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Abstract

There has been an advent of affordable mobile sensors that can capture the geometry of in-
door environments, such as LiDAR and depth sensors. Thanks to this, the digital revolution
changes the way how indoor environments are perceived. In particular, it becomes possible
to obtain a high-quality digital representation of the indoor environment, a so-called “digital
twin”, which can be used for a variety of applications, such as facility management, archi-
tecture, and robot navigation. These sensors typically generate 3D point cloud (PC) data as
an output. The PC representation poses a number of challenges due to its irregularity and
large size. In particular, such data is hard to visualize, handle, store and transmit to different
clients. To address these issues and to enable new applications, it is vital to extract semantic
information from the PC data, e.g., what room is this, or is this object a chair or a table.

To this end, this thesis investigates the problem of extracting semantic information from
large-scale 3D PCs of indoor environments. “Large-scale” refers to the data spanning one or
multiple buildings. For semantic understanding, a top-down approach is employed. Thus,
the building data is first segmented into rooms, and the rooms are segmented into objects.
Finally, the resulting objects are classified according to their semantic category. In particular,
three scientific contributions are presented. The first contribution addresses the problem of
segmenting the building PC data into rooms, while not making the usual assumption of a
Manhattan world or requiring sensor pose information. In particular, a room segmentation
algorithm using a new volumetric signature with anisotropic potential fields is presented.
The second contribution focuses on the problem of unsupervised object segmentation using
local geometric properties. For this, a novel noisy point removal step is proposed. This step
is particularly robust to artifacts in real PC data and takes specific properties of large-scale
PC data collected using moving LiDAR sensors into account. To illustrate such properties, a
new LiDAR dataset and its semantic annotation are presented. The introduced multi-scale
evaluation metric allows considering different objects scales, e.g., chair and its parts. The
third contribution addresses the problem of object classification by using point pair features
combined with a neural network. By employing 4D point pair-based feature representa-
tion as input to the neural network, it becomes possible to reliably classify objects despite
high levels of noise and occlusion that are commonly observed for PC data of indoor envi-
ronments. The experimental evaluation using a number of large-scale indoor PC datasets
containing semantic annotation confirms that the proposed approaches to semantic under-
standing including room segmentation, object segmentation and classification outperform
existing approaches on such data in terms of segmentation and classification accuracy.
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Kurzfassung

Mittlerweile gibt es ein breites Angebot an kostengünstigen mobilen Sensoren, welche die
Geometrie von Innenumgebungen genau erfassen können, beispielsweise Laserscanner und
Tiefensensoren. Die digitale Revolution verändert dadurch die Art und Weise, wie Innenräu-
me wahrgenommen werden. Insbesondere wird es möglich, eine digitale Darstellung der
Umgebung von hoher Qualität, den sogenannten “digitalen Zwilling”, zu erstellen. Die-
se kann für eine Vielzahl der Anwendungen wie Facility-Management, Architektur und
Robot-Navigation verwendet werden. Diese Sensoren erzeugen typischerweise eine 3D-
Punktewolke (engl. “Point cloud” oder PC) als Ausgabe. Die PC-Darstellung kommt auf-
grund ihrer Unregelmäßigkeit und Größe mit einer Reihe von Herausforderungen. Insbe-
sondere sind solche Daten schwer zu visualisieren, zu handhaben, zu speichern und an ver-
schiedene Clients zu übertragen. Um dieses Problem zu lösen und eine Reihe von neuen
Anwendungen zu ermöglichen, wird es zunehmend wichtig, semantische Informationen aus
den PC-Daten zu extrahieren, z. B. um welchen Raum es sich handelt oder ob das betrachtete
Objekt ein Stuhl oder ein Tisch ist.

Zu diesem Zweck wird in dieser Arbeit die Aufgabe untersucht, semantische Infor-
mationen aus Large-scale 3D PCs von Innenräumen zu extrahieren. “Large-scale” bezieht
sich in diesem Zusammenhang auf Daten, die sich über mehrere Gebäude erstrecken. Für
das semantische Verständnis wird ein Top-Down Ansatz verfolgt. So werden die Gebäude-
daten zunächst in Räume unterteilt und anschließend die Räume in Objekte partitioniert.
Schließlich werden die Objekte nach ihrer semantischen Bedeutung klassifiziert. Insbeson-
dere werden die drei folgenden wissenschaftlichen Beiträge vorgestellt. Der erste Beitrag
befasst sich mit der Aufgabe, die PC-Daten der Gebäude in Räume und Korridore zu unter-
teilen, ohne Annahmen über eine Manhattan-Welt zu machen oder Informationen über be-
kannte Sensorposen vorauszusetzen. Dazu wird ein Algorithmus zur Raumsegmentierung
unter Verwendung einer neuen volumetrischen Signatur mit anisotropen Potentialfeldern
vorgestellt. Der zweite Beitrag geht das Problem der unbeaufsichtigten Objektsegmentie-
rung anhand von lokalen geometrischen Eigenschaften an. Insbesondere wird ein neues
Konvexitätskriterium vorgeschlagen. Es ist besonders robust gegenüber Artefakten in rea-
len PC-Daten und berücksichtigt die spezifischen Eigenschaften von Large-scale PC-Daten,
die mittels LiDAR erfasst werden. Zur Veranschaulichung dieser Eigenschaften werden ein
neuartiger LiDAR-Datensatz und seine semantische Annotation vorgestellt. Die eingeführte
Multiskalen-Bewertungsmetrik ermöglicht die Berücksichtigung verschiedener Objektska-
len, z. B. eines Stuhls und seiner Teile. Der dritte Beitrag befasst sich mit der Herausfor-
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derung der Objektklassifizierung. Hier werden Punktpaarmerkmale mit einem neuronalen
Netzwerk kombiniert. Durch die Verwendung eines 4D-Punktpaar-basierten Deskriptors als
Eingabe in das neuronale Netzwerk wird es möglich, Objekte trotz hoher Geräuschpegel und
Verdeckungen, die üblicherweise für die PC-Daten von Innenumgebungen beobachtet wer-
den, zuverlässig zu klassifizieren. Die experimentelle Auswertung unter Verwendung von
großen PC-Innendatensätzen mit semantischer Annotationen bestätigt, dass der vorgeschla-
gene Ansatz zum semantischen Verständnis, einschließlich Raumsegmentierung, Objektseg-
mentierung und Klassifizierung, die in der Literatur existierenden Ansätze hinsichtlich der
Segmentierung- und Klassifizierungsgenauigkeit übertrifft.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, humanity experiences the era of digital revolution. More and more aspects of
human lives become digitized, i.e., transformed into a digital representation. This fact be-
came possible due to the development of affordable mobile sensors that can capture the
appearance and geometry of the environment, such as laser scanners and depth sensors. As
humans spend most of their lives in indoor environments, it becomes especially useful to ob-
tain an accurate digital representation of an indoor environment, a so-called “digital twin”.
As indoor environments can have very complex 3D geometry counting multiple floors and
various 3D objects, a suitable digital representation should be able to reflect all these aspects
accurately. Out of possible 3D representations, a point cloud (PC) is closest to the sensor
output and does not require additional complex processing steps, like voxelization or mesh-
ing. PC is a set of points usually describing occupied space. Each point can have a number
of attributes, the most important ones are X, Y and Z coordinates in a particular coordinate
system. Such representation can be obtained using various sensors: an RGB camera that
captures an image sequence in a specific trajectory combined with a structure from motion
technique, a depth sensor or light detection and ranging (LiDAR) sensor.

While a PC is a powerful representation, it is not designed for human interaction. A typi-
cal PC of a building contains millions of points and can easily require hundreds of megabytes
of storage and even more (see Figure 1.1). Such data is hard to visualize, handle, store and
transmit to different clients. Moreover, it cannot directly help humans in their everyday life,
e.g., answering questions like “where is the next door, or where is the closest bathroom”. For
robotic systems, this issue becomes even more challenging as robotic agents need to make
specific decisions and cannot directly handle sensor data. To address this problem, the ex-
traction of semantic information from the PC data is required. Here, semantic information
refers to information that primarily describes the meaning of a certain object, e.g., is it a table,
door, room. Such information is directly understandable to humans or robotic agents and is
critical for various high-level tasks like navigation, object grasping, and others. While indoor
environments can have rich semantic content on various levels, the focus of this work is on
the level of objects and rooms of the buildings. The term “indoor environments” in this work
refers to human-made buildings and similar structures, e.g., residential houses, universities,
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2 Chapter 1. Introduction

Figure 1.1: Illustration of a PC of an indoor environment counting several floors and over 21 million
points (when using PCD format of Point Cloud Library). Only a very modern computer can visualize
such PC at the original point resolution without running out of memory. Dataset from [10].

offices and similar.
In order to extract semantic information in indoor environments, a top-down approach

is employed, where, in the beginning, the PC data of an entire building is considered (see
Fig. 1.2). In the first step, the building PC data (A) is partitioned into the first level of se-
mantic entities, i.e., rooms (B). By splitting the building into rooms, there is an advantage of
being able to process each room in parallel in the consecutive processing steps, without any
deterioration in segmentation performance. After the rooms have been identified, the PC of
every room is partitioned into semantic elements, such as objects, including chairs, tables,
and other everyday indoor objects. While PC data contains a significant amount of informa-
tion, it is also subject to substantial levels of noise. In particular, typical PC data obtained
with RGB cameras or laser scanners suffers from sensor noise, subsampling, occlusion, and
other artifacts. Such effects are typically unavoidable as the data needs to be captured with
affordable sensors in limited time.

Within this work, only unorganized PCs are considered, where the point index within the
point set is not related to the spatial relationship. This is done for the sake of generalization,
as organized PCs (e.g., depth images) can be considered as a particular case of unorganized
PCs. The term “unorganized PC” was first introduced in the Point Cloud Library (PCL) [12]
and it typically applies to all data obtained with laser scanners. This is in contrast to depth
images that have a regular image-like structure, where the neighbors of each pixel can be
determined using a predefined lookup table. Thus, a PC is an unordered set of points having
specific attributes. Clearly, dealing with unorganized PCs is more challenging, as such a sim-
ple problem as determining spatial neighbors of a particular point becomes a computation-
ally complex task with the worst case time complexity O(N) (for a kd-tree with unbalanced
branches), where N is the number of points in the PC [13]. The more difficult tasks, conse-
quently, require larger computational complexity. Furthermore, even though points can also
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3: Object 
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Figure 1.2: Illustration of the processing steps in the semantic understanding pipeline. Results of ev-
ery step of the pipeline shown in the circled letters are illustrated in the bottom. As input, a noisy PC
is used. Given the noisy PC, as a result of the room segmentation step, segmented rooms are obtained
(B). The room segments are given to the object segmentation step, which produces object segments
(C). This result is provided to the object classification step that performs object classification (D). The
output of the pipeline is PC segments and their labels (e.g., a chair or table). Dataset of [11].

have color information, the focus of this thesis is on geometry-based methods. Hence, RGB
information is not used by any of the presented methods. This allows for larger applicability
of the given methods as it typically requires significant effort to obtain RGB information that
is accurately registered to a 3D PC.

1.2 Major Contributions

The goal of this thesis is to address the challenges in semantic understanding in 3D PC data
of indoor environments that is subject to various measurement artifacts. To this end, the
thesis describes the following scientific contributions:

1. A novel unsupervised approach to room segmentation in 3D PCs of indoor environ-
ments using anisotropic potential fields is proposed, see step 1 in Fig. 1.2 and Chapter 3.
In related work, it was typically assumed that the indoor environment follows Man-
hattan assumptions, i.e., vertical walls oriented at right angles to each other [14], [11].
Other works assumed a low level of noise [15] or availability of a sensor trajectory [16].
In contrast, the proposed solution does not make such assumptions and works for any
room layouts. This solution also shows superior performance for PCs with high levels
of noise and occlusion, which is typical for the PC data collected in real-world scenarios
using affordable sensors subject to time constraints.
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2. A new unsupervised approach to object segmentation in 3D PCs using a concavity-
convexity criterion is suggested, see step 2 in Fig. 1.2 and Chapter 4. It performs well
on multi-view point cloud (MVPC) data. Here, MVPC data refers to the data obtained
from multiple viewpoints using simultaneous localization and mapping (SLAM) or a
structure from motion (SFM) system. Previously available concavity/convexity cri-
teria exhibit inferior performance on such data [17], as they do not take important
effects of MVPC into account, such as high levels of noise and occlusion. A realistic
indoor MVPC dataset counting more than 500 object parts is collected and annotated
to illustrate these effects accurately. Furthermore, a new multi-scale metric for object
segmentation evaluation is proposed.

3. A novel approach to object classification using point pair features in 3D PCs in com-
bination with deep learning is presented, see step 3 in Fig. 1.2 and Chapter 5. Typical
PC data has high levels of noise, and this leads to the fact that point-based object clas-
sification approaches achieve inferior performance as compared to synthetic data [18].
To mitigate this issue, a novel 4D point pair descriptor is proposed. Furthermore, it is
shown how 4D point pair descriptors can be combined with deep learning techniques
to obtain a superior object classification accuracy.

1.3 Thesis Organization

This thesis is organized as follows. First, an overview of the background and related work is
given in Chapter 2. Here, the typical data processing pipeline is described, and background
knowledge is explained. Furthermore, a review of related work on room segmentation, ob-
ject segmentation, and object classification is provided. The task of room segmentation and
the proposed methodology to address this problem are discussed in Chapter 3. After that,
the task of object segmentation and the suggested object segmentation method are described
in Chapter 4. Here, also the new laser scanner dataset and the proposed evaluation metric
are discussed. In Chapter 5 the problem of object classification using point pair features is de-
scribed in detail. Chapter 6 concludes with the results, provides limitations of the presented
work and gives an outlook for future work.

Parts of the work, presented in this thesis, have been published in international peer-
reviewed journals [1] and conferences [4], [5], [6]. Outside of the scope of this thesis, a
number of publications on the topic of data fusion, SLAM and indoor navigation have been
presented in [7], [8], [2], [9], [3].



Chapter 2

Background and Related Work

This chapter establishes the basic terms and background knowledge that are used through-
out this thesis. Furthermore, the typical data processing pipeline is described. Finally, a
review of related work on room segmentation, object segmentation, and object classification
is given.

2.1 Background

At first, the steps of data acquisition and preprocessing are discussed as these are the essen-
tial steps to obtain a suitable data representation. After that, a short overview of the relevant
segmentation algorithms, convolutional neural networks, and evaluation metrics is given.

2.1.1 PC Data Acquisition and Representation

Mapping is the process of creating a digital map of the environment. This process is most
often done in the context of the simultaneous localization and mapping (SLAM) problem
[2]. Here, a sensor is simultaneously localized within the map that is being built at the same
time. Out of different mapping solutions, laser scanner-based mapping systems can provide
the highest density of the data in a short time when mapping large-scale indoor environ-
ments. In contrast to multi-view structure from motion (SFM) reconstruction pipelines [19],
the laser scanners are less sensitive to lighting variations and can provide very high point
density even in low-texture environments assuming a sufficiently high sampling rate of the
laser scanner. Compared to Kinect-based solutions1, laser scanners have a clear advantage
as they provide a larger scanning range (typically more than 30 meters) and wider angle of
view. With such a system, it is possible to scan an area of ten thousand square meters within
a day, which is practically impossible using any Kinect-like sensor.

Various laser scanner-based mapping systems exist, such as backpack-based [20] or
trolley-based [21]. The sensors progressively take measurements and integrate them into
a 3D model using a SLAM system, while the sensor platform is moved through the indoor
space.
1 Matterport sensor https://matterport.com/. Accessed: 2018-12-16.

5

https://matterport.com/
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(a) Mesh. (b) Volumetric grid. (c) Point cloud.

Figure 2.1: Illustration of different 3D representations of the Stanford bunny. While the underlying
geometry is the same, the three representations have different properties and require different algo-
rithms for processing. Data from the Stanford 3D scanning repository2.

The mapping result is the environment map that can be represented in different forms,
such as point cloud, mesh or grid-based representation. All three representations are com-
monly used in different areas of data processing and have their advantages:

• Mesh is a boundary representation of objects using geometric polygonal primitives
(see Fig. 2.1a). Essentially, meshes are approximations of smooth surfaces of objects,
where the faces (polygons) contain vertices that are connected using edges. Within the
mesh, connectivity information between different meshes is stored by defining com-
mon edges to different faces. This way, it is possible to encode planar area of the object
boundary using a single primitive requiring a limited number of parameters given as
vertex coordinates. Furthermore, it is easy to fulfill the requirements on the regular-
ity of the representation by splitting larger primitives into smaller ones. Mesh faces
can also have RGB and other information. Normal vector orientation can be easily
computed from the face vertex coordinates. Mesh representation has the following ad-
vantages: it requires lower computational complexity for rendering (most rendering
engines, nowadays, support primitive-based meshes on a hardware level), lower stor-
age and transmission requirements. Furthermore, various operations such as neigh-
bor search, visibility calculation and surface normal computation can be significantly
speeded-up. The main disadvantage of this representation is that it is challenging to
obtain a high-quality mesh from noisy sensor data.

• Volumetric grid is a regular 3D grid representation, where each grid element (voxel)
can be “occupied” if there is occupied space inside or “free” if space inside is empty,
see Fig. 2.1b. In addition to occupancy information, volumetric grid elements can have
other attributes, such as color and occupancy probability. The grid elements can be ob-
tained by thresholding the signed distance function obtained from Kinect-based recon-
struction approaches [22] or from the scanned points directly. Volumetric grids have

2 https://graphics.stanford.edu/data/3Dscanrep/. Accessed: 2018-10-02.

https://graphics.stanford.edu/data/3Dscanrep/
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Figure 2.2: Illustration of a depth image for the Stanford bunny. Depth values depicting closer lo-
cated parts of the scene are shown in blue, whereas further located parts are shown in red. A single
depth image can only depict a limited part of a 3D scene and does not allow to consider the entire 3D
geometry at once. Data from Stanford 3D scanning repository.

an advantage of having a regular structure, which makes spatial neighborhood com-
putation, visibility check, and other operations significantly faster. Their disadvantage
lies in the large storage requirements: all voxels within a certain volume need to be
stored. Thus, a large number of the voxels correspond to empty space, hence carry no
information. Furthermore, the same voxel size is used in the entire grid, which results
in uniform spatial resolution even though the actual object geometry can have different
levels of detail in distinct object parts.

• Point cloud is an irregular 3D representation containing a set of points corresponding
to occupied space. Each point can have a number of attributes, in the simplest case X,
Y and Z coordinates given in a certain coordinate system (see Fig. 2.1c). The PC is an
unordered set, which means that by shuffling the points within the PC, e.g., changing
their order, the described geometry remains the same. Such representation typically
corresponds to the output of a laser scanner and multi-view SFM-based reconstruction
approaches. PC has an advantage that it directly corresponds to the sensor output.
Thus, no data conversion is required once the data arrives from the sensor and the data
can be directly used for further tasks. Furthermore, no information loss occurs when
the data is stored in this form. The main disadvantage of PCs is that various operations
such as point neighbor search or visibility calculation require high complexity using,
e.g., kd-tree or other spatial structures. Furthermore, it is hard to process the PCs in
many machine learning algorithms due to their inherent data irregularity.

Furthermore, depth images are also commonly used as a pseudo-3D representation. In a
depth image, which is a 2D representation, each pixel has a floating-point value that stores
the distance from the camera center to the corresponding part of the 3D scene visible at
this pixel. An illustration of a depth image is shown in Fig. 2.2. A single depth image can
only depict a limited part of a 3D scene, e.g., the back side of the bunny is occluded by its
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(a) Point cloud.

(b) Mesh reconstruction result.

Figure 2.3: Illustration of the real sensor output in the form of a PC (a) and the corresponding result
of the mesh reconstruction [23] (b). It can be observed that for the areas with low point sampling
density (encircled region in (a)), the resulting mesh cannot accurately represent the underlying ge-
ometry (encircled region in (b)). Many erroneous faces can be observed in the encircled area. This
issue is particularly pronounced for thin and long structures, which are commonly present in indoor
environments.

front part. Therefore, this representation does not allow to consider the entire 3D geometry
at once. By having an image-like structure, this representation offers lower computational
complexity. Furthermore, many of the methods that have been developed for RGB images
can be applied to depth images without the need for major modification.

Out of the above mentioned 3D representations, mesh offers the advantage for process-
ing and recognition, but it remains a challenging research problem on how to convert real
sensor output in the form of a PC to a mesh representation. This area of research is called
surface reconstruction [23]. In particular, it is challenging to obtain the mesh representation
without introducing significant artifacts (wrong vertices and false connectivity) from the PC
data. The noise and holes are often present in real sensor output, see Fig. 2.3a. These effects
inevitably result in the artifacts in the corresponding mesh, as shown in Fig. 2.3b. Here it is
possible to observe that for the areas with low point sampling density (encircled region), the
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resulting mesh cannot accurately represent the underlying geometry. Furthermore, many
erroneous faces can be observed. This issue is particularly pronounced for thin and long
structures, as shown in Fig. 2.3b.

Of the above-mentioned representations, using a volumetric grid for semantic under-
standing poses significant challenges due to high computational complexity requirements.
For example, to store a volumetric grid for the PC shown in Fig. 1.1 at the voxel resolution
of 2 cm (sufficient to describe fine object geometry), ca. 14 Gigabytes of storage are needed.
This fact means that it is not feasible to keep the entire PC in random access memory (RAM)
of a typical desktop computer (e.g., Quad-core i7 central processing unit (CPU) with 8 GB
of RAM) for fast processing, not speaking of mobile devices with even lower amounts of
available memory. Due to the mentioned limitations of other representations, PC is used as
a suitable representation for processing and semantic understanding. PC data considered in
this work is usually obtained from laser scanners, such as Hokuyo3, Velodyne4 or Kinect-like
sensors5.

2.1.2 PC Data Description

PC data can have various attributes:

• X, Y and Z coordinates of points are provided in a certain coordinate system, typically
given in meters. These attributes are obligatory and are always present in the PC data.

• R, G and B color information for each point, typically given as integer scalar values in
the range 0..255 (optional).

• Surface normal vectors are given in the form of a 3D vector (optional).

• Surface curvature value is provided in the form of a floating-point scalar value (op-
tional).

• Point labels are given in the form of an integer indicating to which segment a certain
point belongs (optional).

• Laser ray intensity values are measured after the ray has been sent and received. This
only applies to the data measured with LiDAR sensors. It is typically a floating-point
scalar value (optional).

PC data can be stored in different file formats:

• PCD (Point Cloud Data) is a format that was introduced in the Point Cloud Library
(PCL) [12]. This file format typically contains a header that describes the size of the PC

3 Hokuyo laser scanner specification https://www.hokuyo-aut.jp/search/single.php?serial=169. Accessed:
2018-12-20.

4 Velodyne laser scanner https://velodynelidar.com/. Accessed: 2018-12-21.
5 Kinect-like scanner specification https://www.asus.com/3D-Sensor/Xtion_PRO/specifications/. Accessed:

2019-09-12

https://www.hokuyo-aut.jp/search/single.php?serial=169
https://velodynelidar.com/
https://www.asus.com/3D-Sensor/Xtion_PRO/specifications/
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and the present attributes. It is supported by PCL, CloudCompare6 and other software
libraries.

• PLY is a data format that is commonly used in different areas of robotics, semantic
understanding, indoor reconstruction, architecture, and indoor modeling. Similarly to
PCD, it also contains a header that describes the PC attributes. It supports PC and
mesh representations. This file format is supported by PCL, MeshLab and other stan-
dard software tools.

• American Standard Code for Information Interchange (ASCII) is a human-readable for-
mat where the point attributes are stored as plain text. This file format does not offer
any compression but can be easily inspected by humans. Furthermore, loading and
writing can also be done in a straightforward way.

• LAS is an industry-standard binary format for storing airborne LiDAR data. This for-
mat is not common for storing the PC data of indoor environments.

In the area of semantic understanding, robotics and computer vision, the most common
file formats for PC data are PCD and PLY. No common file format is used throughout the
different communities, e.g., architecture and robotics. This is in contrast to image formats,
where JPEG and PNG are widely adopted.

2.1.3 Basic Terms

Here, the basic terms are clarified that are commonly used in this thesis, in particular, segmen-
tation, clustering, semantic segmentation, instance segmentation, labeling, classification, and unsu-
pervised algorithm. It has been observed that in the literature some of these terms are used
interchangeably without paying particular attention to their meaning. Due to this shortcom-
ing, there exists a need to formally define these terms in this work.

In the context of this thesis, i.e., in 3D computer vision, segmentation has the primary goal
of assigning the points to a number of segments, without providing any knowledge what
each segment represents. Clustering is an equivalent concept, where each of the points is as-
signed to one of the clusters. In contrast, semantic segmentation has the goal of assigning each
of the points to one of the semantic categories. Here, distinct instances of the same category
will be assigned to the same label as no distinction between instances is typically made, e.g.,
two different chairs have the same assignment. In contrast, instance segmentation assigns each
of the points of different objects to a distinct instance. Thus, two points belonging to different
chairs will be assigned to distinct labels even though they still represent chairs. Classification
has the goal of assigning a given segment to one of the labels, e.g., chair or table. It typically
assumes that the segmentation has been done beforehand. Finally, labeling means the assign-
ment of each segment (or point herein) to a specific label. Labeling is often used for either
semantic segmentation, instance segmentation or classification, depending on the context.
Unsupervised algorithm (in the context of machine learning) refers to the algorithm that does
not require annotated data.
6 CloudCompare software framework http://www.cloudcompare.org/. Accessed: 2018-12-20

http://www.cloudcompare.org/
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Figure 2.4: Processing steps in the semantic understanding pipeline. The result of every step high-
lighted with the circled letter in the top is shown below. As input (A), a noisy PC is used. Within
the PC preprocessing step, noise and outliers are removed. Furthermore, surface normal directions
and principal surface curvatures are estimated. When providing a filtered PC (B) into the room seg-
mentation step, the segmented rooms are obtained (C). In the following, the PCs of the rooms are
given to the object segmentation step, which generates segmented objects (D). The object classifica-
tion step performs classification of the segments into objects (E). The output of the pipeline are points
corresponding to the object segments and their semantic labels (such as a chair or a table).

2.1.4 PC Pipeline Overview

An overview of the typical semantic understanding processing pipeline is given in Fig. 2.4.
A noisy PC is used as input (A). For this purpose, typically multiple sensor scans that are
spatially registered to each other are used. They can originate from a LiDAR sensor or other
SLAM or SFM-based systems. Due to estimation inaccuracies within the SLAM or SFM pro-
cess, noise and registration artifacts are introduced in the PC data. Within the PC prepro-
cessing step, the noise and outliers are partially removed. Furthermore, a local surface is
estimated, in particular, surface normal direction and the principal surface curvature. When
providing a filtered PC (B) to the room segmentation step, room segments are obtained (C).
In the following step, the PCs of the rooms are given to the object segmentation step, which
generates a segmentation of objects (D). This result is provided to the object classification step
that performs classification of the objects (E). The output of the pipeline is point segments
representing objects and their semantic labels (such as chair or table).

2.1.5 PC Preprocessing

The typical sensor output is the noisy PC data, which contains points influenced by sensor
noise, registration artifacts, and reflection effects. The reflection effects happen when scan-
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ning reflective surfaces. There are so-called “ghost points” that correspond to non-existing
geometry at this part of space. This noise does not only influence the point coordinates but
also affects the later processing steps, such as surface estimation. Surface information is
heavily used by many object recognition and semantic understanding algorithms. To obtain
surface information, PC preprocessing is performed before the following steps of segmenta-
tion and recognition. In this step, the PC data is filtered, and the local surface is estimated.
The filtering step is essential to remove the noisy points present in the scan as these points
would deteriorate the performance of recognition algorithms.

Before the PC filtering, the concept of the point neighborhood is described. To determine
neighbors of the point p from the PC, a straightforward solution requires iterating over all
N points in the PC represented as set P, which would result in the time complexity O(N).
This is not acceptable as the number of points can reach millions. Therefore, spatial search
structures are usually employed for this purpose instead, such as octree or kd-tree [13]. These
structures, essentially, compute tree-based representations, where a particular part of the tree
corresponds to the specific part of space. Thus, to determine neighbors of the point p it is
needed to only propagate towards a certain branch of the tree. In case the tree is balanced,
the average time complexity is O(logBF N), where BF is the branching factor of the tree.
Of the two spatial structures, the kd-tree recursively splits the space along the direction of
the largest variance with a branching factor of 2. In contrast, the octree uses the branching
factor of 8. The octree has a specific advantage over the kd-tree, i.e., insertion and deletion
operations have lower complexity. In contrast, kd-trees have lower worst time complexity
for neighbor query [24].

2.1.5.1 PC Filtering

For PC data filtering, an analysis of the point neighborhood is performed in order to remove
isolated points that result from reflections and sensor noise. For this task, a number of ap-
proaches exist. One of the most efficient and simple approaches is statistical analysis [25]. In
particular, for each point pi ∈ P, the mean distance di to its k closest neighbors is computed.
It is formally defined as follows:

di =
1

|N(pi)|
·
∑

pj∈N(pi)

‖pi − pj‖2, (2.1)

where N(pi) is the neighborhood of point pi containing k closest points. Radius-based neigh-
borhood of point pi with radius value of R is defined as follows:

N(pi) = {pj ∈ P, where ‖pi − pj‖2 ≤ R}. (2.2)

Based on the mean distance for each point, the distribution of distances over the entire PC
is computed. From this distribution, parameters of the normal distribution, such as mean
µk and standard deviation σk can be estimated. The points for which the mean distance
value to its neighbors di does not deviate from the corresponding value for the rest of the
points within a certain threshold are preserved. The points not satisfying this condition are
removed from the PC. This step is typically combined with a simple thresholding step. Thus,
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the points that do not have at least a certain number of points in their radius neighborhood
are removed. This technique helps to remove isolated clusters caused by reflections and
other measurement artifacts.

2.1.5.2 Surface Normal Estimation

Once the neighboring points of the query point pi are filtered and the number of outliers
and noisy points is substantially reduced, the following steps of surface normal direction
estimation ni can be performed. The normal information is one of the essential properties of
the surface, as it abstracts the surface properties, such as principal directions of a tangential
plane to the surface, into a single 3D vector. More details on the tangential place are given
in the next paragraph. The normal vector information is commonly used to identify bound-
aries between different objects, compute the surface illumination for correct shading, and
other tasks in recognition and computer graphics. Once information about tangential plane
of the geometric surface is available, it is usually straightforward to infer the direction of the
normal at a certain point on the surface. In such case, the normal direction is usually defined
as the vector perpendicular to the surface at that point. Estimation of the surface properties
based on the PC data is a challenging task. Two solutions to this problem exist. The first
solution is to reconstruct the mesh using mesh reconstruction techniques and leverage the
obtained face orientation to determine the normal vector direction. This approach has the
disadvantage that the required step of mesh reconstruction is at least equally challenging
(see Fig. 2.3b). Instead, a second approach to this problem is to estimate the surface normals
from the PC data directly by analyzing the point neighborhood. This approach is typically
more straightforward as compared to the first one. It is described in the following.

Surface estimation using principal component analysis. Determining the normal to the
point pi on the surface can be approximated by estimating the normal of the plane K tan-
gential to the surface S [26]. The surface estimation task can be postulated as a least-squares
plane fitting problem in the point neighborhood N(pi), see Fig. 2.5. In particular, let us as-
sume that there is a local surface S consisting of a set of points and a curve L lies in this
surface. A right-handed orthogonal frame at point pi is commonly called the Darboux frame
and is given asE = (e1, e2,ni) [27]. Principal curvature vectors of the surface are given as e1
and e2. The above mentioned tangential plane K is defined as a plane that goes through yet
unknown point xi with a normal vector ni. The distance from point pi to the tangential plane
can be defined as d = (pi − xi) · ni. The values of xi and ni are computed in a least-squares
sense so that d = 0 [28]. The point xi is equal to centroid pi of the point neighborhood N(pi)

and the latter is computed as follows:

xi = pi =
1

|N(pi)|
·
∑

pj∈N(pi)

pj. (2.3)

The solution for ni is found by performing the principal component analysis (PCA), i.e.,
considering the eigenvalues and eigenvectors of the covariance matrix C(pi) ∈ R3×3. The
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Figure 2.5: Illustration of the Darboux frame E = (e1, e2,ni) that is a right-handed orthogonal frame
at point pi. Surface S consists of the points neighboring to pi given as N(pi) and shown in blue. L is
an oriented curve that lies in S. Principal curvature vectors of the surface are given as e1 and e2. The
normal direction to the tangential plane defined by E at the given point is shown as ni. The point
from which the given point pi has been observed is shown in green. The centroid of the point neigh-
borhood pi is shown in yellow. The corresponding vector from the given point to the observation
point is called viewpoint vector vi.

covariance matrix is formally expressed as follows:

C(pi) =
1

|N(pi)|
∑

pj∈N(pi)

ψj · (pj − pi) · (pj − pi)
T , (2.4)

where the term ψj represents a weighting factor for pj. This term usually equals 1 as
all points are considered equally important when computing neighborhood statistics. The
eigenvector equation is defined as follows:

C(pi) · vl = λl · vl, l ∈ {0, 1, 2}, (2.5)

where C(pi) is symmetric and positive semi-definite, and its eigenvalues are real numbers
λl ∈ R. The eigenvectors vl form an orthogonal frame, corresponding to the principal com-
ponents of N(pi). If 0 ≤ λ0 ≤ λ1 ≤ λ2, the eigenvector v0 corresponding to the smallest
eigenvalue λ0 is, therefore, the approximation of +ni = (nx, ny, nz)

T or −ni.
In general, both solutions ni and −ni to Equation 2.5 are valid. Hence the normal ori-

entation computed using the aforementioned method of PCA is ambiguous. This can lead
to the fact that the normal vectors are inconsistently oriented over the PC set, resulting in
sudden changes in the directions of the normal orientation from one point to the other with-
out a significant change in geometry. This effect is undesirable and presents a challenge to
many recognition algorithms. In case a point oi from which the given point pi ∈ P has been
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observed is known (as a by-product result of SLAM or SFM procedure), it is possible to com-
pute viewpoint vector as vi = oi − pi. Hence, a straightforward solution to the problem of
determining a sign of orientation exists. For this, all normals need to satisfy the condition:

ni · (vi − pi) ≥ 0. (2.6)

For the normals that do not satisfy the given condition, the normal direction vector ni needs
to be inverted, i.e., multiplied by −1. In case this information about the viewpoint is not
available, it is possible to formulate the problem of normal consistency modeling as a graph
optimization problem [29]. The main idea is to consider that the two data points pk and pj

that belong to a smooth surface typically have their normal directions consistently oriented
so that:

nk · nj ≈ 1, (2.7)

where nk and nj are the normal vectors corresponding to these points. This assumption
holds for densely sampled PC datasets, which is the case for PC data collected with laser
scanners. This way, each point is modeled as a node in the graph with edge costs being set to
Euclidean distances between the neighboring points. By performing graph cut on the given
graph using a binary graph cut formulation (see Section 2.1.6.1 for more details), it is possi-
ble to obtain the binary label for each point that indicates whether the corresponding normal
direction vector has to be inverted or preserved.

An important result from plane fitting is the curvature value, which is a measure for how
significantly this surface geometrically deviates from the plane. It can be approximated [30]
by the ratio of the smallest eigenvalue to the sum of the three eigenvalues obtained from the
covariance matrix C(pi) as follows:

σ =
λ0

λ0 + λ1 + λ2
, (2.8)

where 0 ≤ λ0 ≤ λ1 ≤ λ2. This measure has an important property: invariance to scaling,
translation, and rotation. This means that the curvature of the region does not change if the
region is scaled and points are pushed apart or closer together. It also does not change if
the region is rotated or translated. The surface curvature lies in the range σ = [0, 1/3], and
it is equal to 0 if the surface is planar, which results in the fact that the covariance matrix
C(pi) has rank 2. The surface curvature achieves the maximum value of 1/3 for the case of
isotropic point sets, as in this case λ0 = λ1 = λ2. Isotropic point set is a point set where the
points are uniformly distributed within the volume of a sphere.

An important issue for normal estimation is the definition of the point neighborhood.
One option is to use neighborhood search of k nearest neighbors. In practice, however, using
a fixed number of nearest neighbors could result in the effect that the point neighbors located
far away from the given point p are used, which would result in the fact that the computed
statistics are not representative. This happens for PCs having areas with low point sampling
density. Due to these effects, fixed radius search is advantageous to other techniques. This
approach has, however, an important effect that needs to be considered when dealing with
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Figure 2.6: Illustration of the normal direction estimation result for the PC data of bunny from Fig. 2.1.
The white arrows originating at the corresponding points of the PC indicate normal directions. It can
be observed that the normal directions follow the local surface orientations.

the sparse PC areas. In particular, fixed radius search with too small radius value possibly
considers a very low number of neighbors. Hence, the computed statistics based on these
points would not be representative of the true point statistics. As the closed form solution
does not exist, a rule of thumb is used. It helps to choose the right value and to avoid the
large effort of parameter tuning per dataset. In particular, radius R is set to the multiple
values of the mean point resolution within this PC:

R = 2.5 ·
|P|∑
i=1

di(pi), (2.9)

where di(pi) is the average distance from point pi to its closest neighbors, from Equation 2.1.
The value of 2.5 has been chosen experimentally after considering a number of PC datasets.
The PCs that are considered in this work have an average point resolution of 2 cm, i.e., the
average distance between neighboring points is 2 cm. Therefore, the radius for surface nor-
mal estimation is set to 5 cm. An example of the normal estimation result is shown in Fig. 2.6.
It can be observed that the normal direction follows the local surface orientation.

It has been observed that the previously described approach to normal estimation using
PCA has the disadvantage of not preserving a sufficient level of detail on the edges of objects
(see the left part in Fig. 2.7). The normals of points lying close to the object edge (top-left cor-
ner) are smoothly changing their direction to accommodate for the geometry change (edge).
For many object segmentation algorithms, such smoothly changing normal directions lead
to deterioration of segmentation performance. In particular, with a lower level of geomet-
ric and surface details in the boundary regions, it is harder to make a correct decision on
the object boundary. Furthermore, PCA-based methods cannot reliably estimate the surface



2.1. Background 17

𝒛
𝒙

𝒚

Figure 2.7: Left: PCA normal estimation result, right: Robust Randomized Hough Transform (RRHT)
normal estimation result for the edge area of an object. The white arrows originating at the corre-
sponding points of the PC indicate normal directions. The left figure shows that the normals corre-
sponding to the points lying close to the object edge (top-left corner) smoothly change their direction
to accommodate for the change in the object geometry due to the edge. This can lead to loss of infor-
mation on the object boundary for object recognition algorithms. In contrast, in the right figure, it can
be observed that the normal vectors are oriented in vertical and horizontal directions, thus creating a
clear, sharp transition between the two sides of the object. Such sharp transitions in normal vectors
corresponding to the change in geometry allow many object recognition algorithms to improve their
performance.

properties in the presence of point sampling anisotropy, e.g., when the point density sig-
nificantly varies across the PC, as shown in Fig. 2.8. To mitigate this effect, there exists a
multi-scale modification to PCA that performs normal estimation in several iterations with
the radius value being adapted depending on the curvature of the surface estimated in the
first step with a fixed radius. It has been observed that this approach performs better than
plain PCA, but it requires a considerable effort of parameter tuning that needs to be done for
every dataset depending on the present point resolution and the level of noise.

Robust Randomized Hough Transform. There are alternative methods to normal es-
timation using parametric representations that achieve superior performance at the cost of
higher computational complexity. In particular, Boulch et al. [31] proposed the Robust Ran-
domized Hough Transform (RRHT) method to address this problem. The main idea of the
approach is to first select a suitable neighborhood for each point and then randomly pick
three points out of the neighborhood of the corresponding point. Using the picked three
points, the plane can be estimated, which in turn can be used to calculate the plane normal.
This process is repeated iteratively, each time with new randomly picked points. The com-
puted plane normal direction that was obtained in every iteration is accumulated in a 2D
histogram of directions. The most voted bin with associated normal direction is then used
to compute the plane normal. To mitigate the discretization issues, the plane normal vectors
corresponding to the most voted bin are averaged to obtain the final normal vector. An ex-
ample of normal estimation for the edge area is shown in the right side of Fig. 2.7 and for a
low point density area in the right side of Fig. 2.8.
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Figure 2.8: Left: PCA normal estimation result, right: RRHT normal estimation result. The color of
the point corresponds to the unique colormap scheme, where each normal vector direction is mapped
to a unique color on a sphere. Similar to Fig. 2.7, it can be seen in the left that the PCA normal estima-
tion leads to noisy normal vectors, especially in the areas with low point density. In contrast, in the
right figure it can be seen that the normal vectors are oriented in vertical and horizontal directions,
thus creating a clear, sharp transition in the normal vectors between the two sides of the object.

2.1.6 Unsupervised Segmentation Algorithms

The primary goal of segmentation is to assign each of the points to a specific cluster. In the
general case, the clusters do not need to have any meaning, most importantly, the similar
points have to be grouped. There exist many unsupervised segmentation algorithms that are
commonly used in 3D computer vision. They consequently serve as building blocks of mod-
ern complex segmentation algorithms. A number of employed segmentation algorithms are
described in the following.

2.1.6.1 Min-cut Algorithm

One of the most common algorithms for segmentation is the min-cut algorithm, which for-
mulates the segmentation problem in a graph [32]. As input to segmentation, there are a
number of points that need to be assigned to one of k = 2 segments (binary segmenta-
tion). Within graph-based formulation, each point corresponds to a node in the graph. Now,
the connections between nodes are added as edges to the graph with the associated edge
weights. Thus, the graph G = {V,E} consists of a set of nodes V and a set of directed edges
with associated weights E. The edge weights can be set to arbitrary values, but they need to
be non-negative. There are also two special nodes that do not correspond to any real points
and are purely virtual. They are called terminals and typically consist of the source s and the
sink t. Thus V = {s, t} ∪ P, with P being non-terminal nodes. A simple example of a graph
consisting of a source and a sink is shown in Fig. 2.9. In order to assign each point to s or t,
there exist edges that connect each point to source and sink, shown in blue and red, respec-
tively. Some edges connect non-terminal nodes, commonly denoted as smoothness edges.
Now, by performing the min-cut on this graph, it is possible to determine the assignment of
the point to s or t. Thus, each non-terminal node is either connected to source or sink. The
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Source
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t

Sink

Min-cut

Non-terminal nodes

Figure 2.9: Illustration of a directed graph for the min-cut algorithm. Non-terminal nodes are shown
in black. Edges to terminal nodes source s and sink t are shown in red and blue, respectively. Smooth-
ness edges connecting non-terminal nodes are shown in yellow. The min-cut partitioning is shown in
green.

connection defines the node’s label assignment.
The graph formulation is particularly useful because it allows for an efficient algorithm

to find a min-cut solution. For this, the max-flow min-cut theorem [33] states that the mini-
mum s/t cut problem can be reformulated as the problem of finding a maximum flow from s

to t. In other words, the maximum flow is the maximum amount of “water” that can be sent
from s to t when interpreting the graph edges as directed pipes with specific capacities that
are equal to the edge weights. Hence, the min-cut and the max-flow problems along their
solutions are equivalent [33]. The maximum flow value is equal to the cost of the minimum
cut. In a max-flow graph, each edge now contains capacity, which is the maximum possible
flow on this edge. The edge assignment of flow needs to be less or equal to the edge capacity.

There are a number of methods to solve the maximum flow problem in polynomial time.
They can typically be divided into two main groups: push-relabel and augmenting path-
based algorithms. The push-relabel algorithm maintains active nodes that have a positive
“flow excess” [34]. Thus, the algorithm keeps track of the node labeling, hence providing a
lower bound estimate on the distance to t along non-saturated edges. The algorithm pushes
excess flows towards nodes that have the smallest estimated distance to t. In contrast, the
augmenting path algorithm pushes flow along non-saturated paths (e.g., paths with flow less
than capacity) from the source to the sink until the maximum flow on the graph is reached.
In the general case, the push-relabel algorithm performs better regarding segmentation per-
formance. The graphs used in this work, however, have a certain structure, i.e., they are grid
graphs. This means that the graph nodes are organized in a dense grid, such as pixels of
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Figure 2.10: Illustration of a grid graph for image pixels. Non-terminal nodes are pixels from the im-
age. For illustration purposes, only nine pixel nodes are shown. Background image is CC0 Creative
Common license.

voxels. This way, the grid can be either 2D (pixels in an image grid) or 3D (voxels in a voxel
grid). In such case, every node is connected to four, six or eight nearest neighbors based on
their spatial neighborhood. For example, for a pixel, four nearest neighbors correspond to
the pixels located above, below, left and right from the given pixel. For a voxel, six nearest
neighbors correspond to the voxels located above, below, in front, behind, left and right from
the current voxel. Such neighbors are connected to the current pixel or voxel through edges.
See Fig. 2.10 for illustration of such a grid graph on image pixels. Grid graphs are different
from general graphs, where any node can be connected to any other node in an arbitrary
configuration. For grid graphs, Boykov and Kolmogorov [32] introduced a fast augmenting
path-based algorithm that leverages this grid structure. It typically outperforms the push-
relabel algorithms and has linear running time [32].

The min-cut solution is also a solution to the Markov random field (MRF) formulation
using a certain global energy function [35]. MRF is an undirected graphical model represent-
ing a set of random variables that satisfy the Markov property [36]. The energy function for
the MRF is formulated as follows:

E(L) =
∑
p∈P

Ep(Lp) +
∑

ep,q∈E
Ep,q(Lp, Lq), (2.10)

where L = {Lp|p ∈ P}, Lp = {s, t} is the assignment of the non-terminal node p ∈ P. Ep(Lp)

is a data penalty function for node p assuming a certain labeling Lp. Ep,q is an interaction po-
tential between nodes p and q. E is a set of all edges between neighboring nodes. To achieve
equivalent formulation in the graph cut, the data penalty term is typically represented as
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an edge between this non-terminal node p and source s or sink t with corresponding weight.
The interaction potential between nodes p and q is represented as an edge with a correspond-
ing weight equal to a certain non-negative constant value if they have the same label, and 0

otherwise.

2.1.6.2 Random Walker Algorithm

Another important algorithm for segmentation is the Random Walker algorithm [37]. This
algorithm is primarily used in the context of image segmentation. Image is given as a 2D ma-
trix I . In contrast to min-cut algorithms, it requires initial labeling of a number of pixels, the
so-called seeds. Seeds represent an assignment of certain pixels in the image to foreground
or background. Similarly to the graph cut algorithm, it also uses a graph G = {V,E}, where
neighboring pixels are represented by nodes V that are connected by directed edges with
certain weights E. There are no terminal nodes in this graph, i.e., no nodes s or t. The edge
weight between nodes i and j is defined as follows:

wi,j = exp(−β(Ii − Ij)2), (2.11)

where Ii is the image intensity at node i and β is a propagation coefficient.
The random walker algorithm optimizes the energy, which can be expressed as follows:

Q(x) = xTLx =
∑
ei,j∈E

wi,j (xi − xj)2 , (2.12)

where xi is a real-valued variable associated with node vi ∈ V in the graph, and L is the
graph Laplacian. Optimization is constrained by xi = 1 for i ⊂ F and xi = 0 for i ⊂ B, where
F and B represent the sets of foreground and background seeds, respectively. To find the
optimal solution, anisotropic diffusion is performed from the seeded pixels to the remaining
pixels in the image. There exists an analytical solution to the anisotropic diffusion problem
by solving a sparse, positive-definite system of linear equations with the graph Laplacian
matrix [37]. The graph Laplacian matrix is defined as follows:

L = D −A, (2.13)

where D is the graph degree matrix and A is the adjacency matrix of the graph.

2.1.6.3 Felzenszwalb-Huttenlocher Algorithm

This is a heuristic segmentation algorithm, which uses an undirected graph [38]. Similarly to
previously presented graph-based algorithms, the graph G = {V,E} has a set of vertices V
and a set of undirected edges E. There are no seeds, hence no initial labeling is required. The
edge weight wi,j is a non-negative measure of dissimilarity between nodes i and j. Now, a
component in a graph is a subgraph G′ = {V′ ⊂ V,E′ ⊂ E} where each node is connected
and the nodes are assigned to the same segment. Thus, segmentation S can be presented by a
number of components, each C ∈ S. The internal difference of a component C ⊆ V is defined
to be the largest edge weight of the minimum spanning tree MST (C, E) of the component.
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The MST of the graph G is defined as the tree graph G′ that contains the same vertices as the
original graph G and has the smallest possible sum of edge weights so that the vertices in G′

remain connected. Formally, the internal difference is computed as follows:

Int(C) = max
ei,j∈MST (C,E)

wi,j . (2.14)

The difference between the components is defined as follows:

Dif(C1,C2) = min
vi∈C1
vj∈C2

ei,j∈E

wi,j . (2.15)

In particular, given an assignment of a number of nodes to two connected components
C1 = {vi ⊂ V} and C2 = {vj ⊂ V}, the algorithm uses an adaptive metric to decide whether
these connected components are merged. The components C1 and C2 are merged if the fol-
lowing condition is satisfied:

Dif(C1,C2) ≤MInt(C1,C2). (2.16)

The minimum internal difference MInt is defined as follows:

MInt(C1,C2) = min(Int(C1) + τ(C1), Int(C2) + τ(C2)). (2.17)

Here τ(C) = k
|C| is a threshold function that depends on the size of the component, i.e., its

value is larger if the component size is smaller, and larger otherwise.
In essence, this algorithm performs heuristic merging of nodes by keeping track of the

internal variance of each component. By comparing the internal variance value to the dif-
ference between the two components, a decision on a merging of two components is made.
As this decision depends on the particular component statistics, this algorithm can adapt
to specific statistics in a particular graph area. In practice, the algorithm’s running time is
much lower as compared to the Random Walker or the min-cut algorithm [37]. This prop-
erty allows the algorithm’s broad adoption in practice. Moreover, the algorithm has two
hyperparameters that are directly linked to the preferred size of the obtained components.
By setting the hyperparameter values accordingly, it is possible to obtain larger or smaller
components, depending on the application.

2.1.6.4 HDBSCAN

HDBSCAN is a density-based clustering algorithm based on hierarchical density estimates
[39]. In fact, HDBSCAN is a hierarchical extension of DBSCAN [40]. At first, the main idea
of the DBSCAN algorithm is described. Given a set of points that need to be assigned to one
of the segments, DBSCAN groups together the points that are closely located to each other,
i.e., points with many nearby neighbors. These points are located in the areas of high point
density. The remaining points are located in the low-density areas, hence they are marked
as outliers. By operating solely based on density, the DBSCAN algorithm does not assume a
specific shape of the segments and can even cluster non-convex shapes in multi-dimensional
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spaces. The underlying segmentation algorithm is based on region growing defined on k

nearest neighbor graph. Here, undirected edges connect each point p to the k most simi-
lar points to p, based on the similarity matrix. Similarity can be defined by the user, hence
various features are supported. After the similarity matrix and nearest neighbor graph are
computed, a minimum spanning tree (MST) that connects all points is found.

Illustration of the DBSCAN performance on a challenging dataset with varying point
density is shown in the top part of Fig. 2.11. It can be observed that clusters of non-convex
shape are identified by the algorithm, despite a varying point density. The clustered points
are illustrated in the corresponding color. The black points are not assigned to any cluster. It
can also be observed that not all clusters have been correctly identified by DBSCAN. This is
due to the erroneously set parameter of the neighborhood size that is used for point density
computation. The choice of this parameter is particularly challenging as the best parame-
ter value depends on the data. In contrast, the HDBSCAN algorithm does not require this
parameter, and, instead, automatically derives the correct value of the neighborhood radius
from the data. In particular, when the algorithm considers the resulting clusters based on the
MST, it attempts to obtain stable clusters. Stable clusters are the clusters, which have large
inter-cluster distances, whereas intra-cluster distances are small. Furthermore, the clusters
are chosen in such a way that they do not change when a slightly different intra-cluster dis-
tance is selected. As a result of this specific procedure within HDBSCAN, its performance is
typically superior as compared to the DBSCAN algorithm, see the bottom part of Fig. 2.11.

2.1.6.5 Mixture of Manhattan Frames

The buildings and objects within human-made environments typically have a limited num-
ber of major structures in the form of orthogonal and parallel planes. The traditional concept
of Manhattan world [41] assumes that the planes are orthogonal to one of the axes of the sin-
gle coordinate system. This assumption is highly restrictive as there may be multiple planes
that are not orthogonal to each other. Straub et al. [42] observed that the number of such
planes could be larger than two, but still limited to a number of the so-called Manhattan
frames. For estimation of the Manhattan frames, it is beneficial to consider normal vectors
of the points in the PC data. In particular, the normal vectors are located in a 3D manifold
of rotations SO(3) due to the fact that the normal vectors are given in 3D space but have unit
norm. For estimation of the Manhattan frames, a formulation of the clustering algorithm
using spherical data has been given. The algorithm is called Mixture of Manhattan Frames.
The algorithm explores the fact that there exist a limited number of dominant plane direc-
tions in indoor environments. To find these, an efficient clustering algorithm on spherical
data has been formulated. In particular, the proposed approach uses an adaptive Markov
chain Monte-Carlo sampling algorithm [43] with Metropolis-Hastings split/merge moves
that allow inferring the unknown number of a mixture of clusters [44]. The main difference
as compared to the common clustering algorithms, such as k-means and similar algorithms
[45] is that the distance is defined in spherical and not Euclidean space and that the num-
ber of clusters does not need to be known beforehand. This formulation allows estimating
dominant directions using normal directions. By doing so, dominant planes of the indoor
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Figure 2.11: Illustration of the differences between DBSCAN (top) and HDBSCAN (bottom) cluster-
ings on a point dataset with varying point density and non-convex cluster shapes. Colored points are
assigned to the corresponding clusters so that different colors denote distinct clusters. Outlier points
that are not assigned to any cluster are shown in black. HDBSCAN is able to distinguish the two
distinct clusters in the top left area and two different clusters in the middle region (red and violet),
whereas DBSCAN erroneously merges them together (these erroneous clusters are shown in encircled
areas).

environment can be identified accurately and in short time.

2.1.6.6 Supervoxel Clustering

A supervoxel clustering algorithm has the goal of grouping points in the PC data into percep-
tually meaningful segments that conform to object boundaries. When performing segmen-
tation in a PC data or an image, there is a common problem of a considerable computational
complexity, e.g., a typical PC can contain hundreds of thousands of points and more. In
particular, many common segmentation algorithms based on graph cuts have the property
that the computational cost of inference grows sharply with the increasing number of nodes.
To address this problem, it is possible to apply a preprocessing step by performing overseg-
mentation of the points. This means that the points that are unlikely to belong to different
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Figure 2.12: Illustration of the PC data (left) and the corresponding segmentation into supervoxels
(right). In the right, different colors of points correspond to different segments. Here 1000 points in
the PC (left) are replaced by 50 clusters (right). This supervoxel clustering step results in a significant
reduction of computational complexity when performing object segmentation.

segments are grouped. Thus, this group of points can be replaced by their cluster center with
the corresponding feature that abstracts the feature distribution of all the points within the
cluster. As a result of this procedure, a significant reduction in computational complexity
can be achieved by reducing the number of nodes in the graph. By carefully choosing the
features, no deterioration in segmentation performance is observed. There exist a number
of other supervoxel algorithms designed for various data. For more details, the interested
reader can refer to the recent survey [46].

Out of different supervoxel algorithms, the Voxel Cloud Connectivity Segmentation al-
gorithm [47] has the important advantage of being explicitly designed for PC data. The algo-
rithm essentially segments the 3D PC data into surface patches called supervoxels (Fig. 2.12).
The supervoxels are designed not to extend over the object boundaries. At first, the PC data
is voxelized at a certain resolution Rvoxel. This means that the points are replaced by the
centroid of the resulting voxel grids. After that, the seeding of supervoxel clusters is done
by partitioning the PC data at the resolution Rseed. These seeds are used to initialize the su-
pervoxel centers. This step is followed by the computation of the supervoxel features. Each
supervoxel p has an associated feature in a 39-dimensional space, defined as follows:

f = [x, y, z, L, a, b, ffpfh], (2.18)

where x, y, z are spatial coordinates, L, a, b are color components in CIELab space and ffpfh

represents the first 33 components of the Fast Point Feature Histogram feature [48]. Based on
this supervoxel feature, k-means clustering is performed in order to group similar supervox-
els together. After the clustering is finished, each resulting supervoxel has the corresponding
information pi = (xi, ni,Labi,Ei), with centroid xi, normal vector ni, corresponding color
Labi in CIELab space and edges to adjacent supervoxels e ∈ Ei. CIELab color space ex-
presses color as three numerical values, L for the lightness, a and b for the green-red and
blue-yellow color components, respectively. This color space was designed to be perceptu-
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ally uniform with respect to human color vision, i.e., its definition closely matches human
perception. The graph edge weight between neighboring supervoxels p1 and p2 is computed
as follows:

D(p1,p2) =
‖x1 − x2‖2
Rseed

· ws + (1− | cos(n1,n2)|) · wn +Dc(Lab1,Lab2) · wc, (2.19)

where ‖x1−x2‖2 is the Euclidean distance between the centroids of the corresponding nodes
of supervoxel patches, Rseed is the seed radius, n1 and n2 are normals of the corresponding
supervoxels. Lab1 and Lab2 are color components in CIELab space of the corresponding
supervoxels and Dc(·) is their color distance. ws, wn and wc are spatial, normal and color
weights, respectively. Note that this formula for the graph edge weight is given in the PCL7

and it is different from the one presented in the paper [47]. This difference is due to the fact
that the authors later discovered that the above given formula is more robust on real data as
compared to the original one.

Supervoxel clustering is the only existing algorithm that can work on large-scale PC data
and generate meaningful feature clusters, thus reducing volume and complexity of the data,
while keeping the information required for segmentation intact. This way, depending on the
size of the desired cluster, 5–100 points can be replaced with one supervoxel. Illustration of a
typical result of supervoxel clustering is given in Fig. 2.12. The running time of the algorithm
is low, e.g., hundreds of milliseconds for PC data containing ten thousand points with typical
parameter values. The running time depends on the chosen parameter value for Rseed and
the level of connectivity in the adjacency graphs of the PC data.

2.1.7 Convolutional Neural Networks

An artificial neural network is a computing network structure that is loosely inspired by the
neural connections in an animal brain, therefore it is called “neural” [49]. It is yet unclear
how exactly the neural networks in the brain work. In computer vision, the most common
neural networks are convolutional neural networks (CNN). A CNN is a feedforward neu-
ral network that contains multiple layers, where at least one of the layers is a convolutional
layer. “Feedforward” means that the signal within the network only flows from input to
output layers, i.e., the output of the network is not propagated back to the previous layers.
For illustration of a typical CNN see Fig. 2.13.

In particular, a convolutional layer is based on convolution, i.e., a filter kernel is applied
to the image (or matrix in general) in a sliding window fashion using convolution opera-
tion. The sliding window can be applied with a certain displacement along the data, this is
commonly called stride. Thus, stride of 1 denotes that the displacement of 1 element is used
in different dimensions when applying the filter. The filter weights within the same layer
remain the same irrespective of the employed data region. A max-pooling layer applies
maxima operation over a certain region, which means that only the maximum value within
that region is propagated onto the next layer. A fully connected layer is a layer, in which
the neurons are connected to each activation in the previous layer, therefore it is called fully
7 Point Cloud Library http://pointclouds.org/. Accessed: 2018-12-16.

http://pointclouds.org/
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Figure 2.13: Illustration of a typical convolutional neural network architecture. It consists of convo-
lutional, max-pooling and fully connected layers, followed by dropout. At the output ŷ, the class of
the input data x is predicted.

connected. This transformation can be formulated as an affine transformation. For example,
given the input data x, the weight matrix of fully connected layer W and bias factor b, the
output of the layer is computed as follows:

y = W · x + b. (2.20)

Thus, given the input data x of size 3072× 1 and the weight matrix W of size 10× 3072, bias
factor b of size 1× 10, the output y has dimensions 1× 10. Between the layers, a non-linear
mathematical operation is typically applied. This is done with the goal of easier approxi-
mation of a non-linear function that transforms the input data into such high-dimensional
space, where points corresponding to same labels have a low distance to each other. In con-
trast, points having different labels have high distance from each other. This helps to classify
the input data into one of the labels correctly. One of the common non-linear functions is the
rectified linear unit (ReLU). Given scalar input x, the output of the ReLU function is defined
as follows:

y(x) = max(0, x). (2.21)

As the output of each layer is typically a high-dimensional tensor, the non-linearity is applied
to each entry independently yi = ReLU(xi). The ReLU function is illustrated in Fig. 2.14. In
essence, ReLU represents a linear operation in the positive range of the input data. In case
the input data becomes negative, it “shuts off”, hence a value of 0 is output.

Once the architecture of the CNN is defined, its weights need to be trained, which means
that the weights of the particular layers are changed in such a way that the network can pre-
dict correct labels based on the input data. To quantify inaccuracy of the network prediction
and other performance metrics of the network, a loss function is used. Based on the predicted
labels, a certain scalar value is computed, which is then used to compute the gradient of the
loss function with respect to the weights. By using the negative gradient as a direction of the
layers’ weight change at each step, the network can improve its performance over multiple
iterations, in a so-called back-propagation operation. The most common loss function for
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Figure 2.14: Illustration of ReLU function output vs. input. In essence, ReLU represent a linear oper-
ation in the positive range of the input data. In case the input data becomes negative, it “shuts off”,
hence a value of 0 is output.

classification is a cross-entropy loss. Given label predictions of the network defined in the
form of the vector as ŷ and true object labels as y, the loss is computed as follows:

L = − 1

N

N∑
i=1

yi · log ŷi, (2.22)

where N is the number of instances. This loss function quantifies the difference between the
true distribution y and the estimated distribution ŷ of labels.

In order to improve the generalization property of the network, regularization is typically
applied. One of the most efficient regularization techniques is a dropout layer that is typi-
cally placed after a fully connected layer [50] (as shown in Fig. 2.13). The dropout layer with
a dropout probability p sets neural weights of the layer located before it with probability p to
zero. In other words, at every iteration of the training procedure, a number of neurons are
disabled, which leads to the phenomenon that the network is forced to use all its weights for
classification as a certain path is blocked at each iteration. This helps the network to improve
its generalization property by using all possible neural paths. The dropout is not applied
during testing, but only during training.

2.1.8 Evaluation Metrics

There are a number of metrics that are typically used for quantitative evaluation of segmen-
tation and classification performance. They are described in the following.
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2.1.8.1 Segmentation Metrics

ARI. For evaluation of segmentation performance, the Rand Index (RI) metric is commonly
used. It was introduced in [51] for general clustering evaluation. This metric compares the
compatibility of assignments between the point pairs within the segments. The RI between
segmentationA andB is given by the sum of the number of point pairs that have the same la-
bel inA andB and those that have different labels in both segmentation, divided by the total
number of point pairs. A further extension of RI has been developed, called Adjusted Rand
Index (ARI) metric [52]. The main difference of ARI as compared to RI is that the former
metric has been corrected with respect to the probability of a random guess. This has been
done in order to mitigate the effect that some random guess-based clusterings can generate
the value of RI larger than 0. In essence, the ARI metric compares how many clusterings
have similar cluster assignments to generate a quantitative measure of similarity.

Richtsfeld et al.. Another common metric of segmentation is the metric of Richtsfeld et
al. [53]. It includes oversegmentation (OS) and undersegmentation (US) errors. The OS er-
ror metric quantifies how many true segments are preserved, e.g., not oversegmented (split)
into smaller subsets. The US error quantifies how many of the segments that do not have the
same label have been erroneously merged into a segment with the same label. In particular,
the OS error for the predicted segmentation and the true segmentation is given as follows:

Eos = 1− Ntrue

Nall
, (2.23)

where Ntrue is the number of correctly assigned segment points, Nall is the number of all
points. The US error is defined as follows:

Eus =
Nfalse

Nall
, (2.24)

where Nfalse is the number of incorrectly assigned segment points.
Weighted overlap. This is a segmentation evaluation metric that weighs segmentation

accuracy for segments according to their size [54]. In particular, let G = {G1,G2, ...,G|G|} be
a set of ground truth segments and S = {S1,S2, ...,S|S|} be a set of predicted segments each
containing indices of assigned points. For a given pair of segments Gj and Sk, the overlap
OV between them is defined as follows:

OV (Gj ,Sk) =
Gj ∩ Sk
Gj ∪ Sk

. (2.25)

The weighted overlap (WO) is a segmentation similarity metric that measures the overlap
between two segmentations. It is defined as follows:

WO(G, S) =
1

|G|

|G|∑
j=1

|Gj | max
k=1..|S|

OV (Gj ,Sk), (2.26)

where |S| denotes the cardinality of the set.
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2.1.8.2 Classification Metrics

Precision and recall. In the context of classification, the most important evaluation metric
is precision and recall. Precision specifies how many of predicted instances are classified
correctly. It is defined as follows:

P =
tp

tp+ fp
, (2.27)

where tp denotes the number of true positives, fp is the number of false positives. True pos-
itive occurs when the classifier correctly predicts the label, and false positive happens when
the classifier predicts the label for this example, even though this example is not relevant and
does not contain a relevant label. Recall is defined as follows:

R =
tp

tp+ fn
, (2.28)

where fn is the number of false negatives. False negative happens when the classifier misses
to predict the relevant label for this example, even though this example is relevant and
should be detected. Precision and recall can be defined per category or over all categories.
Their values lie in the range between 0 and 1.

F1-score. In an attempt to combine both measures of precision and recall into a single
value, the F1-score was proposed [55]. It is computed as a harmonic average of precision
and recall. Formally, F1-score is defined as follows:

F1 = 2 · P ·R
P +R

, (2.29)

where P is precision, andR is recall. F1-score value lies in the range between 0 and 1. Higher
values reflect better classification performance.

Confusion matrix. Another important metric of classification is the confusion matrix. It
is a matrix that is used to describe the performance of the classifier when true and predicted
labels are available [56]. An example is given in Table 2.1. Here, the value in the first row and
the second column shows how many times the classifier predicted label 2 for the point whose
true label is 1. Thus, the matrix rows represent the true labels, and the columns represent the
predicted labels. The counts are typically normalized so that the sum of counts in each row
is equal to 100%. Clearly, the error-free classifier that predicts the labels correctly produces a
confusion matrix with diagonal-only values equal to 100%, whereas non-diagonal values are
equal to 0%.

2.2 Related Work

In this section, a review of related work on room segmentation, object segmentation, and ob-
ject classification is given. Furthermore, the main requirements for segmentation algorithms
are formulated and discussed.

2.2.1 3D Room Segmentation in PCs

After the filtered PC data and the surface normal orientation are obtained, it is possible to
proceed to the step of inferring semantic meaning from the data. The building data can
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Table 2.1: Example of a confusion matrix for a classifier with 3 labels. Matrix rows represent the true
labels and the columns represent the predicted labels.

Predicted label

1 2 3

Tr
ue

la
be

l 1 83.2% 9.0% 7.8%

2 9.9% 84.8% 5.2%

3 3.8% 4.1% 92.1%

constitute millions or even billions of points, which requires a large amount of storage. Pro-
cessing such amount of data at once would be practically impossible due to memory and
complexity constraints in many recognition algorithms. This is because many of the algo-
rithms were designed to operate on a certain size of the input data and would fail if the data
volume is too large. Instead, it is beneficial to partition the data into semantically mean-
ingful parts. This way, it is possible to process each part of the PC data separately using
segmentation algorithms. After that, the segmentation result can be merged into a consis-
tent output without any negative impact on the total segmentation accuracy. A reasonable
way to define semantic parts for building data is to split the PC data into rooms. Thus, each
semantic element (room) can be processed separately without the negative impact on object
recognition performance, as the same object is unlikely to span multiple rooms at once. This
way it is possible to leverage the benefits of parallelization, which can be significant for large
indoor environments, e.g., 50× for a typical office environment with 50 offices. There is no
clear consensus on the definition of “room” in the literature. Some consider that a room is
an enclosed indoor space [16], however, it remains unclear whether a long corridor consist-
ing of several right-angle sections (see sections shown in orange, violet and green colors in
Fig. 2.15) should be labeled as one room or as several. This issue is discussed in depth in
Chapter 3.

The following requirements for a room segmentation algorithm are identified:

• No assumptions on the wall structure. Assumptions of Manhattan world, vertical or
not curved (planar) walls significantly limit the applicability of a room segmentation
approach. An illustration of an environment violating these assumptions is shown in
Fig. 2.16. The Manhattan world refers to environments where the dominant planes
(walls, floor, and ceiling) are oriented at right angles to each other [41].

• No knowledge on the sensor trajectory is required. Sensor trajectory information is
often unavailable, for example for CAD models or when the sensor pose information is
not stored after the SLAM process has been completed. It has been observed that this
information is rarely provided for public PC datasets, e.g., [58], [11], [59].

• No assumptions on the room layout. Rooms can often be oriented in random patterns
with respect to each other, and it is not reasonable to make assumptions about a spe-
cific room layout or whether a room represents a concave region (when considering a
top-down view of the room). In the middle of Fig. 2.15 a corridor is shown. It consists
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Figure 2.15: Illustration of the PC data segmented into rooms (top-view). Different colors of the points
correspond to different room segments. Observe the u-shaped corridor in the middle that is denoted
here as three separate rooms (green, purple and orange colors), whereas it is also correct to denote it
as one large room. Dataset of [11].

Figure 2.16: Illustration of the PC dataset with tilted walls violating the Manhattan world assumption.
Many existing room segmentation methods would fail on such data. Dataset from [57].
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Figure 2.17: The PC of a room is shown on the left. The corresponding RGB image is shown on the
right. It can be observed that significant parts of the object geometry are missing due to the fast map-
ping procedure - denoted as white areas in the middle of the left image. Due to limited scanning time,
the objects cannot be scanned from all sides. Dataset of [4].

of three sections (shown in orange, purple and green colors). If labeled as one room, it
represents a non-convex shape.

• Robustness to noise, occlusion, and clutter. Noise and occlusion are often present
in sensor data of indoor environments, in particular when the data is obtained while
mapping under time constraints using noisy sensors, see Fig. 2.17.

Although the problem of 3D room segmentation has been studied actively in recent years,
related work only partially addressed the requirements mentioned before. In particular, this
problem has been considered in the literature from the perspective of the robotics commu-
nity, as well as from the view of computer graphics and vision.

Robotics. Most of the relevant previous work in the area of robotics has dealt with room
segmentation in 2D data, in particular, with occupancy grid maps captured with a mobile
robotic platform [60]–[67]. The focus of related work on 2D data is because obtaining large-
scale 3D PC data of indoor environments still constitutes a significant effort when using mo-
bile robotic platforms. In particular, [61] proposed a feature-based approach with Voronoi
segmentation to represent different types of rooms, e.g., rooms, hallways, door, and cross-
ings. This requires a significant amount of labeled data. The authors in [62] suggested a
graph partitioning combined with spectral clustering to solve the problem of room segmen-
tation. Spectral clustering has the disadvantage of having large computational complexity
[68]. The authors in [60] provided an extensive survey on the topic of room segmentation in
2D maps and performed a comparative evaluation of various algorithms on a benchmark
consisting of 20 datasets. The main insight from the published analysis is that machine
learning approaches achieve superior performance. From the recent work, [65] proposed
a convolution-based method to room segmentation using grid occupancy maps. In particu-
lar, a circular kernel is used to detect ripple-like patterns with large variance values in the
maps. The neighboring regions with similar values are then merged. Furthermore, the au-
thors also improved the evaluation metric of room segmentation in 2D maps. Fermin et
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al. [63] suggested an alternative to the common approaches of topological segmentation in
structured and unstructured environments using a contour-based segmentation. Kleiner et
al. [64] proposed a watershed-based method for segmenting occupancy grid maps into re-
gions that represent rooms and corridors in the real world. These segmented regions are
further merged into rooms using semantic decision rules. Fleer [66] approached the task
of room segmentation by formulating it as a supervised learning task, where the classifier
uses obstacle measurements and camera images to cluster the map into room-border edges.
These edges are then segmented using graph clustering. Furthermore, [67] formulated the
room segmentation task as a problem of automatic generation of an accessible graphic from
a floor plan image. This work assumed that the clean and clutter-free floor plan image of the
building is available, which is hardly the case for most indoor environments.

It has been observed that the presence of clutter in the indoor environment significantly
deteriorates the performance of the segmentation approaches that use occupancy grid maps
[61]–[67]. Furthermore, the approaches of [61] and [62] require information on the sensor
trajectory and a significant amount of labeled data. In contrast, the approach of [16] does not
require the viewpoint information and achieves high segmentation performance. It, how-
ever, relies on parametric plane detection, which limits its applicability for buildings with
curved walls. For such walls, plane detection algorithms often fail, which would result in
missing regions [69].

Computer vision and graphics. In the area of computer vision and graphics, the task of
3D room segmentation has been addressed by [11], [14], [15], [69]–[74]. The authors in [69]
proposed a method that finds candidate permanent components by reasoning on a graph-
based scene representation. This representation is then used to build a 3D linear cell complex
that is partitioned into separate rooms through a multi-label energy minimization formula-
tion. For this, the scan poses for every point in the PC are required in order to initialize the
segmentation problem. The authors in [70] addressed the task of room segmentation by first
detecting walls and room separations. The room separations were then used to generate 2D
floor plans of the indoor environment. The authors of [15] applied a parametric approach
to the problem of room segmentation and detected planes in indoor environments, which
are then used to extract the segmented floor plan. Ochmann et al. [71] proposed to solve
this problem by assuming a piece-wise planar structure of walls. The laser scanner capture
locations are then used as prior information for the room segmentation task. The obtained
segmentation is then refined in the global energy minimization problem. In the more re-
cent work of [72], the vertical walls are projected onto the floor. After this step, all openings
(e.g., doorways) are closed (removed) using morphological processing using the simplified
(skeletonized) map. Mura and Pajarola [73] identified the fact that the viewpoint locations
are important for clustering. Instead of using the viewpoint information from SLAM or SFM,
a set of synthetic viewpoints is generated by embedding the bounding rectangles in an octree
of the PC and using its leaf cells. This way, a clustering algorithm, like the Markov cluster
algorithm [75], can be used to obtain an estimate of the room boundary [69]. Markov cluster
algorithm is an unsupervised clustering algorithm based on flow simulation in graphs. In
[11], the authors exploited the Manhattan world assumption. In particular, the dominant
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directions of the indoor environment are used as prior information for wall estimation prob-
lem. This information is then used to obtain an estimation of the room boundaries. Li et
al. [74] proposed to first extract wall lines and use this information to erode the floor space.
After that, this space is segmented into rooms. This approach is interesting in that it is one
of the first approaches to multi-floor room segmentation. For this, the authors employed
peak-bottom-peak strategy in the distribution of points along the z-axis in order to extract
connected areas across multiple floors, which carries a resemblance to the method in [11] that
is used to identify dominant vertical directions.

None of these approaches satisfies all of the requirements outlined above. Some assume
that the data is not subject to significant levels of occlusion [15], which is rarely the case for
an indoor environment. Other methods assume a Manhattan world structure of the build-
ing [11], [14]. The following methods [16], [72], [74] relax this assumption from the walls
oriented at right angles to each other (Manhattan world) to vertical walls only. Nonetheless,
this assumption still does not include the tilted walls, which are often observed in indoor
environments (see Fig. 2.16). Some approaches further require the scan poses for every mea-
sured point in the PC [14], [69]–[71]. This information is difficult to obtain in practice, because
the 3D PC data often represents the result of a fusion of data from multiple sensors, such as
RGBD and LiDAR scanners.

Based on the fact that some of the above-mentioned requirements have not been ad-
dressed by the existing approaches, a novel approach to room segmentation is presented in
Chapter 3.

2.2.2 Unsupervised 3D Object Segmentation in PCs

Once the PC data of indoor environments has been segmented into rooms, it is possible to
proceed to the subsequent task of object segmentation. Similarly to the room segmentation,
the object segmentation constitutes an ambiguous problem as the definition of the object can
vary depending on the context and there is no single correct definition. For example, it is
correct to say that the chair in the left side of Fig. 2.18 is a single object, but at the same time,
it is also correct to claim that the chair consists of chair parts, such as chair arm, chair back
and chair seat - see the right side of Fig. 2.18. The approach to semantic understanding in-
volving segmentation and subsequent classification is not the only possible way to address
the task. Some works ([11] among others) approached the problem of semantic understand-
ing assuming that the segmentation is not available. Instead, a sliding volume method is
employed, where a sliding cube is moved through the PC data in three directions along X,
Y and Z axes. For each possible cube position, an object label is predicted [76]. Afterward,
a non-maxima suppression method is used to merge neighboring predictions to a consistent
result. Whereas such approach avoids the problem of segmentation, the resulting computa-
tional complexity of the sliding cube approaches is cubic in the dimensions of the PC data,
as each possible position with a certain volumetric stride (step) needs to be evaluated. For
example, it is possible to use a cube of size 1 m × 1 m × 1 m in a PC having dimensions of
100 m×50 m×5 m, which are exemplary dimensions for one floor of the indoor environment
in the dataset of [11]. When using the cube overlap of 0.25 m, this results in the following
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Figure 2.18: Illustration of the object segmentation for the chair. Left: the entire chair is treated as
one object. Right: the chair parts are treated as separate objects. Here, different colors correspond to
distinct segments. It can observed that it is meaningful to consider multiple segmentation scales at
once. Dataset of [4].

number of possible cube positions:

N = Nx ·Ny ·Nz =

(
100− 1

0.25
+ 1

)
·
(

50− 1

0.25
+ 1

)
·
(

5− 1

0.25
+ 1

)
= 1,329,553. (2.30)

Such a large number of computations is prohibitive. Moreover, the resulting object localiza-
tion accuracy is limited to a specific volumetric overlap (in this case 0.25 m). Furthermore,
this issue becomes even more pronounced, when the environment does not satisfy the Man-
hattan world assumption, as in this case different possible orientations need to be evaluated,
resulting in additional computational complexity.

Ideally, an object segmentation approach has to meet the following requirements:

• Robust to noise and occlusions. Noise and occlusion are commonly present in PC data
of indoor environments, in particular, in multi-view PC (MVPC) data that has been
obtained using a moving sensor, such as laser scanner, depth sensor (Kinect) or RGB
camera when moved along a certain trajectory and combined with the SFM approach.

• Unsupervised. The algorithm has to exhibit a good segmentation performance with-
out the need to obtain a large amount of annotated data. This step can require large
effort due to significant variations in objects geometry and many possible labels.

• No assumptions of planarity or specific object geometry. The assumptions of pla-
narity or specific object geometry are often violated for curved objects or objects with
varying geometry - see Fig. 2.18.

• Low computational complexity. It is essential for the segmentation algorithm to have
low computational complexity in order to enable the application of the algorithm on
large-scale indoor scenes.

The problem of object segmentation is a well-researched topic. However, the existing
approaches were mostly designed with single-view and small-scale PC data in mind. Single-
view refers to the fact that the PC data has been captured from a single viewpoint. This is
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Figure 2.19: Left: illustration of a typical PC dataset obtained using handheld sensors depicting a
small part of an indoor environment (dataset of [59]). A low level of registration artifacts and high
point density can be observed. Occlusions, however, still exist. Right: typical MVPC dataset captured
using a laser scanner in large-scale scenario (dataset of [4]). Higher levels of registration artifacts, re-
flections and occlusions are present.

in contrast to multi-view data when the sensor has been moved in a trajectory, thus result-
ing in a number of viewpoints. “Small-scale” term refers to the data depicting one room
of the building or a part of it. A focus of previous work on small-scale data is because,
until recently, the most extensive available indoor PC datasets were mostly captured with
depth sensors with limited scanning range, such as Kinect [58], [59], [77] and [76]. They
typically contain scans depicting small parts of indoor scenes. This is due to the high ef-
fort involved in recording PC data of large-scale environments using handheld sensors. In
particular, this poses a challenge for object segmentation in large-scale indoor environments
due to differences between two scenarios and the resulting data. When recording large in-
door environments, the operational costs and time constraints become more important as
the environment has to be free of moving objects during the time of scanning. This poses
significant challenges as many environments cannot be made inaccessible for a long time,
e.g., public environments including railway stations and similar. Compared to Kinect-based
solutions, laser scanners have a clear advantage as they provide a larger scanning range, as
discussed in Section 2.1.1.

As a result of the specific scanning procedure required for large indoor environments
(e.g., building floors or even entire buildings), MVPC data acquired using a moving plat-
form tends to have the following differences when compared to single-view data:

• Unreliable surface normal information, which is caused by registration artifacts.
These artifacts are mostly due to inaccuracies when registering multiple range scans
into a single 3D map. In particular, so-called “double wall” artifacts are caused by iter-
ative point registration algorithms such as Iterative Closest Point (ICP) [78]. Such arti-
facts occur in any MVPC data, but they are most pronounced in large datasets because
the registration noise tends to accumulate over time [79]. This results in deterioration
of the object segmentation performance for algorithms that use normal information.



38 Chapter 2. Background and Related Work

• Varying point density within different parts of the dataset. This is caused by a large
scanner setup and strict time constraints, so that it is, sometimes, simply impossible
to scan the objects from various directions (see the holes in the chairs and the table in
Fig. 2.19).

Unsupervised small-scale object segmentation. Review of the entire literature on the
topic of object segmentation can take significant space. For the sake of space constraints, the
review is limited to the most relevant works. The interested reader can refer to [80] for a
thorough, in-depth analysis. Most of the existing approaches for 3D PC segmentation were
tested on single-view datasets. Hence, they do not consider the important peculiarities of
MVPC data and tend to perform poorly on such datasets. In particular, [81] proposed to find
approximate convex 3D shapes from a single RGBD image. At first, the image is segmented
into superpixels, which are groups of pixels in the image that do not cross the object bound-
aries. Based on a large set of candidates generated from these superpixels, the selection of the
candidates is optimized, so that they fulfill a number of properties. These properties include
convex shape, small intersection value, and large scene coverage. Similarly, [82] proposed
several objectness measures to be used in a graph-based mesh segmentation approach from
[38]. The suggested measures include compactness, convexity, and volumetric extent. In
[83], the authors proposed a method to infer the object segments based on the image. For
this task, the pixels are grouped into planes. The orientation of planes and the edge con-
vex/concave nature are inferred. The Manhattan world assumption has been leveraged in
this work to reduce computational complexity. The entire scene interpretation problem is
solved jointly by using superpixels. In the end, the problem of segmentation is formulated
as a binary quadratic optimization problem. It takes the cues and geometric constraints into
account to produce a final interpretation of the scene. In the method proposed in [84], the
object relationships between different object categories are learned directly from the anno-
tated data. The learned object relationships are then used to perform segmentation in the
RGBD images using conditional random field employing mutex constraints. Van Kaick et
al. [85] proposed to perform unsupervised object segmentation by decomposing the object
into weakly convex parts. These decomposed neighboring weakly convex parts are merged
in case they have similar properties and comparable volumetric properties. The authors in
[86] suggested performing segmentation in parallel to the SLAM process in an incremental
procedure using depth maps. The segmentation of the depth maps is then propagated onto
the 3D PC data.

Unsupervised large-scale object segmentation. Handling large-scale PC data poses an
important challenge concerning computational complexity. To mitigate this issue, [47] pro-
posed to segment the PC data into a volumetric variant of superpixels called supervoxels.
Here, a supervoxel is a group of neighboring PC points that belong to the same object and
represent a surface. Instead of considering all points in the PC, it is possible to consider the
extracted supervoxels that have associated features, such as 3D coordinates, surface normal,
curvatures and shape descriptions. By reducing the number of nodes to be segmented, it is
possible to significantly accelerate the process of object segmentation. For more details, see
Section 2.1.6.6. For example, instead of considering 50 points, 1 supervoxel and the associ-
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ated feature descriptor can be used. In the follow-up work of [17], the authors exploited the
previously made observation in psychophysiology [87], [88]. This observation suggests that
the transition between convex and concave image parts can be indicative of the separation
between objects and their parts. In particular, the authors showed that this criterion could
be applied to 3D object segmentation by distinguishing between convex and concave rela-
tionships. Given neighboring supervoxels, a graph can be created. This graph can be used
to perform region growing, thus achieving segmentation. Before segmentation, it is impor-
tant to remove noisy edges that are commonly present in noisy PC data. For this, convex
and concave relationships between the supervoxels and certain heuristics, such as extended
convexity criterion and sanity criterion, have been used. In the follow-up work of [89], it
was proposed to use the RANdom SAmple Consensus (RANSAC) algorithm in combination
with the convexity criterion to find the best planar cut separating the object parts. A num-
ber of methods exploited planarity and symmetry constraints. In particular, the approach of
Mattausch et al. [90] leverages planarity assumptions in the indoor environments and repre-
sents an object as a collection of planar patches. Such simplified representation is then used
to perform clustering in the indoor environment to performance object segmentation. Ecins
et al. [91] proposed to leverage the symmetry constraint to improve the scene segmentation.
Of the most recent work on unsupervised object segmentation, [92] proposed not only to em-
ploy the scene geometry but also reason about unknown objects using scene semantics. In
particular, a CNN operating on RGB images detects object boundaries. The detected bound-
aries are then used to construct region hierarchies. The novelty of this approach is that the
employed CNN does not need to be trained on the given environment and can be, instead,
pre-trained on a different dataset. This allows this approach to be used to discover novel
objects.

Supervised object segmentation. Due to the repetitive nature of indoor environments
and the objects therein, it is expected that supervised methods can achieve good perfor-
mance by learning typical patterns specific to certain object categories, e.g., tables normally
have planar horizontal regions. Due to an extensive amount of related work on the subject,
only the most relevant works are described here. For instance, [93] proposed to use depth
images in combination with a supervised classification algorithm to perform object segmen-
tation. The authors in [76] leverage existing 3D CAD models to render depth images from
multiple viewpoints. These depth images are then used to create artificial PC data measure-
ments, based on which various PC-based features are computed. These features are then
given to the support vector machine (SVM) classifier to distinguish different categories. For
object localization, a 3D detection window in 3D space is moved in an exhaustive search.
Soni et al. [94] proposed to directly learn the object boundary in the depth image using a
CNN. Of the most recent work, [95] proposed to use 3D fully convolutional neural network
in combination with a recurrent neural network that implements conditional random fields
for the task of semantic segmentation given PC data. Fully convolutional neural network de-
notes a network that contains only convolutional layers and does not have fully connected
or other layers. The used data representation is a volumetric grid that is computed based on
the PC data. After the class predictions on the grid are obtained, they are transferred onto



40 Chapter 2. Background and Related Work

the PC data using trilinear interpolation. In the recent work in [96], Li et al. showed how an
analysis-by-synthesis strategy can be used to generate proposals for object instances, thus
solving a problem of object segmentation. This proposal generation step can then be com-
bined with instance segmentation approaches based on deep learning for the task of object
detection.

The above-mentioned approaches that work on single-view data do not exhibit simi-
larly good performance for MVPC data due to the previously described differences between
MVPC and single view small-scale datasets. In particular, the convexity criteria used in
[17], [83], [85], [89] as the primary evidence for an object boundary are negatively influenced
by noise in concave object regions. This effect leads to deterioration of segmentation per-
formance on MVPC data. Many approaches assume that the data is given in the form of a
depth image [76], [81], [83], [84], [86]. This assumption increases the computational complex-
ity for the recognition problem due to the additional step of depth rendering. Supervised
approaches can improve segmentation performance [76], [82], [94], [95] but they require a
massive amount of labeled examples. A significant effort is required to record and anno-
tate MVPC datasets due to the 3D nature of the data. Other methods make unreasonable
assumptions on scene planarity [90] or Manhattan world structure [83].

To address the above-mentioned challenges, a specific approach to unsupervised object
segmentation exhibiting low complexity and able to handle large-scale PC data needs to be
developed. The details of the proposed approach are given in Chapter 4.

2.2.3 3D Object Classification in PCs

Once the objects are segmented, classification of the object segments is performed. It is done
to determine to which semantic elements these segments correspond, i.e., is it a chair or a ta-
ble. This information can further be used in some applications, such as in robotics for object
grasping and manipulation, in architecture for indoor modeling, in augmented and virtual
reality for content creation and efficient visualization.

Descriptors are usually used for object classification. The descriptors take PC data as
input and generate a multi-dimensional feature representation of the object. It is essential
that the descriptor signatures are similar for objects of the same category and significantly
different for objects of distinct categories. Depending on the considered scale, PC descrip-
tors can be divided into global and local ones [97]. Local descriptors describe the geometry
of the object in the local point neighborhood of the object part, e.g., a sphere of radius 2–
10 cm. To describe the entire object, a large number of such descriptors is needed, which
leads to the problem of high computational complexity. This complexity is not only due to
the descriptor computation step, but also due to descriptor matching, as multiple descriptor
pairs need to be matched to each other. Instead, global descriptors describe the geometry of
the entire object using a single descriptor representation. As a single descriptor is computed
per object, computational complexity in description and matching is typically significantly
lower. Furthermore, the storage requirements for global descriptors are also significantly
lower. It is desirable that the global descriptor signature does not change if the object is ro-
tated. Otherwise, distinct descriptor signatures for rotated versions of the same object are



2.2. Related Work 41

obtained, which would lead to increased complexity in object matching. To mitigate this
issue, it would be necessary to perform an additional step of object pose estimation, which
presents additional complexity, especially in a large-scale setup.

Thus, the following main requirements for the PC object descriptor are identified:

• Robust to noise and occlusion. MVPC data typically has high levels of noise and oc-
clusion due to registration artifacts. Hence, it is important that the descriptor signature
does not significantly change when the data is subject to high levels of noise and occlu-
sion.

• Robust to changes in point sampling density. MVPCs have non-uniform point den-
sity due to the inherent property of laser scanners. The descriptor signature should not
significantly change when such effects occur.

• Invariant to rotations. Objects can be arbitrarily oriented in 3D space, and it is unde-
sirable that the object descriptor values change when the object is rotated.

• Low computational complexity. It is essential that the descriptor has low computa-
tional complexity so that the descriptor is applicable for large-scale indoor environ-
ments. This requirement is even more important in case the object classification al-
gorithm has to be deployed on a mobile robotic platform with limited computational
resources.

A large number of global descriptors were proposed in the literature. The review of the
most relevant descriptors is provided in Table 2.2. First, the handcrafted descriptors are re-
viewed, followed by learning-based object description approaches.

Point pair-based handcrafted feature descriptors. Majority of global descriptors em-
ploy point pair features to achieve rotation-invariance and robustness to occlusion. The first
to propose randomly sampled point tuples for shape description were Osada et al. [109].
Later, [103] evaluated this approach for noisy PC data and confirmed its superior perfor-
mance. Given the sampled point pairs, the features are computed. These features are further
quantized in a 4D histogram. The used features employ the point distances and normal
directions of the corresponding points. For matching, a simple approach of LN distance us-
ing the histograms of two objects can be used. In later work, [110] proposed to use relative
angles of the normal vectors of the corresponding point pairs to compute a Point Feature
Histogram (PFH). The authors also evaluated the distances between the points in the point
pair but came to a surprising conclusion that the distance feature is not very discriminative.
The distances between point normals are then binned into a histogram. In the follow-up
work, [98] introduced Viewpoint Feature Histogram (VFH) that is related to the PFH fea-
ture. In particular, based on the point normal and the normal of the PC centroid, the relative
angles are computed. The combination of these features allows achieving higher robustness
to noise. Furthermore, a viewpoint-dependent signature component was introduced. It is a
histogram of the angles with respect to the viewpoint direction. The presence of viewpoint-
dependent information allows the descriptor to be used not only for object classification but
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Table 2.2: Review of the most relevant global PC descriptors. Var. refers to the fact that the descriptor
size varies and no standard size is used by the authors (in principle, sizes for all descriptors can be
changed).

Descriptor name Descriptor size Required information

VFH [98] 308

Normals and point coordinates

CVFH [99] 308

OUR-CVFH [100] 308

GRSD [101] 20

SHOT [102] 135

Wahl et al. [103] 625

Drost et al. [104] Var.

Kasaei et al. [105] 25

ESF [106] 640

Point coordinates3D HOG [107] Var.

Lima et al. [108] 16

also for pose estimation. Aldoma et al. [99] proposed Clustered Viewpoint Feature Histogram
(CVFH) that is an extension of the VFH. This approach leverages the observation that the ob-
jects typically consist of a number of smooth regions. By splitting the object into several such
regions and describing each of them separately using the VFH histogram, the algorithm can
achieve higher robustness to occlusion and noise. In the later work, [106] proposed a descrip-
tor called Ensembles of Shape Functions (ESF). In particular, ESF is an ensemble of multiple
64-bin-sized histograms of shape functions describing characteristic properties of the PC.
The shape functions include angle, point distance, and area shape-based functions. To ac-
celerate descriptor computation, a voxel grid is used to approximate the real surface so that
the visibility calculations can be performed quickly. Depending on whether a point pair lies
completely on the surface, partially on the surface or completely off the surface, the feature
value is aggregated into a different part of the histogram. Thus, higher descriptive ability
can be achieved as more information about global and local object geometry is stored. For
an extensive quantitative comparison of point pair features, the interested reader can refer to
the current review in [111]. The authors studied different point pair features and concluded
that distance and normal-based point pair features show the best performance in case RGB
information is not available. Once RGB information is available, it is beneficial to augment
the descriptor with RGB information.

Object detection using point pair features. The authors in [104] showed how point pair
features can be used for object detection when no prior segmentation is available. For point
pair features, the features similar to [103] and [48] were used. They include distance and rel-
ative angles of normal vectors to the direction vector connecting two points in the point pair.
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For matching, a fast voting scheme was employed. In the follow-up work [18], the authors
showed how such an approach can be enhanced in order to tolerate higher levels of noise
and occlusion by using Hough voting for verification. Furthermore, the steps of segmenta-
tion and pose verification are performed jointly. For this, the same point pair features have
been used. Recently, [112] showed that by sampling points in a specific fashion (in contrast
to previously used random sampling), it is possible to improve the descriptive performance
of point pair features and thus enhance matching performance.

Handcrafted descriptors that do not use point pair features. There are also a number
of approaches that do not use point pair features. For instance, [102] proposed Signature
of Histograms of OrienTations (SHOT) as a local descriptor for PC data that uses normal
information only. In particular, the 3D volume of the object is first divided into a spherical
grid. For each of the bins in the grid, a local histogram of normal orientations is computed.
Within the histogram, normal directions of the corresponding points and their relative orien-
tations to the dominant orientation of the part of the spherical grid are used. The authors in
[101] introduced a Global Radius-based Surface Descriptor (GRSD). Within this descriptor,
a radius value of the approximating sphere is estimated for each point. Based on the radius
value, the surface type for each point can be inferred, such as plane, cylinder, corner, sphere
or edge. After this step, the adjacency between different surface types is accumulated by
iterating over all points. The resulting descriptor histogram size is only 20 bins. Pedersoli
and Tuytelaars [107] suggested a 3D Histogram of Gradients (HOG). This descriptor extends
the 2D version of the HOG descriptor to 3D representations. For this, the PC data is vox-
elized into a voxel grid, and this representation is used to compute a statistical histogram of
oriented gradients. The sensitivity to noise and occlusion remains an unsolved issue for this
descriptor. To mitigate rotation issues, [108] proposed to transform the PC data into a canon-
ical coordinate system. After this step, the point distribution is described using a histogram.
This approach has the advantage that the RGB color distribution can be supported simi-
larly. Analogously, [105] proposed a global 3D shape descriptor called Global Orthographic
Object Descriptor (GOOD) that also employs projection. In particular, it uses orthographic
projections along three main directions that are computed using the PCA (as explained in
Section 2.1.5). The projected points are partitioned into spatial bins so that the point density
is quantized in each of them.

Learning-based object description. The PC object description has also been studied
in the context of a supervised formulation. In particular, [113] proposed a deep learning
approach called Deep Local feature Aggregation Network (DLAN). This approach extracts
rotation-invariant 3D local features and then aggregates these features in a neural network.
For a description of local 3D regions, the DLAN uses a set of 3D geometric features that
are invariant to local rotation. The resulting descriptor represents an aggregation of a set of
features into a (global) rotation-invariant and compact feature.

Previously, deep learning approaches were limited in their performance on PC data due
to the issue of point set order. In particular, a point set contains a number of points describing
object geometry. This set is invariant to permutations of its members. The different permuta-
tions of the set members result in different input data for the network, which makes training
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of the neural network challenging. This issue is also known as symmetrization problem. The
first to solve this issue, [114] proposed to apply max-pooling operation on the input point
set in the PointNet deep learning architecture. This operation allows learning of the best
features on the PC data directly in an end-to-end fashion. A number of alternative deep
learning architectures working on PC data appeared after that. In the recent work, [115] rec-
ognized that the PCs originating from laser scanner sensors usually have 2.5D structure, i.e.,
they represent surfaces and not solely 3D volume. Hence, instead of performing convolution
on point sets independently, it is possible to perform so-called tangential convolutions and,
hence, improve the classification performance. The authors in [116] proposed graphCNN to
operate on PCs and explore neighborhoods more efficiently than PointNet using a new mod-
ule called EdgeConv. The authors in [117] formulated a general-purpose, CNN architecture
to efficiently process large-scale 3D data using fully convolutional neural network. Li et al.
[118] proposed a new convolution operator that works directly on the PC data. In particular,
the authors suggested learning the point transformation from the PCs. The obtained opera-
tor is used to weigh the input features associated with the points and permute them into a
latent canonical order. After that, the element-wise product and sum operations are applied.
The authors in [119] proposed a pointwise convolution, which is a new convolution operator
that can be applied at each point of a PC. For every point, nearest neighbors are queried on
the fly and binned into kernel cells before the points are convolved with kernel weights. By
stacking pointwise convolution operators together, the authors achieved superior results for
scene segmentation and object recognition in PC data. Deng et al. [120] showed how point
pair features can be used in a deep learning network to create a 3D descriptor. This descrip-
tor can then be used to find correspondences between parts of PC data. This method uses
n-tuple loss function and an architecture that can consider local and global object geometry
at once. In the later work, Deng et al. [121] proposed an extension of this architecture for
unsupervised learning of 3D descriptors. In particular, encoder-decoder architecture is used
in combination with 4D point pair features.

Whereas deep learning methods show large potential for PC description, they are still not
robust enough to be applied in large-scale scenarios. Their segmentation and classification
performance is particularly low in case high levels of noise and occlusion are observed.

From the review of the related work on object classification, it can be concluded that
despite very active research in this area, most of the descriptors do not show good perfor-
mance on the MVPC data or do not achieve low computational complexity. To address these
challenges, a novel approach to object description using point pairs is proposed in Chapter 5.

2.3 Chapter Summary

In this chapter, background knowledge on semantic understanding of indoor environments
using PC data was reviewed. In particular, acquisition and representation methods for PC
data were discussed in Section 2.1.1. Among different acquisition devices, laser scanners
offer the fastest mapping procedure to capture large indoor areas in a short time. Out of
different representations, the PC is the most suitable representation as it is the closest to the
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output from a laser scanner. Furthermore, this representation requires a little amount of stor-
age, and it does not introduce additional artifacts to the PC data. Moreover, an overview
of the typical semantic understanding pipeline has been given along the specific processing
steps. In the first step, the PC of the indoor environment is segmented into rooms. This step
is followed by the object segmentation step, where objects within each room are partitioned.
Finally, a semantic label for each segment is determined using the object classification step.

PC preprocessing was reviewed in Section 2.1.5. It was identified that the RRHT method
for normal estimation provides the highest robustness to noise and non-uniform point den-
sity. Sections 2.1.6-2.1.8 gave an overview of background knowledge that is essential for this
thesis.

In Section 2.2.1, the desired properties of the room segmentation algorithm were dis-
cussed. This was followed by the review of the related work on room segmentation. It was
identified that very few of the state-of-the-art room segmentation approaches could handle
non-Manhattan structures, such as tilted or curved walls. Furthermore, the requirement
of the available sensor trajectory information is very restrictive, especially for public PC
datasets. None of the available room segmentation approaches satisfy both requirements.

In Section 2.2.2, requirements for object segmentation algorithms were described. It was
identified that an object segmentation method needs to be unsupervised, make no assump-
tions about scene planarity and be robust to noise and occlusion. Based on the review of
the related work, it has been identified that none of the available methods address all these
requirements.

Similarly, in Section 2.2.3 the desired properties for an object classification approaches
have been discussed. It was concluded that the PC-based object descriptor has to be rotation-
invariant, exhibit low computational complexity and be robust to noise and occlusion. To
address these requirements, it is beneficial to use point pairs. From the review of the related
work, it has been identified that the existing methods exhibit inferior performance when
dealing with non-uniform point density and high levels of occlusion.





Chapter 3

3D Room Segmentation in Point
Clouds

In this chapter, the problem of room segmentation in PCs is presented. Furthermore, the
proposed method for room segmentation using large-scale PC data of buildings is described.
After that, the experimental evaluation of the proposed approach for a number of datasets is
provided and discussed.

Parts of this chapter have been published in [5].

3.1 Problem Statement

As described before, room segmentation is an important step in the pipeline of semantic un-
derstanding of indoor environments. Furthermore, room segmentation is closely connected
to the problem of indoor reconstruction that deals with the task of reconstructing a simplified
representation of the environment using geometric primitives, e.g., meshes [14]. Each of the
tasks benefits from the results of the other one, e.g., by having a room segmentation, a more

PC Segmented rooms

Figure 3.1: Illustration of the desired result of room segmentation (right) based on the PC data (left),
where the points corresponding to different rooms are assigned to distinct segments. In the right part,
different colors denote different rooms.
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accurate primitive extraction is possible and vice versa. Both of the tasks become increas-
ingly important because of the need for automatically generated semantic models of build-
ings from 3D data. Potential applications of these include virtual reality and architecture, to
name a few. Before further processing, due to a large volume of PC data, it is important to
partition the data into semantically meaningful parts, e.g., rooms (as shown in Fig. 3.1). This
task, however, is made difficult by a number of factors, such as clutter, occlusion and a large
volume of data. As reviewed in Section 2.2.1, previous work has only partially addressed
these problems. In particular, the unsolved challenges are:

• The assumption of precise knowledge of the sensor poses [69], [70], [14]. By using this
information, the task of interior space estimation becomes easier. Such information,
however, is often not available. Furthermore, the sensor pose information is highly
specific to the used acquisition sensor. Therefore, any algorithm that uses this infor-
mation would need to be adapted to a specific scanning procedure (e.g., RGBD and
LiDAR sensors).

• The assumption of the Manhattan world structure for the building parts, such as walls
and other architectural elements that are oriented at right angles to each other [11],
[69]. Clearly, this assumption does not hold for a general indoor environment exhibit-
ing curved or tilted walls, see Fig. 2.15 for an illustration.

To tackle these limitations, the definition of a room has to be reviewed. As no precise
mathematical formulation exists, an architectural formulation is used instead. According to
the dictionary of architecture [122], a room is “In a building, a particular portion, an enclo-
sure or division separated from other divisions by partitions”. In other words, rooms are
bigger (in volume) enclosed free spaces that are connected to each other through a smaller
(in volume) free space, such as a door or an arch (see the top part in Fig. 3.2). This formula-
tion follows the human understanding of a room having a certain homogeneous volumetric
signature within its boundaries. To address this formulation, a new way to compute an
anisotropic potential field (PF) for enclosed (inner) free space in 3D is presented. It is robust
to the negative impact of clutter and occlusion. In particular, a number of objects can be
observed in the top part of Fig. 3.2, such as a chair, a table and a dresser that are located on
the left. Despite these objects, it can be seen in the bottom part of Fig. 3.2 that the PF values
are increasing towards the center of the room. Thus, the PF values do not reflect the existing
furniture.

For internal space representation, a voxel grid computed from the PC data is used. The
voxel grid has the advantage of regularity that is quite important for segmentation algo-
rithms. It also plays a vital role in the subsequent step of 3D to 2D projection so that 2D
pixels can be computed directly from the 3D grid values without the need for extra process-
ing steps. It was indeed discussed in Section 2.2.2 that a volumetric (voxel) grid requires a
large amount of storage and complexity and it is, therefore, inferior to a PC representation for
a number of applications requiring fine details. Nonetheless, this is not a major issue for this
specific case due to the much coarser level of details that is sufficient for room segmentation.
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Figure 3.2: Illustration of rooms as inner free spaces separated by openings with different volumetric
signature. Top: side view of an indoor environment with two rooms separated by a smaller room
(corridor denoted as room 2). Furniture is shown in brown, several free voxels with the correspond-
ing potential field (PF) values are also shown. Bottom: top-down view with proposed anisotropic PF
maximum values along the vertical voxel stack. For voxels, red corresponds to high PF values and
dark blue to low. Adapted from [5], ©2017 IEEE.

In particular, it is possible to use large voxels (20 cm) for this task as this size is adequate to
capture building geometry and perform accurate room segmentation.

In the following, it will be described how such a representation can be used for room seg-
mentation in a general indoor scene. After that, the described framework will be evaluated
qualitatively and quantitatively on PC data of multiple buildings.

3.2 Method

An overview of the proposed method is given in Fig. 3.3. As input, a 3D PC (A) is used.
Based on the 3D PC, interior free space voxels are detected (B). These interior free voxels are
the free voxels that are positioned in the interior of the building, in other words, enclosed
by the architectural elements of the buildings. After that, 3D anisotropic PF values for free
voxels are computed, which is followed by maxima detection in the PF values within each
vertical voxel stack (C). The maximum PF value along each stack is stored into a 2D PF map
(D). This step is done to reduce the complexity of further processing. Given the PF image,
clustering can be performed using the information about the PF values as well as the visibil-
ity between voxels (E). Finally, the labeling of the free space is mapped back to the 3D PC (F).
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A: Input PC

F: Segmented PC

B: Interior free space C: Maxima of 3D PF

D: 2D PFE: Segmented image

Figure 3.3: Overview of the proposed room segmentation method on the dataset of [4]. Input PC (A)
is used to estimate the voxels that are inside the building (also called as interior free space) (B). Given
the interior free space, the 3D potential field (PF) for every voxel is computed. The maxima of 3D
PF along each vertical voxel stack are shown in (C). The maxima are projected onto a 2D PF image
(D), which is then used to partition voxels (now pixels) into separate rooms resulting in a segmented
image (E). In the final step, the 2D segmentation is projected onto the 3D PC producing a segmented
PC (F).

As input data, unstructured 3D PC data is used, which is acquired using either RGBD sen-
sors [14], [11] or LiDAR scanners [69]. No RGB information is used for any of the algorithms
as geometry is more informative for the task of room segmentation. Further improvements
can be achieved by incorporating RGB information, but this lies outside of the scope of this
work. Furthermore, this would limit the applicability of the proposed method as not all PC
datasets contain RGB information.

3.2.1 Interior Free Space Classification

In the first step, the interior free step needs to be identified, i.e., the free space inside the
building interior. This step addresses tasks of free space classification and interior space
recognition.

3.2.1.1 Free vs. Occupied Space Classification

As a room encompasses free space, the free space has to be recognized, as compared to the
occupied space occupied by objects and architectural parts. For this, the 3D bounding box
enclosing the PC data is voxelized, i.e., a 3D voxel grid is overlaid over the 3D extent of the
PC. Each voxel that contains at least one point is labeled as occupied, and free otherwise.
Hence, the voxels corresponding to furniture and other indoor objects are initially labeled
as occupied even though they represent the inner volume of the room. In the worst case,
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when the room is entirely occupied with furniture, the entire inner volume will be labeled as
occupied. As the goal is to reconstruct the inner volume of rooms and compute its volumet-
ric signature, such voxels should be labeled as free. For this, [123] proposed an approach to
classify voxels into free and occupied using a graph cut operating on the volumetric voxel
grid with occupied/free labels. This method, however, requires camera poses and such in-
formation is often unavailable. Therefore, a different approach is selected. First, binary 3D
morphological operations are applied to the 3D occupancy grid along the vertical direction
(see the top part in Fig. 3.2). In particular, isolated occupied voxels surrounded by free voxels
are identified and subsequently labeled as free. In essence, the pattern “occupied”-“free”-
“occupied”-“free”-“occupied” along the vertical direction is detected. The central, occupied
voxels matching such pattern will be labeled as free. For example, a lamp in the top part
of Fig. 3.2 is removed as a result of such operation. Such voxel operations on large-scale
datasets can result in high computational complexity. Therefore, a relatively large voxel size
is chosen, e.g., with a side length of 20 cm. In order to further reduce computational com-
plexity, neighbors of every voxel are precomputed and stored in a lookup table. This way,
the constant time complexity for neighbor search is achieved at the cost of slightly increased
storage requirements.

3.2.1.2 Interior vs. Exterior Free Space Classification

Now, the identified free space voxels need to be classified into the interior (inside the build-
ing) and exterior (outside the building). The theoretical solution to this problem could be
formulated as a point in polygon enclosing check using raycasting or the winding number
algorithm [124]. This is challenging, however, as it is difficult to estimate the enclosing poly-
gon. Furthermore, visibility calculations have high computational complexity when done for
all free voxels. Instead, [123] proposed to check the condition if the free space is enclosed by
the occupied space using visibility checks. This is typically followed by formulating this task
as a Markov random field (MRF) problem, which can be efficiently solved using graph cuts.
See Section 2.1.6.1 for more details on the graph cut formulation. Performing such visibility
checks in 3D for large-scale PCs, however, would result in a prohibitively high computa-
tional complexity. Therefore, it is, instead, checked whether this free voxel is placed between
two occupied voxels along certain directions (so-called enclosing). To keep computational
complexity low, the enclosing condition is not verified in all possible directions in 3D space.
Instead, the properties of large-scale building datasets are leveraged, i.e., buildings typically
have a limited and small number of dominant directions, which are most often occurring ori-
entations of the plane normals. It has been observed that indoor environments have a small
number of such plane orientations [42]. Hence, enclosing checks are performed for every
free voxel only along the dominant directions of the indoor environment.

In particular, when estimating the dominant directions, it cannot be assumed that the
environment is orthogonal and its dominant directions are axis-aligned to the global coordi-
nate system, therefore the dominant directions in 3D space are estimated using the Mixture
of Manhattan Frames (MMF) algorithm [42]. See Fig. 3.4 for an illustration of the dominant
directions of the indoor environment. Refer to Section 2.1.6.5 for more details. It is, essen-
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Figure 3.4: Illustration of dominant directions for the voxel v in an indoor environment. The domi-
nant directions coincide with normal directions of the largest planes and in general do not coincide
with directions of X and Y axes, as shown here. A dominant direction consists of two co-planar direc-
tions, e.g., z+ and z− or n1 and n3. Normals for the corresponding planes ni are also shown on the
Extended Gaussian image on the right. It can be observed that the number of dominant directions for
this environment is small (3).

tially, a formulation of a clustering algorithm for spherical data, which allows us to estimate
dominant directions using normal directions. It has an advantage compared to PCA, as it
allows to estimate more than three principal directions. Thus, instead of performing costly
geometric checks in 3D space, it is possible to precompute the directions along which neigh-
boring occupied voxels need to be checked. It has been observed that the level of occlusion is
different in various parts of the indoor space due to the scanning procedure, while the scan-
ning device is moved around using a moving platform. This in contrast to a flying platform,
such as a drone, where a sensor observes the environment from above and below directions.
Furthermore, it has been commonly noted that upper parts of the environment (e.g., ceiling
and elevated parts) are less likely to be occluded during the scanning procedure as compared
to the floor and lower parts of the environment due to the fact that the scanning platform is
typically located on the floor [90]. Therefore, when accumulating evidence for a free voxel to
be exterior, different weight values are chosen for various directions of enclosing. In partic-
ular, the data term Ev(Lv) for voxel v, which serves as evidence for enclosing, is computed
as follows:

Ev(Lv) = w1 · 1(v, z−) + w2 · 1(v, z+) + w3 · 1(v, z) + w4 · 1(v,dom1)+

+w5 · 1(v,dom2),
(3.1)
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where 1(v, z−) is equal to 1 in case this free voxel v has occupied voxels below it along the z-
axis, and 0 otherwise, 1(v, z+) is equal to 1 in case there are occupied voxels above the voxel
v along the z-axis, and 0 otherwise. See Fig. 3.4 for an illustration of the various directions
of enclosing. Here, also the Extended Gaussian image is shown for the plane normals [125],
which provides an illustration of normal vectors placed in the unit sphere in such a way that
each normal originates at the sphere center and ends in the sphere surface according to the
vector orientation. 1(v, z) is 1 in case there are occupied voxels above and below the voxel v.
1(v,dom1) is 1 in case there are occupied voxels in the positive and negative direction start-
ing from voxel v along the first dominant direction dom1. It typically lies in the horizontal
plane. Similarly, dom2 refers to the second dominant direction that also lies in the horizontal
plane. Here, a higher weight is chosen for the case of occupied voxels located below voxel
v as such voxels indicate a higher probability of this space being interior: w1 = 1.5. In con-
trast, the remaining weights are set to w2 = w3 = w4 = w5 = 0.5. Even though the number
of dominant directions is not strictly limited to two and can be larger, it has been observed
that two dominant directions suffice for the considered datasets. Ev(Lv) is used as the data
term for a MRF formulation. As mentioned in Section 2.1.6.1, the MRF formulation, which
is equivalent to the graph cut formulation, also requires a smoothness term. To recapitulate,
the global energy function for the MRF is formulated as follows:

E(L) =
∑
v∈P

Ev(Lv) +
∑

ev,u∈E
Ev,u(Lv, Lu), (3.2)

where L = {Lv|v ∈ P}, Lv = {s, t} is the assignment of the non-terminal node v ∈ P. Ev(Lv)

is a data penalty function for node v assuming a certain labeling Lv. E is a set of all edges
between neighboring nodes. Ev,u is an interaction potential between nodes v and u. It is
defined as follows:

Ev,u(Lv, Lu) =

{
0.6, if Lv = Lu,

0, if Lv 6= Lu,

where Lv denotes the label of voxel v. The value of 0.6 has been experimentally verified
to obtain a proper regularization of the indoor voxels, while still accurately following the
computed free space evidence. Furthermore, a 6-neighborhood connected graph is built that
is spanning all free voxels. In order to find interior free voxels, the graph cut using the
Boykov-Kolmogorov min-cut algorithm is computed [32]. In particular, OpenGM-based im-
plementation of the algorithm is used [126].

3.2.2 Anisotropic Potential Field Computation

Once the interior free space has been determined (see (B) in Fig. 3.3), the room segmentation
step can be performed. So far, many voxels within the room volume have been labeled as
occupied due to the presence of furniture and other objects. For the most accurate depiction
of the interior space, it would be best to separate indoor objects from architectural elements
of the building, but this remains a challenging problem in indoor reconstruction [69], [70].
Instead, it has been observed that PF-based approaches for room segmentation have shown
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good performance for 2D scenarios, e.g., when segmenting 2D occupancy grid maps [60].
The PF value of the free voxel is normally defined as the distance of the free voxel to the
closest occupied voxel. A straightforward formulation of PF in 3D space would result in sig-
nificant variations of its values due to clutter and indoor objects that are commonly located
on the floor. These objects typically have little in common with room boundaries (see table
and chair in the top part of Fig. 3.2). Therefore, the nearest neighbor search is instead per-
formed in the half-space spanning the positive z-direction. This way, every voxel stores the
squared L2-distance to the closest occupied voxel lying in the half-space spanning positive z
values, so-called anisotropic PF value. It is called anisotropic as the term “anisotropy” com-
monly refers to the property of being directionally dependent, i.e., the field properties vary
in different directions.

Given the 3D PF map, it is possible to formulate clustering as an MRF problem with the
PF gradient as a data term, thus enforcing smoothness. It was observed, however, that the
maximum PF value along the vertical voxel stack is descriptive enough to detect rooms (see
Fig. 3.3 (C)). This has the further advantages of low computational complexity and the abil-
ity to provide a simple visualization (see the lower part in Fig. 3.2). The resulting maxima of
PF values from each vertical stack are now stored in a 2D image, which is used for further
processing (see (D) in Fig. 3.3). In order to enhance the robustness of the method, visibility
checks between pairs of voxels are performed. For instance, given a pair of voxels v1 and v2,
a value of 1 is stored in case the v2 voxel is visible from voxel v1, and 0 otherwise. The v2
voxel is visible from voxel v1 iff no occupied voxels are located along the ray starting from
the first voxel and terminating in the second voxel. Here, instead of performing visibility
checks for every voxel, the visibility checks are only performed for the highest located free
voxel within the vertical stack. It has been observed that due to variations in the ceiling pro-
file the visibility of the highest voxel is more informative for space partitioning as compared
to including the voxel with the maximum PF value.

3.2.3 Segmentation

Free voxels. Now, given the 2D PF map, discontinuities need to be identified, as these in-
dicate room boundaries. Voronoi graphs combined with merging heuristics [60] can be em-
ployed for this. This solution would, however, impose constraints on the room layout and
shape, e.g., in the general case rooms can be oriented in an arbitrary layout forming non-
convex shapes, for example, corridors enclosing the rooms. Common clustering methods,
such as spectral clustering [127] and k-means clustering, suffer from certain limitations: clus-
ters need to have a similar number of points or clusters need to form convex shapes. Further-
more, graph cut algorithms typically suffer from the erroneous merging of smaller clusters
into the neighboring bigger clusters. In contrast, density-based clustering algorithms (e.g.,
DBSCAN [40]) have an advantage as they do not assume any specific cluster shape, but, in-
stead, perform region growing solely based on density. Furthermore, they can use a general
distance metric, thus being able to incorporate other distance measures besides the Euclidean
distance. It has been observed, however, that DBSCAN performance is highly sensitive to
the specific parameter of the chosen neighborhood radius. To avoid the high effort of pa-
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rameter tuning, its extension, called HDBSCAN, is considered [39]. This algorithm employs
a specific measure to maximize the stability of the selected clusters, which improves the re-
sult. This way, no extensive manual search for optimal hyperparameters needs to be done
as the algorithm does this automatically. For more details on the HDBSCAN algorithm, see
Section 2.1.6.4.

Prior to clustering, the PF values projected onto a 2D map I are reshaped into a 1D his-
togram. This step is followed by peak detection in the histogram. As a result of the peak
detection, a set of peak thresholds is obtained: thr0 ≤ thr1 ≤ thr2... ≤ thrk. Furthermore,
the maximum value of the PF map I is stored in a. Now, iterative thresholding of the 2D
PF map I is performed starting from the highest intensity peak with index k in descending
order of the peak values. The distance matrix DPF is updated for each pair of pixels. In
the beginning, all values in the distance matrix DPF are set to a. At each iteration k, given
threshold thrk, DPF

i,j is updated for the pair of pixels (i, j) as follows:

DPF
i,j =

max(a− thrk, DPF
i,j ), if pixels i and j become connected,

DPF
i,j , otherwise.

(3.3)

Here “connected” denotes pixels for which there is a sequence of neighboring non-zero pix-
els containing a path from one pixel to the other. The combined distance matrix for the voxels
(now pixels) for HDBSCAN clustering is defined as follows:

D = Dvis · wvis + Deucl · weucl + DPF · wPF , (3.4)

where Deucl is the distance matrix that describes the Euclidean distance between the corre-
sponding voxels. The entry at position i, j describes the Euclidean distance between voxels
i and j. DPF is the previously computed PF-based distance matrix. Dvis is the distance
matrix based on mutual visibility. For voxels p and q, the corresponding entry in Dvis is
computed as the normalized Hamming distance between their visibility vectors [14]:

Dvis
p,q =

d(s(p), s(q))∑
i si(p) + si(q)

, (3.5)

where s(p) is the visibility vector of voxel p, such that si(p) = 1, if voxel i is visible from voxel
p, and 0 otherwise. The Hamming distance d is defined as follows: d(x,y) =

∑N
i=1 1(xi = yi),

where 1(·) is an indicator function that is 1 in case the enclosed condition is true, and 0 oth-
erwise. In order to take into account information on the PF difference as well as the change
of visibility within different parts of the environment, the weight parameters are chosen as
follows: wvis = 0.05, weucl = 0.7, wPF = 0.25.

After clustering, there exist a number of points that have not been assigned to any seg-
ment during the thresholding operation. To identify such non-assigned points, local peaks
are detected. For this, peak detection using the smallest detected histogram peak threshold
followed by connected component segmentation [128] are employed. Finally, to assign the
remaining non-assigned points, the Random Walker algorithm [37] is used. The previously
segmented pixels serve as seeds for this segmentation algorithm. For more details on the
algorithm see Section 2.1.6.2.
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Occupied voxels. As the goal of the approach is 3D segmentation, the segmented 2D
PF map (see Fig. 3.3) needs to be propagated onto 3D occupied voxels. For this, the seg-
mentation of the (segmented) free voxels is propagated onto unlabeled free voxels in the
vertical stack along the vertical direction. Afterward, for each occupied voxel, its nearest ten
neighboring free voxels that contain a segment assignment are determined. The most of-
ten occurring label of the labeled free voxels defines the labeling of the considered occupied
voxel.

3.3 Experimental Evaluation

In this section, the proposed approach is experimentally evaluated and compared to a num-
ber of existing methods.

3.3.1 Evaluation Setup

For evaluation, several datasets were used. First, the performance was verified on the unla-
beled laser scanner PC dataset that violates the Manhattan world assumption as described in
Mura et al. [69], i.e., exhibiting tilted ceilings and curved walls. Furthermore, the evaluation
was performed on the labeled indoor dataset of Armeni et al. [11] spanning 4 buildings and
counting in total 175 rooms. For qualitative evaluation, the unlabeled dataset of Ikehata et
al. [14] was used. The only algorithm parameters that were changed across datasets are the
parameters of the volumetric graph cut w1 and w2, which were set depending on the level
of occlusion in the datasets. In particular, w1 = 0.5 for the dataset of Ikehata et al. because
it exhibits a higher level of occlusion in the floor voxels. w2 = 1.5 for the dataset of Mura
et al. as it exhibits a lower level of occlusion in the ceiling voxels as compared to the other
datasets. No further parameter tuning was performed on the dataset basis, as this would
limit the generality of the proposed algorithm.

3.3.1.1 Results on the non-Manhattan Dataset of Mura [69]

The experimental results using the described method on the non-Manhattan dataset are
shown in Fig. 3.5 along with the result of [69]. The proposed approach performed simi-
larly to [69], even though it did not use the information on the scanner poses. In particular,
it can be observed that all rooms have been correctly segmented. Notably, the segmentation
result illustrates that the proposed approach is able to segment the building data exhibiting
tilted walls and ceilings correctly.

3.3.1.2 Results on the Dataset of Armeni [11]

The experimental results using the proposed method along with the method of [11] on the
dataset of [11] are given in Fig. 3.6. The authors of the paper used the Adjusted Rand Index
(ARI) metric to measure the quality of segmentation. The main difference of ARI as com-
pared to RI is that the former metric has been corrected with respect to the probability of a
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Figure 3.5: Room segmentation results for the dataset violating the Manhattan world assumption
[69]. Different buildings are shown in different rows. Top row: Modern, middle row: Cottage, bot-
tom row: Penthouse. Left column: reconstruction result of [69], where different colors correspond to
different room segments. Middle column: PF map, where low values of the PF field are shown in
dark blue and high values in red. Right column: room segmentation result of the proposed method.
In the right column, different colors correspond to different room segments. It can be observed that
all rooms have been correctly segmented by the proposed segmentation method, despite the fact that
the sensor pose information was not used. The method of Mura et al. does not generate segmenta-
tion on the point basis, therefore only the reconstruction result is provided. Reproduced from [5],
©2017 IEEE.
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Area 1

Area 2

Area 3

GT Armeni PF for proposed Proposed

Figure 3.6: Room segmentation results for the large-scale dataset of Armeni et al. [11]. From left to
right column: ground truth, segmentation result of [11], PF map for the proposed method, segmenta-
tion result of the proposed method. Here, in the two left columns and the rightmost column, different
colors correspond to different room segments. In the second from right column, low values of the
PF map are shown in dark blue, whereas the high values as shown in red. Here, red ellipses denote
erroneously segmented rooms. Adapted from [5], ©2017 IEEE.



3.3. Experimental Evaluation 59

Table 3.1: Room segmentation results on the dataset from [11]. Numbers in the two right columns
show the number of incorrectly segmented rooms (lower is better). It can be observed that the pro-
posed method outperforms the method of Armeni et al. on all datasets. Adapted from [5], ©2017 IEEE.

Area Number of rooms Results for proposed Results for Armeni [11]

1 44 3 8

2 40 10 12

3 23 5 7

5 68 7 13

Total 175 25 40

random guess. This has been done in order to mitigate the effect that some random guess-
based clusterings can generate the value of RI larger than 0, which would lead to overopti-
mistic evaluation. In essence, the ARI metric compares how many clusterings have similar
cluster assignments to generate a quantitative measure of similarity. For more details on the
metric see Section 2.1.8. Using this metric required the segmentation result of [11], which
was not made available by the authors. Furthermore, as ARI operates on points, instead of
rooms, it is biased towards larger rooms. E.g., it inadequately measures the incorrect label-
ing of smaller rooms. Because of these reasons, a quantitative evaluation was not possible.
A qualitative evaluation was performed, instead, and the erroneously labeled rooms were
counted (shown as red ellipses in Fig. 3.6). The quantitative evaluation is given in Table 3.1.
Such metric also allowed for a meaningful evaluation and could adequately represent the
segmentation performance.

From Fig. 3.6 it can be observed that the approach in [11] does not perform well for the
rooms that are not aligned with the main walls of the building, e.g., the top part of Area 1,
the top part of Area 2 and the right part of Area 3. This is a critical conceptual limitation
of the algorithm in [11]. Furthermore, smaller rooms are often erroneously merged into the
neighboring bigger ones - see the top left and bottom parts in Area 1 and the middle part of
Area 2. In contrast, the proposed approach does not assume the Manhattan world structure,
therefore, it can label such rooms correctly. The proposed method still incorrectly labels sev-
eral rooms due to irregularities in the PF map, which might be due to imperfections when
estimating the interior free space. In particular, observe the corridors and stairs in Area
1. Furthermore, the proposed algorithm incorrectly segmented the smaller rooms in Area
2, which is due to the limitations of the proposed image segmentation algorithm. Finally, in
Area 3 the proposed algorithm merged several corridors due to large entrance areas connect-
ing them to the lobby area in the middle. This evaluation is somewhat conservative because
the dataset labeling in [11] is inconsistent across different buildings: in some buildings, the
corridor is labeled as several parts, while in others it is labeled as one.
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Office 1 Office 2 App. 1 App. 2 App. 3

Figure 3.7: Results for the dataset of [14] for different buildings. From left to right column: Office 1,
Office 2, Apartment 1, Apartment 2, Apartment 3. Top row: results of [14], middle row: PF map of the
proposed method, bottom row: segmentation result for the proposed method. Here, in the top and
bottom rows, different colors correspond to different room segments. In the middle row, low values
of the PF map are shown in dark blue, whereas the high values as shown in red. Red ellipses denote
erroneously segmented rooms. Reproduced from [5], ©2017 IEEE.

3.3.1.3 Results on the Dataset of Ikehata [14]

The results for room segmentation on the dataset of Ikehata et al. [14] are given in Fig. 3.7. It
can be observed that the proposed approach outperforms [14] in several places: the room in
the top-right part of Office 1 and the right part of Office 2. This is despite the fact that the
information about scanner poses was not used as compared to [14]. Furthermore, parts of
the outdoor space are also correctly segmented - see the bottom part of Apartment 1. The
inferior segmentation performance of [14] on the rooms in Office 1 and 2 is due to the inade-
quate merging heuristics of free space voxels, which results in the erroneous merging of two
rooms. Note that the proposed approach does not perform very well in the parts of the PC,
where the PC data is very sparse, such as the left part of Apartment 1, the top part of Office
2 and the bottom part of Apartment 2 in Fig. 3.7. In such cases, the algorithm of [14] heavily
relies on the scanner pose information to discard such voxels before segmentation, whereas
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Figure 3.8: Illustration of room segmentation result (right) for the proposed method on the dataset of
[4]. The corresponding PF maxima in 3D are shown on the left. It can be observed that the proposed
method can correctly segment all rooms.

the proposed method does not require such information. Furthermore, the approach of [14]
erroneously segmented two rooms, while the proposed approach incorrectly segmented five
rooms.

3.3.1.4 Results on the Dataset of Bobkov [4]

Additionally, the proposed method has been evaluated on the dataset of Bobkov et al. [4]. It
represents an office environment with vertical walls. A result of room segmentation for the
proposed method is given in Fig. 3.8. As the source code of other room segmentation meth-
ods was not made available by the authors, only evaluation of the proposed method has
been performed on this dataset. From the given results it is possible to see that the proposed
method can segment all rooms correctly.

3.3.2 Discussion

The derived PF map as a volumetric signature of inner free space serves as a powerful de-
scriptor for inner spaces. By performing the projection of the maximum PF value along each
vertical voxel stack onto the 2D map, it becomes possible to significantly simplify the cluster-
ing problem. It has been observed that for most environments the PF information is the most
important feature for clustering. Nonetheless, in certain cases, such as transitions between
corridors (e.g., in the middle part of Area 1 in Fig. 3.6), it is essential to include visibility
to detect changes of the spatial signature. Furthermore, in some situations, as in the case
of detecting a long rectangular-shaped corridor, it can be disadvantageous to use visibility
for clustering. This is because the corridor parts located far away from each other are not
mutually visible, but they still belong to the same corridor. In contrast, PF values become
more important in such situations. Furthermore, PF maps can provide a good illustration of
the room layout, which can be helpful for visual inspection by humans. In order not to limit
the generality of the algorithm, parameter tuning on a specific dataset has been intention-
ally omitted. Otherwise, practical usage of the algorithm would be limited as the algorithm
parameters would need to be adjusted depending on the dataset.
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It has also been observed that decreasing the voxel size leads to the effect that finer de-
tails on the objects located within rooms are captured. In particular, when using the voxel
size of 5 cm, the PF map would reflect finer details and larger variations due to the small ob-
jects, e.g., lamps. As such objects are not directly correlated to the object boundaries, using
smaller voxel size would only lead to deterioration of the room segmentation performance.
A possible way to mitigate this issue is to adapt the values of the volumetric graph cut ac-
cordingly. Another important disadvantage of using smaller voxel size is a significantly
increased computational complexity without any noticeable gains in the segmentation accu-
racy. The optimal values of the voxel size typically lie in the range 10−20 cm for most indoor
environments.

3.3.3 Limitations

The proposed room segmentation approach has average performance on very sparse PC
data, as in this case, it becomes very challenging to estimate interior free space of the build-
ing. This can be mitigated by extending the criteria of the interior space, e.g., including
priors regarding common orientations or dominant planes. Another significant limitation is
low segmentation performance on long narrow corridors, where the method for volumet-
ric signature estimation remains sensitive to clutter and objects. To mitigate this issue, an
additional step of furniture recognition can be employed. This would allow removing such
furniture from the interior space, thus improving the overall performance. Finally, the voxel
grid requires large storage in case of buildings with substantial inner volume (foyer or atrium
spanning large volume). To address this limitation, a voxel grid with adaptive voxel size can
be used. Thus, the voxel size can be adapted to the level of details in corresponding regions,
which would allow to segment rooms of significantly different sizes. By carefully adapting
the voxel size it becomes possible to preserve the same level of room segmentation perfor-
mance within different parts of the building while reducing computational complexity and
required storage.

3.4 Chapter Summary

In this chapter, a novel framework for room segmentation in 3D PCs of indoor environments
has been presented. It satisfies the requirements mentioned in Section 2.2.1 and addresses the
unsolved challenges described in Section 3.1, such as arbitrary room layout, no requirements
on the sensor pose information and buildings violating the Manhattan world assumption.
To this end, a number of tasks have been solved, such as the computation of the interior free
space of indoor environments without assuming a knowledge of scanner poses or the Man-
hattan world structure. By using a volumetric grid combined with the graph cut algorithm,
it is possible to accurately estimate inner free space, hence no information on sensor poses is
required. As the proposed voxel grid is formulated in 3D, buildings violating the Manhattan
world structure are also supported. Based on the inner free space, it has become possible to
derive a general volumetric signature using the anisotropic PF, which made the problem of
room segmentation much easier. This signature leverages the intuitive definition of the room
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as inner free space separated from the other rooms via a free space with a different volumetric
signature. Most importantly, the presented PF signature is robust to indoor clutter and occlu-
sion that is common in indoor environments. The clustering algorithm operating on such a
signature needs to be able to segment non-convex clusters, as the rooms can often represent
non-convex shapes, as commonly observed for corridors of indoor environments. A good
choice of such algorithm, supporting general room layouts and having a small set of hyper-
parameters, is HDBSCAN density-based clustering. Furthermore, by using a parameter-free
clustering method, it is not required to specify how many rooms within the building exist,
as the algorithm can define this automatically. The source code of the proposed method has
been made publicly available1 to facilitate further progress in the scientific community.

1 https://github.com/DBobkov/room_segmentation_icme2017

https://github.com/DBobkov/room_segmentation_icme2017




Chapter 4

Unsupervised 3D Object
Segmentation in Point Clouds

In this chapter, the problem of unsupervised 3D object segmentation in PCs is described. Fur-
thermore, an object segmentation method to address this problem is proposed. Finally, an
experimental evaluation using a number of indoor PC datasets is presented and discussed.

Parts of this chapter have been published in [4].

4.1 Problem Statement

Once the room segmentation has been done, the next step in semantic understanding is to
reason about the objects that are contained within the room (see Fig. 4.1). To extract semantic
information about the objects, it is first necessary to segment 3D indoor scenes into objects.
As discussed in Section 2.2.2, an object segmentation algorithm operating on large-scale data
needs to be unsupervised - that is the data does not have to be annotated - and achieve
low complexity without assuming abundant planar structures. This task remains challeng-

Segment 1 Segment 3Segment 2

Figure 4.1: Once the PC data of the building has been segmented into rooms (left), one can process ev-
ery room separately and perform the task of object segmentation (right), where the segments within
the room that correspond to different objects need to be determined. Here, different colors denote
different room and object segments in the left and right parts, respectively.

65
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ing despite many years of research. Object segmentation operating on the data obtained
using handheld depth sensors, e.g., Kinect RGBD sensor, is a well-studied research topic.
These depth sensors are low-cost and flexible, hence they have been frequently used for in-
door scanning [81], [82], [94]. Most existing datasets [58], [129] included only single-view
data and focused on small environments (part of a room) due to the high effort involved
in recording building-scale environments using handheld sensors. When capturing data in
large indoor environments, the operational costs and time constraints become more impor-
tant as the environment has to be free of moving objects during the time of scanning, e.g.,
people. Compared to Kinect-based solutions, laser scanners have a clear advantage in this
context, as they provide a larger scanning range (typically more than 30 meters) and a wider
viewing angle. With these systems, it is possible to scan an area of 10,000 m2 within a day,
which is practically impossible using any Kinect-like sensor due to limited range. A num-
ber of mapping platforms equipped with laser scanners have been developed using either
a wearable backpack [20] or a moving trolley [21]. The sensors progressively take measure-
ments and integrate them into a 3D model using a SLAM system, while the platform is
moved through the indoor space.

Due to the specific scanning procedure required for large indoor environments, e.g.,
floors and buildings, multi-view PC (MVPC) data, acquired using a moving platform, tends
to have certain drawbacks as compared to single-view data (see Section 2.2.2). State-of-the-
art algorithms tend to exhibit inferior segmentation performance on MVPC data, as shown
later in the experimental evaluation. To address these limitations, a new approach for object
segmentation is proposed. In particular, the contributions of the approach are the following:

• A method to robustly detect and remove high-noise regions is proposed. This method
helps to overcome limitations of state-of-the-art object segmentation algorithms that
perform poorly on MVPC datasets due to the high noise and occlusion properties of
such data. By removing such regions, the existing graph segmentation algorithms can
be applied without major modifications, while showing superior segmentation perfor-
mance.

• A new MVPC evaluation framework is presented. Within this framework, a new
MVPC dataset was created that captures six indoor scenes (rooms) with multiple ob-
jects. Furthermore, it was augmented with ground truth annotation for objects and
their parts to reflect multiple object scales. Finally, a new evaluation metric for under-
and oversegmentation error is presented that considers objects and their relation to the
object parts for the most accurate evaluation.

4.2 Method

To illustrate the improvements achievable with the proposed method, a typical unsupervised
3D object segmentation pipeline is considered as baseline [17]. Preprocessing on the input PC
data (step 1 in Fig. 4.2) is performed to remove outliers and other artifacts (step 2 in Fig. 4.2).
This is done in combination with normal and curvature calculations. For more details on
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1. Input PC 3. Non-convex point removal

5. Graph cut segmentation6. Recovery of removed points

2. Noisy point removal

4. Supervoxel extraction

Figure 4.2: Processing steps of the analyzed segmentation pipeline with the result of the correspond-
ing step shown above it. Input PC (1) is first preprocessed. This is followed by a noisy point removal
step (2). After that, the non-convex points satisfying the proposed concavity criteria are discarded (3).
In the following, supervoxels are extracted from the remaining points (4). The supervoxels and the
edges connecting them are used in the graph cut segmentation (5). Finally, the removed points are
recovered (6). Here, in Subfigures (4-6) different colors correspond to different segments. In Subfig-
ures 2 and 3, curvature values of the corresponding points are color coded as follows: low values are
shown in green and high values in red. Reproduced from [4] with permission, © 2017 INSTICC.

preprocessing, see Section 2.1.5. Afterwards, the supervoxel (surface-patch) adjacency graph
is computed based on the PC data, e.g., using the supervoxel clustering approach of [47] (see
Section 2.1.6.6). The supervoxel graph is used to reduce the complexity of the input data (step
4 in Fig. 4.2). After this step, segmentation is performed on the given graph using a state-of-
the-art graph partitioning method, e.g., the graph cut algorithm (step 5 in Fig. 4.2). For more
details on the graph cut algorithm, see Section 2.1.6.3. It is proposed to augment the seg-
mentation pipeline by the steps of curved non-convex point removal (step 3 in Fig. 4.2) and
the recovery of the removed points (step 6 in Fig. 4.2). The details of each of these steps are
presented, and the limitations of the state-of-the-art approaches are further discussed. The
PCs considered in this work contain viewpoint information, that is the direction from which
the range sensor has detected the corresponding point. For preprocessing (PC smoothing,
curvature and normal estimation) the PCA-based method for normal estimation of Rusu et
al. [130] was used, see Section 2.1.5 for more details.

4.2.1 Classification into Convex and Non-convex Points

Limitation of supervoxels and normals. In order to reduce the computational complexity,
the points of the PC are grouped into segments using the supervoxel clustering algorithm of
Papon et al. [47]. The algorithm partitions 3D PC data into surface patches called supervoxels
(part 4 in Fig. 4.2). This algorithm can generate the clusters using the large-scale PC data, thus
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Figure 4.3: To illustrate the influence of noisy regions on the surface graph, a table region in the office
in dataset [4] is shown. From left to right: RGB image, PC, surface graph. In the PC, points are color
coded according to the corresponding curvature value: low values are shown in green and high value
in red. Erroneous connections in the surface graph that result from noise in a planar region are encir-
cled in red. After the non-convex region removal step, these noisy points in the planar region along
the erroneous connections are removed. Reproduced from [4] with permission, © 2017 INSTICC.

n n n

N+ = 45 N+ = 4 N+ = 16

N− = 9 N− = 24 N− = 17

Figure 4.4: Illustration of high-curvature regions with normal n and the neighboring points. The
points located in the positive half-space (same as the normal vector) are shown in red, whereas the
points located in the negative half-space are shown in blue. Left: concave region. Middle: convex
region. Right: ambiguous region. The numbers N+ and N− indicate the number of points in positive
and negative half-space, respectively. By using this number, convex, concave and ambiguous regions
can be easily distinguished. Adapted from [4], ©2017 INSTICC.

reducing the volume and complexity of the data, while keeping the most important informa-
tion intact. Depending on the size of the desired cluster, 5–100 points can be replaced with
one such supervoxel. The supervoxels are designed not to span boundaries across objects. In
practice, this is not the case for noisy, highly-curved, concave regions, which often coincide
with object boundaries. This effect is illustrated in Fig. 4.3. Note the false connections (cir-
cled in red) in the concave high-curvature region within the table side in the middle of the
scene. In case all high-curvature regions are simply removed, many important intra-object
connections would be discarded as well. Hence, the segmentation performance would be
severely deteriorated. This effect is not specific to supervoxels only and also occurs in other
patch-based surface representations, as surface estimation is negatively influenced by noise.
For more details on the clustering algorithm, see Section 2.1.6.6.

Noise-resilient convexity/concavity criterion. In order to cope with the aforementioned
inferior performance in the presence of noise, a novel convexity/concavity criterion is de-
rived. It employs the PC statistics and is robust to noise in the normal estimation. The con-
vexity criterion is defined for a given point p and its radius neighborhood N(p), as explained
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in Section 2.1.5. In particular, for the given point p = (px, py, pz)
T and the corresponding

normal vector n = (nx, ny, nz)
T (see Fig. 4.4), it is possible to define a plane having the same

normal vector as n and containing point p. The plane equation is given in Hessian normal
form [131] as:

nx · x+ ny · y + nz · z + d = 0, (4.1)

where d is the distance to the origin and can be computed from Equation (4.1) by plugging
in px, py, pz instead of x, y, z into this equation. This tangent plane divides the 3D space
into two half-spaces. To determine in which half-space a particular point is located, Equa-
tion (4.1) is used. In particular, if the value of d computed from this equation is positive it
indicates that this point is in the positive half-space, or negative otherwise. By analyzing
convex and concave neighborhood regions, the points within R are typically located within
the same half-space as the normal direction n for the concave regions, and for convex ones in
the other half-space. The number of points within each half-space is compared to each other
in order to determine whether the given point neighborhood N is non-convex. If it is indeed
non-convex, it will be removed according to the following equation:

m(p,N) =

 true , if N+ ≥ αt ·N−

false , if N+ < αt ·N−,
(4.2)

whereN+ is the number of points in the neighborhood N lying within the same half-space as
the normal vector of the local surface n, and N− is the number of neighboring points lying
within the opposite half-space and αt is the threshold to detect noisy regions. It lies in the
range between 0 and 1. The choice of the value of αt is illustrated in Fig. 4.4. Concave and
ambiguous regions need to be removed for the best segmentation performance. In contrast,
convex regions have to be preserved as they belong to the object. For αt = 0.1, the convex
region in Fig. 4.4 is classified as non-convex and removed. Its removal leads to oversegmen-
tation of the object. For αt = 1.0, the ambiguous region (that mostly consists of measurement
noise) will be classified as convex and thus is preserved. Experiments on laser scanner data
indicate that with αt = 0.2 such regions are correctly classified for the indoor datasets (see
further results in Section 4.3.4). The point neighborhoods satisfying the non-convex condi-
tion in Equation (4.2) and with a curvature value θ > θt will be temporarily removed for
the following processing steps (see Fig. 4.2). From this moment on, concave and ambiguous
regions are denoted as non-convex for the sake of simplicity.

4.2.2 Supervoxel Clustering and Graph Partitioning

After noisy, high-curvature, non-convex regions have been removed, edge weights between
neighboring supervoxels can be adequately computed. To reduce the complexity and vol-
ume of the PC data, the supervoxel clustering algorithm of Papon et al. [47] is used. In
particular, supervoxel pi = (xi, ni,Ei)

T is considered, with the centroid xi, the normal vec-
tor ni and the edges to adjacent supervoxels e ∈ Ei. It is not desired to strictly enforce the
condition of concave object boundaries, as no boundaries might be present in such areas.



70 Chapter 4. Unsupervised 3D Object Segmentation in Point Clouds

Instead, concavity has to serve as just one indicator for the object boundary combined with
the Euclidean distance and surface normals, which still provide evidence for object bound-
aries in case of non-concave regions. Therefore, the graph edge weight between neighboring
supervoxels p1 and p2 is computed as follows:

we(p1,p2) =

 a ·D(p1,p2)
2 , if convex edge,

D(p1,p2) , if concave edge.
(4.3)

D(p1,p2) is the definition of the edge weight described in [47]. This weight equation, how-
ever, was implemented differently in the Point Cloud Library:

D(p1,p2) =
‖x1 − x2‖2
Rseed

· ws + (1− | cos(n1,n2)|) · wn, (4.4)

where ‖x1 − x2‖2 is the Euclidean distance between two nodes (centroids of supervoxel
patches), Rseed is the seed radius, n1 and n2 are normals of the corresponding supervoxels.
cos(n1,n2) describes the angle between the corresponding normals. ws and wn are spatial
and normal weights, respectively. Note that the color difference term is omitted, compared
to the original formulation, as it does not necessarily improve the segmentation results. This
effect was also observed in [82]. This is due to the registration inaccuracies between RGB
images and PC data. The parameter a denotes the weight of concavity criterion when objects
are partitioned. A lower value for a increases the weight of the concavity criterion in the
segmentation process. Based on the experimental results it has been observed that in order
to segment various objects a trade-off needs to be achieved when selecting a. Hence, the
value of a is set to 0.25 for all experiments. It can be seen from Equation (4.3) that for similar
weights, concave edges are preferred as object boundaries to convex ones. Nonetheless, in
case a convex edge connects two remotely located regions with drastically different surface
properties, the spatial and normal distances can serve as evidence for object partitioning.
Similarly to [17], Rseed/Rvoxel = 4 is chosen for all datasets, where Rvoxel is the voxel radius.
In the experiments, the parameters are set as follows: ws = 0.2 and wn = 0.5 for all datasets.
This choice of parameter values is due to the fact that normal information is more character-
istic when describing the surface geometry as compared to the Euclidean distance. The latter
is subject to sensor noise that affects point coordinates.

When partitioning the extracted graph for scenes with complex geometry, it has been ob-
served that simple region growing algorithms do not perform well. Therefore, an adaptive
statistics and graph-based segmentation algorithm Felzenszwalb-Huttenlocher [38] is em-
ployed (step 5 in Fig. 4.2). This method has the advantage that it does not require to set the
number of clusters in advance, i.e., the algorithm derives this value from the data directly.
Furthermore, this algorithm has low computational complexity. For more details, see Sec-
tion 2.1.6.3. In contrast, other graph partitioning algorithms, such as spectral clustering and
normalized min-cut [127] do not achieve such a good trade-off between accuracy and speed.
Furthermore, the latter algorithms require to manually set the number of clusters, which is
often a non-trivial task for complex indoor environments with multiple objects.
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4.2.3 Recovery of Previously Removed Noisy Non-convex Points

After the noisy non-convex points have been removed in step 3, they need to be recovered
in a later step. These points need to be assigned to correct segments based on the segmented
preserved points. While assigning discarded points, it is important to determine similar
points in the near vicinity that have already been assigned to a label. Especially, the local
surface geometry is informative for this purpose. Hence, the graph edge weight defined in
Equation (4.4) is used as a similarity metric. It has been observed that simple region growing
algorithms based on seeds (i.e., known segments) are sensitive to outliers, which often occur
at such highly-curved regions. To overcome this problem, the number of propagated seg-
ments is constrained to a certain value per iteration. Furthermore, the algorithm starts with
processing the connections with lower weights as such weights exhibit a higher similarity.
After this step, the distance metric is computed for each point in the radius Rvoxel. During
one iteration, the number of currently recovered points is limited to a percentage Pr = 80% of
presently unassigned points that have assigned neighbors. It has been experimentally found
that S = 20 such iterations are sufficient to recover non-convex points (observe an example of
the restored segments in Fig. 4.2). The pseudocode for the algorithm is given in Algorithm 1.
In line 6 of Algorithm 1, AssignedPointsWithinRadius(P,R) returns assigned neighboring
points around P within the search radius R. In line 10, AssignmentOf(P ) returns the point
assignment to one of the clusters. be denotes a rounding operation of the floating number
to the closest integer. Note that W denotes a triplet consisting of a point, a corresponding
distance, and a weight.

4.3 Experimental Evaluation

In this section, a laser scanner PC dataset, its semantic annotation, and a new multi-scale
evaluation metric are presented. This is followed by the quantitative evaluation of this
dataset. Furthermore, experimental results for a number of Kinect datasets are also provided.
The results are compared to state-of-the-art geometry-based unsupervised segmentation al-
gorithms of Locally Convex Connected Patches (LCCP) [17] and Van Kaick et al. [85]. For
this, the publicly accessible algorithm implementations provided by the authors are used.
For some of Kinect datasets, the results of other algorithms are also provided for compari-
son, when available.

4.3.1 Laser Scanner Dataset and Evaluation Metric

For rigorous evaluation of segmentation approaches and due to the lack of publicly avail-
able MVPC datasets, a novel MVPC dataset is presented. For an illustration of the building
within the dataset, see Fig. 4.5. The PC data was acquired using a mobile mapping platform1

with three Hokuyo UTM-30LX laser scanners. While the analysis can be done on the PC
data acquired from any range sensor, laser scanners are advantageous in this regard as they
1 NavVis M3 mapping trolley https://www.navvis.com/m3. Accessed: 2018-12-20.

https://www.navvis.com/m3
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Algorithm 1: Assign Removed Non-convex Points
Input : Assigned points Q, unassigned points U
Output: Assigned points Q

1 Q← assigned points
2 U← unassigned points
3 S← 20
4 for s = 0 to S − 1 do
5 W← {} /*Init to empty set*/
6 for Pn ∈ U do

/*for each non-assigned point*/
7 M← AssignedPointsWithinRadius(Pn, RV oxel)

8 if M 6= ∅ then
/*if there exist assigned points within the given radius to the point*/

9 jmin ← arg min∀Mj∈M D(Pn,Mj) /* Find closest point */
10 Dmin ← D(Pn,Mjmin) /*Compute edge weight according to

Equation (4.4) */
11 Lmin ← AssignmentOf(Mjmin) /*Obtain label*/
12 W ←W ∪ {Mjmin , Dmin, Lmin} /*Append this point to the considered

set*/
13 if s 6= S − 1 then
14 Sort W with ascending order of D
15 NPreserve ← bLength(W ) · Pre
16 for i = 0 to NPreserve − 1 do
17 Q← Q ∪Wi /*Mark this point as labeled*/

end
end

end
end

end
18 Return Q

offer a fast acquisition procedure in large indoor environments. As the mapping platform
was moved through the indoor environment, its laser scanners performed range measure-
ments in one horizontal and two intersecting vertical planes, thus incrementally building a
3D map. The average scanning time per room constituted several minutes. The captured
scenes represent typical office environments with various objects.

4.3.1.1 Dataset Annotation

For evaluation purposes, six indoor scenes were manually labeled. Before object labeling,
RANSAC-based plane segmentation was employed to remove architectural parts of build-
ings, such as walls and floor. Furthermore, due to the rather coarse resolution of PCs, small
objects that are not distinguishable from noise were not labeled, e.g., the pen lying on the
table. When labeling, some may regard a chair as a whole object, while others may regard it
as a collection of parts, such as a chair back, chair leg, etc. It is unclear which of these label-
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Figure 4.5: Illustration of the PC showing one floor of an office environment of the captured laser
scanner dataset (see Section 4.3.1.1). Zoomed in area of a specific room is shown in the bottom. It
can be observed that there is a significant amount of noise and occlusions resulting from the rapid
mapping procedure and reflections from glass.

ings is correct. To address this ambiguity, labeling was considered on several object levels,
e.g., fine and coarse ground truth (GT). Fine GT includes object parts, while coarse GT corre-
sponds to objects themselves. The object categories within the considered scenes correspond
to chair, table, television, wardrobe, whiteboard and similar objects that are commonly observed
in office environments. See Fig. 2.18 for an illustration of this annotation result. The total
number of objects is 156, which contain 452 semantic object parts (e.g., chair contains such
parts: chair back, leg, arm, seat). For illustration of the object PC data, see Fig. 4.6.

4.3.1.2 Multi-scale Evaluation Metric

For the evaluation of the segmentation results, Richtsfeld et al. [53] proposed undersegmen-
tation (US) MEUS and oversegmentation (OS) MEOS errors (described in Section 2.1.8.1).
The main limitation of this metric is that it considers only a single scale of the segment.
This would result in an incorrect evaluation of the given labeling. To address this limita-
tion, a multi-scale extension to the metric of Richtsfeld et al. is proposed. The new metric
evaluates the segmentation result not only concerning an object but also with respect to its
parts so that the most appropriate scale of GT is taken into account. In particular, the pro-
posed multi-scale GT evaluation approach works as follows. First, each meaningful object
part is labeled as a separate semantic object within fine GT. In order to generate coarse GT,
object parts that are semantically related are merged into one segment. For this, a specific
approach to establishing correspondences between points and appropriate GT segments is
given in Algorithm 2. As input to the algorithm, several mapping data structures are pro-
vided: IL describes a mapping from points to fine GT segments. FC specifies a mapping
from fine to coarse GT segments. FP describes correspondences from fine GT segments to
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Figure 4.6: Illustration of object appearance for different categories in the annotation of the captured
laser scanner dataset. The PC data exhibits significant level of occlusion and undersampling due to
the rapid scanning procedure. Chairs have large intra-class geometry variance.

predicted segments, where a predicted segment assignment corresponding to a fine segment
is the majority of predicted assignments of this part. The important task is to establish corre-
spondences between points and appropriate fine GT (possibly merged) segments, which are
returned in the form of the map IM after the algorithm’s execution.

A simple example of input data for Algorithm 2 is given in Fig. 4.7. Here, 10 points need
to be evaluated according to the given predicted segments, coarse and fine GT data. FM
and IM are empty maps before the algorithm’s execution. After the algorithm has finished,
the FC and FP have not changed (see Fig. 4.7). Furthermore, the returned structure IM
describes a mapping from point indices to merged fine segments.

Now, when proper GT data has been generated, the metric of Richtsfeld et al. [53] can be
directly extended to multi-scale objects. The multi-scale OS and US errors can be calculated
as follows:

MEOS = 1−
∑n

i=1 PTi∑n
i=1Mi

, (4.5)

MEUS =

∑n
i=1(Pi − PTi)∑n

i=1Mi
, (4.6)

where Mi is the number of points with the ith merged fine segment. Pi is the number of
points with the predicted segment that after the mapping from merged fine segment to pre-
dicted segment is corresponding to the ith merged fine segment. Furthermore, PTi is the
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Algorithm 2: Generate GT Segments of the Correct Scale
Input : Map IL < PointIndex, F ineLabel >
Map FC < FineLabel, CoarseLabel >
Map FP < FineLabel, PredLabel >
Output: GT segments IM < PointIndex,MergedF ineSegment >

1 keyArray ← keys(FP )
2 K ← keyArray.size
3 Map FM < FineL,MergedF ineL >
4 Map IM < PointId,MergedF ineL >
5 flagArray ← new_array(K)
6 flagArray ← 0
7 for k = 0 to K − 1 do
8 if flagArray[k] == 0 then
9 for j = k + 1 to K − 1 do

10 Flag1← (FP [keyArray(k)] == FP [keyArray(j)])
11 Flag2← (FC[keyArray(k)] == FC[keyArray(j)])
12 RFlag ← Flag1 ∧ Flag2
13 if RFlag then
14 flagArray[j]← −1
15 FM [keyArray(j)]← keyArray(k)

16 for p ∈ keys(IL) do
17 if IL[p] ∈ keys(FM) then
18 IM [p]← FM [IL[p]]

else
19 IM [p]← IL[p]

20 Return: IM

number of correctly assigned point segments within the ith merged fine segment. Finally, n
is the number of distinct merged fine segments.

For the example given in Fig. 4.7, the values of OS and US errors can be computed as
follows:

MEOS = 1− 5 + 1 + 2 + 2

5 + 1 + 2 + 2
= 0, (4.7)

MEUS =
(6− 5) + (6− 1) + (2− 2) + (2− 2)

5 + 1 + 2 + 2
= 0.6. (4.8)

4.3.2 Results on the Laser Scanner SLAM Dataset

The quantitative results are presented for each scene in Table 4.1. Here, the results for the two
aforementioned algorithms (LCCP and Van Kaick), as well as a combination of the proposed
criterion (non-convex region removal and recovery) with the LCCP segmentation algorithm
(“Proposed+LCCP”) are given. For all laser scanner dataset scenes, the same parameters for
the proposed method were used, in particular Rseed = 12cm, C = 3, θt = 0.03, k = 3, thus
no parameter tuning for a particular scene was performed. For LCCP, the same Rvoxel and
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Rseed were used, while other parameters were described in [17]. In particular, the concavity
tolerance angle was set to 10◦, filter number nfilter was set to 3, and the threshold angle was
set to 60◦.

The illustrations of the segmentation results on scenes 1 and 3 along GT data for the ana-
lyzed algorithms are provided in Fig. 4.8. Further segmentation results on scenes 2 and 4 are
given in Fig. 4.9. Finally, segmentation results on scenes 5 and 6 are given in Fig. 4.10.

It can be seen for scene 3 (the right column of Fig. 4.8) that LCCP oversegments the objects
behind the cupboard in the upper part of the scene (zoomed), whereas the proposed method
correctly segments such parts, and thus has a lower OS error. Furthermore, for scene 1 (left
column in Fig. 4.8), the LCCP and Van Kaick et al. methods oversegment the tables in the
right part and the left part fo the scene. In contrast, the proposed method segments the
tables correctly.

Observe for scene 4 (the right column of Fig. 4.9) the case when LCCP segmentation per-
formance deteriorates due to noisy normals. The high US error of LCCP stems from the
fact that the algorithm has merged the chair in the top part of the scene with the table. The
method of Van Kaick et al. [85] also shows limited performance on partitioning the table from
the adjacent chairs. In contrast, the proposed method has produced better results by sepa-
rating the chairs from the table. The limited LCCP performance on this scene is mostly due
to noisy normals and low-density regions in the neighborhood of chairs. The method of Van
Kaick et al. is limited on such scenes as it cannot handle sparsity in the PC data. On the other
hand, the proposed method is more robust with respect to such regions. Furthermore, LCCP,
as well as the proposed method, have oversegmented the left part of the scene containing
kitchen cupboards and objects on the table. Finally, in the right part of the scene, both al-
gorithms are unable to correctly segment the corner table, thus increasing OS error. It can
be seen for scene 2 (the left column of Fig. 4.9) that due to the sparse PC data in the table
region, none of the algorithms can correctly segment the table into a single region. More-
over, the proposed approach correctly segments the chairs, whereas LCCP and Van Kaick et
al. oversegment them into non-meaningful parts.

When analyzing the performance on scene 5 (the left column of Fig. 4.10), it is possible to
see that all of the algorithms oversegment the table and chair regions due to sparsity in the
bottom right. For scene 6 (the right column of Fig. 4.10), the proposed method can correctly
segment the table and chair area, as compared to LCCP and Van Kaick et al. methods.

From the quantitative results in Table 4.1, it is possible to observe that the proposed al-
gorithm significantly outperforms LCCP as well as the approach of Van Kaick et al. [85] for
both multi-scale US and OS errors. In particular, the method of Van Kaick et al. [85] shows
particularly high US error on scene 6, which is due to oversegmentation of the chair re-
gion. Also note that the proposed convex/concave criterion combined with LCCP algorithm
(“Proposed+LCCP”) gives a clear improvement in segmentation accuracy, as compared to
LCCP only. This justifies that the proposed noisy point removal criterion makes a significant
contribution to the improved segmentation accuracy. By including a robust weight metric
and more sophisticated graph segmentation algorithm, it is further possible to improve the
performance by ca. 7% and 14% of OS and US errors, respectively (refer to mean OS and
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Table 4.1: Performance comparison of the segmentation methods on the laser scanner dataset. The
multi-scale over- and undersegmentation errors are used as error metrics. The top value is MEOS

and the bottom value is MEUS . Bold entries indicate best performance per scene. It can be observed
that the proposed method outperforms the existing methods on all scenes. Moreover, a combination
of the proposed concavity criterion with LCCP leads to an improvement as compared to LCCP only.
This confirms that the proposed convexity criterion can be combined with existing methods in a mod-
ular fashion leading to superior segmentation performance. Reproduced with permission from [4],
©2017 INSTICC.

Scene Proposed LCCP [17] Proposed+LCCP Van Kaick [85]

1
15.3% 35.8% 23.8% 37.1%

5.6% 12.2% 6.5% 16.3%

2
6.2% 30.4% 20.2% 25.6%

0.6% 9.0% 6.1% 23.6%

3
10.9% 20.5% 17.3% 17.7%

8.9% 9.7% 6.1% 78.7%

4
8.8% 18.8% 11.0% 32.9%

17.5% 143.7% 88.3% 647.8%

5
6.6% 29.6% 22.3% 27.8%

8.7% 23.2% 4.3% 80.8%

6
15.1% 21.2% 17.7% 37.6%

12.5% 36.9% 28.8% 104.4%

Mean
11.4% 26.0% 18.8% 29.8%

8.9% 39.1% 23.3% 158.6%

US errors for LCCP and “Proposed+LCCP” columns in Table 4.1). The average processing
time of the proposed approach is less than 10 s per scene containing ca. 100,000 points on a
modern desktop computer with Quadcore i7 with 16 GB RAM.

4.3.3 Results on Kinect Datasets

For benchmarking purposes, the evaluation is also performed on a number of Kinect datasets.
As no multi-scale GT data is available, single-scale GT is considered. As an evaluation met-
ric, US and OS errors are used. Furthermore, the weighted overlap metric is also employed.
For more details on these evaluation metrics, see Section 2.1.8.1.

Object Segmentation Dataset. It is a single-view small-scale depth image-based object
dataset, also denoted as Object Segmentation Dataset (OSD) (adopted from [53]). It was cap-
tured with a Kinect sensor in a table-top setting. The OSD dataset contains 111 scenes. For
each of them, the depth image, the RGB image, and the GT annotation are provided. The seg-
mentation results are shown in Fig. 4.11. The quantitative results for the proposed method
along LCCP and Richtsfeld et al. [53] method are given in Table 4.2. It can be observed
that the method of Richtsfeld et al. achieves the best OS error at the cost of undersegment-
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Table 4.2: Performance comparison of different segmentation methods on the OSD dataset with re-
spect to under- and oversegmentation errors (smaller is better). It can be observed that the method of
Richtsfeld et al. achieves the best OS error at the cost of undersegmenting the scenes, which leads to
higher US error. The method of LCCP achieves the average performance of all three methods. Finally,
the proposed method strikes a trade-off in terms of OS and US errors. Reproduced with permission
from [4], ©2017 INSTICC.

Method Learned features FOS FUS

Proposed No learning 6.8% 2.6%

LCCP [17] No learning 7.4% 4.7%

Richtsfeld et al. [53] RGBD and geometry 4.5% 7.9%

Table 4.3: Performance of segmentation methods on the NYU dataset using weighted overlap (WO)
(larger value is better). The proposed method achieves reasonable performance in spite of being
learning-free, as compared to the other learning-based methods. Reproduced with permission from
[4], ©2017 INSTICC.

Method Learned features WO

Proposed No learning 58.0%

LCCP [17] No learning 57.6%

Silberman et al. [58] Depth 53.7%

Gupta et al. [93] RGBD 62.0%

ing the scenes, which leads to higher US error. The method of LCCP achieves the average
performance of all three methods. From Fig. 4.11 it is possible to observe that the proposed
method performs erroneous segmentation for the top-right part of the scene in the book area.
Furthermore, the cup is oversegmented into two areas due to concavity. Finally, the fully oc-
cluded book is oversegmented into two parts, even though it represents one object. It is
important to note that this is a particularly challenging task for any method using geometry
only.

NYU Dataset. For further benchmarking, the algorithms were also evaluated on a much
larger Kinect dataset, as compared to OSD. For this, the single-view NYUv2 Kinect dataset
[58] was used. This dataset contains 1449 scenes with realistic cluttered conditions, captured
from a single viewpoint. Quantitative evaluation on 654 test scenes is provided in Table 4.3.
Parameter values are set as follows: θt = 0.02, C = 3, k = 5, Rseed = 16cm for all scenes. For
comparison, the performance of LCCP and training-based methods of [58] and [93] are also
provided. The proposed method achieves reasonable performance despite being learning-
free, as compared to [93].

Washington Dataset. For the sake of extensive evaluation, the Kinect dataset covering
larger indoor scenes was also included. For this, the non-annotated Washington dataset of
Lai et al. [59] was used. Due to the absence of annotation, only qualitative evaluation was
done. The dataset has been captured in indoor environments spanning multiple rooms and
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contains 300 objects organized into 51 categories. The illustration of segmentation results is
given in Fig. 4.12. The proposed method achieves good segmentation performance by ac-
curately segmenting objects on the table. The major segmentation mistakes correspond to
the floor area of scene 14 and the wall area of scene 6. This is due to the curved surface
properties, which serve as an indication of the object boundary.

SUN Dataset. Even though the SUN dataset of [129] has been commonly used in a num-
ber of related works, multiple issues with the PC data quality have been observed. In par-
ticular, there are multiple registration inaccuracies across different scans. These inaccuracies
accumulate and result in the total PC data that is very noisy. An illustration of these effects
is given in Fig. 4.13. Due to these reasons, it has been decided not to perform evaluation on
this dataset.

4.3.4 Parameter Sensitivity

It is important to study the influence of the parameter values on the resulting segmentation
performance, the so-called parameter sensitivity. In particular, an illustration of the influence
of the curvature threshold θt on the number of inter-object vs. intra-object edges that are re-
moved for the laser scanner dataset is shown in Fig. 4.14. By choosing its value in the range
0.02 to 0.03 a significant number of inter-object connections are removed (68.31%), whereas
most of the intra-object connections are preserved (77.21%). This allows to significantly sim-
plify the segmentation task while achieving even better performance. Please note that αt

value has also been varied. From Fig. 4.14, the value of αt = 0.2 results in the best perfor-
mance for the laser scanner dataset. Due to a marginal improvement, parameter k is set to
3 for all scenes in the laser scanner dataset. The parameter k offers the trade-off between
US and OS errors, in particular, higher k would result in lower OS and higher US errors,
respectively. In case the low US error is more important, the parameter k has to be reduced.
The parameter for graph partitioning C has to be chosen jointly with seed resolution Rseed,
depending on the desired size of the smallest segment. Finally, Rseed should be greater than
the average point cloud resolution, as indicated in [47].

4.3.5 Limitations

Removing high-curvature, non-convex regions can, sometimes, result in the situation that
the regions become too sparse. Therefore, no connections within the object remain. This,
apparently, will lead to erroneous oversegmentation of the object. To mitigate this issue, it is
possible to keep such low-density regions intact by using machine learning techniques for a
data-driven criterion. Furthermore, it is essential to acknowledge the simplicity of the used
criterion of a concave edge, which can fail in some cases (e.g., TV set in scene 1 in Fig. 4.8).
Moreover, it is clear that in case RGB information is accurately registered to the PC data, RGB
modality can be crucial to improve segmentation performance. Finally, the captured dataset
can be compared to the recently presented large datasets containing multi-scale annotation,
e.g., PartNet [132].
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4.4 Chapter Summary

A new approach for object segmentation in multi-view indoor PCs has been presented. To
address the particular properties of the MVPC datasets, such as non-uniform point density
and high levels of noise, a novel noise-resilient criterion for the detection of noisy non-convex
regions has been proposed. This step makes the graph partitioning (and thus segmenta-
tion) problem simpler and reduces the number of erroneous connections that appear due
to noise. By combining the proposed point removal step with state-of-the-art segmentation
algorithms, their segmentation performance can be significantly improved. Despite the fact
that the algorithm has been designed for MVPC data, it also achieves state-of-the-art perfor-
mance on single-view PC data. For realistic evaluation, a new laser scanner dataset along
with multi-scale object annotation was presented. The MVPC dataset helped to experimen-
tally illustrate that there is a discrepancy between single-view and multi-view PCs in terms
of noise level, especially at high-curvature regions. The proposed laser scanner dataset spans
6 rooms within an office environment and contains 452 object parts. Even though there are
a number of larger public indoor PC datasets available, this dataset can still be valuable to
the scientific community as the moving laser scanner-based approaches are particularly suit-
able for the rapid mapping and 3D reconstruction of large indoor environments. The source
code of the proposed evaluation metric and the labeled dataset have been made publicly
available2.

2 https://github.com/DBobkov/segmentation

https://github.com/DBobkov/segmentation
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Figure 4.7: Illustration of values within input and output variables for the proposed algorithm to find
GT segments of the correct scale. Top: input data. Bottom: output data after the algorithm’s execu-
tion. The merged fine segments of IM and the corresponding point groups are highlighted in color.
It can be observed that the proposed evaluation metric is able to correctly compute a suitable object
scale for accurate evaluation.
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Scene 1 Scene 3

Figure 4.8: Segmentation results for the laser scanner dataset scenes 1 and 3 (left and right column).
Here, row A shows RGB information that is given for illustration, but not used by any of the algo-
rithms. B is the fine GT. C illustrates coarse GT. D represents LCCP segmentation results. E shows
segmentation results of the approach of Van Kaick et al. [85]. F corresponds to segmentation results
of the proposed method. Observe that the proposed method correctly segments the chairs and table
areas in scene 1. In contrast, Vak Kaick and LCCP oversegment the table area and the chair backs.
Reproduced with permission from [4], ©2017 INSTICC.
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Scene 2 Scene 4

Figure 4.9: Segmentation results for the laser scanner dataset scenes 2 and 4 (left and right column).
Here, row A shows RGB information that is given for illustration, but not used by any of the algo-
rithms. B is the fine GT. C illustrates coarse GT. D represents LCCP segmentation results. E shows
segmentation results of the approach of Van Kaick et al. [85]. F corresponds to segmentation results
of the proposed method. Observe that the proposed method correctly segments the chairs placed
around the table in scene 2. Due to the sparse PC data in the table region of scene 2, none of the
algorithms can correctly segment the table into a single region. Moreover, the segmentation perfor-
mance of the proposed method on the chairs in scene 4 is superior as compared to the other methods,
where Vak Kaick and LCCP methods oversegment the table area and the chair backs. Reproduced
with permission from [4], ©2017 INSTICC.
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Scene 5 Scene 6

A

B

C

D

E

F

Figure 4.10: Segmentation results for the laser scanner dataset scenes 5 and 6 (left and right column).
Here, row A shows RGB information that is given for illustration, but not used by any of the algo-
rithms. B is the fine GT. C illustrates coarse GT. D represents LCCP segmentation results. E shows
segmentation results of the approach of Van Kaick et al. [85]. F corresponds to segmentation results
of the proposed method. It can be seen that all of the algorithms oversegment the table and chair
regions in in the bottom right of scene 5 due to PC data sparsity. For scene 6, the proposed method
can correctly segment the table and chair area, as compared to LCCP and Van Kaick et al. methods.
Reproduced with permission from [4], ©2017 INSTICC.



4.4. Chapter Summary 85

Figure 4.11: Exemplary segmentation results for the OSD dataset [53]. Top to bottom row: scene 42,
scene 51 and scene 63. Within each row from left to right column: GT labeling and segmentation
results of the proposed algorithm. Different colors of the objects correspond to different labels. The
proposed method performs erroneous segmentation for the top-right part of the scene in the book
area. Furthermore, the cup is oversegmented into two areas due to concavity. Finally, the book that
is fully occluded in the middle part is segmented into two parts, despite that it represents one object.
This is a particularly challenging segmentation task for any method using geometry only.
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Figure 4.12: Exemplary object segmentation results for the dataset of Lai et al. [59]. Left column:
PC data. Right column: segmentation result of the proposed method. From top to bottom rows:
scene 6, 8 and 14. In the right column, different colors correspond to the different object segments.
The proposed method achieves good segmentation performance by accurately segmenting objects on
the table. The major segmentation mistakes correspond to the floor area of scene 14 and the wall
area of scene 6. This is due to the curved surface properties, which serve as indication of the object
boundary.
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Figure 4.13: Illustration of the registration inaccuracies for the indoor SUN dataset of Song et al. [129].
Observe that there are several hypotheses for points describing the chair arm, which result in unclear
object boundaries and high point noise (encircled areas).
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Figure 4.14: Relative number of removed supervoxel graph edges for intra- and inter-object connec-
tions vs. curvature threshold θt. Inter-object connections are shown in solid lines, whereas intra-
object ones are shown in dashed lines. By choosing the threshold value in the range 0.02 to 0.03 a
significant number of inter-object connections are removed (68.31%), whereas most of the intra-object
connections are preserved (77.21%). This allows to significantly simplify the segmentation task while
achieving even better performance. Note the low number of removed intra-object connections. Re-
produced with permission from [4], ©2017 INSTICC.





Chapter 5

3D Object Classification in Point

Clouds using Point Pair Features

In this chapter, the problem of object classification in PCs is presented. Furthermore, the
proposed method to object classification using point pair features in combination with deep
learning is described. After that, the experimental evaluation of a number of PC indoor
datasets is provided and discussed.

Parts of this chapter have been published in [1].

Chair Table

Chair

Figure 5.1: Once the PC data of the rooms has been segmented into objects, each object has to be clas-
sified according to its semantic meaning. Different colors correspond to distinct segments that need
to be assigned to one of the semantic categories. Dataset of [11].
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5.1 Problem Statement

After the object segmentation step is finished, each object has to be classified according to
its semantic meaning, such as a chair or table, see Fig. 5.1 for illustration of the object classi-
fication step. Of all 3D data representations that can be used to address this problem, PCs
are closest to the output from LiDAR and depth sensors. This representation is challenging
due to its irregular data structure and large data size. Because of this, many methods first
convert this representation into 3D voxel grids or multi-view rendered images [133]. While
convenient for data handling, this preprocessing step introduces additional computational
complexity and makes the resulting data representation unnecessarily voluminous. For this
reason, this work focuses on PC-based approaches. As discussed in Section 2.2.3, the main
requirements for an object classification algorithm are robustness to noise and occlusion, low
computational complexity, rotation-invariance, and high classification accuracy. Out of the
existing methods, none completely satisfies these requirements, mostly due to the challeng-
ing requirement of robustness to noise and occlusion. In particular, once the level of noise
increases, it becomes challenging to distinguish small variations in PC data due to fine de-
tails in object geometry from variations due to noise. To address these limitations, a novel
method for object classification using PC data is presented.

Contributions of the proposed approach are the following:

• A new handcrafted point pair function-based 4D descriptor exhibiting high robustness
for realistic, noisy PC data is proposed. Its superior performance has been confirmed
with a number of experimental evaluations.

• Combination of the presented descriptor with a 4D CNN architecture using the pro-
posed 4D descriptor as input. It outperforms existing deep learning approaches on
real PC datasets obtained using LiDAR or RGBD sensors.

5.2 Method

An overview of the proposed approach is given in Fig. 5.2. Based on the input PC data of
the object, the point pair-based descriptor in the form of a 4D histogram is computed. This
histogram is then given to the CNN that outputs the object class (e.g., chair or table).

5.2.1 Point Pair Descriptors

To achieve rotation-invariance, point pair (PP)-based descriptors are typically preferred to
the descriptors that use points directly for geometry description as the PP-based descriptors
show the best performance [18], [103], [106], [112]. Usually, point pairs (or point n-tuples
in the general case) are randomly sampled from the point set. Based on the sampled pairs,
the PP functions map them to scalar values, which are then quantized into a histogram that
describes the statistics of the shape. Such point sampling step leads to certain randomness in
the result, but also enhances robustness to noise and occlusion as instead of geometry itself,
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Figure 5.2: Overview of the proposed object classification pipeline that is a combination of a novel
handcrafted descriptor and a 4D convolutional neural network (CNN). For details on the network
architecture and layer dimensions, see Fig. 5.7. Here, FC denotes a fully connected layer. Reproduced
from [1], ©2018 IEEE.

a statistical description of the object shape is used. A further advantage of this approach is
its rotation-invariance.

Point pair function (PPF) f is defined as the mapping of a PP (containing a pair of point
coordinates and normal vectors) to a scalar value as follows:

f : (R3,R2)× (R3,R2)→ R1, (5.1)

with R3 being a Euclidean space and R2 denoting a manifold of surface normal orientations
in 3D space. Due to the fact that the normal vectors have unit norm, they lie in R2 instead of
R3. The following functions f1 to f4 are employed in the proposed PP-based descriptor:

1. Euclidean distance between the points in the PP f1 [103].

2. The maximum angle between the corresponding surface patches of the points and di-
rection vector d connecting the points f2.

3. Distance between the normal vectors of the corresponding points in the PP f3.

4. Occupancy ratio along the line connecting the points f4 [106].

Euclidean distance. The function value f1 is the Euclidean distance between two points
p1 and p2:

f1(p1,p2) = ‖d‖2 = ‖p2 − p1‖2. (5.2)

The statistics of the distances between point pairs represents both the geometry and the size
of the object (see d in Fig. 5.3). Thus, objects having large dimensions, such as elongated ta-
bles, typically have a larger number of high distance samples, whereas smaller objects, such
as short tables, have a higher occurrence of smaller distance values.
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Figure 5.3: Illustration of the points p1, p2, their normal vectors n1, n2 and the Euclidean distance
f1 = ‖d‖2. n1

′ denotes n1 that originates at p2. The resulting angles between vectors d and the tan-
gent patches of points p1 and p2 are shown as β1 and β2, respectively. Tangential planes of surfaces
at points p1 and p2 are shown in blue. Adapted from [1], ©2018 IEEE.

The maximum surface angle. Function value f2 describes the surface patch orientation
with respect to the line d connecting both points p1 and p2. It is defined as follows:

f2(p1,n1,p2,n2) = max(β1, β2), (5.3)

with β1 and β2 being the angles between vector d and the tangent patches of points p1 and
p2, respectively (see Fig. 5.3). They are defined as follows:

β1 = arccos(n1 · d)− π/2, (5.4)

β2 = arccos(n2 · d)− π/2. (5.5)

f2 = max (β1, β2), (5.6)

The direction vector is computed as follows: d = p2 − p1. f2 lies in the range between
−π/2 and π/2. Function f2 is important in the cases, when the Euclidean distance f1 and
the normal-based distance f3 are not very descriptive, see Fig. 5.4 for illustration. Here, the
point pairs in the left and the right have the same Euclidean distance and the same normal
distance. In contrast, function f2 has significantly different values for both pairs, hence this
function allows us to distinguish these cases.

Although β1 and β2 may take on different values and, hence, provide an informative
surface description, only one value is chosen. Thus, a trade-off between compactness and
accuracy is achieved. To compute a descriptive value from both values, a number of mathe-
matical functions can be used. The ablation study that compares different functions, such as
maximum, minimum or mean, is given in Fig. 5.12 and discussed in Section 5.3.2. It has been
observed that the maximum operation is more descriptive for noisy datasets as compared to
other functions.

Normal distance. Function value f3 describes the similarity of surface orientations of the
corresponding point neighborhoods. It is defined as follows:

f3(n1,n2) = arccos(|n1 · n2|), (5.7)
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Figure 5.4: Illustration of the case with point pairs (p1,p2) (left) and (p3,p4) (right) that have similar
Euclidean (f1) and normal distances (f3), but still describe significantly different shapes. The maxi-
mum angle between patches and direction f2 is an important feature for such case. Adapted from [1],
©2018 IEEE.

which lies in the range from 0 to π. The absolute value in the expression of the dot product
is used to eliminate the influence of the viewpoint. In particular, the viewpoint information
can often be unreliable in MVPCs due to scanning the same surface from various directions
[4]. In essence, this feature describes the relative orientation of two local surfaces.

Occupancy ratio. The feature f4 is used to describe the global object geometry. In par-
ticular, it encodes the information about joint visibility of the points in the PP. For fast vis-
ibility computations, the object volume is voxelized using a 3D voxel grid of dimensions
NX × NY × NZ . This way, fast lookup and occupancy check computations can be achieved
[106]. For the given datasets, the same number of voxels in three dimensions are used as the
indoor objects often have cube-like shape. The values are set to NX = NY = NZ = 64. In
particular, the value of f4 is defined as follows:

f4(P,p1,p2) =
Nocc

Ntotal
, (5.8)

with P ∈ R3 being the set of points in the considered PC, Nocc is the number of occupied
voxels intersected by the 3D line d connecting two points p1 and p2, and Ntotal is the total
number of voxels intersected by the line (see Fig. 5.5). The voxel is classified as occupied if
at least one point is contained inside. Even though a higher threshold for voxel occupancy
decision can be chosen, it would disregard areas with a low number of points, e.g., low point
density areas. To consider all such areas, a conservative value of 1 is chosen as a threshold
for voxel occupancy. This function f4 describes the global object geometry, because the voxel
grid occupancy is computed based on all points. For the example with p1 and p2 in Fig. 5.5,
the values are Nocc = 8 and Ntotal = 13, which leads to f4 = 0.615. In contrast, for point pair
(p1,p3) f4 = 1, as all intersected voxels are occupied. Feature f4 lies in the range from 0 to 1.
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Figure 5.5: 2D illustration of the grid used for performing voxel occupancy checks for the voxels lying
along the line (dashed line) connecting a given point pair p1 and p2 and another point pair p1 and
p3. Adapted from [1], ©2018 IEEE.

5.2.2 Feature Statistics

In order to accurately describe geometric statistics of complex shapes, a number of PPs need
to be drawn at random from the point set. In this work, 20,000 randomly sampled PPs are
used, as this number has been observed to be sufficient to describe complex object geometry.
After the PPF values are computed for these pairs, they need to be aggregated into a descrip-
tor histogram. Many approaches (among others [106] and [100]) assume that the different
function values are uncorrelated with each other. Therefore, these function values were pre-
viously discretized into bins and concatenated into a 1D histogram. It has been observed in
this work that the feature quantization in a 1D histogram leads to a significant loss of per-
formance because information on co-occurrences of different function values is neglected.
To verify this, the Pearson correlation coefficient is computed between each pair of features.
The Pearson correlation between vectors x and y is defined as follows [134]:

r(x,y) =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
, (5.9)

where xi and yi are the ith values of x and y, respectively. n is the size of the vectors.
x̄ = 1

n

∑n
i=1 xi is the sample mean of the values in the vector x. The correlation coefficient

r has a value in the range between −1 and 1. The average computed Pearson correlation
value over all PPF values and all datasets is equal to 0.424. This value confirms a significant
level of correlation. Thus, to avoid loss of information on 4D co-occurrences, similar to [103],
a 4D histogram of function value occurrences is computed instead (shown in Fig. 5.6). The
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Figure 5.6: 4D histogram (right) that is used to discretize the aggregated counts of sampled PPF values
into a descriptor. Blue color denotes the bins with low number of counts, whereas red corresponds to
high. The corresponding object PC data is shown in the left. It can be seen that the different function
values are aggregated in different parts of the resulting histogram. Reproduced from [1], ©2018 IEEE.

histogram can be expressed as:

F = (w1,w2,w3,w4), (5.10)

where wi are bin counts of ith feature.
The proposed descriptor is denoted as Enhanced Point Pair Function (EPPF). A straight-

forward extension into a 4D histogram with a large and equal number of bins along each
dimension would result in an exponential increase of computational complexity [103], [104].
Instead, it is possible to leverage the observation that not all PPF values are equally infor-
mative for the description of the object geometry. Hence, a different number of bins can
be chosen for different dimensions. In the later Section 5.3.2 an experimental study of the
feature contribution to the overall performance (ablation study) is provided. In particular,
function f1 helps to distinguish objects of different sizes, therefore a relatively large number
of bins is chosen, Nf1 = 20.

As the values of f1 can significantly vary for the objects with different physical dimen-
sions, scaling of function f1 is required. An ablation study investigating the performance
using different scaling strategies is given in Fig. 5.12 and discussed in Section 5.3.2. In par-
ticular, the objects can be scaled to fit into unit cube, thus the information about absolute
physical dimensions of each object is lost. Alternatively, the objects can be scaled according
to the maximum or median of sizes of all objects. Contrary to scale-invariant approaches
[114], the object is not scaled to fit into a unit sphere, as it has been observed that in indoor
environments the size of the object provides important information about its semantic label.
For example, monitor and whiteboard can have similar geometric shape, but different physical
dimensions. To preserve the information on dimensions, the descriptor is designed to be
scale-variant. Thus, all objects are scaled so that the largest one fits into a unit cube. In case
a certain object has dimensions that are much larger than the dimensions of the rest of the
object, this could lead to inefficient quantization of the feature f1. In other words, a number
of bins would not be used for the description of the remaining smaller objects. In practice,
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however, it has been observed that this does not lead to significant negative effects as long
as the object have physical dimensions in the same order of magnitude, see Fig. 5.12 and
Section 5.3.2 for more details.

For f2, it has been observed that the its descriptive ability is relatively low for noisy and
occluded data. Therefore, a relatively small number of bins was chosen Nf2 = 4. Further-
more, for f3, the number of bins was set to Nf3 = 5. Finally, for f4, it has been observed
that Nf4 = 3 is sufficient. A number of experiments with larger numbers of bins have illus-
trated that there was no significant performance improvement. Thus, a trade-off between
complexity and accuracy of the descriptor has been achieved.

Experiments have also shown that point pairs with larger Euclidean distances usually
have higher discriminative power as compared to those with smaller Euclidean distances.
This effect is due to the fact that every object has point pairs with small distance values, but
only big objects have point pairs with larger distances. To improve the discriminative ability
of objects of different sizes and to suppress the influence of noise in low distance regions, a
bin weighting factor is used. For the bin located at index i, j, k, l, the factor is computed as
follows:

αi = ln(i/Nf1 + c), (5.11)

where i is the bin index of the Euclidean feature f1. αi is used to compute the bin count as fol-
lows: wnew

i,j,k,l = αi ·wi,j,k,l. c is a constant value greater than 1, which is used to guarantee that
weights are positive and to mitigate noise for point pairs with smaller Euclidean distances.
Based on the experimental validation, the value is set to c = 1.2. Finally, every weighted
descriptor histogram is normalized. The total number of bins of the resulting 4D histogram
is set to N = 20 · 4 · 5 · 3 = 1,200. For matching, different distance metrics can be used, such
as L1 or L2 norms. It has been observed that they do not allow to accurately describe the dis-
tance between the underlying feature distributions. To address this limitation, a probabilistic
distance metric is used, i.e., symmetrized version of Kullback-Leibler divergence [135]. It is
defined as follows:

d(a,b) =

N∑
i=1

|ai − bi| ln
ai
bi
, (5.12)

where a and b are the histogram counts for object 1 and 2, respectively. Similarly to [103],
all zero bins of a histogram are set to a common minimum value that is twice smaller than
the smallest observed bin value in this dataset. By setting the zero bins to a non-zero min-
imum value, it is possible to avoid numerical issues when having certain bin counts equal
to zero and performing division by zero. The zero bin counts can occur due to an insuffi-
cient number of drawn random samples or due to specific properties of the geometry of this
object.

5.2.3 4D Deep Learning Architecture

The previously computed 4D descriptor is rotation-invariant, which means that the descrip-
tor values do not change in case the object is rotated. The rotation-invariance also resolves
the issue of symmetry of point sets in neural networks. This issue is because the PC is a set of
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Figure 5.7: Architecture of the proposed 4D neural network. Input data is a 4D descriptor computed
from the PC data. The descriptor histogram is provided to the neural network for object classification.
“Conv.” denotes convolutional layer. ReLU stands for rectified linear unit (ReLU). Table 5.1 provides
more details on the dimensions. Adapted from [1], ©2018 IEEE.

points that describes underlying geometry. By performing permutations of the points in the
PC, the underlying geometry does not change, but the data values look different for many
algorithms, such as CNNs. By using the EPPF descriptor, it is, thus, possible to feed this
representation into a neural network for the task of object classification. For more details on
CNNs, see Section 2.1.7.

To preserve information about 4D co-occurrences of the function values, 4D convolution
is used in the input layers of the neural network (see Fig. 5.7). 4D convolution has already
been successfully applied for the task of material recognition by Wang et al. [136], where it
outperformed other architectures. In this work, 4D convolution is applied as a stacked 3D
convolution, following the implementation available at GitHub1. Within the neural network,
4D convolutional blocks are used in the first and second layers, respectively. Details on the
dimensions are given in Table 5.1. Afterward, the resulting network responses are reshaped
into a 2D structure and input into a 2D convolutional block. Furthermore, 2D max-pooling is
performed to pool features from a spatial neighborhood and thus achieve spatial robustness.
This step is followed by reshaping from 2D to 1D representation, which is input into a fully
connected layer. Afterward, a dropout is applied to the fully connected layer with proba-
bility 0.5 during the training procedure. The dropout is used to achieve regularization and
enhance the generalization property of the network. After this layer, another fully connected
layer is used. At the output of the network, a class prediction for the object is provided. For
training, a cross-entropy loss function was used. For more details on the loss function, see
Section 2.1.7.

For comparison, 2D and 3D convolution-based networks for object classification are also
designed, trained and evaluated. This way, it is possible to verify whether 4D convolution
is essential for good classification performance. For a fair comparison, the dimensions of
1 Stacked 4D convolution https://github.com/mhuen/TFScripts/blob/master/tfscripts/conv.py. Accessed:

2018-12-22.s

https://github.com/mhuen/TFScripts/blob/master/tfscripts/conv.py
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Table 5.1: Layer dimensions for 2D, 3D and 4D-variants of the network. Nf denotes the number of
filters. “conv.” denotes convolutional layer. Reproduced from [1], ©2018 IEEE.

Layer 2D network 3D network 4D network Nf

Input 40× 30 20× 4× 15 20× 4× 5× 3 -

1 2D conv.: 5× 5× 1 3D conv.: 5× 5× 1× 1 4D conv.:5× 2× 2× 1× 1 32

2 2D conv.: 5× 5× 32 3D conv.: 5× 5× 1× 32 4D conv.: 5× 2× 2× 1× 32 64

3 2D conv.: 5× 5× 64 3D conv.: 5× 5× 1× 64 2D conv.: 5× 5× 64 48

4 2D max-pooling: 2× 2 1

5 fully connected: 192× 1024 1

6 dropout with probability 0.5 1

7 fully connected: 1024×Nclasses 1

equivalent 2D and 3D convolution-based network variants are chosen in such a way so that
the number of parameters of all three networks is comparable to each other. The dimensions
of the single layers are given in Table 5.1. Thus, for the 2D-variant of the network, the input
4D descriptor was first reshaped into 2D data with dimensions (40× 30) and then processed
with three 2D convolutional layers. For the 3D-variant of the network, the input 4D descrip-
tor is reshaped into 3D data with dimensions (20× 4× 15) and then processed with three 3D
convolutional layers. The number of filters is chosen to be the same for all three networks.
Filter stride value is set to 1.

5.3 Experimental Evaluation

For experimental comparison with state-of-the-art approaches, the best performing descrip-
tors according to various benchmarks [97] were chosen. In particular, OUR-CVFH [100], ESF
[106] and Wahl et al. [103] descriptors were considered. For OUR-CVFH and ESF, the Point
Cloud Library 1.8 implementations were used [97]. For Wahl et al., due to unavailability of
the open source code, own version has been implemented in C++ following the description
in the original paper. Furthermore, tuning of the descriptor parameters was performed to
obtain optimal performance. For comparison with deep learning approaches, PointNet [114]
was used as it is one of the most accurate approaches up-to-date that can directly work on 3D
point sets without additional operations of multi-view projection [133] or voxelization [137].
For PointNet, the author’s implementation was used2.

The proposed descriptor EPPF has a larger number of bins as compared to OUR-CVFH
and ESF. This fact raises the question, whether a larger number of bins has an impact on
description performance. To answer this question, the version of the EPPF descriptor with a
fewer number of bins was also evaluated. The bin number was chosen in such a way that it
2 https://github.com/charlesq34/pointnet

https://github.com/charlesq34/pointnet
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is comparable to the other descriptors. In particular, Nf1 = 15, Nf2 = 3, Nf3 = 4, Nf4 = 3.
This choice results in a total number of bins of N = 540. This value is comparable to 640 in
ESF and 308 in OUR-CVFH. This descriptor is denoted as “EPPF short” from now on. For
evaluation metrics, total accuracy was chosen, which is the accuracy value divided by the
total number of objects. Also used were mean accuracy and mean recall. Mean accuracy and
mean recall are accuracy and recall values, respectively, that are averaged over all classes.
Furthermore, F1-score was also used as a single measure of classification performance. For
more details, see Section 2.1.8.2.

5.3.1 Datasets

For evaluation, the Stanford PC dataset [11], ScanNet mesh dataset [138] and ModelNet40
CAD dataset [137] were used. These are the most recent and largest datasets of indoor ob-
jects that also contain semantic and instance annotation.

Stanford dataset. The Stanford dataset in [11] contains RGB and depth images and has
been captured in six office areas within three different buildings, using structured-light sen-
sors during a 360◦ rotation at each scanning location. Due to sensor noise and limited scan-
ning time, point density significantly varies throughout the scene. Furthermore, there is a
high level of occlusion. The annotation has been done using humans that labeled triangles
in the mesh accordingly to semantic categories. This annotation was then projected onto the
PC data. The authors in [11] proposed a training/testing split of data according to buildings.
This split cannot be used for this evaluation, because in this case some objects never occur in
the testing or training sets. This fact would make the evaluation of object classification less
meaningful, therefore a different split of 60/40 was derived. Here, 60% of object instances
per category constitute the training set and the remaining 40% represent the testing set. The
category clutter was omitted, as it contains multiple categories. Furthermore, architectural
element categories with a high level of planarity were also removed, such as floor, ceiling and
wall, as they can easily be classified using normal direction of the PC data. The presence of
these objects would make the object classification task unnecessarily complex. Thus, there
are 10 classes in total with 3,735 objects. The categories are as follows: beam, board, bookcase,
chair, column, door, sofa, stairs, table, window. For illustration of intra-object variance, the PC
data for two instances of category table is shown in Fig. 5.8. It is possible to observe that there
are significant variations in geometry between the two instances of the same category.

ScanNet dataset. The ScanNet dataset [138] is a large-scale mesh dataset containing a
semantic annotation of indoor scenes. The mesh data exhibits a high level of occlusion and
noise, as it is collected using a commodity low-cost RGBD sensor. Annotation was done
using humans that labeled planar groups of mesh triangles. This step was followed by an-
notation verification to ensure consistency of labeling. For classification, the training/testing
split specified by the authors [138] was used. Out of all categories, only the categories that
are compatible with ShapeNet-55 dataset from [138] were used. To avoid an unbalanced
training set, category laptop was removed, as it contains only 18 instances (as compared to
the other categories with at least 50 instances). Thus, the used dataset contains 14 categories:
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Figure 5.8: Illustration of the PC data for two instances (left and right) of object table from the Stanford
dataset [11]. Significant variations in geometry between the two instances can be observed.

Figure 5.9: Illustration of the PC data (left) for object table from the ScanNet dataset [138]. Colored
mesh is shown on the right. The table leg was erroneously labeled as not belonging to the table object,
as can be seen from the PC data.

basket, bathtub, bed, cabinet, chair, keyboard, lamp, microwave, pillow, printer, shelf, stove, table and
tv. This choice of categories results in 5,203 objects in the training set and 1,699 objects in
the testing set. An example of a table’s PC and mesh data is shown in Fig. 5.9. It can be
observed that the provided annotation has certain inaccuracies, in particular, the table leg
was erroneously labeled as not belonging to the table.

ModelNet40 dataset. The ModelNet40 (also often denoted as M40) dataset [137] is a
large-scale CAD model dataset of objects. The CAD models have been manually cleaned,
thus containing practically no noise or occlusion. There are 12,311 CAD models from 40 cat-
egories, separated into 9,843 instances for training and 2,468 instances for testing sets. The
categories correspond to common objects, such as airplane, table, chair and other.

ModelNet40 and ScanNet datasets contain mesh models, which need to be converted into
a PC representation. For this, the mesh sampling approach from the Point Cloud Library [97]
was employed with a resolution of 1 cm. Because EPPF, Wahl et al., and OUR-CVFH descrip-
tors require normal information, the mesh sampling step was followed by normal estimation
using the method of Boulch and Marlet [31]. For illustration, PC data for two instances of
category table for the ModelNet40 dataset is shown in Fig. 5.10. It can be observed that
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Figure 5.10: Illustration of the PC data for two instances (left and right) of object table from the Mod-
elNet40 dataset [137]. The variations in geometry between the two instances are much lower as com-
pared to other datasets. There is practically no occlusion or noise in this data.

the variations in geometry between the two instances are much lower as compared to other
datasets.

5.3.2 Object Retrieval using Handcrafted Descriptors

For the evaluation of the descriptor performance, an object retrieval task was chosen. In
particular, leave-one-out cross-validation of retrieval was performed. Thus, a descriptor for
every object is computed. Given the object’s descriptor, the distance to the descriptors of
all other objects is computed. The descriptor with the smallest distance is the closest match.
When the closest match is of the same category as the query object, it is considered as a cor-
rect retrieval, and incorrect otherwise. This step is repeated, each time changing the query
object to the next one in the dataset.

Because the ESF, Wahl et al. and EPPF descriptors contain the step of random sampling
of point pairs from the point set, there are variations in descriptor performance as each time
different PPs are chosen. To mitigate this effect, the experiments were repeated ten times,
and the mean and the standard deviation values of the metrics were recorded. The retrieval
performance is given in Table 5.2. It is possible to observe in Table 5.2 that the proposed EPPF
descriptor (in full and short versions) outperforms ESF and OUR-CVFH on all datasets. Fur-
thermore, the EPPF descriptor outperforms the Wahl descriptor on the Stanford and ScanNet
datasets but shows comparable performance on the M40 dataset. The superior performance
is because of the low level of noise in this dataset. The PPFs employed in the Wahl descrip-
tor are less robust to high levels of noise, but with lower noise levels the PPFs can provide
a higher descriptive ability, as compared to the EPPF descriptor. Notably, there is a big
difference in total and mean accuracy values for all descriptors. This difference is because
the datasets are unbalanced, i.e., some categories happen more often than others, therefore
matching to a category with more instances is more likely. Thus, the approaches perform cor-
rect retrieval for categories with more objects, which increases the total accuracy, but results
in smaller mean accuracy.

Ablation study of feature removal. To gain further insights on the influence of various
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Figure 5.11: Ablation study of various features. Influence of function removal on the retrieval perfor-
mance (F1-score) is shown for the proposed descriptor. One function is removed at a time. Averaged
over ten runs. It can be seen that the most important feature for retrieval is Euclidean distance f1,
whereas occupancy ratio f4 shows the smallest impact on the result. In case normal information
is noisy (f3 on the Stanford dataset), the removal of feature f3 can lead to improved performance.
Adapted from [1], ©2018 IEEE.

functions on the resulting performance, one PPF was disabled at a time, and retrieval exper-
iments were repeated. As evaluation metric, F1-score was used. For more details see Sec-
tion 2.1.8. The results for EPPF are given in Fig. 5.11. Here it is possible to see that the largest
drop in retrieval performance (13− 17%) is observed when the Euclidean distance feature f1
is removed. The performance drop resulting from removing the surface angle function f2 is
lower than from f1 (6− 12%). Interestingly, the normal distance function f3 performs differ-
ently on various datasets. In particular, on the Stanford dataset, which exhibits high levels of
noise in normal orientation, removal of the normal distance function leads to a performance
improvement of 1%. In contrast, on the other datasets, this effect does not happen, and there
is a significant drop by up to 15%. Finally, the occupancy ratio function f4 contributes the
least to the overall performance on all datasets and results in a drop of 2− 6%. This ablation
study justifies the chosen number of bins for every dimension.

Ablation study of f1 scaling. To study the effects of different scaling strategies for fea-
ture f1 an ablation study has been performed. In particular, the experimental results of the
ablation study for the Stanford dataset are given in Fig. 5.12. It can be seen that the maxi-
mum scaling achieves the highest F1-score from the different scaling strategies. Intuitively,
by scaling each object into unit cube information on the absolute object dimensions is lost,
which leads to deterioration of retrieval performance.

Ablation study of f2 functions. In order to gain additional insights about the choice of
particular function for f2, another ablation study has been performed. In particular, for func-
tion f2 not only maximum of β1 and β2, but also other functions have been evaluated. These
functions include: maximum, minimum, and mean of the two values. Additionally, it has
been evaluated if a random selection of one of the two values (β1, β2) provides a better per-
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Figure 5.12: Influence of scaling for feature f1 on the object retrieval performance (F1-score) on the
Stanford dataset. The retrieval experiments have been repeated five times. In red, the average value
of F1-score is shown. In blue, the standard deviation of the corresponding measured value of F1-score
is shown. It can be seen that the maximum object scaling achieves the highest retrieval performance.
This can be explained by the fact that scaling each object into unit cube leads to loss of information
about the absolute object dimensions. This, in turn, leads to deterioration of retrieval performance.

formance. Furthermore, it has been evaluated if instead of the occupancy ratio function f4, a
modified descriptor is used. It employs β1, β2, Euclidean and normal distance features and
omits the occupancy ratio feature. The descriptor 4D point pair function is formally defined
as follows:

f = (f1, β1, f3, β2), (5.13)

where β1 is computed using Equation 5.4 and β2 is defined in Equation 5.5. f3 is computed
using Equation 5.7 and f1 is the Euclidean distance that is computed using Equation 5.2.
The PPFs are aggregated into a histogram in the same manner as the originally described
EPPF descriptor. The experimental results of the ablation study for the Stanford dataset are
given in Fig. 5.13. It can be seen that the maximum function achieves the highest F1-score
from the different functions. This justifies the choice of the maximum function for f2. It can
also be observed that using β1 and β2 and omitting visibility ratio function f4 leads to the
deterioration of the retrieval performance.

5.3.3 Object Classification using Deep Learning Approaches

Evaluation setup. In this step, object classification was evaluated for deep learning ap-
proaches. Similar to the previous evaluation, the Stanford, ScanNet and M40 datasets were
used. The proposed 4D CNN network was used in combination with the handcrafted feature
descriptor. For comparison, 2D and 3D convolution-based networks were also evaluated (de-
noted as 2D and 3D, respectively). For optimization, Adam optimizer was employed with
a learning rate of 5 · 10−4 and 0.5 dropout probability. Training was performed for 2,000
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Figure 5.13: Influence of different functions for feature f2 = f(β1, β2) on the object retrieval perfor-
mance (F1-score) on the Stanford dataset. The retrieval experiments have been repeated five times.
In red, the average value of F1-score is shown. In blue, the standard deviation of the corresponding
value of F1-score is shown. “Maximum” denotes maximum function, “Minimum” denotes minimum
function. “Mean” denotes average of two values. “One only” denotes randomly selected one of the
two values. “Both instead of f4” denotes a modified version of the descriptor described in Equa-
tion 5.13. It can be seen that the maximum function achieves the highest retrieval performance.

epochs. Training on ScanNet took between one to three hours to converge with Tensorflow
[139] and Nvidia Titan XP graphics processing unit (GPU). For comparison, the method that
works directly on the point set (PointNet [114]) was also evaluated. The PointNet network
was trained on the given objects while taking into account normalization into a unit cube as
advised by the authors3. The standard parameter values were used. The input PC to the net-
work contains 2,048 points. Similarly to the proposed approach, training was also performed
for 2,000 epochs.

Evaluation results. In Table 5.3 object classification results for both approaches are given.
Here, EPPF 4D denotes the proposed 4D convolutional network. The 4D convolution-based
network performs better than the 2D- and 3D-variants. This is thanks to the fact that 4D co-
occurrences between various dimensions are recorded. In contrast, by reshaping into 2D and
3D, such information is lost. On the Stanford and ScanNet datasets, the 3D network performs
better than the 2D-based one. It can be observed that the proposed approach outperforms
PointNet on the first two datasets. This can be explained by the fact that the proposed net-
work can easily learn noise-resistant class-specific patterns based on handcrafted descriptors
as compared to feeding the point sets directly in PointNet. Notably, PointNet outperforms
the proposed approach on the M40 dataset. Here, the obtained PointNet object classifica-
tion result is different from the one reported by authors in [114] (87.01% vs. 89.2%), because
network training has random behavior depending on the chosen random seed when per-
forming optimization. With the lower level of noise in the M40 dataset, PointNet can learn
more descriptive representation for object classification. The lower performance of the pro-
posed network is due to the loss of information when operating on PPFs instead of point sets.
3 https://github.com/charlesq34/pointnet/issues/39

https://github.com/charlesq34/pointnet/issues/39
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Table 5.3: Classification performance of deep learning approaches using 2D, 3D and 4D convolutional
layers on indoor 3D datasets concerning accuracy and F1-score. Greater is better. Best value is shown
in bold. EPPF 4D outperforms the other methods on the Stanford and ScanNet datasets. On the
ModelNet40 dataset PointNet shows superior performance to EPPF because PointNet can learn more
characteristic features from point sets directly when lower levels of noise are observed. Reproduced
from [1], ©2018 IEEE.

Dataset Metric PointNet [114] EPPF 2D EPPF 3D EPPF 4D

Stanford [11]

Total accuracy (%) 64.30 82.01 81.94 83.22

Mean accuracy (%) 42.48 64.26 66.37 65.11

Mean recall (%) 40.47 70.88 60.94 72.13

F1-score 0.395 0.652 0.665 0.672

ScanNet [138]

Total accuracy (%) 63.04 70.39 70.57 72.10

Mean accuracy (%) 37.50 38.98 44.35 45.70

Mean recall (%) 19.53 63.52 54.53 56.58

F1-score 0.209 0.433 0.472 0.488

ModelNet40 [137]

Total accuracy (%) 87.01 81.64 81.15 82.13

Mean accuracy (%) 82.08 76.37 75.87 77.05

Mean recall (%) 83.48 77.30 77.51 76.99

F1-score 0.824 0.765 0.762 0.769

For better illustration, the confusion matrix of the proposed approach is given in Fig. 5.14.
The proposed method has problems distinguishing microwave from lamp and chair, which
might be due to its small physical dimensions. Similarly, TV and chair are also often con-
fused. The other categories can be classified by the proposed method much more accurately.
For comparison, the confusion matrix for PointNet is given in Fig. 5.15. From the confusion
matrix for PointNet it can be observed that the network often confuses various categories
with cabinet. This effect can be explained by the fact that the network has difficulties learning
generalizable and robust features to distinguish different categories.

Noise influence experiment. To investigate the influence of noise on the total accuracy,
zero-mean Gaussian random noise with various standard deviation values is added onto 3D
coordinates of point sets. This is followed by the re-training of the network using the noisy
examples. The results for the proposed 4D approach and PointNet are given in Fig. 5.16.
Even though PointNet outperforms the proposed approach on lower levels of noise, with
increasing noise levels, the proposed approach suffers no significant decrease in total accu-
racy. In contrast, PointNet performance starts to drastically deteriorate already at standard
deviation values of 0.06 (e.g., 6% of the unit cube size). This can be explained by the fact
that the proposed PPFs are more robust to noise as compared to the network architectures
trained on point sets directly.

Network response visualization on different layers. To gain further insights about the
transformation learned by the network, the network responses are shown for an exemplary
object. For this, the object table in ScanNet is chosen (see Fig. 5.9) and the corresponding de-
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Figure 5.14: Illustration of the confusion matrix for the proposed method on the ScanNet dataset. The
proposed method has problems distinguishing microwave from lamp and chair, which might be due
to its small physical dimensions. Similarly, TV and chair are also often confused. The other categories
can be classified by the proposed method much more accurately.

scriptor values and responses of the first filter in the first two layers are visualized in Fig. 5.17.
Observe that the descriptor is very sparse, e.g., a large part of the quantized space takes zero
values. Curse of dimensionality is not a big issue here, as the dimensionality of the proposed
function space is low (4D) and the space is strongly quantized. 20,000 4D PPF values are ag-
gregated into 1,200 histogram bins. Hence, there are 16.67 counts per bin on average, which
further confirms that space is sufficiently sampled. The goal of the descriptor histogram is
not to accurately represent the true distribution, but to achieve robustness to variations due
to noise and occlusion. Furthermore, when feeding this descriptor into the first 4D convolu-
tional layer, it is possible to observe that the network has smeared this signal in the 4D space.
Finally, in the second layer, the signal is even further spread across different dimensions.
This is followed by a max-pooling layer that helps to achieve certain invariance to spatial
shift and abstract the information. The transformation learned by the network does not only
perform simple Gaussian smoothing but, more importantly, it amplifies the signal in certain
regions and suppresses the signal in the other regions. This special perturbation benefits the
generalization of the proposed network, as the first 4D convolutional layer can learn the fine
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Figure 5.15: Illustration of the confusion matrix for PointNet on the ScanNet dataset. From the con-
fusion matrix for PointNet it can be observed that the network often confuses various categories with
cabinet. This might be due to the fact that the network is unable to learn the learn generalizable and
robust features to distinguish different categories.

features, which are characteristic for certain object categories while suppressing occlusion
and noise.

Runtime analysis. The runtime performance of the proposed descriptor was reviewed.
The descriptor was implemented in C++ with OpenMP4 parallelization. For evaluation,
desktop personal computer Intel i7 with 24 GB RAM was used. According to performed
timings, the descriptor computation took 8 ms per object on average. This value is com-
parable to runtime performance of the ESF, Wahl et al. and OUR-CVFH descriptors. This
performance still allows using such descriptor in real-time operation in robotics for percep-
tion tasks. As the proposed descriptor provides fixed feature size irrespective of the object
dimensions, relatively constant runtime is expected when using the neural network for object
classification.

Further insights. Experiments with a number of network architectures for object clas-
sification have been performed. Nonetheless, no significant classification performance im-
4 https://www.openmp.org/

https://www.openmp.org/
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Figure 5.16: Illustration of the influence of standard deviation values for zero-mean Gaussian ran-
dom noise on the classification accuracy for the M40 dataset using 1024 points. The noise is added
to each point coordinate independently. PointNet results taken from [114]. Even though PointNet
outperforms the proposed approach on lower levels of noise, with increasing noise levels the pro-
posed approach suffers no significant decrease in accuracy. In contrast, PointNet performance starts
to drastically deteriorate already at standard deviation values of 0.06 (e.g., 6% of the unit cube size).
Adapted from [1], ©2018 IEEE.

provement has been achieved when using larger architectures, which can be explained by the
limited size of the training data. Intuitively, reshaping operations performed in the proposed
neural network should remove information about the structure and feature co-occurrences.
However, it has been observed that 2D reshaping gave higher classification performance than
using 4D blocks directly. This observation could be explained by the fact that the category-
specific clusters learned by the network are spatially separated in all dimensions. Alterna-
tively, some other strategies have been considered, such as stacking the dimensions into a 2D
representation and global max-pooling. None of them led to any performance improvement.

PointNet generally took much longer to converge as compared to the proposed approach
on all datasets. For PointNet, a voting scheme has also been evaluated. This scheme ap-
plies multiple perturbations to the PC data and outputs predictions on each of them. The
resulting predictions are combined into a single result using a majority vote. No signifi-
cant performance improvement has been observed. Furthermore, experiments with feeding
point pairs directly to PointNet have also been performed. This approach indeed slightly
improved performance on noisy datasets, however, only by a small margin. To make sure no
local optima influenced the evaluation, the training was repeated several times, and the best
test accuracy was reported. Most of the considered datasets have unbalanced categories,
e.g., some categories (such as chair in ScanNet) occur much more often than others (lamp).
This fact led to the effect that the network can learn very complex and well generalizable
patterns for often occurring objects, while the learned patterns for rarely occurring objects
cannot be well generalized. In the future, weighted loss function can be used to take the class
imbalance into account. This way, loss value on each class is weighted according to the class
occurrence.
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Figure 5.17: 4D descriptor values and the corresponding CNN filter responses for the object table
(see Fig. 5.9 for PC data) in the ScanNet dataset. Left column: descriptor values. Middle column:
responses of the first filter in the first layer. Right column: responses of the first filter in the second
layer. The rows show slices of the fourth dimension for descriptor and filter values. Transparent bins
correspond to constant offset values for the response (or 0 for the descriptor values), colored bins - to
varying values. The bins are colored so that low values are shown in blue color, while high in red.
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5.3.4 Limitations

Tuning the hyper-parameters of the network could bring further improvements. In partic-
ular, the point sampling strategy can be improved: a straightforward random sampling has
been used for this work. It is expected that by performing non-random point sampling, one
could further improve the classification performance. For this, the techniques similar to the
ones explained by Birdal and Ilic [140] can be applied. Finally, end-to-end learning with
the goal of identifying more descriptive point pair and point n-tuple functions could bring
further improvements in classification performance, e.g., as in the approach of [120].

5.4 Chapter Summary

In this chapter, a novel method to object classification has been described. To overcome the
limitations of related work, including limited performance in the presence of noise and oc-
clusion, a number of improvements have been presented. First, careful choice of PP features
for object description is essential for object classification performance. By further combin-
ing the 4D histogram of feature co-occurrences into a simple neural network architecture,
it is possible to achieve superior object classification performance. Whereas a number of
neural network architectures showed high classification performance, 4D convolutional lay-
ers outperformed 2D and 3D convolutional layers for this task. Experimental results on 3

benchmark datasets confirmed the superiority of such design in a high noise and occlusion
scenario. In particular, an improvement of 9% − 19% in accuracy and 32% − 37% in recall
can be achieved for object classification on a number of noisy large indoor benchmarks as
compared to existing methods. By providing a compact description as input data into a neu-
ral network, the learning problem can be simplified and faster convergence can be achieved.
The source code of the descriptor is made publicly available5.

5 https://github.com/DBobkov/object-descriptor

https://github.com/DBobkov/object-descriptor




Chapter 6

Conclusion and Outlook

Semantic understanding of indoor environments allows augmenting a large-volume 3D rep-
resentation, such as a PC, with semantic labels corresponding to understandable entities,
such as room, table, chair. By extracting semantic labels, the indoor data becomes searchable,
i.e., it is possible to find all elements corresponding to a particular entity within an indoor
environment. Such approach allows to significantly simplify handling of data for humans
or robotic agents. This fact, in turn, enables multiple applications, such as digital facility
management, automated robotics, virtual reality or context-aware indoor navigation.

To this end, this dissertation proposes a top-down approach to the semantic understand-
ing of indoor environments, where the large-scale PC data of buildings is first partitioned
into rooms. The PC data corresponding to rooms is further segmented into objects, and each
of the objects is classified into a particular semantic category. Such approach gives a scalable
solution to semantic understanding by significantly reducing the computational complexity,
while keeping the segmentation performance unchanged.

Existing methods to segmentation primarily focused on PC datasets having low levels of
occlusion and noise. For example, the ModelNet40 dataset [137], which was most commonly
used for evaluation of object classification methods, was generated based on large effort in
human manual annotation and refinement of the resulting models. This dataset does not
have the same properties as the PC data captured with laser scanners or RGBD sensors in in-
door environments under time constraints. In particular, a rapid mapping procedure results
in significant occlusion and undersampling artifacts in the collected PC data, which were not
adequately addressed by existing methods.

6.1 Summary of the Results

Chapter 3 described the problem of room segmentation in 3D PCs of indoor environments.
To address the problem, a human intuition of the room was used to derive a novel volumet-
ric signature for rooms that is based on inner free space. In particular, Section 3.2 described
the proposed room segmentation method. To this end, a number of tasks have been solved,
such as the computation of the interior free space of indoor environments without assuming
a knowledge of scanner poses or the Manhattan world structure. By using a volumetric grid

113
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combined with the graph cut algorithm it was possible to estimate inner free space accu-
rately. Hence, no information on sensor poses was required. As the proposed voxel grid was
formulated in 3D, buildings violating the Manhattan world structure are also supported. The
presented PF signature is robust to object clutter and occlusion that are common in PC data
of indoor environments. The experimental evaluation of a number of datasets verified that
the proposed method achieves superior performance on a number of datasets collected with
LiDAR or RGBD sensors in environments exhibiting curved walls and tilted ceilings.

Chapter 4 discussed the problem of unsupervised object segmentation. To address the
particular properties of these datasets, such as non-uniform density and high levels of noise,
a typical object segmentation pipeline employing supervoxels and graph cuts was aug-
mented with a novel noise-resilient criterion for the detection of noisy non-convex regions,
as described in Section 4.2. By combining the proposed point removal step with state-of-
the-art segmentation algorithms, their performance was significantly improved. It was ob-
served that there is a discrepancy between single-view and multi-view PCs in terms of noise
level, especially at high-curvature regions. To illustrate this, a new LiDAR PC dataset and
its semantic annotation given on several scales were described in Section 4.3. The algorithm
showed superior performance on MVPC data, outperforming the existing methods by 20%

in terms of OS and US errors. Although the algorithm has been designed for MVPC data, it
also achieved state-of-the-art performance on single-view PC data.

Chapter 5 described the problem of object classification. In particular, it has been ob-
served that the object classification is particularly challenging for existing methods when PC
data is subject to high levels of noise and occlusion. To address this issue, Section 5.2 dis-
cussed the choice of the point pair features that are most descriptive for this task. Further-
more, an approach combining point pair features with a simple 4D deep learning architecture
was presented. It allows achieving superior classification performance. The experimental re-
sults on three benchmark datasets given in Section 5.3 confirmed the superiority of such
design in a high noise and occlusion scenario. In particular, the proposed approach achieved
9%–19% improvement in classification accuracy and 32% − 37% improvement in recall on
two indoor benchmarks.

With the presented methods to the semantic understanding of indoor environments in
noisy PC data, it becomes possible to apply automated semantic extraction methods. As hu-
man involvement is not strictly required anymore, it becomes feasible to perform automated
large-scale understanding of indoor spaces with the goal of creating a searchable digital rep-
resentation of an indoor environment.

6.2 Limitations and Outlook

In this section, the limitations of the given methods are discussed, and an outlook for the
future work is given.
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6.2.1 Limitations

Whereas the proposed methods to semantic understanding achieved superior performance
on noisy data as compared to existing methods, a number of limitations yet remain:

• The room segmentation approach that was described in Chapter 3 exhibits moderate
performance on very sparse PC data. This can be mitigated by extending the criteria of
the interior space, e.g., including prior information regarding common orientations or
dominant planes in this indoor environment. Another limitation is that the voxel grid
requires large storage in case of buildings with huge inner volume (foyer or atrium
spanning great volume). To address this limitation, a voxel grid with adaptive voxel
size can be used. By carefully adapting the voxel size it might be possible to preserve
the same level of room segmentation performance within different parts of the building
while reducing computational complexity and storage requirements.

• The proposed method to object segmentation that was described in Chapter 4 exhibited
a number of limitations. In particular, removing high-curvature non-convex regions
can occasionally result in the situation that the regions become too sparse, thus leading
to erroneous oversegmentation of the object. To mitigate this issue, it might be pos-
sible to use machine learning techniques for a data-driven convexity criterion. Thus,
very sparse noisy regions can be preserved to avoid pruning of intra-object geometry.
This step would also prevent the erroneous object undersegmentation. Furthermore,
the used criterion of a concave edge is relatively simple and can fail in certain cases of
complex object geometry. Finally, the designed method does not take the RGB infor-
mation into account. Once accurate RGB information is available, object segmentation
can significantly benefit from it.

• The method to object classification that was given in Chapter 5 also exhibited a number
of restrictions. In particular, instead of a random point sampling, a more sophisticated
sampling strategy can be used, thus resulting in improved performance. Furthermore,
the chosen point pair functions have been designed by hand and not learned from the
data. By learning the best point features from the data directly, the performance can be
further improved.

6.2.2 Outlook

Several important directions for future work in the area of semantic understanding of indoor
environments can be identified.

Data-based learning. The above-described methods to semantic understanding were in
part handcrafted, resulting from the careful design of the most suitable PC-based features.
This was due to a limited amount of annotated PC data of indoor environments. With the
recent appearance of large semantically annotated indoor PC datasets, such as Matterport3D
[141], ScanNet, Stanford3D, and others, it becomes possible to learn the best point-based fea-
tures using end-to-end learning for these tasks. In particular, there is a promising research
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direction on how to learn best room features from the formulated volumetric grid of inte-
rior free space to estimate the room boundary correctly. It might even be possible to predict
whether the given room is a bedroom or an office based on the given free space signature.
Similarly, for object classification, the most promising research direction is a development of
the most suitable deep learning architectures that can consume PCs directly. The first one to
propose a neural network architecture for this task was the PointNet method [114]. Whereas
a number of methods working on similar research problem appeared afterward, it remains
an important research question what deep learning architecture is most suitable for semantic
understanding. Towards this goal, the network should be able to take not only global but
also local geometric features into account when performing segmentation, as both of them
are crucial for precise semantic segmentation. Furthermore, by using learning-based meth-
ods, it might be possible to develop generic methods for recognition, which do not need to
be entirely retrained on another dataset. Instead, only the last several layers of the network
(typically responsible for classification based on previously extracted features) would need
to be fine-tuned on another dataset. This would allow to significantly reduce the required
amount of annotated data while producing generalizable models.

Context information. Another important research direction is how to consider context
information when performing semantic segmentation. The existing deep learning methods
typically apply convolutional layers with a certain receptive field that considers only part of
the object geometry at once. In contrast, people strongly leverage context information (e.g.,
nearby objects, room, building, city) when performing semantic segmentation. For example,
a chair is likely to be located in an office environment, whereas jacuzzi is more likely to ap-
pear in a spa area of a hotel. Hence, it is important to develop models that are inherently
able to include this context information to improve the resulting segmentation performance.

Model-based learning. Many objects in indoor environments typically exhibit certain
shapes that can be easily described by humans in a couple of words by following our in-
tuition. For example, a chair is “an object on which one sits, it has a leg (or legs), a seat
and a back”. Modern supervised learning methods cannot include such object description
into their learning. Instead, the methods learn this (or perhaps similar) structure by looking
at thousands of chair instances in a cumbersome learning procedure. Instead of doing this
in a purely data-driven fashion, it might be beneficial to develop methods that can include
model assumptions into their training procedure. By including additional requirements into
the optimization procedure a smaller amount of annotated data might be necessary to obtain
the same segmentation performance.
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given point is shown as ni. The point from which the given point pi has been observed
is shown in green. The centroid of the point neighborhood pi is shown in yellow. The
corresponding vector from the given point to the observation point is called viewpoint
vector vi. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Illustration of the normal direction estimation result for the PC data of bunny from Fig. 2.1.
The white arrows originating at the corresponding points of the PC indicate normal direc-
tions. It can be observed that the normal directions follow the local surface orientations. . . 16

2.7 Left: PCA normal estimation result, right: Robust Randomized Hough Transform (RRHT)
normal estimation result for the edge area of an object. The white arrows originating at
the corresponding points of the PC indicate normal directions. The left figure shows that
the normals corresponding to the points lying close to the object edge (top-left corner)
smoothly change their direction to accommodate for the change in the object geometry
due to the edge. This can lead to loss of information on the object boundary for object
recognition algorithms. In contrast, in the right figure, it can be observed that the nor-
mal vectors are oriented in vertical and horizontal directions, thus creating a clear, sharp
transition between the two sides of the object. Such sharp transitions in normal vectors
corresponding to the change in geometry allow many object recognition algorithms to
improve their performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Left: PCA normal estimation result, right: RRHT normal estimation result. The color of
the point corresponds to the unique colormap scheme, where each normal vector direc-
tion is mapped to a unique color on a sphere. Similar to Fig. 2.7, it can be seen in the left
that the PCA normal estimation leads to noisy normal vectors, especially in the areas with
low point density. In contrast, in the right figure it can be seen that the normal vectors are
oriented in vertical and horizontal directions, thus creating a clear, sharp transition in the
normal vectors between the two sides of the object. . . . . . . . . . . . . . . . . . . . . . . . 18

2.9 Illustration of a directed graph for the min-cut algorithm. Non-terminal nodes are shown
in black. Edges to terminal nodes source s and sink t are shown in red and blue, re-
spectively. Smoothness edges connecting non-terminal nodes are shown in yellow. The
min-cut partitioning is shown in green. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.10 Illustration of a grid graph for image pixels. Non-terminal nodes are pixels from the im-
age. For illustration purposes, only nine pixel nodes are shown. Background image is
CC0 Creative Common license. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.11 Illustration of the differences between DBSCAN (top) and HDBSCAN (bottom) cluster-
ings on a point dataset with varying point density and non-convex cluster shapes. Colored
points are assigned to the corresponding clusters so that different colors denote distinct
clusters. Outlier points that are not assigned to any cluster are shown in black. HDBSCAN
is able to distinguish the two distinct clusters in the top left area and two different clus-
ters in the middle region (red and violet), whereas DBSCAN erroneously merges them
together (these erroneous clusters are shown in encircled areas). . . . . . . . . . . . . . . . . 24
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2.12 Illustration of the PC data (left) and the corresponding segmentation into supervoxels
(right). In the right, different colors of points correspond to different segments. Here 1000

points in the PC (left) are replaced by 50 clusters (right). This supervoxel clustering step
results in a significant reduction of computational complexity when performing object
segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.13 Illustration of a typical convolutional neural network architecture. It consists of convolu-
tional, max-pooling and fully connected layers, followed by dropout. At the output ŷ, the
class of the input data x is predicted. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.14 Illustration of ReLU function output vs. input. In essence, ReLU represent a linear oper-
ation in the positive range of the input data. In case the input data becomes negative, it
“shuts off”, hence a value of 0 is output. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.15 Illustration of the PC data segmented into rooms (top-view). Different colors of the points
correspond to different room segments. Observe the u-shaped corridor in the middle that
is denoted here as three separate rooms (green, purple and orange colors), whereas it is
also correct to denote it as one large room. Dataset of [11]. . . . . . . . . . . . . . . . . . . . 32

2.16 Illustration of the PC dataset with tilted walls violating the Manhattan world assumption.
Many existing room segmentation methods would fail on such data. Dataset from [57]. . . 32

2.17 The PC of a room is shown on the left. The corresponding RGB image is shown on the
right. It can be observed that significant parts of the object geometry are missing due to
the fast mapping procedure - denoted as white areas in the middle of the left image. Due
to limited scanning time, the objects cannot be scanned from all sides. Dataset of [4]. . . . . 33

2.18 Illustration of the object segmentation for the chair. Left: the entire chair is treated as one
object. Right: the chair parts are treated as separate objects. Here, different colors cor-
respond to distinct segments. It can observed that it is meaningful to consider multiple
segmentation scales at once. Dataset of [4]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.19 Left: illustration of a typical PC dataset obtained using handheld sensors depicting a small
part of an indoor environment (dataset of [59]). A low level of registration artifacts and
high point density can be observed. Occlusions, however, still exist. Right: typical MVPC
dataset captured using a laser scanner in large-scale scenario (dataset of [4]). Higher levels
of registration artifacts, reflections and occlusions are present. . . . . . . . . . . . . . . . . . 37

3.1 Illustration of the desired result of room segmentation (right) based on the PC data (left),
where the points corresponding to different rooms are assigned to distinct segments. In
the right part, different colors denote different rooms. . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Illustration of rooms as inner free spaces separated by openings with different volumet-
ric signature. Top: side view of an indoor environment with two rooms separated by a
smaller room (corridor denoted as room 2). Furniture is shown in brown, several free
voxels with the corresponding potential field (PF) values are also shown. Bottom: top-
down view with proposed anisotropic PF maximum values along the vertical voxel stack.
For voxels, red corresponds to high PF values and dark blue to low. Adapted from [5],
©2017 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
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3.3 Overview of the proposed room segmentation method on the dataset of [4]. Input PC (A)
is used to estimate the voxels that are inside the building (also called as interior free space)
(B). Given the interior free space, the 3D potential field (PF) for every voxel is computed.
The maxima of 3D PF along each vertical voxel stack are shown in (C). The maxima are
projected onto a 2D PF image (D), which is then used to partition voxels (now pixels) into
separate rooms resulting in a segmented image (E). In the final step, the 2D segmentation
is projected onto the 3D PC producing a segmented PC (F). . . . . . . . . . . . . . . . . . . 50

3.4 Illustration of dominant directions for the voxel v in an indoor environment. The domi-
nant directions coincide with normal directions of the largest planes and in general do not
coincide with directions of X and Y axes, as shown here. A dominant direction consists
of two co-planar directions, e.g., z+ and z− or n1 and n3. Normals for the corresponding
planes ni are also shown on the Extended Gaussian image on the right. It can be observed
that the number of dominant directions for this environment is small (3). . . . . . . . . . . 52

3.5 Room segmentation results for the dataset violating the Manhattan world assumption
[69]. Different buildings are shown in different rows. Top row: Modern, middle row: Cot-
tage, bottom row: Penthouse. Left column: reconstruction result of [69], where different
colors correspond to different room segments. Middle column: PF map, where low val-
ues of the PF field are shown in dark blue and high values in red. Right column: room
segmentation result of the proposed method. In the right column, different colors corre-
spond to different room segments. It can be observed that all rooms have been correctly
segmented by the proposed segmentation method, despite the fact that the sensor pose
information was not used. The method of Mura et al. does not generate segmentation on
the point basis, therefore only the reconstruction result is provided. Reproduced from [5],
©2017 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.6 Room segmentation results for the large-scale dataset of Armeni et al. [11]. From left to
right column: ground truth, segmentation result of [11], PF map for the proposed method,
segmentation result of the proposed method. Here, in the two left columns and the right-
most column, different colors correspond to different room segments. In the second from
right column, low values of the PF map are shown in dark blue, whereas the high values
as shown in red. Here, red ellipses denote erroneously segmented rooms. Adapted from
[5], ©2017 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.7 Results for the dataset of [14] for different buildings. From left to right column: Office 1,
Office 2, Apartment 1, Apartment 2, Apartment 3. Top row: results of [14], middle row: PF
map of the proposed method, bottom row: segmentation result for the proposed method.
Here, in the top and bottom rows, different colors correspond to different room segments.
In the middle row, low values of the PF map are shown in dark blue, whereas the high
values as shown in red. Red ellipses denote erroneously segmented rooms. Reproduced
from [5], ©2017 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.8 Illustration of room segmentation result (right) for the proposed method on the dataset of
[4]. The corresponding PF maxima in 3D are shown on the left. It can be observed that the
proposed method can correctly segment all rooms. . . . . . . . . . . . . . . . . . . . . . . . 61
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4.1 Once the PC data of the building has been segmented into rooms (left), one can process
every room separately and perform the task of object segmentation (right), where the seg-
ments within the room that correspond to different objects need to be determined. Here,
different colors denote different room and object segments in the left and right parts, re-
spectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2 Processing steps of the analyzed segmentation pipeline with the result of the correspond-
ing step shown above it. Input PC (1) is first preprocessed. This is followed by a noisy
point removal step (2). After that, the non-convex points satisfying the proposed concav-
ity criteria are discarded (3). In the following, supervoxels are extracted from the remain-
ing points (4). The supervoxels and the edges connecting them are used in the graph cut
segmentation (5). Finally, the removed points are recovered (6). Here, in Subfigures (4-6)
different colors correspond to different segments. In Subfigures 2 and 3, curvature values
of the corresponding points are color coded as follows: low values are shown in green
and high values in red. Reproduced from [4] with permission, © 2017 INSTICC. . . . . . . 67

4.3 To illustrate the influence of noisy regions on the surface graph, a table region in the of-
fice in dataset [4] is shown. From left to right: RGB image, PC, surface graph. In the PC,
points are color coded according to the corresponding curvature value: low values are
shown in green and high value in red. Erroneous connections in the surface graph that
result from noise in a planar region are encircled in red. After the non-convex region re-
moval step, these noisy points in the planar region along the erroneous connections are
removed. Reproduced from [4] with permission, © 2017 INSTICC. . . . . . . . . . . . . . . 68

4.4 Illustration of high-curvature regions with normal n and the neighboring points. The
points located in the positive half-space (same as the normal vector) are shown in red,
whereas the points located in the negative half-space are shown in blue. Left: concave
region. Middle: convex region. Right: ambiguous region. The numbers N+ and N− indi-
cate the number of points in positive and negative half-space, respectively. By using this
number, convex, concave and ambiguous regions can be easily distinguished. Adapted
from [4], ©2017 INSTICC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Illustration of the PC showing one floor of an office environment of the captured laser
scanner dataset (see Section 4.3.1.1). Zoomed in area of a specific room is shown in the
bottom. It can be observed that there is a significant amount of noise and occlusions re-
sulting from the rapid mapping procedure and reflections from glass. . . . . . . . . . . . . 73

4.6 Illustration of object appearance for different categories in the annotation of the captured
laser scanner dataset. The PC data exhibits significant level of occlusion and undersam-
pling due to the rapid scanning procedure. Chairs have large intra-class geometry variance. 74

4.7 Illustration of values within input and output variables for the proposed algorithm to
find GT segments of the correct scale. Top: input data. Bottom: output data after the algo-
rithm’s execution. The merged fine segments of IM and the corresponding point groups
are highlighted in color. It can be observed that the proposed evaluation metric is able to
correctly compute a suitable object scale for accurate evaluation. . . . . . . . . . . . . . . . 81
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4.8 Segmentation results for the laser scanner dataset scenes 1 and 3 (left and right column).
Here, row A shows RGB information that is given for illustration, but not used by any
of the algorithms. B is the fine GT. C illustrates coarse GT. D represents LCCP segmen-
tation results. E shows segmentation results of the approach of Van Kaick et al. [85]. F
corresponds to segmentation results of the proposed method. Observe that the proposed
method correctly segments the chairs and table areas in scene 1. In contrast, Vak Kaick
and LCCP oversegment the table area and the chair backs. Reproduced with permission
from [4], ©2017 INSTICC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.9 Segmentation results for the laser scanner dataset scenes 2 and 4 (left and right column).
Here, row A shows RGB information that is given for illustration, but not used by any
of the algorithms. B is the fine GT. C illustrates coarse GT. D represents LCCP segmen-
tation results. E shows segmentation results of the approach of Van Kaick et al. [85]. F
corresponds to segmentation results of the proposed method. Observe that the proposed
method correctly segments the chairs placed around the table in scene 2. Due to the sparse
PC data in the table region of scene 2, none of the algorithms can correctly segment the ta-
ble into a single region. Moreover, the segmentation performance of the proposed method
on the chairs in scene 4 is superior as compared to the other methods, where Vak Kaick
and LCCP methods oversegment the table area and the chair backs. Reproduced with
permission from [4], ©2017 INSTICC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.10 Segmentation results for the laser scanner dataset scenes 5 and 6 (left and right column).
Here, row A shows RGB information that is given for illustration, but not used by any
of the algorithms. B is the fine GT. C illustrates coarse GT. D represents LCCP segmen-
tation results. E shows segmentation results of the approach of Van Kaick et al. [85]. F
corresponds to segmentation results of the proposed method. It can be seen that all of
the algorithms oversegment the table and chair regions in in the bottom right of scene 5

due to PC data sparsity. For scene 6, the proposed method can correctly segment the table
and chair area, as compared to LCCP and Van Kaick et al. methods. Reproduced with
permission from [4], ©2017 INSTICC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.11 Exemplary segmentation results for the OSD dataset [53]. Top to bottom row: scene 42,
scene 51 and scene 63. Within each row from left to right column: GT labeling and seg-
mentation results of the proposed algorithm. Different colors of the objects correspond to
different labels. The proposed method performs erroneous segmentation for the top-right
part of the scene in the book area. Furthermore, the cup is oversegmented into two areas
due to concavity. Finally, the book that is fully occluded in the middle part is segmented
into two parts, despite that it represents one object. This is a particularly challenging
segmentation task for any method using geometry only. . . . . . . . . . . . . . . . . . . . . 85

4.12 Exemplary object segmentation results for the dataset of Lai et al. [59]. Left column: PC
data. Right column: segmentation result of the proposed method. From top to bottom
rows: scene 6, 8 and 14. In the right column, different colors correspond to the different
object segments. The proposed method achieves good segmentation performance by ac-
curately segmenting objects on the table. The major segmentation mistakes correspond to
the floor area of scene 14 and the wall area of scene 6. This is due to the curved surface
properties, which serve as indication of the object boundary. . . . . . . . . . . . . . . . . . 86

4.13 Illustration of the registration inaccuracies for the indoor SUN dataset of Song et al. [129].
Observe that there are several hypotheses for points describing the chair arm, which result
in unclear object boundaries and high point noise (encircled areas). . . . . . . . . . . . . . . 87
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4.14 Relative number of removed supervoxel graph edges for intra- and inter-object connec-
tions vs. curvature threshold θt. Inter-object connections are shown in solid lines, whereas
intra-object ones are shown in dashed lines. By choosing the threshold value in the
range 0.02 to 0.03 a significant number of inter-object connections are removed (68.31%),
whereas most of the intra-object connections are preserved (77.21%). This allows to sig-
nificantly simplify the segmentation task while achieving even better performance. Note
the low number of removed intra-object connections. Reproduced with permission from
[4], ©2017 INSTICC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1 Once the PC data of the rooms has been segmented into objects, each object has to be clas-
sified according to its semantic meaning. Different colors correspond to distinct segments
that need to be assigned to one of the semantic categories. Dataset of [11]. . . . . . . . . . . 89

5.2 Overview of the proposed object classification pipeline that is a combination of a novel
handcrafted descriptor and a 4D convolutional neural network (CNN). For details on the
network architecture and layer dimensions, see Fig. 5.7. Here, FC denotes a fully con-
nected layer. Reproduced from [1], ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3 Illustration of the points p1, p2, their normal vectors n1, n2 and the Euclidean distance
f1 = ‖d‖2. n1

′ denotes n1 that originates at p2. The resulting angles between vectors d

and the tangent patches of points p1 and p2 are shown as β1 and β2, respectively. Tangen-
tial planes of surfaces at points p1 and p2 are shown in blue. Adapted from [1], ©2018 IEEE. 92

5.4 Illustration of the case with point pairs (p1,p2) (left) and (p3,p4) (right) that have similar
Euclidean (f1) and normal distances (f3), but still describe significantly different shapes.
The maximum angle between patches and direction f2 is an important feature for such
case. Adapted from [1], ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.5 2D illustration of the grid used for performing voxel occupancy checks for the voxels ly-
ing along the line (dashed line) connecting a given point pair p1 and p2 and another point
pair p1 and p3. Adapted from [1], ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 4D histogram (right) that is used to discretize the aggregated counts of sampled PPF val-
ues into a descriptor. Blue color denotes the bins with low number of counts, whereas
red corresponds to high. The corresponding object PC data is shown in the left. It can
be seen that the different function values are aggregated in different parts of the resulting
histogram. Reproduced from [1], ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.7 Architecture of the proposed 4D neural network. Input data is a 4D descriptor computed
from the PC data. The descriptor histogram is provided to the neural network for object
classification. “Conv.” denotes convolutional layer. ReLU stands for rectified linear unit
(ReLU). Table 5.1 provides more details on the dimensions. Adapted from [1], ©2018 IEEE. 97

5.8 Illustration of the PC data for two instances (left and right) of object table from the Stanford
dataset [11]. Significant variations in geometry between the two instances can be observed. 100

5.9 Illustration of the PC data (left) for object table from the ScanNet dataset [138]. Colored
mesh is shown on the right. The table leg was erroneously labeled as not belonging to the
table object, as can be seen from the PC data. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.10 Illustration of the PC data for two instances (left and right) of object table from the Mod-
elNet40 dataset [137]. The variations in geometry between the two instances are much
lower as compared to other datasets. There is practically no occlusion or noise in this data. 101
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5.11 Ablation study of various features. Influence of function removal on the retrieval perfor-
mance (F1-score) is shown for the proposed descriptor. One function is removed at a time.
Averaged over ten runs. It can be seen that the most important feature for retrieval is Eu-
clidean distance f1, whereas occupancy ratio f4 shows the smallest impact on the result.
In case normal information is noisy (f3 on the Stanford dataset), the removal of feature f3
can lead to improved performance. Adapted from [1], ©2018 IEEE. . . . . . . . . . . . . . . 103

5.12 Influence of scaling for feature f1 on the object retrieval performance (F1-score) on the
Stanford dataset. The retrieval experiments have been repeated five times. In red, the
average value of F1-score is shown. In blue, the standard deviation of the correspond-
ing measured value of F1-score is shown. It can be seen that the maximum object scaling
achieves the highest retrieval performance. This can be explained by the fact that scaling
each object into unit cube leads to loss of information about the absolute object dimen-
sions. This, in turn, leads to deterioration of retrieval performance. . . . . . . . . . . . . . . 104

5.13 Influence of different functions for feature f2 = f(β1, β2) on the object retrieval perfor-
mance (F1-score) on the Stanford dataset. The retrieval experiments have been repeated
five times. In red, the average value of F1-score is shown. In blue, the standard devi-
ation of the corresponding value of F1-score is shown. “Maximum” denotes maximum
function, “Minimum” denotes minimum function. “Mean” denotes average of two val-
ues. “One only” denotes randomly selected one of the two values. “Both instead of f4”
denotes a modified version of the descriptor described in Equation 5.13. It can be seen
that the maximum function achieves the highest retrieval performance. . . . . . . . . . . . 105

5.14 Illustration of the confusion matrix for the proposed method on the ScanNet dataset. The
proposed method has problems distinguishing microwave from lamp and chair, which
might be due to its small physical dimensions. Similarly, TV and chair are also often con-
fused. The other categories can be classified by the proposed method much more accurately.107

5.15 Illustration of the confusion matrix for PointNet on the ScanNet dataset. From the con-
fusion matrix for PointNet it can be observed that the network often confuses various
categories with cabinet. This might be due to the fact that the network is unable to learn
the learn generalizable and robust features to distinguish different categories. . . . . . . . . 108

5.16 Illustration of the influence of standard deviation values for zero-mean Gaussian random
noise on the classification accuracy for the M40 dataset using 1024 points. The noise is
added to each point coordinate independently. PointNet results taken from [114]. Even
though PointNet outperforms the proposed approach on lower levels of noise, with in-
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contrast, PointNet performance starts to drastically deteriorate already at standard devi-
ation values of 0.06 (e.g., 6% of the unit cube size). Adapted from [1], ©2018 IEEE. . . . . . 109

5.17 4D descriptor values and the corresponding CNN filter responses for the object table (see
Fig. 5.9 for PC data) in the ScanNet dataset. Left column: descriptor values. Middle col-
umn: responses of the first filter in the first layer. Right column: responses of the first filter
in the second layer. The rows show slices of the fourth dimension for descriptor and filter
values. Transparent bins correspond to constant offset values for the response (or 0 for
the descriptor values), colored bins - to varying values. The bins are colored so that low
values are shown in blue color, while high in red. . . . . . . . . . . . . . . . . . . . . . . . . 110
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scenes. Moreover, a combination of the proposed concavity criterion with LCCP leads to
an improvement as compared to LCCP only. This confirms that the proposed convexity
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segmentation performance. Reproduced with permission from [4], ©2017 INSTICC. . . . . 77

4.2 Performance comparison of different segmentation methods on the OSD dataset with re-
spect to under- and oversegmentation errors (smaller is better). It can be observed that the
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OS and US errors. Reproduced with permission from [4], ©2017 INSTICC. . . . . . . . . . . 78
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5.2 Retrieval performance for the tested handcrafted descriptors. Results averaged over ten
iterations. The mean value is given in the corresponding column, while the standard de-
viation of the measured value is given in brackets. Best performance is shown in bold.
The EPPF descriptors outperform the other methods on the Stanford and ScanNet bench-
marks. The descriptors show good performance on the ModelNet40 dataset, as compared
to Wahl et al. Reproduced from [1], ©2018 IEEE. . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.3 Classification performance of deep learning approaches using 2D, 3D and 4D convolu-
tional layers on indoor 3D datasets concerning accuracy and F1-score. Greater is better.
Best value is shown in bold. EPPF 4D outperforms the other methods on the Stanford
and ScanNet datasets. On the ModelNet40 dataset PointNet shows superior performance
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when lower levels of noise are observed. Reproduced from [1], ©2018 IEEE. . . . . . . . . . 106
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