic MPI, resource adaptation is also only considered for the
computation phases, where there are heavy workloads and require the most computing
power. Algorithm 4.2 presents an Elastic MPI version of Algorithm 4.1. In it resource
adaptivity is introduced to the main loop.

For programming with Elastic MPI, the following must be considered:

40

4.2 SPMD with Single Computation Phase

Algorithm 4.1: MPI program in SPMD with single computation phase

Function Main():

MPI_Init()

Initialize numRanks, rank, etc.

// 1. Initialization

Initialize computation data, perform domain decomposition, etc.

t<0

// 2. Computation: main loop

while t < Tiax do
Perform communication
Perform computation
Produce output

10 tt+ At

11 end

// 3. Finalization

12 MPI_Finalize()

13 End

N =

© ®w N &

frequency of resource adaptation,

data repartition and redistribution for resource changes,

data migration from LEAVING processes,

integration of JOINING processes with the preexisting processes.

The next paragraphs explain Algorithm 4.2 in detail with the above considerations.

Frequency of Resource Adaptation

The frequency for resource adaptation is application dependent. It can range from as fre-
quent as once every iteration to never, in which case it is basically a static MPI application.
The ideal frequency should reflect all resource change decisions from the resource manager
yet result in a small amount of accumulative adaptation overhead.

On one hand, resource changes do not occur at arbitrary time. The resource manager
collects performance data and makes decisions periodically. Therefore, it is unnecessary to
probe the resource manager much more frequently than it makes decisions. On the other
hand, if an application probes too infrequently, it may miss many real-time decisions and
hinder resource efficiency.

A third consideration for the adaptation frequency is the application’s inherent load
balancing scheme. Dynamic applications require periodic load balancing operations to
mitigate imbalances caused by their dynamic workload behavior. Every time resource
changes, applications must also performance data redistribution operations. If load bal-
ancing due to resource changes could overlap with the application’s built-in load balancing
operations, the adaption overhead would be significantly reduced.

41

4 Parallel Programming with Elastic MPI

Algorithm 4.2: Elastic MPI program in SPMD with single computation phase

=

W N

© 00 N O otk

10
11
12
13
14

15
16
17
18
19
20
21

22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37

Function Main():

MPI_Init_adapt() // returns process status in procStatus
Initialize numRanks, rank, etc.
// 1. Initialization: JOINING processes bypass
if procStatus = JOINING then
‘ Resource_Adapt () // Loop counter ¢ is synced during adapt
else
Initialize computation data, perform domain decomposition, etc.
t<+0
end
// 2. Computation: main loop
while t < Tiax do
Perform communication
Perform computation
Produce output
t—t+ At

if Time to probe Resource Manager then
MPI_Probe_adapt () // returns adapt decision in adaptFlag
if adaptFlag says to adapt then
Resource_Adapt ()
end

end

end

// 3. Finalization
MPI_Finalize()

End

Function Resource_Adapt():

MPI_Comm_adapt_begin()
if there are LEAVING processes then
‘ Save or transfer data from LEAVING processes
end
if there are JOINING processes then
JOINING processes initialize necessary data objects
Synchronize variables (loop counter, etc.) among the new resource group
end
Redistribute computation data among the new resource group
Sync data (loop counters, etc.)
MPI_Comm_adapt_commit () // MPI_COMM_WORLD is updated
Update numRanks, rank, procStatus, etc.

End

42

4.2 SPMD with Single Computation Phase

Resource Adaptation & Data Redistribution

In the main loop, MPI_Probe_adapt returns a signal to indicate whether or not there are
resource changes. If the signal is positive, the application enters the Resource_Adapt
function, which opens an adaptation window. The adaptation window is a transition
period in which both current and new resources are accessible. The application must
perform necessary data migration and synchronization within the window.

MPI_Comm_adapt_begin provides information on the resource changes, such as the num-
ber of STAYING, JOINING and LEAVING processes, as well as temporary communicators to
assist data migration and synchronization. Upon commit, these temporary communicators
would be destroyed, and MPI_COMM_WORLD would be updated, i.e., LEAVING processes are
excluded and no longer accessible, and JOINING processes are included. After committing,
it is necessary to also update all MPI_COMM_WORLD dependent variables such as the rank of
each process and the total number of ranks.

For data redistribution, the shown steps in the adaptation window can handle not only
the pure reduction and expansion cases, but also the more general case (though not yet
supported) of having both LEAVING and JOINING processes in one adaptation. First, data
integrity is regained by saving or transferring the partitions residing in the LEAVING pro-
cesses (if exist). Then, the JOINING processes (if exist) are prepared to receive data par-
titions. Finally, data is redistributed among the new set of resources, i.e., the union of
STAYING and JOINING processes. Redistribution can be done via point-to-point communi-
cations, collective reduce-broadcast communications, MPI I/O, or however is most suitable
for the problem.

Integration of JOINING Processes

While handling of the LEAVING processes is straight forward, i.e., saving their data parti-
tions to the file system or transferring their data to the STAYING processes, handling of the
JOINING processes requires more than data preparation.

Creation of the JOINING processes with complete memory copy from the preexisting
processes is blocking, and the copy operation can take up a long time depending on the
application’s memory usage. Therefore, by design, JOINING processes are created with
empty memory spaces and function stacks. They must start execution from the beginning
and go through the same procedures to achieve a similar memory state as the preexisting
processes. However, except for the initialization of some necessary variables and objects,
JOINING processes should avoid long, complex initial operations such as domain initial-
ization, initial domain decomposition and distribution, because they would receive proper
data preparation inside the Resource_Adapt block. This is reflected in Algorithm 4.2 lines
4 to 9, where the JOINING processes are identified and routed immediately to enter the
Resource_Adapt function, bypassing domain data initialization.

Preexisting processes are executing the computation loop during the creation of JOINING
processes. They are notified only when the JOINING processes are ready. JOINING processes
would reach the Resource_Adapt block first. Then, the preexisting processes would also
enter the Resource_Adapt block at the end of an iteration (line 17).

After returning from Resource_Adapt, the preexisting processes start a new iteration
from line 10. The JOINING processes, on the other hand, will also reach the same line
after returning from their Resource_Adapt call. Of course, both groups should have syn-

43

4 Parallel Programming with Elastic MPI

chronized the loop counter ¢ in the resource adaptation window. At this point, JOINING
processes are successfully integrated with the preexisting processes.

4.3 SPMD with Multiple Computation Phases

Extending from the case with a single computation phase, we now consider an SPMD
type application with multiple computation phases, with each phase consisting of a loop.
If all computation loops are made elastic, then a problem arises: how do the JOINING
processes know which loop to enter? Algorithm 4.3 shows a solution to this problem with
the introduction of an additional parameter — phaselD.

In this example, there are two computation loops, each of which is wrapped in a con-
ditional block, which is only executed if the phaselD matches a given value. As for the
preexisting processes, they enter the program, go through the original initialization phase,
and get phaselD initialized to 1 (line 8). Then they enter the first if-block and execute
the first loop. Upon completion, their phaselD is updated to 2, so they continue on to the
second if-block and execute the second loop.

The JOINING processes are directed immediately to the Resource_Adapt block, which
is similar to the one shown in Algorithm 4.2 and is not listed in this section again. In the
adaptation block, they are prepared with computation data, updated loop counters ¢, 7
and phaselD. This allows them to identify the correct computation loop and join in at the
correct iteration.

4.4 Master-Worker with Single Computation Phase

The master-worker model refers to the parallel execution scheme in which a master process
divides a task into a number of subtasks (jobs), dispatches them to several worker processes
and aggregates results; meanwhile, the worker processes compute received jobs one after
another and send back results until they receive a stop signal.

Many embarrassingly parallel problems implement this model. Due to the absence of
data dependency in these problems, data decomposition can be done arbitrarily and syn-
chronization is not required. Therefore, data can usually be divided into equal-load chunks
and computed asynchronously. Processes might work at different speeds, due to different
CPU clock frequencies, temperatures, hardware conditions, etc.. The flexibility and asyn-
chronism in this scheme allow processes to work more efficiently at their own pace.

Algorithm 4.4 shows a schematic MPI program implementing the master-worker model.
Note that a master-worker implementation does not imply embarrassingly parallelism, and
vice versa. Indeed, embarrassingly parallel problems can implement other schemes such as
SPMD, and the master-worker model can also be employed by other problem types.

Resource adaptivity can be incorporated in the master-worker scheme with some extra
care. Theoretically, processes can be added and removed freely without affecting other
processes because there is no data dependency. However, the resource adapt operations
(MPI_Comm_adapt_begin and MPI_Comm_adapt_commit) are collective, which means the
master process must interrupt the computation, inform and prepare the workers for adap-
tion. Algorithms 4.5 and 4.6 shows an Elastic MPI program implementing the master-
worker model.

44

4.4 Master-Worker with Single Computation Phase

Algorithm 4.3: Elastic MPI program in SPMD with multiple computation phases

=

W N

© 0w N o oo

10
11
12
13
14
15

16
17
18
19
20
21
22
23
24

25
26
27
28
29

30
31
32
33
34
35
36
37

38
39

Function Main():

MPI_Init_adapt() // returns process status in procStatus
Initialize numRanks, rank, etc.
// 1. Initialization: JOINING processes bypass
if procStatus = JOINING then
‘ Resource_Adapt () // phaselD and loop counters ¢, i are synced
else
Initialize computation data, perform domain decomposition, etc.
t< 0,7+ 1, phaselD <1
end
// 2. Computation: first loop
if phaselD =1 then
while t < Tax do
Perform communication
Perform computation
Produce output
t+—t+ At

if Time to probe Resource Manager then
MPI_Probe_adapt () // returns adapt decision in adaptFlag
if adaptFlag says to adapt then
Resource_Adapt ()
end
end

end

phaselD <+ 2

end

// 2. Computation: second loop
if phaselD = 2 then

for 7 do

Perform communication
Perform computation
Produce output

if Time to probe Resource Manager then
MPI_Probe_adapt () // returns adapt decision in adaptFlag
if adaptFlag says to adapt then
Resource_Adapt ()
end
end

end

end
// 3. Finalization
MPI_Finalize()

End

45

4 Parallel Programming with Elastic MPI

Algorithm 4.4: MPI program in master-worker with single computation phase

Function Main():
MPI_Init()
Initialize numRanks, rank, etc.
// 1. Initialization
4 Initialize computation data
// 2. Computation: single master-worker routine
if s Root then

| Master()
else

‘ Worker ()
end

// 3. Finalization
10 MPI Finalize()

N =

© N o w;

11 End
12 Function Master():
13 Initialize jobsArray // Track job status: Todo, Progress, or Done
14 Seed workers
15 while not all jobs are Done do
16 Receive a job result from any worker
17 if there are Todo jobs then
18 ‘ Send a Todo job to the same worker
19 end
20 Aggregate the job result
21 end
22 Send terminate signal to all workers
23 End
24 Function Worker():
25 while true do
// Message body carries job data. Message status object encodes instruction.
26 Receive a message from Master
27 Extract Master’s instruction from MPI status object
28 if instruction is to terminate then
29 ‘ break
30 end
31 if instruction is to work then
32 Compute the job
33 Send job result to Master
34 end
35 end
36 End

46

4.4 Master-Worker with Single Computation Phase

Algorithm 4.5: Elastic MPI program in master-worker with single computation
phase, Main function

1 Function Main():
2 MPI_Init_adapt() // returns process status in procStatus
3 Initialize numRanks, rank, etc.
// 1. Initialization: JOINING processes bypass
4 if procStatus = JOINING then
5 ‘ Resource_Adapt ()
6 else
7 ‘ Initialize computation data
8 end

// 2. Computation: single master-worker routine
9 if is Root then

10 ‘ Master ()
11 else
12 ‘ Worker ()
13 end

// 3. Finalization
14 MPI_Finalize()
15 End

The Main function

Redirecting the JOINING processes is a crucial step in Elastic MPI programming. In the
elastic main function in Algorithm 4.5, a conditional block is added in the beginning to
identify and route the JOINING processes to the Resource_Adapt block immediately. This
is necessary because without redirection, the JOINING processes would enter the worker
function directly and wait for instructions, while the Master and other preexisting workers
are in the adaptation block waiting for the JOINING processes, thus creating a so-called
deadlock situation.

A very subtle yet important thing to be aware of in Elastic MPI is that identifying
the Root process requires not only the rank but also the process status. This is be-
cause when the JOINING processes are created and not yet integrated, i.e., before calling
MPI_Comm_adapt_commit, they are in a separate process group with their own world com-
municator and corresponding ranks starting from 0. Therefore, a filter on only the rank
equals to 0 is inefficient, because it would result in two processes — the preexisting Rank
0 and the joining Rank 0. Note that choosing the Root to be the Master process is not
mandatory.

The Master Process

In the master function in Algorithm 4.6, a job array is used for keeping track of job
status. Each element of the job array corresponds to a job, and the value of the element
corresponds to the job status. A worker array is used in a similar manner for keeping track
of the worker status, which is a requirement for the Master, because when it interrupts

47

4

Parallel Programming with Elastic MPI

Algorithm 4.6: Elastic MPI program in master-worker with single computation
phase, Master & Worker functions (continue from Algorithm 4.5)

16 Function Master():
17 Initialize jobsArray // Track job status: Todo, Progress, or Done
18 Initialize workersArray // Track worker status: Active or Idle
19 Seed workers
20 while not all jobs are Done do
21 if there are Active workers then
22 Receive a job result from any worker
23 Aggregate job result
24 end
25 if there are Todo jobs and there are ldle workers then
26 ‘ Send a Todo job to an Idle worker
27 end

// Only make sense to adapt if there are more Todo jobs
28 if Time to probe Resource Manager then
29 MPI_Probe_adapt () // returns adapt decision in adaptFlag
30 if adaptFlag says to adapt and there are Todo jobs then
31 Check all workers status, collect job results from Active workers
32 Send adapt signal to all workers
33 Resource_Adapt ()
34 Resize and update workersArray // workers changed
35 Seed workers
36 end
37 end
38 end
39 Send terminate signal to all workers
40 End
41 Function Worker():
42 while true do

// Message body carries job data. Message status object encodes instruction.
43 Receive a message from Master
44 Extract Master’s instruction from MPI status object
45 if instruction is to terminate then
46 break
47 end
48 if instruction is to adapt then
49 MPI_Probe_adapt () // workers need to know its process status
50 Resource_Adapt ()
51 end
52 if instruction is to work then
53 Compute the job
54 Send job results to Master
55 end
56 end
57 End
48

4.5 Master-Worker with Multiple Computation Phases

computation for resource adaptation, it needs to know which workers are still active such
that it can try to collect results from them.

In the while loop, message receive and send are protected by conditionals. The Master
only receives a message, if it knows for sure there are messages being sent to it, i.e., there
are active workers which means job results will be sent when they complete their jobs. It
only dispatches a job, if there are jobs to do and there are idling workers.

The Master uses a counter to control the frequency of probing the resource manager.
Only when there are resource changes and there are more jobs left to do, it invokes a
sequence of operations to interrupt worker computation for resource adaptation.

The Master must first ensure that all workers have finished their current jobs by collect-
ing results from active workers. It then sends out the adapt signal to workers and enters
the Resource_Adapt block itself. Post adaptation, the Master updates the worker array
both in size and values to reflect the new resources. To get them back in computation, the
Master must seed the workers again.

Worker Processes

The worker function in Algorithm 4.6 is relatively straight forward. Workers wait for the
instruction from the Master in a while loop and take actions accordingly. There are three
possible actions: terminate computation by exiting the loop, resource adapt by entering
the Resource_Adapt function, and compute a job. For resource adaptation, workers must
first get their process status by calling MPI_Probe_adapt. The Master’s instruction is
encoded in the status object returned by the MPI receive function (this status object is
different than the process status). A worker receives a message from the Master, extract
the instruction, and decide what to do. The body of the message carries job data if the
instruction is to compute, otherwise, it carries dummy values which would be ignored.

The Resource_Adapt Function

The Resource_Adapt function is similar to the one shown in Algorithm 4.2. To enter
this function collectively, the Master must interrupt worker computation and send workers
the adapt signal, which might introduce considerable overhead. For embarrassingly parallel
problems, there is no need for data migration from LEAVING processes, nor data repartition
and redistribution inside the adaptation window. The only thing needed is data preparation
for the JOINING processes, such that they can carry out computation on jobs.

4.5 Master-Worker with Multiple Computation Phases

Let’s consider a surrogate model' construction problem: a surrogate model is initially
generated by a certain algorithm. The accuracy of the surrogate model can be evaluated
with some error indicator. If the surrogate is not accurate enough, it should be refined
repeatedly until its error indicator satisfies a certain threshold. Algorithm 4.7 demonstrates
the Elastic MPI implementation of such problem.

1 A surrogate model is an approximation to a high-fidelity model that is complex and computationally
expensive. A surrogate model is reduced in complexity, and thus, is computationally inexpensive. It
should produce similar results as the high-fidelity model with tolerable errors.

49

4 Parallel Programming with Elastic MPI

Algorithm 4.7: Elastic MPI program in master-worker with multiple computation
phases, Main function

Function Main():
2 MPI_Init_adapt() // returns process status in procStatus
Initialize numRanks, rank, etc.
// 1. Initialization: JOINING processes bypass
if procStatus = JOINING then
‘ Resource_Adapt () // loop counter err is synced
else
Initialize surrogate model
Initialize surrogate model error err

=

w

© W N o U R

end
// 2. Computation: multiple master-worker routines
10 while err > Tol do

11 if is Root then // Refine surrogate model
12 ‘ Master ()

13 else

14 ‘ Worker ()

15 end

16 Master update err, broadcast to workers

17 end

// 3. Finalization
18 MPI_Finalize()
19 End

50

4.6 Summary

Each refinement of the surrogate is carried by a resource-adaptive master-worker rou-
tine, in which multiple resource adaptations may occur depending on the workload of the
refinement. The master and worker functions are similar to those shown in Algorithm 4.6,
and the Resource_Adapt function is similar to the one shown in Algorithm 4.2, hence,
they are not listed again in this section.

Since the number of model refinement is indefinite, the master-worker routine must be
wrapped in a loop, which terminates only when the desired model accuracy is reached.
This program contains multiple resource-adaptive computation phases, with each phase
being an iteration of the while loop.

The key to handle multiple computation phases is the phase identifier, which must be
synchronized between the preexisting and JOINING processes during the resource adapta-
tion window. In a program with a definite number of phases that are wrapped in conditional
blocks, such as Algorithm 4.3, a phase identifier can help to determine which block is being
executed. In a program with computation phases wrapped in a loop, such as Algorithm
4.7, the loop counter helps to identify the phases and must be synchronized.

As discussed in Section 3.4.2, in the current implementation, the master node (containing
Rank 0) is persistent. This means that the Master process, if pinned to Rank 0 or any
rank resides in the master node, is assumed unchanged throughout program execution.
There is currently no fault-tolerant mechanism to handle failure of the Master process (or
the master node).

4.6 Summary

In this chapter, we discussed two types of parallel applications classified based on commu-
nication requirements: embarrassingly parallel and communication-intensive.

We presented the Elastic MPI implementation of two parallel programming schemes:
SPMD and master-worker, which are suitable for the communication-intensive and embar-
rassingly parallel problems respectively. Besides handing data migration and repartitioning
in the adaptation window, routing the JOINING processes such that they merge with the
preexisting processes at a correct place is a crucial step in both schemes.

We also discussed solutions for adding resource adaptivity to multiple computation
phases. The key is to introduce a variable to distinguish each phase and have it syn-
chronized between the preexisting and JOINING processes in the adaptation window.

51

PART 111

RESOURCE-AWARE AND ELASTIC PARALLEL
SOFTWARE DEVELOPMENT

53

Elastic Parallel
Tsunami Simulation with
Adaptive Mesh Refinement

Based on the requirements for communication and synchronization, parallel applications
can be categorized as embarrassingly parallel or communication-intensive, with the latter
being a more common type among HPC applications.

The simulation of tsunami wave propagation is a communication-intensive problem. It
involves solving a system of time-dependent Partial Differential Equations (PDEs). Ana-
lytic solutions usually do not exist due to the complexity of the PDE system, therefore,
numerical methods are required. The simulation domain (the ocean) is typically discretized
with a grid (also known as mesh), and the unknowns of the PDE system are placed at grid
elements such as grid cells, vertices or edges. Solving the PDE system means computing
the values of unknowns at each grid element. When the simulation is parallelized, the grid
is partitioned and distributed among processes.

The computation of unknowns at each grid element is dependent on the values from
the neighboring elements, which means, for each process, the computation of values in its
boundary elements requires data from other processes that contain their neighboring ele-
ments. Each process must have knowledge on the domain distribution (at least partially)
such that it knows with which processes to communicate. Such data dependency between
parallel processes poses challenges in realizing resource elasticity, because it requires preser-
vation of a definite communication topology in spite of frequent domain repartitioning and
redistribution due to resource changes.

To investigate the feasibility and practicality of the Elastic MPI framework for com-
munication-intensive parallel applications, we selected a representative large-scale tsunami
simulation for experimentation. sam(oa)? , which stands for Space-filling Curves and Adap-
tive Meshes for Oceanic and Other Applications, is a software developed by Meister [77]
for simulations based on AMR. A tsunami simulation based on sam(oa)? is selected for
the following reasons:

1. It represents a large population of HPC applications that are large-scale and com-
munication-intensive. It implements a popular parallel execution model SPMD.

2. This application has a very dynamic computational workload, hence it has a demand
for runtime resource adjustment. Moreover, the application is compute-bound, sug-
gesting that it is easier to scale.

3. With AMR, the underpinning grid of the simulation varies constantly. For that, the
application has a built-in data redistribution and load balancing scheme to handle

55

5 Elastic Parallel Tsunami Simulation with Adaptive Mesh Refinement

frequent workload changes and imbalances. These functionalities can be used to
handle data redistribution required by resource changes.

In this chapter, we first discuss the foundation which the spatial discretization scheme of
sam(oa)? is implemented. Then, we examine the implementation of the tsunami simulation
in sam(oa)? . Following this, we apply a transformation to the application using the Elastic
MPI library. Lastly, we conduct performance tests to determine the impact of introducing
runtime resource adaptivity.

5.1 Sierpinski Space-filling Curves

To truly understand the dynamic nature of the adaptive mesh underpinning the tsunami
simulation in sam(oa)?, we must first discuss the foundational concept upon which sam(oa)?
is built — Space-filling Curves (SFCs).

Motivated by Georg Cantor’s earlier counter intuitive result that there exists a one-to-
one correspondence between points on a unit line segment and points in a d-dimensional
space [78], and with the intention to construct a continuous mapping from the unit interval
onto the unit square, Giuseppe Peano discovered the first SFC in 1890 [79], which is now
called the Peano curve. Since then more SFCs were discovered over the years, such as the
Hilbert curve [80] and the Lebesgue curve [81].

Let v be a mapping from a one-dimensional to a d-dimensional space, e.g.,

~v:[0,1] — [0,1]%

Note that the domain and codomain of « are not limited to unit spaces. -y is considered
space-filling if it is surjective, that is, for each point (x1,...,z4) € [0,1]¢, there exists a
point k € [0,1] such that (k) = (z1,...,24). The image of such a surjective mapping is
said to be a SFC if it is also continuous [82, 83].

A common application of SFCs is for mapping multi-dimensional data to one dimension,
such that one-dimensional access methods can be exploited. In computer simulation, they
are used for adaptive grid generation with a 1-D ordering of the grid elements.

The Sierpinski Curve

The adaptive meshes implemented in sam(oa)? are based on the Sierpifiski SFC, which was
discovered by Waclaw Sierpinski in 1912 [84]. It is a mapping from a 1-D to 2-D domain
created by recursive substructuring of right, isosceles triangles.

Meshes generated by square-based SFCs, such as Peano curves, are known to have
the problem of being non-conforming (having hanging nodes) when adaptively refined.
However, for triangle-based meshes, this problem can be resolved by using newest vertex
bisection for adaptive refinement [85, 86]. The combination of Sierpinski curve traversal and
newest vertex bisection results in a recursive traversal algorithm for structured, conforming
and adaptive triangular grids [87].

Figure 5.1 illustrates the creation of an adaptive mesh using Sierpinski curve traversal
with newest vertex bisection and its corresponding refinement tree. In simulation problems,
data are associated with grid cells, vertices and edges. The curve in Figure 5.1(a) represents
the order in which data are accessed during computation. Accessing from the first to the
last grid element along the curve is called a Sierpinski traversal, with which grid data

56

5.1 Sierpinski Space-filling Curves

N
¥

-

(a) Adaptive Sierpinski mesh (b) Corresponding refinement tree

Figure 5.1: Creation of an adaptive triangular mesh based on Sierpinski curve traversal with
newest vertex bisection, and the corresponding refinement tree. Data are associated
with grid cells, vertices and edges, and transformed into a 1-D representation by the
Sierpinski curve. The algorithm accesses data via grid traversal as a whole. Random
access to individual elements is not permitted. The refinement tree represents the
hierarchical structure of the grid. Nodes are accessed by depth-first traversal from
left to right. Only the leave nodes (nodes in blue) correspond to actual grid cells.

are accessed and processed as a whole. Random access to individual element data is not
permitted.

The refinement tree in Figure 5.1(b) represents the hierarchical structure of the grid.
Nodes are accessed in a depth-first traversal order from left-to-right of the tree. Only the
leaf nodes, i.e., nodes with no children, colored blue in Figure 5.1(b), correspond to actual
grid cells and are processed during a Sierpiriski traversal. In other words, the left-to-right
order of all leaf nodes is the order of grid cells being accessed during a traversal.

Cache-Oblivious Sierpinski Traversal in sam(oa)?

Due to the one-dimensional representation, grid data can be stored in structures with
contiguous memory spaces such as streams and stacks, enabling cache-oblivious data access
pattern. sam(oa)? implements such a scheme by storing and accessing data purely on
streams and stacks [88, 89].

Figure 5.2 demonstrates with vertex data how the cache-oblivious data access scheme is
achieved in sam(oa)?. A complete traversal includes two passes: a forward and a reverse
pass. The Sierpinski curve shown in Figure 5.2(a) represents the forward traversal. Based
on their location relative to the forward curve, i.e., on the left or right side of the curve,
vertices are colored red or green respectively. The red vertices A, B, C and D, for instance,
are first accessed in-order during the forward traversal, and then in reverse order during
the reverse traversal.

For computation, the vertex data are initially stored in an input data stream, as shown
in Figure 5.2(b). They are then processed and pushed onto the green and red stacks in
the order they are encountered during the forward traversal. Then they are operated on
again in reverse order during the reverse traversal, and the results are stored in an output
stream. Similar procedures are also applied on data associated to cells and edges.

57

5 Elastic Parallel Tsunami Simulation with Adaptive Mesh Refinement

*

* Temporary stacks c *
* |§ " HIK
o 5
® |5] @ L 2
L E m IR
* |= = 3| &
* u 4

I—’ Data processing by element

s

Add cells Delete cells
for refinement for coarsening
(a) Adaptive Sierpinski mesh (b) Streams & stacks automation

Figure 5.2: Demonstration of a pure streams- and stacks-based data storage and access scheme
with vertex data as an example. Vertices are colored green and red based on their
location relative to the forward Sierpinski curve. Vertex data are initially stored in
an input stream and pushed to separate (green and red) stacks in the order they are
encountered during the forward traversal. They are then processed in reverse order
during reverse traversal and the results are stored in an output stream.

5.2 Tsunami Simulation in sam(oa)?

This section presents the theory and implementation details of the tsunami simulation in
sam(oa)? , which is based on the work of Meister [77].

5.2.1 Modeling the Tsunami Wave Propagation

For a tsunami simulation, we consider a three-dimensional domain which includes all or part
of an ocean. Typically, the wavelength of a tsunami largely exceeds the water height, as
the wavelength stretching in the two horizontal dimensions reaches hundreds of kilometers,
while the ocean depth in the vertical dimension is on the scale of a few kilometers. It is
the high wavelength-to-water height ratio that classifies the domain in which the tsunami
occurs as shallow water, and so the phenomenon can be modeled by the Shallow Water
Equations (SWE), which allow an approximation that integrates over the vertical axis
while ignoring vertical derivatives [90]. This approach models water to form a vertical
pillar in each 2D position & = (z,y) with space- and time-dependent water height h(Z,t)
and velocity 4(Z,t) = (u,v), transforming the simulation domain into a 2-D domain.

Of the different variations of SWE, the implementation of the tsunami simulation in
sam(oa)? is based on the following equations,

hi + (hu)y + (hv

)y
(hu); + (hu® + $gh?), + (huv)y = —ghb, (5.1)
(hv)y + (huv), + (h1)2 + %gh2)y+ —ghb.

This hyperbolic system describes the conservation of mass and momentum. Mass is rep-
resented by the water height h, because mass equals density times volume, i.e.,

m=p-AA-h,

58

5.2 Tsunami Simulation in sam(oa)?

where p denotes water density and AA represents the infinitesimal area at each 2-D posi-
tion, and the constants p and AA can be canceled out. For the same reason, momentum in
the two horizontal dimensions are represented by hu and hv. g represents the gravitational
acceleration and b represents the bathymetric data (height of the ocean floor relative to
Earth’s geoid).

System (5.1) can be expressed in the general form of a balance law as

q +f(a): + gla)y = ¥(x), (5.2)
where
h hu hv 0
q:= |hu|, f(q) = |hu®+ 1gh?|, g(q):= huw , ¥U(x):= |—ghb,
hv huv hv? + %gh2 —ghb,

Systems of such form as in (5.2) are well studied. There exist several methods for solving
for the unknown q, especially for SWE [91, 92, 93, 94].

5.2.2 Finite Volume Discretization and Explicit Time Stepping

For spatial discretization, the tsunami simulation in sam(oa)? adopts the finite volume
approach by [95], in which unknowns are represented by cell-average values in each cell
element. Let

h;j

t
qg) = hjUj
hjv;

be the corresponding unknown in cell j at time ¢, and

Fa, a!")

the transport of mass and momentum (the so-called net update) into and out of cell j from
an adjacent cell ¢ at time t. An explicit Euler update scheme can then be written as

At
q§t+m) = qj(»t) + 3 S AT (q](t), a), (5.3)
T ieN ()

where V; represents the volume of cell j, A;; represents the intersection area between cell
j and cell 4, and N (j) denotes the set of all neighboring cells of j. Equation (5.3) can be
understood as the updated values in cell j at time ¢ + At being calculated by the values
at time t plus the flux changes during the time interval At from all neighboring cells.

The most important component for the time stepping scheme in finite volume methods
is the flux solver, which computes the net updates F (qg-t), qgt)) between adjacent cell
pairs. There exist different flux solvers with trade-offs between accuracy and computational
complexity. While sam(oa)? implements several flux solvers, we skip over their formulation
and implementations details (which can be found in [77]) and treat them as black box
solvers.

59

5 Elastic Parallel Tsunami Simulation with Adaptive Mesh Refinement

As for the refinement indicator, a relative criterion is chosen as

(t+AY) (t)

where Tol;, > 0 is an arbitrarily chosen constant. The left-hand-side of the inequality
sign translates to the flux divergence. This criterion indicates refining cells with strong
flux changes and merging cells with the same water height. With such an indicator, grid
refinement will occur mostly at wave fronts and coarsening will occur mainly in areas where
the ocean is at rest.

5.2.3 Sierpinski Curve for Parallelization

The convenient 1D representation of grid cells, vertices and edges provided by the Sier-
pinski order facilitates parallelization of 2D grids. In addition, the Hdélder-continuity of
Sierpinski curves ensures well-formed partitions that are edge connected [96], which resolves
the known NP-hard problem of finding uniform partitions for adaptive meshes while mini-
mizing communication [97]. By adopting the straight forward approach of cutting the grid
into partitions of uniform computational load along the Sierpiniski curve, sam(oa)? achieves
a good load-balanced parallelization scheme with minimized inter-process communication.

Computational load in sam(oa)? is modeled as an abstract cost function, which is defined
as either a weighted sum of the number of grid cells, vertices and edges, or an estimate for
the execution time based on runtime measurements. Once the computational load is de-
fined, sam(oa)? divides the grid into sections with uniform load at best effort. Sections are
independent computational units that consist of the grid elements (cells, vertices and edges)
and their associated data corresponding to contiguous intervals of the Sierpinski curve. The
union of all sections forms the grid.

sam(oa)? supports shared-memory, distributed-memory or hybrid parallelization with
OpenMP and MPI. It implements different controlling mechanisms to define number and
size of sections and how to distribute them to processors, e.g., a distributed algorithm
assigns sections as atomic units to processors, a node-local algorithm decides how many
sections are to be created and how large they are. For hybrid type parallelization, if sections
are set to be atomic, i.e., splitting of sections is not permitted, a multiple of n sections are
assigned to a MPI process, where n is the number of physical processors associated with
a process. In this case, processes first compute their local sections and mark grid cells for
refinement or coarsening. An estimate of the new computational load of each section is
then computed, and sections are distributed based on their new loads. Grid refinement and
coarsening is performed locally only after the load balancing (distribution of sections) step,
followed by a local repartitioning step of sections. In another case where splitting of sections
are allowed, processes would perform actual grid refinement before redistributing sections.
After load balancing, sections will also be repartitioned again locally. Besides different
section control schemes, in pursuit of more optimal load balancing results, sam(oa)? also
implements other advanced features such as thread-level work stealing and different cost
function models that are suitable for different situations.

60

5.2 Tsunami Simulation in sam(oa)?

section

/ Rank 0 Rank 1y Rank 2

\ 4

C Computation (mark cells for refinement or coarsening))

A
+1| -1(+2|+1| -2 -1]-2]-1|+1|+2

Y
(Load Balancing (redistribute sections based on load estimatesD

Y
+1| -1|+2|+1] -2 -1]|-2|-1]|+1|+2

(Locally refine & coarsen sections)

v

(Locally repartion sections)

Figure 5.3: Demonstration of parallelization, adaptive refinement and load balancing steps with
the atomic section approach. A computation step is first performed and cells are
marked for refinement or coarsening. Sections are distributed across processes based
on their load estimates. The actual grid refinement and coarsening step is performed
after the load balancing step. Lastly, sections are repartitioned locally.

61

5 Elastic Parallel Tsunami Simulation with Adaptive Mesh Refinement

Load Balancing with Chains-on-chains Restriction

Dynamic grid refinement imposes a restriction on grid partitioning, i.e., grid cell pairs
that are feasible for coarsening (being merged into one cell) should be allocated in such
a way that doing so is possible. In other words, any cell pair that can be merged in a
coarsening operation should be assigned to the same or consecutive processes. When we
take sections as independent computational units, this restriction should also be reflected
on the section-level, i.e., sections must be located on the same process or on neighboring
processes if they are in consecutive Sierpinski order. A direct solution is to enumerate the
processes by consecutive integers, sort all the sections in Sierpinski order and assign them
to processes with a non-decreasing mapping. The resulting 1-D load balancing scheme is
known as the chains-on-chains partitioning scheme [98, 99].

Parallelization, adaptive refinement and load balancing (distribution of sections) steps
are demonstrated in Figure 5.3 in the atomic section parallelization approach. An array
of rectangles, representing a number of sections in the 1-D Sierpinski order, are colored in
red, green and blue to indicate the processes in which the sections reside. At the beginning
of the iteration, a computation step is performed and based on the updated data, cells are
marked for refinement or coarsening and a load estimate of each section is computed. Then
a load balancing step is performed by distributing sections in a chains-on-chains manner
across processes based on their load estimates. Afterwards, an actual grid refinement step
is performed locally by each process followed by a step of section repartitioning.

5.2.4 Main Simulation Steps

Major steps of the parallel tsunami simulation in sam(oa)? are summarized in Algorithm
5.1. The simulation consists of three phases: initialization, computation and finalization.
In the initialization phase, the application first creates a grid and its cell-associated data
structures for § = (qi,...,qn), where q; = (h, hu, hv,b). Then it refines the initial grid
and interpolates g until the user-defined maximal refinement level is reached. Following
this, it reads the initial displacement data of the ocean floor b and water height h as
resulting from an earthquake simulation. hu and hv are set to 0 as the ocean is assumed
initially at rest.

The tsunami simulation is achieved in the computation phase with a while loop starting
at time t = 0. At iteration of simulation time ¢, the application first refines and coarsens the
grid and performs interpolation and restriction on §® accordingly. It also balances loads by
redistributing and repartitioning sections. As mentioned in Section 5.2.3, grid refinement
and load balancing can occur in different orders depending on the parallelization approach
chosen. The program then computes the next time step At, which must globally satisfy a
stability condition involving the wave propagation velocity. The following computation of
the new cell states G*t2% involves communication, i.e., exchange of boundary cell layers
between neighboring processes. A flag for refinement or coarsening is then set for each cell.
The grid is controlled by user-defined minimal and maximal refinement levels to stay within
a reasonable range such that it captures necessary details yet is feasible for computation.
All these operations are incorporated into grid traversals as the program is operating on
streams and stacks only, and no random or index-based access to individual cells is allowed.
At the end of the iteration, visualization output is produced if the condition is met.

62

5.2 Tsunami Simulation in sam(oa)?

Algorithm 5.1: Main algorithm of the parallel tsunami simulation from sam(oa)?

[uny

w N

© 0w N o o s

10

11
12
13
14
15
16
17
18
19

20
21

Function Main():

MPI_TInit()

Initialize numRanks, rank, etc.

// 1. Initialization

Traversal: Create grid, initialize q

while refinement flags are set do
Traversal: Refine grid, interpolate ¢, balance load
Traversal: Initialize g, set refinement flags

(t=0) set refinement flags

end
Traversal: Load bathymetric data b and initial water height h
t<+0

// 2. Computation: tsunami simulation main loop
while ¢ < t,ax do
Traversal: Refine grid, interpolate/restrict G®, balance load
Traversal: Compute time step At
Traversal: Compute §*+2Y with communication, set refinement flags
t—t+ At
if every K iterations then

‘ Write visualization output q*)
end

end
// 3. Finalization
MPI_Finalize()

End

63

5 Elastic Parallel Tsunami Simulation with Adaptive Mesh Refinement

5.3 Resource-elastic Transformation

In this section, we discuss how to transform the parallel tsunami simulation shown in Al-
gorithm 5.1 into a resource-elastic application with the programming models discussed in
Chapter 4. Based on the centralized design of the Elastic MPI framework, malleable appli-
cations must periodically react upon the resource change decisions made by the resource
manager. Therefore, they should be designed in such a way that they can run on any
amount of resources with the ability to expand and reduce on resources at any time.

Based on the performance analysis of the tsunami simulation presented in [77], we know
that in Algorithm 5.1, the tsunami simulation while loop dominates the computation.
The initial grid refinement loop in the initialization phase normally takes a few iterations
that contribute to only a small fraction of the total execution time. Therefore, resource
adaptivity should be restricted to the simulation loop only. Observing that the program is
communication-intensive and contains a single computation loop, it can be modified using
Algorithm 4.2 as a guideline. The major steps of the tsunami simulation after resource-
elastic transformation are summarized in Algorithm 5.2 and 5.3.

Main function: preexisting processes

One crucial step in Elastic MPI programming is the separation of the preexisting and
JOINING processes, such that they execute their respective part of a program and merge
at a point where the computation can be carried on without interruption. The original
processes being created during program start must execute the initialization steps, i.e., the
initial domain decomposition and distribution. Algorithm 5.2 line 4 to 14 reflect this step.

Entering the main simulation loop, the preexisting processes perform the same steps
as in the original program (Algorithm 5.1) except for an additional if-block for resource
adaptation at the end of the iteration.

The conditional controls the frequency of probing the resource manager. As discussed in
Section 4.2, probing should not occur too often or too infrequently, and it is ideal to overlap
data redistribution from resource adaptation with the application’s inherent load balancing
step. For this application, since load balancing already takes place at each iteration (line
16), resource adaptation can be performed as frequently as every iteration in that regard.

Main function: routing of the JOINING processes

The JOINING processes, after being initialized with some essential variables, are redirected
to the resource adaptation block immediately bypassing the initialization phase, because
firstly, they would receive proper data-preparation in the resource adaptation block, and
secondly, the initialization phase of this application is relative intensive thereby should be
avoided.

Upon returning from the adaptation block, the JOINING processes continue from line 15
and join in the computation at a new iteration. At the same time, the preexisting processes
return from their resource adaptation entry point (line 26) and also start from line 15 for
a new iteration. At this point, the two process groups successfully merge together.

In the computation loop, the resource adaptation block entry can be placed at either the
beginning or the end of the iteration without interfering with the computation. However,
placing it at the beginning is less optimal, because when the JOINING processes enter the

64

5.3 Resource-elastic Transformation

Algorithm 5.2: Main algorithm of the Elastic MPI tsunami simulation

=

w

© 00 N & ot oBs

10
11
12
13
14

15
16
17
18
19
20
21
22

23
24
25
26
27
28
29

30
31

Function Main():

MPI_Init_adapt() // returns process status in procStatus
Initialize numRanks, rank, etc.
// 1. Initialization: JOINING processes bypass
if procStatus = JOINING then
‘ Resource_Adapt () // loop counter t is synced
else
Traversal: Create grid, initialize G(*="), set refinement flags
while refinement flags are set do
Traversal: Refine grid, interpolate ¢, balance load
Traversal: Initialize ¢, set refinement flags
end
Traversal: Load bathymetric data b and initial water height A
t<0
end
// 2. Computation: tsunami simulation main loop
while t <t do
Traversal: Refine grid, interpolate/restrict d®, balance load
Traversal: Compute time step At
Traversal: Compute G(*2Y with communication, set refinement flags
t—t+ At
if every K iterations then
Write visualization output g
end
if Time to probe Resource Manager then
MPI_Probe_adapt () // returns adapt decision in adaptFlag
if adaptFlag says to adapt then
Resource_Adapt ()
end
end
end
// 3. Finalization
MPI Finalize()
End

65

5 Elastic Parallel Tsunami Simulation with Adaptive Mesh Refinement

Algorithm 5.3: Resource adaptation function of the Elastic MPI tsunami simulation

32 Function Resource_Adapt():

33 MPI_Comm_adapt_begin()
34 if there are LEAVING processes then

// No need to load balance as it occurs at next iteration beginning
35 LEAVING processes send their sections to STAYING processes
36 end
37 if there are JOINING processes then
38 JOINING processes create and initialize grid and data objects
39 Sync data (loop counters t, etc.)
40 end

// Data redistribution is omitted as it occurs at next iteration beginning

41 MPI_Comm_adapt_commit () // MPI_COMM_WORLD is updated
42 Update numRanks, rank, procStatus, etc.
43 End

loop, instead of start computing directly, they check for resource adaptation again which
is unnecessary.

Resource Adaptation

The Resource_Adapt function in Algorithm 5.3 opens the adaptation window. When there
are LEAVING processes, they send their sections to some of the STAYING processes. At this
step, the STAYING processes merely serve as temporary data holders. Load balancing is
not taken care of at this point, because a load balancing step will occur at the beginning
of the next iteration (line 16 in Algorithm 5.2).

For the case of resource expansion, the JOINING processes are initialized with data
containers and objects. The loop counter (simulation time ¢) is synchronized between
the preexisting and JOINING processes. Comparing to the resource adaptation block in
Algorithm 4.2, the data redistribution step is omitted, the reason is also ascribed to line
16 in Algorithm 5.2.

Overall, due to the application’s inherent load balancing scheme, data migration ac-
tivities inside the adaptation window are reduced to a minimum, thus so is the resource
adaptation overhead.

5.4 Performance Evaluation

In this section, we present the performance analysis on several test cases of a chosen
benchmark simulation scenario — the Tohoku tsunami from 2011 that was preceded by
a magnitude nine earthquake near the coast of Japan. For the bathymetric data of the
northern Pacific ocean and the Sea of Japan, the GEBCO 2014 Grid version 20150318 is
used [100]. We first assess the impact of runtime resource adaptivity on the application,
i.e., the overhead introduced by resource adaptation. We then compare execution time and
resource efficiency of the Elastic MPI implementation with the static MPI counterpart.

66

5.4 Performance Evaluation

5.4.1 Execution Environment: SuperMUC

All tests for this application were conducted on the SuperMUC Petascale System [75] at
the LRZ located in Garching, Germany. They were run on the supercomputer’s Phase 1
thin nodes, which consists of Intel Sandy Bridge-EP Xeon E5-2680 cores, with 16 CPUs per
node operating at 2.7 GHz. Table 5.1 enumerates specification details of some CPU clusters
in SuperMUC. We ran our tests with 16 MPI processes per node without hyperthreading,
pinning each process to a core.

All tests were pure MPI runs without the use of OpenMP. This is because in the current
Elastic MPI implementation, resource adaptivity are purely MPI-based, and we want direct
analysis and comparison without distraction from other factors such as threading.

The SuperMUC uses IBM Load Leveler for resource management. Due to a lack of
administrative rights, we could not replace the system resource manager with the Elastic
MPI resource manager. For our experimentation, we created batch scripts that allowed for
running our customized resource manager nested in a batch job.

The Elastic MPI infrastructure currently supports node-level resource allocation and
adaptation only (see Section 3.4). A node (16 MPI processes) is the minimal resource
unit an elastic application can acquire or remove. Nodes cannot be partially utilized
by an application nor shared among multiple applications. The master node (the node
containing MPI Rank 0) of an application is persistent, i.e., it remains unchanged in the
resource allocation throughout execution.

Table 5.1: The SuperMUC CPU cluster specifications

Phase I Phase I Phase II
CPU Cluster Fat Nodes Thin Nodes Haswell Nodes
Processor Intel Westmere Intel Sandy Bridge Intel Haswell
Xeon E7-4870 10C Xeon E5-2680 8C Xeon E5-2697 v3
Nominal frequency [GHz] 2.4 2.7 2.6
Cores per node 40 16 28
Memory per core [GByte] 6.4 2 2.3
Memory per node [GByte] 256 32 64
Memory bandwidth per node [GB/s] 136 102 137
Number of nodes 205 9216 3072
Double prec. flops per node [Gflops] 384 346 1165
Double prec. flops total [Tflops] 79 3190 3580
Interconnect Infiniband QDR Infiniband FDR10 Infiniband FDR14

5.4.2 The Benchmark: Simulation of the Tohoku Tsunami

Figure 5.4 displays the visualization of the tsunami wave (left), the corresponding adap-
tive grid (right top) as well as the resource utilization (right bottom) of the benchmark
simulation of the Tohoku tsunami at two different time steps: one at simulated time one
hour, the other at simulated time three hours.

The simulation was run in a 32-node elastic environment, started with 1 node (16 MPI
processes) initially. The color blocks in the grid correspond to the color of the executing
nodes, e.g., the blue portion of the grid is computed by the node in the same color. Nodes
in gray color mean they are not utilized. At simulated time one hour, the simulated was

67

5 Elastic Parallel Tsunami Simulation with Adaptive Mesh Refinement

executed on 16 nodes with 256 processes. At three hours, it was expanded to 28 nodes
with 448 processes.

The simulation grids are very refined in the area between the coast of Japan and the
tsunami wave front, and very coarse for the rest of the ocean. Comparing with the grid
in Figure 5.4(a), the grid in Figure 5.4(b) contains much more grid cells as the tsunami
wave front propagates further and the refined region is much larger. Due to the increase
in computational workload, the simulation utilizes more nodes at simulated time of three
hours.

5.4.3 Resource Adaptation Overhead

One major concern of introducing runtime resource adaptivity is that the induced over-
head could be significant. Not only the additional Elastic MPI function calls introduce
overhead, but also do the necessary communication due to resource changes, e.g., moving
data from LEAVING processes, synchronization between preexisting and new resources, load
rebalancing operations, etc.

In this experiment, we want to analyze the impact of resource adaptation on the tsunami
simulation. In each test, we run a single instance of the benchmark in a 32-node elastic
environment. It always starts with minimal resources: 1 node (16 processes). The maximal
resources it can expand to is 32 nodes (512 processes).

In order to fully examine different cases of resource expansion and reduction, we use a
random elastic runtime scheduler that gives new resource assignment between 1 and 32
nodes every 60 seconds. There is no adaptation if the generated random number is the
same as the current number of nodes. The application is set to probe the resource manager
every 50 iterations, which is approximately every few seconds.

As an example, the resource change profile of one of the test runs is selected and shown
in figure 5.5. In this run, resource adaptation took place 4 times: it first expanded from 1
node (16 processes) to 18 nodes (288 processes), then again to 24 nodes (384 processes),
afterwards, it reduced to 14 nodes (224 processes), and later again to 2 nodes (32 processes).

Table 5.2 shows the average execution time of the Elastic MPI functions. These mea-
surements vary depending on the type and size of the adaptation. As a general rule
of thumb, execution times of MPI_Comm_adapt_begin and MPI_Comm_adapt_commit are
longer for bigger resource changes, e.g., expanding from 1 to 20 nodes is a bigger change
than expanding from 18 to 20 nodes, And these functions also take longer for resource
expansion than reduction. An in-depth performance analysis on the Elastic MPI functions
can be found in [65, 12]. In each test, MPI_Init_adapt is called only once at the begin-
ning, while MPI_Probe_adapt is called every 50 iterations. MPI_Comm_adapt_begin and
MPI_Comm_adapt_commit are called as many times as the number of adaptations, which is
on average 4 to 5 times per test.

The execution time of the simulation is broken down into 6 major computational tasks:
grid refinement, grid conformity check, load balancing, time step computation, resource
adaptation, and other operations such as I/O. For the test run shown by Figure 5.5, its
execution time percentage spent on each task is listed in Table 5.3. Resource adaptation
overhead is 5.7% of the total execution time. This includes the execution time of the
Elastic MPI functions as well as the time measured around all adaptation windows. From
all tests with a random elastic scheduler, their resource adaptation overhead is normally
measured between 5% and 10% of the total execution time.

68

5.4 Performance Evaluation

— 1.0e+01 Je+01
§ 8 ¥ v
¥
¥

S P S P B E YN
1

5

Water Height
Utilized Nodes

N
0.0e+00

. 3.1e+01
N 2‘0
i
10

} HEAN
Is

0.0e+00

Water Height
Utilized Nodes

(b) Simulation time at three hours, executing on 28 nodes (448 MPI processes)

Figure 5.4: Two time steps of the benchmark simulation of the Tohoku tsunami from 2011 that
was preceded by a magnitude 9 earthquake near the coast of Japan. The tsunami sim-
ulation is visualized on the left, and the underlying adaptive grid as well as real-time
resource utilization is displayed on the right. The color blocks in the grid correspond
to the color of the executing nodes, e.g., the blue portion of the grid is computed by
by the node in the same color. Nodes in gray color are not utilized.

69

5 Elastic Parallel Tsunami Simulation with Adaptive Mesh Refinement

500 | 1

400} .

300 B

200 | 1

Number of MPI ranks

100 1

il il il il
0 50 100 150 200 250 300
Execution time (sec)

Figure 5.5: Resource change profile during a test run. Minimum resources is 1 node (16 processes),

70

maximum resources is 32 nodes (512 processes). Four resource adaptations took place
during this test run: firstly an expansion from 1 to 18 nodes (from 16 to 288 processes),
secondly an expansion from 18 to 24 nodes (from 288 to 384 processes), thirdly a
reduction from 24 to 14 nodes (from 384 to 224 processes), and lastly a reduction
from 14 to 2 nodes (from 224 to 32 processes).

Table 5.2: Average execution time of elastic MPI functions

Elastic MPI function | Avg. exec. time (sec)

MPI_Init_adapt 0.04
MPI_Probe_adapt 0.06
MPI_Comm_adapt_begin 2.78
MPI_Comm_adapt_commit 0.10

Table 5.3: Average exec. time percentage of computational tasks

Computational task \ % total exec. time

Grid refinement 24.6%
Grid conformity check 13.5%
Load balancing 22.1%
Time step computation 30.5%
Resource adaptation 5.7%
Others 3.6%

Table 5.4: Comparison of execution time and CPU hours

Test run ‘ Exec. time (sec) ‘ CPU hours
Static MPI with 32 nodes (512 processes) 203 28.48
Elastic MPI with stepping scheduler 270 15.89

5.4 Performance Evaluation

1.4 %106 .

1.2} .

1.0} .

0.8} i

0.6 | .

Number of grid cells

0.4} .

0.2

L L L L L L L L
1000 2000 3000 4000 5000 6000 7000 8000 9000
Simulation time step

o

(a) Number of grid cells in tsunami simulation phase

600 : :
— Static MPI
500 | — Elastic MPI [

|
|
v Integral area = 102512 I I
& 400r CPU-Hour = 28.48 L ! 1
— | |
s [[
%5 300 - I I .
. | |
g | I
§ 200 : I -
Integral area = 57#15
100 | CPU-Hour = 15.89, i
| I
| |
0 | | | 1l | 1 |
0 50 100 150 200 250 300 350

Execution time (sec)

(b) Number of MPI processes vs. execution time.

Figure 5.6: Dynamic workload behavior of the Tohoku benchmark. And the performance com-
parison between an Elastic MPI run and a static MPI run on a 32-node environment,

5.4.4 Runtime and Resource Efficiency

In this experiment, we want to analyze the application’s execution time and resource effi-
ciency by comparing static and Elastic MPI test runs in identical execution environments.
Because the performance monitoring functionality and the decision logic in the resource
manager are not fully implemented, our Elastic MPI tests are conducted with predefined
runtime schedulers.

The number of grid cells is the best indicator for computational workload. To understand
the dynamic behavior of the application, we first obtain a growth profile of the grid cell
count from the simulation phase as shown by Figure 5.6(a). One can observe an almost
linear growth from 0.2 to 1.28 million cells in about 9000 simulation time steps. This

71

5 Elastic Parallel Tsunami Simulation with Adaptive Mesh Refinement

indicates an increase in workload by more than 6 times from the beginning to the end,
which is a drastic change.

Note that the number of grid cells will not grow infinitely. It will eventually saturate
and decrease when the simulation runs long enough such that the wave front propagates
out of the simulation domain. But in the current test scenario, the simulation would not
reach the cell number saturation or decrease stage.

In the perfect scenario, the resource manager should be able to capture such a workload
behavior and assign more resources to the application accordingly. In order to simulate
this scenario, we use a stepping elastic scheduler that increases the resource assignment
every 60 seconds.

For fair comparison, the execution environment for both runs are kept the same: 32-
nodes with 16 processes per node. From performance analysis done in [77], we know that
the application can scale on more than 32-nodes. Therefore, we try to utilize all available
resources in the static MPI run, which is 32 nodes (512 processes). For the elastic run, the
application starts will 1 nodes (16 processes) and expands to more nodes according to the
stepping scheduler.

Figure 5.6(b) shows the number of MPI processes versus execution time for the two runs.
Table 5.4 further lists their execution time and CPU hours. The total execution time is
203 seconds for the static run, and 270 seconds for the elastic run. The CPU hours can be
computed by integrating the number of MPI processes (each process is pinned to a CPU)
over the execution time, which makes 28.48 CPU hours for the static run and 15.89 CPU
hours for the elastic run. Even though the execution time of the Elastic MPI run is about
% longer than that of the static run, its CPU hours are reduced almost by %, meaning that
it is almost twice as resource efficient as the static run.

5.5 Summary

As the first case study for malleable software development with Elastic MPI, we se-
lected a tsunami simulation from the sam(oa)? framework. It represents the classical
communication-intensive grid-based HPC applications implementing the SPMD model.
This application is compute-bound and has a very dynamic computational workload.

For communication-intensive applications, data redistribution and load balancing are
expensive operations. This poses challenges in realizing resource elasticity, because frequent
resource changes (which require frequent data redistribution) can introduce significant
overhead. The selected tsunami simulation, however, has a built-in load balancing scheme
to mitigate load imbalances caused by AMR. Our resource-elastic implementation overlaps
these built-in operations with those required by resource changes, thereby minimizes the
overhead. This finding is backed by the results from tests with a random elastic scheduler.
The resource adaptation overhead was typically measured between 5% and 10% of the
total execution time.

The tsunami simulation demonstrated a very dynamic behavior in its computational
workload. When runtime resource allocation was adjusted in accordance with its workload,
the Elastic MPI test run showed a significant reduction in CPU hours compared to a
static MPI test run in the same execution environment. From this we can conclude that
for applications with dynamic workload behavior, resource elasticity can help to improve
resource efficiency on the application level.

72

5.5 Summary

The largest Elastic MPI tests on scalability we have conducted (not presented in this
dissertation) were on 128 thin nodes and 64 Haswell nodes on SuperMUC. We were not
able to scale further due to some known stability issues in the current Elastic MPI release
(discussed in Section 3.4.5). For these reasons, we were only able to obtain completed test
runs of the tsunami simulation on 32 thin nodes. Tests in larger environments with more
than 32 nodes have failed. In those tests, we were able to launch the application and had
it run and adapt for a period time, but the application crashed before completion. Were
these stability issues in the infrastructure fixed, we should be able to run tests on larger
scales.

73

Elastic Parallel
Oil Reservoir Simulation
with 2.5-D Adaptive Mesh

HPC applications rely on efficient utilization of computational resources and the system’s
communication network. Their performance is often limited by either the processor speed,
memory or communication bandwidth. Applications are considered compute-bound (or
CPU-bound) when their progress is limited by the processor speed. This types of appli-
cation often have high processor utilization rates and are easier to scale. Applications
are considered communication-bound (or bandwidth-bound) when their progress is limited
by the networking due to intensive communication among the executing processes. These
applications push the limits of the network bandwidth and are sensitive to communication
overhead, thus harder to scale.

The oil reservoir simulation is yet another classical communication-intensive grid-based
HPC application implementing a SPMD execution model. Similar to the tsunami sim-
ulation presented in Chapter 5, it is also adopted from sam(oa)? [77] and has a similar
computational workflow, because it is likewise developed upon adaptive meshes based on
Sierpinski traversal. As a second application selected for Elastic MPI investigation, how-
ever, it also possesses different characteristics:

1. Based on very different underlying physics, it has a much more intensive computation
kernel compared to the tsunami simulation. It is a 3-D simulation implemented with
2.5-D adaptive meshes, i.e., 3-D meshes with adaptivity in two dimensions.

2. It has a mostly constant computational workload.

3. Last but not least, while the tsunami simulation is compute-bound, this simulation
demonstrates more communication-bound characteristics, which means it is more
sensitive to communication overhead and harder to scale.

We are interested in experimenting with applications with different parallel performance
characteristics, i.e., with both compute-bound and communication-bound applications,
because resource adaptivity has major impacts on communication overhead and these
applications have very different sensitivity levels to that. Theoretically speaking, the per-
formance of communication-bound applications is more impaired by resource adaptivity,
so the improvement on resource efficiency is expected to be less than that of compute-
bound applications. Being communication-bound and having a constant workload, the oil
reservoir simulation is a good candidate to be included as it adds variety to our application
base.

75

6 Elastic Parallel Oil Reservoir Simulation with Adaptive Mesh Refinement

In this chapter, we first explain the target simulation scenario along with its domain
discretization treatment, i.e., the 2.5-D adaptive mesh. Then, we briefly discuss the physics
used to model the simulation and its implementation in sam(oa)?. Following that, we apply
the resource-elastic transformation using the Elastic MPI library. Lastly, we present the
application-level performance and resource efficiency analysis conducted from an isolated
environment with single application.

(a) Whole domain 85 layers (b) Bottom 50 layers (Upper Ness)

Figure 6.1: Permeability field of the SPE10 benchmark simulation domain, with a resolution of
220 x 60 x 85 grid cells. The top part, consisting of 35 layers, is a Tarbert formation
that is a representation of a prograding near shore environment. The lower part,
consisting of 50 layers, is a fluvial Upper Ness formation. Image source [101].

6.1 The SPE10 Benchmark Simulation Scenario

This application simulates a scenario defined by the Society of Petroleum Engineer’s tenth
benchmark problem (SPE10) first published in 2000 [101], which describes oil production
by water injection in a cuboid domain. The domain of the benchmark is filled with soil,
a porous medium that permits the flow of liquids. The lateral extent of the domain is
on the order of kilometers, corresponding to the field scale, and pores are regarded as too
small to be resolved. Permeability is highly heterogeneous throughout the domain, and so
is porosity. Figure 6.1 shows the permeability field with a resolution of 220 x 60 x 85 grid
cells. The whole domain consists of two distinct layers of formation: the Tarbert formation
(top 35 layers), which is a representation of a prograding near shore environment; and the
fluvial Upper Ness formation (bottom 50 layers).

The domain is initially saturated with oil. A vertical well located at the center of the
domain injects water at a constant rate. Four vertical production wells at the corners
extract oil by pressure-induced flow. Over time, the reservoir fills with water that spreads
out from the center and displaces the oil towards the production wells at the corners.
Figure 6.2 shows the saturation profile in of a full size SPE10 benchmark simulation with
85 vertical layers. Water spreads from the center injection well to the corner production
wells over time. Due to the heterogeneity in material permeability, water propagation
speed differs across the different vertical layers.

2.5-D Adaptive Mesh Based on Sierpinski Traversal

Unlike some other SFCs such as Hilbert curves, which can be applied on higher dimensional
domains, the Sierpinski curve is limited to 2-D domains. To extend a 2-D grid based on

76

6.1 The SPE10 Benchmark Simulation Scenario

Figure 6.2: Full-sized SPE10 simulation with 85 vertical layers. Saturation profile at 25, 50,

75 and 100 simulated days. One corner of the domain has been clipped for better
visibility. Image source [77].

NN

(a) Prismatic grid with 4 layers in sam(oa)?.
Image source [77] (b) A vertical array of prism cells

Figure 6.3: A 2.5-D adaptive prismatic grid with four layers in sam(oa)?. In each 2-D position
(x,y), an array of four cell data is stored, with each data associated with an additional
z-coordinate. The vertex data has the same z-major storage scheme, with one more
element in each vertical array than the cell data.

7

6 Elastic Parallel Oil Reservoir Simulation with Adaptive Mesh Refinement

Sierpinski traversal into a 3-D domain, layers of the 2-D grid are stacked on top of one
another to create depth in the vertical dimension. The resulting grid is the so-called 2.5-D
adaptive mesh with a fixed number of layers, i.e., the grid may be dynamically refined and
coarsened in the horizontal dimensions, but the number of vertical layers is constant. Grid
cells in the 2.5-D adaptive mesh take the shape of a prism instead of a triangle. Figure 6.3
shows a 2.5-D adaptive mesh with four layers and a vertical array of prism cells.

Due to the constant size in the vertical dimension, an extension to the 2-D grid storage
scheme is implemented by storing a fixed size array at each 2-D position instead of a single
element. This is applicable to both vertex and cell data. Figure 6.3(b) shows a vertical
array of prism cells at a certain position (z,y) of the 4-layer grid. Cell data (represented
by a red dot) is located at the center of each cell. Instead of a single element, the cell data
stored at (x,y) contains an array of 4 elements, and each of which is associated with a
third coordinate z. The same procedure is applied to vertex data. The only difference is
that a vertical vertex data array (represented by blue squares) has one more element than
a cell data array. This z-major storage scheme allows for kernel vectorization over the z-
dimension when the number of layers is large enough. More details on the implementation
of the 2.5-D adaptive mesh can be found in [102, 77].

6.2 Porous Media Flow Simulation in sam(oa)?

In this section, we discuss the modeling of the porous media flow and the implementation
of the simulation in sam(oa)?. Content of the rest of this section is a short recapitulation
based on [77].

6.2.1 Modeling of Immiscible Porous Media Flows

We consider a domain filled with permeable materials such as soil, sand or grain that
permits flow of liquids or gases, which are mixtures of two immiscible substances, such as
water and oil in oil reservoirs or water and gas in carbon reservoirs. The substances in the
liquid or gas mixture are called liquid phases, denoted by a € {w,n}, where w represents
water, the wetting phase and n represents oil (or gas), the non-wetting phase.

The domain is usually a whole or partial reservoir. Due to its large lateral extent,
usually on the order of kilometers, the pores in the medium are considered too small to be
resolved, and so are the liquid interfaces. A space- and time-dependent averaged quantity
Sa(x,y, 2,t) is introduced to describe the saturation of phases, i.e., the fraction per unit
volume. Saturation is a relative quantity, therefore, for two-phased liquids, there is

Sw+ sp = 1. (6.1)

Considering the fact that phases are never fully saturated nor desaturated, concepts of
effective saturation denoted by so. and residual saturation denoted by s, are introduced.
In computation, only the effective saturation of phases, given by

s Sw — Swr
we ‘=
1

— Swr — Snr (6 2)
L Sn — Snr
Sne ‘=)
1— Swr — Snr

78

6.2 Porous Media Flow Simulation in sam(oa)?

are taken into consideration, because the residual saturation is assumed to have no effect
on the flow. Substituting (6.1) into (6.2) leads to

Swe + Sne = 1. (6.3)

Darcy’s Law

Porous media flows are often assumed to be laminary [103], and the forces that act on
the fluid are caused by the pressure gradient and gravity. Derived from the Navier-Stokes
equation [104, 105] the phase velocity is given by

Uy = Aa(sae) K(_vPa + pag)7 (64)

where K is a permeability tensor, Vp, is the pressure gradient, p, denotes the phase
density, g is the gravity vector, and A\, (sqc) represents the phase mobility, which is defined
as a function of the relative permeability k. and the phase viscosity pq, given by

Aa(Sac) = “‘*Sj) (6.5)

Without the consideration of gravity, i.e., omitting the term p,g, equation (6.4) is called
Darcy’s law. With gravity, the equation is referred to as the extended Darcy’s law.
Transport Equations

Using the extended Darcy’s law (6.4), conservation of mass for each phase is expressed by
the transport equation, given by

(poe(l)sa)t + diV(paua) = Pafa;, (66)

where ®(z,y, z) is the porosity, i.e., the ratio of pore volume per unit volume; p,®Ps,
represents the mass per unit volume; p,u, denotes the flux; and pnq, is the source term,
where g, represents the incoming/outgoing phase volume over time at a source/sink. The
equation basically states that the change of mass and the transport of mass sums up to
the amount of mass coming from/going into a source/sink.

Assuming the flow is incompressible, which means the phase density p, is constant,
equation (6.6) can be simplified as

(Psqa)t + div(ug) = ¢a- (6.7)

Closed Form for Incompressible Flow

The capillary pressure models the pressure discontinuity caused by a force induced by
surface tension on phase interfaces. In our simulation problem, since the capillary pressure
is small in water and oil mixtures, we neglect it and define

P = Ppw = Pn- (6.8)
From equation (6.3), we define

5= Sye =1 — Spe. (6.9)

79

6 Elastic Parallel Oil Reservoir Simulation with Adaptive Mesh Refinement

Substituting (6.8) and (6.9) into the extended Darcy’s law (6.4), the phase velocities are
given by

aduy, = Ay(s) K(=Vp + pug),

u, = (1 — 8) K(=Vp + png). (6.10)
From (6.1), we can derive (®sy,); = —(®sy)¢, which can be substituted into the transport
equation (6.7) and yields
(Psw)e + di'V(uw) = Gu (6.11)
—(Psy)t + div(uy,) = gn.
Addition of the two equations returns the total volume balance
div(uy + up) = quw + Gn. (6.12)
From (6.2), s,, can be expressed with the effective and residual saturations, i.e.,
Sw = Swe(l = Swr — Snr) + Swr) (6.13)
which, substituting into equation (6.11) yields
(P(1 — Swr — Spr)S)t + div(uy) = qu, (6.14)

—(P(1 = swr — Spr)8)t + div(uy,) = gp.

The term (1 — Sy — Spr) is a constant ratio and can be considered as a reduction of pore
volume. Defining the modified porosity as

O := (1 — Sur — Snr) P, (6.15)
and redefining the letter ® to describe ®, we obtain the simplified closed form as

(cI)S)t + diV(uw) = Qu,
—(®s)¢ + div(uy,) = ¢n, (6.16)
div(uy, +) = qu + Gn-

The first two equations are the closed form transport equations, and the third equation
describes total volume balance of the two phases.
Quasilinear Form

The quasilinear form, given by
aq +f'(q) - Vg = ¥(q), (6.17)

resembles the advection equation with a flux derivative f’(¢) and a source term ¥(q).
For numerical analysis, it is useful to transform (6.16) into the quasilinear form, because
the matrix f’(q) contains the signal speeds of the system [90], which can be used for
computation of the time steps.

80

6.2 Porous Media Flow Simulation in sam(oa)?

The first step for obtaining the quasilinear form is to substitute (6.8) and (6.9) into the
extended Darcy’s law (6.4) and obtain the expression for each phase velocity, i.e.,

Uy = Ay(8)K(=VD) + puwruw(s)Kg,
u, = >\n(1 - S)K(*VP) + pn)\n(l - S)ng (6'18)
= up = [Ay(s) + A1 = 8)] K(=Vp) + [Aw(s)pw + An(1 — 5)pn] Kg,

where ur := u,, + u,,. By rearranging terms, the phase velocities can be expressed as

Aw(8) . -
Uy, o(5) + A (1 — S)(UT + A (1= 8)(pw — pn)Kg), oo
— An(1—s) .
tn = Aw(8) + A (1 — S)(uT + Aw(8)(pn — pw)Kg).

Inserting (6.19) into (6.16) and applying the chain rule to the resulting equations with
some rearrangement, the quasilinear form for each phase is obtained. For the wetting
phase, it is given by

Osp + &y - Vs = Y(s), (6.20)
where
AL = 5) = Aw(s)A,(s) X ()5 (5) + A% ()X, (s)
S T G F =92 T T O ls) - on(l—5))? (puw = pn)Ke,
U(s) := quw — e j‘rwiz)(l 5 (qw + qn) — Aiq{s()si;\iil(l_j)s) (pw — pn) div(Kg).

(6.21)

The same equation is obtained for the non-wetting phase with &, = &,.

6.2.2 Discretization and Numerical Solution

The PDE system (6.16) can be solved implicitly or semi-implicitly with mixed discretization
schemes [106, 107, 108]. sam(oa)? implements the IMPES (IMplicit Pressure, Explicit
Saturation) scheme that alternates between implicit solver for the pressure and explicit
solver for the saturation [109]. The IMPES scheme is easier to compute than a fully
implicit formulation and is the canonical choice for the SPE10 benchmark [107].

Discretizing the first transport equation in (6.16) with the cell-centered finite volume
method, an explicit update rule for the saturation of each cell j is obtained as

A
sUFA0 = 510 ‘t. (Qu)i— > AiFulsy s], (6.22)
iV iENT)

where At denotes the time step, Vj is the cell volume and ®;V; represents the effective
cell volume, (Qq); denotes the discrete source term that is nonzero only near wells, N(j)
represents the set of all neighboring cells of cell 7, A;; is the area of the intersecting surface
between cell j and its neighbor cell ¢, and F(...) represents the net update between the
adjacent cell pair.

81

6 Elastic Parallel Oil Reservoir Simulation with Adaptive Mesh Refinement

Deriving from the discrete transport equation (6.22) for both phases, an equation de-
scribing the total volume balance is obtained as

) Aﬂ(Fu (s 57) 4+ 7 (50507)) = (@u)s + (@ (6.23)
iEN (5

Applying a finite element method to discretize pressure p, we obtain for (6.23) a non-linear
system that must be solved in each IMPES time step.

Solving for Pressure and Upstream Mobility

Fuw(s1, sr) and Fp (s, sr) are numerical flux solvers that compute the net updates of satura-
tion on an interface between a left cell and a right cell . In these solvers, sam(oa)? employs
an upstream differencing scheme for an approximation to the Riemann solution. Defining

ur = Fu(si, $r) + Fu(si, sr), (6.24)

we solve (6.23) for ur.
In order to close the system, we define the multidimensional upstream formula given by

Fuw(si,sr) = Al nT~K(—Vp + pug)

N (6.25)
fn(slﬂs’f’) =)\n n]'LK(VP+png)a
where
A Aw(s1), if an,iK(—Vp + pwg) > 0.
v Aw(8r), otherwise.
o (6.26)
AF =)‘n(l - Sl)? if nj,iK(_vP+ png) > 0.
" An(1 = s,), otherwise.

Insertion of (6.25) and (6.26) into (6.23) yields an implicit system

Py Agi((N0)sa+ ()g) i K(=Vpy) =
N (6.27)
(Qu)j + Z Aji (w)giPw + (/\:L)j,ipn) n;{invig'

€N (J)

To solve (6.27), sam(oa)? implements a staggered scheme that alternates between com-
puting the upstream mobilities A}, and A} and solving for the pressure p until convergence
is reached. The solver starts with an initial guess of p, and first computes (6.26). It then
feeds the results into (6.27) to construct a linear system and solves it for p. With the up-
dated p, the solver computes (6.26) once again and compares the results with the previous
values. If A} and A} changed, meaning that convergence is not reached, the solver must
perform further iterations and the upstream mobilities must be tested again. Until A} and
Ay no longer change, the solver returns and the solution of p is found.

82

6.2 Porous Media Flow Simulation in sam(oa)?

Computation of the Time Step Size

The CFL condition, named after Courant, Friedrich and Lewy [110, 111], is a stability
condition for the time step size At. It states that for each cell j € {1,...,n}

Vi
At Pt < 6.28
iEN(G) TP
where At is the global time step size, v;; is the signal velocity at the interface between cell
pair j,¢, and Ax;j; is the characteristic length of the interface, which is defined as the ratio
®;V;

of the effective cell volume to the interface area, i.e., Ax;; = for the porous media
j’i

flow model. Moving At to the left side and everything else to the right, we get

®;V;

Z Aj v

1EN(5)

At < (6.29)

The signal velocity v;; in the porous media flow model is indeed the maximum speed 5]_1
of all incoming waves at the interface of j, given by (6.21).

Due to the fact that &ils difficult to compute, sam(oa)? implements a simpler condition
that directly forces the saturation s; in (6.22) to remain in the range of [0, 1], i.e.,

At
77 iEN(j)

which results in the condition of

At < max | — PiViss , ;V5(1 = 5)) . (6.31)
(Qu)i— > AjiFul(sj,si) (Qu)j— Y. AjiFu(ss si)
i€EN(5) iEN(5)

At each IMPES iteration, At takes the maximal value that satisfies (6.31).

Adaptive Mesh Refinement

Adaptive mesh refinement requires three ingredients: an error indicator for refinement

or coarsening, an interpolation operator for cell splitting (refinement) and a restriction

operator for cell merging (coarsening). These three components must be defined for each

quantity of interest, i.e., saturation s and pressure p in the porous media flow simulation.
For the error indicator for saturation, the £; norm, given by

El(s) = /Q ‘Sexact - 3’ dQ, (632)

is a suitable candidate, because it mitigates peaks at discontinuities that exist in the ana-
lytical solution Sexact- Assuming that s is an £q-optimal piecewise constant discretization
of Sexact, the error in the £1 norm is bounded by

1 & .
Ly(s) < 9]; | gé%’j(sexact) - gelgi(sexact” V(Qj)v (6.33)

83

6 Elastic Parallel Oil Reservoir Simulation with Adaptive Mesh Refinement

which suggests that the degrees of freedom is invested well in cell j. This in sam(oa)? is
modeled by
AsiV () := \;ne%f(S) - ;relg;(é’)! V(§y), (6.34)

with the full refinement indicator given by
ASjV(Qj) > Toly (Smax - Smin) V<Qmin)7 (6.35)

where Tols > 0 is a dimensionless parameter chosen at runtime, Syax — Smin = 1 represents
the maximum saturation difference, and V(yin) denotes the minimal cell volume.
For the error indicator for pressure, sam(oa)? implements the following
JAV
Apj > TOlp (pmax - pmin)$) (636)
Tmax — Lmin

where Ax is the size of a cell, and Zmax — Tmin represents the domain size. It is meant to
be defined in a way such that Tol,, is independent of the problem, which is the reason why
it includes the global value of pressure drop-off pmax — Pmin and the domain size.

Conservation of Mass, Pressure, Porosity and Permeability

For simulation of the SPE10 benchmark scenario, in which correct global quantities such
as accumulated oil production are required, conservation of mass, pressure, porosity and
permeability must be ensured for adaptive mesh refinement.

For mass, point-wise conservation m, = poPs, is not possible due to the fact that refine-
ment and coarsening modify the shape of cells and thus inevitably change the saturation in
some regions. However, element-wise conservation can be achieved by using finite element
theory. Let shape function gig, porosity ® and saturation 3, be a set of variables living on
the old grid, and a corresponding set ¢, ® and s, living on the new grid. Let {¢;} be a
set of test basis functions. Element-wise mass conservation yields

/Qpaq)j (Z(Sa)i@)wj dQr = /Qpa‘i’j (Z(%)Nﬁi)%‘ d, (6.37)
(2 (2
from which mass conservative interpolation and restriction operators for s can be defined.
We skip the implementation detail here. Simply put, the transfer of saturation s from
the old grid to the new grid is achieved by computing the saturation of each cell on the
new grid by averaging all saturations of cells on the old grid, weighted by the intersecting
volumes of water in old and new cells, i.e.,

?:1 V(QZ N QJ)§Z
V(€;)

5j 1= (6.38)

For pressure, refinement and coarsening should keep the linear system in a solved state.
However, after refinement (splitting of cells), there is no local flux-conservative solution
for the new elements. Therefore, the pressure equation must be solved globally after each
adaptive mesh refinement. For the pressure solver, sam(oa)? chooses an initial value pj on
the new grid by weighting the old pressure p with intersection volumes of old and new cells
V(Q; N Q) and averaging over the new cell area, i.e.,

- L V(6N Q))pi
7 1402

(6.39)

84

6.3 Resource-elastic Transformation

Strict mass conservation requires volume-weighted averaging porosity refinement. After
a cell refinement or coarsening, the porosity of the coarse cell should be equal to the
average porosity of both refined cells. For the case of coarsening, porosity in the new grid
is computed straightforward by averaging. For refinement, the condition can be fulfilled
by integrating the porosity data on the fly. Refinement and coarsening of the permeability
are performed in the same manner as for porosity.

The Main Simulation Loop

Putting together all the necessary building blocks, the major steps of the porous media
flow simulation are summarized in Algorithm 6.1. The application consists of three phases:
initialization and computation and finalization.

In the initialization phase, the algorithm first creates a grid along with all the grid-
associated data p, s, K and ®. Then it refines the initial grid and interpolates p, s, K and
® until the user-defined maximal refinement level is reached. As already discussed, after
every mesh refinement, the pressure equation must be solved. The staggered scheme for al-
ternating between computing upstream mobility and solving for pressure until convergence
is wrapped in a loop, as shown in line 9 to 12.

The computation phase contains one main loop, which implements the IMPES scheme.
At each iteration, the application first performs a traversal for setting the refinement flags
for each cell. It then performs the actual grid refinement and coarsening, interpolates/re-
stricts p, s, K and ® accordingly, and follows it by a load balancing step, which is similar
to the procedures discussed in Section 5.2.3. A while loop for a staggered pressure solver
is executed and the solution for p is obtained. Then the time step size is computed accord-
ing to (6.31). Saturation s is updated with an explicit time step given by (6.22). Lastly,
visualization outputs are produced every few iterations.

6.3 Resource-elastic Transformation

In this section, we discuss how to transform the parallel porous media flow simulation
shown in Algorithm 6.1 into a malleable application with the Elastic MPI library. The
simulation is communication-intensive and implements an SPMD model. It contains one
main simulation loop, in which resource adaptivity should take place. The initial grid
refinement loop in the initialization phase has little computation intensity, hence will not
be considered for resource adaptivity. Using Algorithm 4.2 as a guideline, the malleable
parallel porous media flow simulation is summarized in Algorithms 6.2 and 6.3.

In terms of elastic programming models, this application does not bring in more va-
riety as it has a computation workflow very similar to that of the tsunami simulation
discussed in Chapter 5. However, as mentioned earlier, this application is interesting and
worthwhile investigating due to its different parallel performance characteristics, i.e., being
communication-bound and having a static workload, which cause the application to behave
differently to resource adaptivity.

The Main Function

The key in Elastic MPI programming is to distinguish the different types of processes and
handled them differently. In the main function, identifying the JOINING processes and

85

6 Elastic Parallel Oil Reservoir Simulation with Adaptive Mesh Refinement

Algorithm 6.1: Main algorithm of the oil reservoir simulation from sam(oa)?

1
2
3

© W N o ok

10
11
12
13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28

29
30

Function Main():
MPI_Init()
Initialize numRanks, rank, etc.
// 1. Initialization
Traversal: Initialize p, K and ®
Traversal: Initialize s, set refinement flags, set up linear system of p
Traversals: Solve for p
while refinement flags are set do // grid initialization loop
Traversal: Adapt grid (interpolate p, s, K, ®) and balance load
while pressure equation is not solved do
Traversal: Initialize s, set refinement flags, set up linear system of p
Traversals: Solver for p
end
end
t<0
// 2. Computation: IMPES simulation main loop
while t < t.x do
Traversal: Set refinement and coarsening flags
Traversal: Adapt grid (interpolate p, s, K, ®) and balance load
while pressure equation is not solved do
Traversal: Initialize s, set refinement flags, set up linear system of p
Traversals: Solver for p
end
Traversal: Compute time step At
Traversal: Update s
t—t+ At
if every K iterations then
‘ Write visualization output s, p
end

end

// 3. Finalization
MPI_Finalize()
End

86

6.3 Resource-elastic Transformation

Algorithm 6.2: Main algorithm of the Elastic MPI oil reservoir simulation

=

w N

© W N o UUos

10
11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31

32
33
34
35
36
37
38

39
40

Function Main():

MPI_Init_adapt() // returns process status in procStatus
Initialize numRanks, rank, etc.
// 1. Initialization: JOINING processes bypass
if procStatus = JOINING then
‘ Resource_Adapt () // loop counter t is synced
else
Traversal: Initialize p, K and &
Traversal: Initialize s, set refinement flags, set up linear system of p
Traversals: Solve for p
while refinement flags are set do // grid initialization loop
Traversal: Adapt grid (interpolate p, s, K, ®) and balance load
while pressure equation is not solved do
Traversal: Initialize s, set refinement flags, set up linear system of p
Traversals: Solver for p
end
end
t<+0
end
// 2. Computation: IMPES simulation main loop
while ¢ < tax do
Traversal: Set refinement and coarsening flags
Traversal: Adapt grid (interpolate p, s, K, ®) and balance load
while pressure equation is not solved do
Traversal: Initialize s, set refinement flags, set up linear system of p
Traversals: Solver for p

end
Traversal: Compute time step At
Traversal: Update s
t+—t+ At
if every K iterations then

‘ Write visualization output s, p
end

if Time to probe Resource Manager then
MPI_Probe_adapt () // returns adapt decision in adaptFlag
if adaptFlag says to adapt then
Resource_Adapt ()
end

end

end

// 3. Finalization
MPI_Finalize()

End

87

6 Elastic Parallel Oil Reservoir Simulation with Adaptive Mesh Refinement

Algorithm 6.3: Resource adaptation of the Elastic MPI oil reservoir simulation

32 Function Resource_Adapt():

33 MPI_Comm_adapt_begin()
34 if there are LEAVING processes then

// No need to load balance as it occurs at next iteration beginning
35 LEAVING processes send their sections to STAYING processes
36 end
37 if there are JOINING processes then
38 JOINING processes create and initialize grid and data objects
39 Sync data (loop counters t, etc.)
40 end

// Data redistribution is omitted as it occurs at next iteration beginning

41 MPI_Comm_adapt_commit () // MPI_COMM_WORLD is updated
42 Update numRanks, rank, procStatus, etc.
43 End

routing them correctly is a crucial step. Due to the intentional latency hiding design,
preexisting processes are only notified of the arrival of JOINING processes by calling the
MPI_Probe_adapt function. And the two groups of processes can only start collaborating
when they reach the beginning of the adaptation window MPI_Comm_adapt_begin. Due
to this reason, the JOINING processes must be directed to the designated Resource_Adapt
function as soon as possible bypassing the initialization phase, because they are meant to
receive proper data preparation inside the adaptation window.

In Algorithm 6.2, the initialization phase is wrapped in a conditional such that it is
only executed by the original processes that are created during program start. Processes
joining the program at runtime are directly routed to the Resource_Adapt function shown
in Algorithm 6.3. Upon returning from the adapt function, the JOINING processes enter
the main simulation loop (line 19) and merge with the preexisting processes.

The main simulation loop remains mostly the same as in the original program (Algorithm
6.1), except for an additional conditional placed at the end of the loop, i.e., line 32 to
37. This is the preexisting processes’ entry point to the Resource_Adapt function. The
conditional is for controlling the frequency of probing the resource manager. Ideally, the
probing should happen frequently enough such that it does not miss any resource change
decisions, yet not too often such that it creates unnecessary overhead. More importantly,
the adaptation frequency should coincide with the application’s inherent load balancing
frequency in order to minimize overhead, because data redistribution is required after
every resource adaptation. This condition is met in the current application, since a load
balancing step already takes place at every iteration.

Resource Adaptation

A resource adaptation only takes place if MPI_Probe_adapt returns a positive signal. Inside
the adaptation window, there are three possible types of processes: STAYING, JOINING and
LEAVING. In the current Elastic MPI implementation, only pure resource expansion and
pure reduction are supported.

88

6.4 Performance Evaluation

In case of reduction, the LEAVING processes send their grid sections to the staying pro-
cesses. Load imbalance is not a concern at this point, because a load balancing step will
take place in the beginning of the next iteration. In case of expansion, the JOINING pro-
cesses initialize a grid and the necessary data structures, i.e., s, p, K and ®. The loop
counter ¢ is synchronized between the preexisting and JOINING processes. Data redistri-
bution step is omitted also because a load balancing step will be performed in the next
iteration.

6.4 Performance Evaluation

In this section, we present the performance and resource efficiency analysis on the SPE10
benchmark scenario described in Section 6.1. Simulations were run with the oil field poros-
ity and permeability data provided by the benchmark. We conducted tests to determine
the impact of resource adaptivity on the application itself. We also compared performance
between Elastic MPI and static MPI runs to find out whether resource efficiency could be
improved.

6.4.1 Execution Environment: Virtual Machine Emulated Cluster

Due to limited access to the SuperMUC Petascale System at the time this thesis was
written, all tests with this application were conducted on a virtual machine (VM) emulated
cluster. As previously mentioned, the Elastic MPI infrastructure is designed for general
HPC systems. It can be installed on conventional Linux clusters with GNU compiler
support, transforming the cluster into a resource-elastic environment.

The VM cluster consists of 8 compute nodes, 1 controller node and 1 login node, which
are all hosted on a single machine. Table 6.1 lists some important specifications of the
VM cluster as well as the host machine. The controller node and the login node do not
participate in computation. The controller node is where the elastic resource manager is
located, and the login node merely serves the purpose of letting users log on to the cluster
and launch applications. Each MPI process is pinned to a CPU. As each compute node
has 2 CPUs, the VM cluster provides from minimally 2 processes (1 node) to maximally
16 processes (8 nodes).

Table 6.1: Specifications of the VM cluster and its host machine

Host Machine VM Cluster
Processor Intel Kaby Lake Generic
Core i7-7700T Quad
Nominal frequency [GHz| 3.6 2.5 (capped at 70% of host)
Cores per node 4 2
Memory per node [GByte] 32 2
Number of nodes 1 8+2
Interconnect - TCP/IP

89

6 Elastic Parallel Oil Reservoir Simulation with Adaptive Mesh Refinement

6.4.2 The Benchmark: Reduced SPE10 Scenario

Due to the limited computing power of the VM cluster, full-sized simulations of the SPE10
benchmark (such as the one displayed by Figure 6.2) are not feasible. To reduce the
computational intensity such that results could be obtained within a reasonable time frame,
we reduced the simulation domain from its full size of 85 vertical layers to the bottom 16
layers, and shortened the simulated time from 730 days (2 years) to 400 days.

Figure 6.4 demonstrates the saturation profile visualization (left), the top view of the
underlying adaptive 3-D grid (right) as well as the visualization of resource utilization
(middle) of a reduced SPE10 benchmark simulation with 16 layers at two different time
steps. The color blocks in the grid correspond to the color of the executing nodes, e.g., the
blue portion of the grid is computed by the node in the same color. Nodes in gray color
mean they are not utilized. Figure 6.4(a) shows 1 node being utilized at simulated day
100, and Figure 6.4(b) shows 8 nodes being utilized at day 400.

The major concerns of running tests on the VM cluster are that the simulation domain
must be truncated, and that the performance of the application is impaired. Fortunately
for our case, neither concern is imperative, because

1. we do not aim to obtain high fidelity simulation results, but rather checking for the
correctness of the simulation with added resource adaptivity, to which 16 layers would
do justice;

2. we are not interested in comparing performance with other benchmarks or across
platforms, but rather in the performance comparison between Elastic MPI and static
(normal) MPI runs in identical execution environments, therefore, it does not matter
in which environment the tests are conducted as long as the environment is kept
unchanged across tests.

6.4.3 Resource Adaptivity Overhead

Resource adaptivity poses concerns on introducing significant overhead from not only ad-
ditional function calls but also frequent data repartitioning and redistribution. We want
to analyze the impact of resource adaptation on the oil reservoir simulation. We conduct
several tests with a single instance of the simulation in an 8-node elastic environment. In
each test, the simulation always starts with minimal resources — 1 node (2 processes). The
maximal resources it can expand to is 8 nodes (16 processes).

In order to fully examine different cases of resource expansion and reduction, we use a
random elastic scheduler that gives new resource assignment randomly between 1 and 8
nodes every 10 minutes. There is no adaptation if the generated random number is the
same as the current number of nodes. The application is set to probe the resource manager
every 500 simulation steps.

Figure 6.5 displays plots of the MPI processes profile and the number of grid cells of one
test run. The blue curve with the left y-axis depicts the change of computational resources
(number of MPI processes) over time. The red curve with the right y-axis illustrates
how the computational workload (number of grid cells) changes as the simulation evolves
in time. The x-axis in Figure 6.5(a) shows the simulated time in days. The x-axis in
Figure 6.5(b) shows the execution time (elapsed time) in hours. In this run, 18 adaptations,
including 10 expansions and 8 reductions, occurred during a total runtime of 3.2 hours.

90

6.4 Performance Evaluation

node
00000400 1.8 35 52 7.000e+00
i

saturation
1.000e+00

{e

(a) Saturation profile, underlying grid and resource utilization at simulated day 100

node
saturation
0.000e+00 1.8 35 5.2 7.000e+00
1.0002+00 e R

(b) Saturation profile, underlying grid and resource utilization at simulated day 400

Figure 6.4: Reduced SPE10 simulation with 16 vertical layers with Elastic MPI on VM cluster.
The saturation profile is visualized on the left. Top view of the underlying adaptive
3-D grid is displayed on the right. Resource utilization is visualized in the middle.
The color blocks in the grid correspond to the color of the executing nodes, e.g., the
blue portion of the grid is computed by the node in the same color. Nodes in gray
color mean they are not utilized. In this test run, 1 node is utilized at simulated day
100, and 8 nodes are utilized at day 400.

91

6 Elastic Parallel Oil Reservoir Simulation with Adaptive Mesh Refinement

7000

—
o

6000

// 5000
1 4000
8

3000
6

2000
4

1
51 000

160 1%0 260 2%0 360 3%0 400
Simulated time (days)

= = =
15 N >

Number of MPI ranks
Number of grid cells

S}
A
o

(a) # of MPI processes, # grid cells vs. simulated time (days)

7000

16

1 6000
o 141
9 V///‘—_,———_--————-__—— ég
= [}
121 s000 Y
— ©
o 10 =
= 4000 5,

—

5 o °
5 3000
[} ()
o 6 Q
€ 2000 £
S 44 =}
= =2

Py 1000

0 0

0 0

t5 1t0 1i5 ZtO 2?5 3?0 35
Execution time (hours)

0

(b) # of MPI processes, # grid cells vs. execution time (hours)

Figure 6.5: The computational resources (number of MPI processes) and workload (number of
grid cells) profile of an Elastic MPI test run with a random scheduler. The upper
figure plots the profiles against simulated time in days. The lower figure plots the
profiles against execution time in hours.

Table 6.2 summarizes the execution time of Elastic MPI function calls. The second
column shows the average execution time of each function, the third column shows the
accumulative execution time, and the last column shows the percentage of the function’s
accumulated execution time takes up in the total adaption time. The last row in this
table shows the total time the application spent on data movement within the adaptation
window. In normal cases data migration should be the most dominant item, but this appli-
cation is an exception since its actual data redistribution and load rebalancing operations
take place outside of the adaptation window.

The simulation is decomposed into major computational tasks, and Table 6.3 summarizes
the execution time spent on each of them. The item we are most interested in is resource
adaptation, which takes up 4.5 seconds out of a total execution time of 11545 seconds
(about 3.2 hours). This leads to the conclusion that the overhead introduced by resource
adaptivity is trivial.

92

6.4 Performance Evaluation

Table 6.2: Execution time of Elastic MPI functions

Elastic MPI function | Avg. time (sec) | Acc. time (sec) | % of total adap.

MPI_Init_adapt 0.0500 0.0500 1.11%
MPI_Probe_adapt 0.0009 0.2074 4.60%
MPI_Comm_adapt_begin 0.0827 1.4889 33.04%
MPI_Comm_adapt_commit 0.1100 1.9805 43.95%
Data migration 0.0433 0.7789 17.29%

Table 6.3: Execution time of computational tasks

Computational task | Exec. time (sec) | % of total exec. time

Total simulation 11545.43 100.00%
Time step computation 6391.40 55.36%
Grid refinement 1602.46 13.88%
Grid conformity check 1318.00 11.42%
Load balancing 1539.46 13.33%
Resource adaptation 4.51 0.04%
Others 689.86 5.98%

In addition to the adaptation overhead, two important pieces of information can be
extracted from this test run from Figure 6.5:

e The change in computational workload is little. For grid based simulations, the
number of grid cells is the most important indicator for the computational workload.
Unlike the tsunami simulation in Chapter 5, which has a drastic growth in grid cell
number of 6 times from simulation start to end, this simulation has a much stabler
grid cell count.

Figure 6.5(b) shows that starting from the 15-minute mark until the end of the
simulation, the grid cell number only grows by about 8% from 6000 to 6500 cells.
The almost constant workload is a clear indication that the application does not have
a resource change requirement, and that the best fitting resource profile would be
constant.

e Performance of this application is better with fewer resources. Knowing
that the computational workload has little influence on performance, we can analyze
the correlation between number of MPI processes and performance. Comparing
Figure 6.5(a) with Figure 6.5(b), we can see that the the application progresses much
faster with fewer processes. For instance, about 100 simulated days are computed
in the first 10 minutes with 2 processes, whereas with 16 processes, more than 18
minutes are needed to compute 5 simulated days.

To demonstrate this more clearly, we provide another plot in Figure 6.6, which
shows the relationship between the average execution time of simulation steps and
number of MPT processes. The application spends much less time (performs better)
on computing a simulation step with less processes. It performs best with 2 processes.
This number of course is specific to the current configuration of the simulation and it
might change if the simulation had a different workload, e.g., if it had 85 layers instead

93

6 Elastic Parallel Oil Reservoir Simulation with Adaptive Mesh Refinement

T_timestep (sec)

I
>
L

Average
o
IN)

o
o
!

é A‘l é 8 1‘0 1‘2 1‘4 1‘6
Number of MPI ranks
Figure 6.6: Average execution time of computing one step vs. Number of MPI processes.

of 16. A possible explanation for this can be that the application is communication-
bound and sensitive to communication overhead, therefore, more resources means
more communication overhead thus leads to poorer performance.

6.4.4 Runtime and Resource Efficiency

In this experiment, we want to compare performance and resource efficiency of tests with
Elastic MPI and static MPI on the 8-node VM cluster. Because the performance monitor-
ing functionality and the decision logic in the resource manager are not fully implemented,
our Elastic MPI tests are conducted with pre-defined runtime schedulers.

We make three test runs:

1. Static MPI with 16 processes: In this test, the simulation runs with the standard
MPICH library with 16 processes. The choice of utilizing all available resources on
the cluster is natural, assuming no prior information on the application’s scalability.

2. Elastic MPI with stepping scheduler: Based on previous experiments, we know
that the computational workload (number of grid cells) increases throughout the
simulation, even though only mildly. Therefore, we design the second test run with
a stepping elastic scheduler, which increases the resource assignment by 1 node in
every adaptation until it reaches the maximum node count limit. The blue curve in
Figure 6.7 shows the resource profile in this test run, and the red curve shows the
workload profile.

3. Elastic MPI with 2 processes unchanged: This test is devised to mimic the
ideal scenario that through continuous performance monitoring, the resource manager
learns that the application performs best with 2 processes and decides not to change
the resource assignment throughout the simulation.

Figure 6.8 shows the plotting of the resource profiles (number of MPI processes) of all
three test runs against execution time in hours. Since MPI processes are pinned to CPUs,
the resource utilization (in CPU hours) of each run can be computed by integrating its
resource profile curve over its execution time. The CPU hours can be visualized by the

94

6.4 Performance Evaluation

7000
16
6000
9 14 "
c ©
12 5000
o O
= o
% 101 4000 5,
“
s o
3000
9] 9]
o 6 Q
€ 2000 £
S 44 >
= =2
51 1000
0 0

o
N

a 6 8 10 12
Execution time (hours)

Figure 6.7: The computational resources (number of MPI processes) and workload (number of
grid cells) profile of an Elastic MPT test run with a stepping scheduler.

-
o

\WM / : zlt::\it?ch\:F"IWV\ilti?hls?:ersgil;sg scheduler
5 5 5 /6%/// —;Ia/stle; W/lth/2 erjun/clhanged
% IAS 44499995
SIS, ////////-

NSNS ALY //
><><><>//////////////
XXXy :

10 T2 15 20 25 3’0 35T1 40
Execution time (hours)

=
IS
L

-
N
L

=
o
L

®
1

Number of MPI ranks

[

o T3

Figure 6.8: Resource profile vs. execution time and CPU hours of three test runs.

shaded area under each resource profile curve. The exact execution time and CPU hours
of each run are further listed in Table 6.4.

The first run with static MPI at 16 processes has the worst performance. It took over
35 hours to complete resulting in 562 CPU hours. Comparing to the first run, the second
run with Elastic MPI and a stepping scheduler shows clear performance improvement. Its
execution time is reduced to 34%, and the CPU hours are also reduced to 28%. The third
run with Elastic MPI and an unaltered resource assignment at 2 processes is the clear
winner in both runtime and resource efficiency. Comparing to the static MPI run, its
runtime is reduced to 3% and CPU hours are reduced to less than 1%.

To further examine the performance quality of the three test runs, we decompose the
simulation into major tasks and analyze their computational effort distribution, i.e., we
do not compare the actual execution time, but the percentage of the total execution time
spent on each task.

From Table 6.5 we can see that test runs 1 and 2 have very similar distribution. They
both spend close to 45% time on time step computation, close to 25% time on grid opera-

95

6 Elastic Parallel Oil Reservoir Simulation with Adaptive Mesh Refinement

Table 6.4: Execution time and CPU hours of three test runs

Test run ‘ Exec. time (hours) ‘ CPU hours
1. Static MPI with 16 processes 35.23 562.31
2. Elastic MPI with stepping scheduler 11.85 159.39
3. Elastic MPI with 2 processes unchanged 1.24 2.47

Table 6.5: Execution time distribution of three test runs

1. Static MPI with | 2. Elastic MPI with | 3. Elastic MPI with

Computational task 16 processes stepping scheduler | 2 processes unchanged
Total simulation 100.00% 100.00% 100.00%

Time step computation 43.04% 44.04% 77.36%

Grid refinement 10.07% 11.38% 16.44%

Grid conformity check 13.35% 13.43% 2.82%

Load balancing 22.80% 21.28% 0.68%
Resource adaptation 0.00% 0.01% 0.01%

Others 10.74% 9.86% 2.70%

tions (grid refinement and grid conformity check), and more than 20% on communication
(load balancing). Their computation-communication ratio is roughly 2 : 1.

In comparison, the third run has significant performance improvement with 77% on time
step computation and less than 1% on communication, which translates into a computation-
communication ratio of over 110 : 1. Its time on grid operations is also slightly reduced to
about 19%, which is still similar to that of the other two runs. Notice that even though
resource adaptation did not occur in this run, the execution time on resource adaptation
is non-zero due to function calls to MPI_Init_adapt and MPI_Probe_adapt.

6.5 Summary

We selected the 3-D oil reservoir simulation from the sam(oa)? framework as our second
case study for malleable software development with Elastic MPI. This is yet another clas-
sical communication-intensive grid-based HPC application implementing a SPMD model.
Despite having a very similar computational workflow as the tsunami simulation, this
application demonstrated very different behaviors with resource adaptivity.

Due to limited access to SuperMUC at the time this thesis was written, we had to conduct
tests for this application on an 8-node VM cluster with 2 CPUs per node. Determined
by the limited computing power of the host machine, we had to size down the simulation
benchmark by truncating the domain from 85 to 16 layers in the vertical dimension. We
were able to do so because the main goal of our tests was not to obtain high accuracy
simulation results, but to check the correctness with added resource adaptivity and to
compare performance between static and elastic runs in an identical execution environment.

Resource adaption overhead was shown to have minimal impact on performance in all test
cases. This was mainly due to the fact that the application had a built-in load balancing

96

6.5 Summary

scheme. By overlapping these built-in operations with those required by resource adapta-
tion, we were able to avoid performing data redistribution during the resource adaption
windows. Another reason has to do with the appropriate setting for resource adaptation
frequency. On an hours-long runtime scale, adapting once every few minutes is shown to
be a good practice.

Unlike the tsunami simulation whose computational workload is highly dynamic, this
oil reservoir simulation had a comparably stable workload, i.e., its number of grid cells
did not vary much, which was a clear indication that it did not require runtime resource
changes. The test results confirmed that a stable resource assignment, when fitted to the
application’s scalability, brought optimal performance and resource efficiency.

Due to its communication-bound characteristics and limited workload, the application
was prone to communication overhead and therefore, performed better with less MPI
processes. For such applications, the naive way of utilizing as many available resources
as possible is not the best idea. The test case of running with the maximal 16 MPI
processes showed an extreme case of poor performance and resource inefficiency. The
optimal resource assignment (2 processes), in comparison to the worst case (16 processes),
reduced not only the overall execution time to three percent, but also the CPU hours to
less than one percent.

The most fundamental question is that: can Elastic MPI help to improve performance
and resource efficiency for applications with constant workload? The answer is definitely
positive. Even though such an application might not require runtime resource adjustment,
finding its optimal resource assignment still remains a task to be fulfilled. The Elastic
MPI framework is equipped with continuous performance monitoring (even though it is
currently not fully implemented), and runtime resource decisions are made according to
elastic applications’ real-time scalability. Only when an application is Elastic MPI enabled,
can it be monitored throughout runtime and provided with optimal resource assignments.

97

Statistical Inverse Problem
Solver with Elastic Parallel
Surrogate Construction

Inverse problems are some of the most important mathematical problems due to their
ubiquity in many fields. They typically involve recovery of hidden (unobservable) quantities
or reconstruction of models based on indirect observations, for example, calculating the
density of the earth from measurements of its gravity field, location of oil and mineral
deposits from seismic data and well logs, creation of astrophysical images from telescope
data, image reconstruction in computer vision, source reconstruction in acoustics, modeling
in life sciences, and many more.

In this chapter, we present a solver for high dimensional inverse problems with the help of
a surrogate model. The most computationally intensive part of the problem solving process
is the surrogate model construction, for which a resource-elastic parallel implementation
is introduced. This application is chosen for Elastic MPI investigation for two reasons:

1. It represents an important class of scientific problems that are frequently encountered
in many fields and very challenging to solve.

2. It provides diversity and completeness to our application base, because surrogate
construction in this application is an embarrassingly parallel problem. It implements
a master-worker execution model, and has multiple resource-adaptive phases with a
different workload in each phase.

In the following sections, we first introduce a statistical approach for solving inverse
problems. Then we discuss an adaptive surrogate model construction method using sparse
grid interpolation and its implementation with the Elastic MPI library. For a case study,
we solve the problem of locating obstacles in a fluid channel using the discussed methods
and tools, and conduct performance analysis on the impact of resource adaptivity.

7.1 Statistical Inverse Problems

In this section, we discuss a statistical approach, more specifically, the Bayesian approach
for solving inverse problems. In the Bayesian framework, an inverse problem is reformulated
as an inference problem in which the goal is to update the probability for a hypothesis
given the observation as evidence. A short introduction to the Markov Chain Monte Carlo
method, a popular solver often employed in Bayesian inference problems, is also presented.

99

7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction

7.1.1 Inverse Problems

In a normal simulation problem, given a model that simulates a physical phenomenon, one
computes simulation output from a set of input parameters. Such process can be expressed
by

y= 1), (7.1)

where f : {0 — © represents the simulation model — a mapping relating input parameters
to simulation output, & € € a set of input parameters, and i € © the simulation output.
For a given set of parameters, there is a corresponding set of simulation output, which is
the unknown of interest (marked in red color). In the inverse-problem terminology, this
process is referred to as the forward problem, and model f is referred to as the forward
model, because the process works from the input to output.

In an inverse problem, on the contrary, the process works in the opposite direction: one
calculates the causal factors (the input parameters to the forward model) based on some
observed data (the output of the model), hence the name inverse. This process can be
expressed by

Zjobserved = f(f) +n, (72)

where Yopserved i given, and Z is the unknown to solve for (marked in red color). Noise is
always present due to uncertainties in the simulation model as well as error from observation
or measurement. In (7.2), noise is modeled as an additive term represented by 7.

Deterministic Solution

Due to the fact that in most cases, there is no direct mapping from the output to input,
i.e., ¥ = f~1(3), solving an inverse problem relies on performing many forward simula-
tions with different plausible inputs and comparing all the simulation outputs with the
observation [112].

A classical strategy for solving inverse problems is to use the reqularization theory, in
which one defines a loss function to quantify the differences between the observation and the
simulation output, and a regularizer to impose physical constraints and bounds, or encode
prior information of the solution, and defines the solution as the one that minimizes the
sum of these two terms [113], i.e.,

T, = argmin [L(fonservea, [(7)) + R(T)). (7.3)
e
This approach produces a single optimal solution that fits the observation best under given
constraints, therefore, is also referred to as an optimization-based approach.

Methods fall into the regularization category are well studied. They address the issues
from the ill-posedness of the inverse problems. However, they fall short of accounting for
uncertainties from data observations/measurements and the simulation model. On the
other hand, statistical approaches are capable of handling uncertainties in different stages
of the problem solving process, thanks to their stochastic nature.

7.1.2 Bayesian Inference Framework

In the Bayesian interpretation, probability is considered as a degree of belief conditional to
prior assumptions and experience of the observer, and could be updated in the presence of

100

7.1 Statistical Inverse Problems

new evidence. This reformulates the inverse problem with conditional probabilities: what
is the probability for the input parameters to take on certain values given the observed
data as evidence? This approach leads to a solution of a probability density distribution
of x over Q.

Modeling the output data, input parameters and noise as random variables (represented
by capital letters), their relationship can be expressed by

Y = f(X) + H, (7.4)

where X € Q and Y € ©. Modeling noise as an additive term ensures that the probability
distribution of H remains unaltered regardless of the value of X.

Let m4(a) be the probability for random variable A takes on value a. According to
Bayes’ theorem [114], the solution to problem (7.2) can be formulated as

Tprior (x) Txy (gobserved ’ l‘)
Ty (:'jobserved)

, (7.5)

7TXY(:E | gobserved) =

assuming that prior knowledge of the input parameters could be encoded into a probability
distribution mpyior(2) := mx (), and that the probability distribution of the observation is

positive, i.e., Ty (Yobserved) = /QWXY(:U,y) dx > 0.

Omitting the Marginal Likelihood

The marginal likelihood 7y (Yobserved) 18 also referred to as the model evidence, because it
is an indicator of the relative confidence level of the forward model. It is a constant for
all possible values of X, as X does not appear in it. Therefore, when not assessing the
uncertainty of the model, solution to (7.2) can be simplified as

7Tposterior(l') = 7Tprior(ll) 71'X}’(?jobserved ’ :1?), (76)
where T'posterior (55) X TTxy (m | gobserved)~

Construction of the Likelihood

The term 7xy (Yobserved |) is called the likelihood. When fixing the unknown to a certain
value, e.g., X = z, it can be deduced that the probability of Y conditioned on X = x
equals the probability distribution of H, i.e.,

ny(y ‘ l‘) = 7rXY(f(gj) +n | x)
=mx(f(z) +n|f(z))
)

= Tnoise (7]

(7.7)

= Tnoise (gobserved - f(x))v

where meise Tepresents the probability distribution of noise. Substituting (7.7) into (7.6),
the solution can be expressed as

7Tposterior(m) ‘= Tnoise (gobscrvcd - f(CC)) 7Tprior(£)- (78)

More details on deriving the Bayesian inference solution can be found in [113].

101

7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction

7.1.3 Markov Chain Monte Carlo Methods

The computation of Tpesterior(€) over €2 relies on sampling from €2 and computing the
probability at each sample according to (7.8). The computation for every sample involves
performing a forward simulation, i.e., f(z).

The challenge is that most practical inverse problems are high-dimensional, i.e., @ ¢ RM
with M > 1, which means a lot of samples are required, thus an equal amount of forward
simulations. With isotropic sampling schemes, the computation effort grows exponentially
with the number of dimensions. In order to break the curse of dimensionality [115], random
sampling methods are often employed.

Markov Chain Monte Carlo (MCMC) methods are typically used in Bayesian inferences
due to two desired properties: one, they rely on repeated random sampling, which decouples
dimensionality of the parameter space from the sampling process; and two, they ensure
convergence to a desired distribution, i.e., Tposterior(2), if properly constructed.

In depth discussions on the theories of MCMC methods can be found in numerous
literature as a standalone topic or part of a statistical context, such as [116, 117, 118, 113,
119], to name a few. A full-length discussion on the MCMC theory are not provided in
this section, however, the key concept of Markov Chain as well as the algorithms that are
implemented in the application are presented. For the rest of this section, all concepts,
theorems and algorithms discussed can be found in most MCMC literature such as the
ones mentioned above.

Markov Chain

In the context of sampling, a first order Markov chain is defined to be a series of random
variables {X; € Q : i = 1,..., N} distributed according to p(z) such that the following
property holds for all n € {1,...,N — 1}

p(Xn—H = Tn+1 ‘Xl =T1y.-- ,Xn = xn) = p(Xn—H = Tp+1 |Xn = iL'n) (79)

The series of random variables are the states that the chain goes through. In a first order
Markov chain, the next state is dependent only on the current state.

The probability distribution that transfers the chain from one state to the next is called
the transition kernel, denoted by T'(zy,, n41). It is indeed the conditional probability for
the subsequent variable, i.e.,

T(Tpn, Tpt1) = P(Tnt1 | Tn)- (7.10)

A distribution p(z) is said to be invariant with respect to a Markov chain if and only if

| 7@ pla)de = p(y) (7.11)

With an invariant distribution, the transition kernel of the Markov chain does not depend
on the state index, i.e.,

T(ﬂ?n, l‘n+1) = T(ajn—l—kza xn-{—k—i—l)a (712)

in which case the chain is said to be stationary or converged. Invariant distributions are
also referred to as stationary or equilibrium distributions.

102

7.1 Statistical Inverse Problems

In Bayesian inference problems, we want to employ Markov chains to sample from the
posterior distribution, which can be achieved by choosing a Markov chain whose invariant
distribution equals to the posterior distribution. Therefore, we are interested in under what
conditions a Markov chain converges and how to ensure that it converges to the posterior
distribution. Listed below are some concepts related to convergence:

e Irreducibility: a Markov chain is irreducible if
T*(xi,2;) >0 Vi, j€{1,....,N}, k< oo,

where k represents the number of transition steps. Simply put, a Markov chain is
irreducible if it is possible to get to any state from any state in a finite number of
steps. This can be satisfied if

Vy:p(y) >0 —=T(z,y) =p(y|x) >0 V.

e Aperiodicity: the period of a state z is defined as
d(z) :== g.c.d{k >1:T"x,2) > 0},

where g.c.d. denotes the greatest common divisor, and k the number of transition
steps. A chain is aperiodic if d(z) = 1 Va. In sampling, this is usually satisfied
because the states are random variables subjected to stochastic processes, hence not
periodic.

e Reversibility: a Markov chain is reversible if its transition kernel satisfies the de-
tailed balance condition given by

p(xn) T(.%'n, xn—l—l) = p(xn—i-l) T($n+1, mn)

Reversibility implies that the chain is stationary. It is indeed a sufficient but not
necessary condition for the chain being p(z)-invariant.

e Convergence Theorem: for any irreducible and aperiodic Markov chain,

— there exists at least one invariant distribution (existence).
— there exists exactly one invariant distribution (uniqueness).
— let w(z) be the invariant distribution, and 7y(x) any initial distribution,

Tn(z) 222 w(x) (ergodicity).

The theorem simply states that if a Markov chain is irreducible and aperiodic, it is
ensured to converge to a unique invariant distribution regardless of its initial state.

Metropolis-Hastings Algorithm

In Bayesian inference, we want to draw samples from the posterior distribution. This can
be achieved by constructing a Markov chain that is ensured to converge to the posterior
distribution. The first successful attempt was the Metropolis Algorithm, proposed by N.
Metropolis in 1953. A generalized version was later developed, called the Metropolis-
Hastings Algorithm (MH), which is summarized in Algorithm 7.1. It can be shown that
the Markov chain in MH is irreducible and aperiodic and that the transition kernel satisfies
the detailed balance condition, guaranteeing convergence towards m(x).

103

7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction

Algorithm 7.1: Metropolis-Hastings Algorithm

Data: 7(x) the target posterior distribution

Data: ¢(a|b) any proposal distribution

Data: z,, the state of the Markov chain at transition step n
Result: Samples {z1,...2n5}

1 Initialize 21

for n =1 to N do
Draw a candidate sample z from q(z | x,,)
Calculate acceptance ratio:

W N

m(2) q(xnlz)}

a(xp, z) = min {1’ m(wn) q(z] 20)

5 Update the next state by setting

R with probability a(z, 2)
"1 7) 2, with probability 1 — a(y, 2)

Set x, = Tpy1-
7 end

In the inverse problem presented in this chapter, a serial MCMC solver is implemented
according to Algorithm 7.1 with a normal proposal distribution and a single-dimension
updating strategy. The proposal distribution is given by

q(z|zpn) = N(zp,0),

where o, usually referred to as the random walk size, is empirically chosen to be 5% of
the domain size of the problem. Single-dimension updating strategy means that only one
dimension (component) of X € RM is updated at each transition step, e.g.,

xgn) _ :rgn) -
given x, = xl(.n) , Tpal = xl("ﬂ) , where i€ {1,...,M}.
f7 |)]

Parallel Tempering Algorithm

The MH is the most basic form of MCMC methods. It is a serial process that theoretically
guarantees convergence to a target distribution. However, MH is not very practical because
it falls short of discovering multimodal target distributions within a reasonable amount of
transition steps. For most practical inverse problems, the posterior distribution is unknown,
and so unimodality is simply not guaranteed. The plain-vanilla MH is likely to be trapped
in one of the modes when the target is multimodal with isolated modes, failing to discover
the true posterior distribution.

104

7.1 Statistical Inverse Problems

Algorithm 7.2: Parallel Tempering Algorithm

1

2
3

5
6

Data: 7(x) the target posterior distribution
Data: K number of independent MH chains
Data: m;(x) the invariant distribution of chain ¢, given by

1
mi(z) =7m(x)T, where i€l,...,K, 1=T1<Th<---<Tk

Data: l’gn) the state of chain ¢ at transition stepn, 7€ 1,..., K
Result: Samples from chain 1: {azgl), .. ,ng)}

Initialize {l‘gl), .. >$(Ip}7 start K independent MH chains in parallel
for n = 1 to N do

Update operation:
(n+1)

Each chain i update its next state x;

execute line 3 — 5 of Algorithm 7.1.

using the MH kernel, e.g.,

Exchange operation:
At a certain frequency (not necessarily every step), select two chains g and h
Chain g computes exchange acceptance rate

ey = min {1 77(:6(”+1))T1h_7}9}
9=) g
Chain h computes exchange acceptance rate
~ i (n+1)y 75— 77
ep =minq 1, w(x;,)% Th

Swap samples xénﬂ) and xénﬂ) with probability eg4 - ey,

Each chain 7 set .I‘Z»n) = xEnH)

end

105

7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction

The Parallel Tempering Algorithm (PT) is an improved MCMC variation to overcome the
above mentioned deficiency by generating candidate samples from all over the distribution.
The general idea of PT is to run K independent MH chains in parallel, with each chain 4
equipped with an invariant distribution 7;(x), which is a smoothened version of the original
target 7(x) with a controlling parameter 7; for smoothness, i.e.,

mi(z) = ()T, i {l,...,K}.

T; is often referred to as the temperature of m;j(z). The higher the T;, the smoother
(closer to uniform) the m;(x) is compared to the original target 7(z), thus, the easier it is
for chain ¢ to move between modes. The temperatures are often defined in a ladder form
such as 1 =T < Ty < -+ < Tk, with which only the first chain is sampling from the
original target, i.e., mi(x) = 7(x).

Exchange of samples between two chosen chains (usually adjacent ones) are periodically
proposed and executed with a certain acceptance rate. These exchanges push samples from
the hotter chains (with higher temperatures) to colder ones (with lower temperatures),
which eventually helps the coldest chain (the first chain) to escape from isolated modes.
The final result of a PT consists of only samples from the first chain. The PT implemented
in this application is summarized in Algorithm 7.2.

7.2 Surrogate Model Construction with Sparse Grids

Aside from high dimensionality, another challenge encountered in most practical inverse
problems is high complexity of the forward model, which means carrying out a forward
simulation is computationally expensive and time consuming. With an MCMC solver,
we obtain the solution by asymptotically sampling from the posterior distribution. Each
sample requires computation of the posterior probability given by (7.8), which in turn
requires a forward simulation. The total computational cost for solving an inverse problem
is determined by the cost for running a forward simulation multiplied by the number of
forward simulations.

In order to reduce computational costs or just to make the computation feasible, surro-
gate models are often employed. Surrogate models (or surrogates) are approximations to
the original complex, high-fidelity models with much less computation intensity but also
some trade-offs on accuracy. In this section, we discuss a surrogate model construction
algorithm based on function interpolation with adaptive sparse grids. An elastic parallel
implementation of the algorithm is presented in the end.

7.2.1 Function Interpolation

There exist many methods for surrogate model construction, such as projection-based
reduced-order methods, hierarchical methods, data-fitting methods, among others. Func-
tion interpolation falls under the data-fitting class, which produces a model approximation
using interpolation or regression from the simulation output of the original model. It does
not require modification or manipulation to the original model kernel, instead, simply
treats it as a black-box. Such non-intrusive property makes the method very attractive,
especially in cases where access to the model kernel is not available.

106

7.2 Surrogate Model Construction with Sparse Grids

2
f@

Figure 7.1: 1-D function interpolation on unit interval

The general idea of constructing surrogates with function interpolation is to find a proper
representation of the original model on a coarser (lower resolution) function space, which
is linearly spanned by a finite set of basis functions. This is illustrated by a 1-D example
shown in Figure 7.1.

Let f :[0,1] — R be a smooth function defined on function space V4, and V; a function
space spanned by a finite set of basis functions {¢;(z)|i =1,...,2! — 1}, i.e.,

2t—1
V, = span{¢;} = { Z ciqﬁi(x)} . (7.13)

i=1
In the example shown, [= 3 and Vs is spanned by {¢1, ..., ¢7}, which is a set of piecewise
linear hat functions defined on equidistant grid points {z; = 55 [= 1,..., 7} over the unit

interval. Note that basis functions can be chosen arbitrarily and are not limited to hat or
other linear functions. The approximation of f(z) on V; is given by

2l—1

f(@) ~ filz) =) cidi(x). (7.14)

i=1

Since the basis functions are known (chosen), finding f;(x) is equivalent to finding the
values of the coefficients {c¢;}, which can be obtained by evaluating f(x) at the grid points,
ie.,

ci=f(x), Vi=1,...,21 — 1. (7.15)

7.2.2 Sparse Grids

Sparse grids are mathematical structures originally developed for spatial discretization
for solving partial differential equations. There have been successful applications of sparse
grids in other problem areas such as integration, interpolation, approximation, data mining,
among others. Full length discussions on the sparse grid theory is out of scope of this
section, but they can be found in many dedicated literature such as [120, 121, 122, 123,
124, 125, 126, 127], to name a few. Construction of sparse grids are based on a hierarchical
basis and a sparse tensor product construction. The general idea is demonstrated in
Figure 7.2 with a 2-D example.

107

7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction

Nodal Spaces Hierarchical Subspaces
li=1 11=2 11=3 T l1=1 l1=2 11=3 Z1
» >
Wi, Wa,1 Waj1
lo=1| | —4+—¢+—+—| |+++2+49 l2=1
[2=2| |——t—— [ttt Tttt l2=2 Wh,2 Wa,2 Ws,e
[2=3 I B | =3 W Wes, || Wsp |
X2 V.‘:’, T2 U3 .
v Full Grid \ Sparse Grid

Figure 7.2: A 2-D isotropic grid V3 with discretization level = 3, its hierarchical decomposition
and its corresponding sparse grid U3

Let = [0, 1]% be a unit hypercube and multi-index [= [Iy, ..., 1] € N a d-dimensional
discretization scheme. Applying [on €2 results in an anisotropic grid discretized with mesh

hl-‘iz [hll,...,hld] = [2_11,...,2_1‘1].

Let V;- denote a function space supported by this grid, that is, it is spanned by a finite set
of basis functions defined on each grid point,

Vyi=span{¢: |7 = [j1,- ., jal, i =0,...,2% k=1,...,d}.

{d);} can be arbitrarily chosen. For simplicity, let them be a set of piecewise d-linear hat
functions.

Let V; denote an isotropic space with uniform discretization in every dimension, i.e.,
Iy =--- =143 =1. We call the supporting grid for V; the full grid of level [. The example
shown in Figure 7.2 is a 2-D case with d = 2, [= 3. V3 (highlighted in red) can be
hierarchically decomposed into a set of 9 subspaces {Wf} as shown to the right, i.e.,

3
V3: @ Wll,lg' (716)

I1,la=1

Details on hierarchical decomposition can be found in most sparse grid literature such as
the ones mentioned earlier.

According to the cost-contribution analysis of hierarchical subspaces [120, 121, 122, 123],
the cost-contribution ratio of a subspace WW;is dependent on a constant given by

d
Uy =l (7.17)
k=1

A smaller value of |l_[1 indicates a smaller cost-contribution ratio. With the goal of min-
imizing cost while maximizing contribution, it is possible to construct an approximation

108

7.2 Surrogate Model Construction with Sparse Grids

Table 7.1: Comparison of number of grid points of [= 5 full grids and sparse grids

d Vs Us
1 31 31
2 961 129
3 29,791 351
4 923,521 769
5 28,629,151 | 1,471
6 887,503,681 | 2,561
7 27,512,614,111 | 4,159
8 852,891,037,441 | 6,401
9 | 26,439,622,160,671 | 9,439
10 | 819,628,286,980,801 | 13,441

to V; by selecting only those subspaces that have smaller cost-contribution ratio than the
others. It is shown that the optimal selection is given by

(Uil <l+d-1} (7.18)

In the demonstrated example in Figure 7.2, the optimal selection includes all subspaces
with |I]; < 4 (highlighted in blue). A direct combination of the optimal selection leads to
a space U; that can well approximate V; with less basis supports. The supporting grid of
U, is called a sparse grid.

The size of a grid refers to its total number of grid points, which represents the com-
putation complexity of the structure. Sparse grids are good tools for mitigating the curse
of dimensionality, because unlike full grids, whose sizes have exponential dependency on
dimensionality d, i.e., O(2"9), sparse grids have sizes on the order of O(2'-1971), which
are far smaller than those of their corresponding full grids. Table 7.1 enumerates the size
differences between level 5 full grids V5 and their sparse grid counterparts Us with different
dimensionality. The computational superiority of sparse grids becomes more evident as
dimensionality increases.

7.2.3 Function Interpolation on Adaptive Sparse Grids

There have been successful applications of sparse grids on function interpolation. It is
shown that when the interpolating function meets certain smoothness condition [125, 128,
120, 121, 122, 123], the error of its sparse grid interpolant is bounded. However, very often
there are cases in which the interpolating function does not meet such requirements, e.g.,
when it comprises both very steep and flat regions. In these cases, adaptive sparse grids
are required.

A standard sparse grid is one that is constructed by combining the optimal selection
of the hierarchical subspaces, i.e., the ones satisfying condition (7.18) as discussed in Sec-
tion 7.2.2. Such a grid approximates an isotopic grid with the same discretization reso-
lution in every dimension. However, sparse grids can also be constructed adaptively to
provide different resolutions in different dimensions or localized regions. To be dimension-
adaptive [123], a sparse grid can include higher resolution subspaces in certain dimensions

109

7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction

[] [] []

[] [] [] [] [] [] [] [] []
[] [] []

e o o o o o o e 6 o o o o o ® 006000 o o o

[]] [] e o o

[] [] [] e o o o [] ® o000 []

A

[] [] [] e o o

Figure 7.3: 2-D adaptive sparse grid

in addition to the set of optimal selection. To be spatially adaptive, it can refine on selected
grid points (local regions), which is called adaptive refinement [122].

Figure 7.3 demonstrates two adaptive refinement steps on a 2-D level 3 sparse grid, which
is first refined on grid point A as shown in the middle figure, and then further refined on
grid point B as shown in the right figure. Due to their ability to capture more details or
information where necessary (depending on the refinement criteria), adaptive sparse grids
can tackle functions that do not meet the general smoothness condition by adapting to
their special characteristics. The surrogate construction algorithm implemented for the
inverse problem discussed in this chapter employs function interpolation on sparse grids
with adaptive refinement.

Similar to the 1-D case discussed in Section 7.2.1, interpolating a model f(x) on a
d-dimensional sparse grid is equivalent to finding the coefficients {a;.} in

f(@) ~ fsaale) = Y azésla), (7.19)

jeBP

where BY is the set of indices of all P grid points in the sparse grid, and {(b;.} a set of
chosen basis functions each located at a grid point. In our implementation, we choose
d-linear hat functions as basis.

Due to the fact that basis functions in sparse grids are hierarchical basis (more details on
hierarchical decomposition [120, 121, 122, 123]), coefficients {az} are not direct evaluations
of f(x) at the grid points, which is different from the 1-D case. But they can be computed
from these values, and the process is called hierarchization. Let Tz denote the coordinate
of the grid point at which <bj~.(:):) is located,

{az} = hierarhize({c;}), (7.20)

where ¢z = f(z7) vj e BY. {as} are ofter referred to as the hierarchical surpluses.

In short, the computation of hierarchical surpluses {045.} consists of P data-independent
subtasks of evaluating f(x) at each grid point as well as an aggregation step for hierar-
chization. This means that the construction of surrogate is an embarrassingly parallel
computation problem.

In the implemented algorithm, the surrogate is initially constructed on a standard sparse
grid of a certain level specified by the user. A model error of the surrogate is then computed
over a set of randomly selected test points {t; € Q|i = 1,...,Q}. It is the average
FEuclidean distance between the output from the original model and that from the surrogate,

110

7.3 Case Study: Inference of Obstacle Locations in Laminar Flow

i.e.,
Q
e = 5 St = Fscalt)] (7.21)
=1

While the surrogate model error e is greater than a set threshold, i.e., while the surrogate
is not accurate enough, the sparse grid keeps refining in regions of rapid changes and high
posterior probabilities, because rapid changes indicate poor resolution for capturing the
model details, and high posterior probabilities indicate areas of higher interests.

A refinement indicator is computed for every grid point T3 as

* Tposterior (xj’) (722)

7=l
The [2-norm of the hierarchical surpluses is used because it is a great indicator for the
gradient magnitude. In a refinement, a user-specified number of grid points with the
greatest r values are refined, and new grid points are added to the grid.

The computational cost of a refinement is the number of added grid points multiplied
by the cost of running a forward simulation. Let C(f) be the cost of running a forward
simulation with the original model f(z), Py the number of grid points in the initial sparse
grid, P; the number of added grid points in the i*" refinement, and R the total number of
refinement performed, then the total cost of constructing a surrogate is given by

R
Cscr=C(f) x (Po+>_P).

i=1

7.3 Case Study: Inference of Obstacle Locations in Laminar Flow

In this section, we discuss an inverse problem in which we try to locate multiple obstacles
in a fluid channel based on measurements of the fluid velocity. The solution is formulated
with Bayesian inference. An MCMC solver based on the parallel tempering algorithm is
implemented. The solver is coupled with a surrogate model constructed with function
interpolation on adaptive sparse grids. Construction of the surrogate is the most com-
putationally intensive part of the entire problem solving workflow. A malleable parallel
algorithm for surrogate construction based on Elastic MPI is presented.

7.3.1 The Problem

Consider a 2-D channel with a rectangular domain of 10 meters by 2 meters filled with
incompressible viscous fluid. The fluid flows into the channel from the left boundary and
flows out from the right boundary, as shown in Figure 7.4. Inside the channel there are
four obstacles with known sizes and shapes, but unknown locations. Ten sensors are placed
across the channel to obtain measurements of the fluid velocity at four time instances, which
produces a total number of 40 (10 x 4) measurements.

We have a model f : Q — © that simulates the fluid dynamics. It takes the locations of
four obstacles as input parameters, and outputs velocities of the fluid at the exact locations
and times at which the sensors make measurements. Since the simulation domain is 2-D,
the location of each obstacle consists of an z- and a y-coordinate, the input parameter

111

7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction

—_— e ° ° ° e —)>
Inflow (x1, y1) S;\nsor (xs, ya) Outflow
—> o oz y2) o (V3G o —>»

Figure 7.4: A 2-D fluid channel with four obstacles at unknown locations

therefore consists of 8 components, i.e., = [z1,y1,...,T4,y4] € Q@ C R®, which means the
inverse problem is 8-dimensional.
Assuming that there is Gaussian noise in the data measurements, i.e.,

7I-noise(zc) = N(07 0'21),

and that we have no prior information of the obstacle locations, i.e., the prior distribution
is uniform,
Tprior(2) = Uq = c € R,

we can further simplified the solution given by (7.8) by eliminating the constant prior term
and obtain

Trposterior (x) ‘= €exp (_2}‘_2 [gobserved - f(f)} ! [?jobserved - f(f)}> . (723)

7.3.2 The Forward Simulation Model

The fluid dynamics of the incompressible flow can be described by the 2-D Navier-Stokes
equations [104, 105, 129] given by

Ou O’ Ow) _0p 1 (0w 0%\
ot | oz dy 0z @ Re\dz2 ay2) I
v O(uwv) I(v?) op 1 (v 9%
el A R T (e T 7.24
ot " or T oy 9y T Re \922 T 92) T (7.24)
Ou ov_
or Oy

The first two equations, called the momentum equations, describe the conservation of
momentum, and the third one, called the continuity equation, describes the conservation
of mass. In (7.24), and y denote the horizontal and vertical dimensions of the domain, ¢
the time evolved, u and v the velocities of the fluid in the z- and y-direction respectively,
and p pressure of the fluid. Re € R is a dimensionless quantity called the Reynolds number,
which characterizes the stickiness (freedom of movement) of the fluid. A smaller Re value
indicates a more viscous fluid. g, and g, denote external forces in the x- and y-direction
respectively, e.g, gravity or other body forces acting throughout the bulk of the system.
The unknowns to be solved for are u, v and p.

Spatial Discretization

To solve the PDE system in (7.24), we employ the staggered grid [129] for spatial discretiza-
tion. It is essentially a Cartesian grid, but with the unknowns placed at different locations
in a grid cell, i.e., pressure p is placed at the center of a cell, the horizontal velocity u is

112

7.3 Case Study: Inference of Obstacle Locations in Laminar Flow

cell(i,j)
J+1 Vi,j Vi+1,j+1
) Pi, Pi+1,j
J e P
Ui-1,j Ui, Ui+1,j
j-1 Vi,j-l Vi+1,j-1
i-1 i i+1 i+2

Figure 7.5: Staggered grid

placed at the right edge of the cell, and the vertical velocity v is placed at the top edge
of the cell, as shown in Figure 7.5. With such scheme, each spatial derivatives can be
approximated by a finite difference [130, 131] formula.

Time Discretization

For the momentum equations, we employ the Ezplicit Euler [132] scheme, which gives

(n+1) _) _ Pt man))
uiV = B - (o) el).
(n+1) _ (n) h (n+1) _(n+1) (7.25)
n+ n t n+ n+
vij =G - ﬁ(ij+1 ~ Pij)
Yy
where Fl(?) and GZ(»Z-) are given by
1 0%u 0%u A(u?) O(uv)
Foi— s s — [== i — _
i,J wij + he (Re ([3x2lj+[3y2]”> |: o :|ij |: dy :|ij+gw)
L - ’ L (7.26)
. 1 0%v 0%v d(uv) o(v?)
Gw =iy e <Re ({(’91’2]” - [WL;) [Ox]zg { y ij e)
From the continuity equation, we have
PRICEY [av](nﬂ)
e + | == =0, 7.27
|:6x:|i7j dy i,j ()
where, based on the spatial discretization finite difference scheme,
@ (n+1) - UEZ""U _ uf’_l‘ilj)
Ol e (7.25)
{81}] (n+1) . Uz(’nj+1) _ Uz(ztll) '
dy ij hy

Substituting (7.25) into (7.28), and in turn into (7.27) results in an equation from which
pressure can be solved, i.e.,

n+1 n+1 n+1 n+1 n+1 n+1
p§+1,j) - 2p§,j) +pz(’71,j) pz(‘,j+1) B sz(‘,j : +pz(',j71)
2 + 2
K "y (7.29)
(n) (n) (n) (n) ’
_ L (B Rey Gy G
hy ha hy '

113

7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction

Equation (7.29) is in the form of the discretized Poisson’s equation [133, 134], and can be
transformed into a linear system of

Ap=b, (7.30)

where matrix A reflects the discretized Laplace operator A, and b denotes the right hand
side of (7.29).

To ensure stability of the numerical scheme, the following condition is imposed on the
time step size hy,

-1
Re /[1 1 h h
hi :=7min{ — | — + — a Y 7.31
¢ T min 5 <h§+h§> , |umax|’ O]) ()

where |upmax| and |vmax| are the maximal absolute values of the respective velocity, and
the coefficient 7 € [0, 1] is a safety factor, usually set to 0.5. Condition (7.31) ensures that
the fluid does not travel faster than one grid cell at a time step. The spatial and time
discretization scheme employed in our implementation mainly follows [129].

Input and Output

To run a simulation of the fluid dynamics in the given 2-D channel is to solve the PDE
system (7.24) with the right initial and boundary conditions. Obstacles inside the channels
are treated as inner boundaries. Since their sizes and shapes are known, once their locations
are set, a geometry with the proper domain and inner boundaries can be constructed, and
the PDE system can then be solved.

The output of the simulation consists of all velocities and pressure values in each grid
cell at each time step, i.e.,

i7(to) i7t) i7(tend)
{ o) | | gt | [t
ﬁ(to) ﬁ‘(tl) ﬁ(tend)

For the inverse problem described in Section 7.3.1, not all simulation output data are
necessary. Indeed, only the u and v values at the 10 locations and 4 time instances at
which the sensors make the measures are kept.

In short, the forward simulation model f : Q — © takes in a vector Z € R® that specifies
the locations of the four obstacles, and produces a vector § € R% of the fluid velocities
sampled at 10 locations across the domain at 4 different time instances.

7.3.3 The Main Algorithm and Malleable Surrogate Construction

The main steps for solving the inverse problem is relatively straightforward:
1. build a surrogate model,

2. run the MCMC solver with the surrogate.

The output is a series of samples that represents the posterior distribution of the obsta-
cle coordinates. For an adaptive surrogate construction, step 1. can be wrapped in a
while loop such that the building process continues until the surrogate meets the accuracy
requirement. The main function in Algorithm 7.3 consists of exactly these steps.

114

7.3 Case Study: Inference of Obstacle Locations in Laminar Flow

The most computationally intensive part of the program lies in the Build_Surrogate
function, which on its own is a resource-adaptive computation phase in a master-worker
style. The application has, therefore, indefinite computation phases. An elastic program-
ming model for such type of applications is summarized in Section 4.5.

Surrogate Model Construction with Resource Adaptation

The Build_Surrogate function in Algorithm 7.3 either builds a surrogate model from
scratch or refines an existing one by examining whether the input surrogate model argument
fsar1 is empty or not. In either case, the process is similar:

1. a sparse grid is built or refined, resulting in a number of grid points being added;

2. then, the function enters a master-worker block to perform a forward simulation for
each newly added grid point;

3. lastly, the function computes the hierarchical surpluses by hierarchizing the direct
function evaluations {c;}.

When JOINING processes arrive, they are routed to the Resource_Adapt block directly,
bypassing the grid initialization/refinement block, because they will be prepared with
the necessary grid-related data in the adaptation window. Upon returning from the
Resource_Adapt function, they reach the master-worker block and start working as work-
ers.

The Resource_Adapt function in Algorithm 7.3 opens an adaptation window. It handles
the JOINING processes by preparing them with grid-related data and the surrogate model
error err, which is the computation phase identifier. It omits the steps for handling
LEAVING processes as well as those for data redistribution, such as lines 26-28 and 33
in Algorithm 4.2. This is because in this application, we use MPI-IO for saving and
transferring data instead of MPI communication. When a grid is generated or refined, it
is saved to a grid file by the Master. When a worker finishes a subtask, it saves the data
to a data file, which eliminates the operations of migrating data from LEAVING processes.

The main reasons to opt for MPI-IO are memory consumption and parallel performance.
The number of grid points can grow rapidly as more refinements are performed. Since
every grid point Z; is associated with a long index 7, a function evaluation output ¢; € R40
and a hierarchical surplus a; € R, with the long index being 64-bit and each double
precision floating point being 64-bit, the memory required for storing a grid point is at
least 648 Bytes. For 10,000 grid points, the memory required to store the grid-related
data is about 6.5 GB. If the grid grows larger in size, the compute node can be saturated
or run out of memory. Besides concerns on memory consumption, when new processes
join in the computation, the Master process must broadcast multi-gigabytes of data to all
the JOINING processes, which is performance-wise impractical. Due to these reasons, the
application is designed to use the file system as the data transfer medium. That is, all
grid related data are written to files at the time they are produced, and can be retrieved
by any process from these files at any time afterwards. With MPI-IO concurrent read and
write!, the data transfer process is significantly accelerated.

! Concurrent write is possible with MPI-IO if each process write to a non-overlapping subset of a file.

115

7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction

Algorithm 7.3: Main algorithm for locating obstacles in a fluid channel

1 Function Main():
2 MPI_Init_adapt() // returns process status in procStatus
3 Initialize numRanks, rank, etc.
// 1. Surrogate construction
4 err < Tol +1
5 while err > Tol do
6 fsa1 < Build_Surrogate(f, fsar) // Initialize or refine surrogate
7 Compute, reduce, broadcast model error err
8 end
// 2. MCMC solver
9 {#1,..., &g} < MCMCPT(S, fsar)
// 3. Finalization
10 MPI Finalize()

11 End

12 Function Build_Surrogate(f, fsq1):

// 1.1. Initialization: JOINING processes bypass
13 if procStatus = JOINING then
14 ‘ Resource_Adapt () // loop counter err is synced
15 else
16 if fsar is empty then
17 ‘ Initialize a standard sparse grid, added new grid points {Z;};
18 else
19 ‘ Refine the underlying sparse grid, added new grid points {Z;};
20 end
21 end
// 1.2. Computation: evaluate f at each added grid points: ¢; = f(Z;) Vi
22 if is Root then
23 ‘ Master ()
24 else
25 ‘ Worker ()
26 end
// 1.3. Compute hierarchical surpluses collectively
27 {a;} < hierarchize({¢;})

28 End

29 Function Resource_Adapt():

30 MPI_Comm_adapt_begin()

31 if there are JOINING ranks then

32 JOINING ranks read grid data from file // MPI-10 operations
33 Synchronize err among the new resource group

34 end

35 MPI_Comm_adapt_commit () // MPI_COMM_WORLD is updated
36 Update numRanks, rank, procStatus, etc.

37 End

116

7.3 Case Study: Inference of Obstacle Locations in Laminar Flow

Algorithm 7.4: Master and Worker functions for surrogate construction

1 Function Master():

© 00 N O kW N

= e
= o

12
13
14
15

16
17
18
19
20
21
22
23
24

25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

// The P grid points are divided into a number of jobs
Initialize jobsArray // Track job status: Todo, Progress, or Done
Initialize workersArray // Track worker status: Active or Idle
Seed workers
while not all jobs are Done do
if there are Active workers then

‘ Receive a job done notification from any worker
end
if there are Todo jobs and there are ldle workers then

‘ Send a Todo job to an Idle worker
end

// Only make sense to adapt if there are more Todo jobs
if Time to probe Resource Manager then
MPI_Probe_adapt () // returns adapt decision in adaptFlag
if adaptFlag says to adapt and there are Todo jobs then
Check all workers status, collect job done notification from Active
workers
Send adapt signal to all workers
Resource_Adapt ()
Resize and update workersArray // workers changed
Seed workers

end

end

end
Send terminate signal to all workers

End

Function Worker ():

while true do
Receive a message from Master
Extract Master’s instruction from status object
if instruction is to terminate then
‘ break
end
if instruction is to adapt then
MPI_Probe_adapt () // workers need to know its process status
Resource_Adapt)
end
if instruction is to work then
Compute the job // Compute ¢; = f(Z;) and Tposterior (Zi)
Write grid point data to output file // MPI-1O operations
Inform Master the job is done
end
end

End

117

7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction

The Master Process

The master and worker functions are summarized in Algorithm 7.4. The Master process
divides the added grid points (resulting from sparse grid creation or refinement) into a
number of chunks of equal sizes, and sends each chunk (as a job) to a worker. A job array,
with each element representing a job, is used for keeping track of job status, i.e., Todo,
Progress, Done. The status Todo means the job is not yet sent to any worker, Progress
means the job is sent to a worker but not yet finished, and Done means the job is completed.
A worker array, with each element representing a worker process, is used for keeping track
of the worker status, i.e., either Active or Idle.

In a while loop, the Master process actively checks for active workers for finished jobs,
and keeps sending out Todo jobs to idle workers. There is no need to collect and aggregate
job results, since all computed data are written to files directly by each worker.

The resource adaptation block (line 12-21 in Algorithm 7.4) is executed at a controlled
frequency via a counter. Only when there are resource changes and there are more jobs
left to do, the Master invokes a sequence of operations to interrupt worker computation
for a resource adaptation. It first ensures that all workers have finished their current jobs
by collecting results from active workers. It then sends out the adapt signal to workers and
enters the Resource_Adapt block itself. Post adaptation, the Master updates the worker
array both in size and values to reflect the new resources. To get the workers back in
computation, the Master must seed them again.

The Worker Processes

The worker function in Algorithm 7.4 is straightforward. A worker waits for the instruction
from the Master in a while loop and takes actions accordingly. The Master’s instruction
is encoded in the status object (which is different than the process status) returned by
the MPI receive function. The body of the message carries job data if the instruction is
to compute, otherwise, it carries dummy values which would be ignored. Upon extraction
of the instruction, the worker either computes a job, performs resource adaptation, or
terminates. In case of adaptation, the worker must first obtain its process status by calling
MPI_Probe_adapt before entering the Resource_Adapt function.

7.4 Performance Evaluation

In this section, we present the performance and resource efficiency analysis on a statistical
inverse problem solver for locating obstacles in a fluid channel. We first conduct tests to
determine the impact of resource adaptivity on the application itself, then we compare
performance between tests with static and Elastic MPL.

7.4.1 Execution Environment: Virtual Machine Emulated Cluster

Due to limited access to the SuperMUC Petascale System at the time this thesis was
written, all tests with this application were conducted on a virtual machine (VM) emu-
lated cluster, which provided an execution environment of 8 nodes with 2 cores per node.
Specifications of the cluster as well as its host machine are listed in Table 6.1.

118

7.4 Performance Evaluation

velocity Magnitude
0.000e+00 0.52 1.041 1.561 2.082e+00

WHH]WHHIHH

Figure 7.6: A forward simulation of 2-D fluid channel with four obstacles

7.4.2 Benchmark Configuration

The forward simulation with the full model was configured with zero initial values for
the pressure and fluid velocities over the entire domain. The inflow velocity on the left
boundary was set to 1.0m/s (meters per second) in the z-direction and 0.0m/s in the
y-direction. External forces in both z- and y-directions were set to zero. Resolution of
the domain was restricted to 100 x 20 grid cells due to the limited computing power of
the VM cluster. Figure 7.6 visualizes the fluid velocity of one forward simulation with the
obstacles placed at the shown locations.
We assumed 20% Gaussian noise in the observed data, and set

o = 0.2 X mean(Ysbserved) (7.32)

for the posterior computation shown in (7.23).
The surrogate model error, given by

| fsar(xi) — f(z3)]]
Z |\ fscrlz + F@ (7.33)

was computed with ¢ = 50 randomly chosen input samples. This error was bounded
between 0.0 and 1.0, and the surrogate model was refined until e < 0.06. The final surrogate
model varied across tests, because they went through different number of refinement phases
due to being tested against different random samples. The surrogate model was set to refine
at least once regardless of the model error in order to avoid being overly simplified.

While the surrogate building phases were resource-elastic, the initialization and the
MCMC solver phase were static. The parallel temperating MCMC solver was executed on
K parallel chains, with K being the number of MPI processes with which the application
exited the last surrogate building phase. Excess parallel chains could actually impair ac-
curacy, therefore, K is usually bounded to a certain limit, e.g., 20 in our current setting,
but this concern did not apply to the VM cluster due to its small size.

7.4.3 Resource Adaptivity Overhead and Outcome of the Inference

The goal of this experiment was to analyze the impact of resource adaptivity, i.e., the
overhead introduced by resource adaptation and the subsequent communication and data
movements. We launched every test with a minimal resource assignment, i.e., 2 MPI

119

7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction

16 1

14 4

124

10 A

Number of MPI ranks

0.0 Ojl 0t2 013 0j4 0?5 0.6
Execution time (hours)

Figure 7.7: Resource profile of one test run of the obstacle location inverse problem

processes (on 1 node). In order to fully examine different cases of resource expansion
and reduction, we used a random elastic scheduler that gave a new resource assignment
randomly between 1 and 8 nodes every 5 minutes. There was no adaptation if the generated
random number was the same as the current number of nodes. The application was set to
probe the resource manager every 60 seconds.

Figure 7.7 shows the resource profile of one of these tests. The beginning of each phase is
marked by a red vertical line with a tag. The SGI build tag denotes a surrogate building or
refinement phase. The static initialization phase occurred before the first surrogate building
phase, and the static MCMC solver phase occurred after the last surrogate building phase.
The END tag indicates the end of execution. In this test, there were two surrogate building
phases, i.e., the surrogate model was refined once after its initial build. Resource adaptation
occurred once during each of these phases (resource adaptation can occur multiple times
during a surrogate building phase depending on its duration). The application exited
the last surrogate refinement phase with 16 processes. Therefore, the MCMC solver was
executed on 16 parallel chains.

Table 7.2 lists the execution time of each computational phase as well as the model
error and the computed number of grid points for each surrogate building phase. The total
execution time of this test is about 34 minutes, of which the resource-elastic period is about
23 minutes. Table 7.3 provides a summary of the execution time for resource adaptivity.
The accumulated time spent on resource adaptation is about 1.2 seconds, which is about
0.06% of the total execution time and 0.09% of the resource-elastic period.

For all tests conducted, the average execution time on Elastic MPI functions and total
resource adaptivity were similar to the numbers shown by Table 7.3. The application’s
total runtime varied significantly across tests due to the fact that it went through different
number of phases. With longer runtime, the proportion of resource adaptation overhead

120

7.4 Performance Evaluation

became even less. From this we can conclude that resource adaptivity has negligible impact
on runtime for this application.

Table 7.2: Execution time of each phase

Computation phase ‘ Exec. time (sec) ‘ Model error ‘ # Grid points

Initialization 87.03 -
SGI build #0 827.06 0.1112 1121
SGI build #1 530.51 0.0384 1306
MCMC solver 572.86 -
Total execution 2023.49 -

Table 7.3: Execution time of Elastic MPI functions

Elastic MPI function ‘ Avg. time (sec) ‘ Acc. time (sec) ‘ % of total adap.

MPI_Init_adapt 0.0513 0.1026 8.50%

MPI_Probe_adapt 0.0002 0.0035 0.29%
MPI_Comm_adapt_begin 0.2604 0.5208 43.13%
MPI_Comm_adapt_commit 0.2107 0.4213 34.89%
Data migration 0.0797 0.1593 13.19%
Total adaptation 0.6038 1.2076 100.00%

Table 7.4: Computational efforts comparison between coupling the MCMC solver with the full
simulation model and with surrogate model construction

With full model | With surrogate model
(2427 grid points)
Average simulation time 1.43 (sec) 0.03 (sec)
Surr. construction (CPU hours) 0.00 0.96
MCMC solver 20000 samples (CPU hours) 7.94 0.15
Total computational effort (CPU hours) 7.94 1.11

Outcome of the Inference

The main feature of this inverse problem solver is to reduce computational costs by re-
placing the full simulation model with a surrogate model. The total computational cost
on solving the problem with the full model can be computed by the the simulation time of
the full model T multiplied by the number of MCMC sampling steps S, i.e.,

Cost w. full model =T} x S. (7.34)

With surrogate model construction, the total cost is computed by summing the cost of
surrogate model construction and the cost of running the MCMC solver with the surrogate
model. The cost of surrogate model construction is given by the total number of grid points
P in the final adaptive sparse grid multiplied by the simulation time of the full model 7.
Therefore, the total computational cost on solving the problem with the surrogate model

121

7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction

can be computed by

Cost w. surr. model = Ty x P + Ty, x S. (7.35)

Table 7.4 shows the computational cost reduction of the test run shown by Figure 7.7
comparing to a hypothetical MCMC solver coupled with the full simulation model. In this
test run, the final sparse grid contained 2427 grid points. And the MCMC solver produced
20000 samples. Based on the calculation given by (7.34) and (7.35), this inverse problem
solver reduced the total computational effort from 7.94 to 1.11 CPU hours.

The inference results are visualized by Figure 7.8 and Figure 7.9. Figure 7.8 shows the
most probable combination of obstacle locations. Figure 7.9 shows the histogram of the
samples produced by the MCMC solver by each dimension. The dashed curve is an auto-
computed Gaussian distribution based on the samples. The blue vertical line marks the
sample point with the highest posterior value, i.e., the most probable sample point.

7.4.4 Execution Time and Resource Efficiency

In this experiment, we want to compare execution time and resource efficiency of Elastic
MPI test runs with the static MPI counterparts. As mentioned, the surrogate model
construction process varies across different tests, not due to different parametric settings
but due to the randomly chosen test points for the surrogate model evaluation. It is unfair
to compare runtime between runs that went through different number of phases, because
that means the computational workload in these runs are different, i.e., the more phases
a test run has means the more grid points it had computed. Therefore, the two tests we
selected for comparison have the same number of computational phases, i.e., each of them
went through exactly 2 surrogate building phases.

The surrogate construction process is an embarrassingly parallel problem. Its parallel
subtasks are independent of each other and have no requirement for communication or
synchronization. Therefore, the application can potentially run on any number of resources.
There is not a “fitting” resource assignment profile. For this reason, the Elastic MPI run
were produced under a random elastic scheduler.

Figure 7.10 shows the plotting of the resource profiles (number of MPI processes) of the
two test runs against execution time in hours. The resource utilization (in CPU hours)
of each run is computed by integrating its resource profile curve over its execution time.
The CPU hours are visually represented by the shaded area under each curve. The exact
execution time and CPU hours of each test are further listed in Table 7.5.

The first run with static MPI at 16 processes completed in about 26 minutes, resulting in
2.86 CPU hours. The second run with Elastic MPI started with 2 processes, adapted twice
during the course of execution and completed with 16 processes. It took about 34 minutes
to complete, resulting in 2.01 CPU hours. Having the same amount of workload, both runs
have comparable resource utilization. It seemed that resource adaptivity did not have a big
impact on resource efficiency, and that the application can be flexible with resource assign-
ments.

122

7.4 Performance Evaluation

2.0
N - o
M1 m -
0.5 A
Inferenced (max. posterior)
0.0 T T T T
0 2 4 6 8 10
Figure 7.8: Most probable obstacle locations
1.2
—== Aytofit normal dist. === Autofit normal dist.
1.0 H MCMC histogram 4 MCMC histogram
—— Value with max. posterior Value with max. posterior
0.8 1 34
0.6
2
0.4 1
14
0.2 A
0.0 =%
0 0.00 0.25 0.50 0.75 1.00 125 150 175 2.00
Yl
1.04 === Altofit pormal dist. 7 === Autofit normal dist.
: HEm MCMC histogram HEm MCMC histogram
—— Value wjth max. posterior 6 —— Value with max. posterior
Tak--—_
8 10
X2
1.0
=== Autofit ndrmal dist. 6 === Autofit normal dist.
081 HEm MCMC histogram HEm MCMC histogram
: —— Malue with max. posterior 51 —— Value with max. posterior
0.6+ 41
3 .
0.4 1
2
1 |] 1 |
1 : N :
0 2 4 6 8 10 0.00 025 050 0.75 1.00 125 1.50 175 2.00
X3 Y3
1.0 : : 71 i .
=== Autofit normal dist. === Autofit normal dist.
HEl MCMC histogr: 6 HEm MCMC histogram
0.8 — | Value with max. posterfior 5 —— Value with max. posterior
0.6 1 44
0.4 31
2
0.2 4 . -
- 1_ -
0.0 _“—;‘ij.l.,h == 0 —}
0 2 4 10 0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00
X4 Y4

Figure 7.9: Histogram of the MCMC output samples per dimension

123

7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction

16 T~ Static MPI-with 16 ranks : :
—— “Elastic’MP] with random scheduler , ,
T U

WSS IS SIS gggg %&%
VAR
(IS IS SIS :
Vo

v WWWK?Q
OWMWWW%

0.0 T2 0.6
Executlon t|me (hours)

1

o

o]

o

Number of MPI ranks

Figure 7.10: Resource profile vs. execution time and CPU hours of two test runs.

Table 7.5: Execution time and CPU hours of two test runs

Test run Exec. time (hours) \ CPU hours
1. Static MPI with 16 processes 0.43 2.86
2. Elastic MPI with random scheduler 0.56 2.01

7.5 Summary

We implemented a statistical inverse problem solver that couples a surrogate model with a
parallel MCMC sampler. The solver constructs surrogate models via function interpolation
on adaptive sparse grids. This process is designed with resource elasticity, which makes the
application go through a number of resource-adaptive computational phases. This solver is
generic and can be used on different inverse problems. For our experimentation, we applied
it to a problem where we locate obstacles in a fluid channel based on sparse measurements
of the fluid velocity. We had to conduct tests for this application on an 8-node VM cluster
with 2 CPUs per node due to limited access to SuperMUC.

This solver is an ideal addition to our application base for Elastic MPI investigation, be-
cause it is embarrassingly parallel and it implements a master-worker execution model.
Rather than having one main compute loop, it goes through multiple resource-elastic
phases. The computational workload varies across different phases. However, the stability
of workload does not affect its parallel performance due to the nature of the master-worker
model.

From the performance analysis, we observe that resource adaptivity introduces negligible
overhead and has little impact on the application’s execution time and resource efficiency.
This is comprehensible, because the application is immune to data redistribution due to

the absence of data dependency between parallel subtasks as well as the employment of
MPI-IO for data transfer.

124

7.5 Summary

In embarrassingly parallel problems, parallel subtasks can be distributed arbitrarily and
computed asynchronously. This makes it comparably easy to incorporate resource elastic-
ity from a communication stand point, because changes in resources do not require data
redistribution or processes synchronization. We can generalize that embarrassingly parallel
applications can act as “buffers” in an elastic environment, in the sense that they can take
up unutilized resources in case of resource abundance and that they can release resources
to feed other applications in case of a resource shortage.

125

PART IV

CONCLUSION

127

Conclusion and Outlook

8.1 Conclusion

Motivated to overcome some of the most compelling HPC challenges, we propose a solu-
tion that aims to optimize system performance and energy efficiency by realizing resource
awareness and elasticity. This approach requires support from both HPC systems and
applications. This thesis focuses on the development of resource-aware and elastic appli-
cations for distributed-memory HPC systems.

With the Elastic MPI infrastructure and API we developed, we abstracted programming
models for different types of parallel applications. We covered Elastic MPI programming
models for both SPMD and master-worker execution schemes, which are often implemented
for communication-intensive and embarrassingly parallel applications respectively. More-
over, we explained how to handle applications with single and multiple resource-elastic
computational phases.

We developed three resource-elastic applications and conducted performance analysis on
each individually. Due to their different characteristics, they demonstrated very different
behaviors with runtime resource adaptivity. Table 8.1 provides a brief summary on the
characteristics of the three applications.

Table 8.1: Characteristics summary of Elastic MPI applications

Application Communication Execution Performance Computational
type model bottleneck workload

Tsunami simulation communication- SPMD compute-bound dynamic
intensive w. single phase

Oil reservoir simulation communication- SPMD communication-bound static
intensive w. single phase

Inverse problem solver embarrassingly master-worker compute-bound dynamic

w. surrogate construction parallel w. multiple phases

Tsunami Simulation

This is a classical communication-intensive grid-based HPC application implementing a
SPMD model. It is compute-bound and has a very dynamic computational workload.

129

8 Conclusion and Outlook

Performance tests for this application were conducted in a 32-node environment on the
SuperMUC petascale system.

We observed that the overhead introduced by resource adaptation was within an accept-
able range, i.e., a few percent of the total execution time. This was mostly attributed to
the fact that we leveraged the application’s inherent load balancing scheme to avoid per-
forming data redistribution and load balancing during the resource adaptation windows.
We also observed that due to the application’s dynamic workload, appropriate runtime
adjustment on resource allocation helped to improve its resource utilization efficiency with
a trade-off on the execution time.

Oil Reservoir Simulation

This is yet another classical communication-intensive grid-based HPC application imple-
menting a SPMD model. This application has a very similar computational workflow to
the tsunami simulation. However, it is communication-bound, which means it is more sen-
sitive to communication overhead and it has a mostly stable computational workload. Due
to limited access to the SuperMUC petascale system, performance tests for this application
were conducted on an 8-node virtual machine emulated cluster.

Results showed that the resource adaptation overhead was insignificant, i.e., less than
one percent of the total execution time. This was again due to the fact that we overlapped
the application’s inherent load balancing operations with data redistribution required by
resource adaptation. The application’s stable workload was a clear indication that it did
not require runtime resource adjustment. Due to its communication-bound characteristics,
the application is prone to communication overhead and harder to scale. Test results
showed that excess resources could impair performance and that it is important to find a
suitable resource assignment. While Elastic MPI was not needed for resource adaptivity
for workload, it could help to find and adjust the application to the optimal resource
assignment at runtime.

Inverse Problem Solver with Surrogate Construction

This is an embarrassingly parallel application implementing a master-worker model. It has
multiple resource-adaptive phases with a different workload for each phase. It is considered
compute-bound due to its trivial communication between parallel processes. Performance
tests for this application were also performed on an 8-node virtual machine emulated
cluster.

Results showed that resource adaptation overhead was insignificant. This was attributed
to the application’s embarrassingly parallel nature that there is no intensive communication
needed for adding or removing resources. Runtime resource adaptation did not improve or
decrease the application’s resource utilization efficiency. It had, however, an impact on the
execution time, i.e., the application could run to completion faster with more resources,
and vice versa. Therefore, the application is flexible on resource assignment if there is no
requirement for execution time.

Generalization

From the experiments with all three applications, we can generalize the following conclu-
sions:

130

8.2 Outlook

e Resource adaptation overhead for embarrassingly parallel applications has little im-
pact. For communication-intensive applications with an inherent load balancing
scheme, resource adaptation overhead can be reduced significantly by overlapping
their built-in load balancing operations with those required for resource adaptation.

e For communication-intensive applications with a dynamic workload, Elastic MPI can
help to improve their resource utilization efficiency with appropriate runtime resource
assignments that adapt to their changing workload.

e For communication-intensive applications with a static workload, though runtime
resource adaptivity for workload is not necessary, Elastic MPI can help to find and
adjust the applications to their optimal resource assignments.

e For embarrassingly parallel applications, resource elasticity does not improve or de-
crease their resource utilization efficiency. When there is no requirement or limitation
on execution time, such applications can act as “buffers” in an elastic environment,
in the sense that they can take up unutilized resources in case of resource abundance
and that they can release resources to feed other applications in need in case of a
resource shortage.

In this pilot study on malleable parallel software development with Elastic MPI, we have
seen positive impacts of resource awareness and elasticity on individual applications. We
are encouraged to continue on this path to achieve improvements on the system level.

8.2 Outlook

In the current Elastic MPI release, there have been known stability issues (discussed in
Section 3.4.5) that prevented us from running tests on larger scales. These problems,
including those in the fan-out functionality in the PMI layer and those with the internal
metadata organization, are mostly rooted in the original design for static resources in the
SLURM and MPI bases. The largest Elastic MPI tests on scalability (not presented) we
have conducted were on 128 thin nodes and 64 Haswell nodes on SuperMUC. The largest
valid runs of the tsunami simulation presented in this dissertation were on 32 thin nodes.
Resolving the stability issues is the utmost important task in future Elastic MPI releases.
And conducting thorough performance tests on larger scales is one of our next goals for
malleable parallel application study.

While the elastic execution support for runtime resource expansion and reduction is fully
functional, the elastic resource manager is missing certain crucial functionalities (discussed
in Section 3.4.4), which include the batch scheduler and the ability of the runtime scheduler
to recognize and handle other execution models besides SPMD. Due to these reasons,
we were not able to conduct integration tests, in which multiple elastic applications run
concurrently in the same environment to compete for resources. The integration tests
can provide performance evaluation on the system level. With future Elastic MPI releases
that provide complete resource management functionalities, we can investigate the impacts
of resource awareness and elasticity on the overall system performance, throughput and
energy efficiency.

In this work, we have experimented with three applications. Further investigation on
more applications of different classes and characteristics is necessary. There is a large pop-

131

8 Conclusion and Outlook

ulation of HPC applications that have static structure and workload, and were originally
designed for static resources. Such types are important targets for our next investigation.
We will investigate using the mechanisms of elastic resource management for power
corridor enforcement. This can help to increase predictability in energy consumption and
thus, reduce the overall energy cost.
Elastic MPI can be extended for fault-tolerance. We have the plan to implement a
resource-aware checkpointing infrastructure for fast adaptive data recovery.

132

Bibliography

Remark: The number(s) at the end of each entry indicate the page(s) where the respective reference is

cited. In the PDF version, these numbers are hyperlinks.

1]

J. Teich, J. Henkel, A. Herkersdorf, D. Schmitt-Landsiedel, W. Schréder-Preikschat,
and G. Snelting. Invasive Computing: An Overview. In M. Hiibner and
J. Becker, editors, Multiprocessor System-on-Chip: Hardware Design and Tool In-
tegration, pages 241-268. Springer New York, New York, NY, 2011. doi:10.1007/
978-1-4419-6460-1_11. 3, 5

M. Snir, editor. MPI-the complete reference. Scientific and engineering computation.
MIT Press, Cambridge, Mass, 2nd ed edition, 1998. 4

W. Gropp, editor. The MPI-2 extensions. Number the complete reference ; Vol. 2
in MPI. MIT Press, Cambridge, Mass., 1998. OCLC: 174807419. 4

MPI Forum. https://www.mpi-forum.org, 2018. [Ounline]. 4, 13

S. Igbal, R. Gupta, and Y.-C. Fang. Planning considerations for job scheduling in
hpc clusters. Dell Power Solutions, pages 133-136, 2005. 4

Transregional Research Center InvasIC. http://www.invasic.de, 2018. [Online]. 5

M. Gerndt, A. Hollmann, M. Meyer, M. Schreiber, and J. Weidendorfer. Invasive
computing with iomp. In Specification and Design Languages (FDL), 2012 Forum
on, pages 225-231. IEEE, 2012. 7

A. Hollmann and M. Gerndt. Invasive computing: An application assisted resource
management approach. In V. Pankratius and M. Philippsen, editors, Multicore Soft-
ware Engineering, Performance, and Tools, pages 82-85, Berlin, Heidelberg, 2012.
Springer Berlin Heidelberg. 7

M. Schreiber, H.-J. Bungartz, and M. Bader. Shared memory parallelization of
fully-adaptive simulations using a dynamic tree-split and-join approach. In High
Performance Computing (HiPC), 2012 19th International Conference on, pages 1—
10. IEEE, 2012. 7

M. Schreiber. Cluster-Based Parallelization of Simulations on Dynamically Adap-

tive Grids and Dynamic Resource Management. Doctoral dissertation, Technical
University of Munich, Munich, Germany, 2014. 7

133

http://dx.doi.org/10.1007/978-1-4419-6460-1_11
http://dx.doi.org/10.1007/978-1-4419-6460-1_11
https://www.mpi-forum.org
http://www.invasic.de

BIBLIOGRAPHY

[11]

[20]

[21]

[22]

134

M. Schreiber, C. Riesinger, T. Neckel, H.-J. Bungartz, and A. Breuer. Invasive
compute balancing for applications with shared and hybrid parallelization. In-
ternational Journal of Parallel Programming, 43(6):1004-1027, Dec 2015. doi:
10.1007/s10766-014-0336-3. 7

I. Comprés. Resource-FElasticity Support for Distributed Memory HPC Applications.
Doctoral dissertation, Technical University of Munich, Munich, Germany, 2017. 7,
23, 36, 68

SLURM Workload Manager. https://slurm.schedmd.com, 2018. [Online|. 7, 30

MPICH: High-Performance Portable MPI. https://www.mpich.org, 2018. [Online].
7,11, 25

Open MPI: Open Source High Performance Computing. https://www.open-mpi.de,
2018. [Online]. 11

Intel MPI Library. https://software.intel.com/en-us/intel-mpi-library,
2018. [Online]. 11

IBM Spectrum MPI. https://www.ibm.com/us-en/marketplace/spectrum-mpi,
2018. [Online]. 11

D. Holmes, K. Mohror, R. E. Grant, A. Skjellum, M. Schulz, W. Bland, and J. M.
Squyres. Mpi sessions: Leveraging runtime infrastructure to increase scalability of ap-
plications at exascale. In Proceedings of the 23rd European MPI Users’ Group Meet-
ing, FuroMPI 2016, pages 121-129, New York, NY, USA, 2016. ACM. URL: http:
//doi.acm.org/10.1145/2966884.2966915, doi:10.1145/2966884.2966915. 13

W. Bland, A. Bouteiller, T. Herault, G. Bosilca, and J. Dongarra. Post-failure
recovery of MPI communication capability: Design and rationale. The International
Journal of High Performance Computing Applications, 27(3):244-254, August 2013.
URL: http://journals.sagepub.com/doi/10.1177/1094342013488238, doi:10.
1177/1094342013488238. 13

Fault Tolerance Research Hub. http://fault-tolerance.org, 2018. [Online]. 13

M. Gamell, D. S. Katz, H. Kolla, J. Chen, S. Klasky, and M. Parashar. Ex-
ploring Automatic, Online Failure Recovery for Scientific Applications at Extreme
Scales. In SC14: International Conference for High Performance Computing, Net-
working, Storage and Analysis, pages 895-906, New Orleans, LA, USA, Novem-
ber 2014. IEEE. URL: http://ieeexplore.ieee.org/document/7013060/, doi:
10.1109/5C.2014.78. 13

A. Hassani, A. Skjellum, and R. Brightwell. Design and Evaluation of FA-
MPI, a Transactional Resilience Scheme for Non-blocking MPI. In 2014 44th
Annual IEEE/IFIP International Conference on Dependable Systems and Net-
works, pages 750-755, Atlanta, GA, USA, June 2014. TEEE. URL: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6903636, doi:
10.1109/DSN.2014.78. 13

http://dx.doi.org/10.1007/s10766-014-0336-3
http://dx.doi.org/10.1007/s10766-014-0336-3
https://slurm.schedmd.com
https://www.mpich.org
https://www.open-mpi.de
https://software.intel.com/en-us/intel-mpi-library
https://www.ibm.com/us-en/marketplace/spectrum-mpi
http://doi.acm.org/10.1145/2966884.2966915
http://doi.acm.org/10.1145/2966884.2966915
http://dx.doi.org/10.1145/2966884.2966915
http://journals.sagepub.com/doi/10.1177/1094342013488238
http://dx.doi.org/10.1177/1094342013488238
http://dx.doi.org/10.1177/1094342013488238
http://fault-tolerance.org
http://ieeexplore.ieee.org/document/7013060/
http://dx.doi.org/10.1109/SC.2014.78
http://dx.doi.org/10.1109/SC.2014.78
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6903636
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6903636
http://dx.doi.org/10.1109/DSN.2014.78
http://dx.doi.org/10.1109/DSN.2014.78

BIBLIOGRAPHY

[23]

[24]

[25]

[26]

[29]

A. Hassani, A. Skjellum, P. V. Bangalore, and R. Brightwell. Practical re-
silient cases for fa-mpi, a transactional fault-tolerant mpi. In Proceedings of the
3rd Workshop on FEzascale MPI, ExaMPI 15, pages 1:1-1:10, New York, NY,
USA, 2015. ACM. URL: http://doi.acm.org/10.1145/2831129.2831130, doi:
10.1145/2831129.2831130. 13

I. Laguna, T. Gamblin, K. Mohror, M. Schulz, H. Pritchard, and N. Davis. A global
exception fault tolerance model for mpi. 9 2014. 13

S. Chakraborty, I. Laguna, M. Emani, K. Mohror, D. K. Panda, M. Schulz,
and H. Subramoni. ER einit :
Scalable and efficient fault-tolerance for bulk-synchronous MPI applications: ER
einit : Scalable and efficient fault-
tolerance for bulk-synchronous MPI applications. Concurrency and Computation:
Practice and Ezxperience, page e4863, August 2018. URL: http://doi.wiley.com/
10.1002/cpe .4863, doi:10.1002/cpe.4863. 13

K. Sato, A. Moody, K. Mohror, T. Gamblin, B. R. d. Supinski, N. Maruyama,
and S. Matsuoka. FMI: Fault Tolerant Messaging Interface for Fast and Transpar-
ent Recovery. In 2014 IEEFE 28th International Parallel and Distributed Processing
Symposium, pages 1225-1234, Phoenix, AZ, USA, May 2014. IEEE. URL: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6877350, doi:
10.1109/IPDPS.2014.126. 13

Charm++: Parallel Programming with Migratable Objects. http://charm.cs.
illinois.edu/research/charm, 2018. [Online|. 14

L. V. Kale and S. Krishnan. Charm++: A portable concurrent object oriented
system based on c++. SIGPLAN Not., 28(10):91-108, October 1993. doi:10.1145/
167962.165874. 14

B. Acun, A. Gupta, N. Jain, A. Langer, H. Menon, E. Mikida, X. Ni, M. Robson,
Y. Sun, E. Totoni, L. Wesolowski, and L. Kale. Parallel Programming with Mi-
gratable Objects: Charm-++ in Practice. pages 647-658. IEEE, November 2014.
d0i:10.1109/8C.2014.58. 14

N. Jain, A. Bhatele, J.-S. Yeom, M. F. Adams, F. Miniati, C. Mei, and L. V. Kale.
Charm++ and MPI: Combining the Best of Both Worlds. pages 655-664. IEEE,
May 2015. doi:10.1109/IPDPS.2015.102. 14

C. Huang, O. Lawlor, and L. V. Kalé. Adaptive mpi. In L. Rauchwerger, editor,
Languages and Compilers for Parallel Computing, pages 306-322, Berlin, Heidelberg,
2004. Springer Berlin Heidelberg. 14

C. Huang, G. Zheng, L. Kalé, and S. Kumar. Performance evaluation of adaptive
MPI. page 12. ACM Press, 2006. doi:10.1145/1122971.1122976. 14

C. Huang, G. Zheng, and L. V. Kalé. Supporting adaptivity in mpi for dynamic par-
allel applications. Rapport technique, Parallel Programming Laboratory, Department
of Computer Science, University of Illinois at Urbana-Champaign, 2007. 14

135

http://doi.acm.org/10.1145/2831129.2831130
http://dx.doi.org/10.1145/2831129.2831130
http://dx.doi.org/10.1145/2831129.2831130
http://doi.wiley.com/10.1002/cpe.4863
http://doi.wiley.com/10.1002/cpe.4863
http://dx.doi.org/10.1002/cpe.4863
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6877350
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6877350
http://dx.doi.org/10.1109/IPDPS.2014.126
http://dx.doi.org/10.1109/IPDPS.2014.126
http://charm.cs.illinois.edu/research/charm
http://charm.cs.illinois.edu/research/charm
http://dx.doi.org/10.1145/167962.165874
http://dx.doi.org/10.1145/167962.165874
http://dx.doi.org/10.1109/SC.2014.58
http://dx.doi.org/10.1109/IPDPS.2015.102
http://dx.doi.org/10.1145/1122971.1122976

BIBLIOGRAPHY

[34]

[35]

[44]

[45]

[46]

[47]

136

L. Kale, S. Kumar, and J. DeSouza. A Malleable-Job System for Timeshared Parallel
Machines. pages 230-230. IEEE, 2002. doi:10.1109/CCGRID.2002.1017131. 14

A. Gupta, B. Acun, O. Sarood, and L. V. Kale. Towards realizing the potential
of malleable jobs. pages 1-10. IEEE, December 2014. doi:10.1109/HiPC.2014.
7116905. 14

HPX. http://stellar.cct.lsu.edu/projects/hpx/, 2018. [Online|. 15

H. Kaiser, T. Heller, B. Adelstein-Lelbach, A. Serio, and D. Fey. HPX: A task based
programming model in a global address space. In Proceedings of the 8th International
Conference on Partitioned Global Address Space Programming Models, page 6. ACM,
2014. 15

T. Heller, P. Diehl, Z. Byerly, J. Biddiscombe, and H. Kaiser. HPX — An open
source C++ Standard Library for Parallelism and Concurrency. In Proceedings of
OpenSuCo 2017, Denver, Colorado USA, November 2017 (OpenSuCo’17), page 5,
2017. 15

H. Kaiser, M. Brodowicz, and T. Sterling. ParalleX an advanced parallel execution
model for scaling-impaired applications. In Parallel Processing Workshops, 2009.
ICPPW’09. International Conference on, pages 394—401. IEEE, 2009. 15

A. Tabbal, M. Anderson, M. Brodowicz, H. Kaiser, and T. Sterling. Preliminary
design examination of the parallex system from a software and hardware perspective.
ACM SIGMETRICS Performance Evaluation Review, 38(4):81-87, 2011. 15

M. Anderson, M. Brodowicz, H. Kaiser, and T. Sterling. An application driven
analysis of the parallex execution model, 2011. arXiv:arXiv:1109.5201. 15

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kielstra, K. Ebcioglu, C. von
Praun, and V. Sarkar. X10: an object-oriented approach to non-uniform cluster com-
puting. ACM SIGPLAN Notices, 40(10):519, October 2005. doi:10.1145/1103845.
1094852. 16

V. Saraswat. X10: Concurrent programming for modern architectures. In Proceedings
of the 5th Asian Conference on Programming Languages and Systems, APLAS’07,
pages 1-1, Berlin, Heidelberg, 2007. Springer-Verlag. 16

P. Murthy. Parallel computing with x10. page 5. ACM Press, 2008. doi:10.1145/
1370082.1370086. 16

F. Hannig, S. Roloff, G. Snelting, J. Teich, and A. Zwinkau. Resource-aware pro-
gramming and simulation of MPSoC architectures through extension of X10. page 48.
ACM Press, 2011. doi:10.1145/1988932.1988941. 16

A. Zwinkau. Resource awareness for efficiency in high-level programming languages.
Technical Report 12, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2011.
16

M. Braun, S. Buchwald, M. Mohr, and A. Zwinkau. An X10 Compiler for Invasive
Architectures. Technical report, Karlsruhe, 2012. doi:10.5445/IR/1000028112. 16

http://dx.doi.org/10.1109/CCGRID.2002.1017131
http://dx.doi.org/10.1109/HiPC.2014.7116905
http://dx.doi.org/10.1109/HiPC.2014.7116905
http://stellar.cct.lsu.edu/projects/hpx/
http://arxiv.org/abs/arXiv:1109.5201
http://dx.doi.org/10.1145/1103845.1094852
http://dx.doi.org/10.1145/1103845.1094852
http://dx.doi.org/10.1145/1370082.1370086
http://dx.doi.org/10.1145/1370082.1370086
http://dx.doi.org/10.1145/1988932.1988941
http://dx.doi.org/10.5445/IR/1000028112

BIBLIOGRAPHY

[48]

[49]

[50]

[51]

[53]

[54]

T. Desell, K. E. Maghraoui, and C. A. Varela. Malleable applications for scalable
high performance computing. Cluster Computing, 10(3):323-337, August 2007. doi:
10.1007/s10586-007-0032-9. 17

K. E. Maghraoui, T. J. Desell, B. K. Szymanski, and C. A. Varela. The Internet
Operating System: Middleware for Adaptive Distributed Computing. The Interna-
tional Journal of High Performance Computing Applications, 20(4):467-480, Novem-
ber 2006. doi:10.1177/1094342006068411. 17

SALSA Programming Language. http://wcl.cs.rpi.edu/salsa/, 2018. [Online].
17

C. Varela and G. Agha. Programming Dynamically Reconfigurable Open Systems
with SALSA. ACM SIG\-PLAN Notices. OOPSLA’2001 Intriguing Technology
Track Proceedings, 36(12):20-34, December 2001. 17

K. El Maghraoui, B. K. Szymanski, and C. Varela. An Architecture for Recon-
figurable Iterative MPI Applications in Dynamic Environments. In D. Hutchison,
T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nier-
strasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.
Vardi, G. Weikum, R. Wyrzykowski, J. Dongarra, N. Meyer, and J. Wasniewski,
editors, Parallel Processing and Applied Mathematics, volume 3911, pages 258-271.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006. doi:10.1007/11752578_32.
17

PVM Parallel Virtual Machine. https://www.csm.ornl.gov/pvm/, 2018. [Online].
17

A. Beguelin, J. Dongarra, A. Geist, R. Manchek, K. Moore, and V. Sunderam. PVM
and HeNCE: Tools for heterogeneous network computing. In Software for Parallel
Computation, pages 91-99. Springer, 1993. 17

V. S. Sunderam. PVM: A framework for parallel distributed computing. Concurrency
and Computation: Practice and Ezperience, 2(4):315-339, 1990. 17

T. G. Mattson. Programming environments for parallel and distributed computing:
A comparison of P4, PVM, Linda, and TCGMSG. The International journal of
supercomputer applications and high performance computing, 9(2):138-161, 1995. 17

O. Sonmez, H. Mohamed, W. Lammers, D. Epema, et al. Scheduling malleable
applications in multicluster systems. In Cluster Computing, 2007 IEEE International
Conference on, pages 372-381. IEEE, 2007. 18

N. Beigi-Mohammadi and M. Litoiu. Engineering Self-Adaptive Applications on
Cloud with Software Defined Networks. pages 9-12. IEEE, April 2017. doi:10.
1109/IC2E.2017.43. 18

P. Zoghi, M. Shtern, M. Litoiu, and H. Ghanbari. Designing adaptive applications
deployed on cloud environments. ACM Trans. Auton. Adapt. Syst., 10(4):25:1-25:26,
January 2016. doi:10.1145/2822896. 18

137

http://dx.doi.org/10.1007/s10586-007-0032-9
http://dx.doi.org/10.1007/s10586-007-0032-9
http://dx.doi.org/10.1177/1094342006068411
http://wcl.cs.rpi.edu/salsa/
http://dx.doi.org/10.1007/11752578_32
https://www.csm.ornl.gov/pvm/
http://dx.doi.org/10.1109/IC2E.2017.43
http://dx.doi.org/10.1109/IC2E.2017.43
http://dx.doi.org/10.1145/2822896

BIBLIOGRAPHY

[60]

[61]

[62]

[63]

[64]

[66]

[67]

138

A. Bhadani and S. Chaudhary. Performance evaluation of web servers using central
load balancing policy over virtual machines on cloud. In Proceedings of the Third
Annual ACM Bangalore Conference, page 16. ACM, 2010. 18

S. G. Domanal and G. R. M. Reddy. Load balancing in cloud computingusing mod-
ified throttled algorithm. In Cloud Computing in Emerging Markets (CCEM), 2013
IEEFE International Conference on, pages 1-5. IEEE, 2013. 18

J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107-113, 2008. 18

J. Dean and S. Ghemawat. Mapreduce: a flexible data processing tool. Communi-
cations of the ACM, 53(1):72-77, 2010. 18

K.-H. Lee, Y.-J. Lee, H. Choi, Y. D. Chung, and B. Moon. Parallel data processing
with mapreduce: a survey. AcM sIGMoD Record, 40(4):11-20, 2012. 18

I. Comprés, A. Mo-Hellenbrand, M. Gerndt, and H.-J. Bungartz. Infrastructure and
API Extensions for Elastic Execution of MPI Applications. pages 82-97. ACM Press,
2016. doi:10.1145/2966884.2966917. 23, 68

K. Firlinger and D. Skinner. Capturing and visualizing event flow graphs of mpi ap-
plications. In European Conference on Parallel Processing, pages 218-227. Springer,
2009. 34

X. Aguilar, K. Firlinger, and E. Laure. Mpi trace compression using event flow
graphs. In Furopean Conference on Parallel Processing, pages 1-12. Springer, 2014.
34

X. Aguilar, K. Furlinger, and E. Laure. Automatic on-line detection of mpi applica-
tion structure with event flow graphs. In European Conference on Parallel Processing,
pages 70-81. Springer, 2015. 34

I. Lee, C. S. lliopoulos, and K. Park. Linear time algorithm for the longest common
repeat problem. Journal of Discrete Algorithms, 5(2):243-249, 2007. 35

E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249-260, 1995.
35

R. Tarjan. Testing flow graph reducibility. In Proceedings of the fifth annual ACM
symposium on Theory of computing, pages 96-107. ACM, 1973. 35

P. Havlak. Nesting of reducible and irreducible loops. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS), 19(4):557-567, 1997. 35

G. Ramalingam. Identifying loops in almost linear time. ACM Transactions on
Programming Languages and Systems (TOPLAS), 21(2):175-188, 1999. 35

T. Wei, J. Mao, W. Zou, and Y. Chen. A new algorithm for identifying loops in
decompilation. In International Static Analysis Symposium, pages 170-183. Springer,
2007. 35

http://dx.doi.org/10.1145/2966884.2966917

BIBLIOGRAPHY

[75]

[76]

[77]

[78]

[88]

[39]

Leibniz supercomputing centre of the bavarian academy of sciences and humanities.
https://www.lrz.de/services/compute/supermuc, December 2018. [Online]. 38,
67

B. Barney et al. Introduction to parallel computing. Lawrence Livermore National
Laboratory, 6(13):10, 2010. 39

O. Meister. Sierpinski Curves for Parallel AdaptiveMeshRefinement in Finite El-
ement and Finite Volume Methods. Doctoral dissertation, Technical University of
Munich, Munich, Germany, 2016. 55, 58, 59, 64, 72, 75, 77, 78

D. F. Wallace. Everything and more: a compact history of infinity. Great discoveries.
Atlas Book, New York, 1st ed edition, 2003. 56

G. Peano. Sur une courbe, qui remplit toute une aire plane. Mathematische Annalen,
36(1):157-160, Mar 1890. doi:10.1007/BF01199438. 56

D. Hubert. Uber die stetige abbildung einer linie auf ein flichenstiick. Mathematische
Annalen, 38:459-460, 1891. 56

G. M. Morton. A computer oriented geodetic data base and a new technique in file
sequencing. 1966. 56

H. Sagan. Space filling curves. Universitext. Springer, New York Berlin, 1994. OCLC:
246915680. 56

M. Bader. Space-filling curves: an introduction with applications in scientific com-
puting. Number 9 in Texts in computational science and engineering. Springer, Hei-
delberg ; New York, 2013. 56

W. Sierpinski. Sur une nouvelle courbe continue qui remplit toute une aire plane.
Bull. Acad. Sci. Cracovie (Sci. math. et nat. Serie A), pages 462-478, 1912. 56

W. F. Mitchell. Adaptive refinement for arbitrary finite-element spaces with hier-
archical bases. Journal of Computational and Applied Mathematics, 36(1):65-78,
August 1991. doi:10.1016/0377-0427(91)90226-A. 56

W. F. Mitchell. 30 years of newest vertex bisection. page 020011, 2016. doi:
10.1063/1.4951755. 56

M. Bader, S. Schraufstetter, C. Vigh, and J. Behrens. Memory efficient adaptive
mesh generation and implementation of multigrid algorithms using Sierpinski curves.
International Journal of Computational Science and Engineering, 4(1):12, 2008. doi :
10.1504/IJCSE.2008.021108. 56

M. Bader and C. Zenger. Cache oblivious matrix multiplication using an element
ordering based on a Peano curve. Linear Algebra and its Applications, 417(2-3):301—
313, September 2006. doi:10.1016/j.1laa.2006.03.018. 57

M. Bader, K. Rahnema, and C. Vigh. Memory-Efficient Sierpinski-Order Traversals
on Dynamically Adaptive, Recursively Structured Triangular Grids. In D. Hutchison,

139

https://www.lrz.de/services/compute/supermuc
http://dx.doi.org/10.1007/BF01199438
http://dx.doi.org/10.1016/0377-0427(91)90226-A
http://dx.doi.org/10.1063/1.4951755
http://dx.doi.org/10.1063/1.4951755
http://dx.doi.org/10.1504/IJCSE.2008.021108
http://dx.doi.org/10.1504/IJCSE.2008.021108
http://dx.doi.org/10.1016/j.laa.2006.03.018

BIBLIOGRAPHY

[90]

[91]

[94]

[95]

[100]

[101]

140

T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nier-
strasz, C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y.
Vardi, G. Weikum, and K. Jénasson, editors, Applied Parallel and Scientific Com-
puting, volume 7134, pages 302-312. Springer Berlin Heidelberg, Berlin, Heidelberg,
2012. 57

R. J. LeVeque. Finite volume methods for hyperbolic problems. Cambridge texts in
applied mathematics. Cambridge University Press, Cambridge ; New York, 2002. 58,
80

D. S. Bale, R. J. LeVeque, S. Mitran, and J. A. Rossmanith. A Wave Propa-
gation Method for Conservation Laws and Balance Laws with Spatially Varying
Flux Functions. SIAM Journal on Scientific Computing, 24(3):955-978, jan 2003.
doi:10.1137/5106482750139738X. 59

T. Gallouét, J.-M. Hérard, and N. Seguin. Some approximate Godunov schemes to
compute shallow-water equations with topography. Computers € Fluids, 32(4):479
— 513, 2003. doi:10.1016/S0045-7930(02)00011-7. 59

D. L. George. Augmented Riemann solvers for the shallow water equations over
variable topography with steady states and inundation. Journal of Computational
Physics, 227(6):3089 — 3113, 2008. doi:10.1016/j.jcp.2007.10.027. 59

E. Godlewski and P.-A. Raviart. Numerical Approximation of Hyperbolic Systems of
Conservation Laws. Springer, New York, NY, 1996. OCLC: 879624121. 59

R. J. LeVeque, D. L. George, and M. J. Berger. Tsunami modelling with adaptively
refined finite volume methods. Acta Numerica, 20:211-289, May 2011. doi:10.
1017/80962492911000043. 59

G. Zumbusch. On the quality of space-filling curve induced partitions. Z. Angew.
Math. Mech., 81:25-28, 2001. Suppl. 1, also as report SFB 256, University Bonn,
no.674, 2000. 60

M. Garey, D. Johnson, and L. Stockmeyer. Some simplified NP-complete graph
problems. Theoretical Computer Science, 1(3):237-267, February 1976. doi:10.
1016/0304-3975(76)90059-1. 60

R. G. Michael and S. J. David. Computers and intractability: a guide to the theory
of np-completeness. WH Free. Co., San Fr, pages 90-91, 1979. 62

A. Pmar and C. Aykanat. Fast optimal load balancing algorithms for 1d partitioning.
Journal of Parallel and Distributed Computing, 64(8):974-996, 2004. 62

GEBCO_2014 Grid. http://wuw.gebco.net/data_and_products/gridded_
bathymetry_data/gebco_30_second_grid, 2016. [Online]. 66

SPE10 — Society of Petroleum Engineers comparative solution project 10 model 2.
http://www.spe.org/web/csp/datasets/set02.htm, 2018. [Online]. 76

http://dx.doi.org/10.1137/S106482750139738X
http://dx.doi.org/10.1016/S0045-7930(02)00011-7
http://dx.doi.org/10.1016/j.jcp.2007.10.027
http://dx.doi.org/10.1017/S0962492911000043
http://dx.doi.org/10.1017/S0962492911000043
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/10.1016/0304-3975(76)90059-1
http://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_30_second_grid
http://www.gebco.net/data_and_products/gridded_bathymetry_data/gebco_30_second_grid
http://www.spe.org/web/csp/datasets/set02.htm

BIBLIOGRAPHY

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

O. Meister and M. Bader. 2d adaptivity for 3d problems: Parallel SPE10 reservoir
simulation on dynamically adaptive prism grids. Journal of Computational Science,
9:101-106, July 2015. doi:10.1016/3.jocs.2015.04.016. 78

R. Helmig, J. Niessner, B. Flemisch, M. Wolff, and J. Fritz. Efficient modeling of
flow and transport in porous media using multiphysics and multiscale approaches.
In Handbook of geomathematics, pages 417-457. Springer, 2010. 79

R. Temam. Navier-Stokes equations: theory and numerical analysis. AMS Chelsea
Pub, Providence, R.I, 2001. 79, 112

A. Majda and A. L. Bertozzi. Vorticity and incompressible flow. Cambridge texts
in applied mathematics. Cambridge University Press, Cambridge ; New York, 2002.
79, 112

J. E. Aarnes, V. Kippe, and K.-A. Lie. Mixed multiscale finite elements and stream-
line methods for reservoir simulation of large geomodels. Advances in Water Re-
sources, 28(3):257-271, March 2005. URL: http://linkinghub.elsevier.com/
retrieve/pii/S0309170804001885, doi:10.1016/j.advwatres.2004.10.007. 81

M. Christie and M. Blunt. Tenth SPE Comparative Solution Project: A Comparison
of Upscaling Techniques. SPE Reservoir Evaluation € Engineering, 4(04):308-317,
August 2001. URL: http://www.onepetro.org/doi/10.2118/72469-PA, doi:10.
2118/72469-PA. 81

M. Wolft. Multi-scale modeling of two-phase flow in porous media including capillary
pressure effects. Doctoral dissertation, Universitat Stuttgart, Stuttgart, Germany,
2013. doi:10.18419/0pus-501. 81

K. Aziz and A. Settari. Petroleum reservoir simulation. Applied Science Publishers,
London, 1979. 81

R. Courant, K. Friedrichs, and H. Lewy. Uber die partiellen Differenzengleichungen
der mathematischen Physik. Mathematische Annalen, 100(1):32-74, December 1928.
URL: https://doi.org/10.1007/BF01448839, doi:10.1007/BF01448839. 83

R. Courant, K. Friedrichs, and H. Lewy. On the partial difference equations of
mathematical physics. IBM J. Res. Dev., 11(2):215-234, March 1967. doi:10.
1147/rd.112.0215. 83

L. T. Biegler, editor. Large-scale inverse problems and quantification of uncertainty.
Wiley series in computational statistics. Wiley, Chichester, West Sussex, 2011. 100

J. Kaipio and E. Somersalo. Statistical and computational inverse problems. Number
v. 160 in Applied mathematical sciences. Springer, New York, 2005. 100, 101, 102

H. Jeffreys et al. Scientific inference. Cambridge University Press, 1973. 101

R. Bellman. Dynamic programming. Dover Publications, Mineola, N.Y, dover ed
edition, 2003. 102

141

http://dx.doi.org/10.1016/j.jocs.2015.04.016
http://linkinghub.elsevier.com/retrieve/pii/S0309170804001885
http://linkinghub.elsevier.com/retrieve/pii/S0309170804001885
http://dx.doi.org/10.1016/j.advwatres.2004.10.007
http://www.onepetro.org/doi/10.2118/72469-PA
http://dx.doi.org/10.2118/72469-PA
http://dx.doi.org/10.2118/72469-PA
http://dx.doi.org/10.18419/opus-501
https://doi.org/10.1007/BF01448839
http://dx.doi.org/10.1007/BF01448839
http://dx.doi.org/10.1147/rd.112.0215
http://dx.doi.org/10.1147/rd.112.0215

BIBLIOGRAPHY

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]
[128]

[129]

[130]

[131]

[132]

142

F. Liang, C. Liu, and R. J. Carroll. Advanced Markov chain Monte Carlo meth-
ods: learning from past samples. Wiley series in computational statistics. Wiley,
Chichester, West Sussex, U.K, 2010. 102

S. Brooks, editor. Handbook for Markov chain Monte Carlo. Taylor & Francis, Boca
Raton, 2011. 102

D. Gamerman and H. F. Lopes. Markov chain Monte Carlo: stochastic simulation
for Bayesian inference. Number 68 in Texts in statistical science series. Taylor &
Francis, Boca Raton, 2nd ed edition, 2006. 102

C. M. Bishop. Pattern recognition and machine learning. Information science and
statistics. Springer, New York, 2006. 102

H.-J. Bungartz and M. Griebel. Sparse grids. Acta numerica, 13:147-269, 2004. 107,
108, 109, 110

M. Griebel. Sparse grids and related approximation schemes for higher dimensional
problems. Citeseer, 2005. 107, 108, 109, 110

D. Pfliiger. Spatially adaptive sparse grids for high-dimensional problems. Verl. Dr.
Hut, Miinchen, 1. aufl edition, 2010. OCLC: 700066168. 107, 108, 109, 110

J. Garcke. Sparse grids in a nutshell. In Sparse grids and applications, pages 57-80.
Springer, 2012. 107, 108, 109, 110

T. Gerstner and M. Griebel. Numerical integration using sparse grids. Numerical
algorithms, 18(3-4):209, 1998. 107

V. Barthelmann, E. Novak, and K. Ritter. High dimensional polynomial interpolation
on sparse grids. Advances in Computational Mathematics, 12(4):273-288, 2000. 107,
109

J. Garcke, M. Griebel, and M. Thess. Data mining with sparse grids. Computing,
67(3):225-253, 2001. 107

M. Hegland. Adaptive sparse grids. Anziam Journal, 44:335-353, 2003. 107

J. D. Jakeman and S. G. Roberts. Local and dimension adaptive sparse grid inter-
polation and quadrature. CoRR, abs/1110.0010, 2011. 109

P. Neumann, A. Atanasov, and C. Kowitz. Praktikum wissenschaftliches rechnen
computational fluid dynamics, 2012. 112, 114

P. J. Olver. Introduction to partial differential equations. Springer Science+Business
Media, LLC, New York, NY, 2013. 113

R. J. LeVeque. Finite difference methods for ordinary and partial differential equa-
tions: steady-state and time-dependent problems. Society for Industrial and Applied
Mathematics, Philadelphia, PA, 2007. OCLC: ocm86110147. 113

J. C. Butcher. Numerical methods for ordinary differential equations. Wiley, Chich-
ester, England ; Hoboken, NJ, 2nd ed edition, 2008. OCLC: 0cn191024153. 113

BIBLIOGRAPHY

[133] A. D. Polyanin. Handbook of linear partial differential equations for engineers and
scientists. Chapman & Hall/CRC, Boca Raton, 2002. 114

[134] D. Medkova. The Laplace Equation: Boundary Value Problems on Bounded and
Unbounded Lipschitz Domains. Springer International Publishing Springer, Cham,
2018. 114

143

	Abstract
	Contents
	List of Algorithms
	List of Figures
	List of Tables
	Glossary
	I Introduction
	1 Introduction
	1.1 Current Challenges in HPC
	1.2 Resource Awareness and Elasticity as a Solution
	1.3 Invasive Computing
	1.4 Elastic MPI
	1.5 Contribution of the Current Work
	1.6 Outline

	2 Related Work
	2.1 Dynamic Processes Support by the MPI Standard
	2.2 MPI Sessions
	2.3 User-level Fault Tolerance in MPI
	2.4 Charm++ and Adaptive MPI
	2.5 High Performance ParallelX (HPX)
	2.6 Invasive X10 (iX10)
	2.7 SALSA and PCM Extensions with IOS
	2.8 Parallel Virtual Machine (PVM)
	2.9 Cloud Computing
	2.10 Summary

	II Elastic MPI Framework
	3 Elastic MPI Infrastructure
	3.1 Overview
	3.2 Elastic MPI Library
	3.3 Elastic Resource Manager
	3.4 Limitations and Known Issues
	3.5 Summary

	4 Parallel Programming with Elastic MPI
	4.1 Classification of HPC Applications
	4.2 SPMD with Single Computation Phase
	4.3 SPMD with Multiple Computation Phases
	4.4 Master-Worker with Single Computation Phase
	4.5 Master-Worker with Multiple Computation Phases
	4.6 Summary

	III Resource-Aware and Elastic Parallel Software Development
	5 Elastic Parallel Tsunami Simulation with Adaptive Mesh Refinement
	5.1 Sierpinski Space-filling Curves
	5.2 Tsunami Simulation in sam(oa)2
	5.3 Resource-elastic Transformation
	5.4 Performance Evaluation
	5.5 Summary

	6 Elastic Parallel Oil Reservoir Simulation with Adaptive Mesh Refinement
	6.1 The SPE10 Benchmark Simulation Scenario
	6.2 Porous Media Flow Simulation in sam(oa)2
	6.3 Resource-elastic Transformation
	6.4 Performance Evaluation
	6.5 Summary

	7 Statistical Inverse Problem Solver with Elastic Parallel Surrogate Construction
	7.1 Statistical Inverse Problems
	7.2 Surrogate Model Construction with Sparse Grids
	7.3 Case Study: Inference of Obstacle Locations in Laminar Flow
	7.4 Performance Evaluation
	7.5 Summary

	IV Conclusion
	8 Conclusion and Outlook
	8.1 Conclusion
	8.2 Outlook

	Bibliography

