
FAKULTÄT FÜR INFORMATIK

DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

An Architectural Style for Fog Computing:
Formalization and Application

Andreas Horst Nikolaus Seitz





FAKULTÄT FÜR INFORMATIK
DER TECHNISCHEN UNIVERSITÄT MÜNCHEN

Forschungs- und Lehreinheit 1
Angewandte Softwaretechnik

An Architectural Style for Fog Computing:
Formalization and Application

Andreas Horst Nikolaus Seitz

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Jörg Ott

Prüfer der Dissertation: 1. Prof. Bernd Brügge, Ph.D.
2. Prof. Dr. Dirk Riehle

Die Dissertation wurde am 17.01.2019 bei der Technischen Universität München ein-
gereicht und durch die Fakultät für Informatik am 10.03.2019 angenommen.





Abstract

The simultaneous realization of non-functional requirements such as real-time access,
synchronization, scalability, and availability represents a challenge in existing software
architectures. In particular, current architectures do not allow the easy formulation of
trade-offs that include real-time access and synchronization. This dissertation presents
the Fogxy architectural style to address these problems. It allows to address these
challenges during the different phases of a software engineering lifecycle from anal-
ysis to build- and release-management. Fogxy is based on the Fog Meta Model to
identify objects and packages that are critical for the realization of non-functional
requirements. Fogxy provides abstractions for a variety of application domains, such
as manufacturing, digital health, and smart environments. To evaluate Fogxy, we
introduce a method called Review for Intermediate Architectural Patterns (RIAP).
To validate the Fog Meta Model and Fogxy we applied them in two industrial Fog
Computing applications. In each of these applications, software engineers were able
to simultaneously realize real-time access and synchronization by using the formaliza-
tions based on the Fog Meta Model and Fogxy. With Seamless Computing, we present
a build- and release-management concept that enables the homogeneous distribution
of Fogxy components to heterogeneous hardware nodes.

v





Zusammenfassung

Nicht-funktionale Anforderungen wie Echtzeitzugriff, Synchronisation, Skalierbarkeit
und Verfügbarkeit stellen eine Herausforderung für bestehende Softwarearchitekturen
dar. Insbesondere erlauben diese Architekturen nicht die gleichzeitige Realisierung
von Echtzeitzugriff und Synchronisation. Diese Dissertation präsentiert den Fogxy
Architekturstil, der diese Herausforderungen in den verschiedenen Phasen der Soft-
ware Entwicklung von der Analyse bis zum Build- und Release-Management bewältigt.
Fogxy basiert auf dem Fog Meta Model, um Objekte und Pakete zu identifizieren, die
für die Realisierung nichtfunktionaler Anforderungen entscheidend sind. Fogxy bie-
tet Abstraktionen für eine Vielzahl von Anwendungsbereichen wie industrielle Pro-
duktion, Digitale Gesundheit und Intelligente Umgebungen. Zur Evaluierung von
Fogxy führen wir eine neue Methode RIAP (Review for Intermediate Architectural
Patterns) ein. Das Fog Meta Model und der Fogxy Architekturstil wurden in zwei
industriellen Fog Computing-Anwendungen eingesetzt. In jeder dieser Anwendungen
konnten die Entwickler gleichzeitig Echtzeitzugriff und Synchronisation mit Hilfe des
Fog Meta Models und Fogxy realisieren. Mit Seamless Computing präsentieren wir ein
Build- und Release-Management Konzept, das die homogene Verteilung von Fogxy-
Komponenten auf heterogene Hardwareknoten ermöglicht.

vii





Acknowledgments

This dissertation would not have been possible without the inspiration, ideas, en-
couragement, and support of many people. I would like to thank all the people that
accompanied me on my journey.

First of all, thank you, Bernd Brügge. You taught me a lot in your inimitable way;
you continuously inspired and motivated me. Many thanks for the opportunities and
the great time, which I will certainly never forget. Thank you also to Dirk Riehle as
second advisor of this dissertation.

Furthermore, I would like to thank my colleagues and co-authors for the collabora-
tion as well as the exciting and inspiring discussions on the most diverse topics. Thank
you very much for your support and the time I was allowed to spend with you. Many
thanks especially to Constantin Scheuermann, Stephan Krusche, Jan Ole Johanßen,
Lukas Alperowitz, Dora Dzvonyar, Dominic Henze, and Nadine von Frankenberg. Not
to forget all the other members of the chair who made the experience so wonderful
and exciting. Thanks to all the students whose final theses I advised or worked within
the iPraktikum and lectures.

My friends played a crucial role in this dissertation. The combination of research,
teaching, leisure time, and time spent with friends made life enjoyable. Unfortunately,
I cannot name all of them here personally, but I am grateful to each of you for your
trust, support and our time together.

I would like to express my deep gratitude and love for my family. My sincere thanks
to my parents Reinhard and Evelyn and my sister Lisa. You are always there for me
and you support me in all my projects. Thank you also for your patience, which I try
from time to time. Without you, none of this would have happened.

Finally and most importantly, thank you, Sandra. The past months have certainly
not been easy, but you always encouraged and motivated me. I am profoundly grate-
ful for your support, your trust, and your love.

ix





Contents

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Research Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Foundations 9
2.1 Internet of Things (IoT) . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Software Architecture and Patterns . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.2 Software Quality Attributes . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Software Evaluation Methods . . . . . . . . . . . . . . . . . . . 14

2.3 Pattern-Based Development (PBD) . . . . . . . . . . . . . . . . . . . . 16
2.4 Fog and Edge Computing Paradigms . . . . . . . . . . . . . . . . . . . 17

2.4.1 Fog Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.2 Cloudlets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.3 Edge Computing . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Fog Meta Model 23
3.1 Objectives and Design Goals . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.1 FRODO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 FARADAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

xi



Contents

4 Fogxy - An Architectural Style for Fog Computing 33
4.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4 Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.7 Related Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.8 Known Uses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.9 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.9.1 FARADAY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.9.2 FEAt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 APEP and RIAP 53
5.1 Architectural Pattern Evaluation Process (APEP) . . . . . . . . . . . . 53

5.1.1 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1.2 Architectural Pattern Evaluation Methods . . . . . . . . . . . . 54
5.1.3 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2 Review for Intermediate Architectural Patterns (RIAP) . . . . . . . . . 56
5.2.1 Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.2 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Application Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 Reviewers and Environment . . . . . . . . . . . . . . . . . . . . 61
5.3.3 Evolution of the RIAP Method . . . . . . . . . . . . . . . . . . 62
5.3.4 Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.5 Issue List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Seamless Computing 67
6.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.3 Reference Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4 Gap Fit Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.5 Application Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.5.1 Fogernetes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.5.2 DYSCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

xii



7 Case Studies 89
7.1 AIIoT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.2 IIoT Bazaar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8 Conclusion 107
8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography 111

xiii





List of Figures

1.1 Fog Computing multiple inheritance . . . . . . . . . . . . . . . . . . . . . 1
1.2 Breakdown of formalizations by chapter . . . . . . . . . . . . . . . . . . . 4
1.3 Formative and iterative research approach . . . . . . . . . . . . . . . . . . 6
1.4 Allocation of application examples to domains . . . . . . . . . . . . . . . . 7

2.1 Internet of Things taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Relationship of Software Architecture key concepts . . . . . . . . . . . . . 12
2.3 Pattern catalog for Pattern-Based Development . . . . . . . . . . . . . . . 16
2.4 Fog and Edge Computing Paradigms taxonomy . . . . . . . . . . . . . . . 18
2.5 Hierarchical structure of Fog Computing . . . . . . . . . . . . . . . . . . . 20

3.1 Towards the Fog Meta Model . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Target Matter taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Fog Meta Model UML profile extension . . . . . . . . . . . . . . . . . . . . 26
3.4 Fog Meta Model color scheme . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 FRODO analysis object model . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.6 FARADAY analysis object model . . . . . . . . . . . . . . . . . . . . . . . 30

4.1 Pattern mining approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Smart Object taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3 Fogxy architectural style overview . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Fogxy architectural style component view . . . . . . . . . . . . . . . . . . 38
4.5 Fogxy architectural style deployment view . . . . . . . . . . . . . . . . . . 39
4.6 Fogxy architectural style communication dynamics . . . . . . . . . . . . . 40
4.7 Reduced Latency Architectures taxonomy . . . . . . . . . . . . . . . . . . 43
4.8 FARADAY packaged analysis object model . . . . . . . . . . . . . . . . . . 46
4.9 FARADAY deployment diagram . . . . . . . . . . . . . . . . . . . . . . . . 46
4.10 FARADAY test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.11 FARADAY bandwidth savings . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.12 FEAt test setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xv



List of Figures

4.13 FEAt deployment diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 APEP process overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.2 APEP activity overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3 APEP conduction activity diagram . . . . . . . . . . . . . . . . . . . . . . 55
5.4 Issue list structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.5 Anti pattern structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.6 RIAP rehearsal phase activities . . . . . . . . . . . . . . . . . . . . . . . . 58
5.7 RIAP review phase activities . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.8 Prior knowledge distribution of the RIAP application example . . . . . . . 61
5.9 RIAP working environment and results . . . . . . . . . . . . . . . . . . . . 61

6.1 Seamless Computing domains . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2 Workload Mobility in Seamless Computing . . . . . . . . . . . . . . . . . . 70
6.3 Seamless Computing reference model . . . . . . . . . . . . . . . . . . . . . 71
6.4 Fodeo top-level design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.5 Fodeo deployment diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.6 DYSCO test case design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.7 DYSCO test case setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

7.1 Overview of application examples and related publications . . . . . . . . . 89
7.2 AIIoT analysis object model . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3 AIIoT top-level design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
7.4 AIIoT demonstration board . . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.5 AIIoT smiley visualization for the state of a device . . . . . . . . . . . . . 96
7.6 AIIoT AR user interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.7 IIoT Bazaar analysis object model . . . . . . . . . . . . . . . . . . . . . . 100
7.8 IIoT Bazaar top-level design . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.9 IIoT Bazaar deployment diagram . . . . . . . . . . . . . . . . . . . . . . . 103
7.10 IIoT Bazaar AR user interface . . . . . . . . . . . . . . . . . . . . . . . . . 105

8.1 Contributions overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

xvi



List of Tables

4.1 FARADAY processing time . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 FEAt test measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1 RIAP application example metrics . . . . . . . . . . . . . . . . . . . . . . . 63

6.1 Seamless Computing technology gap fit analysis . . . . . . . . . . . . . . . . 73
6.2 Fogernetes labels describing node capabilities . . . . . . . . . . . . . . . . . 79
6.3 Fogernetes labels describing component requirements . . . . . . . . . . . . . 80
6.4 DYSCO deployment mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1 AIIoT emoji to sensor mapping . . . . . . . . . . . . . . . . . . . . . . . . . 95

xvii





Chapter 1

Introduction

Fog Computing is a new architectural style based on Cloud Computing. Cloud Com-
puting as a replacement for the client-server architectural style has established itself
as a computing paradigm to synchronize data among multiple clients. However, it
is not appropriate for clients with real-time constraints, in particular for low latency
requirements. Fog Computing, also known as Edge Computing or Cloudlets, proposes
to simultaneously address these requirements—synchronization of data, real-time ac-
cess, and availability—and enables the realization of design goals previously considered
trade-offs.

Centralized Computing Decentralized Computing

Fog Computing

Mainframe

Cloud Computing

Client-Server Internet of Things

Mobile Computing

Personal Computer

Ubiquitous Computing

Figure 1.1: Fog Computing multiple inheritance

The pendulum effect between decentralization and centralization has already oc-
curred several times in the history of software architectures. In the early 1950s, the
mainframe computer was state-of-the-art. Machines were used to perform mathe-
matical calculations “that were mostly run by experts behind closed doors” [WB97].
With the establishment of the personal computer (PC) and the client-server archi-
tectural style in the 1960s and 1970s, the mainframe was replaced and the shift from
centralization to decentralization occurred. The invention of the Internet combined
elements of the PC and the mainframe, linking millions of people and information,
a paradigm that Weiser describes as “client-server computing on a massive scale”
[WB97]. The penetration and versatility of this approach led to the development of
Cloud Computing in the 1990s and, in turn, once more a centralized approach. During
the 1990s, Weiser formulated his vision of Ubiquitous Computing. The concept has

1



Chapter 1: Introduction

been integrated into the paradigms of Mobile Computing, Internet of Things (IoT),
and Cyber-Physical Systems (CPSs) [Wei99]. The penetration of applications, an
increasing number of devices, and the amount of data generated pose challenges for
existing software architectures and in particular for Cloud Computing. “Purely cen-
tralized environments are ill-suited for applications that have soft and hard real-time
requirements” [WYG+17]. Fog Computing eases the decision-making between de-
centralized and centralized architectures because it inherits features from both (c.f.
Figure 1.1). It combines centralized Cloud Computing with decentralized IoT to elim-
inate cloud constraints and to meet real-time access and synchronization requirements
[BMZA12, SBCD09, Sat17a].
The following forces and reasons lead to the establishment of Fog Computing:

Low Latency and Real-Time Requirements: IoT applications have real-time
requirements and require low and predictable latency to make decisions and perform
actuations [DD17]. Unpredictable delays ruin the user experience of delay-sensitive
applications [HNYL17].

Standardization, Heterogeneity, and Interoperability: For Fog Computing no
standardization exists yet. The hardware ranges from embedded devices without op-
erating systems to virtualized solutions in the cloud.

Resource Limitation: Devices in IoT have special purposes and are limited in mem-
ory, computing power, network connectivity, and battery capacity [HNYL17].

Geographical Distribution: The cloud is located in central data centers, while
the nodes in Fog Computing are decentralized, allowing applications to be deployed
remotely with unreliable Internet connection. Orchestration of the distributed com-
ponents is required to enable their collaboration.

Missing and Inadequate Infrastructure: The requirements for network speed
and availability are constantly increasing. Data is being collected and processed, and
the number of requests being transmitted poses a challenge to the infrastructure. This
results in high network loads and possible restrictions due to insufficient or unavail-
able infrastructure.

Interplay with the Cloud: Cloud components are dynamically scalable, while
embedded devices meet real-time requirements. The combination of both approaches
eliminates their drawbacks.

2



Access Control: Large numbers of Smart Objects1 give rise to the challenge of con-
trolling access to cloud components. Data can be potentially harmful when transferred
to the cloud and can lead to security problems. An authentication and authorization
solution is required to control Smart Objects’ access.

Location Awareness and Mobility: The multitude of devices and their mobility
pose a challenge. Devices are used and set up at the edge of the network for IoT
scenarios. For orchestration, task distribution, and service provisioning, we must
verify which devices are located in a given environment and track the ones entering
or leaving it.

1.1 Problem

Yacoub states that the “most difficult part of building software is not coding; it is
the decisions you make early at the design level. Those design decisions live with
the system for the rest of its lifetime” [YA03]. Typically, these decisions are made at
development time, making subsequent changes to the chosen architecture expensive
or impossible. The goal is to postpone the decision between the architecture to be
able to dynamically adapt the architecture to changing non-functional requirements
and quality attributes. We therefore hypothesize that the Fogxy architectural style
minimizes trade-offs between centralized and decentralized computing. For example,
the analysis of sensor data must be done in real-time while historical data must be
stored centrally and synchronized with all interested parties. We describe the Fog
Meta Model and Seamless Computing formalizations that enable architecture deci-
sions to be made at runtime. Software engineers no longer need to choose between a
centralized or decentralized architecture. Depending on the context, application com-
ponents can be dynamically allocated to fulfill the functionality within the required
quality criteria.

Furthermore, there is “no common picture on what Fog Computing and a fog node,
as its main building block, really is” [MMA+16]. Fog Computing, its architecture, and
its impact on a software engineering process are still in its infancy. Non-functional
requirements affecting the design, implementation, distribution, and integration of
distributed systems on heterogeneous hardware nodes must be considered. Fog Com-
puting requires engineered systems, definitions, and formalizations to achieve the
promised benefits. The convergence of Cloud Computing and IoT leads to challenges
and the need for methodologies, tools, and models to effectively design, develop, and
deploy Fog Computing applications.

1Smart Objects are defined in Chapter 4.

3



Chapter 1: Introduction

1.2 Research Objectives

The primary objective is to validate the hypothesis we set out in the previous sec-
tion. By applying the Fogxy architectural style, previously exclusive requirements can
be fulfilled simultaneously. The decision for or against a decentralized architecture
can be made at runtime. To take advantage of both decentralized and centralized
paradigms, it is not sufficient to use the style alone. Fogxy affects all phases of a
software engineering lifecycle and there is a need for further methods. Through the
practical implementation of Fog Computing applications, we derive formalizations for
the phases. Chen et al. highlight challenges regarding programming abstracts and
models, fog architecture, and resource provisioning and management [CZS17]. We
present a tailored lifecycle, namely Pattern-Based Development (PBD), which builds
on the intensive use of patterns (cf. Section 2.3). For the phases analysis, system
design, object design, and build- and release-management, we derive three formaliza-
tions. Figure 1.2 shows the allocation of the formalizations to the phases, as well as
to the chapters.

Chapter 4 Chapter 6Chapter 3 

Fogxy Architectural StyleFog Meta Model Seamless Computing

Analysis System Design Object Design Build & Release

Pattern-Based Development

Application

Formalization

Figure 1.2: Breakdown of formalizations by chapter

1.3 Outline

This dissertation is structured as follows:

Chapter 2 introduces relevant foundations. We discuss the history of Fog Computing
and the history of software architecture and patterns in software engineering. The
terminology is clarified, and we illustrate the relation between the terms IoT, CPS,
Industrial Internet of Things (IIoT), and Industry 4.0. We present similarities and dif-
ferences regarding the terms Fog Computing, Edge Computing, Cloudlets, and related
concepts, and classify them under the generalization Fog and Edge Computing. We
discuss the Pattern-Based Development (PBD) lifecycle and delimit it from Pattern-
Oriented Analysis and Design (POAD) and Pattern-Based Engineering (PBE).

Chapter 3 describes the Fog Meta Model as an extension of the UML metamodel
by three stereotypes. The stereotypes allow the analysis of requirements and charac-

4



Section 1.3: Outline

teristics of Fog Computing applications as early as the analysis phase. We present
objectives and motivation, and describe the Fog Meta Model in detail. We demon-
strate the applicability of the Fog Meta Model in application examples, which we
carried out in the context of our research.

Chapter 4 presents the Fogxy architectural style using a schema that includes the
problem, context, and solution. In the solution, we present the style with the 4+1
view model for software architectures [Kru95]. By applying the Fogxy architectural
style in practice, we prove its applicability to Fog Computing applications in different
domains.

Chapter 5 describes the Review of Intermediate Architectural Patterns (RIAP)
method as part of the Architectural Pattern Evaluation Process (APEP). We apply
RIAP to evaluate the Fogxy architectural style. Through the practical application
of the methodologies, we were able to evaluate and formatively improve the Fogxy
architectural style and gain insights into the processes that we present in this chapter.
RIAP uses a scenario-based approach in which an architectural pattern for a specific
scenario is instantiated as a software architecture to check whether the non-functional
requirements derived from the scenario can be met.

Chapter 6 deals with the build- and release-management of Fog Computing appli-
cations. The multitude of components and their distribution poses integration and
deployment challenges. With Seamless Computing, we describe a concept in which
a homogeneous development environment is established to enable the static and dy-
namic assignment of components to different layers. With Fogernetes and DYSCO,
we present two implementations of Seamless Computing.

Chapter 7 presents the two case studies AIIoT and IIoT Bazaar. They validate the
Fog Meta Model, Fogxy architectural style, and Seamless Computing methods and
formalizations that have been presented. As application domains, we focus on two ap-
plications from manufacturing in which we demonstrate the simultaneous fulfillment
of previously exclusive requirements. The chapter provides an overview of the other
case studies presented in the form of publications.

Chapter 8 concludes the dissertation, summarizes the contributions, and provides
an outlook on future work.

5



Chapter 1: Introduction

The dissertation is based on published journal, conference, and workshop papers:
[SB18], [STB18b], [STB17], [MGSB17], [WSMB18], [GMP+18], [MGH+16], [KMS+18],
[SHS+18], [SBB18], [SJB+17], [SHM+18], [HSHB18], [KMS+18], [STB18a], and [ASB19].

Moreover, the following bachelor and master theses were supervised in the context of
this research: [Wan16], [Woe17], [Bec17], [Roh17], [Thi17], [Sye17], [Buc17], [Gaß17],
[Hel18], [Kra18], [Kat18], and [Bod18].

1.4 Research Approach

We applied a formative approach to extend and improve the three formalizations,
namely Fog Meta Model, Fogxy architectural style, and Seamless Computing. The
starting point of each investigation was always an application example with a prob-
lem statement. This problem was brought to us by cooperation partners and partly
constructed for the application examples. The application examples applied agile
development methods and an adapted software lifecycle from analysis to build- and
release-management [KABW14]. With PBD we focus on a lifecycle that forces the
intensive use of patterns in each of these phases.

Formalization

Application Analysis System & Object Design Build & Release

Fogxy Architectural StyleFog Meta Model Seamless Computing

System DesignRequirements Analysis Code Release

Refine Fog Meta Model Refine Fogxy Architectural Style Refine Seamless 
Computing

Application Example

New Application?

[Yes] [No]

apply apply apply apply

Figure 1.3: Formative and iterative research approach

From the practical application and implementation of the application examples, we
derive formalizations for the respective phases. Figure 1.3 depicts the research pro-
cess. We derive the Fog Meta Model for the analysis phase, the Fogxy architectural
style for the system design and object design, and Seamless Computing for the build-
and release-management phase. All problems refer to Fog Computing applications.
After completion of each application example, we initiated a new project and applied
the adapted formalizations, leading to an iterative improvement and extension of the
formalizations. The analysis of and reflection on the implementation and application
of formalizations allows them to be improved continuously.

6



Section 1.4: Research Approach

Figure 1.4 shows the allocation of application examples to the domains. The ex-
amples, which we discuss in detail in the following chapters, are divided into the
three application domains Manufacturing, Smart Environments, and Digital Health.
According to [CZS17], these domains benefit from the application of Fog Computing.

Fogxy Application Domains

Manufacturing Smart Environments Digital Health

FEAt

FARADAY

AIIoT

Bazaar

FRODO

MODCAP

IPRA

Larissa

Figure 1.4: Allocation of application examples to domains

7





Chapter 2

Foundations

This chapter addresses relevant technologies, concepts and their definitions. In Sec-
tion 2.1, we discuss the term IoT and separate it from CPS and IIoT. Section 2.2
considers software architectures, their history, quality characteristics, and evaluation
methods. With Pattern-Based Development in Section 2.3, we present the applied
lifecycle. Section 2.4 introduces the concept of Fog Computing, distinguishes related
terms and shows both differences and similarities.

2.1 Internet of Things (IoT)

A variety of technologies, such as embedded systems, wireless sensor networks, and
distributed computing influenced IoT. Technological advances and the establishment
of the Internet made physical devices and everyday objects addressable. The con-
nected sensors and actuators can be monitored and controlled remotely. The IoT
makes the Ubiquitous Computing vision a reality and enables a multitude of new
applications in a wide variety of domains. IoT is defined as a worldwide network of
objects that are interconnected and uniquely addressable [GBMP13]. By enabling
objects to communicate via intelligent interfaces, they become active participants in
business, information, and social processes [SGFW10, SL08]. They interact with each
other and with the environment by exchanging information and reacting to events
with or without human intervention. The objective of IoT is to minimize the gap be-
tween the physical and the virtual world [FM05]. Especially in the consumer market,
this trend has gained momentum in the past years with the ubiquitous presence of
IoT devices in our everyday lives.

Further relevant terms were established in industry and research around IoT. We
define a taxonomy with the terms Internet of Things, Industrial Internet of Things,
Cyber-Physical System, Industry 4.0, Industrial Internet, and Smart Objects in Fig-
ure 2.1. Researchers have not reached consensus over the relation of IoT and CPS.
Organizations and researchers use the term synonymously or see one as a subclass
of the other [ISO14, Sto14, SSZ15]. Nunes et al. describe the emergence of differ-

9



Chapter 2: Foundations

Internet of Things

Cyber-Physical SystemsIndustrial Internet of Things

Industrial InternetIndustry 4.0

Smart Object

Figure 2.1: Internet of Things taxonomy

ent concepts driven by different groups: IoT was initially driven by the computer
science community and more commonly used in Europe. CPSs were brought up by
the engineering perspective, being supported by the US National Science Foundation
[NZS15].

Industrial Internet of Things (IIoT)

In parallel to the IoT, the Industrial Internet of Things (IIoT) emerged, a paradigm
that “brings together the advances of two transformative revolutions: the myriad ma-
chines, facilities, fleets and networks that arose from the Industrial Revolution, and
the more recent powerful advances in computing, information and communication
systems” [EA12]. The objective of IIoT is the adoption of IoT within the industrial
domain to increase flexibility and productivity while reducing production cost. IIoT
and IoT are characterized by a large number of smart objects [SW18] that are inter-
connected via a network and interact and coordinate to achieve a goal. We consider
IIoT as a subclass of IoT (cf. Figure 2.1). The application of IoT in the indus-
trial domain can have a great impact, but also faces challenges. IIoT, in contrast to
IoT, represents stringent requirements regarding availability, security, and real-time
requirements. In IoT, it is not decisive whether a device reacts or turns on with a
delay. In industrial plants however, this can have devastating consequences. Special
non-functional requirements and legacy systems pose challenges to the application of
IIoT. Industrial processes, their organizations, and systems converge with advanced
computing, analytics, low-cost sensing, and new levels of connectivity permitted by
the Internet.

Industry 4.0 and Industrial Internet are subclasses of IIoT (cf. Figure 2.1) that
apply proposed technologies and concepts. The ability to impact production lines
and consequently business performance in real-time is one of the key promises of
Industrial Internet. The integration of data acquisition by sensors, data processing
by computers, and direct physical actions by actuators facilitates this [EA12]. The
Industrial Internet is “a technological enabler of significant advances in the efficiency

10



Section 2.2: Software Architecture and Patterns

of industrial processes” [GLM+15]. Industry 4.01 is a primarily German initiative that
is used as a generic term for a project to digitize industrial production. The aim is
to prepare and digitize industrial production for the future by using IoT. The term
was introduced at the Hannover Fair 2011 and describes the application of IIoT in the
production environment [Ste16]. For both terms, the use of IIoT promises competitive
advantages. Efficiency and productivity can be increased by analyzing measured data
and applying the knowledge gained. Fog Computing offers promising solutions for the
challenges of processing large amounts of data, security aspects, and real-time access.

Cyber-Physical Systems (CPS)

CPSs emerged from embedded systems, which are technical systems that use sensors
and actuators to interact with their environment for a specific purpose [Lee08]. Em-
bedded systems equipped with network capabilities result in CPSs [Bro10, RLSS10,
Lee08]. CPSs include sensors and actuators the way embedded systems do. CPSs take
“sensor data (measuring properties of the physical world) from a variety of sources,
transform it into information in the cyber world, process it, understand it and then
transform it into appropriate actions in the physical world” [SSZ15]. CPSs close the
gap between physical objects in the real world and their digital representation [Sch17].
CPSs enable the control logic of hardware devices to be changed at runtime and allow
computation-intensive tasks to be outsourced to remote systems. CPSs are therefore
suited for integration into Fog Computing applications.

2.2 Software Architecture and Patterns

In 1972, Parnas proposed the idea of modularization and information hiding to de-
compose systems on a high level to improve flexibility and understandability of a
software system [Par72]. The software architecture of a system is the set of structures
needed to reason about the system, which comprises software elements, their interre-
lations, and the properties of both [BCK12]. As an architecture defines a system in
terms of computational components and interactions among those components [SG96],
this is particularly important for Fog Computing applications. In the following, Sec-
tion 2.2.1 deals with the terminology related to software architecture. Section 2.2.2
defines software quality attributes that are evaluated with the methods presented in
Section 2.2.3.

1https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html

11

https://www.bmbf.de/de/zukunftsprojekt-industrie-4-0-848.html


Chapter 2: Foundations

2.2.1 Terminology

Figure 2.2 shows the relationship between Reference Model, Reference Architecture,
Software Architecture, and Architectural Patterns. A reference model is related to
application domains, while an architectural pattern is part of the solution domain.
Together they form a reference architecture for a specific domain. A concrete software
architecture represents the instantiation of a reference architecture. Reference models,
architectural patterns and reference architectures are not yet architectures. They are
useful concepts that capture elements of an architecture.

Application Domain

Reference Model

Reference Architecture for Domain Software Architecture
Solution Domain

Architectural Pattern

Figure 2.2: Relationship of software architecture key concepts (adapted from
[BCK98])

Reference Model. A reference model is a decomposition of a known problem into
parts that solve the problem together. It allows a quick overview of the problem space
and the discussion of it. Bass defines them as “a division of functionality together with
data flow between the pieces” [BCK12]. They enable the development of specific ref-
erence architectures and concrete software architectures. A reference model consists
of unifying concepts, axioms, and relationships within an application domain, and is
independent of technology or implementation [Sta06].

Reference Architecture. A reference architecture is a standardized, generic soft-
ware architecture that is valid for a particular domain. It is composed of architectural
patterns and a reference model and is also considered itself to be a pattern [SFI16].
Whereas a reference model divides the functionality, a reference architecture is the
mapping of that functionality onto a system decomposition [BCK12]. A reference
architecture allows the design of applications before implementation and creates a
shared mental model for the architecture.

Software Architecture. A software architecture is an instantiation of a reference
architecture. It describes the structure of the system, the relationship between its
components and their externally visible properties [BCK12]. Fundamental structural

12



Section 2.2: Software Architecture and Patterns

decisions for a system are made in a software architecture. Changes to these after im-
plementation are costly. Every element of an architecture should have a well-defined
interface that encapsulates or hides changeable aspects, such as implementation.

Architectural Patterns and Styles. Patterns in software engineering have a nearly
30-year history. In 1991, Erich Gamma published his doctoral thesis on patterns for
GUIs. In 1992 and 1993, the Gang of Four2 participated in the Towards an Architec-
ture Handbook workshop at OOPSLA. They published their first joint paper at the
ECOOP conference and the standard pattern literature—Design Patterns: Elements
of Reusable Object-Oriented Software. In 1993, the first PLoP (Pattern Languages
of Programs) conference took place in Monticello, Illinois, USA. Between 1996 and
2007, the authors affiliated with Frank Buschmann published five volumes of the book
Pattern-Oriented Software Architecture, which describes a multitude of architectural
patterns.

A pattern is defined as “a solution to a recurring problem in a given context” [AIS77].
The term pattern was established in 1977 by Christopher Alexander, a building ar-
chitect. Pattern techniques were established as being valuable architectural design
techniques in the area of building architectures. This concept was adopted for soft-
ware engineering and has also established itself. Since the publication of [GHJV95],
many articles and books have been published. Patterns are described as simple and
elegant solutions to specific problems in object-oriented software design, or as Fowler
says, patterns are “an idea that has been useful in one practical context and will prob-
ably be useful in others” [Fow97]. Initially, the focus was on design patterns, which
has expanded over the years to architectural patterns. Perry and Wolf introduced
architectural styles in 1992: “If architecture is a formal arrangement of architectural
elements, then architectural style is that which abstracts elements and formal aspects
from various specific architectures” [PW92]. An architectural style is a recurring pat-
tern that can be extracted from concrete architectures and expresses fundamental
structural organization schemas for software systems [BMR+96, HA10].
While Bass et al. use the terms architectural pattern and architectural style in-

terchangeably [BCK12], Buschmann et al. mention differences between architectural
styles and patterns [BMR+96]. An architectural style describes the overall structure
of an application, whereas a pattern may be found at different scales, ranging from
patterns defining the overall structure of the application to patterns giving solutions
to smaller design issues. Furthermore, an architectural style exists by itself as it is
not dependent on other styles. A pattern depends on smaller contained patterns and
other patterns that it interacts with [Ale79].

2Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides

13



Chapter 2: Foundations

Different structures exist to describe a pattern: the Alexandrian Form [AIS77], the
Gang of Four Scheme [GHJV95] for design patterns and the Gang of Five Scheme
[BMR+96] for architectural patterns.

2.2.2 Software Quality Attributes

A software architecture must meet quality criteria such as usability, performance, or
modifiability [LPR03]. To address corresponding quality attributes, a software archi-
tect applies architectural patterns. There are different models for quality attributes
[KRM16], such as McCall [MRW77], Boehm’s quality model [BBL76], the FURPS
quality model [Gra92], or ISO 9126 [ISO00]. The quality models include different
quality features. Maintainability and reliability, for instance, are equally considered
in all models, while only FURPS or McCall mention performance.

2.2.3 Software Evaluation Methods

Several ways to evaluate software architectures exist. Abowd et al. divide them
into two categories: qualitative questions and quantitative measurements [ABC+97].
Qualitative questions use scenarios and checklists, while quantitative measurements
use metrics or simulations and experiments to assess the quality of a system’s architec-
ture. Software Architecture Analysis Method (SAAM) [KBAW94] and Architecture
Trade-Off Analysis Method (ATAM) [KKC00] are scenario-based evaluation meth-
ods. [BZJ04] and [BBM13] compare these methods. SAAM and ATAM target fully
specified architectures that develop throughout a project. Clements introduced Ac-
tive Reviews for Intermediate Designs (ARID) as a more lightweight method that
concentrates on the viability of the software architecture [Cle00]. ARID is applied
at the beginning of a design process to discover errors or inconsistencies. Different
stakeholders are more likely to accept the design if, as with ARID, they are involved
in advance. ARID is a combination of Active Design Reviews (ADR) [PW85] and
ATAM. It is a method that actively challenges reviewers to solve review tasks using
the design in relevant scenarios instead of asking questions [CKK02]. The general
outline of ARID is based on the structure of ATAM and is divided into two phases:
rehearsal and review. In the rehearsal phase, the lead designer and a facilitator meet
up to create the exercises for the review. This phase is comprised of the following four
steps:

1. Identify the reviewers: As ARID evaluates an intermediate architecture,
the reviewers best suited are software engineers that are expected to apply the
architecture. A group of around a dozen software engineers is selected.

14



Section 2.2: Software Architecture and Patterns

2. Prepare the design briefing: In this step, the lead designer prepares the
presentation and the facilitator reviews it. During the review, the facilitator
asks questions for which the designer can prepare. The review improves the
presentation and the designer practices to keep it within the given time frame.
The presentation should not exceed two hours.

3. Prepare the seed scenarios: The lead designer and facilitator craft scenarios
in which the design is applicable. These need not to be used for later evaluation
but serve as a starting point and make the design more understandable.

4. Prepare the materials: Finally, the rehearsal concludes by preparing all the
necessary materials for the review, such as copies of the presentation, scenarios,
and agenda.

In the review phase, the stakeholders conduct the review by following these five steps:

5. Present ARID: The facilitator starts the review by presenting ARID and the
steps involved.

6. Present the design: The lead designer presents the design and introduces
the scenarios. Meanwhile, the audience can ask clarifying questions. Questions
regarding the rationale or suggestions are not allowed. A minute taker notes
down all questions that indicate a lack of clarity in the design, documentation,
or presentation.

7. Brainstorm and prioritize scenarios: The group brainstorms scenarios that
are suitable for the use of the design. Participants vote for scenarios that will
be used for review.

8. Apply the scenarios: The group develops real or pseudo code using the design
to tackle the problem presented in the scenarios. The group starts with the
scenario that received the most votes. The designer is not allowed to help the
group or give hints. If the group is stuck, the facilitator intervenes and the lead
designer steers the group in the right direction. Every time this happens, an
issue is recorded indicating a flaw in the design. The reviewers are also asked
to bring up any discrepancies they reveal to be issues. This step continues until
time is up or the top-rated scenarios are solved, or the group concludes that the
design is suitable or unsuitable.

9. Summarize: Finally, the facilitator goes through all the issues identified,
thanks the reviewers for participating, and asks for feedback regarding the re-
view.

15



Chapter 2: Foundations

The result of ARID, SAAM, and ATAM is a list of issues. This list contains issues
that the reviewers have uncovered in the architecture, for example that particular
quality features cannot be met or that the design is not feasible. These issues help
the designer to improve the architecture. APEP (cf. Chapter 5) applies the concept
of the issue list.

2.3 Pattern-Based Development (PBD)

For the implementation of the applications examples, we used the Pattern-Based De-
velopment software lifecycle [SB18], which relies on the use of patterns as established
software engineering knowledge throughout a software engineering lifecycle. From
with the analysis phase, through system and object design to build- and release-
management, PBD makes heavy use of patterns. The objective of PBD is the uti-
lization and assignment of patterns starting with requirements elicitation. We define
PBD as follows:

Pattern-Based Development is a model-based development approach that
focuses on the extensive use of patterns throughout the software lifecycle.

In typical software lifecycles, patterns play an essential role during system and
object design. PBD includes the application of patterns in all phases of a process,
starting as early as the analysis phase. Figure 2.3 shows a software lifecycle in which
patterns are available for use in each phase, including anti patterns that can emerge
in all phases. While Gotel [GF94] focuses on the traceability of a requirement from its
development and specification to its subsequent deployment and use, we focus on the
traceability of model elements to patterns. We define Pattern Traceability as follows:

Every model element of a software design and every element in the code
can be traced to a pattern.

Analysis System Design Object Design Testing Build & Release

Analysis Patterns Architectural Patterns Design Patterns Testing Patterns Build & Release Patterns

Anti Patterns

Pattern-Based Development

Figure 2.3: Pattern catalog for Pattern-Based Development

PBD builds on the concepts of Pattern-Oriented Analysis and Design (POAD)
[YA03] and Pattern-Based Engineering (PBE) [AG10]. POAD represents a methodol-
ogy for composing proven design patterns into reliable and robust large-scale software

16



Section 2.4: Fog and Edge Computing Paradigms

systems. It is used to create systems that are robust, scalable, and easy to maintain
by utilizing UML class diagrams as building blocks. PBE is a systematic, disciplined,
and quantifiable approach to software development that involves the use of pattern
specifications and implementations throughout the software development and delivery
process.

2.4 Fog and Edge Computing Paradigms

This section addresses the terms and definitions of Fog Computing, Edge Comput-
ing, and Cloudlets. Let’s first take a look at the historical development [Sat17b].
In the late 1990s, Akamai introduced Content Delivery Networks (CDNs), geographi-
cally distributed networks of servers designed to provide availability and performance.
Edge computing generalizes and extends CDNs through the use of Cloud Computing
infrastructure. In 1997, Brian Noble and colleagues first demonstrated the potential
value of Edge Computing for mobile computing by implementing speech recognition
with acceptable performance on a resource-limited mobile device [NSN+97]. This idea
was taken up by Flinn and Satyanarayanan in 1999 to increase battery runtime by
outsourcing computing operations [FS99]. In 2001, Satyanarayanan introduced the
term Cyber Foraging [Sat01] and laid the conceptual framework for Edge Computing
[SBCD09] that emerged in 2009. Bonomi coined the term Fog Computing in 2012
[BMZA12].

The establishment of these concepts can be traced back to three factors. First, the
number of connected devices is continuously increasing, with the result that the ex-
isting infrastructure does not meet the requirements. By 2025, 75 billion3 networked
devices are expected to generate a vast amount of data and network traffic. Second,
existing software architectures and computing paradigms, notably Cloud Computing,
lack location awareness. Furthermore, they do not provide the mobility support re-
quired by the agility of mobile devices and their users. Moreover, with the development
of IoT in multiple domains, requirements for real-time access and low latency have
risen. The objectives of these concepts are to utilize both the scaling and synchro-
nization possibilities of the cloud and its virtualization techniques, and to decentralize
the use of available resources, which are usually resource-limited devices in the field,
to users on-site. The two worlds of Cloud Computing and IoT merge. Figure 2.4
presents a taxonomy of related terms and their relation.

The superclass Fog and Edge Computing Paradigms contains the similarities of
all the mentioned concepts. The number of available publications on Fog Comput-
ing, Edge Computing, and Cloudlets reflects their importance. Besides the above-

3https://statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

17

https://statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/


Chapter 2: Foundations

Fog and Edge Computing Paradigms

Fog Computing
Section 2.4.1

Edge Computing
Section 2.4.2

Cloudlets
Section 2.4.3

Figure 2.4: Fog and Edge Computing Paradigms taxonomy

mentioned concepts, there are also Dew Computing [Wan15], Mist Computing4, Small
Cell Cloud [OSB15], Femto Cloud [HAHZ15], and Follow Me Cloud [TK13] concepts.
The characteristic feature of these concepts is that they address the requirements
resulting from IoT. Centralized architectures can only partially meet these require-
ments, which is why a multitude of new architectural paradigms with different names
but the same intention have developed. The establishment of an intermediate layer
is a common property. The intermediate layer executes tasks for which the cloud is
geographically too far away, or the computing power on an IoT device is insufficient.
The concepts differ in the location of the intermediate layer or in the application sce-
narios for which they are intended. To date, no generic term has been established that
unites the different concepts. [HESB18, YHQL15, PTW18] deal with the delimitation
of the various terms. [VWB+16, HNYL17, LDZQ18] use the terms Fog Computing
and Edge Computing interchangeably, while [DB16] differentiates between them.
In this dissertation and our research, we use the term Fog Computing, but do not

distinguish it from Edge Computing or Cloudlets. This is supported by a statement
made by Satyanarayanan, who said that “fog computing [..] is consistent with the
cloudlet concept” [Sat15].

2.4.1 Fog Computing

For Fog Computing, a variety of definitions have been published in the last few years.
Originally, the term was invented by Bonomi, who describes it as a “highly virtual-
ized platform that provides compute, storage, and networking services between end
devices and traditional Cloud Computing data centers, typically, but not exclusively
located at the edge of network” [BMZA12]. However, since Bonomi describes Fog
Computing as a platform and we see it as an architecture (cf. Figure 2.5), we refer to
the definition of [YHQL15]:

4https://linkedin.com/pulse/cloud-computing-fog-now-mist-martin-ma-mba-med-gdm-scpm-pmp

18

https://linkedin.com/pulse/cloud-computing-fog-now-mist-martin-ma-mba-med-gdm-scpm-pmp


Section 2.4: Fog and Edge Computing Paradigms

“Fog computing is a geographically distributed computing architecture
with a resource pool consists of one or more ubiquitously connected het-
erogeneous devices (including edge devices) at the edge of network and not
exclusively seamlessly backed by cloud services, to collaboratively provide
elastic computation, storage and communication (and many other new
services and tasks) in isolated environments to a large scale of clients in
proximity” [YHQL15].

The characteristics described provide a better understanding of Fog Computing:
low latency and location awareness, wide-spread geographical distribution, mobil-
ity, a large number of nodes, predominant role of wireless access, strong presence
of streaming, and real-time applications and heterogeneity [BMZA12]. These char-
acteristics are the foundation of the forces leading to the Fogxy architectural style
presented in Chapter 4. Comparable to Cloud Computing, which is not an innovation
but the integration of past technologies [CLC11], Fog Computing is the combina-
tion of existing technologies to meet changing requirements. For example, Bonomi
says that Fog Computing extends the Cloud Computing paradigm to the edge of
the network, enabling new types of applications and services [BMZA12]. These new
applications and services benefit from the use of Fog Computing in terms of real-
time access, low and predictable latencies, reduced bandwidth usage, better privacy
and security, and uninterrupted services in the presence of intermittent connectivity
[PMV+18, Sat17b, CZS17].

According to [VRM14, CZS17, Con17], Fog Computing is about the effective dis-
tribution of components of a system between the cloud and the things (in the sense
of IoT). The Fog Computing architecture builds on the layered architectural style
in which each layer performs a specific role within an application. Fog Computing
spreads across the layers field (or edge), fog, and remote (or cloud). The geograph-
ical distribution of layers—also called compute domains [MGSB17]—as well as the
prevailing heterogeneity regarding hardware and platforms, poses a challenge for the
realization of Fog Computing applications. Figure 2.5 shows the hierarchical order of
the layers, the characteristics and roles of which we describe in the following.

Devices in the field layer generate large amounts of data and can be smartphones,
smartwatches, AR glasses, but also PLCs. Due to the geographical proximity of the
field layer to the end user, devices within that layer can perform real-time critical
tasks. However, they are resource-limited, either in computation, memory or storage,
but also in size and battery power. By using services from the higher layers, devices
in the field layer overcome these limitations. The field layer connects to the remote
and fog layer via a network.
The fog layer features fog nodes that are geographically close to the field, but usually

19



Chapter 2: Foundations

R
em

ot
e

Fo
g

Fi
el

d

C
om

pu
ta

tio
na

l P
ow

er

Re
al

-T
im

e 
Ac

ce
ss Cloud

Fog Node Fog Node Fog Node

Field DevicesField DevicesField Devices

Figure 2.5: Hierarchical structure of Fog Computing

have more resources than devices in the field. There are no requirements for a device to
be considered as fog node. Therefore, the fog layer contains different types of devices
such as routers, desktop computers, and servers. The fog nodes perform resource-
intensive tasks and facilitate coordination and communication among multiple devices
in the field. The fog represents the gateway between the field and the remote layer.
The remote layer offers unlimited computational power and storage through effi-

cient devices and scaling possibilities. Typically, Cloud Computing concepts apply
within this layer. Especially resource-intensive tasks, such as machine learning or the
persistence of large data sets, are carried out there. An advantage of the remote layer
is the ability to connect to multiple fog nodes to synchronize data among them.
Each layer has its special capabilities—computational power in the remote and real-

time capabilities in the field layer. The fog layer enables interaction and mediates
between the two layers.

2.4.2 Cloudlets

The concept of Cloudlets is based on the idea of Cyber Foraging, which describes
a technique to enable field devices to overcome their lack of energy, computational
power, and storage by offloading computation and data to more powerful machines lo-
cated in the cloud or at single-hop proximity [Sat01, LES+14]. Cloudlets are mobility-
enhanced small-scale cloud data centers at the edge of the Internet that overcome the
limitations of Cloud Computing. The basic idea is to provide a data center closer to
the field device; hence Cloudlets are called “data centers in a box” [SBCD09]. Delay-
sensitive and bandwidth-limited applications use Cloudlets, which are comparable to

20



Section 2.4: Fog and Edge Computing Paradigms

fog nodes since devices can offload resource-intensive tasks to Cloudlets nearby. For
latency insensitive requests, Cloudlets interact with the cloud [SCH+14]. Cloudlets
aim to provide high-performance computing resources to mobile devices to make them
more responsive and extend their battery life, while Fog Computing focuses on the
scalability of the IoT infrastructure [Sat17b].

2.4.3 Edge Computing

Edge or Mobile Edge Computing describes an approach to perform parts of data
processing and analysis directly on devices at the edge of the network, while the cloud
is used for coordination and data archiving [VS17]. Edge Computing describes devices
that are deployed close to the end user and provide low latency and high bandwidth.
It pushes applications, data, and services away from central servers to the edge of a
network [SCZ+16, Sat17b].

21





Chapter 3

Fog Meta Model

In this chapter, we introduce the Fog Meta Model, an extensible classification of Target
Matters. The Fog Meta Model is a metamodel for Fog Computing that uses extensible
UML profiles [Obj11] and serves as a starting point for the analysis of Fog Computing
applications. It enables the identification of objects and packages that are critical
for Fog Computing applications and their non-functional requirements. Section 3.1
describes the objectives and motivation and explains how the metamodel helps to
realize Fog Computing applications. Section 3.2 defines the metamodel and describes
it in detail. We introduce a new stereotype with three subclasses by extending the
UML metamodel [Obj11]. Section 3.3 presents the two application examples FRODO
and FARADAY, in which we have applied the Fog Meta Model.

3.1 Objectives and Design Goals

In the field of Fog Computing, the context of hardware nodes plays an important role.
The Fog Meta Model allows the association of software requirements to hardware
capabilities during the analysis phase. Figure 3.1 expresses this relationship in a high-
level UML diagram. Software Components are mapped to physical hardware Nodes
with different Capabilities to ensure the fulfillment of Non-Functional Requirements.
Due to the geographical distribution and different performance Capabilities, entities
with requirements regarding real-time access, synchronization, or availability must
be detected and identified during the analysis phase. The Fog Meta Model supports
three types of locality for hardware nodes: Field, Fog, and Remote.

An Application is a composite of several Components with Component Artifacts as
leaf nodes. The Architecture constrained by the Non-Functional Requirements for the
Application reflects the composition of the Components and their interaction. Ad-
ditionally, Functional Requirements for individual components describe the functions
of the Application. For example, to meet the non-functional requirement of real-time
access, the Component must be geographically close to the data generating source.
Nodes of type Field are placed directly on-site where the Application is used. Fog

23



Chapter 3: Fog Meta Model

Functional Requirement Non-Functional Requirement

RequirementCapability

Node Component

Component Artifact Application

Architecture

Fog RemoteField

Locality

Context

Figure 3.1: Towards the Fog Meta Model

represents the Locality between the edge of the network and the Remote location.
The subclass Remote is typically a cloud component that offers synchronization, but
is geographically too far away from the source of the data to realize real-time access.

Meta Object Facility (MOF), as defined by the Object Management Group (OMG),
is an “extensible model driven integration framework for defining, manipulating and
integrating metadata and data in a platform independent manner” [Tan09]. MOF
uses object modeling techniques to describe any metadata in the form of metamodels,
which is defined as “a model that consists of statements about models” [Jeu09]. The
UML meta-metamodel is defined on level M3 of the MOF. The meta-metamodel is
used to create the Fog Meta Model, which specifies the concepts of Fog Computing
in the form of a UML class diagram. Although UML is the standard language for
writing software blueprints, it “is not possible for one closed language to ever be
sufficient to express all possible nuances of all models across all domains across all
time” [BRJ99]. Therefore, we extend the Fog Meta Model on level M2 to meet the
requirements and peculiarities of Fog Computing. UML is based on the Meta Object
Facility (MOF) and provides three mechanisms for extensibility: stereotypes, tagged
values, and constraints [BRJ99]. We apply the stereotype mechanism to shape and
adapt UML to the requirements and needs of Fog Computing by introducing the new
metaclass Target Matter. On level M1, we define the application design in the form of
a style, the Fogxy architectural style, which we discuss in detail in Chapter 4. Fogxy
is domain independent, abstract, and aims to be understandable for Fog Computing
developers and stakeholders. The Fogxy architectural style is based on the Fog Meta
Model and represents software engineering knowledge for instantiating real-world Fog
Computing applications within level M0. The following design goals to realize the
Fog Meta Model and its application are of importance:

24



Section 3.2: Design

(1) Usability: The expansion of the model should be lightweight and offer low en-
try barriers. Developers of Fog Computing applications can easily understand it and
apply it immediately.

(2) Extensibility: We focus on the simultaneous fulfillment of non-functional re-
quirements for real-time access and synchronization. However, the Fog Meta Model
should be extensible concerning further requirement trade-offs and should be able to
deal with these.

(3) Communication: Besides the extension of the UML metamodel for Fog Com-
puting applications, the Fog Meta Model serves as communication tool for developers
that facilitates communication between stakeholders.

(4) Interoperability: The Fog Meta Model must be applicable in different applica-
tion domains and therefore should not specialize in the particularities of a domain.

3.2 Design

This section describes the structure and design of the Fog Meta Model. It abstracts
core concepts found in different Fog Computing applications. Figure 3.2 introduces
the metaclass Target Matter to describe the locality and characteristics of a node.

<<Metaclass>>
Target Matter

<<Stereotype>>
Fog

<<Stereotype>>
Field

<<Stereotype>>
Remote

Requirement 
Capability

Figure 3.2: Target Matter taxonomy

A Target Matter has specific Requirement Capabilities that are determined by a
node context, such as geographical proximity or computing power, leading to different
features for the subclasses of Target Matter. Nodes of stereotype Field, which can be
further subclassed into mobile and IoT devices, are lightweight and small. Capabilities

25



Chapter 3: Fog Meta Model

such as processor speed, memory size, and storage capacity are of lower priority for
them, which contradicts the capabilities of the stereotype Remote. The Fog stereotype
represents the intersection between the Field and the Remote. Classes of stereotype
Field are executed in-field, classes of stereotype Fog in an intermediate layer, between
the remote classes of the stereotype Remote.
Target Matter derives from the UML object Class, which in turn is an instance of

the MOF object Class [Obj16]. Figure 3.3 shows the classification of the metaclass
Target Matter within the UML meta-metamodel.

ClassM3

<<Metaclass>>
ClassM2 <<Metaclass>>

Target Matter

Figure 3.3: Fog Meta Model UML profile extension

These metamodel abstractions essentially allow the formulation of multi-colored
graphs during analysis, allowing the analyst to formulate hints for the resulting hard-
ware/software mapping to fulfill the non-functional requirements. We use three differ-
ent colors: classes of stereotype Field are shown in green, classes of stereotype Fog are
shown in yellow, and classes of stereotype Remote are shown in blue. To improve read-
ability, we use the stereotype and color simultaneously throughout the UML models
in this dissertation. Figure 3.4 defines the colors for the three stereotypes.

<<stereotyp>>
Fog

<<Stereotype>>
Field

<<Stereotype>>
Remote

<<Stereotype>>
Fog

Hex #CDEEC4 Hex #FFF3A0 Hex #ABE8FE

Figure 3.4: Fog Meta Model color scheme

3.3 Application Examples

We present two application examples in which we applied the Fog Meta Model. Sec-
tion 3.3.1 presents FRODO, a system in the smart environment domain that enables

26



Section 3.3: Application Examples

occupants to express their preferences regarding thermal comfort in a decentralized
manner. Section 3.3.2 demonstrates FARADAY, an application example from the
domain of manufacturing that enables real-time analysis of sensor data for predictive
maintenance scenarios.

3.3.1 FRODO

The integration of occupants into smart buildings raises challenges between meet-
ing individual preferences and the generic rule set to optimize energy effectiveness.
Merging the individual preferences of multiple occupants that share thermal zones
compounds the challenge. To address related challenges, we developed FRODO (Fog
Architecture for Decision Support in Organizations), a system designed to establish
a location-aware environment for conflict negotiation and decision support. FRODO
is based on MIBO, a framework that combines natural and intuitive user interfaces
by focusing on multimodal user interaction technology [Pet16]. However, there are
limitations posed by MIBO’s architecture, such as the integration of the physical con-
text of field devices. MIBO does not deal well with contradictions that arise due to
conflicting generic definitions of smart buildings and occupant preferences. MIBO
relies on a cloud-based architecture, with deficiencies related to real-time access and
availability. The limitations of MIBO and the requirements imposed by individual
human comfort require an adopted architecture, as does the goal of increasing global
energy savings. FRODO transforms the centralized software architecture of MIBO
into a decentralized architecture encompassing sensors, actuators, and the occupants
of smart buildings. The transformation is facilitated by the reengineering technique
of model refactoring and by the Fog Meta Model. Decentralized fog nodes allow oc-
cupants and organizations to express and discuss decision-making conflicts at their
point of origin. FRODO captures the characteristics emphasized by Fog Comput-
ing, in particular real-time access, availability, security, increased quality of service,
synchronization, and geographical distribution.

Figure 3.5 presents the analysis object model of FRODO. The MIBO Real Sub-
ject and MIBO Fog Proxy—children of the abstract class MIBO Subject—provide the
functionality derived from the legacy system MIBO. The MIBO Real Subject repre-
sents the real subject class and the MIBO Fog Proxy represents the proxy class of the
proxy pattern. The proxy pattern enables FRODO to operate independently of the
availability of the MIBO Real Subject and reduces communication efforts. FRODO
performs actions where they are triggered without needing to connect to the remote
layer at any time (virtual proxy). The proxy pattern facilitates access restrictions to
the remote component and therefore improves security aspects of the system (pro-
tection proxy). FRODO refers to the MIBO Fog Proxy as fog node and introduces

27



Chapter 3: Fog Meta Model

Remote

Fog

Field

<<Remote>>
Building Management

<<Remote>>
Generic

<<Remote>>
Rule

<<Fog>>
Individual

<<Field>>
Fixture

<<Field>>
Light

<<Field>>
Fan

<<Field>>
Blind

<<Field>>
Modality Recognizer

<<Field>>
Voice

<<Field>>
Modality

<<Field>>
Gesture

<<Field>>
Modality

<<Field>>
Occupant

<<Field>>
Context

<<Field>>
Sensor

<<Field>>
Clock

<<Field>>
Brightness

<<Field>>
Temperature

<<Field>>
MIBO Subject

<<Fog>>
MIBO Fog Proxy

<<Remote>>
MIBO Real Subject

<<Fog>>
Fixture Controller

<<Remote>>
Definiton

<<Fog>>
Decision Manager

Figure 3.5: FRODO analysis object model

the MIBO Real Subject as a fog server [LJY+15]. FRODO relocates components in
different environments and geographically distributed nodes, running the MIBO Fog
Proxy in the fog layer close to the occupant’s interactions, whereas the MIBO Real
Subject remains remote. The MIBO Fog Proxy represents a tailored clone of MIBO
Real Subject with restricted knowledge regarding Rules and Definitions. It handles
Rules and Definitions, which are required for the specific location it is deployed in,
such as a specific room or office space within a smart building. Fixture Controller is
of stereotype fog and controls directly connected Fixtures. In a scenario in which an
occupant performs a set of Modalities that are part of a definition stored at a MIBO
Fog Proxy, these Modalities are translated to concrete actions within in the node.
There is no need to forward the interaction, leading to a reduction in latency time be-
tween the performed Modalities of an Occupant, such as combined Voice and Gesture
commands, and the outcome, such as turning on a Light. The Modality Recognizer
is not aware whether it is connected to either a fog or remote component. We define
a taxonomy for Rules in FRODO by introducing Individual and Generic rules. In-
dividual rules represent preferences of Occupants that are performed depending on a
specific Context. For example, Occupants define a Rule that daylight is more essential
for them than the optimal illumination of their working place, which results in using
less artificial light. Generic rules are based on a larger scale and are generally valid
for every room in a building. Facility managers define them and they also depend on
the Context. Generic and Individual rules might be contradictory. For example, a
Generic rule defines to shut down blinds at a specific time of the day, whereas an Oc-
cupant prefers to work by natural light throughout the day. The discrepancy among
conflicting Rules poses the need for a dedicated process to negotiate between them.
FRODO enables negotiation and decentralized decision-making: a Decision Manager

28



Section 3.3: Application Examples

is part of each fog node and enables the negation between conflicting Rules. The De-
cision Manager of FRODO addresses the negotiation of finding the optimal decision
for the needs and preferences of Occupants and the global goal of energy saving. Rules
are not the single source for raising conflicts that need to be solved. Definitions, which
are triggered by events, might interfere with defined Rules. For example, an Occupant
wants to open the Blinds in their office. However, if a Generic rule stipulates that all
Blinds remain closed at this point, a conflict situation arises. Therefore, the Decision
Manager provides conflict resolution strategies to resolve these issues. [SJB+17] dis-
cusses the unmentioned classes of the analysis object model.

We show the improvement of the existing MIBO system by applying the Fog Meta
Model. Fog Computing allows the decentralized processing of data to interact with
connected devices and enables smooth integration of cyber and physical components.
Due to the geographical distribution of the fog nodes to locations such as office spaces,
we enhance the quality of services with devices in close proximity for occupants. Re-
garding privacy, the architecture provides the possibility for occupants to identify
where their individual preferences are specified—on a remote repository or within
their nearby fog node. Fog Computing encourages the seamless integration of het-
erogeneous smart objects and edge devices, including sensors and actuators. Process-
ing, storing, and communication concepts are realigned with their cloud components,
which raises challenges regarding construction and maintenance of the underlying in-
frastructure. Introducing a decision manager does not solve the problem of securing
the requirement of not dissatisfying any objective in general. Instead, it sets the
battleground for decision-making processes and requires the specification of solution
strategies.

With FRODO, we present a system that handles interest conflicts and supports
decision-making processes. FRODO does not solve the conflicts itself but instead es-
tablishes multiple decentralized points of interaction to negotiate, discuss, and decide
on actions that should be performed to satisfy the individual preferences.

29



Chapter 3: Fog Meta Model

3.3.2 FARADAY

This section presents the FARADAY (Fog Architecture for Real-time and Adaptable
Data Analytics) application example. We present the problem and show the analysis
object model of FARADAY and validate the application of the Fog Meta Model in
the manufacturing domain.

Industrial Internet and the digitalization of manufacturing operations enable the
collection and analysis of production related information. The data-driven decision-
making and process control help to optimize workflows and reduce downtime, thereby
making the manufacturing process more efficient and effective [LKY14]. Cloud plat-
forms offer the prerequisites for analytic approaches as they offer scalable, on-demand
access to configurable computing and storage services [DMR16]. However, the cloud
concept is ill-equipped to meet the requirements of industrial applications regarding
bandwidth limitations, low latency, resilience, and data security [SCM18]. The chal-
lenge is not the analysis of the data, but the transmission, processing, and accessing
of data in the industrial environment, which is called shop floor or field.

To create a system that can both take advantage of the cloud and meet real-time
requirements for data analysis, we analyze the view from the user domain and apply
the Fog Meta Model.

Remote

Fog

Field

<<Remote>>
Data Scientist

<<Remote>>
Feedback Receiver

<<Remote>>
Employee

<<Remote>>
Notification

<<Fog>>
Control Command

<<Fog>>
Feedback Creator

<<Fog>>
Event

<<Fog>>
Data Processor

<<Field>>
Data Aggregator

<<Field>>
Data

<<Field>>
Asset

<<Field>>
Shop Floor

<<Remote>>
Company

<<Fog>>
Feedback

1..*

0..*

1..*

1..*

0..*

1..*

Figure 3.6: FARADAY analysis object model (adapted from [Buc17])

The analysis object model in Figure 3.6 gives an overview of FARADAY and il-
lustrates its main concepts, properties, and relationships visible to the user in the
application domain. Classes of the field stereotype represent entities that have to run
on-site in the factory to fulfill real-time requirements. Classes of remote stereotype

30



Section 3.3: Application Examples

must be available in a remote environment and the fog stereotype types classes that
are located between the Shop Floor and the remote components.
The Data Processor and the Feedback Creator are the key abstractions of FARA-

DAY. A Company has an economical interest in continuously monitoring, controlling,
and optimizing production processes and Assets to increase the efficiency and effec-
tiveness of the manufacturing workflow. Measures to achieve this goal are derived
from Data gathered on the Shop Floor. The Company employs Data Scientists who
extract the information from raw Data. FARADAY’s core functionality is to enable
the Data Scientists to acquire and process the Data and provide Feedback on de-
tected Events. Assets instantiate Data collected from sensors. The Data Aggregator
ingests the raw Data and makes it consumable and processable by the subsequent
components. The Data Scientist configures the properties of the Data Processor ac-
cording to the desired functionality. The Data Processor checks the incoming Data
for anomalies such as limit value violations or peaks. It transforms the input data, for
example by calculating a rolling average or batch multiple samples before forwarding
them. First, the Data Processor triggers an Event, once a predefined anomaly occurs.
In the latter case, the Data Processor provides the transformed data as output. It is
also possible to combine both behaviors and to check the calculated mean against a
threshold. Events are typed and assigned to specific anomalies. Each event contains
a policy that defines what Feedback is created and published to Feedback Receivers.
The Feedback Creator manages all possible Events. If an anomaly is detected, the
Data Processor triggers an Event, whereupon the Feedback Creator instantiates and
publishes the Feedback according to the policy. There are two types of Feedback. No-
tifications are displayed in the cloud user interface or sent as an e-mail to company
Employees. FARADAY provides Control Commands for Assets providing a suitable
interface. The Data Processor and the Feedback Creator can be located on the Shop
Floor or in the remote environment and thus provide their functionality both locally
and remotely. The demand for short system response time requires the immediate
deduction and return of Control Commands, enabled by on-site analysis and feedback
generation. Results are additionally sent to the remote environment for monitoring
and archiving. High available bandwidth or uncritical latency requirements, however,
allow the transmission of all or most of the data to the cloud. There, it is further
processed and stored for future algorithm training or machine learning. With the
capability to run the analysis both locally and remotely, FARADAY provides the
flexibility to adapt the network load and the latency to the specific circumstances and
requirements of different cases.

31





Chapter 4

Fogxy - An Architectural Style for Fog Computing

This chapter describes the Fogxy architectural style1, a style for the realization of
Fog Computing applications, using the schema of [BMR+96]. Section 4.1 describes
the applied pattern mining approach. Section 4.2 motivates the context in which the
architectural style can be applied. Section 4.3 describes the problem the architectural
style addresses. Section 4.4 presents the forces that led to Fogxy. Section 4.5 is
the center of the chapter focusing on the solution and discussing smart objects in
detail. Section 4.6 shows the consequences with benefits and liabilities. Section 4.7
and Section 4.8 show related patterns and list the known uses. Section 4.9 illustrates
the application of the architectural style in two application examples.

4.1 Approach

We describe the mining approach for writing and developing Fogxy. Figure 4.1 shows
the three activities that were carried out before the initial formulation of Fogxy.
We investigated literature dealing with Fog Computing architectures. Many of the
presented systems are research projects, and access to documentation and accurate
descriptions has been difficult. The presented approaches are usually described in
scientific papers, and therefore more profound insights regarding the architecture are
not possible. However, we were able to identify similarities between the different
architectures that influenced the design of Fogxy. The design of Fogxy was influenced
by the goal to simultaneously address non-functional requirements that used to be
mutually exclusive.

We proceeded iteratively and used Fogxy in several application examples from dif-
ferent domains. After the realization of each application example, we evaluated the
Fogxy architectural style. We considered the lessons learned and used the takeaways
to enrich Fogxy. The learnings were compared and matched with the requirements.
If characteristics concerning the formulation and description of the design were iden-
tified, Fogxy was adapted accordingly.

1The architectural style was accepted at the 2018 EuroPloP conference [STB18b].

33



Chapter 4: Fogxy - An Architectural Style for Fog Computing

Architecture 
Identification & Study

Literature Review

Requirements Elicitation
Fogxy Architectural Style

Application Example 1

Application Example 2

Application Example 3

Application Example n

Pattern Evaluation

…

Requirements Matching

Figure 4.1: Pattern mining approach

4.2 Context

IoT applications have become popular in recent years and are used in industry and
private sectors. Sensors and actuators are used to sense environments and perform
actions based on data. IoT applications are not limited to one domain but find
their way into sectors from health to industrial production and autonomous vehicles.
Applications in these areas impose requirements that cannot, or can only partially, be
solved by existing cloud technologies. Therefore, Fog Computing has emerged as an
extension of the Cloud Computing paradigm to the edge of the network to enable new
types of applications and services [BMZA12]. The Fogxy architectural style can be
applied to applications in different domains and presents an architectural solution that
meets real-time, synchronization, or availability requirements that cannot be fulfilled
by cloud-only architectures.

4.3 Problem

The simultaneous realization of non-functional requirements such as synchronization
and real-time access represents a challenge for existing software architectures. Existing
architectural styles address these individually, but do not allow the easy formulation
of trade-offs between them. Fogxy deals with this problem:

How can we solve the limitations of Cloud Computing solutions, such as
high latency and missing real-time support, for IoT scenarios?

The cloud is essential for IoT scenarios [GBMP13], but has drawbacks: real-time
applications suffer from the high latency imposed by the physical distance of devices
to the cloud. Since the devices depend on the availability of the cloud, their function-
ality is impaired if the communication is disrupted. Nevertheless, Cloud Computing
provides various advantages regarding scalability, synchronization, computing power,
and portability. The aim is to combine IoT and Cloud Computing while retaining
positive aspects and eliminating negative ones.

34



Section 4.4: Forces

4.4 Forces

The forces leading to the use of the Fogxy architectural style are based on the char-
acteristics of Fog Computing [BMZA12]:

Low Latency and Real-Time Interaction. IoT applications have real-time re-
quirements and demand low latency. Centralized solutions are not suitable because
of their geographical distribution and the resulting communication overhead.

Heterogeneity. IoT applications use specific hardware and software. Fog Comput-
ing is not yet standardized and ranges from embedded devices without an operating
system to virtualized cloud solutions. Many devices and components are part of the
system, are distributed, and must collaborate across networks to provide the desired
functionality. Given the heterogeneity of the different nodes, interoperability must be
established and ensured. Both hardware and software components are heterogeneous,
as is data that is analyzed and processed.

Resource Limitation. Devices used in field and fog layer have special purposes
and are limited in terms of memory, computing power, and battery. Depending on
the application, dedicated hardware is used that, for economic reasons, should be in-
expensive to purchase and operate. In IoT scenarios, it is particularly important to
achieve the longest possible battery life for mobile devices or to keep operating costs
as low as possible. It is, therefore, necessary to use resources as efficiently as possible.

Geographical Distribution. The cloud is located in central data centers, while fog
nodes can be distributed everywhere. Applications are possible in remote locations
without an Internet connection. Intelligent orchestration of the distributed compo-
nents is required to enable effective collaboration.

Inadequate Infrastructure. The requirements regarding network speed and avail-
ability are continually increasing. Increasing data collection, data processing, and the
rising number of requests pose a challenge to the existing infrastructure. Increased net-
work load and inadequate or unavailable infrastructure limit existing cloud solutions.
However, as infrastructure expansion is slower than IoT application development, a
solution is needed.

Interplay with the Cloud. Embedded devices and cloud solutions have both advan-
tages and disadvantages. For example, cloud components are dynamically scalable,

35



Chapter 4: Fogxy - An Architectural Style for Fog Computing

while embedded devices can meet real-time requirements. The combination of both
technologies enables the elimination of their disadvantages. Cloud components per-
form computationally or memory intensive tasks, while embedded devices perform
real-time critical tasks.

Access Control. Given the large number of Smart Objects and the amount of data,
access control to cloud components represents a challenge. Fog Computing requires
access restrictions for services and data. Authentication and authorization solutions
regulate the access of Smart Objects to cloud components.

Location Awareness. The multitude of devices and their mobility pose a challenge.
To ensure satisfying service delivery, environments must be aware of the devices cur-
rently contained. An environment traces the devices entering and leaving it to carry
out orchestration, task distribution, and service provisioning.

Smart Object
Actuator

Sensor

Embedded Device IoT DeviceMobile Device

Figure 4.2: Smart Object taxonomy

4.5 Solution

Fogxy addresses real-time and synchronization by decoupling heterogeneous Smart
Objects from centralized components. By introducing different layers, system compo-
nents can be distributed along a remote-field continuum. Services are geographically
distributed and offered where they are needed. The decentralized deployment of Smart
Objects and its services enable real-time critical applications. We apply Kruchten’s
4+1 view model for software architectures to describe the architectural style in the
following [Kru95]. Figure 4.3 shows the logical view, Figure 4.4 the development
view, and Figure 4.5 the physical view. We use a scenario in Section 4.5 to present
the dynamic aspect of Fogxy.

36



Section 4.5: Solution

Structure

In the context of IoT,Mobile Devices, Embedded Devices, and IoT Devices are equipped
with Sensors and Actuators. Sensors are used to measure and monitor the environ-
ment, while actuators control it. Smart Object in Figure 4.2 generalizes mobile devices,
embedded devices, and IoT devices [Sch17].

<<Field>>
Fogxy Local

<<Fog>>
Fogxy Proxy

<<Remote>>
Fogxy Cloud

Fogxy Publisher

SubscriberSmart ObjectContext

Policy

Figure 4.3: Fogxy architectural style overview

Figure 4.3 shows an overview of Fogxy. The Context class describes the context of
Smart Objects, such as battery power, network connectivity or computational power.
The Policy considers this information along with real-time and availability require-
ments to select a Fogxy strategy for reaching Fogxy Local, Fogxy Proxy, or Fogxy
Cloud, as described in the strategy pattern [GHJV95, BD09]. The object interacts
with Fogxy based on the selected strategy. Fogxy uses the proxy pattern, in which
the abstract Fogxy represents the subject, the Fogxy Proxy the proxy, and the Fogxy
Cloud the real subject. The proxy pattern is essential to Fogxy, because it enables
availability regardless of cloud availability. Furthermore, the network load is reduced
as requests merely need to reach the Fogxy Proxy and not the cloud. This reduces
latency and enables real-time applications. The observer (publish/subscribe) pattern
facilitates backward communication between Fogxy and the Smart Object, enabled by
the two interfaces Publisher and Subscriber [BHS07]. The Smart Object subscribes
to updates, while the Fogxy instance publishes information to all subscribed Smart
Objects via broadcast or multicast. Similar to the observer pattern, Smart Objects
register themselves as subscribers to the publisher Fogxy. Therefore, Fogxy is aware
of currently subscribed Smart Objects and traces entry and exit of Smart Objects.

37



Chapter 4: Fogxy - An Architectural Style for Fog Computing

Component View

Following the idea of a layered architecture, Fogxy distributes components on three
different layers: Field, Fog, and Remote (cf. Figure 4.4).

Re
m
ot
e

Fo
g

Fi
el
d

Fogxy Cloud

Fogxy Proxy

Smart Object Fogxy Local

Figure 4.4: Fogxy architectural style component view

Field components (lower layer; green) are located near the end-user and comprise a
Smart Object component and a Fogxy Local component. The Fogxy component offers
an interface for the Smart Object to interact. Fogxy Proxy itself acts as a proxy (cf.
proxy pattern [GHJV95]), allowing the Smart Object to communicate with local, the
fog, or the remote. The fog (middle layer; yellow) is in close vicinity to the field and
offers computing resources. The remote (upper layer; blue) is a centralized, location
independent computing and storage provider. The layers are arranged hierarchically
and enable the fulfillment of the various non-functional requirements.
Fogxy Local can request services of Fogxy Cloud via Fogxy Proxy or directly. In

situations where a Fogxy Proxy may not be available, the Fogxy Cloud serves the
requests of Fogxy Local. Fogxy differs from the proxy pattern because it does not
assume that a proxy object is always available. In Section 4.5, we discuss different
strategies and the routing between the layers.

Deployment View

The deployment view shows the mapping of software components to hardware
nodes. Figure 4.5 depicts the Client Node containing both the Smart Object and

38



Section 4.5: Solution

the Fogxy Local component. Individual deployment units depend on the context of
the project, ranging from personal computers to embedded devices. Multiple nodes
can connect to either Fogxy Local, Fogxy Proxy, or Fogxy Cloud. Fogxy Local runs
on the hardware component that also uses the Smart Object. The Fogxy Proxy is
deployed on a Fog Node. Each of the fog nodes and the client nodes can connect to
a Cloud Server. If the Fogxy Proxy cannot handle requests, or they are not real-time
critical, the Cloud Server serves as a fallback. Additionally, the cloud offers storage
space and computing resources for more performance draining requests.

Re
m
ot
e

Fo
g

Fi
el
d

:CloudServer

Fogxy Cloud

:FogNode :FogNode

Fogxy Proxy Fogxy Proxy

:ClientNode :ClientNode :ClientNode

Smart 
Object

Fogxy 
Local

Smart 
Object

Fogxy 
Local

Smart 
Object

Fogxy 
Local

Figure 4.5: Fogxy architectural style deployment view

Dynamics and Routing

The communication diagram in Figure 4.6 shows the component interaction within
Fogxy to serve a request. The Context class considers different parameters that deter-
mine which component processes a request. Possible influences are the availability, the
existing network connection, the respective computing power, battery consumption,
or real-time requirements. The goal is to identify an optimum of the various influences
to be able to process requests as effectively and efficiently as possible. The definition
of the optimum is application-dependent and specific to the problem domain. The
Policy defines which instance of Fogxy handles a request. The following example
shows the dynamic behavior and routing for latency-sensitive and latency-insensitive
requests. For a request with low latency, the Smart Object sets the Context as latency
sensitive. The Policy observes the Context and selects the fog communication strat-
egy. The Sensor senses an event and forwards it to Fogxy. As the Policy has chosen
a fog communication strategy, Fogxy performs the request on the Fogxy Proxy (cf.

39



Chapter 4: Fogxy - An Architectural Style for Fog Computing

step 5b in Figure 4.6). The Fogxy Proxy handles the request and an Actuator reacts
to the response. The observer pattern realizes the communication and synchroniza-
tion of the Actuators [GHJV95]. The Fogxy Local component may be available but
cannot service the request because of the limitations of processing power or battery.
In contrast, requests that do require high computational power are serviced by the
Fogxy Cloud. The Policy decides for a cloud communication strategy and thus the
Fogxy Cloud performs the requests (cf. step 5c in Figure 4.6). Depending on the type
and requirements of the required service the specific instance of Fogxy to handle the
request is decided at runtime.

<<Field>>
Fogxy Local

<<Fog>>
Fogxy Proxy

<<Remote>>
Fogxy Cloud

Fogxy

Smart ObjectContext

Policy

Actuator

Sensor1. setContext()

2.1. checkContext() 4. performRequest()

3. sense()

2.2. setStrategy()
5a. performRequest() 5b. performRequest() 5c. performRequest()

Figure 4.6: Fogxy architectural style communication dynamics

Variants

According to the proxy design pattern, there are also three variants of the Fogxy ar-
chitectural style. These variants are based on the variants of Buschmann and Gamma
[BMR+96, GHJV95].

Caching Fogxy. Fogxy Proxy can act as a cache in both directions. Data collected
by sensors can be processed and temporarily stored and forwarded to the cloud as
required or available. In the same way, results already provided by the cloud can be
made available in the fog.

Substitute Fogxy. Fogxy Cloud or Fogxy Proxy may not be available. We assume
that Fogxy Local is always available, but cannot meet application requirements and
therefore require fog or cloud services. Due to the mobility of Smart Objects, a fog
node with the corresponding service might not be nearby, available or accessible. The
child classes of Fogxy act as a stand-in for each other. They are not identical, but offer

40



Section 4.6: Consequences

corresponding services according to the possibilities available. There may be requests
that can be handled quickly by the Fogxy Proxy, but may not deliver as accurate
results as with execution on a cloud component.

Access Control Fogxy. Another variant of the Fogxy architectural style is that
Fogxy Proxy acts as an access control or security gateway. Thus, the proxy can
determine which request and data from the multitude of possible Smart Objects are
forwarded to Fogxy Cloud.

4.6 Consequences

The following benefits can be achieved by using the Fogxy architectural style:

Real-Time Access. The Fogxy Proxy offers services for Smart Objects in close prox-
imity. If the Proxy and Smart Objects are on the same network, latency is reduced
and IoT requirements are met. Instead of processing requests in the distant cloud,
a fog node allows requests to be handled locally. Local processing reduces latency
and enables the realization of real-time critical applications. Answers to requests may
already exist in the Fogxy Proxy and requests to the cloud can be avoided. The ar-
chitectural style serves as a Caching and Substitute Fogxy.

Interoperability. Smart Objects, Fogxy Local, Fogxy Proxy, and Fogxy Cloud are
self-contained components that collaborate to meet non-functional requirements. The
Fogxy architectural style enables interoperability of different hardware nodes and
software components through clearly defined interfaces and task assignments. Fogxy
allows existing infrastructure to be reused, thereby allowing already existing comput-
ing resources in vicinity to act as a fog node. This is an economic benefit as fog nodes
are already in place and do not have to be deployed.

Overcome Resource Limitation. Resource-limited devices can offload tasks and
thus overcome their limitations. By offloading to devices in the layers above, resources
are utilized efficiently and requests are processed where they can be executed best.

Geographical Distribution. Cloud components are centrally located and fog nodes
are decentralized. The advantages of both approaches can thus be combined. The
availability of systems can be increased because either the cloud is available if there is
no fog node nearby or the other way around. If the cloud is not available or accessible,
a fog node with the corresponding services may be available (cf. Substitute Fogxy).

41



Chapter 4: Fogxy - An Architectural Style for Fog Computing

Reduced Network Load. The amount of data transferred to the cloud can be
minimized by processing requests in the Fogxy Local or Fogxy Proxy. Application
components can filter data and requests, reducing the network load between fog and
remote. It restricts the transmission of unnecessary data and prevents inefficient band-
width consumption. At best, the data is processed where it is needed (cf. Caching
Fogxy), leading to reduced network traffic and available bandwidth [GGdFP+16].

Interplay with the Cloud. Fogxy as an architectural style for Fog Computing does
not replace Cloud Computing, but enables the effective interaction of IoT components
with Cloud Computing. Computational tasks that are not time-critical or require cen-
tral data storage are linked to services that have real-time requirements. Fogxy does
not specify where requests must be executed. As described in Section 4.5, Fogxy
provides the foundation for performing requests on different layers in the cloud-thing
continuum.

Access Control. The Access Control Fogxy variant enables the authentication and
authorization of Smart Objects to fog and cloud components. Smart Objects have
different access rights to the components.

Location Awareness. Fogxy Proxy is aware of its Smart Objects and thus enables
location awareness. Smart Objects nearby interact with the Fogxy Proxy and access
offered services. Services can thus be tailored to the needs of users and devices.

The application of the Fogxy architectural style entails the following liabilities:

Dealing with Complexity. The complexity of applications utilizing Fogxy increases
due to the multitude of different components and their interaction. Responsibilities
and interfaces must be defined appropriately.

Testability. Due to the different application contexts and the availability of cloud
and fog components, testability is a challenge.

Integration and Deployment. The variety of components, their heterogeneity, and
their distribution raise challenges for the integration and deployment of applications.
The integration of as many different components as possible into fog applications
offers advantages, but also entails increased effort for the provision of corresponding
integration and deployment solutions.

42



Section 4.7: Related Patterns

4.7 Related Patterns

Latency problems have occurred several times in software architecture history. For
example, the systems mentioned in the introduction were solved in mainframes by
Memory Cache Hierarchies or on the Internet using the Proxy pattern. We summarize
these technologies under the generic term reduced latency architectures and introduce
a taxonomy for it (cf. Figure 4.7). A memory cache hierarchy increases the computing
performance of mainframes and personal computers. The communication delay caused
by the distribution of client and server was reduced by introducing proxies that cache
content. These patterns serve as an inspiration and valuable resource for Fogxy.

Reduced Latency Architecture

Memory Cache Hierarchy Proxy Fogxy

Figure 4.7: Reduced Latency Architectures taxonomy

REST is as an architectural style for network-based software and is based on the
proxy pattern [Fie00]. Both REST and Fogxy aim to improve network efficiency.
REST constraints require requests to be explicitly or implicitly flagged as cacheable or
not cacheable. This enables interactions to be partially or completely eliminated and
improves the efficiency, scalability, and user-perceived performance. Fogxy achieves
identical goals by using the proxy pattern, but it is more general than REST, be-
cause REST can be used within Fogxy to enable communication between the different
components.

Syed and his colleagues formulated another Fog Computing pattern. Their pattern
defines Fog Computing as a “virtualized platform that stands between Cloud Comput-
ing systems and Internet devices” [SFI16]. This platform provides computing, storage
and networking services between cloud vendors and edge devices. In contrast to Syed’s
approach, Fogxy is not a platform, but an architectural style focusing on the context
of different components.

The Open Fog Consortium provides a generic reference architecture without plat-
form dependencies from a high granularity point of view [Con17]. Both architectures
feature the intermediate layer (fog) between the edge (field) and the cloud. However,
Fogxy provides a lower granularity and presents a detailed solution guide to implement
Fog Computing applications.

43



Chapter 4: Fogxy - An Architectural Style for Fog Computing

4.8 Known Uses

We applied Fogxy for applications in different domains:

• FRODO [SJB+17]: A system for decentralized decision-making in smart home
applications. Decisions about temperature or brightness are no longer made cen-
trally, but decentralized with the help of fog nodes. Discussed in Section 3.3.1.

• FARADAY and FEAt [SBB18]: Two industrial application scenarios in which
Fogxy is used to increase the availability of production facilities on the one
hand and to enable the analysis of sensor data in real-time on the other hand.
Discussed in Section 4.9.1 and Section 4.9.2.

• AIIoT [SHS+18]: AIIoT links Fogxy with augmented reality and machine learn-
ing technologies. Industrial Smart Objects are detected, identified, and the at-
tached sensor data is visualized in real-time using emojis. The use of Fogxy
allows the combination of technologies and the interpretation of sensor data in
real-time. Discussed in Section 7.1.

• IIoT Bazaar [SHM+18]: The IIoT Bazaar is the continuation of the AIIoT
project. It is an app store for edge applications that can be provided to factory
workers on edge devices using drag & drop in place. The IIoT Bazaar shows
that Fogxy also works in conjunction with Blockchain technology. Discussed in
Section 7.2.

• IPRA [HSHB18]: IPRA uses Fogxy to perform the computationally intensive
operation of person identification using smart glasses on a nearby fog node. The
goal of IPRA is the simultaneous fulfillment of real-time requirements and the
runtime extension of wearables through computational offloading.

44



Section 4.9: Application Examples

4.9 Application Examples

This section demonstrates the applicability of the Fogxy architectural style in two
examples from the manufacturing domain. In Section 4.9.1, FARADAY presents the
integration of Fogxy into an existing manufacturing system for production processes.
Sensor data is collected for analysis, processed in real-time, and synchronized. In
addition to the requirements of real-time access and synchronization, Fogxy reduces
network traffic. Section 4.9.2 presents FEAt, which simultaneously increases its avail-
ability and offers real-time access for the analysis of sensor data. Both application
examples show that Fogxy is applicable in the industrial domain and helps to overcome
problems associated with cloud deployments.

4.9.1 FARADAY

With FARADAY, we evaluate Fogxy regarding traffic reduction in an enterprise net-
work and the requirements for low latency that cannot be met with cloud-only ap-
proaches. FARADAY must adapt to available bandwidths in varying networking
infrastructures for industrial use. This implies reducing the transmitted data as far
as possible and increasing the information forwarded to the cloud to enable further
processing, model training, and storage.

Design

Figure 4.8 shows the packaged analysis object model of FARADAY. It refers to the
analysis object model described as an application example in Section 3.3.2. We group
related classes in packages and show how Fogxy actualizes the system architecture.
To perform an initial division and facilitate further system decomposition, we struc-
ture the analysis object model according to the Manufacturing, DataHandling, and
Feedback packages.
The Manufacturing package contains all entities involved in the company’s manu-

facturing process. The Assets on the Shop Floor provide Data and obtain Control
Commands that are propagated to control the manufacturing process. The Data
Processor is the central component of the DataHandling package. It runs locally or
remotely and processes the data received from the Data Aggregator. If an anomaly
occurs, it triggers an Event, which defines the policy for the Feedback creation. The
Feedback package includes the Feedback Creator, which generates concrete Feedback
instances, such as Notifications or ControlCommands. The Data Scientist defines
these policies and thus determines which Feedback is published.

45



Chapter 4: Fogxy - An Architectural Style for Fog Computing

DataHandling

Manufacturing

Feedback

<<Remote>>
Data Scientist

<<Remote>>
Feedback Receiver

<<Remote>>
Employee

<<Remote>>
Notification

<<Fog>>
Control Command

<<Fog>>
Feedback Creator

<<Fog>>
Event

<<Fog>>
Data Processor

<<Field>>
Data Aggregator

<<Field>>
Data

<<Field>>
Asset

<<Field>>
Shop Floor

<<Remote>>
Company

<<Fog>>
Feedback

1..*

0..*

1..*

1..*

0..*

1..*

Figure 4.8: FARADAY packaged analysis object model

The architecture of FARADAY is based on Fogxy and enables data processing in
the field and fog to reduce network traffic and system response times. FARADAY
consists of a lightweight core that is dynamically extensible by components with fur-
ther functionality. The intra-node communication between the components on the
same node is based on a publish-subscribe messaging service. Inter-node communi-
cation uses the MQTT2 protocol. FARADAY comprises the following components: a
communicator component mediates between the intra-node and the inter-node com-
munication and provides the routing capability necessary to forward messages to the
destination node. The Data Aggregator interfaces assets and machinery on the Shop
Floor to collect data. This data is analyzed by a Data Processor that triggers events
in case of anomalies. The Feedback Creator transforms these events into feedback
messages, which can either be human-readable notifications or control commands for
Assets. In the latter case, the Asset Controller executes the connection and control of
each Asset. Depending on the component distribution across Field-, Fog-, and Remo-
teEnvironment, FARADAY can be optimized for latency, bandwidth, and reliability
requirements of specific use cases.

:FieldEnvironment

BananaPi:ApplicationDevice

Data Aggregator Feedback Creator

Asset Controller Data Processor

:FogEnvironment

DellEdgeGw:ApplicationDevice

Feedback Creator

Data Processor

:RemoteEnvironment

Azure:Server

Feedback Creator

Data Processor

Figure 4.9: FARADAY deployment diagram

2http://mqtt.org/

46

http://mqtt.org/


Section 4.9: Application Examples

To assess FARADAY’s capabilities regarding real-time access and network traffic
reduction, we evaluate the effectiveness of techniques such as local data analysis or
data preprocessing and compression on field or fog nodes with the setup shown in
Figure 4.9. We adopt an industrial predictive maintenance application for our eval-
uation scenario in which we monitor vibrations and temperatures of electric motors
to detect attrition and imminent failures. Figure 4.10 visualizes the test setup. A
Banana Pi Single Board Computer (1) equipped with an acceleration sensor (2) and
a temperature sensor (3) serves as a field device. The DellEdgeGateway (4) serves as
the fog node and is wired via ethernet. The components in the remote layers were
deployed on Microsoft Azure. While the data collection and processing is performed
on hardware, we simulated a control loop by logging the received feedback messages
and the respective latency on the field device.

7. EVALUATION

Figure 7.1: Hardware Setup: The Hardware components for the evaluation of
our prototypical implementation: The Edge Device with a tempera-
ture and an acceleration sensor on the left, connected via Ethernet
to the DellEdgeGateway in an industrial case on the right.

FARADAY’s software deployment for the evaluation is illustrated in Fig-
ure 7.2. We deploy the DataAggregator and the AssetController on the
Banana Pi M1 running Raspbian Linux. It is connected to the DellEdge-
Gateway5100 fog device, running Ubuntu 16.04 LTS, over Gigabit Ethernet.
The fog device is connected to an Azure Standard D2s v3 VM with 2 vcpus
and 8 GB memory, running Ubuntu Server 16.04 LTS. The fog-cloud connec-
tion is realized over WAN with 50/10 Mbit/s bandwidth. The Azure servers
are in the Netherlands1. To compare this setup with a cloud only approach,
we also connect the edge device directly to the Azure cloud.
We deploy the DataProcessor and FeedbackCreator on each edge, fog, and
cloud instance and use MQTT as communication protocol for all connections.
The edge device is equipped with one acceleration sensor of the type

1The Azure West Europe instance, hosted in the Netherlands, is the closest available
with our subscription. There exist data centers in Frankfurt, Germany, however, not
Microsoft, but T-Systems(https://www.microsoft.com/de-de/cloud/deutsche-
cloud) hosts them and demands a special subscription.

68

1

2 3

4

Figure 4.10: FARADAY test setup

Results

Table 4.1 shows the duration between the data sample recording and the reception
of a feedback message when performing the analysis in the field, fog, or remote layer.
Wireshark captured the average feedback latency between the involved devices.

Field-only processing yields the fastest feedback with an average latency of 6.53ms.
Data processing on the fog node increases latency to 11.95ms. Therefore, 5.52ms

47



Chapter 4: Fogxy - An Architectural Style for Fog Computing

Field-Only Field-Fog Field-Remote
Remote – – 1.26 ms
Fog – 5.72 ms –
Network – 0.71 ms 37.82 ms
Field 6.35 ms 5.52 ms 5.83 ms

Table 4.1: FARADAY processing time

(46.19%) are attributable to the field node, 5.72 ms (47.87 %) on the fog node, and the
remaining 0.71 ms (5.94 %) represent the network transmission time. The field-remote
solution achieves a response time of 44.91ms. The more powerful cloud hardware
decreases the time for feedback creation to 1.26ms, an improvement by a factor of 4.54
compared to the fog node. Due to the larger spatial distance, the transmission time
increases to 37.82ms (84.21% of total latency). These results confirm the assumption
that a fog approach offers real-time benefits compared to cloud-only deployments. The
techniques presented for traffic reduction on a field or fog node reduce the outbound
data rate and thus decrease the load on the network. Data compression especially
appeared to be a powerful approach. Figure 4.11 visualizes the bandwidth savings
achieved by compressing sensor readings or batches of acceleration data sampled at
1000 Hz. The compression of aggregated data batches increases effectiveness, but also
introduces additional delay.

0,000E+00

5,000E+05

1,000E+06

1,500E+06

2,000E+06

N
et

w
or

k 
Tr

af
fic

 [B
it/

s]

uncompressed 1 sample
compressed

10 samples
compressed

1000 samples 
compressed

100 samples 
compressed

Figure 4.11: FARADAY bandwidth savings

48



Section 4.9: Application Examples

Besides the trade-off of traffic reduction and latency, further parameters exist that
influence the Quality of Service (QoS) provided by the system. The weighting of the
entries of the QoS-vector and the resulting system behavior are dependent on the
application and requirements. The capability to adapt the QoS-vector to meet the
respective circumstances is essential to targeting a broad range of uses. FARADAY
offers this adaptability due to its fog-based and modularized architecture. Its exten-
sibility enables the integration of external components to be upgraded and tuned for
further applications. The increased internal messaging effort and the need for gen-
eral interfaces induced by the modularity and flexibility impair system performance
compared to specialized solutions. Shifting performance critical tasks to dedicated
systems integrated within FARADAY addresses this drawback.

4.9.2 FEAt

FEAt (Fog-Based Resilient Edge Application) addresses a factory located in a rural
area with a poor Internet connection. A simplified industrial manufacturing factory
served as an example. The factory uses the following steps to process goods: in-
coming material is checked for completeness and intactness in the incoming material
inspection and is placed in the warehouse. Material required to manufacture an order
is transported from the warehouse to the manufacturing cells. An overhead crane
reaches all manufacturing stations, including the warehouse and quality assurance.

Figure 4.12 shows the Lego Mindstorms crane that simulates the factory and pro-
vides sensor values. Three manufacturing cells execute different processing steps:
milling, welding, and drilling. The crane transports products in a cell and continues
after a defined period of time. After production, the finished products are quality
assurance tested and dispatched from the warehouse. Fogxy enables FEAt despite a
poor Internet connection and enables the real-time processing and synchronization of
sensor data.

Design

The business and operations related systems run centrally in a remote data center
which controls the operations of the factory: production plan, execution instructions
for manufacturing cells, acquisition of operating data from machines and environ-
mental sensors, and the creation of work orders. These operations rely on a working
Internet connection.

49



Chapter 4: Fogxy - An Architectural Style for Fog Computing

Figure 4.12: FEAt test setup

Results

Applying Fogxy to FEAt increases service availability and minimizes bandwidth limi-
tations while enabling real-time access for sensor value data. To validate the assump-
tions, we deploy FEAt with different configurations and measure the round-trip time
(RTT) and bandwidth.
The components of the RemoteEnvironment are placed on geographically distributed

servers provided by AWS3 (EU-Central, EU-West, and US-West). Table 4.2 shows
that, compared to RemoteEnvironments, the latency from the Field- to the FogEnvi-
ronment is smaller and the available bandwidth higher. Considering the low standard
deviation of FogEnvironment’s latencies, the response times are more predictable. A
small number of potential outliers can disrupt the application. An explanation for
the larger standard deviation is the higher number of hops from the Field- to the
RemoteEnvironment, compared to the FogEnvironment, which is typically one or two
hops away. As shown in Table 4.2, response times for services deployed in the Re-
moteEnvironment compared to the FogEnvironment are 2.17 times slower than AWS

3https://aws.amazon.com/

50

https://aws.amazon.com/


Section 4.9: Application Examples

:Client

:RemoteEnvironment

AWS:Server
:FogEnvironment

RaspberryPi:ApplicationDevice

:FieldEnvironment

Scheduler

OrderManager

FactoryDataAdapter

Scheduler EdgeDataAggregator

ExecutionManager EdgeDeviceCoordinator

RaspberryPi:ApplicationDevice

EdgeManager DataExtractor

EV3:EdgeDevice

MachineAdapter

:Client

WorkerAdapter

UserInterface

Figure 4.13: FEAt deployment diagram

EU-West deployments and 16.77 times worse than AWS US-West deployments. The
measurements were conducted from Munich, Germany, and led to weaker results for
AWS US-West-1a deployments because the data center is geographically further away.
When considering the total loss of connection to the cloud, fog-based solutions can
still provide services, which is not the case for remote ones.

RTT mean RTT std. deviation Downlink Uplink
Fog 11.06ms 0.50ms 94.1MBps 94.2MBps
EU-Central 24.08ms 7.87ms 46.5MBps 9.47MBps
EU-West 46.02ms 8.89ms 39.5MBps 8.46MBps
US-West 185.00ms 5.12ms 24.1MBps 7.66MBps

Table 4.2: FEAt test measurements

51





Chapter 5

APEP and RIAP

While writing and formulating Fogxy, we faced several challenges. Writing an archi-
tectural pattern is an iterative process and requires several iterations [WF12]. The
first design attempts were vague and not clearly formulated and did not sufficiently
describe the pattern. Other software engineers did not understand the pattern well
enough and could not apply it to realize Fog Computing applications. Section 5.1
introduces APEP (Architectural Pattern Evaluation Process). It allows for an archi-
tectural pattern draft to be evaluated based on adaptations of sophisticated methods
for architectural evaluation. Section 5.2 presents the RIAP (Review of Intermediate
Architectural Patterns) method. To prove the feasibility and applicability of APEP
and RIAP, Section 5.3 describes an application example where Fogxy has been itera-
tively evaluated.

5.1 Architectural Pattern Evaluation Process (APEP)

The goal of APEP is to support a pattern designer in evaluating and iteratively im-
proving an architectural pattern and its formulation. Existing software evaluation
methods are too sophisticated to evaluate a pattern, which is why we designed the
lightweight and easy to use APEP process. APEP can be applied during the entire
pattern writing process and supports different evaluation methods. APEP raises is-
sues towards the design and formulation of the pattern. These issues facilitate the
improvement of the pattern. Figure 5.1 shows the APEP process, which begins with
choosing an evaluation method, then carries it out, and finally addresses the resulting
issues.

5.1.1 Design

APEP requires two roles: designer and reviewer. The designer provides and introduces
the architectural pattern. The designer is also responsible for answering questions that
arise during the evaluation. APEP can be used for the early evaluation of patterns—
called Intermediate Architectural Patterns—and the evaluation of mature patterns.

53



Chapter 5: APEP and RIAP

1. Choose
Architectural

Pattern 
Evaluation 

Method

2. Conduct Architectural
Pattern Evaluation 

Method

3. Find Solutions 
for Issues and

Improve
Architectural

Pattern

Figure 5.1: APEP process overview

Figure 5.2 presents an overview of the different steps and artifacts of APEP. The
designer initiates the process by choosing an architectural pattern evaluation method.
The reviewers perform the architectural pattern evaluation method and bring up
issues. These issues are gathered in an issue list and described in more detail in
Section 5.1.3. Once issues are raised, the designer can develop solutions and improve
the pattern. If an evaluation method does not open up further issues, another method
can be chosen and carried out.

D
es

ig
ne

r
R

ev
ie

w
er

Choose Architectural 
Pattern Evaluation 

Method

Conduct Architectural 
Pattern Evaluation 

Method

Improve Architectural 
Pattern

Issue List

Improved Version of 
Architectural Pattern

[Yes][No]
Issue list considered 

complete?

Figure 5.2: APEP activity overview

5.1.2 Architectural Pattern Evaluation Methods

We took the methods for architectural evaluation presented in Section 2.2.3 and
adapted them for architectural pattern evaluation. We present an adaption of ARID,
namely RIAP, a Review for Intermediate Architectural Patterns. A proof of concept
shows both the feasibility of an architecture and an architectural pattern through the

54



Section 5.1: Architectural Pattern Evaluation Process (APEP)

implementation of a specific scenario. The architectural pattern evaluation method
enables the reviewers to instantiate the pattern, elicit quality requirements, and as-
sess the resulting architecture against those requirements. Figure 5.3 illustrates the
sequence of activities for conducting the architectural pattern evaluation method.

Choose Evaluation Method

Create Reference Model Elicit Quality 
Requirements

Reference Model Architectural Pattern Quality Requirements

Instantiate Software 
Architecture

Software Architecture

Evaluate against Quality 
Requirements Issue List

Ap
pl

ic
at

io
n 

Do
m

ai
n Solution Dom

ain

Conduct Architectural Pattern Evaluation Method

Figure 5.3: APEP conduction activity diagram

As illustrated in Figure 2.2, a software architecture is the result of a reference model
and architectural patterns. The evaluation method therefore requires the reviewers to
create a reference model. The designer provides the architectural pattern. In addition,
quality requirements must be defined to assess the suitability of the architecture.
Reviewers instantiate a software architecture using the artifacts, reference model,
architectural pattern, and quality requirements. The evaluation of the architecture
in terms of the quality requirements identified results in a list of issues containing all
issues uncovered during the process and the evaluation.

5.1.3 Issues

Architectural Pattern

Software Architecture

Issue Problem

Context

Solution

Issue list

Figure 5.4: Issue list structure

All architectural pattern evaluation methods described reveal Issues. These issues
arise in a Context, for example during the communication between two components
of the architectural pattern. They feature a Problematic Solution and give rise to a
Refactored Solution. The improved solution is applied to enhance the architectural

55



Chapter 5: APEP and RIAP

pattern. Figure 5.4 visualizes the structure. This tripartite is used in the style of an
anti pattern (cf. Figure 5.5) [BMMM98]. The Context is adopted directly. We merge
Problem and Problematic Solution into the problem of the Issue, and the Refactored
Solution transitions to our Solution.

Anti Pattern

Problem

Context

Refactored Solution Problematic Solution

Negative ConsequenceNegative Symptom Benefit Consequence Follow-On Problem

Figure 5.5: Anti pattern structure

5.2 Review for Intermediate Architectural Patterns (RIAP)

We present RIAP as an architectural pattern evaluation method for APEP. RIAP is
an adaption of ARID (cf. Section 2.2.3) for architectural patterns. Like ARID, RIAP
is capable of early evaluations of intermediate architectural patterns.

5.2.1 Design Goals

The goal of RIAP is to strengthen the evaluated pattern. RIAP is part of the APEP
process and is used for the early evaluation of intermediate architectural patterns.

5.2.2 Characteristics

During the design of RIAP, we considered its applicability in practice. In terms of
requirements, we distinguish between functional and non-functional characteristics:
features that RIAP must fulfill (functional characteristics - CR) or a restriction it
must obey (non-functional characteristics - NCR) to be able to carry out the specified
objective of strengthening the pattern [BD09]. In consultation with other pattern au-
thors and inspired by other methods of architecture evaluation methods, we identified
the following functional and non-functional characteristics for RIAP:

(CR1) Identify Issues: RIAP must identify issues of the architectural pattern.
(CR2) Improve Pattern: The identified issues must be usable to improve the pat-
tern regarding context, problem, or solution description. There may also be negative
consequences that need to be considered.
(CR3) Instantiate Architecture: According to APEP, an evaluation method must

56



Section 5.2: Review for Intermediate Architectural Patterns (RIAP)

instantiate a concrete architecture. RIAP must instantiate an architecture that in-
cludes the architectural pattern that is being evaluated.
(CR4) Provide Guidance: In contrast to the underlying ARID method, RIAP tar-
gets intermediate architectural patterns instead of intermediate designs. RIAP must
provide guidance during the review.
(NCR1) Time: RIAP must be able to be carried out in a reasonable time frame - we
define reasonable in this context as less than four hours. In contrast to architecture
evaluation methods, reviewers do not associate themselves with the pattern as much
as with an architecture they would be using in a project.
(NCR2) Simplicity: Since RIAP targets intermediate architectural patterns, it
must be feasible for undocumented patterns as well.
(NCR3) Heterogeneity of Participants: RIAP must be executable with a het-
erogeneous group of software engineers. Heterogeneous in this context means that
they may not have experiences in the domain in which the pattern is applicable, and
that the group may have different levels of experience.

5.2.3 Implementation

ARID serves as the basis for RIAP as it is lightweight, can be completed in a reason-
able time frame and can also be used for intermediate architectural patterns. RIAP
needs a facilitator, a designer, and reviewers. The designer provides the architectural
pattern, introduces it, and answers questions that arise during the review. The role
of the facilitator is to guide the process and capture issues. The reviewers’ task is to
test and review the architectural pattern. They do not need to have experience in
the pattern’s application domain. RIAP is applicable for a heterogeneous group of
software engineers even though it expects general knowledge of software architecture
and software engineering. The duration of RIAP is set at three hours to stay within a
reasonable time frame. The process is divided into two phases: the rehearsal and the
review. In the rehearsal phase, the designer and facilitator prepare the actual review,
which takes place in the review phase.

Rehearsal

The rehearsal consists of four different steps. Figure 5.6 depicts those steps as a UML
activity diagram. The facilitator and the designer meet and select the reviewers first.
The designer prepares a pattern briefing that explains the architectural pattern and
chooses a problem domain in which to evaluate the pattern. Since an architectural
pattern is used in a broader context than a design, we assume that the scenarios that

57



Chapter 5: APEP and RIAP

the evaluators would develop were too different to evaluate. We restrict all scenar-
ios to a specified problem domain. The facilitator prepares the RIAP presentation,
which includes the design briefing and the description of the problem domain. We
recommend printing both the design briefing and the problem domain on a handout
for the reviewers to use throughout the review.

D
es

ig
ne

r
Fa

ci
lit

at
or

Identify Reviewers

Prepare Pattern Briefing Prepare Description of 
Problem Domain

Prepare Presentation RIAP Presentation

Figure 5.6: RIAP rehearsal phase activities

Review

While ARID targets a design, RIAP targets an architectural pattern: evaluating this
seems to be too daunting of a task for the reviewers to tackle on their own. RIAP
provides strict guidance through the process. In the review phase (cf. Figure 5.7), the
facilitator introduces RIAP to the reviewers by describing all the steps. The designer
presents the architectural pattern. During this time, reviewers can ask questions about
the understanding of the architectural pattern. The facilitator records these questions
as issues. Afterwards, the designer presents the problem domain to the reviewers.
To guide the reviewers in the following more active part, we set a total of seven

tasks. The facilitator introduces each task. The reviewers complete the task, while
the designer can answer questions. These questions target the understanding of the
architectural pattern. The designer may not give their opinion on how to implement
certain aspects of the system, as this would influence the reviewers’ design decisions.
The questions and any problems that arise during the completion of the tasks, such as
how to map components of the pattern to the scenario, are recorded by the facilitator.
The seven tasks are described in the following:

(T1) Brainstorming Scenarios: The goal is to generate scenarios in which the
architectural pattern is applicable and which fit the proposed problem domain. We
suggest using brainstorming techniques such as the gallery method1 or brain sketch-
ing2. The reviewers write the scenario title on a card and give a brief description.

1https://www.mycoted.com/Gallery_method
2https://www.mycoted.com/BrainSketching

58

https://www.mycoted.com/Gallery_method
https://www.mycoted.com/BrainSketching


Section 5.2: Review for Intermediate Architectural Patterns (RIAP)

Facilitator Designer Reviewer

Introduce RIAP

Record Issues Introduce Architectural 
Pattern Ask Questions

Introduce Problem 
Domain

Introduce Task

Record Issues Answer Questions Complete Task

Issue List

Present Questionnaire Answer Questions

For all Tasks

Figure 5.7: RIAP review phase activities

The cards are pinned to a white board and displayed visibly for all reviewers. The
reviewers can ask questions if a scenario is unclear. The process of writing cards and
looking at the results can be repeated until no new ideas emerge.
(T2) Prioritize Scenarios: Due to time constraints, it is not possible to implement
every suggested scenario, meaning that they must be prioritized. Each reviewer has
a total of three votes which they can assign to the scenarios. The participants attach
stickers to the cards on the white board, as described in the sticking dots method3.
The top-rated scenario is used for all subsequent tasks.
(T3) Formulate Demo Scenario: The scenario has a title and a brief description.
To implement it, the reviewers formulate a detailed description of the flow of events.
The implementation must be able to carry out all these steps.

3https://www.mycoted.com/Sticking_Dots

59

https://www.mycoted.com/Sticking_Dots


Chapter 5: APEP and RIAP

(T4) Elicit Non-Functional Requirements and Quality Requirements: The
group elicits non-functional requirements that are important for the scenario and must
be considered in the design to meet the quality requirements of the architecture.
(T5) Create Subsystem Decomposition: To design the system, the reviewers
create a subsystem decomposition. All parts of the pattern must be included.
(T6) Establish Hardware/Software Mapping: To demonstrate that the subsys-
tems provided can be mapped to hardware, the group creates a hardware/software
mapping that shows the hardware and protocols used for communication between the
different subsystems.
(T7) Apply the Demo Scenario: The group is supposed to show how the designed
system carries out all individual steps of the demo scenario. For example, they can
show the dynamic behavior of all participating subsystems. During this task, designer
and facilitator can ask questions regarding the feasibility of the proposed solution. For
example, they can examine how the system meets the non-functional requirements.

After all tasks have been completed, the facilitator creates a list containing all issues
from the tasks and the initial presentation of the architectural pattern. To further
encourage reviewers to provide feedback, RIAP concludes with a questionnaire. All
questions are written in the style of Active Design Review questions and aim to get
reviewers to question the architectural pattern in this scenario. The facilitator presents
the questions about the architectural pattern, such as whether the pattern could meet
all quality requirements or, more generally, what the purpose of the pattern is, and
the reviewers answer them.

5.3 Application Example

To evaluate RIAP, we conducted two case studies in July 2017 based on the archi-
tectural pattern Fogxy. The results of RIAP were used to improve Fogxy. A total of
eight reviewers participated in the first case study and six participated in the second
case study. The first case study took three and a half hours while the second case
study was reduced to three hours. The pattern had not yet been published at that
time and was still in a raw version. The results of RIAP were used to improve Fogxy.

5.3.1 Materials

To prepare for the case study, the designer and the facilitator met to craft a presen-
tation and a handout4. The presentation contained the following slides: introduction

4The presentation and handout of the case study are available at https://github.com/
andreasseitz/apep

60

https://github.com/andreasseitz/apep
https://github.com/andreasseitz/apep


Section 5.3: Application Example

to RIAP and the steps involved in the process, design briefing for the architectural
pattern Fogxy, problem domain, task description, and questionnaire. For the design
briefing, we used an intermediate version of Fogxy that included quality requirements,
object model, dynamic view of object interaction, and component diagram.

5.3.2 Reviewers and Environment

We distinguish two groups of reviewers: software engineers familiar with the concepts
of Fog Computing and people with less knowledge of Fog Computing. The first group
consisted of computer science students doing research in the field of Fog Computing.
The second group consisted of software engineering doctoral students. Figure 5.8
shows the allocation of the 14 reviewers to the two groups.

Unfamiliar
8

57%

Familiar
6

43%

Participants unfamiliar with the
concept of Fog Computing
Participants familiar with the
concept of Fog Computing

Figure 5.8: Prior knowledge distribution of the RIAP application example

The review took place in a meeting room, which offered magnetic boards for sketch-
ing and hanging cards. Figure 5.9 gives an impression of the working environment
and the results.

Figure 5.9: RIAP working environment and results

61



Chapter 5: APEP and RIAP

Problem Domain and Questionnaire

We used different problem domains for each case study. The first case study focused
on the domain of renewable energies. A wind turbine must continuously adapt to the
weather conditions to deliver as much electricity as possible and to protect it from
damage. The adjustment is done by an actuator which either tilts the blades into the
wind to increase the speed of the turbine or tilts them out of the wind to decrease it.
A sensor is attached to the turbine to constantly measures the wind speed. The cloud
provides a weather forecast which, in conjunction with the current speed, allows both
a proactive and reactive response to wind speed changes.
The second case study is from the field of autonomous driving. A car drives au-

tonomously due to attached sensors that evaluate the surrounding environment of the
vehicle. The cloud provides additional information and acts as a central coordinator
to reduce traffic congestion.
The questionnaire contained the following Active Design Review questions:

• What is the idea and purpose of Fogxy?

• What are the shortcomings of Fogxy in this scenario?

• Where did you have problems implementing Fogxy?

• Which non-functional requirements could not be fulfilled?

These questions allow participants to revise the architectural pattern and provide
the opportunity to address further issues.

5.3.3 Evolution of the RIAP Method

In the first case study, it became clear that our decision to select a problem domain
without scenarios was inconvenient. The tasks of brainstorming and prioritizing sce-
narios and determining non-functional requirements were not well received by the
participants. These tasks were a means to an end and therefore took too long. Addi-
tionally, it was unclear to the reviewers how they were supposed to formulate scenarios
independently of the architectural pattern being evaluated. We therefore decided to
predetermine the concrete scenario and its non-functional requirements. We ensured
that the architectural pattern was appropriate for the scenario and that there was no
argument about it.
For the second case study, we described the following scenario: A car crashes and

publishes this information. The system receives the information and coordinates the
following vehicles to either brake or avoid a collision by steering away. The system
must be available 99.9999% of the time and the decision whether to brake or pass
must be transferred to the following vehicles in less than 10ms.

62



Section 5.3: Application Example

5.3.4 Findings

Table 5.1 gives an overview and compares the two case studies conducted. Based on
the changes introduced to RIAP, we were able to reduce the time of the evaluation to
three hours. In both case studies, two groups implemented one scenario. Each group
came up with a different design. The first case study revealed seven problems, which
were also confirmed in the second case study. The questionnaire did not reveal new
insights in either session.

Case Study 1 Case Study 2
Time 3h 30min 3h

# reviewers 8 6
# created scenarios 8 1

# implemented scenarios 1 1
# different designs 2 2

# issues 7 6 (all duplicates)

Table 5.1: RIAP application example metrics

5.3.5 Issue List

During the review phase of RIAP, the facilitator started to explain RIAP and gave a
brief introduction to Fog Computing, and the designer introduced Fogxy. We encoun-
tered the first set of issues: a participant posed the question whether a smart textile
would be an actuator or a sensor. Other participants added a light switch, which was
not covered by Fogxy’s object model. This was recorded as issue I1:

ID I1
Name Client Taxonomy
Context Understanding Fogxy’s object model
Problem The taxonomy of the client is not clear regarding the classification

of devices such as smart textiles or light switches.

For the participants, the policy object in the Fogxy object model was unclear. Its
functionality and the relationship to the Fogxy object were not clearly described. We
delineated this as issue I2:

63



Chapter 5: APEP and RIAP

ID I2
Name Policy Object
Context Understanding Fogxy’s object model
Problem The purpose of the policy object and its relationship to the super-

class Fogxy are unclear.

The communication between the client and the Fogxy node was unclear, as the op-
posite direction was covered through the publish/subscribe mechanism, as described
with Issue I3:

ID I3
Name Publish / Subscribe
Context Understanding Fogxy’s object model
Problem It is unclear how the client communicates with the Fogxy if it cannot

be a subscriber itself.

Through discussion, it became clear that in some cases it is possible or necessary for
the computation to be carried out by the client itself. This was reflected in Fogxy’s
object model, which led to the recording of issue I4:

ID I4
Name Client-Computation
Context Understanding Fogxy’s object model
Problem The architectural pattern does not support the client carrying out

simple computations by itself.

The discovery mechanism was the final issue with the object model. It was unclear
to the participants how the client locates Fogxy nodes regardless of their deployment.
This was formulated as issue I5:

ID I5
Name Fogxy Discovery
Context Understanding Fogxy’s object model
Problem The discovery mechanism for Fogxy is not clear.

The Fogxy client includes the Fogxy object, the publisher interface, and the policy
object, but they were perceived as abstract. The Fogxy object was a generalization
of two remote systems and thus the reviewers were confused about why it is mapped
to a client component. Issue I6 records this confusion:

64



Section 5.3: Application Example

ID I6
Name Components
Context Understanding Fogxy’s component model
Problem The distinction between the client and the Fogxy client is unclear.

This confusion led to further ambiguities about the locality of the policy object, as
described in issue I7:

ID I7
Name Policy-Location
Context Understanding Fogxy’s component model
Problem The location of the policy object is unclear.

The groups then performed the RIAP tasks and created subsystem decompositions
and hardware/software mappings for the different scenarios. Figure 5.9 shows the
resulting hardware/software mapping of the first reviewer group.

65





Chapter 6

Seamless Computing

The Fogxy architectural style described in Chapter 4 is the prerequisite for Seamless
Computing. Seamless Computing is a build- and release-management concept that
enables the homogeneous distribution of Fogxy components to heterogeneous hard-
ware nodes. Section 6.1 defines the terminology used for Seamless Computing. We
define requirements in Section 6.2 and the reference model for Seamless Computing
in Section 6.3. Section 6.4 investigates existing technologies from the field of Cloud
Computing to determine whether they are suitable for the designed reference model.
Section 6.5 present Fogernetes and DYSCO as concept implementations for Seamless
Computing.

6.1 Terminology

Fog Computing applications consist of components distributed across different do-
mains that have specific characteristics and provide particular software environments
to manage the software lifecycle, such as methodologies, tools, and processes used
to design, develop, build, test, deploy, run, and manage software. Figure 6.1 shows
the domains and devices included. We present the properties and characteristics of
domains and devices:

Field Domain. Traditionally, computing in the field domain is based on dedicated
embedded hardware with limited resources regarding computing power and storage
capabilities. In-field edge devices have direct access to physical sensors and actuators.
They often perform under real-time constraints and are part of mission-critical pro-
cesses or infrastructure, such as energy systems or industrial processes. Software on
field devices uses low-level programming languages, without operating systems or with
specific real-time operating systems [BSS+18, CSB17]. The deployment and update
of software require service technicians to go on-site, leading to long, inefficient and
error-prone software lifecycles. With increasing computing and storage capabilities,
it is possible to establish field devices with standard computer environments, such as

67



Chapter 6: Seamless Computing

Re
m

ot
e

Fo
g

Fi
el

d

Public Cloud
Private Cloud

Fog Node

Edge Device

- Unlimited Resources
- Off-Premise
- Highly Productive
- Synchronization

- Bundled Resources
- Virtualized
- On- or Off-Premise
- Private

- Few Machines
- General Purpose
- On-Premise

- Embedded Systems
- Specific Purpose
- Real-Time

Figure 6.1: Seamless Computing domains of industrial systems (adapted from
[MGSB17])

operating systems and higher programming languages.

Fog Domain. Computing devices in the fog domain typically consist of general-
purpose hardware and standard operating systems. Fog nodes for example are located
at production lines of an industrial plant, or in a substation of an electrical grid. The
fog domain within a site consists of a single computer up to a smaller number of
nodes, ranging from industry PCs to workstations or servers. Due to its logical and
geographical proximity to physical machines, the fog domain is characterized by high-
security requirements and low latency times for interactions with the field devices.

Remote Domain. The remote domain is the most abstract and standardized com-
puting environment. Cloud providers offer computation and storage capacities on-
demand, enabling elasticity and scalability of applications deployed in that domain.
Cloud Computing has led to the emergence of service models such as Platform as
a Service (PaaS), cloud orchestration, and continuous delivery, which accelerate the

68



Section 6.1: Terminology

software lifecycle, transforming deployment frequency from every few months to sev-
eral times a day [Hum17]. Public cloud services are centralized and offered by a few
large providers such as Amazon, Microsoft, and Google. The geographical distance
between field devices and the central remote components results in high latency and
limits real-time applications. General purpose servers are used in the remote domain
and for industrial scenarios. It is common for medium-sized or large companies to
run IT applications in such data centers. While they were initially based on phys-
ical servers, virtualization techniques enable application requirements to be flexibly
mapped to existing server capacities.

The different software environments of the compute domains lead to a static as-
signment of system components and limit the distribution across layers. Seamless
Computing addresses these issues and implements similar, ideally identical software
environments across compute domains. It provides consistent tools and technologies
for designing, developing, testing, deploying, and running software to support multi-
domain applications. While the application of this homogeneous environment to field
devices with microcontrollers and non-standardized operating systems, or no operat-
ing systems at all, is initially not feasible, field devices are expected to be penetrated
by generic hardware and operating systems. Seamless Computing can also be used
for mobile devices. However, the prerequisites for mobile devices are different, as they
usually possess standard hardware, operating systems, and varying network connec-
tivity. As a basis for the relocation of components, we assume modular applications
consisting of workloads, based on the architectural model of micro-services [New15].
We define Workload Mobility as the ability to move application components within
and across compute domains, using the same code, application lifecycle tools, and
deployment artifacts. Figure 6.2 shows two scenarios of an application deployment
configuration. Scenario 1 visualizes the distribution of application components across
the three compute domains Field, Fog, and Remote. Scenario 2 shows the allocation
of the same components in the two lower domains. Both scenarios present the de-
ployment of the same application in different configurations. Workload mobility has
two different characteristics: Static and Dynamic Workload Mobility. Static Workload
Mobility allocates components at deploy time and allows component requirements to
be mapped to characteristics of the compute domains. Dynamic Workload Mobility
allows the relocation of components at run time and enables to react to the dynamic
behavior of the compute domains and their application components. Dynamic re-
configuration based on utilization or erroneous states leads to improvements, such as
higher availability or better performance.

69



Chapter 6: Seamless Computing

Scenario 2Scenario 1

Re
m

ot
e

Fo
g

Fi
el

d

Re
m

ot
e

Fo
g

Fi
el

d
Legend

Workload

Application

Figure 6.2: Workload Mobility in Seamless Computing

6.2 Requirements

In cooperation with partners from the manufacturing industry, we elicited the follow-
ing requirements for Seamless Computing:

(1) Provide a homogeneous software environment: The same methodologies
and tools for implementing, testing, deploying, running, and managing software need
to be available across compute domains.
(2) Static workload mobility: Provide the ability to allocate application compo-
nents to node instances within and across the compute domains. This process must
be automated.
(3) Dynamic workload mobility: Schedule application components at runtime,
according to the status of the nodes in the system, and according to defined rules or,
ideally, optimization criteria. This includes rescheduling in the event of performance
degradation or other system changes.
(4) Stay close to standards: The aim is to use standard and widespread technolo-
gies, many of which are available or emerging in the field of Cloud Computing.
(5) Support physical device connectivity: The system must be able to deal with
connecting devices, such as sensors and actuators, often using legacy interfaces and
protocols. It should be possible to attach new devices to the platform without the
need for configuration by a human operator.

70



Section 6.3: Reference Model

(6) Support real-time applications: Provide the capability to describe and map
real-time characteristics of applications and system components. This must be sup-
ported in the orchestration and scheduling mechanisms and in the runtime environ-
ment.
(7) Small footprint: The Seamless Computing environment must run on nodes with
few resources.
(8) Security: Ensure data privacy and provide mechanisms to secure deployment,
operation, and management of the application components running in the Seamless
Computing environment against vulnerabilities.

6.3 Reference Model

The reference model supporting Fog Computing applications enables different func-
tions of the platform to be identified and establishes relationships among them. Fig-
ure 6.3 shows the reference model in an architectural stack. The functions derive
from the requirements and consider existing software stacks typically used in remote
domain platforms or orchestration tools. To apply Seamless Computing across all
domains, the functions in the reference model must be present in all domains, which
requires a concept for functional distribution. In the following, we describe the differ-
ent building blocks of the reference model:

Platform Internal Services

Messaging

Monitoring

Security

Logging

Discovery

…

Routing

Orchestration

Scheduling

Deploying

Provisioning

Application Services

Databases

Analytics

…

Application Control and Lifecycle Management

D
ev

ic
e 

M
an

ag
em

en
t

Application Runtime

Host Operating System

Hardware

Figure 6.3: Seamless Computing reference model

71



Chapter 6: Seamless Computing

Hardware denotes the physical infrastructure that hosts the applications and ranges
from enterprise-grade servers to field devices supporting different hardware architec-
tures. The Host Operating System bridges the hardware and application runtime. Its
purpose is to host the environment on which the applications are running. A minimal,
single-purpose OS is preferred. The host OS needs to support the underlying hardware
(e.g., x86 and ARM-based architectures). The Application Runtime executes applica-
tions in an isolated environment, including libraries and dependencies. Most popular
solutions are based on virtualization or container technologies. Provisioning creates
the virtual environment necessary to host the applications. This includes the setup
of virtual machines, volumes, networks, or firewalls. Deploying and bootstrapping
manages the download of the application to the virtual environment. This includes
the resolution of dependencies and makes them available for the application. With
Scheduling, Seamless Computing enables the efficient allocation of available resources
to realize real-time requirements. Orchestration enables automated management and
coordination of applications based on a predefined workflow. It includes autonomic as-
pects and thus enables self-managed systems. Routing forwards incoming requests to
the correct recipient, i.e., a specific instance of an application component. Additional
features, such as load-balancing or service discovery, offer scalability, resiliency, and
decoupling. Platform Internal Services represent the services used to manage applica-
tions. These include, but are not limited to, Messaging, Monitoring, Security, Logging,
and Discovery. Application Services are services that are hosted and managed by the
platform and provided to the applications. They comprise functions that are shared
by applications such as Databases and Analytics. Device Management encompasses
several functionalities, the most important ones being device registry and discovery,
device access management, device configuration capabilities, device updates (firmware
and applications), and device monitoring. Device Management allows hardware to be
added in any layer of the system and made immediately available to the applications.
This functionality must be supported at different levels of the functional model and
is therefore presented as a cross-section task. The Application Control and Lifecycle
Management integrates the application development process with the production and
release processes, including control aspects in production, such as restarting the ap-
plication and scaling it.

6.4 Gap Fit Analysis

The gap fit analysis allows us to examine existing technologies from the area of Cloud
Computing and IoT and compare them to the Seamless Computing requirements de-
scribed in Section 6.2 along with the reference model described in the previous section.

72



Section 6.5: Application Examples

The goal is to use existing technology to establish the Seamless Computing platform
and thus enable the management of multi-domain applications. Table 6.1 summarizes
the results of the analysis. Cloud Foundry1 fulfills most of the requirements. How-
ever, its large footprint makes it unsuitable for the fog or field domain. We combine
lightweight technologies such as containers (Docker) and container orchestration (Ku-
bernetes) to realize Seamless Computing. The Fogernetes and DYSCO application
examples consider these findings and represent implementations for Static and Dy-
namic Workload Mobility in the following section. In [MGSB17], we discuss in detail
different technologies and map them to the reference model.

Hos
t O

pe
rat

ing
 Syst

em

App
lica

tio
n R

un
tim

e

Prov
isio

nin
g

Dep
loy

ing

Sch
ed

uli
ng

Orch
es

tra
tio

n

Rou
tin

g

App
. C

on
tro

l a
nd

 Li
fec

ycl
e M

an
ag

em
en

t

Dev
ice

 M
an

ag
em

en
t

Stan
da

rds

Sup
po

rt H
ete

rog
en

eit
y

Phy
sic

al 
Dev

ice
 Con

ne
ctiv

ity

Rea
l-T

im
e C

ap
ab

ility

Small
 Fo

otp
rin

t

Unikernel - + + - - - - - - o o o - +

Docker - + + - - - - - - + o + - +

OpenStack + o + o + o o - - + + - + -

CloudFoundry + + + + + + + + - + o - - -

Brooklyn - - + + - + - o - + + - - o

Kubernetes - - - + + + + - - + + - - +

Mesos - - - - + - - - - + + - - -

Marathon - - - + + + + - - + + - - -

hawkBit - - - - - - - - + o + + - +

Table 6.1: Seamless Computing technology gap fit analysis

6.5 Application Examples

This section presents two concept implementations of the Seamless Computing ref-
erence model. Fogernetes in Section 6.5.1 enables Static Workload Mobility, and
DYSCO in Section 6.5.2 investigates dynamic scheduling to realize Dynamic Work-
load Mobility.

1https://www.cloudfoundry.org/

73

https://www.cloudfoundry.org/


Chapter 6: Seamless Computing

6.5.1 Fogernetes

Fogernetes is a platform to manage and deploy Fog Computing applications. It allows
component requirements to be mapped to heterogeneous device capabilities by estab-
lishing a labeling system. The application Fodeo serves as a test application that uses
Fogernetes to present its practical applicability for the deployment and management
of Fog Computing applications. Fodeo analyzes video streams from multiple cameras
and optimizes the video delivery. Solutions for deploying and managing Fog Com-
puting applications are still in their infancy. While there are technologies tailored
to orchestrate Cloud Computing applications, Fog Computing lacks such technolo-
gies. The characteristics of Fog Computing, such as distribution, availability, hetero-
geneity, and real-time pose challenges for application deployment and management
platforms. A sophisticated approach is required to deploy and orchestrate fog appli-
cations. Fogernetes overcomes these challenges by comparing and mapping require-
ments of application components to available nodes and ensuring optimal deployment
to meet non-functional requirements.

Analysis

Fogernetes is based on Kubernetes2. Its configuration files and scripts are open-source
and available on GitHub3. Fog nodes are hosts in a Fog Computing environment.
These hosts interact and communicate with each other in a distributed manner for
optimized performance. Components are distributed on different nodes in the environ-
ment. The assignment of components to nodes is configured individually depending
on the use case. A node runs either in the remote, fog, or field domain. Field devices,
fog nodes, and dedicated cloud servers are classified as nodes. We define deployment
mapping as a process in which these requirements are mapped to existing capabili-
ties and a deployment is subsequently performed. To specify this mapping process,
Fogernetes addresses the requirements we describe in the following. In contrast to
cloud applications, fog applications run on heterogeneous nodes, such as microcon-
trollers, smartphones, or servers. Fogernetes must be able to support these different
types of devices (FR1). An advantage of Fog Computing is the increased availability
of systems. This is achieved by redundant deployment of components. Fogernetes
must also manage system failures through node redundancy (FR2). To be able to
create a match between component requirements and node capabilities, both the re-
quirements and the capabilities must be labeled (FR3). A suitable deployment can be
guaranteed if the capabilities match the requirements. Furthermore, Fogernetes must

2https://kubernetes.io
3https://github.com/ls1intum/fogernetes

74

https://kubernetes.io
https://github.com/ls1intum/fogernetes


Section 6.5: Application Examples

be able to handle different computing layers, namely remote, fog, and field (FR4).
Deployment to different layers is essential to meet the NFRs of the applications to
be deployed [BBL01]. Additionally, deployment settings, required capabilities, and
setup configurations must be traceable. Applications can be rolled back to previous
versions in case of a failure (FR5). For successful management of Fog Computing ap-
plications, all available nodes in the network must be traceable and monitored (FR6).
Fogernetes must provide and take into account this information, thereby enabling the
performance evaluation and optimization of the deployment mapping of fog applica-
tions and nodes [YHQL15]. In addition to the functional requirements, Fogernetes
must also meet non-functional requirements. Fog Computing applications must be
easily deployable. New application releases can be deployed with a minimum num-
ber of clicks in a short time (NFR1). Nodes are chosen based on the application’s
requirements (NFR2). Developers should not interfere in this process, as it ensures
the best possible deployment mapping. Developers choose the technology stack of the
Fog Computing applications because application development should happen without
deployment constraints. The deployment and management tooling should not limit
developers in their choice of tools or programming languages (NFR3). The platform
needs to support at least 1000 nodes (NFR4) [BMZA12].

Requirements and Capability Mapping

In contrast to Cloud Computing, the capabilities of servers and hardware nodes
cannot be dynamically scaled and adjusted in Fog Computing. Traditionally, a server
is selected in a data center that meets the requirements. Within Fog Computing,
existing hardware is used and can rarely be changed. An application component may
require more memory to operate properly, and another component may need to be
in a specific location to provide a low latency service. The challenge is to map re-
quirements to the heterogeneous node capabilities. Fogernetes uses a labeling system
to realize the mapping process. Applications and nodes must be described accord-
ing to the capabilities that they require or offer. Labels describe the requirements
of components and characteristics of available hardware nodes. Labels are assigned
either automatically, based on hardware capabilities or manually. Labels are the foun-
dation for the deployment mapping of Fogernetes. During application deployment,
Fogernetes verifies the application’s requirement labels and compares them to the
capability labels of available nodes. This allows Fogernetes to distribute application
components across the environments and meet the requirements. Fogernetes defines
the following four label categories (C) to establish a mapping between requirements
and capabilities:

75



Chapter 6: Seamless Computing

Location (C1). Fog components must be geographically distributed. Location la-
bels are particularly important for the field layer and enable the placement of fog
components on dedicated fog nodes.
Device Extension (C2). Fog nodes could have custom extensions, such as sensors
to record measurements.
Performance (C3). We define performance labels to describe the usage of resources.
This ensures that components can be used according to their performance require-
ments and that the necessary computing resources are in place.
Connectivity (C4). Connectivity is important for Fog Computing applications. For
sensors with low data rates, a dial-up connection is sufficient; for larger monitoring
systems, it must be ensured that sufficient bandwidth is available.

f o g e r n e t e s/<category >.<s e l e c t o r >: <value>

Listing 6.1: Fogernetes labeling system specification

Listing 6.1 shows the naming scheme for Fogernetes that enables the mapping be-
tween requirements and capabilities. A fog node at the Technical University of Mu-
nich, for example, has the Fogernetes label fogernetes/location: germany.munich.tum
to encode location information.

Realization

This section presents Fodeo, a custom fog application we created for testing and eval-
uating Fogernetes. We deployed and managed Fodeo using the platform and compare
the results to the requirements to verify whether Fogernetes is capable of deploying
and managing Fog Computing applications. Fogernetes extends Kubernetes to meet
the requirements for Fog Computing applications by the following three extensions:

Application Registry. A private Docker image registry4 is used as part of the Ku-
bernetes ecosystem. This Kubernetes add-on offers the possibility of storing private
Docker images. Each application component is packaged in a Docker image that can
be used on different hardware if supported by the container. An additional advan-
tage is that dependencies are always available in the correct version. The Docker
tagging function enables the deployment of older application versions or the rollback
of changes.

Kubernetes Deployment. Two objects in the Kubernetes ecosystem are rele-
vant, the Pod and the Deployment Controller. “A Pod is the basic building block

4https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/registry

76

https://github.com/kubernetes/kubernetes/tree/master/cluster/addons/registry


Section 6.5: Application Examples

of Kubernetes—the smallest and simplest unit in the Kubernetes object model that
you create or deploy. A Pod represents a running process on your cluster”5. The De-
ployment Controller organizes the Pods and Replica Sets6. It automatically adjusts
the number of Pods in a controlled manner to ensure availability and performance.
The deployment definition is stored in a file. Based on the formalized approach, we
use the nodeSelector configuration from the Kubernetes Pod documentation. A Ku-
bernetes cluster uses DNS as a service registry and enables distributed components
over different layers to discover each other. A new service automatically creates an
entry in the DNS server. For example, the DNS record nginx.fog describes the service
nginx in the namespace fog. This allows Pods that are part of the namespace fog to
identify the cluster IPs of the Pods running this service.

Management. To add a new node, it is necessary to install Kubernetes on the node
and add it to the existing cluster. Fogernetes uses Heapster as a monitoring tool,
together with InfluxDB and Grafana7, enabling the creation of custom dashboards.
The dashboard provides a user interface for administrators to identify problems.

For the realization and testing of the three extensions, we used the Fog Computing
application Fodeo. Fodeo is a surveillance application that delivers and analyzes
videos from multiple cameras. The video signal is recorded and analyzed in a remote
component. Fodeo applies Fogxy to improve video delivery performance and saves
bandwidth by filtering incoming data and sending compressed video data to the cloud.
Figure 6.4 shows the four Fodeo components and their relations.

RemoteFogField

Fodeo Camera

Fodeo Client

Fodeo Gateway
Fodeo Central

Figure 6.4: Fodeo top-level design

The Fodeo Camera component continuously takes pictures of its surroundings and
sends these to the nearest Fodeo Gateway component. The Fodeo Camera component
is placed in the field layer. It aggregates the received images from camera components

5https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
6https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
7https://grafana.com/

77

https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://grafana.com/


Chapter 6: Seamless Computing

and converts them to optimized video files. It is placed in the fog layer since it
accumulates multiple data streams from the field layer and partially forwards them
to the Fodeo Central component to save bandwidth. The Fodeo Central component
is placed in the remote layer to make video files accessible at a central location. The
Fodeo Client component is placed in the field layer. It accesses the raw videos on a
Fodeo Gateway component to ensure that the transfers are working correctly.

Fodeo Deployment

To deploy Fodeo, the following steps are required: (1) setup of the Fogernetes plat-
form, (2) description of the Fodeo components including the requirements necessary
for deployment mapping, and (3) deployment of the components. (4) Application
components automatically discover each other’s interfaces and (5) the infrastructure
has to be managed and monitored. We explain the steps in detail and show the tech-
nical implementation:

(1) Fogernetes Platform Setup. Three different components are deployed on the
Fogernetes platform. The Fodeo Client runs locally on a development laptop. It en-
ables access to data in the fog layer and serves as a test device, such as a laptop,
connected to the internal network. To implement Fogernetes, we create a Kubernetes
cluster including a master node using the kubeadm init command. The corresponding
kubeadm join command is executed on each of the three nodes. Two nodes are servers
which host the remote and fog application components. One node is a Raspberry Pi
running the Fodeo Camera component. The labeling system defines the node capa-
bilities. Table 6.2 shows the different nodes and their assigned capabilities. Generic
classifiers such as small, medium, or large define capabilities to match components in
broad categories.

(2) Artifact Creation. A Dockerfile defines the required libraries and component
requirements. After creating the artifact, we can push it to the application registry.
Therefore, the component artifacts are available to the entire cluster and are ready
for deployment.

(3) Component and Service Definition. Fogernetes deploys the three compo-
nents Camera, Gateway, and Central. The component definition declares how many
component replicas run in the fog layer, which artifacts to use from the application
registry, and how to name the different components. The service definition declares

78



Section 6.5: Application Examples

Node Capabilities

Remote Node • fogernetes/layer: remote
• fogernetes/performance.storage: large
• fogernetes/performance.cpu: medium
• fogernetes/performance.memory: medium
• fogernetes/connectivity: fiber

Hardware: ESXi VM Server

Fog Node • fogernetes/layer: fog
• fogernetes/performance.storage: small
• fogernetes/performance.cpu: large
• fogernetes/performance.memory: medium
• fogernetes/connectivity: dsl

Hardware: ESXi VM Server

Field Node • fogernetes/layer: field
• fogernetes/extension.media.camera: true
• fogernetes/performance.storage: small
• fogernetes/performance.cpu: small
• fogernetes/performance.memory: small
• fogernetes/connectivity: wifi

Hardware: Raspberry Pi

Table 6.2: Fogernetes labels describing node capabilities

open ports and remote access. For testing purposes, we use the NodePort type8 that
allows us to access the service via a direct IP address and a specific port. Based on
the labeling system, we define requirements for these components. Table 6.3 shows
the requirement descriptions of the three different components.

(4) Deployment. After creating the artifacts, defining the components, establishing
services, and adapting the application to discover available services, we can deploy
Fodeo. Components and services can be deployed with the Fogernetes platform using
two commands. The deployment mapping is performed automatically. The compo-
nents and their corresponding services are provided on the cluster. Fodeo’s require-
ments are mapped to the capabilities associated with each node. Figure 6.5 shows
the mapping and gives a top-level view of the deployed application. Using the Ku-
bernetes labels and selectors, we assign labels to both the nodes and the application
components.9 Therefore, the mapping is performed automatically by finding exact
matches between the label and the selectors.

8https://kubernetes.io/docs/concepts/services-networking/service/
9https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

79

https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/


Chapter 6: Seamless Computing

Component Requirements

Fodeo Central • fogernetes/layer: remote
• fogernetes/connectivity: fiber
• fogernetes/performance.storage: large

Fodeo Gateway • fogernetes/layer: fog
• fogernetes/connectivity: dsl
• fogernetes/performance.storage: large

Fodeo Camera • fogernetes/layer: field
• fogernetes/connectivity: wifi
• fogernetes/extension.media.camera: true

Table 6.3: Fogernetes labels describing component requirements

(5) Platform Management and Monitoring. The Kubernetes Dashboard allows
us to manage deployments. We can create new deployments or delete existing ones.
In addition, existing deployments can be scaled by increasing the number of Pods
running on the fog nodes. The Grafana dashboards enable the visualization of Fodeo’s
performance.

Results and Discussion

We discuss the results of the Fodeo deployment using Fogernetes and the contribu-
tion of features.
Fogernetes supports artifact creation, component definition, service discovery, de-

ployment, management, and monitoring. We were able to deploy Fodeo’s components
on different nodes. The Fodeo Camera component was deployed onto a Raspberry
Pi in the field layer. Both the Fodeo Gateway and the Fodeo Central components
were deployed onto ESXi virtual machines. These nodes were placed in different lo-
cations and environments. Fogernetes and its labeling system allow node capabilities
to be matched to component requirements, thereby creating suitable Fog Computing
deployments. Kubernetes, with its support for many nodes (cf. NFR4), represents
a viable candidate for the deployment and management of Fog Computing applica-
tions. Due to its extensibility, missing features can be added, and additional devices
are supported (cf. FR1). The mapping between requirements of a Fog Computing
application and capabilities of fog nodes is a major requirement (cf. FR3). Fogernetes
meets this requirement with its labeling system and enables the creation of mappings
(cf. NFR2). Besides this, Kubernetes takes care of node failures and ensures a working
deployment (cf. FR 2). Kubernetes is intended for applications that are comprised of
different components or split into different services. It is easier to scale components

80



Section 6.5: Application Examples

:RemoteEnvironment

ESXi:Server

Fodeo Central

:FogEnvironment

ESXi:Server

:FieldEnvironment

RaspberryPi:FieldDevice

Fodeo Camera Fodeo Client

Fodeo Gateway

Figure 6.5: Fodeo deployment diagram

without affecting the rest of the system. This is suitable for the distributed nature
of Fog Computing and its different layers (cf. FR4). The micro-service architecture
enables scalability and facilitates deployment changes. Therefore, Fogernetes auto-
matically adapts to failing nodes and ensures that fog components are recreated and
deployed on suitable nodes.

Deployment is possible with a single command (cf. NFR1) and components run
independently with Docker containers. Fogernetes enables developers to deploy Fog
Computing applications without complex procedures. The integrated versioning of
the application registry allows the roll back of changes or the simultaneous execution
of different application versions (cf. FR5). The different dashboards integrated in
Fogernetes support the node management (cf. FR6). While Fogernetes meets the
requirements of a Fog Computing deployment and management platform, it has limi-
tations. Fogernetes was executed inside an isolated network and interference or weak
network bandwidth might affect the performance and functionality.

81



Chapter 6: Seamless Computing

6.5.2 DYSCO

Production systems require availability, fault tolerance, and extensibility. This sec-
tion presents DYSCO (Dynamic Scheduling for Seamless Computing), a system for
the dynamic rescheduling of software components in a distributed, heterogeneous Fog
Computing cluster at runtime. DYSCO extends Kubernetes through the addition of a
monitoring tool and enhances the scheduler to enable dynamic component reschedul-
ing. We verify the requirements of DYSCO using test cases for an industry-specific
scenario in a Fog Computing cluster. It operates a safety-critical application that must
immediately react to machine failures (emergency) and an application that processes
employee data for analytics (timestamp). DYSCO reschedules software components
at runtime while ensuring technology independence, availability, fault tolerance, and
usability. DYSCO represents a realization of Seamless Computing and deals with the
mobility of IoT devices by scheduling applications between different nodes at runtime.

Requirements

The requirements of DYSCO partially overlap with the requirements of Fogernetes
as they both represent implementations of Seamless Computing. For DYSCO, the
requirements for scheduling at runtime (FR9) and the optimal resource utilization
(NFR4) are of particular interest to realize Dynamic Workload Mobility.
DYSCO has to meet the following functional requirements: (FR1) DYSCO must

support heterogeneous nodes with different capabilities such as CPU architecture,
memory, and network connectivity. (FR2) The deployment and scheduling of appli-
cations are compute domain independent. (FR3) DYSCO must be able to utilize
remote nodes from multiple cloud service providers. (FR4) The components commu-
nicate over defined interfaces and can be distributed across compute domains. (FR5)
DYSCO enables the specification of capabilities for heterogeneous nodes (FR6) and
the specification of component requirements. (FR7) DYSCO supports the scheduling
of stateless applications (FR8) and stateful applications. (FR9) Using the node ca-
pabilities and component requirements, DYSCO schedules applications dynamically
at both deploy- and runtime. (FR10) DYSCO monitors the active nodes and ap-
plications in the cluster to detect changes within the cluster, such as node failures,
topology changes, connectivity issues, or resource scarcity.
In addition to the functional requirements, DYSCO must meet the following non-

functional requirements: (NFR1) Developers can add application components with a
single deployment script and a single command. Developers can create applications
with any technology. (NFR2) They may freely choose the programming languages,
frameworks, and tools. (NFR3) DYSCO automatically restores a working state in

82



Section 6.5: Application Examples

R
em

ot
e

Fo
g

Fi
el

d

Docker Hub
Cloud Node

K8s Master

IoT Device Controller
Switch

Field Node

Fog Node

K8s Worker

K8s Worker

VPN Connection
AWS LAN

Factory LAN

Figure 6.6: DYSCO test case design

the event of a node or network failure. DYSCO continuously optimizes the mapping
between component requirements and node capabilities and tries to best match re-
quirements to capabilities. (NFR4) DYSCO reschedules components repeatedly to
find the optimum and to ensure QoS. (NFR5) DYSCO handles the failure of indi-
vidual components. Failed components have no effect on the availability of the other
system components. (NFR6) There is no downtime when rescheduling application
components to different nodes in the cluster.

DYSCO defines the following contextual elements to describe component require-
ments and node capabilities: name, compute domain, location, computing power, pro-
cessor architecture, ephemeral memory, persistent memory, and network connectivity.
The definition of Fog Computing lists location awareness as a contextual element
to describe hardware nodes. DYSCO extends this approach and considers various
contextual elements to achieve the best possible mapping between requirements and
capabilities.

Realization

The following paragraph describes the realization of DYSCO. Four test cases validate
whether DYSCO meets the requirements. We describe the setup to validate DYSCO
in the following.

Figure 6.6 shows the design for conducting the test cases. DYSCO uses a Kuber-
netes cluster with three nodes: a powerful Cloud Node, a less powerful Fog Node, and
a limited Field Node. The Cloud Node is an AWS EC2 t.large instance. The Fog Node

83



Chapter 6: Seamless Computing

1

2

3

4

Figure 6.7: DYSCO test case setup

is an Ubuntu virtual machine running on a laptop. The Field Node is a Raspberry
Pi 2. The Fog and Field Node are in the same factory Local Area Network (LAN),
connected with a Switch while the Cloud Node in the AWS data center is in a dif-
ferent LAN. Kubernetes expects all nodes to be in the same LAN and therefore all
nodes are connected via a VPN Connection. The Kubernetes cluster includes the
Cloud Node as the Kubernetes master and the Fog and Field Node as Kubernetes
workers. DYSCO uses Docker for the Cloud and Field Node, and containerd10 for the
Fog Node. The Docker Hub stores the required container images. A second Raspberry
Pi represents the IoT Device Controller, including a small LED screen as actuator, a
gyroscope sensor, and an accelerometer sensor for motion detection. The IoT Device
Controller is not integrated in the Kubernetes cluster and simulates the production
line of a factory.
Figure 6.7 shows the setup for the evaluation.

Test Scenarios. DYSCO schedules two different applications in the cluster: the
timestamp and the emergency application, each consisting of two components. The
timestamp (TM) application enables employees in a factory to register and store the
beginning and end of their work. It consists of two components: the storage com-
ponent stores the timestamp data and provides an interface with an overview of all
registered timestamps. The register component provides an interface for employees to
register their timestamps. The emergency (EM) application stops the assembly line
of the factory in the event of an emergency. The stop component is responsible for
stopping the assembly line, which is simulated by an exclamation mark on the Sense

10https://containerd.io/

84

https://containerd.io/


Section 6.5: Application Examples

HAT screen. The alarm component notifies interested parties about stop events, such
as an emergency button being pushed or a malfunction in the machinery. In addition
to the application components in the cluster, DYSCO provides a monitor component
that supervises events of Kubernetes nodes. DYSCO uses kube-scheduler11 as a mon-
itoring extension that enables dynamic scheduling. The monitor component watches
for status changes in nodes, including topology changes, node failures, or network
failures. If such a case occurs, the kube-scheduler triggers a redeployment, which re-
orders and restarts the components considering the node capabilities and component
requirements. Kubernetes allows status updates of workers nodes to be configured to
the master and interprets missing updates as failures. DYSCO uses this mechanism to
trigger redeployments. However, there is a trade-off between availability and network
overhead. For testing purposes, we configured the update interval to 5 s. Kubernetes
interprets missing updates as a failure if the node has not notified the master within
15 s. The DYSCO monitor requests node statuses every 5 s.

Deployment Mapping. DYSCO uses node labels12 to describe node capabilities.
The capabilities computing power, ephemeral memory, and persistent memory are
described through resource requests and limits. To describe persistent memory ca-
pabilities, DYSCO uses persistent volumes. In contrast to Fogernetes, DYSCO uses
the nodeAffinity constraint as it offers a more flexible description language than
the nodeSelector. DYSCO differentiates between core requirements (CR) that must
match a node capability and optional requirements (OR). For the test cases, we define
the following values for the emergency and alarm application components:

• Timestamp Register: location = factory (OR), compute domain = fog (OR)

• Timestamp Storage: location = AWS (CR), compute domain = remote (CR)

• Emergency Stop: location = Factory (CR), compute domain = field (OR)

• Emergency Alarm: location = Factory (CR), compute domain = field (OR)

• DYSCO Monitor: location =AWS (CR), compute domain = remote (CR)

Test Cases. The following test cases validate the non-functional requirements of
DYSCO. We executed the test cases in consecutive order for six iterations. The im-
plementation test case 1 includes the setup of the cluster and the implementation
of the components for the timestamp and emergency applications. The deployment
test case 2 describes the deployment of application components in deployment files.
DYSCO enables the deployment of components with a single deployment file and a
11https://kubernetes.io/docs/concepts/overview/components
12https://kubernetes.io/docs/concepts/configuration/assign-pod-node

85

https://kubernetes.io/docs/concepts/overview/components
https://kubernetes.io/docs/concepts/configuration/assign-pod-node


Chapter 6: Seamless Computing

Iteration #1 #2 #3 #4 #5 #6

DYSCO Monitor DYSCO Monitor DYSCO Monitor DYSCO Monitor DYSCO Monitor DYSCO Monitor
TS Storage TS Storage TS Storage TS Storage TS Storage TS Storage
EM Alarm EM Alarm EM Alarm TS Register EM Alarm EM Alarm

TS Register TS Register TS Register EM Alarm TS Register TS Register
EM Stop EM Stop EM Stop EM Stop EM Stop EM Stop

DYSCO Monitor DYSCO Monitor DYSCO Monitor DYSCO Monitor DYSCO Monitor DYSCO Monitor
TS Storage TS Storage TS Storage TS Storage TS Storage TS Storage
EM Alarm EM Alarm TS Register EM Alarm EM Alarm EM Alarm

TS Register TS Register EM Alarm TS Register TS Register TS Register
EM Stop EM Stop EM Stop EM Stop EM Stop EM Stop

Before Test Case 3

After Test Case 4

Table 6.4: DYSCO deployment mapping

single command. The node failure test case 3 foresees the scheduling of application
components according to their core and optional requirements. We simulate a fail-
ure by disconnecting the power supply of the Field Node. DYSCO reschedules the
timestamp and emergency components to resume work. During rescheduling DYSCO
provides 100% availability. For the topology change test case 4, we reconnect the
power supply. DYSCO reschedules the components according to their deployment
mapping without downtime.

Results. DYSCO performs as expected according to test cases 1 through 3 and par-
tially correctly according to test case 4. For test cases 3 and 4, we measured the
time that the DYSCO monitor takes to trigger a rescheduling and the time it took to
complete it. Table 6.4 visualizes the deployment mapping before test case 3 and after
test case 4 for each iteration.

The emergency and alarm application were implemented in Python and Flask and
show that DYSCO supports arbitrary programming languages or frameworks enabled
by container technology. Each component of the timestamp and emergency appli-
cations was deployed with a single command and specified in a single file. DYSCO
performs correctly according to test cases 1 and 2. On average, the DYSCO monitor
triggered the failure recovery and rescheduling 20.7 s after disconnecting the power
supply of the field node. The scheduler required an average of 6.5 s to reschedule the
components of a failed node. After a node failure, DYSCO restored it to a working
state in each of the six test case iterations with four different deployment mappings.
During rescheduling, there was no downtime, thus DYSCO performed according to
test case 3. DYSCO experienced varying delays in triggering the rescheduling of com-
ponents after reconnecting the power supply. The delay consists of the time it takes
the field node to start up and reconnect to the Kubernetes cluster, and for the DYSCO
monitor to detect the new node. The time varied between 38 s in the fifth iteration

86



Section 6.5: Application Examples

and 84 s in the third iteration. Four different deployment mappings resulted from
rescheduling in the six iterations. The scheduler respected all core requirements and
only considered the optional requirements in the fifth iteration.

DYSCO implements parts of the Seamless Computing reference model and enables
rescheduling of application components at runtime without downtime.

87





Chapter 7

Case Studies

In the previous chapters, we used application examples to show the applicability of the
Fog Meta Model, Fogxy architectural style, and Seamless Computing formalizations.
Figure 7.1 outlines all applied examples from the Manufacturing, Digital Health, and
Smart Environments domains that utilized these formalizations. The application ex-
amples are assigned to the formalizations. In this chapter, we discuss two case studies
in detail. Section 7.1 describes AIIoT, which uses emojis to visualize the state of
IIoT devices in real-time. Section 7.2 describes IIoT Bazaar - a marketplace for in-
dustrial edge applications that applies Seamless Computing. Both projects allowed
us to investigate the applicability of the Fog Meta Model and Fogxy in an industrial
context.

Fog Meta Model Fogxy Architectural Style

Legend (Domains)

Seamless Computing

(1) FRODO [SJB⁺17] (2) Fogernetes [WSMB18]

(3) FEAt & FARADAY [SBB18] (4) DYSCO [MKS⁺18]

(5) IIoT Bazaar [SHM⁺18]

(6) AIIoT [SHS⁺18]

(7) MODCAP [ASB19]

Smart Environments

Manufacturing

Digital Health

(8) IPRA [HSHB18]

Figure 7.1: Overview of application examples and related publications

89



Chapter 7: Case Studies

7.1 AIIoT

The vision of AIIoT (Augmenting Industrial Internet of Things) is to simplify the
increasing complexity in industrial production plants and to demonstrate the com-
bination of Fogxy with an innovative user interface using Augmented Reality (AR)
and emojis. We applied Fogxy to address the real-time analysis and synchronization
of sensor values. The increasing amount of data in industrial environments raises
challenges for the infrastructure and workers. Furthermore, the increasing intercon-
nectivity and digitization of the Industry 4.0 initiative lead to increasing complexity.
AIIoT simplifies the decision-making process for employees.
When Scott Fahlman, a research professor of computer science at Carnegie Mellon

University in Pittsburgh, invented the smiley (emoji) in September 1982, no one yet
realized how this would affect the way we communicate and express our feelings to-
day. Emojis have not yet penetrated the industrial domain but offer advantages. For
instance, the status of machines can be depicted using emojis. Emojis help to get a
quick impression of the condition of a machine. This information can be delivered in
real-time and is provided in a way already familiar to workers. Systems become more
user-centric and less machine-centric. Supported by augmented reality and emojis, an
employee with contextual guidance and the information needed for successful decision-
making can complete tasks faster and with fewer errors. AIIoT enables employees to
obtain a quick overview and access to the processes in intelligent and networked prod-
ucts. Pure data collection is not sufficient; it must be transformed into information
and made available.
AIIoT combines three technologies and concepts: IIoT, Fog Computing, and emojis

in augmented reality. IIoT enables the collection of data and actuation of machines.
With Fog Computing, data can be transported and processed effectively in real-time.
The visualization of the data utilizing emojis leads to new interaction scenarios in the
industrial environment.

Visionary Scenario

The following visionary scenario presents the functionality of AIIoT: Martin, an em-
ployee of an industrial manufacturing company, is responsible for a production line.
He is in charge of ensuring that this production line is running correctly, without
any downtime. Martin can walk around the production facility and use his smart-
phone to obtain information on the status of individual components. Martin uses the
smartphone camera to detect and identify the device for which he wants to retrieve
information. The app on his smartphone recognizes the type of the device, identifies
it and automatically obtains all available data for this device. Since Martin has a

90



Section 7.1: AIIoT

large number of different devices in his production line, he does not know each one
in detail. He would like to have a brief, concise summary of the device’s state. The
summary of the condition is provided by in place analytics and represented by emojis.
If a device shows abnormal behavior, Martin can visualize the data using different
graphs.

To make this scenario a reality, the following requirements must be met:

(1) Device Detection: The device of interest must be detected without markers or
labels. The three-dimensional outline of the device must be sufficient for detection.
(2) Device Identification: After successful detection of a device, it must be iden-
tified. A unique identifier must indicate the individual device. Several devices of one
type may be used in one production plant. The identifier is required for interaction
with the data and the device.
(3) Data Gathering: The unique identifier is used to establish the relationship be-
tween the device and its characteristics. The available characteristics of the device
must be gathered.
(4) Data Interpretation: Once the data for the device is available, it must be in-
terpreted. The state of a device can only be displayed when the data is interpreted.
Valuable information is then available for processing.
(5) Device Characteristics Visualization (Emoji or Graph): The available
device characteristics must be visualized in a way appealing to employees. In the first
step, the condition is mapped by emojis, which provide a quick overview. Graphs are
used for further analysis.

The analysis object model in Figure 7.2 describes the structure of AIIoT from the
problem domain. By using the Fog Metal Model, relevant classes for the remote, fog,
and field layers can already be identified in the analysis phase.

The Field Devices for which interesting information is available must be detected.
A Production Line consists of several installed devices. The respective device must be
identified with a Camera to be able to access the data. The application on the mobile
device receives the available Real-Time Sensor Data. Real-Time Sensor Data and
Historical Sensor Data are children of Sensor Data. Historical Sensor Data is used
to generate Knowledge by analysis. The Interpreter interprets available Sensor Data
and gives them a meaning. For example, if the value of a sensor measurement exceeds
a particular threshold value, this must be rendered visually for the employee as a
Visualization. The increasing complexity of industrial systems and a large amount of
sensor data present challenges for their evaluation and analysis. AIIoT supports em-
ployees and helps them to make decisions through Visualizations. There are two types
of Visualizations : Emoji and Graph. The condition of the Field Device or Sensor can

91



Chapter 7: Case Studies

Remote

Fog

Field

<<Field>>
Employee

<<Field>>
Camera

<<Fog>>
Interpreter

<<Fog>>
Graph

<<Fog>>
Line Chart

<<Fog>>
Bar Chart

<<Fog>>
Pie Chart

<<Field>>
Production Line

<<Field>>
Sensor

<<Field>>
Real-Time 

Sensor Data

<<Remote>>
Historical Sensor Data

<<Fog>>
Sensor Data

<<Field>>
Field Device

<<Field>>
Temperature

<<Field>>
Data Transfer Rate

<<Field>>
Power Consumption

<<Remote>>
Knowledge

<<Fog>>
Visualization

<<Fog>>
Emoji

Figure 7.2: AIIoT analysis object model

be represented by a corresponding Emoji to offer the user available information at a
glance. If the Employee wants to get detailed information or interpret the correla-
tion between sensor data, the application offers a Graph interface. The application
offers different emojis for different states as well as different types of graphs for data
inspection (cf. Graph taxonomy in Figure 7.2). The sensor, visualization and graph
taxonomies allow the extensibility of AIIoT.

Design

Figure 7.3 shows the top-level design of AIIoT. Field Devices and Sensors are
located in the field layer - the source of the data. Sensors are attached to a Field
Device that reads the sensor values and forwards it to the corresponding Fog Node.
Examples of Field Devices are Siemens IOT20401, Dell Edge Gateway2, and Krones
ReadyKit3. For safety and architectural reasons, it is usually not possible to use the
values of already installed sensors in existing production lines. To solve this problem,
additional sensors are attached to collect the data for data analysis. Production
lines with a planned duration of more than 20 years can be upgraded for the use of

1http://w3.siemens.com/mcms/pc-based-automation/en/industrial-iot/
2http://www.dell.com/us/business/p/edge-gateway
3https://www.krones.com/de/readykit.php

92

http://w3.siemens.com/mcms/pc-based-automation/en/industrial-iot/
http://www.dell.com/us/business/p/edge-gateway
https://www.krones.com/de/readykit.php


Section 7.1: AIIoT

Cloud

Sensor Data for Visualization

Sensors

Real-Time Data

Fog Node Fog Node

Real-Time Data

Visual Detection 
and Identification

AR Device

Processed Data

Temperature

Data Rate 
Transfer

Power 
Consumption

Production Lines 

with Field Devices

Historical Sensor Data

Field Device

Remote

Field Fog

Figure 7.3: AIIoT top-level design

these technologies. An AR Device is the interface between field and fog. Devices are
detected and identified through vision, e.g. the camera. The AR Device detects and
identifies the Field Devices and receives data from the corresponding Fog Node.

Fog Nodes are responsible for data aggregation, interpretation, and provision. Fog
Nodes are located in the fog layer near the data sources (Field Devices). Devices
in the field tend not to know anything about their neighbors, but Fog Nodes do.
Therefore, they have the possibility of exchanging data and models for interpretation.
Multiple Field Devices are assigned to one Fog Node. This facilitates the combination
of values from different sensors and the detection of dependencies. The result of the
interpretation is transmitted and visualized on the AR Device. The Fog Nodes forward
the aggregated data to the Cloud. A Fog Node serves as a proxy. It decides what
happens to the data, which data is passed on and which visualizations have to be
carried out based on the interpretation.

The Cloud serves as a brain that receives sensor data from Fog Nodes and meta-
data from other systems such as CRMs and ERPs. Data aggregation across multiple
production lines is possible. The Cloud can analyze data and generate new knowledge
with the help of machine learning. This newly acquired knowledge is shared in the
form of models with the Fog Nodes. Models enable Fog Nodes to interpret data and
derive visualizations.

Since AIIoT is based on Fogxy, the real-time access and synchronization require-
ments can be simultaneously achieved. On the one hand, the sensor data can be
analyzed in real-time and visually depicted in the form of graphs or emojis on an AR
Device. On the other hand, historical sensor data is stored in the remote layer. Based
on the data, new insights can be gained and applied in practice.

93



Chapter 7: Case Studies

Realization

Together with an industrial partner, we implemented AIIoT in fall 2017. Since the
implementation involving industrial factories is challenging, we used a mobile demon-
stration board representing a production line (see Figure 7.4). The demonstration
board consists of three IOT2040 devices, a router for local WiFi and an Intel Nuc as a
fog node. In the remainder of this section, we describe the technical details, structure,
and implementation of the prototype.

Figure 7.4: AIIoT demonstration board

(1) Device Detection: The IOT2040 device detection is based on the SSD Mo-
bileNet machine learning model using supervised learning. The model uses the Ten-
sorFlow Object Detection API4. The TensorFlow to CoreML Converter5 converts the
training model into a Core ML6 compliant model, which is transferred in the iOS ap-
plication. 800 pictures of devices were used to train the model. The model achieved
an accuracy of 95% to detect IOT2040 devices in previously unknown pictures.

(2) Device Identification: IOT2040 devices are equipped with QR codes to allow
the unique identification of each device. However, since the approach is extensible

4https://github.com/tensorflow/models/blob/master/research/object_detection/
5https://github.com/tf-coreml/tf-coreml
6https://developer.apple.com/documentation/coreml

94

https://github.com/tensorflow/models/blob/master/research/object_detection/
https://github.com/tf-coreml/tf-coreml
https://developer.apple.com/documentation/coreml


Section 7.1: AIIoT

and not all devices can be equipped with QR codes, devices can also be identified
using colored LEDs.

(3) Data Gathering: The IOT2040 devices are wired to the router. Since the field
devices are close to the fog node, real-time interpretation of data is possible. The fog
node uses mDNS to promote the offered services in the local network and a MQTT
broker for communication. The IOT2040 devices act as publishers and transmit their
sensor values. Interested parties can subscribe to broker topics and access those sen-
sor values. Besides the broker functionality, the fog node analyzes and aggregates the
data. The cloud component serves as a storage repository for historical data.

(4) Data Interpretation: Due to the lack of computing power and to save energy,
the interpretation of the data is not performed on the field nodes (IoT device or
smartphone), but on the fog node. We used a simplified threshold model, i.e., sen-
sor values must be within a certain range, otherwise erroneous behavior is assumed.
Based on the state of the device, the fog node decides which emoji has to be displayed.

High Low Zero

Temperature n.a.

Power Consumption

Resource Consumption n.a.

Data Transfer Rate

Idle Time n.a. n.a.

Table 7.1: AIIoT emoji to sensor mapping

(5) Device Characteristics Visualization: Table 7.1 shows the mapping between
sensor states and emojis to visualize the condition of devices. For example, a fire emoji
indicates that the temperature is above a certain threshold. A snowflake indicates
that the temperature is below a certain threshold . For characteristics such as power
consumption or data transfer rates, it is relevant if the value of the sensor is zero.
Smileys as shown in Figure 7.5 represent the general state of a device and its sensors.
A happy smiley indicates that everything is within the given range and working as
expected. The unhappier the smiley looks, the more critical the situation is.

95



Chapter 7: Case Studies

Criticality

Figure 7.5: AIIoT smiley visualization for the state of a device

To get an in-depth look at the data, the application offers a graph view. A time
axis visualizes available characteristics in real-time. The application dynamically adds
and removes available sensors to the graph to detect and analyze correlations between
different characteristics. Employees can share interesting graph progressions with
others by pinning graphs into the augmented reality view.

Findings

Figure 7.6 shows a screenshot where the temperature of the Flux Capacitor device is
too high. A fire emoji is displayed above the IOT2040 device using AR. The position
of the emoji is fixed and therefore always remains in the same position. Since the emoji
is a 2D image, it is always positioned correctly for the user’s perspective. Colored
LEDs enable device identification.

Figure 7.6: AIIoT AR user interface

AIIoT combines Fogxy with emojis in AR for IIoT applications. Emojis are easy to
understand and reflect the condition of a machine at a glance. AIIoT supports the use
of other AR devices besides the smartphone. Glasses or wearables offer the advantage
that users have their hands free to interact with the machines. The AIIoT proof of
concept implementation with partners from industry achieved the five requirements
from the visionary scenario: (1) Device Detection, (2) Device Identification, (3) Data
Gathering, (4) Data Interpretation, and (5) Device Characteristics Visualization. The
combination of augmented reality, Fog Computing, and emojis to augment IIoT de-
vices is a promising approach supported by industry.

96



Section 7.2: IIoT Bazaar

7.2 IIoT Bazaar

The IIoT Bazaar case study extends the AIIoT system and combines it with a
Blockchain component to create a marketplace for industrial edge applications. Fog
Computing enables on-site data analysis, and Blockchain as a decentralized framework
establishes security and trust. The combination of these technologies in an industrial
environment opens up new possibilities and opportunities. The IIoT Bazaar is a de-
centralized marketplace for industrial edge applications7 that relies on Blockchain to
create transparency for all stakeholders involved and enable the traceability of app
installations on field devices. Fogxy enables the integration of resource-limited field
devices into the IIoT Bazaar ecosystem. Fog nodes provide applications on field de-
vices and ensure integration into a decentralized Blockchain network. Augmented
reality serves as an interface between the users and the machines, allowing people to
interact intuitively with the field devices. We demonstrate the design and prototyp-
ical implementation of IIoT Bazaar and its applications. In this case study, we use
the Fog Meta Model in the analysis phase to classify the field, fog, and remote layers.
The architecture of the IIoT Bazaar is based on Fogxy around the decentralized field
devices that connect with remote components via the components in the fog. Seam-
less Computing enables the deployment and administration of edge applications of the
IIoT Bazaar. The case study enables the investigation of the integration and interac-
tion of the formalizations Fog Meta Model, Fogxy architectural style, and Seamless
Computing with this case study.

Problem and Motivation

Devices and software in industrial environments are distributed and heterogeneous
and therefore difficult to manage since they are often used in many places for different
purposes. Moreover, devices and their software are often custom tailored solutions,
which makes them difficult to develop and maintain. In addition to the maintenance,
the distribution and promotion of software and accompanying updates is tedious.
Marketplaces for apps have emerged from the consumer world, where they are already
well-known and used for smartphones. Examples of consumer marketplaces are the
Apple App Store8 and Google Play Store9. Users are accustomed to extending the
functionality and possibilities of their smartphones with various apps. These processes
are designed to be particularly user-friendly; after authentication and payment, the
app is installed on the device and is immediately executable. Marketplaces bring

7We refer to industrial edge applications as applications running on field devices.
8https://www.apple.com/ios/app-store/
9https://play.google.com/store

97

https://www.apple.com/ios/app-store/
https://play.google.com/store


Chapter 7: Case Studies

advantages for users and for the developers or providers of apps. If an app reaches a
critical mass, it is successfully distributed through a central point of contact. Contrary
to app stores for smartphones, marketplaces in the industrial environment face various
challenges. IIoT solutions are often tailor-made individual solutions in terms of both
hardware and software. The reuse of applications is not possible due to the lack of
distribution platforms. From the developer’s point of view, the appropriate delivery
channels are missing. Current solutions also do not offer flexible payment models such
as pay per use.

From the perspective of field device developers and technicians, working with these
devices raises further challenges. For example, technicians must go on-site and man-
ually initiate the installation of software and updates. The devices in the field often
do not provide a user interface, making feedback to the technician difficult and non-
transparent. Besides this, there is a lack of standardization in the installation process
of updates. They are not tracked, but reliable auditing and traceability are required.
New payment models, such as purchasing time-based functionalities, are also attrac-
tive to companies using IIoT. A lack of technological possibilities currently prevents
the establishment of such payment models. These challenges and problems, as well
as the individuality of applications and use cases, make it difficult to develop a plat-
form that meets these heterogeneous requirements. The IIoT Bazaar addresses these
challenges and offers solutions.

Visionary Scenario

IIoT Bazaar’s objective is to simplify and accelerate the installation and updating
of apps as easily on field devices as on smartphones. The visionary scenario presents
the functionality of the IIoT Bazaar.

Field devices serve as enablers for smart factories and establish continuous commu-
nication among different data sources that connect machines with sensors, actuators,
and cloud applications. These field devices enable predictive maintenance, availabil-
ity, and effectiveness. Technicians are responsible for regularly updating the software
and applications on these devices, which is a process that is cumbersome and complex.
Information about new software or updates is usually published via newsletters or in-
ternal portals. The technician must download the software, drag it onto a USB drive,
and transfer it to the device that requires an update. With the increasing number of
field devices, this method of updating poses a scaling problem. Many of the devices
do not offer user interfaces and provide installation status feedback via LEDs. This
process is error-prone and in need of improvement. In the consumer world, there is
already a simple and elegant way which can also be used for the industrial domain:

98



Section 7.2: IIoT Bazaar

marketplaces for apps. AIIoT enables technicians to detect and identify devices by
using a smartphone with AR technology and thus provide a user interface for a field
device that would otherwise lack one. The usually large number of manual steps for
installation is reduced to a simple drag & drop operation. When the technician points
to a device, the technician’s smartphone shows which applications are running on the
device, which updates are available, and which new applications can be installed. The
technician takes an app from a list and drags it to the device in AR. The process is
started after authentication and visually displayed in AR. If there is an error, the
technician receives feedback in AR. IIoT Bazaar also provides the technician with
additional information about the apps: ratings, version number, descriptions, devel-
oper information, and price. The metadata about the availability of apps and the
traceability of installations are stored in the Blockchain, allowing transparency and
traceability. The Blockchain, as a distributed and open system, enables several dis-
tributed marketplaces to work in parallel.

To realize the visionary scenario, the following requirements must be met:
(1) Open Platform: The IIoT Bazaar is an open platform. Barriers to entry for
both developers and users must be low. The platform must create transparency for
all parties involved.
(2) End-To-End Delivery: The IIot Bazaar supports the process of providing an
application to install it on a field device. End-to-end means from uploading the app
to the marketplace through the actual installation of the app on the field device to
payment. Furthermore, there must be a possibility for updates.
(3) User-Centric Design: Usability must meet the same expectations as in the
consumer world, i.e., the rapid notification of the current status of the devices, easy
installations, and updates.
(4) Independence: The IIoT Bazaar is a decentralized system with no regulating
authority.
(5) Payment Model Flexibility: The IIoT Bazaar supports different payment
models. Developers offer and provide flexible payment models.
(6) On- and Off-Site Remote Update Management: Installation and update
management must be available on-site and remotely. On-site technicians use their
smartphones for interaction but also manage the devices remotely.
(7) Flexibility and Extensibility: IIoT Bazaar must be flexible and expandable to
support different IIoT technologies and devices and be adaptable for the technicians.
(8) Traceability: All installations and updates must be documented for regulatory
reasons. The respective processes must be visible and traceable to the different parties.

99



Chapter 7: Case Studies

The analysis object model in Figure 7.7 describes the structure of AIIoT according
to the visionary scenario.

Remote

Fog

Field<<Field>>
User

<<Field>>
Developer

<<Field>>
Technician

<<Field>>
Authentication

<<Remote>>
Contract

<<Field>>
Field Device

<<Remote>>
Appstore

<<Fog>>
App

<<Field>>
Installed App

<<Remote>>
Available Apps

<<Fog>>
Device Visualization

<<Field>>
AR Device

Figure 7.7: IIoT Bazaar analysis object model

IIoT Bazaar has two actors: application Developers who want to distribute their
apps and Technicians who are responsible for the installation and availability of ap-
plications. Developers create applications (Apps) to run on Field Devices. As soon as
an App is deployed on a Field Device, it is considered as Installed App. Apps available
for installation are called Available Apps and subclasses of App. Technicians oversee
the installation and updating of those applications on the Field Devices. Both the
Technician and the Developer require Authentication, the Developer to upload Apps
to the App Store, and the Technician to install and update Apps on Field Devices.
It is essential to keep track of who developed which application and ensure that the
correct applications are being installed by the Technician on the Field Device. All
interactions with Apps are recorded in Contracts, such as uploading or installation.
The Contract validates and confirms this information. For interaction with a Field
Device, a Technician uses an AR Device. With the help of a camera, the Field Device
can be identified and the Device Visualization digitally represents the device and thus
enables interaction.

Design

Figure 7.8 shows the top-level design for the IIoT Bazaar. The design is based
on the Fogxy architectural style, the AIIoT architecture and the hybrid approach as
described in [RMC+18]. We discuss the individual components and their roles within
the IIoT Bazaars ecosystem.
The IIoT Bazaar App is the link between the Field Devices and the Technician.

100



Section 7.2: IIoT Bazaar

R
em

ot
e

Fo
g

Fi
el

d

IoT Manager

Dev StoreDeveloper BlockchainWarehouse

Field Devices IIoT Bazaar App

Applications Technician

query

delegatedeploy

download

Figure 7.8: IIoT Bazaar top-level design

Field Devices rarely have user interfaces. Once the IIoT Bazaar App has been in-
stalled, Technicians use their smartphones to detect, identify, and interact with the
Field Devices in AR. After successful authentication, technicians can install or unin-
stall apps using drag & drop operations. Furthermore, the IIoT Bazaar App provides
information about the current status of the Field Devices and their interactions con-
cerning app installations and updates. Running on the Fog Node, the IoT Manager is
the heart of the architecture and central point of contact. The Fog Node establishes
the connection between the components in the remote layer and those in the field. The
IoT Manager compensates for the missing resources on the Field Device to enable on-
and off-site maintenance and installation of apps. The Dev Store is the interface of the
IIoT Bazaar ecosystem for developers. They can provide their applications, upload
updates, or view metrics about the distribution of their apps. An app in the IIoT
Bazaar consists of a binary file, images such as icons and screenshots, and metadata
such as name, price, and version number. The Dev Store passes the metadata with
reference to the Warehouse and Blockchain. There are multiple reasons for using a
Blockchain. First of all, it provides a single source of truth in an environment with
a possible lack of transparency. Second, it is open and therefore feasible to intro-
duce further parties such as additional marketplaces to the IIoT Bazaar environment.
Third, the Blockchain offers smart contracts, which deliver data storage and logic

101



Chapter 7: Case Studies

layers in a distributed fashion. Fourth, cryptography provides a tamper-proof way of
recording transactions to enhance trust and traceability. The apps and other informa-
tion such as screenshots or app icons are stored in the Warehouse. App entries in the
Blockchain refer to the data in the Warehouse. Technicians refer to the information
which apps are available from the Blockchain. Suitable apps are downloaded from the
Warehouse to the selected Field Device.

Realization

Working together with an industrial partner, we implemented the IIoT Bazaar in
spring 2018. The developed prototype serves to validate the concept of the IIoT
Bazaar. The industrial partner uses the prototype to verify the acceptance of the
system by field technicians. The objective is to create an innovative AR-based user
interface that supports the deployment of edge applications on field devices. Fur-
thermore, the Blockchain as trending technology from a software engineering point
of view is of particular interest. We investigate the integration within Fogxy. In the
following, we describe the technical details, the test setup, the implementation of the
user interface, and the integration with Seamless Computing.
Figure 7.9 shows the hardware/software mapping as a UML deployment diagram

that includes the components and communication mechanisms. The components are
contained in the following environments:

Remote Environment. The RemoteEnvironment contains three subsystems: Dev
Store, Warehouse and App Chain. The components Dev Store and Warehouse are de-
ployed on a self-hosted virtual machine. The App Chain runs on AWS. The Dev Store
component is implemented using Angular 6.0 and runs on a nginx web server. The web
application includes two components: user management and application management.
The former allows users to log in with their Ethereum key pair via the MetaMask10

browser extension. We used the JavaScript implementation of the web311 framework
to communicate with the App Chain via JSON RPC. The Warehouse component is
implemented in Kotlin12 on the Spring13 framework. TheWarehouse provides a REST
interface that receives and stores the additional app information from the Dev Store.
Furthermore, it offers an interface for the IoT Manager where the Dockerfiles of the
app can be obtained to enable the installation on the FieldDevices. The component
is packed in a Docker container and can be deployed to any cloud provider. A private

10https://metamask.io/
11https://github.com/ethereum/web3.js
12https://kotlinlang.org/
13https://spring.io/

102

https://metamask.io/
https://github.com/ethereum/web3.js
https://kotlinlang.org/
https://spring.io/


Section 7.2: IIoT Bazaar

:RemoteEnvironment

:FogEnvironment

:FieldEnvironment

iPhone:Smartphone

IIoT Bazaar App

IOT2040:FieldDevice

IoT Simulation

NUC:FogNode

IoT Manager MQTT Broker

:Client

Browser
Docker:Container

Dev Store

Docker:Container

Warehouse

Ethereum:Blockchain

App ChainJSON RPC
JS

O
N 

RP
C

HTTP

JSON RPC

HTTP
HTTP

MQTT MQTT

Figure 7.9: IIoT Bazaar deployment diagram

Ethereum Blockchain is used to implement the Blockchain component, which runs
on three AWS Ethereum nodes. They find consensus on the state of the Blockchain
using Proof-of-Authority. Further Ethereum nodes can be used to scale the system.
IIoT Bazaar establishes three Smart Contracts: the IIoTAppRecords includes the
application metadata containing the following characteristics: name, version, owner
(developer’s Ethereum address), release date, price (token), and a reference to re-
trieve additional data that may contain the application binaries (Warehouse base
URL). The IIoTInstallationRecords stores the information about the installation of
an app to the FieldDevices. DeviceId, appId, purchaseDate, installDate, and a flag
indicating whether the installation of an app is still active or the app has been unin-
stalled are taken into account. The IIoTToken enables the payment and is derived
from the EC20 standard token – the standard implementation for currency manage-
ment on Ethereum. IIoT Bazaar uses a private Ethereum Blockchain for performance
reasons and to verify the participants of the ecosystem via the nodes. Therefore, the
Blockchain establishes transparency and visibility for all stakeholders.

103



Chapter 7: Case Studies

Fog Environment. The IoT Manager and the MQTT Broker running on an Intel
NUC with Ubuntu as operating system represent the central point of communication
and computation in the FogEnvironment. The IoT Manager acts as a proxy between
the remote components and the components in the FieldEnvironment. The IoT Man-
ager is implemented in Typescript and uses the Node.js JavaScript runtime. As a
proxy, the IoT Manager provides applications from the Warehouse to the respective
FieldDevices. Edge applications from the Warehouse are loaded to the FieldDevice
via the IoT Manager after a technician has completed the installation. The MQTT
Broker distributes data among all the components of the system.

Field Environment. The FieldEnvironment contains two subsystems: the IIoT
Bazaar App running on an iPhone and the IoT Simulation component running on
IOT2040 devices. iPhones with the IIoT Bazaar App, the FieldDevices, and the Fog
Nodes must be available on the same local network to communicate. At start-up
time, the app connects to the MQTT Broker and subscribes to MQTT topics. MDNS
resolves the IP address of the broker. MQTT messages contain information about
nearby FieldDevices and applications executed on them. A technician uses a smart-
phone camera to capture the surrounding environment. The trained machine learning
model of AIIoT is reused and achieves an accuracy of 95% to detect IOT2040 devices.
After detection, the IIoT Bazaar App scans the device for a QR code to identify it.
The technician sees the installed apps on the device and the apps available for in-
stallation. Apple’s ARKit enables the interaction in AR and the integration of the
machine learning model using CoreML. JSON RPC and the web3swift14 framework
realize the communication with the App Chain. The test environment provides three
FieldDevices with several sensors. Each of the FieldDevices runs the IoT Simula-
tions. The IoT Simulation represents edge applications that can be deployed. The
FieldDevices run Docker and portainer15 to enable the remote deployment of edge
applications packaged in Docker containers.

The IIoT Bazaar App provides information about the identified FieldDevices and
their applications in AR. The intuitive interaction with the FieldDevice in AR is es-
sential for the IIoT Bazaar to gain acceptance by technicians. We tested different
user experience concepts in several iterations, and evaluated them with our industrial
partner and finally decided on a drag & drop solution. The user interface adapts itself
according to the camera angle and the FieldDevice that is in the focus of the AR

14https://github.com/BANKEX/web3swift
15https://www.portainer.io/

104

https://github.com/BANKEX/web3swift
https://www.portainer.io/


Section 7.2: IIoT Bazaar

view. If several FieldDevices are available, the lowest common denominator of all the
apps installed on these devices is displayed. Figure 7.10 shows the installation of the
Idle Time application. It is dragged from the static area below into the dynamic AR
area. A visual confirmation gives the FieldDevice a green frame around the device
indicating that the Technician can install the app on the selected device. The instal-
lation process is initialized after the drop and visualized in the AR view (loading bar
on the app icon). The IoT Manager ensures error-free installation and handles the
billing for the app’s costs.

Figure 7.10: IIoT Bazaar AR user
interface

Seamless Computing enables the management
and deployment of edge applications. Ac-
cording to [BZ17], we use Docker as a soft-
ware container platform to deploy edge ap-
plications. Portainer running on the field
devices enables the deployment and manage-
ment of applications. We deliberately de-
cided against the use of a full Kubernetes
cluster to keep the footprint small on the
field devices. Portainer provides interfaces
for the Docker runtime to install contain-
ers which are provided on the IoT Man-
ager.

The IIoT Bazaar extended the AIIoT system
by adding real-time device interaction to obtain
information about the installed applications and
the ability to add or uninstall apps on field de-
vices. The Blockchain stores all interactions per-
formed by a technician, which increases trans-
parency and traceability. It enables the realiza-
tion of a marketplace for edge applications. Fur-
thermore, Smart Contracts establish micropay-
ments, including automation to create efficient
and transparent processes. The IIoT Bazaar pro-
totype was successfully demonstrated to our industrial partners, who provided valu-
able feedback. IIoT Bazaar achieves the following requirements: (1) Open Platform,
(2) End-to-end Delivery, (3) User-Centric Design, (4) Independence, (5) Payment
Model Flexibility, (6) On- and Off-Site Remote Update Management, (7) Flexibility

105



Chapter 7: Case Studies

and Extensibility, and (8) Traceability. However, we identified limitations posed by
the current state of the prototype. We encountered difficulties that had not been
apparent in the design of the system. Due to faulty frameworks and the lack of ex-
pert knowledge, development with a Blockchain component proved to be particularly
challenging. Although we had used a private Proof-of-Authority Ethereum network,
the confirmation times for the transactions took a long time. The IIoT Bazaar con-
cept offers the potential for human-machine interactions and should be extended for
machine-machine collaborations by using Smart Contracts for autonomous machines
that are utilized as both producers and consumers, also called prosumers.

106



Chapter 8

Conclusion

This dissertation addresses developers of Fog Computing applications and provides
them with formalizations to simplify the development of fog applications. The ap-
plication of the formalizations allows the simultaneous realization of non-functional
requirements such as real-time access and synchronization. The case studies and ap-
plication examples from different domains demonstrated and represented innovative
solutions to their problem statements. Section 8.1 describes the contributions and
summarizes them. Section 8.2 gives an outlook on future work and presents research
opportunities to improve the formalizations.

8.1 Contributions

This dissertation is a systems engineering work that contributes a metamodel, an
architectural style, a pattern evaluation method, and a concept for build- and release-
management of Fog Computing applications. The formalizations facilitate communi-
cation of stakeholders and establish a shared mental model among them. Figure 8.1
visualizes these contributions.

C
as

e 
St

ud
ie

s
AI

Io
T 

an
d 

IIo
T 

Ba
za

ar

Fog Meta Model
A Fog Meta Model to express Fog Computing Applications

Fogxy Architectural Style
An Architectural Style for Fog Computing 

Applications

Seamless Computing
Build- and Release-Management Concept for Fog Computing

1

2

3

5

APEP & RIAP
Pattern Evaluation 

Method

4

Figure 8.1: Contributions overview

107



Chapter 8: Conclusion

Fog Meta Model. The Fog Meta Model provides the basis for Fog Computing ap-
plications. It serves as a means of communication for the developers and allows Fog
Computing specific entities to be typed as early as in the analysis phase for domains
such as manufacturing, smart environments, and digital health. Three academic in-
novation projects and two application examples (FRODO and FARADAY) in these
domains demonstrated the applicability of the metamodel.

Fogxy Architectural Style. The Fogxy architectural style is based on the Fog
Meta Model using a combination of established design patterns. It minimizes the
usual trade-off problems between real-time access and synchronization, which has
been demonstrated in detail by means of the FEAt and FARADAY application ex-
amples from the manufacturing domain.

Seamless Computing. The Seamless Computing concept enables the static and
dynamic allocation of Fog Computing components, providing the developer with a
design continuum treating field, fog, and remote devices homogeneously. This has
been demonstrated in the Fogernetes and DYSCO application examples.

APEP and RIAP. RIAP is a lightweight method for evaluating architectural styles.
APEP, an iterative process for performing architectural pattern assessments, inte-
grates RIAP. RIAP helped to improve the Fogxy architectural style iteratively and is
applicable to other architectural patterns.

AIIoT and IIoT Bazaar Case Studies. The AIIoT and IIoT Bazaar case studies
demonstrated the applicability of the Fog Meta Model and the Fogxy architectural
style in the industrial manufacturing domain. IIoT Bazaar used Seamless Computing
to provide application components for field devices, demonstrating the feasibility of
the concept. The case studies presented innovative solutions including the use of
emojis and the establishment of a marketplace.

8.2 Future Work

In this section, we provide an outlook on future research directions and improvements
to the Fog Meta Model, the Fogxy architectural style, and Seamless Computing.
The Fog Meta Model is an enhancement of the UML metamodel and thus supports
the extension to describe the context of hardware and software in the area of Fog
Computing. In addition to real-time access, Fog Computing promises advantages
for security, data protection, scalability, and reduced operating costs. The Fog Meta

108



Section 8.2: Future Work

Model does not yet take these into account, but they do represent attractive stereotype
candidates. The integration of further non-functional requirements implies changes
to the Fogxy architectural style, which must be adapted accordingly. In addition
to the vertical distribution of component across layers, the horizontal partitioning of
subsystems within the different layers must be considered to address scalability and
reduced operating costs. The case studies showed configurations with isolated devices
within a layer that communicated exclusively across layers. It might be interesting
to generalize the approach to allow devices to communicate within a layer. An open
research topic is the definition of the wisp around a fog node so that devices can see
and communicate with each other. Since Fog Computing is a continuum between the
remote and the field layer, it is feasible for applications to consist of more than three
layers that blur the characteristics of the layers. Fog nodes might become devices in
the field layer and use the services of nodes from the layer above, which might be
another fog layer or a remote layer.

Seamless Computing targets applications in the manufacturing domain where hard
real-time access plays a crucial role. However, it is an open research question whether
the applied container technology meets the requirements of automation technology.
Real-time systems require orders of magnitude less processing time than is currently
feasible with container technologies. It is interesting to see the extent to which the
concepts are compatible. The application of Seamless Computing in the field of mobile
computing is also exciting and needs to be considered.

Furthermore, we want to apply the formalizations in other application domains and
to other project types. No statement can be made about the applicability of for-
malizations in interface or reverse engineering projects since the application examples
were mostly greenfield engineering projects. This needs to be explored further. In the
digital health domain, the application of the formalizations is promising. For example,
the interpretation of patient-related sensor data must be carried out in real-time to
prevent injury after a hip operation, while considering the accuracy of data analysis,
power consumption, and size and weight of the device attached to the patient. The
movement data is synchronized with the physician to guarantee optimal treatment.

The close collaboration between industry and researchers is helping Fog Computing
to become a technological driver of digitalization. The formalization of methods and
models for Fog Computing applications is a contribution to facilitate the implemen-
tation for developers and increase the understanding of all involved parties. It is a
great opportunity to be part of this movement and to drive its evolution.

109





Bibliography

[ABC+97] Gregory Abowd, Len Bass, Paul Clements, Rick Kazman, Linda
Northrop, and Amy Zaremski. Recommended Best Industrial Prac-
tice for Software Architecture Evaluation. Technical report, Software
Engineering Institute, Carnegie Mellon University, 1997.

[AG10] Lee Ackerman and Celso Gonzalez. Patterns-Based Engineering: Suc-
cessfully Delivering Solutions via Patterns. Addison-Wesley Longman
Publishing Co., Inc., 2010.

[AIS77] Christopher Alexander, Sara Ishikawa, and Murray Silverstein. A Pat-
tern Language: Towns, Buildings, Construction. Center for Environ-
mental Structure. Oxford University Press, 1977.

[Ale79] Christopher Alexander. The timeless way of building. Center for Envi-
ronmental Structure. Oxford University Press, 1979.

[ASB19] Mariana Avezum, Andreas Seitz, and Bernd Bruegge. MODCAP: A
platform for cooperative search and rescue missions. In Software En-
gineering (Workshops), volume 2308 of CEUR Workshop Proceedings,
pages 63–66, 2019.

[BBL76] B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative Evaluation of
Software Quality. In Proceedings of the 2nd International Conference on
Software Engineering, ICSE, pages 592–605, Los Alamitos, CA, USA,
1976. IEEE.

[BBL01] Guillem Bernat, Alan Burns, and Albert Llamosi. Weakly Hard Real-
Time Systems. IEEE Transactions on Computers, 50(4):308–321, April
2001.

[BBM13] Muhammad Ali Babar, Alan W. Brown, and Ivan Mistrik. Agile Soft-
ware Architecture: Aligning Agile Processes and Software Architectures.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2013.

111



Bibliography

[BCK98] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 1st edition, 1998.

[BCK12] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley Longman Publishing Co., Inc., 3rd edition,
2012.

[BD09] Bernd Bruegge and Allen H Dutoit. Object-Oriented Software Engi-
neering Using UML, Patterns and Java. Prentice Hall, 2009.

[Bec17] Alexander Becker. Integration of Machine Learning into a Fog Comput-
ing Environment in the Context of Smart Buildings. Bachelor’s thesis,
Technische Universität München, August 2017.

[BHS07] Frank Buschmann, Kevlin Henney, and Douglas Schmidt. Pattern-
Oriented Software Architecture: A Pattern Language for Distributed
Computing (Volume 4). John Wiley & Sons, 2007.

[BMMM98] William H. Brown, Raphael C. Malveau, Hays W. "Skip" McCormick,
and Thomas J. Mowbray. AntiPatterns: Refactoring Software, Archi-
tectures, and Projects in Crisis. John Wiley & Sons, 1998.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. Pattern-Oriented Software Architecture - Volume 1:
A System of Patterns. Wiley Publishing, 1996.

[BMZA12] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog
computing and its role in the internet of things. In Proceedings of the
First Edition of the MCC Workshop on Mobile Cloud Computing, pages
13–16, New York, NY, USA, 2012. ACM.

[Bod18] Florian Bodlée. Autonomous Traffic Regulation using a Distributed
Ledger. Bachelor’s thesis, Technische Universität München, September
2018.

[BRJ99] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Mod-
eling Language User Guide. Addison-Wesley Longman Publishing Co.,
Inc., Redwood City, CA, USA, 1999.

[Bro10] Manfred Broy. Cyber-Physical Systems: Innovation durch Softwarein-
tensive eingebettete Systeme. acatech DISKUTIERT, 2010.

112



[BSS+18] I. Bouzarkouna, M. Sahnoun, N. Sghaier, D. Baudry, and C. Gout.
Challenges Facing the Industrial Implementation of Fog Computing. In
6th International Conference on Future Internet of Things and Cloud
(FiCloud), pages 341–348. IEEE, 2018.

[Buc17] Dominik Buchinger. A Fog Computing Design Approach for Data An-
alytics in the Industrial Internet of Things. Master’s thesis, Technische
Universität München, November 2017.

[BZ17] Paolo Bellavista and Alessandro Zanni. Feasibility of Fog Computing
Deployment Based on Docker Containerization over RaspberryPi. In
Proceedings of the 18th International Conference on Distributed Com-
puting and Networking, ICDCN, New York, NY, USA, 2017. ACM.

[BZJ04] Muhammad Ali Babar, Liming Zhu, and Ross Jeffery. A framework for
classifying and comparing software architecture evaluation methods. In
Australian Software Engineering Conference Proceedings, pages 309–
318. IEEE, 2004.

[CKK02] Paul Clements, Rick Kazman, and Mark Klein. Evaluating Software
Architectures. Addison-Wesley Longman Publishing Co., Inc., 2002.

[CLC11] Y. Chen, X. Li, and F. Chen. Overview and analysis of cloud computing
research and application. In International Conference on E-Business
and E-Government (ICEE), 2011.

[Cle00] Paul C. Clements. Active Reviews for Intermediate Designs. Technical
note, Carnegie Mellon, 2000.

[Con17] OpenFog Consortium. OpenFog Reference Architecture for Fog Com-
puting. 2017.

[CSB17] C. Chang, S. Narayana Srirama, and R. Buyya. Indie Fog: An Efficient
Fog-Computing Infrastructure for the Internet of Things. Computer,
50(9):92–98, 2017.

[CZS17] S. Chen, T. Zhang, and W. Shi. Fog Computing. IEEE Internet Com-
puting, 21(2):4–6, 2017.

[DB16] A. V. Dastjerdi and R. Buyya. Fog Computing: Helping the Internet
of Things Realize Its Potential. Computer, 49(8):112–116, 2016.

113



Bibliography

[DD17] Koustabh Dolui and Soumya Kanti Datta. Comparison of edge com-
puting implementations: Fog computing, cloudlet and mobile edge com-
puting. In Global Internet of Things Summit (GIoTS). IEEE, 2017.

[DMR16] Manuel Díaz, Cristian Martín, and Bartolomé Rubio. State-of-the-art,
challenges, and open issues in the integration of Internet of things and
cloud computing. Journal of Network and Computer Applications, 67:99
– 117, 2016.

[EA12] Peter C. Evans and Marco Annunziata. Industrial internet: Pushing
the boundaries of minds and machines. General Electric, 2012.

[Fie00] Roy Thomas Fielding. Architectural Styles and the Design of Network-
based Software Architectures. PhD thesis, University of California,
Irvine, 2000.

[FM05] Elgar Fleisch and Friedemann Mattern. Das Internet der Dinge.
Springer-Verlag GmbH, 2005.

[Fow97] Martin Fowler. Analysis patterns: reusable object models. Addison-
Wesley Longman Publishing Co., Inc., 1997.

[FS99] Jason Flinn and M. Satyanarayanan. Energy-aware Adaptation for Mo-
bile Applications. In Proceedings of the Seventeenth ACM Symposium
on Operating Systems Principles, SOSP, pages 48–63, New York, NY,
USA, 1999. ACM.

[Gaß17] David Gaßmann. Architectural Styles for Real-Time Applications in
the Area of Fog Computing. Master’s thesis, Technische Universität
München, December 2017.

[GBMP13] Jayavardhana Gubbi, Rajkumar Buyya, Slaven Marusic, and
Marimuthu Palaniswami. Internet of Things (IoT): A Vision, Archi-
tectural Elements, and Future Directions. Future Generation Computer
Systems, 29(7):1645–1660, 2013.

[GF94] O. C. Z. Gotel and C. W. Finkelstein. An analysis of the requirements
traceability problem. In Proceedings of IEEE International Conference
on Requirements Engineering, pages 94–101, 1994.

[GGdFP+16] N. M. Gonzalez, W. A. Goya, R. de Fatima Pereira, K. Langona, E. A.
Silva, T. C. M. de Brito Carvalho, C. C. Miers, J. E. Mångs, and A. Se-
fidcon. Fog computing: Data analytics and cloud distributed processing

114



on the network edges. In 35th International Conference of the Chilean
Computer Science Society (SCCC), 2016.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[GLM+15] V. Gazis, A. Leonardi, K. Mathioudakis, K. Sasloglou, P. Kikiras, and
R. Sudhaakar. Components of fog computing in an industrial internet
of things context. In 12th Annual IEEE International Conference on
Sensing, Communication, and Networking (SECON Workshops), 2015.

[GMP+18] Spyridon V. Gogouvitis, Harald Mueller, Sreenath Premnadh, Andreas
Seitz, and Bernd Bruegge. Seamless Computing in Industrial Systems
using Container Orchestration. Future Generation Computer Systems,
2018.

[Gra92] Robert B. Grady. Practical Software Metrics for Project Management
and Process Improvement. Prentice Hall, 1992.

[HA10] Neil B. Harrison and Paris Avgeriou. How Do Architecture Patterns
and Tactics Interact? A Model and Annotation. J. Syst. Softw.,
83(10):1735–1758, 2010.

[HAHZ15] K. Habak, M. Ammar, K. A. Harras, and E. Zegura. Femto Clouds:
Leveraging Mobile Devices to Provide Cloud Service at the Edge. In
IEEE 8th International Conference on Cloud Computing, pages 9–16,
2015.

[Hel18] Till Hellmund. Applying the Fogxy Pattern for Real-Time Smart
Glasses Applications. Bachelor’s thesis, Technische Universität
München, July 2018.

[HESB18] M. Heck, J. Edinger, D. Schaefer, and C. Becker. IoT Applications
in Fog and Edge Computing: Where Are We and Where Are We Go-
ing? In 27th International Conference on Computer Communication
and Networks (ICCCN), 2018.

[HNYL17] Z. Hao, E. Novak, S. Yi, and Q. Li. Challenges and Software Archi-
tecture for Fog Computing. IEEE Internet Computing, 21(2):44–53,
2017.

115



Bibliography

[HSHB18] Till Hellmund, Andreas Seitz, Juan Haladjian, and Bernd Bruegge.
IPRA: Real-Time Face Recognition on Smart Glasses with Fog Com-
puting. In Adjunct Proceedings of the ACM International Joint Con-
ference on Pervasive and Ubiquitous Computing and the International
Symposium on Wearable Computers. ACM, 2018.

[Hum17] Jez Humble. Continuous Delivery Sounds Great, but Will It Work Here?
Queue, 15(6):70:57–70:76, 2017.

[ISO00] ISO/IEC. Software Engineering - Product Quality (ISO/IEC 9126).
Technical report, 2000.

[ISO14] ISO/IEC. Internet of Things (ISO/IEC JTC 1). Technical report, 2014.

[Jeu09] Manfred A. Jeusfeld. Metamodel, pages 1727–1730. Springer US,
Boston, MA, 2009.

[KABW14] Stephan Krusche, Lukas Alperowitz, Bernd Bruegge, and Martin O.
Wagner. Rugby: An Agile Process Model Based on Continuous Deliv-
ery. In Proceedings of the 1st International Workshop on Rapid Contin-
uous Software Engineering, RCoSE 2014, pages 42–50, New York, NY,
USA, 2014. ACM.

[Kat18] Florian Katenbrink. DYSCO: Dynamic Scheduling for Seamless Com-
puting. Master’s thesis, Technische Universität München, September
2018.

[KBAW94] R. Kazman, L. Bass, G. Abowd, and M. Webb. SAAM: a method for
analyzing the properties of software architectures. In Proceedings of
16th International Conference on Software Engineering, pages 81–90,
1994.

[KKC00] Rick Kazman, Mark Klein, and Paul Clements. ATAM: Method for ar-
chitecture evaluation. Technical report, Software Engineering Institute,
Carnegie Mellon University, 2000.

[KMS+18] Florian Katenbrink, Ludwig Mittermeier, Andreas Seitz, Harald
Mueller, and Bernd Bruegge. Dynamic Scheduling for Seamless Com-
puting. In 2018 IEEE 8th International Symposium on Cloud and Ser-
vice Computing (SC2), pages 41–48, Nov 2018.

116



[Kra18] Paul Johannes Kraft. FogxyAR - Towards a Fog Computing Framework
for Collaborative Augmented Reality. Bachelor’s thesis, Technische Uni-
versität München, July 2018.

[KRM16] M. A. Kabir, M. U. Rehman, and S. I. Majumdar. An analytical and
comparative study of software usability quality factors. In 7th IEEE
International Conference on Software Engineering and Service Science
(ICSESS), pages 800–803, Aug 2016.

[Kru95] P. B. Kruchten. The 4+1 View Model of architecture. IEEE Software,
12(6):42–50, 1995.

[LDZQ18] J. Luo, X. Deng, H. Zhang, and H. Qi. Ultra-Low Latency Service
Provision in Edge Computing. In IEEE International Conference on
Communications (ICC), 2018.

[Lee08] E. A. Lee. Cyber Physical Systems: Design Challenges. In 11th
IEEE International Symposium on Object and Component-Oriented
Real-Time Distributed Computing (ISORC), pages 363–369, 2008.

[LES+14] Grace A. Lewis, Sebastian Echeverría, Soumya Simanta, Ben Bradshaw,
and James Root. Cloudlet-based Cyber-foraging for Mobile Systems in
Resource-constrained Edge Environments. In Companion Proceedings
of the 36th International Conference on Software Engineering, ICSE
Companion, pages 412–415, New York, NY, USA, 2014. ACM.

[LJY+15] J. Li, J. Jin, D. Yuan, M. Palaniswami, and K. Moessner. EHOPES:
Data-centered Fog platform for smart living. In International Telecom-
munication Networks and Applications Conference (ITNAC), pages
308–313, 2015.

[LKY14] Jay Lee, Hung-An Kao, and Shanhu Yang. Service Innovation and
Smart Analytics for Industry 4.0 and Big Data Environment. Procedia
CIRP, 16:3 – 8, 2014.

[MGH+16] Harald Mueller, Spyridon V. Gogouvitis, Houssam Haitof, Andreas
Seitz, and Bernd Bruegge. Poster Abstract: Continuous Computing
from Cloud to Edge. In IEEE/ACM Symposium on Edge Computing
(SEC), pages 97–98, 2016.

[MGSB17] Harald Mueller, Spyridon V. Gogouvitis, Andreas Seitz, and Bernd
Bruegge. Seamless Computing for Industrial Systems Spanning Cloud

117



Bibliography

and Edge. In International Conference on High Performance Comput-
ing Simulation (HPCS), pages 209–216, 2017.

[MMA+16] Eva Marín-Tordera, Xavier Masip-Bruin, Jordi Garcia Almiñana, Ad-
mela Jukan, Guang-Jie Ren, Jiafeng Zhu, and Josep Farre. What is a
Fog Node A Tutorial on Current Concepts towards a Common Defini-
tion. CoRR, 2016.

[MRW77] Jim A. McCall, Paul K. Richards, and Gene F. Walters. Factors in
Software Quality. Concepts and Definitions of Software Quality. 1977.

[New15] Sam Newman. Building Microservices. O’Reilly Media, Inc., 1st edition,
2015.

[NSN+97] Brian D. Noble, M. Satyanarayanan, Dushyanth Narayanan, James Eric
Tilton, Jason Flinn, and Kevin R. Walker. Agile Application-aware
Adaptation for Mobility. SIGOPS Oper. Syst. Rev., 31(5):276–287,
1997.

[NZS15] David Sousa Nunes, Pei Zhang, and Jorge Sá Silva. A Survey on Human-
in-the-Loop Applications Towards an Internet of All. IEEE Communi-
cations Surveys Tutorials, 17(2), 2015.

[Obj11] Object Management Group. OMG Unified Modeling Language Version
2.4.1, 2011.

[Obj16] Object Management Group. Meta Object Facility Specification Version
2.5.1, 2016.

[OSB15] J. Oueis, E. C. Strinati, and S. Barbarossa. The Fog Balancing: Load
Distribution for Small Cell Cloud Computing. In IEEE 1st Vehicular
Technology Conference (VTC Spring), 2015.

[Par72] D. L. Parnas. On the Criteria to Be Used in Decomposing Systems into
Modules. Commun. ACM, 15(12):1053–1058, 1972.

[Pet16] Sebastian Matthias Peters. MIBO – A Framework for the Integration of
Multimodal Intuitive Controls in Smart Buildings. Dissertation, Tech-
nische Universität München, München, 2016.

[PMV+18] C. Puliafito, E. Mingozzi, C. Vallati, F. Longo, and G. Merlino. Virtu-
alization and Migration at the Network Edge: An Overview. In IEEE
International Conference on Smart Computing (SMARTCOMP), pages
368–374, 2018.

118



[PTW18] Yi Pan, Parimala Thulasiraman, and Yingwei Wang. Overview of
cloudlet, fog computing, edge computing, and dew computing. In The
3rd International Workshop on Dew Computing. IEEE, 2018.

[PW85] David L. Parnas and David M. Weiss. Active Design Reviews: Principles
and Practices. In Proceedings of the 8th International Conference on
Software Engineering, pages 132–136. IEEE Computer Society Press,
1985.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the Study
of Software Architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52,
1992.

[RLSS10] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic. Cyber-physical systems:
The next computing revolution. In Design Automation Conference,
pages 731–736, 2010.

[RMC+18] Ana Reyna, Cristian Martín, Jaime Chen, Enrique Soler, and Manuel
Díaz. On blockchain and its integration with IoT. Challenges and op-
portunities. Future Generation Computer Systems, 88:173 – 190, 2018.

[Roh17] Johannes Rohwer. Discovery of Nearby Nodes and Services in the
Context of Fog Computing. Bachelor’s thesis, Technische Universität
München, September 2017.

[Sat01] Mahadev Satyanarayanan. Pervasive computing: vision and challenges.
IEEE Personal Communications, 8(4):10–17, 2001.

[Sat15] Mahadev Satyanarayanan. A Brief History of Cloud Offload: A Personal
Journey from Odyssey Through Cyber Foraging to Cloudlets. GetMo-
bile: Mobile Comp. and Comm., 18(4):19–23, 2015.

[Sat17a] Mahadev Satyanarayanan. Edge computing for situational awareness.
In IEEE International Symposium on Local and Metropolitan Area Net-
works (LANMAN). IEEE, 2017.

[Sat17b] Mahadev Satyanarayanan. The Emergence of Edge Computing. Com-
puter, 50(1):30–39, 2017.

[SB18] Andreas Seitz and Bernd Bruegge. Teaching Pattern-Based Develop-
ment. In Combined Proceedings of the Workshops of the German Soft-
ware Engineering Conference (SE), Ulm, Germany., pages 20–23, 2018.

119



Bibliography

[SBB18] Andreas Seitz, Dominik Buchinger, and Bernd Bruegge. The Conjunc-
tion of Fog Computing and the Industrial Internet of Things - An Ap-
plied Approach. In IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PerCom Workshops), 2018.

[SBCD09] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies. The Case for
VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Comput-
ing, 8(4):14–23, 2009.

[SCH+14] M. Satyanarayanan, Z. Chen, K. Ha, W. Hu, W. Richter, and P. Pil-
lai. Cloudlets: at the leading edge of mobile-cloud convergence. In
6th International Conference on Mobile Computing, Applications and
Services, 2014.

[Sch17] Constantin Scheuermann. A Metamodel for Cyber-Physical Systems.
Dissertation, Technische Universität München, München, 2017.

[SCM18] S. Sarkar, S. Chatterjee, and S. Misra. Assessment of the Suitability of
Fog Computing in the Context of Internet of Things. IEEE Transactions
on Cloud Computing, 6(1):46–59, 2018.

[SCZ+16] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge Computing: Vision
and Challenges. IEEE Internet of Things Journal, 3(5):637–646, 2016.

[SFI16] Madiha H. Syed, Eduardo B. Fernandez, and Mohammad Ilyas. A Pat-
tern for Fog Computing. In Proceedings of the 10th Travelling Confer-
ence on Pattern Languages of Programs, VikingPLoP, pages 13:1–13:10,
New York, NY, USA, 2016. ACM.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on
an Emerging Discipline. Prentice Hall, 1996.

[SGFW10] Harald Sundmaeker, Patrick Guillemin, Peter Friess, and Sylvie Woelf-
flé. Vision and challenges for realising the Internet of Things. Technical
report, Cluster of European Research Projects on the Internet of Things,
European Commission, 2010.

[SHM+18] Andreas Seitz, Dominic Henze, Daniel Miehle, Bernd Bruegge, Jochen
Nickles, and Markus Sauer. Fog Computing as Enabler for Blockchain-
Based IIoT App Marketplaces - A Case Study. In Fifth International
Conference on Internet of Things: Systems, Management and Security,
pages 182–188, 2018.

120



[SHS+18] Andreas Seitz, Dominic Henze, Markus Sauer, Jochen Nickles, and
Bernd Bruegge. Augmenting the Industrial Internet of Things with
Emojis. In International Workshop on Smart Living with IoT, Cloud,
and Edge Computing (SLICE), Barcelona, Spain, 2018.

[SJB+17] Andreas Seitz, Jan Ole Johanssen, Bernd Bruegge, Vivian Loftness,
Volker Hartkopf, and Monika Sturm. A Fog Architecture for Decen-
tralized Decision Making in Smart Buildings. In Proceedings of the 2nd
International Workshop on Science of Smart City Operations and Plat-
forms Engineering, SCOPE, pages 34–39, New York, NY, USA, 2017.
ACM.

[SL08] Gérald Santucci and Sebastian Lange. Internet of Things in 2020 a
Roadmap for the Future. In Joint EU-EPoSS Workshop Report, 2008.

[SSZ15] Eric Simmon, Sulayman K. Sowe, and Koji Zettsu. Designing a Cyber-
Physical Cloud Computing Architecture. IT Professional, 17(3), 2015.

[Sta06] OASIS Standard. Reference Model for Service Oriented Architecture
1.0. Technical report, 2006.

[STB17] Andreas Seitz, Felix Thiele, and Bernd Bruegge. Focus Group: Patterns
for Fog Computing. In Proceedings of the 22nd European Conference
on Pattern Languages of Programs, EuroPLoP, New York, NY, USA,
2017. ACM.

[STB18a] Andreas Seitz, Felix Thiele, and Bernd Bruegge. APEP - An Archi-
tectural Pattern Evaluation Process. In Proceedings of the 12th Latin
American Conference on Pattern Languages of Programs, SugarLoaf-
PLoP, New York, NY, USA, 2018. ACM.

[STB18b] Andreas Seitz, Felix Thiele, and Bernd Bruegge. Fogxy: An Architec-
tural Pattern for Fog Computing. In Proceedings of the 23rd European
Conference on Pattern Languages of Programs, EuroPLoP, New York,
NY, USA, 2018. ACM.

[Ste16] Christine Steinhoff. Aktueller Begriff Industrie 4.0. Wissenschaftliche
Dienste des Deutschen Bundestages - Fachbereich WD 8, 2016.

[Sto14] Ivan Stojmenovic. Machine-to-Machine Communications With In-
Network Data Aggregation, Processing, and Actuation for Large-Scale
Cyber-Physical Systems. IEEE Internet of Things Journal, 2014.

121



Bibliography

[SW18] Dimitrios Serpanos and Marilyn Wolf. Industrial Internet of Things,
pages 37–54. Springer International Publishing, Cham, 2018.

[Sye17] Asad Ullah Hussain Syed. Deployment and Orchestration of Edge Com-
puting Applications. Master’s thesis, Technische Universität München,
October 2017.

[Tan09] Wei Tang. Meta Object Facility, pages 1722–1723. Springer US, Boston,
MA, 2009.

[Thi17] Felix Thiele. Analysis and Evaluation of the Fogxy Pattern for Fog
Computing. Master’s thesis, Technische Universität München, Septem-
ber 2017.

[TK13] T. Taleb and A. Ksentini. Follow me cloud: interworking federated
clouds and distributed mobile networks. IEEE Network, 27(5):12–19,
2013.

[VRM14] Luis M. Vaquero and Luis Rodero-Merino. Finding YourWay in the Fog:
Towards a Comprehensive Definition of Fog Computing. SIGCOMM
Comput. Commun. Rev., 44(5):27–32, 2014.

[VS17] Prateeksha Varshney and Yogesh Simmhan. Demystifying Fog Com-
puting: Characterizing Architectures, Applications and Abstractions.
CoRR, 2017.

[VWB+16] B. Varghese, N. Wang, S. Barbhuiya, P. Kilpatrick, and D. S. Nikolopou-
los. Challenges and opportunities in edge computing. In IEEE Inter-
national Conference on Smart Cloud (SmartCloud), pages 20–26, 2016.

[Wan15] Yingwei Wang. Cloud-dew architecture. International Journal of Cloud
Computing, 4(3):199–210, 2015.

[Wan16] Oliver Wangler. Applicability of Fog Computing in the Context of In-
dustrial Internet. Master’s thesis, Technische Universität München, De-
cember 2016.

[WB97] Mark Weiser and John Seely Brown. The Coming Age of Calm Tech-
nolgy. pages 75–85. Copernicus, New York, NY, USA, 1997.

[Wei99] Mark Weiser. The computer for the 21st century. SIGMOBILE Mob.
Comput. Commun. Rev., 3(3):3–11, 1999.

122



[WF12] Tim Wellhausen and Andreas Fiesser. How to Write a Pattern?: A
Rough Guide for First-time Pattern Authors. In Proceedings of the 16th
European Conference on Pattern Languages of Programs, EuroPLoP,
New York, NY, USA, 2012. ACM.

[Woe17] Cecil Woebker. Deployment and Management of Fog Computing Ap-
plications using Cloud Technologies. Bachelor’s thesis, Technische Uni-
versität München, August 2017.

[WSMB18] Cecil Wöbker, Andreas Seitz, Harald Mueller, and Bernd Bruegge.
Fogernetes: Deployment and Management of Fog Computing Applica-
tions. In IEEE/IFIP International Workshop on Decentralized Orches-
tration and Management of Distributed Heterogeneous Things (DOMI-
NOS), 2018.

[WYG+17] Z. Wen, R. Yang, P. Garraghan, T. Lin, J. Xu, and M. Rovatsos. Fog
Orchestration for Internet of Things Services. IEEE Internet Comput-
ing, 21(2):16–24, 2017.

[YA03] Sherif Yacoub and Hany Ammar. Pattern-Oriented Analysis and De-
sign: Composing Patterns to Design Software Systems. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2003.

[YHQL15] S. Yi, Z. Hao, Z. Qin, and Q. Li. Fog computing: Platform and appli-
cations. In Third IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb), pages 73–78, 2015.

123




	List of Figures
	List of Tables
	1 Introduction
	1.1 Problem
	1.2 Research Objectives
	1.3 Outline
	1.4 Research Approach

	2 Foundations
	2.1 Internet of Things (IoT)
	2.2 Software Architecture and Patterns
	2.2.1 Terminology
	2.2.2 Software Quality Attributes
	2.2.3 Software Evaluation Methods

	2.3 Pattern-Based Development (PBD)
	2.4 Fog and Edge Computing Paradigms
	2.4.1 Fog Computing
	2.4.2 Cloudlets
	2.4.3 Edge Computing


	3 Fog Meta Model
	3.1 Objectives and Design Goals
	3.2 Design
	3.3 Application Examples
	3.3.1 FRODO
	3.3.2 FARADAY


	4 Fogxy - An Architectural Style for Fog Computing
	4.1 Approach
	4.2 Context
	4.3 Problem
	4.4 Forces
	4.5 Solution
	4.6 Consequences
	4.7 Related Patterns
	4.8 Known Uses
	4.9 Application Examples
	4.9.1 FARADAY
	4.9.2 FEAt


	5 APEP and RIAP
	5.1 Architectural Pattern Evaluation Process (APEP)
	5.1.1 Design
	5.1.2 Architectural Pattern Evaluation Methods
	5.1.3 Issues

	5.2 Review for Intermediate Architectural Patterns (RIAP)
	5.2.1 Design Goals
	5.2.2 Characteristics
	5.2.3 Implementation

	5.3 Application Example
	5.3.1 Materials
	5.3.2 Reviewers and Environment
	5.3.3 Evolution of the RIAP Method
	5.3.4 Findings
	5.3.5 Issue List


	6 Seamless Computing
	6.1 Terminology
	6.2 Requirements
	6.3 Reference Model
	6.4 Gap Fit Analysis
	6.5 Application Examples
	6.5.1 Fogernetes
	6.5.2 DYSCO


	7 Case Studies
	7.1 AIIoT
	7.2 IIoT Bazaar

	8 Conclusion
	8.1 Contributions
	8.2 Future Work

	Bibliography

