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Task Description

Problemstellung

Um die numerische Simulation großer Systeme effizienter zu machen, versucht man mit-
tels Verfahren der Modellreduktion ein reduziertes Modell mit geringerer Ordnung r � n
zu bekommen, das das Übertragungsverhalten des Originalmodells möglichst gut ap-
proximiert. Für lineare Systeme ist die Modellreduktion gut untersucht und etabliert.
Leider sind die meisten praxisbezogenen dynamischen Systemen jedoch nichtlinear oder
polynomial-nichtlinear.
Bilineare Systeme stellen eine polynomial-nichtlineare Systemklasse dar, die eng mit
den linearen Systemen zusammenhängt. Diese enge Verbindung erlaubt – unter Verwen-
dung der sog. Volterra-Theorie – die Übertragung vieler systemtheoretischer Konzepte
(z.B. Übertragungsfunktion, Gramsche, H2-Norm) sowie bestehender linearer Modellre-
duktionsverfahren (z.B. balanciertes Abschneiden, Krylow-Unterraummethoden, H2-
optimale Reduktion) auf den bilinearen Fall.
Im Rahmen dieser Arbeit sollen, nach einer Einarbeitung in die Thematik, verschiedene
existierenden Verfahren der bilinearen Systemtheorie und Modellreduktion in Matlab®

entwickelt und untersucht werden. Ziel ist also, möglichst vollständige und automa-
tisierte Reduktionsalgorithmen für bilineare MIMO Systeme in Matlab® zu implemen-
tieren und diese anschließend zu validieren, um somit eine Matlab®-Toolbox für bilin-
eare Systeme zu generieren.

Arbeitsprogramm

1. Einarbeitung in die bilineare Modellreduktion, insbesondere in die Krylow-Unter-
raummethoden für lineare und bilineare Systeme [2, 6, 10, 11, 20]

2. Systematische Implementierung von Algorithmen zur Reduktion bilinearer MIMO
Systeme. Folgende Schritte wären sinnvoll:

• Weiterentwicklung der Moment Matching Algorithmen (Volterra Series In-
tepolation): volterraBrk, volterraBarnoldi, b_irka.

• Integration von bilyapchol innerhalb von bnorm zur Berechnung von H2-
Normen. Verbesserung und Entwicklung weiterer Funktionen.

3. Durchführung von Tests anhand von bilinearen Benchmarks (Fokker Plank equa-
tion, bilinear heat transfer model) und Evaluation der Reduktionsergebnisse

4. Dokumentation der Arbeit und der Ergebnisse
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Abstract

Bilinear systems are a special class of nonlinear systems. With the bilinear part in the
state-equation, bilinear systems are more suitable than linear systems for the approxima-
tion of nonlinear systems. However, a series approach connects bilinear systems strongly
to linear systems. This enables the possibility to adapt the system theory and model
reduction methods for linear systems to bilinear systems.
In this sense, we start by investigating the Volterra series representation of bilinear sys-
tems and develop a criterion for convergence. Through this kind of representation we
are able to define transfer functions for bilinear systems.
Subsequent, we discuss system-theoretic concepts of bilinear systems. Thereby, we espe-
cially examine bounded-input bounded-output (BIBO) stability, controllability, observ-
ability and bilinear system norms. This establishes the needed requirements for model
reduction.
Regarding model reduction, we first discuss the basic concepts as well as subsystem
interpolation. Following, we gain in-depth knowledge about Volterra series interpola-
tion. In this context, we discuss different aspects of implementation of this framework.
After that, we extend the multipoint Volterra series interpolation to match higher or-
der moments and upgrade the previously introduced implementations for this. As a last
point of model reduction we discuss an algorithm, which computes an H2-optimal model.
Concluding, we test the theoretic concepts using bilinear benchmark models.
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Kurzfassung

Bilineare Systeme sind eine spezielle Systemklasse der nichtlinearen Systeme. Durch
den bilinearen Anteil in der Zustandsgleichung eignen sich bilineare Systeme besser als
lineare Systeme zur Approximation von nichtlinearen Systemen. Der Vorteil von bilinea-
ren Systemen ist, dass sie durch einen Reihenansatz stark mit linearen verknüpft sind,
was es ermöglicht Systemtheorie bzw. Modellreduktion für lineare Systeme auf bilineare
Systeme zu übertragen.
In diesem Sinne wird die Reihendarstellung untersucht und ein Konvergenzkriterium
erarbeitet. Mit dieser Reihendarstellung ist es möglich Übertragungsfunktionen für bili-
neare Systeme zu definieren.
Daraufhin werden die systemtheoretischen Konzepte zu bilinearen Systemen besprochen,
wobei besonders auf BIBO Stabilität, Steuerbarkeit, Beobachtbarkeit und Systemnor-
men eingegangen wird. Damit schaffen wir das nötige Vorwissen zur Modellreduktion.
Im Bezug auf Modellreduktion werden zuerst Grundkonzepte sowie die Subsysteminter-
polation besprochen. Anschließend wird vertieft auf die Volterra Reihen Interpolation
eingegangen. Dabei wird ein tiefgreifendes Verständnis geschaffen und verschiedene Im-
plementierungsaspekte werden diskutiert. Im Anschluss daran, wird die Volterra Reihen
Interpolation für das Abgleichen höherer Momente erweitert und die zuvor präsentier-
ten Implementierungen dafür angepasst. Als letzter Punkt der Modellreduktion wird ein
Algorithmus besprochen, der ein H2-optimales, reduziertes Modell findet. Abschließend
werden die theoretischen Konzepte an bilinearen Benchmarkmodellen getestet.
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Chapter 1

Introduction

1.1 Motivation

Today’s demand for better and less expensive technology requires the use of high fidelity
dynamical models, in other words, mathematical models which represent a real world
process very well. The mentioned dynamic models are partial differential equations
(PDE), ordinary differential equations (ODE) or differential algebraic equations (DAE),
which allow us to avoid time-consuming and expensive experiments since we are able to
simulate them. To be able to capture all dynamics of the system and in this sense increase
the accuracy of the model, a high model complexity is often induced. Within this context
high complexity means that the number of equations or rather the state-dimension n of
the underlying mathematical model increases significantly. Indeed, one often deals with
so-called large-scale systems of size n ∼ 106. Obviously, it is not possible to simulate
these large-scale systems with conventional computers. Considering the following linear
system of differential equations

ẋ(t) = Ax(t)

where A ∈ R106×106 . Storing the matrix A as a double-precision array on a 64-bit op-
erating system requires a total amount of 7450 GB of storage. Assuming that we could
store A, it would take over 5 days on a moderate machine to simulate 10 seconds by use
of Euler’s method and a step size of 0.01.
This example shows, that there is a drastic need to reduce the complexity of those dy-
namic models to reduce the computational effort or rather at least make it possible to
simulate them. This motivates model reduction, whose goal it is to approximate a dy-
namical model with a much smaller amount of differential equations. Apparently, the
main objective is to reduce the error of the approximation.
Another aspect of the complexity of a dynamic model is that most technical processes
do not follow a linear behavior which means that the differential equations are nonlinear.
Since a linearized nonlinear system is mostly bad in capturing nonlinear dynamics we
consider a special class of nonlinear systems: bilinear systems. They combine the two
major advantages of better capturing nonlinear dynamics as well as the possibility to
apply linear system theory and linear model reduction techniques.

1



2 Chapter 1. Introduction

1.2 Goals

The first goal of this thesis is to obtain in-depth understanding of bilinear systems.
Therefore, we consider different representations of bilinear systems as well as bilinear
system theory.
After that we draw our attention to model reduction of bilinear system. In this sense
we point out different algorithms for Volterra series interpolation. We also want to ex-
tend the existing multipoint Volterra series interpolation framework to multiple-input
multiple-output (MIMO) systems as well as for higher order moments which we conse-
quently call multimoment Volterra series interpolation.
Finally, we want to discuss the bilinear rational Krylov algorithm (BIRKA).

1.3 Outline

We begin this thesis by explaining bilinear systems generally in Chapter 2. Consequently,
we discuss their origin and different forms to represent them. On this occasion we in-
troduce the Volterra series representation and point out convergence criteria. As a last
part of this chapter we deal with transfer functions.
Chapter 3 is completely related to bilinear system theory. Hence, we start with the
pole-residue and the diagonal form of a bilinear system. Following, we discuss BIBO
stability in depth. In addition we obtain criteria for controllability and observability
and in this sense introduce the Gramians. Finally, we show the connection between the
bilinear system norms and the Gramians.
In Chapter 4 we discuss interpolation-based reduction methods for bilinear systems.
Therefore, we start by explaining basic concepts of model reduction. After that, we
briefly explain the subsystem interpolation framework. Following, we introduce multi-
point Volterra series interpolation, explain its connection to Sylvester equations and give
different algorithms which yield the projection matrices. In addition to that, we expand
the framework to be able to match higher order moments which we consequently call
multimoment Volterra series interpolation. In this sense, we also explain different ways
to compute the projection matrices. Then we discuss other special cases of Volterra se-
ries interpolation like block Krylov, Markov Parameters and complex expansion points.
Finally, we introduce BIRKA, an algorithm to obtain an H2-optimal reduced bilinear
system.
Rounding off this thesis, we provide numerical examples in Chapter 5 corresponding to
the previously introduced algorithms followed by the conclusion in Chapter 6.

Note that for better readability we highlight important equations blue. Since one often
looses sight of the actual goal during a derivation, we highlight the goal red. If the
derivation yields the highlighted goal, we mark the formula green.



Chapter 2

Bilinear Systems

Bilinear systems are a special class of nonlinear systems. In state-space representation
they only differ from linear systems by having an additional bilinear term. A generalized
single-input single-output (SISO) bilinear system ζ is given by

ζ :

Eẋ(t) = Ax(t) +Nx(t)u(t) + bu(t), x(0) = x0,

y(t) = cTx(t),
(2.1)

where E,A ∈ Rn×n with E being regular, N ∈ Rn×n, b ∈ Rn×1 and cT ∈ R1×n.
Looking at a MIMO bilinear system things often get complicated due to a bilinear term
for every input. In literature, the bilinear term is often written in Kronecker notation
N̄(I ⊗ x(t))u(t) where N̄ = [N1, . . . ,Nm] ∈ Rn×nm. This makes it possible to write
it brief, but it is not intuitive to read. Making things easier to understand, we will use
the equivalent sum notation which means that in the MIMO case Nx(t)u(t) becomes∑m
j=1N jx(t)uj(t). Hence, a MIMO bilinear system with m inputs and p outputs results

in

ζ :


Eẋ(t) = Ax(t) +

m∑
j=1
N jx(t)uj(t) +Bu(t), x(0) = x0,

y(t) = Cx(t),
(2.2)

where E,A ∈ Rn×n with E regular, N j ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n.
As bilinear systems are introduced, we will deal with their origin in the subsequent part.
Consequently, we will illustrate two ways to receive a bilinear system as well as provide
examples.
After that we have to consider a different representation to be able to later apply similar
theories as for linear model reduction. Hence, we introduce ways to gain the so-called
Volterra series representation of a bilinear system.
Finally, we show two possibilities of transfer functions: transfer functions with triangular
kernels and with regular ones.

2.1 Origin

While dealing with bilinear systems, one may ask oneself where they come from. Ba-
sically there are two possible options. First, one could receive a bilinear system by

3



4 Chapter 2. Bilinear Systems

modeling a technical system which has bilinear properties. Second, it is possible to
obtain a bilinear system out of a nonlinear system by use of the Carleman linearization.

2.1.1 Physical Modelling

Bilinear systems appear in a variety of disciplines. A simple biological example is the
equation which describes the population of a species. Similar to that, the neutron
population in nuclear fission is also described by a bilinear equation. Another physical
example is a mechanical brake, where the approximation of the frictional force has
bilinear characteristics. Although all this processes sound interesting due to their small
order they are not relevant for this thesis as our goal is to apply model reduction which
only makes sense for large-scale systems [16].
However, to provide a relevant example, we take a look at the Itô-type linear stochastic
differential equations of the form

dx(t) = Ax(t) dt+
m∑
j=1
Aj

0x(t) dwj(t) +Bu(t) dt, x(0) = x0,

y(t) = Cx(t)

where A ∈ Rn×n, Aj
0 ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n and the dwj(t) are white

noise processes associated with Wiener processes wj(t). One can clearly determine the
bilinear structure. Later on, we will introduce an Itô-type equation, the Fokker-Planck
equation, and use it as a benchmark for our model reduction implementations.

2.1.2 Carleman Bilinearization

Another option to derive large-scale bilinear systems is to apply the Carleman lineariza-
tion to a nonlinear system. Replacing the approximation of a nonlinear system with a
bilinear system instead of a linear system improves the accuracy significantly.

Kronecker Product

Initially, we have to define the Kronecker product. Unlike other operators, the applica-
tion of the Kronecker product does not depend on the dimensions of the matrices. Thus,
it is an operation on two matrices of arbitrary size.

Definition 2.1 (Kronecker Product). Let the matrix A be of size m×n and the matrix
B of size p × q. Applying the Kronecker product as follows results in a matrix with
dimensions mp× nq

A⊗B =


a1,1B . . . a1,nB

... . . . ...
am,1B . . . am,nB

 .
N

For later use in this chapter, we also have to define the Kronecker exponential which we
will indicate with round brackets.
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Definition 2.2 (Kronecker Exponential). The k-th Kronecker exponential of a matrix
A results in k Kronecker products of A with itself.

A(k) = A⊗ . . .⊗A︸ ︷︷ ︸
k−times

N

Bilinearization

Considering the following state-space formulation of the MIMO nonlinear system

Eẋ(t) = a
(
x(t)

)
+

m∑
j=1
bj
(
x(t)

)
uj(t),

y(t) = Cx(t)
(2.3)

where x(t) ∈ Rn×1 denotes the state vector, u(t) = [u1(t), . . . , um(t)]T ∈ Rm×1 contains
the inputs and y(t) ∈ Rp×1 contains the outputs. Our objective is to approximate this
nonlinear system via the Carleman linearization. For better readability we will drop the
time argument. We start by expanding the nonlinear function a(x) at the equilibrium
point x0 as a Taylor series

a(x) = a(x0)+ ∂a(x0)
∂x︸ ︷︷ ︸
A1

(x−x0)+ 1
2!
∂2a(x0)
∂x2︸ ︷︷ ︸
A2

(x−x0)(2) + 1
3!
∂3a(x0)
∂x3︸ ︷︷ ︸
A3

(x−x0)(3) + . . . .

While setting x0 = 0 and assuming a(x0) = 0 we can rewrite the Taylor series with
Kronecker notation for x.

a(x) = A1x+A2

x(2)︷ ︸︸ ︷
(x⊗ x) +A3

x(3)︷ ︸︸ ︷
(x⊗ x⊗ x) + . . .

=
∞∑
k=1

Akx
(k) ≈

N∑
k=1

Akx
(k).

(2.4)

Here A1 ∈ Rn×n is the first partial derivative also called Jacobian of a(x). Generally,
Ai ∈ Rn×ni identifies the i-th partial derivative of a(x) with respect to x evaluated at
x0. We expand each bj(x) in the same way but now assuming that bj(x0) 6= 0

bj(x) = B0,j +B1,jx+B2,j(x⊗ x) +B3,j(x⊗ x⊗ x) + . . .

=
∞∑
k=0

Bk,jx
(k) ≈

N−1∑
k=0

Bk,jx
(k).

(2.5)

Note that B0,j ∈ Rn×1 represents b(x) evaluated at x0. As above, Bi ∈ Rn×ni identifies
the i-th partial derivative of b(x) with respect to x evaluated at x0. Taking (2.4) and
(2.5) into account we can rewrite (2.3) as follows

Eẋ =
N∑
k=1

Akx
(k) +

m∑
j=1

N−1∑
k=0

Bk,jx
(k)uj ,

y = Cx.

(2.6)
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Basically one could stop right here and use (2.6) to approximate the nonlinear system
(2.3). As our goal is to obtain a bilinear structure as follows

Eẋ = Ax+
m∑
j=1
N jxuj +Bu (2.7)

we have to continue with the bilinearization step. It is possible to write (2.6) with the
structure of (2.7) by defining a new state-vector

x̃ :=


x(1)

...
x(N)

 .
To specify the first N state-equations corresponding to (2.6), we develop a differential
equation for x(2) by neglecting the terms of degree higher than N .

E(2)ẋ(2) = d
dt(Ex⊗Ex) = Eẋ⊗Ex+Ex⊗Eẋ

=

 N∑
k=0

Akx
(k) +

m∑
j=1

N−1∑
k=0

Bk,jx
(k)uj


︸ ︷︷ ︸

Eẋ

⊗Ex

+Ex⊗
 N∑
k=0

Akx
(k) +

m∑
j=1

N−1∑
k=0

Bk,jx
(k)uj


︸ ︷︷ ︸

Eẋ

=
N−1∑
k=1

(Ak ⊗E +E ⊗Ak)x(k+1)+

m∑
j=1

N−2∑
k=0

(Bk,j ⊗E +E ⊗Bk,j)x(k+1)uj , x(2)(0) = 0.

(2.8)

As we can see in the last part of (2.8), x(2) satisfies a differential equation with the
same structure as x(1) = x in (2.6). Therefore, we can generalize the above equation as
follows

E(i)ẋ(i) =
N−i+1∑
k=1

Ai,kx
(k+i−1) +

m∑
j=1

N−i∑
k=0

Bi,k,jx
(k+i−1)uj , x(i)(0) = 0 (2.9)

where A1,k = Ak and for i > 1

Ai,k = Ak ⊗E ⊗ . . .⊗E +E ⊗Ak ⊗E ⊗ . . .⊗E + . . .+E ⊗ . . .⊗E ⊗Ak.

For the matrices Bi,k,j we use similar notation. Finally, we gain a bilinear system like
(2.7) making use of (2.9)

Ẽ ˙̃x = Ãx̃+
m∑
j=1
Ñ jx̃uj + B̃u, x̃(0) = x̃0,

y = C̃x̃

(2.10)
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where

Ẽ =



E 0 . . . 0
0 E(2) . . . 0
...

... . . . ...
0 0 . . . E(N)


, Ã =



A1,1 A1,2 . . . A1,N

0 A2,1 . . . A2,N−1
...

... . . . ...
0 0 . . . AN,1


,

Ñ j =



B1,1,j B1,2,j . . . B1,N,j 0
B2,0,j B2,1,j . . . B2,N−2,j 0

0 B3,0,j . . . B3,N−3,j 0
...

... . . . ... 0
0 0 . . . BN,0,j 0


, B̃ =



B1,0,j

0
0
...
0


, x̃0 =



x0

0
...
0


,

C̃ =
[
C 0 . . . 0

]
.

According to the bilinear structure of (2.10) we call this procedure Carleman bilin-
earization. Let us not loose sight of the fact that our bilinear approximation in (2.10)
is truncated since we only consider N terms with the Taylor series. Note that each
differential equation of x(i) contains i − 1 Kronecker products which heavily increases
the dimensions ñ = ∑N

k=1 n
k of our new state-vector x̃. This is the crucial disadvantage

of the bilinearization approach [5] [20].

Example 2.1 (Bilinearizing a simple nonlinear system). We can approximate the
system

ẋ(t) = a
(
x(t)

)
+ bu(t),

y(t) = cTx(t)
(2.11)

with the truncated Carleman bilinearization for N = 2. Above formulations yield
the matrices

x̃(t) =

 x(t)
x(t)⊗ x(t)

 , b̃ =

b
0

 , c̃T =
[
cT 0

]
,

Ã =

A1 A2

0 A1 ⊗ I + I⊗A1

 , Ñ =

 0 0
b⊗ I + I⊗ b 0

 .
Hence, the bilinear approximation of (2.11) results in

˙̃x(t) = Ãx̃(t) + Ñx̃(t)u(t) + b̃u(t),
y(t) = c̃Tx̃(t).

(2.12)

As mentioned, the order of the bilinear system increases significantly with higher
order terms. In this example the nonlinear state representation has the dimension
n whereas the bilinear state representation has size (n+ n2). M
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2.2 Volterra Series Representation

To apply linear model reduction concepts to bilinear systems, we need a different repre-
sentation. Thus, we introduce the concepts of Volterra series. Our goal is to describe a
bilinear system ζ with the following sequence of cascaded linear systems Σk

Σ1 : Eẋ1(t) = Ax1(t) +Bu(t), x1(0) = x0,

Σk : Eẋk(t) = Axk(t) +
m∑
j=1
N jxk−1(t)uj(t), xk(0) = 0 for k ≥ 2 (2.13)

for which we are able to compute each solution xk(t). The solution of the bilinear system
will then be the sum over all solutions x(t) = ∑∞

k=1 xk(t).

+

ζ

C
u(t) x(t) y(t)

Σ1

Σ2

Σ3

...

x1(t)

x2(t)

x3(t)

Figure 2.1: Volterra series representation of a bilinear system ζ

As we can see in (2.13) and Fig. 2.1, each so-called subsystem Σk includes the input
and a unique state-vector xk(t). For k > 1 every subsystem Σk also depends on the
solution xk−1(t) of the previous subsystem Σk−1. We will discover that the importance
of a subsystem decreases while k increases.
To gain this Volterra series representation, there are two possible approaches. On the one
hand, it exists the variational equation approach, on the other hand one could perform
the Picard iteration.

2.2.1 Variational Equation Approach

The variational equation approach is a straightforward method to obtain the subsystem
representation. Its ansatz inherits the idea of Volterra series. Let us assume that a
MIMO bilinear system

ζ :


Eẋ(t) = Ax(t) +

m∑
j=1
N jx(t)uj(t) +Bu(t), x(0) = x0,

y(t) = Cx(t),

is forced by an input which looks as follows

u(t) = αu(t).
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Hereby α denotes an arbitrary scalar. Let us also suppose that we can rewrite the
state-vector as a sum of state-vectors weighted by powers of α

x(t) =
∞∑
k=1

αkxk(t) = αx1(t) + α2x2(t) + α3x3(t) + . . . ,

ẋ(t) =
∞∑
k=1

αkẋk(t) = αẋ1(t) + α2ẋ2(t) + α3ẋ3(t) + . . . .

Inserting the ansatz in the state-equation of ζ results in

E
(
αẋ1(t) + α2ẋ2(t) + . . .

)
= A

(
αx1(t) + α2x2(t) + . . .

)
+

m∑
j=1
N j

(
αx1(t) + α2x2(t) + . . .

)
αuj(t) +Bαu(t). (2.14)

Comparing terms with equal powers of α yields a state-equation for each xk(t) that must
hold for all α. The previous yields [8]

α : Eẋ1(t) = Ax1(t) +Bu(t) , x1(0) = x0 ,

α2 : Eẋ2(t) = Ax2(t) +
m∑
j=1
N jx1(t)uj(t) , x2(0) = 0 ,

α3 : Eẋ3(t) = Ax3(t) +
m∑
j=1
N jx2(t)uj(t) , x3(0) = 0 ,

...

which we can generalize. By assuming that α = 1 we obtain the following subsystem
representation of ζ

ζ :


Eẋ1(t) = Ax1(t) +Bu(t) , x1(0) = x0,

Eẋk(t) = Axk(t) +
m∑
j=1
N jxk−1(t)uj(t) , xk(0) = 0 , k ≥ 2

which is equal to (2.13). Note that only the first subsystem contains the initial condition
x0. All subsystems for k ≥ 2 will also hold x0 since they contain the first subsystem
due to cascading.

2.2.2 Picard Iteration Approach

The variational equation approach does not answer questions concerning convergence
of the Volterra series. Thus, we take a look at the Picard iteration approach. We
will discover criteria for convergence which then allow us to truncate the series. The
truncation is necessary to numerically compute x(t) via the sum over the subsystems.
To apply the Picard iteration to bilinear systems we discuss the underlying theory first.

Picard Iteration

Generally, the Picard iteration is a fixed point iteration to approximate functions like

z(t) = f
(
t, z(t)

)
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with iterative calculations of the sequence

zk(t) = f
(
t, zk−1(t)

)
.

To ensure convergence, f(z) needs to be a contraction, which means that there exists a
constant K ∈ [0, 1) so that

‖f(t, z1(t)
)− f(t, z2(t)

)‖ ≤ K‖z1(t)− z2(t)‖.

Therefore, a contraction means that the images of two points are closer than the two
points themselves [1].
To apply this theory to our problem, we have to use a modified Picard iteration. The
starting value problem

ż(t) = f(t, z(t)), z(t0) = z0 (2.16)

can also be written as

z(t) = z0 +
∫ t

t0
f(τ, z(τ)) dτ.

As the Picard-Lindelöf theorem shows, a starting value problem like (2.16) has a unique
solution within t ∈ [0, T ] if f(t, z(t)) satisfies a Lipschitz condition for the second variable.
Similar to above, this means there exists a variable L ≥ 0 so that

‖f(t, z1(t)
)− f(t, z2(t)

)‖ ≤ L‖z1(t)− z2(t)‖,with t ∈ [0, T ] (2.17)

is fulfilled [25]. If f(t, z(t)) satisfies (2.17) we can approximate (2.16) with a small enough
ε > 0 by iteratively computing

z0(t) = z0

zk(t) = z0 +
∫ t

t0
f(τ, zk−1(τ)) dτ, t ∈ [t0, t0 + ε].

For infinite iterations the solution zk→∞(t) converges against the analytic solution z(t)
[22].

Picard Iteration Applied To Bilinear Systems

To not loose sight of our actual goal we briefly recapitulate that we try to find a sequence
of cascaded linear systems with which we can represent our bilinear system ζ

ζ :


Σ1 : Eẋ1(t) = Ax1(t) +Bu(t), x1(0) = x0,

Σk : Eẋk(t) = Axk(t) +
m∑
j=1
N jxk−1(t)uj(t), xk(0) = 0 for k ≥ 2.

Making things more understandable we start applying the Picard iteration to a SISO
bilinear system ζ

ζ :

Eẋ(t) = Ax(t) +Nx(t)u(t) + bu(t), x(t0) = x0,

y(t) = cTx(t).
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To gain a structure as in (2.16) we need to perform a change in the variable x(t) as
follows [8]

x(t) = eE−1Atz(t),

ẋ(t) = eE−1Atż(t) +E−1AeE−1Atz(t).

Applying the transformation to ζ results in the equivalent representation

eE−1Atż(t) +E−1A eE−1Atz(t) = E−1A eE−1Atz(t) +E−1N eE−1Atz(t)u(t) +E−1 bu(t),
z(t0) = x0.

Making use of N̂(t) = e−E−1AtE−1NeE−1At, b̂(t) = e−E−1AtE−1b and being aware that
E−1A eE−1Atz(t) cancels out, we can write

ż(t) = N̂(t)z(t)u(t) + b̂(t)u(t) , z(t0) = x0. (2.18)

Note that we do not apply the transformation to the output equation as we will later
change back to the original variable.
Assuming that z(t0) = 0 as well as the right-hand side of the first equation of (2.18)
fulfills the necessary Lipschitz condition we can apply the Picard iteration. The solution
of (2.18) can then be constructed by

z0(t) = z0 = 0

z1(t) = z0︸︷︷︸
=0

+
∫ t

τ1=t0
N̂(τ1)z0(τ1)u(τ1) dτ1︸ ︷︷ ︸

=0

+
∫ t

τ1=t0
b̂(τ1)u(τ1) dτ1

z2(t) = z0︸︷︷︸
=0

+
∫ t

τ2=t0
N̂(τ2)z1(τ2)u(τ2) dτ2 +

∫ t

τ2=t0
b̂(τ2)u(τ2) dτ2

=
∫ t

τ2=t0
N̂(τ2)

∫ τ2

τ1=t0
b̂(τ1)u(τ1) dτ1︸ ︷︷ ︸
=z1(τ2)

u(τ2) dτ2 +
∫ t

τ2=t0
b̂(τ2)u(τ2) dτ2

=
∫ t

τ2=t0

∫ τ2

τ1=t0
N̂(τ2)b̂(τ1)u(τ1)u(τ2) dτ1 dτ2 +

∫ t

τ2=t0
b̂(τ2)u(τ2) dτ2

...

After we apply the iteration infinite times and make use of the fact that zk→∞(t) = z(t)
we can write the solution z(t) of (2.18) as follows

z(t) =
∞∑
k=1

∫ t

τ1=0
· · ·
∫ τk−1

τk=0
N̂(τ1) · · · N̂(τk−1)b̂(τk)u(τk) · · ·u(τ1) dτk · · · dτ1. (2.19)

Obviously it is not possible to iterate infinite times. Thus, we have to truncate the series
in (2.19). Nevertheless, we want to provide error measures and proof that the series in
(2.19) converges so that we can truncate it. Therefore, we follow the idea presented in
[11] and write the first equation in (2.18) in its integrated form [8]

z(t) =
∫ t

τ1=0
N̂(τ1)z(τ1)u(τ1) dτ1 +

∫ t

τ1=0
b̂(τ1)u(τ1) dτ1.
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Clearly, we cannot compute the solution of the first integral as we do not know what
the value of z(τ1) is. Thus, we use the definition of z(t) and write

z(τ1) =
∫ τ1

τ2=0
N̂(τ2)z(τ2)u(τ2) dτ2 +

∫ τ1

τ2=0
b̂(τ2)u(τ2) dτ2.

Now we substitute z(τ1) and obtain the following

z(t) =
∫ t

τ1=0
N̂(τ1)

(∫ τ1

τ2=0
N̂(τ2)z(τ2)u(τ2) dτ2 +

∫ τ1

τ2=0
b̂(τ2)u(τ2) dτ2

)
︸ ︷︷ ︸

z(τ1)

u(τ1) dτ1

+
∫ t

τ1=0
b̂(τ1)u(τ1) dτ1

=
∫ t

τ1=0

∫ τ1

τ2=0
N̂(τ1)N̂(τ2)z(τ2)u(τ2)u(τ1) dτ2 dτ1

+
∫ t

τ1=0

∫ τ1

τ2=0
N̂(τ1)b̂(τ2)u(τ2)u(τ1) dτ2 dτ1 +

∫ t

τ1=0
b̂(τ1)u(τ1) dτ1.

Since we need z(τ2) let us define every z(τk) analogously to z(τ1)

z(τk) =
∫ τk

τk+1=0
N̂(τk+1)z(τk+1)u(τk+1) dτk+1 +

∫ τk

τk+1=0
b̂(τk+1)u(τk+1) dτk+1.

After N substitutions we acquire

z(t) =
∫ t

τ1=0
· · ·
∫ τN−1

τN=0
N̂(τ1) · · · N̂(τN )z(τN )u(τN ) · · ·u(τ1) dτN · · · dτ1 (2.20a)

+
N∑
k=1

∫ t

τ1=0
· · ·
∫ τk−1

τk=0
N̂(τ1) · · · N̂(τk−1)b̂(τk)u(τk) · · ·u(τ1) dτk · · · dτ1. (2.20b)

As above, it is not possible to compute the first term (2.20a) as it still depends on z(τN ).
To be able to drop (2.20a) we have to quantify its importance. As it is shown in [7] we
can assume that N̂(t), z(t) and u(t) are bounded on t ∈ [0, T ] which let us find an upper
limit for each of them

max sup
0<t<T

‖N̂(t)‖ < M,

max sup
0<t<T

‖z(t)‖ < Z,

max sup
0<t<T

‖u(t)‖ < U.

(2.21)

If we make use of (2.21) we are able to estimate how much weight (2.20a) adds to the
solution z(t). It follows

‖
∫ t

τ1=0
· · ·
∫ τN−1

τN=0
N̂(τ1) · · · N̂(τN )z(τN )u(τN ) · · ·u(τ1) dτN · · · dτ1︸ ︷︷ ︸

(2.20a)

‖

≤ ‖
∫ t

τ1=0
· · ·
∫ τN−1

τN=0
M · · ·MZU · · ·U dτN · · · dτ1‖

≤MNZ UN ‖
∫ t

τ1=0
· · ·
∫ τN−1

τN=0
· · · dτN · · · dτ1‖

≤MNZ UN
tN

N ! ≤
↑

max t=T

(MUT )N
N ! Z.

(2.22)
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The last inequality in (2.22) shows that for N →∞ (2.20a) disappears as faculties grow
faster than exponentials. Finally, we are able to write the solution

z(t) =
∞∑
k=1

∫ t

τ1=0
· · ·
∫ τk−1

τk=0
N̂(τ1) · · · N̂(τk−1)b̂(τk)u(τk) · · ·u(τ1) dτk · · · dτ1

which obviously is equal to (2.19). By changing back to the original variables we receive

x(t) =
∞∑
k=1

∫ t

τ1=0
· · ·
∫ τk−1

τk=0
eE−1A(t−τ1)E−1N · · · eE−1A(τk−2−τk−1)E−1N

× eE−1A(τk−1−τk)E−1bu(τk) · · ·u(τ1) dτk · · · dτ1

(2.23)

which apparently yields a Volterra series representation in its integrated form.
Even though the equations for MIMO systems get quite messy we still apply the Picard
iteration resulting in a more general subsystem representation which certainly holds for
SISO systems as well. Therefore, we start with a MIMO system ζ

ζ :


E ẋ(t) = Ax(t) +

m∑
j=1
N j x(t)uj(t) +Bu(t), x(0) = x0,

y(t) = C x(t).

We can make use of the same change in the variable as for the SISO systems

x(t) = eE−1Atz(t),

ẋ(t) = eE−1Atż(t) +E−1AeE−1Atz(t).

Defining N̂ j(t) = e−E−1AtE−1N jeE
−1At, B̂(t) = e−E−1AtE−1B yields

ż(t) =
m∑
j=1
N̂ j(t)z(t)uj(t) + B̂(t)u(t) , z(t0) = x0.

Again, assuming that x0 = 0 we can write z(t) as follows

z(t) =
∫ t

τ1=0

m∑
j=1
N̂ j(τ1)z(τ1)uj(τ1) dτ1 +

∫ t

τ1=0
B̂(τ1)u(τ1) dτ1.

After N substitutions we receive

z(t) =
m∑
j1=1
· · ·

m∑
jk=1

∫ t

τ1=0
· · ·
∫ τk−1

τk=0
N̂ j1(τ1) · · · N̂ jk(τk)z(τk)ujk(τk) · · ·uj1(τ1) dτk · · · dτ1

+
N∑
k=1

m∑
j1=1
· · ·

m∑
jk−1=1

∫ t

τ1=0
· · ·
∫ τk−1

τk=0
N̂ j1(τ1) · · · N̂ jk−1(τk−1) (2.24a)

× B̂(τk)u(τk)ujk−1(τk−1) · · ·uj1(τ1) dτk · · · dτ1 (2.24b)

where also k = 1, . . . , N for (2.24a). At this point we can make the same assumptions
as in the SISO case to drop (2.24a) and obtain a similarVolterra series representation in
original variables

x(t) =
∞∑
k=1

m∑
j1=1
· · ·

m∑
jk−1=1

∫ t

τ1=0
· · ·
∫ τk−1

τk=0
eE−1A(t−τ1)E−1N j1 · · · eE

−1A(τk−2−τk−1)E−1N jk−1

× eE−1A(τk−1−τk)E−1Bu(τk)ujk−1(τk−1) · · ·uj1(τ1) dτk · · · dτ1. (2.25)
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Finally, we want to obtain the state-space equation for each subsystem. Hence, we make
use of x(t) = ∑∞

k=1 xk(t) and try to derive an equation for each xk(t). Since we first
have to solve the innermost integral in (2.25) we treat it as our first subsystem which is
given by

x1(t) =
∫ t

τ=0
eE−1A(t−τ)E−1Bu(τ) dτ. (2.26)

All the other subsystems are defined for k ≥ 2 by

xk(t) =
m∑
j=1

∫ t

τ=0
eE−1A(t−τ)E−1N jxk−1(t)uj(t) dτ. (2.27)

As we know from linear system theory, we can rewrite the formulations of x1(t) and
xk(t) in state-space which yields equal equations to (2.13)

Eẋ1(t) = Ax1(t) +Bu(t), x1(0) = 0

Eẋk(t) = Axk(t) +
m∑
j=1
N jxk−1(t)uj(t), xk(0) = 0 for k ≥ 2. (2.28)

Remark 2.1. As one can see in (2.28), the initial condition for the first subsystem is set
to zero which is different compared to (2.13) where the first subsystem holds the initial
condition x0. Applying the Picard iteration to a bilinear system while considering an
arbitrary initial condition makes the equations more complex and does not contribute
to understanding the process. In addition, it does not affect the convergence of the
Volterra series as long as the eigenvalues of E−1A have negative real part so that the
initial condition disappears with growing t. Nevertheless, due to the linear character
of the first subsystem one could easily write a generalized integral formulation for the
solution of x1(t) as follows

x1(t) =
∫ t

τ=0
eE−1A(t−τ)E−1Bu(τ) dτ + eE−1Atx0.

M

2.3 Transfer Functions

Generally, transfer functions describe the input-output-behavior of a system. Due to the
bilinear term in the state-equation (2.2), we are not able to directly derive a transfer
function for bilinear systems. Thus, we have to use the Volterra series representation
that contains only linear systems for which we know how to obtain transfer functions.
We begin with triangular transfer functions in time domain as we derive them through
the Picard iteration. Then we transform them in frequency domain. In this sense we
introduce the multidimensional Laplace transform, since the kernel of the k-th subsystem
is dependent on k different variables. Hereby, the k-th kernel describes the impulse
response, in other words the multi-variable transfer function of the k-th subsystem.
Finally, we take a look at regular transfer functions which are equivalent to triangular
ones by a change of variables. Similar to triangular transfer functions, we start by
discussing the time domain and after that the frequency domain. Note that for later
use, regular transfer functions are of major importance, since we will use them for bilinear
system theory and also for model reduction.
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2.3.1 Triangular Transfer Functions

We obtain triangular transfer functions directly from the Volterra series representation
by integrating the state-equations for each subsystem (which is exactly what we derive
through the Picard iteration).

Time Domain

Our goal is to find a generalized time-domain equation for triangular transfer functions
like follows

g
(j1,...,jk)
k,4 (t1, . . . , tk) = CeE−1AtkE−1N jkeE−1A(tk−1−tk)E−1N jk−1 · · ·

×E−1N j2eE−1A(t1−t2)E−1bj1 .

We approach this problem by starting with the outcome of the Picard iteration. There-
fore we briefly recapitulate (2.26) and (2.27) with which we can describe the solution
x(t) = ∑∞

k=1 xk(t) of the state-vector of a MIMO bilinear system

ζ :


E ẋ(t) = Ax(t) +

m∑
j=1
N j x(t)uj(t) +Bu(t), x(0) = x0,

y(t) = C x(t)

as follows

x1(t) =
∫ t

τ=0
eE−1A(t−τ)E−1Bu(τ) dτ + eE−1Atx0

xk(t) =
m∑
j=1

∫ t

τ=0
eE−1A(t−τ)E−1N jxk−1(t)uj(t) dτ for k ≥ 2.

For more clarity we first consider a SISO (m = 1) system, for which x1(t) and xk(t)
become

x1(t) =
∫ t

τ=0
eE−1A(t−τ)E−1bu(τ) dτ + eE−1Atx0

xk(t) =
∫ t

τ=0
eE−1A(t−τ)E−1Nxk−1(t)u(t) dτ for k ≥ 2.

We gain the solution for x2(t) by substituting x1(t) which gives us

x2(t) =
∫ t

τ1=0
eE−1A(t−τ1)E−1Nu(τ1)x1(τ1) dτ1

=
∫ t

τ1=0
eE−1A(t−τ1)E−1Nu(τ1)

( ∫ τ1

τ2=0
eE−1A(τ1−τ2)E−1bu(τ2) dτ2 + eE−1Aτ1x0︸ ︷︷ ︸

x1(τ1)

)
dτ1

=
∫ t

τ1=0

∫ τ1

τ2=0
eE−1A(t−τ1)E−1Nu(τ1)eE−1A(τ1−τ2)E−1bu(τ2) dτ2 dτ1

+
∫ t

τ1=0
eE−1A(t−τ1)E−1Nu(τ1)eE−1Aτ1x0 dτ1.
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Any xk(t) can be obtained by sequent substitution of all previous solutions. After k
substitutions this results in

xk(t) =
∫ t

τ1=0
· · ·
∫ τk−1

τk=0
eE−1A(t−τ1)E−1Nu(τ1) · · ·

× eE−1A(τk−2−τk−1)E−1Nu(τk−1)eE−1A(τk−1−τk)E−1bu(τk) dτk · · · dτ1

+
∫ t

τ1=0
· · ·
∫ τk−2

τk−1=0
eE−1A(t−τ1)E−1Nu(τ1) · · ·

× eE−1A(τk−2−τk−1)E−1Nu(τk−1)eE−1Aτk−1x0 dτk−1 · · · dτ1.

(2.29)

To make things less confusing and improve readability let Ã := E−1A, Ñ := E−1N ,
b̃ := E−1b. Hence, we can rewrite (2.29) as follows

xk(t) =
∫ t

τ1=0
· · ·
∫ τk−1

τk=0
eÃ(t−τ1)Ñu(τ1) · · · eÃ(τk−2−τk−1)Ñu(τk−1)eÃ(τk−1−τk)b̃u(τk) dτk · · · dτ1

+
∫ t

τ1=0
· · ·
∫ τk−2

τk−1=0
eÃ(t−τ1)Ñu(τ1) · · · eÃ(τk−2−τk−1)Ñu(τk−1)eÃτk−1x0 dτk−1 · · · dτ1.

(2.30)

We are only interested in the input-output behavior. Therefore, we can set x0 = 0
without loosing general relevance. With this assumption we can drop the second term
in (2.30). The definitions for y(t) and the Volterra series let us write the output as a
series

y(t) = cT x(t) = cT
( ∞∑
k=1

xk(t)
)

=
∞∑
k=1

cTxk(t) =
∞∑
k=1

yk(t).

Considering (2.30) and x0 = 0 yields following equation

yk(t) =
∫ t

τ1=0
· · ·
∫ τk−1

τk=0
cTeÃ(t−τ1)Ñu(τ1) · · ·

× eÃ(τk−2−τk−1)Ñu(τk−1)eÃ(τk−1−τk)b̃u(τk) dτk · · · dτ1

(2.31)

Unlike in [20] we are not defining the kernels directly out of (2.31). Instead, we are
following [9, 8] and perform a change in the integration variables to obtain kernels with-
out reflected arguments −τ1, . . . ,−τk in the exponential functions. However, a change
in variables always affects the integration limits. To prevent that, we make use of the
Heaviside step function

σ(t) :=

 1 t ≥ 0
0 t < 0

which allows us to expand the integration limits to infinity. This results in an equivalent
equation for yk(t)

yk(t) =
∫ ∞
τ1=−∞

· · ·
∫ ∞
τk=−∞

cT eÃ(t−τ1)σ(t− τ1)︸ ︷︷ ︸
:=eÃ(t−τ1)

Ñ u(τ1)σ(τ1)︸ ︷︷ ︸
:=u(τ1)

· · · eÃ(τk−2−τk−1)σ(τk−2 − τk−1)

× Ñu(τk−1)σ(τk−1)eÃ(τk−1−τk)σ(τk−1 − τk)b̃u(τk)σ(τk) dτk · · · dτ1. (2.32)
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We only consider positive times since negative times are generally not relevant for engi-
neering applications. By defining one-sided matrix exponentials eÃ := eÃσ(t), there is
no need to further write (2.32) with Heaviside functions. This results in

yk(t) =
∫ ∞
τ1=−∞

· · ·
∫ ∞
τk=−∞

cTeÃ(t−τ1)Ñu(τ1) · · · eÃ(τk−2−τk−1)Ñu(τk−1)eÃ(τk−1−τk)b̃u(τk) dτk · · · dτ1.

As a last step we want to get rid of the reflected arguments −τ1, . . . ,−τk. Hence, we
perform following change in variables

τ̃k = t− τ1, τ̃k−1 = t− τ2, . . . , τ̃1 = t− τk,

τ1 = t− τ̃k, τ2 = t− τ̃k−1, . . . , τk = t− τ̃1,

 with


τ1 − τ2 = τ̃k−1 − τ̃k,...

τk−1 − τk = τ̃1 − τ̃2.

(2.33)

After that, we redefine τ̃k as τk, . . ., τ̃1 as τ1 which finally yields the suitable expression

yk(t) =
∫ ∞
τ1=−∞

· · ·
∫ ∞
τk=−∞

g4k (τ1, . . . , τk)u(t− τk) · · ·u(t− τ1) dτk · · · dτ1,

with the triangular kernels

g4k (t1, . . . , tk)=


cTeÃtkÑeÃ(tk−1−tk)Ñ · · · ÑeÃ(t1−t2)b̃, 0 < tk < . . . < t1

not yet defined, on the surface
0, else.

(2.34)

Note that the previously defined Ã := E−1A, Ñ := E−1N and b̃ := E−1b are still valid.

It is definitely possible to apply all these concepts to MIMO bilinear systems. Since
the derivation would be the same, we only want to review the result. To obtain an
equation for yk(t) we can simply replace the following in (2.31)

yk(t)→ yk(t),
cT → C,

Ñu(t) = E−1Nu(t)→
m∑
j=1
E−1N juj(t) =

m∑
j=1
Ñ juj(t),

b̃u(t) = E−1bu(t)→
m∑
j=1
E−1bjuj(t) =

m∑
j=1
b̃juj(t).

Considering unique indexes jk for each summation over the inputs we obtain

yk(t) =
∫ t

τ1=0
· · ·
∫ τk−1

τk=0
CeÃ(t−τ1)

 m∑
j1=1

Ñ j1uj1(τ1)

 · · ·
× eÃ(τk−2−τk−1)

 m∑
jk−1=1

Ñ jk−1ujk−1(τk−1)

 eÃ(τk−1−τk)

 m∑
jk=1

b̃jkujk(τk)

 dτk · · · dτ1

=
m∑
j1=1
· · ·

m∑
jk=1

∫ t

τ1=0
· · ·
∫ τk−1

τk=0
CeÃ(t−τ1)Ñ j1uj1(τ1) · · ·

× eÃ(τk−2−τk−1)Ñ jk−1ujk−1(τk−1)eÃ(τk−1−τk)b̃jkujk(τk) dτk · · · dτ1.
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To come up with a similar equation as for the SISO case we can define

yk(t) =
m∑
j1=1
· · ·

m∑
jk=1

y
(j1,...,jk)
k (t)

where

y
(j1,...,jk)
k (t) =

∫ t

τ1=0
· · ·
∫ τk−1

τk=0
CeÃ(t−τ1)Ñ j1uj1(τ1) · · ·

× eÃ(τk−2−τk−1)Ñ jk−1ujk−1(τk−1)eÃ(τk−1−τk)b̃jkujk(τk) dτk · · · dτ1.

Modifying the integration limits and applying the same change in variables as in (2.33)
yields

y
(j1,...,jk)
k (t) =

∫ ∞
τ1=−∞

· · ·
∫ ∞
τk=−∞

g
(j1,...,jk)
k,4 (τ1, . . . , τk)ujk(t− τk) · · ·uj1(t− τ1) dτk · · · dτ1

(2.35)

and the triangular MIMO kernels

g
(j1,...,jk)
k,4 (t1, . . . , tk) =



CeÃtkÑ jkeÃ(tk−1−tk) 0 < tk < . . . < t1

×Ñ jk−1 · · · Ñ j2eÃ(t1−t2)b̃j1 ,

not yet defined, on the surface
0, else.

(2.36)

Multidimensional Laplace Transform

As one can clearly see, g(j1,...,jk)
k,4 (t1, . . . , tk) is dependent on k different variables. To

still be able to transform that in frequency domain, we have to introduce the multidi-
mensional Laplace transform. First, we want to briefly recapitulate the single variable
Laplace transform.

Definition 2.3 (Laplace transform). The Laplace transform of a one-sided, real-valued
function f(t) is given by

F (s) := L{f(t)}(s) :=
∫ ∞

0
f(t)e−st dt

if the integral converges. That is the case if the complex variable s is in the complex
half-plane Hγ such that

s ∈ Hγ = {s ∈ C| Re(s) > γ} .

N



2.3. Transfer Functions 19

With linear systems we usually deal with exponential functions for which the Laplace
transform always exists. Hence, we do not dig into detail with the convergence criterion.
Generalization for multi-variable functions f(t1, . . . , tk) is straightforward.

Definition 2.4 (Multidimensional Laplace transform). The k-dimensional Laplace trans-
form of a one-sided, real-valued function f(t1, . . . , tk) is given by

F (s1, . . . , sk) := Lk{f(t1, . . . , tk)}(s1, . . . , sk)

:=
∫ ∞
t1=0

. . .

∫ ∞
tk=0

f(t1, . . . , tk)e−s1t1 · · · e−sktk dtk · · · dt1

if the integrals converge. That is the case if the complex variables s1, . . . , sk are in the
complex half-space Hγ such that

s = (s1 . . . sk)T ∈ Hγ1,...,γk := Hγ =
{
s ∈ Ck

∣∣∣ Re(si) > γi, i = 1, . . . , k
}
.

N

Since we are dealing with a sum of linear systems, with which we represent a bilinear
system, we are basically dealing exclusively with exponential functions for which, as
mentioned, the integral of the Laplace transform converges. Therefore, we again do not
bother much about the existence of F (s1, . . . , sk) [20].

Frequency Domain

Now that we have the mathematical tools to apply the Laplace transform to multi-
variable functions, we want to obtain a frequency domain triangular transfer function

G
(j1,...,jk)
k,4 (s1, . . . , sk) = C

(
(s1 + . . .+ sk)I−E−1A

)−1
E−1N jk · · ·

E−1N j3

(
(s1 + s2)I−E−1A

)−1
E−1N j2

(
s1I−E−1A

)−1
E−1bj1 .

Remembering the definitions of Ã := E−1A, Ñ j := E−1N j , b̃j := E−1bj while making
use of (2.36) we can start determining the triangular transfer function in frequency
domain as follows

G
(j1,...,jk)
k,4 (s1, . . . , sk) := Lk{g(j1,...,jk)

k,4 (t1, . . . , tk)}(s1, . . . , sk)

=
∫ ∞
t1=−∞

· · ·
∫ ∞
tk=−∞

CeÃtkÑ jkeÃ(tk−1−tk)Ñ jk−1 · · · Ñ j2eÃ(t1−t2)b̃j1︸ ︷︷ ︸
g

(j1,...,jk)
k,4 (t1,...,tk)

× e−s1t1 · · · e−sk−1tk−1e−sktkσ(t1) · · ·σ(tk) dtk · · · dt1 .

Substituting the integration variables

t̃k = tk, t̃k−1 = tk−1 − tk, . . . , t̃1 = t1 − t2,

tk = t̃k, tk−1 = t̃k−1 + tk, . . . , t1 = t̃1 + t2,

 with



tk−1 = t̃k−1 + tk,

tk−2 = t̃k−2 + tk−1 = t̃k−2 + t̃k−1 + tk,...
t1 = t̃1 + t2 = t̃1 + . . .+ t̃k−1 + tk
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and redefining t̃k as tk, . . ., t̃1 as t1 leads to

G
(j1,...,jk)
k,4 (s1, . . . , sk) =

∫ ∞
t1=−∞

· · ·
∫ ∞
tk=−∞

CeÃtkÑ jkeÃ(tk−1−tk)Ñ jk−1 · · · Ñ j2eÃ(t1−t2)b̃j1

× e−s1(t1+...+tk)e−s2(t2+...+tk) · · · e−sktkσ(t1 + . . .+ tk) · · ·σ(tk) dtk · · · dt1.

To be able to compute the integrals, we rearrange the exponential functions so that each
tk gets separated

G
(j1,...,jk)
k,4 (s1, . . . , sk) = C

∫ ∞
tk=0

e
(
Ã−(s1+...+sk)I

)
tk dtk Ñ jk · · ·

× Ñ j3

∫ ∞
t2=0

e
(
Ã−(s1+s2)I

)
t2 dt2Ñ j2

∫ ∞
t1=0

e
(
Ã−s1I

)
t1 dt1 b̃j1 .

Evaluating the integrals finally yields the formula for the triangular transfer functions
in frequency domain

G
(j1,...,jk)
k,4 (s1, . . . , sk)

= C
(
(s1 + . . .+ sk)I− Ã

)−1
Ñ jk · · · Ñ j3

(
(s1 + s2)I− Ã)−1

Ñ j2

(
s1I− Ã

)−1
b̃j1 .

Remark 2.2 (Triangular Input-Output Behavior). Even tough we claim that we have
derived transfer functions, this is not completely true. G(j1,...,jk)

k,4 (s1, . . . , sk) does not
represent the input-output behavior of a bilinear system since we are not considering
the input terms uj(t − τk). G(j1,...,jk)

k,4 (s1, . . . , sk) is rather just the Laplace transformed
kernel. In other words, our definition for G(j1,...,jk)

k,4 (s1, . . . , sk) does not yield Y (s) like
in the linear case Y (s) = G(s)U(s). Following [9, 8] we can still provide a formula for
Y (s) by transforming the whole equation (2.35) at once into the frequency domain. This
reveals the actual Laplace transformed input-output behavior

Y 4k (s1, . . . , sk) =
m∑
j1=1
· · ·

m∑
jk=1

Y
(j1,...,jk)
k,4 (s1, . . . , sk)

=
m∑
j1=1
· · ·

m∑
jk=1

C
(
(s1 + . . .+ sk)I− Ã

)−1
Ñ jk · · · Ñ j2

(
s1I− Ã

)−1
b̃j1︸ ︷︷ ︸

G
(j1,...,jk)
k,4 (s1,...,sk)

Ujk(sk) · · ·Uj1(s1).

M

2.3.2 Regular Transfer Functions

Regular transfer functions are generally used for model reduction. The multi-variable
sums s1 + . . .+ sk within the triangular transfer functions are on the one hand difficult
to handle and on the other hand numerically inefficient. Therefore, we aim to derive the
regular transfer functions with single variable factors such that

G
(j1,...,jk)
k,� (s1, . . . , sk) = C(skI−E−1A)−1E−1N jk · · ·

×E−1N j3(s2I−E−1A)−1E−1N j2(s1I−E−1A)−1E−1bj1 .
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Time Domain

As mentioned, the triangular and regular representation are connected by a change in
variables. Looking at (2.35) and (2.36) we can simplify the terms eÃ(tk−1−tk) with the
following transformation in variables

τ̃k = τk, τ̃k−1 = τk−1 − τk, . . . , τ̃1 = τ1 − τ2,

τk = τ̃k, τk−1 = τk + τ̃k−1, . . . , τ1 = τ2 + τ̃1,

 with


τk−1 = τk + τ̃k−1 = τ̃k + τ̃k−1,...
τ1 = τ2 + τ̃1 = τ̃k + . . .+ τ̃1.

By redefining τ̃k as τk, . . . , τ̃1 as τ1 we can write (2.35) as

y
(j1,...,jk)
k (t) =

∫ ∞
τ1=−∞
· · ·
∫ ∞
τk=−∞

g
(j1,...,jk)
k,� (τ1, . . . , τk)ujk(t−τk) · · ·uj1(t−τk − . . .−τ1) dτk · · · dτ1

with the regular kernels

g
(j1,...,jk)
k,� (t1, . . . , tk) =


CeÃtkÑ jkeÃtk−1Ñ jk−1 · · · Ñ j2eÃt1 b̃j1 , t1, . . . , tk > 0
not yet defined, on the surface
0, else.

Note that it still holds Ã := E−1A, Ñ j := E−1N j , b̃j := E−1bj .

Frequency Domain

Like the triangular transfer functions we can also give a frequency domain represen-
tation of the regular kernels. Therefore, we again make use of the definition of the
multidimensional Laplace transform

G
(j1,...,jk)
k,� (s1, . . . , sk) := Lk{g(j1,...,jk)

k,� (t1, . . . , tk)}(s1, . . . , sk)

=
∫ ∞
t1=−∞

· · ·
∫ ∞
tk=−∞

CeÃtkÑ jkeÃtk−1Ñ jk−1 · · · Ñ j2eÃt1 b̃j1︸ ︷︷ ︸
g

(j1,...,jk)
k,� (t1,...,tk)

× e−s1t1 · · · e−sk−1tk−1e−sktkσ(t1) · · ·σ(tk) dtk · · · dt1 .

Here, we can directly resort the terms to be able to compute the integral which yields

G
(j1,...,jk)
k,� (s1, . . . , sk) = C

∫ ∞
tk=0

e
(
Ã−skI

)
tk dtk Ñ jk · · · Ñ j2

∫ ∞
t1=0

e
(
Ã−s1I

)
t1 dt1 b̃j1 .

Therefore the Laplace transform of the regular kernels is given by

G
(j1,...,jk)
k,� (s1, . . . , sk) = C(skI− Ã)−1Ñ jk · · · Ñ j3(s2I− Ã)−1Ñ j2(s1I− Ã)−1b̃j1 .

Remark 2.3 (Efficient Handling Of E−1). In the large-scale setting it would not be very
efficient to compute E−1 to obtain Ã, Ñ j , b̃j , since we have to come up with the inverse
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of E which sometimes is not possible. Writing I = E−1E lets us transform G
(j1)
1,� (s) as

follows
G

(j1)
1 (s) = C

(
sE−1E −E−1A

)−1
E−1bj1

= C
(
E−1 (sE −A)

)−1
E−1bj1

= C (sE −A)−1 bj1 .

This could be applied to each subsystem which yields the equivalent equation

G
(j1,...,jk)
k,� (s1, . . . , sk) = C

(
skE −A

)−1
N jk · · ·N j3

(
s2E −A

)−1
N j2

(
s1E −A

)−1
bj1 .

M

Remark 2.4 (Regular Input-Output Behavior). Following the triangular transfer func-
tions Gk,� only outlines the Laplace transform of the regular kernels and does not rep-
resent the input-output behavior of a bilinear system. As shown in [9, 8], we can still
provide a formula by transforming the whole output equation which yields the regular
input-output behavior in frequency domain

Y �k (s1, . . . , sk) =
m∑
j1=1
· · ·

m∑
jk=1

Y
(j1,...,jk)
k,� (s1, . . . , sk)

=
m∑
j1=1
· · ·

m∑
jk=1

C(skE −A)−1N jk · · ·N j2(s1E −A)−1bj1︸ ︷︷ ︸
G

(j1,...,jk)
k,� (s1,...,sk)

× Ujk(sk − sk−1) · · ·Uj2(s2 − s1)Uj1(s1).
M

Remark 2.5 (Kronecker Notation For Transfer Functions). Note that in literature usually
the Kronecker notation is used to describe the transfer functions as follows

G�k (s1, . . . , sk) = C(skE −A)−1N̄(Im ⊗ (sk−1E −A)−1)(Im ⊗ N̄) · · ·
· · · (Im ⊗ · · · ⊗ Im︸ ︷︷ ︸

k−2 times

⊗(s2E −A)−1)(Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
k−2 times

⊗N̄)

× (Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
k−1 times

⊗(s1E −A)−1)(Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
k−1 times

⊗B)

= C(skE −A)−1N̄(Im ⊗ (sk−1E −A)−1N̄) · · ·
· · · (Im ⊗ · · · ⊗ Im︸ ︷︷ ︸

k−2 times

⊗(s2E −A)−1N̄)

× (Im ⊗ · · · ⊗ Im︸ ︷︷ ︸
k−1 times

⊗(s1E −A)−1B) ∈ Rp×m
k

where N̄ = [N1, . . . ,Nm] ∈ Rn×nm. Hereby, the k-th order transfer function is a
multi-variable matrix function G�k (s1, . . . , sk) ∈ Rp×mk which holds all combinations for
j1, . . . , jk. With the abbreviation G�k := G�k (s1, . . . , sk) it follows [8]

G�k =
[
G

(1,...,1)
k,� , . . . , G

(1,...,m)
k,� , . . . . . . , G

(m,...,1)
k,� , . . . , G

(m,...,m)
k,�

]
.

Including all combinations of j1, . . . , jk might result in a more compact way to describe
the transfer functions. But as one can clearly see, the dimensions increase crucially with
every subsystem. Since the sum notation is more enlightening we will continue using it.
Transfer functions with Kronecker notation can be found e.g. in [5] [9]. M



Chapter 3

Bilinear System Theory

In the previous chapter we fundamentally discussed bilinear systems, the Volterra Series
representation and found a way to describe the bilinear system transfer functions. To
extend our knowledge even further, we now take a closer look at the bilinear system
theory. This will provide some more tools which we later need for model reduction.
Carrying on where we ended the last chapter, we discuss the pole-residue formulation of
transfer functions. In this context we show the invariance of a bilinear system against
transformation. Following, we specify the BIBO stability of a bilinear system. Since
we still make use of the Volterra Series, the BIBO stability is strongly connected to the
convergence of the series. To gain information about observability and reachability, we
analyze the Gram matrices for a bilinear system. Concluding, we find formulations for
the H2−norm and the L2−norm for bilinear systems.

3.1 Pole-Residue Formulation

Similar to linear systems, we are able to obtain a pole-residue formulation for the transfer
functions. This means that it is possible to write the transfer function as a sum of
fractions where the numerators are not dependent on the function variables s1, · · · , sk
and the denominators are polynomials whose roots are called poles. Since the bilinear
transfer function for the k-th subsystem depends on k different variables, each of the
polynomials in one of those variables has n roots. Thus, the pole-residue formulation is
given by [8]

G
(j1,...,jk)
k,� (s1, . . . , sk) =

n∑
l1=1
· · ·

n∑
lk=1

Φ(j1,...,jk)
l1,...,lk

k∏
`=1

(s` − λl`)
.

To be able to determine the above expression, we first look at the invariance of a bilinear
system — or rather the corresponding transfer function — against transformation, which
establishes the possibility to diagonalize a bilinear system. With this, we then are able
to easily obtain the pole-residue formulation.

23
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Invariance And Diagonal-Form

Let the following bilinear system

ζ :


Eẋ(t) = Ax(t) +

m∑
j=1
N jx(t)uj(t) +Bu(t), x(0) = x0,

y(t) = Cx(t)

have the transfer function

G
(j1,...,jk)
k,� (s1, . . . , sk) = C(skI−E−1A)−1E−1N jk · · ·E−1N j2(s1I−E−1A)−1E−1bj1 .

By applying a change in the variable

x(t) = Tz(t),
ẋ(t) = T ż(t)

we gain a transformed bilinear system

ζ̃ :


ET ż(t) = ATz(t) +

m∑
j=1
N jTz(t)uj(t) +Bu(t), z(0) = Tx0,

y(t) = CTz(t).

Looking at the transfer function G(j1,...,jk)
k,� (s1, . . . , sk) of the regular system and the

transfer function G̃(j1,...,jk)
k,� (s1, . . . , sk) of the transformed system we can see, while writ-

ing I = T−1IT , that the change in variable does not affect the input-output behavior.
Consequently, we write [8]

G̃
(j1,...,jk)
k,� (s1, . . . , sk) = CT (skI− T−1E−1AT )−1T−1E−1N jkT · · ·

× T−1E−1N j2T (s1I− T−1E−1AT )−1T−1E−1bj1

= CT (skT−1IT − T−1E−1AT )−1T−1E−1N jkT · · ·
× T−1E−1N j2T (s1T

−1IT − T−1E−1AT )−1T−1E−1bj1

= CTT−1
(
(skI−E−1A)−1E−1N jk · · ·

×E−1N j2(s1I−E−1A)−1
)
TT−1E−1bj1

= C(skI−E−1A)−1E−1N jk · · ·E−1N j2(s1I−E−1A)−1E−1bj1

= G
(j1,...,jk)
k,� (s1, . . . , sk).

With this knowledge we are able to diagonalize a bilinear system to later compute the
inverse of (skI − E−1A) more easily. Since we want the pair E−1A to appear as a
diagonal matrix we use the following link

E−1A = XΛX−1 ⇔X−1E−1AX = Λ

where Λ is a diagonal matrix which holds the eigenvalues λi of E−1A on its diagonal.
The columns of X are the right eigenvectors of E−1A. Choosing T = X and defining

N̂ = X−1E−1NX, b̂ = X−1E−1b, ĉT = cTX (3.1)



3.1. Pole-Residue Formulation 25

we obtain the following diagonal bilinear system

ζdiag :


ż(t) = Λz(t) +

m∑
j=1
N̂ jz(t)uj(t) + B̂u(t), z(0) = X−1x0,

y(t) = Ĉz(t)
with the following transfer function

G
(j1,...,jk)
diag,k,� (s1, . . . , sk) = Ĉ(skI−Λ)−1N̂ jk · · · N̂ j2(s1I−Λ)−1b̂j1 . (3.2)

Pole-Residue Formulation

To obtain the pole-residue formulation we make use of (3.2) and write every (skI−Λ)−1

explicitly since it is easy to compute the inverse due to its diagonal form. This happens
via exclusively computing the inverse value of each diagonal element, which yields

G
(j2,...,jk)
diag,k,� (s1, . . . , sk) = Ĉ


1

sk−λ1
. . . 0

... . . . ...
0 . . . 1

sk−λn

 N̂ jk · · · N̂ j2


1

s1−λ1
. . . 0

... . . . ...
0 . . . 1

s1−λn

 B̂.
Note that we now use B̂ instead of b̂j1 to rather obtain the inputs to outputs transfer
function matrix G(j2,...,jk)

diag,k,� ∈ Rp×m than an input to outputs transfer function vector
G

(j1,...,jk)
diag,k,� ∈ Rp×1. To make things easier we start with a diagonal SISO system where

the transfer function is given by

G�diag,k(s1, . . . , sk) = ĉT


1

sk−λ1
. . . 0

... . . . ...
0 . . . 1

sk−λn

 N̂ · · · N̂


1
s1−λ1

. . . 0
... . . . ...
0 . . . 1

s1−λn

 b̂.
By evaluating all matrix products one could determine the following structure of the
diagonal transfer function

G�diag,k(s1, . . . , sk) = ϕ1,...,1
(s1 − λ1) · · · (sk − λ1) + · · ·+ ϕn,...,n

(s1 − λn) · · · (sk − λn) . (3.3)

Generally, we can write (3.3) in compact form and obtain

G�diag,k(s1, . . . , sk) =
n∑

l1=1
· · ·

n∑
lk=1

ϕ
l1,...,lk

k∏
`=1

(s` − λl`)

where the residues are given by

ϕ
l1,...,lk

= ĉlk · n̂lk,lk−1 · . . . · n̂l2,l1 · b̂l1 l1 = 1, . . . , n, · · · , lk = 1, . . . , n

and ĉ, n̂, b̂ describe elements of the transformed system matrices

ĉT = [ĉ1, · · · , ĉn] , b̂ =


b̂1
...
b̂n

 , N̂ =


n̂1,1 . . . n̂1,n
... . . . ...

n̂n,1 . . . n̂n,n

 .
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Example 3.1 (Pole-Residue Formulation For The First Subsystems). [8] To make
the above more comprehensible, we want to provide some examples. Since the first
transfer function is only dependent on one variable s1 and does not contain the
bilinear term, we can give the pole-residue formulation as follows

G1(s1) = ĉT(s1I−Λ)−1 b̂ =
n∑

l1=1

ĉl1 · b̂l1
s1 − λl1

, n1 residues ϕl1 .

As can be seen in the following, each additional subsystem yields another factor n̂ in
the residues, therefore contains n-times more residues and n-times more poles due
to the additional variable.

G�2 (s1, s2) = · · · =
n∑

l1=1

n∑
l2=1

ĉl2 · n̂l2,l1 · b̂l1
(s1 − λl1) (s2 − λl2) , n2 residues ϕl1,l2

G�3 (s1, s2, s3) = · · · =
n∑

l1=1

n∑
l2=1

n∑
l3=1

ĉl3 · n̂l3,l2 · n̂l2,l1 · b̂l1
(s1 − λl1) (s2 − λl2) (s3 − λl3) , n

3 residues ϕl1,l2,l3

...

M

Applying the same principle to a MIMO system yields similar to (3.3)

G
(j2,...,jk)
diag,k,� (s1, . . . , sk) =

Φ(j2,...,jk)
1,...,1

(s1 − λ1) · · · (sk − λ1) + · · ·+ Φ(j2,...,jk)
n,...,n

(s1 − λn) · · · (sk − λn)

which again could be generally written as [8]

G
(j2,...,jk)
diag,k,� (s1, . . . , sk) =

n∑
l1=1
· · ·

n∑
lk=1

Φ(j2,...,jk)
l1,...,lk

k∏
`=1

(s` − λl`)
.

This time the residues are matrices, given by

Φ(j2,...,jk)
l1,...,lk

= ĉlk · n̂jklk,lk−1
· . . . · n̂j2l2,l1 · b̂

T
l1 l1, . . . , lk = 1, . . . , n,

where

Ĉ = CX = [ĉ1, · · · , ĉn] , B̂ = X−1E−1B =


b̂

T
1
...
b̂

T
n

 , N̂ j = X−1E−1N jX =


n̂j1,1 . . . n̂j1,n
... . . . ...

n̂jn,1 . . . n̂jn,n

 .
Hence, the pole-residue formulation for a diagonal bilinear system is directly given by
evaluating the formula (3.2) for the transfer function [11].

Remark 3.1 (Pole-Residue Formulation From Transfer Function). It may be interesting
to know that it is also possible to obtain the pole-residue formulation directly through the
transfer functions. Since this method requires more complicated mathematical theorems
and is not as straightforward as the one above we do not review it. If the reader is still
interested we refer to [11]. M
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3.2 BIBO Stability

In linear system theory one would start by discussing whether a system is asymptotically
stable by checking if the eigenvalues of A are in the left complex half-plane. This is only
possible because we know that the solution of a linear system is a matrix exponential
function which disappears for t→∞ if the exponent is less than zero. Since we do not
know the solution of the bilinear system without making use of the Volterra series we
are not able to proof asymptotic stability. Nonetheless, to give some insight on stability
of a bilinear system we check its BIBO stability. We know from (2.21) that the Volterra
series converges for bounded u(t). We want to specify the constraints u(t) has to fulfill
to ensure convergence and consequently BIBO stability. Therefore, we first consider a
finite time interval as we did in (2.21). Finally, we look at an infinite interval to give a
general constraint for the inputs u(t).
Preceding, we recapitulate the integral solutions for each subsystem while assuming
E = I. For any bounded, regular E we do not loose general sense. Hence, we can write

x1(t) =
∫ t

τ=0
eA(t−τ)Bu(τ) dτ + eAtx0, (3.4a)

xk(t) =
m∑
j=1

∫ t

τ=0
eA(t−τ)N jxk−1(t)uj(t) dτ, k ≥ 2. (3.4b)

In the following we derive statements for which the state-vector x(t) is bounded but
we do not provide similar conditions for y(t). Hence, one could call it bounded-input
bounded-state stability. Note that as long as C and x(t) are bounded y(t) is also
bounded due to the linear relation y(t) = Cx(t). This would describe the bounded-
state bounded-output stability. Since we assume that C is bounded we still call the
following BIBO stability.

3.2.1 Finite Interval

We begin by examining a finite interval t ∈ [t0, T ]. Due to rougher assumptions for the
exponential functions the estimation for x(t) will be easier to handle. Our goal is to find
a bounded function which is an upper limit for x(t) as follows

‖x(t)‖ ≤ e(t−t0)ΦΓK ((t− t0)ΦβK + Φ‖x0‖) .

Assumptions

Following [21] we make some assumptions. Let K be the upper limit for all inputs

‖u(t)‖ < max
j

sup
t∈ξ
‖uj(t)‖ < K where K <∞. (3.5)
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Similar to that we can find limits α, β,Γ for the system matrices

sup‖A‖ ≤ α where α <∞,

sup‖B‖ ≤ β where β <∞,

sup‖N j‖ ≤ ηj where ηj <∞,

Γ =
m∑
j=1

ηj .

(3.6)

To avoid evaluating the exponential functions we can also assume that

sup‖eAt‖ ≤ Φ where Φ <∞ (3.7)

while expecting all eigenvalues of A to have negative real part which results in eAt → 0
for t→∞.

Condition

To come up with a formulation for u(t) we substitute above assumptions in (3.4a)

‖x1(t)‖ ≤
∫ t

τ=t0
‖eA(t−τ)Bu(τ)‖ dτ + ‖eA(t−t0)x0‖

≤
∫ t

τ=t0
ΦβK dτ + Φ‖x0‖

≤ (t− t0)ΦβK + Φ‖x0‖.

For every subsystem where k ≥ 2 we obtain the following

‖xk(t)‖ ≤
∫ t

τ=t0
‖eA(t−τ)

 m∑
j=1
N juj(τ)

xk−1(τ)‖ dτ

≤
∫ t

τ=t0
ΦΓK‖xk−1(τ)‖ dτ.

(3.8)

Using (3.8) and inserting the estimation for ‖x1(t)‖ yields

‖x2(t)‖ ≤
∫ t

τ=t0
ΦΓK‖x1(τ)‖ dτ (3.9a)

≤
∫ t

τ=t0
ΦΓK [(τ − t0)ΦβK + Φ‖x0‖] dτ (3.9b)

≤ 1
2(t− t0)2Φ2K2Γβ + (t− t0)Φ2ΓK‖x0‖ (3.9c)

< (t− t0)2Φ2K2Γβ + (t− t0)Φ2ΓK‖x0‖. (3.9d)
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Note that we write (3.9d) without the factor 1
2 to later be able to interpret the sum

over all xk(t) as an exponential function. Estimating x3(t) while also making another
assessment similar to that from (3.9c) to (3.9d) leads to

‖x3(t)‖ ≤
∫ t

τ=t0
ΦΓK‖x2(τ)‖ dτ

≤
∫ t

τ=t0
ΦΓK

(1
2(τ − t0)2(ΦK)2Γβ + (τ − t0)Φ2ΓK‖x0‖

)
dτ

≤ 1
6(t− t0)3Φ3K3Γ2β + 1

2(t− t0)2Φ3Γ2K2‖x0‖

<
1
2(t− t0)3Φ3K3Γ2β + 1

2(t− t0)2Φ3Γ2K2‖x0‖.

We observe in the last of ‖x2(t)‖ and the last of ‖x3(t)‖ that the estimations follow a
certain structure. Generally, it is possible to say that every xk is constrained by

‖xk(t)‖ <
1

k − 1(t− t0)ΦΓK‖xk−1(t)‖, k ≥ 2

where we use the less-than sign on purpose to mark that we make another estimation
by e.g. dropping the 1

2 in (3.9d). To gain an expression for x(t) we make use of the
Volterra series and write

‖x(t)‖ ≤
∞∑
k=1
‖xk(t)‖

< ‖x1(t)‖ + (t− t0)ΦΓK‖x1(t)‖︸ ︷︷ ︸
‖x2(t)‖

+ 1
2(t− t0)ΦΓK(t− t0)ΦΓK‖x1(t)‖︸ ︷︷ ︸

‖x3(t)‖

+ . . .

<
∞∑
`=0

[(t− t0)ΦΓK]`
`! ((t− t0)ΦβK + Φ‖x0‖)︸ ︷︷ ︸

‖x1(t)‖

< e(t−t0)ΦΓK ((t− t0)ΦβK + Φ‖x0‖) .

In the last step we apply the series representation of the exponential function ec =∑∞
`=0

c`

`! . Concluding, we determined that x(t) is bounded by a bounded function as
long as the input is bounded. This expression only holds for the finite interval t ∈ [t0, T ]
since the exponential function e(t−t0)ΦΓK grows to infinity otherwise. In other words: as
long as all system matrices are bounded we can use any bounded input to gain BIBO
stability on t ∈ [t0, T ].
Remark 3.2. Comparing the result for ‖x(t)‖ in [21] and our result one may notice a
slight difference. This follows from our additional estimation which we make to gain
the exponential series expression. For sake of clarity we provide a brief explanation how
to obtain the structure in [21]. Remembering the expressions for ‖x2(t)‖ and ‖x3(t)‖
without the additional assessment

‖x2(t)‖ ≤ 1
2(t− t0)2Φ2K2Γβ + (t− t0)Φ2ΓK‖x0‖

‖x3(t)‖ ≤ 1
6(t− t0)3Φ3K3Γ2β + 1

2(t− t0)2Φ3Γ2K2‖x0‖
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we can write the Volterra series of x(t) as

‖x(t)‖ ≤
∞∑
k=1
‖xk(t)‖

≤ ‖x1(t)‖ + ‖x2(t)‖ + ‖x3(t)‖ + . . .

≤ (t− t0)ΦβK + Φ‖x0‖ + 1
2(t− t0)2Φ2K2Γβ + (t− t0)Φ2ΓK‖x0‖+

1
6(t− t0)3Φ3K3Γ2β + 1

2(t− t0)2Φ3Γ2K2‖x0‖ + . . . .

While resorting the terms we write

‖x(t)‖ ≤ Φ‖x0‖ + (t− t0)ΦβK + (t− t0)Φ2ΓK‖x0‖ + 1
2(t− t0)2Φ2K2Γβ

+ 1
2(t− t0)2Φ3Γ2K2‖x0‖ + 1

6(t− t0)3Φ3K3Γ2β + . . .

and make the crucial observation to finally gain the formulation as in [21], again using
the exponential series definition

‖x(t)‖ ≤ Φ‖x0‖ +
(
β

Γ + Φ‖x0‖
)

(t− t0)ΦΓK + 1
2

(
β

Γ + Φ‖x0‖
)

(t− t0)2Φ2Γ2K2 + . . .

≤ Φ‖x0‖ +
(
β

Γ + Φ‖x0‖
) ∞∑
`=1

[(t− t0)ΦΓK]`

`!

≤ Φ‖x0‖ +
(
β

Γ + Φ‖x0‖
) [

e(t−t0)ΦΓK − 1
]
.

M

3.2.2 Infinite Interval

Also following [21] we can find an expression which holds for infinite times t ∈ [t0,∞).
This time we try to find a more meaningful expression for u(t). Again, we make some
assumptions and deduce a condition for the input afterwards such that x(t) is bounded
if the following holds

‖u(t)‖ < a

bΓ .

Assumptions

Similar to (3.5) and (3.6) we use K, α, β, Γ as upper limits for u(t), A, B, ∑m
j=1N j .

The difference this time is, that we use a scalar exponential function to estimate eA(t−τ)

as follows

‖eA(t−τ)‖ ≤ b e−a(t−τ), t > τ (3.10)

where we again expect all eigenvalues of A in the left complex half-plane. Hereby a, b
are finite positive scalars.



3.2. BIBO Stability 31

Condition

With above assumptions and (3.10) we can make use of (3.4a) and are able to gain an
estimation for x1(t) similar to above

‖x1(t)‖ ≤
∫ t

τ=t0
‖eA(t−τ)Bu(t)‖ dτ + ‖eA(t−t0)x0‖

≤
∫ t

τ=t0
b e−a(t−τ)βK dτ + ‖x0‖b e−a(t−t0)

≤ bβK

a
− bβK

a
e−a(t−t0) + ‖x0‖b e−a(t−t0).

Following the same procedure as for the finite interval, we can write a formula for the
upper limit for each subsystem where k ≥ 2 as follows

‖xk(t)‖ ≤
∫ t

τ=t0
‖eA(t−τ)

 m∑
j=1
N juj(τ)

xk−1(τ)‖ dτ

≤
∫ t

τ=t0
b e−a(t−τ)ΓK‖xk−1(τ)‖ dτ.

(3.11)

Substituting ‖x1(t)‖ yields an expression for the second subsystem

‖x2(t)‖ ≤
∫ t

τ=t0
b e−a(t−τ)ΓK‖x1(τ)‖ dτ

≤
∫ t

τ=t0
b e−a(t−τ)ΓK

(
bβK

a
− bβK

a
e−a(τ−t0) + ‖x0‖b e−a(τ−t0)

)
︸ ︷︷ ︸

‖x1(t)‖

dτ

≤
∫ t

τ=t0

b2K2βΓ
a

e−a(t−τ) dτ +
∫ t

τ=t0

(
b2KΓ‖x0‖ −

b2K2βΓ
a

)
e−a(t−t0) dτ

≤ b2K2βΓ
a

∫ t

τ=t0
e−a(t−τ) dτ +

(
b2KΓ‖x0‖ −

b2K2βΓ
a

)
e−a(t−t0)

∫ t

τ=t0
1 dτ

≤ b2K2βΓ
a2 − b2K2βΓ

a2 e−a(t−t0) +
(
b2KΓ‖x0‖ −

b2K2βΓ
a

)
e−a(t−t0) (t− t0)

≤ b2KΓ‖x0‖e−a(t−t0) (t− t0) + b2K2βΓ
a2

(
1− e−a(t−t0) − ae−a(t−t0)(t− t0)

)
.

Since the preceding looks quite messy we enlighten the key steps. After substituting
‖x1(t)‖ the integral gets split up into two parts. Hereby, it is important to see that
τ cancels out in the second integral. Hence, for the second integral we only have to



32 Chapter 3. Bilinear System Theory

integrate one. Rearranging the terms lets us finally exclude the factors b2KΓ‖x0‖ and
b2K2βΓ
a2 . We can apply the same concept to gain an estimation for the third subsystem

‖x3(t)‖ ≤
∫ t

τ=t0
b e−a(t−τ)ΓK‖x2(τ)‖ dτ

≤
∫ t

τ=t0
b e−a(t−τ)ΓK

(
b2KΓ‖x0‖e−a(τ−t0) (τ − t0)

+ b2K2βΓ
a2

(
1− e−a(τ−t0) − ae−a(τ−t0)(τ − t0)

))
dτ

≤
∫ t

τ=t0
b3K2Γ2‖x0‖e−a(t−t0) (τ − t0) dτ

+
∫ t

τ=t0

b3K3βΓ2

a2

(
e−a(t−τ) − e−a(t−t0) − ae−a(t−t0)(τ − t0)

)
dτ

≤ 1
2b

3K2Γ2‖x0‖e−a(t−t0) (τ − t0)2 + b3K3βΓ2

a3 − b3K3βΓ2

a3 e−a(t−t0)

− b3K3βΓ2

a2 e−a(t−t0)(t− t0)− 1
2
b3K3βΓ2

a
e−a(t−t0)(t− t0)2

≤ 1
2b

3K2Γ2‖x0‖e−a(t−t0) (t− t0)2

+ b3K3βΓ2

a3

(
1− e−a(t−t0) − ae−a(t−t0)(t− t0)− 1

2a
2e−a(t−t0)(t− t0)2

)
.

Note, it is again crucial that in some exponential functions the integration variable
cancels out. Comparing the last big brackets in the estimation for ‖x2(t)‖ and ‖x3(t)‖,
one can determine a certain structure of terms. Again, while making use of the Volterra
series we can come up with an upper limit for x(t). To not get completely disorientated
we comment on every crucial step. Let us begin with inserting our previous results for
x1(t), x2(t) and x3(t)

‖x(t)‖ ≤
∞∑
k=1
‖xk(t)‖

≤ ‖x1(t)‖ + ‖x2(t)‖ + ‖x3(t)‖ + . . .

≤ bβK

a
− bβK

a
e−a(t−t0) + b‖x0‖ e−a(t−t0)

+ b2KΓ‖x0‖e−a(t−t0) (t− t0) + b2K2βΓ
a2

(
1− e−a(t−t0) − ae−a(t−t0)(t− t0)

)
+ 1

2b
3K2Γ2‖x0‖e−a(t−t0) (t− t0)2

+ b3K3βΓ2

a3

(
1− e−a(t−t0) − ae−a(t−t0)(t− t0)− 1

2a
2e−a(t−t0)(t− t0)2

)
+ . . . .
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From here we resort the terms by similar structure and show the continuing of each
structure with dots. One could easily determine the two schemes in the following

≤ b‖x0‖e−a(t−t0) + b‖x0‖e−a(t−t0)bKΓ(t− t0) + b‖x0‖e−a(t−t0) b
2K2Γ2(t− t0)2

2 + . . .

+ β

Γ
bKΓ
a

(
1− e−a(t−t0)

)
+ β

Γ
b2K2Γ2

a2

(
1− e−a(t−t0) − e−a(t−t0)a(t− t0)

)
+ β

Γ
b3K3Γ3

a3

(
1− e−a(t−t0) − e−a(t−t0)a(t− t0)− e−a(t−t0)a

2(t− t0)2

2

)
+ . . . .

Writing each of the schemes as series yields

≤ b‖x0‖e−a(t−t0)
∞∑
`=0

[(t− t0)bΓK]`
`! + β

Γ

∞∑
m=1

(
bKΓ
a

)m(
1− e−a(t−t0)

m−1∑
n=0

(a(t− t0))n

n!

)
︸ ︷︷ ︸

≤1

.

The last factor is always less than or equal to one, since we subtract only positive values.
Dropping the last factor by setting it equal to one leads to a much more compact formula.
While also expanding the second series from zero to infinity we can write

< b‖x0‖e−a(t−t0)
∞∑
`=0

[(t− t0)bΓK]`
`! + β

Γ

∞∑
m=1

(
bKΓ
a

)m
= b‖x0‖e−a(t−t0)

∞∑
`=0

[(t− t0)bΓK]`
`! + β

Γ

∞∑
m=0

(
bKΓ
a

)m
− β

Γ .

Finally we make use of definitions of the exponential series ec = ∑∞
`=0

c`

`! as well as of
the geometric series 1

1−q = ∑∞
m=0 q

m where ‖q‖ < 1 to ensure convergence. Keeping the
constraint of the geometric series (‖ bKΓ

a ‖ < 1) in mind we can write

= b‖x0‖e−a(t−t0)e(t−t0)bΓK + β

Γ

(
1

1− bKΓ
a

− 1
)

= b‖x0‖e−(a−bΓK)(t−t0) + β

Γ

bKΓ
a

1− bKΓ
a

.

As mentioned the above expression only holds for the condition set by the geometric
series. In addition to that, the exponent of the exponential function yields the same
condition to ensure that the function decreases. Rewriting the inequality ( bKΓ

a < 1)
yields

K <
a

bΓ
and since K is the upper limit for our input the above reveals the requirement for BIBO
stability

‖u(t)‖ < a

bΓ .

Summarizing, we obtained a condition for the maximum value of our inputs. As long
as we find a scalar exponential function, which is for all times t ∈ [t0,∞) greater than a
norm of eA(t−t0), we are able to compute the upper limit for u(t) [21].
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3.3 Controllability And Observability Gramian

Other important system-theoretic properties are controllability and observability of a
system. In simpler words: a system is called controllable if it is possible to reach a
desired state starting from an arbitrary initial state with a finite input in a finite amount
of time whereas a system is called observable if the state vector can be estimated from
the measurement of the outputs. To describe this mathematically we first introduce the
controllability Gramian and then the observability Gramian of a bilinear system. As
we will discover the controllability Gramian can be obtained with the solution P of the
following Lyapunov equation

APET +EPAT +
m∑
j=1
N jPN

T
j = −BBT.

Similar to that, one could receive the observability Gramian Q by solving

ATQE +ETQA+
m∑
j=1
NT

j QN j = −CTC.

Since we are interested in the solutions P and Q we will discuss how to solve the
Lyapunov equations in the final part of this section.

Controllability

A linear system is called controllable if the matrix Qc = [B,AB, · · · ,An−1B] has full
rank n. Note that in literature reachability is often used as a synonym for controllability.
Since the bilinear term sometimes causes that the set of controllable states does not form
a subspace of Rn, we review the less strong span-controllability of a bilinear system. Sim-
ilar to linear systems we can define P 1 = B and P i = [AP i−1, N1P i−1, . . . , NmP i−1]
and i = 1, · · · , n. Then a bilinear system is called span-controllable if P n has full rank
n [11] [20].
Alternatively, we can follow [14] and review the controllability Gramian. According to
the input-to-state transfer function we define

p1(t1) = eE−1At1E−1B,

p
(j2,...,jk)
k (t1, · · · , tk) = eE−1AtkE−1N jk · · · eE

−1At2E−1N j2eE−1At1E−1B.

With this we can define the controllability Gramian as

P =
∞∑
k=1

P k,

P k =
∫ ∞
τ1=0
· · ·
∫ ∞
τk=0

m∑
j2=1
· · ·

m∑
jk=1

p
(j2,...,jk)
k (τ1, . . . , τk)p(j2,...,jk)

k (τ1, . . . , τk)T dτk · · · dτ1.

If P exists it is symmetric and positive semi-definite and it could be proven that P
satisfies following bilinear Lyapunov equation

APET +EPAT +
m∑
j=1
N jPN

T
j = −BBT. (3.12)
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In addition to this, every P k solves the corresponding linear Lyapunov equation

AP 1E
T +EP 1A

T = −BBT,

AP kE
T +EP kA

T = −
m∑
j=1
N jP k−1N

T
j k ≥ 2.

As pointed out in [24], even if all eigenvalues of E−1A have negative real part, it might
happen that the integrals do not exist but the Lyapunov equation still yields a solution for
P . In this case, P does not correspond to the controllability Gramian and consequently
the system is not controllable.

Example 3.2. [8] In order to enlighten the result above, we want to explicitly write
the equations for the first two subsystems. To simplify things we assume that for
E = I. Hence, the first Gramian is given by

P 1 =
∫ ∞
τ1=0

eAτ1BBTeATτ1 dτ1

and satisfies the linear Lyapunov equation

AP 1+P 1A
T = −BBT.

The controllability Gramian of the second subsystem

P 2 =
∫ ∞
τ1=0

∫ ∞
τ2=0

m∑
j=1

eAτ2N jeAτ1BBTeATτ1NT
j eATτ2 dτ1 dτ2

=
m∑
j=1

∫ ∞
τ2=0

eAτ2N j

∫ ∞
τ1=0

eAτ1BBTeATτ1 dτ1︸ ︷︷ ︸
P 1

NT
j eATτ2 dτ2

satisfies the linear Lyapunov equation

AP 2 + P 2A
T = −

m∑
j=1
N jP 1N

T
j .

M

Observability

Since derivations of observability are approached by a dual ansatz, the definition is quite
similar to controllability. Hence, a linear system is called observable if the matrix Qo =
[CT,ATCT, · · · , (AT)n−1CT]T has full rank n. We are also able to define observability
for bilinear systems. Consequently, a bilinear system is called observable if Qn has
full rank n. Hereby Q1 = C and Qi = [ATQT

i−1, N
T
1Q

T
i−1, . . . , N

T
mQ

T
i−1]T where

i = 1, · · · , n [11] [20].
Again we follow [14] to discuss the bilinear observability Gramian. According to the
state-to-output transfer function we define

q1(t1) = CeE−1At1 ,

q
(j2,...,jk)
k (t1, · · · , tk) = CeE−1AtkE−1N jk · · · eE

−1At2E−1N j2eE−1At1 .
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This lets us define the observability Gramian as

Q =
∞∑
k=1

Qk,

Qk =
∫ ∞
τ1=0
· · ·
∫ ∞
τk=0

m∑
j2=1
· · ·

m∑
jk=1

q
(j2,...,jk)
k (τ1, . . . , τk)Tq

(j2,...,jk)
k (τ1, . . . , τk) dτk · · · dτ1.

Again, if Q exists, it is symmetric and positive semi-definite and satisfies following
bilinear Lyapunov equation

ATQE +ETQA+
m∑
j=1
NT

j QN j = −CTC.

Hereby, every Qk is a solution of the linear Lyapunov equation

ATQ1E +ETQ1A = −CTC,

ATQkE +ETQkA = −
m∑
j=1
NT

j Qk−1N j k ≥ 2.

Similar to the controllability, even if all eigenvalues of E−1A have negative real part, it
might appear that the integrals do not converge due to the bilinear character. In this
case, the Lyapunov equation still yields a solution for Q which does not correspond to
the observability Gramian Q and consequently the system is not observable [14].

Example 3.3. Comparing in the following Q1 and Q2 with P 1 and P 2 one can even
better determine the duality of the observability Gramian and the controllability
Gramian. To again make things easier we assume that E = I. Following our
definition we can write the first observability Gramian as

Q1 =
∫ ∞
τ1=0

eATτ1CTCeAτ1 dτ1

which satisfies the linear Lyapunov equation

ATQ1 +Q1A = −CTC.

The observability Gramian of the second subsystem

Q2 =
∫ ∞
τ1=0

∫ ∞
τ2=0

m∑
j=1

eATτ2NT
j eATτ1CTCeAτ1N jeAτ2 dτ1 dτ2

=
m∑
j=1

∫ ∞
τ2=0

eATτ2NT
j

∫ ∞
τ1=0

eATτ1CTCeAτ1 dτ1N jeAτ2 dτ2

satisfies the linear Lyapunov equation

ATQ2 +Q2A = −
m∑
j=1
NT

j Q1N j .

M

Remark 3.3 (Minimal Realization). A bilinear system is minimally realized if, and only
if it is span controllable and observable [20]. M
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Solving Lyapunov Equations By Vectorization

Since we are interested in the solution of the preceding Lyapunov equations we somehow
need a way to solve them. To be able to do this we need the definition of the vectorization
operator vec(·) as well as the vectorization of a matrix product.

Definition 3.1 (Vectorization). Let K ∈ Rn×n be an arbitrary matrix. The vectorized
form is then obtained by writing all columns underneath each other such that

vec(K) = vec



k11 · · · k1n
... . . . ...
kn1 · · · knn


 = vec

([
k1, · · · , kn

])
=


k1
...
kn

 ∈ Rn
2×1.

N

Definition 3.2 (Vectorization Of A Matrix Product). Let K ∈ Rm×n, L ∈ Rn×n
and M ∈ Rn×p be arbitrary matrices multiplied like KLM ∈ Rm×p. Vectorizing this
product yields the following link

vec(KLM) =
(
MT ⊗K

)
vec(L) ∈ Rmp×1.

N

This link makes it possible to solve the above Lyapunov equations. Vectorizing (3.12)
yields

vec
(
APET

)
+ vec

(
EPAT

)
+

m∑
j=1

vec
(
N jPN

T
j

)
= −vec

(
BBT

)
.

With the above definition of a vectorized matrix product we obtain

(E ⊗A) vec (P ) + (A⊗E) vec (P ) +
m∑
j=1

(N j ⊗N j) vec (P ) = −vec
(
BBT

)
.

Obviously we can exclude vec (P ) and solve the equation by inverting the left hand side
such that

vec (P ) = −
E ⊗A+A⊗E +

m∑
j=1
N j ⊗N j

−1

vec
(
BBT

)

where vec (P ) ∈ Rn2×1. Reshaping vec (P ) into a n×n matrix finally yields the solution
P . We can follow the exact same procedure and obtain the solution for Q by solving

vec (Q) = −
ET ⊗AT +AT ⊗ET +

m∑
j=1
NT

j ⊗NT
j

−1

vec
(
CTC

)

and reshaping vec (Q) [11].
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Remark 3.4 (Solving Large-Scale Bilinear Lyapunov Equations). [8] Obviously the direct
method using the vectorization as shown above is only suitable for small-scale systems
where the dimension n of the system is small. Due to heavily increasing dimensions
of the vectorized matrices (n2 × n2) it is not possible to solve large-scale systems since
commercial computers do not have enough storage. In a large-scale setting one should
consider following options. As mentioned it is possible to gain the Gramians by solving
linear Lyapunov equations and summing those solutions up. Assuming that the Volterra
series converges, we can truncate the series and consider only the first N subsystems.
Hence, one could use existing routines (Matlab® functions: lyap(), lyapchol()) for
solving those first N linear Lyapunov equations. The other option is to generalize low
rank linear matrix equation solvers to be able to solve bilinear matrix equations which
can be seen in [3]. M

3.4 Bilinear System Norms

The system norms are somehow the most important system theoretic concept for us,
since they later give us the possibility to measure the difference between the output
of two systems. We first discuss the L2-norm of a bilinear system. In this context
we discover the link between the L2-norm and the Gramians. Following, we introduce
the H2-norm for bilinear systems and its connection to the L2-norm. Finally, we show a
possible procedure to compute the difference between the output of two systems without
having to simulate them.

3.4.1 L2-Norm For Bilinear Systems

We can generalize the definition for the L2-norm by making use of the Volterra series.
Therefore, we obtain the L2-norm for a MIMO bilinear system ζ by evaluating the
following

‖ζ‖2L2
=
∞∑
k=1

∫ ∞
τ1=0
· · ·
∫ ∞
τk=0
‖

m∑
j2=1
· · ·

m∑
jk=1

g
(j2,...,jk)
k,� (τ1, . . . , τk)‖2F dτ1 · · · dτk.

Hereby ‖g(j2,...,jk)
k,� (τ1, . . . , τk)‖F denotes the Frobenius-norm of the k-th order regular

kernel. We can use the link between the Frobenius-norm and the trace of a matrix where
‖K‖2F = tr(KKT) = tr(KTK). Hence, we can also write the L2-norm of a bilinear
system as follows

‖ζ‖2L2
=

=
∞∑
k=1

∫ ∞
τ1=0
· · ·
∫ ∞
τk=0

tr

 m∑
j2=1
· · ·

m∑
jk=1

g
(j2,...,jk)
k,� (τ1, . . . , τk)g(j1,...,jk)

k,� (τ1, . . . , τk)T

dτ1 · · · dτk

=
∞∑
k=1

tr

∫ ∞
τ1=0
· · ·
∫ ∞
τk=0

m∑
j2=1
· · ·

m∑
jk=1

g
(j2,...,jk)
k,� (τ1, . . . , τk)g(j1,...,jk)

k,� (τ1, . . . , τk)T dτ1 · · · dτk

 .
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Since we defined the controllability Gramian with the state to output transfer function
we use that definition to write each g(j2,...,jk)

k,� (τ1, . . . , τk)g(j2,...,jk)
k,� (τ1, . . . , τk)T as CP kC

which yields

‖ζ‖2L2
=

=
∞∑
k=1

tr
( m∑
j2=1
· · ·

m∑
jk=1

∫ ∞
τ1=0
· · ·
∫ ∞
τk=0

g
(j2,...,jk)
k,� (τ1, . . . , τk)Tg

(j2,...,jk)
k,� (τ1, . . . , τk) dτ1 · · · dτk

)

= tr
(
C

∫ ∞
τ1=0

eAτ1BBTeATτ1 dτ1︸ ︷︷ ︸
P 1

CT
)

+ tr
(
C

∫ ∞
τ1=0

∫ ∞
τ2=0

m∑
j2=1

eAτ2N j2eAτ1BBTeATτ1NT
j2eATτ2 dτ1 dτ2︸ ︷︷ ︸

P 2

CT
)

+ . . .

= tr
(
CPCT

)
Consequently we can compute the L2-norm with the controllability Gramian. In addition
to that we can also compute the L2-norm by evaluating

‖ζ‖2L2
= tr

(
BTQB

)
whose derivation is dual to above. Of course, computing the L2-norm with use of the
Gramians implies that they exist [11].

Example 3.4 (Relation Between Gramians And Kernels). To provide better under-
standing for the equality between computing the L2-norm through the kernels and
through the Gramians we take a closer look at the first subsystem. Again we assume
that E = I. The first kernel which holds all inputs is defined by

g1(t) = CeAtB.

Multiplying g1(t1) with its transposed yields

g1(t)g1(t)T = CeAtBBTeATtCT.

As shown above we need to integrate the product of the kernel with its transposed
to obtain the L2-norm. Hence, the L2-norm for the first subsystem Σ1 is defined by

‖Σ1‖2L2
= tr

(∫ ∞
τ=0

CeAτBBTeATτCT dτ
)
.

Comparing this with the definition of the controllability Gramian for the first sub-
system

P 1 =
∫ ∞
τ=0

eAτBBTeATτ dτ



40 Chapter 3. Bilinear System Theory

obviously reveals that we have to multiply P 1 with C and its transposed to obtain
the definition of the L2-norm through the transfer function

tr
(
CP 1C

T
)

= tr
(
C

(∫ ∞
τ=0

eAτBBTeATτ dτ
)
CT
)

= tr
(∫ ∞

τ=0
CeAτBBTeATτCT dτ

)
.

M

3.4.2 H2-Norm For Bilinear Systems

Following [11] we could define the H2-norm of a bilinear system ζ as

‖ζ‖2H2
=
∞∑
k=1

sup
x1>0,...,xk>0

∞∫
−∞
· · ·

∞∫
−∞

∥∥G�k (x1 + i y1, . . . , xk + i yk)
∥∥2

F dy1 · · · dyk. (3.13)

Applying the link between the Frobenius norm and the trace of a matrix (3.13) and the
Phragmen-Lindelöf principle reduces the H2-norm to

‖ζ‖2H2
=
∞∑
k=1

1
(2π)k tr

( m∑
j2=1
· · ·

m∑
jk=1

∫ ∞
−∞
· · ·
∫ ∞
−∞

G
(j2,...,jk)
k,� (iω1, . . . , iωk)

×G(j2,...,jk)
k,� (− iω1, . . . ,− iωk)T dω1 · · · dωk

)
.

By applying Plancherel’s theorem to ‖ζ‖2L2
and then the Phragmen-Lindelöf principle

yields the following equality [11, 8]

‖ζ‖2
L2[0,∞)

= ‖ζ‖2
L2(i R)

= ‖ζ‖2H2
.

Hence, as long as the Gramians exists the H2-norm is equal to the L2-norm and we are
able to compute the H2-norm as follows

‖ζ‖2H2
= tr

(
CPCT

)
= tr

(
BTQB

)
.

3.4.3 Difference Between Two Bilinear Systems

As pointed out previously we want to determine the difference ‖y(t)− ỹ(t)‖2H2
between

the outputs of two bilinear systems ζ and ζ̃. At the same time we want to avoid the
simulation of the two systems, as this can be very time consuming. Therefore, we make
use of the so-called error-system ζerr to measure the error E as follows

E = ‖ζerr‖2H2
= ‖ζ − ζ̃‖2H2

.

Our goal is that the output of the error-system yields the difference between the output
of ζ and the output of ζ̃. Therefore we can define

yerr(t) =
[
C −C̃

]
︸ ︷︷ ︸

:=Cerr

x(t)
x̃(t)


︸ ︷︷ ︸
:=xerr(t)

.
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Hereby xerr(t) can be obtained by solving

Eerr ẋerr(t) = Aerr xerr(t) +
m∑
j=1
N err,j xerr(t)uj(t) +Berr u(t)

where

Eerr =

E 0
0 Ẽ

 , Aerr =

A 0
0 Ã

 , N err,j =

N j 0
0 Ñ j

 , Berr =

B
B̃

 .
Obviously it is only possible to compute the error-system for two systems with an equal
number of inputs as well as an equal number of outputs. By evaluating the error-system’s
H2-norm as for an usual bilinear system we obtain the difference between the outputs
of both systems. Assuming the Gramians exist, we can write the error as

E = ‖ζerr‖2H2
= tr

(
CerrP errC

T
err
)

= tr
(
BT

errQerrBerr
)

where P err and Qerr are obtained by solving the Lyapunov equations for the error-
systems [2] [24].
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Chapter 4

Model Reduction
Of Bilinear Systems

We now draw our attention towards model reduction. As mentioned previously, one
could derive large-scale bilinear systems through the application of finite elements or by
applying the Carleman bilinearization to a nonlinear system. Since a large-scale system,
called full order model (FOM), is not efficiently solvable on a commercial computer, we
try to reduce it to obtain an approximation, the so-called reduced order model (ROM).
The main goals of reduction are:

• Reducing the error E between the original output and the output of the reduced
system such that

yr(t) ≈ y(t)

and consequently approximating the FOM through the ROM as good as possible.

• Maintaining the system properties such as stability, structure, controllability/ob-
servability and more.

• Making the computation of the ROM numerically efficient, robust and stable.

The task modelreduction could be approached by several methods where none of them
could perfectly achieve the above goals. The two main approaches are balanced-based
model reduction and interpolation-based model reduction. Both are projective methods,
which means that the state-vector gets reduced in size and approximated via a projection.
Within this thesis we focus on interpolation-based methods. Therefore, we start by
discussing the fundamentals like projection, Krylov subspaces, moments and moment
matching. Following, we briefly introduce the subsystem interpolation framework and
point out its huge disadvantage, the combinatoric problem. After that we focus on the
Volterra Series interpolation framework, which we extend to match high-order moments
as well as to support complex expansion points and Markov Parameters. Finally, we
review a method to obtain H2-optimal ROMs. In this sense we present BIRKA.

43
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4.1 Fundamentals

To provide better understanding of the following model reduction frameworks, let us
begin by explaining the basic concepts. Since all presented methods yield the ROM
by projection, we first discuss what a projection is and how to apply it to a bilinear
system. After that, we continue with Krylov subspaces and finally introduce moments
and moment matching.

Projection

Generally, a projection is a linear transformation from a vector space V to itself or to a
subspace of V. This happens with use of a projector.

Definition 4.1 (Projector). A matrix P ∈ Rn×n is called projector onto the subspace
V ⊂ Rn if

P = P 2

and im(P ) = V, where im(·) denotes the image of a matrix. N

Hence, applying the same projector twice yields the same result. If P = P T holds
then the projector is called orthogonal, otherwise oblique. A projector P = V V T

is also orthogonal if V =
[
v1, . . . , vr

]
is an orthonormal basis of V. A projector

P = V
(
W TV

)−1
W T is oblique if W =

[
w1, . . . , wr

]
is a basis for the subspace

W with the same dimensions as V.
Let us assume that we approximate the state vector x(t) ∈ Rn×1 of

ζ :


Eẋ(t) = Ax(t) +

m∑
j=1
N jx(t)uj(t) +Bu(t), x(0) = x0,

y(t) = Cx(t),
(4.1)

with a reduced state vector xr(t) ∈ Rr×1 where r � n. Hence, we write

x(t) = V xr(t) + e(t). (4.2)

Hereby e(t) is the error we make in the approximation. Substituting the approximation
for x(t) into (4.1) yields

EV ẋr(t) = AV xr(t) +
m∑
j=1
N jV xr(t)uj(t) +Bu(t) + r(t),

y(t) = CV xr(t),
(4.3)

where the residual r(t) = Ae(t) +
m∑
j=1
N je(t)uj(t) − Eė(t) holds the errors. Since the

above representation is overdetermined (n equations for r variables) we project the whole
equation onto the subspace span(EV ). Therefore, we use W ∈ Rn×r and assume that(
W TEV

)−1
exists. With that expression we are able to formulate the projector

P = EV
(
W TEV

)−1
W T.
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Consequently we call V and W projection matrices. Applying the projector to the
state-equation of (4.3) yields

PEV ẋr(t) = PAV xr(t) +
m∑
j=1
PN jV xr(t)uj(t) + PBu(t) + Pr(t). (4.4)

With the Petrov-Galerkin condition (r(t) ⊥W ) it follows that

W Tr(t) = 0.

Keeping the Petrov-Galerkin condition in mind we factor EV
(
W TEV

)−1
in (4.4) out,

which yields

0 = EV
(
W TEV

)−1
W TAV xr(t) +

m∑
j=1
W TN jV xr(t)uj(t) +W TBu(t)−W TEV ẋr(t)

 .
Assuming that EV

(
W TEV

)−1
is not a zero matrix, the above could only be fulfilled

if the terms in brackets yield a zero matrix. Consequently, we write the above as follows

W TEV ẋr(t) = W TAV xr(t) +
m∑
j=1
W TN jV xr(t)uj(t) +W TBu(t).

Hence, we obtain the reduced bilinear system

ζr :


Erẋr(t) = Arxr(t) +

m∑
j=1
N r,jxr(t)uj(t) +Bru(t), xr(0) =

(
W TEV

)−1
W TEx0,

yr(t) = Crxr(t)

where Er = W TEV , Ar = W TAV , N r,j = W TN jV , Br = W TB, Cr = CV . Note
that the number of inputs and outputs does not change but yr(t) is an approximation
of y(t) [5] [18] [23].

Krylov Subspaces

Krylov subspaces or rather Krylov subspace methods were originally developed to solve
eigenvalue problems and linear systems of equation. In our case we try to approximate
the state equation with Krylov subspace model reduction methods which means that
we try to find projection matrices V and W which generate equality between the FOM
transfer function and the ROM transfer function at certain interpolation points.

Definition 4.2 (Krylov Subspace). The q-th Krylov subspace Kq of a matrix A ∈ Rn×n
and a vector v ∈ Rn×1 is defined by

Kq (A,v) = span{v, Av, A2v, . . . , Aq−1v} = span(V ).

Consequently Kq spans a subspace of Rn with an infinite amount of bases V ∈ Rn×q. N

In simpler words one could describe Kq as a subspace constructed by a matrix and a
vector. Since it is possible to use a matrix instead of a vector we also provide the
definition of the block Krylov subspace.
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Definition 4.3 (Block Krylov Subspace). The q-th block Krylov subspace Kq of a matrix
A ∈ Rn×n and a matrix B =

[
b1, . . . , bm

]
∈ Rn×m is defined by

Kq (A,B) = span{b1, . . . , bm, Ab1, . . . , Abm, . . . , A
q−1b1, . . . , A

q−1bm} = span(V ).

Consequently Kq spans a subspace of Rn with an infinite amount of bases V ∈ Rn×qm.
N

Note that the bases this time are in Rn×qm [19] [6].
Very important for us is the input Krylov subspace, defined by

Kq
(
Ã, B̃

)
where

Ã =
m∑
j2=1
· · ·

m∑
jk=1

(
skE −A

)−1
N jk · · ·N j2

(
s1E −A

)−1

B̃ =
m∑
j2=1
· · ·

m∑
jk=1

(
skE −A

)−1
N jk · · ·N j2

(
s1E −A

)−1
B

and the output Krylov subspace defined by

Kq
(
Ã

T
, C̃

T)
where

Ã
T =

m∑
j2=1
· · ·

m∑
jk=1

(
s1E −A

)−T
NT

j2 · · ·NT
jk

(
skE −A

)−T

C̃
T =

m∑
j2=1
· · ·

m∑
jk=1

(
s1E −A

)−T
NT

j2 · · ·NT
jk

(
skE −A

)−T
CT.

Obviously, B̂ is the input-to-state transfer function and ĈT is the transposed of the
state-to-output transfer function.

Moments

Starting from the linear case we can define a moment with a Taylor series expansion
of the Laplace transformed impulse response G(s) = C(sE − A)−1B at a complex
expansion point σ, also called shift, such that

G(s) =
∞∑
i=0
M (i)(σ)(s− σ)i.

Hereby, M (i)(σ) describes the i-th derivative of G(s) evaluated at σ and is also known
as the i-th moment of G(s). Hence, the i-th moment corresponding to the expansion
point σ is is given by

M (i)(σ) = (−1)iC
[
(σE −A)−1E

]i
(σE −A)−1B
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where the 0-th moment is equal to G(σ) [17] [23].
Since the k-th transfer function of a bilinear system depends on k variables one has to
make use of the Neumann expansion to write the k-th order transfer function

G
(j2,...,jk)
k,� (s1, . . . , sk) = C

(
skE −A

)−1
N jk · · ·N j2

(
s1E −A

)−1
B

as a Taylor series [6] [15]. In addition to that we now expand every variable sk at a
certain shift σk which results in k different shifts. This leads to

G
(j2,...,jk)
k,� (s1, . . . , sk) =

∞∑
i1=0
· · ·

∞∑
ik=0

M
(j2,...,jk)
k,(i1,··· ,ik)(σ1, · · · , σk) (s1− σ1)i1 · · · (sk − σk)ik

where the so-called multi-momentsM (j2,...,jk)
k,(i1,··· ,ik)(σ1, · · · , σk) of a bilinear system are given

by

M
(j2,...,jk)
k,(i1,··· ,ik)(σ1, · · · , σk) = (−1)i1+···+ik C

[
(σ1E −A)−1E

]i1 (σ1E −A)−1N jk · · ·

×N j2

[
(σkE −A)−1E

]ik (σkE −A)−1B.

It is also possible to choose infinity as an expansion point. In this case the moments are
called Markov Parameters, which are defined differently compared to moments expanded
at finite expansion points. Expanding a transfer function of a linear system at t→ 0 in
time domain is equal to expanding the frequency domained transfer function at s→∞
which yields the definition

M∞,(i) = C
[
(E−1A)−1

]i
E−1B.

Similar to that, one could expand the k-variable transfer function of a bilinear systems
in time domain at t1 → 0, . . ., tk → 0 and transform this into frequency domain. Con-
sequently, the multi-moment Markov Parameters M (j2,...,jk)

k,∞,(i1,··· ,ik) are defined as follows

M
(j2,...,jk)
k,∞,(i1,··· ,ik) = C

[
(E−1A)−1

]i1
E−1N jk · · ·E−1N j2

[
(E−1A)−1

]ik
E−1B.

Moment Matching

In the linear case the idea of moment matching is to ensure equality of the first q moments
at a certain shift σ between the FOM and the ROM such that

M (i)(σ) ≡M r,(i)(σ)
where M r,(i)(σ) is the i-th moment of the ROM corresponding to σ and i = 1, . . . , q.
Applying this to bilinear systems means ensuring equality between the first qk multi-
moments of the FOM and the ROM at a certain shift combination σ1, . . . , σk for all
variables s1, . . . , sk such that

M
(j2,...,jk)
k,(i1,··· ,ik)(σ1, · · · , σk) ≡M (j2,...,jk)

r,k,(i1,··· ,ik)(σ1, · · · , σk)

where M (j2,...,jk)
r,k,(i1,··· ,ik)(σ1, · · · , σk) is the i1, . . . , ik-th multi-moment corresponding to the

shift combination σ1, . . . , σk and i1 = 1, . . . , q · · · ik = 1, . . . , q. Of course, one could
also match the FOM and the ROM at different expansion points.
As we will see it is possible to fulfill moment matching conditions by defining the projec-
tion matrices V ,W as input or output Krylov subspaces. This feature finds application
in subsystem interpolation as well as in the Volterra series interpolation. Therefore, we
call both methods Krylov subspace model reduction methods.
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4.2 Subsystem Interpolation

Subsystem interpolation is a wide spread interpolation method for bilinear systems. It
was first introduced by [18] for Markov Parameters. The most generalized definition can
be found in [15] where MIMO systems as well as high-order moments are considered.
We do not want to explain subsystem interpolation in every detail since our main fo-
cus lies on the Volterra series interpolation. Hence, we only introduce the multi-point
SISO and MIMO case without considering high-order moments. Finally, we explain the
combinatoric problem which appears within the subsystem interpolation framework.

4.2.1 SISO Subsystem Interpolation

Let us begin by explaining the basic concept of subsystem interpolation for a SISO
bilinear system. The main goal is to match the 0-th multi-moments for the first k
subsystems at certain shift combinations σi as follows

G1(σl1) ≡ G1,r(σl1), l1 = 1, . . . , r
G�2 (σl1 , σl2) ≡ G�2,r(σl1 , σl2), l1, l2 = 1, . . . , r

...
G�k (σl1 , . . . , σlk) ≡ G�k,r(σl1 , . . . , σlk), l1, · · · , lk = 1, . . . , r.

(4.5)

Hereby, the number of different interpolation points as well as the number of considered
subsystems define the order of the ROM. Note, that we write the moment matching
conditions with transfer functions since the 0-th moment is equal to the transfer function.
To be able to determine the difference between input and output subsystem interpolation
we write the moment matching conditions with different expansion points µ

G1(µl1) ≡ G1,r(µl1), l1 = 1, . . . , r
G�2 (µl2 , µl1) ≡ G�2,r(µl2 , µl1), l1, l2 = 1, . . . , r

...
G�k (µlk , . . . , µl1) ≡ G�k,r(µlk , . . . , µl1), l1, · · · , lk = 1, . . . , r.

(4.6)

As mentioned previously, moment matching can be achieved by choosing V and W as
an input and output Krylov subspace. Hence, we choose the projection matrices V (k)

for each subsystem k as follows

V (1) ⊆ Kr
(
(σl1E −A)−1E, (σl1E −A)−1b

)
∈ Rn×r

V (2) ⊆ Kr
(
(σl2E −A)−1E, (σl2E −A)−1NV (1)

)
∈ Rn×r

2

...

V (k) ⊆ Kr
(
(σlkE −A)−1E, (σlkE −A)−1NV (k−1)

)
∈ Rn×r

k
, k = 3, . . . , N
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and the projection matrices W (k) for each subsystem k are defined by

W (1) ⊆ Kr
(
(µl1E −A)−TET, (µl1E −A)−Tc

)
∈ Rn×r

W (2) ⊆ Kr
(
(µl2E −A)−TET, (µl2E −A)−TNTW (1)

)
∈ Rn×r

2

...

W (k) ⊆ Kr
(
(µlkE −A)−TET, (µlkE −A)−TNTW (k−1)

)
∈ Rn×r

k
, k = 3, . . . , N.

Finally, we can obtain the matrices V and W by concatenating the matrices of each
subsystem

V =
[
V (1) , · · · , V (k)

]
∈ Rn×rtot

W =
[
W (1), · · · , W (k)

]
∈ Rn×rtot

(4.7)

where rtot = ∑N
k=1 r

k. Note, that every V (k) depends on the previous projection matrix
V (k−1) and every W (k) as well on the matrix W (k−1). This yields a greater reduced
order with every additionally considered subsystem. It is possible to compute V with
different expansion points compared to W .
By reducing the system matrices of the FOM as shown in the fundamentals (Er =
W TEV , Ar = W TAV , N r = W TNV , br = W Tb, cT

r = cTV ) we ensure the desired
moment matching conditions from (4.5) and (4.6) [2].

Example 4.1 (Projection Matrix V For SISO Subsystem Interpolation). [8] Since
we wrote above very general formulas, let us consider an example where we want to
match the first and the second subsystem at two expansion points σ1 and σ2. Hence,
the moment matching conditions are

G1(σ1) ≡ G1,r(σ1), G1(σ2) ≡ G1,r(σ2),
G�2 (σ1, σ1) ≡ G�2,r(σ1, σ1), G�2 (σ2, σ1) ≡ G�2,r(σ2, σ1),
G�2 (σ1, σ2) ≡ G�2,r(σ1, σ2), G�2 (σ2, σ2) ≡ G�2,r(σ2, σ2).

The conditions for the first subsystem are fulfilled if we construct the first projection
matrix as follows

V (1) =
[
(σ1E −A)−1b, (σ2E −A)−1b

]
.

The conditions for the second subsystem are fulfilled by constructing V (2) as

V (2) =
[
(σ1E −A)−1N(σ1E −A)−1b, (σ1E −A)−1N(σ2E −A)−1b,

(σ2E −A)−1N(σ1E −A)−1b, (σ2E −A)−1N(σ2E −A)−1b
]
.

Concatenating V (1) and V (2) finally yields the projection matrix

V =
[
V (1),V (2)

]
∈ Rn×6.

M
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4.2.2 MIMO Subsystem Interpolation

As mentioned, it is possible to expand this framework to reduce MIMO bilinear systems.
To prohibit a large increase of the dimensions of the ROM, we match the moments along
so-called tangential directions and along a sum over all input combinations. Since we
match the moments via the input Krylov subspace as well as via the output Krylov
subspace we need right tangential directions as well as left tangential directions. This
yields the moment matching conditions for the input subspace [8]

G1(σl1) rl1 ≡ G1,r(σl1) rl1 , l1 = 1, . . . , r
m∑
j2=1

G
(j2)
2,� (σl1 , σl2) rl1 ≡

m∑
j2=1

G
(j2)
2,r,�(σl1 , σl2) rl1 , l1, l2 = 1, . . . , r

...
m∑
j2=1
· · ·

m∑
jk=1

G
(j2,...,jk)
k,� (σl1 , . . . , σlk)rl1 ≡

m∑
j2=1
· · ·

m∑
jk=1

G
(j2,...,jk)
k,r,� (σl1 , . . . , σlk)rl1 ,

l1, · · · , lk = 1, . . . , r

as well as the moment matching conditions for the output subspace

lTl1 G1(µl1) ≡ lTl1 G1,r(µl1), l1 = 1, . . . , r
m∑
j2=1

lTl1 G
(j2)
2,� (µl2 , µl1) ≡

m∑
j2=1

lTl1 G
(j2)
2,r,�(µl2 , µl1), l1, l2 = 1, . . . , r

...
m∑
j2=1
· · ·

m∑
jk=1

lTl1 G
(j2,...,jk)
k,� (µlk , . . . , µl1) ≡

m∑
j2=1
· · ·

m∑
jk=1

lTl1 G
(j2,...,jk)
k,r,� (µlk , . . . , µl1),

l1, · · · , lk = 1, . . . , r.

These conditions hold if we construct the projection matrix with the input and output
Krylov subspace but this time also considering the tangential direction rl and lTl . Hence,
it yields [8]

V (1) ⊆ Kr
(
(σl1E −A)−1E, (σl1E −A)−1B rl1

)
∈ Rn×r

V (2) ⊆ Kr

(σl2E −A)−1E,
m∑
j=1

(σl2E −A)−1N jV
(1)

 ∈ Rn×r
2

...

V (k) ⊆ Kr

(σlkE −A)−1E,
m∑
j=1

(σlkE −A)−1N jV
(k−1)

 ∈ Rn×r
k
, k = 3, ..., N
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and

W (1) ⊆ Kr
(
(µl1E −A)−TET, (µl1E −A)−TCT ll1

)
∈ Rn×r

W (2) ⊆ Kr

(µl2E −A)−TET,
m∑
j=1

(µl2E −A)−TNT
jW

(1)

 ∈ Rn×r
2

...

W (k) ⊆ Kr

(µlkE −A)−TET,
m∑
j=1

(µlkE −A)−TNT
jW

(k−1)

 ∈ Rn×r
k
, k = 3, ..., N.

Similar to the SISO case we can construct V and W as

V =
[
V (1) , · · · , V (k)

]
∈ Rn×rtot

W =
[
W (1), · · · , W (k)

]
∈ Rn×rtot

where again rtot = ∑N
k=1 r

k. The above moment matching conditions are once more
fulfilled if we construct V and W as shown and apply them to the FOM to obtain
the ROM whose system matrices are defined by Er = W TEV , Ar = W TAV , N r,j =
W TN jV , Br = W TB, Cr = CTV [8][11] [15] .

Example 4.2 (Projection Matrix V For MIMO Subsystem Interpolation). [8] Let us
consider a MIMO bilinear system with two inputs. We want to match the FOM
and the ROM at two shifts σ1 and σ2 and along the tangential directions r1 and r2.
Hence, we can give the interpolation conditions as follows

G1(σ1)r1 ≡ G1,r(σ1)r1, G1(σ2)r2 ≡ G1,r(σ2)r2,

2∑
j2=1

G
(j2)
2 (σ1, σ1)r1 ≡

2∑
j2=1

G
(j2)
2,r (σ1, σ1)r1,

2∑
j2=1

G
(j2)
2 (σ2, σ1)r1 ≡

2∑
j2=1

G
(j2)
2,r (σ2, σ1)r1,

2∑
j2=1

G
(j2)
2 (σ1, σ2)r2 ≡

2∑
j2=1

G
(j2)
2,r (σ1, σ2)r2,

2∑
j2=1

G
(j2)
2 (σ2, σ2)r2 ≡

2∑
j2=1

G
(j2)
2,r (σ2, σ2)r2.

We can fulfill these conditions by constructing V (k) for each subsystem as follows

V (1) =
[
(σ1E −A)−1B r1, (σ2E −A)−1B r2

]
V (2) =

[
(σ1E −A)−1N1(σ1E −A)−1B r1 + (σ1E −A)−1N2(σ1E −A)−1B r1,

(σ1E −A)−1N1(σ2E −A)−1B r2 + (σ1E −A)−1N2(σ2E −A)−1B r2,

(σ2E −A)−1N1(σ1E −A)−1B r1 + (σ2E −A)−1N2(σ1E −A)−1B r1,

(σ2E −A)−1N1(σ2E −A)−1B r2 + (σ2E −A)−1N2(σ2E −A)−1B r2
]

and obtain the projection matrix V by concatenating V (1) and V (2) such that

V =
[
V (1),V (2)

]
∈ Rn×6.

M
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Remark 4.1 (Block Krylov Subsystem Interpolation). [8] Note, that it is also possible
to match the transfer functions without tangential directions r and lT. This could be
achieved in this framework by choosing the tangential vectors as identity matrices such
that r = Im and lT = Ip. In this case we call it block Krylov subsystem interpolation and
the reduced order rtot = ∑N

k=1mr
k or rather rtot = ∑N

k=1 pr
k gets greater by a factor

m or p. Hence, in the block Krylov case one obtains a greater dimension for the ROM
with the same amount of interpolation points compared to the tangential subsystem
interpolation. M

Remark 4.2 (Different Approach For MIMO Subsystem Interpolation). [8] In the above
approach we used Krylov subspaces where we sum up over all inputs or rather outputs.
According to our definition of the regular transfer function G(j1,...,jk)

k,� (s1, . . . , sk) it would
be more straightforward to use the following Krylov subspaces

V (k) ⊆ Kr
(
(σlkE −A)−1E, (σlkE −A)−1N̄(I⊗ V (k−1))

)
∈ Rn×r

kmk−1
,

W (k) ⊆ Kr
(
(µlkE −A)−TET, (µlkE −A)−TN̄

T(I⊗W (k−1))
)
∈ Rn×r

kmk−1

where N̄ = [N1, . . . ,Nm] and N̄T = [NT
1 , . . . ,N

T
m]. With this Krylov subspaces we

fulfill the following stronger moment matching conditions for input tangential subsystem
interpolation

G1(σl1) rl1 ≡ G1,r(σl1) rl1 , l1 = 1, . . . , r

G
(j2)
2,� (σl1 , σl2) rl1 ≡ G

(j2)
2,r,�(σl1 , σl2) rl1 , l1, l2 = 1, . . . , r

...

G
(j2,...,jk)
k,� (σl1 , . . . , σlk)rl1 ≡ G

(j2,...,jk)
k,r,� (σl1 , . . . , σlk)rl1 , l1, · · · , lk = 1, . . . , r

and output tangential subsystem interpolation

lTl1 G1(µl1) ≡ lTl1 G1,r(µl1), l1 = 1, . . . , r

lTl1 G
(j2)
2,� (µl2 , µl1) ≡ lTl1 G

(j2)
2,r,�(µl2 , µl1), l1, l2 = 1, . . . , r

...

lTl1 G
(j2,...,jk)
k,� (µlk , . . . , µl1) ≡ lTl1 G

(j2,...,jk)
k,r,� (µlk , . . . , µl1), l1, · · · , lk = 1, . . . , r.

These moment matching conditions are stronger because we match every combination of
(j2, . . . , jk) independently. The dimensions rtot of the ROM within this framework are
growing even faster with each additional considered subsystem since rtot = ∑N

k=1 r
kmk−1.

M

Remark 4.3 (Higher Order Moments). Similar to the linear case it is also possible to
match high-order moments as well as to combine this with Markov Parameters and
shifts which are only matched at the 0-th moment. For more insight we refer to [15]. M

4.2.3 Combinatoric Problem

Throughout the provided examples it is quite obvious that on the one hand the order
of the ROM grows by the power of considered subsystems and on the other hand that
we have to fulfill even more combinations of shifts if we consider more subsystems. We
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illustrate the mentioned problem with a SISO system ζ. Assume that we want to obtain
a reduced bilinear system ζr corresponding to ζ by interpolating the 0-th moment at
r = 2 shifts σ1 and σ2. Hence, for the first subsystem, we have to match two moments

G1(σ1) ≡ G1,r(σ1), G1(σ2) ≡ G1,r(σ2).

For the second subsystem we have to match four moments

G�2 (σ1, σ1) ≡ G�2,r(σ1, σ1), G�2 (σ2, σ1) ≡ G�2,r(σ2, σ1),
G�2 (σ1, σ2) ≡ G�2,r(σ1, σ2), G�2 (σ2, σ2) ≡ G�2,r(σ2, σ2)

and for the third subsystem eight moments

G�3 (σ1, σ1, σ1) ≡ G�3,r(σ1, σ1, σ1), G�3 (σ2, σ1, σ1) ≡ G�3,r(σ2, σ1, σ1),
G�3 (σ1, σ2, σ1) ≡ G�3,r(σ1, σ2, σ1) G�3 (σ2, σ2, σ1) ≡ G�3,r(σ2, σ2, σ1),
G�3 (σ1, σ1, σ2) ≡ G�3,r(σ1, σ1, σ2), G�3 (σ2, σ1, σ2) ≡ G�3,r(σ2, σ1, σ2),
G�3 (σ1, σ2, σ2) ≡ G�3,r(σ1, σ2, σ2) G�3 (σ2, σ2, σ2) ≡ G�3,r(σ2, σ2, σ2).

Consequently, we have to match rk moments for the k-th subsystem which obviously
is more complicated to handle the more subsystems being considered. In addition to
that, the total reduced order rtot = ∑N

k=1 r
k is growing by the power of k. This makes

it inefficient to increase the accuracy of the ROM by considering more subsystems.
Considering one more subsystem means matching rk more moments and increasing the
order of the ROM by rk in addition to the existing order.
Remark 4.4 (Workarounds For The Combinatoric Problem). [8] As mentioned, it is quite
complicated and inefficient to compute all multi-moments for additional subsystems.
Hence, we want to provide some ideas how to reduce the complexity.

• The most straightforward way is to simply use one interpolation point which com-
pletely eliminates the combinatoric problem. Of course this approach leads to less
global accuracy of the ROM.

• As the importance of the subsystem decreases with greater k one could choose less
matched moments for higher subsystems such that the reduced order of additional
subsystems decreases.

It is possible to find a lot more workarounds [8] as the subsystem interpolation framework
is highly customizable. M

4.3 Volterra Series Interpolation

The Volterra series interpolation framework was first introduced by Flagg and Gugercin
in [10]. It turned out that the method was implicitly used by [24] and [2] for an H2-
optimal model reduction algorithm called BIRKA. As one can tell from the name, this
reduction method employs the underlying Volterra series representation. The basic idea
is to match the previously introduced multi-moments at certain shift combinations along
weighted sums, in other words: to match the whole Volterra series at once. With this
summation feature the combinatoric problem gets eliminated [8]. We discover that it
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is also possible to gain the projection matrices V and W through solving Sylvester
equations.
Let us begin by introducing the framework in its original form: for multiple interpolation
points. In this sense we explore the Sylvester equations and different ways to compute
the projection matrices, which we illustrate in algorithms. After that, we extend the
Volterra series interpolation to match high-order moments and show which constraints
the interpolation data has to fulfill to obtain again a Sylvester equations representation.
We also provide algorithms to construct the projection matrices for higher moments.
Lastly, we discuss other special cases of this framework like the block Krylov case, Markov
Parameters and complex expansion points.

4.3.1 Multipoint Volterra Series Interpolation

As mentioned, this method matches the whole Volterra series along weighted sums.
While only considering the 0-th moment of each subsystem we can define the interpola-
tion conditions for a SISO system as follows

∞∑
k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ηl1,...,lk−1,iG
�
k (σl1 , . . . , σlk−1 , σi)

≡
∞∑
k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ηl1,...,lk−1,iG
�
k,r(σl1 , . . . , σlk−1 , σi)

(4.8)

where each η denotes a weight for a certain shift combination and where G�r,k is the k-th
transfer function of the reduced system. Note that we will later specify the weights η
through entries of a matrix U v which requires those indexes. For now, we assume that
each ηl1,...,lk−1,i is arbitrary. We again write the moments as the transfer functions, since
the 0-th moment of the k-th subsystem is equal to the k-th transfer function. Note that
we hold σi throughout all sums. A necessary condition to be able to make use of the
Volterra series interpolation is obviously the convergence of the series.

Example 4.3 (Volterra Series Interpolation Conditions). To enlighten the interpola-
tion conditions a little more let us consider a simple example. Assuming that we
want to match the FOM and the ROM at two (r = 2) interpolation points σ1 and
σ2, we write the interpolation condition for the first shift σ1 as

∞∑
k=1

2∑
l1=1
· · ·

2∑
lk−1=1

ηl1,...,lk−1,1G
�
k (σl1 , . . . , σlk−1 , σ1) =

G1(σ1) + η1,1G
�
2 (σ1, σ1) + η2,1G

�
2 (σ2, σ1) + η1,1,1G

�
3 (σ1, σ1, σ1) + . . .

≡
∞∑
k=1

2∑
l1=1
· · ·

2∑
lk−1=1

ηl1,...,lk−1,1G
�
k,r(σl1 , . . . , σlk−1 , σ1) =

G1,r(σ1) + η1,1G
�
2,r(σ1, σ1) + η2,1G

�
2,r(σ2, σ1) + η1,1,1G

�
3,r(σ1, σ1, σ1) + . . . .
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Similar to that, we write the interpolation condition for the second shift σ2 as

∞∑
k=1

2∑
l1=1
· · ·

2∑
lk−1=1

ηl1,...,lk−1,2G
�
k (σl1 , . . . , σlk−1 , σ2) =

G1(σ2) + η1,2G
�
2 (σ1, σ2) + η2,2G

�
2 (σ2, σ2) + η1,1,2G

�
3 (σ1, σ1, σ2) + . . .

≡
∞∑
k=1

2∑
l1=1
· · ·

2∑
lk−1=1

ηl1,...,lk−1,2G
�
k,r(σl1 , . . . , σlk−1 , σ2) =

G1,r(σ2) + η1,2G
�
2,r(σ1, σ2) + η2,2G

�
2,r(σ2, σ2) + η1,1,2G

�
3,r(σ1, σ1, σ2) + . . . .

As one can clearly see, we combine all interpolation points with the current inter-
polation point. Since we sum these combinations up, we receive r = 2 interpolation
conditions. M

Again it is also possible to match the moments with a projection matrix constructed
through the output Krylov subspace. Therefore, we use different interpolation points µ
and weights ϑ. Hence we write the output interpolation conditions as follows

∞∑
k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ϑl1,...,lk−1,iG
�
k (µi, µlk−1 , . . . , µl1)

≡
∞∑
k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ϑl1,...,lk−1,iG
�
k,r(µi, µlk−1 , . . . , µl1).

(4.9)

The conditions (4.8) and(4.9) hold if we reduce the FOM with the projection matrix V
corresponding to the following input Krylov subspace

V ⊆ Kr
(
(σiE −A)−1E,vi

)
∈ Rn×r

where

vi =
∞∑
k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ηl1,...,lk−1,i(σiE −A)−1N(σlk−1E −A)−1N · · ·N(σl1E −A)−1b

(4.10)

and the projection matrix W corresponding to the following output Krylov subspaces

W ⊆ Kr
(
(µiE −A)−TET,wi

)
∈ Rn×r

where

wi =
∞∑
k=1

r∑
l1=1
· · ·

r∑
lk−1=1

ϑl1,...,lk−1,i(µiE −A)−TNT(µlk−1E −A)−TNT · · ·NT(µlkE −A)−Tc.

(4.11)

Different to subsystem interpolation we obtain projection matrices in Rn×r, which means
that our reduced order is equal to the number of shifts r. As one might have noticed,
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the first sum ∑∞
k=1 corresponds to the previously introduced Volterra series. Assuming

that we interpolate at r shifts σ1, . . . , σr where σ1 6= . . . 6= σr we obtain the projection
matrices by computing each column vr corresponding to (4.10) and analogously for r
shifts µ1, . . . , µr where µ1 6= . . . 6= µr by computing each column wr corresponding to
(4.11). This results in

V =
[
v1 , · · · , vr

]
∈ Rn×r

W =
[
w1, · · · , wr

]
∈ Rn×r.

Example 4.4 (Computing A Column Of V ). [8] Let us assume that we want to
reduce a SISO bilinear system to order r = 2. Therefore, we use the interpolation
points σ1 and σ2. We want to illustrate how the first column of V is computed.
From above we know that

v1 =
∞∑
k=1

2∑
l1=1
· · ·

2∑
lk−1=1

ηl1,...,lk−1,1(σ1E −A)−1N(σlk−1E −A)−1N · · ·N(σl1E −A)−1b.

To make things easier, we make use of the Volterra series and write v1 as follows

v1 =
∞∑
k=1

v
(k)
1 = v

(1)
1 + v(2)

1 + v(3)
1 + v(4)

1 + · · ·

where v(k)
1 denotes the first column of V (k) corresponding to the subsystem k. Hence,

v
(1)
1 is given by

v
(1)
1 = (σ1E −A)−1b.

Accordingly, we can compute v(2)
1 for the second subsystem

v
(2)
1 =

2∑
l1=1

ηl1,1(σ1E −A)N(σl1E −A)−1b

= η1,1(σ1E −A)N(σ1E −A)−1b+ η2,1(σ1E −A)N(σ2E −A)−1b

and v(3)
1 for the third subsystem

v
(3)
1 =

2∑
l1=1

2∑
l2=1

ηl1,l2,1(σ1E −A)N(σl2E −A)−1N(σl1E −A)−1b

Continuing for all subsystems finally yields v1 via summation over all subsystems.
M

Finally, we obtain the ROM analogously to the subsystem interpolation by applying
the projection matrices to the system matrices as shown in the fundamentals (Er =
W TEV , Ar = W TAV , N r = W TNV , br = W Tb, cT

r = cTV ) [10].
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It is also possible to apply this method to MIMO bilinear systems. Hereby, the moment
matching conditions for an input Krylov subspace are given by

∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

η j2,...,jk
l1,...,lk−1,i

G
(j2,...,jk)
k,� (σl1 , . . . , σlk−1 , σi) rl1

≡
∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

η j2,...,jk
l1,...,lk−1,i

G
(j2,...,jk)
k,r,� (σl1 , . . . , σlk−1 , σi) rl1 .

(4.12)

with additional sums over all inputs. Similar to that, we can give the moment matching
conditions for the output case

∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

ϑ j2,...,jk
l1,...,lk−1,i

lTi G
(j2,...,jk)
k,� (µi, µlk−1 , . . . , µl1)

≡
∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

ϑ j2,...,jk
l1,...,lk−1,i

lTi G
(j2,...,jk)
k,r,� (µi, µlk−1 , . . . , µl1).

(4.13)

Again, we use tangential directions r and lT. Note that we still assume that the weights
η j2,...,jk
l1,...,lk−1,i

and ϑ j2,...,jk
l1,...,lk−1,i

are arbitrary while keeping in mind that we need the indexes
to later define them through matrices U v,j and Uw,j . The MIMO moment matching
conditions hold if we build the projection matrix V with use of the following input Krylov
subspace

V ⊆ Kr
(
(σiE −A)−1E,vi

)
∈ Rn×r

where

vi =
∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

η j2,...,jk
l1,...,lk−1,i

(σiE −A)−1N jk

× (σlk−1E −A)−1N jk−1 · · ·N j2(σl1E −A)−1B rl1

and the projection matrix W corresponding to the following output Krylov subspaces

W ⊆ Kr
(
(µiE −A)−TET,wi

)
∈ Rn×r

where

wi=
∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

ϑ j2,...,jk
l1,...,lk−1,i

(µiE −A)−TNT
jk

× (µlk−1E −A)−TNT
jk−1 . . .N

T
j2(µl1E −A)−TCT li.

If the ROM gets constructed by Er = W TEV , Ar = W TAV , N r,j = W TN jV , Br =
W TB, Cr = CTV and V andW as shown above then the moment matching conditions
in (4.12) and (4.13) hold [10].
Remark 4.5 (Computing Only One Projection Matrix). It is possible to compute only
one projection matrix either for the input Krylov subspace or for the output Krylov
subspace. In this case, one could simply choose W = V and vice versa to obtain the
ROM. M
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Sylvester Equations

Our goal now is to show that it is possible to obtain the projection matrix V by solving
the following bilinear Sylvester equation

EV Sv −AV −
m∑
j=1
N j V U

T
v,j = BR

where Sv = diag(σ1, . . . , σr) ∈ Cr×r , U v,j =
{
u

(a,b)
v,j

}
∈ Cr×r and R = [r1, . . . , rr] ∈

Cm×r. And accordingly, we want to show that we can obtain the projection matrix W
by solving

ETW ST
w −ATW −

m∑
j=1
NT

j W UT
w,j = CTL

where Sw = diag(µ1, . . . , µr) ∈ Cr×r, Uw,j =
{
u

(a,b)
w,j

}
∈ Cr×r and L = [l1, . . . , lr] ∈

Cp×r. Hereby u(a,b)
v,j denotes the entry in the a-th row and the b-th column of U v,j and

analogously u(a,b)
w,j denotes the entry in the a-th row and the b-th column of Uw,j . As

mentioned, it is necessary to define the weights η j2,...,jk
l1,...,lk−1,i

and ϑ j2,...,jk
l1,...,lk−1,i

through entries
of the matrices U v,j and Uw,j . Hence, we give the definition for the weights as follows

η j2,...,jk
l1,...,lk−1,i

= u
(i,lk−1)
v,jk

u
(lk−2,lk−3)
v,jk−1

· · ·u(l2,l1)
v,j2

for k ≥ 2

ϑ j2,...,jk
l1,...,lk−1,i

= u
(i,lk−1)
w,jk

u
(lk−2,lk−3)
w,jk−1

· · ·u(l2,l1)
w,j2

for k ≥ 2.

As this is not very enlightening, let us try to focus on every subsystem independently.
Therefore, we make use of the Volterra series and write the projection matrix V as

V =
∞∑
k=1

V (k) = V (1) + V (2) + V (3) + V (4) + · · · .

Starting with the first subsystem, the i-th column v(1)
i of V (1) is defined as

v
(1)
i = (σiE −A)−1Bri (4.14)

where i = 1, . . . , r. While recalling Definition 3.2 and writing V (1) vectorized

vec
(
V (1)

)
=


v

(1)
1
...
v

(1)
r

 =


σ1E −A

. . .

σrE −A


−1 

B

. . .

B



r1
...
rr


=
(
ST
v ⊗E − Ir ⊗A

)−1
(Ir ⊗B) vec (R)

it is quite obvious that V (1) is the solution of the following linear Sylvester equation

EV (1) Sv −AV (1) = BR. (4.15)



4.3. Volterra Series Interpolation 59

For the second subsystem the i-th column v(2)
i of V (2) is defined as

v
(2)
i =

m∑
j2=1

r∑
l1=1

η j2
l1,i

(σiE −A)−1N j2 (σl1E −A)−1Brl1︸ ︷︷ ︸
=v(1)

l1

=
m∑
j2=1

r∑
l1=1

u
(i,l1)
v,j2

(σiE −A)−1N j2v
(1)
l1

where i = 1, . . . , r. As we can see, v(2)
i depends on the previously computed columns

v
(1)
l1

. While again writing V (2) in its vectorized form
v

(2)
1
...
v

(2)
r

 =


σ1E −A

. . .

σrE −A


−1

m∑
j=1


u

(1,1)
v,j N j · · · u

(1,r)
v,j N j

... . . . ...
u

(r,1)
v,j N j · · · u

(r,r)
v,j N j



v

(1)
1
...
v

(k)
r


=
(
ST
v ⊗E − Ir ⊗A

)−1 m∑
j=1

(U v ⊗N j) vec
(
V (1)

)
and remembering Definition 3.2 one can clearly see that V (2) solves

EV (2) Sv −AV (2) =
m∑
j=1
N j V

(1)UT
v,j .

We can continue this until the k-th subsystem where each column v(k)
i of V (k) depends

on the columns of the previous projection matrix. Hence, we can write [8]

v
(k)
i =

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

η j2,...,jk
l1,...,lk−1,i

(σiE −A)−1N jk

× (σlk−1E −A)−1N jk−1 · · ·N j2(σl1E −A)−1B rl1

=
m∑

jk=1

r∑
lk−1=1

u
(i,lk−1)
v,jk

(σiE −A)−1N jkv
(k−1)
lk−1

. (4.16)

Thus, V (k) solves the following linear Sylvester equation

EV (k) Sv −AV (k) =
m∑
j=1
N j V

(k−1)UT
v,j for k ≥ 2. (4.17)

By combining (4.15) and (4.17) and letting k →∞ we find a bilinear Sylvester equation
whose solution is V

E V Sv −AV −
m∑
j=1
N j V U

T
v,j = BR.

With an analog approach we can show that every W (k) solves the following linear
Sylvester equations

ETW (1) ST
w −ATW (1) = CTL,

ETW (k) ST
w −ATW (k) =

m∑
j=1
NT

j W
(k−1)UT

w,j for k ≥ 2.
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These linear Sylvester equations can also be combined to

ETW ST
w −ATW −

m∑
j=1
NT

j W UT
w,j = CTL.

Remark 4.6 (Solution Of Bilinear Sylvester Equation). Note, that the bilinear Sylvester
equations yield also solutions if the Volterra series does not converge. In this case,
the solution of the bilinear Sylvester equation does not correspond to the sum over the
solutions of linear the Sylvester equations of each subsystem such that V 6= ∑∞

k=1 V
(k).

While recalling the definition of the moment matching conditions and the definition of
the regular transfer functions, one can interpret the tangential directions and weights as
the inputs of the bilinear system. Hence, the convergence of the Sylvester equations is
strongly connected to BIBO stability conditions. M

Remark 4.7 (Invariance Of Sylvester Equations). It may be interesting to transform the
solutions V and W to e.g. obtain orthonormal matrices. This problem can be ap-
proached by multiplying a specific transformation matrix T v and receive Ṽ = V T v. To
let Ṽ be the solution of the same Sylvester equations we should adjust the interpolation
data as follows

S̃v = T−1
v SvT v, Ũ v,j = T T

vU v,jT
−T
v , R̃ = RT v.

Inserting the transformed interpolation data and the transformed projection matrix in
the Sylvester equation yields

EV T v T
−1
v SvT v −AV T v −

m∑
j=1
N j V T v T

−1
v U

T
v,jT v = BRT v.

One can see T v T−1
v cancels itself which yields

EV SvT v −AV T v −
m∑
j=1
N j V U

T
v,jT v = BRT v.

By simply multiplying with T−1
v from the right we obtain the original Sylvester equation.

The same principle could be applied to the linear Sylvester equations for each subsystem
as well as to the output Sylvester equation. If one transforms the output projection
matrix such that W̃ = WTw one has to transform the interpolation data as follows

S̃w = T T
wSwT

−T
w , Ũw,j = T T

wUw,jT
−T
w , L̃ = LTw

to solve the same Sylvester equation. M

Computing Projection Matrices

At this point we know the basics about multipoint Volterra series interpolation. Hence,
we want to find algorithms which allow us to compute the projection matrices. Therefore,
we start by giving an Arnoldi algorithm to compute each column of V explicitly. After
that we concentrate on solving linear Sylvester equations and finally we discuss whether
it is possible to obtain a projection matrix V which considers all subsystems by solving
the bilinear Sylvester equation. Note, that we write all algorithms only for the input case
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as one can easily obtain the output projection matrix by a dual call of the algorithms
(see Remark 4.10).
Obviously, it is not possible to compute each column of V by considering an infinite
sum [8]. As we have shown above, it is possible to compute the projection matrix for
each subsystem independently and obtain the final projection matrix via summation.
We also know that the importance of each additional subsystem decreases. Hence, we
truncate the sum over all subsystems and mark the number of considered subsystems
with the truncation index N . It follows that

V ≈
N∑
k=1

V k.

Applying this to the formula for each column vi of V yields

vi ≈
N∑
k=1

v
(k)
i

where

v
(1)
i = (σiE −A)−1Bri

v
(k)
i =

m∑
j=1

r∑
l=1

u
(i,l)
v,j (σiE −A)−1N jv

(k−1)
l for k ≥ 2.

(4.18)

With this we can give the so-called Arnoldi algorithm 4.1 to compute an approximation
of V . Note that all following algorithms are written with Matlab® syntax. Especially

Algorithm 4.1 : Efficient Arnoldi Algorithm For Computing Projection Matrices
Data : bilinear system ζ, interpolation points σ1, . . . , σr, interpolation weights Uv,

tangential directions R, truncation index N
Result : approximated projection matrix V

1 for i = 1 : r do
2 [Li,U i] = lu(σiE −A) ; . Compute LU factors for each shift

3 V old(:, i) = U i\ (Li\ (BR(:, i))) ; . Compute V (1)

4 V = V old;
5 for k = 2 : N do
6 for i = 1 : r do
7 vtemp = 0;
8 for l = 1 : r do
9 for j = 1 : m do

10 vtemp = vtemp +Uv,j(i, l)N jV old(:, l) ; . vtemp =
∑m
j=1 u

(i,l)
v,j N jv

(k−1)
l

11 V new(:, i) = U i\ (Li\vtemp) ; . Compute V (k>1)

12 V old = V new;
13 V = V + V new;

for large-scale systems we recommend a computation of LU-factors since we have to
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solve N -times for each (σiE−A). Also crucially for performance is evaluating the sums
before solving the systems of equations as seen in Algorithm 4.1 Line 10. Otherwise one
would solve the system of equations ijl-times instead of i-times.
Another option to approximate V is via using existing routines for solving matrix equa-
tions to solve the linear Sylvester equations for each subsystem. Recalling the truncation
of the Volterra series yields

V ≈
N∑
k=1

V (k)

where

V (1) is the solution of EV (1) Sv −AV (1) = BR,

V (k) is the solution of EV (k) Sv −AV (k) =
m∑
j=1
N j V

(k−1)UT
v,j for k ≥ 2.

In Algorithm 4.2 we use the Matlab® function sylvester(A, B, C) which computes
the solution X of the Sylvester equation AX + XB − C = 0. Unfortunately this
function does not support our type of Sylvester equation. Hence, we have to resolve
E by inverting it, which might not be possible especially for large systems. Compared

Algorithm 4.2 : Computing Projection Matrices With Sylvester Equation Solver
Data : bilinear system ζ, interpolation points σ1, . . . , σr, interpolation weights Uv,

tangential directions R, truncation index N
Result : approximated projection matrix V

1 for j = 1 : m do
2 N j = E−1N j ; . Resolve E

3 A = E−1A;
4 B = E−1B ; . Resolve E

5 for i = 1 : r do
6 V old(:, i) = sylvester(−A,Sv,BR) ; . Compute V (1)

7 V = V old;
8 for k = 2 : N do
9 V old, sum = 0;

10 for j = 1 : m do
11 V old, sum = N jV oldU

T
v,j ; . V old, sum =

∑m
j=1N j V

(k−1)UT
v,j

12 V new = sylvester(−A,Sv,V old, sum) ; . Compute V (k>1)

13 V old = V new;
14 V = V + V new;

to the computation of each column independently, solving linear Sylvester equations
does not require the diagonal structure of Sv or rather Sw. Consequently, it is possible
to apply transformations to the projection matrices after every iteration step or rather
before using the algorithm.
The only way to consider all subsystems is by vectorizing the whole bilinear Sylvester
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equation as seen for the Lyapunov equations and solve the system of equations. Hence,
we could compute V by solving

vec (V ) =

ST
v ⊗E − Ir ⊗A−

m∑
j=1
U v,j ⊗N j

−1

vec (BR)

and reshaping vec (V ) ∈ Rnr×1 into V ∈ Rn×r. Similar can be applied to the output
Sylvester equation and we obtain W by solving

vec (W ) =

Sw ⊗ET − Ir ⊗AT −
m∑
j=1
Uw,j ⊗NT

j

−1

vec
(
CTL

)

and reshaping vec (W ) ∈ Rnr×1 into W ∈ Rn×r. As mentioned, this approach is only
suitable for small-scale systems since we have to solve a system of equations in Rnr×nr.
The biggest upside of this approach is that it is the only way which does not require a
truncation and it therefore matches the whole Volterra series.
Remark 4.8 (Solving Bilinear Sylvester Equations). [8] Sometimes it might not be possi-
ble to solve the vectorized bilinear Sylvester equations due to the increasing dimensions
caused by the vectorization and Kronecker products. Hence, one should consider gen-
eralizing low rank solvers for linear Sylvester equations to bilinear Sylvester equations.
For more insight we refer to [3]. M

Remark 4.9 (Hermite Volterra Series Interpolation). Using equal shifts and weights to
compute the input and the output projection matrix is called Hermite interpolation. For
linear subsystem interpolation (which is included in the Volterra series framework if one
only considers the first subsystem) this yields a special feature. Constructing V andW
to match

G(σi)ri = Gr(σi)ri,
lTi G(σi) = lTi Gr(σi)

accordingly also matches

lTi G
′(σi)ri = lTi G

′
r(σi)ri.

Similar applies for bilinear systems. Hence, Hermite interpolation yields stronger mo-
ment matching conditions. M

Remark 4.10 (Computing Output Projection Matrix). As mentioned, it is possible to
compute the output projection matrix with a dual call of the presented algorithms.
Hence, we briefly discuss what the dual inputs look like. To compute the projection
matrix W we have to use

ET for E, AT for A, CT for B, NT
j for N j ,

Uw,j for U v,j , L for R, ST
w for Sv.

M

Remark 4.11 (Increase Stability Of Arnoldi Algorithm). Algorithm 4.1 computes the
projection matrices of each subsystem by use of the projection matrix of the previous
subsystem. This dependency potentially yields big projection matrices for a badly con-
ditioned bilinear system. To prevent that, one should consider an abort criterion which
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prevents the projection matrices grow above a certain threshold. Note, that this thresh-
old has to be less than your operating systems working precision.
In case of equal shifts for input and output interpolation, one might want to increase
the efficiency of the algorithm by reusing the LU-factors for computation of the output
projection matrices by transposing them. Our experiences have shown that this yields
a small error. Since we solve the linear system of equations N times, we make this error
N times and consequently it could grow significantly. With our benchmarks we were
not able to achieve plausible results by reusing the LU-factors for computation of the
output projection matrix. M

4.3.2 Multimoment Volterra Series Interpolation

Our goal is to extend the multipoint Volterra series interpolation to be able to match mul-
tiple high-order moments. Consequently, we call this framework multimoment Volterra
series interpolation. For the sake of understanding we first discuss only the input case.
Note that the following requires complicated indexes which we sometimes define through
functions. This is motivated by later finding a Sylvester equation representation. Within
this method we want to fulfill the following moment matching condition

∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r̃∑
l1=1
· · ·

r̃∑
lk−1=1

nσ̃l1
−1∑

i1=0
· · ·

nσ̃lk−1
−1∑

ik−1=0

nσ̃i −1∑
ik=0︸ ︷︷ ︸

additional sums
for multimoments

η j2,...,jk
l1,...,lk−1,i
i1,...,ik−1

M
(j2,...,jk)
k,(i1,··· ,ik)(σ̃l1 , . . . , σ̃lk−1 , σi) rrcol(l1)

≡
∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r̃∑
l1=1
· · ·

r̃∑
lk−1=1

nσ̃l1
−1∑

i1=0
· · ·

nσ̃lk−1
−1∑

ik−1=0

nσ̃i −1∑
ik=0︸ ︷︷ ︸

additional sums
for multimoments

η j2,...,jk
l1,...,lk−1,i
i1,...,ik−1

M
(j2,...,jk)
k,r,(i1,··· ,ik)(σ̃l1 , . . . , σ̃lk−1 , σi) rrcol(l1)

for each i = 1, . . . , r where

rcol(l) = 1 +
l−1∑
q=1

nσ̃q .

Hereby a tilde-shift σ̃i denotes the i-th unique shift, every nσ̃i denotes the multiplicity of
a certain shift σ̃i and r̃ denotes the number of unique shifts. Let us assume for now that
the weights are arbitrary. We define them later again through entries of a matrix U v,j .
Since finding a Sylvester equation requires U v,j and R to have a certain structure, we
are forced to define the weights with the indexes i1, . . . , ik−1 as well as the corresponding
tangential directions with the function rcol(l).

Example 4.5 (Indexes Of Multimoment Volterra Series Interpolation). Let us assume
that we want to interpolate with the following r = 5 shifts σ1 = σ2 6= σ3 = σ4 = σ5.
Since σ1 = σ2 and σ3 = σ4 = σ5 we have r̃ = 2 unique shifts σ̃1 and σ̃2. Hence, the
multiplicity of the first shift σ̃1 is nσ̃1 = 2 and the multiplicity of the second shift
σ̃2 is nσ̃2 = 3. Consequently, we have to match the 0-th and the 1-st moment for σ̃1
and the 0-th, the 1-st and the 2-nd moment for σ̃2. M
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To enlighten the moment matching condition even more we write all moments with
corresponding tangential directions of the first subsystem explicitly

nσ̃i−1∑
i1=0

M1,(i1)(σi) rĩ =
nσ̃i−1∑
i1=0

(−1)i1 C
[
(σiE −A)−1E

]i1 (σiE −A)−1Brĩ.

Note that we later define ĩ in (4.19), again corresponding to the required structure of R.
One can clearly determine that we obtain all moments from the 0-th to the (nσ̃i − 1)-th
for a multiplicity nσ̃i of the shift σ̃i. Let us also write explicitly all moments for the
second subsystem

m∑
j2=1

r̃∑
l1=1

nσ̃l1
−1∑

i1=0

nσ̃i−1∑
i2=0

η j2,...,jk
l1,2
i1

M
(j2)
2,(i1,i2)(σ̃l1 , σi) rrcol(l1) =

=
m∑
j2=1

r̃∑
l1=1

nσ̃l1
−1∑

i1=0

nσ̃i−1∑
i2=0

η j2
l1,i
i1

(−1)i1+i2 C
[
(σiE −A)−1E

]i2
× (σiE −A)−1N j2

[
(σ̃l1E −A)−1E

]i1 (σ̃l1E −A)−1Brrcol(l1).

By resorting the terms we can see that we combine all moments of the first subsystem
with all additional moments of the second subsystem

=
m∑
j2=1

nσ̃i−1∑
i2=0

(−1)i2 C
[
(σiE −A)−1E

]i2 (σiE −A)−1N j2

×

 r̃∑
l1=1

nσ̃l1
−1∑

i1=0
η j2
l1,i
i1

(−1)i1
[
(σ̃l1E −A)−1E

]i1 (σ̃l1E −A)−1Brrcol(l1)


︸ ︷︷ ︸

weighted combinations of moments of the first subsystem

.

Since the moment matching condition is different form the multipoint Volterra series
interpolation framework, we have to construct the projection matrix V with a slightly
different Krylov subspace

V ⊆ Kr
(
(σiE −A)−1E,vi

)
∈ Rn×r

where

vi =
∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r̃∑
l1=1
· · ·

r̃∑
lk−1=1

nσ̃l1
−1∑

i1=0
· · ·

nσ̃lk−1
−1∑

ik−1=0
η j2,...,jk
l1,...,lk−1,i
i1,...,ik−1

(σiE −A)−1N jk

×
[
(σ̃lk−1E −A)−1E

]ik−1 (σ̃lk−1E −A)−1N jk−1 · · ·

×N j2

[
(σ̃l1E −A)−1E

]i1 (σ̃l1E −A)−1B rrcol(l1).

Taking a closer look at the definition of the above Krylov subspace reveals that it is the
generalization of the multipoint Krylov subspace. The projection matrix V for

(σ1 = σ2 = . . . = σnσ̃1
)︸ ︷︷ ︸

σ̃1 with multiplicity nσ̃1

6= · · · · · · 6= (σ1+nσ1̃+···+nσr̃−1
= . . . = σnσ̃1+···+nσ̃r )︸ ︷︷ ︸

σ̃r̃ with multiplicity nσ̃r̃
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is given by

V =
[
v1 , (σ2E −A)−1E v2, · · · ,

[
(σnσ̃1

E −A)−1E
]nσ̃1−1

vnσ̃1
, · · ·

· · · , v1+nσ̃1+···+nσ̃r̃−1
, (σ2+nσ̃1+···+nσ̃r̃−1

E −A)−1E v2+nσ̃1+···+nσ̃r̃−1
,

· · · ,
[
(σnσ̃1+···+nσ̃r̃E −A)−1E

]nσ̃r̃−1
vnσ̃1+···+nσ̃r̃

]
∈ Rn×r

where r = nσ̃1 + · · ·+ nσ̃r̃ .

Example 4.6 (Multimoment Projection Matrix). Let us assume that we want to
reduce a SISO bilinear system with r = 3 shifts σ1 = σ2 6= σ3. With our choice of
shifts we get r̃ = 2 unique shifts σ̃1 with multiplicity nσ̃1 = 2 and σ̃2 with multiplicity
nσ̃2 = 1. Let us consider N = 2 subsystems. Hence, we have to construct the first
column of the projection matrix V as follows

v1 =
2∑

k=1

2∑
l1=1

nσ̃l1
−1∑

i1=0
η j2
l1,1
i1

(σ1E −A)−1N
[
(σ̃l1E −A)−1E

]i1
︸ ︷︷ ︸

=1 for k=1

(σ̃l1E −A)−1B rrcol(l1)

= (σ1E −A)−1B rrcol(1)

+
1∑

i1=0
η 1,1
i1

(σ1E −A)−1N
[
(σ̃1E −A)−1E

]i1 (σ̃1E −A)−1B rrcol(1)

+ η 2,1
0

(σ1E −A)−1N(σ̃2E −A)−1B rrcol(2).

Since the second column of V corresponds to the second interpolation point σ2 which
is equal to the shift corresponding to the previous column, we have to construct v2
with a high-order moment such that

v2 = (σ2E −A)−1E︸ ︷︷ ︸
high-order moment

2∑
k=1

2∑
l1=1

nσ̃l1
−1∑

i1=0
η j2
l1,2
i1

(σ2E −A)−1N

×
[
(σ̃l1E −A)−1E

]i1 (σ̃l1E −A)−1B rrcol(l1)

= (σ2E −A)−1E(σ2E −A)−1B rrcol(1)

+ (σ2E −A)−1E
1∑

i1=0
η 1,2
i1

(σ2E −A)−1N

×
[
(σ̃1E −A)−1E

]i1 (σ̃1E −A)−1B rrcol(1)

+ (σ2E −A)−1E η 2,2
0

(σ̃2E −A)−1N(σ̃2E −A)−1B rrcol(2).
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Finally, we can compute the third column corresponding to σ3 = σ̃2 as follows

v3 =
2∑

k=1

2∑
l1=1

nσ̃l1
−1∑

i1=0
η j2
l1,3
i1

(σ3E −A)−1N
[
(σ̃l1E −A)−1E

]i1 (σ̃l1E −A)−1B rrcol(l1)

= (σ3E −A)−1B rrcol(2)

+
nσ̃1−1∑
i1=0

η 1,3
i1

(σ3E −A)−1N
[
(σ̃1E −A)−1E

]i1 (σ̃1E −A)−1B rrcol(1)

+ η 2,3
0

(σ3E −A)−1N(σ̃2E −A)−1B rrcol(2).

M

For sake of completeness we introduce the interpolation condition with output tangential
directions

∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r̃∑
l1=1
· · ·

r̃∑
lk−1=1

nµ̃l1
−1∑

i1=0
· · ·

nµ̃lk−1
−1∑

ik−1=0

nµ̃i −1∑
ik=0︸ ︷︷ ︸

additional sums
for multimoments

ϑ j2,...,jk
l1,...,lk−1,i
i1,...,ik−1

lTrcol(l1)M
(j2,...,jk)
k,(i1,··· ,ik)(µi, µ̃lk−1 , . . . , µ̃l1)

≡
∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r̃∑
l1=1
· · ·

r̃∑
lk−1=1

nµ̃l1
−1∑

i1=0
· · ·

nµ̃lk−1
−1∑

ik−1=0

nµ̃i −1∑
ik=0︸ ︷︷ ︸

additional sums
for multimoments

ϑ j2,...,jk
l1,...,lk−1,i
i1,...,ik−1

lTrcol(l1)M
(j2,...,jk)
r,k,(i1,··· ,ik)(µi, µ̃lk−1 , . . . , µ̃l1) .

which we can fulfill if we build the projection matrix W with the following output
Krylov subspace

W ⊆ Kr
(
(µiE −A)−TET,wi

)
∈ Rn×r

where

wi =
∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r̃∑
l1=1
· · ·

r̃∑
lk−1=1

nµ̃l1
−1∑

i1=0
· · ·

nµ̃lk−1
−1∑

ik−1=0
ϑ j2,...,jk
l1,...,lk−1,i
i1,...,ik−1

(µiE −A)−TNT
jk

×
[
(µ̃lk−1E −A)−TET

]ik−1 (µ̃lk−1E −A)−TNT
jk−1 · · ·

×NT
j2

[
(µ̃l1E −A)−TET

]i1 (µ̃l1E −A)−TCT lrcol(l1).

The complete projection matrix W for
(µ1 = µ2 = . . . = µnµ1̃

)︸ ︷︷ ︸
µ1̃ with multiplicity nµ1̃

6= · · · · · · 6= (µ1+nµ1̃+···+nµr̃−1
= . . . = µnµ̃1+···+nµr̃ )︸ ︷︷ ︸

µr̃ with multiplicity nµ̃r̃

is given by

W =
[
w1 , (µ2E −A)−1Ew2 , · · · ,

[
(µnµ̃1

E −A)−1E
]nµ̃1−1

wnµ̃1
, · · ·

· · · w1+nµ1̃+···+nµr̃−1
, (µ2+nµ̃1+···+nµ̃r̃−1

E −A)−1Ew2+nµ̃1+···+nµ̃r̃−1
,

· · · ,
[
(µnµ̃1+···+nµ̃r̃E −A)−1E

]nµ̃r̃−1
wnµ̃1+···+nµ̃r̃

]
∈ Rn×r

where r = nµ̃1 + · · ·+ nµ̃r̃ .
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Sylvester Equations

We now want to derive the projection matrix V by solving the following bilinear Sylvester
equation

EV Sv −AV −
m∑
j=1
N j V U

T
v,j = BR,

where U v,j =
{
u

(a,b)
v,j

}
∈ Cr×r. And to show accordingly that we can obtain the projec-

tion matrix W by solving

ETW ST
w −ATW −

m∑
j=1
NT

j W UT
w,j = CTL

where Uw,j =
{
u

(a,b)
w,j

}
∈ Cr×r. As mentioned, we have to determine the structure of

Sv ∈ Cr×r, U v,j andR ∈ Cm×r (as well as of Sw ∈ Cr×r, Uw,j and L ∈ Cm×r) to be able
to represent the multimoment Volterra series framework as a Sylvester equation. Again
u

(a,b)
v,j denotes the entry in the a-th row and the b-th column of U v,j and analogously u(a,b)

w,j

denotes the entry in the a-th row and the b-th column of Uw,j . As for the multipoint
framework, it is necessary to define the weights with entries of the matrices U v,j and
Uw,j . In the following we will discover that U v,j and Uw,j have to have a certain
structure. Hence, the definitions of the weights get more complex

η j2,...,jk
l1,...,lk−1,i
i1,...,ik−1

= u
(̃i,ucol(lk−1,ik−1))
v,jk

u
(urow(lk−2),ucol(lk−3,ik−3))
v,jk−1

· · ·u(urow(l2),ucol(l1,i1))
v,j2

for k > 1

ϑ j2,...,jk
l1,...,lk−1,i
i1,...,ik−1

= u
(̃i,ucol(lk−1,ik−1))
w,jk

u
(urow(lk−2),ucol(lk−3,ik−3))
w,jk−1

· · ·u(urow(l2),ucol(l1,i1))
w,j2

for k > 1.

with

ĩ = 1 if i ≤ nσ̃1 ,

ĩ = 1 + nσ̃1 if nσ̃1 < i ≤ nσ̃1 + nσ̃2 ,

...
ĩ = 1 + nσ̃1 + . . .+ nσ̃r̃ if nσ̃1 + . . .+ nσ̃r̃−2 < i ≤ nσ̃1 + . . .+ nσ̃r̃−1 ,

urow(l) = 1 +
l−1∑
q=1

nσ̃q ,

ucol(l, i) = i+ 1 +
l−1∑
q=1

nσ̃q .

(4.19)

Note that the definition of ĩ also holds throughout the whole chapter. Let us again try
to find a linear Sylvester equation for each subsystem. Therefore, we once more write
V as a series

V =
∞∑
k=1

V (k) = V (1) + V (2) + V (3) + V (4) + · · · .
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Starting with the first subsystem, the i-th column v(1)
i of V (1) is defined as

v
(1)
i =

[
(σiE −A)−1E

]i1 (σiE −A)−1B rĩ (4.20)

where i = 1, . . . , r. i1 = 0 if the previous column was computed with a different shift
and i1 = q if the q previous columns where computed with the same shift. Let us write
the matrix V (1) in vectorized form while using the abbreviation Aσi := (σiE −A)−1



v
(1)
1

...

v
(1)
r



=



Aσ̃1

−E Aσ̃1

. . . . . .

−E Aσ̃1

. . .

Aσ̃r̃

−E Aσ̃r̃

. . . . . .

−E Aσ̃r̃



−1

(Ir ⊗B)



r1

0
...
0
...

r1+nσ̃1+···+nσ̃r̃
0
...
0


=
(
ST
v ⊗E − Ir ⊗A

)−1
(Ir ⊗B) vec (R) .

Under the constraint that every column of V (1) corresponding to a high-order moment
has null-vectors as tangential directions we are able to determine V (1) by solving the
following linear Sylvester equation

EV (1) Sv −AV (1) = BR (4.21)

where

Sv =



σ̃1 −1

σ̃1
. . .
. . . −1

σ̃1
. . .

σ̃r̃ −1

σ̃r̃
. . .
. . . −1

σ̃r̃



,

R =
[
r1 0 · · · 0 · · · r1+nσ̃1+···+nσ̃r̃ 0 · · · 0

]

. (4.22)
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For the second subsystem the i-th column v(2)
i of V (2) is defined as

v
(2)
i =

[
(σiE −A)−1E

]i2 m∑
j2=1

r̃∑
l1=1

nσl1
−1∑

i1=0
η j2
i1,i

(σiE −A)−1N j2

×
[
(σ̃l1E −A)−1E

]i1 (σ̃l1E −A)−1B rrcol(l1)

=
[
(σiE −A)−1E

]i2 m∑
j2=1

r∑
l1=1

u
(̃i,l1)
v,j2

(σiE −A)−1N j2v
(1)
l1

where i = 1, . . . , r. Note, that the sum with index l1 changes its upper limit if we compute
v

(2)
i by using the columns of the the projection matrix of the previous subsystem. Again,
i2 = 0 if the previous column was computed with a different shift and i2 = q if the q
previous columns where computed with the same shift. It is only possible to write V (2)

as a solution of a linear Sylvester equation if all rows of each U v,j which correspond to a
higher moment are zero-rows. While keeping this constraint in mind we can write V (2)

in its vectorized form still using the abbreviation Aσi := (σiE −A)−1



v
(2)
1

...

v
(2)
r



=



Aσ̃1

−E Aσ̃1

. . . . . .

−E Aσ̃1

. . .

Aσ̃r̃

−E Aσ̃r̃

. . . . . .

−E Aσ̃r̃



−1

×
m∑
j=1



u
(1,1)
v,j N j · · · · · · u

(1,r)
v,j N j

0 · · · · · · 0
...

...
0 · · · · · · 0

· · ·
u

(uind,1)
v,j N j · · · · · · u

(uind,r)
v,j N j

0 · · · · · · 0
...

...
0 · · · · · · 0





v
(1)
1

...

v
(1)
r


=
(
ST
v ⊗E − Ir ⊗A

)−1 m∑
j=1

(U v ⊗N j) vec
(
V (1)

)
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where uind = 1 + nσ̃1 + · · ·+ nσ̃r̃−1 . Hence, V (2) solves

EV (2) Sv −AV (2) =
m∑
j=1
N j V

(1)UT
v,j

only, if Sv and each U v,j have following structure

Sv =



σ̃1 −1

σ̃1
. . .
. . . −1

σ̃1
. . .

σ̃r̃ −1

σ̃r̃
. . .
. . . −1

σ̃r̃



,U v,j =



u
(1,1)
v,j · · · · · · u

(1,r)
v,j

0 · · · · · · 0
...

...
0 · · · · · · 0

· · ·
u

(f,1)
v,j · · · · · · u

(f,r)
v,j

0 · · · · · · 0
...

...
0 · · · · · · 0



.

(4.23)

We can continue this until the k-th subsystem where each column v(k)
i of V (k) is defined

as follows

v
(k)
i =

[
(σiE −A)−1E

]ik
×

m∑
j2=1
· · ·

m∑
jk=1

r̃∑
l1=1
· · ·

r̃∑
lk−1=1

nσl1
−1∑

i1=0
· · ·

nσlk−1
−1∑

ik−1=0
η j2,...,jk
i1,...,ik−1,i
i1,...,ik−1

(σiE −A)−1N jk

×
[
(σ̃lk−1E −A)−1E

]ik−1 (σ̃lk−1E −A)−1N jk−1 · · ·

×N j2

[
(σ̃l1E −A)−1E

]i1 (σ̃l1E −A)−1B rrcol(l1)

=
[
(σiE −A)−1E

]ik m∑
jk=1

r∑
lk−1

u
(̃i,lk−1)
v,jk

(σiE −A)−1N jkv
(k−1)
lk−1

(4.24)

Thus, V (k) solves the following linear Sylvester equation

EV (k) Sv −AV (k) =
m∑
j=1
N j V

(k−1)UT
v,j for k ≥ 2 (4.25)

if Sv and U v,j have the structure given in (4.23). While combining (4.21) and (4.25),
letting k → ∞ and complying structures for Sv, U v,j , R as shown in (4.22), (4.23) we
can find a bilinear Sylvester equation

EV Sv −AV −
m∑
j=1
N j V U

T
v,j = BR
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whose solution is V . With an analog approach we can show that every W (k) solves the
following linear Sylvester equations

ETW (1) ST
w −ATW (1) = CTL

ETW (k) ST
w −ATW (k) =

m∑
j=1
NT

j W
(k−1)UT

w,j for k ≥ 2

where Sw, Uw,j , L have to fulfill following structures

Sw =



µ̃1

−1 µ̃1
. . . . . .

−1 µ̃1
. . .

µ̃r̃

−1 µ̃r̃
. . . . . .

−1 µ̃r̃



, Uw,j =



u
(1,1)
w,j · · · · · · u

(1,r)
w,j

0 · · · · · · 0
...

...
0 · · · · · · 0

· · ·
u

(uind,1)
w,j · · · · · · u

(uind,r)
w,j

0 · · · · · · 0
...

...
0 · · · · · · 0



,

L =
[
l1 0 · · · 0 · · · l1+nµ̃1+···+nµ̃r̃ 0 · · · 0

]
(4.26)

where uind = 1+nµ̃1 + · · ·+nµ̃r̃−1. If (4.26) holds one could combine the linear Sylvester
equations to

ETW ST
w −ATW −

m∑
j=1
NT

j W UT
w,j = CTL.

Concluding, we can obtain a multimoment projection matrix by solving a Sylvester
equation if:

• Sv or rather ST
w have Jordan blocks for equal shifts,

• U v or rather Uw have null-rows for rows which correspond to a high-order column
of V or rather W ,

• R or rather L have null-columns for columns which correspond to a high-order
column of V or rather W .

Example 4.7 (Multi-Moment SISO Sylvester Equation). Let us reduce a SISO bi-
linear system ζ. Therefore, we use r = 2 shifts σ1 = σ2, the tangential directions
r1 = 1, r2 = 0 and the weight matrix

U v =

u(1,1)
v u

(1,2)
v

0 0

 .
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Hence, we can obtain the projection matrix V by solving

EV

σ1 −1
0 σ2

−AV −NV
u(1,1)

v 0
u

(1,2)
v 0

 = b
[
1 0

]
,

EV Sv −AV −NV U v = b rT.

M

Example 4.8 (Multi-Moment And Multipoint SISO Sylvester Equation). Let us re-
duce a SISO bilinear system ζ. Therefore, we use r = 3 shifts σ1 = σ2 6= σ3, the
"tangential directions" r1 = 1, r2 = 0, r3 = 1 and the weights matrix

U v =


u

(1,1)
v u

(1,2)
v u

(1,3)
v

0 0 0
u

(3,1)
v u

(3,2)
v u

(3,3)
v

 .
Hence, we can obtain the projection matrix V by solving

EV


σ1 −1 0
0 σ2 0
0 0 σ3

−AV −NV

u

(1,1)
v 0 u

(3,1)
v

u
(1,2)
v 0 u

(3,2)
v

u
(1,3)
v 0 u

(3,3)
v

 = b
[
1 0 1

]
,

EV Sv −AV −NV U v = b rT.

M

Computing Projection Matrices

Let us extend the previously introduced Arnoldi algorithm (Algorithm 4.1) to be able to
compute projection matrices for high-order moments. Note that solving linear Sylvester
equations as well as solving the bilinear Sylvester equation is similar to the multipoint
Volterra series interpolation as long as the conditions for Sv, U v and R hold.
While recalling that we can truncate the Volterra series and consequently write V as

V ≈
N∑
k=1

V (k) (4.27)

we can find a formula for each column of each V (k)

v
(1)
i =

[
(σiE −A)−1E

]i1 (σiE −A)−1B ri

v
(k)
i =

[
(σiE −A)−1E

]ik m∑
jk=1

r∑
lk−1=1

u
(̃i,lk−1)
v,jk

(σiE −A)−1N jkv
(k−1)
lk−1

for k ≥ 2.

Each ik = 0 if the previous column was computed with another shift and ik = q if the q
previous columns were computed with the same shift. With this we can give a modified
Arnoldi algorithm 4.3 which inherits the following constraints:
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• U v has null-rows for rows which correspond to a high-order column of V ,

• R has null-columns for columns which correspond to a high-order column of V .

Note, that it is very important to compute the LU-factors for each shift only once as done
in Algorithm 4.3 Line 2. The index li means that we choose the LU-factors corresponding
to the current shift σi.
Remark 4.12 (Multimoment Volterra Series Interpolation With Arbitrary Weights). We
do not recommend using arbitrary weights. One should recall the definition of the
moments. The q-th moment is the q-th derivative of the transfer function defined by a
Taylor expansion. Thus, for each subsystem we actually match a weighted Taylor series
for a certain combination of interpolation points. If one chooses arbitrary weights and
tangential directions such that corresponding multimoments are not weighted the same,
one chooses terms from different weighted Taylor series. In other words: this would not
weight the terms of the Taylor series equally. Since a Taylor series increases its accuracy
with more considered terms, it is quite obvious that it is important to consider the whole
series in order to increase accuracy. M
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Algorithm 4.3 : Efficient Arnoldi Algorithm For Computing Projection Matrices
Modification For Multimoments
Data : bilinear system ζ, sorted interpolation points σ1, . . . , σr, unique interpolation

points σ1̃, . . . , σr̃, number of unique interpolation points r̃, interpolation weights
Uv, tangential directions R, truncation index N

Result : approximated projection matrix V
1 for l = 1 : r̃ do
2 [Ll,U l] = lu(σ̃lE −A) ; . Compute LU factors for unique shifts

3 for i = 1 : r do
4 if i > 1 && σi 6= σi−1 then
5 V old(:, i) = U li\ (Lli\ (BR(:, i))) ; . Compute V (1)

6 else
7 V old(:, i) = U li\ (Lli\ (EV old(:, i− 1))) ; . high-order moment

8 V = V old;
9 for k = 2 : N do

10 for i = 1 : r do
11 if i > 1 && σi 6= σi−1 then
12 vtemp = 0;
13 for l = 1 : r do
14 for j = 1 : m do
15 vtemp = vtemp +Uv,j(i, l)N jV old(:, l);

16 V new(:, i) = U li\ (Lli\vtemp) ; . Compute V (k>1)

17 else
18 V new(:, i) = U li\ (Lli\ (EV new(:, i− 1))) ; . high-order moment

19 V old = V new;
20 V = V + V new;
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4.3.3 Other Special Cases

To complete the Volterra series interpolation framework we discuss certain special cases.
First we take a closer look at the Block Krylov case. After that, we show how we
can obtain projection matrices for Markov Parameters. Finally, we determine which
constraints the interpolation data has to fulfill to obtain real projection matrices while
using complex expansion points.

Block Krylov

As mentioned in the fundamentals, it is possible to build a Krylov subspace with two
matrices which is called block Krylov. Applied to the Volterra series interpolation this
means not to consider tangential directions. Hence, the input block Krylov subspace for
multipoint and multimoment Volterra series interpolation is defined as follows

V ⊆ Kr
(
(σiE −A)−1E,V i

)
∈ Rn×rm

where

V i =
∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r̃∑
l1=1
· · ·

r̃∑
lk−1=1

nσ̃l1
−1∑

i1=0
· · ·

nσ̃lk−1
−1∑

ik−1=0
η j2,...,jk
l1,...,lk−1,i
i1,...,ik−1

(σiE −A)−1N jk

×
[
(σ̃lk−1E −A)−1E

]ik−1 (σ̃lk−1E −A)−1N jk−1 · · ·

×N j2

[
(σ̃l1E −A)−1E

]i1 (σ̃l1E −A)−1B.

As we can see the projection matrix V is now ∈ Rn×rm. Since we do not want to
introduce a new framework for block Krylov we try to derive a way to integrate block
Krylov in the existing one. Therefore, we assume that we only consider one subsystem.
With this assumption we can compute each part-matrix V i of V =

[
V 1, · · · ,V r

]
as

follows

V i =
[
(σiE −A)−1E

]i1 (σiE −A)−1B

where i = 1, . . . , r. i1 = 0 if the previous matrix V i−1 was computed with a different shift
and i1 = q if the q previous matrices were computed with the same shift. Consequently,
each column vi,j of V i is defined as

vi,j =
[
(σiE −A)−1E

]i1 (σiE −A)−1bj

where bj denotes the j-th column of B. To somehow apply this to our existing frame-
works we can multiply the formula for V i with Rĩ = Im from the left which yields

V i =
[
(σiE −A)−1E

]i1 (σiE −A)−1BRĩ.

where ĩ is defined in (4.19). Hence, we can compute each column of V i with

vi,j =
[
(σiE −A)−1E

]i1 (σiE −A)−1Brĩ,j =
[
(σiE −A)−1E

]i1 (σiE −A)−1bj

where ri,j denotes the j-th column of Ri. To obtain a Sylvester equation representation
we have to use one shift σi m-times in the interpolation point matrix Sv without using
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Jordan blocks. We also have to set Ri to zero if it corresponds to a high-order moment
V i. Finally, we have to enlarge each U v,j such that each weight gets repeatedm-times in
row direction and m-times in column direction such that the enlarged U v,j is in Rrm×rm.
To preserve the Jordan structure of Sv one could change the order of columns of V since
this does not change the basis of V . The following examples illustrate the enlargement
of the matrices.

Example 4.9 (Multipoint Block Krylov). Let us assume we want to reduce a MIMO
bilinear system with m = 3 inputs with r = 2 shifts σ1 6= σ2. Therefore, we use the
weight matrices

U v,j =

u(1,1)
v,j u

(1,2)
v,j

u
(2,1)
v,j u

(2,2)
v,j


and no tangential directions. As mentioned we can use a unit matrix for each
tangential direction such that

R =
[
R1, R2

]
where

R1 = R2 =


1

1
1

 .
To get the correct block Krylov projection matrix we have to match each shift m = 3
times and extend the weights accordingly which results in the following Sv and U v,j

matrices

Sv =



σ1

σ1

σ1

σ2

σ2

σ2


,Uv,j =



u
(1,1)
v,j u

(1,1)
v,j u

(1,1)
v,j u

(1,2)
v,j u

(1,2)
v,j u

(1,2)
v,j

u
(1,1)
v,j u

(1,1)
v,j u

(1,1)
v,j u

(1,2)
v,j u

(1,2)
v,j u

(1,2)
v,j

u
(1,1)
v,j u

(1,1)
v,j u

(1,1)
v,j u

(1,2)
v,j u

(1,2)
v,j u

(1,2)
v,j

u
(2,1)
v,j u

(2,1)
v,j u

(2,1)
v,j u

(2,2)
v,j u

(2,2)
v,j u

(2,2)
v,j

u
(2,1)
v,j u

(2,1)
v,j u

(2,1)
v,j u

(2,2)
v,j u

(2,2)
v,j u

(2,2)
v,j

u
(2,1)
v,j u

(2,1)
v,j u

(2,1)
v,j u

(2,2)
v,j u

(2,2)
v,j u

(2,2)
v,j


.

M

Example 4.10 (Multipoint And Multimoment Block Krylov). Let us assume we want
to reduce a MIMO bilinear system withm = 2 inputs with r = 3 shifts σ1 = σ2 6= σ3.
Therefore, we use the weight matrices

U v,j =


u

(1,1)
v,j u

(1,2)
v,j u

(1,3)
v,j

0 0 0
u

(2,1)
v,j u

(2,2)
v,j u

(2,3)
v,j


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and no tangential directions. As mentioned we can use a unit matrix for each
tangential direction such that

R =
[
R1, R2, R3

]
where

R1 = R3

1
1

 , R2 = 0.

To get the correct block Krylov projection matrix we have to match each shift m = 2
times and extend the weights accordingly. Hence, it follows that

Sv =



σ1 −1
σ1 −1

σ2

σ2

σ3

σ3


,Uv,j =



u
(1,1)
v,j u

(1,1)
v,j u

(1,2)
v,j u

(1,2)
v,j u

(1,3)
v,j u

(1,3)
v,j

u
(1,1)
v,j u

(1,1)
v,j u

(1,2)
v,j u

(1,2)
v,j u

(1,3)
v,j u

(1,3)
v,j

0 0 0 0 0 0
0 0 0 0 0 0

u
(2,1)
v,j u

(2,1)
v,j u

(2,2)
v,j u

(2,2)
v,j u

(2,3)
v,j u

(2,3)
v,j

u
(2,1)
v,j u

(2,1)
v,j u

(2,2)
v,j u

(2,2)
v,j u

(2,3)
v,j u

(2,3)
v,j


.

With the above we obtain a projection matrix

V =
[
v1, v2, v3, v4, v5, v6

]
∈ Rn×6. (4.28)

To preserve the Jordan structure of Sv we could also use

R =

1 0 0 0 1 0
0 0 1 0 0 1


and

Sv =



σ1 −1
σ2

σ1 −1
σ2

σ3

σ3


,Uv,j =



u
(1,1)
v,j u

(1,1)
v,j u

(1,2)
v,j u

(1,2)
v,j u

(1,3)
v,j u

(1,3)
v,j

0 0 0 0 0 0
u

(1,1)
v,j u

(1,1)
v,j u

(1,2)
v,j u

(1,2)
v,j u

(1,3)
v,j u

(1,3)
v,j

0 0 0 0 0 0
u

(2,1)
v,j u

(2,1)
v,j u

(2,2)
v,j u

(2,2)
v,j u

(2,3)
v,j u

(2,3)
v,j

u
(2,1)
v,j u

(2,1)
v,j u

(2,2)
v,j u

(2,2)
v,j u

(2,3)
v,j u

(2,3)
v,j


to compute Ṽ . V and Ṽ are related by a change in columns such that

Ṽ =
[
v1, v3, v2, v4, v5, v6

]
∈ Rn×6. (4.29)

M
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Markov Parameters

As mentioned, the k-th Markov Parameter is the k-th transfer function expanded by
a Taylor series at the expansion point s → ∞. Let us recall the definition of the k-th
Markov Parameter

M
(j1,...,jk)
k,∞,(i1,··· ,ik) = C

[
(E−1A)−1

]i1
E−1N jk · · ·E−1N j2

[
(E−1A)−1

]ik
E−1B.

Since the above formula does not consider choosing infinity together with finite expan-
sions points we want to give a more general formula

M
(j1,...,jk)
k,(i1,··· ,ik)(σ1, · · · , σk) = C

[
(σ1E −A)−1E

]i1 (σ1E −A)−1︸ ︷︷ ︸
if σ1=∞ then

=[(E−1A)−1]i1 E−1

N jk · · ·

×N j2

[
(σkE −A)−1E

]ik (σkE −A)−1︸ ︷︷ ︸
if σk=∞ then

=[(E−1A)−1]ikE−1

B.

As one can see it is not possible to write the above in a consistent mathematical manner.
Therefore, we waive defining the corresponding Krylov subspace as well as the interpo-
lation conditions and continue with a heuristic approach to modify Algorithm 4.3 for
Markov Parameters. In this sense we want to generalize the formulas for each column
of V (1) or rather V (k) which yields

v
(1)
i =

[
(σiE −A)−1E

]i1 (σiE −A)−1︸ ︷︷ ︸
if σi=∞ then

=[(E−1A)−1]i1 E−1

B ri

v
(k)
i =

m∑
jk=1

r∑
lk−1

u
(i,lk−1)
v,jk

[
(σiE −A)−1E

]ik (σiE −A)−1︸ ︷︷ ︸
if σi=∞ then

=[(E−1A)−1]ikE−1

N jkv
(k−1)
lk−1

for k ≥ 2.

Hereby, ik = 0 if the previous column vki−1 was computed with a different shift and
ik = q if the q previous columns were computed with the same shift. This allows us to
give the generalized Arnoldi Algorithm 4.4 which is able to compute high-order moments
as well as Markov Parameters and high-order Markov Parameters. This algorithm uses
the same conditions for the interpolation data for multimoment Markov Parameters as
for finite multimoments.
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Algorithm 4.4 : Efficient Arnoldi Algorithm For Computing Projection Matrices
Modification For Multimoments Including Markov Parameters
Data : bilinear system ζ, sorted (σ1, . . . , σr) and unique σ̃1, . . . , σ̃r interpolation points,

amount distinct shifts r̃, weights Uv, tangential directions R, truncation index N
Result : approximated projection matrix V

1 for l = 1 : r̃ do
2 [Ll,U l] = lu(σ̃lE −A) ; . Compute LU factors for unique shifts

3 if any(σi ==∞) then
4 [L∞,U∞] = lu(E) ; . Compute LU factors for Markov Parameters

5 if nσ∞ > 1 then
6 [L∞,higher,U∞,higher] = lu(U∞\ (L∞\A));

7 for i = 1 : r do
8 if i > 1 && σi 6= σi−1 then
9 if σi ==∞ then

10 V old(:, i) = U∞\ (L∞\ (BR(:, i))) ; . Compute Markov Parameter

11 else
12 V old(:, i) = U li\ (Lli\ (BR(:, i))) ; . Compute V (1)

13 else
14 if σi ==∞ then
15 V old(:, i) = U∞,higher\ (L∞,higher\ (V old(:, i− 1))) ; . high-order Markov

16 else
17 V old(:, i) = U li\ (Lli\ (EV old(:, i− 1))) ; . high-order moment

18 V = V old;
19 for k = 2 : N do
20 for i = 1 : r do
21 if i > 1 && σi 6= σi−1 then
22 vtemp = 0;
23 for l = 1 : r do
24 for j = 1 : m do
25 vtemp = vtemp +Uv,j(i, l)N jV old(:, l);

26 if σi ==∞ then
27 V new(:, i) = U∞\ (L∞\vtemp) ; . Compute V (k>1) for Markov

28 else
29 V new(:, i) = U li\ (Lli\vtemp) ; . Compute V (k>1)

30 else
31 if σi ==∞ then
32 V new(:, i) = U∞,higher\ (L∞,higher\ (V new(:, i−1))); B high-order Markov

33 else
34 V new(:, i) = U li\ (Lli\ (EV new(:, i− 1))) ; . high-order moment

35 V old = V new;
36 V = V + V new;
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Complex Expansion Points

As it turns out, it is important to consider complex expansion points e.g. for BIRKA.
Using complex expansion points results in a complex projection matrix which then results
in a reduced system with complex matrices. To avoid that, we try to find a transforma-
tion for V or rather W which allows us to obtain a real projection matrix Ṽ = V T v
or rather W̃ = WTw. With the invariance of Sylvester equations we know that trans-
forming the projection matrices comes with a transformation of the interpolation data.
Hence, we address the problem of finding transformation matrices T v and Tw by trying
to make the shift matrices Sv and Sw real. If it then is possible to obtain real inter-
polation data by application of the transformation matrix, we can conclude that the
transformed projection matrices also have to be real. Hence, if we find a transformation
matrix, we can compute the projection matrix with the imaginary interpolation data
and after that transform it to real numbers. Let us recall the transformed Sylvester
equations and the corresponding interpolation data

E Ṽ S̃v −AṼ −
m∑
j=1
N j Ṽ Ũ

T
w,j = B R̃,

ET W̃ S̃w
T −AT W̃ −

m∑
j=1
NT

j W̃ Ũ
T
w,j = CT W̃

where
S̃v = T−1

v SvT v, Ũ v,j = T T
vU v,jT

−T
v , R̃ = RT v,

S̃w = T T
wSwT

−T
w , Ũw,j = T T

wUw,jT
−T
w , L̃ = LTw.

The first step is to find a transformation matrix which eliminates the imaginary part in
Sv or rather Sw so that S̃v and S̃w are real matrices. It is possible to show that the
following transformation matrix

T =



1
2

1
2 i

1
2 −1

2 i
. . .

1
2

1
2 i

1
2 −1

2 i


, T−1 =



1 1
− i i

. . .

1 1
− i i


makes Sv and Sw real if both have only complex conjugated pairs on their diagonal such
that

Sv =



σ1

σ̄1
. . .

σr

σ̄r


, Sw =



µ1

µ̄1
. . .

µr

µ̄r


.

Hereby σ̄ denotes the complex conjugated of σ. Note that it is important that the first
shift of a complex conjugated pair is always the one which has the negative imaginary
part.
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Example 4.11 (Making Shift Matrix Real). Let us assume we use σ1 = 1 − i and
σ2 = 1 + i to reduce a bilinear system. Hence, the shift matrix Sv is given by

Sv =

1− i
1 + i

 .
The above implies that it is possible to obtain a real S̃v = T−1

v SvT v if we use the
following transformation matrix

T v =

1
2

1
2 i

1
2 −1

2 i

 , T−1
v =

 1 1
− i i

 .
Applying this to Sv yields

S̃v = T−1
v SvT v =

 1 1
− i i

1− i
1 + i

1
2

1
2 i

1
2 −1

2 i


=

 1 1
− i i

1
2 − 1

2 i 1
2 + 1

2 i
1
2 + 1

2 i 1
2 − 1

2 i


=

 1 1
−1 1

 .
(4.30)

M

As one might want to simultaneously use complex conjugated paired expansion points
and real expansion points we can generalize the transformation matrix. Let the shift
matrix have following structure

Sv =



σ1

σ̄1
. . .

σrimag

σ̄rimag

σrimag+1
. . .

σr



(4.31)
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where σ1, · · · , σrimag ∈ C with the corresponding complex conjugated pairs σ̄1, · · · , σ̄rimag ∈
C and σrimag+1, · · · , σr ∈ R. To obtain a real S̃v = T−1

v SvT v we have to use following
projection matrix

T =



1
2

1
2 i

1
2 −1

2 i
. . .

1
2

1
2 i

1
2 −1

2 i
1

. . .

1



, T−1 =



1 1
− i i

. . .

1 1
− i i

1
. . .

1



.

Obviously, one could use the same projection matrices to obtain a real S̃w = T T
wSwT

−T
w

where Sw has a similar structure as Sv shown in (4.31).
The second step is to check if it is possible to make the other interpolation data real
with the above transformation matrix. It is possible to derive conditions concerning
the structure of the tangential directions and weights to obtain real interpolation data.
Since it is complicated to generalize these conditions to cover all cases (multipoint, mul-
timoment), we use a more heuristic and straightforward approach: we simply transform
the tangential directions and weights and check if the transformed data is real. If this is
the case we can compute the projection matrices with the imaginary interpolation data
and after that make them real as follows

V real = V T v,

W real = WTw.
(4.32)

Hereby, T v is the transformation matrix corresponding to the structure of Sv and Tw
is the transformation matrix corresponding to the structure of Sw. Note that it is not
possible to compute the projection matrix with transformed interpolation data by use
ot the presented Arnoldi algorithms as we loose the diagonal structure of Sv which is
crucial for computing each column independently.
Remark 4.13 (Efficient Computing Of Columns Corresponding To Complex Conjugated
Pairs). Looking at the transformation matrix we can see that the columns corresponding
to complex conjugated interpolation points also have to be complex conjugated if it is
possible to make the projection matrix real. Hence, it is possible to compute only
one column of the projection matrix corresponding to two shifts which are complex
conjugated. The other column could then simply be obtained by conjugating the previous
column which is significantly faster than solving an additional system of equations. M

4.4 H2-Optimal Reduction

To complete this chapter, we want to discuss H2-optimal model reduction. Hereby, our
goal is to reduce a bilinear system ζ such that the reduced model ζr minimizes the
following quality criterion

E = ‖ζ − ζr‖2H2 .



84 Chapter 4. Model Reduction Of Bilinear Systems

To compute ζr, we first have to define the necessary conditions which ζr has to fulfill
for H2-optimality. After that we show that it is possible to obtain an H2-optimal ROM
by using the Volterra series interpolation. Finally, we derive an iterative method which,
assuming it converges, yields an H2-optimal ROM.

Error System And Quality Criterion

To minimize our quality criterion E we first have to find a meaningful expression for E.
Therefore, we briefly recapitulate the error system and after that derive an equation for
E which depends on Λr, B̃, C̃ and Ñ r,j , the system matrices of the diagonalized ROM.
As mentioned, it is possible to write

E = ‖ζ − ζr‖2H2 = ‖ζerr‖2H2 = tr
(
CerrP errC

T
err
)
.

Assuming that we can diagonalize the reduced system we write E−1
r Ar = XrΛrX

−1
r

where Xr holds the right eigenvectors of the pair E−1
r Ar and Λr the corresponding

distinct eigenvalues. With this we can transform ζr in diagonal form and the matrices
of the error system are given by

Eerr =

E 0
0 Ir

 , Aerr =

A 0
0 Λr

 , N err,j =

N j 0
0 X−1

r E−1
r N r,jXr

 =

N j 0
0 N̂ r,j


Berr =

 B

X−1
r E−1

r Br

 =

B
B̂r

 , Cerr =
[
C −CrXr

]
=
[
C −Ĉr

]
.

While assuming that ζerr is controllable P err follows by solving

AerrP errE
T
err +EerrP errA

T
err +

m∑
j=1
N err,jPN

T
err,j = −BerrB

T
err

with vectorization such that

vec (P err) = −
Eerr ⊗Aerr +Aerr ⊗Eerr +

m∑
j=1
N err,j ⊗N err,j

−1

vec
(
BerrB

T
err
)
.

To obtain an expression for E which contains the result for vec (P err) we follow [5] and
use the following properties of the trace of a matrix

tr (ABC) = tr (CAB) = tr (BCA) ,

tr (AC) = vec
(
AT
)T

vec (C) .

Hence, we write

E = ‖ζerr‖2H2
= tr

(
CerrP errC

T
err
)

= tr
(
CT

errCerrP err
)
.

With the second property we obtain

E = tr
(
CT

errCerrP err
)

= vec
((
CT

errCerr
)T
)T

vec (P err) = vec
(
CT

errCerr
)T

vec (P err) .
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In the next step we substitute vec(P err) and consequently E is given by

E = vec
(
CT

errCerr
)T
−Eerr ⊗Aerr −Aerr ⊗Eerr −

m∑
j=1
N err,j ⊗N err,j

−1

vec
(
BerrB

T
err
)
.

With Definition 3.2 it is possible to excludeCerr andBerr from the vectorization operator
such that

vec
(
CT

errCerr
)T

= vec
(
CT

err IpCerr
)T

=
((
CT

err ⊗CT
err
)
vec(Ip)

)T
= vec(Ip)T (Cerr ⊗Cerr) ,

vec
(
BerrB

T
err
)

= vec
(
Berr ImBT

err
)

= (Berr ⊗Berr) vec(Im)

with which we can rewrite E as follows

E = vec(Ip)T (Cerr ⊗Cerr)

−Eerr ⊗Aerr −Aerr ⊗Eerr −
m∑
j=1
N err,j ⊗N err,j

−1

× (Berr ⊗Berr) vec(Im)

= vec(Ip)T
([
C −Ĉr

]
⊗
[
C −Ĉr

])(
−
E 0

0 Ir

⊗
A 0

0 Λr

−
A 0

0 Λr

⊗
E 0

0 Ir


−

m∑
j=1

N j 0
0 N̂ r,j

⊗
N j 0

0 N̂ r,j

)−1B
B̂r

⊗
B
B̂r

 vec(Im).

(4.33)

With (4.33) we have determined an expression for E which in fact depends on Λr, B̃,
C̃ and Ñ r,j and makes it possible to obtain the necessary optimality conditions [5].

First Order Necessary Conditions

Since we try to find the minimum of E it is obvious that we have to derive E with
respect to the optimization parameters Λr, B̃, C̃ and Ñ r,j . We do not want to show the
derivation as it is illustrated in [5, Lemma 4.3.1] starting from (4.33). As a result ζr has
to fulfill following four conditions to ensure H2-optimal reduction. The first condition
follows by ∂E

∂C̃
(i,ii)
r

= 0 where C̃(i,ii)
r denotes the entry in the i-th row and ii-th column

of C̃r. Note, that in the following equations we use ei which is a unit vector with one in
the i-th position. To keep the notation simpler we suppose that the size of the vectors
is clear by the context. Hence, the first condition is given by

vec(Ip)T
(
eie

T
ii ⊗C

)−Λr ⊗E − Ir ⊗A−
m∑
j=1
N̂ r,j ⊗N j

−1 (
B̂r ⊗B

)
vec(Im)

≡

vec(Ip)T
(
eie

T
ii ⊗ Ĉr

)−Λr ⊗ Ir − Ir ⊗Λr −
m∑
j=1
N̂ r,j ⊗ N̂ r,j

−1 (
B̂r ⊗ B̂r

)
vec(Im).

(4.34)
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We obtain the second condition by ∂E

∂B̃
(i,ii)
r

= 0

vec(Ip)T
(
Ĉr ⊗C

)−Λr ⊗E − Ir ⊗A−
m∑
j=1
N̂ r,j ⊗N j

−1 (
eie

T
ii ⊗B

)
vec(Im)

≡

vec(Ip)T
(
Ĉr ⊗ Ĉr

)−Λr ⊗ Ir − Ir ⊗Λr −
m∑
j=1
N̂ r,j ⊗ N̂ r,j

−1 (
eie

T
ii ⊗ B̂r

)
vec(Im).

(4.35)

The third condition is the result of ∂E
∂λr,i

= 0 where λr,i denotes the eigenvalues of Λr

vec(Ip)T
(
Ĉr ⊗C

)−Λr ⊗E − Ir ⊗A−
m∑
j=1
N̂ r,j ⊗N j

−1

× eieT
i ⊗E

−Λr ⊗E − Ir ⊗A−
m∑
j=1
N̂ r,j ⊗N j

−1 (
B̂r ⊗B

)
vec(Im)

≡

vec(Ip)T
(
Ĉr ⊗ Ĉr

)−Λr ⊗ Ir − Ir ⊗Λr −
m∑
j=1
N̂ r,j ⊗ N̂ r,j

−1

× eieT
i ⊗ Ir

−Λr ⊗ Ir − Ir ⊗Λr −
m∑
j=1
N̂ r,j ⊗ N̂ r,j

−1 (
B̂r ⊗ B̂r

)
vec(Im).

(4.36)

Finally, the fourth condition is derived from ∂E

∂Ñ
(i,ii)
r,j

= 0

vec(Ip)T
(
Ĉr ⊗C

)−Λr ⊗E − Ir ⊗A−
m∑
j=1
N̂ r,j ⊗N j

−1

× eieT
ii ⊗N j

−Λr ⊗E − Ir ⊗A−
m∑
j=1
N̂ r,j ⊗N j

−1 (
B̂r ⊗B

)
vec(Im)

≡

vec(Ip)T
(
Ĉr ⊗ Ĉr

)−Λr ⊗ Ir − Ir ⊗Λr −
m∑
j=1
N̂ r,j ⊗ N̂ r,j

−1

× eieT
ii ⊗ N̂ r,j

−Λr ⊗ Ir − Ir ⊗Λr −
m∑
j=1
N̂ r,j ⊗ N̂ r,j

−1 (
B̂r ⊗ B̂r

)
vec(Im).

(4.37)

Concluding, if a reduced bilinear system ζr fulfills the conditions (4.34), (4.35), (4.36)
and (4.37) then ζr locally minimizes E and vice versa.
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Constructing An H2-Optimal Reduced System

From the structure of the optimality conditions one might notice a link with the Volterra
series interpolation framework. To clarify this link we expand the left-hand-side of (4.34)
as a Neumann series. In addition to that we write

(
B̃r ⊗B

)
vec(Im) as BB̃T

r which
yields

vec(Ip)T
(
eie

T
ii ⊗C

)−Λr ⊗E − Ir ⊗A−
m∑
j=1
N̂ r,j ⊗N j

−1 (
B̂r ⊗B

)
vec(Im)

=
∞∑
k=0

vec(Ip)T
(
eie

T
ii ⊗C

)(−Λr ⊗E − Ir ⊗A)−1
m∑
j=1
N̂ r,j ⊗N j

k

× (−Λr ⊗E − Ir ⊗A)−1BB̂
T
r .

If we define R = B̂
T and write the matrices explicitly

=
∞∑
k=0

vec(Ip)T
(
eie

T
ii ⊗C

)


(−λ1E −A)−1

. . .

(−λrE −A)−1


m∑
j=1


n̂

(1,1)
r,j N j · · · n̂

(1,r)
r,j N j

...
...

n̂
(r,1)
r,j N j · · · n̂

(r,r)
r,j N j



k


(−λ1E −A)−1

. . .

(−λrE −A)−1



Br1
...

Brr


we can determine the well-known structure from the vectorized Sylvester equations.
In addition to that, if we look at each i − ii-combination and apply the vectorization
backwards it follows that the above is equal to

∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

η j2,...,jk
l1,...,lk−1,i

G
(j2,...,jk)
k,� (−λl1 , . . . ,−λlk−1 ,−λi) rl1

which apparently is a weighted series over all transfer functions of the FOM evaluated at
−λi for i = 1, . . . , r and multiplied by the corresponding tangential vectors. Hereby the
weights are defined by U v,j = N̂ r,j and the tangential directions by R = B̂

T
r . We follow

the same procedure for the right hand side in (4.34) and since the transfer function of
a diagonalized system is equal to the regular transfer function (G(j2,...,jk)

diag,k,� (s1, . . . , sk) =
G

(j2,...,jk)
k,� (s1, . . . , sk)) we can conclude that (4.34) yields the following Volterra series

interpolation moment matching condition

∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

η j2,...,jk
l1,...,lk−1,i

G
(j2,...,jk)
k,� (−λl1 , . . . ,−λlk−1 ,−λi) rl1

≡
∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

η j2,...,jk
l1,...,lk−1,i

G
(j2,...,jk)
k,r,� (−λl1 , . . . ,−λlk−1 ,−λi) rl1

(4.38)
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for i = 1, . . . , r.
We can apply this analogously to (4.35) and receive the following output Volterra series
interpolation moment matching condition

∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

ϑ j2,...,jk
l1,...,lk−1,i

lTl1 G
(j2,...,jk)
k,� (−λi,−λlk−1 , . . . ,−λl1)

≡
∞∑
k=1

m∑
j2=1
· · ·

m∑
jk=1

r∑
l1=1
· · ·

r∑
lk−1=1

ϑ j2,...,jk
l1,...,lk−1,i

lTl1 G
(j2,...,jk)
k,r,� (−λi,−λlk−1 , . . . ,−λl1).

(4.39)

Hereby, i = 1, . . . , r, the interpolation points are the same reflected eigenvalues as for
(4.38), L = Ĉr and the weights are defined by Uw,j = N̂

T
r,j . As we know from the

Volterra series interpolation, we can fulfill (4.38) and (4.39) by projecting the FOM
with the projection matrices V andW . This projection matrices could be computed by
solving following Sylvester equations

EV (−Λr)−AV −
m∑
j=1
N j V N̂

T
r,j = B B̂

T
r

ETW (−Λr)T −ATW −
m∑
j=1
NT

j W N̂ r,j = CT Ĉr.

(4.40)

To ensure H2-optimality we have to prove that the construction of the ROM with V
and W additionally fulfills (4.36) and (4.37). Therefore, we write (4.36) as

vec(Ip)T
(
Ĉr ⊗C

)−Λr ⊗E − Ir ⊗A−
m∑
j=1
N̂ r,j ⊗N j

−1

︸ ︷︷ ︸
=vec(W )T

× eieT
i ⊗E

−Λr ⊗E − Ir ⊗A−
m∑
j=1
N̂ r,j ⊗N j

−1 (
B̂r ⊗B

)
vec(Im)

︸ ︷︷ ︸
=vec(V )

≡

vec(Ip)T
(
Ĉr ⊗ Ĉr

)−Λr ⊗ Ir − Ir ⊗Λr −
m∑
j=1
N̂ r,j ⊗ N̂ r,j

−1

︸ ︷︷ ︸
=vec(W r)T

× eieT
i ⊗ Ir

−Λr ⊗ Ir − Ir ⊗Λr −
m∑
j=1
N̂ r,j ⊗ N̂ r,j

−1 (
B̂r ⊗ B̂r

)
vec(Im)

︸ ︷︷ ︸
=vec(V r)

⇒ vec (W )T
(
eie

T
i ⊗E

)
vec (V ) ≡ vec (W r)T

(
eie

T
i ⊗ Ir

)
vec (V r)

where we can see that the following link must hold to fulfill the equation

vec (V ) = (Ir ⊗ V X) vec (V r) , (4.41)

vec (W ) =
(
Ir ⊗WE−T

r X−T
r
)
vec (W r) . (4.42)
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Let us write the equations for vec (V r) and vec (V ) without inverting the terms in the
brackets−Λr ⊗ Ir − Ir ⊗Λr −

m∑
j=1
N̂ r,j ⊗ N̂ r,j

 vec (V r) =
(
B̂r ⊗ B̂r

)
vec(Im), (4.43)

−Λr ⊗E − Ir ⊗A−
m∑
j=1
N̂ r,j ⊗N j

 vec (V ) =
(
B̂r ⊗B

)
vec(Im). (4.44)

Assuming that (4.41) holds, we substitute vec (V ) in (4.44) which yields−Λr ⊗E − Ir ⊗A−
m∑
j=1
N̂ r,j ⊗N j

 (Ir ⊗ V X) vec (V r) =
(
B̂r ⊗B

)
vec(Im).

Multiplying the above from the left with Ir⊗X−1
r E−1W T indeed yields (4.43) as shown

in the following(
Ir ⊗X−1

r E−1W T
)(
−Λr ⊗E − Ir ⊗A

−
m∑
j=1
N̂ r,j ⊗N j

)
(Ir ⊗ V ) vec (V r) =

(
B̂r ⊗B

)
vec(Im)

⇒
(
−Λr ⊗X−1

r E−1W TEV − Ir ⊗X−1
r E−1W TAV

−
m∑
j=1
N̂ r,j ⊗X−1

r E−1W TN jV

)
vec (V r) =

(
B̂r ⊗X−1

r E−1W TB
)
vec(Im)

⇒
−Λr ⊗ Ir − Ir ⊗Λr −

m∑
j=1
N̂ r,j ⊗ N̂ r,j

 vec (V r) =
(
B̂r ⊗ B̂r

)
vec(Im).

Consequently, (4.41) holds. We could write the equations for vec (W r) and vec (W )
without the inverse−ΛT

r ⊗ IT
r − Ir ⊗ΛT

r −
m∑
j=1
N̂

T
r,j ⊗ N̂

T
r,j

 vec (W r) =
(
Ĉ

T
r ⊗ Ĉ

T
r
)
vec(Ip),−ΛT

r ⊗ET − Ir ⊗AT −
m∑
j=1
N̂

T
r,j ⊗NT

j

 vec (W ) =
(
Ĉ

T
r ⊗CT

)
vec(Ip).

Substituting vec (W ) and multiplying the resulting equation from the left with XTV T

shows that (4.42) holds. Concluding, the computation of the projection matrices by
(4.40) fulfills the necessary condition (4.36). Analogously to that, we could proof that
(4.37) is fulfilled.

Iterative Algorithm To Obtain An H2-Optimal Reduced System

Finally, we come up with an algorithm which yields the H2-optimal ROM. As pointed
out in [12] it is possible to interpret the search for the optimal ROM as a search for roots
of

g(σ) = λ(σ) + σ
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such that g(σ) = 0. Hereby, σ = {σ1, . . . , σr} is a set of interpolation points and λ(σ) =
{λ1, . . . , λr} contains the eigenvalues of the resulting ROM constructed with σ for an
input and output Volterra series interpolation such that all fourH2-optimality conditions
are fulfilled. We approach this root finding problem by using Newton’s method. Thus
we formulate

σ(k+1) = σ(k) − (Ir + J)
(
σ(k) + λ(σ(k))

)
(4.45)

where J denotes the Jacobian of λ(σ) with respect to σ. As proposed in [12] we set
J = 0 with the argumentation that the Jacobian is reasonably small in regions around
optimal shifts σ. Consequently, (4.45) results in

σ(k+1) = −λ(σ(k)).

The simplified iteration yields the BIRKA algorithm. After making an initial guess we
compute the projection matrices V and W such that the H2-optimality conditions are
satisfied. Afterwards we construct the new ROM and compute its eigenvalues. Then
we take the reflected eigenvalues as new interpolation points, use the eigenvectors of the
corresponding ROM to compute the new interpolation data and with that we compute
new projection matrices V and W .

Algorithm 4.5 : BIRKA
Data : bilinear system ζ, reduced order r
Result : H2-optimal ζr

1 Sv = Sw = zeros(r); . initial guess for interpolation data

2 Uv,j = Uw,j = ones(r);
3 R = ones(m, r);
4 L = ones(p, r);
5 while not converged do
6 Solve . compute projection matrices

7 EV Sv −AV −
∑m
j=1N j V U

T
v,j = BR,

8 ETW ST
w −ATW −∑m

j=1N
T
j W UT

w,j = CTL

9 with proposed methods (vectorization, Algorithm 4.1, Algorithm 4.2).
10 Er = W TEV ; . applying projection → new reduced system

11 Ar = W TAV ;
12 N r,j = W TN jV ;
13 Br = W TB;
14 Cr = CTV ;
15 E−1

r Ar = XrΛrX
−1
r ; . eigenvalue decomposition

16 Sv = Sw = −Λr; . new interpolation data

17 UT
w,j = Uv,j = XT

r E
−1
r N r,jX

−T
r ;

18 RT = X−1
r E−1

r Br;
19 L = CXr;

Remark 4.14 (Truncated BIRKA). Note that in literature most of the times BIRKA gets
presented together with the truncated bilinear rational Krylov algorithm (TBIRKA).
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This algorithm uses methods to compute the projection matrices which do not consider
the whole Volterra series. Consequently, we should call Algorithm 4.5 TBIRKA if we
do not solve the bilinear Sylvester equations and in this sense do not consider the whole
Volterra series. M

Remark 4.15 (Convergence Criterion For BIRKA). As for every iterative algorithm we
also need a convergence criterion for BIRKA. An obvious choice would be to check if
E is smaller than a certain tolerance. This requires solving a Lyapunov equation in
Rn+r×n+r, which is not possible (or at least not useful) in the large-scale setting due to
lack of storage. Hence, we want to propose alternatives. One could compute the relative
H2-error of the previous ROM and the current ROM and check if it is lower than a
certain tolerance. Similar to that, one could compute the relative difference between the
current interpolation points and the previous ones. M

Remark 4.16 (Initial Starting Point For BIRKA). Another important question to answer
is the question about the initial guess since the convergence of a Newton’s method highly
depends on the starting point. Hence, we want to present some ideas proposed in [12]
for the linear case. As we might expect the eigenvalues of Ar close to the eigenvalues
of A we could choose values in the reflected range of the eigenvalues of A. Another
approach would be to choose those eigenvalues of A which correspond to the largest
residues. Both approaches require a modal decomposition of the FOM which is a tough
task in the large-scale domain. It turned out that an initial guess which is not to big
most of the times yields convergence. Hence, in the implementation, we use zero as our
initial shifts. M
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Chapter 5

Numerical Examples

Within this chapter we test the previously discussed algorithms. Therefore, we first
introduce our benchmark models: the Fokker Plank equation and a heat transfer model.
After that, we show the results of our numerical tests. In this regard, we start by compar-
ing multipoint and multimoment Volterra series interpolation. Following, we compare
Volterra series interpolation with different truncation indexes. Finally, we investigate
initial points of H2-optimal reduction and compare BIRKA and truncated BIRKA.

5.1 Benchmark Models

Let us introduce our benchmark models which we will use for all our tests. Taking up the
Itô-type linear stochastic differential equations from Chapter 2, we present the Fokker
Plank equation. After that, we outline a standard bilinear benchmark: a heat transfer
model of a steel profile.

Fokker Plank

The Fokker Plank equation generally describes the chronological sequence of a proba-
bility density function under the influence of drag. Let us briefly recapitulate on [13]
where it is visualized how to obtain such equation. Considering a Brownian particle on
the real line assuming states x ∈ R which is restricted by a double-well potential

W (x) = (x2 − 1)2.

Supposing, we want to drag the Brownian particle from one well to the other well which
e.g. in atomic force microscopy is done by an optical tweezer. Then, the motion of the
Brownian particle could be described by the following stochastic differential equation

dXt = −∇V (Xt, t) dt+
√

2σ dWt

where V (x, t) = W (x) = −ux, 0 < σ < 1
2 and Xt denotes the position of the particle

at time t. The movement could equivalently be described by the particle’s probability
density function

ρ(x, t) dx = P [Xt ∈ [x, x+ dx)]

93
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which is defined by the Fokker Plank equation

∂ρ

∂t
= σ∆ρ+∇ · (ρ∇V ).

Spatial discretization of this parabolic problem directly yields a bilinear system. Follow-
ing [5] we use a finite element discretization which results in a SISO bilinear system of
size n = 500. Since it is difficult to realize the whole probability distribution, we use the
probability of the particle being in one specific well as an output.

Heat Transfer

In [4] a boundary controlled heat transfer system is introduced. The dynamics are
described by the heat equation subject to Dirichlet and Robin boundary conditions
which could mathematically be expressed as follows

xt = ∆x in (0, 1)× (0, 1)
n · ∇x = 0.75 · u1,2,3(x− 1)∆x on Γ1,Γ2,Γ3,

x = u4 on Γ4,

where Γ1,Γ2,Γ3,Γ4 denote the boundaries of Ω. The heat transfer coefficients u1,2,3,4
can be interpreted, e.g. as spraying-intensities of a cooling-fluid on the corresponding
boundaries. The boundary conditions and a finite discretization of the Poisson equation
using k grid points yields a bilinear system of dimension n = k2 with four inputs and
one output. We implemented the system with k = 40 grid points, resulting in system
dimensions n = 1600, to prove that the algorithms also work in the larger-scale domain.

5.2 Examples

In the following we present the results of our benchmarks. First, we compare multimo-
ment and multipoint Volterra series interpolation in terms of interpolation quality and
duration. After that, we vary the amount of considered subsystems to illustrate the
subsystem’s influence. Lastly, we compare BIRKA to truncated BIRKA and investigate
different starting point strategies.

5.2.1 Multipoint And Multimoment Volterra Series Interpolation

For our first test we start by reducing both benchmark models to order r = 20. Therefore,
we perform multimoment, mixed (multimoment and multipoint) and multipoint input
Volterra series interpolation. For both models we use the following interpolation points
s0:

• multimoment: s0 = 10 ∗ ones(1,20),

• mixed:

s0 = [1, 1, 1, 1, 1, 10, 10, 10, 10, 10,
100, 100, 100, 100, 100, 1000, 1000, 1000, 1000, 1000],
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• multipoint:

s0 = [1, 2, 4, 6, 8, 10, 20, 40, 60, 80,
100, 200, 400, 600, 800, 1000, 2000, 4000, 6000, 8000].

For the Fokker Plank model we use the following weight matrix, only containing ones

U v = ones(20).

Since the heat transfer model is a system with four inputs we have to use four weight
matrices and additionally tangential directions which we choose also as ones

U v,1,...,4 = ones(20),

R = ones(4, 20).

Note, that in case of higher order moments, we set the corresponding columns and rows
to zero. For the Fokker Plank equation we choose a Heaviside step function (u(t) = σ(t))
as an input and for all four inputs of the heat transfer model u1,...,4(t) = sin(2t).
In Fig. 5.1 we can observe that the multimoment and mixed Volterra series interpolated
models yield similar results compared to the FOM. The multipoint Volterra series ROM
could not capture the right dynamics. Let us give a brief explanation for this phenomena.
The multipoint Volterra series framework depends far more on the right interpolation
data compared to matching higher order moments which causes zero rows in the weight
matrices. The importance of the right interpolation data is shown by the result of the
H2-optimal model. It captures the right dynamics and yields the smallest relative error.
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Figure 5.1: Multimoment compared to multipoint Volterra series interpolation of Fokker
Plank with reduced order 20



96 Chapter 5. Numerical Examples

In case of the heat transfer model, we can see in Fig. 5.2 that all frameworks yield a
good approximation. All reduced systems could capture the dynamics and the mixture
of multipoint and multimoment Volterra series interpolation performs slightly better
than the other ones.
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Figure 5.2: Multimoment compared to multipoint Volterra series interpolation of heat
transfer model with reduced order 20

Upcoming, we reduce both systems to order r = 40. Therefore, we use the following
interpolation points s0 for both benchmark models:

• multimoment: s0 = 10 ∗ ones(1,40),

• mixed:

s0 = [1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 10, 10, 10, 10, 10,
50, 50, 50, 50, 50, 100, 100, 100, 100, 100, 500, 500, 500, 500, 500,
1000, 1000, 1000, 1000, 1000, 10000, 10000, 10000, 10000, 10000],

• multipoint:

s0 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
200, 300, 400, 500, 600, 700, 800, 900, 1000, 1100,
2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000, 10100, 10200].

To reduce the Fokker Plank model we choose a matrix containing ones as weights

U v = ones(40).
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For the heat transfer model we use ones as weights and tangential directions. Hence,
the matrices are given by

U v,1,...,4 = ones(40),

R = ones(4, 40).

Again, we set the columns and rows inR and U v corresponding to higher order moments
to zero. We choose the same inputs as for the reduction to order r = 20.
In Fig. 5.3 we can see the results for the Fokker Plank equation. The multipoint Volterra
series interpolation could not capture the right dynamics. This time, the mixture of both
frameworks performs slightly better than multimoment Volterra series interpolation.
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Figure 5.3: Multimoment compared to multipoint Volterra series interpolation of Fokker
Plank with reduced order 40

The results for the heat transfer model are shown in Fig. 5.4. As expected, the accuracy
of all frameworks increased due to the higher order of the ROM.
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Figure 5.4: Multimoment compared to multipoint Volterra series interpolation of heat
transfer model with reduced order 40
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5.2.2 Truncated Volterra Series Interpolation

In the following we present the importance of the amount of considered subsystems.
Therefore, we reduce both benchmark models to order r = 20 using the same interpo-
lation data as above for the mixed reduction. Consequently, we simulated the reduced
system with the same inputs and computed the relative error of each reduced system.
The results for the Fokker Plank model shown in Fig. 5.5 demonstrate that the accu-
racy of the reduced system increases significantly with a higher amount of considered
subsystems.
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Figure 5.5: Truncated Volterra series interpolation of Fokker Plank with reduced order
20 and different amounts of considered subsystems

The results for the heat transfer system shown in Fig. 5.6 yield a different outcome.
Considering more than two subsystems does not result in much better performance.
This is owed to the small bilinear character (all N j matrices have entries only on their
diagonals) of this model. Concluding, it depends on the bilinear system how many sub-
systems are necessary to obtain the wished accuracy, but in general, the error decreases
with a higher amount of considered subsystems.
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Figure 5.6: Truncated Volterra series interpolation of heat transfer model with reduced
order 20 and different amount of considered subsystems

5.2.3 H2-Optimal Reduced Model

Finally, we want to investigate H2-optimal reduction. Therefore, we begin by comparing
BIRKA to TBIRKA. After that, we discuss different initialization strategies.

BIRKA Compared To TBIRKA

We start by showing the difference between the quality of H2-optimal models gained
with BIRKA and TBIRKA. In this sense, we reduce the Fokker Plank equation with
BIRKA, TBIRKA considering N = 5 subsystems and TBIRKA considering N = 15
subsystems. As one can see in Fig. 5.7 BIRKA and TBIRKA considering 15 subsystems
yield the same results. TBIRKA considering 5 subsystems yields even better results.
Hereby, we do not want to forget that we look at relative errors. In this case the relative
errors might differ a lot but the absolute errors do not.
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Figure 5.7: BIRKA compared to TBIRKA results for Fokker Plank
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Figure 5.8: TBIRKA results compared for heat transfer model

For the heat transfer model we used BIRKA, TBIRKA considering N = 2 subsystems
and TBIRKA considering N = 5 subsystems. BIRKA suffered crucially from conver-
gence and could not yield a stable reduced model. This is due to the fact which we
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discussed in Remark 4.6. As we can see in Fig. 5.8, it does not make a big difference
weather we consider N = 2 or N = 5 subsystems. This coincides with the results in
Fig. 5.6.

Initialization Strategies

Finally, we want to investigate initialization strategies for BIRKA or rather TBIRKA.
In this sense, we compare choosing arbitrary interpolation data, zeros as initial shifts
and ones as weights or rather tangential directions and choosing interpolation data which
corresponds to the FOM. We realize the last strategy by choosing the interpolation data
as follows

[X, D] = eigs(A, E, r), s0 = −diag(D).’,

U v,j = 1
norm(E) norm(N j) ones(r), Uw,j = U v,j ,

R = 1
norm(E) norm(X) norm(B) ones(m, r), L = norm(X) norm(C) ones(p, r).

Note, that eigs(A, E, r) computes the first r eigenvalues and corresponding eigen-
vectors of A and E. In the following we reduce both benchmark models to an order
r = 16.
For the Fokker Plank model we use BIRKA to obtain the H2-optimal model. As we can
see in Table 5.1, the results for choosing arbitrary initial interpolation data and ones
and zeros are similar. Since choosing random interpolation data is non-deterministic,
the outcomes vary a lot and the results should not get over interpreted. Choosing
interpolation data which is related to the FOM did not yield any stable results.

Table 5.1: Different initialization strategies compared using the Fokker Plank system

Strategies Iterations Relative Error

Random Interpolation Data 52 1.4295e-4
Zeros And Ones 55 1.4294e-4
Similar To FOM no convergence -

For the heat transfer system we used TBIRKA considering two subsystems. Hereby,
it was also possible to obtain a reduced order model by choosing random interpolation
data. Setting all initial shifts to zero did not yield any convergence. Due to the properties
of the system matrices and the fact that we match higher order moments in the first
TBIRKA iteration the projection matrices in this step had hardly full rank at working
precision. This resulted in close to singular system matrices of the first ROM. Hence,
the eigenvalues have not been complex pairs anymore and the algorithm canceled the
computation. Fortunately, it was possible to obtain a reduced order model with initial
interpolation data, which is related to the FOM.
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Table 5.2: Different initialization strategies compared using the heat transfer system

Strategies Iterations Relative Error

Random Interpolation Data 13 4.5653e-2
Zeros And Ones no convergence -
Similar To FOM 21 3.4475e-2

Summarizing, it crucially depends on system properties of the FOM which initialization
yields good results. Concerning Table 5.1 and Table 5.2, one might think that it is always
possible to obtain a ROM while using random initial interpolation data. As mentioned,
the results for this approach varied a lot and sometimes did not result in a stable ROM,
in other words BIRKA or rather TBIRKA did not converge.
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Chapter 6

Conclusions And Outlook

6.1 Summary And Conclusions

The main contributions of this thesis are in-depth understanding of bilinear systems,
insight in the implementation of the Volterra series framework and the extension of the
Volterra series framework to MIMO systems as well as to match higher order moments.
While dealing with different representations of bilinear systems in Chapter 2 and the
system theory of bilinear systems in Chapter 3 we discovered that convergence of the
Volterra series and BIBO stability are strongly connected. In this context we found a
specific constraint which the input has to fulfill to ensure convergence.
To improve the comprehensibility of the Volterra series framework, we illustrated the
theory with many examples. With Algorithm 4.4 we proposed an implementation of the
Volterra series framework which covers all special cases.
The multimoment Volterra series interpolation framework turned out to be very challeng-
ing to represent mathematically. Due to the obtained constraints for the interpolation
data, a general formulation of the moment matching conditions was only possible with
complex indexes. Nevertheless, this framework still is easy to implement as shown in
Algorithm 4.4 since one only has to add another condition which captures higher or-
der moments. Obviously, the multimoment framework requires less LU-decomposition
which decreases computational effort. As the numerical examples have shown, a mix-
ture of multipoint and multimoment Volterra series interpolation yields the the best
results as one considers all globally relevant dynamics as well as local dynamics more
precisely. Finally, multimoment Volterra series interpolation reduces the importance of
the tangential directions and weights since columns and rows of the interpolation data
corresponding with higher order moments are zero. This is, especially for unknown sys-
tem properties, of major advantage.
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6.2 Future Work

Within the toolbox, we implemented the proposed Arnoldi algorithm (Algorithm 4.4)
and the vectorization of the bilinear Sylvester equations. As mentioned, one could
customize low rank solvers for linear Sylvester equations to be able to solve bilinear
Sylvester equations. Since Algorithm 4.4 tends to be unstable for badly conditioned
problems, one should consider an implementation of a low rank solver which probably
yields a more stable result.
As mentioned, we implemented BIRKA rather heuristically without computing the Ja-
cobian. To improve convergence, one could generalize BIRKA to Newton-BIRKA as
proposed for linear systems in [12]. Therefore, a way to compute the Jacobian has to be
found.
We only considered the implementation of Volterra series interpolation and BIRKA. As
mentioned there exist several other model reduction frameworks. Consequently, an im-
plementation of subsystem interpolation and the Gramian-based approaches as balanced
truncation are missing. Especially, for the Gramian-based approach one should use the
existing solvers for bilinear Lyapunov equations as the dimensions grow crucially and
the vectorization approach is not suitable due to the lack of storage.



Appendix A

Notation

A.1 Special operators and symbols

Trace of a Matrix

The trace of a matrix A ∈ Rm×n is defined as the sum over all diagonal entries aii which
yields

tr(A) =
n∑
i=1

aii. (A.1)

A.2 List of symbols

Typographical symbols

� end of a proof
M end of a remark or example
N end of a definition

Mathematical symbols

i imaginary unit
In identity matrix in Rn×n

0 zero matrix
T transformation matrix
Λ matrix with eigenvalues on its diagonal
X matrix with right eigenvectors
λ(A) eigenvalue of A
Hp Hardy p-norm
Lp Lebesgue p-norm
× multiplication
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A.3 Abbreviations and acronyms

BIBO bounded-input bounded-output

BIRKA bilinear rational Krylov algorithm

DAE differential algebraic equations

FOM full order model

MIMO multiple-input multiple-output

ODE ordinary differential equations

PDE partial differential equations

ROM reduced order model

SISO single-input single-output

TBIRKA truncated bilinear rational Krylov algorithm
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