Non-equilibrium Phase Transitions in
Systems with long-range Interactions

Dissertation

vorgelegt von

Johannes Andreas Lang

Januar 2019

Physik Department T34
Technische Universitat Munchen






Technische Universitat Munchen

Physik Department
Lehrstuhl T34, Prof. Dr. Wilhelm Zwerger

Non-equilibrium Phase Transitions in
Systems with long-range Interactions

Johannes Andreas Lang

Vollstandiger Abdruck der von der Fakultat fiir Physik der Technischen Universitét
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat)

genehmigten Dissertation.

Vorsitzender: Prof. Jonathan J. Finley, Ph.D.
Priifer der Dissertation: 1. Prof. Dr. Wilhelm Zwerger

2. Prof. Dr. Michael Hartmann
(Heriot-Watt University, Edinburgh)

Die Dissertation wurde am 29.01.2019 bei der Technischen Universitdt Miinchen

eingereicht und durch die Fakultat fiir Physik am 01.03.2019 angenommen.



ii

Abstract

In this thesis, we investigate many-body systems with long-range inter-
actions, that frequently arise as a consequence of strong light-matter
interactions. Because of the advanced experimental control over the
lossy nature of the photons, these systems can be studied in and out
of equilibrium. We first consider an infinite range spin chain at finite
temperatures and study its dynamical phase diagram by means of the
Loschmidt echo and the late-time dynamics of the order parameter.
It turns out, that both dynamical phase diagrams are identical. Us-
ing a semiclassical analysis of the return rate based on the spin WKB
wave function, an intuitive interpretation for this concurrence is found.
Then, notivated by the recent experiments at ETH [1, 2], we study the
symmetry breaking associated with the Dicke-Hepp-Lieb transition of
bosons in two crossed optical cavities. We find, that in the presence of
atom-mediated scattering between the two cavities the U(1) invariance
with respect to redistribution of the cavity field intensity I between
the two resonators is broken, giving rise to an effective Goldstone mass
~ V/T. Next, we turn to open systems and investigate the steady state
of interacting polaritons in photonic crystal waveguides or tapered
fibers, for which we develop a controlled diagrammatic expansion in
the inverse interaction range between quasiparticles. This is then used
to describe the phenomenon of interaction induced transparency (I1IT),
where dissipative interactions between EIT polaritons drive a first or-
der phase transition between an opaque and a transparent phase. In
the latter a high density of polaritons can compensate losses forced
onto the quasiparticles by external laser fields. Finally, we address the
late-time dynamics in the open Dicke model near the Dicke-Hepp-Lieb
transition by a self-consistent diagrammatic approximation. It turns
out, that the phase transition following a small quench is not the re-
sult of a diverging quasiparticle lifetime, but rather a proliferation of
overdamped excitations. Consequently, the phase transition to a con-
densate in the interacting system is not captured by the single-particle
spectrum.



Zusammenfassung

Den Fokus dieser Arbeit bilden Vielteilchensysteme mit langen Wech-
selwirkungsreichweiten, wie sie haufig durch starke Licht-Materie
Wechselwirkungen entstehen. Dank der zunehmenden experimentellen
Kontrolle iiber Photonverluste, konnen diese Systeme heutzutage
sowohl im, wie auch auflerhalb des Gleichgewichts untersucht wer-
den. Wir untersuchen zuerst das dynamische Phasendiagramm einer
Spinkette mit unendlicher Reichweite bei endlichen Temperaturen mit
Hilfe des Loschmidt-Echos und der Langzeitdynamik des Ordnungspa-
rameters. Dabei stellt sich heraus, dass beide Methoden das gle-
iche Phasendiagramm liefern. Eine intuitive physikalische Erklarung
flir diese Beobachtung ergibt sich aus einer semiklassischen Anal-
yse der Riickkehrrate basierend auf der Spin-WKB-Wellenfunktion.
Motiviert durch aktuelle Experimente an der ETH [1, 2], unter-
suchen wir die Symmetriebrechung am Dicke-Hepp-Lieb Acebergang
von Bosonen in zwei gekreuzten optischen Resonatoren. Es zeigt
sich, dass die Streuung zwischen den Resonatoren, wie sie durch
Atome vermittelt wird zu einer Brechung der U (1)-Invarianz beziiglich
der Umverteilung der Lichtfeldintensitdt [ zwischen den beiden Res-
onatoren fiihrt, was eine effektive Masse der Goldstone-Mode ~ /T
nach sich zieht. Anschliefend wenden wir uns offenen Systemen zu
und untersuchen den stationdren Zustand wechselwirkender Polari-
tonen in photonischen Kristallwellenleitern oder in verjliingten Glas-
fasern. Dazu entwickeln wir eine kontrollierte diagrammatische En-
twicklung in der inversen Wechselwirkungsreichweite zwischen Qua-
siteilchen. Diese wird dann benutzt, um eine neue Form von wechsel-
wirkungsinduzierter Transparenz zu beschreiben. Diese Transparenz
wird durch dissipative Wechselwirkungen zwischen EIT-Polaritonen
hervorgerufen und ist durch einen Phaseniibergang erster Ordnung von
einer triiben Phase mit hohen Verlusten getrennt. In der transpar-
enten Phase kompensiert eine hohe Dichte aus Polaritonen Verluste,
die den Quasiteilchen durch auflere Laserfelder aufgezwungen wer-
den. Abschlieend wird die Langzeitdynamik im offenen Dicke-Modell
nahe des Dicke-Hepp-Lieb Phasentibergangs mit einer selbstkonsisten-
ten diagrammatischen Naherung behandelt. Dabei stellt sich her-
aus, dass der Phaseniibergang nach einer kleinen Stérung des Sys-
tems nicht, wie naiv erwartet, durch eine verschwindende Zerfallsrate
der Quasiteilchen hervorgerufen wird, sondern durch die Anhaufung
iberdampfter Anregungen. Folglich ist eine Beschreibung des Kon-
densationiibergangs basierend auf dem Ein-Teilchen-Spektrum nicht
moglich.
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Chapter 1
Introduction

It is no coincidence that light has been the preferred method of communicating in-
formation for several decades. This is mostly owed to the fact, that in transparent
media photons hardly interact and can propagate with a group velocity close to
the speed of light for almost unlimited distances. However, for quantum informa-
tion processing strong interactions are required. Thus, the possibility to selectively
implement interactions between photons in the quantum regime is recently attract-
ing a lot of interest [3, 4]. Interacting photons are also promising for the creation
of synthetic quantum matter, like superfluids [5], or crystalline like states of light
6, 7, 8, 9] and even topological [10] phases.

In recent years a lot of progress in this direction has been made in a number of
vastly different experimental platforms. Among them are trapped ions [11, 12, 13],
coupled arrays of microcavities [6, 14, 15], photonic crystal waveguides [16, 17],
polaritons in Rydberg gases [18, 19, 20, 21], tapered fibers [22, 23, 24, 25|, optome-
chanical systems [26, 27, 28] and Bose-Einstein condensates in optical resonators
[29, 30, 31, 32]. All of these are many-body systems, controlled by methods from
quantum optics. This gives rise to a common feature: The interactions are photon
mediated and therefore long ranged. As opposed to solid state systems, interactions
in these hybrid light-matter experiments can be adjusted via external laser fields.
Furthermore, the photons naturally possess loss channels, the control over which
lies at the heart of the experimental advances towards the exceptional authority
required for example in quantum computers.

Apart from the lofty goal of a scalable quantum computer, there are many con-
crete applications already within reach of the latest generation of experiments, for
example quantum simulators [11, 33] and single photon gates [34, 35, 36]. Given the
fast progress towards larger and more complex systems and especially the promising
technical opportunities these platforms provide, there is an urgent need for reliable,
quantitative theoretical descriptions. However many well established methods from
solid state physics are unable to deal with quantum systems far from equilibrium.
The typically quickly growing entanglement entropy limits the use of matrix prod-
uct states (MPS) or density matrix renormalization group (DMRG) and recent
experiments have attained system sizes beyond the reach of exact diagonalization
[11, 33].

Compared to the well-established description of phase transitions in equilibrium



Chapter 1 Introduction

the treatment of open systems and dynamical phase transitions is therefore still in
its infancy. In particular, the description of quantum phase transitions, be they
dynamical [37, 38] or towards novel phases of matter [39, 40, 41, 42, 10, 43] has
proven difficult [44] because important concepts from equilibrium physics, like de-
tailed balance or a thermodynamic potential do not apply. Nevertheless, recently
ideas to generalize these notions to dynamical systems have attracted a lot of atten-
tion [45] and subsequently also have met with some success [37, 46]. Furthermore,
important advances towards the classification of dynamical phase transition have
been made [44, 47]. The combination of many remaining open theoretical chal-
lenges and abundant experimental realizations creates the opportunity to discuss
fundamentally new physical concepts in concrete applications. With the easy ac-
cess to many observables via the emitted photons, precision measurements enable
a quantitative comparison between theory and experiment. Consequently, we fo-
cus in this thesis on the quantitative description of long-range systems far from
equilibrium, realizable in quantum optical systems with ions and ultracold bosonic
atoms in optical cavities and near photonic crystal waveguides.

We begin in chapter 2 with the description of dynamical quantum phase tran-
sitions by means of the Loschmidt echo. In particular, in section 2.1, we consider
very long spin chains with infinite range interactions that can be realized with
trapped ions [11] and investigate the connection between the long-time order pa-
rameter dynamics and the non-analyticities of the return rate. This extends a
recent investigation [48] to finite temperatures and allows us to identify the proper
generalization of the Loschmidt echo to mixed states. The long-range nature of the
interactions then enables us in section 2.3 to perform a semiclassical analysis based
on the spin WKB wave function and find a geometric interpretation of the return
rate at arbitrary temperatures. Connections to an effective Ginzburg-Landau de-
scription and extensions to finite interaction ranges are discussed. In chapter 3
we consider a recent experiment at ETH [1, 2] which found supersolid behavior
in a Bose-Einstein condensate trapped in two crossed cavities. We investigate the
symmetries of the experiment including higher order scattering processes. With a
focus on the stationary state of the atomic cloud, the photon losses can be mostly
neglected. Consequently, a quantitative finite temperature mean-field analysis is
used to determine the mass and lifetime of the associated Goldstone and Higgs
mode in the symmetry broken phase beyond the Dicke-Hepp-Lieb transition. We
then turn our attention to dissipative systems. In chapter 4, we develop a controlled
diagrammatic expansion in the inverse interaction range between EIT polaritons.
Given its non-perturbative nature this out-of-equilibrium field theory is suitable for
the quantitative description of phase transitions. We therefore use it to investigate
the novel predicted phenomenon of interaction-induced transparency in photonic
crystal waveguides. Furthermore, corrections due to finite interaction ranges are
detailed in Sec. 4.8 and the application to Rydberg atoms is outlined in Sec. 4.9.
Finally, the late-time dynamics of the open Dicke model is discussed in chapter 5.
Using a self-consistent Hartree-Fock approximation in the Keldysh path integral



formalism for finite system sizes, a scaling form of the Green’s function is found
and compared to an extensive numerical simulation. Utilizing this result, the pe-
culiar nature of the superradiance instability in an open system with overdamped
excitations is explained.






Chapter 2

Loschmidt echo in infinite range spin
chains

For most of this thesis, we will focus on atomic and photonic one-particle Green’s
functions as a tool to characterize the non-equilibrium phases of matter. There
are, however, several disparate approaches to detect dynamical phase transitions
(DPT), for example from the dynamics [49, 50, 51] or asymptotic long-time limit
of observables and correlation functions [52, 53, 54, 55, 56, 57|, which has recently
been measured experimentally with trapped ions [11]. In the following these will
collectively be referred to as DPT-I. An alternative concept, referred to as DPT-II,
is based on the so-called Loschmidt echo, which was introduced by Heyl and Kehrein
[45] and has attracted a lot of interest in recent years (for a topical review see
[37]). Contrary to the aforementioned DPT-I it is defined already at intermediate
time-scales, however — at least in principle — it requires measurements that are
exponential precise in the system size.

In this chapter, we will discuss the Loschmidt echo for semiclassical spin models
at finite temperature and compare the arising dynamical phase diagram to that
obtained from the late-time behavior of the magnetization. In the thermodynamic
limit we find a concurrence of the DPT-I and DPT-II phase diagrams. Moreover,
in Sec. 2.3 we develop an intuitive, geometric picture based on the spin WKB wave
function, that allows an interpretation similar to the Ginzburg-Landau theory of
equilibrium phase transitions as well as a connection to entanglement witnesses,
that have been used to detect dynamical phase transitions, like the spin squeezing
[58, 59] and the quantum Fisher information [60, 61]. Beyond the significant nu-
merical advantages this method presents, it also clarifies the connection between
DPT-I and DPT-II in mean-field like systems and paves the way for the calculation
of Loschmidt echos or entanglement witnesses within the more general framework
of the truncated Wigner approximation, potentially even in generic non-integrable
systems. Section 2.2 is based on the publication [62] resulting in some text overlap.
Also most figures are taken from there. The latter half of this chapter is derived
from the paper [63] with which it partially overlaps in text and figures.
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2.1 The Loschmidt echo as a measure for dynamical
quantum phase transitions

In equilibrium phase transitions are well understood both classically and quantum
mechanically [64, 65]. The main reason behind this is, that the partition function
Z contains the full information about the thermodynamics of the system. For
example for a system in contact with a heat bath one has

Z =Tre PH (2.1)

where 8 = 1/T is the inverse temperature with the Boltzmann constant set to unity
and H the Hamiltonian of the system. Phase transitions can then be detected and
classified in terms of non-analyticities of the free energy

F=-ThZ. (2.2)

Far from equilibrium however, equivalent concepts are missing, raising many fun-
damental questions, regarding universality or the existence of an ordering principle,
similar to the minimization of the free energy.

One possibility to find non-analytic behavior in a quantity, which is closely related
to a free energy in equilibrium, is the Loschmidt echo, which we will consider in
more detail now. Assuming that a system is prepared in the ground state |¥¢) of
some initial Hamiltonian H; we perform a sudden quench to the final Hamiltonian
Hy, exciting the system in the process. In this simplest of all quench protocols the
Loschmidt echo £ can be defined as the return probability of the time-evolved state
|W(¢)) to the initial state:

L(t) = [G(1)* = [(Lol¥(£)[* = [(Pole™ | wo)[*. (2.3)

Formally the Loschmidt amplitude G is equivalent to a boundary partition function
with the boundary states |¥p) and the imaginary inverse temperature 5 — it.
Thus, we can introduce the real and positive return rate r(¢) as an analog to the
thermodynamic limit of the free energy density in equilibrium via

r(t) = — A}gnoo % InL(t). (2.4)
Note, that the absolute value in the definition of L£(t) is purely for convenience as
the corrections due to the phase of G(t) would anyways be suppressed by 1/N.
Similar to the free energy, the expression In £(t) is typically extensive. As is the
case for I, proving this for interacting systems is a highly nontrivial task, that due
to the imaginary exponent in Eq. (2.3), however, has to rely on the large deviation
scaling [66] of the overlaps between the eigenstates of H; and H. In the following,
we will not concern ourselves with this and instead simply note, that for infinite
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range spin chains the return rate defined by Eq. (2.4) is properly normalized and of
order one'. Continuing along the same lines as in equilibrium, we can now define a
non-equilibrium phase transition as a non-analyticity in r(¢), which one then has to
connect to some more practical observations in the dynamics of the system. This
has for example been achieved by Trapin and Heyl for the revivals of the superfluid
state after a quench of the Bose-Hubbard model to the Mott insulator [67, 46].
Following the standard notation, the instances of the periodically appearing non-
analyticities in r(t) will be called critical times t.,, sorted in time by the index
n € N.

Typically for systems with degenerate ground states the Loschmidt echo is cal-
culated as the overlap with the entire ground state manifold [68, 69, 70, 71]. As we
will see in the case of the U(1) symmetric, infinite range XX-model, this can result
in an artificial suppression of cusps in the return rate, rendering the Loschmidt
echo meaningless. Consequently, we will avoid using any such construction.

We note, that the Loschmidt echo is exponentially sensitive to the overlap be-
tween initial and time-evolved state. It is therefore not entirely unreasonable to
suspect some rigorous relation between the return rate and infinite-time expectation
values. A well known case, where a similar exponentially weighted expectation value
taken shortly after a quench predicts the final equilibrium properties (more pre-
cisely the free energy) is the Jarzynski-Crooks fluctuation relation [72, 73, 74, 75].
There, the difference between the initial and final free energy AF = Fy — Fj in
equilibrium is expressed via fluctuations of the ensemble average of the work W
performed during the quench:

TPAE = (e7PWy (2.5)

e
Despite the fact, that the Loschmidt amplitude G(t) can be identified with the
characteristic function of the work distribution [76], currently no rigorous state-
ments relating DPT-I and DPT-II are known. In fact, only few generic statements
can be made regarding cusps in r(t). For a finite system G(z) is an entire function
(with z € C) that can be rewritten with the Weierstrass factorization theorem [77]
as

G(z) = e/ H(z] —2). (2.6)
J

Here f(z) is an entire function and thus any non-analyticity in r(¢) originates from
the zeros z; in the complex plane. In the thermodynamic limit these isolated zeros
accumulate into lines or areas of the complex plane [37]. If any such structure is
intersected by the real axis the return rate r(¢) will exhibit a cusp at the entry
and the exit point [78]. These are closely related to the non-analyticities of the
free energy that are fully determined by zeros of the partition function which were

LA simple proof can be constructed by means of the spin WKB wave function treated in Sec. 2.3.
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first studied by Lee and Yang [79]. However, due to the presence of two distinct
Hamiltonians H; and Hy the determination of the Lee-Yang zeros for quenched
systems is even harder than in equilibrium.

Despite the lack of generic results, some remarkable advances have been made for
specific systems. In particular we distinguish between non-interacting, fermionic
many particle systems and interacting or many-body systems. In the former case
the Hamiltonian turns into a sum over single-particle Hamiltonians

H=Y Hy=> & hyé (2.7)
k k

with vectors ¢, and éL of fermionic creation and annihilation operators. In this
case the ground state |Wg) = [], |¥x) factorizes into a product of single-particle
ground states |¥y), entailing the same property for the Loschmidt echo:

G(t) = [[(Wele " @)) = T] Gr(1) (2.8)
k

k

and therefore

r(t) —A}gnooNZrk = —A}iinooifzkzln]Gk(t)F, (2.9)
Examples for Hamiltonians of this type include, among others, topological band
insulators, Bogoliubov-de Gennes superconductors or the one-dimensional nearest-
neighbor transverse Ising model, for each of which k£ denotes the quasi-momentum
and the product in G(¢) runs over the Brillouin zone. Clearly G(t) is a finite
sum and consequently an analytic function, which implies that the only origin of a
singularity in the return rate is if G(t.,) = 0 for some k. Interacting systems on
the other hand do not factorize and in the thermodynamic limit G(¢) is an infinite
sum, that can itself be non-analytic. For one and two-dimensional non-interacting
topological two-band systems, i.e. where hy is a 2 X 2 matrix, G(t) contains only
two terms, most results can be obtained analytically.

A particularly simple picture arises through the use of the relative Bloch sphere,
that is by expressing the time-evolved state |Uy(¢)) in the basis {|Ux_), |Usy)} of
the initial Hamiltonian

U (1)) = cos(0x(t)/2)[Wh_) + €D sin(04 () /2)[Vsy) (2.10)

Initially, for every k the Bloch vector points to the north pole {(0) = 0, ¢x(0) =
0}. However, the DPT-II condition Gg(t., ) = 0 is only satisfied, if |¥y(¢.)) becomes
orthogonal to the initial state, thus pointing to the south pole. ThlS will happen
if and only if the initial and final Hamiltonian pit = o flloxo + d - o, with o the
vector of Pauli matrices, have orthogonal eigenstates, i.e. if d1 di = 0. In 1D
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for a quench between systems with different Zak phase in the ground state, this is
guaranteed, thereby relating the equilibrium topological phase with the existence
of cusps in the Loschmidt echo [80]. In two dimensions the weaker statement that
a quench between systems with different modulus of the Chern number results in
non-analyticities in the return rate has been found by Vajna and Déra [80).

Note however, that these relations between dynamical and equilibrium phase
transitions can be lifted by dynamical constraints to the dynamics [81]. Further-
more, there is also the possibility of accidental dynamical phase transitions that
are not related to a change in topology [81, 82]. As opposed to the topological
transitions these are neither connected to equilibrium transitions nor protected by
symmetry and require fine-tuning. For the case of the 1D transverse field Ising
model a simultaneity between the sign change in the order parameter and cusps in
the return has been established [45]. A similar behavior has also been found in the
non-interacting N — oo limit of the O(N)-model [71]. These relations between the
equilibrium topological phase and the Loschmidt echo can be generalized to any
finite number of bands [83], however calculations quickly become very cumbersome
and already for three bands the critical times are not analytically known.

By removing the dynamical component ¢{¥" (t) = — fot ds(Wy(s)|Hy|¥k(s)) from
the phase ¢ (t) of the Loschmidt amplitude G, (t) = |G (t)[e’**(®) Budich and Heyl
have been able to identify the geometric Pancharatnam phase ¢F'(t) = ¢y (t) —
qb(,iyn(t) [84] as a topological, dynamical order parameter [85]. Cusps in the re-
turn rate of one-dimensional topological insulators are necessarily accompanied by
simultaneous jumps in the Pancharatnam phase [85].

For interacting systems typically no one-to-one correspondence between DPT-II
and an equilibrium transition exists [86, 87, 70]. However, in the case of long-
range transverse field Ising models it has been found that the time ¢, is correlated
with the infinite time expectation value of the magnetization [48, 87, 88]. In case
that both the initial and the steady-state magnetization are finite, the so-called
anomalous phase, where ., appears only after the first minimum of r(¢), has been
found. This differs from the quench between a ferromagnetic and a paramagnetic
state, where the first cusp in the return rate appears before the first minimum.
Therefore, as opposed to the non-interacting case, the critical times cannot coincide
with sign changes in the magnetization.

Lacking a consensus on the proper generalization of the Loschmidt echo to finite
temperatures, pure, excited initial states have been studied instead [89]. In analogy
to the quantum critical regime in equilibrium a similar effect has been observed for
small systems and strong quenches [68, 69]: The energy resolved order parameter,
which experiences a sudden change near the critical times, becomes increasingly
smooth as the energy is increased. The instance of the jump in the order parameter
in the time-evolved system upon projection to the ground state manifold was then
identified with the critical time of the return rate, thus linking DPT-I and DPT-II.
However, as mentioned above, careful numerical investigations of large systems call
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these results into question, as zeros of the order parameter and the critical times are
not perfectly synchronous [48], prohibiting the identification of the discontinuity in
the energy resolved order parameter with the critical time.

In the case of a 2D topological insulator and a short spin chain with long-range
interactions the Loschmidt echo has recently been measured in experiments with
ultracold atoms and trapped ions [90, 69]. Recently, further observations of DQPTs
by means of the Loschmidt echos have been reported in photonic quantum walks [91,
92], nanomechanical oscillators [93] and superconducting qubits [94]. In the case
of the infinite-range transverse field Ising model (IR-TFIM) one has furthermore
observed a connection between the Loschmidt echo and the Kitagawa-Ueda spin-
squeezing parameter [58, 69], raising the question of a possible relation between
entanglement witnesses and the Loschmidt echo.

2.2 Finite-temperature Loschmidt echo for large spin
chains

As the vast majority of the results mentioned above has been obtained in non-
interacting systems initialized in the ground state, it is only natural to ask, which
of these statements carry over to interacting systems, where singularities in the
Loschmidt echo are not related to orthogonal initial and final states. In fact, only
very little is known for non-integrable systems with exponentially large Hilbert
spaces, as these require a lot of numerical effort to reliable resolve any connection
between the Loschmidt echo and the order-parameter dynamics, as is evidenced
by the discrepancy between the recent studies [70] and [87]. Beyond significant
quantitative contradictions, there are also qualitative disagreements: While the
former finds cusps in the return rate only for quenches of a ferromagnetic initial
state to a paramagnetic phase as t — oo, the latter finds an anomalous phase
— characterized by cusps in all but the first few periods of the return rate — for
quenches where the magnetization remains finite. The situation becomes even
worse, at finite preparation temperatures, where no consensus between the different
proposed generalizations of the return rate has been achieved [95, 96, 97, 98, 99, 100]
(see Sec. 2.2.3).

In the following, we will thus focus on the simplest case of an interacting many-
body system, realized in the form of infinite range spin chains, where reliable, nu-
merical results can be obtained. More specifically, we will mostly focus on the trans-
verse field Ising model, but also show extensions to the O(2)-symmetric XX chain.
While these systems are integrable in the sense that the explored Hilbert space is
only linear in system size, their dynamics is not exactly known and the Loschmidt
echo cannot be classified in the same way as is the case for non-interacting systems
(see Sec. 2.3.1). Nevertheless, the relatively simple structure renders the exact di-
agonalization (ED) of very large systems possible. Furthermore, the existence of a
finite temperature phase transition in equilibrium allows to investigate dynamical

10
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phase transitions by means of the Loschmidt echo also at T # 0.

2.2.1 Model and quench protocol
The IR-TFIM is described by the Hamiltonian

N N N
H(F):—% D sisi-TY sT—AY 57, (2.11)

i#j=1 =1 =1

with (ferromagnetic) coupling constant J > 0 and system size N. The Kac normal-
ization factor [101] 1/N in the interaction term is introduced to ensure extensivity
in the thermodynamic limit. The variables sj(x) denote the projection of the spin
operator of site j onto the z (z) direction. For quenches starting in a paramag-
netic state the small longitudinal field proportional to A < I' is needed to seed the
symmetry breaking in case of an ordered long-time steady state. This procedure
will be described in more detail in Sec. 2.2.4. Thus, unless otherwise specified, we
set A = 0. The result is the usual IR-TFIM, which has a finite-temperature equi-
librium phase diagram [102, 103] depicted in Fig. 2.1 with ordered and disordered
phases separated by the equilibrium critical line

Tor) =T [ln<j+§£>]l, (2.12)

with zero-field thermal critical point T¢|r—o = limp_o 75 (') = J/4, and zero-
temperature quantum critical point I'S(7" = 0) = J/2, where I'S(T) is the inverse
of TS(T).

We note here that the IR-TFIM is a special case of the Lipkin-Meshkov-Glick
(LMG) model, which was introduced originally to analyze shape phase transitions
in nuclei [104, 105, 106]. The LMG model describes the infinite-range anisotropic
XY model in a transverse magnetic field along the z direction. Despite its simple
structure, it exhibits a finite-temperature phase transition [107, 108|, and can be
experimentally realized in quantum-optical settings either in an optical resonator
[109] or with Rydberg atoms [33] or trapped ions [110, 111, 11, 112]. Since its
introduction, it has been extensively studied in statistical physics, and even its
spectrum in the thermodynamic limit has been analytically calculated by Ribeiro
et al. [113].

We prepare our system at temperature 7' = 1/ in the thermal state

e BH(TY)

P Ty AR (213)

and set the Planck constant as well as J to unity. Here, H refers to the full (mean-
field) Hamiltonian when p; is in the paramagnetic (ferromagnetic) equilibrium phase
and we define the partition function as Z = Trexp (—fH(I;)). Due to the infinite-

11
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Figure 2.1: Equilibrium phase diagram of the infinite-range transverse field Ising
model. The critical temperature T (I') determined by Eq. (2.12) sep-
arates the ordered (ferromagnetic) phase from a disordered (paramag-
netic) regime at high temperatures or large fields.

range nature of the interactions, the exact Hamiltonian (2.11) may be replaced by
the mean-field Hamiltonian

N
Hyp =Y (ms; —Tsf) | (2.14)

=1

with the equilibrium mean-field magnetization m = ),(s7)/N determined self-
consistently by solving

2v/ T2 + m? = tanh (gv I+ m2> . (2.15)

As opposed to Eq. (2.11) the Zg-symmetry is explicitly broken in the mean-field
Hamiltonian. This procedure therefore allows to enforce a finite magnetization in
the initial state in the ferromagnetic phase.

At time t = 0, we abruptly switch the transverse-field strength from T'; to Iy # Iy,
thereby initiating the dynamics of our system, which is always evolved by the full
Hamiltonian (2.11).

2.2.2 Classical dynamics

We now derive the classical dynamics of our model. As we will see, this suffices
to find the finite-temperature DPT-I phase diagram. We begin by rewriting the

12
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Hamiltonian (2.11) in the form

1
H=- ﬁSZSZ - IS, —AS,
2
~— ;—NCOSQG —I'Ssinfcos¢ — AScosd (2.16)
E‘H(e’ ¢) )

for the total spin vector S = (S5;,S5,,5:.)T = >, s;, with conserved spin length
S% =82+ Sg + 52, The first equality in (2.16) is, up to an irrelevant constant, an
exact reformulation of (2.11), while the second uses the classical continuous rep-
resentation S = S (cos ¢sin 6, sin psinf, cos )" and thus neglects intensive terms
arising from the non-commutativity of the spin operators. Consequently, the clas-
sical description is identical to the S — oo limit. The system of coupled equations
of motion for S is given by

s
o =S (2.17)

In the classical formulation, where the commutator is replaced by the Poisson
bracket, these turn into

d—g = I'sin ¢,

(iz 5 (2.18)
— =T - = —A

& cos ¢ cot N cosd )

which show no relaxation, such that m(t — oo) # 0. In fact the latter is a
consequence of dephasing and thus a purely quantum mechanical effect, that is
beyond the reach of a fully classical description. We will briefly revisit this point
in a semiclassical approximation in Sec. 2.3.3.

The (conserved) energy of the initial state after the quench (measured by the final
Hamiltonian) can be written as a weighted integral over all classical configurations

2T ™ 1
E=_ / do / do / ds s2sin e P09 D(sN/2)He(s,0,¢) ,  (2.19)
0 0 0

with s = 25/N € [0,1], and where Hjg corresponds to (2.16) with I' = Ty.
Note, that we omit any normalization constant for the integrals, as it is entirely
inconsequential. The degeneracy factor of the subspace with fixed value of S can
simply be constructed from rotational invariance: Obviously the configuration with
S.-projection mg = N/2 is unique and by rotational symmetry the same has to be
true for any other value of mg in the subspace of maximal spin length. Of the N
configurations with mg = N/2 — 1, one has thus already been used and only N — 1
have spin length S = N/2 — 1. Repeating this argument, one finds that D(S) is

13
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given by
N N
o - (V) (x %) 10
As usual
27 T 1
7 = / do / de / ds s?sin @ e P09 D(sN/2) (2.21)
0 0 0

is the partition function. The limit N — oo allows for a saddle-point expansion
around the maximum of the product D(sN/2)exp (—BH;(s,0,¢)), which fixes s =
5,60 =0, and for I'; # 0 also ¢ to exact values. Thermal fluctuations around
these values are suppressed by factors of exp (—SN) and can thus be neglected.
This implies that the partition function and all thermal expectation values are
simply given by the evaluation at the saddle point of D(sN/2)exp (—8Hi(s,0,®)).
Consequently, the integrals in (2.19) collapse and one finds

E = H(5,0,0). (2.22)
Since D(S) has no angular dependence, one has

2L

S

6; = 0 = arcsin (2.23)

and if I # 0

bi=d=0 (2.24)

directly by minimizing H;(s, 6, ¢). Clearly this solution is only real and thus phys-
ical, if I'; < 5/2, otherwise the system is initialized in the Zo symmetric state with
0; = 0 = w/2. By expanding the binomial factors in D(S) by means of Stirling’s
formula, one obtains the additional saddle point equation
_ B I )

% cos® 6 + % sinf = arctanh s, (2.25)
which, together with I'; = 5/2, immediately leads to the equilibrium phase transi-
tion (2.12). In the case of a Zy symmetry-broken initial state one has

E(5) = —-N [582 4T (rf - ;riﬂ . (2.26)

The long-time-averaged magnetization in the z-direction can vanish only if the
classical spin vector can overcome the equator of the Bloch sphere. Thus a phase
transition in the sense of DPT-I occurs if the initial state is prepared such that its

14
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energy after the quench is sufficiently large. This allows us to use the equation

to find the dynamical critical temperature in the thermodynamic limit N — oo,
which reads
2l — I

T, Ty) = . 2.28
e (T ) 2 arctanh (4T — 2I';) (2:28)

For a Zo-symmetric initial state the classical system shows no dynamics if I'y > T’y
since the system is initialized in the ground state (for fixed s) of both the initial
and final Hamiltonians. Dynamics is only induced by a quench if the ground state
of the final system at s = 5 is ferromagnetic. In this case (S,) will average to a
finite value (given an infinitesimal seed). As the effective spin length s is not the
same as in the equilibrium phase corresponding to I'f, but rather to that of the
equilibrium phase at I'j, the resulting critical final field strength is given by

= = tanh — (2.29)

for T4(T") > T'S(T), as immediately follows from the condition

d?H(0,0)

|
=0. (2.30)

INIE]

It is important to note that the collapse of the partition function in the thermo-
dynamic limit is also true for the quantum-mechanical treatment of the problem,
where it is therefore also allowed to fix s according to (2.25) as N — oco. We will
confirm these predictions in Sec. 2.2.4 with numerical results obtained from the
exact diagonalization of large systems.

2.2.3 Loschmidt echos at finite temperatures

There are several distinct generalizations of the ground-state Loschmidt echo to
finite temperatures. However, not all of them are equally suited to distinguish
dynamical phases in interacting systems. Using the IR-TFIM, we demonstrate
that the so-called interferometric Loschmidt echo is in general ill-suited for this
task. However, we find a relative of the more useful fidelity Loschmidt echo, that
can be efficiently evaluated and produces the same phase-diagram.
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Interferometric Loschmidt-echo return rate

One straightforward extension of Eq. (2.3) to thermal states is the interferometric
Loschmidt amplitude, which has recently been defined as [97, 96]

Gi(t) = Tr { pre AL (2.31)

where H refers to the full Hamiltonian (2.11). In the limit of zero temperature this
reduces to the original Loschmidt amplitude [45] G(t) = (| exp(—iH (I'r)t)|¢1),
with |¢4) the ground state of the pre-quench Hamiltonian H(I;). In (2.31), the
evolution time t takes the place of the complex inverse temperature, making it
a weighted sum of dynamical analogs of a boundary partition function. Conse-
quently, the corresponding dynamical analog of the thermal free energy density in
equilibrium is the Loschmidt-echo return rate

) 1
ri(t) = —A}gnoo N]n IG1(2)]? . (2.32)

At T = 0, the DPT-II is connected to non-analytic cusps in (2.32) and has
previously been investigated in the non-integrable one-dimensional long-range [70,
87, 88] and the fully connected transverse-field Ising models [57, 48]. Unlike the
DPT-I, which for infinite-range spin chains in the absence of a meaningful notion of
distance is limited to the late-time behavior of the order parameter, and thus has
only two phases (vanishing or finite order parameter), the DPT-II exhibits three
distinct dynamical phases [87, 88, 48]. Starting from an ordered ground state,
quenches across a dynamical critical point give rise to regular cusps (i.e. cusps
in every oscillation) in the Loschmidt-echo return rate. On the other hand, for
quenches below this dynamical critical point, the return rate displays no cusps
when the interactions are short range, while for sufficiently long-range interactions
[87], a new kind of anomalous cusps (i.e. cusps appearing only after a certain
number of smooth oscillations) have been shown to emerge in numerical studies
[87, 48, 88]. Moreover, the DPT-I and DPT-II seem to be intimately connected, at
least for long-range interactions [70, 87, 48].

For the infinitely connected model, however, even trivial quenches from I'; — T7,
that at 7' = 0 result in r{(¢) = 0, can show a rich non-analytic behavior of the
return rate at finite temperatures. To understand this in some more detail, let us
consider the easiest case without a transverse field. The associated Hamiltonian is
diagonal in S, and given by

1
H = —ng, (2.33)

16



2.2 Finite-temperature Loschmidt echo for large spin chains

where each eigenstate of S, has degeneracy

D.(S.) = (SJX 12V> . (2.34)

While the return rate, even for this simple system, cannot be calculated exactly for
arbitrary system sizes N, we can obtain the thermodynamic limit for short times
analytically. For large systems and short times, the sum in the return rate for
I'; =Ty, which is given by

2
+=InZz, (2.35)

2

%}pz(sz)e}(p [(5 it 25; ]

can be replaced by an integral. With s, = % + % we obtain

/2
ri(t) =— %ln /1 ds, exp {N{(B + it) %(1 —2s,)?
0
—szlnsz—(l—sz)ln(l—sz)—IDQ}H—{—A, (2.36)

to leading order in N, where the constant A ensures the normalization r(t = 0) = 0.
Its value A = I [8—4s38 —81In (2 — 2s0)] is determined by the evaluation of the
integrand in (2.36) at the non-trivial saddle point so € (0,1/2), which solves

B <so — ;) = 2arctanh (1 — 2sg) . (2.37)

For finite ¢ > 0, however, the first term of the return rate r{(¢) will be dominated by
the values of s, near 1/2, where the exponent converges quadratically to zero. Yet,
in the thermodynamic limit the integral over this region yields only a vanishing
contribution to 71(t) such that the return rate is bounded by A from above. For
short times in the sense of ¢ - Ae <« 1, where Ac is the typical energy difference
between the discrete levels around the saddle point sg, one can still use (2.36) as
an approximation to ri(t). Performing again a saddle point expansion around sy,
the ensuing Gaussian integral and the limit N — oo yields

_s0(1—50) (1—250)* [1 + 50 (s0 — 1) ] £2
4{1+4 50 (s0 — 1) [26 4 s0 (s0 — 1) (24 B2)]}

r1(t) (2.38)
By comparing the result for A and (2.38) we realize that for sufficiently small tem-
peratures the unrestricted Gaussian integral used in (2.38) allows r(¢) to quickly
grow beyond its allowed bound. This is not possible for the original expression
(2.35) or (2.36), involving a restricted sum or integral instead. Consequently, one
has a sharp transition from the short-time behavior to the limiting value.
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In summary we obtain in the thermodynamic limit a sharp signature in the
short-time return rate,

r1(t) = — min (S% _ SO) (- 250)2 [1 + (5(2) - 50) ﬁ] £
T () 284 (5 s0) (B )]

B — 4523 —8In (2 —230)},
(2.39)

where sg solves (2.37).

This result compares well with the full, numerically evaluated expression for
inverse temperatures 8 < 5.5. Further numerical investigation shows that the sharp
cutoff in the first peak survives for temperatures as low as 8 &~ 5.9, which is deep
inside the ferromagnetic phase. Fig. 2.2 shows a comparison of exact interferometric
return rates ri(t) for finite systems with the analytical expression (2.39). One
clearly sees the convergence for N — oo of the numerical data toward the analytical
plateau, creating an increasingly sharp thermal cusp in the first peak in the process.
In addition to the cutoff in the first peak, numerical simulations for system sizes
of up to N = 1 x 10% show further cusps appearing at late times, reminiscent of
the anomalous phase previously investigated in the IR-TFIM at T' = 0 in Refs. [87,
48] (see Fig. 2.3). For the trivial quench at finite temperatures, where Gi(t) =
Tr {exp [—(8 + it)H]}, these cusps are nothing else but the Lee-Yang zeros in the
complex plane of the partition function [79] and clearly not related to any dynamical
phase transition.

0.08} {

0.06}
0.04}

0.02}

0,00/t S
0 5 10 15 20

t

Figure 2.2: Comparison of exact finite-size results with the analytical expression
(2.39), shown in black, for the return rate (2.32) at short times with
inverse temperature 8 = 5 and a trivial quench I'j = I'y = 0. System
size from light to dark red is N = 201, 401, 801, and 1601.
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Figure 2.3: Non-analytic features in the interferometric return rate ri(¢) at low
temperature § = 10 and late times following a trivial quench I'j = I't =
0. System sizes from light to dark red are N =2 x 10*, N =1 x 10°,
N =2x10° and N =1 x 10°.

Turning to the case of a finite quench distance, we now give a few examples of
how the behavior of this return rate gets even more convoluted once the system is
actually excited out of its equilibrium configuration.

The anomalous behavior of ri(t) for trivial quenches quickly turns into a regu-
lar behavior with very pronounced cusps in every peak for short quench distances
beginning and ending in an ordered state. An example for the same parameters
that will be used again in Fig. 2.7(b) is illustrated in Fig. 2.4(a). As a representa-
tive example for a quench through the dynamical phase transition we present the
same quench as in Fig. 2.9(b) in Fig. 2.4(b). While there are clearly more cusps
visible in Fig. 2.4(b) than in Fig. 2.4(a) these additional cusps do not appear all at
the same value of T or I'y and cannot be linked to any particular behavior of the
magnetization vector. Finally, we note that even a quench at very high tempera-
ture and very deep within the disordered phase, as shown in Fig. 2.4(c), exhibits
cusps in every peak of r(t). This happens despite the absence of any dynamics
in the magnetization vector and in a regime where not even 7' = 0 would support
ferromagnetic order.

Fidelity Loschmidt-echo return rate

In a quantum quench setup one is interested in the time evolution governed by a
Hamiltonian Hy, where the system is initially prepared in a thermal equilibrium
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Figure 2.4: Behavior of the interferometric return rate ri(t) as defined in (2.32)
for different quenches, which also shown in the main text for r4(t),
with system sizes N = 201 and N = 1001 for the light and dark line
respectively. The quench in panel (a) is identical to the one depicted
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in Fig. 2.7(b).

Here r1(t) exhibits pronounced non-analyticities in all

peaks. The same is true for the quench in (b), which is the same as
in Fig. 2.9(b), and for the quench in panel (c) that is deep within the
paramagnetic phase and also shown in Fig. 2.11(b).



2.2 Finite-temperature Loschmidt echo for large spin chains

state p;. Under the condition that p; is not diagonal in the eigenbasis {|®f)} of
Hy, the Loschmidt return function r1(¢) can show non-analytic behavior due to the
nontrivial overlap of the states making up p; with the eigenstates of Hy. However,
starting with a genuine density matrix and not a pure state can give rise to a type
of non-smooth features in r1(¢) that we are not interested in and that would already
appear in a trivial quench I'; — I'j, as discussed in detail in Sec. 2.2.3. Therefore,
a particularly interesting choice of the finite-temperature Loschmidt amplitude is
given by the fidelity of the initial and time-evolved density matrices [98, 99]

— T\ \/p(0)p(t) /5 (0) (2.40)

As with the interferometric definition (2.31), (2.40) reproduces the zero-temperature
Loschmidt echo. The advantage of this definition is, however, that it forms a met-
ric, measuring the distance over which the density matrix has evolved during the
time t. This also implies that the corresponding fidelity return rate

2
rp(t) = — lim — InGp(t 2.41
b(t) = — lim ~ I Gr(t) (2.41)
vanishes identically in case of any trivial quench, as then Gg(t) = 1. Furthermore,
rr is also applicable to open systems. Nevertheless, these advantages come at a
high price: Introducing the symmetric interference matrix

B i€t _B
Ag(t Zze 26 (WD) e V(D [ W) e 2 (2.42)

where {|¥;)} ({|®;)}) are the eigenstates of the initial (final) Hamiltonian with
eigenenergies el(f) allows us to represent the Loschmidt amplitudes (2.31) and (2.40)
in a unified form While the interferometric Loschmidt amplitude GI( ) = Tr{A(t)}
is easily evaluated, its fidelity counterpart Gr(t) = Tr{\/A( t)*} is numeri-
cally far more expensive, because it requires calculatlng the square root of a large
matrix at every time step.

Quantum Loschmidt-echo return rate

Since on the one hand the interferometric definition r1(¢) already shows cusps for
a trivial quench, where it probes the complex Lee-Yang zeros, and on the other
hand computation of the fidelity return rate rp(t) entails an undesirably large
numerical effort, we shall introduce a third finite-temperature return rate. While
this choice will be specific to integrable systems like our infinitely connected model,
it reconciles a simple physical motivation with a numerically efficient evaluation,
and, furthermore, resolves the same phases as rp(t).

Due to the fact that in the infinite range Ising model [H, S?] = 0, we conserve
the total angular momentum independent of the initial and final values of I'; y. The
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Chapter 2 Loschmidt echo in infinite range spin chains

ability to numerically treat system sizes of the order of several thousand sites relies
directly on this fact. On the other hand, our quench protocol only allows for states
within a fixed S-subspace to interfere during the time evolution. However, in the
standard r(¢) we compute interferences of arbitrary S-subspaces:

> Gs(t)
S

ri(t) = —% In , (2.43)

with
Gg(t) =Tr {e_intp;g} (2.44)

the Loschmidt amplitude obtained for the subspace with total spin length S €
{1/2,3/2,...,N/2} for odd N without loss of generality. Here,

b TreAHT)

(2.45)

denotes the partial density matrix restricted to the spin subspace with spin length
S. Obviously, in ri(¢) all spin sectors interfere and can give rise to cusps despite
the fact that the quench in I' cannot mix any states of different S.

Additionally, for a finite quench distance, r1(¢) will show quite a rich behavior
that is related only to the integrability of the infinite range model and is not
expected to be found in a more generic system. If we expand r1(t) in a spectral

representation
/ de g(e)e '

we see that it is simply the Fourier transform of the overlap density of states g(e)
that is given by

gle) = D(ZS) S @) [* e P 6 (e — o) (2.47)
S 4,7

, (2.46)

2
Tl(t) = —N In

where again {|¥7)} ({|®7)}) denote the eigenstates in the spin sector S of the

initial (final) Hamiltonian with energies e;(f)“g. Like any ordinary density of states,
g(€) contains a superposition of Dirac distributions located at the actual final-
Hamiltonian eigenvalues ezf-’s, but, importantly, here they carry weights proportional
to the degeneracy factor D(S) of the corresponding subspace. Due to its binomial
behavior, see (2.20), D(S) varies over several orders of magnitude between the
different spin sectors. As such, we have to compute the Fourier transform of a very
rough function that does not become smooth even in the thermodynamic limit, as
the average level spacing remains of order one. In contrast, in a non-integrable
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2.2 Finite-temperature Loschmidt echo for large spin chains

model, the huge degeneracies vanish and the typically exponentially small energy
distances in the spectrum smoothen both g and r;. Thus, in order to investigate
features that do not depend too crucially on the full permutation invariance of the
model and to focus on cusps that are indeed related to the S-conserving quench
protocol, we define a generalized Loschmidt echo ry(t) that sums all subspaces in
phase

ro(t) =~ Y |Gs(0)]. (2.48)
S

Quite importantly, this choice treats the mixing of eigenstates by the quench and
the resulting interferences on an equal footing. Furthermore, the sum here is al-
ways dominated by the subspace with the largest combination of the degeneracy
factor D(S) times the thermal weight of its ground state. This space can be found
analytically in mean-field theory (2.25). As a consequence, thermal broadening dis-
appears in the thermodynamic limit and all cusps in the Loschmidt echo become
sharp signatures if they are for the system with ng) = I'yg)/5 for the quench at
T =0, with § a solution of (2.25).

Within the dominant subspace, like in every other subspace, all states have the
same D(S), cf. Sec. 2.2.2, so the importance of a certain state during a quench
depends only on its thermal weight factor and the overlaps with the eigenstates of
the final Hamiltonian, giving rise to a much smoother density of states and Fourier
transform compared to the situation discussed in Sec. 2.2.3. Finally, in a trivial
quench, 74(t) will be a smooth function, as the sum is now dominated by a single
state, which cannot give rise to interferences. This latter is given by the ground
state of the most important S-subspace.

Taking into account that the total spin is conserved, the interference matrix A
from (2.42) decouples into block diagonal form with a block A% for every spin
sector. As a result both

ro(t) = —% Y [T A1) (2.49)
S

as well as
re(t) = —% 03" Tr /45 (1) - 457 (), (2.50)
S

sum over all spin spaces in phase. Consequently, neither of these signals shows the
large number of cusps which are present in r1(¢) and not associated with a physical
phase. Clearly rq(t) and rp(t) are closely related with the former involving a
sum over the eigenvalues of A° compared to a sum over singular values in the
latter. Without loss of generality, we sort the eigenstates {|¥#)} in the fixed-S
subspace of H; by their energy such that the ground state is ]\Ifls) At t = 0, the
matrix A% is diagonal, and due to the thermal weights, its maximal element is
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Figure 2.5: Decadic logarithm of the modulus of the diagonal elements Ag of the
interference matrix (2.42) in the dominant spin subspace S, set by the
classical saddle point (2.25), as a function of time. Initially the largest
component is given by Afl, however during the time evolution the in-
dex imax(t) is a nontrivial function that exhibits discontinuities, which
coincide with the cusps in rp(t). Parameters for the quench are I't = 0

and 't = 0.3 at § = 5 for a system of size N = 4001.

Afl. At later times, the overlaps between different initial states remain suppressed,
and, therefore, A is still dominated by its diagonal elements. However, during the
time evolution, interferences between the final states result in an oscillation of all
elements A;-gi with a frequency that is given by the mean level spacing between those
eigenstates of the final Hamiltonian with which the initial state |\I/;9 ) has the largest
overlaps. Since the spectrum of the final Hamiltonian is not perfectly linear, these
oscillations are damped. For any S-subspace in the thermodynamic limit, we now
define the function imax(t) € (0, 1] by requiring that |Afmax(t) Limax(t) ()] = AL
for all i € N and i < L = dim(A®). Since A% is symmetric, with a narrow
maximum, the largest value of M = A% - AS™ will also be near M;,_, 1.1 With
an uncertainty that vanishes in the thermodynamic limit. Consequently, after
a discontinuous change in imax the time evolution of A° is governed by a new
maximum, that in general evolves with a different slope, resulting in a discontinuity
of the first derivative of the return function rr(t). Such a jump in the function
imax(t) for a typical quench is presented in Fig. 2.5. While r4(¢) contains only
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Figure 2.6: Finite-temperature dynamical phase diagram of the fully connected
transverse-field Ising model. In (a) the system is initialized with
I'i < TYT = 0) whereas the quench in (b) starts always in a para-
magnetic state. The full lines indicating the critical lines are analytical
results. The dotted line separates the area where the Loschmidt-echo
return rate exhibits a thermal cutoff (x) from the rest of the regular
phase, but this is not a separate phase in itself and is still within the
latter.

the trace of A%, and, therefore, also probes discontinuous changes in the diagonal
elements of A°, interferences between these can shift the cusp in time. However,
after the first period of the return rate, the sum within the trace is once again
evaluated with all terms almost completely in phase. Thus, before the end of the
period, the corresponding cusp will also be visible in r4(t) and, consequently, (%)
and rq(t) will always indicate the same dynamical phases. Larger quenches result
in broader overlaps (¥ |<I>IS ), whereas higher temperatures reduce the suppression
of highly excited pre-quench eigenstates. Both effects lead to more destructive
interferences in A°. Based on this discussion, it becomes clear that larger quenches
and higher temperatures give rise to earlier and more pronounced cusps in both
return rates rp(t) and rq(t). Since the computation of the latter is several orders of
magnitude faster, we will in the following exclusively focus on the quantum return
rate rq(t).

2.2.4 Equivalence of DPT-I and DPT-II in infinite range spin chains
Using ED, we calculate the return rate (2.48) and magnetization for several quenches

of thermal initial states at various temperatures in order to construct the finite-
temperature dynamical phase diagram shown in Fig. 2.6 for the IR-TFIM.

25



Chapter 2 Loschmidt echo in infinite range spin chains

Quenches from the ferromagnetic phase

We shall first present our results for quenches from a ferromagnetic thermal initial
state, examples of which are shown in Figs. 2.7, 2.8, and 2.9. At low temperatures
and for short quench distances, the final state will still exhibit ferromagnetic order
(see discussion in Sec. 2.2.2). Following the quench, the initial magnetization vector,
which for I'; = 0 points along the positive z-direction with length 5/2 fixed by (2.25),
starts to precess within the upper hemisphere around a tilted mean magnetization.
However, the equator will never be crossed, and, while dephasing will damp the
precession, the mean magnetization m cannot relax to zero. As our numerical
investigation shows, this behavior is always accompanied by an anomalous phase
in the return rate, where cusps appear only after its first minimum at finite time.
The anomalous phase has previously been reported on in the IR-TFIM and one-
dimensional transverse-field Ising model with power-law interactions for quenches
starting from a ferromagnetic ground state in the case of an ordered final steady
state [48, 87]. For the short quench distance I'i = 0 — I't = 0.1 and the low
temperature 7" = 0.1 in Fig. 2.7(a), the return rate shows a strongly anomalous
behavior characterized by many smooth periods before the appearance of the first
cusp. The inset demonstrates the finite-size scaling of the curvature |7(t)| of the
first two cusps, which is clearly consistent with the algebraically divergent model
o L with a > 0 used in the fit. Preparing our initial state at T' = 0.2, on the other
hand, we see in Fig. 2.7(b) that the same quench leads to a return rate where only
the first peak is smooth, and thereafter every period of the return rate contains one
cusp. This indicates that the higher the preparation temperature, the closer we are
to a regular phase. Indeed, upon further increasing the preparation temperature to
T = 1/4.1, which is very close to the equilibrium thermal critical point T¢|r—o =
1/4, the anomalous phase disappears and is replaced by its regular counterpart, as
shown in Fig. 2.7(c). At the same time the ferromagnetic order, which is already
reduced by thermal fluctuations in the initial state, is lost completely in the final
state. A closer investigation of the behavior for temperatures between T'= 0.2 and
T = 1/4.1 shows that, within our numerical precision, DPT-I and DPT-II coincide
perfectly.

For the larger quench distance I'y = 0 — I'y = 0.2 and at small temperatures,
we observe an anomalous phase as shown in Fig. 2.8(a). However, in accordance
with the DPT-I, the regular behavior of the return rate with cusps in every peak
(see Fig. 2.8(b)) appears at smaller temperatures than in the smaller quench of
Fig. 2.7. At even higher temperatures, but still below T¢|r_,, something unex-
pected happens in the return rate: whereas the quench ends up in a state that is
deep within the paramagnetic phase, where one expects a regular behavior of the
return rate, a chipped-off first peak is observed. This can be explained by noting
that for high preparation temperatures in the ferromagnetic phase the dominant
subspace becomes very short. This in turn implies that the contribution of the
short S-subspaces with S ~ ¢'(1) instead of S ~ €(N) can become large enough to
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Figure 2.7: Quantum quench in the IR-TFIM from I'; = 0 to I't = 0.1 with initial
ferromagnetic thermal state at inverse temperatures 5 = 10, 5, and 4.1
((a) through (c)) for various system sizes (light to dark red with in-
creasing size) showing convergence. Even though at zero temperature
this quench gives rise to an anomalous phase [48], as the tempera-
ture of the initial state is raised the anomalous phase transitions into
its regular counterpart at temperatures above TCd(Fi = 0,y = 0.1),
cf. (2.28). Corresponding magnetization plots show the agreement be-
tween the anomalous (regular) phase and the long-time ordered (dis-
ordered) Landau-type phase. The gray constant represents the time-
averaged magnetization obtained from the classical equations of motion
to which (m(t)) must converge in the long-time limit. The grid lines
fixed at the minima of the magnetization are almost synchronous with
the maxima of rq(t). Insets show the inverse curvature of each of the
first two anomalous cusps in (a,b) and the first regular cusp in (c¢) in
the return rate vanishing algebraically with system size, thereby indi-
cating their sharpness, and thus true non-analyticity. For the sake of
plot clarity, we only include the return-rate and magnetization plots
for the four largest system sizes: in (a) N = 1401, 2001, 3001, 4001, (b)
N =1001,1601,2001, 2501, and (c) N = 801, 1001, 1601, 2001.
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Figure 2.8: Same as Fig. 2.7 but with I'r = 0.2. At low temperatures we again see

28

an anomalous phase in (a), but now already at 7" = 0.2 the phase is
regular, which coincides with a zero infinite-time average of the mag-
netization. At the even higher temperature of 7'= 1/4.1, where the re-
turn rate is even deeper in the regular phase, a thermal cutoff appears
in the first peak occluding the cusp therein. In the thermodynamic
limit it approaches the value ry*** indicated by the grey line. Insets in
(a) and (b) illustrate the divergence of the curvature of the first two
anomalous cusps in (a) and the first regular cusp in (b), while the in-
set in panel (c) shows the algebraic convergence of the thermal cutoff
height towards the analytical result for infinite system size as obtained
from (2.51). System sizes are in (a) N = 1001,2001, 3001, 4001, in (b)
N =801,1001,1501,2001, and in (¢) N = 801,1001, 2001, 4001.



2.2 Finite-temperature Loschmidt echo for large spin chains

a) B=10.00, [=0.00, [=0.30 b) B=5.00, =0.00, +=0.30
0.30 : L 0.30 i
= 212
0.25 Zu EE
- 0.25 Zos
0.20 =1 0.20 O s 50 100 200
= 0.15 oS = 0.15 ot
0.10 0.10
0.05 0.05 '\/
0.000 S 0.00 S
0.49 i i i i 0.36
NN VAN VAN VAN IS VAN VAN VAN WA
g 0.00 E /\ E /\ g 0.00
SAVARVARVAR" LAV VAVALY
~0.49 ; : : i -0.35
0 20

0 20 40 60 80 100 40 60 80 100

c) B=4.10,1;=0.00, I=0.30

; H 1.0
0.10 T 06
/—L 3 0.4

: : - hy=0.07444

25 50 75 125
10° Lt

0%((h)-ho)

1
o
@

0.00

N A A AN
_0'120 \/ vm vso \%30 \/

20 100

(m)

t

Figure 2.9: Same as Fig. 2.7 but with [t = 0.3. This quench gives rise to a regular
phase even at 7' = 0. At higher temperatures below T<|r_o = 0.25, the
phase is therefore also regular. In (c) a thermal cutoff is visible in the
first two peaks of the return rate. Insets are the same as in Fig. 2.8,
but here only the curvature of the first cusp, that is relevant for the
classification as a regular phase, is analyzed. The presented system
sizes are N = 801,1501,1601, 1801 in (a), N = 501,801, 1001, 2001 in
(b), and N = 801, 1001, 2001, 4001 in (c).
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Chapter 2 Loschmidt echo in infinite range spin chains

be resolved in the return rate. However, within these subspaces, no contributions
to the Loschmidt echo that are exponentially small in system size can be generated
due to the absence of enough interfering terms in the sum. Instead, these manifest
as sharp (logarithmically divergent) signatures on top of the return rate that vanish
x 1/N. As a result, the return rate is limited at (almost) all times by a maximal
value ri*®* for which one obtains in the thermodynamic limit

q
T =2In [cosh <§\/m>] : (2.51)

The argument behind this result follows the same lines as Sec. 2.2.3. Since we
initialize the system with a mean-field Hamiltonian the ground state of each spin

sector has energy Funi, = —S4\/m?2 + FiQ. Consequently, the partition function is
approximately given by

VS Z QBVMPHIT 2 8T Z BV mA+ITS]
{s7} {s7}

N N
N 21 T2(N— B
_ By/mET2(N—2L)/2 _ B [ 12
> (1) o (/e 1) ]

where the contributions of excited states in each sector of fixed spin length has
been neglected and the quantization axis 7 was chosen such that it diagonalizes
Hjy;r. The maximal value the return rate can take, is obtained if within each S-
subspace Gg(t) = 0. For an even number of spins this is, however, not possible,
as the smallest value S = 0 allows no interference. Instead this subspace always
contributes Go(t) = 2V /Z to leading order in N. For an odd number of spins on the
other hand, interference in every subspace is possible. In the thermodynamic limit
the contribution of the subspace with the minimal length S = 1/2 for I'; # 0 is given
by Gyo(t) = 2N /7. 1f on the other hand I'; = 0, the eigenvectors of the initial and
final Hamiltonians are orthogonal. Hence, as discussed in the introduction, this two-
level system can interfere destructively, giving rise to Gy /5(t) = 2N cos [Tt /2]/ 2,
which oscillates with the same period 7 /T’y as the magnetization of that subspace.
Except for a time interval that is exponentially short in system size N, where
G /5(t) can thus exhibit a logarithmic divergence, the contribution of the subspaces
with the shortest spins to the return rate is identical for even and odd system sizes.
Furthermore, by the same argument, by which the integral in (2.36) vanishes at
finite times, the contributions of other subspaces cause only subleading corrections
t0 Tmax, such that we can conclude rg'® = —21In (2/ZYN), which simplifies to
(2.51). This expression can be confirmed numerically by the finite-size scaling in
the insets of Figs. 2.8(c) and 2.9(c). These are performed by fitting a constant hg
plus an algebraic decay to the average height of the plateau on top of the first peak.
The obtained values for hg agree very well with rg'®* ~ 0.07445.

(2.52)
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For quenches within the anomalous phase, the classical magnetization vector
never crosses the equator of the Bloch sphere and our numerical simulations show
that the return rate never grows to a value sufficiently large so as to resolve rg***.
Consequently, the thermal cutoff can only be seen for quenches from a ferromagnetic
to a paramagnetic state, i.e. only in the regular phase. At the same time not
every quench will be affected by rg"*, but rather predominantly those involving
large quench distances where the overlap between initial and final state is generally
smaller, as can be witnessed in Figs. 2.7, 2.8, and 2.9, where the latter shows the
large quench from I'; = 0 — I'ty = 0.3. Despite the cutoff, the underlying phase
is still regular in both of Figs. 2.8(c) and 2.9(c), as can be seen by decreasing the
preparation temperature. For lower temperatures in the regular phase, the cusp is
located on the shoulder of the first maximum. Upon varying the temperature, it
moves up the trailing slope until it reaches the simultaneously decreasing value of
¢ . From this point onwards it will be hidden by the thermal cutoff as illustrated
in Fig. 2.10, where we present an example of the emergence of a thermal cutoff
in the regular phase. In particular, this illustrates why we do not attribute this
behavior to a dynamical phase transition. Beginning at a temperature 5 = 4.7 we
quench from I'; = 0 to I'r = 0.2, obtaining regular behavior where the first cusp
appears shortly before the first minimum at finite time. Increasing the temperature
to 8 = 4.5, the cusp appears earlier in time at a larger value of the return rate.
Finally, at § = 4.2 the thermal cutoff is almost small enough to affect the first
peak and the cusp that is now located almost at the top of the peak. Actually,
in the thermodynamic limit the cutoff will be small enough to affect the very top
of the first maximum of the return rate. However, for the system size shown in
Fig. 2.10(c) this is not yet the case. Furthermore, the order-parameter average is
zero at infinite time indicating the equivalence of DPT-I and DPT-II. Note that the
quench of Fig. 2.9 already at zero temperature gives rise to the regular phase,[48]
and, as such, all temperatures T' < 1/4 result in a regular phase.

As has been established in previous analytical [45] and numerical [70, 87, 88, 48]
studies at T' = 0, the late-time periodicity of the return rate coincides with that
of the magnetization, whether the underlying phase is ordered (= anomalous) or
disordered (= regular), as can be seen in the magnetization panels in Figs. 2.7, 2.8,
and 2.9. Naively, the smallest overlap between final and initial states is obtained
whenever the classical magnetization vector is furthest from its original orientation.
This happens for times t = w;lignﬂ/ 2, where n is an odd positive integer and wyag
is the frequency of the precession of the magnetization. However, at short times,
we observe significant deviations from this simple picture, the origin of which will
be elucidated in Sec. 2.3.

We summarize the discussion of quenches of the IR-TFIM starting from the
ferromagnetic phase, by observing that beyond the representative examples shown
here, our extensive numerical simulations indicate that the DPT-I and DPT-II
dynamical critical lines, to high precision, fully coincide in the T'—I't phase diagram
for It < T'S(T). Moreover, this dynamical critical line can be directly connected to

r
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Figure 2.10: Disappearance of the first cusp underneath the thermal cutoff with
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increasing temperature. The temperature grows form 8 = 4.7 in (a)
through 5 = 4.5 in panel (b) to § = 4.2 in (c). While these quenches
reach deeper and deeper into the regular phase the simultaneously
decreasing value of the thermal cutoff will eventually crop the first
cusp. The constant indicated by the gray line in (c) represents rg*** as
given by (2.51), thus the signal will be cut off in the thermodynamic

limit. The system size is N = 2001.
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the equilibrium critical line. In fact, it exactly reproduces the equilibrium critical
line if, at a temperature T' < T¢|r—0, the ferromagnetic thermal state is prepared
at Ty =T¢(T) — &, with § — 0.

Quenches from the paramagnetic phase

As we shall see in the following, the DPT-I and DPT-II dynamical critical lines also
coincide when starting with paramagnetic thermal initial states, albeit their shape
will be qualitatively different from the case of ferromagnetic initial conditions.

For the system to be able to detect the possible preference for ferromagnetic order
in the final state following a purely unitary time evolution, we have to introduce
a finite seed in the form of a magnetic field along the z-direction with strength
A > 0. This is not a finite-size effect and even the thermodynamic system will
not exhibit spontaneous symmetry breaking. Instead the inability of the system
to dissipate energy forces the final magnetization in the ferromagnetic phase to
depend on the initial magnetization. Given an initial state with (S.) = (Sy) =0,
the thermodynamic system will not show any dynamics at all, independent of the
final value I't. Therefore, for all the plots presented in Figs. 2.11, 2.12, and 2.13,
we set A; = I'j/20. The motion of the magnetization will be determined by the
angles #; and 6; that minimize the pre- and post-quench classical Hamilton function.
This angular dependence leads to the following consequence: Every finite difference
0; — O gives rise to a non-stationary magnetization, e.g. we can set Ay = 0, which
for quenches where the final state is still paramagnetic results in the long-time
average (S.) = 0 in contrast to (S.) # 0 for quenches to a ferromagnetic state.
On the other hand, whenever the classical spin expectation value changes in time,
we find a return function that does not scale to zero in the thermodynamic limit.
Within the paramagnetic phase such a classical motion of the total magnetization
vector, which is purely caused by the need of a small explicit symmetry breaking
in the initial state, can be avoided by choosing the final external field A such that
the angles 6; ¢, coincide. The absence of classical motion yields an entirely smooth
return rate that scales to zero in the thermodynamic limit. Quenches that remain
in the paramagnetic phase in the DPT-I sense can therefore be classified as trivial
in the DPT-II sense. In general, the resulting trigonometric equation for Af has to
be solved numerically, as is done for Figs. 2.11, 2.12, and 2.13. For small values of
Ai¢/T'i ¢, however, this reduces to the simple expression

§s—2T
Af:A'S 2T

. 2.
's— oIy (2:53)

The important difference for a quench to the ferromagnetic phase is that (2.53)
has no solution. Even setting Ay = 0 results in a final magnetization along the
z-direction that is larger than that of the initial state. The unavoidable classical
motion of the magnetization vector results in a finite return rate with regular cusps
as N — oo, which indicates the same dynamical phase transition as characterized
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Figure 2.11: Quantum quench in the IR-TFIM from I'; = 1 to I't = 0.6 at inverse
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temperatures S = 5, 2, and 0.1 for NV = 2001, 4001, 6001, 8001. This
quench is within the paramagnetic phase at any temperature, and
thus the return rate exhibits the trivial phase which scales to zero
in the thermodynamic limit. The insets show the average amplitude
of rq(t) over the first period as a function of system size, showing
clear algebraic decay. The infinite-time magnetization of an infinite
system is constant at the seeding value, indicating a disordered infinite-
time steady state (see Sec. 2.2.4). The convergence of the infinite-
time magnetization with increasing system size towards this value is
indicated with increasingly opaque gray lines at the right edge of the
magnetization plot.
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Figure 2.12: Same as Fig. 2.11 but for I'r = 0.2. At the temperature T' = 0.2, a regu-
lar phase emerges in (a) coinciding with an ordered infinite-time steady
state. The inset in (a) shows the finite-size scaling of the curvature of
the first cusp, indicating its algebraic divergence with system size, and,
therefore, the true non-analyticity of the cusp in the thermodynamic
limit. The depicted system sizes are: (a) N = 2001,4001, 6001, 8001,
(b) N = 4001, 6001, 8001, 12001, (c) N = 4001,8001, 16001, 32001.
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Figure 2.13: Same as Fig. 2.11 but with I'r = 0.1. Even though in equilibrium 7" =
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4/3 corresponds to a paramagnetic state at any value of the transverse
field, for this quench it is already low enough to give rise to a regular
phase in the return rate, which coincides with an ordered infinite-time
steady state. The insets in panels (a) and (b) show the finite-size
scaling of the curvature of the first cusp, which diverges algebraically
with system size, while the inset in (c¢) depicts how the average height
of the first peak decays to zero algebraically as the system size is
increased. The plots show system sizes of N = 1001, 2001, 4001, 6001
in (a), as well as N = 8001, 16001, 32001, 64001 in (b,c).
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by the DPT-I. Apart from the relaxation due to dephasing, the time evolution and
mean value of the magnetization are again well-described by the classical equations
of motion.

In Fig. 2.11, we show ED results for a paramagnetic thermal initial state at
I'; = 1 that is subsequently subjected to a quench in the transverse-field strength
to the value I't = 0.6 at temperatures T' = 0.2, T'=4/3 and T' = 10. Each of the
return rates shows a trivial phase [45, 87] and scales to zero in the thermodynamic
limit. Since we break the Zy symmetry explicitly by a small external magnetic
field along the z direction in both the initial and final Hamiltonian, with the value
of A¢ chosen appropriately, the initial and final magnetization after the decay of
the induced oscillations are the same. This value of the magnetization in the
thermodynamic limit can be easily found from the classical model introduced in
Sec. 2.2.2.

Fig. 2.12 shows the same analysis for the quench from I't =1 — I't = 0.2. At a
sufficiently low temperature T' = 0.2, we see in Fig. 2.12(a) that the dynamics gives
rise to a ferromagnetic steady state with infinite-time average of the magnetization
greater than the seeding value. This ordered infinite-time steady state coincides
with a regular phase in the return rate characterized by a cusp in each period
of rq(t). Corresponding insets show how the curvature of ry(t) at the first cusp
diverges algebraically with system size, indicating clear non-analytic behavior in
the thermodynamic limit. Upon further increasing the temperature to 7' = 4/3
or even T' = 10, the dynamics no longer leads to an ordered steady state and the
regular phase is replaced by the trivial phase, where the return rate goes to zero in
the thermodynamic limit, as shown in Fig. 2.12(b,c).

Fig. 2.13 repeats this analysis but at an even larger quench from I'; =1 = I't =
0.1. While the magnetization and return rate for panels (a) and (c) are qualitatively
similar to the corresponding temperatures in Fig. 2.12, the regular phase now also
replaces the trivial quench at 7" = 4/3. The finite-size scaling in Fig. 2.13(b), on
which we base this claim, requires much larger systems than the other quenches.
This is because at high temperatures and close to the critical field strength the
dynamics governing the system is slow and fluctuations that introduce dephasing
are enhanced. The combination of both lead to unusually strong finite-size effects.
Consequently, both the magnetization and return rate converge much more slowly
towards the thermodynamic limit. At first sight, a regular phase for this quench
is surprising, since in equilibrium there is no ferromagnetic phase at these high
temperatures. However, the conserved spin length S for these quenches starting
from deep within the paramagnetic phase is longer than the equilibrium value at
I'¢, which in turn increases the system’s susceptibility to ferromagnetic order. In-
deed, we find, that no matter how high the temperature of the thermal initial
state is, there is always a small enough I't, a quench to which would give rise to
a ferromagnetic infinite-time steady state that coincides with a regular phase. For
a system that is weakly connected by local couplings to its environment this has
the interesting consequence that there exists a timescale in the relaxation from a

37



Chapter 2 Loschmidt echo in infinite range spin chains

0.0 :

0.0 0.2 0.4
Ff

Figure 2.14: Finite-temperature dynamical phase diagram of the fully connected
transverse-field Ising model for ferromagnetic (green) and paramag-
netic (red) initial states. The analytical results from (2.28) and (2.29)
coincide with numerical results for the return rate, for which no error
bars are shown, since they are in most cases too small to be resolved
in the plot.

paramagnetic thermal initial state to a paramagnetic long-time steady state dur-
ing which the system can spontaneously break the Zy symmetry and thus evolve
through a ferromagnetic quasi-stationary state. Here, energy dissipation due to the
local contact to the environment allows for relaxation of the length of the magneti-
zation vector. Consequently, this enables the system to evolve from a ferromagnetic
state, which would be the infinite-time steady state in the case of a closed system,
to a paramagnetic equilibrium final state.

Also in the case of quenches from a paramagnetic thermal state, the return rate
and the magnetization profile exhibit the same periodic relation as has been shown
in the literature. For quenches that end up in the paramagnetic phase, the largest
deviation between (m(t)) and (m(0)) coincides with times when (S,(t)) takes its
initial value; however, the deviation in the azimuthal angle becomes maximal.

Within our numerical precision, we find from our ED simulations that for quenches
beginning from a paramagnetic thermal state an ordered (a disordered) infinite-time
steady state always coincides with a regular (trivial) phase in the return rate (2.48),
and thus again, as for quenches from the ordered phase, the DPT-I and DPT-II
share the same critical line. Unlike for quenches from a ferromagnetic thermal
initial state, the dynamical critical line here cannot be directly connected to its
equilibrium counterpart. Finally, we summarize our findings with regards to the
dynamical critical line for all initial conditions in Fig. 2.14.
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Quenches in the infinite range XX model

So far, we have focused exclusively on the infinite-range transverse field Ising model,
which below the critical temperature TS (I") set by (2.12) breaks a Zj-symmetry.
This is in line with the predominant discussion of Loschmidt echos, which apart
from few examples [114, 115, 71, 116] is limited to discrete symmetries. While for
low-dimensional systems with short-range interactions continuously broken symme-
tries at finite temperatures are prohibited by the Mermin-Wagner theorem [117],
this is not the case for the presently discussed setup with infinite-range interactions.
By the same argument as in Sec. 2.2.1, one finds, that the infinite range XX model

N N
J
Hxx(T) = =3¢ (s7st+s¥st) =T 5%, (2.54)
i#j=1 j=1

shares the same finite temperature phase transition, as the transverse field Ising
model. However, below the critical temperature the system breaks a continuous
O(2)-symmetry. As opposed to the equilibrium properties, dynamically the XX-
model behaves completely different from the IR-TFIM as any quench results in a
disordered state. Furthermore, a quench of the transverse field I' conserves the
corresponding magnetization (S,). To illustrate this behavior, we show a set of
quenches at different temperatures, initialized in the symmetry broken phase in
Fig. 2.15. To enforce this symmetry breaking explicitly we again use the mean-field
Hamiltonian (2.14), however with s7 and s7 exchanged. Note, that the Loschmidt
echo for each of these quenches is regular in agreement with the vanishing long-time
average of the magnetization. In fact, the return rate looks almost identical for all
displayed temperatures, a property, that can be understood with the semiclassical
ansatz developed in the next section. We thus find, that even for a continuous
symmetry, independent of the temperature, DPT-I and DPT-II coincide, if the
latter is defined through either the quantum or fidelity return rate. Finally, we
point out, that this concurrence would be absent, if the overlap in the return
rate was calculated with the ground-state manifold (or a generalization thereof at
finite temperatures), as the return rate would vanish identically. This will become
apparent in the geometric interpretation of Sec. 2.3.3.

2.2.5 Finite size scaling for large systems

The numerically exact diagonalization of sufficiently large systems, that allow a
proper finite size scaling as presented in Sec. 2.2.4 requires some optimization of
the matrix operations involved. This section is devoted to these techniques.

As we have already mentioned above, the Hamiltonian conserves the spin length
S and is therefore block diagonal with blocks of size 25 + 1. Furthermore, within
these blocks the Hamiltonian expressed in the basis of S, eigenstates is a tridiag-
onal matrix (pentadiagonal for the XX model), which can be diagonalized fairly
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Figure 2.15: Quenches of the infinite range XX model, beginning in the symmetry
broken phase with I'; = 0 and ending at I'r = 0.2. All quenches are reg-
ular with sharp cusps that require no finite size scaling and in fact are
beyond the resolution of the finite time steps at all system sizes. Corre-
spondingly for long times the magnetization relaxes to a paramagnetic
state. The plots show system sizes of N = 501, 1001, 2001, 4001.
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efficiently with a computational complexity of O(N?). However, one can do even
better and use the Zo symmetry of the Hamiltonian to build symmetric and an-
tisymmetric eigenvectors: Assume, as we will throughout the rest of this section,
that N is odd and define the reduced Hamiltonian matrices

N
Hiy=Hls.o% Y (n/2[H[—m/2)[m/2)(n/2], (2.55)

n,m=1

where n and m are odd and the states |n) satisfy the eigenvalue equation S,|n) =
n|n). Clearly, as the reduced matrices H=, have only size (N 4 1)/2 and the same
number of bands as H, they can be diagonalized a lot faster. The normalized
symmetric (+) and antisymmetric (-) eigenvectors |v4) of the full system are then
found according to the condition

(=nlvs) = E{nlos) = =l (2.56)
While this procedure is helpful, much larger gains in efficiency can be made by
noting that D(S)e™?F» for large systems is a sharply peaked function. Addition-
ally the return rate in the thermodynamic limit is bounded from above by some
value rpax, that can for example be estimated from the results of small systems.
Consequently, no eigenstate with an initial weight

D(S)eiﬁEn < e—N’rmax/2
maxg., D(S)e AEn

(2.57)

will be resolved. Using the classical approximation of the mean-field energy one can
significantly reduce the number of eigenvectors per S-subspace to be found and,
especially at high temperatures, the number of these subspaces that have to be
diagonalized. If the number of eigenvectors per S-subspace that have to be found
is smaller than S/5 a Krylov subspace method is used for the diagonalization of
the initial Hamiltonian.

As the allowed error ~ e~ V7max/2

decreases exponentially in system size N, a
calculation with machine precision fails for most results presented above, where in
some cases a precision of 107320 had to be used. This is problematic, as calcula-
tions with precisions exceeding the internal floating point accuracy in high level
programming languages are typically far less optimizable. We thus aim to reduce
the number of operations that have to be performed with high accuracy as much
as possible. A direct diagonalization of H;Zd at the desired precision is clearly
not advisable. Instead, we use the readily available machine precision eigenvec-
tors to iteratively determine improved eigenstates: Using the eigenstate |v1q) with
eigenenergy €,q we solve the matrix equation

(Hyq — €olall) [tnew) = |vola) (2.58)

41



Chapter 2 Loschmidt echo in infinite range spin chains

in O(N) time to find an improved accuracy of 32 - 3/~! digits after j iterations
beginning with machine precision input. The simultaneously updated eigenenergy

Enew = <Unew’H;§d"Unew> (259)

is then known to an accuracy of 64 - 3771, as the normalization of |vyey) is unper-
turbed. Especially for the diagonalization of the final Hamiltonian, this iterative
method is advantageous as a priori it is not known, which eigenvectors of Hy have
sufficient overlap with the initial state that they need to be included in the time
evolution. However, as this overlap is a smooth function of the eigenenergy e%
the machine precision results can be used to extrapolate the necessary interval of
eigenenergies of Hy to be considered.

Having diagonalized both the initial and final Hamiltonians, the time evolution
is still not entirely straight forward. As we aim to resolve cusps at unknown times
in the return rate, a large number m of time-steps (of size At) have to be evaluated.
However, finding e~ienmAL ¢4 the prescribed accuracy for each time-step individually
is very time consuming. Fortunately the much faster evaluation of the m-th time
step from the previously calculated m — 1-th step according to

_ it gt S § _
e i, mAt _ e zenAte i€, (m—1)At (260)
does not suffer from exponentially growing round-off errors, as the norm remains
constant.

With all of the ingredients in place, it is then a simple task to determine the trace
of the reduced interference matrix Arsed, involving only those initial and final states
that contribute to rq or r1 below ryax. For rg however, one still has to diagonalize
Meq = Aid : Afed*a
high precision. As a result it is typically orders of magnitude slower than any of

the previous calculations.

which at high temperatures scales as O(N?3) and requires a

2.3 Geometric Interpretation of the Loschmidt echo

Armed with the numerically exact Loschmidt echos for large spin chains with infi-
nite range interactions, we will now derive an approximation valid for systems well
described by mean-field theory that correctly captures the return rate dynamics
and reproduces the phase diagram Fig. 2.6. Beyond the obvious advantage of pro-
viding a simple and physically intuitive, geometric interpretation, it also opens a
potential avenue towards an understanding of Loschmidt echos in non-integrable
models, i.e. systems with an exponentially large Hilbert space. In the following
we will briefly discuss this aspect, thereby also contextualizing the role of fully
connected spin chains.
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2.3.1 Approaching DQPTs in non-integrable models

As we have already seen above for the fairly restrictive class of infinite range spin
chains, the Loschmidt echo has a complicated analytical structure and rich phe-
nomenology, which we fully understand only in the simplest of cases. Comprehend-
ing its behavior in generic non-integrable models requires such detailed knowledge
of the system, that, if there is to be any hope for a deeper understanding than mere
numerical experiments can provide, an approach from either of the well-understood
cases has to be attempted. On the one hand one can try to generalize the results
for two-band models, the properties of which we will briefly discuss for arbitrary di-
mensions and geometries in the following subsection. On the other hand weak finite
range interactions can be added to the previously discussed spin chains, thereby
breaking the conservation of the total spin length S.

Non-interacting two-band models

For two-band models, i.e. systems that map to a 2 x 2 Bloch Hamiltonian the
condition for cusps in the interferometric Loschmidt echo can be formulated as the
simple temperature independent condition

pe(k) = py(k) , (2.61)

where pe(g)(k) = Tr{|W(g)x)) (Ve(q) (K)|pi} is the projection of the density matrix
of the initial state p; onto the excited (ground) state of the final Hamiltonian.
The fact that we can write a necessary equation is specific to this simplest case
of systems supporting non-zero Loschmidt echos. In general one is limited to the
necessary but not sufficient inequality

max p; < ij , (2.62)

J#i
where ¢ and j run over all available eigenstates of the final Hamiltonian. In this
more generic case the complex Loschmidt amplitude follows a chaotic trajectory

that allows only statistical statements [83] that are considerably weaker than those
for the exactly solvable two-band case.

In the following we will investigate the behavior of any two-band system in d
dimensions in the vicinity of the critical time t.. Introducing the level spacing

(1) = 5 (ce () — (k) (2.63)

between the eigenenergies €., of the final Hamiltonian and utilizing py(k)+pe (k) =
1 allows to write the interferometric Loschmidt echo for translation invariant two-
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state systems as

-], élgd log e (e 09+ py (e o0k | (2.60)
= /B , (;ii’;d log (cos? (e(k)t) + f(k)sin® (e(k)t)) '
with
Fk) = (1 - 2p,(k))?. 2.65)

We clearly see that the integrand, evaluated at critical momenta k., which are
defined by f(k.) = 0, diverges at critical times t. = w(n + 1/2)/e(k.) with n € N.
This, however, does not directly imply that the return rate also shows a cusp at
these critical times. Instead, if the integrand varies too quickly near k. the signal
might appear smooth and will in fact be differentiable. It is therefore necessary
to investigate the properties of the return rate near ¢, in some more detail. We
first simplify notation by shifting time and momentum according to 7 =t — ¢, and
k =k — k..

Assuming that the non-negative functions f(k) and ¢(k) are isotropic for small
k we expand these around the critical momentum

f(R) ~ K[

() ~ e(k) + K] (2.66)

with some analytic function e(k) that either satisfies e(0) # 0 or at least e(k) ~ x>™

with 7/2 < m € N. Since we are only interested in the nature of the divergence,
we can neglect all non-vanishing prefactors and constants. This leaves an integral
of the form

T~ /dn k41 log (7‘2 + m/g) , (2.67)

where 3 = o — 27 for ¢(0) = 0 or B = « else?. An expansion for small 7 now yields
rp~ 124 |78, (2.68)

which has a leading non-analytic behavior for any 8 > d but a cusp only for 5 > 2d.

In case of an anisotropic behavior of €(k) or f(k) around a critical point k., we

*Note, that for e(0) — 0 the critical times diverge.
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can write

d

F(k) ~ [ il

i=1

; (2.69)
e(rk) ~e(k) + [ sl -
=1

A similar analysis as the one before yields a leading non-analytic behavior if
>-1/B; < 1 and a cusp for > 1/5; < 1/2, where 5; = a; — 27; for e(0) = 0
and 3; = «; else.

As a simple example, we consider a tight binding model with a two atomic basis
in any dimension reduces to a 2 x 2 Bloch Hamiltonian. We can thus write

H=d(Kk) o, (2.70)

where o is the vector of Pauli matrices and d(k) is an arbitrary three dimensional
vector of real functions. For d = 1 and d(k) = (t; + tacosk,tosink,0)” this is
the tight binding formulation of the well-known Su-Schrieffer-Heeger (SSH) model
[118] with intrabasis hopping amplitude ¢; = 1 and interbasis hopping t2 as well as
lattice constant @ = 1. As we have explained in Sec. 2.1 for any two 2 X 2 matrices
H; = di(k) - o and H¢ = d¢(k) - o the criticality condition f(k) = 0 is satisfied iff

igf
d;-d; = 0. In case of the SSH model this is equivalent with k. = arccos (— ?ﬁ?),
2 2

which is real only if [t}| < 1 < |t| or |t5] < 1 < |t}|. Furthermore, f(x) ~ 2, such
that cusps in the interferometric return rate are present only for quenches across
the equilibrium topological transition. In a similar manner any two-band system
in any dimension can be discussed.

The generalization of the return rate to finite temperatures is once again not
unique. If, instead of the temperature-independent interferometric return rate, the
fidelity return rate is used, any finite temperature yields a smooth signal [100].

As we have seen, the Loschmidt echo of two-band models can be classified by
the dimensions of the time-dependent nodal surface, that in topological insulators
and superconductors is symmetry protected. It is therefore an interesting open
question, whether in these systems a classification of dynamical phase transitions
in close analogy to nodal surfaces in Weyl semimetals [119, 120] can be achieved.

All of this simplicity of two-band models comes at a price, however, as these
non-interacting systems are quite special. In particular the factorizability into a
continuum of independent two-dimensional systems is broken by any interaction.
As these effects would have to be described with exponential precision no pertur-
bative expansion in weak interactions around a non-interacting two-band system
will help to understand the Loschmidt echo of non-integrable models.
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Chapter 2 Loschmidt echo in infinite range spin chains

Semiclassical systems

Semiclassical systems in the thermodynamic limit constitute exactly the opposite
limit of only a few (possibly coupled) degrees of freedom, each with a continuum
of available states. This dense spectrum of quantum states is essential to the
applicability of a semiclassical approximation. However, the number of coupled
degrees of freedom is not. As such the generalization of these systems to fully non-
integrable models with many (strongly) coupled degrees of freedom, each with many
accessible quantum states — while potentially demanding from a computational
perspective — is at least conceptually straight forward.

With this motivation we will now develop an intuitive picture of the return
rate in fully connected spin chains, which in the thermodynamic limit constitute
a long — and thus almost classical — rotor with self-interactions. In terms of the
classification of semiclassical models this constitutes the simplest case of just one
quasiparticle. The method we present, however, is more general, as it solely relies
on the initial WKB wave function and classical time evolution. In fact, a closely
related analysis has already successfully explained the collapse and revival of the
time-of-flight interference patterns following a quench to the deep lattice limit of
the Bose-Hubbard model [67]. We will discuss the possibility of generalizations to
more degrees of freedom in Sec. 2.3.5.

2.3.2 Construction of the initial wave function

To ensure comparability, we perform the same quench protocol as in Sec. 2.2.1, that
is an instantaneous quench of the transverse field. In this case, the DPT-I phase
diagram based on the order parameter m, = (S,)/N is completely determined by
mean-field theory [54], which is equivalent to the leading order of a 1/N-expansion
(see Sec. 2.2.2). It is based on the Bloch sphere representation of the spin in terms of
the continuous classical vector S = S(sin 6 cos ¢, sin 0 sin ¢, cos #) that contributes
the highest weight to the free energy arising from the pre-quench Hamilton function

2
H;i(0,9) = —QS—N cos? ) — TS sinf cos ¢ . (2.71)
The short-time evolution is then governed by the classical equations of motion
(EOM) derived from the post-quench Hamiltonian H¢(6, ¢); see (2.85) below. As
the Loschmidt echo typically shows its characteristic signatures also at short times,
it is natural to use mean-field theory as the starting point for the semiclassical
treatment of the Loschmidt echo and the DPT-II phase diagram, the construction
of which we will now discuss in detail. For simplicity, we restrict ourselves to I'; = 0
in the rest of this chapter, which — due to the increased symmetry — significantly
simplifies the construction of the initial wave function. For the moment we focus
on the zero-temperature case and deal with thermal states later.
Similar to the procedure applied in Sec. 2.2.2 at T' = 0, one first finds the vector
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2.3 Geometric Interpretation of the Loschmidt echo

S minimizing H;(6, ¢), which we choose, due to the spontaneously broken Zs
symmetry, to be fully polarized along the positive z-axis. In other words, S, has
angular variables 6. = 0, ¢ arbitrary, and the maximal possible length S, = N/2.
For convenience we will again use the relative spin length s = 25/N € [0,1], so
here s, = 1.

Clearly a purely classical theory will not allow to calculate overlaps between
different states, which inherently arises from quantum mechanics. We thus have to
quantize the theory by assigning to S, the WKB wave function [121, 122] adapted
to large spins [123, 124, 125] for the initial Hamiltonian

1

H; = —ﬁsg. (2.72)
At first glance, it may seem as a complete technical overkill to create a semiclassi-
cal approximation to the eigenstates of the exactly solvable H;. However, the spin
WKB wave functions W(q) can both be easily mapped onto the Bloch sphere, and,
when expressed in terms of the 25+1 eigenstates of S, with ¢ € {—S, —S+1,..., 5},
they reproduce the correct leading fluctuations expressed by the expectation val-
ues of the quadratic spin operators <S%m7y’z}). This is to be contrasted with the
obvious, direct representation in the eigenbasis of S, which as it diagonalizes H;
results in a vanishing width of the WKB wave functions and is thus unable to yield
finite fluctuations. While a classical wave function cannot reproduce the quantum
mechanical result (S2+ Si +82) = S(S+1), it is nevertheless important to capture
the correct variance in the directions orthogonal to the initial polarization, as these
determine the overlap between states. The initial fluctuations in the S, direction
on the other hand are subleading to the polarization in that direction, which is
correctly described already on the fully classical level. As a result the unavoid-
able error of a classical wave function has to be fully projected onto the initial
magnetization vector. We thus choose the quantization axis along the x-direction,
transforming the Hamiltonian to H; = —gk (S + S-)?, where S (—y denotes the
spin raising (lowering) operator. The stationary Schrédinger equation for ¥(q) with
eigenenergy E then becomes the finite-difference equation

a*(q)

=y [Pa+2)+2¥(q) + V(g - 2)] = E¥(q), (2.73)

with boundary condition ¥(|g| > S) = 0. Here, we have omitted corrections of
order 1/S from the exact prefactors of the raising and lowering operators and
instead approximated them by a(q) = \/S(S + 1) — ¢°. For the wave function, we
use the WKDB ansatz

U(g) = N A, (2.74)

where AN denotes the normalization. Inserting this ansatz into the Schrodinger
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Chapter 2 Loschmidt echo in infinite range spin chains

equation (2.73) and making use of the fact that in the semiclassical limit S — oo

the argument of ¥(g) can be treated as a continuous variable, one obtains to lowest
order in 1/S

A'(q) = lalrccos (—

ANE
2 )

a?(q)

where the prime indicates the derivative with respect to ¢. Similar results have
previously been derived by van Hemmen and Siit6 for several, related spin models
[123, 125]. With Eq. (2.75) the boundary between the classically allowed and
forbidden spin orientations is given by B = \/ 2NE + S(S + 1), which behaves as
B ~ /S for small energies. This is inaccurate and will significantly overestimate
the spin fluctuations and we are thus forced to include further corrections. As
we are interested in overlaps between spin wave functions, we can focus on the
imaginary part of A’(¢), which vanishes at B with divergent slope. Therefore,
the next corrections to be included are higher order derivatives of A, whereas
corrections to the approximation made in (2.73) can be neglected. While |A”] is
typically suppressed by 1/S compared to |A’[, this is obviously not the case near
the boundary to the classically allowed region, which in turn implies, that

(2.75)

4NFE can

5~ +1l=- cos(2A4")eHA (2.76)

a*(q)
has to be solved self-consistently together with the condition that A” is a good
approximation to the derivative of A’. Expecting the result to be mainly reflected
in a shift to B, we parametrize the solution as

1 ANE
A'(q) = 5 arceos <_G2(Q) -1+ B(q)> . (2.77)
The correction term has to satisfy the condition
B(q) = (®" —1)cos (24'(q)), (2.78)

which follows from the inclusion of the second derivative of \A(q) in the continuum
limit of the difference equation (2.73) when acting on the ansatz (2.74) with mod-
ified exponent (2.77). In the region, where |A’(q)| > |A”(q)|, already the initial
guess (2.75) was a good approximation to the exact wave function. One thus has to
expand B around its minimum obtained for spin projections ¢ ~ S deep within the
classically forbidden region on the northern hemisphere (our choice for the broken
Zy symmetry), where successively higher derivatives are suppressed by increasing
powers of 1/S. For energies close to the ground state energy Fy = —S2/(2N) one
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obtains

(2.79)

showing that B(g) is indeed a 1/S correction to the leading terms. With this
addition,

'(q) = larccos _ANE 25 25 -
Alg) =5 ( 200 1> (2.80)

is now consistent with the Schrodinger equation expanded up to the second deriva-
tive at all possible values of q.

We can check, that at this level our approximation is sufficiently precise, as the
boundary between classically allowed and forbidden spin orientations now takes the
far more accurate value

B=+\/2NE + 52, (2.81)

which vanishes for the ground state as all higher-energy spin projections can only
be reached via quantum tunneling through the classically forbidden region. To
obtain the final expression for ¥(q) that will be used for the determination of the
Loschmidt return rate, one has to integrate (2.74) with fixed lower boundary B.
Expanding A’(q) around ¢ ~ B and using the asymptotics arccos(z) ~ iv/2yz — 1
in the vicinity of z ~ 1, results in

\I}(g’Q) =
V2B(S—&)+D(q— B)Vqg—B (q—B B)

N exp (2.82)

2 E-S D

_ B(E-9) n /D(q— B) + /2B(S — €) + D(q — B)
D3/2 2B(S - &)

Here, we have introduced the abbreviations £ = 2NFE and D = 36 + S + 452 >
S, and the normalization A is actually irrelevant for the determination of the
Loschmidt return function. Quite importantly, ¥(q) shows the proper scaling of the
spin expectations values, i.e. for the ground state (S2) = S/2 = <S§> and (S?) = §2
with subleading corrections. For the geometric interpretation it is necessary to place
these wave functions on the Bloch sphere, which is simply done by substituting
q = S'sin 0, where 6 is the polar angle on the Bloch sphere. Note that a resolution of
the azimuthal angle is not necessary as the rotational symmetry of the Hamiltonian
will be recovered in any eigenfunction. Using the definitions for £ and D and
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neglecting subleading corrections, ¥(q) can be further simplified into the expression

E.b*
V(0, E,) = N exp W(smh (4y) — 4y)|. (2.83)

Here d = 24E,, /N + 4s%, b = sinf,,, and y = arcsinhy/Nd (b — sin 0) / (16bE,,) are
functions of # and 6,,, where the latter separates the classically allowed (0 < 6,,)
from the forbidden region as it determines the eigenenergy E,, = —5.Sc cos? (6,,) /4.

At T =0, one has B =0 and £ = —5? < —8 yielding
U (0) = Ne 2Sasin®f (2.84)

To enforce Zy symmetry breaking, we restrict 8 in all initial wave functions to the
northern hemisphere.

2.3.3 Time evolution and saddle-point approximation

Having set up the semiclassical state at time ¢ = 0, we now incorporate the time
evolution with H¢ by first determining the classical trajectories of the angular vari-
ables (9(0, ¢ |t), (6, ¢|t)), which result from the classical EOM

% = T'¢sin g, ((i_l—f =T¢cotdcos g, (2.85)
with initial conditions (¢(6, ¢|0), (6, ¢|0)) = (0, ¢). These derive from the Heisen-
berg equations for the total spin operators Sy, , -1 by neglecting all commutators
that are suppressed by at least 1/N (see Sec. 2.2.2). In close analogy to the time
evolution in a truncated Wigner approximation [126], the initial amplitude Wy(0)
is then transported along the classical trajectory, which implies that ¥o(¥(6, ¢ |t))
depends on both initial angles 8 and ¢. Due to the absence of any dephasing
within this description the magnetization, however, will never relax. Higher-order
corrections can be treated by more faithfully representing the Schrédinger equation
on the Bloch sphere, which will then include derivatives acting on the wave func-
tion (2.84) [54]. Here we take no effects beyond (2.85) into account, which will turn
out to determine the critical times accurately. In this limit the Loschmidt return
function at 7' = 0, defined in (2.4), reads

1 2
T(t) = —N In

/dQ W90, 6 [t)) o (0)

(sin® (0, ¢ |t) +sin®0) + O (N71) |

(2.86)

1
S 2
where the integral sums over the surface of the Bloch sphere with measure dQ) =

d¢ dfsin 0. The simple expression in the second line results from the limit N — oo,
where, due to the extensive scaling of the exponent of the wave function (2.84), at
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2.3 Geometric Interpretation of the Loschmidt echo

every moment in time the integral is determined by the Loschmidt vector viax(t) =
(900, 1t), p(0,pt)) corresponding to the saddle-point trajectory that minimizes
the exponent.

Note that, as depicted in Fig. 2.16 for the quench also used in Fig. 2.17 and the
top panel of Fig. 2.21, the initial coordinates (9_, gE) are themselves time dependent.
In Fig. 2.16 we illustrate the initial orientation (6, ¢), which is found when one
evolves Viax(t) backwards in time. In agreement with the jump of the Loschmidt

vector, we observe a sudden change of (0, ¢) at the critical time.

0.4

0.3

0.1

0 0.0
0 10 20 30 40 50 60 0 10 20 30 40 50 60

t t

Figure 2.16: Initial angles that at time ¢ coincide with the Loschmidt vector
Vimax(t) = (90,0 t), 00,0 |t)). At the first critical time t. = 27.4
a jump in ¢ from 3.18 — 0.51 occurs at fixed §. In general, non-
analyticities in r(¢) appear only when ¢ decreases. Its sudden growths
by 7 in turn, are observed at times when the classical magnetization
passes through the north pole, corresponding to zeros in 6 and ill-
defined ¢. The dashed line in the left panel is no non-analyticity, but
rather a result of the 27 periodicity of the azimuthal angle, due to

which ¢ = 0 and ¢ = 27 have to be identified.

The result (2.86) allows for a simple geometric interpretation:

The classical trajectory with smallest arithmetic mean of initial and time-
evolved WKB distances

Ag = —2R1n (Vo/N)/N = sin®6/2

from the classical initial state determines the Loschmidt echo.

Figures 2.17 and 2.18 illustrate our results for the spin dynamics in case of
quenches to I't = 0.2 and I'ty = 0.3 shortly after the first critical time. The corre-
sponding return rates can be found in the two top panels of Fig. 2.21. Movies of
the spin dynamics can be found under the links [127, 128, 129]. The first quench
lies within the anomalous phase (see Fig. 2.8), whereas the latter gives rise to a
regular signal [87] (see Fig. 2.9a).
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Figure 2.17: Semiclassical representation of the return rate on the Bloch sphere of
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the zero-temperature anomalous quench I'; = 0 — I't = 0.2 shortly
after the first critical time. The initial state pointing to the north
pole is depicted by a yellow vector. The time-evolved classical initial
state (blue vector) v (t) = (9e(0, ¢ [t), 01(0, ¢ |t)) that governs the
dynamics of the magnetization order parameter and thus determines
the DPT-I phase, moves along the blue trajectory. The cloud of black
dots indicates the distribution of the wave function that initially was
centered symmetrically around the north pole. Finally the red arrow,
which follows the red line, marks the orientation of the Loschmidt
vector Vinax(t) = (9(6, ¢ t), ¢(0, ¢ |t)). At the critical time the sudden
jump (dashed red line) of this saddle point orientation from the trailing
to the leading edge of the time-evolved quantum amplitude results in
a cusp in the return rate.
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X

Figure 2.18: Depiction of the semiclassical spin configuration of the regular quench
Il =0 — I't = 0.3 at T = 0 shortly after the first cusp. The color
coding is the same as in Fig. 2.17.
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In the anomalous quench to I'r = 0.2 [127], the classical state

vel(t) = (Ja(0, ¢ [t), ¢ (0, ¢ [t)) (2.87)

moves only in the upper hemisphere yielding a positive m, at all times. Conse-
quently, its trajectory returns so quickly to the initial state that the wave packet
remains sufficiently concentrated around the classical state to prevent any discon-
tinuous movement of the Loschmidt vector viax(t) (obtained from (2.86)) during
the first period. The first jump of v« (t), and therefore cusp in r(t), appears only
in the second period in agreement with the results obtained by ED calculations
(see Fig. 2.21). At very late times the initial wave packet has spread so far over the
Bloch sphere that the Loschmidt vector always points near the north pole, resulting
in a very small 7(t).

For the regular quench to I't = 0.3 on the other hand [128], the classical vector
crosses the equator of the Bloch sphere where the increased fluctuations in S, result
in a fast squeezing of the wave packet. This gives rise to a jump of the dominant
orientation already during the first period of the motion, and thus to a regular LE.

In summary the semiclassical evolution allows for a very intuitive understanding
of the relation between the order parameter dynamics and the return rate.

Let us now consider finite temperatures where the initial classical state for I'; = 0
minimizes the mean-field free energy

1
F=-Tln U dQ/ ds s2D(Ns/2)e PHO) | (2.88)
0

where D(S), given by (2.20), denotes the degeneracy of the spin subspace of length
S. These two equations specify the mean-field pre-quench state in terms of S.; with
0 = 0 and ¢ arbitrary (see Sec. 2.2.2). The exact initial density matrix

pi=2"1> exp(—BEn)|E,)(En| (2.89)
in the eigenbasis |E,) of H; in our semiclassical description becomes
S2 1
pi(0,0") = 71 /dQ/ dcos 0, U*(0, E,)¥ (¢, E,)e b (2.90)
-1

where the wave function is defined by (2.83). In close analogy to the interference
matrix A (see Eq. (2.42)), in the thermodynamic limit the off-diagonal terms in
(2.90) are suppressed by factors exponentially large in the system size and thus we
can set 0’ = 0.

Using this diagonal form of p; and the fact that the truncated time evolution acts
only on the coordinates (4(8, ¢ |t), p(0, ¢ |t)), we can write for the fidelity Loschmidt
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2.3 Geometric Interpretation of the Loschmidt echo

echo (cf. (2.41))
re(t) = —J\}i_{noo N7 In|Tr /p(0)\/p(t)|* . (2.91)

In the thermodynamic limit the remaining integrals in this expression once again
reduce to their saddle-point values.

The semiclassical Loschmidt echo at finite temperatures is therefore deter-
mined by the minimization problem over all starting points (6, ¢) in

re(t) = glir)l {dist(vﬂ(Q, o)+ dist(ﬁ)} (2.92)
and all classical angles 6, in the combined thermal and WKB distance
measure

. . 5321 . 92

dist(0) = min 8C sin“ 0, + RA(0,6,,) ¢ . (2.93)

The geometric interpretation of (2.92) remains the same as in (2.86), but
now dist(#) first finds the saddle point of the density matrix, i.e. the largest
product of the wave function ¥(E,) = N exp (—NA(0,6,,)/2) and the cor-
responding Boltzmann factor exp (—SE, ), which are also the states domi-
nating the calculation of the free energy.

We illustrate the dynamics on the Bloch sphere for a quench to I't = 0.2 at
B =5 in Fig. 2.19 (for the video see [129]) and the corresponding Loschmidt echo
in the bottom panel of Fig. 2.21. The initial state shows a finite magnetization
m, but the radius of the Bloch sphere has decreased to s, ~ 0.71. Due to the
thermal fluctuations the quench is now regular and, in contrast to the T'= 0 case,
shows the same features as Fig. 2.18. This can be explained by the decreased spin
length s, < 1 which effectively renders the transverse field in the Hamiltonian
more relevant compared to the Sg-term. As a result, the ground state of the final
Hamiltonian is paramagnetic and the quench crosses the ferro- to paramagnetic
transition in the DPT-I picture as well.

Finally, note that for high temperatures close to the equilibrium critical tempera-
ture T, = 1/4 the initial distribution on the Bloch sphere becomes fully determined
by thermal fluctuations. Hence, rp in (2.92) can then be replaced by the completely
thermal distance measure

2
rr(t) = % min { sin® 9(6,,, ¢ |t) + sin’ 9n} . (2.94)

n;,

As evidenced in Fig. 2.21c) this simplification already produces decent results for
the quench considered in Fig. 2.19, where we are thus calculating an essentially
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Figure 2.19: Hlustration of the Bloch sphere in case of the regular quench I'y = 0 —
't = 0.2 at the finite inverse temperature 8 = 5. The color coding is
the same as in Figs. 2.17 and 2.18.
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classical return rate.

We now return to the discussion of a quench in the XX model described by the
Hamiltonian

1 2 2

which is identical to Eq. (2.54) except for a constant. When starting from a symme-
try broken state we claimed every quench to be regular, independent of the distance
between I'; and I't. To test this statement requires an initial state at T' = 0 that ex-
plicitly breaks the O(2)-symmetry and so we again employ (2.84). However, as the
initial magnetization shall be oriented along the x-axis, we rotate the arguments of
(2.84) according to

6 — arccos (sin 6 cos @)

¢ — sign (sin ¢) arccos < C(.)S 4 > : (2.96)
/1 —sinfcos ¢

Starting from this rotated initial state the semiclassical calculation, the result of
which is shown in Fig. 2.20 and as a video in Ref. [130], is identical to that for the
infinite range transverse-field Ising model. The only difference lies in the equations
of motion, which for the XX model are given by

i—fsz—gcosﬂ and %:0. (2.97)
We observe, that for any non-trivial quench (I'¢ # I'}), the classical magnetization
vector begins to precess along a circle of latitude, the latter being non-zero if
I'; # 0. As the wave function on the northern hemisphere stays to the west and
on the southern hemisphere to the east of the classical trajectory, the early-time
return rate will be determined by the northern (southern) hemisphere for quenches
with Ff(z)ri. However, at some point before the magnetization vector returns to
the initial orientation, the faster parts of the wave function in the other hemisphere
will determine the return rate, thus always creating a regular signal. In fact, since
the dynamics of the initial wave function is independent of the temperature that
only affects the radius of the Bloch sphere, the shape of the return rate, as well
as the critical times are mostly unaffected by finite temperature, as long as the
initial phase is ferromagnetic. Note however, that this would not be the case, had
we chosen to calculate the Loschmidt echo as the overlap between the time evolved
state and the entire ground state manifold, which in the example in Fig. 2.20 is the
entire equator. In that case any quench would result in a trivially vanishing return
rate, as the classical vector never leaves the equator.
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Figure 2.20: Illustration of the Bloch sphere for the quench I'y = 0 — 't = 0.2 in
the XX model at vanishing temperature 7' = 0. The color coding is
the same as in Figs. 2.17, 2.18 and 2.19.
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2.3.4 Comparison with exact numerical results

In order to compute r(t) according to (2.86), we cover the Bloch sphere with a
Fibonacci lattice consisting of several million points, assigning to each the cor-
responding WKB amplitude of (2.84). This lattice is then evolved in time, by
numerically solving (2.85) and finally extracting the site that yields the largest
contribution to 7(¢). In Fig. 2.21, the results are then compared with the fully nu-
merical (quantum) return rate obtained with the algorithm detailed in Sec. 2.2.5.
While the critical times and the DPT-II phases are well captured, there are sig-
nificant discrepancies for large values of the return rate. As these are not at all
symmetric between the rising and falling slopes of each peak, they are not related
to inaccuracies in the initial wave function, but rather a consequence of the crude
time evolution. In particular the slope A’(q) of the exponent of the initial state
becomes large at values relevant only for large return rates. These strongly sup-
pressed parts of the wave function are thus not well captured by the purely classical
equations of motion and spatial derivatives acting during the evolution would have
to be incorporated, which will be left to future work.

We also provide a similar comparison between semiclassical and finite-size results
for the XX model in Fig. 2.22. Note that the simple precession dynamics following
a quench of the transversal field are captured much better by the semiclassical
equations of motion, resulting in a significant reduction in the discrepancy with
the fully numerical calculation.

2.3.5 Interpretation and robustness

If one views the semiclassical Bloch sphere discussed here as a non-trivial general-
ization of the relative Bloch sphere discussed for 2 x 2 Hamiltonians in Sec. 2.1, one
can draw a number of conclusions. First one notices, that cusps in the return rate of
the semiclassical model are not related to any orthogonality condition between the
initial and time-evolved state. Moreover, as the Loschmidt vector vi,.y is largely
unrelated to the classical trajectory, the cusps in the return rate are independent
of sign changes in the magnetization. This becomes particularly apparent in the
anomalous phase, where the magnetization always remains in the northern hemi-
sphere and the return rate is thus identical to that obtained for overlaps with the
entire ground state manifold. The origin of cusps in r(¢) as a result of a deformation
of the wave function under time evolution is to be considered as a general feature
that is absent only in non-interacting models [45, 131, 85, 96, 71], where in the case
of two-band systems, the wave function is a point on the Bloch sphere that obvi-
ously has no internal dynamics. Similarly the coherent state in the N — oo limit
of the O(N) model experiences no non-trivial deformation following a quench, thus
rigorously synchronizing the magnetization and the return rate in these systems.
The importance of these internal dynamics in the form of spin squeezing is captured
in Fig. 2.23, where the time-evolved polar angle 9¥(0, ¢|t) near the critical time is
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Figure 2.21: Comparison between the return rate calculated numerically for a sys-
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tem of size N = 4001 in yellow and the semiclassical results obtained
from (2.86) and (2.92) in blue. Panels from top to bottom correspond
to the parameters in Figs. 2.17 through 2.19 in that order. The red line
indicates the time, depicted in those figures, while the black dashed
lines mark the positions of cusps in the semiclassical return rate. The
dashed green line in the bottom panel was calculated using the purely
classical return rate from (2.94).
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Figure 2.22: Comparison between the quantum return rate calculated numerically
for a system of size N = 4001 in yellow and the semiclassical result
obtained from (2.86) in blue for a quench of the XX model from I'; = 0
to 't = 0.2 at T'= 0. The time indicated by the red line corresponds
to the instance depicted in Fig. 2.20, while the black dashed lines mark
the positions of cusps in the semiclassical return rate.

shown to depend in a very complicated manner on the initial polar angle 8. Given
the different origin of cusps in generic systems as compared to the non-interacting
case, it is also not to be expected, that the attempts to classify dynamical phase
transitions by Vajna and Déra [81, 80] will be relevant and applicable to interacting
systems.

However, the geometric picture presented here, also provides a macroscopic de-
scription of the return rate and therefore allows to draw an analogy to Ginzburg-
Landau theory. In Sec. 2.3.3 we have argued that the Loschmidt return rate is
dominated by a single trajectory on the Bloch sphere, namely the Loschmidt vector
Vmax, Which can be obtained by minimizing a semiclassical distance measure. Inter-
preting this distance as the equivalent of a time-dependent free energy landscape,
the cusp in the return rate becomes the dynamical analog of a first order phase
transition. We make this more explicit, by discussing the specific example of the
anomalous quench from I'; = 0 to I'y = 0.2 at zero temperature. We show the an-
gular distribution of the corresponding distance measure (sin?9(6, ¢ |t) + sin?6) /2
in Fig. 2.24, just before and after the critical time t. = 27.4, when the first cusp in
r(t) occurs (cf. Fig. 2.21 in the main text). At this time one of the local minima
(blue regions) becomes the new global one, which causes a jump of vy (red dot).
This discontinuous movement is directly related to the non-analyticity of r(¢). We
emphasize, that the more conventional effective free energy construction in Ref. [46]
relies on the concurrence of sign changes in the magnetization and cusps in the re-
turn rate and is thus neither applicable here, nor in more general non-integrable
systems.

From the perspective of the quantum mechanical calculation, which required
an enormous precision in the eigenenergies and eigenstates, it is very surprising,
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Figure 2.23: Plot of the time evolved polar angle (6, ¢|t) for the anomalous quench
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I'i =0 — I't = 0.2 as a function of the initial polar angle 6 at fixed
azimuthal angle ¢ in the proximity of the critical time. The values of
¢ are chosen to coincide with those minimizing the WKB-distance at
times infinitesimally before and after the jump of the Loschmidt vector.
The strong spin squeezing near the equator separate close by initial
angles to such an extent, that they can end up in different hemispheres.
This is evidenced by the sharp signatures visible in the time evolved
polar angle. At the critical time the Loschmidt trajectory changes
from the solid to the dashed black line at fixed § ~ 0.2. However,
due to the explicit nonlinear dependence of the WKB-distance on both
the initial and time-evolved angle, it is not possible to use this plot to
determine the return rate directly.
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that the crude approximation applied in Sec. 2.3.3 suffices to capture all essential
features of the return rate. This is because any inaccuracy in the numerical pro-
cedure of Sec. 2.2 is expressed as a perturbation that usually corresponds to an
operator involving arbitrary powers of spin operators that varies quickly between
adjacent eigenstates and thereby destroys the phase coherence between states of
comparable energies. In the semiclassical description these unphysical and therefore
non-classical operators are not even possible to include properly as they contradict
the condition of applicability, namely the suppression of higher order commutators
in the equations of motion. Instead only semiclassical, i.e. smooth perturbations
on the Bloch sphere that typically preserve coherent dynamics can be added to
the picture. In other words, semiclassical dynamics actually describes the physics
we are interested in by discarding all unphysical perturbations. Considering the
dynamics of the Wigner function in such a formulation is thus ideally suited to
determine Loschmidt echoes in more complicated systems.

Let us for example consider the case, where the eigenenergy of a single state is
shifted by some small amount. This state will then no longer fully participate in
the coherent evolution and is trapped in the semiclassical picture. The Loschmidt
echo vector will therefore behave as it did without the defect until 7(t) > 7pert,
where e is given by the overlap of the initial state with the perturbation. Due
to the trapped state the maximal value of the return rate is then fixed to rper; as
well, exactly reproducing the well-known errors in numerical calculations [70].

Finally, we can return to the question, regarding the connection between DPT-I
and DPT-II in general models. If the order parameter of the model under con-
sideration exhibits a dynamical phase transition (DPT-I), part of the initial wave
function (or in general the Wigner function) will inevitably move through a ’critical’
regime of strong squeezing in the phase space, which favors cusps in the Loschmidt
echo. In the case of a quench across the DPT-I the center-of-mass will run around
the ’critical’ regime, making early cusps more likely. Nevertheless, there seems to
be no argument for a direct and universal connection between DPT-I and DPT-
IT and for finite quenches one would in general expect different critical values for
DPT-I and DPT-II, which thus have to be determined for each model individually.

2.3.6 Quantum Fisher Information

Quantum entanglement is an important resource for quantum computing [132, 133,
134] and quantum metrology [135, 136]. However, it is difficult to access experimen-
tally [137], because the required precision per measurement grows exponentially in
the system size N. In equilibrium the closely related quantum Fisher information
Fg, instead, can be measured directly by means of the dynamical susceptibilities
[138]. This is particularly useful, since the quantum Fisher information density
fo = Fg/N is a lower bound for multipartite entanglement. In fact, if m is a
divisor of N and fg > m, the system must be in a state with m + 1-partite entan-
glement [139, 140]. Furthermore, Fy is a measure for the sensitivity of the system
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Figure 2.24: Representation of the zero-temperature distance measure (2.86) for
the anomalous quench I's = 0 — I't = 0.2 on the Bloch sphere. The
absolute minimum determines the Loschmidt vector vy which is
indicated by the red point. At the critical time t. = 27.4 it jumps
discontinuously. The left panel shows the configuration at ¢t = t. — 1,
while the right one is taken at ¢ = ¢.+1. The white regions are covered
by points that initially where located within the lower hemisphere.
Therefore, they carry negligible semiclassical weight and have not been
taken into account for the numerics.

to perturbations, which in turn sets a bound for the measurability of these via the
quantum Cramér-Rao bound: If a parameter « is to be estimated, based on M
independent measurements, its variance is limited by [141]

1
Var(a) Z M—Fb .

(2.98)
Therein lies the importance of highly entangled states for quantum enhanced mea-
surements. However, preparation of these states is difficult, due to their sensitivity
to decoherence [142, 143, 144]. Recently, Fiderer and Braun have therefore pro-
posed to use driven, quantum chaotic systems to increase the sensitivity of a mea-
surement from the standard quantum limit Var(a) o< 1/N to the Heisenberg limit
Var(a) o« N=2 [145]. A similar quantum enhancement can also be achieved in the
transverse field Ising model following a quench close to the dynamical critical point
I'Y(T) given by Eq. (2.28).

To show this, we first define the quantum Fisher information [146]

Fo(at) = lim 2 (1 T/ Vo (0V/50)) (2.99)

where pg is the density matrix of the initial state and p,(t) that of the system
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Figure 2.25: Finie size scaling of the quantum Fisher information in a quench of
the infinite range transverse field Ising model at 7" = 0 and initial
transverse field I'; = 0. To compensate for the slowly increasing return
time t,e; near criticality we divide by t.e¢. Near the critical point 'y =
0.25 indicated with a dashed line, the quantum Fisher information is
then approximately proportional to N¢ with ¢ = 1.92 very close to
the Heisenberg limit of £ = 2. System sizes used in order of increasing
saturation are N = 2001,4001, 8001, 16001, 32001.

time-evolved forward with parameter o until time ¢ and then evolved backwards
to t = 0 with a4+ . It is easy to show via second order perturbation theory, that
this definition is identical to

Fala.t) =23 BB o

, (2.100)

where py = Z/\p,\|)\>()\| and po = Yy px|A)(N| have been expanded in their
elgenbases and O is the part of the Hamiltonian proportional to « (i.e. H = Hy+aO
with HO = H’a:(]).

Using the numerical approach of section 2.2, it is straight forward to evaluate
Eq. (2.99)3. We implement a protocol, where ¢ = t. is fixed to the time of the
first minimum of the return rate and o = 7. With the methods described in
Sec. 2.2.5 and for T' = 0, very large systems can be treated, that enable a finite size
scaling. Far from the critical point, we find the standard quantum limit Fg ~ IV,

3In fact, Fg can be calculated with machine precision for all system sizes and for finite tem-
peratures the matrix root is to be taken over the initial, thermal states, where the number of
relevant states is typically much smaller than after the quench.

65



Chapter 2 Loschmidt echo in infinite range spin chains

6=5T1;=0
60? ;8.4><107
50% —f7.><107
~ 40? —;5.6><107 g
2 30F 142107 o~
20F 12.8x 107
10? —f1.4><107
0" 0.14 0.16 0.18 0.20 0.22 0.
I'¢

Figure 2.26: The qualitative behavior of the return time t,¢; and Fy are unaffected
by finite temperatures in the initial state. However, quantitative cor-
rections are observed, in particular the maximal value of the quantum
Fisher information near the critical point at I't & 0.1776 is reduced by
a factor of approximately 2 for the plotted system size N = 4001 with
B =5 and I'y = 0 when compared to the maximal Fg for the same
system size and T = 0.

however at the critical point, we find Fgg ~ tIN ¢ with &€ ~ 1.92, which is very close
to the Heisenberg limit reported for quantum chaotic systems in Ref. [145] (see
Fig. 2.25). Surprisingly, a similar enhancement of the quantum Fisher information
also happens at finite temperatures (see Fig. 2.26), where, however, a proper finite
size scaling becomes numerically prohibitively expensive.

Nevertheless, the thermodynamic limit can be determined with the semiclassical
method. Following the same arguments as before, we identify

Fo(a,t) = % (1 —exp [—s {Ieudg {dist(z?(t?, olt) + dist(H)H) , (2.101)
where now, contrary to the notation used for the discussion of the return rate,
9(0,¢|t) is evolved forward in time with I'y until time ¢ and then back to ¢t = 0
with T + & with § = 107°. Evaluating Eq. (2.101) we find that in the thermo-
dynamic limit the quantum Fisher information density collapses to a temperature
independent scaling near the dynamical phase transition at I'¢(T") (see Fig. 2.27).
Sufficiently far from the critical point, where the finite size scaling in Figs. 2.252.26
are already converged, the results obtained via Eq. (2.101) agree very well with the
fully quantum mechanical calculation.

With the help of the semiclassical picture a qualitative understanding of the
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Figure 2.27: Thermodynamic limit of the quantum Fisher information density
fo(I'¢) determined by Eq. (2.101) at 7' = 0 (red line) and 7" = 1/5
(blue line) for a quench from I'; = 0 to the vicinity of the critical point
¢(T).

change in scaling behavior near I'f observed in Fig. 2.25 can be developed. While the
definition (2.99) looks very similar to that of the fidelity return rate in Eq. (2.41),
no direct connection exists. However, the change in behavior of the Loschmidt echo
near the phase transition is a consequence of the deformation of the wave function,
which entails a large spin squeezing and quantum Fisher information. Instead of a
ballistic transport of the wave function across the Bloch sphere, that dominates the
time evolution far away from the critical point, the wave function disperses strongly
near the critical point, which gives rise to the mostly diffusive scaling observed in
Fig. 2.25.

Interestingly, the description by means of the semiclassical wave function works
exceptionally well, despite the large amount of multipartite entanglement built-up
during the time evolution. We also emphasize that, opposed to the equilibrium sce-
nario [138], Fy diverges along the critical line T'%(T) for all temperatures, making
quantum quench enhanced measurements a real possibility in trapped ion experi-
ments [11].
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Chapter 3

Supersolidity in systems with long-range
interactions

Following a short review of the search for the elusive supersolid phase in *He, we
summarize recent proposals and experimental advances in systems with cold atoms.
Most of these attempts, that aim to find different generalizations of supersolidity,
rely on lasers or cavity fields to create long-range interactions between atoms, which
suppress fluctuations and thereby help in stabilizing long-range correlations. They
are therefore accessible to a quantitative mean-field analysis, which we apply to the
recent experiment at ETH [1, 2], where supersolid behavior was observed in a gas
of cold atoms trapped in two crossed cavities. We will also discuss, to what extent
this experiment can be considered a ’true’ supersolid.

This chapter is largely based on the publication [147], with some minor modifica-
tions and additions.

3.1 The hunt for the supersolid

Literally, a supersolid is a material, that simultaneously is crystalline and superfluid
[148]. The coexistence of these two concepts is in fact so counterintuitive, that
Onsager and Penrose, in the first publication on this topic, already concluded that
it was likely non-existent [149]. However, the argument discussed there actually
only states that a ’classical’ crystal of atoms localized at fixed lattice positions is
irreconcilable with superfluidity (which is correct). Obviously, this was not the end
of story, as it was quickly realized, that diagonal and off-diagonal long-range order
can indeed coexist [150, 151].

Let us clarify this statement: A crystal is a material, that breaks continu-
ous translation invariance and leaves only a discrete symmetry, i.e. the density
p(r) = (pT(r)i(r)) is not constant, but satisfies p(r) = p(r + T) for any lattice
vector T'!. This is equivalent to the existence of Bragg peaks in the static structure
factor accessible in neutron or X-ray scattering. A superfluid is defined by its prop-
erty of supporting dissipationless flow. In three dimensions, superfluidity requires
Bose-Einstein condensation, which is a property of the one-particle density matrix

'For simplicity we assume a simple Bravais lattice. Also, if zero point or thermal fluctuations are
included, p(r) has to be understood as the equilibrium expectation value.
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p(r, ") = (T (r)Y(r')). If for a system of volume V the averaged density matrix
takes the finite expectation value V=1 [ @3 p(r,r +1') — po # 0 as |r| — oo, the
system is condensed and thus in a superfluid state, with condensate density po.
As opposed to crystalline order, condensation affects the off-diagonal entries of the
density matrix in position space. One therefore often refers to it as off-diagonal
long-range order. In a supersolid both of these orders have to coexist. Simply
put, the system has to condense and spontaneously form a mass density wave,
which is not that hard to envision. However, it has many peculiar experimental
consequences, for example a duct clogged by a supersolid will be impermeable for
any other substance, but permit dissipationless flow of a superfluid of the particles
forming the obstruction [148, 152, 153].

Note, that the presence of two simultaneously broken continuous symmetries
clearly distinguishes supersolids from the Fulde-Ferrell-Larkin-Ovchinnikov state
[154, 155], where the superfluid order parameter is spatially periodic, put the den-
sity remains homogeneous. Furthermore, a state shall be classified as supersolid
only if it breaks two continuous symmetries spontaneously, thereby explicitly ex-
cluding any system, where a symmetry is broken externally, which would, for ex-
ample, be the case for the interface layer of a condensate on the surface of a crystal.

Among conventional condensed matter systems, the most promising candidate
to exhibit supersolidity is solid *He, where, because of the large ratio between ki-
netic and interaction energy, at low temperatures, the system is not necessarily so
deeply frozen, that the crystal becomes essentially classical, thereby preventing su-
perfluidity. It has been argued by Andreev and Lifshitz [156], and independently by
Chester [157], that highly mobile zero-point defects can flow dissipationless through
solid “He. In fact this is the only possible origin of superfluidity in a clean sample of
solid “He, as states with off-diagonal long-range order are necessarily Bose-Einstein
condensates [158], in which particles can be added or removed without expending
energy. Therefore supersolid 4He is not to be understood as a perfect, commensu-
rate crystal of delocalized atoms, but rather an incommensurate crystal, in which
vacancies or interstitials form a superfluid gas. Encouraged by these predictions,
most early experiments focused on solid “He, but returned negative results [159].
This changed in 2004, when Kim and Chan performed an experiment [160, 161]
that had long before been suggested by Leggett [162], where a sample of solid He-
lium is placed in a torsional oscillator (a device similar to a balance wheel in a
pocket watch). Upon lowering the temperature, the authors noted a reduction of
the oscillation period, indicating a decrease in the moment of inertia. This was
interpreted as part of the sample turning superfluid, thereby disengaging from the
rotation.

However, the situation in Helium has turned out to be much more complicated
than initially anticipated. In fact unbiased quantum Monte Carlo calculations find
a large energy gap for vacancies and interstitials, which furthermore attract one
another [163]. Instead it has been hypothesized, that dissipationless flow can occur
along extended lattice defects like domain walls or dislocations [164]. Although
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these imperfections are absent in thermal equilibrium, they are frozen in during
the crystallization of the sample. If the melting transition is only weakly first or-
der, these defects can be very mobile, which would allow for superfluid behavior.
However in this case they can also be removed from the crystal fairly easily by
annealing the sample. Experiments searching for this effect have produced incon-
sistent results [165, 166, 167] and without a smoking gun many possible microscopic
explanations for the non-classical rotational inertia found by Kim and Chan have
been brought forward, some of which, like He flowing through imperfection in the
solid *He or sudden changes in the crystal structure require no superfluidity [148].

In general a strong short-range repulsion reduces the quantum degeneracy of the
high density solid phase since the amount of overlap between the bosonic single-
particle wave functions is reduced. While hard-core potentials are unavoidable in
solid state experiments, where at short distances the Fermi character of the elec-
trons stabilizes the material, softer repulsive potentials can be engineered with Ryd-
berg atoms [40] or dipolar gases [39]. While the possibility of supersolidity in *He re-
mains an open question, calculations by Henkel et al. indicate that Rydberg atoms
show a roton instability that gives rise to a first-order phase transition towards a
supersolid phase at low temperatures [40]. In the case of two-dimensional dipo-
lar gases Spivak and Kivelson have speculated about the coexistence of a Wigner
crystal with superfluid droplets [168].

Although neither of these proposed experiments has yet been realized, ultracold
gases have made significant advances. Especially the possibility to create photon
mediated interactions of arbitrary range between atoms proves expedient for sta-
bilizing the necessary density wave, without impairing the condensate. Several
proposed and realized experiments of ’supersolids’, all of which in some sense rely
on a broadening of the original definition, have emerged.

A lot of public interest has been generated by the experiment at MIT [169], where
spin-orbit coupling was used to create a stripe phase of condensed 23Na atoms with
supersolid properties. In this state both the spin-wave and lattice phonons are
expected to be gapless at ¢ = 0 with a linear dispersion [41]. As opposed to solid
state materials the periodicity of the stripes is fixed externally by the wavelength
of the lasers required to create the pseudospin.

A setup without this caveat has been proposed by Ostermann et al. [42] and was
subsequently realized by the group at MIT [170]. In this case the lattice is formed
by collective scattering between a BEC and counterpropagating non-interfering
laser beams. Since the refractive index of the cloud depends on its spatial config-
uration, so does the lattice constant. However in this case, due to the long-range
interactions the phonon spectrum is gapped. Very similar properties, however with
an externally fixed lattice spacing have been proposed in the closely related system
of a BEC in a ring cavity [171, 172]. A different system in which long-range posi-
tional order coexists with superfluid behavior has been realized in recent years by
studying ultracold atoms in a high finesse cavity. In the presence of a transverse
laser field there is an induced interaction between the atoms which is mediated
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by the cavity photons [41]. The interaction is long-ranged and, beyond a critical
strength A, of the drive, the atoms spontaneously arrange in a periodic lattice,
allowing to scatter the light of the transverse field coherently into the cavity. This
superradiant state was first observation by Black et al. with a cloud of thermal
atoms [173] and was repeated several years later by Baumannn et al. in the same
group with a BEC [29]. It is an example of the classic Dicke-Hepp-Lieb transi-
tion [174, 175, 176, 177], described in detail — including a finite photon loss rate —
in Chap. 5, and results in a two-fold degeneracy of the periodic arrangement of the
atoms. More precisely, the Zo symmetry which is broken at the Dicke-Hepp-Lieb
transition is associated with the sign of the two degenerate wave-vectors q = £kg
which appear with equal weight in the standing periodic density wave described by
a non-vanishing expectation value (px,) # 0, where kg is the externally fixed cavity
wave vector. From the point of view of off-diagonal long-range order, which charac-
terizes Bose-Einstein condensation in its most general form [158], the phase beyond
A¢ is one in which extensive eigenvalues of the one particle density matrix appear
not only at g = 0 but also at arbitrary multiples of q = kg, forming a fragmented
condensate with a self-generated optical lattice [178, 179]. The system therefore
possesses simultaneously both diagonal and off-diagonal long-range order. Despite
the fact that periodic order is now generated through light-field mediated interac-
tions between the atoms, it is not a supersolid in the standard sense because the
superradiant transition does not break a continuous symmetry: With the Fabry-
Pérot interferometer fixed in position the translational symmetry that is broken
is reduced to a discrete Zo symmetry by the periodic coupling strength between
the induced dipole moments of the atoms and the cavity light field. Furthermore,
due to the long-range interactions the system is effectively zero-dimensional and
therefore the acoustic phonons near reciprocal lattice vectors q >~ G, which are the
Goldstone modes usually associated with the breaking of a continuous translation
symmetry [180], are gapped. Equivalently the system does not sustain dissipation-
less particle currents e.g. of the q = 0 part of the condensate with respect to the
fixed periodic density wave pattern associated with the +ky components?.

Recently, a major step towards the realization of supersolid behavior with dis-
sipationless particle transport has been taken by Léonard and coworkers at ETH
in a setup involving ultracold atoms in two crossed cavities [1]. In this setup, a
cloud of Bose-condensed atoms is enclosed in a configuration involving two optical
cavities which are at a 60° angle with respect to each other. Tuning the parameters
such that the atoms couple symmetrically to both cavities, this system allows to
realize light-induced crystallization of the atoms which involves an arbitrary super-
position of both cavity wave vectors. Within a simple two-mode description, the
two discrete symmetries Zo of the individual cavities can thus be combined to a

2Within a hydrodynamic description, such dissipationless currents would be associated with a
fourth sound-like mode with linear dispersion, see [181].
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continuous U(1) symmetry, allowing to observe a continuous shift of the crystal-
lization pattern [1]. Our aim is to analyze a fully microscopic model for this setup
in order to study the detailed structure of the broken symmetries and the result-
ing spectrum of collective excitations. In particular, we will derive the associated
effective dynamic Ginzburg-Landau functional for the light field in the cavity and
discuss the limits in which the system indeed exhibits the breaking of a continuous
translation symmetry. Beyond a detailed discussion of symmetry breaking and the
subtle issue of supersolidity in this context, our results also provide a quantitative
understanding of the recent measurements of the effective Goldstone and Higgs
mode frequencies [2].

3.2 Supersolid behavior in two crossed cavities

In the following we will discuss the nature of symmetry breaking and the associ-
ated collective excitations. We will show, that in the absence of direct intercavity
scattering the accidental U (1) symmetry holds asymptotically for vanishing cavity
field intensity and provide an estimate for the associated effective Goldstone mass.
Finally we compute the spectral distribution of the cavity light field and show
that both the Higgs and Goldstone mode acquire a finite lifetime due to Landau
damping at non-zero temperature.

3.2.1 Model and symmetries

We begin with a description of the setup used for the recent experiments at ETH
[1, 2]. It consists of a three dimensional cloud of bosonic atoms trapped at the
intersection of the TEMgy-modes of two optical cavities. The system is driven
transversally by a laser in the same plane as the cavities and all photons couple
the atomic ground state to the same excited state. We create (destroy) an atom in
the ground state at position r by the field operator ¢f(r) (4(r)) and in the excited
state by 1¢(r) (1e(r)). For atoms with mass m and excitation energy we, the purely
atomic system is described by (note that we use units in which iz = 1)

to= [ (30 (- ) i+l (-0 v ) dw)] - @)

The single-mode cavities are of high quality, such that losses can be neglected.
Using a; as the bosonic annihilation operator of a photon with frequency w; in
cavity ¢, the cavities are simply described by

He= " wiala; . (3.2)
i=1,2

Neglecting counterrotating terms and using the dipole approximation, the classical
laser field with energy w, and mode function 7,(r) = cos(koy + %) rotates the
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atomic states with Rabi frequency €Q:

Hyjo == [ @ () dulr)e " +hc.) (33)

The same process is also possible with the quantized cavity fields:

Hey = — Z gi/d?’r (m(r)diqﬂ(r)d}e(r) —|—h.c.) , (3.4)

i=1,2

where g1 and go are the single photon Rabi couplings for the two cavities with
the corresponding mode functions 7, (r) and 72(r). To get rid of the explicit time-
dependence in Hy,/,, we go to the rotating frame, where the complete system is
then described by

= [ [310e) (22 ) o) 4000 (0 ) )
= 3 Al =0 [ ()07 (@0 (r) + e (3.5)

i=1,2

— > i / dr (m(r)aiw (£)be (r) +h,c,> :

i=1,2

with the convention Ay = wy, —we < 0, A; = wr, — w; < 0. We note, that the
excited atomic state appears at most quadratically and can thus be integrated out
exactly. Note that in the experiment under consideration [1, 2] the laser drive is
far detuned (Q/|A4| ~ 3*107%). We can therefore simplify the inverse propagator
of the excited state as

2

k
—1 = - — =
G, (w, k) =w+ Ay 5 Ay, (3.6)

which implies that the retardation of the induced interaction is negligible. This
adiabatic elimination leads to an effective Hamiltonian that takes the following
form:

H= —121;2 Aala; + / dr ' (r) (—Zi + f/(r)> d(r) . (3.7)

Assuming equal dipole couplings g1 = g2 = ¢ in both cavities, the associated single-
particle potential — which still depends on the quantum state of the cavity field —
is given by

V) = Vi) + Y Vi) (a+af) + S0 vigala (3.8)

i=1,2 1,7=1,2
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where Vp, accounts for the pump potential while the V; result from the interference
between one cavity and the pump. The last term in Eq. (3.8) describes the effects
of direct inter- and intracavity scattering. In terms of the mode functions, these
potentials take the form

2
Vi) = 5 plo)”
Vile) = g5y (e (39)
gQ

() = cos(*fkox + %koy) and 7a(r) = cos(*fkox - %kgy) L (3.10)
which correspond to the configuration shown in Fig. 3.1, where the cavity axes form
a 30° angle with the z axis and lie in the  — y plane i.e. ki 2 = ko(n, cos(30°) +
n, sin(30°)). The pump axis is along the y direction i.e. k, = kon, and the standing
wave obtained by retroreflection has a phase-shift 7/2. Due to the small detuning
|A;| < wr, the pump and cavity modes can be taken to have the same wavelength
Ao = 27/ko. In the following discussion we will include the leading contribution
of the direct intracavity processes o n;(r)n;(r) as a dispersive shift to the cavity
detuning

2 2
0< b, = —Ai+ 2 /d% (PP r)d(e) ) ~ —A; + Ny (3.11)

Ay 2A 4
where the approximation is valid for a shallow density wave, which is experimentally
well realized, since a?¢gQ) < AsEg, where o; = (4;) and Er = kZ/(2m) is the
recoil energy. Since furthermore A;A 4 > Ng? the mapping between 6., and A; is
actually trivial. We will however neglect contributions quadratic in V; ;(r), which
are of order g*. This is valid in the experimentally realized regime where fourth
order processes due to V7 and V5 are more important than second order effects
in V; ;. Since intermediate states in this perturbation series carry energies ~ Eg
(in the superradiant phase creation of cavity photons costs very little energy), this
reduces to the condition Q > \/|A4ER|, which is well satisfied in the experiment
(see below). As the critical Rabi amplitude Q. o< |A4] is decreased, close to the
onset of superradiance, direct intercavity scattering will eventually be the dominant
effect. Their role, together with different choices of the retroreflection phase-shift,

have been theoretically investigated in [182, 183].

As discussed in [1], assuming small (in a sense that will become clear later) light
field intensities, so that multiple scattering is suppressed, we can restrict the Hilbert
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Figure 3.1: Left: sketch of the setup considered as implemented in the experiments
of Refs. [1]. Right: momentum space in the repeated-zone scheme,
where each hexagon indicates the Brillouin zone for a given band. Green
zones are occupied even without cavity fields and in particular their
center (I'-point) is the only state occupied at T" = 0. Gray zones are
occupied via cavity-photon scattering and correspond to the truncation
used in the U(1)-symmetric Hamiltonian (3.12). The closed curve in-
dicates a scattering path involving two photons from each cavity. This
scattering process, for which we need to include the orange zones in our
Hilbert-space truncation, explicitly breaks the U(1) symmetry in the
full Hamiltonian (3.7).

space to the lowest nine momentum states |k, ky) = [0,0),| &+ k; = k;,) (see also
Fig. 3.1) and truncate the Hamiltonian (3.7) as follows [1]:

e =Y [5ciajai v Bl ey + B e
=12 (3.12)
(@] +a:) (el o+ el e+ h.c.)] ,

71—

where éz . excites an atom into a standing wave of wave vector k; £k, with energy

E. = (2+1)ER and ¢ removes an atom at k = 0. Here gQ2/|A 4| is the effective
cavity pump strength. The truncated Hamiltonian (3.12) has in general a Zy ® Zy
symmetry corresponding to the following transformation

(a1,614) = —(a1,¢14) (3.13)
(a2,C24) = —(G2,Co4) - (3.14)
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3.2 Supersolid behavior in two crossed cavities

The spontaneous breaking of either one of these discrete symmetries corresponds
to a superradiant phase transition characterized by the order parameter (&ZT +a;) or
equivalently (éj +Co +éj-760 +h.c.). In the full model in real space given by Eq. (3.7),
the above Zs ® Zy symmetry corresponds to the transformations

. . k
(a1,r) = (—ag,r+ W@) (3.15)
. . k
(GQ,I') — (_GQ,I' + ﬂ-’k22‘2) 5 (316)

which involve a discrete spatial translation along a cavity axis. In this sense, the
superradiant transition corresponds to a self-ordering of the atoms into a spatial
pattern which scatters constructively into the cavity [32].

As pointed out in [1], for a symmetric choice of cavity detunings A; = Ay there
is an accidental U(1) symmetry in the truncated Hamiltonian (3.12):

(a1, é1+, G2, Co+)
— (dl cosf — aosin @, ¢14 cos — éoq-sin b, a1 sinf + ao cos b, ¢14 sinf + ¢4 cos 9) .
(3.17)

The signatures of the spontaneous breaking of this continuous symmetry, which
corresponds to a fixed value of the relative phase 6 of the two coherent cavity
fields, varying randomly between different realizations, have been experimentally
investigated in Refs. [1, 2]. In particular, it has been shown that the symmetry
broken state possesses a collective excitation with a frequency below the experi-
mental resolution of 100kHz. Correspondingly the cavity fields have been observed
at randomly distributed relative amplitudes with a fixed overall output intensity.
Both these signatures have been interpreted as the Goldstone mode of the broken
U(1) symmetry.

As discussed in [1], the transformations (3.17) can be translated into an invari-
ance of the potential (3.8) in real space. Indeed, by examining the potential (3.8)
we see that by restricting to the subspace X defined by koy + 7/2 = nw,n € Z, the
potential is invariant under:

(dl, dg,l‘,y = ﬂ—(n - 1/2)/k0)
— (@1 cos 0 — assinf, a1 sinf + G cos 0, v +20/(V3ko),y = m(n — 1/2) /ko)
(3.18)

where the —(+) sign applies for even (odd) values of n. The continuous symmetry of
the Hamiltonian under rotations of the cavity field by an angle 6 and a simultaneous
shift of the atoms along the a-direction by +260/ (\/gko) thus leads to supersolid-like
behavior with no restoring force for translations of the atoms along the z-direction.

Now, the fact that the U(1) symmetry (3.18) in the full model (3.7) is restricted
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Chapter 3 Supersolidity in systems with long-range interactions

to the subspace X of discretely spaced values of the y coordinate implies that this
symmetry holds only approximately. The fundamental reason is that the potential
(3.8) has no minimum on the U(1)-symmetric lines y = w(n — 1/2)/ko, but rather
at a position which is shifted by an amount inversely proportional to the amplitude
of the state-independent ac-Stark shift V7 in the effective potential. This shift
appears due to interference between the two cavity fields and is therefore present
for any finite number of photons in both cavities. The corresponding lowest-order
scattering processes are depicted in Fig. 3.1 as a closed path involving two photons
for each cavity, which for equal intensities Iy = Is = I implies that the lowest
order of the explicit breaking of the U(1) symmetry is proportional to I%. Tt is
important to note that the description of these scattering processes requires the
inclusion of momentum states that are absent in the truncation used to obtain the
Hamiltonian (3.12) (see Fig. 3.1). In the following we will discuss the consequences
of the explicit U(1) symmetry breaking for the supersolid-like features, which will
turn out to be still approximately present in the limit of intense laser driving (2.

To understand the physics beyond the deviations from a perfect U(1)-symmetry,
it is convenient to use a simple effective Hamiltonian obtained by adiabatically
eliminating the photons from (3.7). Assuming deep lattices such that we can neglect
the kinetic term as well as all terms beyond O(g?) from the contribution V; ;(r),
the resulting effective Hamiltonian

T = / dr 1 (x)i(r) <VL<r> -3 V(;() / dr’ Vi<r/>wr’>¢3<r'>) (3.19)

for the atoms alone contains an instantaneous, cavity field induced, attractive
density-density interaction of the form — 3, Vi(r)V;(r") /0., which does not decay
as a function of the separation |r — r’|. Since we neglect direct intercavity scatter-
ing, there are no interactions of higher order in the density. In the case that only
a single cavity is superradiant the ground state is given by a density distributed
solely within the high symmetry subspace X

272 2 Fr + 4dmm
r)=po—=0 | koy — = + o kor — ———
o) = po—7d (koy = 5 + ) < -

with pg = N/V. Here, the minus sign implies superradiance in cavity 1 (ag =
(a1) # 0) while the plus sign corresponds to a finite expectation value of ag = (ao).

) , n,meEZ (3.20)

The energy density of both states is given by € = X—i(l +c¢), with ¢ = Ng?/6.,|Aa| a
dimensionless positive constant which is much less than one for typical experimental
parameters. For two identical cavities ., = J. and therefore @ = ¢y, this is,
however, not in the ground state manifold which instead contains for example the
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3.2 Supersolid behavior in two crossed cavities

density profile

272 2 14 de —
p(r) = PO%Cs(k‘ox — %) (,:Zi& <k‘0y + 20 arcsin ( —i—cﬁcd(c)> + 27rm> ’
(3.21)

with n,m € Z and d(c) = v1+ 2¢+ 4c¢2. This density distribution slightly frus-
trates the potential V7 induced by the ac-Stark shift of the atoms and shifts the
densities away from the X subspace. It therefore slightly breaks the U(1) invari-
ance in the atomic density and locks the relative cavity phases. The small energy
difference between state (3.21) and state (3.20) is given by

2

Q 1
Aez—A—A 1+c+ﬁ(1+4c—d(0))(1—20—d(c))(2+20+d(0))

QZCQ
~ A,

(3.22)
<0 for ex1l.

As will be discussed below, this energy determines the scale of the effective Gold-
stone mass. Resubstituting either one of these density profiles into the cavity equa-
tions of motion we obtain |a| = VI ~ NQg/|A 4|6 to leading order in ¢, which
shows that in the deep lattice limit the critical coupling strength A, vanishes. Since
kinetic energy contributions have been neglected, the Goldstone mass has an upper
bound

_\/—A€<5c\/—AAI_ g
T a Y QN A,

Physically the Goldstone mass m arising from the finite energy scale Ae associated
with the breaking of the U(1) symmetry describes the azimuthal curvature of the
Ginzburg-Landau potential, which will be discussed in more detail in section 3.2.3.
As expected according to the argument based on the scattering processes illustrated
in Fig. 3.1, Ae o |a*| = I%2. The explicit symmetry breaking Ae due to the latter
scattering processes has actually the same scaling with intensity as the one which
would result from direct intercavity scattering (not involving the pump €2), which
we neglected in our model (3.7). As mentioned before, this is justified in the
experimentally realized limit Q/\/|A4ER| > 1, where direct intercavity scattering
is suppressed with respect to the processes shown in Fig. 3.1. In particular, the
fact that we can neglect all contributions from the last term in (3.8) beyond the
simple dispersive shift has no influence on the U(1) invariance in subspace X. Even
including all contributions from the last term in (3.8), the explicit breaking of the
U(1) symmetry is still caused by the fact that the global potential minimum for
the atoms lies outside the subspace X.

mag

(3.23)
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Chapter 3 Supersolidity in systems with long-range interactions

3.2.2 Effective action and phase diagram

In order to compute the phase diagram and the experimentally accessible spectrum
of the cavity light field, we extend the effective equilibrium path-integral approach
developed by Piazza et al. [178] for a single-cavity configuration. We derive an
effective action for the cavity degrees of freedom by exactly integrating out the
atoms. The action splits into a mean-field (MF) plus a fluctuation (FL) part. The
latter will be discussed in detail in section 3.2.4 below. As was shown in Ref. [178],
this action becomes exact in the thermodynamic limit due to the infinite-range
interactions. By separating the coherent part of cavity fields a; = (a;) as well as
the atom field ¢(r) = (¢(r)) (which corresponds to the condensate fraction) we
obtain the effective action

Seitla} 0, a12] = SH + SE P [at 5, a19) - (3.24)

The leading MF action reads

2
Séf-\f/jp Z A; |az|2—|—Trln [G ] /dr ¢*(r) |:—2v7n—|—‘/sp(r)—'u o(r).
1=1,2
(3.25)

It involves an effective c-number single-particle potential Vip(r) = f/(r)‘d_m_ felt
by the atoms in which the light field operators are replaced by their coherent state
expectation values. The atom propagator is defined by

2
G (1) = |—iw, — QVTTL + Vap(r) — pt| Gpd(r — 1’ , (3.26)

n,n
where the integers n,n’ label the Matsubara space with frequencies w,, = 2mnkgT,
kp is the Boltzmann constant and 7' the temperature of the system. In Eq. (3.25)
the trace Tr = [dr )", is taken over coordinate and Matsubara space and p is the
atomic chemical potential.

The saddle point associated with the mean-field action defines a closed system
of equations:

_Aial-—i-/dr ‘g ;(k [|6(r)> + p(xr)] =0, i=1,2
(—QV; + Vap(r) = u) ¢(r) =0
[ (ol + ptr) = (3:27)
with the condensed po(r) = |¢(r)]2 and non-condensed p(r) = (f(r)d(r)) —

po(r) = Y ,nuler — p)|ve(r)|? atom density. Here vy(r) are the eigenvectors of
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Figure 3.2: Phase diagram in the U, — T plane for parameters Ay = Ay, eg = 8§,
n =1, A = 2.8. To the right of the blue line the system is in a
superradiant state with equal intensity in both cavities, below the red
line a finite fraction of the atoms is condensed.

the single-atom Hamiltonian with potential Vi, (r) with eigenvalue €y, and ny(x) =
(exp(x/kpT)—1)"! is the Bose-Einstein distribution. The second equation in (3.27)
is the Gross-Pitaevskii equation for the condensate wave function while the third
equation fixes the chemical potential. We stress that both p(r) and Vi, (r) depend
on the cavity coherent parts o 2.

It is convenient to introduce dimensionless quantities, which we define by

_P :Lz :Qg\/N . :ER
i T Rl AT A BT,

de = miin (0¢,), [ = (3.28)

Moreover, we measure temperatures in units of the critical temperature of an ideal
Bose gas T8l = 2708, (f/¢(3/2))%? at the given average filling fraction f and with
¢ the Riemann zeta function. We furthermore rescale o — o/ /N in the remainder
of this chapter and in all figures.

As discussed in the previous section, the Hamiltonian (3.7) possesses the Za ® Zy
symmetry defined by Eq. (3.15). The corresponding order parameters are the two
real quantities

X1 = (X12) = (@15 +a] ) = 2Re(a1 ) - (3.29)

A finite expectation value X; # 0 creates the effective one-body potential V;, which
results in an atomic density wave. Thus, equivalent order parameters can be defined
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Chapter 3 Supersolidity in systems with long-range interactions

by the density components
pra= [ dr cos(l x) coslcs )6 (1))
= /dr cos(ky - ) cos(kiz - 1) (|¢(r) > + p(r)) - (3.30)

Additionally, we have the Bose-Einstein condensation transition described by the
U(1) order parameter ¢(r).

We first investigate the interplay between the superradiant transition and the
Bose-Einstein condensation by solving the mean-field equations (3.27) as a func-
tion of temperature 7" and driving strength U, (for details see appendix A). The
corresponding phase diagram Fig. 3.23 is qualitatively the same as the one for the
single-cavity case considered in Ref. [178]. With growing values of the coupling
strength U, the atomic gas becomes increasingly confined to the minima of the
effective single-particle potential, which results in an enhancement of the kinetic
energy and therefore a reduction of the critical temperature for Bose-Einstein con-
densation T,. Beyond a critical coupling strength U, (or equivalently \.) the atoms
spontaneously arrange into a spatially ordered configuration, resulting in a super-
radiant backscattering of light into the cavity. This Dicke-Hepp-Lieb transition,
as indicated by the blue line in Fig. 3.2, can be found both with and without a
condensate fraction. Additionally, a finite, but small, temperature can enhance the
tendency towards superradiance, which can be seen from the decrease of the critical
driving strength resulting in a reentrance of the superradiant phase for increasing
temperatures at 7' < Tdeal,

The phase diagram of Fig. 3.2 is computed for a symmetric cavity configuration
i.e. for equal detunings A; = As, implying that in the superradiant phase both
cavities are equally occupied with order parameters a; = 9. For a comparison
with the experimental results we also compute the zero temperature phase diagram
in the d., —d., plane, which is shown in Fig. 3.3. Apart from the superradiant phases
with only one nonzero cavity field i.e. oy 2 # 0, ;1 = 0 we observe a narrow region
around the diagonal Ay = Ay where both Zs symmetries are broken i.e. ay #
0,2 # 0. Within this small region of the phase diagram the two cavity order
parameters are not equal, as quantified by the color scale in Fig. 3.3, indicating the
value of the angle 6 in the a; — ag plane (see also Fig. 3.4), defined as

o
0 = arctan <1> ,
a

which is identical with the parameter introduced in Eq. (3.18).
This region exists due to the fact that the U(1) symmetry of Eq. (3.18) is not

3We choose Er = 86, for our computations. This is much larger than the experimental values
Er ~ 6./100 of the recoil energies, which would increase the numerical effort considerably
without changing the qualitative physics.

82



3.2 Supersolid behavior in two crossed cavities

0 | 6 = arctan <%>
0.30 (€3
0.25 T
1.03 o2 2
" “ s
1.006 1.008 |60CIA; 1.012 1.014 8
1.02F
Lo
Q
e e
4
1.01r
n
8
1 O 1 1 1 0
1 1.01 1.02 1.03
502

Figure 3.3: Phase diagram in the ., — d., plane. The color scale indicates the
angle in 6 in the a; — as plane. Inset: cavity amplitudes along the
black line indicated on the phase diagram. The parameters used are
T=0,A=282,n=4and eg = 8.

perfectly realized. In particular, the size of the region is set by the value of the
Goldstone mass. Using Eq. (3.23) and the experimental parameters Q2/|A4| =
38ER, ¢%/|A4l = 5 1074ER and |A| = 103Eg [1], one obtains |Ae| ~ mia? ~
0.1 Eg, consistent with the experimental result |Ae| < 10 Eg.

3.2.3 Ginzburg-Landau potential for the cavity fields and role of cavity
losses

In order to investigate the approximate U (1) symmetry of our model in more detail,
we compute the full Ginzburg-Landau (GL) potential corresponding to the mean-
field Egs. (3.27). The resulting effective potential in the ay — g plane is shown in
Fig. 3.4, both for an asymmetric and the perfectly symmetric choice of detunings,
at zero and also at finite temperature.

The asymmetric case for T = 0 is picked such that we are in the single-cavity
superradiant phase and the GL potential has indeed two minima at angles § = 0, 7
when cavity 1 is preferred, or § = £7/2 when cavity 2 is preferred. The asymmetric
case for T'= 0.97, is instead picked such that we still are in the coexistence region
where both cavities are occupied and where the GL potential has four minima. One
of those is shown at an angle slightly below § = /4, with the other three obtained
by mirror symmetry with respect to the coordinate axes.
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Figure 3.4: Ginzburg-Landau potential Vg1, as a function of the cavity amplitudes.
Arrows indicate the gradient. a),b) are for T'= 0 while c),d) for T =
0.97:4ea! a) and c) correspond to a symmetric configuration 6., = d.,,
while b) and d) correspond to 6., = 1.016.,. The remaining parameters
are 7 = 10, eg = 8 as well as A = 3 in a), b) and A = 2.7 in ¢),d).
Notice the small curvature along the azimuthal direction.

On the contrary, for Ay = Ag the GL potential shows four degenerate minima
at 0 = +m/4,+3mw/4. Since a U(1) symmetric potential would show a degenerate
minimum on a whole circle, we see that the extent to which this symmetry is
explicitly broken is measured by the azimuthal curvature of the potential about any
one of the four minima, which determines the square of the effective Goldstone mass.
The latter, together with the associated effective Higgs mass, which corresponds
to the square root of the curvature in the radial direction, is shown in Fig. 3.5
across the superradiant phase transition at zero and at finite temperature. In the
disordered phase there is only a single collective mode in the radial direction with
a mass vanishing at the critical point. Beyond this point Goldstone and Higgs
mass separate, the latter growing much faster while the former remains at least
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Figure 3.5: Goldstone and Higgs mass across the superradiant transition at T =
0(left) and T = 0.57.4¢a! (vight). Parameters are the same as in Fig. 3.2
apart from A = 2.278.

one order of magnitude smaller. By expanding the GL potential one can show
that the Goldstone mass close to the critical point is proportional to \/aras, in
accordance with the arguments discussed in section 3.2.1. Moreover, the ratio
between Goldstone mass and Higgs mass is inversely proportional to the drive
strength, so that for the strong drive employed in experiment and considered in
Fig. 3.5 we find a large separation between the Higgs and the Goldstone mass.

The qualitative behavior and the ratio of the Goldstone to Higgs mass shown in
Fig. 3.5 is consistent with the experimental results of [2]. By contrast, the pres-
ence of a well-defined minimum in the GL potential in the range 0 < 0 < 7/2
of Fig. 3.4 is not compatible with the experimental finding [1] that 6 is homoge-
neously distributed in this range. However, we can reconcile our prediction with
the experiment by adding the noise induced by cavity losses to the picture. The
probability of escaping the minimum and delocalizing across the circle in Fig. 3.4
is given by Peloc ~ exp(—+/NpnAV/K), where AV oc at oc A — Ac|? is the depth
of the minimum while x is the cavity loss rate. Note that the noise is suppressed
by a factor 1/,/Npp, if we assume a coherent cavity field. With the experimental
value /27 ~ 200kHz and with AV ~ |A¢| which is determined by the square
of the Goldstone mass according to the first equality in Eq. (3.23), typical values
Npn = |af? ~ 100 lead to an escape probability of Pyeloc = exp(—0.02) ~ 0.98. We
stress that our estimate for AV is an upper bound and thereby our escape prob-
ability provides a lower bound. A critical test for this scenario of a restoration of
the U(1) symmetry by cavity loss induced noise, is that with an increasing number
of intracavity photons the escape probability is expected to decrease exponentially
like

Pieloe o< eXp(—NS}/f) . (331)
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3.2.4 Effective action for low-energy excitations

In this final section we will discuss the nature of the low-energy excitations of the
cavity field in the superradiant phase. For this purpose, we expand the effective
action derived in section 3.2.2 up to quadratic order around the minima of the
mean-field potential discussed in section 3.2.3. The resulting time-dependent de-
viations a;(7) can be expanded in terms of discrete Fourier-coefficients a; , which
determine the spectrum of light field fluctuations in the cavity. Thus, the effec-
tive Goldstone and Higgs mode appear explicitly, allowing to compute both their
masses discussed above and - moreover - their damping or inverse lifetime which
appears at finite temperature.

As described in section 3.2.2, in the thermodynamic limit the action (3.24) can
be expanded up to quadratic order in the fluctuations. Since the coupling between
atoms and the imaginary part of the cavity fields results solely in a dispersive shift,
we can integrate out the imaginary part, generating only even powers in w,. At
zero temperature the fluctuation part in dimensionless units is given by

Yy { (24 1) af o,

T=0  px£0i=12

Ser"™atty]

)

1 V. V.
4 — (¥ P 10,(0))(¥ v Tak
+ g%zl:iwn—ez(o)( o(O)IBQ:I H(0)) l(0)|aa;‘ 0(0))aind5in ¢

(3.32)

where af? is a real part of the cavity field and |¥;(k)) is the atomic wave function

with quasi-momentum k and band index [. This expression describes the scattering
of atoms from the condensate to the I'-point of an excited band in second order
perturbation theory. Since these processes are far off-resonant with respect to
the low energy excitations in the photon fields, they do not give rise to damping.
The associated spectral functions are thus perfectly sharp. The picture gradually
changes with increasing temperature, when more and more atoms occupy states
near the edge of the Brillouin zone, where low energetic photons can be scattered
resonantly. This effect can be accounted for by generalizing the effective action
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through the inclusion of thermally occupied states

SED ] = fo5E  a ,]

+ZZV/ () (0 g )

j=1,2 m,|l
R

iwn, + em(k) — (k) T

=) > Gwn)ijalaf- (3.33)

n#0 ,j

where fy is the condensate fraction. An important point is that, both at T'= 0 and
at finite temperature, the action involves only the real parts of the cavity fields and
is thus an even function of w. Therefore, it contains no linear terms of the form
iha®(t)0;a’(t) which is characteristic for a BEC described by Gross-Pitaevskii
dynamics and would give rise to equations of motion involving a reversible first
order time derivative, where no proper Higgs mode exists [184]. Since the matrix
elements respect the symmetry of the mean field action, the fluctuations can be
diagonalized in terms of Goldstone and Higgs modes ag = — sin fal® + cos falt and
afg = cos 0(1{% + sin 9a§. Upon expanding to second order in the frequency, we thus
obtain the action

S(gL) lag,am] =~ (ZGoJi + m%;) aGnaG,—n + (ZHw,% + m%{) AHnAH, —n (3.34)

€

with numerical coefficients that fulfill mg < my, as well as Zg p—1 = O(mqg,u/€r)
at small temperatures. From this action the existence of a (approximately) gapless
Goldstone mode together with a strongly gapped Higgs mode is apparent.

As anticipated, at finite temperatures the Goldstone and Higgs modes experience
losses via resonant Landau damping processes where a photon scatters against an
atom while conserving energy and momentum. The resulting lifetimes as well as
the masses of both excitations can be obtained from the spectral function A(w) =

3G (—iw + 07) which can be measured via pump-probe experiments. The resulting
spectra are shown in Fig. 3.6 for different temperatures*. For finite temperatures,
there is additional structure in the tails of the Goldstone and Higgs peaks, which
arises from van-Hove singularities at the edges of the Brillouin zones.

As shown in Fig. 3.6, the Goldstone mass increases strongly with temperature, an
effect that cannot be observed in Fig. 3.5 for the mass obtained from the curvature
of the mean field action at the global minimum. This is because in our expansion in
fluctuations about the potential minima we do not allow atoms to redistribute. We
are therefore effectively computing the behavior of photonic excitations at ”high”

4Note that up to leading order in the frequency expansion the lifetime of the modes is infinite
and we need to use the full action (3.33) in order to introduce damping.
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frequencies with respect to the timescale of atomic redistribution. The inclusion of
atomic redistribution beyond mean field would require a non-equilibrium approach
like the one employed in Ref. [185]. This would allow to interpolate smoothly be-
tween the high frequency mass, as determined in A(w), and the low frequency mass,
obtained from the mean-field potential. However, since the atomic redistribution
time is extensive in the number of atoms [185], we expect the Goldstone mass ex-
perimentally observable in large systems to correspond to the high-frequency mass
measured by the spectral function.
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Figure 3.6: Low-energy excitation spectrum in the n — w plane showing the Gold-
stone and Higgs peak with finite width close to the critical point. The
temperatures and coupling strengths A in order of increasing color sat-
uration are {T,A\} = {0,2.2} (dotted arrows), {0.5,2.3} (dashed line)
and {0.9,2.2} for the solid line.

The spectral function exhibits two distinct peaks which possess a nontrivial fre-
quency but no momentum dependence. This is a consequence of the fact that the
present double-cavity system is still an effectively zero-dimensional one. As a result,
it does not give rise to a genuine spectrum of Goldstone modes usually associated
with supersolids, where gauge and translation symmetry are broken simultaneously
in a system with short-range interactions. For such a genuine supersolid, the total
free energy can be written as an integral over a spatially varying free energy den-
sity f(T',n,vs,u) which involves thermodynamic variables which vary continuously
in space. In particular, the simultaneous presence of broken translation and gauge
invariance leads to two additional contributions in the differential of the free energy
density

df‘Tn:js-dvstTrg-dg. (3.35)

As discussed by Liu within a hydrodynamic approach [181], the term proportional
to the superfluid current density js and its conjugate variable, the superfluid ve-
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locity v, = %Vgﬁ), results in a persistent mass flow for generic supersolids or dis-
sipationless entropy flow in the absence of defects. Similarly, for the generic case
of short-range interactions where the stress tensor ¢ is linearly proportional to
the strain tensor u, the second contribution gives rise to phonons whose frequency
w(q) ~ |q| vanishes linearly with the wave vector. Due to w(q) = w(q + G) for
regular crystals, this entails a vanishing Goldstone mass w(q = G) = 0 at re-
ciprocal lattice vectors as a signature of the spontaneous breaking of translation
invariance [180]. In the present system such a Goldstone mode also exists for the
motion of atoms in the limit where m¢ can be neglected. It is associated with the
shift along the z-direction discussed in Eq. (3.18) and leads to w(G) = 0 for all
reciprocal lattice vectors G = nky + mksy with n,m € Z. In particular, the trans-
verse acoustic phonon at n = —m = 41 corresponds to the translation described
in Eq. (3.18), which is related to the indirect exchange of a photon between the
two cavities. In contrast to the standard situation, however, where the phonon fre-
quencies approach zero continuously as q approaches 0, the long ranged nature of
the interactions give rise to a finite energy gap at any q # G. The Goldstone mode
thus exists only at isolated points in momentum space, with all other momenta
being gapped.

3.2.5 Conclusions

In summary, we have studied the nature of broken symmetries, the effective Ginzburg-
Landau potential and the spectrum of the light field in the double cavity setup
realized recently at ETH [1, 2]. It has been shown that the emergent U(1) invari-
ance for symmetrically coupled cavities is slightly broken by higher order photon
scattering processes. We have determined an upper bound for the resulting mass of
the effective Goldstone mode which is consistent with the experimental results [2].
In addition, it has been shown that the ratio mqg/mpg between the Goldstone and
Higgs mass vanishes in the limit of large driving amplitudes. As an experimentally
testable prediction, we have determined the cavity noise induced escape probability
from the global minimum of the effective potential as a function of the intracavity
photon occupation which might be used for an indirect measurement of the Gold-
stone mass. Finally, the issue of dissipationless transport of particles in the double
cavity supersolid has been discussed carefully and has been compared to the case
of genuine supersolids, where this is associated with an additional true Goldstone
mode.
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Chapter 4
Interaction induced transparency

Following a short introduction into the Keldysh formalism for non-equilibrium field
theories and electromagnetically induced transparency (EIT), we develop a system-
atic diagrammatic approach for strongly interacting photons in highly polarizable
media far from equilibrium. We first discuss the limit of infinite range interactions,
where we observe that the polaritons propagating under EIT conditions experience
a first order phase transition between an opaque phase, characterized by high losses,
and a transparent phase with long-lived excitations. We then study extensions to
this approximation by inclusion of the leading corrections in the inverse interaction
range. This chapter is heavily based on the recent publications [186, 187], from
where most of the text and figures are taken.

4.1 Non-equilibrium field theory

Non-equilibrium quantum field theory is often viewed as exotic and exceedingly
complicated. Most textbooks therefore only discuss equilibrium at finite tempera-
tures [188, 189]. Superficially, there are good reasons to do so: The Keldysh formal-
ism [190, 191, 192, 193], required to treat these problems, is indeed more involved
than the Matsubara technique [194]. More importantly from a physical perspec-
tive, however, many solid state experiments (e.g. transport measurements) remain
close to equilibrium at all times and are therefore well described by linear response
theory [195]. More highly excited solid state systems, on the other hand, typically
heat up and equilibrate very quickly. Thus, for a long time there was little neces-
sity for a more involved and versatile approach. This comfortable situation changed
at the latest with the advent of experiments in ultracold atomic gases [196] and
mesoscopic [197] as well as optomechanical systems [198, 199]. While these systems
allow to control the coupling to the environment very precisely, thereby enabling
experimentalists to closely approximate equilibrium, specifically engineered non-
equilibrium setups can be realized as well. Finally, beyond (non)linear response
dynamics could be considered as too violent to be well described by diagrammatic
quantum field theory, or at least, that only exceedingly short times are accessible.
The reason behind this is secularity: If the exact solution to a simplified differ-
ential equation is known and the time evolution under an equation perturbed by
some small modification ~ € is sought after, the solution constructed following the
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Chapter 4 Interaction induced transparency

same rules as in stationary perturbation theory will, independent of the order of
the expansion, only be reliable for times ¢ < 1/e [200, 201, 202]. Similarly, the
steady state of a non-integrable system (if unique) is independent of the initial
conditions (see also the eigenstate thermalization hypothesis [203, 204]). For this
it is important, that the terms appearing in memory integrals during the time
evolution can forget, i.e. they must be allowed to deviate from the initial state in
a non-perturbative manner. Both of these issues can be dealt with by the self-
consistent methods detailed below, where all corrections due to the perturbation
of order € are fully resummed [202]. We emphasize that these problems are by no
means specific to diagrammatic quantum field theory. They are well known from
the theory of differential equations and also arise in the Born approximation of the
closely related Mori operator projection [205], where they have been addressed by
a self-consistent approach as well [206].

4.1.1 Time contours

During the derivation of equilibrium field theory, there is a single simplification,
that cannot be performed for generic out-of-equilibrium systems, thereby giving rise
to the peculiarities of the Keldysh formalism. To see what goes wrong, we follow the
book by Kamenev [197] and consider a system described by its density matrix p(t)
and evolved in time from the infinite past, where p(—o0) is known, with the time-
dependent Hamiltonian H (t) according to the von Neumann equation (throughout
this chapter we set A = 1)

duplt) = —i [ (1), p(t)] - (4.1)
The expectation value of any operator O is calculated via
(O)(t) = Te{U et Ok —ocp( =)} (4.2)

where the trace is performed over the Hilbert space and LAIW =T exp (—i ftf drH (7'))

is the time evolution operator from time ¢ to ¢, with 7 denoting the time-ordering
operator. Note in particular that LA{_OOJ evolves the system backwards in time. In
the zero-temperature formalism the expectation value is taken with respect to the
ground state and the denominator is identical to one. In a perturbative expansion
it is useful to split the Hamiltonian into a non-interacting and interacting part.
Assuming a non-degenerate ground state, one can switch on the interacting part
adiabatically between the distant past and the time ¢ of the measurement. Revert-
ing this process in the distant future, the system will return to the exactly known
non-interacting ground state |0), picking up a phase factor e’* in the process:

Uy oo, 00|0) = €L]0) (4.3)
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4.1 Non-equilibrium field theory

We can use this to modify expectation values to only involve forward evolution

0| 00t OUs— 00| 0)
<0|u+00,—oo ‘O>

(O)(t) = e L (0)U s oo, — ool 00 tOU;— 0 |0) = < (4.4)

In zero-temperature field theory, this expression is then evaluated in the interac-
tion picture, where the denominator cancels all contributions from disconnected
Feynman diagrams. While the adiabatic switching of the interactions is not nec-
essary for the derivation of the zero-temperature formalism [189], it is very useful
to illustrate the limitations of equilibrium theory. Namely, if H(¢) itself has a non-
adiabatic time-dependence, or if the system is coupled to a bath, it will not return
to the non-interacting ground state in the distant future, even if adiabatic switch-
ing is used. Therefore, while (4.2) is completely general, (4.4) is highly specific.
Already the slight modification of an initially degenerate state will in general not
satisfy (4.3).

But what about finite-temperature field theory? Finite-temperature expectation
values immediately give rise to the structure in (4.4) without any further input.
For example in a canonical description one has

_ Tr{Tre#10(r)}

O ==

, (4.5)

where 7 is an imaginary time, 7, the corresponding imaginary time-ordering op-
erator and the evolution is restricted to the interval 0 < 7 < . Apart from this
rotation in the complex plane, imaginary-time expectation values are evaluated in
the same manner as in the zero-temperature formalism. In particular, the par-
tition function Z = Tr{exp (—BH)} in the denominator cancels the disconnected
diagrams. While in general any density matrix can be written as a thermal state of
an appropriate Hamiltonian [207], no time evolution with any other Hamiltonian is
possible. In fact, real-time correlation functions have to be extracted via analytic
continuation, which is only possible because of the similar functional dependence
on H of the thermal statistical operator and the time evolution operator, and is a
topic in its own right [208, 209].

We conclude, that any non-equilibrium system has to be evolved forward and
backward in time. This could have been anticipated, given the same structure of
the formal solution to the von Neumann equation j(t) = U 0p(0)Uo . There are,
however, a few choices and generalizations suitable to treat different initial states.
So far we have initialized the system in the infinite past. This so-called Schwinger-
Keldysh contour C [190, 193] is ideal to describe stationary states and late-time
dynamics, as these are largely independent of the initial state. In general, if short-
time dynamics after some type of quench are of interest, it is more convenient
to begin time evolution at the same time as the quench (say ¢ = 0). This is
simply achieved by replacing t = —oo by t = 0 in Eq. (4.2). The resulting path
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is sometimes referred to as closed time contour [210]. Introducing this boundary,
can complicate the equations of motion and therefore initial states are in practice
limited to Gaussian density matrices [202]. One can however go significantly beyond
this and use thermal initial states by appending a path along the negative imaginary
axis to the contour. This most general contour given by

_ Tr{U_s3,0U0,:OUs 0}
Tr{td_iz0}

(0)(t) (4.6)

was first introduced by Kadanoff and Baym [192] and carries their names. By using
an appropriate Hamiltonian along the imaginary stretch, in principle any initial
state can be prepared, albeit possibly requiring an insurmountable effort [207]. For
the remainder of this thesis, we will only be interested in the steady state and
late-time dynamics and consequently exclusively deal with the Schwinger-Keldysh
contour.

To simplify notation, we label the contour-ordered time evolution operator by
Ue = U_ 400l 100, -0 = 1 and summarize the evaluation of expectation values on
the Schwinger-Keldysh contour Fig. 4.1 as

<O> (t) = Tr{a—oori-ooaﬂ-oqtoz;{t,—oofa(_OO)} : (4.7)

So far, we have focused on the comparison with equilibrium field theory and there-
fore have not yet considered systems in contact with a bath. However, since the
derivation of the Schwinger-Keldysh contour required no approximations and in-
stead only relied on the group property of the evolution operator

Z:lt,t' = at,t" Z/A{t”,t’ ) (4.8)

the same rules apply to any (deterministic) time evolution, with Ue in open systems
replaced by a superoperator acting on the density matrix.

Z/{t —00 O Z/A{+oo.,t
‘t > \ o
—) >
<€

u+oo,—oc

Figure 4.1: Evaluation of the expectation value <O(t)> on the Schwinger-Keldysh
contour.

94



4.1 Non-equilibrium field theory

4.1.2 Green’s functions

On the Schwinger-Keldysh contour (see Fig. 4.1) two-point correlation functions
of the field creation and annihilation operators ¢f(z) and ¢ () with the shorthand
notation x = {x,t} differ, depending on whether z is chosen on the upper or lower
branch. Postponing the discussion of anomalous Green’s functions to Sec. 4.7.2, we
introduce the lesser and greater single-particle Green’s functions or propagators

G=(x,2) = —i(4(x)o] ("))
G (x,2') = —ild-()d} (2') = ~[G= (&, 2)]",
where (-)* is the complex conjugation and the index +(—) indicates the choice of

upper — and therefore earlier — or lower and later branch. Moreover, we define the
time-ordered (upper index 7) and anti-ordered (upper index 7)) Green’s functions

(4.9)

(t—t)G” (z,2") + [1 - 0(t —t')] G=(z,2)
' —t)G” (z,2") + [1 - 6(t' — )] G=(w,2) ,
(4.10)

where the Heaviside theta function is chosen with 6(0) = 1 [197]. The physical
interpretation of these Green’s functions and their relations is not very intuitive.
We therefore introduce classical and quantum fields

\}Q () +6-(a")

b4(2) = = (d4@) = 6-@)) .

ba(z) =
(4.11)

which allow to express the retarded Green’s function in the simple form
GF(a,a') = —ib(t =) ([$(a), 8 (e")] ) = (Bal@)dl(=")) - (4.12)
Additionally, we define the Keldysh Green’s function by
K (@,a') = =i ({$(a), 8! (=) }) = (da(@)dli()) - (4.13)
Here, as will be the case throughout the remainder of this thesis, we restrict our

discussion to Bosons, as no fermionic models will be treated. It is convenient to
collect these propagators, together with the advanced component G4 in the 2 x 2
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matrix Green’s function

(@ Agl(x'»)
(@) (Pg(@)pg(a)) (4.14)

We notice, that the quantum-quantum propagator vanishes. In fact, only classi-
cal field operators can have finite expectation values. The antisymmetric quan-
tum fields then characterize the fluctuations around the classical solution. We
will extend upon this argument in the context of classical stochastic models (cf.
Sec. 4.1.4). Clearly the advanced propagator G4 is related to the retarded Green’s
function. In fact, one finds

GA(z,2) = [GR(w',x)]* (4.15)
as well as an antihermitian structure for the Keldysh component
GE(z,2") = — [GK(xI,J})]* . (4.16)

While we will stick to these definitions, some authors prefer to work with the
statistical function F(z,2’) = G®(z,2')/2 and spectral function

plx,z') = i(GE(z,2") — Gz, ")) , (4.17)

which satisfies the normalization p(x,x) = 1 and for scalar fields also p(z,z’) =
—23(GE(x,2")). We will instead use F to denote the distribution function defined
as the hermitian solution to

GE(z,2') = / Gl(z, a"\F (2", 2') — F(z,2")GA (2", 2'). (4.18)

It is worthwhile to take a look back at the finite-temperature formalism. In equilib-
rium, the Kubo-Martin-Schwinger theorem [195, 211] relates the greater and lesser
Green’s functions

G” (w,p) = ™G~ (w,p) - (4.19)
Consequently, G¥ is not independent of G®, but rather satisfies
GK(W’ p) =2 (2713((&)) + 1) GR(wa p) ) (420)

where np(w) is the Bose distribution. With the distribution function F' fixed to
F =2npg + 1, there is no need for a Keldysh contour, instead one can enforce the
Kubo-Martin-Schwinger condition by using Green’s functions in imaginary time
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with periodicity 8, which brings us back to the well-known Matsubara approach
with the imaginary-time Green’s function G(wy,,p) = 0(m)Gf(iwm,p) + (1 —
0(m))G (iwm, ) = [G(—wm,p)]" [189] defined on bosonic Matsubara frequencies
Wy, = 2mn /B fixed by the periodicity 8 = (kgT)~!. It is in fact the Kubo-Martin-
Schwinger relation that allows to prove Wick’s theorem for imaginary-time Green’s
functions [188].

4.1.3 Diagrammatic field theory

With the basic definitions in place, we can now tackle the description of an inter-
acting system. First of all, for any, possibly open and interacting, system we can
introduce the partition function

Z = Te{lep(—o0)} = 1. (4.21)

As we have mentioned before, the analogous property is not true in the standard
zero-temperature formalism. Despite its simplicity, we can still use the partition
function to define the generating functional as the partition function obtained from
the time evolution perturbed by an operator O that couples to a field J (t). Since
this field can act on both branches of the Schwinger-Keldysh contour, we can split it
into a symmetric (classical) and antisymmetric (quantum) part H — H+O4 J (t)—
O_J_(t) = H 4 OgJa(t) + OaJy(t). Note, that the minus sign on the backward
branch of the contour is an immediate consequence of the reversed direction of the
time evolution. Denoting the perturbed evolution (super)operator by Z/A{C[Jd, Jqls
the generating functional is simply given by

Z[Ja, Jo] = Te{le[Ja, J]p(—o0)} . (4.22)

It is convenient to write the generating functional as a path integral over coherent
states. The procedure for doing so is very similar to that of the equilibrium coherent
state path integral and we will therefore only provide a brief summary, highlighting
the role of the time contour C and the effect of an interaction with a bath. For a
more detailed derivation see Ref. [44].

Let us consider a system with Hamiltonian H coupled to a Markovian bath by
a Lindblad operator L. Its time evolution is described by the Liouvillian £, which
acts on the density matrix as a superoperator:

Bp = Lp = —ilH, p| + (LpLT - % {LTL, p}> . (4.23)

Following the same procedure as in equilibrium, we now introduce a resolution of
unity in terms of coherent states |¢), defined as the eigenstates of the annihilation
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operator (|¢) = @|¢)), which reads
o [59 oo
s

In this basis, the density matrix at time ¢,, can be expressed as

P) (9| - (4.24)

dpy nd¢? , do—_ ndo* , .. .
p(tn) :/ ¢+,7T¢+, ¢ Wﬁb M o~k nP4in ¢7’n¢7’n<¢+,n|p(tn)‘¢)—,n>’¢+,n><¢—,n"
(4.25)

Note that, as opposed to the zero-temperature formalism, where a pure state is
evolved in time, we had to introduce two unities, one to the left and the other
to the right of the density matrix. Using that for coherent states normal ordered
matrix elements are simply evaluated by replacing the operators qAS and gZST by fields
¢ and ¢* — as in (¢/|f(¢, d1)|p) = f(¢™*,¢) — one finds the density matrix at the
infinitesimally later time %, = t,, + Jt to be given by

b ndd?, ,, db_ ndd®
rnloltns o) = [ EL R o)

w QI0t(— b4 niDT =0T L i0G n—iL( Pt nsbL )

Here, we have used Eq. (4.23) and neglected higher orders in dt, which has allowed
us to reexponentiate the time evolution in the second line. Again, since the Liou-
villian £ acts on p from both sides, this representation requires us to define the
supermatrixelement

L(P+n, 0% ) = (Dt i1 L (|040) (P n]) [0 nt1) - (4.27)

Repeating this procedure along the entire time contour with a complex field ¢(z)
coupled to the source J(z) provides us with the path integral formulation of the
generating functional

Z[Ja, Jq] = /D[¢c1, ¢q]ez‘8[¢c1,¢q]+(fd:cJ:l(a:)¢q(:v)+J§(x)¢c1(a:)+c.c.) ' (4.28)

with the Keldysh action
Stowo) = [ de(dti00s — 0" 06— iL(6s,60) . (129)

We point out the reversed time evolution along the backwards branch, evidenced
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by the negative sign of the second term. Following a Keldysh rotation this becomes

oo

* .. . 1
dt {¢Cllat¢q + ¢qzat¢cl —iL | —

V2

1

(¢C1 + ¢q) 3 \/5

(¢a £ %)ﬂ } :
(4.30)

Sloadal = |

Assuming that £ is normal ordered a simple construction emerges: The Keldysh
action is obtained by replacing operators acting from the left (right) on p by fields
on the forward (backward) branch of C. In particular, for the Markovian example
considered in (4.23) one finds

| L1, .
(b 6,) =1 (H- — Hy)+ | L1 — D (L Le+ L0, (431)

where H, (_y and L, (_y depend only on fields on the forward (backward) branch.

In any field theory, except for the highly specific case of a zero-dimensional clas-
sical field, expectation values of arbitrary operators can only be evaluated exactly
for actions that are linear or quadratic in ¢. This is to say that any interaction
terms will have to be treated in some approximation. We thus split the action
into a non-interacting quadratic part Sy and an interaction part Sint. In general
— potentially after a suitable shift of the field ¢(z) = (¢ (z), ¢q(z))T — we can
parametrize the former as

So :i/dx/dx'(b*(x)A(x,x')(b(x’), (4.32)

where A(z,2’) is a 2 X 2 matrix. The generating functional then evaluates to

. ef dz [ dz'J*(z) A~ (z,2") I (2')
23] = det A ’

(4.33)

where we have introduced J(x) = (Ji(z), Jo(x))?. Moreover A~!(x,2") denotes the
inverse of A(x,z’) with respect to the indices {a, b} € {cl,q} and the coordinates
z and /. Using the fact that Z[0,0] = 1, we find that the denominator is equal to
unity. This result now allows to calculate the expectation value

- S2Z[J%, J]
Ty — cl> 7q — a1 ’
A Lo CEUR (4.34)
Comparison with (4.14) yields the identification A(z,z') = —iG~(z,2'). In a

translational invariant system in equilibrium, the propagator will depend only on
x — 2’ and the inversion is trivial. In a general non-equilibrium setting, however,
it can become a formidable (numerical) challenge. Following the same procedure,
all expectation values of higher powers of the fields factorize into products of bare
Green’s functions as well. Of course, this is nothing else than Wick’s theorem,
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which therefore holds even in a non-equilibrium situation, provided the associated
effective action is quadratic.

Let us, as an example, consider the contact interaction
g * 2 * 2
St = =3 [ dz (64061 @) = (0" (@)0-@)’]

— _% /da: (081 (2) 035 (%) ber () g () + 3 (2) D (x) dg () pg(2) +c.c.] .

(4.35)

Note, that any unitary time evolution will in general be antisymmetric on the
forward and backward branch, which becomes apparent from the relative sign in
the first term in Eq. (4.31). As a consequence, there is necessarily an odd number
of quantum fields involved in each scattering process. We will distinguish between
classical vertices, involving a single quantum field, and quantum vertices with three
or more. Following the separation of the action into Sy and Sint, the propagator of
the interacting system is now accessible via perturbation theory:

O(a. /) = =i | DIg", @16 (1)o7 (') (1+ iSim (8", 8] + O(E,)) e 4.
(4.36)

The first term is just the bare propagator Gy and when evaluating the others, we
notice, that all expectation values (S}, [T, @])s, with some power n € N vanish.
This is a direct consequence of Z = 1, which is true with and without interactions.
Thus, we recover, that indeed Z is the generating functional of all connected dia-
grams. Clearly, this is equivalent to W[J*,J] = In (Z[J*,J]), but — as opposed to
equilibrium field theory — here the logarithm is not necessary. In particular, in the
context of disordered systems, this is an important simplification [197] that is also
found in the closely related Feynman-Vernon theory [212, 213]. We exemplify this
with the one-loop correction

GRl loop(x7 1‘,) - G(J){(x> $/)
=4 [ DI&", Bloa(@)0i @)l eI
= g [y (34(=ba()) (8L )da@) ((Gh@)aw) + @ 0)da(w)))
(3 W)Pa(@) (31 w)ba®))| = $(BL)da(@)) (Sin)

=ig/dy G(y,a") [GX(z,y) (G* + GF) (y,y) — G*(z.y) (G (y,y) +1)]

(4.37)

—ig /dy Gz, y)G (y,2") [GX (y,y) +1] |

where the second equality follows from the application of Wick’s theorem and the
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observation that <q§£¢3q> = 0. Note that the prefactor can either be derived from
the symmetry factors, or by directly collecting all contractions. We subsequently
have used Z = 1 to remove the last (disconnected) term ~ (Siy;) and in the last
line employed Egs. (4.9) and (4.10) to conclude that at equal times G®(z,z) =
—GA(z,2). Note, that the commutation relations

Ba(@), 0l3(2)| = 0a50(x,2) (4.38)

where {a, 8} € {q,cl} have to be considered when identifying the normal ordered
expectation values with Green’s functions. Here this gives rise to subtraction of
the vacuum value GE (y,7) = 1 and in equilibrium it is responsible for the reverse
propagation direction of the Green’s function in the Hartree loop. Nevertheless,
this effect had not been taken into account in the initial paper using the Keldysh
formalism on the open Dicke model [214]. A similar calculation as in (4.37) finds

G5 1 1oop (7, 2') — GE (2, 2)
= 4 [ D", @loa(@)ois(@) sl @le S0
— g [dy (30 L)) (3] )dale)
(0l () da ()l () da () (B (1)da(y)) + (Bi(1)daw))
(04 (2)da() L) da(@)) (DL ()aw)) + (] )daw)))
+(Bly(2)da () (B w)da (@) (Bly(y)da(y))| = (8l @')da @) (Sm)

zig/dy (G (z,y)G" (y,2') + G (2,y) Gy, 2)] [G (y.y) +1] .
(4.39)

Furthermore, the property [Goly, = 0 results in the same property for the dressed
Green’s function to all orders in the coupling strength g. Clearly these calculations
are unpleasant because of the combinatorics related to the causality indices q and
cl. The same problem also arises with anomalous Green’s functions, that appear
in phases with broken particle-number conservation symmetry, and so it is useful
to proceed along the same lines as one would for a Nambu structure. In particular,
we introduce the graphical representation in Fig. 4.2 for the Green’s functions. We
can then identify the one-loop result (4.37) with Fig. 4.3 and conclude simple rules
relating diagrams of identical topology, but differing in internal causality indices.
The resulting cancellations between diagrams, together with the Kramers-Kronig
relations 4.4.3 are of paramount importance to the practical applicability of the
Keldysh formalism for pen-and-paper calculations.

In general, after having canceled all disconnected diagrams, we can formally
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G (x,2") Gz, 2) Gf(x, )
- > - —_— - === =
e Pa() dhi(x) q(7) q(2) Pa()

Figure 4.2: The widely used graphical representation of the non-vanishing com-
ponents of the Green’s function G is obtained by identifying classical
propagators with full lines and quantum propagators with dashed lines.
Both retarded and advanced Green’s function change the character of
the field during propagation. Note, that this notation is consistent with
[188], but differs from [197].

Gy
GF GE GE
GE .5 L NN

1 loop —

Figure 4.3: In linear order in the coupling strength g the retarded Green’s function
is shifted by a frequency and momentum independent Hartree shift that
is proportional to the density n(z) = (iG* (z,2) — 1)/2.

rearrange the perturbation series by collecting all one-particle irreducible (1PI)
diagrams into a self-energy matrix

A r.
D)= (gnie ) s (4.40)

By definition it includes only those diagrams, that do not become disconnected,
when cutting a single line. In our simple example, we identify

Efloop(:n, P)=g (iGK($, x') — 1) 5(z —2') and E{ﬂoop(x,m’) =0. (4.41)

One can easily confirm, that X(z,2’) always has the same causality structure as
G(z,2’) and consequently satisfies

SB(z,2) =[S, 2)]  ~ 0t —t) and EK(x,2)) = - [SF (@ 2)]" . (4.42)

The full propagator can then be viewed as the sum of all chains of self-energies,
joined by bare Green’s functions Gy, where, due to the 1PI construction of the
self-energy, no duplicates appear. One therefore ends up with the Dyson series

G=Gy+GpoXoGy+GyoXoGyoXsGo+..., (4.43)

where o denotes the convolution in space and time with a simultaneous matrix
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product in the Keldysh index {cl,q}. Summation of this geometric series for the
retarded Green’s function gives the same result as in equilibrium theory

GR = (GE—nR)™, (4.44)
For the Keldysh component however one finds
G =GPo (X - Df)oGA, (4.45)

with DK (QO )272. In a perturbative treatment, one can simply plug the bare
propagator Gy into the self-energy and obtain the dressed Green’s function. How-
ever, as we had briefly mentioned before, this amounts to a step-wise augmentation
of an approximate solution to a differential equation, which runs into problems with
secularity and non-universal steady states. One can avoid both of these shortcom-
ings by a self-consistent solution, where 3 becomes a functional of the dressed
propagator. As a result, the two Dyson equations for G and G¥ become coupled
and have to be solved simultaneously, together with the integral equations for the
self-energy.

If one is interested in relatively short time evolutions, one can simply do so,
by integrating the Dyson equations forward in time, starting from a set of initial
conditions at t = 0. To find the steady state, this procedure is impractical and
instead it is much more efficient to choose some initial G and alternatingly find
Y[G] and G[X] until convergence is achieved. We will discuss this procedure and
possible extensions on concrete examples in the following sections and chapter 5.

Formally, self-energies consisting of one-particle irreducible diagrams with fully
dressed propagators are obtained via the two-particle irreducible (2PI) effective
action, which we will briefly introduce now. Similar to the generating functional
WJ], we can also define the generating functional for connected Green’s functions
by introducing the additional matrix-valued source term R(z,y):

W1[J,R] = —iln Z[J, R]

——itn | [Dlglexp (1816 + i [dy I@)oalo) + Ta@onte) (4
/de¢() u,@¢@0].

Note, that in order to simplify the notation we use a real field ¢ and in keeping
with standard notation, we do not use Z[0,0] = 1 to linearize the relation between
Z[J,R] and W[J,R]. The field expectation value and the Green’s function are
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obtained via

2) = oW |[J, R]
gaﬁ(%xl) = QW - ¢a(3?)¢6(37/) )

where @ is the complement of the causality index «. The two-particle irreducible
effective action I'[¢, G] is obtained via the Legendre transform

¢, G] = W[J, R] —/dx (mja(x) —/dac dx MRW(%:U/) . (4.48)

The equations of motion of the field expectation value (¢q(z)) and the Green’s
function G(z,2’) follow upon removal of the external sources:

il = —tale) = [ da st 050" =0

o (4.49)
5F[¢7 g] _ _ER (z x/) =0
5Gus () o il .

It is convenient to separate I' into a one-loop contribution I'g and a part resulting
from interactions between dressed particles denoted by I'int

L[, G] =Tol¢,G] + I'int[@, G

i I . (4.50)
ZS[¢]+§T1“1HQ +§T1'g0 g+Fint[¢7g],

where the trace is taken with respect to the space and time coordinate x as well as
the causality index.

In equilibrium theory T'iyt[¢, G] is known as the Luttinger-Ward functional ®[¢, G|
[215, 216]. Eventually this formalism describes the same class of self-consistently de-
termined Green’s functions that we had already introduced before. And conversely,
we conclude that beyond mitigating the problems of secularity and non-universal
steady states, they also form so-called conserving approximations. That is to say,
that integrals of motion are not violated by any approximation that can be derived
from a 2PI effective action or Luttinger-Ward functional [217, 218, 192]. Since we
know how to satisfy this constraint by solving the proper classes of self-consistent
self-energy diagrams, we will skip these formalities in all explicit calculations, while
well aware that the resulting theory — where applicable — would be identical if we
were to derive it via the 2PI effective action. As we will see in the description of in-
teraction induced transparency, not adhering to the strict rules of the 2PI effective
theory, allows us to introduce modified Feynman rules, that correctly account for
the finite polarizability of neutral atoms in the limit of low polariton density with-
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out the need of interaction terms in the Schwinger-Boson description and without
sacrificing the universality of the steady state (see Sec. 4.4.4).

4.1.4 Classical stochastic models

Before moving on to explicit physical systems, we return to the distinction between
classical and quantum vertices. We have seen in chapter 2, that systems with
long-range interactions are often well described by classical approximations. It is
therefore useful to examine the treatment and properties of classical models in the
Keldysh path integral.

Consider the Langevin equation

F(Xa(t),t) = &(Xa(t),1) (4.51)

of a classical stochastic model with a deterministic function F(X(t),t) and an
external random force £(X(t),t) with Gaussian statistics. That is to say that all
moments of its distribution are fixed by the two-point correlator

<£(Xcl(t)v t)g(Xcl(t/)7 t/)>
_/D [5] g(XC (t), t)f(Xcl(t/), t/)e%fdtldtZGgl(Xcl(tl)ztl ‘Xcl(t2)’t2)£(Xcl(tl)’tl)g(Xcl(tZ)»tQ)

= iGe(Xa(t), t| Xa ), ) .
(4.52)

One might for example choose F' to describe the damped harmonic oscillator

o dV(Xa)

F(Xcl(t)v t) = Xa+ 'YXCI +—, (453)
chl

with X the deflection from the equilibrium position and friction force —fde.
Arguably the simplest random force is obtained in case of white noise

Ge(Xa(t), )| Xa(t)),t') = =2ivTé(t — ') , (4.54)

where the normalization ensures that the classical limit of the fluctuation-dissipation
theorem is satisfied. Note, that the classical model has only one time-dependent
variable X (¢) that evolves forward in time, and, without any backward evolution,
no quantum field exists. Furthermore, the energy conserving potential V(X)) and
the corresponding force —V/(Xy) = —dV(Xq)/dX can remain completely gen-
eral. We can express (4.51) as a functional integral by rewriting the delta function

5(f(Xa, ) = / D[XJe~2 / dXal (X 6) (4.55)

The suggestive choice to name the auxiliary field X, will soon become apparent.

105



Chapter 4 Interaction induced transparency

With the help of the Hubbard-Stratonovich transformation

e—2i Jdtdt” Ge(Xa(t),t| Xa(t'),t) Xq(t) Xq(t')

- / D[] 341G (Xa 011X (1) )X 0.0ECEd) )2 it 060 %(0) (56)
one immediately finds for any expectation value
(O[Xa)]) = / D[ X, Xq]O[Xg]e Xl (4.57)
with the classical action
S X, Xq] = —2/dt [XqF(Xd) +/dt’ Gg(XCl,th,t’)Xqu} . (4.58)
For the choices (4.53) and (4.54) this action simplifies to
S[Xa, Xo] = / at {2, [Ra +9%a + V/(Xa)| + 40T (X2} . (459)

The procedure of transforming a Langevin equation into a path integral was in-
troduced by Onsager and Machlup [219] and later extended to fields by Martin,
Siggia and Rose as what came to be known as the MSR method [220]. It makes
classical stochastic equations accessible to the powerful tool set of diagrammatic
perturbation theory, while conversely the reverse mapping is often more favorable
for numerical evaluations.

At first glance the MSR action takes the same causal form as the generic action

of a quantum system discussed in Sec. 4.1.3. There is however one important
difference, namely the interaction consists only of classical vertices. In fact, if we
demand, that the MSR action (4.58) is independent of the reduced Planck constant
h, we find X4 ~ h and consequently in the classical limit 4 — 0 only classical
vertices survive. In quantum systems with long-range interactions, we therefore
expect classical vertices to dominate the interaction.
We can thus conclude, that beyond the very intuitive causal structure, the Keldysh
rotation has the additional advantage of making the classical limit of a quantum
field theory particularly clear. Vice versa, a system will only retain its quantum
character on all length scales, if the quantum vertices remain relevant [47].

4.2 Electromagnetically induced transparency

We now introduce the concept of electromagnetically induced transparency (EIT),
which will serve as the foundation to the treatment of interacting polaritons by
means of the Keldysh formalism. We will especially focus on the modified propa-
gation properties of photons under EIT conditions and the influence of noise and
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decay. We will briefly revisit this subject in Sec. 4.5 to demonstrate that the
Keldysh approach with modified Feynman rules (cf. Sec. 4.4.4) exactly reproduces
the limit of low polariton densities.

EIT is typically studied in atomic gases, where narrow transition linewidths are
easily accessible, but extensions to solid state systems have been reported as well
[221]. In its essence EIT is quantum interference between two optical pathways
[222]. Tt is therefore enough to consider three energy levels of the medium, which
we will label by |g), |s) and |e), where the first two have the same parity, therefore
forbidding an electric dipole transition. The energies of these states are of no rele-
vance and we therefore choose the most common, so-called A-scheme (cf. Fig. 4.4).
For the moment, we will assume, that the ground-state level |g) is coupled to the

P)/edeph
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rysdeph
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Figure 4.4: The prototypical A-scheme for EIT. Transitions between the ground
state |g) and the excited, decaying state |e) as well as between |e) and
|s) are driven by coherent light fields of amplitude Qp and 2 respec-
tively. We allow for these light fields to be detuned against the atomic
transition and include dephasing noise for all levels but the ground
state. States |s) and |g) are supposed to have the same parity, prevent-
ing dipole transitions and thus spontaneous decay of the former.

excited state |e) by a coherent probe field with Rabi frequency Qp and energy wp.
Similarly the transition between |e) and |s) is coupled to a control field with Rabi
frequency €2 and energy le . In addition, we allow for decay from the excited
state to |g) and |s) and include dephasing noise — for example due to collisions in
the medium — in states |e) and |s). The resulting master equation in the rotating
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frame, after application of the rotating wave approximation is

% _ %[H(t), ol + 22 (2g) (elple) 9] — [e) (elp — ple)iel)
n 77 (2ls)(elple)(s| — le)(elp — ple)(e])

’Ys deph

+ 5 (2ls)slpls)(s] = [s)(slp = pls)(s])

ryedeph

+ 258 (9le) el ple) el — le) (el — ple) el)

(4.60)

with the time-dependent Hamiltonian
H(t) =h(wele){e| + ws|s)(s|)

. (o —ae— D 4.61
—h <Qpe’(‘“e_"“’)t\e> (9] + Qez<we WeTHL Me)(s] + h.c.) . (4.61)
Notice, that the Markovian loss terms are unaffected by the transformation to the
rotating frame. We first focus on the linear susceptibility of the medium in case of
a weak probe field. To linear order in {2p one finds

2 9 -1
np . Q
x(wp) = — ;g wp — We +17e/2 — o , (4.62)
€0 wp —ws —wy,’ +17Ys/2

With e = Yeg + Ves + Veqepn A Vs = Vsge,n @s Well as the atomic number density
n and dipole moment p.,. Notice, that since the steady state satisfies pyy ~ 1,
no distinction between decay and dephasing is possible and both effects broaden
the transitions in the same way. Furthermore, we have set both Qp and €2 to real
values, which requires both fields to be phase locked for sufficiently long times. If
this is not satisfied, further losses will be induced [223]. Real and imaginary parts
of the susceptibility y are shown in Fig. 4.5. The losses experienced by the probe
laser, which are determined by Sy (wp), have a very pronounced minimum at wp =

ws + w(Ll), while the refractive index satisfies ng = \/1 + Ry (ws + w(Ll)) = 1. There

is thus no reflection on the surface of the material and the probe photons propagate
for much longer distances, than they did without the control laser field, which led
to the name electromagnetically induced transparency first coined by Harris et al.
[224]. However, the slope of Ry is large, which implies that the propagation is
much slower than in vacuum. We emphasize, that x(ws + w(Ll) ) = 0 only fixes
the linear refractive index to be equal to unity, while higher order susceptibilities
in the EIT window are in fact large, enabling the use of EIT for highly efficient
frequency up conversion [225, 226] and multiwave mixing [224, 227, 228]. As long
as 7, is negligible, all of these properties are impervious against a finite detuning
wp —we # 0 and losses 7. If on the other hand losses of the metastable state |s) are
large enough, so that 2 >> 7,7, cannot be satisfied, the EIT window is destroyed.
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This strong sensitivity to dephasing indicates, that in fact the unusual behavior of
the susceptibility is based on destructive interference between atoms excited from
the ground state and state |s).

1 (1)
wP~w5~w(L) wp —Ws — Wy,

Figure 4.5: Real and imaginary part of the linear susceptibility (4.62) with (blue)
and without (dashed, red) control laser € = 0.2. Here, in the absence
of decay and dephasing from the metastable state (ys = 0), the sus-
ceptibility vanishes at wp = ws + w(Ll). The remaining parameters are
we = 0.3 and 2n,ugg = ¢oh in units of v, = 1.

To understand this, we consider the stationary solution to Eq. (4.60) at the EIT
condition wp = wg + w(Ll) in the ideal scenario, where v, = 0, and find the pure
state

[¥) (©g) — Qpls)) - (4.63)

B 1

02+ 0%
Clearly, this state is lossless and therefore a dark state. The concept of creating
these states, known as coherent population trapping (CPT), though closely related
in spirit, long predates EIT [229]. As was realized by Boller et al. [222], the relative
occupation and sign of the states |s) and |g) in the dark state W results in a perfect
destructive interference for the excited state. In other terms, the direct excitation
lg) — |e) cancels against the indirect pathway |g) — |e) — [s) — |e).

With the relative population of |s) and |g) in the dark state controlled entirely by
laser fields, changing these adiabatically transfers atoms between the two states.
Specifically, if initially all atoms are in the ground state, €2 is switched on and
then turned off while 2p is increased. This eventually transfers all atoms to state
|s), without ever populating the excited state. Since the other bright eigenmodes

of (4.60) are detuned to we —wp + \/(we —wp)? 4+ Q% + Q2, this transfer can be
performed very rapidly, if sufficiently strong lasers are available. Therefore the

stimulated Raman adiabatic passage (STIRAP) [230, 231] has become an important
technique in state preparation.

109



Chapter 4 Interaction induced transparency

We now return to the propagation properties of the probe photons. When the
electric field Ep = Epy/Twp/(2¢€p) enters the medium, it transfers part of its energy
into the dark state |¥) and thus hybridizes with the atomic pseudospin excitation.
Indeed, using the ansatz of a mixed light-medium excitation, the so-called dark-
state polariton

D(2,t) = cos OEp(z, 1) — sin Oy/npey (2, t)ei 2k (4.64)

one finds the mixing angle [232]

wp dRx(wp)

tanf =
an 2 dwp

(4.65)

Here Ak is the difference in wave-number between the control laser and the probe
field, projected along the direction of propagation of the probe photons, chosen as
the z-axis. At a fixed position in the medium a light pulse that passes by performs
a stimulated Raman adiabatic return, i.e. a STIRAP from |g) to |s) and back. This
delays its propagation and one finds the modified wave equation

0 0
[(% + CCOS2(0)8z] O(z,t)=0, (4.66)

where we identify the group velocity v, = ccos?(f). Importantly, if we = wp,
the real part of the linear susceptibility is an odd function of wp — ws — w(Ll) and
consequently

>R

Fxlwr) ~0, (4.67)

dw? (1)

Wp=ws—wp

which implies that a weak and sufficiently long probe pulse that is therefore tightly
focused around wg + w(Ll) will experience no spreading of the wave packet [233].
Clearly, the more spin-wave character the polariton has, the slower its propagation.
This has famously been used to slow down light to the speed of a cyclist (8 m/s)
[234] and, together with an adiabatic switch-off of the control laser, even to a
complete stop [235, 236, 221]. Using counterpropagating control lasers, it has also
been demonstrated, that light can be stopped and recovered without a complete

rotation to spin-waves [237].

In vacuum photons do not interact and therefore need a nonlinear material to me-
diate their mutual interactions. Typically these nonlinear optical effects are small.
The adiabatic rotation from pure photons to polaritons with a large admixture of
the metastable atomic state, however, creates the opportunity to directly imprint
strong interatomic interactions onto photons. Consequently, in combination with
strong atomic Rydberg interactions, EIT has turned out to be a key ingredient

110
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in achieving single-photon nonlinearities [3, 238], potentially allowing for efficient
transmission, manipulation, and storage of quantum information [4]. Furthermore,
single-photon nonlinearities pave the way for the study of novel quantum many-
body phenomena with strongly interacting photons [3].

4.3 Diagrammatic expansion in the inverse interaction
range

In the following, we will investigate the properties of polaritons in materials made
of uncharged but polarizable atoms with strongly interacting excited states. This
implies that the interaction between two photons is a higher order process, requiring
the intermediate excitation of the atomic dipoles. Interactions between polaritons
in such systems are naturally long-ranged (as the relevant electromagnetic modes
typically extend over many atoms) and retarded (as the time scales of photons and
atoms can be respectively tuned to be comparable). Finally, interactions inherited
from atomic dipoles can be strongly dissipative due to the spontaneous decay of
excited atomic levels. This feature in particular has been shown to be capable of
introducing novel many-body phenomena, whereby correlations can be induced by
dissipation [43, 239, 240).

We emphasize that the theoretical description of such strongly-interacting, driven-
dissipative systems of photons in the many-body regime constitutes a challeng-
ing task. Specifically, the large interaction cross sections prevent a perturbative
treatment, the driven-dissipative nature does not allow to exploit fluctuation-
dissipation relations and prohibits, for instance, the application of Monte Carlo
methods, while the long-range interactions additionally hinder an efficient em-
ployment of tensor network methods, even in one spatial dimension. Neverthe-
less, a few theoretical approaches have been developed for the few-body regime
[241, 242, 243, 244, 245], while effective field theories have been applied in the
many-body regime [246, 240, 247, 248, 249].

Here, we introduce a systematic, diagrammatic approach for the computation of
non-equilibrium correlators for a many-body system of strongly interacting photons
in an optically dense medium. If the characteristic photon propagation range Lp
in the medium is much larger than the spacing a between the atoms, we show that
a controlled diagrammatic expansion in powers of a/Lp can be performed, even if
the collective light-matter coupling gp within the mode volume of the photon is
large. This perturbative expansion in a/Lp is always valid when the single-atom
cooperativity C% = (9% /v#)(a/Lp) is much smaller than unity, where v and & are
the characteristic dissipation rates of excited atomic levels and photons, respec-
tively. The quantitative validity of our approach can, however, even be extended
to a regime of large single atom cooperativities C¥* £ 1, provided that the den-
sity of atomic excitations is low enough to neglect saturation effects. In such a
situation, photons would not experience any nonlinearity or interactions, unless
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the atoms are subjected to additional, mutual interactions which the photons can
inherit. If inter-atomic interactions are present and if their range Lr/a > 1 is
large, we show that the subclass of diagrams describing scattering processes with
momentum transfer between photons is suppressed by a factor ~ a/Lp with re-
spect to the remaining Hartree-like diagrams. In this case we are able to perform
a self-consistent resummation of the subclass of Hartree-like diagrams and obtain
quantitative results in a strongly non-perturbative regime, which indeed shows im-
portant collective behavior and even phase transitions.

From a quantum-field-theory perspective, this chapter constitutes a first attempt
to develop a non-relativistic version of Quantum Electrodynamics (QED) where the
matter degrees of freedom are dipoles instead of charged electrons and two further
important differences: i) the photons are driven and (partially) confined in space,
and ii) the light-matter coupling is far away from the perturbative regime. From the
applied perspective, on the other hand, we illustrate specific possible realizations
in experiments involving interactions mediated through waveguide photons, for
example in photonic-crystal-waveguides [17, 250], as well as Rydberg interactions
[18, 19, 251, 20, 21, 238]. We moreover consider atomic level structures allowing
the photons to propagate under EIT conditions [252, 233].

The basic idea underlying our diagrammatic approach can be understood in
quite general terms. Let us consider a system of two completely different types of
particles, which we will for later convenience call photons and atoms. For now we
will keep these particles as generic as possible and only fix their mass: Photons
are very light (or even massless) and therefore propagate very fast and over long
distances, whereas atoms are considered as comparatively heavy, localized and
thus slowly moving. Furthermore, neither atoms nor photons shall interact among
themselves, that is, excited atoms can only interact via exchange photons and
photons only via the nonlinear susceptibility of the atomic medium, which results
in a Yukawa-type coupling. The stark contrast between the two free theories of
atoms and photons allows for a controlled expansion, even in the case of strong
collective light-matter interactions. This is due to the large effective mode volume
of the photon, suppressing the single-atom cooperativity and thereby providing a
useful expansion parameter.

To make this argument more concrete, let us for simplicity consider the specific
case of photons with a group velocity c that couple with a rate g to the collection
of all atoms within an effective mode volume L. We furthermore assume that
the atoms are confined to fixed positions in a one-dimensional chain. Moreover,
photons are lost out of the one-dimensional medium at a rate x and the atomic
transition giving rise to a dipole moment takes place between a lower stable level
and an excited level decaying at a rate . To avoid the trivial case of the steady
state being the vacuum, the atoms are additionally excited by a resonant coherent
light source at a Rabi frequency ). For this simple model it is easy to write both
the atomic and the photonic Green’s functions in a perturbative expansion in the
coupling strength g. Representing the photonic propagator G, with a wavy line
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and its atomic counterparts G, with a straight line, one obtains to order g the
diagrams depicted in Fig. 4.6.

photons:
ANANN + /VWV‘QMW\/\

Y

Figure 4.6: Illustration of the breakdown of the perturbative expansion of photonic
and atomic propagators in second order in the coupling strength g.
Wavy lines represent photons, straight lines atoms. In the case of a
large collective cooperativity the self-energy correction to the photon
propagator (second diagram in the first line) becomes large. The same
is true for the corrections to the propagator of the atomic state in the
second line due to the last contribution, which strongly couples stable
and excited atomic states. Large collective cooperativities thus require
an improved approach (cf. Fig. 4.15).

— 4

The leading correction to the bare photonic dispersion due to the atomic medium
is given by the polarization bubble shown in Fig. 4.6a). Performing the correspond-
ing convolutions, one immediately obtains that on-shell each correction to Gy, is
proportional to g2/, which implies that the expansion in powers of g breaks down
if the collective cooperativity C = g%/(yx) becomes of order unity. Equivalently,
the last term in Fig. 4.6b), which is proportional to (Qg%/vk)?2, becomes larger than
the bare coupling Q2 if C' ~ 1. At the same time however, the other correction to
the bare propagator is negligible if the cooperativity per atom Cy, = ¢?/(yxL) < 1.
Here we have introduced the dimensionless effective mean free path of the photons
L = nc/k, where n is the number density of the atoms. From the point of view of
the atoms this corresponds to the effective interaction range. Thus, if this dimen-
sionless interaction range is large, the small coupling g/+/L allows for a partially
perturbative treatment, where only a small subclass of diagrams (those that are
not suppressed by powers of 1/L) has to be resummed to all orders, as we illustrate
below. With respect to the topology of the diagrams, this expansion is identical
to a 1/N expansion [65], where the atoms can appear in N different degrees of
freedom (flavors) which are conserved at each vertex.

While this expansion is already quite useful, as it allows to introduce controlled
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interactions between polaritons, it does not immediately allow to enter the regime
of strong single-atom cooperativities, where the finiteness of the Hilbert space of
each atom starts to play an essential role. To correctly account for the finite polar-
izability of each atom, one additionally has to introduce nonlinear Feynman rules,
in effect extending the theory to large single-atom cooperativities and simultane-
ously reducing the required set of diagrams to one that — under certain conditions
— can be treated exactly (see Sec. 4.4.4).

4.4 Guided photons coupled to atomic arrays

Building on the newly gained understanding that any physical system is suitable
for a 1/L expansion as long as it exclusively couples degrees of freedom that are
well localized in position space to others that are tightly confined in the conju-
gate momentum space, we will now be more concrete and apply this approach to
photons in optical waveguides coupled to an array of atoms. Large single-atom
cooperativities in such a setup are for instance reached using atoms trapped within
the evanescent-wave of photonic crystal waveguides (PCWs) [17, 250] or tapered-
nanofiber waveguides (TNWs) [22, 23, 24, 25]. The concepts introduced in this
section are, however, far more general and can be applied in similar ways to any
system of interacting polaritons, as will be discussed by a comparison with a gas
of Rydberg atoms in Sec. 4.9.

4.4.1 A microscopic model

We consider a chain of atoms trapped at fixed positions and with the internal level
structure shown in Fig. 4.7a). We assume four atomic levels in an N -configuration.
The ground state is represented by |g) and the first excited, unstable state by |e).
The transition between those levels is (almost) resonant with the energy of a set
of propagating probe photons of the waveguide with dispersion w,f . A further,
metastable atomic state |s) can be reached from |e) by stimulated emission of a
photon with energy w(Ll) into a laser mode, driven at Rabi amplitude . Since
photons can be converted into atomic excitations, the EM modes of the waveguide
hybridize with the two atomic transitions and give rise to three polariton branches.
The g — e — s A-scheme has already been discussed in Sec. 4.2. Based on the results
presented there, we expect a pronounced reduction of the group velocity of one of
the polariton branches, which therefore becomes almost dissipationless, as described
in detail in section 4.5. The direct photon-photon interaction arising from the
saturation of individual atoms is extremely weak [253]. Such an interaction can be
made much stronger by introducing a mechanism for the atoms to interact with one
another over a distance. This is achieved via an additional set of exchange-photon

modes of the waveguide with dispersion w,f . These are orthogonally polarized
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with respect to the P-modes introduced above and can be tuned separately. In
particular, it is possible to use the exchange photons to couple a second excited
state |d) to the state |s). To adjust the admixture of |d), we introduce a second
driving laser of frequency w(L2) and Rabi amplitude ;. In the actual calculations
shown here we will for concreteness choose a cosine dispersion for the P-photons
and a quadratic dispersion for the E-photons, which corresponds to the situation
in PCWs. The actual choice however, does not make any qualitative difference. In
general the parabolic approximation to wf is justified by tuning the laser frequency
in the vicinity of a dispersion minimum or maximum. In particular, tuning into
the band gap creates a bound state, since the exchange photon cannot propagate
and becomes localized around the atom that has emitted it. This bound state was
first described by Douglas et al. [250], who also investigated the strong interactions
with other atoms it facilitates within the region of its localization, that itself can
be adjusted via the detuning from the band edge.

a)

Figure 4.7: In a) the level scheme of atoms trapped near a photonic crystal waveg-
uide is shown. External lasers with Rabi amplitudes 2 and €, drive
transitions between the metastable state |s) and decaying excited states
le) and |d). The two orthogonal polarizations of the photon modes
within the PCW are (almost) resonant with the |g) — |e) and |s) — |d)
transition respectively. Without the excited state |d) the system there-
fore reduces to the well-known A level scheme. In b) a scenario of prop-
agating probe photons and localized exchange photons, realizable for
example by specifically engineered Bloch bands in PCWs is illustrated.

To make this discussion more concrete, we provide in Fig. 4.8 a sketch of a
possible realization of the level scheme presented in Fig. 4.7 with the help of PCWs.
In these systems, the two transverse light polarizations do not mix and their band
structures can be tuned independently. In fact, these engineered photon band-
structures potentially allow to control not only the photon dispersion but also both
the strength and the range of interactions [250, 254, 244], as well as the coupling
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with the environment [255]. It is therefore possible to trap the atoms in a chain
that is commensurate with the periodicity of the PCW, have them hybridize with
the propagating probe photons and simultaneously make the resulting polaritons
interact via localized exchange photons of the orthogonal polarization. The letter
being engineered such that the |s) — |d)-transition lies within the band gap. A
possible configuration for the necessary detunings between atomic transitions and
photon bands is shown in Fig. 4.7b). Alternatively, the atoms could also be held
in place in the evanescent field of a tapered fiber using tweezers [256, 257]. In this
case, the band gap of the exchange photons is replaced by their mass gap.

P-photon P-photon

E-photon

-y
s @ =m =

Figure 4.8: Proposed realization of IIT in a chain of atoms fixed in a periodic
arrangement in the evanescent field of a photonic crystal waveguide.
The probe photons propagating through the waveguide hybridize with
atoms in state |s), which then interact dissipatively via localized ex-
change photons.

Our diagrammatic approach will be developed within a non-equilibrium functional-
integral formalism. However, since for each atom the Hilbert space is finite, more
precisely the occupation of all its states sums up to one, the representation of
atomic operators in a form that is convenient for the path integral formulation has
to be given some thought. Here we will restrict ourselves to the limit of a small
density of excited atoms, where saturation effects of the medium can be neglected.
As a result, the Schwinger boson representation without explicit restriction to the
boson number of each atomic transition will suffice. In particular, the action of
the Hamiltonian in the atomic Hilbert space can be broken down into a sum of
spin-1/2 operators o, = |u)(v|, where |u),|v) € {|g),]e),|s),|d)}, which can be
approximately expressed through bosonic creation and annihilation operators:

O = alay . (4.68)

Clearly this approximation allows for an unrestricted occupation of any state of any
atom — a shortcoming which will be compensated by the application of nonlinear
Feynman rules and the restriction to low excitation densities. Since treating spins
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within a path integral formulation is considerably more complicated than bosons
[214, 258], this transformation is crucial for the tractability of the calculations that
lie ahead. Within this linear regime the Hamiltonian part of the system is described
by

1= 1Y {wedl(2)ae(2) + wsal (2)as(2) + wadh()aa(2)
+ (Qefiwil)tdl(z)ds(z) + h.c.) + (Qsefi”(i)t&g(z)&s(z) + h.c.)
s [ 5 ok an () aplh) + oF ap () ax (k) (4.69)
+gp (dp(k)eikzuf(z)&i(z)dg(z) + h.c.)

+om (ap(B)e™=uf (2)al(2)as(2) + he)] },

—Tr

Where uf/ E(z) represents the periodic/localized part of the Bloch functions of
either polarization at quasi-momentum k evaluated at the discrete positions z of
the atoms. We moreover use the standard convention for the thermodynamic limit
in a crystal with lattice constant a = 1, namely >__e'** = 27w§(k).

We include the decay of the excited atomic states via
Ve A A A A
Lop=—hY_ T ({al(2)ac(2), p} - 2a.(2)0a(2))

Cun =0 ¥ (falatr o) -2aaili)

which accounts only for independent emission from each atom, neglecting collective
effects [255]. We also allow for photon losses of both polarizations into free space,
such as through scattering or absorption:

Lapp =1 [ 57 ({far®)! ap ().} 2800 ar()])

: (4.71)
Lypp= —h/k ?E ({[&E(k)]TdE(k)ap} —2agp(k)p [dE(k)]T>

Here we have used the notation fk =LJ %. Additionally, an incoherent and
homogeneous pumping of the propagating modes with a transverse light source
shall drive the system out of equilibrium. Without affecting the physics of the
dark-state polaritons, one could simply describe this light source by a Markovian
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bath:

Lap=— /k " ({ar(h) lap®) + e, p)

(4.72)

~2[ap (k)] pip(k) - 2ap(k)pfark)]') -
The only disadvantage of this description is a large population of non-interacting
photons propagating through the system at frequencies far detuned from any atomic
resonances. In fact, a transversal light source will not couple to all modes equally
well, but due to frequency dependencies of the mode matching, will predominantly
couple to a certain frequency interval. To include this, we instead model the inco-
herent drive indirectly. First an additional Gaussian mode, with a coherence time
and length much shorter than the relevant time and length scales for dark-state
polaritons, is itself driven by a Markovian bath:

Hy = wob'b
Liosspp = —h% ({BW% Pb} - 250b5T) (4.73)

Larivepp = —h% ({%T:Pb} - 25%5) :

where b! and b are bosonic creation and annihilation operators for the auxiliary
mode with density matrix p. In a next step this mode then couples bilinearly to
the propagating photons:

s = | (Far(k) + ah(0)h). (4.74)

In the limit of strong driving, where k;/k2 approaches unity from below, this
construction, that effectively mimics a frequency dependent coupling of the system
to a highly occupied incoherent bath, is described by the following addition to the
Liouvillian

o) =5 [ [t (sate =) [lama 00 ars 5 ) 000
=o' = 1) [apas(k 1), [[dp (k)] p(0)]])

(4.75)

where the additional index I indicates that operators are to be evaluated in the
interaction picture, in which H as well as all Lindblad operators (except L,,)
contribute to the time evolution of the operators. We note that ks(¢) has an ex-
ponential decay, the parameters of which can be tuned by the properties of the
Gaussian mode. While this construction is rather cumbersome if written as Liou-
villian, in the path integral description the Gaussian mode can be integrated out
immediately giving rise to a simple, closed expression for a colored bath.
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Note that, in order to control the occupation of the propagating modes, it is suf-
ficient to choose k1 = ko such that Stokes and anti-Stokes processes are equal
in amplitude and then to adjust the loss rate kp accordingly. This construction
implies that the anti-Stokes processes are at least equally likely as the Stokes pro-
cesses, such that the bath is effectively at a finite positive temperature and cannot
be inverted. Consequently lasing or condensation of polaritons are excluded [259].
The fact that the linearized description of decay of excited atoms violates atom
number conservation is an unphysical feature of this approximation. Since a more
rigorous modeling of spontaneous decay, e.g. via the Lindblad operator de&;, is
diagrammatically equivalent to a two-body interaction, which significantly compli-
cates a systematic treatment, we compensate these spurious atom losses on average
by fixing the density of atoms in the ground state. As we will see later, as long as
saturation effects are negligible, this description of the atoms in combination with
a specific selection rule for the Feynman diagrams becomes exact (see Sec. 4.4.4).

4.4.2 Non-equilibrium functional-integral formulation on the Keldysh
contour

We now have to recast our non-equilibrium problem into a functional-integral form
on the Schwinger-Keldysh contour. Since there are several different bosonic modes,
we introduce the retarded matrix Green’s function

iGR(,a") = 0(t — 1) <[&i(a:), a}(g;’)]> , (4.76)

and the Keldysh Green’s function
iGE (2,2) = <{&i(x),d}(x')}> : (4.77)

with 4,5 = g,e,,d, E, P labeling the degree of freedom, each of which is treated
by means of the coherent state path integral as described in Sec. 4.1. Following the
procedure detailed there, the fields a(z); are rotated to quantum and classical fields
labeled as a?(x) and a;‘fl(a:) respectively. Due to causality the former have identically
vanishing correlations: <d?(x)[&j-‘]T(x’ )) = 0 and the advanced Green’s function

*
satisfies Gf} (x,2') = [Gfﬂ (', x), where (-)* denotes the complex conjugation.

For the non-interacting atoms coupled to the coherent laser fields, the inverse
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retarded Green’s function reads

[GEo] ™ (w,)

(w—wa+i%)8(8) —0.8(a -w?) 0 0
QA+ W) (w—ws+i5)5(A)  —25(A + i) 0 ’
0 —05(A —wl) (0 —we +i%)5(A) 0
0 0 0 (w+i5)o(A)
(4.78)
where we used the basis
ag(w, 2) (acl)
(aq,cl) — Qs (wa Z)
a N (w, 2) 0w, 2) (4.79)
ag(w, z)

as well as the shorthand notation A = w — w’. As it turns out, it is far more
convenient to transform into a rotating frame, where the states |e), |s) and |d)
rotate at frequencies we, we — w(Ll) and we — w(Ll) + w(Lz) respectively. Within this
frame the atomic Green’s function becomes time translationally invariant, that is

G;é(w,w’) = G;é(w)é(w — w') with

w—Ad—AS—i—i%‘i —Q 0 0
R 1-1 _ —Qy w—As+i5 —Q 0
(Gaol (@) = 0 —Q wik o |-
0 0 0 w+ig
(4.80)
and the fields shifted accordingly in frequency:
,cl
ag(w + we — w(Ll) + w(LQ), z) (ach
1
ald(w 2) = as(w + we — WE: )’ 2) ) (4.81)
e (W + We, 2)
ag(wv Z)

(1)

Here the detunings Ay = we —w;’ —ws and Ay = wg — ws — wg) between laser
frequencies and atomic transitions have been introduced. In order to avoid confu-
sion, throughout the remainder of this thesis we will exclusively work in the rotat-
ing frame. The corresponding Keldysh component of the inverse Green’s function
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within the same frame of reference is then given by

g 00 0
0  ie 0 0

Do) =10 o i 0 (4.82)
0 0 0  (3—2ny)ie

It should be pointed out, that the factor 3—2ny in the ground-state sector accounts
for the occupation of this mode with a homogeneous number density of lattice de-
fects or vacancies ny € [0, 1]. Thus, for ny = 0 the ground state is homogeneously
occupied with one atom per site (n = —1/2 41 [ %GK =1—ny=1).

A similar rotation can also be performed for the retarded and Keldysh component
of the inverse photon Green’s function, which then are given by

R 1-1 _ (w—Ap(k) +i"E 0
(Gro]  (w,k) = ( 0 w— Ap(k) + 2 (4.83)
and
K o ilﬂ?E 0
Dpolw, k) = < 0 iKkp +2in5(w)> (4.84)

respectively. Here we expressed both functions in the basis

( n (2) k) (a,cl)
(@) (y k) = | @B\W T WL, 4.85
ap (UL), ) < CLP((U + we’ k) ) Y ( )

and introduced the detunings Ap(k) = wp(k)—we and Ag(k) = wg(k) —w(LZ). Note
that here we have already performed the Gaussian integration over the auxiliary
field b, after which the inverse probe photon propagator in general is modified by the
subtraction of g?Gy(w). Assuming very strong coupling to the incoherent source,
however, k1 and ko diverge, while kg = 2(k1 — k2) and ks = 2ggm are kept finite.
In this limit g?G¥(w) vanishes, while ks(w) = —ig2GE (w)/2 = ks/((w — wo)? + K3)
remains finite.

Modeling the situation in PCWs, throughout this chapter we will approximate the
dispersion of the exchange photons as parabolic: w¥ (k) = wl’ —ag(k—kg)? around
the band edge w”(kg) = wéﬂ , which is assumed to be slightly detuned against the
|s) —|d) transition. With this choice the exchange photon spreads diffusively around
the emitting atom with an average mode volume and therefore interaction range
given by

Ly =+ ag/kg . (4.86)

On the other hand, since we are eventually interested in the interaction induced
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modifications to the dispersion of the propagating photons, we will require no
approximations to the dispersion wk As already stressed above, the actual form
of the photon dispersion does not play a role.

Making use of the above notation, the non-interacting part of the action S =
So + Sint can be fully expressed in terms of the bare atomic (subscript a) and
photonic (subscript p) Green’s functions as

S = 2 (10t + 5 96 ).
) (4.87)

Here the index 0 is meant to indicate the absence of self-energy corrections due
to interactions (see below). Furthermore, a, = {af},a,(}} with p € {a,p} are the
vectors of classical and quantum fields with the corresponding inverse Keldysh
matrix Green’s functions given by

. 0 aiol ™
g,l,é:( P [ “f(] ) (4.88)

[GM,O] D,u,O

Finally, the interaction part of the action reads

e[ [y

<ﬂwwwwawﬂwww@w+ﬁw@uo

+a(k) (a(2)ad() + ad(:)a ()] + e (459
ik, B ( [ (ag 2) + ad(2)al (z))

+%%m“m 3=) + af(2)al ()| + e )

1
+—=gEe
\/§gE

where to save space, we have introduced the notation @; = a; for the conjugate
transpose of the field a;. As the atoms are fixed at positions commensurate with
the PCW, we can use the periodicity of the dimensionless Bloch functions ukRE(z)
to replace them by uf’E(O). In general, careful engineering of the PCW allows some
control over the momentum dependence of ukP’E(O) [16, 17]. Here we will choose
the simplest approximation of a constant, which we then absorb into the coupling
via the replacement gp}E|uf’E(O)| — gP.E-

In analogy with the scalar case discussed in Sec. 4.1 one can apply Wick’s theorem
to find the dressed Green’s function

Q’E‘B(x, 7)) = (ay () * 55(33/»5’, (4.90)
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with * the outer product and p € {a,p} as well as a, 8 = cl,q. Here, as opposed to
the bare propagators, the expectation value is taken with respect to the full action
S. Expanding the exponent e**nt under the path integral, one once again obtains
the infinite Dyson series

G§=6Gu0+Gu002,0G,0+Gu00X,0G,008,0G,0+..., (4.91)

where o denotes the convolution in space and time with a simultaneous matrix
product in the Keldysh index {cl, q} as well as the field components g, e, s,d or P, E
for the atomic (u = a) or photonic propagators (u = p) respectively. Summation
of this geometric series for the retarded Green’s function gives the same structure
as in Sec. 4.1:

GE = (G, —=B) 7.
I‘Lé ( R#’O Ku) K A (4‘92)
G, =G,o (ZM — Du,o) oGy .

As Eﬁ’K in general depend on Keldysh and retarded components of both photonic

and atomic Green’s functions, these Dyson equations are coupled and have to be
solved simultaneously.

4.4.3 Kramers-Kronig relations

Due to causality, each vertex involves either one or three quantum fields. There
are thus four copies of each vertex, differing only in the Keldysh index while oth-
erwise being identical. In general, this substructure gives rise to a large amount
of Feynman diagrams to be calculated, even after application of the fundamental
symmetries derived in Sec. 4.1. Luckily, most of these can be related to one another
using Kramers-Kronig relations. In the following we will illustrate how these rela-
tions can be exploited. For the sake of compactness of the graphical illustrations,
we avoid drawing all possible diagrams so that each line we draw can be a retarded,
advanced or Keldysh Green’s function, as long as the vertex allows it.

In analogy to our discussion of the scalar field theory, we introduce the distri-
bution function F(w) defined by G¥(w) = GB(w)F(w) — F(w)G4(w). Note, that
the identification G (w) = ip(w)F(w) holds only if all Green’s functions can be
diagonalized simultaneously. Nevertheless, in the absence of particles F(w) = 1
is always true and thus allows to express the Keldysh component through the re-
tarded Green’s function. We will denote this special case of an unoccupied degree
of freedom by a subscript 0 attached to the causality index (K) as in G¥0. For
these empty modes, invoking Kramers-Kronig relations for the retarded Green’s
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function

00 (YR (,
?RGR(w)ZP/ d%i“G )

> dw' RGE(w RGT (W)

T W —-w

| |
3
\

(4.93)

allows to find some simplifications. Indeed, any two Green’s functions G1(w) and
G2(w) will obey

| Eewictw-w) - [ S - o)

2m 27
d d
/ W o) G+ o) = - / Yoo w ). o

which follow immediately from (4.93) by splitting the retarded Green’s function
into real and imaginary part. Additionally, one has

/oocg“:r GKO( /)Gé(o(w — w/) :/ C;C‘:T (GA( ')G?(w - w/)_{_G{Z(w/)Gé%(w o w/))

| e v = (GG + )+ GG + ).
(4.95)

which are easily proven by applying the Fourier transform to the convolution and
using that

FH(F)) = —isgn()F(f), (4.96)

where f is any function and H and F are Hilbert and Fourier transform, respec-
tively.

Similar identities, using the same method, can also be proven for more com-
plicated products and higher order convolutions of Green’s functions. Since the
bare atomic propagators for all but the ground state, as well as that of the bare ex-
change photon, are unoccupied, we can use these identities to considerably simplify
the following calculations.

4.4.4 Nonlinear Feynman rules

Apart from the Keldysh structure, the interaction part of the action given in (4.89)
contains two different types of vertices, both depicted in Fig. 4.9, which under time
reversal pairwise transform into one another. Either an atom is excited through
the absorption of a photon (see Fig. 4.9a)), or, by the time-reversed process of
emitting a photon, the atom returns to a stable state (c.f. Fig. 4.9b)). Using
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the vertices, one can draw all Feynman diagrams order by order in the coupling
constants. However, in doing so one applies bosonic Feynman rules to atoms, which
due to the strong nonlinearities should instead have a restricted Hilbert space with
dicge. s,d<d;[dj> = 1. This implies that each atom occupies either only one level
or in general a properly restricted superposition. One therefore has to be careful
not to overcount diagrams by simultaneously placing an atom in the same state
twice (which would be allowed for bosons). This means that, at every point in time
and in every diagram, two counter propagating atomic lines belonging to the same
atom have to be found in distinct levels, or must otherwise be identified with one
another, i.e. their lines in the Feynman diagram have to be contracted.

In general it is very hard to fully enforce these conditions, as one would need
to implement increasingly complicated restrictions in real-time on each and every
perturbation to the bare scalar Green’s functions. Doing so for all diagrams would
eventually restore the exact, finite Fock space of the atoms. Here, we instead limit
ourselves to impose restrictions allowing to exactly compute the fully dressed, single
probe photon propagator in the absence of the state |d).

As we will see, the insertion of self-energies in the form of polarization bubbles
— which are diagrams of the type shown on the right of Fig. 4.6a) — into the bare
probe photon Green’s function will hybridize this propagating photon mode with
stationary atoms, forming polaritons in the process. Without state |d), and without
saturation effects these polaritons will not interact among each other. When intro-
ducing polariton-polariton interactions via coupling to |d) it is then of paramount
importance to expand around the correct limit of non-interacting polaritons, which
will only by ensured by the implementation of the above restrictions imposed by
nonlinear Feynman rules. In the non-interacting regime, where the polariton self-
energy is given by a polarization bubble with the external laser fields mixing states
le) and |s) and the probe photons mixing |g) and |e), it suffices to demand that
any two counterpropagating Green’s functions of the same atom have to involve
disjoint sets of states. All diagrams where this is not the case are simply set to
zZero.

We now show that these simplified nonlinear selection rules correctly capture the
retarded polariton Green’s function. The latter reads

GB(w, k) = (GE (w, k)" —SBw) ", (4.97)

with the self-energy given by
R igp [d' i NAA( R NAK
£fiw) = 2 / o (G (w0 +GAW) + Gl +)GEW)) . (4.99)

We now make use of the Kramers-Kronig relations (4.94) and realize that only
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diagrams with either F,(w) # 1 or Fi(w) # 1 are finite, and thus

< 2 o) d /
Sfw) = 2P / T (OGN ()G + ) + GAWNGE @), (4.99)

where 0G® (w) = GE(w) — 2iFGT(w) is related to the spectral number density
by n(w) = i6G¥X /2. However, as the atomic medium without probe photons is
entirely in the ground state and no atoms are being created, the only way to get
§GE (w) # 0 is by coupling to 5G{f(w). On the other hand, corrections to the bare
ground-state propagator all inevitably have to involve the excited state |e).

To compare the effect of the exact and simplified nonlinear Feynman rules, con-
sider the perturbative insertion of corrections into the bare retarded Green’s func-
tions:

GR(t,t) = G, 1) +/dt1/dtgGUR(t,tl)ER(tl,tg)Gg“(tQ,t’) +..., (4.100)

which due to causality are non-zero only if ¢ > t; > to > t. Consequently, none
of the Green’s functions and self-energies can be evaluated simultaneously and
no cancellations due to the nonlinear Feynman rules are required. Similarly, the
Keldysh component of the interacting Green’s function is given by

SGE (t,¢) = / it / dtsGR (1, 11) (55K (11, £2) — 5D (1, £2))GA(ta, ), (4.101)

where 0D = DI = 2iS([GE] ™) and 635 (t1,t2) = K (b1, t2) — 29Tk, )
have been introduced. Due to the retarded and advanced Green’s functions one
has t > t; and t' > ty. Clearly those insertions with ¢; < ¢’ have to be discarded,
as then, between these times, the retarded and advanced Green’s function of the
same state counterpropagate. With this restriction in place §%%(t1,t3) has to
be evaluated at ¢, which is necessarily simultaneous with the retarded Green’s
function of the other state in the polarization bubble, and the diagram again has
to be removed. In the end, as only the ground state satisfies 6 DE # 0, we are left
with the simple result

- 2 © /
fw) = 2 / G WG w + ), (4.102)

—00

where in Zf no dependence on G| is allowed. For the Keldysh component of the
polariton self-energy one has, due to the Kramers-Kronig relations (4.95),

< 2 00 d /
S (w) = 2 / T (2680 + 56 (W) 3GE (@ +) (4.103)

—0o0

Following a similar argument as above, one can show that this contribution vanishes
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once either the full or the simplified nonlinear selection rule is applied. As these
arguments can be continued order by order in the coupling constants, we find that
for non-interacting polaritons both selection rules coincide. For an alternative proof
that electromagnetically induced transparency in the limit of low polariton densities
is exactly recovered by the simplified nonlinear Feynman rules see Appendix B.
Furthermore, we emphasize, that neglecting dephasing of the excited atomic states
is no restriction to the applicability of the field theoretic description, because for
low polariton densities, dephasing and decay are indistinguishable (see Sec. 4.2).

For higher order diagrams of the probe photon propagator that involve the ex-
change photon, as well as for the polarization bubble of the exchange photon itself,
these new simplified Feynman rules do not work quite as well. The reason for this
lies in the fact that both states |s) and |d) that necessarily appear in the polariza-
tion bubble of an exchange photon, have non-vanishing self-energies. In real time
these insertions into the bare propagators can then partially exclude each other,
meaning that the simplified nonlinear Feynman rules no longer correctly capture
the polarizability of the atoms. However, if the effective coupling rate between
states |s) and |d) is small compared to 74, the excited atom will likely have decayed
before it can be transferred into another state. To ensure this, we will exclusively
work in a regime of small Q/v4. Note, however, that this condition will be signif-
icantly modified upon inclusion of strong interpolariton interactions, wherefore we
will also require (S)‘;ff)2 /(vSiye) < 1 for the fully dressed quantities.

In order to test that the choice of the specific implementation of the nonlinear
Feynman rules — of which many different versions can be constructed — does not
affect the results, we compare the two extreme options. One is the most strict im-
plementation of the Feynman rules, where all diagrams that could at least partially
be forbidden are entirely excluded. The other option corresponds to the oppo-
site choice, where all at least partially allowed diagrams are fully included. In the
following, we will refer to these two options as the “strict” and “lenient” implemen-
tation of the Feynman rules. If we observe no difference between the results from
both options, the ambiguity in the nonlinear Feynman rules is of no quantitative
significance and either version can be used to provide a lowest order approximation
to the actual (time-dependent) selection rules.

a) . b)

lg) le) |s) |2) le) lg) |d) |s)

Figure 4.9: Yukawa-type interaction vertices form the fundamental building blocks
of QED with neutral atoms and guided photons.

In summary, the nonlinear Feynman rules outlined here partially compensate the
unphysical tendency of the bosonized atoms to bunch together with the photons.
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As long as the number density of excited atoms is small compared to that of
the ground state, saturation effects of the atomic medium can be neglected and
no further selection rules have to be implemented. While this restriction to the
selection of diagrams might seem complicated to enforce consistently, we will see
that it actually simplifies the Feynman diagrams.

4.4.5 Loop reduction

Beyond the Kramers-Kronig relations, a further significant simplification can be
achieved by noting that the atomic ground state has no dynamics of its own. Hence
any loop involving the bare Keldysh component of the ground-state propagator can
be computed trivially’. In and of itself this is not a particularly useful observation.
In combination with the Kramers-Kronig relations and the nonlinear Feynman rules
introduced in the last subsections, however, several loop integrals can be computed
exactly.

Wk wi Wy, wf
AVaVs VaVa il VAV, VAVASES &
ap ap
l9)
“ wi le) Wi,
— "N AN F ANAANS——— ANANN
gp gp

Figure 4.10: The Probe photon propagator to leading order in 1/Lp can be simpli-
fied significantly using the loop reduction procedure.

To better understand how all of these properties come together, let us consider
the case of a probe photon propagating through any polarizable medium. This pro-
cess to leading order in 1/L is described by the diagrammatic equation in Fig. 4.10.
Here the propagator of the excited state cannot be specified further, since interac-
tions with other excited atoms can and will dress it. The ground-state propagator
on the other hand only couples to other states via the absorption of a probe pho-
ton. Employing the Feynman rules of section 4.4.4, it will thus always be described
by the bare Green’s function. Consequently, the diagram of Fig. 4.10 for the re-
tarded probe photon propagator is solved by (4.97) and (4.102). Since furthermore
G;fo (w) = —27i(3 — 2ny)d(w), the remaining integral can then be solved immedi-
ately, such that one finally obtains

SEw) = gp(1 —ny)Ge(w), (4.104)

IThe retarded component instead contains an Heaviside theta and is thus still time-dependent.
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completely independent of the form of the interactions between excited states. A
similar calculation gives the equivalent result

08P (W) = gp(2 — nv)0Gy (w) (4.105)

for the Keldysh component of the self-energy. Hence, the result for the polarization
bubble is the same as for a bilinear coupling converting a photon into an excited
atomic state, albeit with the modified coupling constant gp = gpv/2 — ny. This
identification changes the topology of diagrams. However, quite importantly the
ordering in powers of the inverse interaction range remains unaffected. Note that,
despite the extremely long lifetime of the meta-stable state |s), due to the static
laser field coupling to states |e) and |d) the corresponding Keldysh component
GE(t —t') explicitly depends on time and a similar identity for particle hole loops
involving |s) is not quite as useful.

4.4.6 Self-consistence and conserving approximations

We have already mentioned in Sec. 4.1, that in a field theoretic description the
integrals of motion of a system are only conserved within the so called conserving
approximations, which themselves can be derived from an appropriate thermody-
namic functional and always result in self-consistent theories, where all self-energy
insertions are repeated in every internal Green’s function. Conversely, any ap-
proximation can easily be tested for its conserving properties by contracting all
self-energies with the corresponding Green’s functions obtained via the Dyson equa-
tions. If the result can be written as an action with the appropriate symmetries,
the dynamics are conserving.

In the present case it is unfortunately impossible to build a proper functional,
since it would be incompatible with the approximate nonlinear Feynman rules in-
troduced above. Having a conserving approximation in our case is however not
crucial. This is a consequence of the incoherent, transversal drive and Marko-
vian losses of the full, microscopic theory introduced in Sec. 4.4.1. These neither
conserve energy nor quasi-momentum. Therefore, the only conserved quantity is
the total number of atoms, which we approximately enforce, at least on average,
by means of the nonlinear Feynman rules. While dropping these would allow to
construct a self-consistent 2PI effective action, the resulting theory would not con-
serve the atom number either, since the approximate formulation of radiative decay
in Eqgs. (4.70) explicitly breaks the corresponding symmetry of the atomic sector
under the U(1) transformation &, — a,e’® and al, — ale . Instead of trying
to enforce conservation laws on a microscopic level, we will largely make use of
self-consistent solutions of our Dyson equations in order to include the important
non-perturbative effects.
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Chapter 4 Interaction induced transparency

4.5 Leading order: Polaritons and electromagnetically
induced transparency

As was already explained in Sec. 4.4.5, if there is no interaction between different
atoms, other than via the exchange of probe photons, the probe photon propagator
is fully given by the solution to the diagrammatic equation in Fig. 4.10. Of course,
this is only true in the case of a low excitation density in the atomic medium,
since otherwise saturation effects will induce further interactions between probe
photons that are not captured by the present approach (see Appendix B). In this
low excitation density limit however, the retarded photon propagator Gp for gp =
25 = 0 can be directly obtained from Egs. (4.97) and (4.104), where

1
2 .

w = wagz+ie/2 + Z’Y@/2 (4106)

Gl (w) = GEy(w) = —2iSG(w)

Gil(w) = Go(w) =

are the components of the bare propagators of the excited state |e) obtained by
inverting [GZO] “lin Eq. (4.80). Without any coupling to state |d) the atomic level
scheme is identical to the well-known A-scheme, which in the limit of vanishing
excitation density has already been discussed in Sec. 4.2. One should note that the
solution we give here involves no approximations beyond the linearization of the
spin degree of freedom, which we showed in Sec. 4.4.4 to be fully compensated by
simple nonlinear Feynman rules. As such, it is not surprising that the results will
be identical with those obtained in Sec. 4.2.

In particular, one can immediately identify G with the polarizability of the
medium. Hence, as pointed out earlier, Gg no longer describes free photons, but
the eigenmodes of the system, which are photons hybridized with the medium.
The dispersion of these new degrees of freedom, the polaritons, has three branches
resulting from the coupling of two atomic transitions and the photonic dispersive
mode, which far away from the atomic resonance A, is essentially that of the free
photon. Due to the vanishing losses of state |s), however, the central branch — the
so called dark-state polariton, which is a combination of a photon and an atom
in state |s) without any admixture of the lossy |e) — is very long lived. Within
the path integral description, the trivial calculation leading to Eq. (4.106) thus
captures the phenomenon of EIT. On a more pedagogical note, the destructive
interference at the heart of EIT becomes particularly apparent upon inspection of
the diagrammatic expression for GG, shown in Fig. 4.11.

Since the dark-state polariton is a linear superposition of a localized atom and
propagating photon, its group velocity can be tuned by adjusting the ratio 2/gp.
However, without losses in state |s), the line-width is modified at the same rate,
such that the penetration depth of photons into the waveguide is not affected. This
can be easily verified by comparing the group velocity of the dark-state polariton
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4.5 Leading order: Polaritons and electromagnetically induced transparency

Figure 4.11: Dyson equation for GG in the polarization bubble. The interference
between the direct excitation of an atom to state |e) and the indirect
path via |s) gives rise to EIT.

with its line-width. Linearizing the dispersion of the free photons, which on the
energy scale of the susceptibility of the medium (set by ~.) is typically well justi-
fied, the group velocity can be determined from the pole of the polariton Green’s
function GE(w, k) given by Eqgs. (4.97), (4.104) and (4.106). In the limit of mostly
atomic polaritons, where the ratio between atomic and photonic contributions to
the polariton § = g%(1 — ny)/Q? becomes large, an expansion around the EIT
window results in the condition

[GE(w, k)] = 0w — Ay) — vp(k — kmir) + in(w — Ag)? +ikp/2 =0,
(4.107)

where vp is the local group velocity of the bare photon near the resonance at
k = kgrp with the laser acting on the |s) — |e) transition. Furthermore we have
introduced the convenient abbreviation 7 = 7.0/(202). At the center of the EIT
window the group velocity is given by

v, = dwres _ vp ~Q2 (4.108)

dk V0% + 2nkp

where wyes satisfies the condition (4.107). This result is clearly equivalent to the
group velocity previously obtained by the ansatz (4.64). On the other hand, at
kgrr the line-width of the dark-state polariton is given by

\/—92 —nKp + \/94 + 2002k p + 202k

Aw = 7o ~ 0%, (4.109)
Expanding around large 6, we find
vy~
9~ 2 =
g; (211; ) wj (4.110)
Aw —
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and therefore

Vg 2up
—= = — 4.111

Aw Kp ( )
which agrees with the result for the free photon. Consequently, the effective probe
photon interaction range

Lp =vp/kp (4.112)

is unaffected by the formation of dark-state polaritons and the accompanying reduc-
tion of the group velocity. Independent of the mixing angle 6 the inverse interaction
range thus remains a small parameter suitable for a perturbative expansion. Note
that at fixed gp both the group velocity and line-width of the dark-state polariton
can be conveniently tuned by adjusting the Rabi amplitude €2. We illustrate this
by showing a logarithmic density plot of the frequency and momentum resolved
number density of polaritons np(w, k) in Fig. 4.12, where the increase in group
velocity and decay rate with growing () are clearly visible.
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Figure 4.12: Frequency and momentum resolved number density in the vicinity of
the EIT condition. The corresponding dispersion of the dark-state
polariton has been added in the form of a blue line. The parameters
used are kg =2, ks =1, wg = As = Ag=ny =0, gp = 10, kp = 0.5,
Ye = V4 = 1 and Ap(k) = —50 cos k.

In the absence of the fluctuation-dissipation theorem the distribution function
F' introduced in Sec. 4.4.3 becomes an interesting quantity as it measures the
strength of the drive that a given degree of freedom experiences, independent of
its actual susceptibility. As the atoms and Lindblad operators are assumed to be
distributed homogeneously in space, Fp is independent of momentum. In Fig. 4.13
we illustrate that despite the broad drive by ks(w), the distribution function of
the dark-state polariton has a very sharp peak centered around the resonance with
the laser on the |e) — |s) transition, where it reaches the maximally possible value
FP(AS) = QKs/li)p + 1.
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4.6 Next-to-leading order: Interactions between polaritons

Let us now see how the properties of the EIT-polaritons are affected by coupling
the state |s) to |d) via the laser with Rabi frequency 2, but still in the absence of
E photons. In this case, the Green’s function Gg remains exactly computable in
the limit of vanishing polariton density, however now the polarizability is given by
the continued fraction

1 02 Q3

GR(w) = — — . 4.113
e (@) lw+ive/2  Jw—As+ie/2  |w—As— Ag+ivg/2 ( )

Since the admixture of |d) to |s) introduces losses 7T ~ Q2v,/(A2 +42/4) to the
metastable atomic state — and therefore to the dark-state polariton — without in-
creasing its group velocity, the waveguide is no longer fully transparent. With slow
polaritons being mostly atomic it is clear that already a very small Rabi ampli-
tude ), drastically increases the opaqueness of the waveguide. This is captured by
the suppression of the peak in the distribution function in Fig. 4.13. Faster and
therefore broader EIT polaritons are much less susceptible and thus the maximal
value of Fp(w) — 1 once again approaches 2ks/kp + 1 for  — oo, whereas it drops
to the typically much smaller value 2k5/(49%(1 — ny)/ve + kp) + 1 as © — 0 (see
Fig. 4.14).

4.6 Next-to-leading order: Interactions between polaritons

The strong dependence of EIT polaritons at large 6 on the properties of the
metastable state |s) can be exploited to enhance the effect of interactions. However,
one quickly realizes that to leading order in 1/L, that is to say simultaneously in
1/Lg and 1/Lp, the polaritons cannot interact. Indeed, to order (1/L)° the only
interaction is a Hartree self-energy for the s-propagator of the type shown in the
last diagram of Fig. 4.6b). While one can include arbitrarily many Hartree inser-
tions (two in the above figure), as soon as a photon insertion of the type shown in
the second diagram of Fig. 4.6b) appears in an atomic line, it will necessarily induce
a suppression by 1/L. Avoiding this will in particular exclude the appearance of
any atomic g- or photonic P-propagators in self-energies to the s-propagator, and
therefore prevent us from populating the |s) or the |d) level. The latter are not
directly pumped and consequently, without O(1/L)-insertions, empty. The distri-
bution functions F 4(w) are thus identical to one, which means that all particle-hole
diagrams, and in particular all Hartree diagrams vanish. This is nothing else than
the statement that there can be no interaction between atoms in state |s) if that
level is not populated.

Therefore, in our expansion, interactions between polaritons only start to play
a role at O(1/L) and the leading order investigated in the last section is indeed a
theory of non-interacting polaritons. All the diagrams for the P-photon self-energy
up to order 1/L are shown in Fig. 4.15. Note that the version of diagram c) with
the E-propagator substituted by a P-propagator has to be excluded according to
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Figure 4.13: Distribution function of the perturbed dark-state polariton in the
vicinity of the EIT condition at the same parameters as in Fig. 4.12
and s = 0.01. Clearly the occupation of the slower polaritons is
more strongly suppressed by the induced losses. For comparison we
also added (in grey) the distribution function of the unperturbed EIT
polaritons (i.e. 2 = 0) for Q@ = 0.25.

the Feynman rules discussed in section 4.4.4. In general, the order of a diagram is
given by (1/L)™, where n is the number of total loops minus the number of atomic
loops.

The fact that interactions take place at higher loop-order is a generic feature of
polaritons formed by hybridizing probe photons with internal atomic excitations: If
the atoms are initialized in the ground state and only probe photons are capable of
exciting this initial configuration, then one will first need to populate the interacting
atomic level, before atoms — and thus polaritons — can interact.

4.7 The limit of long-ranged atom-atom interactions

In practice quantitative simulations have predicted the interaction range to reach
values of L ~ 100a [250] for experimentally realized parameters [260]. We there-
fore begin our discussion of interacting polaritons with the limit of infinite ranged
exchange photons (Lp — o0), where all diagrams can be resummed completely,
resulting in a fully controlled field theory of a non-equilibrium system with strong
light matter interactions. In this case, no further assumptions regarding Lp are
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k1t 2k
49p(1 = ny)/ve + Kp |

Figure 4.14: Using the same parameters as in Fig. 4.13, the EIT window is mostly
destroyed for 2 < 0.2, despite the very weak coupling to the lossy state
|d). On the other hand polaritons with {2 > 1 are largely unaffected.

required. In particular, we are allowed to enter the regime of large single-atom
cooperativities with respect to the propagating photons. We shall see that new
phases emerge and that the corresponding phase transitions can be described in a
quantitative manner. Before presenting the full theory in the Ly — oo limit, we
first demonstrate a simplified version of the diagrammatics that allows for an en-
hanced polariton density stabilized by dissipative interactions, which is the crucial
physical ingredient for obtaining emergent new phases.

4.7.1 Reduced theory for dissipatively-interacting polaritons

In the present section we will consider only a particular subclass of the next-to-
leading order interactions which does not involve momentum transfer between pho-
tons or equivalently between polaritons. In fact, we apply this restriction to all in-
ternal photon loops as well. The only diagram of this subclass contributing to the
P-photon self-energy is shown in Fig. 4.15a). We will see that such a Hartree-like
term can have very interesting effects on the polariton transparency window and
induce a phase transition in the steady state. Importantly, while this reduced set of
diagrams will not yield quantitative results for the experimentally relevant regime
of slow polaritons, it helps to illustrate many useful physical concepts and provides
a simple application of the techniques outlined in Sec. 4.4. We therefore employ it
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Figure 4.15: All contributions to the polariton self-energy at next-to-leading order
in 1/L. The bold lines for the probe photon indicate that all powers of
the leading order polarization bubble (see Fig. 4.10) have to be inserted
as well. For the purpose of clarity, we are not specifying the atomic
states and also not using the loop-reduction simplification illustrated
in section 4.4.5.

as an instructive introduction into the theory of strongly interacting polaritons.

Self-consistent Dyson equations

We begin with the simultaneous expansion in 1/Lg and 1/Lp, which in next to
leading order results in the diagrams shown in Fig. 4.15. Of these diagrams a)
and d) are suppressed by 1/Lp, c) is proportional to 1/Lg and b) depends on a
combination of both lengths that approaches 1/ max (Lg, Lp) if both length scales
differ a lot. Consequently, with Ly — oo only diagrams 4.15a) and d) need to be
considered. In a perturbative expansion, that is if the single-atom cooperativity
obeysCp = g% /(kpy.Lp) < 1, no self-consistent treatment, apart from the resum-
mation of all RPA diagrams that give rise to EIT, is required. At the same time,
these weak interactions only sightly perturb the bare EIT and no qualitatively new
effects are encountered as these require coupling strengths that are large enough
to compensate for the bare |s) to |d) coupling (25, thereby breaking the strict con-
fines of the 1/Lp-expansion (see Sec. 4.7.1). We therefore extend our analysis to
strong single-atom cooperativities, where all diagrams of the same class as 4.15a)
and d) have to be taken into account. As this becomes somewhat involved, we will
introduce the idea of the self-consistent resummation of a class of diagrams and
the resulting physical consequences first by using only the diagram in 4.15a). With
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4.7 The limit of long-ranged atom-atom interactions

9)

Figure 4.16: Same diagram as in Fig. 4.15a), but with all propagators and external
fields labeled explicitly.

all couplings to external lasers made explicit, this diagram takes the form shown
in Fig. 4.16. Clearly, every |s) — |d) transition can either be directly driven by a
laser acting on a single atom, as is the case in the second transition in the lower
loop in Fig. 4.16, or by the exchange of an E-photon with another atom that in
turn couples to the laser, which is realized for the excitation from |s) to |d) in the
lower loop of Fig. 4.16. The interchangeability of the single- and multiple-atom
processes gives rise to an infinite set of diagrams that is conveniently captured by
a self-consistent treatment of the skeleton diagram.

The resulting approximation is depicted diagrammatically in Fig. 4.17. As we
explain in the following, the corresponding self-consistent Dyson equations can be
simplified such that they require finding only a single number x as the solution of

a nonlinear integral equation.

In close analogy to the formalism of Sec. 4.5, the probe photon Green’s functions
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)
T:

Figure 4.17: Diagrammatic representation of the Dyson equations in the reduced
Hartree-like approximation. The latter neglects all interaction dia-
grams at next-to-leading order except that in Fig. 4.16a). For the
purpose of clarity, we refrain from using the loop-reduction simplifica-
tion introduced in section 4.4.5.
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4.7 The limit of long-ranged atom-atom interactions

are dressed by excitations induced in the medium. The result

* 1
GRw.k) = [GR@)]" = = Ap(k) — SE(w, k) + irp/2
GE(w, k) = GE(w, k) (5 (w, k) —ixp — 2iky) GA(w, k) (4.114)

is therefore still fully determined by the polarization bubble, which using the
Kramers-Kronig relations can again be put in the closed form

2
gp(1 —nv)
S (w, k) =
p(w: k) w— 2GR(w) +i7./2
Y (w, k) = 2198 E(w, k) . (4.115)
However now the propagator of state |s)

* 1

GHw) = [GHw)] = (4.116)

w— Ay — BE(w) +ie/2
has a modified coupling to state |d):

(e

R —
> (w)_w—Ad—As-i-i'ydﬂ’

(4.117)

where Q¢ = Q|1+ x| includes the effects of the direct coupling rate Q4 as well
as those due to the interactions. Here y is simply a complex number, which stems
from the fact that the exchange photon mediating the interaction between different
polaritons carries zero momentum and — in the rotating frame — zero frequency as
well.

In the polarization bubbles of the exchange photon the nonlinear Feynman rules
forbid a dressing of G4 by |d), which thus requires the definition of a second type
of s-propagator

1
w—Ag— Zf(w) + i€/2

Glw) = [GHw)] = (4.118)

that couples exclusively to |e), which in turn can emit and reabsorb a probe photon.
This is accounted for by defining
Q2
Y (w) = -
# (@) w— Y (w) 4 i7e/2

(4.119)

139



Chapter 4 Interaction induced transparency

and

S5 (w) = 2iSTF (w) + 05 (w)
525@)) Q% (B8 (w) — 2i38F (w))

e

(w — RIE (W) + (7e/2 — SE (w))?

(4.120)

Here the self-consistency loop closes, as the self-energy % depends on the probe
photon propagator via

gp/ / (GR(w — o' F)GE () + GE(w — o, F)GR(W)]
(4.121)
and
XK (W) = 2K (w) — 2i3% gp/ / —5GP w—w, k)5G§((w/) ,
(4.122)

As announced at the beginning of this section, the self-consistent functional equa-
tions G, = G [GB,.GE,| and G, = GF |GE,, G| have been reduced to

a single parameter satisfying a fixed point equation x, = x (xx). As mentioned
before, this is in part due to the Hartree nature of the interactions considered here,
which implies that the functional form of X is fixed and analytically known. On
the other hand it is a consequence of the nonlinear Feynman rules, which enforce an
unoccupied propagator Gf and therefore Ef = 2@'%25}2, which reduces the number
of coupled equations.

The frequency integral in the first of the two expressions in Eq. (4.121) is trivial,
as G{f (w) o §(w). Since the poles of GE can be found analytically, also the fre-
quency integral in the second term of ¥.(w) can be solved exactly via the residue
theorem, such that only the momentum integration has to be evaluated numerically.
After application of the residue theorem one obtains

dk K 1
- Zn: / %gizs(wn(/ﬁ)) W — wn (k) + i€/2

" f(wn (k) f* (wy(k))
[Tnzn(wn(k) — wim (k) (wn (k) — wh, (k) (4.123)
Z—k%g% 4 —2ny)GE(w +ie/2, k)

Y (w) =232 (w) — ik, / %g%@ — 2ny)GE(w, k) GH(w, k),
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where n € {1,2,3,4}, wy(k) are the poles of GE(w, k) and
fw) =(w+i7e/2)(w — As +i€/2)(w — Ay — Ag + 174/2)

) ' 2\ 2 ' (4.124)
— 2w = Ay = Mg+ i/2) — (8F) @+ 7/2).
With all Green’s functions depending solely on the parameter y, we are left with
the task to solve for it self-consistently. The corresponding equation can again be
read off from Fig. 4.17 and states

~—

s&(0

" Ap(0) — SE(0) +ikp/2 (4.125)

X

So far, there is no ambiguity regarding the nonlinear Feynman rules. In the polar-
ization bubbles of the exchange photon however, these partially forbid dressing the
propagator of state |d) via couplings to the metastable state. Employing the strict
interpretation where Gf remains undressed, the exchange photon self-energy reads

i [ dw
=) = 5 / . RCHW )G ()G + ) (4.126)
with

1

Gi(w) =G (w) = w— Ay — Ay +ivg/2°

(4.127)

If on the other hand the lenient rule is applied one is to use

eff\ 2 -1
GHw) = ([Gdﬂl(w)— (%) > ) , (4.128)

W — AS - wHive /2

which includes all possible admixtures of atomic states to |d), as the insertion of
the ground state can always be excluded by the methods introduced in Sec. 4.4.4.
Furthermore, Ef is to be complemented by

()
w—AS—Ad—i-i’yd/Q’

oF - 2f+ (4.129)

with the dependence of 62? on L% and 62X remaining unaffected.

Choosing among these two ways of applying Feynman rules affects the propaga-
tion of the exchange photons and hence the light-mediated atom-atom interactions.
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The photon propagator is ultimately given by

R o A * 1
Grlw. k) = [Ge@)] = = wi(k) — SE(w, k) + irp/2
GE(w, k) = GE(w, k) (2F (w, k) — irEg) Ga(w, k), (4.130)
with
S (w, k) = 250 (w, k) = 2iS%R(w, k). (4.131)

Interestingly, the phase of x can be adjusted via the detuning between the band-
edge of the exchange photon and the laser §25. Its amplitude depends on the density
of atoms in the metastable state ns and on the coupling constants, giving a great
deal of control over the type and strength of backaction to be realized.

For numerical purposes, iterating equations (4.114) through (4.131) having the
system previously initialized with some ngf = (), is immensly inefficient, as con-
vergence will fail when approaching a phase-transition (see also the discussion in
Chap. 5). We avoid this problem by instead fixing Q¢ and determining Q,(Q<, x),
which requires no iterations at all. This actually means that the value of {25 cor-
responding to the solution is not known a priori. However, for the computation of
the entire phase-diagram this does not matter as eventually a result for any value
of Q4 will be produced.

Results: Non-equilibrium phase transition of the transparency window

A particularly interesting question which can be addressed with this newly devel-
oped formalism is whether the transparency window can be restored by interaction-
related effects. If this was not the case one would have to limit the system to
weak interactions or accept that strongly interacting polaritons in photonic crystal
waveguides are necessarily very lossy. If on the other hand such a restoration of
the transparency window is possible, it requires a condition similar in spirit to that
of the original EIT, however with destructive interferences between the laser and
the exchange photon that drastically reduce the coupling to state |d). As it turns
out, such interferences are indeed predicted within our approach.

In fact this many-body phenomenon, that we will refer to under the name
“interaction-induced transparency”, as opposed to the well-known single-particle
effect of “electromagnetically-induced transparency”, appears in the form of a first
order phase transition, as evidenced in the phase diagram Fig. 4.18. There, we find
two possible steady-state phases: i) an “opaque” phase characterized by a small
atomic excitation density ng and ii) a “transparent” phase exhibiting instead a
much larger ngs. Those two phases are separated by a first order phase transition
that includes a bistable region and terminates in a critical point where the transi-
tion is continuous. More insight into the properties of the opaque and transparent

142



4.7 The limit of long-ranged atom-atom interactions

Figure 4.18: Excitation density in the atomic state s. The yellow(blue) surface
corresponds to a system initialized in the “transparent”(“opaque”)
phase with vanishing(large) values of xs. Parameters are the same as
in Fig. 4.12, except for the previously undefined g = 10, kg = 5,
Q= 0.2 and Ag(k) = —100k?

phases are obtained by examining the frequency- and momentum-resolved occupa-
tion nps(w, k) shown in Fig. 4.19 and normalized by fk,w nyr(w, k) = ny. Far away
from the narrow EIT window, the transparent and opaque solution are virtually
indistinguishable (see Fig. 4.19a) and b)). However, at closer inspection the EIT
window differs strongly between both cases. In the opaque phase the dark-state
polariton remains broad and is only weakly populated, thus showing no signs of
an EIT window. The latter is destroyed by coupling the metastable state |s) to
the excited state |d), introducing an additional decay channel that is eventually
inherited by the dark-state polariton.

In the transparent phase on the other hand the intensity is concentrated within
a very sharp region around a specific wavenumber kgyr of the dark-state polariton
branch. This means that in the phase transition the system has reconstructed the
transparency window. In the original non-interacting EIT effect, the window is
formed due to the destructive interference in the propagator of the excited state in
Fig. 4.17b). In the IIT effect, the window is also reconstructed via destructive inter-
ference, this time between the four different excitation pathways involving the state
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Figure 4.19: Comparison between the opaque (left) and transparent (right) solu-
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tion. Top row: M-photon occupation in frequency-momentum space
far away from the EIT condition is unaffected by II'T. However zoomed
in on the dark-state polariton branch (middle row) the drastic differ-
ence between the two phases becomes apparent. Bottom row: spec-
tral function of the E-photons. Solid lines correspond to the bare
E-photon dispersion (inverted parabola) and the resonance frequency
of the s — d transition (horizontal line). The parameters are the same
as in Fig. 4.18 at the bistable point 0, = 0.14 and ks = 2.
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|d) and corresponding to the last four diagrams contributing to 3, in Fig. 4.17d).
Due to this weak coupling to level d an additional almost non-dispersive flat polari-
ton branch exists at w ~ wy +w(Ll) — w(L2) with vanishingly small occupation. Other
than in the non-interacting EIT, the interfering pathways involve the E-photons
i.e. interactions between polaritons, which renders IIT intrinsically nonlinear. In
the lossy system this implies that IIT takes place through a first-order phase transi-
tion showing bistability. The destructive interference between the four pathways is
most efficient if the self-energy of the E-photons Zg(wj(:2)+ws) becomes purely imag-
inary, corresponding to strong screening of the external laser by the background
of polaritons, facilitated by E-photons. This indicates that II'T is a dissipative

many-body effect only accessible to systems far from thermal equilibrium.

The destruction of the transparency window in the opaque phase via coupling to
a lossy state is an effect analogous to the one employed to build an optical switch in
Ref. [253], whereby any two-photon state becomes strongly suppressed. If (as we do
here) one uses a lossy state to induce interactions between atoms in the metastable
state, the IIT additionally enables to reconstruct transparency at a tunable photon
number.

The E-photons mediating the interactions between the atoms also show drastic
differences between the opaque and transparent phase. As opposed to the M-
photons, E-photons are not driven and can only be excited by atoms in the d level.
The latter can be occupied only via laser transitions from the s level, which in
turn can be populated via absorption of M-photons. Therefore, the occupation of
the electrically polarized mode is suppressed by 1/Lj; and thus typically small for
realistic parameters. It is therefore more instructive to analyze the spectral func-
tion, defined as Ap(w, k) = —23GE(w, k), which is normalized to 1 and accessible
for instance by combining the waveguide output with a reference field on a beam-
splitter [261]. Ag(w,k) is shown in the bottom row of Fig. 4.19. In the opaque
phase the spectral weight is mostly on the bare dispersion curve, with a width set
by the losses kg. This is caused by the low number of atoms in state s, which
makes the modification X g of the photon-propagation due to the medium negligi-
ble. On the other hand, in the transparent phase we see that the bare E-photon
branch hybridizes with the atomic s — d excitation. In addition, in the momentum
region close to the dispersion maximum, spectral weight is transferred from the
photon-like branch to the atom-like branch. This screening effect is quantitatively
important and reduces the strength of the E-photon-mediated interactions for po-
laritons in the transparency window. Since therefore retardation of the mediated
interaction is very important, adiabatic elimination of the bare E-photons would
largely overestimate the bright region in the phase diagram.

Following this phenomenological analysis, the remainder of this section will
provide a complementary analysis focusing on the nature of the underlying non-
equilibrium phase transition and discuss the fundamental mechanism from a more
formal perspective as an application of our diagrammatic approach.
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Figure 4.20: Flow diagram and stability analysis of the effective relative coupling
strength |14 x| as a function of the externally adjustable parameter €2,
where otherwise the same parameters as in Fig. 4.12 are used together
with the lenient interpretation of the nonlinear Feynman rules as well
as Ag(k = 0) = —1, kg = 5 and gg = 10. The red line indicates
stable, stationary solutions.

The reconstruction of the transparency window can be attributed to the positive
feedback brought about by the dependence of x in Eq. (4.125) on the excitation
density: x o« ns , which stabilizes both a low density i.e. opaque phase and a
high density i.e. transparent phase, separated by a first-order phase transition.
The mechanism behind this can be understood by studying Figs. 4.20 and 4.21,
which show the amplitude and sign of the variation in the flow of the quantity
|1+ x| during the evaluation of the self-consistence equation (4.125). If the system
is initialized with a certain value of x such that §|1 + x| is positive, the system
will flow towards the opaque phase and vice versa, if 0|1 + x| < 0, the system
is unstable towards the transparent phase. Consequently, only those parameter
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4.7 The limit of long-ranged atom-atom interactions

Figure 4.21: The same diagram as in Fig. 4.20 but using the strict version of the
nonlinear Feynman rules.

combinations with d|1 + x| = 0 and a negative slope in 6|1 + x| as a function of
|1 4 x| are stable and therefore marked with a red line in Figs. 4.20 and 4.21. In
sufficiently strongly driven systems we witness the emergence of a bistability: for
a given Rabi amplitude 25 two stable solutions exist. They differ significantly in
the effective coupling Q‘;ﬁ and in the occupation of dark-state polaritons. Quite
surprisingly we find a stable transparent solution with Qf < Q,, which entails
significantly reduced losses compared to the non-interacting case with gp = 0.
Remarkably, the stable ratio ngf /€ is smallest for purely dissipative interactions,
that is, when Zg(O) is purely imaginary. In this case, the phase shift between the
E-photon-mediated driving of the s — d transition and the direct driving via €2 is
most destructive. This results in small losses for the dark-state polaritons, at least
if there are enough to create a sufficiently large backaction in the form of £(0). A
comparison between Figs. 4.20 and 4.21 demonstrates that for these rather small
values of {25 the choice of the nonlinear Feynman rules does not affect the results
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appreciably. For the remainder of this section, we will therefore focus on the strict
implementation of the Feynman rules.

In combination with the possibility of the simultaneous stability of an opaque and
a transparent phase, a first order phase transition similar to that between a gaseous
and a liquid phase emerges: above a critical bare laser strength {2, an increasingly
strong hysteresis is observed as the source intensity ks is increased (see Fig. 4.22).
However, at exactly the critical laser strength, the first order phase transition ends
in a critical point, where the phase transition is continuous and of mean-field type.
This is to be expected by a Hartree-type theory with infinitely ranged interactions
and we verify it by fitting the numerical data for ng(kg, Qs,) ~ /@1/ ® with a power law
(see Fig. 4.23). This allows us to extract the critical exponent § of the dependence of
the order parameter on the external source. Our result 6 = 3+0.01 is in agreement
with the Ising universality class where 6 = 3 [262].
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Figure 4.22: Hysteresis of the polariton density, evidenced in n, for scans at the
incoherent drive strength kg for different values of 2. In panel a) the
system is initialized in the opaque phase with ks = 0, whereas panel
b) uses ks = 2 in the transparent phase as a starting point. Below
the critical Rabi amplitude Q5. ~ 0.0851 both scans are identical.
However above (2, the initial phase is stabilized against fluctuations
induced by slow scans and a hysteresis curve becomes observable. The
parameters used are the same as in Fig. 4.20.

We note that in the regime of the first order phase transition, the difference in
polariton density between the opaque and transparent solution is typically large.
This can be seen from the distribution function (see Fig. 4.24) as well as from the
frequency- and momentum-resolved photonic number density of Fig. 4.25. One thus
concludes that, far away from the critical point in the opaque phase the system
behaves essentially as a non-interacting theory: the occupation numbers are so
small that interactions via exchange photons play no role and the bare — but due
to Q, lossy — EIT is recovered.

In the transparent phase on the other hand an only weakly perturbed A-scheme
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Figure 4.23: Power law fit to the density of excited atoms at the critical coupling
strength Qg, ~ 0.0851 for the same parameters as in Fig. 4.20. The
critical exponent of the order parameter as a function of the drive
strength is determined to be § = 3 £+ 0.01.

is restored, which seems to imply that the effective degrees of freedom are again
only weakly interacting. Correspondingly, many simple correlation functions can
be described by an effective free theory. However, except for the limit of vanishing
Qs, the response of the system to external perturbations will be very different
compared to the free theory discussed in Sec. 4.5.

Analytic estimates and requirements of the bistable regime

Due to the simplicity of the reduced theory presented in this section, we can actually
give some analytic estimates for the conditions necessary for a phase transition.
Due to the typically large atomic admixture 6 to the dark-state polaritons, even
for relatively strong driving xs ~ kp, a slow group velocity gives rise to only a
small photon number density

np = z/ / —5GE (w, k) < Ons < 1. (4.132)

Here the first inequality results from the fact that only photons in a narrow fre-
quency interval actually form dark-state polaritons. Most photons instead hybridize
into bright polaritons, that involve the decaying excited atomic states, resulting in
even smaller occupations.
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Figure 4.24: Double logarithmic plot of the distribution functions Fp(w) of the
transparent phase in red and the opaque phase in blue for the same
parameters as in Fig. 4.20. Near the EIT condition Fp — 1 differs by
more than an order of magnitude.

Of the two contributions to ¥ in (4.123), the second one thus dominates. Typ-
ically, in PCW or tapered fibers, the photonic bandwidth is several orders of mag-
nitude larger than the inverse lifetimes of all atomic states. It is therefore well
justified to approximate the photon spectrum as linear. We do so by writing their
retarded Green’s function as a sum of left- and right-movers

1 1

©) R ——t © - —
w—Ap —vpk —33(w) +ikp w—Ap +vpk—XE(w) +ikp
(4.133)

Gh(w) =

For Lp = kp/vp > 1 the EIT window in momentum space is much narrower than
the inverse lattice constant 1/a and thus far away from the band edge a linearized
spectrum suffices to reproduce the results obtained from any Bloch wave with the
same group velocity in the EIT window.

Together with the observation that, since the atoms are fixed in space, Eﬁ(w) is
momentum independent, this allows to find

B¢~ —igh(2 — nv)[ug (0)* /vp
2 ir (4.134)
oYK ~ —gh(1 — — 2 ,
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Figure 4.25: The frequency and momentum resolved photon number density
np(w,k) in the transparent phase (left) exhibits an almost perfect
transparency window, whereas the opaque phase (right) with the same
parameters shows strongly dissipative polaritons (note the difference
by almost three orders of magnitude in the maximal spectral density).
The almost flat blue line corresponds to the atomic level |d), that
hybridizes with the probe photon to form a fourth, bright polariton
branch. For small values of 25, which is the case for the parameters
of Fig. 4.20 also at use here, this hybridization remains weak and the
new polariton branch consequently is essentially unoccupied.

where the momentum integral has been approximated by an integral along the
entire real axis. This result can be used to approximate the number density of
atoms in the metastable state by

[ dw ™ dw
me=i [ GHGHWPEE @) =i [ 166w P @)

2

B /00 dw ) 1 (4.135)
~ ~ 'vs _ . 2 . .
oo 2m (wQ_QAs) (w +(2 - ny)igt + we/2> -1

% é 1-— ny
Q2 vp (kp/2 — STE(W))

As can be extracted from Figs. 4.20 and 4.21 the system becomes bistable once

dQ, d Qeff
dQeft dQe |1+ x (s (4.136)

!
0>
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which, using the explicit form (4.125) can be rewritten as

dx ; —Ag(0)+ikg/2
dQt = Qe (—Ap(0) — ZR(0) +ikp/2) |

(4.137)

In the ideal case of a resonance between the exchange photon and the corresponding
laser (Ag(0) = 0) as well as strong coupling g, such that |[SE(0)| > kg, this still
requires

dn Qe
deft

<0. (4.138)
A condition, that can be satisfied only if

SuE0) — Qoff ILR(0) > kp/2, (4.139)

where we used (4.135) with the absolute value approximated by unity as an upper
bound. Since the minimum of the frequency dependent loss rate

—3%E(w) o+ n(w — Ay)? (4.140)
with the abbreviations

_ 2(9¢M)%gp(1 — ny) [up(0)?

o = =
e(Q1)? + 7422
= 9L =) |up(0) P (4.141)
201

2 2
_ vz +4A
A = fd T *7d

Vd

for slow polaritons is tightly focused around w = A, this is a reasonably good
approximation. Using the just stated expansion of the probe photon self-energy
around Ag, one finds the left hand side of Eq. (4.139) to be maximized for

QQ
oot — |12 4.142
S 37@ ) ( )

where one finds a strong collective coupling satisfying
g% > 2vekp (4.143)

or equivalently a large collective cooperativity LpCp > 2 to be a necessary con-
dition for the emergence of a bistability. While, due to the rough approximations
used here, this is only a lower bound on the collective cooperativity, it clearly
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4.7 The limit of long-ranged atom-atom interactions

shows that the type of phase transition discussed here is not amenable to a purely
perturbative approach.

Instead of calculating a lower bound for the collective cooperativity LpCp we
can also search for a rough estimate that includes all relevant scales. To do so, we
approximate ng ~ pCpQ2/Q? where p = 2k,(0)/kp is the pump ratio, indicating
how strongly the probe photons near the EIT condition are driven compared to
their losses. Inserting this expression for n, into [SX%(0)| > kg, which is necessary
for a highly non-perturbative regime, yields the final strong coupling condition

2

pLECECP% Z 1. (4.144)

An actual bistability additionally requires an efficient backaction of the losses in

the dressed state |s) onto the dark-state polariton density. Therefore, typical sys-

tems that exhibit a phase transition satisfy Eq. (4.144) by more than one order of

magnitude. For example, for the parameters of the critical point in Fig. 4.23, one
has pLECECPQz/QQ ~ b&.

Fortunately, these strong coupling requirements are met for parameters that are
expected to become experimentally viable in PCWs in the near future [17], namely
Ye.d ~ 10MHz, grr. g ~ 1037, Jar ~ 107y, ap ~ 10%y, and kg ~ 107, for which
our approach indeed predicts the existence of a IIT transition. Because of the highly
tunable photon dispersions in PCWs this will likely be possible with Cg < 1, where
our theory becomes quantitatively valid. It is also worth mentioning that, as we
will see in the following, the additional diagrams that need to be added to the ones
in Fig. 4.17 in order to render our predictions fully quantitative actually enhance
the IIT-effect, which results in a parametrically larger bistable region.

4.7.2 Quantitative theory in the infinite-range limit

The reduced class of diagrams discussed in the previous section is helpful to obtain
a general idea about the emergence of a phase transition between the two limits
of a perfectly restored transparency window deep within the transparent phase
on the one hand, and an empty system in the opaque phase on the other hand.
Our main goal, however, is the quantitative description that extends all the way
to the critical point and the bistable region. In order to achieve this, one has to
include all diagrams that can be created self-consistently from the two diagrams
in Fig. 4.15a) and d). The resulting theory is illustrated in terms of Feynman
diagrams in Fig. 4.26, which differs from the reduced theory of the previous section
by the addition of the Fock diagram to the Dyson equation of the exchange photon
(see last diagram in the third line of Fig. 4.26). Note that at this level of the theory
the exchange photon obtains a Nambu structure, which requires us to extend the
Kramers-Kronig relations of Sec. 4.4.3 to anomalous Green’s functions, which we
will do in the following.
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Figure 4.26: Complete diagrammatics in the limit Ly — co. Note that we do not
show the anomalous components of the self-energy for the E-photon.
Those are however obtained from the last diagram in the second line
upon an exchange of laser and E-photons acting on the same transition.
We included the anomalous components in the calculation (see section
4.7.2).

Anomalous Green’s functions

The appearance of anomalous Green’s functions for the exchange photons is caused
by the presence of a background coherent contribution to the E-photon field. This
has to be expected from the theory presented in Sec. 4.7.1, as an E-photon can be
resonantly excited by the external laser field with strength €25. The net effect is
that a coherent component i.e. a condensate arises in the connected part of the two-
point function of the exchange photon as an addition to the background coherent
laser field. This effect is described by the last diagram in the third line of Fig. 4.26,
where at each atom the order in which the E-photon and the laser are coupled to
a given transition can be chosen arbitrarily. While this formally creates anomalous
contributions to the self-energy, it underlines the physical argument that from the
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4.7 The limit of long-ranged atom-atom interactions

perspective of fixed atoms exchange photons and laser photons are indistinguishable
if their frequency is identical.

It is important to understand that this condensation of E-photons will not be
inherited by the probe photons. Consequently, no polariton condensate can be
generated unless the probe photons themselves are directly coupled to an inverted
bath (which we excluded from the outset). Similar to what is done in equilibrium,
each component of the non-equilibrium Green’s function can be augmented by a
Nambu structure. For the retarded and the Keldysh part of the Green’s function
one typically defines the following 2 x 2 matrix

Mgy — i D) (A, )
G ( ,p) <<bd(—w, _p)bQ(w,p» <bCl(—w, —p)bq(—w,—p)>>

(w,p) (w,p) (—w:;p) (w,p) (4.145)
(va) (—OJ, _p) (_wv _p) (—OJ, _p)

and the same for G¥ (w,p) with all quantum fields (index q) replaced by classical
fields (index cl). The diagonal entries then describe ordinary Green’s functions,
while the off-diagonal, so-called anomalous components, are non-zero only in the
presence of a condensate. For the retarded Green’s function the Dyson equation
takes the same form as in equilibrium

GR=glt+qlt-=ft.gf, (4.146)

where GE is purely diagonal. Retarded, advanced and Keldysh Green’s functions
are once again not independent and one finds relations between them which are
very similar to the case where anomalous Green’s functions are absent. Specifically,
the retarded and advanced components have to satisfy fop(w, p) = Géﬁ(—w, —p),
where o, p € {1,2} and & is the complement of o. The proof follows from a direct
inspection of the respective Feynman diagrams: exchanging the external legs re-
verses the direction of the momentum and energy flow and simultaneously reverses
causality, thereby equating the off-diagonal entries of GF and GA. Additionally
[GA]T = G follows immediately once the definition (4.145) is evaluated on the
Keldysh contour. Therefore, the advanced Green’s function never has to be calcu-
lated and the retarded Green’s function can be restricted to only two independent
functions:

R _ G (w,p) Gib(w,p)
G (w,p) = ([G{E]*(—w, ) [Gﬁ}*(—w,—p)> : (4.147)

Furthermore, considering all self-energy diagrams order-by-order, one can prove
that GE (w,p) = GE (w,p), which is true for any uniform bosonic system in and
out of equilibrium [188].
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Taking the conjugate transpose of the Keldysh component can be done immedi-
ately in frequency space and a comparison of elements reveals the anti-hermitian
structure, i.e. [GK]T = —GX. We can thus still use the parametrization GX =
GE.F — F.G# with a hermitian matrix F. The fact that F = o, for an
empty system accounts for the reversed order of operators between the compo-
nents of the first and the second row of G¥. Exchanging incoming and outgoing
particles in G¥ furthermore allows to identify Gﬁ(p(w, p) = foﬁ(—w, —p). By con-
sidering again all possible self-energy diagrams one finds the additional symmetry
GE (w,p) = — [G?U]* (—w, —p). The Dyson equation for the Keldysh component
directly generalizes to the Nambu structure: GX = GF . (EK — D ) - G4, which
together with the other symmetries implies

~02R (w p) %ZR (w p)
K0 (. p) = 2 132497 (W, _ 12\% ) 4.148
(w,p) <—§RZ{22(—OJ, —p)  iSSE(—w, —p) ( )

for the empty system and

K VK _ s Ko(y p) — 6% (w,p) 651y (w, p)
oK) =2 ) -0 = (Lol et ”)
(4.149)

for excitations above the vacuum. With these definitions the Kramers-Kronig re-
lations of section 4.4.3 remain valid without limitation. For simplicity we only
provide the Kramers-Kronig relations for a single convolution with some normal
Green’s function labeled G,,, keeping in mind that generalizations take exactly the
same form:

dw't K AR N AR, NAK / dw' R NAR /
[oo IG5 6w — o) - G (G - )] =G [ G ()G - )
(4.150)
as well as
dw' K K R R A A
/27‘( (Gap(w,)Gn (w - w/) - Gap(w,)Gn (w - w,) - Gap(w/)Gn (w - w/)) (4 151)

/
__ / Y (G Gh ()G o) + 62O O — )

Note that due to the symmetries of the diagonal entries of the Green’s functions,
these two relations already fully incorporate the four equations derived in section
4.4.3.
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Dyson equations

Having introduced the anomalous non-equilibrium Green’s functions we can now
solve the self-consistent Dyson equations shown in Fig. 4.26, where in order to
simplify the notation we have introduced the matrix Green’s function Ggg for the
states |s) and |d). In absence of any diagrams of order 1/Lg, it is fully determined
by the corresponding submatrix of [Gf,o] - (see Eq. (4.80)), but with the effective
Rabi amplitude Q¢ = Q|1 + x|:

GRIK _ GEE GRIEN (- A, +ie/2 —qeff !
sd N G?S/K ng/K - —Qzﬁ w—Ad—As —I—i’yd/2
(4.152)

In fact, as indicated by the last line in Fig. 4.26, and in analogy to Sec. 4.7.1, 2
has to be replaced everywhere by Qf and Gi/ K supersedes the identical expression

Gﬁ?/ K used in Sec. 4.7.1. Apart from these notational remarks, the only physical
difference between the present theory and the one discussed in section 4.7.1 is in the

propagator of the exchange photon, which acquires a new self-energy contribution
iz,
E

1 -1
GE = ({Ggﬂ —xf_ 2§2> . (4.153)

While the first term Egl (w) remains exactly the same as Eq. (4.126), the second,
due to the Nambu structure takes the lengthy form

duw'’ d£

aw Ry, WeR (¢, N2 s K, 1
o0 o0 ‘Ge (w )Gss<w )‘ 5GP(w 7p)

S (0, ) =5 gha O+ xP (1 - ) [

x| [GE(w+w)GR(w+u)])’ GRw+,p+E)

» ( G+ GG + w'))
GdR(w’)Gg(w + o) ‘GdR(w’)’
+ [G?(w/ — w)Gfs(w/ — w)f Gf:‘.(w/ —w,p—k)
y ( GHAI® G - w)G:?(;/)) ] |
GdA(w’ — w)Gf(w’) [Gé‘(w’ — w)]
(4.154)

Some care has to be taken when it comes to determining y: ZgQ is actually indis-
tinguishable from Egl once one of their external legs is substituted with the laser
field ©2;. Consequently, coupling to the coherent field with 222 would overcount
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the diagrams in the last line of Fig. 4.26. Therefore, x is given by

_ R1 R
X - EE'j . Ejl
j k,w=0

(4.155)

Note that using the real and positive definition Q¢ = Q|1 + x| in the anomalous
components of the exchange photon Green’s function is wrong, since it leads to an
incorrect behavior of Gg under a global U(1) transformation ag 4 — &Eydeid’ and

&TE g &E de*i‘b. This does not matter, however, since all observables depend only

on the gauge invariant |1 + x|?, which allows us to simplify our calculations. By
fixing the real value Qiﬁ one can then directly determine the corresponding exper-
imentally relevant parameter 2;. From a computational point of view, this makes
for a very cheap calculation, as the two-dimensional convolution in Eq. (4.154) —
which has to be calculated only once — only has to be evaluated at k = w = 0.

Similar to the previous section, the simplified nonlinear Feynman rules are not
uniquely defined and we thus again have to choose between the strict and lenient
way of implementing the rules in order to estimate the error bounds of the simplified
diagrammatics. We do so in the same fashion as before, i.e. for the strict rule we
use GdAO/R in Egs. (4.154), and (4.126). For the lenient version we employ G;‘/R
according to Eq. (4.128) together with the replacement (4.129) for the very same
equations.

Before we proceed to discuss the results obtained from the set of coupled Dyson
equations introduced in this section, it is instructive to view these calculations
from a more conceptual point of view: despite the potentially large single-atom
cooperativity experienced by the probe photons, their density is assumed to be
small, such that dark-state polaritons in the absence of exchange photons are non-
interacting quasiparticles. This is correctly captured by the nonlinear Feynman
rules, which allow for an exact diagrammatic solution of the Yukawa theory in the
g — e — s — P sector. If we now consider the additional coupling to level d and
include the E-photons, we can eliminate the atomic degrees of freedom to obtain
an effective theory for the dressed propagating and exchange photons. Indeed, on
the one hand the atomic level structure contains the microscopic details necessary
for the formation of polaritons, which within the effective theory is incorporated
in the dressed P-photons, and on the other hand the atoms serve as interaction
vertices between one probe photon and an arbitrary number of exchange photons.
While the latter may be strongly dressed with probe photons themselves, there are
only two processes for this that are allowed by the atomic vertices, namely those in
the third line of Fig. 4.26. The diagrammatic representation of the effective theory
is shown in Fig. 4.27. We stress that this is completely equivalent to the theory
presented in Fig. 4.26. In the first line of Fig. 4.27, the free polariton propagator
is defined and indicated as a curly-line. In the second line the interaction vertices
between the polariton and the E-photons are illustrated. Out of these, only the first
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two are shown but actually and infinite number of F-lines is allowed in the vertex
indicated by the dots in the last line of Fig. 4.27, where all possible interaction-
corrections to the polariton self-energy are shown. Luckily all of these vertices can
be conveniently resummed as a geometric series, as we have demonstrated earlier in
the derivation of the self-consistent equations. Similarly, all possible contributions
to the E-photon self-energy are shown in the third line. However, as every vertex
has to involve exactly one probe photon, the number of diagrams here is limited to
two.

Figure 4.27: Effective theory of dark-state polaritons in the limit of infinite inter-
action range, i.e. Ly — oco. While there is an infinite set of vertices
coupling a single probe photon to an arbitrary number of exchange
photons, these are conveniently summed up in the geometric series
embedded in Zg. This effective theory is completely equivalent to the
one shown in Fig. 4.26.

Quantitative results and validity

With the inclusion of all effects at leading order in 1/Lg, x is no longer bounded
from below by —1. In fact, it can achieve arbitrarily small values, which can be
understood by a closer examination of the effects of 222 in terms of the effec-
tive theory in Fig. 4.27, where it is represented as the last diagram of the third
line. Within this framework one immediately realizes, that EgQ describes in fact
a particle-hole excitation of a probe photon. Since, however, this photon itself
is strongly dressed, its distribution Fp(w) is sharply peaked. This allows for a
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resonant reallocation of photons from highly occupied frequencies and momenta
towards low-occupation regions, by means of the particle-hole excitations in E}Eb.
Where this is possible, it will act as a locally inverted environment for G, thereby
effectively driving the exchange photons. Since there is no other diagram to counter
this effect, the exchange photon propagator can develop a divergence, resulting in
X — —oo, which is unphysical. While in general there is nothing wrong with the
inverted bath experienced by the exchange photons, one has to pay attention to its

effect on Ly = \/ag/ /iiff. The latter namely vanishes as the divergence in Gg is

approached. Consequently, diagrams at higher order in 1/Lg have to be included
and these will in turn prevent the unphysical instability in the exchange photon
propagator. We will outline the underlying processes in the next section. Never-
theless, as long as Lg remains large enough, —y can still become large without
forcing us to include subleading orders in Lg. This can happen to such an extent,
that it actually overcompensates the bare coupling €2; up to the point where a
new, strongly interacting phase emerges. This new phase, which will be referred
to as “intermediate phase”, is stable, as evidenced by the flow diagrams 4.28 and
4.29, which we show again for both the lenient and the strict implementation of
the Feynman rules. As there is hardly any quantitative differences between the two
versions, we will in the following focus on the strict rules.

Previously, we presented an argument for the emergence of the bistability, whereby
an increase in Qf was met with a sufficiently fast decrease of n, (and of x), so
that € itself was reduced, resulting in a non-unique identification Q4(Q¢%), i.e. a
bistability. It is exactly the opposite effect that stabilizes the intermediate phase,
whereby for small 2, an increase of Q¢ increases the efficiency of the drive ex-
perienced by G%, such that |x| grows until this effect is exactly balanced by the
effects of increased losses discussed in Sec. 4.7.1. If this happens at x < —1 a stable
intermediate phase exists.

As can be observed in Fig. 4.30, where the losses 4 have been increased tenfold
compared to Figs. 4.20 and 4.21, the stability of the transparent phase is strongly
enhanced in comparison with the results of Sec. 4.7.1. This is a consequence of
the slow dark-state polaritons, which require that each probe photon during its
lifetime excites on average multiple atoms. As such, while the field content of the
two contributions Egl and E?, as well as the relative detunings between atoms,
lasers and guided photons, allow no distinction between these contributions, Zgz
is favored combinatorically by a factor ~ Cp. In essence, on can think of the
last diagram in the third line of Fig. 4.26 or equivalently Fig. 4.27 as an antenna
increasing the amplitude of the indirect coupling beyond that of the direct laser
driven transition between |s) and |d). Consequently, slow polaritons with infinitely
ranged interactions are typically dominated by these diagrams. If the gain of the
antenna ~ Cp is large and increases sufficiently with ngf, as suggested by the
superficial dependence Z}Eb ~ (Q§5)2, it can counteract the reduction in polariton
density, thereby stabilizing the intermediate phase.
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Figure 4.28: Flow diagram of the effective relative coupling strength |1 + x| as a
function of the externally adjustable parameter {15, where apart from
vq¢ = 10 the same parameters as in Fig. 4.20 are used together with
the lenient interpretation of the nonlinear Feynman rules. Note the
emergence of a tristable region, where in addition to the opaque and
transparent phases a new, strongly interacting semi-transparent phase
appears.

As is indicated by the color gradients in Fig. 4.30, the transparent and opaque
phase are adiabatically connected. The same is true for the transparent and inter-
mediate phase as the latter emerges from the former at large drive strengths k5. In
order to more closely investigate the properties of each phase, we provide a plot of
the number density of atoms in the state |s) (Fig. 4.31), which shows that in every
phase the polariton density and therefore their lifetime decreases as {2, is increased.
However, in case of the intermediate phase ns; and the polariton lifetime decrease
also with increasing ks, which implies that the interaction strength is increased.
This demonstrates that the intermediate phase is indeed stabilized by the overcom-
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Figure 4.29: Same diagram as in Fig. 4.28 but using the strict version of the non-
linear Feynman rules.

pensation of {2, via strong interactions and its properties are not directly linked to
either the weakly interacting limit Qs/ks — oo or the unperturbed polaritons at
ks/Qs — 00. We therefore use the strong backaction condition of a negative slope
in the polariton density dns/dks as the defining property to distinguish between
the transparent and intermediate phase in Fig. 4.31. The relatively low density and
the increased line-width of the dark-state polaritons (see Fig. 4.32) in the interme-
diate phase actually helps with the numerical investigation, as the discretization
of momentum and frequency space can be performed at a lower resolution and
saturation effects can more readily be discarded.

4.8 Controlled expansion to finite Lg

As was summarized at the end of the last section, the restriction to a theory
that exclusively resums all Hartree diagrams of the effective theory in Fig. 4.27

162



4.8 Controlled expansion to finite Lg

2.0

intermediate

1.5

0.5

0.00 005 010 0.15 020 0.25

Figure 4.30: The quantitative phase diagram in the limit Ly — oo and with the
parameters of Fig. 4.28, shows three distinct phases. While the trans-
parent and opaque phase can be adiabatically connected to free the-
ories far away from the multistable regime, the same cannot be said
for the strongly interacting intermediate phase. The region of coexis-
tence between opaque and transparent phase is indicated in magenta,
that between transparent and intermediate phase in orange, and the
remaining bistable area in green. All multistable regions are labeled
by the initial characters of the coexisting phases.
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Figure 4.31: The number density of atoms in the metastable state |s) can be used
to characterize the three distinct phases. For the slow polaritons ob-
tained for the parameters of Fig. 4.28, that are also used here, ng is
a good estimate of the dark-state polariton density. The density of
the intermediate phase is highlighted in green and those of the adia-
batically connected transparent and opaque phases in blue. If these
coexist the transparent solution is shown in yellow. As a testament to
the overcompensation of 2 by x the density of the strong coupling
intermediate phase decreases as the drive intensity kg is increased.

is not always quantitatively justified. In particular, for current experiments with
PCWs [17] the range of the exchange photons is limited due to imperfections in
the fabrication that cause rather large losses k. Therefore, in this section we will
go one step further and include all diagrams in next-to-leading order. This allows
us to include scattering between polaritons, that is, processes involving momentum
transfer. In terms of the effective theory in Fig. 4.27, the only modification is the
inclusion of the two diagrams in Fig. 4.33. Equivalently, in terms of the original
theory including the atomic degrees of freedom, we obtain the Dyson equations
shown in Fig. 4.34. One can identify these self-energies with the full set of self-
consistently generated diagrams from the next-to-leading order corrections in 1/Lg
and 1/Lp to the probe-photon propagator shown in Fig. 4.15.
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Figure 4.32: The Comparison of the EIT window for the two different stable phases
shows a distinct ordering in the brightness of the dark-state polaritons.
Except for ks = 2 and 0, = 0.21 the parameters of Fig. 4.28 were used.
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Figure 4.33: Addition to the effective theory in Fig. 4.27 at next-to-leading order
inl / L E-

4.8.1 Self-consistent theory at O(1/Lg)

As can be seen in Fig. 4.34, a fully self-consistent theory involving all effects at
next-to-leading order in the inverse interaction range requires to solve an even
larger number of coupled integral equations than in the previous section. This task
might seem daunting at first sight, however, using the Kramers-Kronig relations
(see section 4.4.3) and the loop reduction procedure (see section 4.4.5), every single
diagram can once again be broken down into a combination of independent one-
loop effects. Due to the nonlinear Feynman rules (section 4.4.4), great care has to
be taken in determining which of these single loop effects can be combined. We
do so by introducing two different matrix Green’s functions Gz and Goq for the
states |s) and |d). To help distinguish these propagators in Feynman diagrams,
we slash the propagator of Goq twice. When appearing as an insertion inside the
probe-photon propagator, G,q cannot itself involve a self-energy that would return
the atom to its ground state. There is thus only one contribution to the self-energy
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Figure 4.34: Complete set of coupled Dyson equations at next-to-leading order.
The loop-reduction procedure of section 4.4.5 is employed here and,
depending on the Feynman rules at use, d-propagators are either bare
or given as part of G4, of which the s-propagator in the last diagram
of the third line is just the (11)-component.
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Figure 4.35: Loop reduction procedure for the Feynman diagram in Fig. 4.15b),
which formally delocalizes excited atoms. Note that during this pro-
cedure the probe photon coupling strength has to be modified by
gp — gpv/2 — 2ny to properly reflect the atom number density.

and the matrix propagator takes the fairly simple form

-1 -1
g = ([g5] " - =) . (4.156)
where
. . . X .
SR _ iQQ 6GE,, » Gl + GE + G, GE x0GK + (6GE, +2GR° ) «GE
sd = oJE
2

SGE  xGE + GR «6GE  GR «6GK + (6GE +2G5° ) «GE
(4.157)

uses + to denote the convolution in w and k. The corresponding Keldysh component
reads

56K =gl . sk - g4, (4.158)
with
. K jod * ~
sk _ i ((wgm + 2GR, ) <0G, (6GE, +2[GE,]) * 6G5§> |
277\ (0GE,, —2GE ) » 6GE, SGE +6GK

(4.159)
Note that Ef:i/ K are allowed to depend on the quasi-momentum k, since, due to
the photon admixture with momentum transfer, they effectively no longer describe
a completely stationary atom. This effective delocalization of the atoms is not an
actual physical process, but rather a mathematical trick to accommodate the loop
reduction procedure shown in Fig. 4.35. In fact, we construct Gsa via

Gh = ([gﬁl]_l — <EO§ 8>>_1 (4.160)
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with
QZ
»h— , 4.161
o w—gb [(L—ny)GE+ GE x, 6GE] +ive/2 ( )
where %, indicates a particle-hole convolution in frequency only, i.e.
*© do -, ,
f*wh= Q—f(w Yh(w' +w). (4.162)
oo 2m
Furthermore, the related
5K _ AR Kk, (0ZF 0 SR
0Gsq =Gsa (0Zsat | o)) s (4.163)
where
2
§EK = IP (1 — 1y )5GK | 2R 2 (4.164)

correctly includes all repeated scattering processes of a probe photon into a probe
and an exchange photon. The loop reduction procedure therefore allows for a very
cost-efficient inclusion of pairing effects between probe and exchange photons, that
would otherwise require a self-consistent treatment of the corresponding T-matrix.

The Dyson equation for the probe photon propagator takes almost exactly the
same form as it does for the non-interacting EIT:

GE = (w— Ap(k) — gb(1 — ny)GE + ikp/2) ™

SGE — (02¢2(2 — SGEIGR12 — 9; GE12 (4.165)
_( gP(2 nV) ss’ e’ 21&3(“}))‘ P‘ )

with the only difference being hidden in the more elaborate form of Ggs.

In order to close the set of coupled equations one has to find the full exchange
photon propagator, which again has two self-energy contributions as in Eq. (4.153).
The first one

; §GE «, GE| (w) 0
7 w Gy
Egl (w) = 9?3 { ’ }

) 0 (5G§< X Gf) (—w) (4.66)

is already known from Sec. 4.7.1 and in the present notation involves the propagator
5G§< given by

2 (w)
w—Ag— Ef(w) +ivs/2

9 2
G () = Z2(1 = ny )k, (w) /gfr(sag(w,k).

(4.167)
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For the strict interpretation of the nonlinear Feynman rules we use

R 5
N (w) = —
# w+z’ye/2—g%f% [(1—nv)G§+/{s(w)G§*w SGK]

(4.168)

and G? = foo . One therefore recovers exactly the same expression for Egl as in
the previous sections. In case of the lenient Feynman rules the denominator in the
absolute value in Eq. (4.167) is to be replaced by

w— Ay — (W) +ivs/2 + ( §H)2 +/7f %ER(w k) (4.169)
ST TS A — Ay i7a)2 o “ss\ ) AR

—T

where X2 is the 11-component of Zfd. At the same time GdR is given by C:’gd. This
leaves 252, which takes the same form as in Sec. 4.7.2:

! dp

R/ AR/ N2 K/

i o\ 2
g (w, k) =59pgp<Y! (Qﬁ> (1 —nv)z/

x| [GE(w+a)GRw+u)] GEw+u,p+ k)

G (WG (w + ') |G ()
+ [Gf(w/ —w)GA (W — w)}Q GA(w' —w,p—k)

; ( GHNIP G - w)Gg‘(;f’)) ] |
Gl —wGiW)  [G - w)

( G )’ Gzz*<wf>c;§<w’2+wf>>

(4.170)

Evaluating the same diagrams for the Keldysh component, one obtains the last two
pieces of the puzzle:

oxKr =0, (4.171)
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as before, and

7 2
ST (w, k) =5gbgh0t (257) (1 —nv)?
/
< [ G SRR @GR + w)GR WG + )
x 0GB (W', p)dGE (W + w,p+ k)
|G (' +w)] G ()G +u)
GH(W)GH(w + ) |G (W)

2 [gig(w, k)] . [ig(w, k) + SE(—w, —k)}

~ [SB(w, k) + ZE(-w, )] 2 [SSE(~w, )] :

11
(4.172)

with the same choices for G in Eg/ K> as in Egl and Sz’g~ma§ the shorthand
notation for the second term in the sum of 252.

As always, throughout this entire theory the bare laser coupling s between
states |s) and |d) has been replaced by Q¢ = Q|1 + x|, where x given by (4.155)
describes the modified conversion rate between |s) and |d) due to the presence of
other polaritons, as in section 4.7.1. Contrary to the previous renditions of the

Figure 4.36: Dependency structure and ordering of updates for the self-consistent
solution of the Dyson equations (4.156) through (4.172) with (4.155)
iteratively updating the effective coupling Q¢ff.

self-consistent structure, with the inclusion of 1/Lg effects, scattering of probe
photons into exchange photons becomes a possibility. Therefore, self-consistence is
no longer simply a question of finding the right parameter x, but actually involves
the full frequency and momentum dependent Green’s functions Gg/ K. As such, the
numerical implementation has to find the solution in an iterative manner. Since
there is no direct dependence on €24, one can however fix Qgﬂ, initialize all Green’s
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functions as bare ones and iterate equations (4.156) through (4.172) together with
(4.155) until x no longer changes, see Fig. 4.36. This, once again means that the
final value of €2 corresponding to the solution is not known a priori and has to be
searched for iteratively, unless the entire phase diagram is calculated. The main
advantage of this method lies again in the enhanced convergence that is unaffected
by the presence of any phase transition.

As we have already discussed in Sec. 4.7.2, strictly speaking the use of the ab-
solute value in the definition of Q¢ in the anomalous Green’s functions is wrong,
since G no longer transforms correctly under a global U(1) gauge transformation.
Previously this was not a problem for the evaluation of gauge invariant observ-
ables. Despite the iterative procedure the backaction at any stage of the iteration
for any observable depends only on |14 x|?, as is required by gauge invariance. The
described self-consistent calculation thus finds the correct value of |1+ x| and there-
fore of all normal Green’s functions. To also obtain the anomalous components the
correct phase of x simply has to be restored in the final result.

4.8.2 Results

When including the effects of a finite interaction range, care has to be taken as
not to break any of the assumptions underlying the quantitative validity of the
approximations at use. In particular, if the interaction becomes too short-ranged,
the losses in state |d) caused by emission of exchange photons and described by
the second diagram of the fourth and fifth line of Fig. 4.34 — or equivalently the
(22)-component of Eq. (4.157) — become large as a result of the narrow linewidth
of state |s) for long lived dark-state polaritons. These effects are included in G
in the lenient interpretation of the non-linear Feynman rules, but not for the strict
rules. As these atomic Green’s functions form the vertex of the effective theory,
the differences will grow upon iteration of the self-consistency equations. The un-
certainty regarding the results of the exact Feynman rules for four-level atoms thus
grows with decreasing Lp. This is already observable in the comparison between
Fig. 4.37 and Fig. 4.38, which qualitatively show the same phases, but with a larger
discrepancy in the actual phase boundary than in the previous sections. Since the
additional scattering effects that arise from the inclusion of 1/Lg effects into the
description cannot themselves create any new instabilities and instead remedy those
that could otherwise exist in G%, relatively large values of Cr can be treated with-
out much more than quantitative corrections to the previously discussed results. In
particular, the parameters discussed in Figs. 4.37 and 4.38 correspond to Cg ~ 0.22
and C'p = 2. The main limitation for an extension to even smaller values of Ly or
larger values of C'g lies in the discrepancy between the different interpretations of
the Feynman rules, which eventually will have to be specified in more detail.

This time, for a change, we discuss our results using numerical data obtained from
the lenient Feynman rules, which requires exactly the same amount of numerical
effort as the strict rules. The resulting phase diagram depicted in Fig. 4.39 is
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similar to that in Fig. 4.30. However, the quantitative corrections due to the
finite interaction range reduce the extent of the intermediate phase. This is to be
expected as the corrections in 1/Lp counteract the previously discussed effective
drive of the exchange photons.

The restriction to large interaction ranges imposed by the discrepancy between

Figure 4.37: Flow diagram of the effective relative coupling strength |1 + x| as a
function of the externally adjustable parameter ), using the same
parameters as in Fig. 4.28, except for ap = 400 and kg = 0, that
previously did not need to be specified. Here we use the lenient inter-
pretation of the non-linear Feynman rules. Note that the qualitative
structure remains the same as in Figs. 4.28 and 4.29, however the
quantitative differences compared to the strict rule in Fig. 4.38 has
increased.

the approximate implementations of the Feynman rules, together with the fact
that scattering between dark-state polaritons is dominated by forward scattering
— the exchange photons are most efficiently coupled to at & = 0 — renders the
effects of scattering on the probe photons actually negligible in this regime. As
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Figure 4.38: Same diagram as in Fig. 4.37 but using the strict version of the non-
linear Feynman rules.
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Figure 4.39: Phase diagram including corrections due to the finite interaction range.
The color coding is the same as in Fig. 4.30. The bistability between
transparent and intermediate phase is less pronounced and for large
Qs the opaque phase is more prevalent. The parameters are identical
to those in Fig. 4.30, except for ap = 1000 and kg = 0 (setting the
interaction range and profile) and the use of lenient Feynman rules.
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4.9 Comparison with polaritons in Rydberg ensembles

a demonstration of the smallness of the redistribution due to scattering, one can
examine the distribution function Fp(w, k), which, even in the transparent phase
where resonant scattering is strongest, is almost entirely momentum independent
(see Fig. 4.40). Only upon subtraction of the momentum independent background
a slight increase in Fp(w, k) near the EIT window can be observed. As such,
there is also no significant deformation in the dispersion of the dark-state polariton
(Fig. 4.41) and the the number-density of dark-state polaritons experiences only
minor corrections (Fig. 4.42).

For the present case of scattering with small momentum transfers, the most
significant effect of the inclusion of 1/Lpg corrections is the avoidance of the diver-
gence in Gg appearing as an artifact of the Ly — oo theory: while the exchange
photons can still experience an effective drive due to the redistribution of energy
between dark-state polaritons, this effect is significantly weakened by the increas-
ing dissipative nature of the atomic vertex brought about by the aforementioned
losses in |d). As the exchange photon experiences fewer and fewer losses, those of
|d) namely increase, thereby weakening the coupling between probe and exchange
photons enough to stabilize the system.

n
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Figure 4.40: For parameters where the expansion remains quantitatively controlled,
the distribution function Fp(w, k) shows hardly any visible momentum
dependence and thus only weak signatures of scattering. To make the
weak momentum dependence visible, we subtracted the momentum
independent background Fp(w,k = 0). Here the transparent solution
is depicted for the same parameters as in Fig. 4.37, with ks = 1.8,
s = 0.07 and o = 1000.

4.9 Comparison with polaritons in Rydberg ensembles
Rydberg atoms exhibit essentially the same level-structure as the atoms we previ-

ously considered, but without the excited state |d). We will therefore mostly use
the same notation as above to illustrate how interactions between Rydberg polari-
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Figure 4.41: Using the same parameters as in Fig. 4.37 except for ap = 1000,
ks = 1.8 and s = 0.07, one again notes the pronounced difference in
the overall density between the two stable phases.

Figure 4.42: The photon density near the EIT condition is proportional to the atom
density in the metastable state ng and changes only insignificantly
relative to the results for Ly — oo if the same parameters are used

(here those of Fig. 4.37).
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Figure 4.43: Leading order of the expansion in Feynman diagrams around the limit
of infinitely ranged interactions between Rydberg polaritons. Note
that, due to the use of a fixed potential, only a single interaction
diagram has to be considered. Otherwise the self-consistent treatment
is similar to that in Sec. 4.7.1.

tons fit into a 1/L expansion. Instead of driven exchange photons with significant
losses and a tunable dispersion, unguided photons with low energies mediate the in-
teractions between Rydberg atoms. In fact the quadratic Stark shift that gives rise
to the interatomic van-der-Waals potential V (x) = —C/|x|® requires the exchange
of two photons. Their dynamics however happens on timescales much shorter than
those experimentally relevant and can therefore be neglected. With this knowledge

it is well justified to replace the two-photon interaction by the effective potential
V(x — x")ng(x)ns(x').

Diagrammatically, the resulting theory looks very similar to the one discussed in
the previous sections, the only modification being the replacement of Gg coupling
between states |s) and |d) by V(x) acting directly on |s). The non-interacting
Rydberg polariton theory is illustrated in the first line of Fig. 4.43 with the [s)-
propagator considered as bare. Interactions are then taken into account by dressing
this state with density-density interactions that take a similar form as those con-
sidered in Sec. 4.7.1. The resulting Feynman diagram in the second line of Fig. 4.43
has to be treated self-consistently following the same procedure as in Sec. 4.7.1,
with the main difference compared to Fig. 4.16 being the absence of state |d) and
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the external source 2. It is readily evaluated as
YR(x,t) = /d3xV(x —x)ns(x', 1) (4.173)

with the functional dependencies G [SF], GE[GE] and GE [GE] identical to
Sec. 4.7.1.

Interestingly, the leading diagrammatic contributions for the setups discussed
in the previous sections actually disappear in the context of Rydberg polaritons.
Self-interactions of a Rydberg atom by emission and absorption of a photon induce
a Lamb shift that is already included in the bare energy of the atomic state. A
repeated interaction between two Rydberg atoms on the other hand has to be
treated with the nonlinear Feynman rules. By arguments identical in spirit to
those of section 4.4.4 it reduces to terms already included in (4.173). Last but
not least, a self-interaction of a Rydberg polariton through the interaction of two
distinct atoms, similar to Fig. 4.15b), is excluded by the instantaneous nature of
interactions. As such, the limit of a low Rydberg polariton density results in a
less complicated, but conceptually similar expansion to that derived for PCWs and
TNWs. However, the absence of an external coupling similar to €25, with which the
interaction can interfere destructively, prevents the emergence of phase transitions
of the type discussed before.

Instead, interesting questions include the scattering of Rydberg polaritons and
the stability of regular structures (i.e. n-particle bound states) or even crystals.
Here we only want to give a brief idea of how these questions can be approached in
terms of a 1/L expansion and therefore discuss the simple case of a Rydberg po-
lariton scattering off a fixed Rydberg atom at the origin. In this case the polariton
Green’s function is given by

-1
2 1—
GR(w, k,x) = (w —wp(k) — gpgp n) : + i/ip/2> . (4.174)
W= oA v T Ve /2

where the inversion in momentum space first requires a Fourier transform from x
to the momentum difference between incoming and outgoing polariton and is then
to be understood as the inverse with respect to the convolution and thus a non-
trivial operation. Nevertheless, assuming a slow, and thus well-localized, incoming
Rydberg polariton of fixed frequency wgrr = Ag corresponding to the EIT window
at |x| — oo, we can calculate its losses as a function of r = |x| and determining
the blockade radius. The losses are given by the imaginary part of the inverse
propagator

eff

2
1 _
Kp (w,r) = Kkp + gP( )

D) )
2
<w— ﬁ) +2/4

(4.175)

178



4.9 Comparison with polaritons in Rydberg ensembles

200/
n 1501 — Re
@ 100! — Im
< :
I s0)
3 o
= a, :
SO, s
_1005| 1 1 L 1 L 1
1 2 3 4 5

Figure 4.44: Rydberg blockade experienced by a Rydberg polariton as a function of
the distance from a stationary Rydberg atom at » = 0. The imaginary
part of the inverse propagator indicating the losses becomes very large
at a distance set by the blockade radius Rp. At the same time the
real part that gives rise to deflection also grows. Parameters used are
Ye=1/4, kp =1/5, Ay =1/3, @ =1/2, ny =0 and gp = 5.

and illustrated in Fig. 4.44. The pronounced maximum that forms at the blockade
radius Ry is determined by equating the frequency shift due to X% with the bare
losses 7¢/2. As a result one finds

C(ye +2A,)\ /6

which agrees with existing work [241]. Finally, an expansion of x$f(A,,r) around
7 — oo reproduces the related result xS¥(A,, r) oc 7712,
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Chapter 5

Critical relaxation with overdamped
quasiparticles in open quantum systems

Following a short review of the quantum kinetic equation and its most common ap-
proximations, we study the late-time relaxation in the open Dicke model. We show
that the dynamical phase transition at a critical atom-light coupling is character-
ized by the interplay between reservoir-driven and intrinsic relaxation processes in
the absence of number conservation. Above the critical coupling, small fluctuations
in the occupation of the dominant quasiparticle mode start to grow in time while
the quasiparticle lifetime remains finite due to losses. Near the critical interaction
strength we observe a crossover between exponential and power-law 1/7 relaxation,
the latter driven by collisions between quasiparticles. For a quench exactly to the
critical coupling, the power-law relaxation extends to infinite times, but the finite
lifetime of quasiparticles prevents aging to appear in two-times response and cor-
relation functions. We predict our results to be accessible to quench experiments
with ultracold bosons in optical resonators and possibly also with trapped ions.
This chapter is based on the publication Ref. [264].

5.1 Dynamics — From the quantum kinetic equation to the
linearized Boltzmann equation

In chapter 4 we have discussed the steady state of a driven-dissipative system
with long-range light-matter interactions. We now want to go a step further and
investigate the corresponding late-time dynamics in a related setting. We begin
with a short overview of dynamics far from equilibrium and its classical limit with
a focus on frequently applied approximations and their respective conditions of
applicability. We also discuss scenarios for how the steady state can be approached.

Independent of the choice of time-contour, the equations of motion for the Green’s
functions are given by the Dyson equations

GB(z,2') = (G(]ﬂ (z,2') — B (z, 93)) '

(5.1)
(z,2) /dy/denyZK( 2)GA(z,2') .
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Chapter 5 Critical relaxation with overdamped quasiparticles in open quantum systems

The latter of which is typically written in terms of the distribution function F'
defined in (4.18). For a scalar complex field, the bare Green’s function in the
presence of an external classical potential coupling to the density via a term in the
action %Xt(:c)qbzl(:c)qbq(w) is given by

v2
=d(x — 1) (i@t +3 -

m

(G (a,a")] ~Veu(0)) 52)
Note that this potential can be complex if particles are exchanged with the envi-
ronment. We will discuss this situation later and for the moment restrict ourselves
to real valued functions Vey. The Dyson equation for the Keldysh component then
becomes

1
— |0y + 2—v§ - Vexth} (z,2') = X (z,2)) = (R« F - F«25) (2,2') , (5.3)
m

where we have introduced x as the convolution operator in time and space, which
satisfies the property [0, F|(x,2") = (0; + Op)F(z,2") [192]. Equation (5.3) is
known as the quantum kinetic equation, the left hand side of which describes the
evolution of a single massive particle in an external potential. It is therefore known
as the kinetic term. The right hand side, however, contains interactions between
multiple particles and is thus referred to as collision term.

We note, that the quantum kinetic equation is in general very difficult to solve,
as it requires the forward evolution of an integro-differential equation in 2(d + 1)
dimensions. However often simplifications are possible. In particular, it is useful
to separate between fast and slow degrees of freedom. There are many closely
related methods, summarized as wavelet transforms [265], that are suited for this
task. One analytically particularly simple — but numerically less suitable — similar
method is the Wigner transform defined by

/ /

Az, p) = /dw’ e T A <x + %,a: - ac2> (5.4)

with the inverse

dp (e x+a

Here we employ the notation pz = p-x—wt as well as dz = dt dx® and dp = dw dp?.
The Wigner transform simplifies convolutions into a series of derivatives and turns
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products into convolutions:

(5555
/ dyA<x,y>B<y,x'>W—T>A<x,p>e2( v >B<x,p>

~ A(z,p)B(z,p)

i (5.6)
+ 5 (0 A(z,p)0pB(z,p) — 0pA(z, p)0: B(z,p))
Az, 2")B(z,2) WL (Q;l)quA(x,p— q)B(z,q) .

In a system with well-defined quasiparticles, the spectral function p(z,p) =
i(GP(2,p) — GA(x,p)) = —23(GF(x,p)) becomes sharply peaked in w with a width
given by the inverse quasiparticle lifetime 1/7q,. If the characteristic length (time)
scale dx on which F(z,2’) varies as a function of the center of mass coordinate
(x + 2’)/2 is much longer than the microscopic inverse momentum (energy) scale
set by the dependence of the spectral function on the relative coordinate, an ex-
pansion in the derivatives in Eq. (5.4) is possible. Technically we require, that the
evolution in the center of mass coordinate takes place on scales large compared to
the characteristic scales of the eigenmodes of the system. In more physical terms
this translates to the requirement that the length and time scale on which the
system is forced out of equilibrium is much longer than the inverse quasiparticle
lifetime and size. To linear order in the expansion in derivatives we find

(Z710, + vgVr + (0:V) 0 — (ViV) Vi] F(2,p) = Leon[F] (5.7)

with a renormalized quasiparticle weight Z = 1/ (1 — &ﬂ%ZR), group velocity
vy(z,p) = Vi (w(k) + REF(2,p)) and external potential V(z,p) = Vex(z) +
REE(z,p). The collision integral now is a simple product

I.onlF] = iEK(x,p) + 2F(x,p)%2R(x,p) , (5.8)

where the self-energies implicitly depend on F' and p and for explicit calculations re-
quires some approximation as well. Having restricted our discussion for the moment
to an isolated system, the collision integral satisfies the condition Icon[Feq] = 0,
where Fuq(w) — 1 = coth (Bw) is the Bose-Einstein distribution!.

Foq(w) already hints towards the fact, that in general the energy scale on which
F varies does not depend on 1/74p,, but rather the (effective) temperature of the
system or some mean energy density. In the collision integral F' appears only if a
diagram with an internal Keldysh propagator contributes. Consequently, it always
appears in a product with the sharply peaked spectral function. As a result the
energy dependence of F' can be neglected by restricting the distribution function

!Similar statements are also true for fermionic and classical collision integrals with the Bose-
Einstein distribution replaced by either Fermi-Dirac or Boltzmann distributions.
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to the self-consistent mass shell
F(rk,t) = F(z,kw=wk) + V(z,p)) (5.9)

which is nothing else than the local density approximation. Thus, on-shell and
within the quasiparticle approximation we find for slowly varying distributions the
quantum Boltzmann equation

(Z720, + vy Ve — (ViV) V]| F(r,k,t) = Lon[F] , (5.10)

where to second order in the coupling strength the collision integral for the s-wave
scattering introduced in Eq. (4.35) is given by

2
ICOH[F] _92/ (27il)g+1 / (2 dqcl+1 p(l’,p - q)/)(wv k— Q)p('r7p)

)
x {[F(x,p)F(z,k — q) + 1] [F(z,p — q) + F(z, k)]

—[F(x, k) F(z,p—q) + 1] [F(z,k —q) + F(z,p)]} ,

(5.11)

which using the mass-shell set by the bare spectral function p(z,p) = 27d(w—w(p))
becomes

ILeou[F] =mg? / (;:)d / (2617?)& (W(p) +wk —q) —wk) —wP—a))

x { [F(a:, p)F(z,k — q) + 1} [F(x, p—q)+ Fz, k)} (5.12)

- [F(m,k)F(x,p—q)%—l} [F(m,k—q)—i—ﬁ(m,p)}} )

Substituting the distribution function by the occupation number F(z,k) = 2n(z, k)+
1 this turns into the well-known result for the collision term of a weakly interacting
Bose gas with contact interactions [266]:

Tealn) =srg? [ 585 [ 55 (wp) + =)~ wll) —wlp—a) (.13

x{n(z, p)n(z,k — q) [n(z,k) + 1] [n(z,p — q) + 1] (5.14)
—n(z,k)n(z,p — q) [n(z,p) + 1] [n(z, k —q) + 1]} . (5.15)

Note, that the on-shell distribution function is nothing else than the classical
time-dependent probability distribution in phase space?. One has to be care-
ful however, that only for non-interacting particles the spectral function satisfies

p(z,p) = 2m6(w — w(p)), which allows to identify F' with the equal time Keldysh

In fact, quantum mechanically the simultaneous determination of position and momentum is
limited by the Heisenberg uncertainty, which therefore limits the resolution, providing yet
another reason for the breakdown of (5.10) once the deviation from the steady state becomes
too sharply peaked in phase space [267].
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5.1 Dynamics — From the quantum kinetic equation to the linearized Boltzmann equation

Green’s function and thus the occupation number. For interacting systems, even
in equilibrium, the occupation number can in fact deviate significantly from the
local Bose distribution. On-shell, .ﬁ’eq is still the local thermodynamic equilibrium
that satisfies I [Feq] = 0, but the kinetic term has non-vanishing contributions
~ 1/ (6&7qp) and Fyq is not the full solution to the Boltzmann equation. Nev-
ertheless, it is typically a useful lowest order approximation. We have already
used that the deviation from the stationary solution varies slowly in Wigner space.
It is thus only logical to go one step further and perform a gradient expansion
around Feq. Close to the stationary solution in equilibrium field theory one can
furthermore linearize the collision integral in the deviation from Feq as well. This
linear Boltzmann equation has a long history and has proven very useful to de-
termine transport coefficients [268, 266]. Indeed, most condensed matter systems
are surprisingly well described by this approximation to the quantum kinetic equa-
tion. One reason for this success lies in the non-perturbative nature of the collision
integral, which involves scattering between self-consistently evolved distribution
functions. In this regard the Boltzmann equation differs significantly from (non)-
linear response theory, where expectation values are always calculated with respect
to the unperturbed equilibrium distribution. Therefore, the Boltzmann equation
can describe relaxation of the system as a whole, whereas (non)-linear response
theory describes perturbations that are small enough for the system to remain in
the steady state. The relaxation of excitations is then fully determined by the
quasiparticles or eigenmodes of the stationary state.

We emphasize, that the Boltzmann equation directly results from the on-shell
quantum kinetic equation for slowly varying deviations from the stationary distribu-
tion. If this approximation cannot be made, the Wigner transform is of no use and
the Boltzmann equation is invalid. Nevertheless more flexible wavelet transforms
will probably still provide a useful decomposition between fast and slow modes,
opening the possibility to integrate over the former. Despite the success wavelets
enjoy in related problems in signal processing [269, 270], the extent to which they
can be utilized for analytical or numerical approximations to the quantum kinetic
equation is still an open question.

So far, we have entirely neglected the dynamics of G¥, arguing, that the quasi-
particles simply provide a restriction to the mass-shell, but that their lifetime is
large compared to typical energy scales in the distribution function. As soon as
this changes, a relation between linear response theory and the Boltzmann equa-
tion close to the steady state can emerge, connecting the late-time dynamics of the
distribution function to the quasiparticles. This is typically the case for phase tran-
sitions in equilibrium, where Bosons satisfy Feq(x,p) = coth (fw). Consider, for
example, the instability of a system towards the formation of a condensate, which
close to the thermal state can only happen if the spectrum involves non-positive
frequencies. Consequently the retarded Green’s function that determines the linear
response to a source of single particles also contributes the longest time scale to
the Boltzmann equation.
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5.2 Relaxation in open systems

In a closed system, the relaxation toward the equilibrium state is governed by pro-
cesses which break integrability, allowing for an efficient redistribution of energy
and momentum between the degrees of freedom. In this respect, important dif-
ferences arise between classical and quantum systems [271, 272]. By contrast, in
an open system the relaxation toward the stationary state is driven by exchange
of energy and momentum with an external reservoir, so that the integrability-
breaking intrinsic to the system does not necessarily play a role in the late-time
dynamics close to the stationary state. Formally, this is reflected in the fact, that
far from equilibrium the single-particle potential V,; can be complex, which adds
further terms that break detailed balance to the Boltzmann equation, which is
then no longer solved by Fiq(z,p). In fact, no general solution is known and the
additional freedom in the stationary state has several interesting consequences.
Among others, the presence of quantum correlations allows for the existence of
entangled stationary pure states determined by the reservoir [273]. The scenario
becomes even richer if one considers the relaxation dynamics close to a phase tran-
sition. Already for classical systems the standard theory of critical dynamics near
equilibrium phase transitions [274] does not fully characterize the relaxation af-
ter quenches, since aging-like behavior violates detailed-balance [275]. The ex-
tension of these concepts to quantum and open systems constitutes a challenging
task which has recently received much attention both for the near-steady-state
[276, 277, 50, 278, 279, 280, 281, 282, 283, 284, 285, 286, 287, 288, 289, 47| and
quench [290, 291, 292, 293, 294, 295, 185, 296, 297, 298, 299] dynamics, also due
to remarkable experimental advances in the control of hybrid systems involving
phonons/photons coupled to ions [12, 13], excitons [5], superconducting circuits
[6, 14, 15], mechanical modes [300], or neutral atoms [22, 32, 17, 250].

For the current discussion, we consider an open quantum many-body system close
to a phase transition, where the interplay between dissipation and integrability
breaking in absence of number conservation gives rise to a novel scenario for the
post-quench relaxation dynamics. In particular the presence of bath terms destroys
the quasiparticle character of the low-lying excitations. Consequently the quantum
kinetic equation cannot be simplified and may predict an evolution vastly different
from that of the quasiparticles. In particular, we will discuss a scenario, where the
transition to a superradiant phase in a driven-dissipative system occurs without
a related signature in the low-lying excitations. In this highly counterintuitive
regime, evolution in the center-of-mass coordinate (z + z’)/2 and the propagation
distance x — 2/ in the two-time Green’s function G(x,2’) are independent and the
proliferation of excitations during the late-time evolution of the system are not
related to an instability of the quasiparticles.

To be more precise, we will treat an open version [301, 302, 303, 304, 305, 306,
307, 308, 309, 310, 311] of the paradigmatic Dicke model [312], describing N two-
level atoms equally coupled to a single, lossy mode of the electromagnetic field
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[175, 176, 313, 314, 315, 316, 177, 317], recently realized experimentally with atoms
in optical cavities [29, 30, 31, 32, 318, 319, 320]. Due to the infinite range of the
atom-photon interactions (0-dimensionality), this model is integrable in the thermo-
dynamic limit: NV = oo, corresponding to non-interacting polaritonic quasiparticles.
Despite the absence of local degrees of freedom (typically used to characterize equili-
bration [321]), integrability breaking in the Dicke model at finite N has been shown
to lead to chaotic behavior [322, 323] and thermalization [324] in the closed-system
case. Thermalization can also be achieved at N = oo via disorder [261]. Here
we describe the late-time dynamics following a quench of the atom-light coupling
strength in the open system at finite N. We show that quantum non-equilibrium
fluctuations induced by quasiparticle interactions trigger a dynamical phase tran-
sition, which causes the occupation of the dominant quasiparticle-mode to become
unstable and grow in time. The quasiparticle lifetime, on the other hand, remains
finite in presence of the Markovian losses. In the critical regime, we predict a
crossover between exponential and power-law 1/7 relaxation. The latter is driven
by quasiparticle collisions and extends to infinite times for a quench exactly to the
critical point. However, since the quasiparticles involved retain a finite lifetime
throughout the transition, the equilibration time does not diverge, thus aging is
not observed in two-times functions.

We emphasize, that the algebraic dynamics with overdamped quasiparticles is a
genuine out-of-equilibrium many-body effect, not related to critical slowing down
since the system size N is finite. The description of the relaxation driven by quasi-
particle collisions requires non-perturbative many-body techniques. In particular,
it cannot be described using mean-field approaches.

Quench experiments performed recently in the open Dicke model [320] have
started exploring the dynamical phase transition, for which our theory provides
the quantum description of the critical relaxation. Owur predictions will be ob-
servable in the late-time behavior of response and correlation functions after small
quenches near the critical point (see Sec. 5.7).

5.3 The open Dicke model

After the adiabatic elimination of the excited state, bosons in optical resonators
are described by the Hamiltonian (3.7). For the current discussion, we will simplify
this system to involve only a single cavity, thus fixing ¢ = 1, with a mode function
n(r) = cos (koz). Furthermore, we will simplify the geometry to one dimension,
by choosing the laser mode function 7 (r) = 1. Clearly an atom that absorbs or
emits a photon will experience a kick with momentum +kg. At low temperatures,
where the atoms form a weakly interacting Bose-Einstein condensate, we can thus
replace the continuous spatial coordinate of the atomic cloud by a discrete set of
momenta. Upon truncation of the single-particle Hilbert space to {|0),|ko)} one
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finds (for h = 1) [29, 177]

N

) Q

= b.dla+ ERy_ of + gV3, -0t (aﬁ +a) , (5.16)
- A
=1

with the effective spin-1/2 operators

(Iko)i(kol: —10)i(0];) and of = % (10):(kol; + |ko)i(0l:) - (5.17)

| =

zZ __
g; =

Given the infinite interaction range, one can identify the collective spin opera-
tors S, , = %Zfil Uf’x with the spin projections of a spin-N/2 rotor and rewrite
Eq. (5.16) as

N 4. N 2 N . .
H =wpa'a +w,S, + \/—%SI (aT + a) , (5.18)

where we have relabeled the frequencies and coupling constants according to

Q 2
0o swog , Fr—w, and &%gﬁ. (5.19)

The truncated Hamiltonian (5.18) is nothing else than the Dicke model [312], which
therefore describes the coupling of N two-level atoms to a single mode of the
electromagnetic field.

As opposed to the discussion in Chap. 3, we will consider an open version of
this model by introducing Markovian photon losses with a rate k. The non-unitary
time evolution is described by the Lindblad master equation for the density matrix

P,
Bip = —i [H p} Yk (Qapfﬁ . {&Ta,p}) . (5.20)

Since we will be interested in systems with large atom numbers N, we perform
a Holstein-Primakoff transformation: S, = —N/2 + b{b and ST = biV/N — 7 ~
VNbY (1 —7/(2N)), while S; = 2 (ST + S7) and 5~ = S+, yielding the following

Hamiltonian
H=H,+H
Hy = woala + w.b'b+ g (& + aT> (13 + 6*)

A=~ 9 (aat) (65 + 165) + 0 (];2) .

For N = oo the interaction Hamiltonian H’ vanishes and the Hamiltonian (5.21)
becomes that of two linearly coupled harmonic oscillators where the oscillator a

(5.21)
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is damped by the Markov reservoir. Hence the model is integrable i.e. describes
non-interacting quasiparticles corresponding to polaritonic collective modes mixing
atomic and photonic excitations. These are the normal modes of the coupled-
oscillator system, which can be computed using the coupled equations of motion

for the averages (a) and (b). This quadratic model has a phase transition in the
steady state at a critical coupling strength [301, 305, 304]

2 2
wj+ kK

5.22
4w wa) ( )

gec,0 =

where the system spontaneously breaks the Zs symmetry Sy — =S4 — —a
by taking a finite average polarization <l;> x VN and a finite coherent light field
component (@) oc v/N. This superradiant transition of mean-field type [175, 176]
is caused by a soft mode (see also Fig. 5.5) with zero characteristic frequency
Wqp, Which switches from being damped to growing in time, i.e. the damping rate
Kqp crosses zero at g.o. We emphasize, that the transition is purely dissipative,
i.e. characterized by completely overdamped quasiparticles kqp > 0 and wqp = 0.
This is due to the presence of Markovian losses while the transition is driven by
the Hamiltonian sector [307].

The Hamiltonian (5.21) does not conserve the excitation-number since it contains
counterrotating terms. This has the same effect as a driving term, which can indeed
compensate the effect of losses, resulting in a steady state with a finite excitation
number [301, 303, 304, 307]. Moreover, as is the case in driven-dissipative systems,
the coexistence of counterrotating terms and Markov losses violates the detailed
balance characterizing global equilibrium (see [307] and section 5.6).

We conclude this section by pointing out that the absence of a continuum (or
extensive number) of degrees of freedom does not prevent the system to show
many-body behavior. The Dicke model, due to the infinite range of atom-light
interactions, is 0-dimensional i.e. the spatial structure is lost. It therefore de-
scribes many quasiparticle excitations occupying the 4 possible polaritonic collec-
tive modes. The non-integrable model N < oo includes interactions between these
quasiparticles. Given the unlimited Hilbert space in every mode and since the oc-
cupation numbers are generically large (O(N'/2)) in the scaling regime, see [307]
and Section 5.6), there is no notion by which the system describes a few-body or
impurity problem. In particular, for the critical late-time dynamics of the system
the relaxation i.e. redistribution of energy between the modes is strongly affected
by quasiparticle collisions. This behavior cannot be described using mean-field
approaches and instead requires many-body techniques like the non-perturbative
diagrammatics introduced next.
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5.4 The self-consistent Hartree-Fock approximation

The non-equilibrium critical properties of the open Dicke model have been recently
investigated near the steady state [31, 325, 326] and in quench experiments [320,
303]. Here we want to go beyond these semiclassical studies and describe the
critical post-quench late-time relaxation including quantum fluctuations due to
quasiparticle interactions at finite system sizes as well as classical fluctuations from
the Markov reservoir. We adopt a diagrammatic technique based on the real-time
Keldysh functional-integral formulation of the Dyson equation [197, 44], extending
the steady state approach developed in [307] to include the relaxation induced
by quasiparticle collisions as well as the breaking of time-translation invariance.
An introduction into the Keldysh formalism and the construction of the Keldysh
action from a master equation is presented in Sec. 4.1 and a detailed account of its
application to the Dicke model is given in Ref. [307]. We therefore only state the
result.

Due to the loss of particle number conservation it is convenient to symmetrize
the action through the identification of terms between advanced and retarded con-
tributions. The symmetrized action of Hy in the absence of coherent fields then
reads [307]

_ [ 0 (G4 )
So = / 5 Vi) <[G§]1 @) BK ©) )V(w), (5.23)

because retarded and advanced Greenl’s functions interchange under w — —w. The
bare inverse Green’s functions [G{!] " (w) and D{ are given by

w—wo + ik 0 —qg —g
R1-1 _ 0 —Ww — Wy — Ik —g —g
[GE] (w) = o o o, | (5.24)
-9 -9 0 —W — Wy
and
2k 0 0 0
xk_| O 2tk 0 0
Dy = 0 0 0 0 (5.25)
0 0 0 0
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Here the verbose notation with the eight-component field

ac(w)
ag(—w)
bei(w)

V(w) = ali(;‘“)’) (5.26)
ag(—w)

bq(w)
by (—w)

is necessary, since each — Keldysh (cl,q) and Nambu (w,—w) structure — double
the number of fields compared to the quantum mechanical representation.

For N < oo the terms of the quartic interaction Hamiltonian H’ in Eq. (5.21)
have to be added to the action in (5.23). Considering the possibility of interactions
on the forward and the backward branch of the Keldysh contour, the corresponding
part of the action reads

Sint = [(ac + afy) x (bg + b)) + (ag + aj) * (b + bjy)] * [bk * ber + b} * by

9
4N
+ [(aa + aly) * (b + ) + (aq + ay) * (bg + b;)] * [bfy * by + by * b | (w),

(5.27)

where “x” denotes the convolution in w (normalized by 1/(27)).

Our aim in the following is to investigate the effects of Siy, on the steady state
and the late-time dynamics near the superradiant transition.

The quantum dynamics of the system is described by the coupled Dyson equa-
tions:

GE =GRo (2K - D)ot (5.28)
([GOR]_l - ER) o GR = 5(t — 1), (5.29)

where GUSB) i the interacting Green’s function and “o” indicates the convolution
in real time. The equations (5.28) and (5.29) need to be solved for the two inde-
pendent (but coupled) Green’s functions GX and GF. This approach thus allows to
independently determine correlation functions through G¥ and response functions
through G*, which is essential to describe systems out of thermal equilibrium.

The self-energies X% in general depend self-consistently on the Green’s func-
tions. In a stationary state, all two-point functions depend only on the difference
between initial time ¢ and final time ¢ and thus their Fourier transform is a function
of only a single frequency. Otherwise they also depend on the sum of these times.
Therefore, we need in general an additional pair of equations which is time-reversed
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Figure 5.1: Self-energy diagrams used in the SCHF calculations: (a) leading-order
1/N corrections amount to nothing more than a Hartree shift in the re-
tarded Green’s function. (b) and (c) are therefore the leading frequency-
dependent corrections to the bare retarded and Keldysh Green’s func-
tion respectively. Following the same notation as in Chap. 4, the solid
(dashed) line correspond to a “classical” (“quantum”) field attached to
the vertex.

with respect to Egs. (5.28) and (5.29), as discussed in App. C.3.

The main results presented here are obtained within a self-consistent Hartree-
Fock (SCHF) approximation, corresponding to the selection of diagrams for the self-
energies shown in Fig. 5.1. The self-consistent Hartree (SCH) approach has already
been treated by Dalla Torre et al in [307] for the steady state. As we illustrate next,
the inclusion of the Fock processes we perform here is required to describe the effect
of quasiparticle collisions breaking integrability. Despite the presence of a Markov
reservoir these collisions are essential ingredients in the steady state and late-time
relaxation dynamics of the system close to the superradiant transition.

(K,R)

Self-consistency is achieved by calculating the self-energies as functionals

of the dressed, rather than the bare Green’s functions:
WER) Z(K’R)[GR,GK] )

In order to highlight the novelties introduced by our SCHF approach, we now briefly
discuss the main features of the SCH theory. Within the Hartree approximation
only one skeleton diagram contributes to the self-energies. Futhermore, because
GR(0) + G4(0) = 0 only the retarded/advanced self-energy is non-zero

dw

g .
(SH)ij = _ﬁMz',k,l,j <Z5k,z - %Gﬁl(w)> , (5.30)
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which is the first diagram in Fig. 5.1. Since each Green’s function is a 4 x 4
matrix, the vertex tensor M has 4* = 256 entries. But these are nonzero only
for the combinations allowed by the interaction (5.27). In the Hartree self-energy
the tensor M thus contains only the 16 nonzero entries that include only one
“quantum” field. The omission of vertices with three “quantum” fields is justified,
because it is impossible to contract such a vertex with G¥. Since the Hartree self-
energy is frequency independent the integral in (5.30) can be solved exactly, which
entails that the self-consistency condition can also be solved (mostly) analytically.
We give some of the details of this calculation, as well as the derivation of (5.30)
in appendix C.1.

The theory becomes more involved within the SCHF approach we employ here.
First of all, the Fock self-energy of Fig. 5.1 is frequency-dependent as opposed to its
Hartree counterpart (5.30). This enriches the problem by the inclusion of memory
effects and allows for a more detailed description of fluctuations in the excitation
number, that become important near the Dicke transition, as will be discussed
in section 5.5. Additionally, the Keldysh component of the Fock self-energy is
nonzero and the retarded component has an imaginary part. This implies that
the inclusion of the Fock processes in our theory allows us to describe relaxation
through redistribution of energy via collisions between quasiparticles.

As expected, the interaction includes both classical and quantum vertices (see
Sec. 4.1. Near the phase transition, a bare scaling analysis of the model (5.23),
(5.27) correctly indicates that the latter are of higher order in 1/N compared to
the more classical former subset of diagrams [307]. Yet, in order to improve our
quantitative results for intermediate values of N, we keep those diagrams. Inde-
pendent of this, the self-consistent resummation of two-loop diagrams cannot be
performed analytically, forcing us to rely heavily on numerical methods for the cal-
culation of quantitative results. However, all the analytical expression presented
here are completely independent of the numerics, that can therefore be used for an
independent confirmation (see for example Fig. 5.6).

To deal with all possible contractions resulting from the tensorial structure of
the vertex we follow the same procedure that was used for the Hartree diagrams.
There are however some differences which we illustrate in appendix C.2 together
with the computational methods employed.

5.5 Steady state

In this section we consider the steady state of the coupled Dyson equations (5.28)
and (5.29). We will show how the integrability-breaking through quasiparticle
interactions leads to intrinsic equilibration, which adds to the one induced by the
coupling to the external reservoir.
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5.5.1 Superradiant instability

Since the integrability-breaking term (5.27) of the action is suppressed like 1/N,
one would naively expect the Hartree and Fock processes of Fig. 5.1 to provide per-
turbative corrections at any fixed large INV. In the absence of transition points this is
in general true, but only within an equilibrium formulation of the problem. Other-
wise, as explained in Sec. 4.1, if we are not allowed to assume a priori the validity of
a fluctuation-dissipation theorem, even perturbatively-small integrability-breaking
terms need to be treated self-consistently in order to properly describe the emergent
steady state as well as the late-time relaxation dynamics [197]. However, for an
open system, the perturbative treatment can still be employed for the description
of the late-time behavior if an external reservoir — macroscopic and unperturbed
by the system — takes care of the relaxation process. This is indeed the case for the
open Dicke model, where the Markov bath of electromagnetic modes is coupled to
the light mode a and the latter is linearly coupled to the atomic mode I;, so that
all degrees of freedom are externally damped. Yet, already within the integrable
theory, the model shows a phase transition at the critical coupling g. o at which the
external damping of the collective quasiparticles vanishes, so that the relaxation
and late-time dynamics can still be dominated by the effect of the integrability-
breaking terms, which then become non-perturbative. In particular, as we shall
see, during the late-time dynamics in this critical regime the Fock processes are
crucial, being the only ones beyond the bare damping that lead to relaxation due
to integrability-breaking.

The growing importance of the integrability-breaking processes compared to
the integrable dynamics, as well as the relative importance of Fock compared to
Hartree, is illustrated in Fig. 5.2, where we plot the occupation number of the
photonic mode

(ng) = (&Td> = —% —i—z/iﬁ (G‘K(w))L1 (5.31)
as a function of the coupling strength.

The comparison of the photon numbers provides an estimate of the distance
from the transition point below which we enter a non-perturbative regime. While
for Fock terms to become relevant one needs to be even closer to g.o than for
important Hartree terms. However, for N > 1 both contributions to the self-energy
are significant for coupling strengths g that satisfy (g — gc.0)/geo0 ~ 1/VN [307].
Therefore, there is no finite particle number beyond which Hartree corrections are
sufficient to describe dynamics near g.o. Once in the fully non-perturbative regime
we thus resort to the SCHF approach to solve the coupled Dyson Egs. (5.28) and
(5.29).

After having analyzed the photon number, we now consider the modification of
the quasiparticle spectrum, which is obtained from the poles of the retarded Green
function G®(w). The real and imaginary part of the poles correspond to the os-
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Figure 5.2: Comparison of the photon number (c.f. Eq. (5.31)) calculated within
the integrable theory (red dotted), in Hartree approximation (black
dashed) and Hartree-Fock approximation (blue) as a function of the
coupling strength. While the non-interacting result, representing the
N — oo limit shows a second order phase transition at g = g, the
Hartree calculation continues smoothly through g.o and shows no in-
stability. Contrary to that, the Hartree-Fock steady state becomes un-
stable at the gray line. Note, however, that at the critical point g.(N)
the photon number remains finite and ~ N/2. The parameters used
are K = 2, wo = 2, w; = 2.1 and N = 1000, resulting in g.o ~ 1.4491.

cillation frequency and damping of the quasiparticles i.e. the collective polaritonic
modes. The Hartree self-energy simply provides a frequency-independent shift of
the spectrum, preventing the collective mode frequency from vanishing. Therefore,
for any finite NV, the dynamical instability triggering the superradiant phase tran-
sition is absent within the SCH approach. On the other hand, the Fock self-energy
is frequency-dependent and also has an imaginary part, as discussed in section 5.4.
A closer investigation of the perturbative effects of the diagrams in Fig. 5.1 shows
that for strong enough coupling g, where the system has weakly damped excitations
at zero energy, Fock processes take place almost on-shell. These processes there-
fore efficiently induce fluctuations in the low energy mode. In the self-consistent
calculation this happens to an increased extent, such that the normal steady state
eventually becomes unstable at a coupling strength

gc(N) < Ge,0

195



Chapter 5 Critical relaxation with overdamped quasiparticles in open quantum systems

smaller than the critical coupling g for the integrable model.

5.5.2 Steady state distribution function

The non-perturbative effects of the integrability-breaking terms are measurable
from several observables. Quantitative effects are observed in the spectral response
of the system p(w), defined by Eq. (4.17). Here it is a 4 X 4 matrix which, how-
ever, in the SCHF approximation has only 5 independent entries, each of which is
normalized to the corresponding commutator:

A~ A~

[ 55 o, = 7).

For instance, the entries normalized to one correspond to pump-probe measure-
ments involving the creation of an excitation a' or b' and its annihilation after a
variable time t, the latter being related to w via a Fourier transform. In particular,
for the photonic sector one would need to measure the probe transmission spectrum
of the cavity [301], as has already been done experimentally in the ultracold-atom
realisation of the Dicke model [327].

Quantitative effects are also observed in the correlation function

C(w) = iGE (w), (5.32)
whose entries are the Fourier transform of the symmetrized averages

(C(t),; = ({Vi(), V] (0)}).

For instance, (C(t)), ; corresponds to the measurement of the fluorescence spectrum
of the cavity [301]. Examples of the modification of the spectral and correlation
function due to integrability breaking terms are presented in Fig. 5.3. As antici-
pated, these observables show only quantitative but no qualitative modifications.

Qualitative effects are instead observed in the distribution function F'(w) which
determines the link between the response and correlation functions. In a more
intuitive phrasing one can say that F'(w) describes the boundary conditions emer-
gent in the steady state for each degree of freedom of the system. One can thus
expect F'(w) to be sensitive to the different drive and relaxation mechanisms, both
external and intrinsic to the system.

In order to analyze the distribution function for the photonic and atomic degrees
of freedom separately, we first project the full set of 4 x 4 Green’s functions onto
the respective 2 x 2 sectors. Within each sector we then solve (4.18) for F,(w)
and Fj(w), respectively, where the subscript a refers to photonic and b to atomic
degrees of freedom. In Fig. 5.4, we plot the eigenvalues Ff(w) of Fy(w), which,
due to the hermitian structure of F'(w), are purely real.

In the open Dicke model and in the integrable limit N = oo, external driving
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Figure 5.3: Examplary comparison of quantitative differences between SCH and
SCHF results for the atomic spectral response function ps3(w) and
correlation function C33(w). Note that appreciable differences appear
only close to w = 0, where correlations are significantly increased by
resonant (but damped) Fock processes efficiently reducing losses and
thereby increasing the number of excitations. The parameters used are
the same as in Fig. 5.2 and g = g.(N).
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307

20F ' -

Figure 5.4: Behavior of the two eigenvalues of the photonic distribution function.
The red-dotted line corresponds to the integrable theory: N = oo.
The blue solid line is the result obtained from full SCHF theory, where
qualitatively new features appear. These can be well described by an
effective linearised theory Eq. (5.33) (black-dashed line) that shifts the
atomic resonance in the complex plane and therefore contains only a
single (complex) fit parameter k. The parameters used are the same
as in Fig. 5.2, resulting in x; ~ 0.0335 + 0.0009i.

is effectively present due to the bilinear coupling between photonic and atomic
degrees of freedom which does not conserve the excitation number, while relaxation
is induced externally by photon losses. As has previously been discussed in [307],
the corresponding distribution function for the photonic degree of freedom shows
singularities at zero frequency and at the bare atomic resonance frequencies +w,.
These singularities appear on top of the frequency-independent Markov background
and result from the effective drive via the atoms. These singularities are of thermal
nature, behaving like Teg/w, with the effective temperature emerging due to the
combination of the Markov reservoir and the driving. This temperature is different
for the photonic and atomic degrees of freedom, indicating the violation of detailed
balance arising from the fact that the whole system is driven but dissipates only
through the photons (see also section 5.6.4).

Within our SCHF approach, we are able to include the equilibration mechanism

198



5.6 Late-time dynamics

intrinsic to the system, which is governed by the integrability-breaking terms. In
particular, as already discussed, the Fock processes allow to include the intrinsic
equilibration induced by quasiparticle collisions. In the strong coupling regime:
(ge(N) — g)/ge(N) < N~1/2_ this introduces large qualitative and quantitative
changes in F'(w), as illustrated in Fig. 5.4 for the photonic degree of freedom. Here
we compare the prediction of the integrable theory: N = oo with our SCHF results.
Apart from a shift of the singularities from their bare value w,, the important
qualitative change introduced by collisions is the splitting of these singularities
via an avoided crossing. This splitting of the singularities at the (shifted) atomic
resonances can be reproduced ad hoc by adding to the integrable theory a second
Markov reservoir, this time for the atomic degree of freedom. This corresponds to
the steady state of the following master equation

Byp = —i [ﬁo, p} Yk (2apaT - {&T&,p}> ¥ K (26piﬁ . {BTé,p}) . (5.33)

where Hj indicates the integrable Hamiltonian of Eq. (5.21). By choosing the
effective atomic dissipation k; appropriately (including the shift of the resonance
frequency), we can simulate the extent to which the quasiparticle collisions result in
an enhanced decay of atomic excitations into multiple photons. This demonstrates
how the integrability-breaking leads to faster equilibration by creating effectively
a further bath for the the system.

While F(w) contains a lot of information encoded in its functional form, its
measurement requires knowledge of both the spectral response and the correlation
functions. The former gives direct access to the retarded (and by complex con-
jugation the advanced) Green’s function while the latter directly corresponds to
the Keldysh Green’s function. The matrix generalization of Eq. (4.18) would then
allow to compute the distribution function.

5.6 Late-time dynamics

Starting from an initial atom-photon coupling g¢;, we consider a sudden quench to
a value g > g;. We solve the coupled Dyson Egs. (5.28) and (5.29) in the SCHF
approximation in the limit of large absolute times 7 = (t+t")/2, i.e. for small relative
deviations from the steady state, by means of an iterative numerical procedure.
This approximate time evolution is explained in detail in the appendix C.3. In the
limit of relative times t,¢ long compared to the quasiparticle lifetime 1/kqp, that
is, including only the dominant contribution from low-frequency quasiparticles, the
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solutions take the following form

(GK(trel, 7')) e e_"‘qp|trc1|

1’.]
K
x | GK(0,00) + - 6G"(0,0) |
efkinT + 2K GG (0, 0) (emwanT — 1)
Kkin
(GR(treb T))ij ~ 0 (trel) e~ Haptrel

R
x | GR(0,00) + K 9G7(0,0) : (5.34)
efikin 2o §GK(() () (eMinT — 1)

Kkin

where we used the notation §G*/%(0,0) = GF/K(0,0) — G/%(0, 00). Every com-
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Figure 5.5: Qualitative behavior of the quasiparticle characteristic frequency wqp
(gray) and inverse lifetime kg, (black), together with the system’s
damping rate ki, (blue), as a function of the final value g of the light-
matter coupling after a sudden quench from g; < g. The dashed line
corresponds to the prediction of the non-interacting theory H = 0,
where Kyin = Kqp. For wqp there is no difference between interacting
and non-interacting predictions at large enough N.

ponent i,j = 1,...,4 of both retarded and Keldysh Green’s functions follows the

functional form (5.34) since the latter is determined by the least-damped quasi-

particle mode corresponding to the dominant eigenvector of the 4 x 4 matrices®.

3Note that the single-mode approximation, implicit in the results presented here, breaks down
for small coupling constants, where wqp 7 0 and the two most relevant modes have degenerate
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The solutions depend only on three parameters whose behavior is shown in Fig. 5.5
and 5.6 as a function of the coupling strength g: the inverse quasiparticle lifetime
Kqp (damping rate of the relative-time dynamics), the system-damping ki, in the
absolute time, and the nonlinear coefficient Ayp,.

5.6.1 Dynamical phase transition at finite V

Let us first consider the integrable case: N = oco. Since the quasiparticle interac-
tions are absent, the system’s damping is equal to the quasiparticle damping: Ky, =
Kqp and Agin = 0. Therefore G (t,e1, 7) = e Farltrell (GE (0, 00) + 6GK(0,0)e " arT)
and analogously for the retarded Green’s function. For 7 — oo the steady state
Green’s function GX (t,e1) ~ G¥(0, 00)e *apltrell is reached. As shown in Fig. 5.5 by
the black-dashed line, for N = oo the inverse lifetime kq, vanishes linearly at the
transition point g.o. In the non-integrable N < oo case (solid lines in Fig. 5.5), we
find the phase transition to occur instead at a critical coupling

c N - Yc _
9= ge(N) < gep, with W <SNV2 (5.35)

where the inverse quasiparticle lifetime g, remains finite, while the damping ki,
vanishes according to:

Fain ~ Rap N V19 = 9e(N)]/9(N) | (5.36)

as shown in Fig. 5.6. Above the critical point: g > ¢.(N) the system’s damping
rate Ky, becomes imaginary, with the magnitude again given by (5.36), indicating
an instability of the steady state of Eqgs. (5.34).

This peculiar dynamical phase transition characterized by a vanishing system-
damping at finite quasiparticle lifetime is triggered by quasiparticle collisions in the
presence of both Markovian losses and violation of number conservation, the latter
effectively working as a drive. In the following, we illustrate how this critical point
affects the system’s dynamics after the quench.

5.6.2 Criticality and scaling laws

At any given 1 < N < oo, sufficiently far away from the critical point: (g.(N) —
9)/9e(N) = N=Y2 we are in a weak-coupling regime (region I in Fig. 5.5) where
the quasiparticle interactions from H’ are always perturbative, so that, to or-
der 1/N, the Green’s functions follow the integrable dynamics illustrated above:
Kkin ™ Kqp > Akin. Instead, for a quench to strong coupling (g.(N) — 9)/g.(N) <

N—1/2 (region II in Fig. 5.5) the interactions appreciably renormalize the damp-
ings such that Ky, < kqp. Within this region, even closer to the critical point:

lifetimes.
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Figure 5.6: Numerical values of the kinetic parameters Kii,, Akin together with the
inverse quasiparticle lifetime kqp. Kkin is fitted with the scaling law
(5.36) (blue line). The parameters used are Kk = 2, wy = 2, w, = 2.1
and N = 1000, resulting in g.o ~ 1.4491. In the Appendix C.4 we
present results for x = 0.2, 1.0.

(9e(N) = 9)/ge(N) < N73/2) we find kqp ~ N7V/2 such that Mg, cannot be ne-
glected any more (see also Fig. 5.6). In general, the latter depends only weakly on
the coupling ¢ and is also of order N~1/2. The role of Ay, is to introduce alge-
braic relaxation characteristic for non-integrable dynamics. In this model without
conserved quantities [307] algebraic dynamics emerges due to criticality, but is in
general not necessarily a signature of the latter, for instance in systems with con-
servation laws [274]. At a given N-independent coupling g, the integrable limit of
the late-time dynamics is reached for N — oo, since we enter the weak coupling
regime as soon as (go(N) — g)/g.(N) = N2 If instead we pin the system to
criticality (g.(N) — g)/g.(N) < N—3/2, the integrable limit is never approached,
since according to (5.36) Kqp ~ Kkin ~ N2 5 (0 and Akin ~ N2 0, so that
the non-integrable character is always important. This is related to the fact that at
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criticality the limits N — oo and 7 — oo do not commute. As a side remark, the
fact that quasiparticle collisions breaking integrability become important at criti-
cality can be seen also by analyzing the steady state. In particular, as shown in
Fig. 5.4 and the accompanying discussion, integrability breaking effectively creates
a bath for the spin (atomic) degree of freedom.

5.6.3 Algebraic vs. exponential dynamics

An example depicting the generic behavior of the absolute-time evolution is sketched
in Fig. 5.7 using the occupation of the quasiparticle mode n(7) = iG¥(0,7)/2—1/2
as observable. The corresponding numerical results, together with a fit of the dy-
namical parameters in the scaling ansatz (5.34), are shown in Fig. 5.8. It is these
long-time evolutions, that allow to determine ki, and Ay, with sufficient accuracy
to confirm their scaling as done in Fig. 5.6.

Immediately after the quench the system has to become sufficiently populated
and correlated for interactions to become important. This requires a time 7,4 ~
1/kqp, after which the initial, exponential, integrable dynamics goes over into a
non-integrable 1/7 behavior. Deep inside the strong coupling regime: |g.(N) —
9l/9:(N) < N —3/2 a second crossover takes place on a scale Texp ~ 1/Kkin, Where
for g < g.(IN) the algebraic relaxation goes back to exponential, as predicted by
Egs. (5.34). Using the result (5.36) we get the following scaling

Texp ™ 1/’£kin ~ N_1/4(|9 - gc(N)|/gc(N))_1/2 : (5'37)

The transcritical time evolution with g > g.(/V) is also shown in Fig. 5.7. For
times later than 7, the system first approaches the steady state Ggg’R(trel) of
Eq. (5.34) algebraically (~ 1/7). However, beyond the time-scale 7eyxp the system
then evolves linearly past this unstable state with a characteristic rate given by
0,00 =~ niinOss/ (4)\kinG£§ (0)) for any observable O. After the linear regime, the
evolution accelerates again, becomes algebraic and would eventually converge to-
ward the symmetry-broken steady state. The description of such a state, however,
requires the expansion around a symmetry-broken saddle point, including (self-
consistent) finite field expectation values (a) and (b), which is described by a more
general version of Hamiltonian (5.21). The new steady state is therefore inacces-
sible to the presented dynamics. The sudden switch in the dynamical behavior
at g = g.(IN) characterizing the phase transition is triggered by quasiparticle col-
lisions in presence of both Markovian losses and effective driving. In particular,
since the system has weakly damped quasiparticles at wq, = 0 (which is possi-
ble due to Markovian losses), collisions take place almost on-shell and therefore
efficiently increase the mode occupation. The drive (breaking of the number con-
servation) provides the source of quasiparticles allowing the latter process to induce
an instability.
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Figure 5.7: Sketch of a log-plot of the time evolution of the particle number near
gc(N), separated into three regions. Starting from the vacuum, the
system is for short time-scales described by the evolution according to
the bare Green’s function (region A), which will then cross over into
an algebraic decay (region B), that continues to infinite times for g =
ge(N). For g < g.(N) the final relaxation is exponential, as depicted in
region C, whereas for g > g.(IV) the population instead evolves linearly
through that of the unstable steady state.

5.6.4 Absence of aging

For a quench exactly to the critical point g = g.(N), the power-law 1/7 dynamics
extends down to the steady state. Due to the breaking of time-translation invari-
ance and the presence of critical algebraic relaxation even as 7 — oo one might
expect aging to characterize the late-time behavior of two-times functions [275].
Such behavior has been predicted to appear after quenches to critical points both
in closed [328, 55, 329] and open [295] quantum sytems. In order to explore this pos-
siblity we employ the fluctuation-dissipation ratio [275] xo(t1,t2) = (G&(t1,t2) —
G‘é(tl,tg)) / 8t1Gg (t1,t2) with ¢; < t9, which allows to address possible violations
of detailed balance and define effective temperatures for non-equilibrium systems,
where the fluctuation-dissipation theorem cannot be relied on. In xo(t1,t2) the
index O means that the quotient is to be taken between expectation values corre-
sponding to the most highly occupied eigenvector of some operator O. The limit
limy, 00 limy, 00 X0 (t1,t2) = 1/Teg defines an effective temperature. In systems
exhibiting aging after a quench to the critical point the equilibration time diverges.
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Figure 5.8: Time evolution of the deviation of the photon number n,(t) from its
steady state for long times in the vicinity of g.(N) as a log-plot. The
solid lines represent numerical data obtained from the iterative pseudo
time evolution detailed in App. C.3, while the dashed lines are a two
parameter fit (ki and Ag,) with the function (5.34). The parameters
used are once again the same as in Fig. 5.2.

As a consequence, the effective temperature defined through the above limit will
not be equal to the value of the effective temperature obtained directly from the
steady state, even if the system is in contact with a thermal reservoir. Using our
late-time Green’s functions (5.34) it is easy to see that the fluctuation-dissipation
ratio is independent of the relative time:

1

X(trel, 7) = (5.38)

Teffl+

Akin“qp7—2

Therefore, for absolute times larger than the equilibration scale

Teq = 1/ V )\kinnqp (539)

it relaxes to the inverse effective temperature Teg. Since at g.(NN) the quasiparticle
lifetime remains finite 1/kqp, < 00, the equilibration scale 7¢q is also finite and
thus no aging takes place. 1/kqp < 0o also implies that the initial-slip exponent ¢
describing the (t2/t1)? scaling of two-times functions [275] is irrelevant, since the
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dynamics is exponential in the relative-time direction (see Eq. (5.34)). However,
due to the driven-dissipative nature of the system, the steady state is not in global
equilibrium, implying that the effective temperature obtained from (5.38) depends
in general on the particular degree of freedom considered, consistent with what was
found in [307] by extracting Tug directly from the steady state (see also Sec. 5.5.2).

5.6.5 Absence of quasi-stationary states

As anticipated above, the fact that we must be close to the superradiant tran-
sition in order to observe the non-integrable dynamics implies the absence of
quasi-stationary or prethermal plateaus. Those correspond to intermediate quasi-
stationary states where the system can remain for long times before the true fully
relaxed steady state is reached. At a distance N=3/2 < |g — g.(N)|/ge(N) < N—1/2
from the transition, the reason for the absence of these plateaus is obvious, since
both 7,5 and Texp scale like N 1/2 " Thus the necessary separation of time scales
is not achieved. On the other hand, at a distance |g — g(N)|/ge(N) < N—3/2,
Talg and Ty, scale differently and hence can be well separated, as shown in the
previous section. Yet, this implies also that the relative deviation of the candidate
quasi-stationary state from the steady state at 7oy, is correspondingly very small,
preventing the observation of a plateau. Most importantly, we cannot slow down
the characteristic time-scale 7,5 ~ N 1/2 gince it essentially does not depend on the
transition. Therefore the relaxation rate of the algebraic dynamics remains finite
even at the transition point and the plateau would in turn exhibit a finite slope.

A clear (but trivial) separation of time-scales is always present in the open Dicke
model far away from the transition, for the simple reason that the integrability-
breaking terms are suppressed like 1/N in the Hamiltonian. However, this again
does not imply the appearance of quasi-stationary states since the relaxation due
to the non-integrable terms is then perturbative and thus overshadowed from the
relaxation due to external damping. Consequently, the open Dicke model shows no
prethermalization. The situation is different in the system studied in [185, 296],
where the relaxation in the particle sector is achieved only due to non-integrable
terms, thus their effect is always non-perturbative for the particles. This allows
to observe quasi-stationary states in the particle sector even in the presence of
interactions with infinite range, as demonstrated in [296].

5.7 Predictions for the experiment

The dynamical phase transition of the open Dicke model has been investigated in
recent quench experiments performed with a Bose-Einstein condensate (BEC) in
an optical cavity [320]. We expect our predictions to be observable in response and
correlation functions of the cavity output, once the wait-time 7, after the quench
satisfies Ty 2 Talg ~ 1/Kqp ~ N/2 (see Section 5.6). Generically, the smallest value
of T,1e is reached when w, (corresponding to the recoil frequency wree ~ KHz in the
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BEC experiments) is of the same order as k. This can be seen by comparing the
value of kg, for the values of k = 2,1,0.2 shown in Fig. 5.6 and Fig. C.1, at a given
w, = 2.1. The largest rqp is reached indeed for k ~ w,, while for even larger x
(not shown) the quasiparticle damping decreases. For instance, in the experimental
setup of [320] the cavity is of very high quality: & =~ wyec, S0 that kg ~ kKN ~/2
that is 7 = ms x (10°)%/2 ~ 300ms. While this is below typical BEC-lifetimes, it
is currently not achieved in the experiments [320], but in principle possible in the
new-generation setups.

While the measurement of response functions require cavity probe-transmission
experiments [301, 307], the behavior of the correlation function in Fig. 5.7 will be
directly observable from the cavity output intensity.

Alternatively, these critical dynamics could possibly be observed with two trapped
ions in a harmonic trap that realize the open quantum Rabi model [330, 331]. In
the limit of a large ratio between the sum and the difference of the detunings on
the red and blue sideband, which plays the role of N in the Dicke model, both
models satisfy the same scaling relations [330, 331]. It is thus likely, that critical
dynamics, similar to those described here, are also observable there.
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Chapter 6
Conclusion

In this thesis we have discussed phase transitions in bosonic systems with long range
interactions that typically arise in quantum optical many-body systems, where they
are mediated by photons, which experience unavoidable losses. We have thus con-
sidered various different non-equilibrium scenarios as well as various types of order.
Focusing mainly on the example of the infinite range transverse Ising chain, we
have demonstrated, that the proper extension of the ground state Loschmidt echo
to finite temperatures is given by the fidelity return rate rp. Due the numerical
complexity of this quantity, the equivalent, but more easily accessible quantum
return rate rq was defined and the phase diagram obtained by an analysis of its
non-analyticities was compared to that determined from the infinite time magne-
tization. Using a thorough finite size scaling for very large systems with up to
N = 64001 spins, it was shown, that both methods produce quantitatively the
same dynamical phase diagrams. An intuitive, physical understanding of these re-
sults was provided in form of a semiclassical analysis of the return rate, built on the
dynamics of the spin WKB wave function. The ensuing geometric interpretation of
cusps in the return rate of interacting systems, has allowed us to make a connection
to an effective Ginzburg-Landau functional and pave the way for the analysis of
dynamical phase transitions in non-integrable systems.

We have provided a thorough investigation of the symmetries and low energy
excitations of a recent experiment on supersolid-like behavior in cold atoms trapped
inside two crossed optical resonators. In particular, we have demonstrated that
higher order intercavity scattering processes break the accidental U(1) symmetry,
whereby the Goldstone mode becomes gapped. Our estimate of the corresponding
mass is in agreement with the experimental observations [1, 2].

Using the Keldysh path integral formalism, we have developed a controlled, non-
perturbative description of strongly interacting EIT-polaritons with long interac-
tion range. The application to photonic crystal waveguides has led us to the pre-
diction of interaction induced transparency (IIT), which is characterized by the
appearance of a transparency window in the presence of strong interactions due
to nonlinear interference effects. In the context of nonlinear quantum optics, II'T
constitutes a novel, genuine quantum many-body effect in an open, driven sys-
tem. From the more fundamental perspective of many-body physics, the II'T phe-
nomenon is a non-equilibrium phase transition in the driven-dissipative steady state
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Chapter 6 Conclusion

which has no analogue so far in condensed matter, as it stems from the dissipative
and retarded nature of the interactions between polaritons. Including corrections,
resulting from a finite interaction range, we were able to demonstrate the stability
of IIT against scattering with finite momentum transfer.

Finally, the dynamics of the open Dicke model near the critical coupling strength
was investigated by means of a self-consistent Hartree-Fock theory. Upon the in-
clusion of finite size effects close to the critical point, a highly counter intuitive
picture emerges: The evolution in absolute time decouples from the low-energy
excitation spectrum and the condensation transition arises not as the consequence
of undamped quasiparticles, but due to a proliferation of overdamped excitations
driven by efficient scattering in the absence of particle number conservation. Near
the critical interaction strength we have demonstrated the corresponding crossover
between exponential and algebraic relaxation, which at the critical coupling con-
tinues indefinitely, and have found an analytic expression for the late-time Green’s
functions.

210



Appendix A

Solutions to the self-consistent
mean-field theory with two crossed
cavities

This appendix focuses on the solutions to Eqs. (3.27). These coupled equations
determine the exact phase diagram Fig. 3.2 of the experiment [1]. We will first deal
with the case of empty cavities, where the wave function can be found analytically.
Building on this solution the critical coupling strength U, for the emergence of
superradiance can be found from perturbation theory. Finally, deep within the
superradiant phase, a fully numerical solution for the emergence of supersolidity is
required.

A.1 Empty cavities

With a; = 0 the Schrodinger equation for the atoms simplifies to

oo,
<—2m + A, o8 (k?oy)) Unx(r) = By x¥nk(r) , (A.1)

where we neglected the slowly varying trapping potential. Moreover n is the band
index and k the quasi-momentum. Eq. (A.1) is solved by Mathieu sine and cosine
functions C and S

E U U, °2F U, U,
= —+ =, ——= K — + —,——k A2
Q/Jn,k(r) ClC <ER + QER’ 4€R’ 0y> + CZS < k(Q) + QER’ 4€R’ oY ) ( )

with the notation £ = E — (k2 + k2)/(2m). Without loss of generality we can
choose the wave function even and find

—— E U, U,
Ung = V2O <ER oo —p,k0y> ’ (43)
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Appendix A Solutions to the self-consistent mean-field theory with two crossed cavities

which is periodic and therefore an allowed solution, if the characteristic value ag

with s = ]Z—Z satisfies

U, E U,
. _ 2 Y% Ad
“ (4ER> En | 2en (A4)

The corresponding eigenenergy is then given by

k2a, (4%) + (k2 + K2) — md.U,
B = . (A.5)

’ 2m

It is typically more convenient to perform integrals in quasi-momentum over the
extended zone scheme, instead of the reduced representation. To avoid confusion we
label the eigenenergy in the extended picture by E(k). The thermal occupation is
then simply given by integrating the Bose distribution over the available eigenstates.
Performing the integrals in k, and k. analytically one finds

3 o0 mln (1 — eBre
w0)= [ k(a0 = [T RIS

with effective chemical potential

kgas <&> —mé.Up,

der

peti(ky) = p = o (A7)
For Q2/(ErA4) — 0 this reproduces the result of a three-dimensional non-interacting

Bose gas with the critical density

m3/2

n(B)] ,—p = C(3/2)F(3/2)W : (A.8)

More importantly Bose-Einstein condensation takes place independent of the lattice
potential for pes(0) = 0. From this condition the critical temperature can be

determined numerically.

A.2 Weak superradiance

Small cavity occupations can be treated perturbatively. In particular, for the onset
of superradiance such a description becomes exact. Instead of using stationary
perturbation theory for v, x, we use the more convenient expansion of the Green’s
function in powers of Vg,

3k

G(k,a) = Go(k) - / GGV )G ~ k) + O(V) . (A9)
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A.3 Supersolid solution

This is then inserted into the cavity field equation

a3k oVim
N+ VY = Al
ANja; +V 2 /BZ (2ﬂ)3Gml(wn,k) Ba 0, (A.10)

where V' is the volume of the atomic cloud and the band indices m and [ are being
summed over. Insertion of the linear expansion of the Green’s function in Vg, yields

Ng? VQ2g? d®k B
_A’LO[Z + mal — W%(O{Z) / W ;Go(wn, k)GO(Wn,kl + k) =0.

(A.11)

The remaining Matsubara sum can be performed analytically:

1 1
;Go(wn/7k)Go(wn/ + wn, ki + k) = ; i — E(k) ; (wn +Wn/) — E(k + k/)

__np(BE(k)) —np(BEk + X))
N E(k) — E(k + k') + iwy,

(A.12)
However the momentum integral in the thermal Lindhard function
& np(BEK)) — np(BE(k+K))
M{wn, k) = — - , Al
(n, k) / 212 EX)— E(k +K) + iwn (A-13)

cannot be solved analytically. Moreover II(w,,, k) is missing the contribution of the
possibly macroscopically occupied ground state. Including the condensate shifts
I(w, = 0,k;) by 2mpBEC/k:Z-2, with ppgc the density of the condensate. The
linearized cavity field equation allows solutions with finite «; beyond the critical
coupling strength

1/2

Ae = 5 . (A.14)

1 1
Zi:l,Q <qu;EC R + mg/géi/zn(oa kz))

Below the critical temperature T, set by pes(0) = 0, this condition marks the phase
transition to a supersolid-like phase.

A.3 Supersolid solution

Deep within the superradiant phase, no contribution to the single-particle potential
Vsp can be treated perturbatively. Consequently the wave functions solving the

213



Appendix A Solutions to the self-consistent mean-field theory with two crossed cavities

Schrodinger equation of the mean-field Hamiltonian

. \V&

Hyp = ~3 + Vip(r) (A.15)
are no longer analytically known and a purely numerical approach has to be chosen.
We thus discretize one half of the hexagonal first Brillouin zone on a triangular grid
of 694 points and, working in the extended representation, include the neighboring
Ny = 361 copies. These large grids are necessary, as a deep lattice scatters the wave
function across many Brillouin zones and at low temperatures the thermal cloud
will be tightly focused around the I'-points. Note, that due to the Zo symmetry
along the k, direction it suffices to use half of each Brillouin zone. In quasi-
momentum space the Hamiltonian couples only states differing by short reciprocal
lattice vectors. One thus has to diagonalize 694 sparse matrices, each of which has
size Ni X Nj. Since the Hamiltonian depends on the cavity fields «;, which have to
be found self-consistently, this calculation has to be repeated a lot. We therefore
only find the N, = 10 — 30 smallest eigenvalues of each matrix using a Krylov
subspace method. With these eigenenergies of the N, lowest bands, we find the
thermal filling fraction fin as a function of the chemical potential. The k, direction
is unaffected by the two-dimensional lattice and can be integrated over. This gives
rise to the Polylogarithm Li; /5 in

SFer FERNT
fen (1) ~2(21)2f NN, (C(3/2)>

2/3 (A.16)
x » Liy (exp (%10 (C(ic/m) (1 — En,k))) ;

n,keBZ

where § = T/T'9%! is the dimensionless temperature. Furthermore we define the
atomic density matrix in momentum space

V30er ( /
2(2m)2 f Nk N \ ((3/2

2/3
X Li1/2 [exp (27];9 (C(?"f/z)> (/1, - En,k))

+ foll = 0(Enk — M)]} :

1/3
Eaar () =Y vn(k+ Gk + G/){ )> 0(Enx — 1)

n,keBZ

(A.17)

Here we choose the convention that #(0) = 0 for the Heaviside theta function and
since the integral over the Brillouin zone has already been performed G and G’
are vectors of the reciprocal lattice. Moreover, ¥, (k) is the eigenfunction of the
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A.3 Supersolid solution

Hamiltonian (A.15) with quasi-momentum k in the n-th Bloch band. Evaluating
fin(p) for some guess of «;, one can find the chemical potential p < ming E(k),
that satisfies fin(p) = f. If no such value exists the chemical potential is fixed
to u = ming F(k). The gas is then partially in a BEC with a condensate fraction
fo=f — fin(ming E(k)). The updated cavity fields are then found via the matrix
equation

(&)= |5~ T zectmpoe ] | 52- PESTELS

2 G,G/
2 1
- Ec.a ()™ (6G)
G,G/
2 — mix
(5 YeeZee Vs (06) Yo See(m)Va*(oG)
mix —_ 1
e Eae (WVI(6G) Yoo Zaa )V (6G)
—_ Z)VS 6G
> a.e Zaa(p §a1 ‘a
—_ c‘)Vb 6G
>ca Eaa(u apaz ‘a

(A.18)

where we use the shorthand notation G = G — G’. For completeness we have
furthermore introduced the dimensionless intercavity potentials

V(z) _ 1 8W’i‘di*>ai
" ai(sc 8012'
prmix _ 1 81/1,2\6”%1_ (A.19)
v 02122 agde  Oag

proportional to the dimensionless strength Uy = g2N/(Ad.). In agreement with
the experimental parameters, we only keep the linear, homogeneous contribution

A; -
— =Y BeaWVPOG) = -

)
¢ G=a

Se,
dec

(A.20)

throughout the calculations in Sec. 3.2. In this approximation the quadratic and off-
diagonal terms o VS‘;}iX disappear completely. If the actual self-consistent solution
of the coupled mean-field equations is to be determined, the update procedure has
to be repeated until no significant change of p and «; occurs between updates.
Close to the critical point this can take a long time. However, for the phase
diagram no iteration is needed at all. Instead, the initial guess is chosen with

some small almt ~ 107* and only a single iteration is performed. Depending
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Appendix A Solutions to the self-consistent mean-field theory with two crossed cavities

on the direction of the update, the i-th cavity is either empty (af*V < aiﬂit) or
superradiant (af® > o!™*). With fy necessarily determined during the update all
four phases in Fig. 3.2 can be distinguished.
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Appendix B

Alternative derivation of nonlinear
Feynman rules

In section 4.4.4 we argued that in order to capture the properties of non-interacting
polaritons giving rise to electromagnetically induced transparency, it is not actually
necessary to implement nonlinear Feynman rules in real time. Instead, it suffices
to simply exclude all self-energy insertions into the ground-state propagator and to
forbid any of the excited states to repeatedly couple to the ground state. By these
means we then derived the (exact) polarizability of the atomic medium in 4.5. Tt
is instructive to rederive this result directly from the coupled Lindblad equations
of the spin operators o, ,, introduced in Sec. 4.4.1.

The retarded polarizability of each atom in the ground state is given by

P(t) = 0(t) [Tr(0g.(1)0e.gp) — Tr(0eg05.(t)p)] (B.1)

The latter of these contributions vanishes identically as p = 04,4. The time evolu-
tion of 0,.(t) is given by

.. ) 1
_wg,e(t) = [H, Ug,e(t>] + 1% (Ug,egg,e(t)ae,g D) {Ue,ggg,ev Ug,e(t)}> ) (B.2)

which very nicely simplifies, if one uses o, 404 = ¢, as well as the observation
that H in the limit of low polariton densities acts trivially on the ground state,
which implies 04 c04¢(t) =0 and Hoy(t) = 0. One thus ends up with

i0g.e(t) =0ge(t)H — i;eag,e(t)a&e , (B.3)
which has the solution
Oge(t) = ogee T, (B.4)

where H = H + i%0c, is the non-hermitian effective Hamiltonian governing the
time evolution of the three level system in the presence of losses. Inserting this
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result back into the polarizability, we obtain

P(t) = 6(1) (emt>22 . (B.5)
Upon Fourier transformation this turns into
i

P(w) = :
w — wizizs —|—i’yd/2

(B.6)

which coincides with the result obtained by means of the simplified nonlinear Feyn-
man rules in (4.106). We thus have seen that, due to the absence of laser coupling
between the atomic ground state and the excited state, nonlinear Feynman rules
are easily implemented. As is mentioned in Sec. 4.4.4, the dynamics of the other
excited state of the N-scheme is not as simple. Thus a similar derivation for the
susceptibility of the medium from the perspective of the exchange photon fails.
We can now go beyond the limit of low polariton densities and consider the effect
of a finite density of excited atoms. In this case, there is a finite fraction of atoms
for which p # 04 4. In particular, due to EIT, excited atoms will predominantly
occupy the metastable state (p = 0, 5). This, however, implies that o 4p and poc 4
both vanish. The main effect of a finite density of polaritons will thus simply re-
sult in a reduced susceptibility of the atoms, which is easily included via a finite
density of defects ny in the chain of atoms. If the number density of excited atoms
remains small, this effect can be neglected all together, as it will have no effect on
the stability of phases reported in chapter 4.
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Appendix C

Dicke model

C.1 Keldysh formulation of the self-consistent Hartree
theory

In this appendix, we provide some details on the self-consistent Hartree theory
introduced in section 5.4. First, note that the Kronecker delta in Eq. ((5.30)) is
necessary, as the product of operators in the interaction is normal-ordered, whereas
the Keldysh Green’s function is time-ordered (in terms of the ”classical” fields).
Therefore the normal-ordered product evaluated on the closed-time contour reads

(BT (0)b(2)) = (b ()% (¢ +07)) = (b-(t + 0F)b" (1)) (C.1)
while the Keldysh Green’s function can be expressed as
iGN (1) = (b (OB (1) + (b ()" (). (C.2)

The difference between iG¥ (t,4) and twice the particle number can therefore be
compensated by

(b_ (1) (£ + 0)) — (b (1)b* (£ +0T)) = —1. (C.3)

To account for all possible diagrams at one loop level with the correct symmetry
factors it is sufficient to include all permutations (irrespective of the possibility
of two subscripts being identical) and multiply by the symmetry factor 1/2, to
account for the starting- and end-point of G¥ being identical. For example the
vertex aqédédl}; translates to the subscript (5,3,3,4) and its 23 permutations. In
this labeling system numbers refer to entries in the vector V', in accordance with
this, the subscripts in G¥ both run from 1 to 4. Before actually contracting M
with G¥, care has to be taken whether an index is contracted with an incoming
or an outgoing particle, or in other terms, whether a given field is part of V' or
V1. As even positions (counting from left to right) in each subscript are contracted
into the left side of a Green’s function they are to be interpreted as part of VT,
which translates to the need of shifting even indices at even positions by -1 and odd
indices at even positions by +1. On the other hand, as indices at odd positions of
V' are always contracted into the right side of a Green’s function they are part of
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V', which calls for no change in those subscripts.

Integrating over G¥ in Eq. ((5.30)), since there is no frequency dependence in
the self-energy, can actually be done analytically, as all integrals can be performed
using the residue theorem, where we have the ambiguity of closing the integration
contour in the upper or lower w-plane. In any case only a maximum of 4 poles
of the retarded or advanced Green’s function contribute. Eventually one has to
solve an equation depending on products of roots of polynomials of degrees < 4,
which can be done to arbitrary precision using numerical methods. Note, even
though it seems like one has to solve an equation for 4 x 4 matrices, these coupled
equations boil down to just two linearly independent ones. This is a consequence
of the symmetry in the interaction, that allows to parametrize the retarded self
energy as

0 0 X 2
0 0 %2 X
Y1 X1 2%y Yo
Y1 X1 ¥e 2%,

The solution of the remaining self-consistency equations

_ 9 dw >
Y= N [2 — / o (G(5 3) T G( 3.4) T G(44)>] (C.5)
9 dw
2= AN (Gg 3) T G(2 3) T G(4 nt G(4 2)) (C.6)

evaluated within a small interval (scaling like g.o/v/N) of the critical coupling

strength (the coupling strength, at which in the limit N — oo the phase tran-

sition occurs) yields the scaling of the largest eigenvalue of the matrix (n) =
$+i [ 9 GK(w) that is discussed in the main text.

C.2 Details on the self-consistent Hartree-Fock approach
and computational techniques

Within the SCHF approach introduced in section 5.4, we follow the same procedure
illustrated above for the Hartree diagrams to deal with all possible contractions
resulting from the tensorial structure of the vertex. There are, however, some
minor differences

e The two vertices involved are being contracted with different combinations
of incoming and outgoing fields. We take care of this by shifting all but the
first index of the vertex contracted with the outgoing particle according to
the rules that were already used in the Hartree calculation.

e For the vertex that acts on the incoming particle only the last index is treated
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this way.

o Afterwards the n-th index of the left vertex is connected via a Green’s function
with the n+1-th index of the right vertex (for a particle propagating from right
to left). The remaining indices are externally exhibited by the self-energy.

e Finally, one has to compensate for the over-counting due to identical contrac-
tions. This is to say that one has to divide by the factorial of the number
of retarded Green’s functions multiplied with the factorial of the number of
Keldysh Green’s functions. We distinguish between those Green’s functions
internally by limiting the intervals over which the indices in all contractions
run. This is necessary to achieve adequate speeds in the numerical calcula-
tions and easily compensated for by the symmetry factors. Additionally one
has to include a factor of 1/2 due to the expansion of the exponential.

To numerically tackle the self-consistency equations we again start by noting some
symmetries of the self-energies:

SESEow (o)’
SEoostown[on

B = 2GRS 3T ) LD 3 (C.7)
(25" =] =F [
and
»E(t) =

2 () 50 - [EEED]T 2=
B () ) - [EE ) 2K( | (C.8)

2 OR SO S5 () 25 (t)

-[EFe) -BEFe] -[EFe] - [EFe)

However, now the expressions involved are far to cumbersome to show them here
(each consisting of several thousand convolutions). As these convolutions can no
longer be treated analytically we perform fast Fourier transforms including about
10° to 107 points for each Green’s function and calculate the convolutions in the
time domain, where they are nothing but simple products. Finally, we trans-
form the resulting self-energy in time back to the frequency domain. While this
calculation is conceptionally straightforward, there are some technicalities which
significantly increase precision and reduce computation time:

e As the frequency-dependence of the self-energy emerges from convolutions
of Green’s functions we can conclude that lim,_ 2f(w) — Z& + O (1/w)
and limy 00 2% (w) — O (1/w?), while all off-diagonal entries fall of even
faster. This allows to choose the frequency interval for the Fourier transform
much smaller, as only these next to leading corrections have to be treated
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numerically. The contributions from the high-frequency tail in Hartree ap-
proximation are then added after the Fourier transform.

e To allow for the long-time tails of the possibly very sharp peaks of the Green’s
functions in the vicinity of the the scale invariant point, we optimize the
scale s in the numerical implementation of f(st) = (2mow) . f(w)expiswt
for t € N and where the sum runs through w = —wpax, —Wmax + 6w, .... In
other words the interval in the time domain has to be chosen according to the
physical parameters, but independent of the interval in the frequency domain.

Finally, one has to find a method by which convergence of the self-consistency
equation can be achieved quickly. While it is always possible to use an extremely
small update parameter c in the interaction procedure:

Znew = (1 — C)Eold + CE[G[EOMH, (Cg)

it is quite frequently possible to reach convergence much faster by using Newton’s
method for root searching. However Y is a functional and the update will never
do this justice. Instead it only uses a rough estimate based on the amplitude of
G(w) to calculate the purely local update parameter c¢(w). This, together with
the opposing effects that Hartree and Fock diagrams take on a partially converged
Green’s function, forces the use of a conventional, small update constant ¢ near the
phase transition.

C.3 Approximate kinetic theory

Starting from the Dyson Egs. (5.28) and (5.29) , we consider the relaxation dynam-
ics of the system in the SCHF approach of section 5.4. Due to the self-consistency
of the approach and the non-trivial dynamics of both retarded and Keldysh Green’s
functions (and self-energies) one obtains strongly nonlinear differential equations
far from the steady state. To make progress, we limit ourselves to the late-time
dynamics where only small deviations from the steady state are left. In this regime,
one can expand in the time-derivatives to linear order. However, as we will see,
there is a regime close to the phase transition where a linearization in the deviations
from the steady state fails and nonlinearities lead to algebraic relaxation.

To each Dyson equation we actually need to add the time-reversed counterpart,
since in general the Green’s functions depend on two times (two frequencies). We
thus have the following four matrix-valued equations, formulated in the time do-
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C.3 Approximate kinetic theory

main:
(687" - s - sf) 0 6K = (9K - DIf) o G
G5 o ([Gfﬂ_l — x4 - zg) =GR o (xK - DE) (C.10)
([GOR}_l —nk_ Zﬁ) o GR =45(t—t)
Gl o ([Gg%]*l _nk zﬁ) = 5(t—1) (C.11)

where the first time-reversed pair of equations determines the 4 by 4 Keldysh
Green’s function and the second determines the 4 by 4 retarded Green’s function.
Note, that we explicitly separated the contribution to the self-energies coming from
Hartree and Fock processes.

We now change coordinates and switch from ¢, to absolute time 7 and relative
frequency w via the Wigner transformation (see Sec. 5.1). In many situations, the
dependence on the absolute time is slow and only a finite number of these derivatives
are actually relevant, allowing for the expansion of the exponential. Since we are
interested in the relaxation close to the steady state, it will be sufficient to keep
only first order derivatives in 7. This is the case because, as we shall see, near
gc(N) the effective damping ki, of the dynamics in 7 will disappear without a
diverging quasiparticle lifetime. Otherwise the derivatives in w would cancel out
the suppression in powers of derivatives in 7. After taking the Wigner transform
of the two pairs of equations (C.10) and (C.11), it is convenient to take the sum
and the difference of each pair. One of the two resulting equations for each pair
will then contain only products of derivatives with respect to w and 7. While this
obscures the physics to some extent, it can nonetheless be treated on the same
footing as the other equation. This would be necessary if we found solutions for
the Green’s functions in the kernel of the latter equation, a complication that our
algorithm will avoid by design!. We thus disregard this equation and for each pair
{GK , GR} keep only the one containing the unrenormalized derivative with respect
to 7 and end up with one equation stemming from the Keldysh pair (C.10) and one
from the retarded pair (C.11). After explicitly separating the deviations of Green’s
functions §GFAK — GR’A7K—G£’A’K and self-energies YRAK — ESE’A’K—MER’A’K

LSince we use equation (C.14) only to extract the kinetic parameters for the most slowly decaying
eigenvector §GX | but not to actually find this eigenvector, both kinetic equations contain the
same information and are therefore redundant.
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from their steady state values, we obtain the two rather complicated equations
i0,6GK = 6GK ([Gg‘(w =0)] ' - 2;‘;) P - GEsxAp
_P ([Gﬁ(w —0)] "' - ER> SGK + PonRGE
+ %afacKaw (24 + o5 P - %aw (0G* + GE) 0,6x4P
— 2PO.69R0, (G +6G) + L Pa, (3L + 657) 0,66
+ P (2% - Df) oG + poxiGd - 6G7 (5K - DE) P

v
2
- %aTaaRawzgg P+ %awagaTcsGK

— GOSN P - SP0.6¥R0,G + S POLEE 0,56

i0,6GR = 5GR ([G{f(w —0)] ' - zg) p-P ([Ggf(w =0)] ' - zg) SGR
— GEsYRP + PSRRGE + %aTaGRawzggP — %awagaTazRP

i i
- ipaTazRawG;E + §P8w2£875GR,
(C.12)

where
P = diag(1,-1,1,-1) (C.13)

accounts for the sign of w in [Géz] _1, which itself is a consequence of the Nambu
structure. The nonlinearity of these equations comes from the fact that in a
self-consistent theory the self-energies X4 in turn depend on the deviations
§GAK yia the Dyson equations. The next step is to expand the equations in
powers of the deviations from the steady state. Eq. (C.10) then generically takes
the following form:

0-6G" ~ = > Kiing0G” = > Ming,a0G76G7 + O (5%) (C.14)
ce{R,A,K} 0,0’

where the renormalization of the 7-derivative due to products with derivatives
with respect to w has been omitted, since it can be shown that the term must be
invariant under a rescaling of the system size and O(1). Consequently, apart from
this renormalization, the damping rate xyn, of the exponential relaxation can be
expressed as the eigenvalues of linear operators.

We will instead proceed along a shortcut to obtain an estimate of the relaxation
rate Kiin. We exploit the iterative procedure required for the convergence of the
self-consistent resummation used to find the steady state in section 5.5. For a
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sufficiently small update parameter ¢ (see Appendix C.2) it resembles indeed a
simplified time evolution, where in each “time step”/iteration the past is always
assumed to be completely time independent. For long times and small values of
Kkin/Kqp this is a good approximation and the convergence is reached along the
eigenvector of the Fredholm integral operator with eigenvalue ky;,. This procedure
allows for an a posteriori justification of the use of the Iterative Pseudo (IP) time
evolution to compute Kiiy,.

In the IP time evolution the overall time scale is not fixed. However, we note that
by mapping one iteration to a time difference 7, the IP time evolution predicts
(after linearization around the steady state and subtraction of the latter)

SGR(t + 1) = 6GR(t) + c (GESE(6GE (1)) GE — 5GR (1)) . (C.15)

Since including the dynamics for the Keldysh component contributes only further
additive terms with the same global prefactors, we simplify the expressions here to
depend solely on the retarded Green’s function. By comparison with (C.14), we re-
alize that 7 = ¢/kqp and conclude that the condition for a trustworthy description
of the late-time evolution by the iterative procedure requires ckyin, < Kqp, Which
allows the choice ¢ = 1 in the regime where the time-dependence of the past may
be neglected. This simplification is crucial for our ability to deal with long times,
as otherwise Fock diagrams would require an integral over the entire past, causing
the computational cost for a time-step to grow linearly with the simulated time.
The fact that the leading nonlinearity in Eq. (C.14) is of second order in the de-
viation from the steady state is a general feature of self-consistency, which makes
our result in this section applicable to a wide range of systems close to criticality.
It is worth noting that in the system the kinetic Eq. (C.14) cannot be formulated
on-shell, that is, the frequency convolutions contained in 4% (7, w) cannot be
eliminated assuming a long quasiparticle lifetime with respect to inverse charac-
teristic excitation energies. This indeed typically fails in an overdamped system,
where no quasiparticles exist and therefore both quantities scale equally and are
of similar size. It is also worth mentioning that, because of the 1/w divergence in
the distribution function F'(w) discussed in 5.5.2, the commonly used formulation
of kinetic equations in terms of F'(w) [197] is not an option here.

C.4 Role of the photon loss rate «

In this section we complement the results presented in the main text by computing
the dynamical parameters Kqp, Kkin, Akin fOr smaller values of the photon loss rate
k. The goal is to illustrate the qualitative behavior of the system in the isolated
limit x — 0. In Fig. C.1 we show the results for Kk = 1 and x = 0.2, to be compared
with Fig. 5.6 of the main text, computed for kK = 2. Two main observations emerge:
i) since all the dynamical parameters (Kqp, Kkin , Akin) decrease for decreasing
the global timescale becomes slower; ii) since kqp and kkin approach one another,
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it becomes more difficult (i.e. one has to tune the system even closer to g.(NN)) to
reach the dynamical critical regime where ki, < Kqp. Ultimately, in the x = 0
limit, we expect kyin to become coupled to Kqp, in the sense that the former cannot
be made arbitrarily small compared to the latter, at any given N. The numerical
computation leading to a set of results as the one in Fig. C.1 is very demanding and
becomes more so a k — 0, since the global timescale becomes slower and Kyin — Kqp
(see previous section). Our approach is not applicable in the case kK = 0.
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