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Zusammenfassung

Viele Anwendungen, wie z.B. Payment, Pay-TV und Gesundheitsanwendung-

en, verwenden Kryptographie um Vertraulichkeit, Integrität und Authentizität

sensibler Informationen zu gewährleisten. Die sensiblen Informationen und

das schützende kryptographische Schlüsselmaterial selbst sind bevorzugte Ziele

von Angriffen. Eine Möglichkeit, diese Angriffe durchzuführen, sind Seitenka-

nalangriffe. Bei diesen wird die Implementierung eines kryptographischen Al-

gorithmus angegriffen, nicht aber der Algorithmus selbst, z.B. indem der Strom-

verbrauch oder die elektromagnetische (EM) Strahlung während der kryptogra-

phischen Operation beobachtet wird. Lokalisierte EM-Messungen gehören zu

einer mächtigen Klasse von Seitenkanalangriffen und verwenden kleine elek-

tromagnetische Sonden von wenigen hundert Mikrometern Innendurchmes-

ser. Durch den kleinen Durchmesser können die Sonden sehr nah an der Chip-

Oberfläche platziert werden. Dadurch isolieren die kleinen Messsonden (und

somit das aufgenommene Signal) Chip-Bereiche in deren Umgebung vom Rest

des Chips. Damit erhöhen sie das Signal-Rausch-Verhältnis (SNR), verglichen

zu Strom- oder globalen EM-Messungen, und ermöglichen es mehrere Sonden

über dem Chip zu platzieren.

In dieser Arbeit wird der Fokus auf Messungen mit mehreren Messsonden

gelegt. Dabei ist es das Ziel, zu ermitteln, ob mehrere Sonden einen mächti-

geren Angriff ermöglichen als eine einzelne Sonde. Hierfür werden Angriffe

gegen eine symmetrische und eine asymmetrische Chiffre durchgeführt. Diese

Angriffe wurden ausgewählt, da sich die Angriffsszenarien bei symmetrischen

und asymmetrischenVerschlüsselungsalgorithmen stark unterscheiden können.

Diemeisten symmetrischen Algorithmen ermöglichen die Erfassung von vielen

(tausend) Traces mit demselben Schlüssel, imGegensatz dazu können asymme-

trische Algorithmen durch Gegenmaßnahmen einen Angreifer auf einen Trace

beschränken. Um das Potential mehrerer Sonden zu ermitteln, vergleiche ich

das Ergebnis der Kombination von mehreren Sonden mit den Ergebnissen der

einzelnen Sonden und Strommessungen.
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Ein Angriff besteht im Allgemeinen aus 3 Schritten, der Profilingphase, dem

Preprocessing und der Auswertung. Während der Profilingphase wird das Ver-

halten eines Chipsmit bekanntem Schlüssel gemessen, sodass der Preprocessing-

und Angriffsschritt mit Hilfe des Profilings gezielt angepasst werden können.

Angriffe, die eine Profilingphase beinhalten, gehören zu den mächtigsten Sei-

tenkanalangriffen. Trotz Profiling und Preprocessing sind Seitenkanalmessun-

gen (und auch lokalisierte EM-Messungen) typischerweiseMessungenmit nied-

rigem SNR. Deshalb ist es wichtig das Preprocessing so anzupassen, dass idea-

lerweise nur die Informationen über den Schlüssel aus den Traces extrahiert

werden und das Rauschen vernachlässigt wird, was zu einer Erhöhung des SNR

führt. Hierfür werden hier die maschinellen Lerntechniken Diskriminanzana-

lyse (LDA) und Hauptkomponentenanalyse (PCA) als Preprocessingtechniken

verwendet.

Darüber hinaus besteht die Herausforderung bei Messungen mit mehreren

Sonden darin, die Informationen der Messdaten effizient zu kombinieren. Die-

se Kombination kann in verschiedenen Phasen des Angriffs durchgeführt wer-

den. Bei der Analyse der symmetrischen Chiffre, kombiniere ich die Informa-

tionen mehrerer Sonden während der profilierten Preprocessingphase mithilfe

von LDA. Es wird gezeigt, dass der Angriff auf die symmetrische Implemen-

tierung von der Kombination mehrerer Sonden profitiert und weniger Traces

gebraucht werden, um den Schlüssel zu extrahieren. Im Vergleich zwischen der

Analyse mit einzelnen Sonden und dem kombinierten Ansatz, sinkt die An-

zahl der benötigten Traces um den Faktor 5,7. In Relation zum Angriff mit

Strommessungen wurde die Anzahl der Traces um den Faktor 238 reduziert.

Zusätzlich verbessere ich den State-of-the-Art Angriff, der in diesem Kapitel

verwendet wird, um den Faktor 4,2. Darüber hinaus werden Beispiele gezeigt,

wie die Informationenmehrerer Sonden bei diesemAngriff kombiniert werden

und dass LDA in der Lage ist, die Informationen mehrerer Sonden zu kombi-

nieren.

Während des Angriffs mit nur einem Trace gegen eine asymmetrische Chif-

fre, wird ein anderes Maß für die Effektivität des Angriffs wie eben gewählt.

Dadurch, dass nur ein Trace für die Analyse zur Verfügung steht, wird die ver-

bleibende Anzahl an Schlüsselbits, die für einen erfolgreichen Angriff durch

Brute-force ermittelt werden müssten geschätzt, die sog. Brute-Force-Komple-

xität. Die Brute-Force-Komplexität eines nicht profilierten Angriffs kann in
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59 % der Fälle auf 32 Bit oder weniger gesenkt werden, verglichen mit 0 % der

Fälle zum Ansatz von Heyszl et al. [Hey14] für eine einzelne Sonde. In dieser

Messung wird PCA als Preprocessing- und Dimensionsreduktionsschritt einge-

setzt. Mehrere Sondenwerden nach der Anwendung von PCA auf die einzelnen

Sonden miteinander kombiniert. Allerdings erreicht die Kombination mehrerer

Sonden nur vergleichbare Ergebnisse, wie die beste Einzelsonde. Um die Leis-

tung des unprofilierten Ansatzes zu vergleichen, wird zusätzlich ein profilierter

Angriff durchgeführt. Damit wird der Mittelwert der Brute-Force-Komplexi-

tät von 50 Bit für die beste einzelne Sonde auf 44 Bit im kombinierten Fall

reduziert. Diese Verbesserung kann jedoch nur in Kombination mit profilier-

ten Angriffen gezeigt werden, sodass ein Angreifer Zugriff auf ein Gerät mit

bekanntem Schlüssel haben muss, um Trainingsdaten zu sammeln.
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Abstract

Many applications, e.g., payment, pay-tv, and health care use cryptography to

ensure confidentiality, integrity and authenticity of sensitive information. This

sensitive information and the protective cryptographic key material are often

goals of attacks. One example are side channel attacks, which focus on attack-

ing the implementation of a cryptographic algorithm and not the algorithm

itself. Side channel attacks use the observation of the power consumption or

the Electro-Magnetic (EM) radiation to extract the cryptographic key. Local-

ized EM measurements belong to a powerful class of side channel measure-

ments. Localized EM measurements use small electro-magnetic probes, e.g.,

150 µm inner diameter, which enable a close-to-die distance and the isolation

of logic-parts, thereby increasing the SNR. Due to the small probe size it is

possible to place multiple probes above the die.

In this thesis I carry out simultaneous measurements with multiple measure-

ment probes. Afterwards, I assess if multiple probes lead to a more power-

ful attack, which I evaluate using an attack with multiple localized EM probes

against an implementation of one symmetric and one asymmetric cipher. The

attack scenarios may differ significantly for symmetric and asymmetric algo-

rithms. Most symmetric algorithms allow the capturing of many (thousands)

traces with the same key. However, implemented countermeasures in the asym-

metric case can restrict an attacker to one side channel observation, e.g., blinding

countermeasures. To demonstrate the efficiency of multiple probes, I compare

the result of using multiple probes to the results of separate evaluations of each

probe and the result of the power side channel attack.

An attack commonly consists out of 3 steps, profiling, preprocessing, and the

attack evaluation. During the profiling step the behavior of a device is observed

with practical measurements and a known secret; hence, the preprocessing and

attack step can be specifically adapted with profiling. Attacks, which include

a profiling step belong to the most powerful side channel attacks. Nonethe-

less, side channel measurements are typically low-SNR measurements. Thus,
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a preprocessing step can be implemented, which ideally extracts the informa-

tion about the key and neglects the noise, which results in increasing the SNR.

To achieve this increase in SNR, I apply the machine learning techniques Lin-

ear Discriminant Analysis (LDA) and Principal Component Analysis (PCA) in

this thesis. Furthermore, the challenge for multiprobe measurements is to ef-

ficiently combine the information of the measurement data. The combination

can be performed at different stages of the attack. When attacking the sym-

metric cipher I combine the information of multiple probes during the profiled

preprocessing phase. I show that the attack on the symmetric implementation

can benefit from the combination of multiple probes. I demonstrate that, com-

pared to analyzing the probes separately, the combined multiple probe attack

reduces the number of required traces by factor 5.7. Compared to the power

side channel attack, the number of required traces was reduced by factor 238.

Additionally, I enhance the current state-of-the-art profiled attack, used in this

chapter, to require factor 4.2 less number of traces to break the implementa-

tion.

Furthermore, I show examples on how the information of multiple probes is

combined during this attack and that LDA is capable of combining the infor-

mation of multiple probes.

During the single trace attack against an asymmetric cipher, I use the remaining

number of key bits, which have to be brute-forced for a successful attack, the

brute force complexity as a measure for the effectiveness of the attack. As a

preprocessing and dimension reduction step, I use PCA in the attack against

the asymmetric cipher.

I can lower the brute force complexity of the single trace unprofiled attack

against an asymmetric cryptographic implementation in 59 % of cases to 32

bit or lower with the application of PCA, compared to 0% of cases to the ap-

proach of Heyszl et al. [Hey14] for a single probe. When combining multiple

probes, the combination reaches comparable results to the best single probe.

To compare the performance of the unprofiled approach, I carry out a profiled

attack. Therefore I reduce the mean in the keys brute force complexity from

50 bits for the best single probe to 44 bits in the combined case. However, I

can only show this improvement by combination for profiled attacks, such that

an attacker must have access to a device with known key to collect training data.
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Chapter 1

Introduction

Protecting sensitive data against unauthorized access and manipulation is of

central importance in many applications, e.g., in pay-tv, payment or health. To

protect sensitive data, encryption algorithms are used to provide confidential-

ity, integrity and authenticity for the data. Commonly in cryptography the

encrypted transmission of data is modeled by a communication between the

two parties, Alice and Bob, depicted in Figure 1.1. These two parties want

to communicate secure. The attacker (Eve), who can read (or even modify)

all messages between Alice and Bob, wants to get knowledge of the messages

by observing the ciphertext. The goal of an encryption algorithm (cipher) is

that Eve cannot gain any information about the message, without knowing the

secret key. To ensure secure encryption algorithms Kerckhoffs described six

design principles in 1883. The todays most relevant principle is:

“A cryptosystem must not be required to be secret, and it must be able to fall

into the hands of the enemy without inconvenience.” [Ker83]

Hence, the only secret has to be the key and everything else e.g., the algorithm

itself should be assumed to be public knowledge. Multiple publications show

that proprietary ciphers are likely to be reverse engineered and possibly broken,

e.g., A5/1, HiTag2 and Crypto [Noh08, Ver12, Bih00].

The exact mathematical backgrounds of these algorithms were not publicly

known, until a reverse engineering. After the knowledge was pubilc, the en-

cryption algorithms did not withstand modern cryptoanalytic attacks. Cryp-

toanalytic attacks belong to logical attacks. During a logical attack an attacker

can access and observe one (or more) communication interfaces and the re-

ceived/transmitted messages, shown in Figure 1.1. This kind of attack is ap-

plicable to a wide range of systems, especially in case of wireless systems an

attacker is capable of observing (or even modifying) communication. How-

ever, most (standardized) modern cryptographic algorithms were intensively

1
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Alice

Eve

Bob
Message Ciphertext Message

Encryption Decryption

Figure 1.1: Encrypted communication of Alice and Bob [Kat14]

analyzed in this context and seem to be resistant against such attacks.

Alice

Eve

Bob
Message Ciphertext Message

Encryption Decryption

Physical properties Physical properties

Figure 1.2: Model of a physical attack [Man07]

An even more powerful attack class is called physical attacks. Additionally to a

logical attack, the attacker can observe or manipulate physical properties of the

system, depicted in Figure 1.2.

In this thesis I focus on side channel attacks, which belong to physical attacks.

In the following, I will briefly describe themost important properties of crypto-

graphic algorithms first and physical attacks and side channel attacks afterwards.

1.1 Cryptographic Algorithms

There are mainly two kinds of cryptographic algorithms (ciphers), symmetric

and asymmetric algorithms. Both mostly work as a function, which takes a
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message (plaintext) and a key as input and returns the encrypted result (cipher-

text). One requirement for a cipher is that any information about the message

should be only revealed if the used key is known. This should be the case

if an attacker has unlimited computing power and has access to some known

plain-/ciphertext combinations. If a cipher holds this properties, it is “per-

fectly secure”. The only known perfectly secret cipher is the one-time pad.

The one-time pad is created by randomly generating bits with equal probability

for zeros and ones, Pr(1) = Pr(0) = 0.5. This one time pad is XORed onto

the plaintext. The practical problem of the one-time pad is the need of a large

amount random numbers. Secondly, the key distribution is a practical problem,

because the length of the key has to be equal to the message length. These two

properties make it unusable in practice. [Kat14]

Thus, modern cryptographic algorithms try not to be perfectly secure, they try

to reach the following two security-goals:

1. An attacker has to spend a significant amount of time, or computational

complexity to break the encryption, e.g., brute force 112-bit (2112 com-

binations). [Bar15]

2. An attacker can potentially gain access to the encrypted information,

however with a very small probability, e.g., ≤ 2ି112

Both properties ensure a practical level of security. [Kat14]

1.1.1 Symmetric Cryptographic Algorithms

For symmetric ciphers the keys for en- and decryption are the same. Two

groups of symmetric ciphers are so-called stream ciphers and block ciphers.

Stream ciphers create a pseudo-random (indistinguishable from random in case

of an unknown key) output sequence, which is combined with an XOR with

the message to create the ciphertext, e.g., Salsa20 [Ber08] and Trivium [De 06].

In contrast, block ciphers encrypt a block with a fixed number of bits, e.g.,

128 bits. One example for such a cipher is the Advanced Encryption Standard

(AES) [NIS01]. Shannon [Sha49] defined two properties of cryptographic al-

gorithms, which are confusion and diffusion. Confusion specifies a complex

relationship between each key- and ciphertext-bit. Diffusion specifies a com-

plex relationship between plaintext (and intermediate values) and ciphertext.
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Typically block ciphers work based on so-called rounds, which consist out of

one or more confusion and diffusion steps. One round is executed multiple

times to increase confusion and diffusion to achieve that a change in one input-

bit affects multiple (ideally 50 %) output bits. AES implements the confusion

by a non-linear substitution function (S-box) and the diffusion by three linear

functions. For the purposes in Chapter 4 of this thesis, the S-box function is

of central importance and a common target for side channel attacks. Firstly

because in the mean for one bit on the input, every second output-bit changes

and secondly due to the computational complexity. [Kat14]

1.1.2 Asymmetric Cryptographic Algorithms

For asymmetric ciphers, keys for en- and decryption are different. Nowadays

most popular candidates are Rivest, Shamir und Adleman (RSA) and Elliptic

Curve Cryptography (ECC). Both are based on a one-way function to en- and

decrypt messages. A one-way function states a mathematical problem, which

is assumed to be easy to compute in one direction, but is “hard” to invert.

“Hard” to invert means there is no known algorithm with polynomial runtime

to solve this problem, only with exponential runtime, e.g., ECC is based on

the so-called discrete logarithm problem. [Kat14] During the ECC operation,

two big numbers have to be multiplied, e.g., 256 bit each. Therefore, special

methods are applied, which calculate the result iteratively by multiplying one

bit with the other multiplicand at the same time, e.g., double and add. [Men92,

Kob87, Kna92] These multiplication algorithms are of central importance for

Chapter 5.

1.2 Physical Attacks

Physical attacks belong to the most powerful attacks on embedded systems.

Additional to logical attacks, it is possible to change and observe physical prop-

erties during the attack, e.g., modify the systems itself. Hence, additionally to

the cipher itself, its implementation has to be secure. To be able to perform

physical attacks, the attacker requires physical access to the device in most cases.

This can be the case, e.g., if the attacker is the owner of the device.

Table 1.1 shows the classification and examples for physical attacks. Physi-

cal attacks can be split into passive and active attacks. Active attacks influence
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Active attacks Passive attacks

Non-Invasive

Glitching, Temper-

ature Change, Low

Voltage, …

Side-Channel Attacks

(Timing Analysis,

Power Analysis, …)

Semi-Invasive
Light Attacks, Radia-

tion Attacks

EM Attacks, Optical

inspection

(ROM, …)

Invasive
Forcing, Permanent

circuit changes,…
Probing, …

Table 1.1: Overview over physical attacks [Man07]

physical properties of the device, instead passive attacks observe physical prop-

erties without manipulating such. The second criterion is the “invasiveness“

of the attack. Non-invasive attacks leave the package unchanged and analyses

have to be carried out, e.g., observing or interfering (glitching) external signals.

Glitching attacks exceed the limits of the specification which (intendedly) cause

misbehavior/faults of the chip. In general, the intended injection of a fault is

called fault attack.

Semi-invasive attacks require to remove the chip package; however, do not alter

the circuit itself. Examples for semi-invasive attacks are light attacks, which try

to induce faults into electronic circuits by short light impulses, or localized EM

side channel measurements, which observe the emanated magnetic field close

to the die surface.

Invasive attacks manipulate the chip itself by removing the passivation layer

or editing internal wiring, e.g., by a Focused Ion Beam (FIB) and lead to the

most powerful attacks on chips. This enables active attacks where chip-internal

buses can be changed (forcing) or values on these buses can be observed (prob-

ing) [Sko05, Man07].

In this thesis I apply non-invasive, passive power and semi-invasive, passive

localized EM side channel analyses, which will be explained in the following.
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1.3 Side Channel Attacks

Side channel attacks belong to passive attacks and observe a physical property

of the device during an encryption, e.g., the consumed power or the emanated

magnetic field, to reveal the used secret key. Side channel attacks do not at-

tack the structure of the encryption algorithm, but its specific implementation.

For Side channel attacks methods from cryptanalysis and knowledge from the

physical attack are combined. Hence, both attack methods share similar threat

models, compared to cryptanalysis: The attackers’ access-capabilities and priv-

ileges increase from the ciphertext-only threat model to the related-key attack

threat model.

Ciphertext-only: The attacker has access to the ciphertext only. For this

scenario most published side channel attacks can be carried out [Koc99].

Known-Plaintext: The attacker has access to pairs of plain- and ciphertext.

Chosen Plain-/Ciphertext: The attacker can choose the plain- or cipher-

text. This scenario is used (but not necessary) for most profiled attacks, which

are explained below.

Adaptive Chosen Plain-/Ciphertext: The attacker can choose plain- or ci-

phertext and can adapt it after each side-channel observation. This can allow

a faster key recovery by the attacker [Vey10], compared to the ciphertext-only

scenario.

Related-Key Attack The attacker knows the relationship of keys, used for

two (or multiple) encryptions with these keys. This scenario is rarely used for

side channel attacks.

To extract the key from a cipher, three models, black-, grey- and white-box

are defined, depending on the knowledge and capabilities of the attacker. In

case of a black-box model plain-, ciphertext and algorithm are known to the

attacker. Multiple encryption algorithms are assumed to be secure against such

attacks, e.g., RSA, ECC and AES. A typical black-box attack scenario is, if an

attacker can only use one (or more) communication interface(s), e.g., an inter-

net accessible Internet Of Things (IOT) device. A white-box model contains
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all knowledge from the black-box model plus all intermediate values (inside

the black-box). Between the black- and white-box model exists the grey-box

model, which includes all knowledge from the black-box model and partial in-

formation about intermediate values.

Figure 1.3: Examples for the combination of a public value with a secret value

Side channel attacks belong to the grey boxmodel, because partial knowledge of

the internal values is achieved, which depends in most cases on a combination

of plaintext and key. In figure 1.3 I depict the combination of public (ptxt) and

secret value (key) to the intermediate value “ptxt⊕ key”, which is processed by

an S-box. 1 The measured leakage is depicted with L, which is the received side

channel information of the intermediate value SBOX(ptxt ⊕ key). During a

side channel attack, the goal of an attacker is to retrieve information about the

intermediate value SBOX(ptxt ⊕ key) by measuring L. In most cases, a key-

dependent value as early as possible of a cryptographic algorithm is attacked,

because the dependency between parts of the input and key is strong, e.g., due

to the bytewise combination of ptxt and key. ptxt and key become more and

more uncorrelated with each round of the cipher, due to the above described

properties confusion and diffusion. Side channel attacks can be split into two

groups, Simple Power Analysis (SPA) and Differential Power Analysis (DPA).

1.3.1 Simple Power Analysis (SPA)

SPA uses just one (or a low number of) trace(s) to extract the secret. However,

SPA commonly requires advanced knowledge about the exact implementation

of the attacked algorithm and typically relies on optical inspection of traces,

1A similar combination is common for many published symmetric ciphers.
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# Targeted algorithm Key recovery method Reference

1 RSA Optical Inspection [Koc99]

2 RSA Squared error [Wal01]

3 RSA Correlation [Cla10]

4 ECC Clustering [Hey14]

5 ECC Correlation [Bau15]

Table 1.2: Overview of different SPA

e.g., [Man03]. Five examples for SPAs are listed in Table 1.2. Asymmetric cryp-

tography is mostly the target of SPA due to a high computational complexity,

long runtime and the processing of only few secret bits in parallel. The first at-

tack in Table 1.2 uses key-dependent executed operations. During the attacked

operation an exponentiation of large numbers has to be calculated. The chosen

algorithm was the so-called “Square and Multiply” algorithm, which executes a

square if the key-bit is equal to zero and a square and multiply if the key-bit is

equal to one. These two cases can be (visually) distinguished by observing the

consumed power of the device. This method is also called a horizontal attack,

because it tries to identify similar operations at different points in time with

one power trace. Another horizontal attack is Walters BigMac attack, which

tries to identify similar operations to a preprocessing step. These operations

are also key-dependent; thus the key can be recovered. Thereby the BigMac

attack becomes more efficient with an increasing key size. Clavier et al. [Cla10]

and Bauer et al. [Bau15] (numbers 3 and 5 in Table 1.2) carry out an attack

called horizontal collision correlation analysis. Thereby they try to find similar

operations by identifying one operation and correlate this to other possible oc-

currences of the same operations in time (horizontal attack). In case the same

operation is executed (same key value), a high correlation appears, otherwise

another operation is executed (different key value). Therefore it is possible to

circumvent, e.g., the “square and multiply always” 2, which is not possible with

the BigMac attack. Heyszl et al. [Hey14] published a similar attack, which uses

location based leakage and unprofiled clustering to distinguish between two

operations and thus recover the key.

In chapter 5 I show an improved version of this attack and present results for

2Square and multiply always is a classical square and multiply algorithm with a dummy multiply operation in case

of a zero key-bit
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# Name Targeted algorithm Class Reference

1 Original DPA DES unprofiled [Koc99]

2 CPA DES unprofiled [Bri04]

3 Original collision attack DES unprofiled [Sch03]

4 Template attack RC4 profiled [Cha03]

5 Stochastic approach AES profiled [Sch05]

6 Higher order attack Block cipher unprofiled [Pee05]

7 Moments correlating DPA unknown (un)profiled [Mor16b]

Table 1.3: Overview of different DPA

the combination of simultaneously captured leakage from multiple probes.

1.3.2 Differential Power Analysis (DPA)

DPA requires in contrast to SPA many (thousands or millions) traces to suc-

ceed. DPA uses statistical methods to (mostly) use data dependent leakage and

recover the correct key. Therefore hypotheses tests for different keys, e.g., dif-

ference of means or correlation between a hypothetical power consumption

and the measured power consumption are calculated. To recover the key, one

hypothetical power value is calculated for every key-hypotheses and every trace.

This results in a hypothetical power vector for every key-hypotheses. This vec-

tor is afterwards hypotheses tested against the measured traces. The hypothe-

ses test should afterwards indicate the correct key. To calculate the hypothetical

power value it is necessary to define a power model. This power model can be

either profiled or unprofiled. Hence, DPA can be split into 2 groups, profiled

and unprofiled. Profiled attacks require two phases, a profiling and an attack

phase. During profiling phase it is possible to observe an identical device/train-

ing device, which is attacked during attack phase. For the observation during

profiling the attacker knows or can choose the key. Therefore, the attacker

can directly observe the power values of the targeted intermediate value; thus,

profiled attacks are seen as the most powerful side channel attacks. One possi-

bility is called the template attack, which creates a Gaussian template (a multi-

dimensional Gaussian probability distribution) for every possible intermediate

value [Cha03]. This attack is not restricted to Gaussian templates; however,

these are the most common. A common reason is that Gaussian templates

can be generalized to multidimensional Gaussian templates and noise is mostly
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Gaussian distributed in side channel measurements [Man07]. Multidimensional

templates allow, e.g., to attack multiple points in time or multiple side channels

simultaneously, which is a so-called multivariate approach. Other approaches

are called univariate and attack only one sample in time simultaneously, which

can lower the exploitable leakage. Another profiled side channel attack is the

stochastic approach [Sch05]. The attack consists out of a linear regression of

the power consumption e.g., to a bitwise model of the intermediate value. Due

to the linear regression, an attacker can also obtain the leakage of every single

bit, which can give interesting inside to the hardware architecture.

In contrast to profiled attacks, unprofiled attacks do not need a training de-

vice to reveal the key. The original DPA [Koc99] carried out a statistical test to

every single bit of the intermediate value to recover the key. A more power-

ful version was published, called Correlation-based differential Power Analysis

(CPA) [Bri04], which does statistical tests on the Hamming weight of the inter-

mediate value to recover the key. Another powerful class of unprofiled attacks

are collision attacks [Sch03]. Collision attacks assume that hardware is reused,

e.g., in case of AES, which operates on 16 byte in total but the S-box works

bytewise, it is common to perform the S-box serially on each of the 16 bytes.

Hence, the power consumption of 2 bytes, processed by the S-box is similar in

case that the value of the 2 bytes is the same, which is called a collision. The

moments correlating DPA [Mor16b] can be carried out as profiled and unpro-

filed attack. The unprofiled version works similar to a collision attack [Sch03]

with the capability of attacking higher order statistical moments. Higher order

attacks [Pee05] are necessary if specific countermeasures are implemented. The

profiled moments correlating DPA, which I use is explained in chapter 3.1.3.

In chapter 4 I choose the profiled template attack [Cha03], because it is infor-

mation theoretic the most powerful attack. The higher order profiled moments

correlating DPA [Mor16b] is carried out to complement the analysis and to

compare the results to the template attack. Both attacks will be explained in

chapter 3.1.2 and 3.1.3.

1.4 EM Side Channel Attacks

To better understand EM side channel attacks, I briefly describe the behavior

of the EM field first. In general, a change in electrical current causes an elec-
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Figure 1.4: Reacive nearfield of an antenna

tromagnetic field, because the integrated circuit/cryptographic implementation

acts as an antenna.

The literature distinguishes between reactive nearfield, radiating nearfield and

farfield to describe antenna characteristics. The regions are not clearly sepa-

rable; however, depending on targeted wavelength λ, the maximum antenna

dimension d and the distance to the antenna r, there are “rule of thumbs” for

distinct regions for nearfield, radiating nearfield and farfield. The wavelength

is calculated by equation 1.1, where c is the speed of light in the medium and f

is the transmitted frequency.

λ = c/f (1.1)

Reactive nearfield “That portion of the near-field region immediately sur-

rounding the antenna wherein the reactive field predominates.” [Bal05] Absorb-

ing (or reflecting) the field, e.g., by a receiver, does influence the load of the

transmitter in this region [Rah95]. An example is depicted in figure 1.4, where

the signal is reflected, influencing the load of the transmitter. “For a very short

dipole, or equivalent radiator, the outer boundary is commonly taken to exist

at a distance λ/2π from the antenna surface.” [Bal05]

Radiating nearfield “That region of the field of an antenna between the

reactive near-field region and the far-field region [...]. If the antenna has a max-
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Figure 1.5: Radiating nearfield of an antenna

imum dimension that is not large compared to the wavelength, this region may

not exist.” [Bal05] In this region the absorption of the field does not necessar-

ily influence the load of the transmitter. An example is depicted in figure 1.5,

which shows a slight reflection. The influence to the load of the transmitter

is not easily determinable. This region exists at a distance between r ≤ ඥd3/λ

and r ≥ 2d/λ.

Farfield “That region of the field of an antenna where the angular field dis-

tribution is essentially independent of the distance from the antenna. If the

antenna has a maximum overall dimension d, the far-field region is commonly

taken to exist at distances greater than 2d2/λ from the antenna, λ being the

wavelength. ” [Bal05]

An example is depicted in figure 1.6. In this region, the absorption of the field

does not significantly influence the load of the transmitter.

In this thesis I measure frequencies up to 2.5GHz, which results in a wavelength

of ∼ 0.12m (see equation 1.1). Following the above defined “rule-of-thumb”

I measure in the reactive nearfield region up to a distance of 0.019m = 1.9 cm.

This is the case for all measurements in this thesis, where I measure at distances

of a few mm or µm. This result is widely applicable to published side channel

attacks, using the EM side channel.

In 2001 Gandolfi et al. [Gan01] presented practical results by successfully at-

tacking a Data Encryption Standard (DES), comp128 and RSA by measuring

the emanated EM field. This is possible, because an Integrated Circuit (IC) acts

as an antenna due to a power consumption, e.g., caused by calculations of ci-
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Figure 1.6: Radiating farfield of an antenna

phers. However, inside an IC, the single EM fields of each wire superpose and

interfere, which results in a very complex radiation distribution. The first EM-

based side channel attacks, mainly measured the EM emanation on the package

of the chip. These are so-called off-chip measurements. Measurement results

from off-Chip measurements indicate that vastly the leakage of the bonding

wires (or a capacitor) is measured; hence the measured side channel leakage

is comparable to the power side channel. [Spe14, Hey12a, Imm17] However,

there are also more advanced measurements of the EM side channel, called

on-chip measurements, which I will explain in the next section.

1.5 Localized EM Side Channel Attacks

During on-chip measurements a probe is directly placed on the surface of the

die. This requires the depackaging of the chip. One method to carry out

on-chip measurements is localized EM. Peeters et al. [Pee07] and Heyszl et

al. [Hey12a] showed the power of localized EM side channel attacks. Localized

EM measurements use magnetic near field probes with an inner diameter of a

few 100 µm, placed directly above the die.

To explain the measurement principle of localized EM measurements I will

describe the model of a modern IC. The model in figure 1.7 is simplified, but

enables an abstract understanding of the measurement principle of localized

EM and its application to ICs.
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Figure 1.7: Typical structure of an integrated circuit [Hey13]

Classic production methods build ICs layerwise, with the silicon layer (sub-

strate) in the bottom and multiple metal layers on top. The substrate imple-

ments the active region, which consists out of the transistors of the IC. The

metal layers above the active area (lower layers) are commonly responsible for

the transfer of signals between the transistors. To simplify production and de-

velopment, it is common to minimize the wiring length between the transistors,

especially at the lower layers. Therefore, it is likely that parts with a common

purpose, e.g., crypto-cores or transceiver logic, are located in vicinity. Localized

EM side channel measurements try to use this property by measuring with very

small probes, e.g., an inner diameter of 150 µm directly above the die.

Localized EM probes are likely placed on top of the IC [Hey12b]. The top

metal layers of the IC are commonly responsible for the power supply of the

chip. Hence, the strongest measured signal is likely caused by the power supply

wires, due to a close distance to the probe and only minor signal parts probably

contain information of lower-layer signals.

The localized EM side channel has been shown to isolate logic parts, despite the

measurement close to the power supply wires. This enables an attacker to ne-

glect “non-relevant” logic parts and focus on relevant logic parts and massively

decreasing the observation distance compared to off-chipmeasurements, which
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results in a higher Signal to Noise Ratio (SNR) due to less noise and a higher

signal level. Therefore, it is important to place the probe as close as possible to

the signal source, because it is expected that the signal strength decreases with
1/r2, with r being the distance between probe and die [Spe14]. Additionally, the

probe size is an important parameter of localized EM measurements. Due to

the complex field behavior of an IC it is not determinable in advance, which

probe size leads to the best SNR. Different probe sizes always lead to a trade-

off between the observed IC area (bigger probe leads to a bigger observation

area up to a global view on the chip) and the isolation properties of the probe

(smaller probes lead to a better isolation property; however, have to be place

more accurately). A probe size of 3mm has shown to achieve similar results

to power measurements in one publication [Imm17]. Additionally the localized

view enables to exploit local non-uniformities, e.g., register placement [Hey12a]

or routing imbalances [Imm17].

Furthermore, the small probe sizes lead to another advantage. It enables an

attacker to place multiple probes above the die and to achieve more powerful

attacks. However, it is unclear how and if multiple probes are able to improve

the measurement result, in context to the above mentioned properties of one

localized EM measurement probe.

1.6 Motivation

The previous sections have shown the power of side channel attacks and the

importance to protect cryptographic implementations against such. To evalu-

ate countermeasures and ensure an efficient protection, it is important to carry

out strong attacks. Side channel attacks with the help of localized EM mea-

surements belong to the most powerful EM based side channel attacks. Hence,

this thesis has the following goals to increase the power of localized EM based

attacks:

1. Attacks with multiple localized EM probes

2. Combining the simultaneous measurement results of multiple probes

3. Application of multiple probes to typical examples for symmetric and

asymmetric ciphers
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The two chosen experiments are especially interesting due to the different (math-

ematical) structure of the underlying cryptographic algorithms. The imple-

mented countermeasures in both experiments and thus the side channel attacks,

significantly differ. Commonly, symmetric ciphers operate multiple (thousands

or millions) times with a constant key. This allows the collection of many traces

for side channel analysis. In contrast, asymmetric ciphers can randomize the

key dependent operation (at an algorithmic or protocol level) such that only one

trace is usable for an attack. Hence, I use multiple localized EM probes in a

DPA scenario for the symmetric cipher and an SPA scenario for the asymmetric

cipher.

1.7 Contribution

In chapter 4 and 5 I carry out the above mentioned experiments. These exper-

iments lead to the following contributions in this thesis:

Multiple Probes can increase the attack efficiency for profiled attacks

In chapter 4 and 5 I show that attacks with multiple probes lead to a more

powerful attack during a profiled attack scenario.

Investigating the combination of Multiple Probes byLDAandPCA Com-

bining the signal of multiple probes can lead to significantly increased leakage.

I show in detail the combination of multiple probes during an attack in chap-

ter 4.7.3.

Improving State-of-the-Art Attacks for localized EM In chapter 5 I show

that it is possible to massively improve an unprofiled single trace attack, which

is based on the attack of Heyszl et al. [Hey14] by using a dimension reduction

technique known from machine learning. In chapter 4 I extend a state-of-the-

art template attack.

Multiple probes can significantly weaken a countermeasure for symmet-

ric ciphers I show that multiprobe localized EM measurements can weaken

a central security assumption for a symmetric DPA countermeasure. The im-

plemented countermeasure splits the secret into multiple independent parts. It
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can be shown that each of the placed probes can focus on one or more of these

parts, which is assumed to be not possible.

1.8 Notation

In this thesis matrices are indicated by bold, capital letters, e.g., T, vectors by

bold, lower case letters, e.g., t and scalars by lower case letters, e.g., t and prob-

ability distributions by capital letters, e.g., P. For a specific side channel experi-

ment the setT of traces is collected with n being the number of collected traces.

Tv specifies the set of traces for the internal value v. One trace t of length γ

is represented by its samples t = (t0, ..., tγି1) which have been acquired over

time.

1.9 Outline

This thesis is organized as follows. In chapter 2 I briefly describe the current

state-of-the-art for the countermeasures and attacks, shown in chapter 4 and 5.

Furthermore, I introduce state-of-the-art for combining multiple channels and

probes. I describe selected theory to model measurements with multiple probes

and the requirements for an optimal combination approach. In chapter 3 I ex-

plain the dimension reduction for combiningmultiple probes and analysis tools,

which are used in chapter 4 and 5. Afterwards, I present results to the experi-

ment for attacking a symmetric cipher with multiprobe side channel attacks in

chapter 4. In chapter 5 I present results to the improvement of single trace

attacks on asymmetric ciphers by single probe and multiprobe side channel at-

tacks. In chapter 6 I draw conclusions.
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Chapter 2

State-Of-The-Art

In this thesis I carry out two examples for a multi-probe localized EM attack.

Hence, I split the state-of-the-art in three parts. Firstly, I describe the state-of-

the-art for countermeasures and related attacks carried out in chapter 4 and 5.

Afterwards, I describe the state-of-the-art for combining multiple probes or

channels for side channel attacks. Then, I describe an information theoretic

approach to model side channel analysis. This model shows that a combina-

tion of multiple probes corresponds to a dimensionality reduction. Afterward

I explain the basic properties of a dimensionality reduction technique for side

channel analysis and motivate the chosen machine learning techniques for di-

mensionality reduction.

Usually a combination of different countermeasures is implemented in most

(hardened) cryptographic implementations to increase the resistance against

side channel attacks. One class of countermeasures (hiding countermeasures)

concentrate on the independency of power consumption and processed secrets,

which is mostly implemented with dedicated logic styles [Her06, Man07] or the

randomization of execution orders (shuffling). One other class of counter-

measures randomizes the intermediate values. In general, this randomization

belongs to the most powerful countermeasures and is called masking for sym-

metric ciphers. The goal is to randomize the intermediate value, such that it is

independent from input data and key [Nik11, Osw05]. In contrast, asymmet-

ric ciphers can implement a countermeasure called blinding. Thereby the key

dependent operation can be randomized (at an algorithmic or protocol level),

such that only the leakage of one trace is usable for an attack.

I will analyze with the help of multiprobe localized EM one masking scheme in

chapter 4 and one implementation based on the randomization at the protocol

level in chapter 5.

19



20 State-Of-The-Art

2.1 Related Work of Masking Schemes and

Attacks

I describe the related work in two parts, firstly masking techniques as a side

channel countermeasure and secondly, published attacks on such protected im-

plementations. In chapter 4 I carry out an attack on a Threshold Implementa-

tion (TI), which is a special masking technique and is explained in section 4.1.

2.1.1 Masking as a Side Channel Countermeasure and

Threshold Implementations

The idea of masking was introduced by Messerges et al. [Mes00a], which is

known as first order masking scheme (it uses one mask for the internal value).

This masking scheme is a Boolean masking scheme, which performs a XOR-

operation between mask and intermediate value. However, dependent on the

specific cryptographic algorithm or operation, other masking schemes can be

advantageous, e.g., arithmetic, multiplicative and polynomial masking. Numer-

ous publications showed in theory [Duc15] and practice [De 17] the vulnera-

bility of imperfectly implemented masking schemes, e.g., in case of dependent

leakage of mask andmasked value, non-uniform distribution of masks [Man07]

or glitches [Man05b, Man05a]. Nikova et al. [Nik06] suggested to secure a cryp-

tographic algorithm by a Boolean masking scheme, the Threshold Implemen-

tation (TI) and theoretically proved that they show no leakage even in presence

of glitches. The principle of threshold implementations is independent of a

specific algorithm, but the structure itself has to be adapted strongly (similar

to masking schemes) to specific operations, e.g., multiplications, or inversions

in GF28 [Mor16a, De 16a, De 16b, Nik08].

However, masking schemes can be attacked with higher order DPAs [Pee05],

which are explained in section 2.1.2. To further strengthen masking schemes,

dth ordermasking schemes (and also higher order TIs) were developed [Gro17b,

Gro17a]. On the other side, dth order secure masking schemes are costly in

terms of size and timing [Riv09, Riv10, Cor07].

However, masking does not perfectly protect against DPA-approaches (as ex-

plained in the next section) and should be combined with other, e.g., hiding-

based, countermeasures to further strengthen the security of an implemen-
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tation. Hiding countermeasures try to solve the problem by avoiding data-

dependencies in the power consumption, which can be realized on the algorithmic-

or cell-level. The algorithmic approach mostly performs hiding in the time do-

main, e.g., dummy en- or decryptions, dummy rounds or randomizing the or-

der of operations. Countermeasures at cell-level implement specific logic styles,

which ideally remove the data-dependent power consumption and thereby equal-

ize it. When considering the various proposals in this domain [Nas10, Lom09,

Sau09, Bha10, Mor14, Yu,07, Kap10, He 11, He 12, Wil18], one identifies that

most of them are based on Dual-Rail Precharge (DRP) logic or duplication

schemes (DUP). Both no longer represent a bit as a single value but instead

as complementary rails, such that regardless of the operation, each bit-flip is

compensated by an inverse bit-flip.

2.1.2 Profiled Attacks Against Masked Symmetric Cipher

Implementations

Many successful attacks on masking schemes are based on implementation

flaws, e.g., the non-uniformity of masks or the biasing of mask values by fault

attacks or an appropriate preprocessing of traces [Man07, Riv10]. Properly

implementing a masked implementation is a challenging task. However, even

when assuming a perfect implementation, implementations can be broken by

higher order attacks [Mes00b, Pro09, Cha99] or the capability of an attacker to

profile mask values. In general, a dth order secure masking scheme (including

threshold implementations), can be attacked by an at least dth + 1 order DPA

[Mes00b, Pro09, Cha99]. Higher order attacks need to observe d + 1 interme-

diate values to succeed. Afterwards, the intermediate value can be revealed, e.g.,

by estimating univariate higher order statistical moments [Man11] or a multi-

variate approach to combine data dependencies betweenmultiple points in time

[Osw07, Osw06]. 1

Another approach to attack d + 1 intermediate values is to create profiles for

each mask value; thereby, it is possible to recognize the currently used mask

value and remove the mask from the intermediate value during the attack. Tem-

plate attacks [Bar10, Cha03, Rec05, Man05b] are one example that appropriate

template training can be used to recognize the current mask value and remove

it. Lerman et al. [Ler15] extended the recognition of mask values by using

1The chosen attack heavily depends on the implementation
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machine learning techniques and further improved the efficiency of such an

attack. In chapter 4 I carry out a template attack on a second order secure

implementation by recognizing and removing both mask values.

2.2 Related Work for Attacks on Asymmetric

Algorithms

In chapter 5 I focus on a non-profiled attack; hence, I cover the related work

for unprofiled attacks first. To evaluate the results of the unprofiled attack I

compare these to a profiled approach. Thus, I briefly describe the related work

for profiled attacks afterwards.

The main computation in public key cryptosystems is modular integer expo-

nentiation with secret exponents (e.g. RSA, DSA) or elliptic curve scalar mul-

tiplication (e.g. ECDSA) with secret scalars. Due to a common structure of

exponentiation and multiplication algorithms, I will use the generalized terms

’exponentiation algorithms’ and ’secret exponents’.

The secret exponent is usually either ephemeral by the protocol design (e.g.

ECDSA) or blinded through countermeasures (e.g. exponent blinding in RSA

to prevent profiling). Therefore, it is different for every execution; and side-

channel attacks may only exploit single executions. However, the calculation of

asymmetric ciphers is complex, which leads to long calculation periods, com-

pared to symmetric ciphers. These long calculations enable horizontal attacks,

which operate on one (or a few) observations. E.g. the first single-execution at-

tack on exponentiations was presented by Kocher [Koc99] who exploits key-

dependent operation sequences. To avoid this, improved algorithms like the

square-and-multiply-always, double-and-add-always or the Montgomery ladder

were introduced, which have constant operation sequences (e.g. side-channel

atomic routines) to avoid simple side-channel attacks. In all those algorithms, ex-

ponents are scanned bit- or digit-wise (depending on whether it is a binary,

m-ary, or sliding window exponentiation) and the computation is performed in

a loop iterating a constant sequence of operations. (I will continue to refer to

the binary case.) Nonetheless, some side-channel leakage about the processed

exponent remains in many cases which can be referred to as single-execution

leakage.
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2.2.1 Simple Power Analysis Non-Profiled Attacks Against

Exponentiations

In the following I give a brief overview of existing non-profiled attack tech-

niques. Two factors impact the practical threat of an attack, the required knowl-

edge of the attacked implementation and the capability to create profiles. 2 The

more knowledge an attacker requires, the more difficult is the attack to pursue.

Clavier et al. [Cla10] use cross-correlation in non-profiled single-execution at-

tacks on exponentiations and require full knowledge of all used algorithms,

which makes the attack more challenging than the next one.

Walters BigMac attack requires less knowledge (only the used exponentiation

algorithm and the method of the single exponentiation). It is a non-profiled

approach, which uses data-dependent leakage from using pre-computed multi-

ples in digit-wise multiplications [Wal01]. One example, which requires only to

know the exponentiation algorithm was published by Goubin [Gou02], on an

ECC implementation. This approach uses data-dependent leakage and chooses

the input such that a specific intermediate value only occurs, e.g., in case the

currently attacked target bit is 0.

In contrast, Perin et al. [Per14] described a two-stage approach and use ad-

dress based leakage and require to know the exponentiation algorithm only. In

the first step, Perin et al. extract the relevant points in time with a clustering

algorithm. I pursue an approach, for non-profiled attacks based on another tech-

nique (Principal Component Analysis (PCA)) to extract relevant points in time,

which only requires knowledge of the exponentiation algorithm. I explain PCA

in chapter 3.2.2 and the attack in chapter 5. In 2016, Järvinen et al.[Jar16] show

that a correlation based horizontal attack can perform better than clustering

based approaches, especially in case of the computation of multiple key-bits in

parallel; however this correlation based approach requires additional knowledge

of the specific implementation, which is attacked. Thus increasing the overall

effort for the attack.

2This is also true for symmetric algorithms; however, especially for attacks on asymmetric ciphers the details of

the exact implementation allow more sophisticated attacks.
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2.2.2 Simple Power Analysis Profiled Attacks Against

Exponentiations

Amore efficient exploitation of leakage, compared to unprofiled attacks, is pos-

sible if profiled attacks are carried out. Different types of profiled attacks are

published. In most cases either a key-dependent operation or a key-dependent

address can be exploited to recover the key. E.g. Bauer et al. [Bau12] showed

that square andmultiply operations can be distinguishedwith a single trace. Itoh

et al. [Ito03] published an example for the leakage of key-dependent address-

bits, which can be exploited to recover the key. A similar approach to the

address-bits recovery is the location-dependent leakage from accessing differ-

ent storage locations [Hey12a]. To estimate the performance of the suggested

unprofiled attack in chapter 5 I compare the results to a profiled approach. Due

to the similar unprofiled attack principle, a similar profiled approach of Heyszl

et al. [Hey12a] is taken for comparison.

2.3 State of the Art in Multi-Probe Side Channel

Measurements

The exploitable information leakage in side-channel measurements is gener-

ally limited. Using multiple side-channels concurrently, and combining them

in an attack is an important way of increasing the exploitable leakage in side

channel attacks. Agrawal et al. [Agr03] described the combination of current

consumption and magnetic field measurements in a profiled template attack

and an unprofiled DPA with a bit-hypothesis through concatenation of traces.

The unprofiled DPA can only exploit leakage from multiple channels in case of

a very similar leakage characteristic, because the described attack assumes that

leakage occurs in the same point in time for both channels. [Agr03] Standaert

and Archambeau [Sta08] report better results from magnetic field than current

measurements and show an improvement from the combination of both chan-

nels. They compare a profiled PCA-based template attack and an LDA based

template attack. The conditional entropy of both shows that LDA can be an

alternative to PCA.

Afterwards Souissi et al. [Sou12] and Elaabid et al. [Ela11] presented results

from combining two simultaneous measurements of the magnetic field. Souissi

et al. measure the field close to two different supply capacitors of an FPGA.
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They measure the supply of two different parts of the FPGA and extend

the CPA to combine simultaneous measurements, using products [Ela11] or

sums [Sou12] of correlation coefficients. However, the proposed methods re-

quire either that different channels leak information at the same cycles [Sou12]

or that the leaking cycles for combination can be recovered in a profiling step [Ela11].

Heyszl et al. [Hey14] mention the combination of multiple high-resolution

probes for non-profiled single-execution attacks with clustering algorithms. This

approach enables an attacker to use leakage at different points in time with an

unprofiled approach. However, Heyszl et al. [Hey14] did not perform actual

simultaneous measurements. I extend the work and present results from an

extensive practical study using three high-resolution micro-coil magnetic field

probes to attack a secured implementation of the AES S-box and mount a

non-profiled single-execution side channel attack against an asymmetric cipher.

2.4 SISO and MIMO Communication Channels

Figure 2.1: SISO Channel with additive noise

Communication channels are intensively researched in the area of wireless com-

munication. With a communication channel it is possible to model the infor-

mation transfer between a source and a sink. This is relevant for this thesis,

because the side channel value L of Figure 1.3 can be modeled as a communi-

cation channel between die (source) and probe (sink). Furthermore, the use of

multiple antennas for communication is similar to the use of multiple probes
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for side channel analysis from an information theoretic point of view. Hence,

I briefly describe the basics of communication channels and the application to

multiprobe side channel setups.

The most popular and widely applicable channel model in communication the-

ory is the additive white Gaussian noise channel, depicted in figure 2.1. Figure

2.1 shows the transmission of the data signal v ∈ ℂ from the source, which

is weighted with the channel coefficient h ∈ ℂ. h models the loss of the

channel itself and is assumed to be deterministic, but unknown. The loss is

commonly a signal attenuation, caused by objects in the transmission path or

simply the transmission distance between sink and source. Afterwards the noise

η ∼ N(0, σ) is added, which results in the received signal t ∈ ℂ (sink). The noise

η models all received signal parts of t, which do not contain information of v.

In this model the origin of the noise, e.g., source amplifier, antenna, sink am-

plifier or communication channel, is not respected. We assume that the noise

η is Gaussian distributed with a zero mean and standard deviation σ. The case

in figure 2.1 is called the Single Input Single Output (SISO) channel, which is

a typical use case for one sending antenna and one receiving antenna.

v t
H

η 

n m

Figure 2.2: MIMO Channel with additive noise

The Multiple Input Multiple Output (MIMO) channel is depicted in Figure 2.2.

This models e.g., a communication channel with multiple sending and multiple

receiving antennas. Therefore, the data signal of the channel is v ∈ ℂn, which

is multiplied with the channel coefficient matrix H ∈ ℂnxm. Each element of

H describes the dependency between each element in v to each element in t.
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The noise coefficient consists out of an m-element vector η ∼ N(0, σ) and the

output corresponds to t ∈ ℂm.

2.5 Application of the MIMO Channel Theory to

Side Channels

Unterluggauer et al. [Unt17] showed the application of Multiple Input Multiple

Output (MIMO) communication channel theory to side channel analysis. In the

following we use the Gaussian noise assumption, which is common for side

channel attacks and supported by practical measurements [Man07]. The side

channel is modeled as an n tom communication channel, where v models the

secret state bitwise and t models the acquired side channel information, which

can be calculated by equation 2.1. Thereby, t can model multiple sampling

points in time or multiple probes. By estimating H it is possible to analyze

the influence of each element of v, to each element of t, e.g., each bit to each

sampling point.

t = Hv + η (2.1)

The theoretical bound for leakage/information of v measurable by t, can be

modeled by the channel capacity c, defined by the maximum average Mutual

Information (MI) between the probability distribution V of v and the prob-

ability distribution T of t in equation 2.2, where p(v) denotes the marginal

distribution.

c = max
p(v)

MI(V,T) (2.2)

Assuming Gaussian noise for η the channel capacity can be estimated by equa-

tion 2.3. Ση ∈ ℂ
mxm denotes the covariance matrix of the noise andΣy ∈ ℂ

mxm

the covariance matrix of y = Hv.

c =
1

2
log2(det(Im + Ση

ି1Σy)) (2.3)

Unterluggauer et al.[Unt17] showed that Ση
ି1Σy corresponds to the multidi-

mensional SNR including all correlations between all side channel signals y.
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3

The vector t can model multiple samples in time and/or samples from multiple

probes. An exemplary matrix H for three probes can be modeled as seen in

equation 2.4, where H1,H2,H3 denotes the H of the first to the third probe

and 0 denotes a zeromatrix with the same dimensions as one of theH1 [Unt17].

Please note that the zero matrix in equation 2.4 assumes the independency of

all three probes, which might not be necessarily true.

H = ቎

H1 0 0

0 H2 0

0 0 H3

቏ (2.4)

Hence,H1 models the influence of v to the according dimensions of t for the

first probe,H2 for the second probe, andH3 for the third probe. In this thesis

I use multiple samples in time and multiple probes in chapter 4 and 5 for side

channel analysis. I denote the total trace length of all probes with γ and the

number of traces with n, which results in the trace set Tnxγ.

Combining the Measurement Data of Multiple Probes Combining the

measurement data of multiple probes is of central importance to maximize

the exploitable information of all probes. The information theoretic approach

of equ. 2.1 shows that the combination of the measurement data of multiple

probes can be interpreted as the reduction in number of dimensions of the

vector t.

Dimensionality reduction is a well known problem in machine learning. Thus,

I will focus on machine learning techniques for dimensionality reduction in

this thesis. In the following I will describe the requirements for an optimal

dimension reduction strategy in side channel analysis.

2.6 Optimal Dimensionality Reduction in Side

Channel Analysis

For side channel analysis, commonly traces with hundreds or thousands of

points in time are measured. Each trace can be seen as element in a high dimen-

sional space. Hence, side channel attacks can be seen as separating the elements

3The derived channel capacity is similar to the representation for MIMO communication channels
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according to their v in this high dimensional space. However, analysis in high

dimensional spaces can cause several problems, including numerical instabili-

ties, long runtimes or large memory consumption. Only very few dimensions

(e.g.,∼ 0.2% in chapter 5) are relevant for a successful attack. Thus, the number

of dimensions can be reduced in most cases and problems caused by high di-

mensionality analysis can be avoided, while retaining the relevant information. 4

The field of machine learning suffers from very similar problems, e.g., image

recognition [BBHK97]. A lot of tools to reduce the number of dimensions

and to retain the relevant information were published. The process to reduce

the number of dimensions is split into two steps, feature extraction and dimen-

sion reduction. During feature extraction the dimensions of the original space

are weighted. During dimension reduction, the dimensions are combined (ac-

cording to their weights) and transformed to a space with reduced dimensions.

Inspired by machine learning, side channel analysis uses similar or the same

dimension reduction techniques. In 2015, Nicolas et al. [Nic15] showed that

an optimal dimension reduction strategy fulfills the following properties in side

channel analysis:

1. “The optimal attack on the multivariate traces [...] is equivalent to the

optimal attack on the monovariate traces” [Nic15]

2. “The optimal dimensionality reduction is made by a linear combination

of the samples” [Nic15]

3. “After optimal dimensionality reduction, the signal-noise-ratio is given

by αTΣη
ି1α, where α ∈ ℝ1xm corresponds to the weight for each dimen-

sion” [Nic15] 5

According to Nicolas et al. [Nic15] LDA can hold these properties. Hence, we

use LDA as preprocessing technique in chapter 4.

However, LDA belongs to a profiled preprocessing technique. In chapter 5 I

mount an unprofiled attack; thus LDA is not suited. An unsupervised dimen-

sion reduction technique, which is wide-spread and well known for dimension

reduction in machine learning is PCA. Furthermore, PCA has been applied to

4A reduction in number of dimensions can not increase the contained information [Nic15, Cha03]
5In contrast to equation 2.3, t is assumed to have normalized variance; Hence Σy is equal to the identity matrix
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side-channel analysis for data reduction in several contributions [Boh03, Arc06,

Sta08, Bat12, Mav12] and for different attacks, where Archambeau et al. [Arc06]

were the first to describe the use of PCA in the context of template attacks.

Additionally, Chang et al. stated that PCA is a highly promising candidate for a

statistical problem, similar to our application in chapter 5. Thus, PCA is used

in chapter 5.

Beside LDA and PCA, other dimension reduction techniques are common in

side channel analysis. Most are usually justified by electrical properties for side

channel analysis and use simple functions for combinations, e.g., computing the

sum, sum-of-squares, multiplying the sample values, or extracting peak values

for given dimensions/samples. [Man07]

Additionally, more complex non-linear trace compression techniques have been

published, e.g., sine-based functions [Osw07]. However, these non-linear func-

tions require significant effort to adapt to a specific use-case. Furthermore,

testing and comparing all published preprocessing techniques would exceed

the focus of this thesis.

Especially in terms of the usability, LDA and PCA are superior to other sim-

ple dimension reduction techniques, because relevant information is tried to

be extracted automatically during computation out of determined dimensions

and only very limited “fine-tuning” is required in contrast to simple preprocess-

ing techniques, which require a lot more experimenting with their parameters.

Hence, PCA and LDA are the preferred dimension reduction techniques in this

thesis.

In this thesis, I carry out attacks with one simple trace compression technique,

the summation of all single probe signals and compare the results to LDA in

chapter 4 and to PCA in chapter 5.



Chapter 3

Applied Evaluation Methods for

Side Channel Analysis

In the last chapter I covered the state-of-the-art for selected countermeasures

and attacks. Furthermore, I explained an information theoretic modeling ap-

proach for side channel analysis, which shows combining the measurement data

from multiple probes can be performed with dimensionality reduction tech-

niques. The criteria for an optimal dimensionality reduction (listed in chap-

ter 2.6) can be fulfilled by LDA and PCA. Hence, I explain these two machine

learningmethods in this chapter. For the application of machine learningmeth-

ods it is important to reduce the number of points in time beforehand. Points

in time with key dependent behavior of the measurements are so-called Points

of Interest (POI). The chosen Points of Interest (POI)s are denoted as q and

are selected from the points in time of the trace z ∈ [0, ..., γ−1]. Furthermore,

localized EM probes can be positioned at multiple places above the die. A

position with key dependent information is called Location of Interest (LOI).

In this chapter, I will firstly explain the tools to determine POI and LOI in

chapter 4. In this chapter, I will firstly explain the used evaluation methods for

chapter 4 and the tools to determine POI and LOI in chapter 3.1. Afterwards,

I will introduce the attack principle and evaluation methods for chapter 5 in

chapter 3.2.

3.1 Evaluation Methods used in Chapter 4

In the following I explain the used dimensionality reduction and analysis tools

of chapter 4.

31
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Figure 3.1: First two dimensions of the IRIS dataset

3.1.1 Linear Discriminant Analysis (LDA) for

Dimensionality Reduction and Feature Selection

The goal is to construct a sub-space that maintains relevant information in less

dimensions. In practice this goal is achieved if classes of elements are sep-

arable in the sub-space. Hence, LDA requires a supervised profiling phase to

calculate a transformation matrix which is then multiplied with individual traces

to transform them into a sub-space with lower dimensionality. Hereby, every

trace is treated as an element with dimensionality γ. During the profiling phase,

LDA computes a linear transformation, which minimizes the variance of the

elements within the same class (within class scatter) and maximizes the variance

of elements between differing classes (between-class scatter). More precisely,

LDA maximizes the ratio of between-class to within-class scatter.

I explain the steps of LDA with the help of the IRIS dataset [Fis36]. The IRIS
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dataset contains 3 kinds of flowers (Setosa, Versicolour and Virginica), which

results in the class set V = [0, 1, 2], described with 4 attributes (4 dimensional

space, γ = 4). The four measured attributes of the flowers are the following:

1. Sepal length

2. Sepal width

3. Petal length

4. Petal width

I depict the first over the second dimension of this dataset in figure 3.1. In

figure 3.1 especially the classes Versicolour (light blue) and Virginica (orange)

are hard to separate.
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Figure 3.2: IRIS dataset transformed with LDA

LDA tries to find a subspace, where the classes are better separable. LDAworks

as follows:
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1. The elements are grouped in the sets Tv ∈ ℝnvxγ according to their

groups with nv elements of class v. E.g. T
0 contains all blue elements

of figure 3.1.

2. The mean of each class set Tv (e.g., class 0, blue) is estimated by equa-

tion 3.1:

μ
v
=

1

nv
෍

nvି1

nୀ0
tvn (3.1)

3. The overall mean is estimated by equation 3.2: 1

μ =
1

|V|
෍

|V|ି1

vୀ0
μ
v

(3.2)

4. LDA calculates the within-class scatter matrix Sw according to equa-

tion 3.3, which is the covariance matrix of all elements within the same

class, e.g., the elements in T0.

Sw =

|V|

෍

vୀ0

nvି1

෍

nୀ0

(tvn − μ
v
)(tvn − μ

v
)T (3.3)

5. LDA calculates the between class scatter matrix Sb according to equa-

tion 3.4, which is the covariance matrix between each class. E.g. the

covariance matrix between T0, T1 and T2.

Sb =

|V|ି1

෍

vୀ0

nv(μv − μ)(μ
v
− μ)T (3.4)

6. The ratio J(W) is maximized according to equation 3.5 and 3.6, with

W ∈ ℝγxβ and β the number of output dimensions:

J(W) =
WTSbW

WTSwW
(3.5)

1Assuming that v is approximately uniformly distributed
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Output dimension Values

1 0.21 0.40 -0.56 -0.70

2 -0.2 -0.60 0.64 0.44

Table 3.1: MatrixW (resulting weights) for the first two LDA dimensions of the

IRIS dataset. Please note that each output dimensions corresponds

to one matrix column.

Sି1w SbW = λW (3.6)

J(W) in equation 3.5 can be transformed into a constrained optimization prob-

lem, which results in a (generalized) eigenvalue problem, shown in equation 3.6.

Hence, the transformation matrix W consists out of eigenvectors, which are

normalized. In the example of the IRIS dataset the matrixW contains entries

described in table 3.1 for two dimensions. Multiplying these weightsW to the

IRIS dataset TW results in figure 3.2, with the trace set T ∈ nxγ.

Comparing figure 3.1 and 3.2 shows that the classes are better separable. Al-

ready along the first dimension after LDA, the classes are well separable.

3.1.2 Template Attack

Template attacks belong to profiled attacks and represent an information the-

oretic optimal attack [Cha03]. Template attacks estimate a Probability Density

Function (PDF) P(t|v) for each v. A probability for specific measurement val-

ues t ∈ ℂ1x|q| given an intermediate value v can be determined. q denotes the

chosen POIs, which are selected points in time between 0 and γ − 1. Please

note that q can also be modified by the preprocessing and denotes the input

length for the template attack. [Osw07]

It can be shown that by estimating P(t|v), P(v|t) can be derived. Thus, it is

possible to calculate the probability for each v given the measurement value t.

When assuming that v = p ⊕ k, combined with a known p, I can calculate

the probability for each key-candidate for each t. Due to a high noise and

low SNR for side channel measurements, the attack usually requires multiple

measurements to determine the correct key.

The chosen probability density distribution heavily relies on the Device under

Test (DUT). Commonly chosen PDFs for side channel analyses are e.g., multi-
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variate Gaussian distributions. I choose a Gaussian distribution in this chapter,

because the goal is to mainly exploit first order leakage. Hence, one Gaussian

PDF ∼ (μ
v
,Σv) is estimated for each v. Commonly, the noise is assumed to be

Gaussian side channel attacks, which is supported by practical measurements

[Man07]. ∼ (μ
v
,Σv) is determined by equation 3.7 and 3.8, where nv denotes

the number of traces in the trace set Tv for one specific v:

μ
v
(t|v) =

1

nv
෍

nvି1

nୀ0
tvn (3.7)

Σv(t|v) =
1

nv

nvି1

෍

nୀ0

(tvn − μ
v
)(tvn − μ

v
)T (3.8)

The score for each trace can be calculated by the following equation, given the

Gaussian profile ∼ (μ
v
,Σv) and the current trace t:

score(v|t) = −
1

2
(t − μ

v
)TΣି1

v (t − μ
v
) (3.9)

This score is accumulated for each v and each trace. In chapter 4 the score for

each key candidate k̂ can be assigned by calculating k̂ = v⊕ p. The k̂ with the

highest score is the most probable.

3.1.3 Moments Correlating DPA

I use the moments correlating DPA as leakage test to determine LOI and POIs

in chapter 4 and as a 3rd order attack on the implementation.

Moments correlating DPA is an advanced DPA proposed by Moradi et al.

[Mor16b], which allows to isolate the leakage of higher ordermoments. Thereby,

it is based (exactly like the classical DPA) on the Pearson correlation coefficient,

which estimates the linear relationship between two variables. I focus on the

profiled version of the moments correlating DPA, called the Moments Corre-

lating Profiled DPA (MCP-DPA) which is a profiled attack method. Hence, the

attack is split into two steps, firstly the profiling step, secondly the attack step.

The profiling step is depicted in figure 3.3. For illustration purposes, the pro-

filing step is depicted for one point in time. Please note that a chosen plain- or
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Figure 3.3: Creation of the power model for the moments correlating DPA for

one point in time

ciphertext scenario is not strictly necessary; however, in most cases it is possible

for the training device. For building the power modelM, I collect the trace set

T1 and create one power model mv,z ∈ M for each intermediate value v ∈ V

and each point in time z ∈ [0, γ]. As an example, the power model mv ∈ ℝ
1xγ

is calculated by the mean value for each v, which is described in equation 3.10.

Tv
1 denotes all traces of T1 with the intermediate value v and nv denotes the

number of traces in the trace set Tv
1.

mv =
1

nv
෍

nvି1

nୀ0
tn (3.10)

The internal value v can be mostly determined by a function with the inputs of

the plaintext p and the key k, e.g., the AES-S-box v = SBOX(p⊕ k). Hence, a

power model can be created for each element of V or a different power model,

e.g., the hamming weight or hamming distance.

Figure 3.4 depicts the attack phase for one point in time and one key hypothesis

with the attacking trace set T2.

As step one in figure 3.4, vector mz,k̂ is computed for each point in time z ∈

[0, γ] and each key hypothesis k̂, following equation 3.11.

mz,k̂ = (mv(t0),z
, ...,mv(tn),z

) (3.11)

Where v(tn) determines the v individually for each trace and key hypothesis k̂.

mv,z denotes the element of mv for the intermediate value v and point in time

z. Thus, eachmz,k̂ has length n.
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Figure 3.4: Attack phase of moments correlating DPA for one point in time

and one key hyportheses

Step 2 in figure 3.4 corresponds to, assembling the vector tz, which denotes the

samples of all traces at the point in time z.

corrz,k̂ = ρ(mz,k̂, tz) (3.12)

Step 3 in figure 3.4 depicts the computation of the correlation vector corrz,k̂,

which can be determined for each key candidate and each point in time.

When attacking higher order statistical moments, the power measurement sam-

ples and the power model have to be modified. For the power model instead

of the mean for every v, the variance for the second order or the skew for

the third order is calculated. Depending on the targeted statistical moment, the

measurement values inT2 have to be pre-processed, e.g., according to Equation

3.13 or 3.14 for the second or third statistical moment.

T̂v = Tv −mean(Tv) (3.13)

T̂v =
Tv −mean(Tv)

variance(Tv)
(3.14)
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MCP-DPA allows us to perform an attack, using the third statistical order on

the threshold implementations as a reference to the performed template attacks.

Furthermore it is suited as a correlation based leakage test to determine LOIs

and POIs.

MCP-DPA as a Correlation Based Leakage Test The goal of leakage tests

is to show the data dependency of the intermediate value v and the measured

traces T. Durvaux et al. [Dur16] proposed a correlation based leakage test.

This test is very similar to the MCP-DPA. The only difference is the use of

cross validation sets. The use of cross validation sets enables a more accurate

estimation of the leakage in case of a low number of available traces. During

the measurement the trace set Tall is collected. When using, e.g., 10 cross-

validation sets, Tall gets split into 10 sets. Tall,0, ...,Tall,9. During the first run

Tall,0, ...,Tall,8 is used for as profiling trace set (T1 in the MCP-DPA case). Tall,9

is used as attack trace with the correct key only (T2 in the MCP-DPA case).

During the second run Tall,0, ...,Tall,7,Tall,9 is used for as profiling trace set (T1

in the MCP-DPA case). Tall,8 is used as attack trace with the correct key only

(T2 in the MCP-DPA case). This is carried out, until each cross validation set is

attacked once. The resulting correlation trace is calculated by the mean of the

correlation traces of all sets.

3.2 Evaluation Methods used in Chapter 5

3.2.1 Attack Concept against Exponentiations

A common structure of an exponentiation algorithm is shown in Algorithm 1.

The secret d with n bits is processed bitwise. Depending on the bit-value do,

the algorithm executes a write and a read operation on register a in case do = 1

and register b in case do = 0. If an attack can distinguish the write and read

accesses to register a or b, the key can be revealed. The segmentation borders of

the loop iterations must be known a priori, or can often be derived from visual

inspection or comparison of shifted trace parts. With known segment borders,

each loop iteration can be split into one trace-segment, which corresponds to

one bit of the key in this case (such attacks are referred to as horizontal attacks).

The trace for measuring n exponent bits consists of n trace segments td =

(t1ା(dି1)⋅γ, ..., td⋅γ) with d ∈ [1, n], each of length γ (time-samples), which is
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Algorithm 1 Typical structure of an exponentiation algorithm, taken from

[Hey12a]

Input: Secret d = dndnି1...d2d1 with do ∈ {0, 1}

1: for o = n downto 1 do

2: if do = 1 then

3: c ← c2 + a

4: a ← c

5: else

6: c ← c2 + b

7: b ← c

8: end if

9: end for

Iteration 1 Iteration 2 Iteration n

Segment/Bit 1
Segment/Bit 2

.      . .

Segment/Bit n

.      . .

Binary Exponentiation

Figure 3.5: Creating the trace segments from the collected trace

referred to as its dimensionality (of features). This procedure is shown in fig-

ure 3.5. For analyzing and attacking the measurement data, the n × γ matrix T

is constructed by placing each segment in one row. This result is depicted in

figure 3.6. The attack is successful if labeling the rows/segments, which each

corresponds to one key bit, recovers the true secret.

Clustering based attack of Heyszl et al. [Hey14] The attack in chapter 5

is based on the algorithmic approach to clustering-based non-profiled attacks

on exponentiations of [Hey14]. Thus, I will briefly describe this approach.

Hence, the T is created in the same way as described above. Heyszl et al. use as

preprocessing a simple trace compression technique, the sum of squares. Each

sample is squared and afterwards the samples, belonging to the same clock
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.

.

.

Figure 3.6: Resulting trace matrix T

cycle are summed to one sample. After preprocessing, the key is tried to be

revealed with the help of the k-means clustering algorithm. However, the use of

such simple trace compression techniques is shown to be not optimal [Hey12b].

Thus, I improve the algorithmic approach by using PCA as preprocessing and

the “expectation-maximization” clustering algorithm.

3.2.2 Principal Component Analysis (PCA) for

Dimensionality Reduction and Feature Selection

PCA maximizes the variance between all samples, but does not take into ac-

count the class-labels and class-dependent variances. In other words, PCA

transforms the original space into a subspace, where the variance between all el-

ements is maximized, e.g., all elements (independent of the color) of figure 3.1.

The maximization variances supports a basic assumption in side channel analy-

sis: A power trace contains data/key-dependent differences and thus variance.

The PCA can be calculated using Singular Value Decomposition (SVD). The

SVD of T ∈ ℝnxγ is denoted in equation 3.15.

T = U ∗Σ ∗ V∗ (3.15)

TTTx = λx (3.16)

TTTx = λx (3.17)
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U and V are unitary matrices containing the left- and right-singular vectors

andΣ is a diagonal matrix containing the singular values, where ∗ denotes the

Hermitian transpose of a matrix.

The SVD can be calculated by solving two eigenvalue problems. The matrix

U can be determined by the eigenvectors of equation 3.16 and the matrix V

can be determined by the eigenvectors of equation 3.17. Finally, the entries

on the diagonal of Σ are the square roots of the eigenvalues determined by

equation 3.16 or equation 3.17. [Ban14]
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Figure 3.7: IRIS dataset transformed with PCA

The original data can be completely restored by calculatingU∗Σ∗V∗ (no infor-

mation is lost). The transformation into the subspace consists of TT = U∗Σ.
The matrix U ∗Σ consists of column vectors (PC1, ...,PCr) with r being the

number of row-vectors, where PCj being a column-vector of shape n × 1,

which is called a principal component. The maximum number of components
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is equal to r = max |PC| = min(n, γ). In case of the application in chapter 5

the length γ is usually much larger than n; hence the number of principal com-

ponents is usually n. After PCA, the components are ordered according their

variance, which can be found in the diagonal matrix Σ. In our experiments in
chapter 5, I normalize the variances of the principal components to one, i.e. I

directly use TPCA = U as transformation instead of U ∗Σ.
Figure 3.7 shows the first two principal components of the IRIS dataset (shown

in figure 3.1) and shows a good separation of the classes.

In this example two output dimensions were used from PCA. However, for

practical use-cases the optimal number of dimensions used for the subsequent

analysis is difficult to determine. Thus, a “rule-of-thumb” is commonly applied.

The matrix Σ contains the variances sorted by their value for each principal

component. Afterwards, the largest entries of Σ are selected, until the sum of

the selection reaches 90 % of the sum of all values. Then, the eigenvectors of

the selected eigenvalues are taken for transformation; note that the number of

selected eigenvectors determines the number of output dimensions. This rule

is called the 90 % explained variance rule [Jol02]. 2 I apply the same rule to

estimate the number of components for LDA.

3.2.3 Used Clustering Algorithms

Clustering algorithms can be split into supervised, semi-supervised and unsu-

pervised algorithms. The focus on non-profiled attacks in chapter 5 restricts the

choice to unsupervised algorithms. Clustering algorithms are used to label data,

e.g., the flower-types of figure 3.1 and can be used in a non-profiled attack to

partition n trace-segments into classes according to their secret exponent val-

ues.

Unsupervised clustering algorithms use basic assumptions for the data to be

labeled, e.g., the Density Based Spatial Clustering of Applications with Noise

(DBSCAN) [Est96], the hierarchical based DIvisive ANAlysis Clustering (DI-

ANA) [Kau90] or the PDF-based k-means and expectation maximization al-

gorithm. Due to the above described principle in chapter 3.2.1, the search for

two (multidimensional, overlapping) Gaussian PDFs is assumed. The Gaus-

sian PDFs are expected, due to a Gaussian shaped noise, which can have many

2Note that this rule cannot be applied to the PCA in chapter 5, because the highest rank components mainly

contain high-variance noise
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sources, e.g., electrical noise from resistors and amplifiers, quantization noise

and noise from surrounding magnetic fields. Hence, the K-Means and expec-

tation maximization clustering algorithms are used in chapter 5, which try to

find a given number of Gaussian PDFs in the data.

3.2.3.1 K-Means Clustering Algorithm

K-means tries to find a definable number e of clusters in data T ∈ ℝnxγ. In

chapter 5 e = 2, due to 2 possible bit values. Each row t in T is treated as

one sample with dimensionality γ. In general this labeling-problem is NP-hard;

however k-means uses an efficient heuristic to find local optima for clustering.

K-means initializes e random samples, assigns class labels to these and assumes

that these points are the center of the e clusters. Now the iterative part of the

clustering algorithm begins:

1. Each t is assigned to the cluster of the closest cluster center. In chapter 5

the Euclidean distance is used, due to the Gaussian noise assumption.

2. After each t was assigned to a cluster, a new cluster center is calculated

by calculating the mean over all assigned t to the cluster

3. The above steps are repeated until amaximumnumber of loops is reached,

or the cluster means do not change anymore. A maximum of 10 000 it-

erations is used in chapter 5.

In order to find a global optimum, instead of a local optimum, the k-means

clustering is carried out multiple times with new random start samples as class

centers. In chapter 5 this is performed 200 times and the execution, which

produces the smallest summed distance between the cluster center and the ac-

cording t is taken.

3.2.3.2 Expectation Maximization Clustering Algorithm

The goal is again to label all t of T. The expectation maximization tries to esti-

mate the free parameters of the classes’ assumed PDFs. The choice of free pa-

rameters depends on the assumed probability distribution model, hence shape

of the clusters. Expectation-maximization clustering provides more free parameters

than k-means clustering, which leads to a generally improved approximation of

the cluster distributions, which usually leads to better classification results.
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For initialization of the expectation maximization parameters, k-means is used

in our case. Afterwards, the algorithm is based on repeated expectation and

maximization steps. During these iterations the maximum likelihood means

and covariances for the Gaussian distribution are derived (instead of the means

only by k-means). The result is a classification and a class-membership proba-

bility for each t, which indicates the reliability of correct classification for each

segment (resp. secret exponent bit).

The number of free parameters in the clustering algorithm can be chosen. I

assume that the cluster shapes are mainly defined by Gaussian distributed noise.

Additionally, I assume the noise being independent of the processed bit value.

Hence, I chose to estimate two means and one joint full covariance matrix. By

applying PCA the dimensions of the data are reduced, which also reduces the

number of mean and covariance elements, which need to be estimated.

3.2.4 Classification Errors and Required Brute-Force

Complexity

If the recovered exponent is incorrect, faulty bits need to be identified, which is

usually hard. As described by Heyszl et al. [Hey14], an attacker can use the bits’

probabilities of correctness to judge which need to be trialed for correctness

and follow a simple strategy to enumerate possible keys. This strategy leads

to an estimated remaining Brute Force Complexity (BFC), which I use to as-

sess practical attack outcomes. Better, even optimal, key enumeration strategies

[Vey13a, Vey13b] will result in a lower amount of required brute-force effort

if the attacker applies them. However, the typically large key sizes in asym-

metric cryptography, e.g., RSA-4096, make the enumeration of the key rank

challenging for attackers as well as evaluators. Thus, the required brute-force

complexity is often estimated. The said BFC which is used instead can be seen

as an upper bound for the rank of the correct key as derived from an optimal

enumeration.

I chose to use the silhouette index score [Rou87] to determine the bits’ error

probability. It is based on the cumulative distance of each trace-segment to

other trace-segments of each cluster. The silhouette index is calculated for

every given transformed trace by PCA TPCA, which corresponds to one row of

TPCA,pc∶pcାi, with 𝒞1 being the set of trace segments td of the same cluster like

TPCA (determined by the expectationmaximization algorithm) and 𝒞2 being the
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set of trace segments belonging to other clusters. With the distance function

dist(a, b), where the distance between b and a is calculated. I use Euclidean

distance due to the Gaussian noise assumption.

The silhouette index s is computed as:

s(td, 𝒞1, 𝒞2) =
f(td, 𝒞1) − f(td, 𝒞2)

max(f(td, 𝒞1), f(td, 𝒞2))
(3.18)

f(td, 𝒞) =
1

|𝒞|
෍

x∈𝒞

dist(td, x) (3.19)

After calculating the score for all n segments td, the ones with the lowest s are

brute-forced first, while including an increasing number of bits [Hey14]. Let q

be the last bit which is trialed until the correct exponent is found, then 2(nା1ା1)

different exponents have to be tested at maximum which can be referred to

as remaining brute-force complexity after the attack [Hey14]. One additional bit

is included for both possibilities to assign labels to the two classes. It equals

2(nା1ା1) at maximum and 21 at minimum.

An alternative to estimate the reliability of exponent bit classifications is using

a Support Vector Machine (SVM) to get a hyperplane, which separates two

clusters. However, I could not achieve a significant improvement using this and

it significantly increases the computational complexity. Another way is to use

the discriminant score[Cho13], which measures the reliability by calculating the

two probabilities of each sample to be part of a cluster similar to equation 3.9.

I derived similar results as for the silhouette index, however, with significantly

increased computational complexity.

3.2.5 Carried Out Template Attack

I apply the template attack in chapter 5 to compare the performance of the

non-profiled attack to a profiled attack. The last chapter showed that LDA is

efficient in exploiting leakage for a profiled attack. However, for a fair com-

parison to the unprofiled case I also apply PCA. The same preprocessing is

especially important to estimate the capability of our unprofiled approach to

exploit leakage. The template attack can explain if PCA is able to extract useful

features from the original trace and if the expectation maximization clustering

algorithm can efficiently exploit that leakage.
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I collect one trace for profiling with a known key. This trace is again cut into the

trace-segments, resulting in the matrix T. Applying PCA, results in the matrix

TPCA. To train the template attack, I create one multidimensional Gaussian

PDF ∼ (μ
v
,Σv) for each possible value of the key-bits (zero and one). To

lower the estimation error of the covariance matrix, I calculate one common

covariance matrix for both key-bit values (the pooled covariance matrix).

For evaluation I collect one T with an unknown key and apply PCA (with the

transformation matrix of the profiling phase). Afterwards, I calculate for each

trace segment td the score for both templates (values zero and one, see equa-

tion 3.9), and choose the bit value with the highest score/probability for each

trace-segment. [Cho13] Note that in this case the score is determined by equa-

tion 3.9 and not the silhouette coefficient. Using these scores, it is possible to

compute the brute force complexity as described in section 3.2.4, by brute forc-

ing the bits with the lowest probability of corresponding classes and compare

the results directly to the unprofiled case.
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Chapter 4

Multiprobe Attacks on Symmetric

Ciphers

In the last chapters I introduced the dimension reduction technique LDA, the

used analysis tools in this chapter and the related work to masking schemes. In

this chapter I show howmultiprobe attacks can significantly impact the security

of an implemented masking scheme by practical measurements.

I first briefly explain selected theory to TIs in section 4.1 and the attack concept

in section 4.2, which is applicable to a majority of published masking schemes.

Afterwards, I describe the chosen implementation in section 4.3. Then, I intro-

duce the measurement setup in section 4.4. The profiling phase of the template

attack and LDA is described in section 4.5. Afterwards, I present practical re-

sults for the attack carried out with multiple localized EM probes in section 4.7.

I firstly evaluate the EM probe measurements separately and secondly com-

bined. Finally, I analyze in detail how LDA combines multiple probes. Then, I

compare the results with the power side channel. I summarize the contribution

and findings in Sect. 4.8.

Results of this chapter have been published at HOST conference in 2018 in

the following publication: [Spe18] The presented results are originated in the

collaboration with the coauthors.

4.1 Selected Theory of Threshold

Implementations

AThreshold Implementation (TI) for hardware design is highly related tomulti-

party computation and threshold cryptography [Nik06]. The idea is to split a

secret intermediate value into multiple independent parts, called shares, and

distribute the computation such that, a malicious party participating in a multi-

49
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party computation cannot reveal the secret, since the other shares are unknown.

One possibility to create the shares is to split the secret intermediate value with

the help of one (or multiple) individual random numbers. If r shares can be

known by an adversary, without revealing the secret, an implementation is called

r-th order secure and requires at least r+ 1 shares. The shares are modified by

a set of functions f0, ..., fr. The security of a TI is provable, if the functions

fulfill three properties, correctness, non-completeness, and uniformity. After applying

the functions to the shares, the correct result can be obtained by combining the

shares. This property is termed correctness, defined in Equation 4.1.

v =

r

෍

nୀ1

vn =

r

෍

nୀ1

fn(… ) (4.1)

Non-completeness, defined in Equation 4.2, reflects the property that each

function operates with at most i − 1 shares. While this property is easy to

fulfill for linear operations, it is difficult to achieve for non-linear operations.

v1 = f0(x2, ..., xr)

v2 = f1(x1, x3, ..., xr)

…

vr = fr(x1, ..., xrି1)

(4.2)

The third property is named uniformity and is known to be the hardest property

to achieve. A function f is called uniform if v = f(x) is uniform given that the

input x is uniform. Sometimes the output of a f is used for another f. Thus, all

output values of each f must be uniformly distributed. [Bil14]

For the most basic operations of ciphers, e.g., inverting in GF28 , a uniform

splitting exists, with the drawback of usually requiring more shares than i + 1.

To reduce the number of shares and thus the implementation size, remask-

ing ensures uniformly distributed inputs for each function. Most publications

”circumvent” the uniformity requirement by remasking, to achieve a small im-

plementation. This has the drawback that more random numbers have to be

available for the encryption. Hence, the amount of random numbers per en-

cryption is required as an additional rating factor, over size and order of security

for masked implementations [Mor11].
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Figure 4.1: Implemented TI [De 16b]
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4.2 Attack Concept on Threshold

Implementations

To illustrate the advantages of multiprobe localized EM measurements, let us

consider the case of a power-based side-channel attack first. As depicted in

Figure 4.2a, using this approach results in a global view on the Device-Under-

Test (DUT). Hence, all shares (the functions f1,f2,f3) must be attacked with one

common set of traces. To overcome this limitation, localized multi-probe EM

measurements eventually allows to spatially separate and observe the shares

independently, thereby enabling a detailed view on the shares.

Figure 4.2b illustrates the case of using multiple probes to attack TIs. By po-

sitioning the probes at different locations above the die, we benefit (in theory)

from an optimal position for each share to measure them individually. This

allows to directly exploit the leakage of each share which exceeds the scope

of previously known attacks. In an attack on both masks (each processed by

one share) and the thereby protected sensitive value (third share), we try to

first recognize the masks and subsequently use them to unmask the sensitive

value. Figure 4.2b shows a clear theoretical benefit, which has to be evaluated

by practical experiments.

The original TI paper of [Nik06] states: “Our proposal […] makes it more difficult

to implement the attack, because the parallel computation of the n shares lowers the signal-

to-noise ratio. […] Since we assume that all shares are uncorrelated, the number of shares

n effectively multiplies the bit-width. As a consequence the number of samples needed in

the profiling step is greatly increased.” Hence, the security assumption of threshold

schemes is that observing the leakage of individual shares is difficult [Nik06].

In Chapter 4.7 this underlying assumption is thereby practically challenged by

using multiple localized EM probes and carrying out a template attack.

The attack is divided in the following steps: All steps are explained in detail in

section 4.5

1. Detection of Points of Interest (POI) and Location of Interest (LOI)

This step defines the LOIs and the POIs with the help of the moments

correlating DPA as a leakage test, defined in chapter 3.1.3

2. Training of Linear Discriminant Analysis (LDA)

All selected POIs q are input into the LDA. In combination with the

known v the transformation matrix W is calculated, which is described
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Figure 4.2: Measurement principle for power (cf. Figure 4.2a) and multi-probe,

localized EM measurements (cf. Figure 4.2b).

in chapter 3.1.1. From this point on, all traces are transformed with the

help of W.

3. Training of the template attack

The transformed output is used for the training of the template attack.

In combination with the known v the Gaussian PDFs are calculated for

all v, shown in chapter 3.1.2.

4. Applying LDA and carrying out the template attack

During the attack phase the trace is transformed with W. Afterwards,

the probability for each possible v is derived with the help of the PDFs

trained in the last step and equ. 3.9. Then, the probability is assigned

to each key candidate by combining the p of the attacked byte and each

possible v, where the key candidate is derived by k̂ = v⊕ p.

4.3 Implementation of the Threshold Scheme

In this section I present implementation details to the analyzed threshold scheme.

The implemented S-box is related to the Canright S-box [Can05] and uses the

same mathematical blocks, e.g., linear map, multiplications, squaring and square

scaling (Sq.Sc.) in GF24 and GF22 . In general, the AES S-box performs an in-

version over GF(28). The Canright S-box splits this inversion over GF(28)

into multiple multiplications in the subfield GF(24). A simplification can be

achieved with splitting the GF(24) operations into GF(22), e.g., in GF(22) a

squaring operation is the same as an inverting operation for a polynomial ba-
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sis. [Can05]

The implemented second-order secure AES S-box threshold implementation

of De Cnudde et al. [De 16b] was implemented with three shares on a Xilinx

Spartan 6 FPGA, which is depicted in figure 4.1. The S-box is split into six

stages, with ai = (a1i , ..., a
8
i ) being the input byte for share i at the first stage:

“First Stage. The first operation occurring in the decomposed S-box performs

a change of basis through a linear map. Its masking requires instantiating this

linear map once for each share i. This mapping is implemented in combina-

tional logic and it maps the 8-bit input (a1i , ..., a
8
i ) to the 8-bit output (y

1
i , ..., y

8
i )

for each share i ” [De 16b]

Now the 8-bit yi gets split into two 4-bit values bi = y1i , ..., y
4
i and ci = y5i , ..., y

8
i .

“Second Stage. [...] The resulting equations are given by:

d1 = b1 ⊗ c1 ⊕ SqSc(b1 ⊕ c1)

d2 = b1 ⊗ c1
d3 = b1 ⊗ c3
d4 = b2 ⊗ c1
d5 = b2 ⊗ c2 ⊕ SqSc(b2 ⊕ c2)

d6 = b2 ⊗ c3
d7 = b3 ⊗ c1
d8 = b3 ⊗ c2
d9 = b3 ⊗ c3 ⊕ SqSc(b3 ⊕ c3) ” [De 16b]

⊗ denotes a multiplication and⊕ denoted an addition/XOR-operation. The

non-completeness property can be implemented “such that combinations of

up to [r− 1] component functions are independent of at least one input share

of each variable” [De 16b]. For the implementation, the functions are split ac-

cording to the non-completeness property into shares: share1: d1 to d3; share2:

d4 to d6; share3: d7 to d9. I apply the separation into three shares in the same

manner for all six stages. R1, ...,R9 denote the masks used to ensure an uniform

input for the next stage. The concept is explained in chapter 4.2.

“Third Stage. This stage is similar to the second stage. Here, the received nib-

bles are split in 2-bit couples for further operation. The Scaling operation (Sc)

replaces the similar affine Square Scaling and is executed alongside the mul-
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tiplication in GF(22). By combining both operations, we can share the total

function by taking again the non-completeness into account. ” [De 16b]

“Fourth Stage. The fourth stage is composed of an inversion and two paral-

lel multiplications in GF(22). The inversion in GF(22) is linear and is imple-

mented by swapping the bits using wires and comes at no additional cost. The

outputs [...], to form 4- of the multiplications are concatenated, denoted by ||©
bit values in GF(24) ” [De 16b]

“Fifth Stage. Stage 5 is similar to Stage 4. The difference of the two stages

lies in the absence of the inversion operation and the multiplications being per-

formed in GF(24) instead of GF(22). ” [De 16b]

“Sixth Stage. In the final stage of the S-box, the inverse linear map is per-

formed. By using a register between Stage 5 and Stage 6, we can remask the

shares and perform a compression before the inverse linear map is performed

resulting in only three instead of nine instances of inverse linear maps. As with

the linear map, no uniform sharing of its inputs is required for security. How-

ever, in the full AES, this output will at some point reappear at the input of the

S-box, where it undergoes nonlinear operations again. This is why we insert

the remasking.” [De 16b]

Note that in between of all stages, the data is remasked with 9 masks R1, ...,R9

to ensure a uniform data distribution for the next stage; thus, ensuring uni-

formity. Each of the masks is applied with the same width of the data path.

Hence, requiring as many random bits as data bits each clock cycle.

A TI-typical initial split of the share-inputs was chosen: Share 1: Sboxin ⊕

mask1 ⊕ mask2, share 2: mask1, share 3: mask2 [De 17]. Beside the initial

split and implementation, the placement of the shares is important to prevent

first order leakage due to coupling. To ensure that the single shares do not

couple, I controlled the placement with the help of so-called Pblocks in Xilinx

ISE, as depicted in figure 4.3. These blocks restrict entities to defined loca-

tions, thereby reducing the risk that shares are coupled which I additionally

confirmed by manually checking the implementation output and performing

practical measurements to verify the behavior. Beside the placement, undesired

“optimizations” by the synthesis have to be avoided. Thus, I used several con-
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straints provided by Xilinx ISE, e.g., the keep hierarchy constraint and manually

instantiated LUTs. To still be able to reduce the size of the S-box to a minimum

I chose a byte-serial, single S-box implementation. Hence, I expect very similar

leakage for all bytes of an AES round and evaluate all results for byte 0 of the

state only.

4.4 Measurement Setups

In the following, I briefly describe the measurement setups and the used equip-

ment for practical evaluations.

4.4.1 High Resolution EMMeasurement Setup

For localized EMmeasurements to work, the DUT has to be decapsulated. The

decapsulation of the DUT was realized by chemical etching of the DUT. As

DUT I used a Spartan 6 xc6slx9 FPGA.

I placed the high-resolution near-field coils at a distance of about 30 µm above

the die. I use the following probes:

1. Langer ICR HH 150-6:

Horizontal magnetic field probe with an inner diameter of 150 µm, 6

Windings and 2.5MHz to 6GHz frequency span

2. Langer ICR HH 150-27:

Horizontal magnetic field probe with an inner diameter of 150 µm, 27

Windings and 1.5MHz to 6GHz frequency span

3. Langer ICR HH 100-6:

Horizontal magnetic field probe with an inner diameter of 100 µm, 6

Windings and 2.5MHz to 6GHz frequency span

Please note that, using different probes does not significantly affect the result,

because during preprocessing and profiling phase of the template attack the

characteristics of every probe are implicitly respected. The maximum band-

width of each probe is 6GHz with a built-in 30 dB preamplifier. Additionally,

a 30 dB Langer PA303 amplifier was attached to each probe, such that each

resulting signal is amplified by 60 dB in total. This amplification avoids quan-

tization noise caused by the oscilloscope. The used oscilloscope is a LeCroy
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Figure 4.3: Floorplan of TI with 3 shares on Spartan 6 FPGA.



58 Multiprobe Attacks on Symmetric Ciphers

Figure 4.4: High resolution EM measurement probes on FPGA die surface

WavePro 725 Zi with 2.5GHz bandwidth and a samplingrate of 5GS/s, which

was synchronized to our DUT. All channels have an adjusted offset and a res-

olution, such that no clipping occurs.

To move and place the measurement coils accurately above the die, the DUT

was mounted on an X-Y-Table. For the measurements with one measurement

coil, 225 (15 x 15 grid, equally spaced) measurements positions were used in an

area of 2730 µm x 2500 µm with the Langer ICR HH 150-6. When using three

probes simultaneously, I placed them by hand and therefore very likely did not

achieve optimal placement.

4.4.2 Power Measurement Setup

Most of the setup is kept the same for the power-based measurement, i.e., the

same FPGA using the same design. Instead of the H-field probes and ampli-

fiers, a differential probe (LeCroy AP033) measures the voltage drop across a

10Ω shunt resistor.
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4.5 Profiling Steps for the Template Attack

In this section I explain and evaluate the first three steps of the attack concept,

explained in section 4.2, which contain the profiling phase of the attack. I

firstly determine the LOIs and POI and afterwards the training of LDA and

the template attack. The access to masks, key, and plaintext during profiling is

assumed.

4.5.1 Detecting Location and Points of Interest

For determining the LOIs and POIs, I use the first orderMCP-DPA as a leakage

test, which is explained in section 3.1. [Dur16] LOIs and POIs are selected

where this test returns high values.

To carry out the leakage test in the spatial- and time-domain, the targeted in-

termediate value has to be known for equ. 3.10 to perform the profiling. For

a straight-forward AES S-box implementation, the intermediate value is de-

fined by the AES S-box Sboxin = (ki,n ⊕ pi,n) for the subkey and plaintext

of target byte i ∈ [0, 15] and trace number n ∈ [1, ..., n]. However, due to

multiple shares in this implementation, I carry out one test for the value of

each share, i.e., share 1: Sboxin⊕ mask1⊕ mask2, share 2: mask1, share 3:

mask2. Hence, one model m is created for each test by equation 3.10. Using

the calculated model m for equation 3.11 and only evaluating the correct key

for equation 3.12 gives the data dependency between the measured traces T

and the targeted intermediate value v.

Detection of LOIs As the first step of the profiling, the LOIs are iden-

tified. I collected 150 000 Traces at every position and scanned the die with

one probe. Afterwards, I evaluated the leakage test for every position and each

share. Figures 4.5a, 4.5b and 4.5c depict the scan of the die surface and the

corresponding leakage for each share.

The figures show that all shares are spatially separable and a practical optimal

measurement position is chosen for each probe of the multi-probe setup. The

chosen positions are denoted in Table 4.1. Note that the origin (0, 0) is lo-

cated in top left corner in figure 4.5. For power measurements, this step is not

necessary due to the position invariant nature of the side channel.
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(a) (b)

(c)

Figure 4.5: Heatmaps of CPOI for all shares. Figure 4.5a Share1. Figure 4.5b

Share2. Figure 4.5c Share3.

# Share X-position in 182 µm Y-position in 167 µm

1 5 7

2 9 5

3 4 1

Table 4.1: Measurement positions for multiprobe measurements
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Detection of POIs For the detection of the POIs I place the three probes

at the positions denoted in table 4.1 and collected 150 000 Traces. Since the

implementation operates on 3 shares, 3 probes are designated to give the best

results. Again, the MCP-DPA based leakage test is evaluated according to the

intermediate values of the shares for each probe.

Figure 4.6 shows the leakage for all three shares of the best probe. Some probes

did also collect a signal from multiple shares. However, for simplicity reasons I

only plot the best probe for each share. In chapter 4.7.3.2 I discuss the results

of all probes in detail.

Leakage mainly occurs between sample 1 490 and 1 520 in figure 4.6, which are

30 samples in total. For the power side channel, the leakage test was performed,

based on the same trace set for each share. Note that the correlation based

leakage test operates on a univariate (one point in time) basis. The below carried

out template attack is a multivariate attack; hence, the exploitable leakage of the

template attack and the leakage test may differ.

Figure 4.6: CPOI for EM

4.5.2 Profiling steps of Linear Discriminant Analysis

(LDA) as Preprocessing and the Template Attack

Firstly, I profile LDA. Afterwards, I transform the traces to a lower dimen-

sional space for the profiling phase of the template attack. This is necessary

to improve the template attack in terms of computation time and numerical

stability.

LDA and templates are trained for the value of each share (both masks and the

masked S-box-input) with 500 k traces (using the same traces for both trainings).
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Please note, more profiling traces did not improve the performance of the

attack.

For each share the profiling was performed independently by taking the corre-

sponding v of the share and the corresponding sets of traces from the probe

above the share. The profiling is performed for the following intermediate

values: share 1: Sboxin⊕mask1⊕mask2, share 2: mask1, share 3: mask2

Profiling LDA From the traces T the chosen POIs q = [1490, ..., 1520] are

used as input for equation 3.1, 3.2, 3.3 and 3.4 to calculate the mean, the over-

all mean, the within class scatter matrix and the between class scatter matrix.

With these means and scatter matricesW is estimated by solving the eigenvalue

problem in equation 3.6.

For power measurements I replaced the different traces of every probe with

one power trace.

The number of dimension is reduced from 30 POIs q to 15 dimensions. This

choice of output dimensions is oriented at the 90 % explained variance rule for

the (combined) EM measurements explained in chapter 3.2.2.

Profiling theTemplate Attack The template attack is described in sect. 3.1.2.

For the profiling (and attack) phase the traces are transformed by LDA. Hence,

the template attack receives 15 dimensions for each trace. Again, the profil-

ing is performed for each share independently by taking the corresponding v.

With the help of the 500 000 training traces, a Gaussian template is created for

each share and intermediate value, resulting in 256 Gaussian PDFs ∼ (μ
v
,Σv)

for each share, which are estimated with equation 3.7 and 3.8. Note that these

PDFs are used in equation 3.9 to determine the probabilities of all v for a given

trace.

For power measurements I replaced the different traces of every probe with

one power trace. These templates are used in the next section during the attack

phase.

4.6 The Carried out Template Attack

The input of the template attack is a trace (with unknown key), transformed

with the above trained W. Hence, the number of input dimensions is 15 for

the attack. The complete attack is depicted in figure 4.7. It is possible to attack
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Probability list mask1
P(mask1 | t2)

First attack step:

Trace t2 (Share 2)

Probability list mask2
P(mask2 | t3)

Second attack step:

Trace t3 (Share 3)

Probability list share1
P(share1 | t1)

Third attack step:

Trace t1 (Share 1)

Most probable mask2

Most probable mask1

+

Argmax(list)

Argmax(list)

+

Plaintext

Probability list key

Figure 4.7: Attack principle of multi-probe, localized EM template attacks

based on first-order statistical moments.

each share independently, denoted by attack steps one, two and three in fig-

ure 4.7, due to the independent profiling for each share before. Hence, I carry

out one template attack for each share. Firstly, I use the Gaussian templates

of two probes to recognize the mask values mask1 and mask2 and one probe

to recognize the masked S-box input Sboxin⊕ mask1⊕ mask2, by applying

equation 3.9.

Each template attack results in a probability list for each intermediate value of

each share, denoted by probability list mask1, mask2, and share1 in figure 4.7.

Afterwards, the most probable value for each mask is extracted and removed

from the masked S-box input (share1) as shown in figure 4.7. The key guesses

k̂ can be determined by equation 4.3 for all possible v and the used plaintext p.

k̂ = mostprobablemask1⊕mostprobablemask2⊕ v⊕ p (4.3)

The key probability list can be calculated by equation 4.4 for the key guesses k̂,

where Sc(.) denotes the score of the given element determined by equation 3.9:

Sc(k̂) = Sc(mostprobablemask1) + Sc(mostprobablemask2) + Sc(v⊕ p)

(4.4)

Thus, the recognition of the correct masks is an important step, because a

wrong mask value leads to the wrong assignment of the key probabilities. Note

that I multiply the calculated score from equation 3.9 of both recovered masks

and the current key value, to penalize traces with low scores for the mask values.

The described calculations are repeated for each trace and the resulting list of
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key-probabilities is accumulated. The position of the correct key in the list is

called key rank. The template attack is successful if the correct key is the most

probable one, which corresponds to key rank 1. Thus, it is important after how

many traces the correct key is at key rank 1, which is called the Measurements

To Disclosure (MTD).

For power measurements I replaced trace t1, t2, and t3 (Figure 4.7) with one

power trace for the attack and only determined the POIs in time, as this mea-

surement method is position invariant.

Mounting the Attack with More than the Most Probable Mask Due to

the low recognition rates of the correct mask values, the idea of removing the

most probable mask was enhanced by calculating the scores for less probable

masks, too. This ideally includes the correct mask values; thus, improving the

results, but increasing the computational complexity of the attack. Each tried

mask value results in a full list of key probabilities, which has to be accumulated.

Thus considering the 10 most probable masks for both masks results in 10 ⋅

10 = 100 accumulated probabilities for each key candidate for each trace. The

evaluation was limited to the best 10 masks due to the quadratic increase in

computation time.

4.7 Practical Attack Results

In this section I evaluate the template attack. Firstly, I present the results to the

power side channel. Afterwards, I present results to separately and combined

evaluated probes.

4.7.1 Power Measurement Results

To ensure correct functionality of the threshold implementation, I carried out

the correlation-based leakage test with p0⊕k0 as hypotheses, the (non-masked)

S-box input of the first byte. There is no first-order leakage after 2 000 000

traces, which confirms the proper behavior of the implementation.

Performing a higher order attack on a TI protected S-box leads to figure 4.8,

which shows the results of the template attack (green line). The key is revealed

after 1 025 400 traces (entry “P2” of Table 4.2). This shows the effectiveness

of a template attack and proves that despite the simple measurement setup
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Figure 4.8: Key rank of Byte 0 over number of traces for power template attack.

and a lot of traces, the attack succeeds. As mentioned above, the recongnition

of both masks is important; thus, the mask recovery rates strongly influence

the Measurements To Disclosure (MTD) and have to be significantly above

guessing probability 1/256 = 0.39%. I successfully recover the masks in 0.97 %

for mask1 and 1.03% for mask2 of cases, see Table 4.3 entry “P2”. In the mean

the correct masks got rank 97 (mask1) and 95 (mask2) of 256 values. Notable

is that even in presence of such low ranks and recovery values, the attack still

succeeds. Please note, recovering the mask is done only with one encryption

since each encryption uses a different mask.

Considering less probable masks during the attack phase shows no improve-

ment for the power side-channel, as shown in Figure 4.8. In cases of mask

ranks of 97 and 95 in the mean, the chance that the correct mask is in the 10

most probable masks is small. Thus, consideration of the 10 most probable

mask for the power side channel is not enough.

To complement the analysis, a 3rd-order MCP-DPAwas carried out, which suc-

ceeds after approximately 600 000 traces (entry “P3” of Table 4.2). Hence, it is

favorable for the power side-channel tomount a 3rd-orderMCP-DPA [Mor16b]

instead of the above described 3rd-order template attack.

4.7.2 Analyzing Probes Separately

Carrying out the attack with the first positioned probe above share 1 failed, even

after 2 Mio traces (see entry “S2” of Table I). Therefore, two more probes were

added to acquire signals from each individual TI share.

I analyze the probes separately; hence I try to recover share 1 with probe1 only,
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Figure 4.9: Key rank of byte 0 over number of traces with a template attack of

separately evaluated EM probes

share 2 with probe 2 only and share 3 with probe 3 only as described in chap-

ter 4.6.

With separately evaluated probes I recover the correct key with 119,300 attack

traces (entry “M1” of Table 4.2).

I succeed to recover the masks in 4.2 % (mask1) and 8.3 % (mask2) of cases. In

the mean the correct masks got rank 46 (mask1) and 37 (mask2) of 256 possible

values. The results show that localized EM is capable of recognizing the correct

masks with a much higher success rate, compared to the power side-channel,

which leads to a lower MTD.

In the next step I take the 10 most probable masks for each trace into account;

thus, I calculate 102 key probability lists for each trace. I improve the attack

by factor 4.8, compared to the consideration of the most probable mask value

only, and reveal the correct key after 24,600 traces (table entry “M2”). Primarily,

this is due to the correct masks being among the 10 best candidates in 25 % of

the cases for mask 1 and 36 % of the cases for mask 2.

A 3rd-orderMCP-DPA succeeds after about 1,300 000 Traces (table entry “S3”)

with one probe. The use of one probe is usually preferred for the analysis.

However, in this case, (unsurprisingly) the pick-up of a single probe is too

narrow and the leakage of all 3 shares is not captured using only one probe,

which is supported by results from [Imm17].
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# Type #Best Masks #Traces

Power Measurement

P1 unprotected – 2

P2 TI,LDA 1/10 1,025,400

P3 TI,MCP-DPA* - 600 000

EMMeasurement

with 1 probe

S1 unprotected – 2

S2 TI,LDA** – > 2M

S3 TI,MCP-DPA* – 1,300 000

with 3 probes

M1 TI,LDA,separate 1 119,300

M2 TI,LDA,separate 10 24,600

M3 TI,LDA,combined 1 18,200

M4 TI,LDA,combined 10 4,300

M5 TI,LDA,combined,acc 1 > 1M

* : 3rd-order profiled MC-DPA [Mor16b]

** : First probe

Table 4.2: Measurement results, TI implementation follows [De 16a].
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4.7.3 Combining Multiple Probes

Here I present results for the combination of multiple probes. Firstly I com-

bine probes by concatenation, because it is optimal from an information the-

oretic point of view. In a second step I combine multiple probes by summing

the raw signal of every probe, to evaluate a simple combination strategy with

reduced computational effort. After each evaluation, I discuss the results by

analyzing the mechanisms of LDA and back these results by leakage tests for

the combination of multiple probes.

4.7.3.1 Combining Multiple Probes by Concatenation

Figure 4.10: Key rank of byte 0 over number of traces with combined EM

probe template attack

The combination of multiple probes by concatenation is analyzed in this sec-

tion, i.e., the trace sets T of all three probes is combined to one trace set by

tripling the length of the original traces. This results in the same trace set for all

shares; however with the information of all probes. I use the same 30 POIs, de-

rived above in chapter 4.5.1 for all three trace sets. Leading to 3∗30 = 90 input

dimensions for LDA. The number of output dimensions of LDA stayed the

same at 15 in total, to be comparable to other results. Afterwards the concate-

nated traces are used for the profiling and attack steps, described in chapter 4.5

and 4.6. The advantage of concatenation is that LDA can treat each sample

point of each probe independently; thus, can extract the leakage ideally. The

extracted leakage by LDA is the key-element in the attack chain, because the

template attack has constant number of 15 input dimensions, independent if

the probes are evaluated separately or combined.
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# Type RR* mask1 RR* mask2

Power Measurement

P1 unprotected – -

P2 TI,LDA 0.97 1.03

EMMeasurement

with 1 probe

S1 unprotected – -

with 3 probes

M1 TI,LDA,separate 4.2 8.3

M3 TI,LDA,combined 10.6 8.6

* : Recovery Rate

Table 4.3: Measurement results, TI implementation follows [De 16a].

The result of combining the signal of multiple probes in table 4.2 shows key

rank 1 with 18,200 (table entry “M3”) traces, which is factor 6.5 less, than for the

non-combined case with 119,300 traces (table entry “M1”). Figure 4.10 depicts

that the key can be revealed with a total of 4,300 Traces (table entry “M4”)

when considering the 10 most probable masks, which is factor 5.7 less traces,

compared to the independent evaluation of each probe (table entry “M2”).

Again, considering more than just the most probable mask leads to significant

improvements.

To emphasize the power of the combined probes, I compare the ranks and

recovery rates to the separate evaluation. The main reason for the lower MTD

is that I succeed to recover the masks in 8.6% (mask1) and 10.6 % (mask2) of

cases (entry “M3” of table 4.3), instead of 8.3 % (mask1) and 4.2 % (mask2)

for the individual evaluation (entry “M1” of table 4.3). The correct masks are

within the most 10 candidates in 44 % of cases for mask 1 and 37 % of cases

for mask 2. In the mean the correct masks got rank 28 (mask1) and 36 (mask2)

of 256 possible values.

These results highlight the power of combining the information of multiple

probes.
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Figure 4.11: LDA weights for combined and single evaluated probes for share

1

4.7.3.2 Illustration of the Combination of Multiple Probes by

Concatenation

In the following, I analyze the specific cause for the improvement when com-

bining the information of multiple probes (table entry “M4”), compared to the

separate evaluation (table entry “M2”). I firstly show, which probe contributes

to the exploited leakage for each share in the combined case. Hence, I analyze

for each share the contributing LDA weights of each probe. A high weight

corresponds to high leakage. Secondly I want to compare the LDA between

the separated evaluated case and the combined evaluation. Please note that

the number of input dimensions and hence, the number of dimensions of the

weight vectors w, for LDA differ for the separated (30 points) and combined

case (90 points). To back the results I compare the LDA weights to results

of the correlation based leakage test for every probe. Note that I depict the

weights for one LDA-dimension only, because the mentioned effects are ob-

servable for other dimensions as well.

Analyzing LDA Weights Figure 4.11 depicts the LDA weights over all 3

probes of share 1 in the combined case and over 1 probe in the separated case.

To show the measured leakage of each probe for this share, I firstly analyze the

LDA weights for the combined (blue) case. Hence, sample 0 to 29 correspond

to probe 1, sample 30 to 59 to probe 2 and sample 60 to 89 to probe 3. For the

first probe (samples 0 to 29) there is significant leakage exploitable.

For the second probe (samples 30 to 59), there is no clearly exploitable leakage,

probably due to a spatial location of the probe, where no leakage is observable.

However, for the third probe there is a similar amount of leakage as for the
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Figure 4.12: LDA weights for combined and single evaluated probes for share

2

first probe. Thus, mainly probe 1 and 3 contribute to the recovery of share 1

in the combined case. Comparing the combined evaluation of 3 probes (blue)

with the separate evaluation of probe 1 (red) shows that the shape and the most

leaking points are similar (mirrored at the x-axis).

Figure 4.12 depicts the weights for one output dimension of share 2. Beside

probe 2, probe 1 and 3 contribute to the measured leakage, however with much

lower weights. Thus, all 3 probes contribute to the recovery of share 2 in

the combined case. This is backed by comparing the entries “M1” to “M3”

from Table 4.3. The combination of multiple probes significantly increases

the recovery rate, e.g., from 4.2 % to 10.6 % for share 2, in case that multi-

ple probe measure leakage. Again, comparing the combined evaluation of 3

probes (brown) with the separate evaluation of probe 1 (green) shows that the

shape and the most leaking points are similar.

Figure 4.13 depicts the weights for one output dimension of share 3. Again, the

shape and leaking points from LDA with one probe are similar to the one with

three probes. Probe 1 contributes marginally and probe 2 does not contribute

to the measured leakage. In this case mainly probe 3 contributes to the recovery

of share 3 in the combined case. This is backed by comparing the entries “M1”

to “M3” from Table 4.3. The recovery rate for share 3 is constant in case that

mainly one probe measures leakage, e.g., 8.3 % and 8.6 %. Again, comparing

the combined evaluation of 3 probes (purple) with the separate evaluation of

probe 1 (blue) shows that the shape and the most leaking points are similar.
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Figure 4.13: LDA weights for combined and single evaluated probes for share

3

The above results show that combining multiple probes leads to a massive im-

provement of measurement results (if multiple probes measure leakage), with-

out significantly increasing the computational complexity of the attack. I at-

tribute the improvement to the following two reasons: Firstly, the leakage of

multiple probes is accumulated, which results in more exploitable leakage. Sec-

ondly, the effects caused e.g., by electrical noise, thermal noise, etc. can be easier

eliminated by measuring the S-box-input with multiple independent observa-

tions.

Figure 4.14: Correlation based leakage test for all shares and probe 1

Analyzing Correlation Based Leakage Test Results To backup the results

from the previous section, I carried out the correlation based leakage test for

each probe and each share. In theory the LDA weights and the leakage test

should show leakage for the same points in time and shares for each probe.

Figures 4.14, 4.15 and 4.16 show the leakage of every probe for each share. As

input for LDA, samples 1490 to 1520 are taken from the figures, which covers
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most of the leaking points.

Figure 4.15: Correlation based leakage test for all shares and probe 2

Figure 4.14 and probe 1 show leakage for share 1 and share 2. This corresponds

to the observed weights of Figure 4.11 and 4.12 in samples 0 to 29. The lower

correlation for share 2 results in a lower weight factor.

Probe 2 depicted in Figure 4.15 mainly shows leakage for share 2, which is

supported by the high amplitude in sample 30 to 59 in Figure 4.12 and close-to

0 weights in Figures 4.11 and 4.13.

Leakage for probe 3 is depicted in Figure 4.16 and shows significant leakage for

all shares. This results in weights higher than zero in Figures 4.11, 4.12 and 4.13

in sample 60 to 89. Similar to the behavior of probe 1, lower leakage results in

lower weights.

Comparing the weights determined by LDA to the detected leakage by the cor-

relation based leakage test shows that time and amplitude of the leakage match

each other.

Figure 4.16: Correlation based leakage test for all shares and probe 3
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Figure 4.17: Key rank of byte 0 over number of traces with combined EM

probe template attack by summation

In this section, I examined the combination of multiple probes by the con-

catenation and showed that thereby combined measurements lead to more ex-

ploitable leakage. In the following I will investigate the combination of multiple

probes by summing the signals of every single probe.

4.7.3.3 Combining Multiple Probes by Summation

The summation of raw signals is a simple and “low effort” method to combine

multiple probes. Thus, I evaluate in the following this combination technique

The sum of the three probe raw signals is calculated, resulting in one common

trace set for all shares (similar to power measurements). Thus, the number

of input dimensions stays constant at 30, compared to the separately evalu-

ated case. I present the results for this kind of combination and explain the

results with the help of analyzing LDA weights and correlation based leakage

test results. Due to the summation, one trace results in 30 points in time for 3

probes. To be comparable to the other evaluation methods, I chose the number

of LDA-output dimensions equal 15. For the summed case, the attack does not

succeed after 1 Mio. traces.

To achieve a better understanding of the mechanisms of the combination by
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Figure 4.18: LDA weights for accumulated probes for share 1

Figure 4.19: LDA weights for accumulated probes for share 2

summation multiple probes I firstly analyze the LDA weight factors for every

share.

Illustration of theCombination of Multiple Probes by Summation Sum-

ming the signals decreases the performance of the attack significantly.

Figure 4.18, 4.19 and 4.20 show the LDA weights for the summed combina-

tion of share 1, 2 and 3. The leakage for share 1 and 3 are mainly extracted

from the first 20 samples. This shows that LDA extracts the leakage for 2 dif-

ferent shares out of the same points in time/dimensions, based on the same

trace, which can lead to an increased algorithmic noise between shares. Note

that the amplitudes of different combination strategies cannot be easily com-

pared, due to the normalization during LDA computation, which is explained

in chapter 3.1.1.

Analyzing Correlation Based Leakage Test Results To back the results

from the analysis of the LDA weights, I carried out the correlation based leak-

age test for each share. In the accumulated case this consists of only one plot,
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Figure 4.20: LDA weights for accumulated probes for share 3

due to the summed probe signals. Figure 4.21 shows a maximum correlation of

0.56 for share 1, 0.48 for share 2 and 0.32 for share 3. Compared to the separate

evaluation, where the correlation reaches 0.72 for share1, 0.59 for share2 and

0.53 for share3, this is significantly less. The reduced correlation can be caused,

e.g., by a higher (algorithmic) noise level.

Figure 4.21: Correlation based leakage test for accumulated probes for all

shares

4.7.4 Coupling between Multiple Probes

Due to the close distance between all three probes coupling is a threat. Cou-

pling between probes would make an independent measurement of the three

shares impossible, which would result in a decreased attack efficiency. There-

fore, coupling is relevant in case that a significant amount of leakage is caused.

Analyzing figures 4.14 to 4.16 shows that all probes show different leakage

characteristics for all shares. Thus, the coupling between the three probes is

neglectable in this case.
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4.7.5 Comparing Localized EM and Power Measurements

In this section I compare the results of power and multiprobe localized EM

measurements, which are both using the identical FPGA configuration (bit file).

For the evaluation, I used 500k profiling-traces for both setups and the same

number of input and output LDA-dimensions to make the results comparable.

To rule out a performance gain due to the different measurement approaches,

I perform a standard template attack for localized EM and power against an

unprotected Canright S-box. The attack shows that the MTD is similar for

both measurements. Substantial differences can therefore only be caused by

the individual measurement approaches. With the help of localized EM mea-

surements the attack is stronger, compared to power measurements, because

each of the three probes has a focused view on one share. In contrast the

power side-channel is measuring all shares at the same time and has to recover

the values of all shares out of the same trace. On a conceptual level this would

mean at least a higher level of algorithmic noise and a lower SNR.

Figure 4.22: Key rank of byte 0 over number of traces for power and EM (best

masks for both).

The measurements show that I am able to reduce the MTD by a factor of

1, 025, 400/4, 300 ≈ 238, comparing combined multi-probe localized EM at-

tacks (table entry “M4”) with the power side channel (table entry “P2”). The

lower security gain is probably caused by higher ranks of the correct masks,

when compared to the power side channel. This strongly supports the argu-

ment that in case of considering the ten most probable masks, multi-probe

localized EM measurements can further reduce the amount of required traces.

Whereas power measurements do not benefit in the same way when consider-
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ing the ten most probable masks. Power measurements would probably require

to consider muchmore less probable masks than ten, unfortunately this was not

possible due to a quadratic increase in runtime.

Nonetheless, the power measurements show that an attack is still possible with

much lower ranks of the correct masks. However, multi-probe localized EM

can significantly reduce the security gain; thus leading to amore powerful attack.

4.8 Conclusion

In this chapter I showed a successful multiprobe attack on a second-order se-

cure TI. The measurements are based on simultaneously acquired traces using

three, high-resolution EM probes. I show that the shares can be spatially sep-

arated by localized EM measurements on an FPGA implementation. Thereby,

undermining a central security assumption in the original paper. As a result,

more powerful attacks can be carried out by placing one probe above each share.

Thus, one probe can focus one share, leading to a significantly decreased MTD,

compared to the power side channel, which enables a global view on all shares.

However, beside the most significant shares, also other shares are observed by

most probes. Thus, combining the information of all probes for all shares by

concatenation further decreases the MTD by factor 5.7, compared to the in-

dividual evaluation. In total, the attack requires only 4, 300 traces to break the

scheme in the combined case.

As a central element I use LDA to combine the leakage of multiple probes.

Hence, I firstly describe the impact of each probe to the exploited leakage

by analyzing the LDA weights. I show that in our case, LDA combines the

available leakage of multiple probes for each share. The improvement due to

the combination of probes can be observed for the mask recovery rates (share

2 and 3), comparing the separated evaluation case and the combined. The

LDA weights show leakage for all 3 probes for share 2, which results in a mask

recovery rate of 10.6 % in the combined case instead of 4.2 % in the separate

evaluation. In contrast share 3 is mainly observed by one probe. Thus, the

combination does not significantly increase the mask recovery rate.

Additionally, I show that considering less probable masks can improve the at-

tack. In my case, the attack reduced the MTD by factor 4.2 when consider-

ing the 10 most probable masks in the combined (by concatenation) case. To

complement the analysis, I carry out a 3rd-order MCP-DPA [Mor16b]. This
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attack succeeds for the power side channel after 600 000 traces and for the EM

side channel for 1,300 000 traces, which shows that it is the better choice for

the power side channel; however, multiprobe EM attacks still outperform the

power side channel.
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Chapter 5

Single Trace Multiprobe Side

Channel Attacks Against an

Asymmetric Cipher

In the first chapters I motivated and briefly explained the background of multi-

probe measurements. In the last chapter, I showed the weakening of a security

assumption for a masking scheme by using multiprobe measurements. In this

chapter, I carry out a single trace multiprobe attack against an exponentiation

of asymmetric ciphers as a second experiment with multiprobe side channel

attacks.

To efficiently combine the leakage of multiple probes, it is of central impor-

tance to maximize the exploited leakage for each individual probe. Firstly, I

improve the algorithmic approach of Heyszl et al. [Hey14] by using PCA for

pre-processing and the expectation maximization algorithm for one probe. Af-

terwards, I combine the measurements of 3 probes and compare the results for

an unprofiled and profiled attack to the single probe approach.

In section 5.1 I firstly introduce the improved algorithmic approach for one

probe. I back the suggested algorithmic improvements by practical experi-

ments. I introduce the measurement setup in section 5.2 and present practi-

cal results for the algorithmic improvement of one probe in section 5.3. Af-

terwards, I combine multiple probes by concatenation and summation for an

unprofiled and profiled attack scenario in section 5.4. Later I discuss the use

of PCA, the different ways of combining multiple probes and the coupling be-

tween the probes in section 5.5, 5.6 and 5.7. I summarize the contribution and

findings in section 5.8.

The background and related work of single trace non-profiled and profiled at-

tacks against exponentiations is described in section 2.2. The attack concept

and the base of the chosen approach developed by Heyszl et al. [Hey14] is ex-

81
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plained in section 3.2.1. Parts of this chapter have been published on COSADE

conference in 2015 in the following publication: [Spe15] The presented results

are originated in the collaboration with the coauthors.

5.1 Improved Unprofiled Attack Against

Exponentiations

In this section, I describe the algorithmic approach to clustering-based non-

profiled attacks on exponentiations, which improves previous work [Hey14].

5.1.1 PCA for Dimensionality Reduction and Feature

Selection

Side-channelmeasurements usually lead to big amounts of data, especially when

high sampling rates for magnetic field measurements are required. This in-

creases required computational power and memory consumption during sub-

sequent data analysis. Only a small part of the data will contain exploitable leak-

age information. Hence, feature selection to discard non exploitable trace parts is

desirable.

Simple trace compression [Man07] is commonly used and usually justified by

electrical properties. However, simple trace preprocessing techniques have been

shown to have negative effects on results [Hey12b]. Thus, more advanced trace

compression techniques are desirable. Hence, PCA is used before clustering.

Standaert and Archambeau [Sta08] compare PCA and LDA in the context of

template attacks for trace compression and confirm that LDA leads to superior

results. I disregard LDA in the following, because the requirement of train-

ing data. Furthermore, PCA has been applied to side-channel analysis for data

reduction in several contributions [Boh03, Arc06, Sta08, Bat12, Mav12] for dif-

ferent attacks of which Archambeau et al. [Arc06] were the first to describe the

use of PCA in the context of template attacks. I concentrate on non-profiled,

unsupervised methods, specifically, on PCA in this section.

As described in Sect. 3.2.1, the recorded side-channel trace t is cut into trace-

segments corresponding to n exponent bits (see chapter 3.2.1). This leads to

the real matrix T of measurement data, with the shape n × γ for every probe
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(see chapter 3.2.1). Before applying PCA, I removed the mean of every trace-

segment as a standard measure. Then I apply PCA to T, which results in the

matrix of principle componentsTPCA (see chapter 3.2.2). In these experiments,

I normalize the variances of the principal components to one, i.e., I directly

use TPCA = U instead of U ∗ Σ (see chapter 3.2.2). This measure results in a

clustering independent of the original variance, which improves our results.

Ideally, a transformation into a reduced subspace should maintain the ’useful”

information (key-dependent) while neglecting ’not useful’ (not key-dependent)

information, which is difficult without supervision, because the leakage charac-

teristic for the device is unknown. PCA combines correlating input dimensions

into single principal components. Thus, I assume that leakage is located in one

or a few principal components; hence, following this idea, the other compo-

nents contain only non-leaking information (noise). Thus, to reduce the noise,

principal components have to be selected. 1 Archambeau et al. [Arc06] pro-

pose to only retain the first-ranked components assuming that the leakage is

contained there, while discarding the remaining low-variance ones, assuming

only noise is contained. This is only true in case the key-dependent leakage

contains the biggest variance, e.g., after calculating the mean of multiple traces

with the same secret. Batina et al. [Bat12] found in their practical experiments,

that results of correlation-based DPA improved when removing first-ranked

components. There are several reasons for high variances (which are located in

the first-ranked components) of the trace segments, e.g., data-dependent signal

influences, the clock signal and noise, which are irrelevant to the desired classi-

fication. I suspect that relevant and irrelevant signal parts will aggregate within

separate components. Also, from practical experience, the ’interesting’ leakage

signal parts are rather low-variance in the case of single-execution attacks.

Hence, I propose a selection strategy which discards several highest-ranked as

well as many, low-ranked components, because they either contain noise or

information which is not useful. I either select single principal components

or a number of consecutive components. In my opinion, this strategy should

nonetheless apply to many attacks against implementations of exponentiations.

Reduced trace-segments TPCA,pc∶pcାi = (PCpc, ...,PCpcାi) are derived, where

the principle components are located in the columns of the matrix, with pc

the first selected component and i ≥ 1 the number of consecutive compo-

nents retained. The values of pc ∈ [1, 20] and i ∈ {1, 2, 4, 6, 9} were tested

1The effect of neglecting unwanted signal parts, by principal component selection, is illustrated in chapter 5.5
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during practical experiments. This selection strategy reflects the approach of

an attacker who is unable to perform profiling. An optimal selection of com-

ponents can certainly not be determined a priori because it is highly device- and

application-specific (general issue in machine learning [Wol97]). Hence, with-

out a priori-knowledge, an attacker has to trial different values for pc and i.

The reduced trace segments TPCA,pc∶pcାi are reduced in number of dimensions,

compared to the original trace T. The subsequent task is to extract informa-

tion about the key out of TPCA,pc∶pcାi, which corresponds to a labeling of the

data. While Heyszl et al. use k-means clustering, I improve this by using the

expectationmaximization algorithmwhile keeping theGaussian distribution as-

sumption, which both algorithms are based on. The k-means and expectation

maximization algorithm, introduced in chapter 3.2.3 and 3.2.3.2. To evaluate

the result, the BFC is calculated, which is explained in chapter 3.2.4. The BFC

roughly corresponds to the number of bits an attacker has to brute-force in

case the key is brute-forced according to the probabilities determined by the

silhouette index in equ. 3.18.

5.2 Measurement Setups

5.2.1 High Resolution EMMeasurement Setup

For measurements in this chapter there are the following modifications com-

pared to the setup in chapter 4:

• We use an area of 1700 µm × 1700 µm on the surface of the die

• We arrange three probes in a fixed formation (see figure 5.1), and place

them on 400 (20 × 20) different positions within this area to able to

evaluate 400 data sets by our analysis.

• The distance of the probes to the die surface is approximately 100 µm.

• We used three probes with coil diameters of 250 µm, 150 µm and 100 µm

• The signal is sampled synchronously to the device’s clock at 2.5GS/s.

• Instead of a 10Ω resistor a 1Ω resistor is used.

Figure 5.1 depicts the geometric arrangement of the probes from the side and

from the top.
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Figure 5.1: Geometric arrangement of measurement-probes on FPGA die sur-

face

5.2.2 Device-under-Test

As a device under test, I use a decapsulated Xilinx Spartan 3A FPGA chip which

is configured with an ECC design and performs an 163 bit elliptic curve scalar

multiplication using a Montgomery ladder. This algorithm is a classical candi-

date for attacks against exponentiation algorithms since it processes the secret

exponent bit-wise in n constant time segments. Furthermore the Montgomery

ladder is performing the same operations in every iteration, independent of the

key value, which minimizes the leakage. The key dependent part of the algo-

rithm is the access to different registers, similar to the algorithm 1, described in

chapter 3.2.1.

5.3 Separate Evaluation of Probes

In this section I present practical results for the improved approach of Heyszl et

al. [Hey14]. I firstly investigate the behavior of differing PCA components and

window sizes. Afterwards, I show practical results for the clustering based and

profiled attack for one probe and compare the unprofiled attack to the approach
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of Heyszl et al. [Hey14]. For the practical evaluation I collect measurements at

400 measurement positions (with all 3 probes concurrently) to gain conclusive

insights from a high number of tests.

5.3.1 Quality of Principal Components

Figure 5.2: Mean brute-force complexity for different selected principal com-

ponents (pc and i) over all measurement positions including standard

deviation as bars of the unprofiled analysis

The algorithmic approach of chapter 5.1 includes the selection of principal

components after PCA as a first step before clustering. The selection can be

described by two parameters, pc the first selected component, and, i ≥ 1 the

number of consecutively selected components after the pc-th one as described

in chapter 5.1.1. In this section I investigate the quality of different param-

eter choices. I executed the clustering-based attack on every single measure-

ment from all 3 probes and 400 positions with choices of pc ∈ [1, 20] and

i ∈ {1, 2, 4, 6, 9} and assess the quality using the remaining brute-force com-

plexity explained in chapter 3.2.4.

I show the means over 400 results (measurement positions) for the resulting

brute-force complexities for each combination of parameters pc and i in fig-
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ure 5.2 for the second probe. I am able to show some fundamental properties

of the measurements. High mean brute-force complexities of > 100 bits are

certainly not within the range of realistic computing capabilities. They result

from including many low-scoring results. The standard deviations are shown

as vertical bars and indicate that there are multiple results with significantly

lower brute-force complexities (the diagram does not include +1 bits for as-

signing labels to classes). As an important observation, low-ranked compo-

nents (pc < 10) seem preferable overall and first-ranked principal components do not

contain exploitable leakage (see curve with i = 1 or i = 2 in figure 5.2). This con-

firms the assumptions from chapter 5.1.1 as well as similar observations from

Batina et al. [Bat12]. Thus, I discard first-ranked as well as low-ranked principal com-

ponents before further analysis and achieve significantly improved brute-force

complexities.

This is especially important for distribution-based clustering algorithms, be-

cause high-variance noise will lead such algorithms in wrong directions. Note

that even if ’good quality’ components are included in addition to higher-ranked

’non quality’ ones (e.g. figure 5.2, curve for pc = 1 and i ∈ {4, 6, 9}), the results

are unsatisfactory (brute-force complexity > 100 bits).

The component number pc = 4 seems to contain the most leakage on average,

reaching the lowest mean brute-force complexities. It seems that PCA concen-

trates most of the exploitable leakage information into a single principal component. This

means that a choice of i = 1 for the number of selected consecutive princi-

pal components led to the best results in circumstances for the joint analysis

of 3 probes and the second probe. 2 I used this choice in the practical evalu-

ation in the next Sect. 5.3.2. As another observation, curves with i > 2 lead

to low complexities as soon as component 4 is included in the consecutively

selected components. For illustrative purposes, I show the resulting principal

components after PCA transformation of an example trace in chapter 5.5.

Profiled Evaluation I compare the improved non-profiled attack with a pro-

filed template attack, for details see chapter 3.2.5, to compare their performance.

Figure 5.3 shows the mean for different window sizes and the vertical bars show

the standard deviation. When carrying out the template attack with i = 1, the

BFC shows a value lower than 100 only for pc = 4. Most of the (usable) key-

2Probe 1 and 3 show a different optimal choice of i. However the mean for both probes is still above 120

bits and also results from Figure 5.4d suggest that probe 2 mainly contributes to the measured leakage, thus i

should be chosen in a way that it is favorable for the best probe.
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dependent information is located in pc = 4 (and marginally the 2 succeeding

principal components). This corresponds to the observation of the unprofiled

attack. In contrast to the unprofiled case, the profiled case can profit from

a bigger window size, where window size i = 9 shows the best results with

a BFC of 50 bits in the mean (see entry ’SP2’ in Table 5.1, page 96), com-

pared to the unprofiled case for i = 1 of 60 bits (see entry ’SU2’ in Table 5.1,

page 96). Due to profiling, the profiled attack can use (and combine) informa-

tion in different principal components. In contrast the unprofiled attack is not

capable of using and combining the information in different principal compo-

nents. This demonstrates that the profiled attack (like expected) outperforms

the non-profiled attack and that profiled attacks can profit from the informa-

tion contained in dimensions with a BFC-mean of 100 and higher.

Figure 5.3: Mean brute-force complexity for different selected principal com-

ponents (pc and i) over all measurement positions including standard

deviation as bars for the profiled evaluation of the profiled analysis

5.3.2 Analyzing Probes Separately With an Unprofiled and

Profiled Attack

For every probe, there are 400 measurements from different positions. I an-

alyze the data from the three available channels separately: Firstly I perform

pre-processing by applying PCA, secondly I perform clustering using the ex-

pectation maximization algorithm and thirdly I compute the remaining brute-
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(a) (b)

(c) (d)

Figure 5.4: Brute force complexity occurrences over different principal com-

ponents

Single probe 1 (250 µm Ø): Fig. 5.4a

Single probe 2 (150 µm Ø): Fig. 5.4b

Single probe 3 (100 µm Ø): Fig. 5.4c

Combined probes: Fig. 5.4d

force complexity. For every probe separately, and for every selection of prin-

cipal components (for every pc ∈ [1, 20] while i = 1), I summarize the results

from 400 tests in figures 5.4a, 5.4b, and 5.4c. Figure 5.4a shows results for the

250 µm probe, figure 5.4b for the 150 µm probe and figure 5.4c for the 100 µm

probe. The figures show, how many of the 400 measurements of each probe, and for

every selection of pc, lead to which brute-force complexities. Note that the

results, plotted for pc = 21 consists out of the best component pc for every

position, which becomes relevant in the next section. The occurrence rate is
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visually indicated by the size of the respective dots. Bigger dots mean that the

corresponding brute-force complexity has occurred more often. For example,

in figure 5.4a, almost all of the 400 measurements lead to a maximum brute-

force complexity of 163 for pc < 5 and pc > 10. For pc = 5, however, many

measurements lead to lower resulting brute-force complexities, some even of

the minimum. The red dashed line highlights the 32 bit complexity level up to

which all outcomes are easily manageable for attackers through computation.

As an important finding, it can be observed, that the 150 µm probe depicted

in Fig. 5.4b leads to the best results by far. For the principal component pc =

4, an astonishing percentage of 59 % out of the 400 measurements led to a

remaining brute-force complexity ≤ 32 bit (summing up all outcomes equal

or lower the red dashed line). This high number was unexpected and means

that with the improved algorithmic approach, more than half of all measurement positions

exhibited sufficient leakage for a break. The 100 µm probe depicted in Fig. 5.4a

leads to only 6 % ≤ 32 bit for pc = 5 and the 250 µm probe depicted in

Fig. 5.4c only leads to 5 % ≤ 32 bit for pc = 8. Hence, the 150 µm probe

seems to work best for this measurement setup and DUT. Please note that we

adjusted the single probes by hand, hence probes 1 and 3 perform probably

worse due to a lager probe to die distance, which results in less leakage. Since

finding suitable measurement positions is rather easy (in our case, a probability

of 50 % using the best probe), attackers should test different measurement

positions instead of employing extensive computational brute-force.

Without knowing pc = 4 and i = 1 a priori, attackers could make minimal

heuristic assumptions e.g., pc ∈ [3, 10] and i ∈ [1, 4, 9] which could fit simi-

lar circumstances. This would result in an additional brute-force complexity of

+4 bits which is not included in Fig. 5.4 and justified by significantly improved

results.

I compared the performance of the k-means versus the expectation maximiza-

tion clustering algorithm in the context of single channels. Since I only select

single components (i = 1) after PCA, channels only consist of single dimen-

sions and there is not much benefit from more free parameters in the clus-

tering algorithm. This is confirmed by the fact that expectation maximization

and pc-means clustering lead to almost equal results. This means that the reported

improvement is mainly due to the PCA transformation and the selection of components.

In the multi-channel case, however, more dimensions aggregate from separate

channels making expectation maximization more eligible.
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Comparison of this algorithmic approach to the attack of Heyszl et al. [Hey14]

To demonstrate the improvement of the proposal, I carried out the original at-

tack of Heyszl et al. [Hey14] on the same measurements. I firstly compressed

the trace of each probe according to the “sum-of-squares” method of each

clock cycle and applied k-means clustering afterwards. This results in a remain-

ing brute-force complexity of ≤ 32 bit in none (0 %) of the 400 measurement

cases using the 150 µm probe. Compared to 59 % from the improved attack,

this means that an astonishingly improved result from applying PCA and ex-

pectation maximization clustering is achieved. (Only the 250 µm probe led to

marginally better results using the previous method, i.e., 8% instead of 3% of

the cases ≤ 32 bit, however, this does not invalidate the previous statement in

my opinion.)

Profiled Evaluation To compare the performance of the unprofiled algo-

rithmic approach, I mounted a profiled attack. I firstly show the resulting BFCs

for the profiled attack and compare the results to the unprofiled case afterwards.

Figures 5.5a, 5.5b, 5.5c, show the BFCs for i = 9 over the different principal

components for probe 1, 2 and 3 for the profiled case. 57% of positions (59%

from the non-profiled attack) lead to remaining brute-force complexities ≤ 32

bit for the 150 µm probe, with i = 9 and pc = 4. Using this specific score, the

profiled attack does not outperform the non-profiled attack. However, con-

sidering the mean values of the brute-force complexity, the profiled template

attack outperforms the unprofiled attacks with 50 bits in the mean, instead of

60 bits in the unprofiled case.

Expanding the analysis the occurrences of the BFC between 32 and 160 bits,

the profiled analysis shows more occurrences than the unprofiled attack in this

region. For the profiled measurements 34% of measurement positions lead to

a BFC between 32 and 150 bits; however in 13 % only, in the unprofiled case.

This clearly shows an “all or nothing” tendency for the unprofiled evaluation.

Thus, the unprofiled attack is more likely to recover the whole key or no key

information at all.
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(a) (b)

(c) (d)

Figure 5.5: Brute force complexity occurrences over different principal com-

ponents for the profiled evaluation

Single probe 1 (250 µm Ø): Fig. 5.5a

Single probe 2 (150 µm Ø): Fig. 5.5b

Single probe 3 (100 µm Ø): Fig. 5.5c

Combined probes: Fig. 5.5d

5.4 Combining Multiple Channels

In this section I combine the measurement of multiple probes. At first, I will

examine the results for the side channel measurements using a concatenation

of probe signals.

Multiple simultaneous measurements channels are combined by concatenating

the trace-segments from different channels, which correspond to the same ex-

ponent bits [Agr03, Hey14]. PCA is applied to all side-channel measurement
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channels separately before concatenation. For example, segments T1
PCA,pc∶pcାi

from measurement channel 1 are combined with segments T2
PCA,pc∶pcାi from

measurement 2 leading to combined segmentsTcombinedPCA,pc∶pcାi = (T1
PCA,pc∶pcାi,T

2
PCA,pc∶pcାi).

I chose this approach due to better results, compared to the case of concate-

nating the traces first and applying PCA afterwards. This procedure leads to a

BFC of 67 bits in the mean. This is different to the procedure of the last chap-

ter, where I concatenated first and applied the dimension reduction afterwards.

However, first concatenating all 3 probes and afterwards applying PCA leads to

a BFC of 92 bits for all 3 probes combined. This shows the limits of our cho-

sen unprofiled method PCA and the difficulty to extract relevant information

from high dimensional spaces. Please note that the approach of chapter 4.7.2

is not comparable, because in chapter 4.7.2 no information of multiple probes

is combined for the same share.

Hence, I firstly apply PCA to each trace and afterwards concatenate the princi-

pal components. Furthermore I show in the following that the selection strat-

egy of the combined components is of central importance to the success of

the attack and compare the unprofiled attack to the profiled case. Finally, I will

investigate the combination by summing the collected signals of each probe.

Please note that an attacker would rather use the same values for pc and i in all

channels because it significantly increases the attack complexity to test different

pc-s and i-s for every channel without profiling (e.g. repeat the clustering process

for all combinations of 20 principal components, with 5 window sizes and 3

probes leads to (20 ∗ 5)3 combinations).

The combination of multiple probes is especially important in the case that an

attacker can only observe one execution with a constant key, because it may be

one way to increase the observed leakage as explained in chapter 2.2.

For the measurements I chose a fixed geometric arrangement of the probes,

close to the surface of an FPGA die and performed 400 measurements at dif-

ferent positions to gain conclusive insights from a high number of tests.

5.4.1 Combining Multiple Probes by Concatenation

After the individual analysis of the three measurement channels, I combined

the channels for analysis. Firstly, I perform pre-processing by applying PCA
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to each probe individually, secondly I perform clustering using the expectation

maximization algorithm and thirdly I compute the remaining brute-force com-

plexity. The motivation for attackers to combine channels is to increase the

exploitable leakage to improve attack outcomes, e.g. instead of trying to find

better measurement positions.

A visual comparison of the combined results in Fig. 5.4d to the individual re-

sults in Figures 5.4a, 5.4b, and 5.4c gives the impression, that the overall result

is comparable to Fig. 5.4b. However, expressed quantitatively as before, the

combined channels lead to a remaining brute-force complexity of ≤ 32 bit in

only 54 % of the cases and a mean of 67 bits for pc = 4 (see entry ’MU1’ in

Table 5.1). Hence, as an important result, instead of an improvement, I ob-

serve a slight degradation compared to the best individual case which led to

59 % of cases ≤ 32 bit and a mean of 60 bits (see entry ’SU2” in Table 5.1),

which is probably caused by the low amount of leakage from probe 1 and 3 and

the leakage in different components. This means that the described clustering-

based non-profiled attack is unable to benefit from a combination of channels (with

this measurement setup and DUT).

Selection Strategy of Principal Components for the Unprofiled Combi-

nation The degradation in case of (unprofiled) combined probes may be

caused by the chosen selection strategy of principal components, which is de-

picted in Figure 5.6. I perform PCA for every probe individually and select

equal values for pc and i and concatenate the selected vectors.

This strategy minimizes the required computational complexity for the selec-

tion. Increasing the number of selected components i to lower the number

of possible combinations would include more noise, in these circumstances.

This would degrade classification results significantly (Fig. 5.2 shows curves

with i > 1, which result in higher mean-values). To be able to estimate the

impact of the chosen selection strategy, I combine the best principal compo-

nent of every probe for every position, which assumes that either an attacker

has a close-to optimal unprofiled selection strategy or that the attacker can test

all combinations of principal components for combination. However, testing

all combinations of pc’s of every channel, increases the complexity, e.g., 20

principal components and 3 probes would result in 203 times clustering. Note

that the selection of the best components is no realistic attack scenario for to-

days state-of-the art attacks, because it selects the best components based on a
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Figure 5.6: Selection strategy for the combination of multiple probes

known key.

I depict the case of this “close-to optimal” selection strategy in Figure 5.4d for

pc = 21. It improves the results, compared to the simple selection strategy

for combination, where 75 % of positions lead to a brute-force complexity of

≤ 32 bit and a mean of 37 bits. This test shows that the selection strategy of

components massively impacts the success of an unprofiled multiprobe attack.

Combination of Simulated Simultaneous Measurements with the Sec-

ond Probe To show that in general the above presented unprofiled approach

is able to improve the attack result by the combination of multiple probes, I

combine the second probe at three different positions. Thus, I simulate a simul-

taneous measurement approach with the exact same probe. The two additional

positions are taken from x+1, y+1 and x+2, y+2, with x, y being the original

position, which results in an 18x18 measurement grid. The three traces from

different positions are again, transformed separately by PCA and afterwards
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# Type #Probe #BFC < 32 Bit BFC Mean i

Separate Evaluation

SU1 unprofiled 1 24 148 1

SU2 unprofiled 2 235 60 1

SU3 unprofiled 3 19 147 1

SP1 profiled 1 41 122 9

SP2 profiled 2 226 50 9

SP3 profiled 3 42 121 9

Combined Evaluation

MU1 unprofiled 1+2+3 215 67 1

MU2 unprofiled; k = 21 1+2+3 280 37 1

MP3 profiled 1+2+3 242 44 9

MP4 profiled,acc 1+2+3 7 151 9

MU5 unprofiled; three x 150 1+2+3 324 * 30 1

* : extrapolated result

Table 5.1: Measurement results, ECC implementation

concatenated with i = 1, in the same way as explained above. These concate-

nated traces are again evaluated by the expectation maximization algorithm and

the BFC is calculated. To be comparable with the other measurements, it is nec-

essary to extrapolate the number of positions, where the BFC is below 32 Bit,

because due to the smaller measurement grid of 324 positions, instead of 400

measurement positions. Extrapolated to 400 measurement positions results in

324 measurement positions below 32 Bit (see entry ’MU1’ in Table 5.1) of BFC,

which is a major improvement compared to 235 measurement positions below

32 Bit in the individual case. Hence, the above presented unprofiled attack

approach is able to combine the leakage of multiple probes. This is probably

possible due to the same probe characteristics at each measurement point.

Profiled Evaluation In this section I show the results for the profiled com-

bination by concatenation and compare it to the unprofiled case.

The combination of channels leads to an improved 61 % of the cases with

a BFC ≤ 32 bit and a mean of 44 bits (see entry ’MP3’ in Table 5.1), with
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i = 9 and pc = 4, compared to the best individual probe with 57% brute-force

complexity of ≤ 32 bit and a mean of 50 bits (see entry ’SP2’ in Table 5.1). This

illustrates that the profiled attack sill benefits from measurements with BFCs

higher than 100 bits in the mean. For the combination of multiple probes, the

profiled evaluation outperforms the unprofiled evaluation in BFC-mean and

number of positions with BFC≤ 32 bit. Comparing Figure 5.5d to Figure 5.4d

shows that in the profiled case, the combination can benefit from every single

probe, e.g., for pc = 6 to pc = 8 mainly probe 3 shows measurements with a

BFC less than 32 bits, which is also the case for the combined evaluation.

5.4.2 Combining Multiple Probes by Accumulation

In this section I combine traces by summing the signals of the individual probes

and apply PCA afterwards. The evaluation is only shown for the profiled tem-

plate attack, which is compared to the profiled template attack for the concate-

nated combining of multiple probes.

Figure 5.7 shows the mean of BFCs for different i over the selected principal

component pc. It reaches a mean of 151 bits and 2 % of the position with a

BFC≤ 32 bit for i = 9. In comparison to the concatenated case, which reaches

a mean of 44 bits and 61 % of measurement positions with a BFC ≤ 32 bit,

this is significantly worse.

Figure 5.8a and 5.8b show different BFCs over principal components for the

combination of probe 1+2 and 1+2+3. Combining probe 1+2 shows again

that the second probe is capable to exploit most leakage, which results in a

mean of 89 bits and 23 % of measurements positions with a BFC ≤ 32 bit

(see entry ’MP4” in Table 5.1). However, adding the third probe diminishes

the leakage captured with the second probe, which results in a mean of 151

bits and 2 % of measurement positions with a BFC ≤ 32 bit. In contrast to

the concatenated case, the template attack cannot benefit from a probe with an

individual BFC mean of 121 bits, in fact it significantly lowers the exploitable

leakage.

The results show that combining multiple probes by summing is outperformed

by the combination by concatenating the signals.
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Figure 5.7: Mean brute-force complexity for different selected principal com-

ponents (pc and i) over all measurement positions including standard

deviation as bars for the combined profiled evaluation by summing

the signals of every probe

(a) (b)

Figure 5.8: Brute force complexity occurrences over different principal com-

ponents for the profiled evaluation for summing the probe-signals

Combined probes 1+2: Fig. 5.8a

Combined probes 1+2+3: Fig. 5.8b
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5.5 Discussions of Principal Component

Analysis

In this section I want to discuss in detail, how PCA enables an unprofiled attack

to reduce the required brute-force complexity.
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Figure 5.9: Example of an original trace-segment (topmost) and its high-ranked

principal components below. The 4-th component contains signal

leakage. The bottom trace depicts the profiled Difference of Means

(DOM).

To illustrate the power of PCA, figure 5.9 depicts principal components after

PCA transformation for illustrative purposes. I used an example measurement
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where the side-channel leakage is sufficient for the attack to succeed without

false classifications when selecting the pc = 4-th component and i = 1 for

expectation maximization clustering. The topmost diagram depicts one trace-

segment in its original form. Below, the four highest-ranked principal compo-

nents are depicted. For figure 5.9, the principal components, which would be

represented as a single sample, are transformed back to be comparable to the

original trace. The (back-)transformation is calculated by Tb = U ∗ Σ ∗ V∗

and setting all singular values in Σ to zero, except the one I want to plot. The

first backtransformed principal component shows a regular pattern, with a peak

every 125 samples, which corresponds to the clock frequency. This indicates

(together with above measurement results) that no key-dependent information

is contained in the first principal component. Components 2 and 3 mainly

contain no visible structure. However, the fourth principal component (the

principal component containing leakage) shows a structure again. The lowest

diagram depicts the profiled DOM, hence the ideal weights for each point in

time. When comparing the DOM with the pc = 4-th component, they show

similar POI and weights. This shows that PCA is able to extract the leakage of

the traces and can transform the trace segments into key-dependent samples

with a low number of principal components. A comparison to the other com-

ponents in Fig. 5.9 clearly shows that the leakage is small compared to the remaining

signal parts.

5.6 Discussions of the Accumulated

Combination of Probes

In this section I discuss the differences of the presented combination methods,

concatenation and summing and their impact on the results. I analyze one

trace segment, the corresponding principal components and the DOMs in the

summed case, which is depicted in Figure 5.10. In the concatenated case, it

looks similar to Figure 5.9 (with triple length).

The topmost signal shows one trace segment. When comparing the trace seg-

ment of the summed case to the one from Figure 5.9, the summed case shows a

higher signal value of about 10mV. However, the summed case shows a higher

noise level of about +/- 5mV compared to +/- 2mV in the concatenated case,

e.g., between sample 20000 to 30000. This higher noise level is also shown in

the first principal component, which (again) mainly shows peaks corresponding
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Figure 5.10: Example of an original trace-segment (topmost) and its high-

ranked principal components below. The 7-th component con-

tains signal leakage. The bottom trace depicts the profiled DOM.

to the FPGA clock frequency. Again, component 2 and 3 show no meaningful

structure. In Figure 5.10 the principal component containing leakage is the 7th

(instead of 4 in the above case). Hence, I plot the 7th principal component

for comparison with the DOM. Already the component’s position (7th) indi-

cates a lower level of leakage (less variance), compared to the trace segment.

However, comparing the principal component with leakage of Figure 5.9 to

Figure 5.10 shows a similar amplitude and shape. Comparing the 7th principal
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component to the DOM demonstrates that PCA is able to extract most of the

leakage, even it is much smaller compared to the trace segment. Comparing the

DOM of Figure 5.9 to Figure 5.10 shows roughly the same amplitude of 2mV.

Thus, the DOM does not significantly increase when combining the probes by

summing the signals. In contrast, the DOM shows a higher noise level, in case

no peaks are visible, which corresponds to a lower SNR which leads to less

exploitable leakage.

This data supports that in the case of a combination by concatenation, a pro-

filed attack is able to exploit significantly more leakage than in the case of

summed signals.

5.7 Discussion of the Coupling Between Probes

In this chapter, the probes were placed in vicinity to each other. Thus, coupling

effects are a danger. However, coupling would impact the efficiency of the

attack if it lead to similar leakage of the three probes. Comparing the results

in figure 5.4 shows that all three probes show different number of positions,

where the BFC is smaller than 32 bit. Thus, the common leakage seems to

be low and the coupling effects between the three probes are most probably

neglectable. Evaluating the coupling on a signal level is challenging, because all

three probes collect similar (key independent) signal parts, e.g., clock.

5.8 Conclusion

In this chapter I carried out a profiled and non-profiled single trace side channel

attack on an asymmetric cipher by using three probes for measurement. Firstly,

I evaluated the multiprobe measurements separately. I showed that I could sig-

nificantly improve the state-of-the art single trace side channel analysis for one

probe, which resulted in a BFC of lower than 32 bits in 59 % of cases and

results in the mean in a BFC of 60 bits for the best probe. This improvement

is mainly caused by using PCA as preprocessing step for the attack and select-

ing principal components for the attack. PCA is capable of extracting leakage

into one principal component. Like expected, the profiled evaluation method

outperforms the non-profiled with a BFC of 50 bits in the mean for the best

probe.

In case of a combination of all measurements probes, the unprofiled approach
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slightly degrades the results. This is probably caused, by a non-optimal prin-

cipal component selection strategy in combination with different leaking char-

acteristics of the three probes for the combination of probes. I showed that

by combining the probes with a “close-to-optimal” selection strategy improves

the results to 280 measurement positions below 32 bit. Furthermore, simulat-

ing simultaneous measurements by evaluating the best probe at three positions,

shows that in case of a high leakage and similar leaking characteristics, the un-

profiled approach is able to improve the results by combining multiple probes.

In contrast, the profiled scenario massively benefits from the combination with

3 actual simfultaneous measurements. Even in case that 2 probes did not mea-

sure enough leakage to reduce the BFC below 150 bits if evaluated separately.

Combining these 2 probes with a third one improved the results of a BFC of

44 bits in the mean, comparing it to the best single probe with a BFC mean

of 50 bits. However, these results are only valid for a combination by concate-

nating the signals. In case of summing the probe signals the combined BFC

mean was 151 bits, which is significantly worse compared to the concatenated

case. In contrast to the profiled attack, the non-profiled can not benefit from

the combination of multiple probes. The combination of 3 probes during a

non-profiled attack leads to a BFC mean of 67 bits, compared to 60 bits for

the best individual probe. Hence, in a profiled scenario it is beneficial to com-

bine multiple probes.
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Chapter 6

Conclusion

In this thesis it has been investigated if multiple probes enable a more power-

ful attack by combination. This has been tested for one implementation of a

symmetric and one implementation of an asymmetric cipher. Countermea-

sures and attacks differ significantly between symmetric and asymmetric ci-

phers. Symmetric ciphers, commonly allow thousands or millions observations

with the same key. However, implemented countermeasures for asymmetric

ciphers can allow only one single side channel observation.1 I can show that by

combining signals of three probes I can significantly improve the performance

of the attack against the symmetric cipher. Measuring with multiple localized

EM probes allows to isolate and simultaneously observe multiple parts of an

IC. Thereby, bypassing assumptions of countermeasures, e.g., in case of TIs

that the single shares are not separable. I compare the combination of multiple

probes to the separate evaluation and the power side channel. The combination

of multiple probes reduces the MTD by factor 5.7, compared to individually

processing them and by factor 238 compared to the power side-channel.

Furthermore, I analyze in detail the combination of multiple probes by LDA

and the thereby achieved reduction in MTD in chapter 4. I show that LDA is

capable of combining measured leakage of multiple probes efficiently in the

concatenated case. Furthermore, it weights the signal of all probes according

to the leakage (in time and amplitude) detected by a correlation based leakage

test.

In chapter 5 a single trace attack is carried out with multiple probes against an

asymmetric cipher implementation. Thereby, I first significantly improve the

unprofiled algorithmic approach for one probe, which is based on the approach

published byHeyszl et al. [Hey14]. I use PCA as preprocessing and expectation-

maximization clustering for identifying the key. The improved version of the

attack succeeds to lower the BFC in 59% of cases below 32 bit for one probe,

1Also keys can be changed for symmetric ciphers after each execution; however this countermeasure is not

common for symmetric ciphers.
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where the non-improved version does fail to lower the BFC below 32 bit at all.

When combining multiple probes, the achieved BFC improves of a single trace

attack from 50 to 44 bits in the mean, compared to the best single probe. Thus,

a profiled attack can even benefit from probes, which do not measure strong

leakage, e.g., 2 probes in chapter 5 lead to a BFC of larger than 150 bits in the

mean. The high BFC of probe 1 and 3 is most probably caused by a higher

distance between probes and die than probe 2.

In case of the clustering-based, non profiled attack, the results from the combina-

tion are only comparable to the best individual one. Thus, the combination of

channels only improves the attack results, if a profiled attack is carried out in

this work.

However, more experiments are needed to validate if an improvement for com-

bining multiple channels is possible in general. Furthermore, more effort can

be spend for a non-profiled principal selection strategy to improve the results

of the unprofiled combination of multiple probes. Also the profiled template

attack of chapter 4 gets even more powerful in case that no access to the masks

is required during profiling phase.
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