
Technische Universität München

Lehrstuhl für Sicherheit in der Informationstechnik
an der Fakultät für Elektrotechnik und Informationstechnik

Curve Based Cryptography:

High-Performance Implementations and

Speed Enhancing Methods

Claus Philipp Koppermann

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Infor-
mationstechnik der Technischen Universität München zur Erlangung des
akademischen Grades eines Doktor-Ingenieurs (Dr.-Ing.) genehmigten
Dissertation.

Vorsitzender: Prof. Dr.-Ing. Dr. rer. nat. Holger Boche

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Georg Sigl

2. Prof. Dr. rer. nat. Marian Margraf

Die Dissertation wurde am 17.01.2019 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstech-
nik am 13.05.2019 angenommen.

Abstract

Key exchange algorithms based on public-key cryptography are a crucial com-
ponent in modern communication systems because they enable two parties
to securely derive a shared secret over a public channel. Unfortunately, the
popular public-key cryptosystem RSA suffers in speed and requires large key
sizes. New arising technologies put high demands on latency and through-
put characteristics that catalyze the need for fast key exchange implementa-
tions. This thesis deals with high-performance implementations and speed
enhancing methods of curve based cryptography that is composed of elliptic,
hyperelliptic, and isogeny-based curve cryptography.

Elliptic and hyperelliptic curve cryptography are both based upon a fast
modular arithmetic that make them appealing for securing communications
with high-performance requirements. Many modern curves are defined over
so-called Mersenne prime fields that feature an efficient reduction proce-
dure. As modular multiplication is a performance critical operation, a novel
speed enhancing architecture is introduced for multiplying two elements in a
Mersenne prime field. Using this modular multiplier, two highly-optimized
key exchange implementations are evaluated on an FPGA based on two dif-
ferent types of curves: Curve25519, a popular elliptic curve, and Gaudry
and Schost’s Kummer surface of a genus-2 curve, a novel hyperelliptic vari-
ant. Both implementations are analyzed and compared regarding their per-
formance and implementation security. The Curve25519 implementation is
optimized for low-latency applications and uses randomized projective co-
ordinates to thwart specific side-channel attacks. Though, the performance
results of our high-speed Kummer variant outperform all previous prime field
curve implementations in terms of latency and throughput. The implemented
Kummer architecture smartly interleaves two scalar multiplications at a time,
which can be used to double the throughput or enable an inherent counter-
measure against fault attacks. Compared to elliptic curve cryptography, the
hyperelliptic variant achieves improved area and performance results due to
a smaller field size.

i

ii

It is well known that the continuous progress in the development of a
quantum computer threatens the secure application of elliptic and hyper-
elliptic curve cryptography. Combined with the advent of the Internet of
Things, thousands of interconnected nodes that process sensitive informa-
tion are threatened. Therefore, the applicability and implementation security
of the quantum-secure supersingular isogeny Diffie-Hellman (SIDH) key ex-
change is examined for the embedded scenario. SIDH attracted considerable
interest in the research community due to its small key sizes when compared
to other post-quantum primitives. While several works already presented
speed-optimized FPGA implementations, it remains unclear whether it is
suitable for resource-constrained devices. Hence, we provide a software im-
plementation of SIDH over a 751-bit wide extension field, which is considered
to provide a quantum-security level of at least 128-bit. Our software im-
plementation is assembly optimized and trimmed towards maximum speed
targeting a 32-bit ARM Cortex-M4 and a 16-bit TI MSP430 architecture.
However, an ephemeral key exchange still requires more than 18 seconds for
the Cortex-M4 and more than 11 minutes for the MSP430. With respect to
the chosen parameters, this shows that SIDH is unsuitable for most real-life
applications when implemented on small embedded devices.

Kurzfassung

Schlüsselaustauschprotokolle basierend auf Public-Key Kryptographie sind
essentiell in modernen Kommunikationsnetzwerken, weil sie zwei Teil-
nehmern erlauben sich über einen öffentlichen Kanal auf ein gemeinsames
Geheimnis zu einigen. Jedoch ist das bekannteste Public-Key Kryptosys-
tem RSA aufwendig in seiner Berechnung und benötigt große Schlüssel.
Insbesondere neue Technologien stellen hohe Performance Anforderungen,
was die Notwendigkeit von schnellen Schlüsselaustausch Implementierungen
katalysiert. Diese Arbeit beschäftigt sich mit hochoptimierten Implemen-
tierungen und beschleunigenden Methoden für kurvenbasierte Kryptographie,
welche sich in elliptische, hyperelliptische und isogeniebasierte Kurven Kryp-
tographie untergliedert.

Elliptische und hyperelliptische Kurven Kryptographie zeichnet sich
durch eine schnelle modulare Arithmetik aus, die sie besonders interessant
für Implementierungen mit hohen Performance Anforderungen macht. Viele
moderne Kurven sind über so genannte Mersenne Primzahl Körper definiert,
die über eine effiziente Methode zur modularen Reduktion verfügen. Da
die modulare Multiplikation eine zeitkritische Operation ist, wird zunächst
eine neue Hardware Architektur für die modulare Multiplikation in Mersenne
Primzahl Körpern vorgestellt. Unter Verwendung dieses Multiplizier-
ers werden zwei Schlüsselaustausch Implementierungen für einen FPGA
beschrieben, die auf verschiedenen Kurventypen basieren: Curve25519, eine
bekannte elliptische Kurve, und Gaudy und Schosts kummersche Fläche
einer Kurve vom Geschlecht 2, eine neue hyperelliptische Variante. Beide
Implementierungen werden hinsichtlich ihrer Performance und Implemen-
tierungssicherheit analysiert und verglichen. Die Curve25519 Implemen-
tierung ist für Anwendungen mit niedrigen Latenz Anforderungen optimiert
und verwendet randomisierte projektive Koordinaten um bestimmte Seit-
enkanal Angriffe zu verhindern. Allerdings übertrifft die Kummer Vari-
ante alle Performance Ergebnisse früherer Kurven Implementierungen über
Primzahl Körper. Darüber hinaus kombiniert die Kummer Architektur zwei
skalare Multiplikationen was entweder den Durchsatz verdoppelt oder eine

iii

iv

Gegenmaßnahme für Fehlerangriffe ermöglicht. Aufgrund eines kleineren
Körpers, erreicht die hyperelliptische Variante bessere Flächen und Perfor-
mance Ergebnisse.

Der kontinuierliche Fortschritt in der Entwicklung des Quantencom-
puters bedroht die sichere Verwendung von elliptischer und hyperellip-
tischer Kurven Kryptographie. Unter Berücksichtigung aktueller Trends
wie beispielsweise dem der Internet der Dinge, sind in Zukunft poten-
tiell tausende verbundene Knoten bedroht. Daher wird die Anwend-
barkeit und Implementierungssicherheit des quantensicheren supersingulären
Isogenie Diffie-Hellman (SIDH) Schlüsselaustausch für eingebettete Sys-
teme untersucht. SIDH ist von besonderem Interesse, da es verglichen
zu anderen Post-Quanten Verfahren relativ kleine Schlüssel verwendet.
Während diverse Arbeiten bereits geschwindigkeitsoptimierte Hardware Ar-
chitekturen vorgestellt haben, bleibt es bis heute unklar wie sich eine An-
wendung auf kleinen ressourcenbeschränkten Geräten darstellt. Um diese
These zu überprüfen wird eine Assembler-optimierte SIDH Implementierung
vorgestellt und deren Performance auf einem 32-Bit ARM Cortex-M4 und
auf einem 16-Bit TI MSP430 evaluiert. Die vorgestellte Software real-
isiert SIDH über ein 751-bit großen Erweiterungskörper mit dem ein Quan-
ten Sicherheitslevel von mindestens 128-bit erreicht wird. Ein ephemeral
Schlüsselaustausch benötigt auf einem Cortex-M4 mehr als 18 Sekunden und
auf einem MSP430 mehr als 11 Minuten. Mit Bezug auf die gewählten Pa-
rameter, zeigt dies dass die Laufzeit von SIDH auf einem eingebetteten Con-
troller für reale Anwendungen noch zu lange ist.

Acknowledgements

Firstly, I would like to express my sincere gratitude to Prof. Dr.-Ing. Georg
Sigl for giving me the chance to pursue my Ph.D. at the Technische Univer-
sität München (TUM) and Prof. Dr. rer. nat. Marian Margraf for being my
second examiner.

My special thanks goes to Dr.-Ing. Johann Heyszl, who provided me the
opportunity to join the Hardware Security department at Fraunhofer AISEC,
and his valuable scientific guidance.

I especially thank my former supervisor Dr.-Ing. Fabrizio De Santis for in-
troducing me to cryptography and contributing to my research.

I thank my colleagues at Fraunhofer AISEC: Robert Hesselbarth, Stefan
Hristozov, Dr. rer. nat. Katja Miller, Carsten Rolfes, Marc Schink, Bodo
Selmke, Robert Specht, Martin Striegel, Florian Unterstein, Andreas Zankl,
and in particular Nisha Jacob for their feedback, cooperation, and friendship.

I thank my students who supported my research in various ways: Abhijith
Chikrapla Danappa, Zohaib Khan, and Eduard Pop.

Last but not least, I would like to thank my partner, family, and close friends
for supporting me throughout the writing process of this thesis and my life
in general.

v

vi

Contents

Abstract i

Kurzfassung iii

Acknowledgements v

Nomenclature ix

List of Figures xiii

List of Tables xv

List of Algorithms xvii

1 Introduction 1
1.1 The Diffie-Hellman Key Exchange 2

1.1.1 Elliptic Curve Cryptography 3
1.1.2 Hyperelliptic Curve Cryptography 4
1.1.3 Isogeny-Based Cryptography 5

1.2 Contribution . 6
1.3 Outline . 8

2 Multiplication in Mersenne Prime Fields 9
2.1 Preliminaries . 10
2.2 Hardware Multipliers . 11
2.3 Multiplication and Crandall’s Reduction Combined 14
2.4 Fast Multiplication on FPGAs 15
2.5 Related Work . 16

2.5.1 Asymmetric Tiling . 16
2.5.2 Regrouping Digit-Products 17

2.6 Design Automation for Combined Reduction 18
2.6.1 Digit-Product Generation 18

vii

viii CONTENTS

2.6.2 Digit-Product Splitting 19
2.6.3 Rearrange Sliced Digit-Products 21

2.7 Hardware Design and Analysis 22
2.7.1 Results . 23

2.8 Conclusions . 24

3 Elliptic Curve Cryptography 27
3.1 Introduction to Elliptic Curves 27

3.1.1 Short Weierstrass Form 28
3.2 Scalar Multiplication and the Elliptic Curve Diffie-Hellman

Key Exchange . 28
3.2.1 Group Law on Elliptic Curves 29

3.3 Choice of Coordinates . 30
3.3.1 Affine Coordinates . 30
3.3.2 Projective Coordinates 31

3.4 Montgomery Ladder . 32

4 X25519 DH Key Exchange on an FPGA 35
4.1 Background . 35
4.2 Algorithmic Description . 36
4.3 Pseudo Mersenne Prime Field Arithmetic 37

4.3.1 Addition and Subtraction 37
4.3.2 Multiplication . 39
4.3.3 Inversion . 39

4.4 Hardware Architecture . 40
4.4.1 Montgomery Ladder 41

4.5 Results . 41
4.6 Conclusions . 44

5 Hyperelliptic Curve Cryptography 45
5.1 Group Law for Hyperelliptic Curves 46

5.1.1 The Jacobian Variety 47
5.1.2 Addition on the Jacobian 49

5.2 Montgomery Arithmetic for Genus-2 Curves over Prime Fields 51
5.2.1 The Kummer Surface 52

6 Kummer Surface Based DH Key Exchange on an FPGA 55
6.1 Introduction . 55
6.2 Preliminaries . 57

6.2.1 Gaudry and Schost’s Genus-2 Hyperelliptic Curve . . . 58
6.3 Compression and Scalar Multiplication 58

CONTENTS ix

6.4 Hardware Architectures . 59
6.4.1 Memory . 60
6.4.2 Datapath . 61
6.4.3 Control Logic . 66
6.4.4 Multi-Core Architecture 67

6.5 Results and Analysis . 69
6.6 Conclusions . 71

7 Isogeny-Based Cryptography 73
7.1 Preliminaries . 73

7.1.1 Isogenies . 74
7.1.2 Supersingular Curves 74
7.1.3 `-Torsion Subgroups 74

7.2 The Supersingular Isogeny DH Key Exchange 75
7.2.1 Public Parameters . 75
7.2.2 Key Generation . 75
7.2.3 Shared Secret Computation 76
7.2.4 Large Degree Isogeny Computation 76

7.3 Complexity Considerations . 78

8 SIDH Key Exchange on Embedded Devices 81
8.1 Introduction . 81
8.2 Related Hardware Implementations 82

8.2.1 Architecture . 82
8.2.2 Results . 84

8.3 Embedded Implementations 84
8.3.1 Platform Independent Design Decisions 85
8.3.2 Microcontrollers . 86
8.3.3 Finite Field Operations 87
8.3.4 Results for the Assembly Optimized Field Operations . 89

8.4 Results and Analysis of Constant-Time Implementations . . . 89
8.5 Implementation Security . 92

8.5.1 Randomized Projective Coordinates to Thwart DPA . 92
8.6 Conclusions . 94

9 Conclusions 97

Bibliography 101

x CONTENTS

Nomenclature

Abbreviations

ASIC Application-specific integrated circuit

CC Cycle count

DH Diffie-Hellman

DLP Disrete logarithm problem

DPA Differential power analysis

DSP Digital signal processing

ECC Elliptic curve cryptography

ECDH Elliptic curve Diffie-Hellman

ECDLP Elliptic curve discrete logarithm problem

EM Electromagnetic

FA Full adder

HA Half adder

HECC Hyperelliptic curve cryptography

IoT Internet of Things

LUT Lookup table

NIST National Institute of Standardization

PQC Post-quantum cryptography

RAM Random-access memory

xi

xii NOMENCLATURE

RCA Ripple-carry adder

ROM Read-only memory

RSA Rivest Shamir Adleman

SIDH Supersingular isogeny Diffie-Hellman

SoC System on chip

TP Throughput

VLSI Very-large-scale integration

Mathematical symbols

[k]P Scalar multiplication

∞ Point-at-infinity

κ(P) Image of P on K

〈P 〉 Linear combination of point P

|k| Bit length of positive integer k

F Finite field

Fp Prime field

P Projective space

C General hyperelliptic curve

H Hadamard transform

JC Jacobian associated with curve C

KC Kummer surface associated with curve C

O Identity element

P or −P Point opposite to P

φ Isogeny

D Divisor

D1 ⊕D2 Addition of two divisors D1, D2

NOMENCLATURE xiii

E Elliptic curve

E[`] `-torsion subgroup of elliptic curve E

G ∼= H Group G is isomorphic to group H

G×H Direct sum of two groups G,H

K Field

Mp Mersenne prime

N Multiplier width

O Big O notation

P Point on elliptic curve or partial-product

p Prime number

x(P) x-coordinate of point P

A Modular addition

I Modular inversion

M Modular multiplication

Mc Constant modular multiplication

S Modular Squaring

Z Modular subtraction

xiv NOMENCLATURE

List of Figures

2.1 Left: Schoolbook multiplication as 5-bit binary multiplication.
Right: Corresponding dot-representation. 11

2.2 Architecture of a hybrid 5-bit array multiplier. 12
2.3 Constructing a 5-bit Wallace tree multiplier. Explanation of

(a), (b), (c), and (d) is found below. 13
2.4 Wallace tree construction for a 5-bit multiplication combined

with Crandall’s reduction method. 15
2.5 Multiplication with asymmetric tiling [1]. 17
2.6 Diagonal grouping for reducing the adder tree depth [1]. . . . 18
2.7 Adder tree optimized towards high-performance. Left: Digit-

products generated for m = 4 , n = 2 and M7 = 27 − 1. Right:
Rearranged sliced digit-products to partial-products with
combined fast reduction. 20

2.8 Hardware architecture of high-performance modular multiplier
using optimized adder tree. 22

3.1 ECC group law on E : y2 = x3 − x+ 1 over the field R. Left:
Point addition. Right: Point doubling. 30

4.1 X25519 architecture, which contains all control and datapath
logic for computing Algorithm 5 (x25519 ladder). 40

5.1 Left: Group operation for an elliptic curve using the chord-
and-tangent rule. Right: Illustrating how the chord-and-
tangent rule is ineffective for a genus-2 hyperelliptic curve. . . 46

5.2 Group law for a genus-2 hyperelliptic curve over R. 50
5.3 Formulas for differential addition and doubling on the fast

Kummer surface. 53

6.1 Single-core architecture, which contains all control and data-
path logic for computing Algorithm 8 (scalar mult). 61

6.2 Datapath including register file. 62

xv

xvi LIST OF FIGURES

6.3 Architecture of the modular multiplier, as similarly shown in
Chapter 2. 63

6.4 Left: Non-standard tiling [2] for 127 × 127-bit multiplier.
Right: Non-standard tiling for smaller 78× 78-bit multiplier. . 63

7.1 Computational structure of the large degree isogeny compu-
tation. 77

7.2 Two well-formed strategies for `e = 26. A strategy is said to
be well-formed if it has no useless edges. 77

8.1 Top-level view of hardware architecture [3]. 83
8.2 Left: Exemplary EM trace for two ladder steps. Right: Langer

probe placed above FRDM-K64F. 94
8.3 Fixed-vs-random leakage detection test on the input point us-

ing 5000 traces. Left: no DPA countermeasure. Right: ran-
domized projective coordinates enabled. 95

List of Tables

1.1 Required field operations for a Curve25519 and Kummer sur-
face based point addition and point doubling. 5

2.1 Comparison with related work of area utilization and perfor-
mance for modular multiplication in Fp with p = 2127 − 1.
Note that [1] excludes the reduction. 23

2.2 Area utilization and performance results of our proposed mul-
tiplier for various Mersenne primes. 24

4.1 Instruction scheduling for single X25519 ladder step as de-
scribed in Algorithm 5 (x25519 ladder). 42

4.2 Performance comparison of X25519 implementations in terms
of clock cycles and latency requirements. 43

4.3 Comparison of area utilization with other X25519 implemen-
tations. 44

6.1 Instruction scheduling for two successive Hadarmard compu-
tations as in line 8 of Algorithm 11 (mont ladder kummer). . . 65

6.2 Latency in cycles and throughput in operations per cycles of
field operations. 66

6.3 Latency in terms of cycle count (CC) of high-level functions. . 67

6.4 Instruction scheduling for single ladder step as described in
Algorithm 11 (mont ladder kummer). 68

6.5 Device utilization and maximum clock frequency on Xilinx
Zynq-7020 FPGA. 69

6.6 Comparison of single- and multi-core architectures of variable-
base scalar multiplications featuring a 128-bit security level on
a Zynq-7020. 70

7.1 Field operations for SIDH in Fp2 using prime p751, derived but
simplified from [3]. 79

xvii

xviii LIST OF TABLES

8.1 SIDH area utilization and performance results on a Virtex-
7 FPGA compared to X25519 and Kummer on a Zynq-7020
FPGA. 84

8.2 Cycle count (CC) for the prime field operations of the generic
and assembly implementation on both architectures. 89

8.3 Clock cycle count [×106] for SIDH on different processors sup-
porting a 128-bit quantum security level. 90

8.4 Performance evaluation of different quantum-secure key ex-
change protocols on mid- and low-end processors. 91

9.1 Performance comparison of our implementations using curve
based cryptography. 98

9.2 Conceptual comparison between elliptic, hyperelliptic, and
isogeny-based cryptography. 99

List of Algorithms

1 gen dp: Determine the position of the digit-products. 19
2 slice dp: Slice digit-products in single bits. 20
3 rearrange dp: Rearrange sliced digit-products. 21
4 mont ladder: The classical Montgomery ladder [4]. 33
5 x25519 ladder: Curve25519 Montgomery ladder in randomized

projective coordinates. 38
6 cantor: Cantor’s algorithm to perform the group operation on

two reduced divisors in Mumford representation. 51
7 dbladd: Combined double-and-add on a Kummer surface of a

genus-2 curve. 54
8 scalar mult: Unwrap input point to Montgomery ladder on KC

followed by point wrapping. It is assumed that the public key
(respectively public generator) is in 381-bit wrapped represen-
tation. 57

9 unwrap: (x/y, x/z, x/t) 7→ (x : y : z : t) Unwrap point to its
508-bit representation. 59

10 wrap: (x : y : z : t) 7→ (x/y, x/z, x/t) Compute wrapped 381-
bit representation. 59

11 mont ladder kummer: Montgomery ladder using combined dif-
ferential double-and-add. 60

12 ladder 3pt: Three-point ladder [5]. 93

xix

Chapter 1

Introduction

In 1976, Diffie and Hellman [6] proposed the Diffie-Hellman (DH) key ex-
change as the first representative of the revolutionary public-key cryptog-
raphy. With the advent of public-key cryptography, it became possible to
exchange encrypted and authenticated messages without requiring a shared
secret. Traditionally, the communication partners were needed to exchange
a shared secret via some secure physical channel such as a trusted courier.
In public-key cryptography each entity possesses a key pair consisting of a
widely disseminated public key and a secret private key. Public keys can
be used to validate a signature of incoming messages or encrypt outgoing
messages, whereas private keys can be used to sign outgoing messages or de-
crypt incoming messages. Among signing and encrypting messages based on
public-key cryptography, two parties can use the DH key exchange to negoti-
ate a shared secret over a public channel i.e. an adversary that can eavesdrop
the channel is unable to determine the shared secret. However, due its low
efficiency compared to symmetric schemes, public-key cryptography can be
impractical for applications with high performance requirements. To benefit
from the speed of symmetric cryptography while renouncing the necessity of
a preshared secret, so-called hybrid schemes are used where the communica-
tion is initiated with a DH key exchange followed by the usage of symmetric
schemes for encrypting and authenticating messages.

Even though hybrid schemes improve the latency and throughput of en-
crypting and authenticating messages, the DH key exchange itself might still
be problematic for applications with strict speed boundaries. In some cases,
a high latency only causes a bad user experience, however, in safety critical
systems, such as modern car systems, a fast key exchange can be required for
guaranteeing a safe operation. Throughput is crucial for systems that need to
exchange keys with thousands of devices per second. For example, a network

1

2 CHAPTER 1. INTRODUCTION

server has to serve a large amount of requests leading to high throughput
requirements because less servers can mean higher profit. Even for small em-
bedded devices high-speed cryptography can be crucial as reduced run-time
can lead to less energy consumption and hence in a longer lasting battery.
To cope with those requirements, intensive research was conducted on high-
speed public-key cryptography. High-speed cryptography can be separated in
the implementation of cryptographic primitives that are optimized towards
speed and in the design of high-speed capable cryptographic primitives. In
this work, the former problem is addressed.

Until today, RSA [7] is the most well known public-key cryptosystem,
though it is unsuitable for high-speed applications due to its high compu-
tational complexity. Instead, elliptic and hyperelliptic curve cryptography
represent a valid alternative since they feature small field and key sizes.
Both, elliptic and hyperelliptic curve cryptography can be used to construct
a DH key exchange. While hyperelliptic curve cryptography is recently gain-
ing in interest in the research community, elliptic curve cryptography can
be found already today in a variety of applications such as WhatsApp or
Tor. The continuous progress in the development of a quantum computer,
threatens classic public-key cryptography such as elliptic and hyperelliptic
curve cryptography. Yet, an isogeny-based approach i.e. a quantum-secure
so-called supersingular Isogeny DH key exchange, which shares some simi-
larities with elliptic curve cryptography, is attracting considerable interest
due to its small key sizes. In this thesis, speed-enhancing methods and high-
speed implementations of curve based cryptography i.e. elliptic, hyperelliptic,
isogeny-based cryptography for the application on hardware accelerators and
tiny embedded devices are presented.

1.1 The Diffie-Hellman Key Exchange

Suppose that Alice and Bob want to negotiate a secret key kAB. Let G
denote a finite cyclic group, q its order, and g a generator of G, and let the
exponentiation operation denote a repeated group operation that is used as
a trapdoor function. Then the DH key exchange is described as follows:

1. Alice and Bob agree on G and g.

2. Alice chooses kA ← Zq uniformly at random, and computes h1 := gkA .
Then Alice transmits h1 to Bob.

3. Bob receives h1. He chooses kB ← Zq uniformly at random and
computes h2 := gkB . Bob sends h2 to Alice and outputs the key
kAB := hkB1 = gkAkB .

1.1. THE DIFFIE-HELLMAN KEY EXCHANGE 3

4. Alice receives h2 and outputs the key kAB := hkA2 = gkBkA .

Intuitively, a key exchange is considered secure if the key output is un-
known to an eavesdropping adversary. Therefore, a necessary requirement
is that an adversary is unable to inverse the exponentiation h1 := gkA or
h2 := gkB . In other words, an adversary would need to compute kA = logg h1
or kB = logg h2. In case of exponentiation in a cyclic group, this is considered
to be a hard problem for classical computers and is known as the discrete log-
arithm problem (DLP). Note that the hardness of the DLP is only a minimal
requirement but not a sufficient one. As the shared secret is often used as an
input key for further encryption algorithms, it shall be also indistinguishable
from a completely random key of the same length. This assumption is much
stronger, but truly holds for the DH key exchange protocols as shown by
Boneh [8], which is considered as the decisional Diffie-Hellman assumption.

While being secure against passive adversaries, DH key exchange is in-
secure in the presence of active adversaries. For example, DH key exchange
is vulnerable to the man-in-the-middle attack, where an adversary exploits
the fact that neither Alice nor Bob can proof the authenticity of incoming
messages. First, the attacker intercepts the communication between Alice
and Bob. Second, the adversary impersonates Bob to exchange a key with
Alice and third, the adversary impersonates Alice to exchange a key with
Bob. Appropriate methods to authenticate the communication prevent a
man-in-the-middle attack. Therefore, DH key exchange is rare in its basic
form, however, it constitutes the nucleus of further protected key exchange
protocols. All cyclic groups in which the group operation features an efficient
trapdoor function can be used to construct an efficient and secure DH key
exchange. For example, the elliptic curve DH protocol is a variant which con-
structs a group over elliptic curves that enables an efficient arithmetic while
providing small keys. Similarly, DH key exchange can be constructed for
hyperelliptic curves and isogeny-based approaches. The motivation and un-
derlying mathematical problems for elliptic, hyperelliptic, and isogeny-based
cryptography are discussed in the following sections.

1.1.1 Elliptic Curve Cryptography

In 1985, Koblitz [9] and Miller [10] independently discovered elliptic curve
cryptography (ECC). The security of a public-key system using elliptic curves
is based on the difficulty of computing the discrete logarithm in the group
of points on an elliptic curve defined over a finite field. An abelian group is
formed by all points on the elliptic curve together with the point at infinity
under the addition law, which is obtained by the chord-and-tangent rule (see

4 CHAPTER 1. INTRODUCTION

Chapter 3 for more information). A point can be multiplied with a scalar
by using an algorithm such as the Montgomery ladder [4], which repetitively
performs point addition and point doubling operations. Finding this scalar
with known input and output point forms the elliptic curve discrete logarithm
problem (ECDLP), which is currently believed to be asymptotically harder
than the factorization of integers or the computation of discrete logarithms
in the multiplicative group of a finite field [11]. Compared to RSA and DLP,
ECC uses shorter keys while providing the same security level because of the
increased hardness of the ECDLP. As a rule of thumb, the key size is about
half the number of bits that represent the underlying finite field.

Over the years, many elliptic curves have been standardized by govern-
mental institutions like the American National Institute of Standards and
Technology (NIST) or the German Bundesamt für Sicherheit in der Informa-
tionstechnik. However, after the Snowden’s leak, a growing interest around
new elliptic curves has been manifested by the whole cryptographic commu-
nity. In Chapter 4, we particularly focus on Curve25519, which is a 128-bit
secure elliptic curve introduced by Bernstein [12] in 2006. Curve25519 is
designed in an elegant and transparent way while offering high-performance
characteristics. Therefore, Curve25519 has received wide attention in the
past years with various hardware and software implementations being pub-
lished that set new speed records.

1.1.2 Hyperelliptic Curve Cryptography

In 1989, Koblitz [13] first mentioned the application of hyperelliptic curve
cryptography (HECC). For example, the so-called Jacobian variety of a hy-
perelliptic curve possesses a group structure that can be used to realize cryp-
tographic algorithms such as DH key exchange and digital signatures (see
Chapter 5 for a more detailed discussion on hyperelliptic curves). Unfortu-
nately, group operations on the Jacobian have higher complexity than those
on elliptic curves (genus-1 curves). However, using the group operation on
the Kummer surface of the Jacobian in place of the Jacobian itself, leads
to a decrease of the number of field operations per group operation [14].
The Kummer surface is a 2-to-1 point mapping and can be compared to
the x-coordinate-only representation of elliptic curves. Table 1.1 shows the
number of field operations for a point addition and a point doubling op-
eration used in DH key exchange for a genus-1 Montgomery curve and a
Kummer surface associated to a genus-2 curve. It can be noted that the
genus-2 curve requires 1.4-times more multiplications, 3-times more squar-
ings, and 4-times more additions and subtractions than the genus-1 curve.
However, the Kummer surface operates on finite fields of half the size than

1.1. THE DIFFIE-HELLMAN KEY EXCHANGE 5

Table 1.1: Required field operations for point addition and point doubling:
multiplication (M), squaring (S), constant multiplication (Mc), addition (A),
and subtraction (Z).

Genus Reference Field size M S Mc A Z

1 Curve25519 [15] 255-bit 5 4 1 4 4

2 Kummer [16] 127-bit 7 12 12 16 16

those of elliptic curves while supporting the same security level. This re-
duced field size can lead to performance benefits and lower area utilization.
In 2006, Bernstein and Lange [17] showed in a cost analysis for software
that a genus-2 based implementation is potentially 1.5-times faster than a
comparable elliptic curve based implementation. At that time, however, a
secure Kummer surface of a genus-2 curve was not found yet. Since genus-2
point counting is computationally expensive, it took further six years until
Gaudry and Schost [18] presented a twist-secure Kummer surface targeting
a 128-bit security level. Using this Kummer surface, Bos et al. [19] were the
first to publish a high-speed DH implementation on high-end CPUs proving
the earlier cost analysis in [17]. Other software implementations [16, 20] on
different architectures were published in following years. While these soft-
ware implementations already showed the performance advantages of genus-2
curves, the design of efficient hardware is a fundamentally different task.

1.1.3 Isogeny-Based Cryptography

It is well known that future large-scale quantum computers can efficiently
compute Shor’s algorithm [21], and thus threaten public-key cryptosystems
that rely on the ECDLP, DLP, or RSA. Even though full-fledged quantum
computers are yet to arrive, today’s recorded encrypted communication could
be broken with a quantum computer years later. In the past few years, this
led to intensive research and a large amount of published papers dealing
with post-quantum cryptography (PQC) i.e. cryptographic algorithms that
are considered to be secure against an attack by a quantum computer. NIST
[22] published a report on PQC providing an overview of existing algorithms
including an announcement for standardization. In this report, NIST dis-
tinguishes between five approaches: lattice-based cryptography, code-based
cryptography, multivariate polynomial cryptography, hash-based signatures,
and other which include isogeny-based cryptography. When analyzing dif-

6 CHAPTER 1. INTRODUCTION

ferent PQC approaches, it becomes apparent that most of them require large
private and public keys. Large key sizes imply at least two problems for
smaller embedded devices: First, since the transmission of data requires the
majority of the energy budget, the size of the public parameters including
the public key must be kept small. Second, small embedded devices often
possess less than ten kilobytes of memory. Therefore, PQC algorithms that
feature large key pairs, as for example the McEliece cryptosystem [23] that
needs about 220 kB for a single public key at a 128-bit quantum security
level, are impractical on such devices. With public keys as small as 330
bytes [24], the quantum-secure supersingular isogeny Diffie-Hellman (SIDH)
key exchange [5] is a promising candidate to secure the communication on
embedded devices.

SIDH is based on elliptic curves and shares similarities with traditional
ECC; however, the underlying number-theoretic problem is the isogeny-graph
problem. An isogeny is an algebraic map between two elliptic curves, which
are defined over a finite field. The point multiplication of a point with some
scalar, which is well known in traditional ECC, can be seen as a special case
of an isogeny for identical curves. Finding the isogeny between the known
domain and co-domain (in case of distinct elliptic curves) constitutes the
isogeny-graph problem, which is an instance of the so-called claw problem
[5]. This isogeny-graph consists of vertices representing isomorphism classes
of elliptic curves that are connected by edges representing isogenies. Alice
and Bob start from the vertex that is the public curve and traverse this graph
via a seemingly random walk. Ultimately, they end up on two curves sharing
some value that is used as the shared secret. While SIDH is a still growing
research topic, it remains unclear how it performs in microcontrollers that
are typically used in the IoT context.

1.2 Contribution

In the previous sections, different approaches in curve based cryptography
were presented that can be applied to DH key exchange. Compared to tradi-
tional approaches in cryptography, curve based cryptography features rela-
tively small keys. This thesis deals with methods and implementations that
aid future research in obtaining high-speed key exchange implementations
using curve based cryptography. The main contributions are summarized
below:

Novel design of a modular multiplier using Mersenne primes.
Curve based cryptography operates on finite fields. Thus, approaches in

1.2. CONTRIBUTION 7

curve based cryptography can differ on an algorithmic level, but all require
the implementation of field operations. Modular multiplication is a time
critical application due to its frequent operation and increased complexity
when compared to addition or subtraction. As a first contribution, a high-
speed modular multiplier [25], which smartly combines the summation of
single digit-products with the reduction step, is presented. This reduces the
computational complexity and increases the maximum clock frequency. The
multiplier sets a strong foundation for following high-speed implementations.

Low latency X25519 implementation on FPGA. Curve25519 and its
corresponding key exchange X25519 is widely adopted in commercial solu-
tions such as WhatsApp and Tor. Therefore, a latency optimized X25519
implementation on FGPA [26, 27] is presented. Moreover, the design is pro-
tected against differential power analysis (DPA) using randomized projective
coordinates as an efficient countermeasure. The performance results show
that X25519 enables a fast but also an area demanding implementation.

High-speed key exchange based on a hyperelliptic curve. As shown
in previous software implementations, a high-speed DH key exchange can be
implemented using the Kummer surface of a genus-2 curve. The reduced
field size, which is half the size than those of elliptic curves while support-
ing the same security level, allows for fast implementations. Therefore, the
first FPGA implementation of a DH key exchange based upon the Kum-
mer surface of hyperelliptic curve [28] is reported, which shows outstand-
ing latency and throughput results. The implementation includes a novel
technique that interleaves two scalar multiplications at a time to effectively
double the throughput. The same technique can also be used as redundancy
countermeasure against fault attacks.

Evaluating SIDH on embedded devices. SIDH is a quantum secure
key exchange that is characterized by small keys. Therefore, it is seems
to be appealing for securing embedded devices with constrained resources.
This hypothesis is evaluated by presenting a speed optimized SIDH software
implementation for two popular microcontroller architectures [29]. The re-
sults indicate that SIDH over a 751-bit wide extension field is impractical on
embedded devices due its long computation time. Moreover, the implementa-
tion security of SIDH is analyzed by measuring its electromagnetic radiation
during critical operations.

The details above just briefly highlighted the main contributions of this
thesis. The list of publications that correspond to those contributions can
be found below:

8 CHAPTER 1. INTRODUCTION

[25] Philipp Koppermann, Fabrizio De Santis, Johann Heyszl, and Georg
Sigl. Automatic generation of high-performance modular multipliers
for arbitrary Mersenne primes on FPGAs. In 2017 IEEE International
Symposium on Hardware Oriented Security and Trust, HOST 2017,
McLean, VA, USA, May 1-5, 2017, pages 35–40, 2017

[26] Philipp Koppermann, Fabrizio De Santis, Johann Heyszl, and Georg
Sigl. X25519 hardware implementation for low-latency applications.
In 2016 Euromicro Conference on Digital System Design, DSD 2016,
Limassol, Cyprus, August 31 - September 2, 2016, pages 99–106, 2016

[27] Philipp Koppermann, Fabrizio De Santis, Johann Heyszl, and Georg
Sigl. Low-latency X25519 hardware implementation: Breaking the 100
microseconds barrier. Microprocessors and Microsystems - Embedded
Hardware Design, 52:491–497, 2017

[28] Philipp Koppermann, Fabrizio De Santis, Johann Heyszl, and Georg
Sigl. Fast FPGA implementations of Diffie-Hellman on the Kummer
surface of a genus-2 curve. IACR Trans. Cryptogr. Hardw. Embed.
Syst., 2018(1):1–17, 2018

1.3 Outline

In Chapter 2, a novel design of a modular multiplier for the application on
ASIC and FPGA is presented. In Chapter 3, the reader is provided with
background information on ECC. Chapter 4 discusses the latency-optimized
implementation of X25519 on FPGA. Chapter 5 details the theoretical foun-
dations of HECC. A Kummer surface based key exchange using a genus-2
curve is presented in Chapter 6. In Chapter 7, background information on
isogeny-based cryptography is presented and in Chapter 8, an implementa-
tion of SIDH on embedded devices is discussed. Finally, Chapter 9 concludes.

Chapter 2

Multiplication in Mersenne
Prime Fields

The performance of curve based cryptography strongly depends on the im-
plementation of the underlying field operations i.e. modular addition, sub-
traction, multiplication, squaring, and inversion. With regard to high-speed
applications, the implementation of the modular multiplication should be op-
timized thoroughly due to its frequent usage and computational complexity.
We focus on multiplication in prime fields and in particular on multiplication
in Mersenne prime fields. Curves defined over Mersenne prime fields gained
in importance due to Crandall’s [30] efficient reduction procedure. Promi-
nent examples are Microsoft’s FourQ [31] and the Kummer surface based
key exchange [20] for elliptic and hyperelliptic curve cryptography, respec-
tively. We demonstrate how an efficient architecture for the multiplication
in Mersenne prime fields can be designed for ASIC as well as FPGA designs.
Parts of this chapter have been published in [25].

Outline. In Section 2.1, the preliminaries of multiplication in prime fields
are described. Section 2.2 discusses common architectures for hardware mul-
tipliers. In Section 2.3, it is shown how Crandall’s reduction technique can be
combined with long integer multiplication. Section 2.4 formulates the basic
assumptions and the problem statement for deriving efficient multipliers on
FPGAs. In Section 2.5, related work that deals with fast multiplication on
FPGAs is summarized. Section 2.6 provides a description of the combined
modular multiplication and the algorithms for automatically generating the
corresponding hardware architectures. Section 2.7 presents the implementa-
tion results while Section 2.8 concludes.

9

10 CHAPTER 2. MULTIPLICATION IN MERSENNE PRIME FIELDS

2.1 Preliminaries

Modular multiplication in a prime field Fp, also known as prime field multi-
plication, is the mathematical operation

C ≡ A ·B (mod p)

where A,B ∈ Fp, and p is a prime number. Modular multiplication can
be classified in classic and interleaved techniques: For classic modular mul-
tiplication, a standard long integer multiplication algorithm is used, as for
example the well-known schoolbook method, which is subsequently followed
by the reduction procedure. The designer has a broad choice between multi-
plication algorithms due to extensive research in the past decades. However,
as the size of the product is twice the size of the operands, time and area
requirements can increase. For interleaved modular multiplication, the mul-
tiplication and the calculation of the remainder are interleaved. Intermediate
products are similar sized as the reduced products, which is advantageous in
terms of area efficiency. Montgomery multiplication [32] is a popular repre-
sentative of interleaved modular multiplication.

For Mersenne primes, Crandall’s reduction procedure [30], which operates
on the product of the multiplication, can be applied. Even though our design
combines multiplication and reduction, the presented technique builds upon
standard schoolbook multiplication. Therefore, we first describe standard
multiplication architectures which enables us to introduce a common nota-
tion and determines criteria for performance evaluation. The combination
of multiplication and Crandall’s fast reduction procedure represents an in-
terleaved modular multiplication as it shrinks the intermediate result to the
size of the operands.

The contribution of this chapter is twofold: First, we present how Cran-
dall’s reduction technique can be combined with long integer multiplication
for hardware designs in general such that only standard digital logic blocks
are used. The corresponding modular multiplier is constructed by embedding
Crandall’s reduction technique inside a Wallace tree multiplier. A Wallace
tree multiplier is a speed optimized design of a hardware multiplier. It is
shown that our approach can execute a multiplication in a Mersenne prime
field as fast as a single long integer multiplication using a Wallace tree multi-
plier. Second, the generalized approach is mapped and optimized for FPGA
specific technology i.e. base the multiplication on smaller embedded multi-
pliers that are contained in DSP slices. A formalized approach is presented
and algorithms are provided that automatically generate high-performance
modular multipliers for arbitrary Mersenne primes from any small-sized (po-

2.2. HARDWARE MULTIPLIERS 11

Figure 2.1: Left: Schoolbook multiplication as 5-bit binary multiplication.
Right: Corresponding dot-representation.

tentially asymmetric) multipliers i.e. not being limited to current DSP tech-
nologies. These algorithms were implemented in Python and placed in the
public domain1. The proposed design can perform multiplication and re-
duction with almost the same latency as previous works that only perform
multiplication, yet achieving a throughput with a 1.36-factor improvement.

2.2 Hardware Multipliers

Most multiplier architectures follow a similar procedure: compute a set of
partial-products and subsequently accumulate those using an adder circuit.
Figure 2.1 exemplary depicts a 5-bit binary multiplication and its correspond-
ing dot-notation where each dot is a placeholder for a single bit, which can
be zero or one. A partial-product is formed by a horizontal row of dots. The
illustrated multiplication algorithm is the popular schoolbook multiplication
but operates on base-2 instead of base-10 integers. In each step the algo-
rithm selects a multiplier bit from right to left and computes a logically-and
with the 5-bit multiplicand. Depending on the current bit position of the
multiplier, the partial-product is shifted to the left. Finally, all computed
partial-products are accumulated to the product.

Array Multiplier

A multiplier can be implemented in a serial, parallel, or hybrid fashion, which
depends on the performance and area requirements. An exemplary hybrid

1https://github.com/Fraunhofer-AISEC/mod-mul-mersenne

https://github.com/Fraunhofer-AISEC/mod-mul-mersenne

12 CHAPTER 2. MULTIPLICATION IN MERSENNE PRIME FIELDS

Figure 2.2: Architecture of a hybrid 5-bit array multiplier.

array multiplier is shown in Figure 2.2. This architecture is the direct trans-
lation of the schoolbook algorithm from Figure 2.1 to hardware. Again, a
partial-product is generated by the multiplication of the multiplicand with
a single multiplier bit by applying logical-and bitwise. The partial-products
are shifted according to their bit orders and then accumulated using a stan-
dard carry propagate adder which is composed of full adders (FAs) and half
adders (HAs). We determine the delay of the array multiplier as follows:
The logical-and for the single bit multiplication has a delay of O(1). Based
on Figure 2.2, the longest path of adders is given by O(N), in which each
adder has a delay of O(1). Thus, the overall delay of an array multiplier is
O(N). Here, delay refers to the time complexity, which describes the required
amount of time to run an algorithm. Compared to full parallel multiplier de-
signs, the array multiplier suffers in speed; on the other hand, it features a
regular structure, which makes it appealing for VLSI.

Wallace Tree Multiplier

A multiplier featuring a fully parallel adder tree, i.e. accumulating the partial-
products in parallel, is well suited for applications with high-speed require-
ments. In 1964, Wallace [33] described such an efficient adder tree, which is
constructed by three steps:

1. Generate the partial-products by combining the multiplicand with the
multiplier using a logical-and bitwise.

2.2. HARDWARE MULTIPLIERS 13

A2B0
A1B1
A0B2
A3B0
A2B1
A1B2

FA

A4B0
A3B1
A2B2

FA

A1B0
A0B1

A4B1
A3B2

HA

FAA0B3

FAA1B3

FAA2B3

A3B3
A4B2

FA

HA HA

FA

HA

FA

FA

FA

FA

A0B4

A1B4

A2B4

A3B4
A4B3

RCA

A4B4

C1 C2 C3
A0B0 C0

C4-9

(a)

(b) (c)
(d)

Figure 2.3: Constructing a 5-bit Wallace tree multiplier. Explanation of (a),
(b), (c), and (d) is found below.

2. Reduce the number of partial-products by partitioning them in layers
in which the 1-bit products are combined using full and half adders
(see explanation below). Continue until two partial-products remain.

3. Combine the remaining two partial-products by a conventional adder.

For the second step, repeat the following steps:

(a) Partial-products that feature at least three 1-bit products with the
same weight, i.e. are in the same column, form a layer.

(b) In this layer, any three 1-bit products with the same weight are input
into a full adder. The sum bit will carry the same weight, whereas the
weight of the carry-out will increase by 1.

(c) In this layer, if two 1-bit products with the same weight remain, input
them into a half adder where the weight of the sum is unaltered.

(d) If a single 1-bit product remains, pass it to the next iteration.

Figure 2.3 illustrates the steps (a-d) for a 5-bit multiplier and shows the
corresponding hardware design. As it can be observed, the multiplier is
composed of 11 FAs, 4 HAs, and 1 ripple carry adder (RCA). A wallace
tree is a parallel addition tree, which requires O(log(N)) to accumulate all

14 CHAPTER 2. MULTIPLICATION IN MERSENNE PRIME FIELDS

partial-products [34]. The full and half adders have a delay of O(1). Since
the final addition, computed by the RCA, has a delay of O(log(N)), the
overall time complexity is only O(log(N)) However, the disadvantage of a
Wallace tree multiplier is the area complexity as well as the irregular structure
causing difficulties in the layout, which can lead to longer wires with increased
capacitance.

2.3 Multiplication and Crandall’s Reduction

Combined

In case of reduction with Mersenne primes, i.e. Mp = 2p − 1 where p is itself
a prime, we can apply the fast reduction method [30]. For Mersenne primes
the following congruence relation holds:

2p ≡ 1 (mod 2p − 1) , (2.1)

which leads to the fast reduction procedure by writing C = A ·B = Ch2
p+Cl

and combining it with Equation (2.1):

C ≡ Ch + Cl (mod 2p − 1) . (2.2)

Fast reduction is commonly applied after the accumulation of the digit-
products, but instead we combined both steps.

For combined reduction, all digit-product bits exceeding the Mersenne
prime Mp must be shifted to the right by p bits. This can be combined
with the Wallace tree construction i.e. before each layer reduction, the those
exceeding bits are shifted. As illustrated in Figure 2.4, this leads to a Wal-
lace tree design featuring a symmetric structure. Moreover, all intermediate
results are of size N where N = p − 1; thus, a pipelined design utilizes less
registers. Note that this approach enables multiplication and modular re-
duction being computed within the same time complexity as a Wallace tree
based multiplication.

We showed that long-integer multiplication combined with Crandall’s
multiplication can lead to efficient multipliers that can be expressed using
standard logic blocks i.e. and-gates, HAs, FAs, and RCAs. This makes our
technique applicable for general hardware designs and is therefore also suit-
able for ASIC designs. On the contrary, FPGAs are primarily composed of
LUTs, and hence a multiplier inferring standard logic gates would result in
an inefficient design. Moreover, the generation of the partial-products is com-
puted using smaller embedded multipliers, which has impact on the overall
construction.

2.4. FAST MULTIPLICATION ON FPGAS 15

Figure 2.4: Wallace tree construction for a 5-bit multiplication combined
with Crandall’s reduction method.

2.4 Fast Multiplication on FPGAs

In order to realize high-performance modular multipliers on FPGAs, the fol-
lowing circumstances are faced: first, long integer multiplication is performed
using several parallel small-sized multipliers contained in pre-fabricated DSP
slices, which can operate at very high clock frequencies. Second, the mod-
ular multiplier is fully pipelined. Here, pipelining describes the process of
partitioning the circuit in various stages enabling the multiplier to continu-
ously fetch input operands while processing other multiplications. The par-
titioning is achieved by inserting registers at the output of all adders and
multipliers. Since pipelining shortens the critical path, maximum clock fre-
quency and throughput are increased. Third, the adder tree accumulates the
digit-products of the multiplications using cascaded adders with preferably
similar small sizes. The maximum clock frequency within the adder tree
circuit is limited by the adder tree level containing the largest adder. As a
consequence, similar sized adders lead to similar propagation delay, which en-
ables efficient pipelining. Finally, the result is reduced using either dedicated
or generic reduction techniques. While small-sized multipliers contained in
DSP slices can operate at very high frequencies, the adder tree and reduction
circuits are constructed with slower LUT-based FPGA logic. Hence, these
latter circuits limit the performance of modular multipliers in practice. Pre-
vious works such as [1] proposed different methods to minimize the depth
of the adder tree by rearranging the addition of the digit-products on digit-
level. However, the resulting adder tree still suffers in performance as adders
are sized differently leading to an inefficient design.

16 CHAPTER 2. MULTIPLICATION IN MERSENNE PRIME FIELDS

2.5 Related Work

High-performance multiplication on FPGAs is commonly performed with
parallel operating small-sized multipliers that are embedded in dedicated
DSP slices, each one multiplying two small-sized digits of the input operands.
Asymmetric multipliers in modern FPGAs make the design of large multipli-
ers slightly more complex as they require to decompose the input operands
in asymmetric sized digits to achieve best performances. Modern synthesis
tools are not always able to take this asymmetry into account and fall back on
smaller symmetric multipliers. As a consequence, unnecessarily many DSP
slices are instantiated which cannot be used for further functionality. Srinath
and Compton [1] used asymmetric tiling techniques to exploit the capability
of asymmetric multipliers and regrouped digit-products to partial-products
to reduce the circuit delay of the adder tree. These techniques are summa-
rized in the next subsections.

2.5.1 Asymmetric Tiling

Srinath and Compton [1] proposed a formalism for constructing large hard-
ware multipliers with smaller embedded asymmetric m×n-bit multipliers.
The two input operands A and B are decomposed into smaller digits of
length m and n respectively:

A = [A0, ..., Ax−1], s.t. Ai ∈ [0, 2m); i ∈ [0, x) ,

B = [B0, ..., By−1], s.t. Bj ∈ [0, 2n); j ∈ [0, y) .

Digits are then multiplied using xy m×n-bit multiplications, where the out-
put of each DSP multiplier is denoted by the digit-product AiBj:

AiBj ∈ [0, 2m+n), s.t. i ∈ [0, x); j ∈ [0, y) .

Using symmetric multipliers typically leads to a waste of DSP resources.
For instance, 64 DSP slices are required when only 17×17-bit are used to
construct a 127×127-bit multiplier. On the contrary only 48 17×24 DSP
slices are needed when using asymmetric tiling. Figure 2.5 depicts the mul-
tiplication of two values using asymmetric multipliers by the way of a small
example, where the operand A is decomposed into x = 2 digits of m-bit and
the operand B is decomposed into y = 3 digits of n-bit. The digits are multi-
plied together to xy = 6 digit-products AiBj. The sum over all digit-products
results in the final product C. This is denoted as follows:

C =

y−1∑
j=0

x−1∑
i=0

AiBj2
im+jn .

2.5. RELATED WORK 17

Figure 2.5: Multiplication with asymmetric tiling [1].

Digit-products AiBj can be seen as non-overlapping parts of partial-products
Pk, i.e. each partial-product Pk is the sum of some digit-products:

Pk =
∑
i,j

AiBj2
im+jn, s.t.

∑
k

Pk = C .

An adder tree is then used to sum up all partial-products. For our example,
the first stages of the adder tree may combine the partial-products P1 and
P2, P3 and P4, and P5 and P6; and then sum up the results in succeeding
adder tree levels. Accumulating the partial-products as depicted by Figure
2.5, results in an adder tree requiring 3 addition levels for 5 additions in
total. The minimum adder tree level is bounded by dlog2(xy)e [1].

2.5.2 Regrouping Digit-Products

Regrouping digit-products can reduce the depth of the adder tree and avoid
unnecessary carry propagations resulting in decreased propagation delay.
Figure 2.6 depicts diagonal grouping for the same configuration as in Figure
2.5. Diagonal grouping is the rearrangement of partial-products by regroup-
ing adjacent but non-overlapping digit-products [1]. For the presented exam-
ple, diagonal grouping requires only 4 partial-products, and thus the adder
tree consists of only 2 adder tree levels.

Pipelining the adder tree by placing registers at the adder outputs can
increase the maximum clock frequency. For an efficient design, similar de-
lay between each adder tree level is desirable. However, adder sizes vary

18 CHAPTER 2. MULTIPLICATION IN MERSENNE PRIME FIELDS

Figure 2.6: Diagonal grouping for reducing the adder tree depth [1].

for the multiplier design in Figure 2.5 as well as in Figure 2.6. For exam-
ple, consider the adder tree in Figure 2.6: the two adders for summing up
P1 + P2 and P3 + P4 (first adder tree level) are clearly much smaller than
the adder for summing up (P1 + P2) + (P3 + P4) (second adder tree level).
As a consequence, the maximum frequency is limited by the relatively long
propagation delay of the second level. In our modular multiplier design, we
demonstrate how adder sizes can be equalized by combining the reduction
with the accumulation of the digit-products.

2.6 Design Automation for Combined

Reduction

We begin by formalizing the generation of the adder tree, divided in digit-
product generation, digit-product splitting and partial-product generation.
We describe algorithms that can be implemented by a script to automatically
generate modular multipliers for variable Mersenne primes without being
limited to specific DSP properties, i.e. for any m×n-bit multipliers. Our
resulting adder tree features equalized adder sizes which ease pipelining, and
hence allows higher clock frequencies for increased performance. Finally, we
embed our adder tree in a multiplier architecture that is optimized towards
high-throughput and low-latency.

2.6.1 Digit-Product Generation

To begin, the position of the digit-products within the adder tree must be
determined. Before combining fast reduction with digit-product accumula-
tion, we use asymmetric tiling to compile a set of 4-tuples (i, j, µl, µh). Here
i and j identify the indices of the input digits Ai and Bj, and hence con-
nect the 4-tuple to the respective embedded multiplier in the DSP slice.
The elements µl and µh denote the lower and higher bit position within the

2.6. DESIGN AUTOMATION FOR COMBINED REDUCTION 19

adder tree. Algorithm 1 (gen dp) describes the digit-product generation. We

Algorithm 1 gen dp: Determine the position of the digit-products.

Input: A = [A0, ..., Ax−1], s.t. Ai ∈ [0, 2m); i ∈ [0, x) B = [B0, ..., By−1], s.t.
Bj ∈ [0, 2n); j ∈ [0, y)

Output: T = {(i, j, µl, µh)}
1: for j from 0 to y − 1 do
2: for i from 0 to x− 1 do
3: µl ← im+ jn . lowest bit
4: µh ← (i+ 1)m+ (j + 1)n− 1 . highest bit
5: T ← T ∪ {(i, j, µl, µh)} . add tuple
6: end for
7: end for
8: return T

assume that the input operands A and B are decomposed by m and n re-
spectively. The output of Algorithm 1 (gen dp) is a set T storing instances
of the 4-tuple. An exemplary 4-tuple is depicted in the upper left corner of
Figure 2.7.

2.6.2 Digit-Product Splitting

For combined reduction, all digit-product bits exceeding the Mersenne prime
Mp must be shifted to the right by p bits. Digit-product bits exceeding the
position 2p are unused and set to 0. As a consequence, they do not contribute
to the multiplier result and can be removed (marked by dark-grey boxes in
Figure 2.7). In addition, digit-products should be regrouped to reduce the
adder tree depth (see Section 2.2). The steps described above are inefficient
when performed on the digit-product data structure. For example, digit-
products that partly exceed the Mersenne prime Mp need to be split in two
parts. The upper part of the digit-product is then shifted to the right by p bits
whereas the lower part remains unaltered. Instead, we suggest to perform
the shifting for fast reduction and the subsequent regrouping on bit-level.
Therefore, it is required to disassemble all digit-products i.e. instances of 4-
tuples contained in T bit-wise. Algorithm 2 (slice dp) performs this procedure
and also shifts the corresponding bits for combined reduction and removes
unused ones. Bits are described by another 4-tuple described by (i, j, µa, µr).
The identifiers i and j are inherited from the respective digit-product. The
absolute bit position µa represents the position within the adder tree, whereas
µr describes the relative bit position within a digit-product. Storing the
relative bit position µr is required for implementation purposes, because it

20 CHAPTER 2. MULTIPLICATION IN MERSENNE PRIME FIELDS

Figure 2.7: Adder tree optimized towards high-performance. Left: Digit-
products generated for m = 4 , n = 2 and M7 = 27 − 1. Right: Rearranged
sliced digit-products to partial-products with combined fast reduction.

Algorithm 2 slice dp: Slice digit-products in single bits.

Input: T = {(i, j, µl, µh)}, Mp = 2p − 1
Output: Z = {(i, j, µr, µa)}

1: for each t in T do
2: (i, j, µl, µh)← t
3: for k in 0 to (µh − µl) do
4: v ← µl + k
5: if v < 2p then
6: µr ← k . relative
7: µa ← v mod p . absolute
8: Z ← Z ∪ {(i, j, µr, µa)} . add tuple
9: end if

10: end for
11: end for
12: return Z

2.6. DESIGN AUTOMATION FOR COMBINED REDUCTION 21

enables to associate each bit with the correct DSP multiplier output. The
output of Algorithm 2 is a set Z storing instances of bits represented by the
respective 4-tuple. Figure 2.7 illustrates digit-product slicing together with
shifted and removed bits.

2.6.3 Rearrange Sliced Digit-Products

In the last step, all bits are assigned to partial-products. Each partial-
product Pk is represented by a set Pk holding instances of the 4-tuple
(i, j, µa, µr). Instances of this 4-tuple are assigned to partial-products as
follows: We create a new partial-product and iterate from the absolute bit
position 0 to p− 1 such that a partial-product contains at most p instances
of the 4-tuple. Whenever an unassigned 4-tuple with correct absolute bit
position is found, it is added to the corresponding partial-product. Once we
iterated through all bit positions and unassigned 4-tuples still remain, a new
partial-product is created. The corresponding procedure is illustrated in Al-
gorithm 3 (rearrange dp). The number of created partial products is given by

Algorithm 3 rearrange dp: Rearrange sliced digit-products.

Input: Z = {(i, j, µr, µa)}, Mp = 2p − 1
Output: {Pk}k≥1

1: k ← 0
2: while Z 6= ∅ do
3: k ← k + 1
4: for v in 0 to p − 1 do . iterate bit positions
5: if z in Z with µa = v then . select tuple
6: Pk ← Pk ∪ {(i, j, µr, µa)} . add tuple
7: Z ← Z \ {(i, j, µr, µa)} . remove tuple
8: end if
9: end for

10: end while
11: return {Pk}

the maximum number of tuples that feature the same absolute bit position.
Since our algorithm assigns a tuple whenever possible, it can be guaranteed
that the lowest number of possible partial products is obtained. With in-
formation contained in partial-products Pk, one can construct the hardware
description of the respective modular multiplier. The right part of Figure 2.7
depicts the rearrangement of sliced digit-products to partial-products. It can
be observed that our approach equalizes the size of the corresponding partial-
products. The former adder tree features adder sizes up to 2p, whereas our

22 CHAPTER 2. MULTIPLICATION IN MERSENNE PRIME FIELDS

Figure 2.8: Hardware architecture of high-performance modular multiplier
using optimized adder tree.

optimized adder tree features a maximum adder size of p plus some carry
bits depending on the number of adder tree levels. Reduced and equalized
adder sizes allow a higher maximum clock frequency which translates to in-
creased throughput and reduced latency. Note that two further additions are
required after accumulating all partial-products due possible carry bits.

2.7 Hardware Design and Analysis

Figure 2.8 depicts the hardware architecture of our modular multiplier for
Mersenne primes. The hardware architecture is divided in four parts: the
multiplication of digits using DSP multipliers, the subsequent rearranging of
sliced digit-products to partial-products, the summation of partial-products,
and finally the two addition steps for full reduction. For high-performance
purposes, DSP slices compute digit-products fully parallel. Furthermore, we

2.7. HARDWARE DESIGN AND ANALYSIS 23

Table 2.1: Comparison with related work of area utilization and performance
for modular multiplication in Fp with p = 2127 − 1. Note that [1] excludes
the reduction.

Work CC
Freq. TP Latency Resources

(MHz) (GBit/s) (ns) DSP Slices LUT Reg.

[36] 31 110 0.45 281.82 4 1139 - -

[35] 20 190 3.45 105.26 16 - - -

[1] 5 115 14.55 43.64 48 513 1703 2076

This work 7 156 19.81 44.87 48 547 1821 2169

make use of the registers that are embedded in each DSP slice. After all digit-
products are obtained, the sliced DSP multiplier outputs are rearranged as
discussed in previous sections. All single bits are grouped to partial-products
which are then summed up with the subsequent adder tree. The rearrange-
ment of digit-products to partial-products has no impact on area because it
only translates to signal rewiring. We can pipeline the adder tree efficiently
because all adders are similar sized translating to an equivalent circuit de-
lay between register stages. With each adder tree level, the input size is
increased by 1-bit corresponding to the carry of the previous addition. Once
the accumulation of all partial-products is completed, two extra additions
are performed for full reduction. Finally, the result matches the modular
multiplication i.e. A ·B mod 2p − 1.

2.7.1 Results

We developed a script that performs the regrouping of digit-products for arbi-
trary Mersenne primes and DSP multiplier widths. Our script also generates
the multiplier’s hardware description in VHDL including test vectors and
test benches. We have implemented, synthesized and simulated our VHDL
code with Xilinx Vivado 2016.2. All our synthesis results were obtained after
place-and-route using default synthesis and implementation strategies. Table
2.1 illustrates a comparison of area utilization and performance in the case of
M127 = 2127 − 1 with related work [1, 35, 36]. We implemented our design on
a Xilinx’s Zynq-7020 FPGA because it is widely used in the research commu-
nity. It is also used by state of the art ECC implementations (e.g. Järvinen
et al. [35] or Sasdrich and Güneysu [37]). Srinath and Compton [1] used a
Virtex-5 and did not include the reduction procedure. For a fair compar-
ison, we implemented their work on the Zynq-7020 platform and pipelined

24 CHAPTER 2. MULTIPLICATION IN MERSENNE PRIME FIELDS

Table 2.2: Area utilization and performance results of our proposed multiplier
for various Mersenne primes.

FPGA
Mers. Multiplier

CC
TP Latency Resources

Prime Width (GBit/s) (ns) DSP Slices

Zynq-7020 261 − 1 72×68 7 15.25 28.00 12 158

Zynq-7020 289 − 1 96×102 7 17.70 35.20 24 333

Zynq-7020 2107 − 1 120×119 7 18.38 40.75 35 439

Zynq-7020 2127 − 1 144×136 7 19.81 44.87 48 547

Zynq-7045 261 − 1 72×68 7 27.73 15.40 12 157

Zynq-7045 289 − 1 96×102 7 33.59 18.55 24 306

Zynq-7045 2107 − 1 120×119 7 35.67 21.00 35 428

Zynq-7045 2127 − 1 144×136 7 39.69 22.40 48 546

Zynq-7045 2521 − 1 528×527 9 55.42 84.60 682 7527

their design. Compared to [1], our modular multiplier achieves a 1.3-factor
improvement in throughput (TP), while featuring very low-latency. This
improvement is linked to the adder size reduction and equalization, which
results in an adder tree where each adder tree level operates at its maximum
clock frequency. We also note that the cycle count (CC) of our implemen-
tation has improved, however, our DSP utilization is 4-times and 12-times
higher than when compared to [35] and [36], respectively.

While M127 is applied in today’s cryptography, other Mersenne primes
might receive more attention in the future. Therefore, we further report im-
plementation results for Mersenne primes between M61 and M127 in Table 2.2.
We also implemented our design on the high-end FPGA Zynq-7045, where
we synthesized our modular multiplier for the Mersenne prime M521 [38].

2.8 Conclusions

In this chapter, we presented a novel hardware design for the multiplication in
Mersenne prime fields based on a new optimization strategy of the adder tree
and reduction circuits at the bit-level. On an FPGA, the presented modular
multiplier can operate at higher frequencies, leading to improved through-
put and latency. We provided a formalization of our proposed strategy for
any Mersenne prime and any size of the underlying small-sized (potentially
asymmetric) multipliers.

Chapter 3

Elliptic Curve Cryptography

In this chapter, the fundamentals of elliptic curve cryptography (ECC) are
explained, which shall aid the reader in understanding the implementation
of the Montgomery curve Curve25519 [12] in the next chapter. We describe
the elliptic curve scalar multiplication, which is the core of all elliptic curve
cryptosystems, and construct the elliptic curve Diffie-Hellman (ECDH) key
exchange. Moreover, we derive the required formulas for point addition and
point doubling in affine and projective coordinates. For a more detailed
description we refer the reader to [39, 40].

Outline. Section 3.1 provides the definition of elliptic curves. This is fol-
lowed by a description of the scalar multiplication in Section 3.2. Section
3.3 gives details on affine and projective coordinates and Section 3.4 presents
the Montgomery ladder as an efficient time-constant algorithm for scalar
multiplication.

3.1 Introduction to Elliptic Curves

An elliptic curve E over a field K is defined by the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (3.1)

where a1, a2, a3, a4, a6 ∈ K and ∆ 6= 0, where ∆ is the discriminant of E.
The discriminant ∆ of E is the quantity

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6 ∈ K

25

26 CHAPTER 3. ELLIPTIC CURVE CRYPTOGRAPHY

where

b2 = a21 + 4a2

b4 = a1a3 + 2a4

b6 = a23 + 4a6

b8 = a21a6 − a1a3a4 + a2a
2
3 + 4a2a6 − a24 .

The condition ∆ 6= 0 ensures that no points exist that have more than one
tangent i.e. a curve is said to be smooth. Sometimes E/K is written to
emphasize that E is defined over K and K is the underlying field. If L is
any extension field of K, then the set of L-rational points on E is

E(L) = {(x, y) ∈ L× L : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {∞}

where ∞ is the point-at-infinity, which can be seen as the point that is
intersected by all lines parallel to the y-axis. The L-rational points on E are
the points (x, y) that satisfy the curve equation and whose coordinates are
in L.

3.1.1 Short Weierstrass Form

If the characteristic of the field K is char(K) 6= (2, 3) then the general Weier-
strass Equation (3.1) can be simplified to the short Weierstrass form [41]

E : y2 = x3 + ax+ b , (3.2)

where a, b ∈ K and ∆ = 4a3 + 27b2 6= 0. In this thesis, we focus on curves
defined over prime fields Fp with p > 3 and thus char(Fp) > 3. Then the set
of points that satisfy Equation (3.2) including the point-at-infinity is given
by

E(Fp) = {(x, y) ∈ Fp × Fp : y2 − x3 − ax− b = 0} ∪ {∞} .

3.2 Scalar Multiplication and the Elliptic

Curve Diffie-Hellman Key Exchange

The set E(Fp) together with the chord-and-tangent rule (see the next section
for further details), which represents the group operation, forms an abelian
additive group (E(Fp),⊕) . Note that the point-at-infinity ∞ acts as the
identity or neutral element O. The group can be used to construct an elliptic
curve cryptosystem. Let P ∈ E(Fp) be a point of order r, then the cyclic

3.2. SCALAR MULT. AND THE ECDH KEY EXCHANGE 27

subgroup of E(Fp) generated by P is {O, P, 2P, ...(r− 1)P}. Then the order
of a point P corresponds to the cardinality of the generated cyclic subgroup.
Moreover, if the order of the group E(Fp) is prime, then every point except
the identity element is a generator of this group. This can be deduced by
Lagrange’s theorem, which states that the order of a subgroup H of group
G divides the order of G.

With an integer k ∈ [1, r− 1], the point multiplication or scalar multipli-
cation describes the operation of adding a point P to itself (k − 1)-times:

Q = [k]P = P ⊕ P ⊕ ...⊕ P︸ ︷︷ ︸
k−1 additions

,

where the result Q is also a point in the subgroup of (E(Fp),⊕) generated
by P .

The scalar multiplication serves as the trapdoor function and is compara-
ble to the exponentiation operation in Section 1.1. Analog to the exponenti-
ation operation of a conventional DH key exchange, the scalar multiplication
enables to construct ECDH for prime fields as follows:

1. Alice and Bob agree on (E, p, P) where E is the elliptic curve, p de-
scribes the prime field Fp, and P is the base point.

2. Alice chooses kA ← Zq uniformly at random, and computes
h1 := [kA]P . Then she sends h1 to Bob.

3. Bob receives h1. He chooses kB ← Zq uniformly at random and
computes h2 := [kB]P . Bob sends h2 to Alice and outputs the key
kAB := [kB]h1 = [kB][kA]P .

4. Alice receives h2 and outputs the key kAB := [kA]h2 = [kA][kB]P .

3.2.1 Group Law on Elliptic Curves

To obtain a group structure, it is required to define a group operation for
E(Fp). This group operation is geometrically described by the chord-and-
tangent rule. Let two points be denoted by P = (x1, y1) and Q = (x2, y2)
where P,Q ∈ E(Fp). The point addition operation is denoted by P ⊕ Q
and geometrically obtained by projecting the point over the x-axis that is
intersected by the line that connects P and Q. For the addition of a point
P = (x, y) and its opposite P = (x,−y), which is the projection of P over
the x-axis, the corresponding line intersects the curve in the point-at-infinity
P ⊕ P = ∞. The opposite point P can be also denoted by −P . Adding a
point to itself, i.e. P ⊕P is known as the point doubling operation, where the
line becomes a tangent to P which intersects E in a second point. The point

28 CHAPTER 3. ELLIPTIC CURVE CRYPTOGRAPHY

P
Q

P⊕Q

P

P⊕P

x x

y y

Figure 3.1: ECC group law on E : y2 = x3 − x + 1 over the field R. Left:
Point addition. Right: Point doubling.

doubling operation P ⊕ P is often written as 2P . Figure 3.1 illustrates the
point addition and point doubling operation for an exemplary elliptic curve
E : y2 = x3 − x+ 1 over R.

3.3 Choice of Coordinates

To derive a mathematical description of the point addition and point dou-
bling operation, the described steps of the chord-and-tangent rule are made
explicit for the corresponding coordinates. We begin with the intuitive affine
coordinates, followed by projective coordinates for improved performance.

3.3.1 Affine Coordinates

Let P = (xP , yP), Q = (xQ, yQ) such that P 6= ±Q and P ⊕ Q =
(xP⊕Q, yP⊕Q). In this case, the point addition is given by:

xP⊕Q = λ2 − xP − xQ , yP⊕Q = λ(xP − xP⊕Q)− yP , λ =
yP − yQ
xP − xQ

.

Let 2P = (x2P , y2P), then point doubling is given by:

x2P = λ2 − 2xP , y2P = λ(xP − x2P)− yP , λ =
3x2P + a

2yP
.

We note that for point addition and point doubling I + 2M + S and
I + 2M + 2S operations are required, respectively, where I stands for mod-
ular inversion, M for modular multiplication, and S for modular squaring.

3.3. CHOICE OF COORDINATES 29

Note that the modular inversion operation is relatively complex as it is com-
posed of numerous modular multiplications and squarings (e.g. an inversion
in Fp where p = 2255 − 19 needs 254S + 11M based on Fermat’s little theo-
rem). Instead, points on a curve can be represented in projective coordinates,
which avoid the costly inversion for point addition and doubling.

3.3.2 Projective Coordinates

In projective coordinates, a point is represented by (X : Y : Z) on E following
the relation x = X/Z, y = Y/Z with Z 6= 0. The set of all projective points is
denoted by P(Fp). Projective coordinates are unique up to multiplication by
non-zero elements, which is denoted by the equivalence relation (X : Y : Z) =
{(λX, λY, λZ) : λ ∈ Fp}. The set of projective points

P(Fp)0 = {(X : Y : Z) : X, Y, Z ∈ Fp, Z = 0}

is called the line at infinity. Though, the only point on the line at infinity
that also lies on E is (0 : λ : 0), which corresponds to ∞.

The point opposite to (X : Y : Z) is denoted by (X : −Y : Z). Based
on those notations, the elliptic curve short Weierstrass Equation (3.2) is
changed to

Y 2Z = X3 + aXZ2 + bZ3 .

Let P = (XP : YP : ZP), Q = (XQ : YQ : ZQ) such that P 6= ±Q and P ⊕
Q = (XP⊕Q : YP⊕Q : ZP⊕Q). Then set

A = YQZP − YPZQ , B = XQZP −XPZQ , C = A2ZPZQ −B3 − 2B2XPZQ ,

and the point addition operation P ⊕Q is described by:

XP⊕Q = BC , YP⊕Q = A(B2XPZQ − C)−B3YPZQ , ZP⊕Q = B3ZPZQ .

Let 2P = (X2P : Y2P : Z2P), then point doubling is given by:

A = aZ2
P + 3X2

P , B = YPZP , C = XPYPB , D = A2 − 8C ,

and

X2P = 2BD , Y2P = A(4C −D)− 8Y 2
PB

2 , Z2P = 8B3 .

Compared to affine coordinates, the modular inversion is omitted and the
computation requires 12M + 2S operations for point addition and 7M + 5S
operations for point doubling.

30 CHAPTER 3. ELLIPTIC CURVE CRYPTOGRAPHY

Fast Montgomery Arithmetic

Montgomery [4] further improved the addition and doubling formulas for a
special type of curve, i.e. the Montgomery form, that is

EM : By2 = x3 + Ax2 + x . (3.3)

The Montgomery arithmetic relies on an efficient x-coordinate only com-
putation based on the x-coordinate of the two points x(P), x(Q) and the
x-coordinate of the difference point x(P 	 Q) = x(P ⊕ Q) = x(P ⊕ −Q),
all in projective coordinates. In Section 3.4, it is shown how this representa-
tion can be used to describe an efficient scalar multiplication algorithm. For
differential-addition we write:

XP⊕Q = ZP	Q((XP − ZP)(XQ + ZQ) + (XP + ZP)(XQ − ZQ))2 ,

ZP⊕Q = XP	Q((XP − ZP)(XQ + ZQ)− (XP + ZP)(XQ − ZQ))2 .

For doubling we write:

4XPZP = (XP + ZP)2 − (XP − ZP)2 ,

X2P = (XP + ZP)2(XP − ZP)2 ,

Z2P = 4XPZP ((XP − ZP)2 + ((A+ 2)/4)(4XPZP)) .

Hence, an x-coordinate point addition and doubling is computed in 4M +2S
and 3M + 2S operations.

3.4 Montgomery Ladder

A scalar multiplication [k]P can be easily computed by adding the point P
to itself k-times, however, the computational complexity would grow expo-
nential with increasing size of k, where the size of k in number bits is given
by |k| . Instead, a point is multiplied with a scalar by combining point addi-
tion and point doubling operations. Algorithm 4 (mont ladder) depicts the
generalized Montgomery ladder [4] that can be applied for any group (even
though we use a curve group (E,⊕) in our example). It ensures that the
same arithmetic operations are executed independently of the scalar bit ki
and is therefore a common algorithm used in designs of constant-time imple-
mentations. It is further assumed that the most significant bit of k is set to 1,
i.e. k ∈ [2|k|−1, 2|k|) From Line 4 and 6 it can be observed that the difference
point R2	R1 remains constant. From Line 1 we observe that the difference
is P , and hence:

R2 = R1 ⊕ P . (3.4)

3.4. MONTGOMERY LADDER 31

Algorithm 4 mont ladder: The classical Montgomery ladder [4].

Input: (k =
∑|k|−1

i=0 ki2
i) ∈ (2|k|−1, 2|k|], P ∈ E .

Output: Q← [k]P .
1: R1 ← O and R2 ← P
2: for i = |k| − 1 downto 0 do
3: if ki = 0 then
4: R1 ← 2R1 and R2 ← R1 ⊕R2

5: else
6: R1 ← R1 ⊕R2 and R2 ← 2R2

7: end if
8: end for
9: Q← R1

10: return Q

Moreover, the following relation can be determined:

R1 = [(k)i]P, R2 = [(k)i + 1]P, where (k)i := bk/2ic .

Based on Equation (3.4), the correctness of Algorithm 4 can be observed by
relating it to the standard double-and-add algorithm. If ki = 0, then R1 is
doubled. If ki = 1, then R1 is replaced by R1⊕R2. Combined with Equation
(3.4), we get R1 ⊕R2 = R1 ⊕R1 ⊕ P = 2R1 ⊕ P , which means we double
R1 and add P . Since the difference point is known and remains constant,
the differential addition formulas in projective coordinates from the previous
section can be embedded into the Montgomery ladder.

32 CHAPTER 3. ELLIPTIC CURVE CRYPTOGRAPHY

Chapter 4

X25519 DH Key Exchange on
an FPGA

In this chapter, we present a low-latency X25519 hardware implementation,
which is the DH key exchange based on Curve25519 [12, 42]. This is achieved
by using an extended version of the high-speed modular multiplier we pre-
sented in Chapter 2. Our implementation uses the Montgomery ladder as
the scalar multiplication algorithm and includes randomized projective coor-
dinates to thwart DPA attacks. Parts of this chapter have been published in
[26, 27].

Outline. Section 4.1 provides background information on Curve25519.
Section 4.2 presents an algorithmic description of the X25519 key exchange.
Section 4.3 summarizes the implemented field arithmetic and Section 4.4
the corresponding hardware design. Section 4.5 presents the synthesis and
performance results. Finally, we conclude in Section 4.6.

4.1 Background

Curve25519 is a 128-bit secure elliptic curve introduced by Bernstein in 2006
[12]. It is designed in an elegant and transparent way, while offering high-
performance, which makes it a promising candidate to secure IoT applica-
tions. Over the past few years, numerous high-speed Curve25519 implemen-
tations on embedded devices have been published in literature [15, 43, 44].
The fastest implementation on microcontrollers to date performs a variable-
base scalar multiplication on an ARM Cortex-M4 microcontrollers in 1423667
cycles [45]. An application specific instruction set processor for IoT appli-

33

34 CHAPTER 4. X25519 ON AN FPGA

cations has been presented in [46], where a session key can be computed
in between 811170 and 3455394 clock cycles, depending on area and power
constraints. Nowadays, embedded devices often possess additional reconfig-
urable hardware logic, that can be used for accelerating cryptographic op-
erations. Examples of these embedded devices are Xilinx’s Zynq-7000 [47],
Altera’s Aria V, Cyclone V and Stratix 10 [48], and Microsemi’s SmartFu-
sion and SmartFusion2. Sasdrich and Güneysu [49] were the first to present a
hardware based Curve25519 implementation optimized for high-throughput
applications on Xilinx Zynq-7020 devices. Sasdrich and Güneysu’s imple-
mentation requires 34052 cycles at a maximum frequency of 100 MHz for
one Curve25519 scalar multiplication and thus, a session key is computed
in about 340 ms. Their design is based on multiple parallel cores, each one
performing one elliptic curve scalar multiplication in projective coordinates,
and achieves a throughput of 32000 scalar multiplications per second on a
Xilinx Zynq-7020 at 100 MHz. Sasdrich and Güneysu suggested randomized
projective coordinates as a side-channel countermeasure to thwart differential
power analysis in the extended version of their paper [37].

Our implementation uses the Montgomery ladder in projective coordi-
nates [4] to perform a variable-base scalar multiplication using Curve25519
to realize the ECDH key exchange protocol. To reduce the latency of a
scalar multiplication, we use a high-speed optimized prime field multiplier.
To thwart differential side-channel attacks we show that our design can inher-
ently make use of randomized projective coordinates at no extra area costs
and with only a negligible time overhead [50, 51]. Our implementation per-
forms one Curve25519 scalar multiplication in 10,465 cycles at a frequency of
115 MHz on a Xilinx Zynq-7030 and 84 MHz on a Zynq-7020, hence a session
key is computed in 92 µs and 125 µs, respectively. The former constitutes
an improvement of 1.3 compared to our work in [26].

4.2 Algorithmic Description

The ECDH Curve25519 key exchange protocol (also known as X25519 [52])
allows two parties to derive a shared session key using Curve25519.
Curve25519 is a Montgomery elliptic curve [4] (compare Equation (3.3) from
Chapter 3) defined by the equation:

EM : y2 = x3 + 486662x2 + x , (4.1)

over the prime field F2255−19. The set of points {(x, y) ∈ F2
2255−19 : y2 =

x3 + 486662x2 + x} together with the point-at-infinity ∞ serving as neutral
element O forms an additive abelian group under point addition. In order to

4.3. PSEUDO MERSENNE PRIME FIELD ARITHMETIC 35

compute a shared key between two parties, a public point P on E is added
to itself |k| − 1) times, where k is a 255-bit secret private value. According
to [12] the three least significant bits of the scalar are set to 0 to overcome
small-subgroup attacks.

As described in Algorithm 4 (mont ladder) from Section 3.4, an efficient
way to compute a scalar multiplication on Montgomery elliptic curves is
given by the Montgomery powering ladder. The explicit Montgomery ladder
algorithm for Curve25519 using randomized projective coordinates is shown
in Algorithm 5 (x25519 ladder). Thereby, we use the x-only coordinates from
Section 3.3.2 together with differential addition x(P ⊕Q) and doubling for-
mulas x(2P). According to [50], randomized projective coordinates are a
countermeasure to thwart side-channel attacks by randomly projecting the
input point P , i.e. (X, Y, Z) = (λX, λY, λZ) for a random value λ ∈ Z255

2 \{0}.
Moreover, x25519 ladder replaces the conditional branch in mont ladder by a
conditional-swap function to prevent timing attacks. In every ladder itera-
tion a conditional swap of the points R1, R2 is performed depending on the
value of the secret bit ki followed by a point addition and a point doubling
operation. Finally, the result of the ladder is transformed back to the original
domain. This operation requires a modular inversion (Line 27) and one extra
multiplication.

4.3 Pseudo Mersenne Prime Field

Arithmetic

In the following, the implementation of the arithmetic modules, i.e. modu-
lar addition, modular subtraction, and modular multiplication, is analyzed.
These modules are frequently accessed by the Montgomery ladder and thus,
they contribute strongly to the overall performance. Then the design of the
Montgomery ladder is presented, where about 80 % of the time is spent for
scalar multiplication [49]. Afterwards, we describe the logic for the modular
inversion based on Fermat’s little theorem.

4.3.1 Addition and Subtraction

The Montgomery ladder requires computations in the field Fp, i.e. the imple-
mentation of integer arithmetic modulo p. Let x and y be two n-digit radix-b
positive integers 0 ≤ x, y < p, then modular addition can be implemented
trivially by adding digit by digit while rippling the carry bit over the partial
sums. The reduction operation is performed subsequently to the addition

36 CHAPTER 4. X25519 ON AN FPGA

Algorithm 5 x25519 ladder: Curve25519 Montgomery ladder in randomized
projective coordinates.

Input:
(
k =

∑254
i=0 ki2

i
)
∈ [2254, 2255), λ ∈ Z255

2 \{0}, and x(P) ∈ E .
Output: x(Q)← x([k]P)

1: R1 = (X1, Z1)← (λ, 0) . cf. Algorithm 4, R1 ← O
2: R2 = (X2, Z2)← (λ · x(P), λ) . cf. Algorithm 4, R2 ← P
3: R2 	R1 = (X3, Z3)← (λ · x(P), λ)
4: for i = 254 downto 0 do
5: (R1, R2)← cswap(ki ⊕ ki+1, (R1, R2))
6: t1 ← X1 + Z1

7: t2 ← X1 − Z1

8: t3 ← X2 + Z2

9: t4 ← X2 − Z2

10: t6 ← t21
11: t7 ← t22
12: t5 ← t6 − t7
13: t8 ← t4t1
14: t9 ← t3t2
15: t10 ← t8 + t9
16: t11 ← t8 − t9
17: t15 ← t210
18: X2 ← Z3t15
19: t12 ← t211
20: t13 ← 121666t5
21: X1 ← t6t7
22: t14 ← t7 + t13
23: Z2 ← X3t12
24: Z1 ← t5t14
25: end for
26: (R1, R2)← cswap(k0, (R1, R2))
27: Z1 ← Z−11 . transform back to affine coordinates
28: x(Q)← X1Z1

29: return x(Q)

4.3. PSEUDO MERSENNE PRIME FIELD ARITHMETIC 37

by applying Crandall’s fast reduction [30] i.e. adding the potential carry bit
on the earlier obtained addition/subtraction result. Modular subtraction fol-
lows a similar procedure. More details can be found in [53]. Centerpiece of
the modular addition and modular subtraction unit, computing x±y mod p,
are the 255-bit wide addition, respectively 255-bit wide subtraction blocks.
Both, addition and subtraction, can be executed in 1 clock cycle. For the
reduction procedure 1 cycle is needed additionally and hence, a total of 2
cycles is required for modular addition/subtraction.

4.3.2 Multiplication

As proposed in Chapter 2, high-speed modular multipliers can be efficiently
implemented with parallel operating DSP slices and an optimized adder tree
that interleaves the fast reduction procedure. We extended this approach
and implemented a similar modular multiplier for the pseudo Mersenne prime
2255 − 19. In case of reduction with a pseudo Mersenne primes, i.e. p = 2n − c
where n is a positive integer and c is a constant, the following congruence
relation holds:

2n ≡ c (mod 2n − c) ,

which leads to the fast reduction procedure by writing C = A ·B = Ch2
n+Cl

and applying the previous congruence relation:

C ≡ Chc+ Cl (mod 2n − c) .

An additional multiplication by the constant c is required before the reduc-
tion can take place. This multiplication by a constant increases the area
utilization, but does not result in an extra clock cycle because it is combined
with the digit-product generation. Overall, a modular multiplication in Fp
is performed in 8 cycles with a throughput of one product per cycle.

4.3.3 Inversion

Fermat’s little theorem can be utilized to compute the multiplicative inverse
x−1 of an integer x ∈ Fp\{0}. Euler’s theorem defines that if x and n are
positive coprime integers, then

xφ(n) ≡ 1 (mod n) , (4.2)

where φ(n) is the Euler’s totient function. Since φ(p) = p− 1 for any prime
p, then it follows:

xp−1 ≡ 1 (mod p) . (4.3)

38 CHAPTER 4. X25519 ON AN FPGA

Figure 4.1: X25519 architecture, which contains all control and datapath
logic for computing Algorithm 5 (x25519 ladder).

From Equation (4.3), the inverse x−1 can be computed as follows:

xp−2 ≡ x−1 (mod p)) .

Hence, in case of Curve25519, the inversion is given by

x−1 ≡ x2
255−21 (mod 2255 − 19) .

The exponentiation x2
255−21 can be computed efficiently with a sequence of

squaring and multiplication operations. The logic for the modular inversion is
composed by a large FSM that accesses the arithmetic units in a fixed order.
We decided to use Fermat’s little theorem, instead of the extended euclidean
algorithm [54], because it prevents the necessity to instantiate additional
arithmetic functions that would require further slices. However, we note
that the extend euclidean algorithm can result in a significant speed-up as
demonstrated in [49] where only 1,667 clock cycles are required. Compared
to this, our modular inversion requires 2,548 cycles.

4.4 Hardware Architecture

We logically divide our design in two parts: the core containing all arith-
metic modules including two dedicated 6 × 255-bit memory blocks and the
control logic that controls the data flow inside the core. Our implemented
architecture is illustrated in Figure 4.1. The control logic consists of a large

4.5. RESULTS 39

FSM that generates the respective control signals for the 255 Montgomery
ladder steps and the modular inversion at the end of Montgomery ladder.
It is further responsible for the external communication i.e. react on a start
signal, process input operands and pull up the done signal once all compu-
tations are finished. The core contains four arithmetic modules i.e. modu-
lar addition, subtraction, multiplication and constant multiplication. Each
arithmetic module features two 255-bit wide input ports that are driven by a
multiplexer. The memory blocks are treated similarly and additionally, allow
one external 255-bit wide input which is required for setting the initial point
and the random value λ. The two memory blocks, which are synthesized as
distributed RAM, can hold 6× 255-bit operands each that are used to store
intermediate values. Our implementation performs one Curve25519 scalar
multiplication in 10,465 cycles.

4.4.1 Montgomery Ladder

With respect to Algorithm 5 and the performance of each arithmetic mod-
ule, the instruction scheduling for one Montgomery ladder step is depicted
by Table 4.1. The cycles plotted under the corresponding component (e.g.
modular adder A) represent the processing stage. To give an example, t1 in
cycle 1 means that t1 = X1+Z1 is in the first processing stage in the modular
adder. In cycle 3, the computation of t1 is finished and can be further pro-
cessed by other modules. The control logic implements the corresponding
data path and sets the control signals for the respective arithmetic mod-
ules. We decided to use a dedicated constant modular multiplier because
it allows a noticeable performance improvement while requiring only little
additional area resources. The ladder step module hands over the control for
every arithmetic unit to the inversion module, once all 255 ladder steps were
executed. Our design needs only 7,917 cycles for all 255 ladder steps.

4.5 Results

We synthesized and implemented all modules with Xilinx Vivado 2016.2 and
reported values refer to place-and-route designs. Table 4.2 summarizes the
number of clock cycles and latency requirements for all X25519 related mod-
ules and compares the results to previous FPGA results from Sasdrich and
Güneysu [37, 49] and our previous work [26]. Note that compared to our
work in [26], we were also able to implement our design on a Zynq-7020.
This is enabled by our modular multiplier from Chapter 2 which reduced the
required DSP slices. The first thing to note is that the design from Sasdrich

40 CHAPTER 4. X25519 ON AN FPGA

Table 4.1: Instruction scheduling for single X25519 ladder step as described
in Algorithm 5 (x25519 ladder) for the modular multiplier (M), the constant
modular multiplier (Mc), the adder (A), and the subtractor (Z).

M Mc A Z

Cycle 1 9 1 4 1 3 1 3

1 - - - - t1 - t2 -

2 - - - - t3 - t4 -

3 t6 - - - - t1 - t2

4 t8 - - - - t3 - t4

5 t9 - - - - - - -

6 t7 - - - - - - -

... - - - - - - - -

11 - t6 - - - - - -

12 - t8 - - - - - -

13 - t9 - - t10 - t11 -

14 X1 t7 - - - - t5

15 t12 - - - - t10 - t11

16 t15 - t13 - - - - t5

... - - - - - - - -

19 - - - t13 t14 - - -

... - - - - - - - -

21 Z1 - - - - t14 - -

22 - X1 - - - - - -

23 Z2 t12 - - - - - -

24 X2 t15 - - - - - -

... - - - - - - - -

29 - Z1 - - - - - -

30 - - - - - - - -

33 - Z2 - - - - - -

32 - X2 - - - - - -

4.5. RESULTS 41

Table 4.2: Performance comparison of X25519 implementations in terms of
clock cycles and latency requirements.

This work This work [26] [37] [37]

Platform Zynq-7030 Zynq-7020 Zynq-7030 Zynq-7020 Zynq-7020

Clock Freq. 115 MHz 84 MHz 115 MHz 100 MHz 200 MHz

Mod. Add. 2 2 2 10 10

Mod. Sub. 2 2 2 10 10

Mod. Mul. 8 8 10 55 55

Mont. Ladder 7,917 7,917 10,711 64,770� 64,770

Mod. Inv. 2,548 2,548 2,928 1,667 14,630

Total 10,465 10,465 13,639 34,052 79,400

Latency 92 µs 125 µs 118 µs 340 µs 397 µs

� Can be operated at 200 MHz.

and Güeneysu can be operated in two clock domains due to huge differences
in the frequency requirements of different modules: their Montgomery ladder
including the modular arithmetic operates at 200 MHz, while the inversion
unit is executed with a maximum frequency of 100 MHZ. Consequently, Sas-
drich and Güneysu relate the required 64770 cycles of the Montgomery ladder
to the 100 MHz domain i.e. assume that 32885 cycles are needed for it (ne-
glecting the overheads for the domain crossing). Nevertheless, our design,
operating in a single domain, achieves increased performance compared to
Sasdrich and Güneysu’s Montgomery’s ladder. For example, our modular
multiplication is executed more than five times faster than [37], caused by
our speed optimized parallel multiplier. Second, our inversion module can
be operated at maximum frequency (it is only limited by the maximum fre-
quency of the multiplier unit). It can be noted that our modular inversion
unit using Fermat’s Little Theorem appears to be slightly slower in terms of
clock cycles than the one presented by Sasdrich and Güneysu, that uses the
extended Euclidean algorithm. However, although the extended Euclidean
algorithm appears to be faster for hardware based systems, applying Fer-
mat’s little theorem to compute the inverse allows higher clock frequencies
and lower area requirements, as just the modular multiplication module is
reused for it. The overall area utilization for this work, compared with Sas-
drich and Güneysu’s implementation, is reported in Table 4.3. It can be
noted that our design is significantly smaller than the multi-core instantia-
tion, yet larger than the single-core instantiation. Our two 6×255-bit wide
memory blocks are synthesized as distributed RAM. In comparison to pre-

42 CHAPTER 4. X25519 ON AN FPGA

Table 4.3: Comparison of area utilization with other X25519 implementa-
tions.

Work FPGA Cores Slices LUTs Registers DSP BRAM

[37] Zynq-7020 1 1,029 3,592 2,783 20 2

[37] Zynq-7020 11 11,277 43,875 34,009 220 22

[26] Zynq-7030 1 8,639 26,483 21,107 260 0

This work Zynq-7020 1 6,161 22,627 17,924 175 0

This work Zynq-7030 1 6,161 21,077 17,939 175 0

vious work [26] we were able to reduce the amount of required DSP blocks,
LUTs and registers while achieving lower latency and higher throughput.
Also, notice that our design makes inherently use of the randomized projec-
tive coordinate countermeasure to thwart DPA. In the extended version [37]
of Sasdrich and Güneysu’s paper, randomized projective coordinates are also
applied, however, their protected design has a penalty of 4110 cycles. In any
case, all designs provide a good fit on Xilinx Zynq FPGAs, while leaving
enough resources for additional circuits.

4.6 Conclusions

We explored hardware design strategies for X25519 on two Xilinx Zynq FP-
GAs aimed at low-latency. To reduce the latency, we make use of high-speed
arithmetic modules, each carefully optimized to minimize the number of clock
cycles as well as the critical path delay, e.g. we use a pipelined 255 × 255-
bit parallel multiplier to perform a modular multiplication in 8 cycles only.
Our implementations perform variable-scalar Curve25519 scalar multiplica-
tion in 10465 cycles at a maximum frequency of 115 MHz and 84 MHz for
the Zynq-7030 and Zynq-7020, respectively. Additionally, randomized pro-
jective coordinates were used to counteract side-channel attacks with no area
penalty and at the cost of only few clock cycles.

Chapter 5

Hyperelliptic Curve
Cryptography

Until today, ECC is a state-of-the art representative of asymmetric cryptog-
raphy. Targeting a 128-bit security level, numerous speed records for DH key
exchange were set by elliptic-curve-based schemes. However, in the past few
years, several works based on genus-2 hyperelliptic curves reported promising
performance results for several architectures ranging from small microcon-
trollers [16] to more powerful Intel architectures [19]. This was possible due to
the finding of a secure genus-2 curve [18] and its associated Kummer surface,
which enables a fast and uniform scalar pseudo-multiplication. Compared to
ECC, a genus-2 Kummer surface based key exchange can operate on a field
of half the size but features a higher computational complexity. Hyperellip-
tic curves are in fact a generalization of elliptic curves. However, defining a
group structure on hyperelliptic curves of arbitrary genus is more complex.
In this chapter, the background on hyperelliptic curve cryptography is pre-
sented, which is required for understanding Chapter 6 where a genus-2 key
exchange implementation is described.

Outline. Section 5.1 states the general definition of hyperelliptic curves
and describes how the Jacobian variety is used to build a group structure. As
computations on the Jacobian variety are inefficient, Section 5.2 provides the
definition of the associated Kummer surface and its highly efficient addition
and doubling formulas.

43

44 CHAPTER 5. HYPERELLIPTIC CURVE CRYPTOGRAPHY

Figure 5.1: Left: Group operation for an elliptic curve using the chord-and-
tangent rule. Right: Illustrating how the chord-and-tangent rule is ineffective
for a genus-2 hyperelliptic curve.

5.1 Group Law for Hyperelliptic Curves

A hyperelliptic curve of genus g over the field K is given by a curve in the
generalized Weierstrass equation

C : y2 + h(x)y = f(x) ,

with the polynomials f(x), h(x), where f(x) is monic1, and deg(f) = 2g + 1
where g describes the genus. If char(K) 6= 2 then h(x) = 0 [39], which is the
case for the prime fields Fp that are in scope of this thesis. A curve of genus
g = 1 is an elliptic curve, whereas a curve of genus g > 1 is a hyperelliptic
curve. For example, recall the Curve25519 Equation (4.1) from Section 4.2
that is defined as y2 = x3 + 486662x2 + x. As with elliptic curves, the set of
rational points for a hyperelliptic curve over Fp is defined as

C(Fp) = {(x, y) ∈ Fp × Fp | y2 = f(x)} ∪ {∞}

where a point is described as P = (x,y) and its opposite by P = (x,−y).
For elliptic curves, a group is formed by the set of points together with

the point-at-infinity and the chord-and-tangent rule that serves as the group
operation. However, as shown in Figure 5.1 the chord-and-tangent rule does
not lead to a group operation for curves of g > 1, as a line intersects C in up
to 2g + 1 points [39].

1A polynomial is said to be monic if the leading coefficient (the nonzero coefficient of
highest degree) is equal to 1.

5.1. GROUP LAW FOR HYPERELLIPTIC CURVES 45

5.1.1 The Jacobian Variety

A group structure for a hyperelliptic curve C of genus g is formed by the
Jacobian variety or in short the Jacobian. The Jacobian is the quotient
group

JC = Div0
C/Princ

where Div0
C denotes the degree-0-divisors and PrinC denotes the principal

divisors. In the following, the concept of divisors and principal divisors is
explained.

Divisors

For a hyperelliptic curve C, various points P can be determined that fulfill
the curve equation and are hence located on the curve. This leads to the
definition of a divisor D that represents the formal sum of points

D =
∑
P∈C

nPP, nP ∈ Z ,

where finitely many integers nP are non-zero. A group is formed by all
divisors on C denoted by DivC with the group operation defined by coefficient
wise addition [55]. The group operation for two divisors D1, D2 can be
written as:

D1 ⊕D2 =
∑
P∈C

mPP +
∑
P∈C

nPP =
∑
P∈C

(mP + nP)P .

For example, (1P1 + 2P2) ⊕ (1P1 + 1P2) = 2P1 + 3P2. However, using this
group for cryptographic operations is difficult to implement as it would lead
to longer and longer representations of the group elements.

Instead, a further definition is required, which is the degree of a divisor
D that is defined as

deg(D) =
∑
P∈C

nP .

Based on this, the group of degree-0-divisors can be defined:

Div0
C = {D ∈ DivC : deg(D) = 0} , (5.1)

which is a subgroup of DivC [55] and represents the first part of the Jacobian
variety.

46 CHAPTER 5. HYPERELLIPTIC CURVE CRYPTOGRAPHY

Principal Divisors

Let a rational function f be an element of the so-called function field Fp(C).
An important property of this function field is that all functions have the
form f = u

v
with the two polynomials u, v. The polynomial u describes the

zeroes of f while the polynomial v describes the poles of f . For each function
f ∈ Fp(C) we associate a principal divisor:

div(f) =
∑
P∈C

νP (f)P ,

where νP (f) is a valuation function which counts the multiplicity of a zero
or pole of a point P :

� νP (f) = n if f has a zero of multiplicity n at P

� νP (f) = −n if f has a pole of multiplicity n at P

� νP (f) = 0 otherwise.

A further property of the function field is that deg(u) = deg(v), which results
in the fact that a principal divisor has degree zero because the number of
zeroes equals the number of poles. Therefore, the set of all principal divisors,
denoted by PrinC, is a subgroup of degree-0-divisors and thus the following
holds:

PrinC ≤ Div0
C ≤ DivC .

Finally, the quotient group can effectively be described as JC = DivC/PrinC.

The Divisor Class Group

The Jacobian variety forms a group where elements are equivalence classes
of degree-zero-divisors on C resulting from functions. It can be shown that
each equivalence class contains semi-reduced divisors that have the form:

D =
r∑
i=1

Pi − r∞ , Pi ∈ C \ {∞} .

An equivalence class contains multiple semi-reduced divisors that are repre-
sented by a unique reduced divisor with the additional constraint of r ≤ g.
The group operation of the Jacobian is in fact the combination of two re-
duced divisors. We note that two divisors are called equivalent Di ∼ Dj

if they belong to the same equivalence class of JC, which is only the case
if Di − Dj ∈ PrinC. This is derived from a standard property of quotient
groups.

5.1. GROUP LAW FOR HYPERELLIPTIC CURVES 47

5.1.2 Addition on the Jacobian

In this section, the addition of two divisors on the Jacobian is described,
which is then transformed to an algorithmic description that is known as
Cantor’s algorithm. In the following, we assume a genus g = 2 curve over Fp
that has the simplified form

C : y2 = f(x) . (5.2)

Let D1, D2 be two reduced divisors where D1 6= D2 with

D1 = P1 + P2 − 2∞ , and D2 = Q1 +Q2 − 2∞ .

Then there exist exactly one polynomial

a(x) = a0x
3 + a1x

2 + a2x+ a3

that intersects all four points P1, P2, Q1, Q2 . By combining Equation (5.2)
with y = a(x), we determine the polynomial

f(x)− a2(x) = 0 ,

which is a polynomial of degree 6 that intersects the four points P1, P2, Q1, Q2

and two further points R1, R2. This is certainly a principal divisor and can
be written as

D3 = P1 + P2 +Q1 +Q2 +R1 +R2 − 6∞ .

From the previous section we know that two divisors are equivalent if Di −
Dj ∈ PrinC and hence we can infer the following relation

D1 +D2 = P1 + P2 +Q1 +Q2 − 4∞ ∼ −(R1 +R2 − 2∞) . (5.3)

Moreover, the divisor

P + P − 2∞

is a principal divisor as it originates from the function b(x) = x − a which
infers that P −∞ ∼ −(P −∞). We combine this property with Equation
(5.3) and obtain

D1 +D2 = −(R1 +R2 − 2∞) = R1 +R2 − 2∞ .

In fact, this represents the group operation, which is illustrated in Figure
5.2.

48 CHAPTER 5. HYPERELLIPTIC CURVE CRYPTOGRAPHY

P1

P2

Q1

Q2

R1

R2

x

y

Figure 5.2: Group law for a genus-2 hyperelliptic curve over R.

Mumford Representation

Representing a divisor as the formal sum of points is impractical for im-
plementations. Instead, the Mumford representation can be used which de-
scribes a divisor based on polynomials. Each nontrivial divisor class over Fp
can be represented by a unique pair of polynomials u(x) and v(x). Let D be
the reduced divisor D =

∑r
i Pi − r∞ where Pi 6=∞, Pi 6= −Pj for i 6= j and

r ≤ g. Let Pi = (xi, yi), then the Mumford representation of D = 〈u, v〉 can
be defined as following

u(x) =
r∏
i=1

(x− xi) ,(
d

dx

)j
[v(x)2 − f(x)]x=xi = 0

The zeros of u(x) describes the x-coordinates of the points in D, and v(x) is
the function that interpolates through all points Pi and in particular v(xi) =
yi . To determine v(x), polynomial interpolation algorithms can be used such
as the Lagrange interpolation, i.e. the points P1 = (x1, y1), ..., Pg = (xg, yg)
correspond to the polynomial:

v(x) =
t∑
i=g

∏
j 6=i(x− xj)∏
j 6=i(xi − xj)

yi .

5.1. ARITHMETIC FOR GENUS-2 CURVES OVER PRIME FIELDS 49

Cantor’s Algorithm

Cantor’s Algorithm performs a group-wise addition on two reduced divisors.
Both input divisors and the output divisor is represented in the Mumford rep-
resentation. It is implemented by Algorithm 6 (cantor) and can be separated
in a composition and a reduction phase. In theory, Cantor’s algorithm could

Algorithm 6 cantor: Cantor’s algorithm to perform the group operation on
two reduced divisors in Mumford representation.

Input: Reduced divisors D1 = 〈u1, v1〉 and D2 = 〈u2, v2〉
Output: Reduced divisor D ← D1 ⊕D2

1: d1 ← gcd(u1, u2) = e1u1 + e2u2
2: d← gcd(d1, v1 + v2 + h) = c1d1 + c2(v1 + v2 + h)
3: s1 ← c1e1, s2 ← c1e2, s3 ← c2
4: u← (u1u2)/d

2

5: v ← (s1u1v2 + s2u2v1 + s3(v1v2 + f))/d mod u
6: while deg(u) > g do . reduce the divisor
7: u′ ← (f − vh− v2)/u
8: v′ ← (−h− v) mod u′

9: u← u′, v ← v′

10: end while
11: return D = 〈u, v〉

be implemented on standard hardware, however, this is inefficient because
computing the greatest common divisor (Line 1 and 2), using an algorithm
such as the extended Euclidean, is computationally complex.

5.2 Montgomery Arithmetic for Genus-2

Curves over Prime Fields

While Cantor’s algorithm works for any curve of genus g, several works were
published [56, 57] that determined explicit formulas for genus-2 curves to ob-
tain a faster arithmetic. However, compared to ECC, even those optimized
formulas remain computationally inefficient. A different approach was pre-
sented by Chudnovsky and Chudnovsky [58] in 1986, in which the authors
discussed the application of the scalar multiplication on a Kummer surface
associated to a genus-2 hyperelliptic curve. The Kummer surface KC is the
image of a rational map κ that identifies the group element D ∈ JC with
its inverse such that κ(D) = κ(D). In the elliptic case, the analogue is the
projection onto the x-coordinate, i.e. neglecting the y-coordinate, which is

50 CHAPTER 5. HYPERELLIPTIC CURVE CRYPTOGRAPHY

a standard approach for increasing the performance. The x-coordinate only
arithmetic led to very fast DH key exchange implementations, such as the
popular X25519 [12] (see Chapter 4). Even though the mapping to the Kum-
mer surface destroys the group structure, a pseudo group operation can still
be defined that is sufficient for a DH key exchange.

In the following, an element of the Kummer surface is said to be a point
on the Kummer surface. In [58], Chudnovsky and Chudnovsky presented
formulas for point doubling κ(2P). They also reported the number of field
operations for differential point addition i.e. κ(P ⊕Q) given κ(P), κ(Q), and
κ(Q	P) but did not present the corresponding formulas. The point doubling
and differential addition formulas were improved by Gaudry [59] and further
refined by Bernstein and Lange [17]. Since those formulas depend on the type
and parameterization of the Kummer surface, we state its definition without
further explanation.

5.2.1 The Kummer Surface

It is assumed that the genus-2 curve C is in the so-called Rosenhain form

C : y2 := x (x− 1) (x− λ) (x− µ) (x− ν) .

As Gaudry showed [14], the Kummer surface and the genus-2 curve C are
related to each other via the Rosenhain invariants λ, µ, ν:

λ := ac/bd , µ :=
c (1 +

√
CD/AB)

d (1−
√
CD/AB)

, ν :=
a (1 +

√
CD/AB)

b (1−
√
CD/AB)

,

where a, b, c, d so-called squared theta constants. Based on the squared theta
constants, the dual theta constants A,B,C,D can be determined

A := a+ b+ c+ d , B := a+ b− c− d ,
C := a− b+ c− d , D := a− b− c+ d .

The fast Kummer surface KC ∈ P3 of [14, 58, 60], is then defined as:

KC : Exyzt =

(
(x2 + y2 + z2 + t2)

−F (xt+ yz)−G (xz + yt)−H (xy + zt)

)2

,

where

F =
a2 − b2 − c2 + d2

ad− bc
, G =

a2 − b2 + c2 − d2

ac− bd
, H =

a2 + b2 − c2 − d2

ab− cd
,

5.2. ARITHMETIC FOR GENUS-2 CURVES OVER PRIME FIELDS 51

Figure 5.3: Formulas for differential addition and doubling on the fast Kum-
mer surface.

and E = 4abcd (ABCD/ ((ad− bc) (ac− bd) (ab− cd)))2. For an element
P ∈ JC, its image in KC is denoted by

κ(P) = (x : y : z : t) .

The identity point O = 〈1, 0〉 ∈ JC, represented in Mumford representation,
maps to

κ(O) = (a : b : c : d) .

Fast Kummer Arithmetic

Let P,Q ∈ JC with κ(P) = (xP : yP : zP : tP), κ(Q) = (xQ : yQ : zQ : tQ) ∈ KC
and assume that the difference κ(Q	 P) ∈ KC = (xQ	P : yQ	P : zQ	P : tQ	P)
is known. Based on [20], Figure 5.3 describes the required field operations for
doubling κ(2P) and differential addition κ(P ⊕Q) with several computations
being shared. We note that H denotes the Hadamard transform which is
given by H : (x : y : z : t) 7→ (xH : yH : zH : tH) with

xH =

u︷ ︸︸ ︷
(x+ y) +

v︷ ︸︸ ︷
(z + t) , zH =

r︷ ︸︸ ︷
(x− y) +

s︷ ︸︸ ︷
(z − t) , (5.4)

yH = (x+ y)− (z + t) , tH = (x− y)− (z − t) . (5.5)

To further simply the notation, we denote operations in the projective space
P as shown in [16]. First, the multiplication M that multiplies the corre-
sponding pairs of coordinates from two distinct points in Fp:

M : ((x1 : y1 : z1 : t1) , (x2 : y2 : z2 : t2)) 7→ (x1x2 : y1y2 : z1z2 : t1t2) .

52 CHAPTER 5. HYPERELLIPTIC CURVE CRYPTOGRAPHY

And second, the special case where the two points are equal, i.e. squaring in
Fp the corresponding pairs of coordinates:

S : (x : y : z : t) 7→
(
x2 : y2 : z2 : t2

)
.

By sharing the intermediate values, as illustrated in Figure 5.3, an efficient
algorithm for a combined double-and-add can be determined. Algorithm 7
(dbladd) denotes this procedure requiring only 7M + 12S + 9Mc field opera-
tions, where M stands for modular multiplication, S for modular squaring,
and Mc for constant multiplication. As we show in the next section, an ef-
ficient routine for scalar multiplication can then be constructed using the
combined double-and-add and the Montgomery ladder from Section 3.4 Al-
gorithm 4 (mont ladder).

Algorithm 7 dbladd: Combined double-and-add on a Kummer surface of a
genus-2 curve.

Input: κ(P), κ(Q), κ(Q	 P) ∈ KC
Output: κ(2P), κ(P ⊕Q) ∈ KC

1: V5 ← κ(P)
2: V6 ← κ(Q)
3: V7 ←

(
1
A

: 1
B

: 1
C

: 1
D

)
4: V8 ←

(
1
a

: 1
b

: 1
c

: 1
d

)
5: V9 ←

(
1 :

xQ	P

yQ	P
:
xQ	P

zQ	P
:
xQ	P

tQ	P

)
6: (V1, V2)← (H (V5) ,H (V6))
7: (V3, V4)← (S (V1) ,M (V1, V2))
8: (V5, V6)← (M (V3, V7) ,M (V4, V7))
9: (V1, V2)← (H (V5) ,H (V6))

10: (V3, V4)← (S (V1) ,S (V2))
11: (V5, V6)← (M (V3, V8) ,M (V4, V9))
12: return κ(2P) = V5, κ(P ⊕Q) = V6

Chapter 6

Kummer Surface Based DH
Key Exchange on an FPGA

In this chapter, we present two hardware implementations of the DH key
exchange based on the Kummer surface of Gaudry and Schost’s genus-2 curve
targeting a 128-bit security level. We describe a single-core architecture for
low-latency applications and a multi-core architecture for high-throughput
applications. Parts of this chapter have been published in [28].

Outline. In Section 6.1 we summarize the motivation of this work and the
main design decisions that enabled our high-speed design. Section 6.2 de-
scribes Gaudry and Schost’s hyperelliptic curve and its Kummer surface, and
summarize the scalar multiplication on this Kummer surface using the Mont-
gomery ladder in Section 6.3. In Section 6.4, a description of the single-core
and multi-core hardware architectures is provided including a performance
analysis and comparison to related work. Finally, we conclude and discuss
the results in Section 6.5.

6.1 Introduction

In 2006, Bernstein and Lange [17] showed in a cost analysis for software
that a genus-2 based implementation is potentially 1.5-times faster than a
comparable elliptic curve based implementation. At that time, however, a
secure Kummer surface of a genus-2 curve was not found yet. Since genus-2
point counting is computationally expensive, it took further six years until
Gaudry and Schost [18] presented a twist-secure Kummer surface targeting
a 128-bit security level. So far, investigations of the DH key exchange on

53

54 CHAPTER 6. KUMMER SURFACE BASED DH ON AN FPGA

the Kummer surface of genus-2 curves were confined to software implemen-
tations [16, 19, 20]. While these software implementations already showed
the performance advantages of genus-2 curves, the design of efficient hard-
ware is a fundamentally different task. Best performance results are only
obtained when each module is carefully optimized with optimally matched
timing characteristics to one another. In this work, we show that the Kum-
mer surface of Gaudry and Schost’s genus-2 curve can be used to perform
very fast DH key exchanges in hardware. The main design decisions that
influenced our results are described in Section 6.4 and summarized below:

Interleaving two scalar multiplications. Due to the serial nature of the con-
sidered ladder, multiple hardware modules, (such as the modular multiplier),
operate below full capacity. This allows for a second scalar multiplication to
be efficiently interleaved by carefully scheduling the required field operations.
The obtained instruction schedule leaves the number of cycles unaltered while
effectively doubling the throughput. Note that this interleaved scalar mul-
tiplication can also be used as a countermeasure against fault attacks by
performing both scalar multiplications on the same input point and check
the results for equivalence.

Efficient representation of constant values. For improved performance, we
instantiate a dedicated circuit for multiplying field elements with 12-bit con-
stants in each ladder step. Compared to a conventional modular multiplica-
tion, the constant modular multiplier requires only 4 clock cycles instead of
7. Some constants, however, are negative; the naive approach would be to
convert them to positive elements of the prime field and then use the mod-
ular multiplier for multiplication. In order to avoid the increased memory
requirements and decreased performance of this naive approach, we neglect
the sign when storing the constants and include the conditional negation
logic inside the constant modular multiplier.

High-speed modular multiplier. The performance of the scalar multiplication
is strongly correlated with the performance of the modular multiplier. We
reuse the multiplier presented in Chapter 2, which is explicitly optimized for
Mersenne prime fields, and modify it by applying the non-standard tiling
technique [2] to further improve its performance. In this way, we also reduce
the number of required DSP blocks by 10%.

6.2. PRELIMINARIES 55

Algorithm 8 scalar mult: Unwrap input point to Montgomery ladder on KC
followed by point wrapping. It is assumed that the public key (respectively
public generator) is in 381-bit wrapped representation.

Input:
(
k =

∑250
i=0 ki2

i
)
∈ [0, 2251), κ(P) for κ(P) in KC.

Output: κ(Q) for κ(Q)← κ([k]P) in KC.
1: κ(P)← unwrap

(
κ(P)

)
. compute 4-tuple representation of κ(P)

2: κ(Q)← mont ladder kummer
(
k, κ(P), κ(P)

)
3: κ(Q)← wrap (κ(Q)) . compute wrapped 381-bit representation of κ(Q)
4: return κ(Q)

6.2 Preliminaries

Our implemented DH key exchange works the same as the one described by
Renes et al. [16]. A detailed description of the underlying theory can be
found in Chapter 5. A point κ(P) is represented by a 4-tuple where each
element is 127-bit wide which sums up to 508 bit in total. As described
in [16, 60], we assume that the public key (respectively public generator)
is represented by a 3-tuple in its wrapped 381-bit representation denoted by
κ(P). Renes et al. [16] showed that keeping the input points in their wrapped
representation offers two advantages: first, it reduces the required amount
of data that needs to be transmitted and second, it results in a speed-up for
the ladder computation.

For an ephemeral key exchange, the scalar multiplication is performed
twice: once for computing an entity’s public key, where the public generator
is the input point, and once for computing a shared secret, where the other
entity’s public-key is the input point.

Key exchange. Let κ(P) be the public generator (respectively public key) in
its wrapped representation and k be the 251-bit secret key. We then compute
κ(Q)← κ([k]P) and derive the generated public key (respectively the shared
secret) as κ(Q).

The scalar multiplication is implemented by Algorithm 8 (scalar mult)
and uses three functions: unwrap computes the 4-tuple representation of the
input point, mont ladder kummer multiplies the unwrapped input point by
a scalar value using the Montgomery ladder [4], and wrap finally computes
the 381-bit wrapped representation of the output point; all these functions
are described in detail in Section 6.3. In the previous chapter, we stated the
general definition of the Kummer surface. In our implementation we use the

56 CHAPTER 6. KUMMER SURFACE BASED DH ON AN FPGA

Kummer surface of Gaudry and Schost’s genus-2 hyperelliptic curve [18], and
thus we firstly summarize the definition of this curve.

6.2.1 Gaudry and Schost’s Genus-2 Hyperelliptic
Curve

The genus-2 hyperelliptic curve C of Gaudry and Schost [18] is defined over
the prime field Fp with p = 2127 − 1. From the previous chapter, recall the
Rosenhain model of the curve C, which can be written as follows:

C : g2 := x (x− 1) (x− λ) (x− µ) (x− ν) ,

where the Rosenhain invariants are defined as

λ := ac/bd = 0x15555555555555555555555555555552 ,

µ := ce/df = 0x73E334FBB315130E05A505C31919A746 ,

ν := ae/bf = 0x552AB1B63BF799716B5806482D2D21F3 ,

the squared theta constants are set to

a = −11 , b = 22 , c = 19 , and d = 3 ,

e/f = (1 +
√
CD/AB)/(1−

√
CD/AB) ,

and the dual theta constants are set to

A := a+ b+ c+ d = 33 , B := a+ b− c− d = −11 ,

C := a− b+ c− d = −17 , D := a− b− c+ d = −49 .

6.3 Compression and Scalar Multiplication

As described in Algorithm 8 (scalar mult), we assume that the input and
output points are in their wrapped representation. The wrapped represen-
tation of the point κ(P) = (x : y : z : t) in KC is composed of a 3-tuple and
denoted by κ(P) = (x/y, x/z, x/t). Algorithm 9 (unwrap) implements the
point unwrapping, which consists of 4 multiplications in Fp. The wrapping
function is described in Algorithm 10 (wrap); it consists of a finite field in-
version and 7 multiplications. Algorithm 11 (mont ladder kummer) describes
the Montgomery ladder for the scalar multiplication on the Kummer surface
of Gaudry and Schost’s genus-2 curve. The constants that are stored in V7

6.4. HARDWARE ARCHITECTURES 57

Algorithm 9 unwrap: (x/y, x/z, x/t) 7→ (x : y : z : t) Unwrap point to its
508-bit representation.

Input: (x/y, x/z, x/t).
Output: (x : y : z : t).

1: (V1, V2, V3)← ((x/z) (x/t) , (x/y) (x/t) , (x/y) (x/z))
2: V4 ← V3 (x/t)
3: return (V4 : V1 : V2 : V3)

Algorithm 10 wrap: (x : y : z : t) 7→ (x/y, x/z, x/t) Compute wrapped 381-
bit representation.

Input: (x : y : z : t).
Output: (x/y, x/z, x/t).

1: V1 ← yz
2: V2 ← x/ (V1t) . inversion
3: V3 ← V2t
4: return (V3z, V3y, V1V2)

and V8 are projectively derived from the squared theta constants (a, b, c, d)
and the dual theta constants (A,B,C,D) respectively (see Section 6.2.1):(

1

a
:

1

b
:

1

c
:

1

d

)
= (114 : −57 : −66 : −418) ,(

1

A
:

1

B
:

1

C
:

1

D

)
= (−833 : 2499 : 1617 : 561) .

The Montgomery ladder consists of 251 ladder steps, each one performing a
differential addition and a doubling operation. Each ladder step includes a
conditional swap of two pairs of coordinates.

6.4 Hardware Architectures

The implementation of Algorithm 8 (scalar mult) is the essential task of our
hardware design. We present a single-core architecture for low-latency appli-
cations and a multi-core architecture for high-throughput applications. Our
single-core architecture performs two scalar multiplications on the Kummer
surface at a time by scheduling the field operations for point addition and
point doubling such that it is possible to interleave a second scalar multi-
plication with no cycle penalty. The top-view architecture is illustrated in
Figure 6.1. It takes two points in their wrapped representation as input,

58 CHAPTER 6. KUMMER SURFACE BASED DH ON AN FPGA

Algorithm 11 mont ladder kummer: Montgomery ladder using combined
differential double-and-add.

Input:
(
k =

∑250
i=0 ki2

i
)
∈ [2250, 2251),

(
κ(P), κ(P)

)
∈ K2

C.

Output: κ(Q) = (xQ : yQ : zQ : tQ) for κ(Q)← κ([k]P) in KC.
1: V5 ← (a : b : c : d) . cf. Algorithm 4, R1 ← O
2: V6 ← (xP : yP : zP : tP) . cf. Algorithm 4, R2 ← P
3: V7 ←

(
1
A

: 1
B

: 1
C

: 1
D

)
4: V8 ←

(
1
a

: 1
b

: 1
c

: 1
d

)
5: V9 ←

(
1 : xP

yP
: xP
zP

: xP
tP

)
. representation of κ(P)

6: for i = |k| − 1 downto 0 do
7: (V1, V2)← cswap (ki ⊕ ki+1, (V5, V6)) . s251 = 0
8: (V1, V2)← (H (V1) ,H (V2))
9: (V3, V4)← (S (V1) ,M (V1, V2))

10: (V5, V6)← (M (V3, V7) ,M (V4, V7))
11: (V1, V2)← (H (V5) ,H (V6))
12: (V3, V4)← (S (V1) ,S (V2))
13: (V5, V6)← (M (V3, V8) ,M (V4, V9))
14: end for
15: (V1, V2)← cswap (k0, (V5, V6))
16: return κ(Q) = V2

processes them, and returns two points in their wrapped representation as
output. We logically divide our single-core design into three parts that are
described in the next subsections: memory, datapath, and control logic. Fur-
ther we describe a multi-core architecture that instantiates 4 independently
operating cores and can perform up to 8 scalar multiplications with different
keys and input points.

Note that the two interleaved scalar multiplications can be inherently used
as a redundancy countermeasure to thwart fault attacks in our designs, i.e. by
performing two interleaved scalar multiplications on the same points with the
same key and then check the result for equivalence. This countermeasure can
be applied to both our single- and multi-core architectures without applying
any changes to the presented hardware designs.

6.4.1 Memory

The memory consists of a 16× 127-bit register file and a 6× 127-bit simple
dual-port RAM. The register file is divided in four larger blocks, where each
block is 4 × 127-bit wide. We follow the logical structure of Algorithm 11

6.4. HARDWARE ARCHITECTURES 59

Figure 6.1: Single-core architecture, which contains all control and datapath
logic for computing Algorithm 8 (scalar mult).

(mont ladder kummer) in which operations are performed on two points at
a time (e.g. V1, V2 on line 8). We also use a simple dual-port RAM for
storing the wrapped input point xp

yp
, xp
zp

, and xp
tp

, which is accessed in read-only

mode. Note that when no design constraints are set, the used synthesis tool
instantiates distributed RAM instead of block RAM for storing this point.
We found out that forcing the synthesis tool to use block RAM resulted in a
10% decrease of the maximum clock frequency.

6.4.2 Datapath

The datapath including the register file is shown in Figure 6.2. It implements
the required field operations in Fp. The register blocks Ri and R′i for i ∈ [1, 2]
are required for storing intermediate values of the first and the second scalar
multiplication, respectively. The register blocks R1 and R′1 are initialized
with the constants V5 = (a : b : c : d) whenever Algorithm 8 (scalar mult) is
started. The modular multiplier is preceded by the multiplexer m3 that al-
lows to perform field operations using various input sources. The output
of the constant modular multiplier and the Hadamard module serve as fast
forward input paths for the modular multiplier. These fast forward paths
are required when data needs to be processed immediately without any fur-
ther delay. Moreover, the modular multiplier can process 127-bit inputs that
originate from the RAM and are required in each ladder step (e.g. multipli-
cation by xp

yp
). We can store each field operation output in the register blocks,

i.e. Ri and R′i, by accordingly selecting the signals with the multiplexers m1

and m2. Although large multiplexers result in an increased area utilization,
they allow greater flexibility in scheduling instructions which leads to higher

60 CHAPTER 6. KUMMER SURFACE BASED DH ON AN FPGA

Hadamard

ctrl8x127

modular
multiplier

127

127

127 constant
multiplier

ctrl

8x127

4x127

127

8x127

ctrl

ctrl 8x127

127
ram

R2

m3

m2

R2

R1R1

m1

ctrl

Figure 6.2: Datapath including register file.

overall performance. All select and enable signals in Figure 6.2 are driven by
the control logic (see Section 6.4.3).

Modular Multiplier

We reuse the modular multiplier design from Chapter 2, but further extend
it by applying the non-standard tiling technique [2]. Our multiplier returns
the result after 7 cycles including the reduction step. This property is not
only beneficial for the performance, but also required in order to interleave
a second scalar multiplication. Our implemented modular multiplier is used
for both squaring and multiplication in Fp. Figure 6.3 shows the hardware
architecture of our modular multiplier.

In modern FPGAs, DSP blocks typically contain asymmetric multipliers,
e.g. in case of the Zynq-7020 FPGA a 17× 24-bit multiplier is contained in
each DSP block. In order to exploit these asymmetries to reduce the amount
of DSP blocks used to perform large multiplications, different optimization
strategies were proposed [1, 61, 62]. In particular, the authors of [61] showed
that operand decomposition boils down to a tiling problem, where each tile
represents the result of a smaller digit-product computation. Roy et al. [2]
proposed the non-standard tiling algorithm as a solution to this tiling prob-
lem. They presented a formal procedure to compute this non-standard tiling
for large multipliers with arbitrary operand sizes. The goal is to determine a
tiling configuration that covers the 127-bit multiplier while instantiating as

6.4. HARDWARE ARCHITECTURES 61

digit-product
computation

adder tree

+ +

reduction

C
127

127

127

130

130 4

127

1

127

M43: DSP
17x24

A[71:58]

B[71:58]
28

41
M1: DSP
17x24

A[23:0]

B[16:0]

41
M2: DSP
17x24

A[23:0]

B[33:17]

rearrange
bits

127

+

+

+

128
+

+

+

+

128

128

128

129

129

129

129

+

+

+

+

+

+

+

+

128

128

128

128

Figure 6.3: Architecture of the modular multiplier, as similarly shown in
Chapter 2.

Figure 6.4: Left: Non-standard tiling [2] for 127× 127-bit multiplier. Right:
Non-standard tiling for smaller 78× 78-bit multiplier.

62 CHAPTER 6. KUMMER SURFACE BASED DH ON AN FPGA

few tiles as possible. For a 127 × 127-bit multiplier, Figure 6.4 presents the
implemented non-standard tiling [2]. The horizontal side represents operand
A and the vertical side represents operand B. The size of the tiles Mi where
i ∈ [1, 43] \ {25, 26} corresponds to the asymmetric multiplier widths and can
consequently be implemented in a single DSP block. The two tiles M25 and
M26, however, correspond to a 126× 1-bit multiplier and a 1× 127-bit mul-
tiplier, respectively, both implemented in LUT logic. With this initial tiling,
the problem of finding an efficient placement for a 127× 127-bit multiplier is
reduced to a 78 × 78-bit multiplier. Again, we perform non-standard tiling
for the reduced problem which results in a smaller 14×14-bit multiplier M43.
Comparing non-standard-tiling with standard-tiling, only 41 DSP blocks are
required instead of 64 [1].

Constant Modular Multiplier

In order to speed up the Montgomery ladder, we instantiate a constant mod-
ular multiplier that multiplies one of the constants in

{
1
a
, 1
b
, 1
c
, 1
d
, 1
A
, 1
B
, 1
C
, 1
D

}
with a variable 127-bit operand. The constant modular multiplier returns
with a latency of 4 cycles, which is 3 cycles less than the generic modular mul-
tiplier. The variable 127-bit operand can be broken down into 6 = d127/24e
tiles. Since each constant is less than 17-bit, the constant modular multiplier
can be implemented with only six 17 × 24 DSP blocks and some LUTs for
the adder tree. The multiplication itself is pipelined and followed by two
reduction steps including a conditional negation. The conditional negation
is required for the multiplication with projectively negative constants, i.e.
1
b
, 1
c
, 1
d
, and 1

A
. For all other constants, i.e. 1

a
, 1
B
, 1
C
, and 1

D
, the negation

output is ignored. All constants are hard-decoded and then selected for mul-
tiplication via a select signal. Overall, 12 modular multiplications in each
ladder step can be replaced by constant multiplications.

Hadamard Transform

A further operation in Algorithm 11 (mont ladder kummer) is the Hadamard
transform. It is essentially composed of 4 modular additions and 4 modular
subtractions, which we implemented using 2 modular adders and 2 modular
subtractors. In order to parallelize the execution of independent operations, a
modular adder is implemented using two addition circuits that are connected
in series, each one having a clocked register output. The first adds two 127-
bit wide operands and the second reduces the sum again by using Crandall’s
fast reduction [30]. Because a register is placed after each addition circuit, a
result is obtained each cycle after an initial delay of 2 cycles. The modular

6.4. HARDWARE ARCHITECTURES 63

Table 6.1: Instruction scheduling for two successive Hadarmard computations
as in line 8 of Algorithm 11 (mont ladder kummer) using modular addition
(A) and subtraction (Z).

A1 A2 Z2 Z2

Cycle 1 3 1 3 1 3 1 3

1 u1 - v1 - r1 - s1 -

2 u2 - v2 - r2 - s2 -

3 xH1 u1 zH1 v1 yH1 r1 tH1 s1
4 xH2 u2 zH2 v2 yH2 r2 tH2 s2
5 - xH1 - zH1 - yH1 - tH1

6 - xH2 - zH2 - yH2 - tH2

subtraction circuit is implemented similarly; modular addition and modular
subtraction are both implemented in LUT logic.

Two successive Hadamard transforms, i.e. H(V1),H(V2), are computed
at the beginning of each ladder step before any other computation can
take place. Therefore, the modular adder and the modular subtractor cir-
cuits are connected with a multiplexer in a way that two Hadamard trans-
forms are finished in successive clock cycles. Table 6.1 shows the schedul-
ing for a Hadamard transform of two points, i.e. V1 = (x1 : y1 : z1 : t1) and
V2 = (x2 : y2 : z2 : t2), plotted over cycles to compute Equation (5.4) and
Equation (5.5) (see Section 6.3). The cycles plotted under the corresponding
component (e.g. modular adder A1) represent the processing stage. To give
an example, u1 in cycle 1 means that u1 = x1 + y1 is in the first processing
stage in the modular adder. In cycle 3, the computation of u1 is finished and
can be further processed by other modules. The transformed points H(V1)
and H(V2) are returned in the 5th cycle and in the 6th cycle, respectively.

To reduce the number of modular reductions and hence the number of
required cycles, lazy reduction is a popular technique. In software, lazy re-
duction comes typically for free because field elements are often smaller than
a multiple of the word size which results in unused bits at higher positions. In
hardware, however, lazy reduction leads to increased memory requirements,
larger multipliers, and a more complex control logic to distinguish between
reduced and unreduced field elements when initiating a modular multiplica-
tion. Therefore, lazy reduction was not applied here.

64 CHAPTER 6. KUMMER SURFACE BASED DH ON AN FPGA

Table 6.2: Latency in cycles and throughput in operations per cycles of field
operations.

Operation
Latency Throughput

(cycles) (op/cycles)

Addition/subtraction in Fp 2 1

Multiplication/squaring in Fp 7 1

Constant multiplication in Fp 4 1

Inversion in Fp 952 1/476

Hadamard transform 4 1/2

6.4.3 Control Logic

The control logic takes care of performing the necessary memory operations
in the register file and RAM, and schedules the instructions required by
Algorithm 8 (scalar mult). The unwrapping and wrapping function, and
the Montgomery ladder logically divide the control logic into separate con-
trol blocks. The control logic is implemented using a Finite State Machine
(FSM). Inside the FSM multiple counters are used to track the processing
status of arithmetic modules such as the modular multiplier. For an efficient
instruction scheduling, the latency and throughput characteristics of the un-
derlying functions such as modular multiplication and Hadamard transform
are required. Table 6.2 shows the performance of the field operations in
Fp including Hadamard transform, which is composed of modular additions
and subtractions. The throughput denotes how often an instruction can be
scheduled, e.g. a throughput of 1/2 (op/cycles) means 1 instruction can be
scheduled in 2 cycles. Table 6.3 reports the latency of all high-level opera-
tions. The Montgomery ladder comprises 90 percent of all cycles, and hence
it is crucial to efficiently schedule field-level instructions.

Montgomery Ladder

Table 6.4 shows the instruction scheduling for a Montgomery ladder step for
two scalar multiplications. Instructions of the second scalar multiplication
are complemented by a prime symbol, e.g. y′1. Overall, 251 Montgomery
ladder steps are executed, each implementing a combined differential double-
and-add, which takes 41 cycles to run. All scheduled instructions denote
the expected output, e.g. in cycle 5 the squaring y3 is an abbreviation and

6.4. HARDWARE ARCHITECTURES 65

Table 6.3: Latency in terms of cycle count (CC) of high-level functions.

Operation
Latency

(CC)

Unwrap 30

Combined differential double-and-add 41

Montgomery ladder 10,302

Wrap 998

Scalar multiplication 11,330

stands for the computation of y3 = V3,y = V1,yV1,y as described in line 9 of
Algorithm 11 (mont ladder kummer). The conditional-swap function is im-
plemented with no timing-penalty by simply swapping the arguments of the
first two Hadamard transforms. Our control logic schedules modular multi-
plications and multiplications by constants in parallel for best performance
results. Note that the constant multiplier uses the direct output of the mod-
ular multiplier.

Modular Inversion

We use Fermat’s little theorem to compute the multiplicative inverse
x−1 of an integer x ∈ Fp\{0}. The finite field inversion is given by
x−1 ≡ x2

127−3.This exponentiation is computed with a sequence of 126 mod-
ular squarings and 10 modular multiplications as described by Renes et al.
[16]. Due to the serial nature of the modular inversion, there is little room
for scheduling operations of a single inversion in parallel. This, however,
enables us to schedule a second independent modular inversion in parallel
by repeating each operation for the corresponding operands with a one cycle
delay.

6.4.4 Multi-Core Architecture

For multi-core architectures, the amount of cores which can be instantiated in
parallel is strongly limited by the number of DSP blocks available on the tar-
get FPGA device. Our multi-core architecture implements 4 independently
operating single-cores each featuring its own control logic. As a result, up to 8
scalar multiplications with different keys and input points can be computed.

66 CHAPTER 6. KUMMER SURFACE BASED DH ON AN FPGA

Table 6.4: Instruction scheduling for single ladder step as described in Algo-
rithm 11 (mont ladder kummer) for the modular multiplier (M), the constant
modular multiplier (Mc), and the Hadamard transform module (H).

M H Mc M H Mc

Cycle 1 8 1 5 1 5 Cycle 1 8 1 5 1 4

1 - - H1 - - - 28 z3 z′3 - - z′5 y′6
2 - - H2 - - - 29 t3 t′3 - - t′5 z′6

... - - - - - - 30 x3 x′3 - - x′5 t′6
5 y3 - - H1 - - 31 y6 y4 H′2 - - x′6
6 y4 - - H2 - - 32 z6 z4 - - - z′5
7 z4 - - - - - 33 t6 t4 - - - t′5
8 t4 - - - - - 34 x4 y3 H′1 - y5 x′5
9 x4 - - - - - 35 y′4 z3 - H′2 z5 -

10 z3 - - - - - 36 z′4 t3 - - t5 -

11 t3 - - - - - 37 t′4 x3 - - x5 -

12 x3 y3 H′1 - y5 - 38 y′3 y6 - H′1 - y5

13 - y4 H′2 - y6 - 39 z′3 z6 - - - z5

14 - z4 - - z6 - 40 t′3 t6 - - - t5
15 - t4 - - t6 - 41 x′3 x4 - - - x5

16 y′3 x4 - H′1 x6 y5 1 y′6 y′4 - - - -

17 y′4 z3 - H′2 z5 y6 2 z′6 z′4 - - - -

18 z′4 t3 - - t5 z6 3 t′6 t′4 - - - -

19 t′4 x3 - - x5 t6 4 x′4 y′3 - - y′5 -

20 x′4 - H2 - - x6 5 - z′3 - - z′5 -

21 z′3 - - - - z5 6 - t′3 - - t′5 -

22 t′3 - - - - t5 7 - x′3 - - x′5 -

23 x′3 y′3 H1 - y′5 x5 8 - y6
′ - - - y′5

24 y4 y′4 - H2 y′6 - 9 - z6
′ - - - z5

′

25 z4 z′4 - - z′6 - 10 - t6
′ - - - t5

′

26 t4 t′4 - - t′6 - 11 - x4
′ - - - x5

′

27 y3 x′4 - H1 x′6 y′5 - - - - - - -

6.5. RESULTS AND ANALYSIS 67

Table 6.5: Device utilization and maximum clock frequency on Xilinx Zynq-
7020 FPGA.

Component
Single-core Multi-core

Available
@138.7 MHz @129.2 MHz

LUTs 8,764 (16%) 35,015 (66%) 53,200

Registers 6,852 (6%) 27,300 (26%) 106,400

DSP48E1 49 (22%) 196 (89%) 220

Block RAM 0 (0%) 0 (0%) 140

Occupied slices 2,657 (20%) 10,554 (79%) 13, 300

Instantiating multiple single-cores is a common concept and was similarly
applied by Sasdrich and Güneysu [37] for Curve25519 and Järvinen et al.
[35] for FourQ. Sasdrich and Güneysu used a shared inversion module and
Järvinen et al. used a shared control logic component. We also implemented
a multi-core architecture with a shared control logic using a single shared
key to reduce the area utilization. However, the LUT logic was only reduced
by approximately 10% which is a rather small improvement compared to its
limitations. In fact, this shared control logic architecture requires all scalar
multiplications to be started in parallel as there is only one control logic for
all cores.

6.5 Results and Analysis

We synthesized our single-core and multi-core architectures with Xilinx Vivado
2017.2 on a Xilinx Zynq-7020 FPGA (XC7Z020CLG484-3). All our results are
obtained after place-and-route. Table 6.5 presents the area utilization including
the maximum clock frequency for the single-core and multi-core architecture. Our
single-core architecture requires 20% of the available slices and 22% of the avail-
able DSP blocks. Through according design methods and proper constraining we
achieve a maximum clock frequency of 138.7 MHz, which corresponds to a clock
period of 7.21 ns. Two interleaved scalar multiplications require 11,330 cycles, and
thus a session-key can be computed with a latency of 82 µs. The interleaving of two
scalar multiplications can then be either used to effectively double the through-
put to 24,482 scalar multiplications per second or provide resistance against fault
attacks. For the single-core architecture latency is primarily of interest and thus
we assume that only a single input point and secret scalar is available at a time

68 CHAPTER 6. KUMMER SURFACE BASED DH ON AN FPGA

Table 6.6: Comparison of single- and multi-core architectures of variable-base
scalar multiplications featuring a 128-bit security level on a Zynq-7020.

Reference Curve Cores
Resources Latency TP

Slices DSP BRAM (µs) (op/s)

[37] Curve25519 1 1,029 20 2 397 2,519

[27] Curve25519 1 6,161 175 0 125 8,027

[35] FourQ (Mont.) 1 565 16 7 310 3,222

[35] FourQ (End.) 1 1,691 27 10 157 6,389

This work Kummer 1 2,657 49 0 82 12,224

[37] Curve25519 11 11,277 220 22 397 32,304

[35] FourQ (End.) 11 5,697 187 110 170 64,730

This work Kummer 4 10,554 196 0 88 91,226

i.e. the interleaving of two scalar multiplications is used as an additional fault
countermeasure. For our multi-core design we instantiate the maximum amount
of 4 single-cores on the Zynq-7020 FPGA and use the interleaved scalar multipli-
cation for doubling the throughput. Compared to our single-core design, we see a
decrease in the maximum clock frequency; using Vivado tools, we can place-and-
route our design with a clock frequency of 129.2 MHz which corresponds to a clock
period of 7.74 ns. The reduction of the maximum clock frequency is related to the
increased DSP block utilization that are distributed across the entire FPGA. For
the multi-core architecture with independently operating single-cores we report a
throughput of 91,226 scalar multiplications per second.

Table 6.6 provides a comparison of our results with state-of-the-art scalar mul-
tiplication implementations on the same Zynq-7020 FPGA device all featuring a
128-bit security level. We compare our genus-2 results to various genus-1 imple-
mentations: the X25519 implementation by Sasdrich and Güneysu [37] as well as
our implementation from Chapter 4 Table 4.3 (see [27]), and the FourQ implemen-
tation by Järvinen et al. [35]. Comparing the latency of the single-core designs,
our proposed implementation is 1.91-times faster than FourQ using endomorphisms
and 3.78-times faster than FourQ using the Montgomery ladder. The improvement
in latency is related to the increased area utilization i.e. our design demands 1.57-
times and 4.70-times more slices than FourQ using endomorphisms and the Mont-
gomery ladder, respectively. Yet, our implementation performs better than the
fastest implementation so far (FourQ with End.) in both the LUT-latency prod-
uct (217,787 against 265,487) as well as the DSP-latency product (4,018 against
4,239). Compared to the X25519 implementations, the genus-2 implementation

6.6. CONCLUSIONS 69

is 4.84-times and 1.52-faster than [37] and [27], respectively. In terms of area,
the proposed single-core implementation required 2.32-times fewer slices than our
implementation from Chapter 3, but 2.58-times more slices than [37].

Our multi-core architecture with independently operating single-cores offers
a throughput that is 1.41-times higher than FourQ and 2.82-times higher than
the X25519 implementation. In terms of latency, we also report the fastest scalar
multiplication, i.e. our architecture is 1.93-times faster than FourQ and 4.51-times
faster than X25519. Note that all reported multi-core designs use the maximum
number of cores that can be successfully placed on the target device. However,
only our multi-core design features fully independent single-cores, i.e. neither the
inversion unit, such as the X25519 implementation [37], nor the scalar multiplica-
tion unit, such as FourQ implementation [35], are shared. Also note that we make
use of distributed RAM implemented by LUT logic for memory, which leaves a
notable amount of BRAM available for other applications. We emphasize that
X25519 and FourQ could also benefit from interleaved scalar multiplication. How-
ever, this was not included in the corresponding implementations and thus no
results can be compared.

6.6 Conclusions

We presented the first hardware implementation results for a key exchange on
the Kummer surface of Gaudry and Schost’s genus-2 curve. Although a Kummer
surface based key exchange has an increased number of field operations per ladder
step when compared to elliptic curves, our presented architectures perform a scalar
multiplication with lower latency and higher throughput than any other reported
prime-field elliptic curve key exchange featuring a 128-bit security level on a Zynq-
7020 FPGA. These results set new records for latency and throughput among
state-of-the-art 128-bit secure key exchange implementations known so far, such
as Curve25519 [27, 37] and FourQ [35].

70 CHAPTER 6. KUMMER SURFACE BASED DH ON AN FPGA

Chapter 7

Isogeny-Based Cryptography

Elliptic and hyperelliptic curve cryptography both rely on the ECDLP, which
can be solved by a quantum computer in polynomial time using Shor’s algorithm
[21]. To derive quantum-secure cryptosystems, other mathematical problems must
be applied that are hard to solve even for a quantum computer. Beside popu-
lar proposals that rely on hash-based, lattice-based, code-based, and multivariate
cryptography, isogeny-based cryptography has received considerable attention due
its small key sizes. Public-key cryptosystems based on isogenies between elliptic
curves have been proposed already in the early 2000s by Teske [63] and Rostovt-
sev et al. [64]. Stolbunov [65] published the first key agreement protocol using
isogenies between ordinary elliptic curves, however, as Childs et al. [66] showed a
quantum algorithm exists that can solve the isogeny problem on ordinary curves
in sub-exponential time. The first widely considered key exchange is the super-
singular isogeny Diffie-Hellman (SIDH) key exchange which was published by Jao
and De Feo [5] in 2011 that focuses on isogenies between supersingular curves.
This chapter introduces the preliminaries of isogenies followed by a description of
SIDH.

Outline. Section 7.1 introduces basic terms that are required for understanding
isogeny-based cryptography. Section 7.2 describes the SIDH protocol and Section
7.3 discusses the computational complexity of the applied operations.

7.1 Preliminaries

The quantum-secure SIDH key exchange protocol uses elliptic curve arithmetic,
i.e. elliptic curves as mathematical structures and its associated point arithmetic,
which is well understood in the ECC domain. However, in order to describe SIDH,
further preliminary definitions need to be introduced. Therefore, we provide the

71

72 CHAPTER 7. ISOGENY-BASED CRYPTOGRAPHY

reader with a brief description of isogenies, supersingular curves, and `-torsion
subgroups. A more detailed description can be found in [67, 41, 68].

7.1.1 Isogenies

Suppose E1 and E2 are two elliptic curves with the same cardinality, i.e.
#E1 = #E2, and with identity elements O1 and O2, respectively. From Chap-
ter 3, we know that for elliptic curve cryptography the identity element is rep-
resented by the point-at-infinity ∞. Then an isogeny is a surjective mapping
φ : E1 → E2 with φ(O1) = O2. This mapping is also a group homomorphism,
i.e. ∀P,Q ∈ E1 : φ(P ⊕Q) = φ(P)⊕ φ(Q). Two elliptic curves are called isoge-
nous if there exists an isogeny between them. The kernel of an isogeny is de-
fined as the set of points on the domain curve that map to the identity element:
ker(φ) = {P ∈ E1 | φ(P) → O2}. There is a one to one correspondence between
isogenies and their kernels, and an isogeny can be computed from its kernel. Using
the kernel of an isogeny to store it as a data structure is common in SIDH. As
described in [41], if E1 is an elliptic curve, then for any subgroup H ⊆ E1 there
exists a unique (up to isomorphism) elliptic curve E2 with an associated isogeny
φ : E1 → E2 with ker(φ) = H. This isogeny is a natural map: its image is iso-
morphic to the quotient of the kernel in the domain, i.e. E2

∼= E1/ ker(φ). Parts
of the protocol deal with the computation of an isogeny of a certain degree. For
the purpose of this work, the degree of an isogeny is the cardinality of its kernel.

7.1.2 Supersingular Curves

Elliptic curves can be either ordinary or supersingular. An elliptic curve E(Fq)
with q = pa, where p is a prime and a ∈ Z, is called supersingular if #E(Fq) ≡ 1
mod p. Supersingular curves were proven to reduce the computational complexity
of the elliptic curve discrete logarithm problem [69], which restricts their applica-
tion in ECC. However, Childs et al. [66] showed that solving the isogeny problem for
ordinary elliptic curves, i.e. finding an isogeny between two known ordinary curves,
can be done in quantum-polynomial time. This fact implies that cryptographic
protocols based on the ordinary isogeny problem are insecure in the post-quantum
world. The opposite is considered to be true regarding the supersingular case [67].

7.1.3 `-Torsion Subgroups

Let E(Fq) be an elliptic curve defined over a finite field of prime char-
acteristic p. For any integer ` the `-torsion subgroup of E is defined
as E[`] := {P ∈ E | [`]P = O} [71]. The `-torsion subgroup of an elliptic
curve also has a special structure: E[`] ∼= Z/`Z× Z/`Z. In other words,
E[`] can be generated by two different points P,Q ∈ E of order `, i.e.

7.2. THE SUPERSINGULAR ISOGENY DH KEY EXCHANGE 73

E[`] = 〈P,Q〉 := {[m]P ⊕ [n]Q | m,n ∈ Z}. SIDH takes advantage of this struc-
ture as will be described in Section 7.2.

7.2 The Supersingular Isogeny DH Key

Exchange

Jao and De Feo [5] proposed SIDH as a variant of the Diffie-Hellman key exchange
based on the isogeny-graph problem. Similarly to standard Diffie-Hellman, SIDH
has a number of public parameters, as described in Section 7.2.1, and is separated
into two phases: the key pair and shared secret key computation as presented
in Section 7.2.2 and Section 7.2.3, respectively. We shortly describe algorithms
for the large degree isogeny computation. This operation is analogous to the
scalar multiplication in traditional ECC, and is computed iteratively as detailed
in Section 7.2.4.

7.2.1 Public Parameters

Before keys can be exchanged, SIDH requires to fix the base field, the supersingular
elliptic curve and some points on this curve.

Base Field

A finite field Fq := Fp2 is fixed where p is some large prime with the form p =
`eAA · `

eB
B · f ± 1. The values `A and `B are small primes, and eA, eB, f ∈ N, with

f being a cofactor chosen in such a way that p is prime. Alice will compute
isogenies of degree `eAA and Bob will compute isogenies of degree `eBB . Note that
it is recommended to chose `eAA ≈ `eBB to achieve a similar security level and
computational complexity for both parties.

Elliptic Curve and Bases

Alice and Bob define a supersingular elliptic curve E0(Fp2). Next, four points
are chosen PA, QA, PB, QB ∈ E0 fixing the bases {PA, QA} and {PB, QB} gener-
ating the `eAA -, and `eBB -torsion subgroups, respectively: E0[`

eA
A] = 〈PA, QA〉 and

E0[`
eB
B] = 〈PB, QB〉.

7.2.2 Key Generation

Alice chooses two secret random integers mA, nA ∈ Z/`eAA Z, both not divisible by
`A and computes RA := [mA]PA⊕ [nA]QA. It holds that RA ∈ 〈PA, QA〉 = E0[`

eA
A]

and thus #〈RA〉 = `eAA . Alice can then compute the isogeny φA with ker(φA) =
〈RA〉 and thus deg(φA) = `eAA taking E0 to a new elliptic curve EA. The isogeny

74 CHAPTER 7. ISOGENY-BASED CRYPTOGRAPHY

φA is the quotient map, so the curve EA is isomorphic to E0/〈RA〉. Finally, Alice
evaluates the points PB and QB using the isogeny φA, and saves the values φA(PB)
and φA(QB). Bob proceeds mutatis mutandis. The triple (EA, φA(PB), φA(QB))
is Alice’s public key and the pair (mA, nA) is her private key. Furthermore, let
(EB, φB(PA), φB(QA)) and (mB, nB) be the similarly computed key pair belonging
to Bob.

7.2.3 Shared Secret Computation

Alice now has access to Bob’s public key (EB, φB(PA), φB(QA)). The goal is
to reach some new elliptic curve EBA by computing a new isogeny φ′A : EB →
EBA. For this purpose, Alice uses her secret integers (mA, nA) and computes
the point SA := [mA]φB(PA) ⊕ [nA]φB(QA). As in the previous phase of the
protocol, an isogeny φ′A with ker(φ′A) = 〈SA〉 and thus deg(φ′A) = `eAA can be
efficiently computed taking EB to the final elliptic curve EBA. Bob proceeds
mutatis mutandis and computes the isogeny φ′B and the elliptic curve EAB. It
holds that EBA ∼= EAB, which implies that their j-invariants j(EBA) = j(EAB).
Alice and Bob can thus use this common value as a shared secret key. For further
details regarding the j-invariants of elliptic curves, we refer the reader to [41].

7.2.4 Large Degree Isogeny Computation

Given an elliptic curve E(Fq) and a subgroup H ⊆ E with H := 〈R〉, R ∈
E, ord(R) = `e, where ` is a small prime, one can compute an isogeny φ with
ker(φ) = H = 〈R〉 and deg(φ) = #H = `e. For example, Alice was required to
compute φA with ker(φA) = 〈RA〉 = 〈[mA]PA⊕ [nA]QA〉. To compute this isogeny
the problem is divided into smaller operations comparable to decomposing the ECC
scalar multiplication into single point additions. The isogeny φ can be written as
a composition of e isogenies φi of degree `. The isogeny φ is obtained by taking
the curve E to a curve isomorphic to the quotient of 〈R〉 in E, i.e. φ : E → E/〈R〉.
First set R0 := R and E0 := E. Then for 0 ≤ i < e, the simplest algorithm for
the large-degree isogeny computation is the multiplication oriented approach and
is given by:

Ei+1 = Ei/〈[`e−i−1]Ri〉, φi : Ei → Ei+1, Ri+1 = φi(Ri),

with Ee ∼= E/〈R〉 and φe−1 ◦φe−2 ◦ · · · ◦φ0 = φ. This means that in each iteration,
the current point is multiplied with ` until [`e−i−1]Ri is determined. Then we can
compute the kernel of the isogeny ker(φi) and subsequently use Vélu’s formulas
to obtain the isogeny φi. Next, we push the point Ri through the isogeny φi to
obtain Ri+1 and repeat the process.

To draw a clearer picture of the structure of the large degree isogeny compu-
tation, assume that ` = 2 and e = 5. Figure 7.1 illustrates the computational

7.2. THE SUPERSINGULAR ISOGENY DH KEY EXCHANGE 75

Figure 7.1: Computational structure of the large degree isogeny computation.

Figure 7.2: Two well-formed strategies for `e = 26. A strategy is said to be
well-formed if it has no useless edges.

structure for this example. It can be easily seen that computing 〈R0〉 is computa-
tional complex as the set contains 32 elements. Instead the isogeny φ0 is obtained
by computing 〈[`e−1]R0〉 = 〈[24]R0〉 where with each successive scalar multipli-
cation the order is divided by ` = 2. With this reduced kernel size, the isogeny
φ0 can be evaluated using Vélu’s formulas [70]. In the next step, we compute
R1 := φ(R0), which also divides the order by `.1 This ultimately leads to a tree
structure of the large degree isogeny computation where the objective is to reach
all vertices on the bottom line. We finished the large degree isogeny computation,
after we computed the isogeny φ4 at edge R4.

Strategies

Aside from the multiplication oriented algorithm, Jao and De Feo [71] also intro-
duced and formally defined the isogeny oriented algorithm. In short, instead of
relying on point multiplications as the main operation, the isogeny oriented ap-
proach computes mainly `-isogeny evaluations. Two different strategies, including
the isogeny and multiplication oriented, are illustrated in Figure 7.2. As the au-

1This follows from le−1R1 = φ0(OE0
) = OE1

.

76 CHAPTER 7. ISOGENY-BASED CRYPTOGRAPHY

thors of [71] show, both of these approaches are non-optimal, i.e. they carry out
more operations than necessary. Instead, they define the concept of an optimal
strategy as the combination of the two approaches which results in the fewest num-
ber of base operations required. Optimal strategies can be computed in advance
and stored as constants, as described by [72]. This technique has been used in a
number of SIDH implementations, including ours.

7.3 Complexity Considerations

To estimate the run-time of SIDH on various platforms and compare the scheme to
other post-quantum algorithms, a complexity analysis is helpful. This complexity
analysis breaks down SIDH in single computations and reports the number of field
operations in the specified field Fp2 . We recall, that the full protocol can be broken
down into two rounds, i.e. key generation and shared key computation, where each
round follows a similar procedure:

1. Compute R = [m]P ⊕ [n]Q for points P,Q .

2. Compute the isogeny φ : E → E/〈R〉 for the supersingular curve E .

3. Compute the images φ(P) and φ(Q) for the basis of the opposite party.

Alice and Bob compute the double point multiplication twice, i.e. during the
key generation and shared secret key computation phase. The double point mul-
tiplication can be computed by a three-point ladder that computes P ⊕ [n]Q in
Fp2 without diminishing the security of the protocol, as proposed by Jao and De
Feo [71]. The ladder requires 9tM + 6tS + (14t+ 3)(A/Z) operation in Fp2 , where
t stands for the bit-length of nA or nB, M stands for modular multiplication, S
for modular squaring, and A/Z for modular addition/subtraction. Note that Alice
chooses nA ∈ Z/`aAZ and Bob chooses nB ∈ Z/`bBZ. Therefore, nA and nB are
differently sized resulting in a different run-time. To enable a better understand-
ing, Table 7.1 (which is a simplified version of [3]) exemplary denotes the required
operations for the entire SIDH protocol for p751 = `eAA · `

eB
B · f ± 1 = 23723239 − 1.

As it can be observed 1502 three-point ladder steps are computed, since the bit
length of |nA|+ |nA| = 751.

The large degree isogeny computation is the most time demanding operation
in SIDH. The main operations in the large degree isogeny computation are: scalar
multiplication-by-`, isogeny computation, and isogeny evaluation. As described in
the previous Section 7.2.4, different strategies exist, which have an impact on the
required number of operations. We begin by stating the cost for the isogeny com-
putation because it is independent of the strategy. The isogeny φ is decomposed
in smaller isogenies φe−1 ◦ φe−2 ◦ · · · ◦ φ0 = φ and thus e isogeny computations of
degree ` are required. Hence, 478 3-isogenies are computed for eB = 239. We note
that Alice typically computes 4-isogenies instead of 2-isogenies, because it reduces
the computational complexity as shown by Jao and De Feo [71]. This means that

7.3. COMPLEXITY CONSIDERATIONS 77

Table 7.1: Field operations for SIDH in Fp2 using prime p751, derived but
simplified from [3].

Routine
Operations in Fp2 #Operations
M S A/Z

Three-point ladder step 9 6 14 1502

Mont. quadruple 8 4 11 1276

Mont. triple 8 5 15 1622

Compute 4-isogeny 0 5 7 372

Evaluate 4-isogeny 9 1 6 383

Compute 3-isogeny 3 3 8 478

Evaluate 3-isogeny 6 2 2 408

Inversion 196 757 2 4

372/2 = 186 isogenies of degree 4 are computed, whose composition has degree
4186 = 22·186 = 2372. The multiplications-by-` are performed by Montgomery lad-
der denoted as Montgomery quadruple and triple for ` = 4 and ` = 2, respectively.
The number of multiplications-by-` and isogeny evaluations depends on the cho-
sen strategy of the large degree isogeny computation. Computing the images φ(P)
and φ(Q) is combined with the large degree isogeny computation by evaluating
the Pi, Qi together with the generator Ri. By accumulating all field operations,
we observe that SIDH requires approximately 44,064M + 28,245S + 62,185(A/Z)
in Fp2 where p751 = 23723239 − 1.

78 CHAPTER 7. ISOGENY-BASED CRYPTOGRAPHY

Chapter 8

SIDH Key Exchange on
Embedded Devices

In this chapter, we discuss the practicability and implementation security of SIDH
for embedded devices. Therefore, we discuss aspects of related hardware imple-
mentations and present two speed-optimized software implementations for a 32-bit
ARM Cortex M4 and a 16-bit TI MSP430X. Parts of this chapter are planned for
publication [29].

Outline. In Section 8.1 we provide the reader with an introduction. Section 8.2
summarizes related work on existing SIDH hardware accelerators. In Section 8.3 we
present our embedded implementation for the Cortex-M4 and the MSP430X with
special emphasis on the prime field operations. We summarize our performance
results in Section 8.4 and discuss randomized projective coordinates and public
key validation in Section 8.5. Finally, we conclude in Section 8.6.

8.1 Introduction

Costello et al. [72] published the first constant-time implementation on Intel Sandy
Bridge and Haswell processors using projective coordinates. In terms of speed,
their results were recently surpassed by Hernández et al. [73]. In 2016, Koziel
et al. [74] presented a highly-optimized implementation in affine coordinates on a
comparably less powerful 32-bit Cortex-A8 and Cortex-A15 architecture using the
NEON SIMD architecture extension. However, until now it remains unclear how
SIDH performs on microcontrollers which possess less computational power and
lack dedicated SIMD accelerators. We show that SIDH fails to live up to those
expectations due to its inferior performance on relevant controllers of such embed-
ded devices rendering it unsuitable for most real-life applications. Our claim is
based on the performance of two speed-optimized implementations for an ARM

79

80 CHAPTER 8. SIDH KEY EXCHANGE ON EMBEDDED DEVICES

Cortex-M4 32-bit microcontroller and a TI MSP430X 16-bit microcontroller both
utilizing a 751-bit wide extension field targeting at least a 128-bit quantum and
192-bit classical security level. We base our implementation on Microsoft’s pub-
lished SIDH library, but thoroughly optimize the prime field operations for the
corresponding architectures in assembly. Even though our results outperform the
generic C-implementation by an order of magnitude, an ephemeral key exchange
still requires more than 18 seconds on the ARM Cortex-M4 at 120 MHz and more
than 11 minutes on the TI MSP430X architecture at 16 MHz, which is clearly too
long. We note that utilizing a smaller extension field could lead to a serious per-
formance improvement enforcing the need for a further evaluation. As ephemeral
keys are impractical for those microcontrollers due to long computation time and
hence increased energy consumption, static keys are likely to be used. However,
the application of static keys can make SIDH vulnerable to vertical unprofiled side-
channel analysis. Therefore, we show that randomized projective coordinates, as
a countermeasure to thwart DPA, can be implemented for only 3% computational
overhead and perform a leakage detection test to demonstrate the effectiveness as
part of a case study.

8.2 Related Hardware Implementations

As described in Section 7.3, SIDH features a high computational complexity which
makes a dedicated hardware accelerator an appealing choice. Since several speed-
optimized works have already been published, we refrain from contributing a fur-
ther hardware implementation and instead summarize the results of other im-
plementations for comparability. In 2018, Koziel et al. [75] presented a scalable
high-performance implementation of SIDH as major extension of their previous
works [3, 76, 77]. On a Virtex-7 FPGA, they report area and performance results
targeting a 83, 124, 168, and 252-bit quantum security level.

8.2.1 Architecture

Figure 8.1 illustrates the proposed hardware architecture of [75], which can be
broken down into the following components:

� Modular multiplier, adder and subtractor in Fp .

� A controller including read-only memory (ROM) for storing instructions.

� RAM (256 entries with the size of an element in Fp) for curve constants and
intermediate values.

The hardware implementation can be seen as an application specific instruction set
processor (ASIP) due to its CPU similar design. In fact, the authors use their own
assembly language including the compilation to 26-bit wide instructions, which are
processed by the controller. Those controls are stored inside the ROM.

8.2. RELATED HARDWARE IMPLEMENTATIONS 81

Figure 8.1: Top-level view of hardware architecture [3].

The modules that compute addition, subtraction, and multiplication in Fp are
the performance critical components of the design. Koziel et al. [75] instantiated
a highly-optimized modular multiplier, adder and subtractor unit that is centered
around a dual-port RAM for storing 256 values in Fp. Being capable of storing
256 values in Fp allows for storing 128 values in Fp2 .

Modular Adder/Subtractor

The finite field addition computes C = A+B where A,B,C ∈ Fp . If the result is
greater than C, then a reduction is computed by C = C − p . Due the large field
size, the addition/subtraction itself is split into 256-bit chunks for reducing the
longest critical path. The entire module is fully pipelined i.e. a new operation can
be scheduled each cycle resulting in a chain of addition modules. The reduction
step is always computed and the correct result is selected at the end of the addition
chain. Thus, the entire modular addition requires 3 cycles in a 751-bit wide finite
field. The modular subtraction is computed in a similar fashion.

Modular Multiplier

Koziel et al. [75] instantiate a Montgomery multiplier [32], which is well suited for
large field arithmetic and has hence a long tradition in the RSA [7] hardware ac-
celerators. Montgomery multiplication requires to transform integers to the Mont-
gomery domain. Therefore, the proposed SIDH architecture initially transforms all
input operands to the Montgomery domain and uses Montgomery multiplication
throughout the protocol. After the respective computations are finished, the result
is converted back. The implemented modular multiplier is a so-called interleaved
systolic Montgomery multiplier as proposed in [77]. This multiplier computes a
single modular multiplication in 99 cycles and can interleave a second modular

82 CHAPTER 8. SIDH KEY EXCHANGE ON EMBEDDED DEVICES

Table 8.1: SIDH area utilization and performance results on a Virtex-7 FPGA
compared to X25519 and Kummer on a Zynq-7020 FPGA.

Work Prime Multipliers
Resources Latency

Slices DSP BRAM (ms)

SIDH [75] 2372 · 3239 − 1 6 11,277 288 61 36.4

SIDH [75] 2372 · 3239 − 1 8 14,447 384 59 33.7

SIDH [75] 2372 · 3239 − 1 10 16,983 480 56 33.2

SIDH [75] 2372 · 3239 − 1 12 19,892 576 55 31.6

Kummer 2127 − 1 1 2,657 49 0 0.33

X25519 2255 − 19 1 6,161 175 0 0.5

multiplication at cycle 68 . Koziel et al. [75] instantiated a variable number of
multiple Montgomery multipliers as a trade-off between area and performance.
The modular multiplication is also used for computing squaring operations in Fp .

8.2.2 Results

Table 8.1 shows the area utilization and performance results for SIDH using the
p751 = 2372 · 3239 − 1 prime. The core was synthesized using Vivado 2015.4 to
a Xilinx Virtex-7 xc7vx690tffg1157-3 device. Results were obtained for varying
number of modular multipliers in range from 6 to 12. Note that the latency
results are reported for an entire key exchange i.e. key generation and shared
secret computation for Alice and Bob. When comparing 6 modular multipliers to
12 modular multipliers, the latency has improved by approximately factor-1.15.
On the other hand, the slice utilization has nearly doubled. For the prime p751, a
latency of of 31.6 ms is achieved, which is two times faster than an Intel Haswell
software implementation [72]. When compared to work from Chapter 4 and 6, the
X25519 and the Kummer surface based implementation have an improved latency
by factor-66 and factor-95, respectively. Moreover, both our designs feature a
significantly lower area utilization.

8.3 Embedded Implementations

In this section, we provide the reader with a detailed description of our speed
optimized implementation for two embedded platforms. We begin by describing
the platform independent design decisions in Section 8.3.1. This is followed by a

8.3. EMBEDDED IMPLEMENTATIONS 83

summary of the features of the two microcontrollers in Section 8.3.2 and a detailed
description on the implementation of the prime field arithmetic for the correspond-
ing architectures in Section 8.3.3.

8.3.1 Platform Independent Design Decisions

In the following, we summarize a selection of design decisions that we made for
our implementation:

Projective Coordinates

As with traditional ECC, projective coordinates speed up each scalar point mul-
tiplication (performed twice for an ephemeral key exchange) as it reduces costly
field inversions. Costello et al. [72] showed that a more compact representation
is derived when operating on variable curve parameters represented in the pro-
jective space. Additionally, we represent curve points in projective coordinates
and randomize them during scalar multiplication as a computationally efficient
countermeasure to thwart DPA.

Structure of Public Keys

To limit the communication overhead and save resources such as energy, the size
of the public key should be small. Compared to the initial proposal by Jao and De
Feo [5], we follow Costello et. al [72] where the size of the public key is reduced
from 768 bytes to 564 bytes. More precisely, the public key is a triple of the field
elements in Fp2 , representing the x-coordinates of φA(PB), φA(QB), φA(QB 	 PB)
as an example for Alice. The normalized Montgomery curve parameter A of the
public curve is recovered from those three points on the curve, and does not need
to be included. Note that in [24] it was shown that the public key can be further
reduced to only 330 bytes. However, we discarded this technique because it re-
duces the speed by more than a factor of 3, which collides with our optimization
preference for speed.

Chosen Parameters

The characteristic of the field Fp2 is p = 2372 · 3239 − 1 with dlog2(p)e = 751. This
prime precisely provides a 124-bit quantum security level, however, it is usually
associated to a 128-bit quantum security level. Other primes are proposed in
[74] such as 2250 · 3159 − 1 and 2493 · 3307 − 1 that provide a 83-bit and 162-bit
quantum security level, respectively. We decided to target the 128-bit quantum
security level, as it is considered to be reasonable secure for the next few decades,
while being small enough for sufficient speed. The bases {PA, QA} and {PB, QB}
are set by the following points: PA = [3239](11,

√
113 + 11), QA = τ(PA), PB =

84 CHAPTER 8. SIDH KEY EXCHANGE ON EMBEDDED DEVICES

[2372](6,
√

63 + 6), QB = τ(PB), where τ : E0 → E0 and τ(x, y) = (−x, iy). The
base supersingular elliptic curve has the short Weierstrass form:

E0/Fp2 : y2 = x3 + x. (8.1)

One Scalar as Private Key

Instead of choosing two randomly distributed integers mA and nA and computing
the secret isogeny whose kernel is 〈[mA]PA⊕ [nA]QA〉, Alice chooses one single in-
teger mA ∈ [1, 2371−1] and the isogeny with the kernel 〈PA⊕ [2mA]QA〉. Similarly,
the kernel of Bob’s secret isogeny will by 〈PB⊕[3mB]PB〉, where mB ∈ [1, 3238−1].
This is done in order to facilitate the use of pre-computed strategies for isogeny
computations. As Costello et al. [72] point out, this reduces the total number of
possibilities for the public key by a factor of 3, for Alice, and a factor of 4, for Bob.
However, the authors claim there is currently no reason to believe the security of
the system is affected by this implementation choice.

8.3.2 Microcontrollers

For development and testing purposes, we used the MSP430FR5994 launchapd
and FRDM-K64F development board, that feature two popular 16-bit and 32-bit
microcontroller architectures, respectively:

TI MSP430FR5994

The TI MSP430FR5994 is based on the 16-bit MSP430X architecture running at a
maximum clock frequency of 16 MHz with 8 kB of RAM and 256 kB of non-volatile
FRAM (Ferromagnetic Random Access Memory). The FRAM can be accessed at a
frequency of 8 MHz and can be used for long-term storage, as well as machine code
and data storage. When the core is clocked with 16 MHz, additional wait cycles are
introduced if FRAM access is required due to the difference in the two operating
clock frequencies. This can effect the overall performance and is described in
the results section. We used Code Composer Studio for code development and
compilation with optimization level set to speed.

Kinetis K64

The Kinetis K64 is based on the 32-bit ARM Cortex-M4 core running at 120 MHz
with 1 MB of flash memory and 512 kB of RAM. The compilation was done using
the GNU ARM Embedded toolchain with optimization set to −O3.

8.3. EMBEDDED IMPLEMENTATIONS 85

8.3.3 Finite Field Operations

As discussed in Section 7.2.1, SIDH defines elliptic curves over the extension field
Fp2 . Yet, operations in the extension field Fp2 are composed of operations in
the finite field Fp. Since the performance of operations in Fp has strong impact
on the overall performance, it is crucial to optimize them for best speed results.
The relevant operations are addition, subtraction, multiplication, and modular
reduction. All operations run in constant-time, are written in assembly with fully
unrolled loops and no calls to subroutines.

Addition and Subtraction

The modular addition and subtraction correspond to standard 24-limb and 48-
limb operations for the 32-bit Cortex-M4 and the 16-bit MSP430X, respectively.
The limb notation describes how many 16 or 32-bit words we require to store an
element. Note that both the operands and the result will be elements in [0, 2p −
1], instead of [0, p − 1]. As [63] points out, this circumvents the necessity of a
subtraction at the end of the modular operation. After an addition or subtraction
has taken place, the result has to be reduced to [0, 2p − 1]. Since a, b < 2p, it
holds that c := a + b < 4p, i.e. the bitlength of a + b is higher by at most the
carry bit. If c > 2p, then c− 2p ∈ [0, 2p− 1] will be the correct result. In order to
avoid conditional branching, instead of comparing c to 2p, the use of the following
well-known strategy is employed:

1. Set c← c− 2p, and remember the borrow bit b.

2. Compute the bitmask m := (b & 2p), and set c← c+m.

Modular subtraction is computed in a similar fashion.

Multiplication

We decided to use Karatsuba multiplication [78] because it has a time complexity of
only O(nlog2 3); for comparison, the standard schoolbook multiplication has a time
complexity of O(n2). More precisely, we implemented a 1-level additive Karatsuba
multiplication with Comba optimizations [79]. The purpose of the latter is to
decrease expensive memory accesses and storage requirements for intermediate
results. With these optimizations, the memory space dedicated to the result is
only accessed when the final value for a specific limb has been computed.

In Karatsuba multiplication, two n-digit operands x, y represented in some
base R are split into two parts each: the top (most significant) halves xH , yH , and

86 CHAPTER 8. SIDH KEY EXCHANGE ON EMBEDDED DEVICES

the bottom (least significant) halves xL, yL. Define:

H := xH · yH
L := xL · yL
M := (xH + xL) · (yH + yL)− L−H .

Then the following holds:

x · y = H ·Rn +M ·Rn/2 + L . (8.2)

In our case, the operands x, y are 768 bits (96 bytes) long, in either 48-limb
representation on the MSP430X, i.e. n = 48, R = 216, or 24-limb representation on
the Cortex-M4, i.e. n = 24, R = 232. The result is stored in z, which is a 768 · 2 =
1536 bits (192 bytes) memory location. The most significant words are stored first.
In order to store intermediate results, 96 bytes of stack space are allocated at the
beginning of the routine. After determining all partial multiplications, M can now
be computed by subtracting H and L from the result of the first multiplication.
The first product is stored in the first 96 bytes of the allocated stack space, so when
subtracting H and L, save the results in the remaining 96 bytes. Afterwards, M
can be added to the middle part of z as per Equation (8.2). This spans the bytes
49-144 of z. Lastly, add the overflow resulting from the last digit addition, as well
as any further overflows this operation might produce to the remaining bytes of z,
in sequence.

We note that optimizing the multiplication by exploring further algorithms
could potentially result in a performance improvement. For example, one could
implement multi-level Karatsuba as well as exotic, microcontroller-optimized mul-
tiplication algorithms [80].

Reduction

The modular reduction is an adaptation of the well-known Montgomery reduction
[32]: let Fp be the base field with p = 2372 · 3239 − 1, dlog2(p)e = 751, and define
R := 2768 and p′ = −p−1 mod R. For any input a < pR, compute the Montgomery
residue c = aR−1 mod p:

c := (a+ (ap′ mod R) · p)/R . (8.3)

This operation is generally computed iteratively: first define r as the bitsize of an
integer, and set s such that R = 2r·s. In this case, R = 2768, so for the Cortex-M4,
r = 32, s = 24, and for the MSP430X, r = 16, s = 48. Set c ← a, then repeat s
times: c← (c+ (c · p′′ mod 2r) · p)/2r, where p′′ = −p−1 mod 2r.

As Costello et al. [72] showed, Equation (8.3) can be converted for the chosen
prime p = 2372 · 3239 − 1 to:

c = a/2768 + ((ap′ mod 2768) · 3239)/2396 ,

8.3. RESULTS AND ANALYSIS 87

Table 8.2: Cycle count (CC) for the prime field operations of the generic and
assembly implementation on both architectures.

Operation
Cortex-M4 MSP430X

C (CC) ASM (CC) C (CC) ASM (CC)

Mod. Add. 10,779 559 18,500 1,192
Mod. Sub. 7,109 419 12,568 831
Mod. Mul. 244,209 4,319 945,252 32,517
Mod. Red. 167,619 3,254 586,596 20,094

which decreases the number of required multiplications for a modular reduction.
Furthermore, they show that in the iterative process, it holds that p′′ = 1, which
allows the transformation: c← (c+(c mod 2r) ·(p+1))/2r. This is advantageous,
because in this case, p + 1 has a number of its least-significant limbs equal to 0
(11 limbs in 32-bit representation and 23 limbs in 16-bit representation), and they
can thus be excluded from the multiplication.

8.3.4 Results for the Assembly Optimized Field
Operations

In Table 8.2, we present the number of clock cycles for each field operation for
future reference. We implemented the described algorithms in assembly and com-
pare the performance with the generic C implementation by Costello et al. [72],
which we ported to our microcontrollers without further modification. It can be
noted that our optimized operations require between 15 and 56 times fewer cycles
than their generic counterparts. The speed-up of the assembly implementations
is comparable for both architectures, while the difference in performance is linked
to the architecture dependent word size. The improvement factor is higher for the
Cortex-M4, which is likely a result of its lower cycle requirement when accessing
consecutive memory locations. Both the generic and the optimized operations run
in constant-time.

8.4 Results and Analysis of Constant-Time

Implementations

In this section, we first report and compare our results for an ephemeral key
exchange to other SIDH implementations. This comparison should aid the reader
to classify our results and verify their soundness. Subsequently, we compare our
implementation to other quantum-secure key exchange algorithms on embedded

88 CHAPTER 8. SIDH KEY EXCHANGE ON EMBEDDED DEVICES

Table 8.3: Clock cycle count [×106] for SIDH on different processors sup-
porting a 128-bit quantum security level.

Work Platform Word size
Key gen. Secr. gen.

Alice Bob Alice Bob

[73] Intel Skylake 64-bit 27 31 25 29

[73] Intel Haswell 64-bit 38 43 34 40

[72] Intel Haswell 64-bit 51 59 47 57

[81] ARM Cortex-A57 64-bit 103 118 97 113

[74] Cortex-A15 32-bit 437 474 346 375

This work Cortex-M4 32-bit 1025 1148 967 1112

This work
MSP430X (8 MHz) 16-bit 4260 4855 4020 4658

MSP430X (16 MHz) 16-bit 5136 5824 4832 5600

devices in order to evaluate our work in a broader context.

Table 8.3 compares the clock cycle count for the key pair generation and the
shared secret key computation on the Cortex-M4 and the MSP430X to other pub-
lished SIDH implementations. Note that the clock cycle count differs for Alice and
Bob because the computational complexity depends on the selected prime `eAA , `eBB .
For the 32-bit Cortex-M4, the code is compiled to a size of 71.53 kB, and key pairs
are generated in 1025 and 1149 million clock cycles for Alice and Bob, respec-
tively. Similar numbers are obtained for the shared secret key computation. For
the 16-bit MSP430X microcontroller, we obtained a code size of 110.33 kB. The
clock cycle count is reported for two different clock frequencies to show the effect
of the introduced wait cycles linked to the lower clock frequency of the FRAM. In
case of 8 MHz clock frequency, a key pair key is computed in about 4559 million
cycles and a shared secret in about 4339 million cycles. The number of clock cycles
increases to about 5480 and 5216 million clock cycles for key pair generation and
shared secret key computation, respectively, when being clocked with 16 MHz.

Compared to the performance of the Cortex-M4, the MSP430X requires about
4-times more clock cycles which is linked to the reduced word size of 16-bit. A
similar relation is observed when we compare the 64-bit Cortex-A57 [81] and the
32-bit Cortex-A15 [74] implementation, indicating the plausibility of our results.
Comparing the 32-bit Cortex-A15 implementation to our implementation on the
Cortex-M4, the key generation and shared secret computation requires about 2.38-
times and 2.79-times less cycles, respectively. Note that the Cortex-A15 core is
based on the ARMv7 architecture and is equipped with features such as caches
and the NEON SIMD architecture extension. The lack of such accelerator features
explains the increase in clock cycles for our Cortex-M4 implementation. Most

8.4. RESULTS AND ANALYSIS 89

Table 8.4: Performance evaluation of different quantum-secure key exchange
protocols on mid- and low-end processors.

Protocol Platform
Freq. Latency (s) Comm. (bytes)

(MHz) Alice Bob A→B B→A

NewHope [82] Cortex-M0 48 0.03 0.04 1824 2048

NewHope [82] Cortex-M4 164 0.01 0.01 1824 2048

Frodo [83] Cortex-A8 1000 0.08 0.08 11296 11288

SIDH [74] Cortex-A8 1000 1.41 1.53 564 564

SIDH (this work)

Cortex-M4 120 16.59 18.83 564 564

MSP430X 8 1035.00 1188.00 564 564

MSP430X 16 623.00 714.00 564 564

works optimized SIDH for 64-bit processors [72, 73, 81] making a comparison with
smaller devices, such as the 16-bit MSP430X, unfair. On 64-bit processors, the
current speed record for constant-time implementations is set by Jalali et al. [81],
which represents an optimized version of the work by Costello et al. [81].

Comparison

In Table 8.4 we compare other quantum-secure key exchange protocols on em-
bedded devices with our implementation. Relevant parameters are performance in
terms of required time measured in seconds and communication overhead measured
in transmitted bytes. All listed implementations feature a similar security level
of around 128-bit. NewHope [82] was implemented on the ARM Cortex-M4 and
Cortex-M0 where an ephemeral key exchange is executed in only 0.01 and 0.035
seconds, respectively. Even when comparing our Cortex-M4 implementation to
NewHope on the less powerful Cortex-M0 (clocked with only 48 MHz), NewHope
is more than 500-times faster with only 4-times higher communication overhead.
Frodo [83] is a LWE-based quantum-secure key exchange with promising perfor-
mance results as well. For smaller processors, there is only one implementation
available for the Cortex-A8, however, its communication overhead implies that
implementing it on constrained devices might be impractical. The SIDH imple-
mentation on the Cortex-A8 by Koziel et al. [74] shows tolerable execution time
and indicates the general applicability of SIDH on such processors. However, com-
pared to NewHope [82] or Frodo [83] the tremendous difference in speed becomes
apparent. We conclude that SIDH has small key sizes but clearly suffers in speed,
which leads to extensive computation time on small microcontrollers.

90 CHAPTER 8. SIDH KEY EXCHANGE ON EMBEDDED DEVICES

8.5 Implementation Security

Contrary to other PQC algorithms (e.g. NTRU [84]), SIDH supports perfect
forward-secrecy; however, this also requires the use of ephemeral keys. While
forward-secrecy is a desirable property, the secure use of static keys is important
for embedded devices due to limited computational power and energy budget. It
is well known that elliptic curve based cryptosystems can be attacked by invalid
point attacks [51], where a maliciously generated point is used to gain access to
the secret private key. To thwart this type of attack, the received points must
be validated, i.e. the received point must generate a group with sufficiently large
cardinality. As it turns out, validation techniques in the context of SIDH are not
trivial: they are either computationally efficient and insecure [72, 85], or secure
and computationally inefficient [86]. For example, Kirkwood et al. [86] proposed
a working validation technique, which requires as much time as an ephemeral key
generation. Therefore, we decided to neglect the implementation of point valida-
tion techniques. However, with on-going research we expect computational efficient
and secure point validation techniques to be found.

While a point validation technique is the first mandatory step towards the
secure use of static keys, a software designer should be aware that static keys
can facilitate some attacks. As attackers can typically get physical access to em-
bedded devices, we consider side-channel analysis as an additional attack vector.
When static keys are used, an attacker can acquire multiple traces using the same
key. Therefore, we evaluate randomized projective coordinates in greater detail in
Section 8.5.1 as a countermeasure for preventing DPA [87].

8.5.1 Randomized Projective Coordinates to Thwart
DPA

The shared secret computation phase poses a natural target for an attacker because
he can control data which is directly processed with the secret private key i.e. the
input point that is multiplied with the secret integer during elliptic curve scalar
multiplication. DPA on this standard elliptic curve scalar multiplication is well
understood. As explained in Section 8.3.1, we only use one integer as our secret
scalar for the point multiplication. Here, we target Alice’s secret integer na and
assume that Bob is the malicious entity and can modify φB(PA), φB(QA).

SA = φB(PA)⊕ [nA]φB(QA) .

The scalar multiplication and the additional point addition is carried out using the
three-point ladder as described by Jao and De Feo [5] and shown in Algorithm 12
(ladder 3pt). Compared to the standard Montgomery ladder, i.e. Algorithm 4 as
described in Section 3.4 , the three-point ladder computes φB(PA)⊕ [nA]φB(QA)
directly, hence resulting in improved performance. Note that the if-clause is only

8.5. IMPLEMENTATION SECURITY 91

Algorithm 12 ladder 3pt: Three-point ladder [5].

Input: (k =
∑|k|−1

i=0 ki2
i) ∈ (2|k|−1, 2|k|], P,Q ∈ E

Output: R← P ⊕ [k]Q
1: R1 = O, R2 = Q,R3 = P
2: for i from |k| − 1 to 0 do
3: if ki = 0 then
4: R1 ← 2R1, R2 ← R1 ⊕R2, R3 ← R1 ⊕R3

5: else
6: R1 ← R1 ⊕R2, R2 ← 2R2, R3 ← R2 ⊕R3

7: end if
8: end for
9: return R3

used here for readability purposes; in our and most other implementations it is
replaced by constant-time point swap to prevent SPA and timing attacks.

As already discussed in Chapter 4, Coron [50] described randomized projective
coordinates as an appropriate countermeasure to thwart DPA. This countermea-
sure is characterized by relatively low computational overhead. Implementing ran-
domized projective coordinates implies a randomly generated λ being multiplied
with the input points P,Q in their projective representation during the ladder
initialization. Using Montgomery formulas [4], differential point addition for the
x-coordinate is given by:

XP⊕Q = ZP	Q[(XP − ZP)(XQ + ZQ) + (XP + ZP)(XQ − ZQ)]2 ,

with the two input points P= {XP , ZP } and Q = {XQ, ZQ}. Due to normaliza-
tion, the difference point (ZP	Q) can be neglected but equals λ for randomized
projective coordinates, which translates to one additional multiplication for each
point addition. As shown in Algorithm 12, two point additions are performed
in each ladder step; thus, enabling randomized projective coordinates results in
744 = 2 · 372 and 758 = 2 · 379 additional multiplications in Fp2 for Alice and Bob,
respectively. Compared to an unprotected implementation, we require only about
3% more cycles with randomized projective coordinates. This renders randomized
projective coordinates a computationally efficient countermeasure.

Case Study: Leakage Assessment on the FRDM-K64F

The Montgomery ladder combined with randomized projective coordinates is con-
sidered to be an effective countermeasure to thwart DPA. Even though we expect
similar protection for the three-point ladder, a case study is useful for supporting
this claim. We acquire EM traces with a Langer RF-B 3-2 near H-field probe (hor-
izontal) placed above the packaged chip. For each implementation, we collect 2500

92 CHAPTER 8. SIDH KEY EXCHANGE ON EMBEDDED DEVICES

time [samples] x10⁶
1.00 2.0 3.0 4.0 5.0 6.0

q
u

an
ti

ze
d

 E
M

 f
ie

ld

60

80

100

120

140

160

Figure 8.2: Left: Exemplary EM trace for two ladder steps. Right: Langer
probe placed above FRDM-K64F.

synchronized traces per measurement at at sampling rate of 5 GS/s using a LeCroy
WavePro 725 Zi oscilloscope. We evaluate randomized projective coordinates on
the FRDM-K64F (featuring the Cortex-M4) using the non-specific t-test as the
leakage detection test [88, 89]. Figure 8.2 shows on the left two ladder steps of the
Montgomery ladder, and on the right the probe placed above the FRDM-K64F.

The t-test can be used to detect whether the device’s implementation has
exploitable leakage. We first test and show that the device leaks secret information
with no DPA countermeasure enabled. With the same measurement setup, we then
evaluate the leakage with randomized projective coordinates. We apply a fixed-
vs-random methodology on the input point, i.e. we acquire 2500 traces with a
fixed input point and 2500 with a random input point; subsequently, the t-test
determines whether the two data sets are significantly different to each other. The
input point and the random number λ are sent to the development board via
UART while the secret remains fixed. In case of the unprotected implementation,
we fix λ to a constant value. Figure 8.3 shows on the left the t-test with no DPA
countermeasures and on the right with randomized projective coordinates. With
no countermeasures enabled, the device fails the t-test as it exceeds the threshold
±C = 4.5, which clearly indicates leakage. On the contrary, the test results after
the introduction of randomized projective coordinates indicate the effectiveness of
the countermeasure as expected.

8.6 Conclusions

We presented two implementations of SIDH targeting a 128-bit quantum secu-
rity level for the 32-bit ARM Cortex-M4 and 16-bit TI MSP430X architectures
that perform the shared secret key computation including key pair generation in
about 18 seconds and 11 minutes, respectively. Although our results only set a
first benchmark, we conclude that even the inferior performance results of the un-
protected implementations indicate that SIDH over a 751-bit wide finite field is

8.6. CONCLUSIONS 93

time [samples] x10⁶ time [samples] x10⁶

t-
va

lu
e

5

0

-5

0.50 1.0 1.5 2.0 2.5 3.0 3.5

t-
va

lu
e

-5

0

5

0.50 1.0 1.5 2.0 2.5 3.0 3.5

Figure 8.3: Fixed-vs-random leakage detection test on the input point using
5000 traces. Left: no DPA countermeasure. Right: randomized projective
coordinates enabled.

impractical for securing resource-constrained devices. It is likely that our imple-
mentations can be optimized by a small factor, but it seems to be unrealistic that
the performance can be drastically improved. We use randomized projective coor-
dinates to thwart multi-trace DPA as it only reduces the speed by approximately
3%. However, we note that current point validation techniques imply tremen-
dous performance loss emphasizing the need for further research. Moreover, other
quantum secure key encapsulation protocols (such as NewHope [82]) seem more
suitable for embedded devices. Yet, SIDH may represent a suitable fit for securing
the Internet communication where typically more powerful processors are used.

Due to the high computational complexity of SIDH, a dedicated hardware core
can greatly accelerate the run-time of SIDH. As various papers showed [3, 76, 77],
the latency as well as throughput can be improved by a tremendous factor when
compared to the embedded implementation. The reported latency of up to 36.4 ms
seems to fit into various scenarios. On the other hand, when compared to state-of-
the-art ECC implementations, the area utilization and latency are increased. We
positively note that due to the similarity between ECC and SIDH, existing ECC
hardware accelerators could be re-used to improve the performance by outsourcing
parts of the protocol to the hardware cores.

94 CHAPTER 8. SIDH KEY EXCHANGE ON EMBEDDED DEVICES

Chapter 9

Conclusions

In this thesis, an efficient modular multiplier and two optimized implementations
of elliptic and hyperelliptic curve cryptography on FPGA were presented. We
reported the performance results and area utilization of all implementations and
included countermeasures to thwart timing and power analysis attacks. The speed-
optimized modular multiplier set the foundation for the X25519 as well as the
Kummer surface based key exchange implementation. We further discussed the
implementation of the quantum-secure supersingular isogeny Diffie-Hellman key
exchange on embedded devices including countermeasures to thwart DPA and
verified their effectiveness by measuring the EM radiation.

The modular multiplier is a key component for obtaining high-speed designs
since its performance greatly influences the overall computation time. Therefore,
we presented a novel hardware design for the multiplication in Mersenne prime
fields based on a new optimization strategy of the adder tree and reduction circuits
at the bit-level. Our proposed method can be applied for ASIC as well as FPGA
designs. Compared to related work, our presented modular multiplier can operate
at higher frequencies, leading to improved throughput and latency. We provided
a formalization of our proposed strategy for any Mersenne prime and any size of
the underlying small-sized (potentially asymmetric) multipliers.

We explored different hardware design strategies for X25519 on two Xilinx
Zynq FPGAs targeting low-latency. Thereby, we demonstrated the effectiveness of
the developed modular multiplier as it outperformed comparable implementations.
The X25519 FPGA implementation, which applies the aforementioned Mersenne
prime multiplier, achieved sufficient latency results but suffered in throughput and
area.

For applications that have very strict latency and throughput requirements, the
hyperelliptic variant i.e. using the Kummer surface of Gaudry and Schost’s genus 2
curve, represents an interesting choice. Our presented implementation shows that a
key exchange can be performed with lower latency and higher throughput than any
other reported implementation. When compared to the X25519 implementation,

95

96 CHAPTER 9. CONCLUSIONS

Table 9.1: Performance comparison of our implementations using curve based
cryptography.

Work Platform Cores
Frequency Latency Throughput

(MHz) (s) (op/s)

X25519 Zynq-7020 1 84 125× 10−6 8000

Kummer
Zynq-7020 1 139 82× 10−6 12224

Zynq-7020 4 129 88× 10−6 91226

SIDH
Cortex-M4 1 120 17 0.06

MSP430 1 16 1035 0.001

the Kummer variant achieves an improved latency that is 1.5-times lower while
also featuring a reduced area utilization. Moreover, we showed in the Kummer
architecture how two scalar multiplications can be smartly combined for doubling
the throughput or providing an inherent countermeasure against fault attacks.
This technique might be considered for future curve implementations.

Finally, we presented an implementation of SIDH on popular microcontrollers
as they are typically deployed in the IoT. SIDH is a promising candidate because it
uses relatively small keys, however, a key exchange requires more than 18 seconds
on a 32-bit Cortex-M4 and more than 11 minutes on a 16-bit MSP430 controller,
respectively. This is clearly too long for most real-life applications. On a positive
note, we also analyzed the implementation security of SIDH and found that appro-
priate DPA countermeasures can be implemented with little overhead. Moreover,
related work showed that the application of dedicated hardware accelerators or
more powerful CPUs yield promising performance results. Due to the similarity of
SIDH and ECC, existing ECC hardware accelerators could be re-used to improve
the performance by outsourcing parts of the protocol to the hardware core. We fur-
ther emphasize that SIDH is a relatively novel cryptographic algorithm, and thus
further improvements in its performance can be expected. Table 9.1 summarizes
the performance results of our curve based implementations.

In summary, we analyzed and compared various cryptosystems based on curve
based cryptography, i.e. elliptic, hyperelliptic, and isogeny-based cryptography
regarding their implementation characteristics. Table 9.2 summarizes their key
properties in terms of field type, size, elements, secrets, and underlying mathe-
matical problem. All three feature relatively small key sizes, but differ in their
underlying mathematical problem and computational complexity. While elliptic
and hyperelliptic curve cryptography feature an efficient arithmetic, isogeny-based
cryptography is characterized by a high computational complexity. In addition to
that, the underlying field size of SIDH is 2.95-times and 5.91 higher than X25519

97

Table 9.2: Conceptual comparison between elliptic, hyperelliptic, and
isogeny-based cryptography.

ECC HECC Isogeny-based

Reference Curve25519 [12] Kummer [18] SIDH [5, 71]

Elements x(P) on E κ(D) on K Curve E

Field Fp Fp Fp2
Field size 255 127 751

Classical sec.-level 128 128 192

Quantum sec.-level × × 1281

Secret scalar k scalar k isogeny φ

Hard problem
given P, k[P] given D, [k]D given E, φ(E)

find k find k find φ

1 Post-quantum level holds at the time of writing but may vary with
progress made in cryptoanalysis.

[12] and the Kummer [18] algorithm, respectively. SIDH uses a quadratic exten-
sion field, while X25519 and Kummer are defined over a standard prime field. The
presented analysis and implementation results can serve as reference for selecting
an appropriate cryptosystem with respect to area, performance, and (quantum)
security requirements.

98 CHAPTER 9. CONCLUSIONS

Bibliography

[1] Shreesha Srinath and Katherine Compton. Automatic generation of high-
performance multipliers for FPGAs with asymmetric multiplier blocks. In
Proceedings of the ACM/SIGDA 18th International Symposium on Field Pro-
grammable Gate Arrays, FPGA 2010, Monterey, California, USA, February
21-23, 2010, pages 51–58, 2010.

[2] Debapriya Basu Roy, Debdeep Mukhopadhyay, Masami Izumi, and Junko
Takahashi. Tile before multiplication: An efficient strategy to optimize DSP
multiplier for accelerating prime field ECC for NIST curves. In The 51st
Annual Design Automation Conference 2014, DAC ’14, San Francisco, CA,
USA, June 1-5, 2014, pages 177:1–177:6, 2014.

[3] Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari Kermani. Fast hard-
ware architectures for supersingular isogeny Diffie-Hellman key exchange on
FPGA. In Progress in Cryptology - INDOCRYPT 2016 - 17th International
Conference on Cryptology in India, Kolkata, India, December 11-14, 2016,
Proceedings, pages 191–206, 2016.

[4] Peter L. Montgomery. Speeding the pollard and elliptic curve methods of
factorization. Mathematics of computation, 48(177):243–264, 1987.

[5] David Jao and Luca De Feo. Towards quantum-resistant cryptosystems from
supersingular elliptic curve isogenies. In Post-Quantum Cryptography - 4th
International Workshop, PQCrypto 2011, Taipei, Taiwan, November 29 -
December 2, 2011. Proceedings, pages 19–34, 2011.

[6] Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Information Theory, 22(6):644–654, 1976.

[7] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for
obtaining digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, 1978.

[8] Dan Boneh. The decision Diffie-Hellman problem. In Algorithmic Number
Theory, Third International Symposium, ANTS-III, Portland, Oregon, USA,
June 21-25, 1998, Proceedings, pages 48–63, 1998.

99

100 BIBLIOGRAPHY

[9] Neal Koblitz. Elliptic curve cryptosystems. Mathematics of computation,
48(177):203–209, 1987.

[10] Victor S. Miller. Use of elliptic curves in cryptography. In Advances in
Cryptology - CRYPTO ’85, Santa Barbara, California, USA, August 18-22,
1985, Proceedings, pages 417–426, 1985.

[11] Bundesamt für Sicherheit in der Informationstechnik. Cryptographic mecha-
nisms: Recommendations and key lengths (BSI TR-02102-1), 2018.

[12] Daniel J. Bernstein. Curve25519: New Diffie-Hellman speed records. In Public
Key Cryptography - PKC 2006, 9th International Conference on Theory and
Practice of Public-Key Cryptography, New York, NY, USA, April 24-26, 2006,
Proceedings, pages 207–228, 2006.

[13] Neal Koblitz. Constructing elliptic curve cryptosystems in characteristic 2. In
Advances in Cryptology - CRYPTO ’90, 10th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 11-15, 1990, Proceed-
ings, pages 156–167, 1990.

[14] Pierrick Gaudry. Fast genus 2 arithmetic based on theta functions. J. Math-
ematical Cryptology, 1(3):243–265, 2007.

[15] Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter, Christof
Paar, Ana Helena Sánchez, and Peter Schwabe. High-speed Curve25519 on
8-bit, 16-bit, and 32-bit microcontrollers. Des. Codes Cryptography, 77(2-
3):493–514, 2015.

[16] Joost Renes, Peter Schwabe, Benjamin Smith, and Lejla Batina. µKummer:
Efficient hyperelliptic signatures and key exchange on microcontrollers. In
Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th Inter-
national Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceed-
ings, pages 301–320, 2016.

[17] Daniel J. Bernstein and Tanja Lange. Elliptic vs. hyperelliptic, part 1. Talk
at ECC, page 4, 2006.

[18] Pierrick Gaudry and Éric Schost. Genus 2 point counting over prime fields.
J. Symb. Comput., 47(4):368–400, 2012.

[19] Joppe W. Bos, Craig Costello, Hüseyin Hisil, and Kristin E. Lauter. Fast cryp-
tography in genus 2. In Advances in Cryptology - EUROCRYPT 2013, 32nd
Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques, Athens, Greece, May 26-30, 2013. Proceedings, pages
194–210, 2013.

BIBLIOGRAPHY 101

[20] Daniel J. Bernstein, Chitchanok Chuengsatiansup, Tanja Lange, and Peter
Schwabe. Kummer strikes back: New DH speed records. In Advances in
Cryptology - ASIACRYPT 2014 - 20th International Conference on the The-
ory and Application of Cryptology and Information Security, Kaoshiung, Tai-
wan, R.O.C., December 7-11, 2014. Proceedings, Part I, pages 317–337, 2014.

[21] Peter W. Shor. Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer. SIAM Review, 41(2):303–332, 1999.

[22] Lily Chen, Lily Chen, Stephen Jordan, Yi-Kai Liu, Dustin Moody, Rene
Peralta, Ray Perlner, and Daniel Smith-Tone. Report on post-quantum cryp-
tography, 2016.

[23] Robert J. McEliece. A public-key cryptosystem based on algebraic coding
theory. Deep Space Network Progress Report, 44:114–116, 1978.

[24] Craig Costello, David Jao, Patrick Longa, Michael Naehrig, Joost Renes, and
David Urbanik. Efficient compression of SIDH public keys. In Advances
in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Paris, France,
April 30 - May 4, 2017, Proceedings, Part I, pages 679–706, 2017.

[25] Philipp Koppermann, Fabrizio De Santis, Johann Heyszl, and Georg Sigl.
Automatic generation of high-performance modular multipliers for arbitrary
Mersenne primes on FPGAs. In 2017 IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2017, McLean, VA, USA, May
1-5, 2017, pages 35–40, 2017.

[26] Philipp Koppermann, Fabrizio De Santis, Johann Heyszl, and Georg Sigl.
X25519 hardware implementation for low-latency applications. In 2016 Eu-
romicro Conference on Digital System Design, DSD 2016, Limassol, Cyprus,
August 31 - September 2, 2016, pages 99–106, 2016.

[27] Philipp Koppermann, Fabrizio De Santis, Johann Heyszl, and Georg Sigl.
Low-latency X25519 hardware implementation: Breaking the 100 microsec-
onds barrier. Microprocessors and Microsystems - Embedded Hardware De-
sign, 52:491–497, 2017.

[28] Philipp Koppermann, Fabrizio De Santis, Johann Heyszl, and Georg Sigl.
Fast FPGA implementations of Diffie-Hellman on the Kummer surface of a
genus-2 curve. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(1):1–17,
2018.

[29] Philipp Koppermann, Eduard Pop, Johann Heyszl, and Georg Sigl. 18 sec-
onds to key exchange: Limitations of supersingular isogeny diffie-hellman on
embedded devices. Cryptology ePrint Archive, Report 2018/932, 2018.

102 BIBLIOGRAPHY

[30] Richard E. Crandall. Method and apparatus for public key exchange in a
cryptographic system, 1992. US Patent 5,159,632.

[31] Craig Costello and Patrick Longa. FourQ: Four-dimensional decompositions
on a Q-curve over the Mersenne prime. In Advances in Cryptology - ASI-
ACRYPT 2015 - 21st International Conference on the Theory and Application
of Cryptology and Information Security, Auckland, New Zealand, November
29 - December 3, 2015, Proceedings, Part I, pages 214–235, 2015.

[32] Peter L. Montgomery. Modular multiplication without trial division. Mathe-
matics of computation, 44(170):519–521, 1985.

[33] Christopher S. Wallace. A suggestion for a fast multiplier. IEEE Trans.
Electronic Computers, 13(1):14–17, 1964.

[34] Gary W. Bewick. Fast multiplication: algorithms and implementation. PhD
thesis, The Department of Electrical Engineering, Stanford University, 1994.

[35] Kimmo Järvinen, Andrea Miele, Reza Azarderakhsh, and Patrick Longa.
FourQ on FPGA: New hardware speed records for elliptic curve cryptography
over large prime characteristic fields. In Cryptographic Hardware and Embed-
ded Systems - CHES 2016 - 18th International Conference, Santa Barbara,
CA, USA, August 17-19, 2016, Proceedings, pages 517–537, 2016.

[36] Mark Hamilton, William P. Marnane, and Arnaud Tisserand. A compari-
son on FPGA of modular multipliers suitable for elliptic curve cryptography
over GF(p) for specific p values. In International Conference on Field Pro-
grammable Logic and Applications, FPL 2011, September 5-7, Chania, Crete,
Greece, pages 273–276, 2011.

[37] Pascal Sasdrich and Tim Güneysu. Implementing Curve25519 for side-
channel-protected elliptic curve cryptography. TRETS, 9(1):3:1–3:15, 2015.

[38] Robert Granger and Michael Scott. Faster ECC over F2521−1. In Public-Key
Cryptography - PKC 2015 - 18th IACR International Conference on Practice
and Theory in Public-Key Cryptography, Gaithersburg, MD, USA, March 30
- April 1, 2015, Proceedings, pages 539–553, 2015.

[39] Henri Cohen, Gerhard Frey, Roberto Avanzi, Christophe Doche, Tanja Lange,
Kim Nguyen, and Frederik Vercauteren, editors. Handbook of Elliptic and
Hyperelliptic Curve Cryptography. Chapman and Hall/CRC, 2005.

[40] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic
Curve Cryptography. Springer-Verlag, Berlin, Heidelberg, 2003.

[41] Joseph H.Silverman. The arithmetic of elliptic curves, volume 106. Springer
Science & Business Media, 2 edition, 2009.

BIBLIOGRAPHY 103

[42] Daniel J Bernstein. 25519 naming, 2014.

[43] Daniel J. Bernstein and Peter Schwabe. NEON crypto. In Cryptographic
Hardware and Embedded Systems - CHES 2012 - 14th International Work-
shop, Leuven, Belgium, September 9-12, 2012. Proceedings, pages 320–339,
2012.

[44] Gesine Hinterwälder, Amir Moradi, Michael Hutter, Peter Schwabe, and
Christof Paar. Full-size high-security ECC implementation on MSP430 micro-
controllers. In Progress in Cryptology - LATINCRYPT 2014 - Third Interna-
tional Conference on Cryptology and Information Security in Latin America,
Florianópolis, Brazil, September 17-19, 2014, Revised Selected Papers, pages
31–47, 2014.

[45] Fabrizio De Santis, Omar Grati, Patrick Kresmer, Hermann Seuschek, and
Georg Sigl. High-speed Curve25519 scalar multiplication on ARM Cortex-M4
microcontrollers. In Fachgruppe Kryptographie in der Gesellschaft für Infor-
matik, editor, 23. Workshop der Fachgruppe Kryptographie in der Gesellschaft
fü Informatik (Kryptotag), 2015.

[46] Michael Hutter, Jürgen Schilling, Peter Schwabe, and Wolfgang Wieser.
Nacl’s crypto box in hardware. In Cryptographic Hardware and Embedded
Systems - CHES 2015, pages 81–101, 2015.

[47] Xilinx. Zynq-7000 all programmable SoC overview, 2016.

[48] Altera. Altera’s user-customizable ARM-based SoC, 2015.

[49] Pascal Sasdrich and Tim Güneysu. Efficient elliptic-curve cryptography using
Curve25519 on reconfigurable devices. In Reconfigurable Computing: Archi-
tectures, Tools, and Applications - 10th International Symposium, ARC 2014,
Vilamoura, Portugal, April 14-16, 2014. Proceedings, pages 25–36, 2014.

[50] Jean-Sébastien Coron. Resistance against differential power analysis for ellip-
tic curve cryptosystems. In Cryptographic Hardware and Embedded Systems,
First International Workshop, CHES’99, Worcester, MA, USA, August 12-
13, 1999, Proceedings, pages 292–302, 1999.

[51] Junfeng Fan and Ingrid Verbauwhede. An updated survey on secure ECC
implementations: Attacks, countermeasures and cost. In Cryptography and
Security: From Theory to Applications - Essays Dedicated to Jean-Jacques
Quisquater on the Occasion of His 65th Birthday, pages 265–282, 2012.

[52] Daniel J. Bernstein. 25519 naming. posting to the cfrg mailing list, 2014.

[53] Alfred J Menezes, Paul C Van Oorschot, and Scott A Vanstone. Handbook of
applied cryptography. CRC press, 1996.

104 BIBLIOGRAPHY

[54] Joppe W. Bos. Constant time modular inversion. J. Cryptographic Engineer-
ing, 4(4):275–281, 2014.

[55] Steven D. Galbraith. Mathematics of Public Key Cryptography. Cambridge
University Press, 2012.

[56] Tanja Lange. Efficient arithmetic on genus 2 hyperelliptic curves over finite
fields via explicit formulae. IACR Cryptology ePrint Archive, 2002:121, 2002.

[57] Rober Harley. Fast arithmetic on genus two curves. In ACM Transactions in
Embedded Computing Systems - TECS, 2000.

[58] David V. Chudnovsky and Gregory V. Chudnovsky. Sequences of numbers
generated by addition in formal groups and new primality and factorization
tests. Adv. Appl. Math., 7(4):385–434, 1986.

[59] Pierrick Gaudry. Variants of the montgomery form based on theta functions,
2006.

[60] Ping Ngai Chung, Craig Costello, and Benjamin Smith. Fast, uniform scalar
multiplication for genus 2 Jacobians with fast Kummers. In Selected Areas in
Cryptography - SAC 2016 - 23rd International Conference, St. John’s, NL,
Canada, August 10-12, 2016, Revised Selected Papers, pages 465–481, 2016.

[61] Florent de Dinechin and Bogdan Pasca. Large multipliers with fewer DSP
blocks. In 19th International Conference on Field Programmable Logic and
Applications, FPL 2009, August 31 - September 2, 2009, Prague, Czech Re-
public, pages 250–255, 2009.

[62] Shuli Gao, Dhamin Al-Khalili, Noureddine Chabini, and J. M. Pierre Langlois.
Asymmetric large size multipliers with optimised FPGA resource utilisation.
IET Computers & Digital Techniques, 6(6):372–383, 2012.

[63] Edlyn Teske. An elliptic curve trapdoor system. J. Cryptology, 19(1):115–133,
2006.

[64] Alexander Rostovtsev, Elena Makhovenko, and Olga Shemyakina. Elliptic
curve ordered digital signature. Saint-Petersburg State Polytechnical Univer-
sity, April, page 6, 2004.

[65] Anton Stolbunov. Constructing public-key cryptographic schemes based on
class group action on a set of isogenous elliptic curves. Adv. in Math. of
Comm., 4(2):215–235, 2010.

[66] Andrew M. Childs, David Jao, and Vladimir Soukharev. Constructing elliptic
curve isogenies in quantum subexponential time. J. Mathematical Cryptology,
8(1):1–29, 2014.

BIBLIOGRAPHY 105

[67] Steven D. Galbraith and Frederik Vercauteren. Computational problems
in supersingular elliptic curve isogenies. IACR Cryptology ePrint Archive,
2017:774, 2017.

[68] Lawrence C. Washington. Elliptic curves: number theory and cryptography.
CRC press, 2 edition, 2008.

[69] Alfred Menezes, Tatsuaki Okamoto, and Scott A. Vanstone. Reducing elliptic
curve logarithms to logarithms in a finite field. IEEE Trans. Information
Theory, 39(5):1639–1646, 1993.

[70] Jacques Vélu. Isogénies entre courbes elliptiques. CR Acad. Sci. Paris Sér.
AB, 273:A238–A241, 1971.

[71] Luca De Feo, David Jao, and Jérôme Plût. Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies. J. Mathematical Cryp-
tology, 8(3):209–247, 2014.

[72] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for
supersingular isogeny Diffie-Hellman. In Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 14-18, 2016, Proceedings, Part I, pages 572–601, 2016.

[73] Armando Faz-Hernández, Julio López, Eduardo Ochoa-Jiménez, and Fran-
cisco Rodŕıguez-Henŕıquez. A faster software implementation of the supersin-
gular isogeny Diffie-Hellman key exchange protocol. IACR Cryptology ePrint
Archive, 2017:1015, 2017.

[74] Brian Koziel, Amir Jalali, Reza Azarderakhsh, David Jao, and Mehran Mozaf-
fari Kermani. NEON-SIDH: efficient implementation of supersingular isogeny
Diffie-Hellman key exchange protocol on ARM. In Cryptology and Network
Security - 15th International Conference, CANS 2016, Milan, Italy, Novem-
ber 14-16, 2016, Proceedings, pages 88–103, 2016.

[75] Brian Koziel, Reza Azarderakhsh, and Mehran Mozaffari Kermani. A high-
performance and scalable hardware architecture for isogeny-based cryptogra-
phy. IEEE Transactions on Computers, pages 1–1, 2018.

[76] Reza Azarderakhsh, Brian Koziel, Seyed Hamed Fatemi Langroudi, and
Mehran Mozaffari Kermani. FPGA-SIDH: High-performance implementa-
tion of supersingular isogeny Diffie-Hellman key-exchange protocol on FPGA.
IACR Cryptology ePrint Archive, 2016:672, 2016.

[77] Brian Koziel, Reza Azarderakhsh, Mehran Mozaffari Kermani, and David Jao.
Post-quantum cryptography on FPGA based on isogenies on elliptic curves.
IEEE Trans. on Circuits and Systems, 64-I(1):86–99, 2017.

106 BIBLIOGRAPHY

[78] Anatoly Karatsuba and Yu Ofman. Multiplication of many-digital numbers
by automatic computers. Proc. of the USSR Academy of Sciences, 145:293–
294, 1962.

[79] Michael Scott. Fast machine code for modular multiplication, 1995.

[80] Zhe Liu and Johann Großschädl. New speed records for Montgomery mod-
ular multiplication on 8-bit AVR microcontrollers. In Progress in Cryptol-
ogy - AFRICACRYPT 2014 - 7th International Conference on Cryptology in
Africa, Marrakesh, Morocco, May 28-30, 2014. Proceedings, pages 215–234,
2014.

[81] Amir Jalali, Reza Azarderakhsh, and Mehran Mozaffari Kermani. Efficient
post-quantum undeniable signature on 64-bit ARM. In Selected Areas in
Cryptography - SAC 2017 - 24th International Conference, Ottawa, ON,
Canada, August 16-18, 2017, Revised Selected Papers, pages 281–298, 2017.

[82] Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. Newhope on ARM
Cortex-M. In Security, Privacy, and Applied Cryptography Engineering - 6th
International Conference, SPACE 2016, Hyderabad, India, December 14-18,
2016, Proceedings, pages 332–349, 2016.

[83] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Va-
leria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off
the ring! Practical, quantum-secure key exchange from LWE. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, Vienna, Austria, October 24-28, 2016, pages 1006–1018, 2016.

[84] Xinyu Lei and Xiaofeng Liao. NTRU-KE: A lattice-based public key exchange
protocol. IACR Cryptology ePrint Archive, 2013:718, 2013.

[85] Steven D. Galbraith, Christophe Petit, Barak Shani, and Yan Bo Ti. On the
security of supersingular isogeny cryptosystems. In Advances in Cryptology -
ASIACRYPT 2016 - 22nd International Conference on the Theory and Ap-
plication of Cryptology and Information Security, Hanoi, Vietnam, December
4-8, 2016, Proceedings, Part I, pages 63–91, 2016.

[86] Daniel Kirkwood, Bradley C. Lackey, John McVey, Mark Motley, Jerome A.
Solinas, and David Tuller. Failure is not an option: Standardization issues for
post-quantum key agreement. In Talk at NIST workshop on Cybersecurity in
a Post-Quantum World, volume 2, 2015.

[87] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power anal-
ysis. In Advances in Cryptology - CRYPTO ’99, 19th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 15-19, 1999,
Proceedings, pages 388–397, 1999.

BIBLIOGRAPHY 107

[88] Jean-Sébastien Coron, David Naccache, and Paul C. Kocher. Statistics and
secret leakage. ACM Trans. Embedded Comput. Syst., 3(3):492–508, 2004.

[89] Tobias Schneider and Amir Moradi. Leakage assessment methodology - A
clear roadmap for side-channel evaluations. In Cryptographic Hardware and
Embedded Systems - CHES 2015 - 17th International Workshop, Saint-Malo,
France, September 13-16, 2015, Proceedings, pages 495–513, 2015.

	Abstract
	Kurzfassung
	Acknowledgements
	Nomenclature
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	The Diffie-Hellman Key Exchange
	Elliptic Curve Cryptography
	Hyperelliptic Curve Cryptography
	Isogeny-Based Cryptography

	Contribution
	Outline

	Multiplication in Mersenne Prime Fields
	Preliminaries
	Hardware Multipliers
	Multiplication and Crandall's Reduction Combined
	Fast Multiplication on FPGAs
	Related Work
	Asymmetric Tiling
	Regrouping Digit-Products

	Design Automation for Combined Reduction
	Digit-Product Generation
	Digit-Product Splitting
	Rearrange Sliced Digit-Products

	Hardware Design and Analysis
	Results

	Conclusions

	Elliptic Curve Cryptography
	Introduction to Elliptic Curves
	Short Weierstrass Form

	Scalar Multiplication and the Elliptic Curve Diffie-Hellman Key Exchange
	Group Law on Elliptic Curves

	Choice of Coordinates
	Affine Coordinates
	Projective Coordinates

	Montgomery Ladder

	X25519 DH Key Exchange on an FPGA
	Background
	Algorithmic Description
	Pseudo Mersenne Prime Field Arithmetic
	Addition and Subtraction
	Multiplication
	Inversion

	Hardware Architecture
	Montgomery Ladder

	Results
	Conclusions

	Hyperelliptic Curve Cryptography
	Group Law for Hyperelliptic Curves
	The Jacobian Variety
	Addition on the Jacobian

	Montgomery Arithmetic for Genus-2 Curves over Prime Fields
	The Kummer Surface

	Kummer Surface Based DH Key Exchange on an FPGA
	Introduction
	Preliminaries
	Gaudry and Schost's Genus-2 Hyperelliptic Curve

	Compression and Scalar Multiplication
	Hardware Architectures
	Memory
	Datapath
	Control Logic
	Multi-Core Architecture

	Results and Analysis
	Conclusions

	Isogeny-Based Cryptography
	Preliminaries
	Isogenies
	Supersingular Curves
	l-Torsion Subgroups

	The Supersingular Isogeny DH Key Exchange
	Public Parameters
	Key Generation
	Shared Secret Computation
	Large Degree Isogeny Computation

	Complexity Considerations

	SIDH Key Exchange on Embedded Devices
	Introduction
	Related Hardware Implementations
	Architecture
	Results

	Embedded Implementations
	Platform Independent Design Decisions
	Microcontrollers
	Finite Field Operations
	Results for the Assembly Optimized Field Operations

	Results and Analysis of Constant-Time Implementations
	Implementation Security
	Randomized Projective Coordinates to Thwart DPA

	Conclusions

	Conclusions
	Bibliography

