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Abstract  

Lane changing is known to have a substantial influence on traffic flow characteristics due to its 

interfering effect on the surrounding traffic, most importantly the increase in drivers’ workload 

and stress level. In recent years, technological innovation in the automotive industry 

accelerated the emergence of automated vehicles allowing technology to alleviate some 

demanding driving tasks, including lane changing maneuvers. One of the significant 

challenges continues to be the penetration of automated vehicles into the current 

transportation system and the associated mixed-traffic. Operating automated vehicles in 

conjunction with human drivers introduces mixed-traffic complexities that present unique 

challenges to effectively predict the driving and mimic the overall social behaviors of drivers. 

A commonly used tool for developing and evaluating the impact of automated vehicles in 

various scenarios, including mixed-traffic situations is microscopic traffic simulation. 

Unfortunately, most of the available microscopic simulation tools are based on rule-based lane 

changing models. These models do not account for all factors including driving behavior norms 

and heterogeneous driving behavior, which – as the research suggests – ultimately results in 

unrealistic and biased findings because that the simulation does not account for realizable 

trade-offs among the factors such as speed, acceleration, jerk, and safety when performing 

the task of driving. 

The goal of this dissertation is to provide a generic data-driven approach for modeling lane 

changing behavior via a series of data gathering techniques based entirely on real-world 

observations. The proposed approach allows the lane changing model to dynamically assess 

and learn socially acceptable driving behavior based on observations of the surrounding 

driving environment, including other human drivers facing the same real-world conditions. This 

method provides a realistic, non-rule-based model that accounts for both the tactical and 

operational behavior of lane changing. The proposed approach also accounts for stochasticity 

among human drives, which enables more accurate investigations and outcome projections 

using traditional microscopic traffic simulation. 

This modeling technique requires real data from the driving behavior of human drivers, and 

once collected, uses it to develop data-driven models for the tactical and operational behavior 

of drivers for the application in microscopic traffic simulations. The data was collected from 

traffic video recordings at an on-ramp to an urban freeway in Munich. After post-processing 13 

hours of recorded videos, individual vehicle trajectories were extracted and processed using 

clustering methods to categorize human driving behaviors into three clusters: 

“timid”, ”moderate” and “aggressive”. Driving behaviors categorized as “aggressive” were then 

purposely excluded from the training data, which is used subsequently for modeling the lane 

changing behavior for automated vehicles to eliminate the undesirable characteristics and 

unsafe maneuvers from the dataset.  



  

 

The decision to change lanes is recognized as a tactical decision and is executed in varying 

units of time ranging from seconds to minutes based entirely on immediate driving, traffic and 

environmental circumstances. Modeling the tactical lane changing behavior was done by 

deploying a supervised Machine Learning (ML) algorithm that simultaneously takes into 

account the status of the “ego vehicle”, surrounding dynamic objects such as other road users, 

and environmental components such as road infrastructure. Defining these parameters in the 

feature vector enabled the algorithm to establish the classifier as a prediction – with a high 

degree of certainty – on whether the driver will ultimately decide to perform a lane change to 

the right, to the left or remain in the current lane. 

At a subconscious level, a driver executes action patterns in milliseconds to respond to the 

immediate traffic situation. Operational behavior modeling during lane changing was 

developed using the ‘Inverse Reinforcement Learning’ (IRL) method. In this method, the 

agent’s policy or behavioral history is an established variable, and the goal of ML is to 

determine the reward function that explains the given behavior, resulting in the automatic 

extraction of the respective rewards from the respective observation. This model uses the 

‘Markov Decision Process’ (MDP), which is a mathematical framework for modeling 

decision-making situations where outcomes are partly random and partly controlled by the 

decision-maker. 

Both models were integrated into the SUMO (Simulation of Urban MObility) software to 

evaluate the overall ability of the approach to simulate traffic realistically and compared its 

performance and transferability when faced with unseen events in the training dataset. The 

integrated model was evaluated by comparing the network throughput, the distribution of 

Time-To-Collisions (TTC) and the number of lane changes with the default lane changing 

model in SUMO. The simulation results indicate that the proposed integrated modeling 

approach is capable of realistically simulating the lane changing behavior of both normal 

drivers and automated vehicles and it outperforms the underlying models in SUMO. Moreover, 

the model successfully executes plausible lane changing maneuvers in unseen traffic 

situations. 

  



  

 

Kurzfassung   

Fahrstreifenwechsel haben einen erheblichen Einfluss auf die Eigenschaften des 

Verkehrsflusses. Dies resultiert aus der störenden Wirkung auf den umgebenden Verkehr. 

Zusätzlich erhöhen Fahrstreifenwechsel die Arbeitsbelastung und das Stresslevel der 

Fahrzeuglenker. In den letzten Jahren beschleunigten technologische Innovationen in der 

Automobilindustrie die Entwicklung automatisierter Fahrzeuge, die die Erleichterung einige der 

anspruchsvollen Fahraufgaben, einschließlich Fahrstreifenwechselmanöver, ermöglichen. 

Eine der großen Herausforderungen ist nach wie vor die Durchdringung automatisierter 

Fahrzeuge und der damit einhergehende Mischverkehr. Der Betrieb automatisierter 

Fahrzeuge in Interaktion mit menschlichen Fahrern führt zu komplexen Verkehrssituationen. 

Dies stellt einzigartige Herausforderungen für die effektive Vorhersage der Fahrmanöver und 

Trajektorien und die Nachahmung des Verhaltens menschlicher Fahrer dar. 

Ein gängiges Tool zur Entwicklung und Bewertung der Auswirkungen automatisierter 

Fahrzeuge in verschiedenen Szenarien, einschließlich Mischverkehrssituationen, ist die 

mikroskopische Verkehrssimulation. Allerdings basieren die meisten der verfügbaren 

mikroskopischen Simulationswerkzeuge auf regelbasierten Fahrstreifenwechselmodellen. 

Diese Modelle berücksichtigen bisher allerdings noch nicht alle Faktoren im notwendigen 

Detaillierungsgrad, einschließlich Fahrverhaltensnormen, welches - wie diese Forschung zeigt 

- letztlich zu unrealistischen und verzerrten Ergebnissen führt. Dies geschieht, da die 

Simulation nicht den realisierbaren Kompromiss zwischen den Faktoren Geschwindigkeit, 

Beschleunigung, Ruck und Sicherheit bei der Erfüllung der Fahraufgabe berücksichtigt. 

Das Ziel dieser Dissertation ist es, einen generischen datengetriebenen Ansatz für die 

Modellierung des Fahrstreifenwechselverhaltens zu entwickeln, der vollständig auf realen 

Beobachtungen basiert. Der vorgeschlagene Ansatz ermöglicht es ein gesellschaftlich 

akzeptables Fahrverhalten dynamisch zu bewerten und zu erlernen, welches auf realen 

Beobachtungen der Umgebung, einschließlich anderer menschlicher Fahrer basiert. Diese 

Methode bietet ein realistisches, nicht regelbasiertes Modell, das sowohl das taktische als 

auch das operationale Verhalten beim Fahrstreifenwechsel berücksichtigt. Der 

vorgeschlagene Ansatz berücksichtigt auch das stochastisches Verhalten menschlicher 

Fahrer. Dies ermöglicht  genauere Untersuchungen und Ergebnisprognosen auf Basis von 

traditionellen mikroskopischen Verkehrssimulationen. 

Diese Modellierungstechnik benötigt reale Fahrverhaltensdaten menschlicher Fahrer und 

entwickelt daraus datengesteuerte Modelle für das taktische und operationale Verhalten von 

Fahrern für die Anwendung in mikroskopischen Verkehrssimulationen. Die Daten wurden aus 

Verkehrsvideoaufnahmen an einer Einfahrt zu einer Stadtautobahn in München gesammelt. 

Nach der Nachbearbeitung von aufgezeichneten Videos mit einer Dauer von 13 Stunden 

wurden einzelne Fahrzeugtrajektorien extrahiert und mit Hilfe von Clustering-Methoden 

verarbeitet, um das menschliche Fahrverhalten in drei Cluster einzuteilen: "konservativ", 

"moderat" und "aggressiv". Als "aggressiv" eingestuftes Fahrverhalten wurde dann bewusst 



  

 

aus den Daten ausgeschlossen, welche als Basis für die weitere Modellierung fungieren. 

Genauer gesagt werden unerwünschte Eigenschaften und unsichere Manöver aus dem 

Datensatz, der anschließend zur Modellierung des Fahrstreifenwechselverhaltens für 

automatisierte Fahrzeuge verwendet wird, eliminiert.  

Die Entscheidung, die Fahrstreifen zu wechseln, wird als taktische Entscheidung anerkannt 

und wird im Zeitbereich zwischen einer Sekunde bis zu einer Minute durchgeführt, die 

ausschließlich auf unmittelbaren Fahr-, Verkehrs- und Umweltbedingungen basieren. Die 

Modellierung des taktischen Fahrstreifenwechselverhaltens erfolgte durch den Einsatz eines 

überwachten maschinellen Lernverfahrens, welches gleichzeitig den Status des "ego" 

Fahrzeugs berücksichtigt, das dynamische Objekte wie andere Verkehrsteilnehmer und 

Umweltkomponenten, sowie die Straßeninfrastruktur umgibt. Die Definition dieser Parameter 

im Merkmalsvektor ermöglichte es dem Algorithmus, den Klassifikator als Vorhersage zu 

etablieren, ob der Fahrer sich letztendlich für einen Fahrstreifenwechsel nach rechts oder links 

bzw. auf das Verbleiben auf dem aktuellen Fahrstreifen entscheidet. 

Auf einer unterbewussten Ebene, führt ein Fahrer Aktionsmuster im Millisekundenbereich aus, 

um auf die aktuelle Verkehrssituation zu reagieren. Die Modellierung des Betriebsverhaltens 

oder operativen Verhaltens beim Fahrstreifenwechsel wurde mit der Methode "Inverse 

Reinforcement Learning" (IRL) entwickelt. Bei dieser Methode wird davon ausgegangen, dass 

die Agenten sich optimal verhalten. Das Ziel des maschinellen Lernens ist es, die 

Belohnungsfunktion zu bestimmen, die das gegebene Verhalten erklärt. Dies führt zur 

automatischen Extraktion der jeweiligen Belohnungen aus der jeweiligen Beobachtung. 

Dieses Modell verwendet den "Markov Decision Process" (MDP), einen mathematischen 

Rahmen zur Modellierung von Entscheidungssituationen, bei denen die Ergebnisse teilweise 

zufällig und teilweise vom Entscheidungsträger kontrolliert werden. 

Beide Modelle wurden in die SUMO (Simulation of Urban MObility) Software integriert, um die 

Gesamtfähigkeit des Ansatzes zur realistischen Verkehrssimulation zu bewerten und seine 

Leistung und Übertragbarkeit bei unsichtbaren Ereignissen im Trainingsdatensatz zu 

vergleichen. Das integrierte Modell wurde durch den Vergleich des Netzwerkdurchsatzes, der 

Verteilung von Time-To-Collisions (TTC) und der Anzahl der Fahrstreifenwechsel im Vergleich 

zum Standard-Fahrstreifenwechselmodell in SUMO bewertet. Die Simulationsergebnisse 

zeigen, dass der vorgeschlagene integrierte Modellierungsansatz in der Lage ist, das 

Fahrstreifenwechselverhalten von normalen Fahrern und automatisierten Fahrzeugen 

realistisch zu simulieren, und er übertrifft die zugrunde liegenden Modelle in SUMO. Darüber 

hinaus führt das Modell erfolgreich plausible Fahrstreifenwechselmanöver in zuvor 

unbeobachteten Verkehrssituationen durch. 
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 Introduction 

In this chapter, the motivation and framework of this research work are explained. Firstly, the 

importance of lane changes in traffic efficiency and safety as well as the motivation to hand 

over this task to automated vehicles are discussed. Moreover, the developments and current 

problems and challenges related to automated vehicles’ driving behavior, especially lane 

changing are explained. The research questions pursued in this dissertation are then defined 

based on the foregoing review and the methodology used to investigate the research questions 

is outlined. Finally, the outline of the dissertation is discussed. 

1.1 Motivation 

Lane changing has a substantial influence on traffic flow characteristics due to the interfering 

effect that it has on surrounding vehicles [DAGANZO ET AL., 1999; MAUCH & CASSIDY, 2002; 

SASOH & OHARA, 2002; MUÑOZ & DAGANZO, 2002; CHEN ET AL., 2004; AL-KAISY ET AL., 2005]. 

Several recent experiments have concluded that the development of congestion at bottlenecks 

is mainly attributed to lane changing maneuvers [CASSIDY & RUDJANAKANOKNAD, 2005; BERTINI 

& LEAL, 2005; LAVAL & DAGANZO, 2006; HOU ET AL., 2014b]. Lane changing is also believed to 

increase the stress and workload of drivers and has a significant impact on traffic safety and 

be responsible for crashes [CHOVAN ET AL., 1994; TOLEDO ET AL., 2003; PANDE & ABDEL-ATY, 

2006]. 

In recent years, technological innovation in the automotive industry accelerated the emergence 

of automated vehicles and handing over the demanding driving tasks such as lane changing 

to automated vehicles has increased attention. Automated vehicles are believed to increase 

traffic safety [EUROPEAN TRANSPORT SAFETY COUNCIL (ETSC), 2016], traffic efficiency 

[HOOGENDOORN ET AL., 2014], economy [FAGNANT & KOCKELMAN, 2015] and improve the 

mobility [ALESSANDRINI ET AL., 2015]. These vehicles are capable of sensing their environment 

and draw a virtual picture of external traffic, road and environmental conditions with the help 

of cameras, sensors, radars, high-definition maps and large quantities of algorithms and 

navigating without human input. However, different vehicles will operate at varying levels of 

autonomy, depending on the technologies they use. As shown in Fig 1.1, the Society of 

Automotive Engineers [SAE INTERNATIONAL, 2016] identifies six levels of driving automation 

from “no automation” to “full automation” based on the functional aspects of technology.  
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Fig 1.1 Levels of automation based on the definition of SAE international [SAE INTERNATIONAL, 
2016] and compared with those developed by Federal Highway Research Institute of 

Germany [FEDERAL HIGHWAY RESEARCH INSTITUTE (BAST), 2016] and US National 

Highway Traffic Safety Administrations [NATIONAL HIGHWAY TRAFFIC SAFETY 

ADMINISTRATION (NHTSA), 2017]. 

The penetration of automated vehicles into the current transportation system will lead to 

mixed-traffic as in the initial phase automated vehicles – regardless of their level of 

automation – will share the road with human drivers. The goal within the automated vehicle 

development is to design safer, more efficient and interactive vehicles while maintaining the 

persona of an ideal human driver, without having the mistakes that human drivers make. Thus, 

in mixed-traffic, these vehicles should not only safely navigate around human drivers but also 

know how to interact with them, be able to mimic the social behaviors and communicate their 

intentions to other drivers. Sadigh et al. [2016a] observed that an automated vehicle’s action 

could also affect neighboring human drivers’ behavior, and studied how humans will react 

when the automated vehicle performs specific actions [SADIGH ET AL., 2016b]. As a result, 

these vehicles should engage with pedestrians, bicyclists, as well as human drivers in a 

socially acceptable manner consisting of actions that are easily understandable to the 

surrounding road users [HUANG ET AL., 2018]. A socially acceptable automated driving behavior 

would be behavior in which automated vehicles, when interacting with other road users, 

operate smoothly and in an appropriate interactional manner; vehicles that behave neither too 

aggressively nor yield incessantly to other road users, neither impede the normal flow of traffic 

nor cause undue notice. In other words, socially acceptable driving means that automated 



Introduction  3 

 

vehicles can smoothly integrate into the flow of traffic and handle traffic interactions without 

disrupting other road users. 

One of the main challenges in the development of automated vehicles is the difficulty of 

modeling a human driver and specifying precisely how a human driver would drive and trade 

off between different aspects of driving such as safety, speed, comfort, gas usage, legal risks, 

and the many other elements that are taken into account while driving. In order to capture how 

the human thinks, it would require the cognitive architecture of human behavior, knowing 

exactly how the human brain works and knowing how every single driver in the world drives, 

which is despite the efforts to model the cognitive architecture of humans [BOER & 

HOEDEMAEKER, 1998; SALVUCCI ET AL., 2001; KUGE ET AL., 2000; KUMAGAI ET AL., 2003; 

SALVUCCI, 2006], not a viable option. Therefore, developing driving behavior algorithms for 

automated vehicles are done mostly based on rule-based control algorithms. However, the 

conventional rule-based models driving are incapable of representing many factors that drivers 

take into account and it is not possible to reduce human driving decisions to a few IF-THEN 

rules. For example, these models usually do not respond according to different traffic situations 

with specific driving regulations or driving cultures in which the vehicle might be.  

Prediction of the exact driving behavior of humans is a very burdensome task because the 

human intent is highly dependent on external factors such as emotions, distractions and 

weather conditions [KILPELÄINEN & SUMMALA, 2007; PÊCHER ET AL., 2011; STEINHAUSER ET AL., 

2018]. Therefore, there is a distribution of possible actions that drivers may take in every traffic 

situation. Thus, human drivers’ decisions may be thought of as a random process, and it is 

essential to model the associated distributions as accurately as possible. Many approaches 

have tried to learn drivers’ intent and behaviors directly from the human source, such as using 

eye and facial trackers or from the traffic data captured from outside of the vehicle [D’ORAZIO 

ET AL., 2007; HE ET AL., 2018; MANGAROSKA ET AL., 2018]. With the help of this information and 

by planning around and anticipating possible behaviors the drivers may take, the developers 

can minimize conservatism or aggressiveness in the decision-making policies of automated 

vehicles, which can lead to more efficient traffic flows [FRIEDRICH, 2016], yet still maintaining 

an acceptable level of safety. The driving capability of the vehicles after this learning strategy, 

in which they are exposed to a vast number of traffic situations, can be analyzed through 

microscopic traffic simulations. 

For the development and impact assessment of automated vehicles, microscopic traffic 

simulation tools are widely used [BAGLOEE ET AL., 2016]. These tools utilize car-following and 

lane-changing models to represent each driver's maneuvering behaviors in traffic and have 

been applied in intelligent transportation systems (ITS) and automated vehicles studies as a 

cost-effective alternative to field tests for many years [MOTAMEDIDEHKORDI ET AL., 2016; 

HARTMANN ET AL., 2017]. These simulation tools can be used to create virtual scenarios in 

which the lane-changing model is an essential component for replicating real-world traffic 

conditions. 
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The accuracy of the modeling and simulation of traffic behaviors is crucial to obtain credible 

results and ensuring that models are clearly understood, appropriately designed, and carefully 

calibrated is of high importance [RAHMAN ET AL., 2013]. Accurate driving behavior models are 

critical for realistic simulation of driving scenarios and can contribute to advance research in 

the development of automated vehicles [KUEFLER ET AL., 2017]. With the limitations of the 

state-of-the-art models, their implementation in a simulation environment can result in 

unrealistic traffic characteristics and lead to errors in the corresponding analysis and bias in 

planning and policy decisions [CHOUDHURY, 2007], especially in studying the impact of new 

technologies such as automated vehicles. Therefore, it is necessary to rethink the currently 

existing microscopic traffic models. Moreover, these models do not fully account for the 

heterogeneous behavior of drivers. Unfortunately, most of the widely used models in 

microscopic traffic simulation tools require a lot of time and effort for calibration and validation 

of the models and tweaking the parameters, which should be conducted for each new situation 

specifically. The adaptation of a microscopic model to a local situation is time-consuming and 

often the necessary measurement data is difficult to obtain [FELLENDORF & VORTISCH, 2001].   

Nowadays, advances in computing technologies, the growing volumes and varieties of 

available data, as well as affordability of data storage have motivated the use of data-driven 

methods to automatically acquire models of driving behavior [GINDELE ET AL., 2015]. 

Data-driven models focus on ML methods that can be used to build models for complementing 

or replacing physical-based models. As illustrated in Fig 1.2, the physical models understand 

a driving behavior, formulate it with a mathematical or physical model, and calibrate the model 

to enable the model to make predictions, whereas the data-driven approaches deploy ML tools 

and model to understand the underlying behavior from the data [The Royal Society, 2017]. In 

other words, the data-driven models, in contrast to the physical models, which are based on 

well-established mathematical or physical models, build relationships between input and 

output data using statistical or ML techniques, without worrying too much about the underlying 

physical model. Hence, adapting the model in data-driven models to the new situations is 

easier than the conventional rule-based models in terms of tweaking the parameters and 

calibration. In order to adapt the model to new situations, the small details should be adjusted, 

and the adaptation is faster and more convenient than the time-consuming calibration and 

validation of a physical model. 
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Fig 1.2 Difference between physical models and data-driven models  

 

Based on the abovementioned factors, this dissertation aims to provide a general approach 

for modeling the tactical (decision-making) and operational (execution) lane change behavior 

from real-world observations. The advantage of this model is two-fold: firstly, this method 

provides realistic models for the tactical and operational level of lane changing of conventional 

human-driven vehicles and accounts for stochasticity among drives, which enables more 

accurate investigations and projection of the impacts of automated vehicles using microscopic 

traffic simulation. Secondly, this model facilitates the development of socially acceptable lane 

changing behavior of automated vehicles from observations of humans, acquired and used 

under the same real-world conditions.  

The model proposed in this dissertation employs a common approach to gather real driving 

data and use ML to imitate and model the lane changing behavior from the observed data. 

This model uses ML methods to extract and reflect the detailed information buried in the data 

and deploys the mathematical tools that have also been implemented for the motion planning 

of automated vehicles. This model, however, adapts its level of detail to have a reasonable yet 

realistic complexity when combined with the microscopic modeling of lane changing.  

1.2 Research Questions 

The following questions guide the research conducted within this dissertation: 

• How can the socially acceptable driving behavior be sampled from the dataset of 

individual vehicle trajectories? 

• Can the tactical and operational lane changing behavior for automated vehicles be 

learned from the observations of lane changing behavior of human drivers? 
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• How can this methodology be generalized for the behavior of automated vehicles in 

different driving situations? 

1.3 General Approach 

Fig 1.3 illustrates the general approach to learn the lane change from human drivers. First of 

all, literature about the driving behavior task, the conventional lane changing models, the 

models used for motion planning in automated vehicles and the data-driven models are 

reviewed extensively. Moreover, widely used microscopic traffic simulation tools and their 

capabilities in modeling human factors and external elements are assessed. Based on the 

reviewed literature, the limitations of the currently existing lane changing models and the 

research gaps are identified. 

In the following chapter, various types of traffic data collection techniques are explained and 

the method that can fulfill the requirements to answer the research questions is identified. 

Moreover, various options for extracting the trajectories from the video data collection are 

discussed in detail. After conducting the data collection, the videos are post-processed and 

individual vehicles trajectories are extracted from them.  

The extracted individual trajectories from video observations need to be preprocessed before 

being used for model development. Therefore, the drivers were clustered into “timid”, 

“moderate” and “aggressive” based on their driving behavior. The clustering process looks at 

driver norms and identifies the driving behaviors that deviate from the norm and are more 

aggressive than other drivers. In order to use the database for developing a model for 

automated vehicles, the aggressive driving behavior is purposefully filtered out from the data. 

Later, the models that represent the behavior of human drivers and automated vehicles are 

learned in two steps. First, the decision process of lane changing is modeled with classification. 

In this model, based on the state of the ego vehicle and the environment model, which are 

translated into features, the model predicts lane changing decisions of the vehicles. Secondly, 

the execution of lane changing is modeled with Inverse Reinforcement Learning (IRL) method.   

After reaching the reconstructed trajectories with the desired accuracy, the model is 

implemented in a simulation software SUMO [KRAJZEWICZ ET AL., 2012] to check the plausibility 

and evaluate the performance of the model in the traffic scenarios which were not existent in 

the training dataset. In the end, conclusions are drawn about the transferability of the 

developed models. 



Introduction  7 

 

 

Fig 1.3  Research workflow 

1.4 Thesis Outline 

In chapter 2, a literature review of the existing lane changing models and motion planning 

algorithms for automated vehicles are presented. The data collection and trajectory extraction 

are discussed in chapter 3. Chapter 4 summarizes the clustering of driving behavior. In 

chapter 15, the modeling process of this research is presented. First, a methodology to 

estimate the decision-making for changing the lane from discrete trajectory data is presented. 

Then, the model for learning the execution of lane changing maneuvers is explained. The 

simulation experiment is presented in chapter 6.  
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 Literature Review 

The modeling of lane changes is usually considered a multi-step process. Therefore chapter 

2.1 explains the most well-known models for driver behavior modeling, which is followed by 

influencing factors on driving behavior. In chapter 2.2, the extensive body of research about 

microscopic lane change modeling is explained. Chapter 2.3 concentrates on widely-used 

microscopic traffic simulation tools and assesses their capabilities. Chapter 2.4 summarizes 

the methods used for motion planning and control of automated vehicles. Finally, chapter 2.5 

summarizes all the literature and methods and analyses the research gap in the currently 

existing methods. 

 

Fig 2.1 Identification of research gap workflow 

2.1 Driving Behavior Task 

Driving behavior is determined by the characteristics of the driving task and by a variety of 

external and internal factors. This section, therefore, reviews the most well-known models used 

for describing the task of driving behavior and discusses the factors which can influence the 

driving behavior.  

 Description of Driving Behavior 

One of the general ways of dividing the driving’s task is to use the three levels of behavior and 

control: These three levels are called strategic, tactical and operational based on Michon 

[1985] and later called navigation, guidance and control by Lunenfeld and Alexander [1990].  

The highest level in the hierarchical model of the driving task shown in Fig 2.2 is the strategic 

level which is the planning stage of a trip, incorporating the determination of trip goal, route 

Identification of research gap 

Research questions 

Driving behavior 

task 
Motion planning & 

control 

Microscopic 

simulation tools 

Microscopic lane 

change models 

Literature review 
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and vehicle choice, and evaluation of the risks and costs associated with it [MICHON, 1985]. 

This level sets criteria for factors at the lower level, such as speed control and risk levels. The 

driver makes a series of tactical decisions while executing the strategic level decision 

[MORIDPOUR ET AL., 2010b]. The tactical level includes choices and actions related to the 

interaction with the road and other road users, such as changing the lane, keeping the 

distance, and taking a turn [MICHON, 1985]. The time resolution of this behavior can be from 

seconds to several minutes. At the tactical level, maneuvers are selected to fulfill short term 

goals such as a decision to pass a slow-moving vehicle or maintaining the desired speed. At 

the tactical level, the time required for making and executing the decisions is between five and 

30 seconds [ALEXIADIS ET AL., 2014]. The actual behavior, which is displayed under the strategy 

and the tactics of the trip, is control of the lowest level. At this level, the maneuvers are 

converted to control operations and the basics of steering and braking come directly into the 

play [MICHON, 1985]. In this level, the control actions take place on a time scale of less than 

five seconds [ALEXIADIS ET AL., 2014]. 

 

Fig 2.2  A hierarchical model of the task of driving [MICHON, 1985] 

A very similar hierarchical order of driving behavior in strategic, tactical and operational task 

levels has been proposed by van der Molen and Bötticher [1988]. In their model, the driver’s 

behavior is connected to the physical environment and the perception made of it. Moreover, 

their approach provides a concept for behavior alternatives and subjective probabilities and 

also considers perceptual, judgmental and decision processes of traffic participants at all levels 

of behavior [LÜTZENBERGER & ALBAYRAK, 2014]. As can be seen in Fig 2.3, this model offers 

many elements that are not easy to control in an empirical study [KESKINEN ET AL., 2004]. 
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Fig 2.3 Hierarchical risk model for traffic participants [VAN DER MOLEN & BÖTTICHER, 1988] 

The Matrix of Tasks [HALE ET AL., 1990] extends the hierarchical control model of Michon not 

just by adding extra levels or more detailed specifications, but by an additional horizontal 

dimension which includes factors such as different levels of expertise, familiarity with the 

surrounding situation and incorporates motivational aspects. These conditional factors will be 

of two sorts [HALE ET AL., 1990]:  

• Constant conditions that have a time dynamic of at least minutes if not hours such as 

traffic density, visibility conditions and state of the road surface. 

• Rapidly varying factors such as braking by a car in front, another vehicle signaling or 

moving out of the lane, the appearance of warning signs and noticing signs of 

drowsiness.  

These factors represent the differing circumstances under which the task has to be carried out 

and the factors that trigger starting on one or another sub-task. Hale et al. [1990] simplified the 

reality into the matrix shown in Tab. 2.1. This matrix illustrates the three levels of task 

classification [MICHON, 1985] on the horizontal dimension against three levels of behavior 
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[RASMUSSEN, 1987] on the vertical dimension. The table contains typical tasks carried out in 

each box. Based on this model, knowledge-based behavior is applied when dealing with a 

difficult environment condition or unfamiliar traffic. Moreover, this behavior level is applied 

when the driver is still a novice. Rule-based behavior that accounts for the standard interaction 

with other road users is also applied when the driver should transfer his automatic routines to 

a new system. Rule-based behavior is applicable in familiar traffic situations [LÜTZENBERGER, 

2014]. 

 

 Planning Maneuver Control 

Knowledge Navigating in strange 

town 

Controlling a skid on icy 

roads 

Learner on first lesson 

Rule Choice between familiar 

routes 

Passing other cars Driving an unfamiliar 

car 

Skill Home/work travel Negotiating familiar 

junctions 

Road holding round 

corners 

Tab. 2.1 Matrix of Tasks [HALE ET AL., 1990] 

Summala [1996] also conceptualized the driving task into a task cube, which combined three 

different concepts: As shown in Fig 2.4, a functional hierarchy that included vehicle choice, trip 

decisions, navigation and guidance and vehicle control. The functional taxonomy consists of 

passing maneuvers, crossing management, obstacle avoidance, headway control and lane 

keeping. The psychological processing dimension of the proposed cube has three layers: 

decision-making, attention control and perceptual-motor control. Later, Summala [1997] 

concluded that the motivational factors should be given higher importance, extended the driver 

task cube and developed the Filter Model of Risky Behavior and Road Accidents. 

 

Fig 2.4 Driver task cube [SUMMALA, 1996] 
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Hierarchal levels of driving behavior [KESKINEN ET AL., 2004], shown in Fig 2.5, consist of four 

layers. On the Driving Maneuvering level, the driver controls the speed and position of the 

vehicle. On the Mastering Traffic Situations Level, the driver adapts to the current traffic 

situation. On the next level, Goals and Context of Driving level, drivers consider factors such 

as the purpose, their surrounding environment and their social context. Although the first three 

layers of this model are similar to the levels of Michon model [1985], a new component in this 

model is the connection between the strategic level and the driver’s environment. Moreover, 

the fourth layer accounts for the personality of the drivers and allows the driver to be “less 

congruent with the norms of the society” [KESKINEN ET AL., 2004]. 

 

Fig 2.5  Hierarchical levels of driving behavior [KESKINEN ET AL., 2004]  

Reviewing the abovementioned models has shown that most of the well-known models 

translated the driving behavior as a hierarchically ordered structure with various layers and 

considered comprehensive support for the drivers’ cognitive ability. Some of these models 

added extra layers to Michon’s model [1985] and argued that for having a comprehensive 

model for human driving behavior, additional layers or dimensions should be added to 

Michon’s model [HALE ET AL., 1990; SUMMALA, 1997; VAN DER MOLEN & BÖTTICHER, 1988]. 

Although the model by Keskinen [2004] related the driving behavior of the driver to the 

environment and considered the adaptation of the driver to the social environment, other 

essential factors such as emotions, the capability of self-awareness were not included in any 

of these models. 

The focus of this dissertation is limited to the maneuvering (tactical) driving behavior level and 

control (operational) behavior level of lane change modeling. However, inspired by the driving 

behavior model of Keskinen et al. [2004], the proposed model considers the current traffic 

situation into account and adjusts itself based on social context and norms. 
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 Influential Factors on Driving Behavior 

Many factors influence the driving behavior at both tactical and operational levels and lead to 

heterogeneous driving behavior, which are summarized in Tab. 2.2. This table categorizes the 

factors into the following groups: driving ability, development factors, personality 

characteristics, demographic factors, perceived environment and driving environment. 

One of the leading factors in driving behavior is driver characteristics. Driving is the outcome 

of a psychological process that translates data, signals and messages into action, which 

continuously adapts to the exchange of varying stimuli between the driver, environment and 

the vehicle [PASETTO & BARBATI, 2011]. As can be seen from Tab. 2.2, in the last decades, 

various aspects of human driving behavior and their impacts on traffic flow and safety, driving 

speed have been extensively investigated. Some studies have shown that the motivation of 

drivers plays an important role in driving manners such as aggressiveness and risk-taking, 

time pressure [CŒUGNET ET AL., 2013; RENDON-VELEZ ET AL., 2016] and desire to reach the 

destination might motivate them to drive faster [FILDES ET AL., 1991; MOGHADDAM & JEIHANI, 

2017].  

During the lane changing process, the driver changes the lane to keep the comfortable driving 

environment, increase speed or gain access to the desired travel path [TOLEDO ET AL., 2003]. 

The underlying desire for lane changes and the execution process of lane changes are 

influenced by both external and internal factors [AHMED ET AL., 1996]. Factors such as 

geometric condition, surrounding traffic condition, acceleration/deceleration capability of the 

vehicle, and drivers’ experience and preference that involve in the decision process are 

considered in the lane changing model. Effect of surrounding traffic characteristics has been 

studied by Moridpour et al. [2010a] and the results have shown that for the motivation to 

change the lane, the speed of surrounding vehicles in the current lane, the space gaps of 

surrounding vehicles in the current lane and the target lane are important. Moreover, the 

authors of similar studies [AL-KAISY ET AL., 2002; AL-KAISY ET AL., 2005] believed that heavy 

vehicles might impose some physical and psychological effects on surrounding traffic due to 

their physical (e.g., length and weight) and operational (e.g., acceleration and deceleration) 

characteristics. 
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Tab. 2.2  Factors influencing the driving behavior 

Factor Example Reference 

Driving ability 

Skill [FULLER & SANTOS, 2007; LAJUNEN & SUMMALA, 1995] 

Experience [NABATILAN ET AL., 2012; PATTEN ET AL., 2006; SHINAR ET AL., 2005; MCCARTT ET 

AL., 2003; GROEGER & BROWN, 1989; TAO ET AL., 2017; LAJUNEN & SUMMALA, 1995] 

Development 
factors 

Physical factors e.g., drowsiness [WANG ET AL., 2016; SHINAR, 2017] 

Psychological factors e.g., 
emotions 

[DUMETZ, 2016; STEINHAUSER ET AL., 2018; PÊCHER ET AL., 2011] 

Behavioral factors e.g., alcohol or 
substance use 

[ZHAO ET AL., 2014; SHINAR, 2017; LAUDE & FILLMORE, 2015; SHYHALLA, 2014; 
BROWN ET AL., 2013; OGDEN & MOSKOWITZ, 2004] 

Personality 
characteristics 

Risk-taking propensity [IVERSEN, 2004; LAJUNEN & SUMMALA, 1995] 

Aggressiveness [TAO ET AL., 2017; LAJUNEN & SUMMALA, 1995] 

Susceptibility to peer pressure [BINGHAM ET AL., 2016; SIMONS-MORTON ET AL., 2011; CURRY ET AL., 2012] 

Demographic 
factors 

Age 
 

[SHINAR ET AL., 2005; CANTIN ET AL., 2009; HAKAMIES-BLOMQVIST ET AL., 1999; 
CLARET ET AL., 2003; GROEGER & BROWN, 1989; TAO ET AL., 2017; MCGWIN ET AL., 
1998; FULLER & SANTOS, 2007; OWENS ET AL., 2007; WILLIAMS, 2003] 

Sex [BENER & CRUNDALL, 2008; AL-BALBISSI, 2003; CLARET ET AL., 2003; GROEGER & 

BROWN, 1989] 

Employment [MOGHADDAM & JEIHANI, 2017] 

Education [BORRELL ET AL., 2005] 

Perceived 
environment 

Social and peer norms [MEESMANN ET AL., 2015; CARTER ET AL., 2014] 

Cultural norms [DUMETZ, 2016; REDSHAW, 2011] 

Risk perception [CARTER ET AL., 2014; IVERS ET AL., 2009; KUANG ET AL., 2015; RUNDMO & IVERSEN, 
2004] 

Driving 
environment 

Darkness 
 

[SALVENDY, 2012; TIELERT ET AL., 2010; ASSUM ET AL., 1999; BELLA & CALVI, 2013; 
BELLA ET AL., 2014; OWENS ET AL., 2007] 

Road geometry [STUTTS ET AL., 2001; HAMDAR ET AL., 2016; ABELE & MØLLER, 2011] 

Weather condition 
 

[STUTTS ET AL., 2001; SALVENDY, 2012; HAMDAR ET AL., 2016; ELFAOUZI ET AL., 
2010; AMAL & HALL, 1994; TIELERT ET AL., 2010; JÄGERBRAND & SJÖBERGH, 2016; 
KILPELÄINEN & SUMMALA, 2007] 

Purpose of trip [FILDES ET AL., 1991; MOGHADDAM & JEIHANI, 2017] 

Time pressure [CŒUGNET ET AL., 2013; RENDON-VELEZ ET AL., 2016] 

Traffic congestion  [GUGERTY ET AL., 2004; BALK ET AL., 2006; MOGHADDAM & JEIHANI, 2017] 
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2.2 Microscopic Lane Change Models 

Developing behavior models for lane changing requires a thorough understanding of drivers’ 

behavior during this driving task [RAHMAN ET AL., 2013] and traffic situation both in the original 

lane and in the host lane [SHINAR ET AL., 2005]. Moreover, modeling the lane changing is an 

essential and challenging part of microscopic traffic simulation tools as well as the development 

of automated vehicles. Therefore, there is a need to model the lane changing as precisely and 

realistically as possible. There is a substantial body of research on lane changing models, 

which will be summarized in this chapter. 

 Different Types of Lane Changing 

Most lane change models categorize the lane changes, depending on the driver’s motivation, 

in mandatory lane change (MLC) or discretionary lane change (DLC) [GIPPS, 1986; YANG & 

KOUTSOPOULOS, 1996; AHMED ET AL., 1996; HALATI ET AL., 1997; ZHANG ET AL., 1998; AHMED, 

1999; HIDAS & BEHBAHANIZADEH, 1999; HIDAS, 2002]. These two lane changing types and the 

motivation behind each are described in this section.  

The drivers execute MLC in order to follow their desired path or due to a lane drop or yielding 

to traffic near the ramp. Some variables that can affect such MLC decision include the number 

of lanes to cross to reach a lane connected to the next link, the remaining distance to the point 

at which lane change must be completed [TOLEDO & ZOHAR, 2007], and whether the subject 

vehicle is a heavy vehicle [MORIDPOUR ET AL., 2010a]. In case MLC involves crossing several 

lanes, drivers are likely to respond earlier. A longer delay makes a driver more anxious and 

leads to an increase in the likelihood of responding to MLC situations. Due to the lower 

maneuverability and larger gap length requirement of heavy vehicles, they have a higher 

likelihood of responding to the MLC conditions [MORIDPOUR ET AL., 2010a]. 

DLC occurs when drivers seek better traffic conditions, for instance, higher speed or safety. In 

this type of lane changing, the drivers intend to improve the perceived driving condition, and 

no urgency is linked to the maneuver. In some studies [LAVAL & DAGANZO, 2006; LAVAL & 

LECLERCQ, 2008], DLCs are concluded to be triggered by speed differences between adjacent 

lanes. These researchers assumed that the probability of lane changing proportionally 

increases as speed difference increases. However, the linear relation between the increasing 

probability of lane changing and the speed difference is not verified. Another study [KAN ET AL., 

2009] presented a systematic investigation of drivers’ motivation during discretionary lane 

changing movements on a multi-lane freeway section. Knoop et al. [2012a] studied the traffic 

conditions, speed difference and density values in the origin lane and the target lane, which 

led to a number of discretionary lane changes in free-flow conditions. 

Lane changing can also be categorized into symmetric or asymmetric with respect to the lanes 

and the vehicles as well as the regulations [HABEL & SCHRECKENBERG, 2014]. In countries with 
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symmetric lane changing, on roads with four or more lanes, vehicles may pass to the left or 

right of slower vehicles as long as the maneuver can be executed safely. In countries with 

asymmetric lane changing rules, ’pushy’ drivers are believed to induce a lane change of a 

slower driver in front of them [KESTING ET AL., 2007]. Although the symmetric model is 

interesting for theoretical considerations, asymmetric models are known to be more 

realistic [RICKERT ET AL., 1996]. 

 Lane Change Modeling Review 

Algorithms and models for lane changing behavior encompass a broad range of physical and 

mathematical, statistical and ML techniques. Following the categorization of Rahman et al. 

[2013], the lane change models can be divided into four categories, as illustrated in Fig 2.6: 1) 

rule-based models, 2) incentive-based models, 3) discrete-choice probabilistic models and 

4) Artificial Intelligence (AI) models.  

 

Fig 2.6 Classification of lane changing models 

 

Rule-based models 

Most of the conventional rule-based models consist of two steps: lane selection and gap 

acceptance. The first researcher who differentiated the desire to change the lane and the 
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execution of the lane changing was Sparmann [1978]. His model implemented a 

psycho-physical threshold on the relative speed and the spacing to define the points that the 

drivers will respond to, based on the traffic observations of over a one-kilometer section of 

German freeway equipped with detectors at 100-meter intervals. This model established the 

relationship between frequencies of passing and lane changing as a function of traffic volume.  

Gipps [1986] introduced a model that considered the necessity and desirability of the lane 

change. Gipps’ model was developed for the urban driving situation in which external factors 

such as traffic signals play a role in lane changing decisions. In lane changing models, drivers 

evaluate the gaps between the lead and the lag vehicles in the target lane before executing 

the lane changing. The drivers compare the available gap with the critical gap and make a 

binary decision whether to accept it or not. In Gipps’ model [1986], the drivers consider the 

lead and lag gap separately. In this model, the necessary decelerations for the ego vehicle to 

follow a new leader and for the new lag to follow the ego vehicle are calculated and in case 

these values fall below a certain threshold, the gaps are considered to be acceptable for 

execution of lane change.  

INTEGRATION model [VAN AERDE ET AL., 1992] was the first attempt to provide a single model 

that considers both freeways and arterials, as well as both traffic simulation and traffic 

assignment. In this model, DLCs are executed by computing the potential speeds in adjacent 

lanes and comparing the speeds with the predefined values. The model then allows the vehicle 

to drive on the lane, which permits the driver to travel at the highest speed. However, the lane 

changing maneuver is subject to the availability of the minimum gap in the host lane. MLCs, 

on the other hand, are based on lane continuity and require that each vehicle should be in one 

of the lanes that is directly connected to the future turning movement of the vehicle.  

MITSIM [YANG & KOUTSOPOULOS, 1996] defined a rule-based lane changing model in which 

the probability of initiating the MLC depends on the distance to the point that the lane change 

should be completed, the number of necessary lane changes and the density of traffic. 

Conflicting goals in this model are resolved probabilistically based on the utility theory models. 

In this model, DLCs are triggered when the speed is below the desired speed and the lane 

selection is based on a random utility model.  

In CORSIM [HALATI ET AL., 1997], there are three different levels in the decision-making: 

motivation, advantage and urgency. The motivation of lane changing initiates from the 

dropping of the speed below a certain threshold. The advantage in lane changing means 

moving to a lane with a higher travel speed or lower queue length. The urgency is represented 

by the number of necessary lane changes to the point where the lane change must be 

completed. In this model, the urgency factor has an impact on the gap acceptance decision of 

drivers. However, in this model, the variability in the gap acceptance behavior of drivers is 

ignored. 

SITRAS model developed by Hidas and Behnbahanizadeh [1999] defined different triggers for 

lane changing. Examples of these triggers are turning movements, lane blockages, lane drops 



Literature Review   19 

 

and speed advantages. These different lane changing triggers lead to either MLC or DLC. 

Moreover, cooperative lane changing module of this model might be deployed by a vehicle in 

an MLC situation under heavily congested traffic conditions.  

Kosonen [1999] proposed a model for urban traffic simulation that also included a DLC model 

based on the computation of the traffic pressure. This traffic pressure is an approximation of 

the potential deceleration rate caused by the leading vehicles and it depends on the desired 

speed of the driver. The pressure function is used to model drivers’ lane changing decisions 

according to the model logic, which is combined with a minimum time before a new lane 

change is allowed in order to avoid a frequent lane changing behavior. 

Cellular Automata: 

The next type of rule-based models is Cellular Automata model developed by Nagel and 

Schreckenberg [1992], which is based on the assumption that a vehicle changes to another 

lane if a certain set of conditions are satisfied. Despite being very efficient and fast, one of the 

main disadvantages of cellular automata is the imposed artificial constraints of the grid (lattice 

discretization) which makes the simulation output hard to interpret [KNOSPE ET AL., 2004]. 

Nagatani [1993; 1994a]  was one of the first researchers who used the Cellular Automata for 

two-lane traffic flow. This model examined a two-lane system with completely deterministic 

rules and the maximum speed of one, where cars either move forward or change lanes. An 

unrealistic feature of this model is states where blocks of several cars oscillate between lanes 

without moving forward, a feature that was fixed later in another study by introducing 

randomness into the lane changing [NAGATANI, 1994b]. 

Rickert et al. [1996] used a rule set for two-lane traffic, which consists of two parts: look ahead 

in own lane for obstruction and look into the host lane to check whether the adequate gap is 

available. Moreover, the authors analyzed the model macroscopically and pointed out the 

essential parameters that defined the shape of the fundamental diagram and investigated the 

importance of stochastic component with respect to real traffic. They concluded that discrete 

models are useful tools for understanding the fundamental relationship between microscopic 

rules and macroscopic measures.  

In the model by Wanger et al. [1997], the authors successfully extended the 

Nagel-Schreckenberg model [1992] of single-lane traffic flow to multi-lane traffic with a set of 

lane changing rules. Moreover, they introduced the asymmetric lane change rules into the 

two-lane Cellular Automata. This model was used to model the lane changing behavior in 

Germany in which overtaking from the right is not allowed; therefore, the model was adapted 

in a way that overtaking on the right is possible, but in small velocities and with small 

probabilities only. 

Knospe et al. [2002] developed a Cellular Automata-based model by analyzing the 

reproduction of the lane usage inversion and the density dependence of the number of lane 
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changes. Their asymmetric two-lane model with a straight-forward and local lane changing rule 

set could successfully show the empirically observed lane usage inversion and reproduce the 

density dependence of the number of lane changes. Moreover, by analyzing the local 

measurements, they concluded that the car dynamics remained unchanged by the introduction 

of the lane changing rules. Therefore, their lane change extension of the single-lane model is 

appropriate to be used for the propagation of traffic state information to all lanes. 

Li et al. [2006] took a factor for aggressive lane changing behavior into account and proposed 

asymmetric two-lane Cellular Automata model. In their study, they showed that aggressive 

lane changing behavior of fast vehicles could improve traffic flow in mixed-traffic in the 

intermediate density range by depressing the plug formed by slow vehicles. A model by 

Guzman et al. [2014] incorporated drivers’ individual characteristics and acceleration 

constraints of vehicles in reality. For this aim, they modeled the human response by 

reconstructing the local behavior on a microscopic level and simulated their model on a 

two-lane system with periodic conditions and two types of vehicles with different lengths and 

different limited velocities. The simulation results showed that their extended model had better 

power to reproduce the empirical data and outperformed the previous lane change models.  

Xu and Xu [2016] proposed an extended Cellular Automata-based lane change model, which 

accounts for risk description of vehicle lane changing in the driving and a better distance 

constraint rule compared to the previous models. Their simulation results illustrated that the 

distance constraint rule and traffic flow model could greatly increase the frequency of vehicle 

acceleration and lane changing, which is beneficial to the improvement of traffic speed, reduce 

the density of traffic flow and reduce road congestion, under the premise of ensuring the safety 

of symmetric same direction two-lane safe lane changing. Therefore, they concluded that their 

model could replicate the actual traffic condition more realistically than the previously-defined 

ones.  

Li et al. [2018] analyzed the interaction between the following and the lane-changing vehicles 

to improve the lane changing behavior of vehicles in a microscopic traffic simulation by using 

the cellular automaton model. In their model, the following vehicle on the target lane was 

considered as the research object during the lane changing process, and the lane changing 

rules of three lane changing models, the free, forced, and cooperative lane changing models, 

were adopted. 

Game Theory: 

The next set of rule-based models were developed based on game theory, which is a 

mathematical model of strategic interaction between rational decision-makers. A game 

consists of a number of players, a set of strategies for each player and a payoff function to 

describe the outcome of each player throughout the game [NEUMANN & MORGENSTERN, 2007]. 

Kita [1999; 1993] and Yoo [2014] developed a driver model to better understand human drivers' 

various behaviors in the upcoming mixed situation of human drivers and autonomous vehicles 

with the game theoretic approach. He developed two different models: a driver decision model 
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and a driving model. Wang et al. [2015] developed a game theoretic approach for lane 

changing and car-following control that had shown the numerical results for four vehicles at 

most. Talebpour et al. [2015] modeled the lane changing behavior in a connected environment 

with a game theory approach. However, their calibration results showed major limitations. 

Game theory-based models assume agents with perfect rationality capable of determining 

which action will lead to an optimal payoff for him/her and the other drivers with whom he/she 

is interacting. Therefore, Cortés-Berrueco et al. [2016] integrated driver to driver interactions 

into their model; however, this model was not calibrated and validated with real data. Kang 

and Rakha [2017] modeled a merging traffic situation with the game theory approach. An 

extension of this model that included a decision-making model for merging maneuvers using 

a game-theoretical approach was developed later [KANG & RAKHA, 2018]. This model 

considered two drivers: the driver of the subject vehicle in an acceleration lane and the driver 

of the following lag vehicle in the host lane. In contrast to the previous model, which assumed 

that the driver of the subject vehicle and the driver of the following lag vehicle decide on an 

action at the first point only, their new model introduced the concept of a repeated game, 

assuming that a lane change decision is made repeatedly to adjust to changes based on 

surrounding conditions [KANG & RAKHA, 2018]. 

Incentive-based models:  

The idea behind the incentive-based models, as the name represents, decides whether to 

change the lane or not to maximize the benefits. The first incentive-based model was 

Minimizing Overall Braking Decelerations Induced by Lane changes (MOBIL) model [KESTING 

ET AL., 2007; TREIBER & KESTING, 2009]. This model was developed based on two criteria: 

incentive and safety. The incentive criterion measures the attractiveness of a given lane based 

on its utility, and the safety indicator that measures the risk associated with lane changing. 

While the safety criterion prevents aggressive lane changes and collisions, the incentive 

criterion takes into account the advantages or disadvantages of other drivers associated with 

a lane change with the factor called ‘politeness factor’. This model was applied to traffic 

simulations of cars and trucks with the Intelligent Driver Model (IDM) [TREIBER, 2002] as the 

underlying car-following model. 

The next incentive-based model was Lane changing Model with Relaxation and 

Synchronization (LMRS) [SCHAKEL ET AL., 2012]. The driver’s desire to change the lane is the 

combination of the route, speed, and keep-right incentives. In this model, a trade-off is 

considered while the route incentive is being dominant. Moreover, a relaxation phenomenon 

is defined in the model to replicate the fact that the drivers are willing to accept minimal gaps 

for large desires. The authors modified the IDM model and evaluated their lane change model 

in a simulation. They calibrated and validated their model in free-flow and congested traffic 

conditions with the data collected from loop detectors, which were closely spaced. Even though 

their model showed plausible results for free-flow conditions, the generalization of this model 

is unclear. 
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Discrete-choice probabilistic models: 

Discrete choice models are used to explain or predict a choice from a set of discrete 

alternatives [BEN-AKIVA & LERMAN, 1985]. Most discrete-choice-based lane changing models 

are based on probit or logit models. For discrete-choice-based models, lane changing is 

usually modeled as either MLC or DLC by 1) checking lane change necessity, 2) choice of 

target lane and 3) gap acceptance. Each step can be formulated as a logit or probit model. 

Depending on the step and the number of lanes, the subject driver may face a binary or 

multichoice decision [RAHMAN ET AL., 2013]. These models were used for lane change 

modeling by several researchers. 

Ahmed et al. [1996] developed a general utility-based function for the MLC and DLCs. For 

DLCs, not only the difference between the current speed and the desired speed is considered, 

but also the behavior of Heavy Goods Vehicles (HGV) and the existence of tailgating vehicles. 

If driving on the current lane does not fulfill the satisfaction of the driver, the drivers compare 

the situation on the adjacent lanes to choose the best lane. Ahmed et al. [1996] assumed that 

for a lane changing maneuver, both the lead and the lag gaps must be accepted. With this 

model, gap acceptance parameters could be estimated for both DLC and MLC situations and 

in MLC situations, the drivers accepted lower gaps than in DLC situations. Ahmed [1999]  as 

well developed a model for forced merging behavior in congested traffic situations. A similar 

concept was developed by Zhang et al. [1998], in which MLC critical gaps are randomly 

distributed across the population. The mean value of the MLC critical gap is the function of the 

remaining distance to the location where the lane change execution should be completed. The 

authors validated the model but did not propose a framework for the calibration. 

In order to tackle the problem of having a distinction between MLC and DLC, Toledo et 

al. [2003] introduced an approach that integrated both lane changes in one utility function for 

each lane. This model allows the drivers to consider the MLC and DLC jointly. A discrete choice 

framework was employed to model both the tactical and the operational behavior of drivers. 

For this model, the gap acceptance parameters were calibrated based on the maximum 

likelihood to observations. 

Artificial-intelligence models: 

During the last years, the progress in AI has made revolutionary progress in many areas such 

as robotics, autonomous vehicles and driving behavior modeling. Researchers attempted to 

use various AI and ML methods for modeling driving behavior. Because the driver’s physical 

and mental behavior is nondeterministic and highly nonlinear, it is difficult for traditional 

approaches to embody this kind of uncertain relationship [DING ET AL., 2013]. The methods 

used purely for the driving behavior for autonomous driving are explained in chapter 2.4 and 

this chapter focuses solely on the driving behavior modeling of human drivers.  

Fuzzy logic: 
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fuzzy-logic-based lane changing models incorporate the uncertainty of lane changing and 

consider the natural and subjective perceptions by formulating the logical rules [KIKUCHI & 

CHAKROBORTY, 1992]. The unique nature of fuzzy logic models is that they can convert 

nonlinear systems into IF-THEN rules [MENDEL, 1995]. In FLOWSIM [MCDONALD ET AL., 1997], 

lane changing maneuvers are based on two theories: changing to a slower lane and changing 

to a faster lane. Das and Bowles [1999] proposed a new microscopic simulation methodology 

based on fuzzy rules for implementation in the AASIM software in which MLC fuzzy rules 

consider the distance to the next exit or merge point and the required number of lanes to 

change and DLC is based on the driver's speed. Another study by Moridpour et al. [2012]  also 

developed a lane changing model using fuzzy logic to predict the lane changing maneuver of 

heavy vehicles on freeways.  

HMM: 

A Hidden Markov Model (HMM) is a statistical tool for representing the probability distributions 

over a sequence of observations [RABINER & JUANG, 1986]. HMMs are usually used for 

classification. Nishiwaki et al. [2008] modeled lane change patterns of each driver with an 

HMM, which is trained using longitudinal vehicle velocity, lateral vehicle position, and their 

dynamic features. Vehicle trajectories are generated from the HMM in a maximum likelihood 

criterion at random lane changing time and state duration. Their results conveyed that vehicle 

trajectories generated from the HMM included a similar trajectory to that of a target driver. 

Another study [LIU ET AL., 2016] proposed a probabilistic lane change behavior on HMM to 

detect the dangerous cut-in maneuvers for lane changing on highways. 

Neural Network: 

An Artificial Neural Network (ANN) is an information processing paradigm inspired by the 

information processing of the biological nervous systems. The key element of ANN is the 

structure of the information processing system, which is composed of a large number of highly 

interconnected processing elements (neurons) working together to solve specific problems 

[MCCULLOCH & PITTS, 1943]. Macadam and Johnson [1996] demonstrated the use of neural 

networks in representing the driver's steering behavior in double lane changing maneuvers 

and S-curve maneuvers. Due to the limited data variability for neural networks, their results 

were not promising and they concluded that the adaptive nature of neural networks should be 

used for modeling driver steering behavior under a variety of scenarios.   

A study by Ding et al. [2013] predicted lane changing trajectory based on a time delay 

Back-Propagation Neural Network (BPNN) in real-time. The inputs of the model were the 

position, velocity, acceleration, and time headway of the vehicle and the future lane changing 

trajectory was considered as the desired output of the trained network. They validated their 

model with Next Generation SIMulation (NGSIM) trajectory data [Federal Highway 

Administration (FHWA), 2006] and a smoothing method.  
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Huikun et al. [2016]  proposed a data-driven model to learn the lane changing process of 

vehicles from individual vehicle trajectories (NGSIM dataset). In this study, the lane changing 

was classified into two steps: the decision-making for lane changing, and the execution of lane 

changing. An ensemble of decision trees that decides whether or not to change lane and a 

back-propagation neural network is used for each step respectively. The result of their study 

showed more naturalistic lane changing behavior compared to the existing lane change 

models in simulation.  

Dynamic Bayesian modeling: 

Dynamic Bayesian networks (DBN) add the time component to the standard Bayesian network 

which allows the modeling of time series or sequences and represents the temporal evolution 

of variables over time [GHAHRAMANI, 1998]. In the directed acyclic graph of a DBN nodes 

represent random variables and edges represent probabilistic dependencies between 

variables across time. The key assumption in DBN is that the probability distributions 

describing the temporal dependencies are time-invariant. This means that the temporal 

evolution of the analyzed process can be reconstructed by knowing the temporal 

dependencies represented in the DBN graph [MURPHY, 2002]. 

Wheeler [2014] investigated a methodology for dynamic model construction based on a 

Bayesian statistical framework that was successfully employed in collision avoidance systems. 

The study used NGSIM Dataset and extracted of 162 features for the ego vehicle. These 

features included inherent vehicle properties, relative features between vehicles, roadway 

relative features, and aggregated features over a vehicle's history. In this study, features were 

inspired by those used in the literature [KASPER ET AL., 2012; SCHLECHTRIEMEN ET AL., 2014]. 

Gindele et al. [2015] modeled the decision-making process of drivers from traffic observations 

by building a hierarchical Dynamic Bayesian Model that describes physical relationships as 

well as the driver's behaviors and plans. In this model, they showed a novel approach for 

tactical decision-making for autonomous driving, which is based on a continuous Partially 

Observable Markov Decision Process (POMDP) that uses the presented model for prediction. 

 

Reinforcement Learning approaches: 
 
Reinforcement Learning (RL) has the capability of dealing with time-sequential problems and 

seeking optimal policies for long-term objectives by learning from trials and errors [WANG ET 

AL., 2018] and therefore has been used for modeling the driving behaviors. 

Hoel et al. [2018] introduced a method for speed and lane change decision-making based on 

Deep Reinforcement Learning (DRL). In this study, the agent was trained in a simulated 

environment to handle the speed and lane change decision. Shalev-Shwartz [2016] applied 

DRL to the problem of forming long term driving strategies for autonomous vehicles. Kobert et 

al. [2013] developed a general framework for RL in robotics and Sallab et al. [2017] came up 

with a framework for using DRL for autonomous driving and used simulation results to 
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demonstrate learning of autonomous maneuvering in a scenario of complex road curvatures 

and simple interaction of other vehicles. 

Chen [2018] developed a model to generate human-like lane following and changing 

behaviors. In this study, the author used Long Short-Term Memory (LSTM) to make the 

vehicle’s trajectory prediction by demonstrating of human driving trajectories. They divided the 

lane changing task into predicting the driver’s discrete intention and forecasting the 

subsequent continuous trajectory and solved the sequential prediction task with LSTM. Finally, 

the author compared and evaluated the prediction results with real human driving trajectories 

in the NGSIM dataset. 

Imitation learning approaches: 

Imitation learning (IL) approaches rely on data provided through human demonstration with 

the aim to learn a policy that behaves similarly to an expert agent. One of the methods of IL is 

Behavioral Cloning (BC), which learns a policy as a supervised learning problem over 

state-action pairs from expert trajectories [HO & ERMON, 2016]. The BC approach, developed 

by Michie et al. [1990], is conceptually sound plausible but fails in practice as small 

inaccuracies compound during the simulation. Inaccuracies result in the policy to states that 

are underrepresented in the training data, which leads to inaccurate predictions and ultimately 

to invalid situations. BC succeeds only with a large amount of data due to the error caused by 

the covariant shift [ROSS & BAGNELL, 2010]. These shortcomings motivated work on alternative 

IL methods, such as IRL. 

IRL approaches: 

IRL learning assumes that the expert follows an optimal policy with respect to an unknown 

reward function. If the reward function is recovered, a policy that behaves identically to the 

expert can be simply found using RL. IRL thus generalizes much more effectively and does 

not suffer from many of the problems of RL. Because of these benefits, there are more 

emphasis on modeling human driver behavior using IRL in recent efforts. IRL is explained 

extensively in chapter 5.2.1. 

In the study from Gonzalez et al. [2016], the authors showed how the realistic driver model 

learned from demonstrations via IRL can be used to predict the long-term evolution of highway 

traffic scenes. In their model, each traffic participant is considered as a Markov Decision 

Process (MDP) in which the cost function is a linear combination of static and dynamic 

features. In particular, the static features capture the preferences of the driver while the 

dynamic features, which change over time depending on the other traffic participants’ actions, 

capture the driver’s risk-aversive behavior. However, the result of this study is for simulation 

and the ones which are tested on real data have an egoistic view from the car. 

In a study by Sadigh et al. [2016a], the authors deployed the combination of IRL and game 

theory to model the driving behavior of human drivers. The main idea in their research is the 
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fact that the drivers do not act in isolation and the actions of one driver affect the other ones 

and vice versa. Their model gave promising results when tested with humans in the loop; 

however, the model was derived using deterministic techniques.  

 Calibration of Lane Change Models 

 

Verification, validation and calibration of models are critical to the reliability and credibility of 

the model results [HELLINGA, 1998]. Calibration is the process of systematically tweaking model 

parameters so that the model can reproduce the observed traffic conditions. Dowling et 

al.[2004] define calibration as below: 

“Calibration is necessary because no single model can be expected to be 

equally accurate for all possible traffic conditions. Even the most detailed 

microsimulation model still contains only a portion of all the variables that 

affect real-world traffic conditions. Since no single model can include the 

whole universe of variables, every model must be adapted to local 

conditions.” 

The calibration process is continued until the error between the performance measures taken 

from the field data and the performance measures calculated in the simulation is less than a 

predetermined margin of error [ALEXIADIS ET AL., 2014] and model validation is the process of 

checking to what extent the model replicates the reality [TOLEDO & KOUTSOPOULOS, 2004]. The 

adaptation of a microscopic model to a local situation is time-consuming and often, the 

necessary measurement data is difficult to obtain [FELLENDORF & VORTISCH, 2001]. 

For the calibration and validation of microscopic lane changing models, various empirical traffic 

data have been used. Some studies used individual trajectories [BALAL ET AL., 2016; YANG & 

KOUTSOPOULOS, 1996; LECLERCQ ET AL., 2007; THIEMANN ET AL., 2008; MORIDPOUR ET AL., 

2010a; SCHAKEL ET AL., 2012; KNOOP & BUISSON, 2014; PARK ET AL., 2015; BEN-AKIVA ET AL., 

2006; PATIRE & CASSIDY, 2011; ESSA & SAYED, 2016] but they also have some shortcomings. 

For example, some models used the vehicle trajectories in one lane but did not consider what 

happened between the vehicles in different lanes; some presented useful microscopic results; 

however, they did not have an integrated framework for lane changes [JIN ET AL., 2018].  

Another dataset used for calibration and validation of lane changing is travel time [KIM, 2006; 

SCHAKEL ET AL., 2012]. Other researchers [SCHAKEL ET AL., 2012; KNOOP & BUISSON, 2014] 

used loop detector data, but this kind of observation limits the possibility of observing the 

performed lane changes. Therefore a method has been developed to determine the number 

of lane changes in loop detector counts [KNOOP ET AL., 2012b]. Moreover, some studies used 

macroscopic data, such as the capacity to tweak the parameters [GEISTEFELDT & GIULIANI, 

2015]. 
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 Summary 

Despite the great effort of rule-based models to model the lane changing behavior of humans 

with different gap-acceptance conditions and consequently different lane changing behavior 

for various situations, these models cannot represent and model the heterogeneous behavior 

of humans. Most of these models are deterministic, and even those who added the 

stochasticity to the model through estimated distributions fail to represent the behavior of 

humans realistically. Because of the multiplicity of possible driving conditions associated with 

discretionary and mandatory lane changes, these approaches tend to lead to complex models 

with many parameters [TREIBER & KESTING, 2009].  

Incentive-based models account for the variability of drivers by the politeness factor in MOBIL 

and accepted headway, deceleration and level of desire in LMRS. Moreover, they have very 

few parameters to tweak and therefore, the realistic driving behavior such as heterogeneous 

driving behavior of the drivers cannot be modeled. However, it is not clear yet whether or not 

they can well represent the driving behavior in congestion [ABUALI & ABOU-ZEID, 2016]. 

In discrete choice models, the lane changing decisions are probabilistic instead of binary yes 

or no results. In Ahmed’s models [1996; 1999], the rigid separation between MLC and DLC is 

unrealistic in real-life driving and Toledo’s model [2003], the main weakness is the difficulty of 

determining the utility functions for various decision choices [RAHMAN ET AL., 2013]. In existing 

discrete-choice-based lane changing models, the heterogeneities in drivers such as driver 

aggressiveness, driving skill level have not been considered adequately. 

AI-based models have the potential to be superior in dealing with complex situations without 

resorting to detailed hard-coded rules or pre-determined models. Some MLI-based models 

presented acceptable performance [HOEL ET AL., 2018; GONZALEZ ET AL., 2016; GINDELE ET 

AL., 2015; WANG, 2015]; however, these models are usually trained with the simulation or 

simulator data, and it is still not clear whether they can perform the same on the real data. 

Another shortcoming of these models is their computational time, which makes them 

impractical and unattractive for implementation in the microscopic traffic simulation tools.    

This dissertation, therefore, tackles the abovementioned shortcomings in the existing models 

and proposes a model that learns the driving behavior from the individual vehicle trajectories. 

Moreover, a strong focus of this work is to develop a model that can make predictions and 

deliver results fast enough that it can be implemented in the microscopic simulation tool. 

2.3 Microscopic Traffic Simulation Tools 

Microscopic simulation software is an indispensable powerful and essential tool in traffic 

analysis for modelers and transport planners. A large number of simulation software are 

developed and used worldwide, and they provide a cost-efficient and safe mean to test 

emerging technologies such as automated vehicles. In this chapter, the most widely used traffic 



28  Data-driven Lane Change Model 

 

simulation software and the underlying model for their behavior are discussed. Human factors 

significantly determine traffic and developers of traffic simulation frameworks are accounting 

for these factors and including sophisticated models to mimic human decisions 

[LÜTZENBERGER & ALBAYRAK, 2014]. However, there is no model in which all decisive factors 

on human driving behavior listed in chapter 2.1.2 are included. This chapter describes the 

most-widely microscopic traffic simulation tools and their components.  

It is noteworthy to mention that although some other simulation software like PELOPS (that is 

a combination of highly detailed sub-microscopic vehicle- and microscopic traffic technical 

model that allows investigations about the longitudinal vehicle dynamics as well as an analysis 

of the course of traffic [LUSMANN ET AL., 1997]) and some other sub-microscopic simulation 

software (e.g., CarMaker [IPG Automotive GmbH, 2015], DYNA4 [TESIS, 2018] and CarSim 

[Mechanical Simulation, 2015]) do exist, due to the incompatibility between the nature of these 

tools such as considering the vehicles dynamics and the limitations of the traffic observations 

of this study, they were not studied further for this dissertation. 

 SUMO 

SUMO (Simulation of Urban MObility) is an open-source, continuous, microscopic and multi-

modal traffic simulation tool developed by DLR (Deutschen Zentrums für Luft- und Raumfahrt 

German for German Aerospace Center). The driving behavior dynamics are determined by 

three models in SUMO [ERDMANN, 2014]:  

1. Car-following model determines the speed of the ego vehicle in relation to the vehicle 

ahead of it. The Driver model is SUMO is a Gipps’ model extension, which was invented 

and described by Krauss [1997]. In this model, vehicles have a collision-free behavior 

and the safe velocity of each vehicle is calculated based on the speed of the leading 

vehicle, gap to the leading vehicle, the driver’s reaction time and the deceleration 

function [KRAJZEWICZ ET AL., 2002].  

2. Intersection model determines the behavior of vehicles at different types of 

intersections with regard to right-of-way rules, gap acceptance and avoiding junction 

blockage.  

3. Lane changing model determines lane choice on multi-lane roads and speed 

adjustments related to lane changing. 

Based on Erdmann [2014], the lane changing model in SUMO has to fulfill two main steps. 

First, the software computes each vehicle’s lane changing decision based on the vehicle’s 

route and the current and historical traffic condition. In this software, the drivers do the lane 

changing strategically, meaning that they evaluate the lanes according to their desired route 

and determine the urgency of a lane change. Afterward, the model computes the necessary 

acceleration or deceleration for the ego vehicle and the surrounding vehicle to safely execute 

the lane change. 
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The speed of a vehicle in this model is mainly determined by the leader, which may be on the 

same lane or the preferred successor lane after the current lane. The car-following model 

calculates the speed for following the leader. A vehicle can only change its lane if there is 

enough physical space on the target lane and if it does not come close to its leader or follower 

on the target lane. In case neither of these conditions is met, the vehicle is believed to have a 

blocking leader or a blocking follower [LI ET AL., 2014]. A vehicle that moves to a lane on the 

next edge is said to advance the lane, and a vehicle that changes to a parallel lane on the 

same edge is said to change lane. Based on the description provided by Erdmann [2015], 

during each simulation step, the following sub-steps are executed in order for every vehicle: 

 

1. Computation of preferred successor lanes. 

2. Computation of safe velocities under the assumption of staying on the current lane and 
integration with lane changing related speed requests from the previous simulation 
step. 

3. Lane changing model computes change request. 

4. Either execute lane changing maneuver or compute speed request for the next 
simulation step. The speed changes depending on the urgency of the lane changing 
request. 

During each simulation step, every vehicle executes the four sub-steps, and if any vehicle 

satisfies the lane changing condition, then the lane changing maneuver begins. Assuming the 

coordinates of the ego vehicle before lane changing are (𝑋0, 𝑌0) and the speed is 𝑉0 and the 

coordinates of the ego vehicle after lane changing are (𝑋𝑡 , 𝑌𝑡) and the speed is 𝑉𝑡. 

𝑋𝑡 = 𝑋0 +
(𝑉𝑡 + 𝑉0)𝑇

2
 

𝑌𝑡 = 𝑌0 + 𝐿 

Where T is the simulation resolution and L is the lane width. 

 VISSIM 

VISSIM [PTV AG, 2016] developed by PTV (Planung Transport Verkehr AG) group in 

Karlsruhe, Germany is one of the popular programs used for microscopic traffic simulation. 

This multimodal simulation software can be applied for simulation in both freeway and urban 

areas. Car-following mode in VISSIM is based on the well-known psycho-physical car-following 

model by Wiedemann [1974]. Based on the basic assumption in this car-following model, a 

driver can be in one of four driving modes: 
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1. Free-driving mode, where no influence is exerted from leading vehicles. In this mode, 

the driver attempts to reach and maintain the desired speed. 

2. Approaching mode, when the driver of the follower vehicle consciously observes that 

he is approaching a slower vehicle in front. 

3. Following mode, where the headway for a pair of vehicles is between the maximum 

following headway and the safe headway. In this mode, the follower vehicle is able to 

accelerate or decelerate in accordance with the vehicle in front. 

4. Braking mode, when the headway between vehicles drops below the desired safety 

distance. 

Lateral movement in VISSIM can be structured in lane selection, lane changing, and 

continuous lateral movement within one lane. VISSIM classifies lane changes into free lane 

change and necessary lane change. The underlying lane change model in VISSIM is based 

on an improved version of Sparmann’s model [1978]. 

In VISSIM’s lane changing model, as long as a driver is not aware of any necessary lane 

change because he is far away from the next relevant connector, he chooses the lane with the 

best interaction situation. However, lane selection is often governed by mandatory lane 

changes for desired turns [FELLENDORF & VORTISCH, 2010]. In the case of a free lane change, 

the lane changing model examines whether the available lag TTC between the following 

vehicle in the target and the subject vehicle lane satisfies the desired safety distance and 

minimum time headway parameters [PTV AG, 2016]. For a lane change in a queue, the model 

also checks the lead TTC between the preceding vehicle in the target lane and the subject 

vehicle. In VISSIM software, each connector has two distances attached: the lane change 

distance and the emergency stop distance. The lane change distance describes when a driver 

becomes aware of the upcoming connector. From that point on he will consider the connector 

in his lane selection. The emergency distance is the distance to the connector where a driver 

will stop when reaching the necessary lanes to change to the connector is not possible 

[FELLENDORF & VORTISCH, 2010].  

VISSIM implements Microsoft Component Object Model (COM) as a programming interface. 

The functionality provided by a COM interface can be used by different programming 

languages [PTV Group, 2018]. This interface provides access to the modeled road network 

with all its attributes, signal control, evaluations, all vehicles in the simulation and their 

attributes, the simulation control and extends the applications of VISSIM. The COM interface 

can be used to easily include VISSIM in other applications. 

 AIMSUN 

Advanced Interactive Microscopic Simulator for Urban and Non-urban Networks software 

known as AIMSUN  [Aimsun, 2018] uses a Gipps’ car-following model [1981] and a 



Literature Review   31 

 

development of the Gipps’ lane changing model [GIPPS, 1986]. Based on Barcelo et al. [2005], 

the implemented car-following model in AIMSUN takes into account the additional constraints 

defined by Mahut [1999] on the braking capabilities of the vehicles, imposed in the classical 

safe-to-stop-distance hypothesis. Based on this hypothesis, if the leader should begin to 

decelerate to a stop at some time t, the follower, starting at time t+ 𝜏  (𝜏 is the follower’s 

response time), should be able to decelerate to a stop safely. 

Lane changing is modeled as a decision process that analyses the necessity of the lane 

change as well as the desirability of the lane change, and the feasibility of the lane change 

[HIDAS, 2005; HIDAS, 2004]. Once a decision was made to change the lane, the maneuver is 

executed in AIMSUN as an instantaneous switch from one lane to the other. The decision 

process depends on the distance of the vehicle from the next required turning point. Based on 

Barcelo et al. [2005], AIMSUN divides this distance into three zones with distinct considerations 

in each zone:  

1. Zone 1: this is the zone farthest from the next turning point. The vehicle is in this zone 

only considers lane changing desirability to reach its desired speed. 

2. Zone 2: the intermediate zone in which lane changing decisions are made to reach the 

required turning lane without the behavior of vehicles in the turning lane being affected. 

3. Zone 3: the final section before the turning point. In this zone, vehicles are forced to 

reach their required turning lane by reducing their speed or even stopping to wait for a 

gap, and vehicles in the target lane may modify their behavior in order to allow the other 

vehicles to move into the target lane. 

Moreover, AIMSUN also has an optional ‘Two-lanes Car-Following Model’ that can be used to 

force vehicles in the faster lanes of multi-lane roads to slow down. The model is controlled by 

four user-defined parameters: the number of vehicles considered, maximum distance ahead, 

maximum speed difference, and maximum speed difference on the ramp [HIDAS, 2004; HIDAS, 

2005]. If a vehicle is unable to reach its required turning lane, it will get stuck in the wrong lane, 

and after a given waiting time, which can be adjusted by the user, it will become a lost vehicle 

by continuing on the wrong route. AIMSUN has a plugin API, which enables modifications 

during a simulation run and allows the implementation of sophisticated external logic [CASAS 

ET AL., 2010]. 

 PARAMICS 

The microsimulation model PARAMICS (Parallel Microscopic Simulation) was developed by 

the company Quadstone and SIAS Ltd [Quadstone LTD., 2018]. At the microscopic level, driver 

and vehicle interactions are simulated based on individual driver behavior and vehicle 

kinematics. Vehicle-to-vehicle interactions are based on vehicle following, gap acceptance and 

vehicle kinematics. The driver behavior is based on research conducted at the Transport 

Research Laboratory, where it was concluded that driver aggressiveness and awareness are 
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sufficient to describe the behavior of most drivers [KROGSCHEEPERS & KACIR, 2001]. This 

software depends on a psycho‐physical car‐following model based on the Fritzsche model 

[1994], which assumes that the driver can have one of five phases: Following‐I, Following‐II, 

Danger, Closing In, and Driving Freely. These modes are determined using six following 

thresholds [PANWAI & DIA, 2005]: 

1. Perception‐Threshold Negative (PTN) is defined as the negative relative speed of a 

pair of vehicles.  

2. Perception‐Threshold Positive (PTP) is defined as the positive relative speed of a pair 

of vehicles. 

3. Desired Distance (AD) illustrated a comfortable distance headway of vehicles, which is 

related to the speed of the follower vehicle. 

4. Risky Distance (AR) threshold shows conditions when the distance headway is too 

close to be categorized as comfortable driving.  

5. Safe Distance (AS) represents the threshold to enter a driving condition when the driver 

is unable to decelerate fast enough to avoid a risky situation. 

6. Braking Distance (AB) is a threshold, which is used to avoid collisions due to high 

speeds and late decelerations.  

The lane changing behavior in PARAMICS is also based on Fritzsche model [1994]. Lane 

changing action follows the established gap acceptance theory and a historical record of 

suitable gap availability in a link. A driver’s aggression is taken into account in the lane 

changing model by means of adjusting his signpost distance [ESSA & SAYED, 2016]. 

 BABSIM 

BABSIM is a non-commercial freeway traffic flow simulation tool developed by Institute for 

Transportation and Traffic Engineering and the Institute of Computational Engineering of Ruhr-

University Bochum on behalf of the German Federal Highway Research Institute (BASt) 

[GEISTEFELDT ET AL., 2014]. This software has several modules that represent the intention of 

the following driving tasks: car-following, overtaking, keeping right, gap control, path following, 

and cooperation with surrounding drivers. For each driving situation, a vote will be returned for 

lateral and longitudinal movement of the vehicle from each module. The final decision for each 

maneuver is calculated by combining the votes [HARDING, 2008]. This simulation software has 

Wiedermann [1974] and Sparmann [1978] model for car-following and lane changing model 

respectively.  
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 Summary 

This section summarizes the traffic flow simulation tools reviewed in chapter 2.3, and gives an 

overview of their capabilities in simulating different levels of driving behavior task, and the 

influential factors in driving behavior discussed in section 2.1.2. Tab. 2.3 illustrates five 

simulation tools, and the color determines to which extend the component can be simulated in 

that software or its underlying behavior models. As can be seen from the table, most of the 

influential factors for the task of driving behavior are not included in the microscopic traffic 

simulation tools. 

All the analyzed tools include models for the tactical level of driving behavior. In most cases, 

these models belong to the category of stimuli-response models, such that certain events 

cause drivers to change their behavior. All the examined simulation tools account for a simple 

perception of the driving environment in which they conceptualize the perception into the 

distance to the neighboring vehicles. However, none of these tools consider factors such as 

weather condition and congestion level in their perception. Moreover, factors such as social 

and peer norms, cultural norms, and risk perception are not included in their perceived 

environment. Although the personality characteristics of the driver are not included in the 

underlying driving model of these simulation tools, some modelers replicate different driving 

behavior (aggressive, conservative) characteristics by defining different vehicle types and 

applying corresponding driving behavior by tweaking the model parameters. Nevertheless, this 

approach is accompanied by a lot of effort for finding the parameter combination which can 

replicate a specific behavior.  
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2.4 Decision-Making and Motion Planning for Automated Vehicles 

The developed algorithms and models for automated vehicles are mostly divided into two 

driving behavior levels: tactical decisions and operational decisions. This section, therefore, 

reviews the modeling approaches used for automated vehicles both in simulation and in real 

life and focuses on the methodology used in each model.  

Tactical decision-making for automated vehicles has been given increasing attention. A 

considerable number of models contained rule-based decision-making processes [NIEHAUS & 

STENGEL, 1991], whereas more advanced models tend to use utility functions [EHMANNS, 

2003]. In a study by Schubert et al. [2010], the Bayesian network was used for situation 

assessment and decision-making for lane changes. Deceleration to Safety Time (DST) was 

used as a central criterion for lane change situation assessment. In another study [SCHUBERT, 

2012], the authors picked some sample sequences of highway driving and illustrated the 

consequences of uncertainties on the ambiguity of the situation over time. Reichel et al. [2012] 

proposed a framework for the classification of lane change decision-making for merging 

situations, which is used to analyze if the ego vehicle is part of a convoy merging maneuver or 

if a convoy is about to merge to the ego lane. McAllister et al. [2017] suggested a model that 

estimated and propagated uncertainty from every component throughout the entire system 

pipeline using a principled Bayesian for automated vehicles to cope appropriately with high 

uncertainty.  

Ulbrich & Maurer [2015] proposed a Dynamic Bayesian Network (DBN)-based model, which 

relates variables to each other over adjacent time steps, for the tactical behavior planning for lane 

changes. In their model, they included the perception uncertainties and integrated system’s 

abilities and current skills. A decision-making concept for the lane changing decision of the 

highly automated BMWs in real traffic was presented in a study by Ardelt et al. [ARDELT ET AL., 

2012]. This method deployed a decision tree to assess the feasibility of the maneuvers based 

on the defined goals and traffic situation. Another study [MOTAMEDIDEHKORDI ET AL., 2017] 

modeled the tactical lane change behavior with various supervised ML algorithms and 

classified the behavior into keeping the lane, lane change to the right and lane change to the 

left with SVM, decision tree, Random Forest (RF) classifiers. In a similar study, Vallon et al. 

[2017] trained a support vector machine for lane change decision-making with features 

composed of relative position and relative velocity. Mukadam et al. [2017] proposed a 

framework that leverages the strengths of traditional optimization or rule-based methods for 

low-level control and DRL for high-level tactical decision-making, by striking the right balance 

between both domains. In this study, the authors considered the problem of autonomous lane 

changing in a multi-lane-multi-agent setting and set up the problem environment in SUMO 

traffic simulation.  

When the tactical decision is made, which could be cruise-in-lane, change-lane to the right or 

change lane to the left, the selected tactical decision has to be translated into a trajectory that 
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can be tracked by the feedback controller. The resulting trajectory must be dynamically 

achievable for the vehicle, comfortable for the passenger, and avoid collisions with obstacles 

detected by the onboard sensors [PADEN ET AL., 2016]. The task of finding such a trajectory is 

the responsibility of the motion planning system.  

The task of motion planning for an automated vehicle corresponds to solving the standard 

motion planning problem as discussed in the robotics literature, and for motion planning and 

control of automated vehicles (operational behavior), various methods have already been used 

by researchers. As shown in Fig 2.7, these methods can be divided into four main categories: 

1) Optimal control, 2) RL methods, 3) Learning from demonstrations, and 4) Motion prediction. 

This chapter briefly explains the most important studies of each group which has already been 

implemented for autonomous vehicles. 

 

Fig 2.7 Summary of motion planning and control [https://github.com/eleurent/phd-bibliography] 

 Optimal Control 

For operational behavior of automated vehicles, some studies focused on the Model Predictive 

Control (MPC) [CAMACHO & BORDONS, 2007] approaches. The main advantage of MPC is to 

anticipate the future consequences of control input. MPC allows dealing with the fulfillment of 

different objectives in complex missions using cost functions. MPC has been widely used to 

guide automated vehicles [ANDERSON ET AL., 2010; FALCONE ET AL., 2007; ALI ET AL., 2013; 

GRAY ET AL., 2012; GAO ET AL., 2012]. Turri et al. [2013] deployed linear MPC formulation to 
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address the lane keeping and obstacle avoidance problems for a passenger car driving on low 

curvature roads. In another study, Rochefort et al. [2012] developed guidance of a group of 

autonomous cooperating vehicles using model predictive control. Their developed control 

strategy allowed finding a feasible near-optimal control sequence with a short and constant 

computation delay in all situations. A Non-linear model predictive controller (NMPC) [LINIGER 

ET AL., 2015]  was developed for tracking the race cars based on mathematical optimization. 

Qian et al. [2016] proposed a new formulation of the trajectory planning problem as a Mixed-

Integer Quadratic Program (MIQP). In their study, they illustrated that this formulation could be 

solved efficiently using widely available solvers, and the resulting trajectory is guaranteed to 

be globally optimal. However, the main drawback of MPC is the unpredictable computation 

delay of the optimization procedure. In order to create a more personalized autonomous lane 

change experience that satisfies safety and comfort constraints, Vallon et al. [2017] integrated 

lane change decision logic into MPC framework.  

 Reinforcement Learning 

Another line of research learns driving behavior in simulation, which makes it suitable for RL. 

In the simulation, it is possible to observe failure cases during learning in a safe 

environment. RL was used for learning behavior models [KONIDARIS & HAYES, 2005; INFANTES 

ET AL., 2011; HE ET AL., 2016; SHTEINGART & LOEWENSTEIN, 2014]. In RL, the agent is provided 

with a reward function, and whenever the agent executes an action in some state, the reward 

function provides feedback about the agent’s performance. The given reward function is used 

to obtain an optimal policy, one where the expected future reward is maximum. The problem 

with the RL is that in most tasks, there is no natural source for the reward function. Instead, it 

has to be carefully defined to represent the task accurately. The difficulty with designing a 

reward function that encourages the behaviors you want while still being learnable. Often, 

engineers manually tweak the rewards of the RL agent until the desired behavior is observed. 

A better way of finding a well-fitting reward function for some objective might be to observe an 

expert agent (human) performing the task in order to automatically extract the respective 

rewards from these observations with IRL [KAELBLING ET AL., 1996].  

Wang & Chan [2017] developed a framework shown in Fig 2.8 for DRL to learn the merging 

behavior of autonomous vehicles on an on-ramp. For the interactive environment, they applied 

the Long Short-Term Memory (LSTM) architecture. From this architecture, an internal state 

containing historical driving information is conveyed to a Deep Q-Network (DQN). The DQN 

uses neural networks parameterized by 𝜃 to approximate the Q-function. Q-function takes the 

internal state as input and generates Q-values, denoted as (𝑠, 𝑎; 𝜃), as output for action 

selection. This DLR architecture allows capturing the historical impact of the interactive 

environment on the long-term reward and taking this reward into account for deciding the 

optimal control policy. This study has a certain limitation of considering the interaction among 

only three vehicles and not being verified and validated. 
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Fig 2.8 Deep Q-learning architecture in the methodology developed by Wang & Chan [2017].  

 

In similar studies [2018; 2019], the authors proposed a RL-based approach to train the vehicle 

agent to learn an automated lane change behavior such that it can make a lane change under 

diverse and even unforeseen scenarios. They treated both state space and action space as 

continuous and designed a Q-function approximator that has a closed-form greedy policy, 

which contributes to the computation efficiency of the deep Q-learning algorithm. The reward 

function in this model was defined with yaw rate, yaw acceleration and lane changing duration 

for training a smooth and efficient lane change behavior and tested their model in a simulation 

platform with diverse simulation scenarios. 

Berkenkamp et al. [2017] presented a learning algorithm that explicitly considers safety to 

overcome the fact that in RL, finding optimal policies is mostly associated with exploring all 

possible actions, which may be harmful to real-world systems. On the other hand, model-based 

RL has been used in Piergiovanni et al. [2018] to control robots. In their model, they followed 

the standard RL setting and formulated policy learning as learning in a Markov decision 

process (MDP). 
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  Learning from Demonstrations 

Learning from demonstrations is usually done by two methods: IL or IRL. IL is the problem of 

learning to perform a task from expert demonstrations, in which the learner is solely provided 

the sample of trajectories from the expert. IL is the process of directly learning the mapping 

between the states and the actions, considering this task as a supervised learning problem, 

whereas IRL assumes that the expert’s policy is optimal with respect to an unknown reward 

function. Therefore, the first aim of the apprentice is to learn a reward function that describes 

the observed expert behavior. Then, using direct RL, it optimizes its policy based on this reward 

function and hopefully behaves as well as the expert [PIOT ET AL., 2017]. The first advantage 

of learning a reward over learning a policy is that the reward can be analyzed to better 

understand the expert’s behavior [BLOCKEEL ET AL., 2013]. The second advantage of learning 

a reward is that it allows adapting to perturbations in the dynamics of the environment and its 

possibility to transfer to other environments [MUNZER ET AL., 2015]. 

The Generative Adversarial Imitation Learning (GAIL) model developed by Ho & Ermon [2016] 

developed a framework to extract a policy from data directly. They showed that their generative 

method from which they derive a model-free IL algorithm, performs better than the conventional 

IL models in large, high-dimensional environments. Bhattacharyya et al. [2018] developed an 

extended GAIL in order to address its shortcomings and considered multi-agent GAIL policy. 

They showed that their model could outperform the model with the single GAIL policy. 

In the IRL framework, the task is to take a set of human-generated or simulation-generated 

driving behavior data and extract an approximation of the reward function for the task by using 

human driving data to automatically learn the feature weights for the reward [ABBEEL & NG, 

2004]. Abeel & NG [2004] were the first researchers who motivated deploying the IRL for 

learning driving styles. Thereafter, researchers used different variations of IRL to model the 

driving behavior for automated vehicles. Babes et al. [2011] introduced the maximum likelihood 

IRL in which they maximized the likelihood of the data assuming an exponential family 

distribution. They introduced a method to cluster observed behavior styles and learn individual 

feature weights for each cluster. In another study [KUDERER ET AL., 2012], proposed learning 

from demonstration method and learned a cost function with a feature-based IRL that first the 

observed driving behavior style the best.  

Some Research focused on developing driving behavior prediction based on Maximum 

Entropy IRL (MaxEnt IRL) [LEVINE & KOLTUN, 2012; LEVINE ET AL., 2011] in order to tackle the 

ambiguity of the IRL. Another study by Vasquez et al. [2014]  proposed leveraging an existing 

driving simulator (Torcs) by developing a ROS communication bridge. They used it is as the 

basis for an experimental framework that can be used for the development of human-like 

autonomous driving based on IRL. Sharifzadeh et al. [2016] proposed IRL approach using 

Deep Q-Networks to extract the rewards in problems with large state space and tested their 

method in a simulation-based autonomous driving scenario. Being inspired by the study of 

Levine and Koltun [2012], which presented a method for IRL in continuous state and action 
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spaces, Shimosaka et al. [2017] developed a prediction model using a graph-based state 

space, in which they propose a novel state-space discretization framework. 

 Motion Prediction Models 

Reghelin et al. [2012] developed a centralized traffic controller for highway traffic, minimizing 

the sum of travel times of all vehicles. In their model, they assume aggressive actions and 

performing conservative behavior if expected collisions in the planning framework occur.  

In a study by Lawitzky et al. [2013], a framework for prediction of the motion of vehicles on 

highways considering the interaction of the traffic users was presented, which fulfills the 

required time constraint for on-line computation. This framework assumes that drivers do not 

prefer the safe option over the maneuvers with high collision probability. Their model predicted 

the highway scenes, taking inter-vehicle dependencies and interactions explicitly into account 

while evaluating collision probabilities of different maneuvers. 

Schwarting and Pascheka [2014] considered the decision-making problem of a host vehicle 

during lane changing with a number of object vehicles moving on neighboring lanes in the 

same direction in a highway traffic scenario. In this situation, they searched for cooperative 

maneuvers over a control horizon that considers preceding as well as following vehicles. They 

proposed a motion primitive-based recursive approach which combines egoistic behavior 

prediction, conflict detection, and conflict resolution with a cost function-based maneuver 

evaluation to mimic human-like cooperative decision-making. 

Kim et al. [2017] proposed trajectory prediction method based on the recurrent neural network 

called long short-term memory (LSTM) to analyze the temporal behavior and predict the future 

coordinates of the surrounding vehicles. The proposed scheme feeds the sequence of 

vehicles’ coordinates obtained from sensor measurements to the LSTM and produces the 

probabilistic information on the future location of the vehicles over an occupancy grid map. 

Their proposed method was similar to that used by Khosroshahi et al. [2016] for analyzing the 

driving behavior of the surrounding environment with LSTM.  

 Summary 

The developed models for motion planning and control algorithms of automated vehicles are 

mostly based on two common approaches: Model-driven and Data-driven. Model-driven 

modeling represents the attempt to capture the understanding of how a system works through 

explicit representations and rules. Data-driven approaches focus on building a model that can 

identify the right prediction based on having seen or trained on a large number of examples. 

The strength of this approach is that it does not depend on humans accurately describing 

through a set of rules how the model should work. The higher the quality and variety of the 

training data, the better the model can make predictions. One of the significant concerns about 

data-driven models is the uncertainty caused by bias and under-representativeness of the 
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training data. Another big challenge of these models is the generalization of the model to 

unseen events. Model-driven models, on the other hand, attempt to capture the knowledge 

and derive decisions through explicit representation and rules. Furthermore, modeling takes 

time and it is inherently a trial-and-error approach, rooted in the method of theory-based 

hypothesis formation and experiment-based testing. Therefore, finding a suitable model and 

refining it until it produces the desired results is often a lengthy process. Moreover, there are 

many different rules and exceptions to those rules and components that cannot be easily 

defined by humans.  

2.5 Research Gap 

This chapter reviewed the most well-known models for driver behaviors, the influencing factors 

for driving behavior, microscopic lane change modeling, widely-used microscopic traffic 

simulation tools, as well as the methods used for motion planning and control of automated 

vehicles. From the foregoing literature review, the major limitations of the existing microscopic 

lane change models to study the new forms of mobility, such as automated vehicles, become 

apparent. The literature review has highlighted an area where further research could overcome 

gaps and shortcomings.  

Conventional Rule-based or physical lane changing models, model the lane changing behavior 

with varying gap-acceptance conditions and lane changing behavior for various situations, 

however, these models cannot represent the heterogeneous driving behavior of humans’ 

drivers during lane changing realistically. Although the conventional models have some 

advantages, such as intuitive explanations and rational boundaries, many components cannot 

be adequately described by a mathematical equation of a simple agent [CASCETTA, 2001]. 

Most of these models are deterministic and even those who tried to add the stochasticity to the 

model through estimated distributions fail to represent the behavior of humans realistically. 

Because of the multiplicity of possible driving conditions associated with discretionary and 

mandatory lane changes, this approach tends to lead to complex models with many 

parameters [TREIBER & KESTING, 2009].  

Incentive-based models consider the variability of drivers into account by the politeness factor 

in MOBIL and accepted headway, deceleration and level of desire in LMRS. Moreover, they 

have very few parameters to tweak and therefore, they fail to present a realistic model for 

human’s lane changing behavior. In discrete choice models, the lane changing decisions are 

probabilistic instead of binary yes or no, however, the existing discrete-choice-based lane 

changing models, the heterogeneities in drivers such as driver aggressiveness and driving skill 

level are not considered adequately.  

AI-based models, have the potential to be superior in dealing with complex situations without 

resorting to detailed hard-coded rules or predetermined models and some studies presented 

plausible performance [HOEL ET AL., 2018; GONZALEZ ET AL., 2016; GINDELE ET AL., 2015; 

WANG, 2015]; however, these models are usually trained with the traffic simulation or driving 
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simulator data. Therefore, it is still not clear whether they can perform the same on the real 

data. Another shortcoming associated with these models is their computational time, which 

makes them impractical and not easily implementable in the microscopic traffic simulation 

tools. However, these factors and small variations in driving behavior can lead to aggregated 

effects on the traffic flow. 

Some of the existing physical-based lane change models are implemented in microscopic 

traffic simulation tools, which are used for traffic flow studies. The driving behavior models in 

microscopic simulation tools should be as precise and realistic as possible to replicate the 

reality and draw meaningful conclusions about the impacts of automated vehicles on traffic 

flow characteristics. However, as discussed in Tab. 2.3, the most widely used microscopic 

traffic simulation tools do not account for the influential factors on driving behavior. Moreover, 

in the underlying rule-based models in microscopic simulation tools, there is a need to develop 

a new mathematical model for different driving scenarios, for example, a new model for 

freeway and urban areas. Besides, the calibration and validation effort and time of the 

conventional models is very high and adapting the model to different situations and different 

driving cultures mandates a new iterative calibration and validation process for tweaking the 

parameters. These shortcomings resulted in seeking the driving behavior modeling 

approaches that can better reflect the factors such as socially acceptable driving behavior, can 

be easily adapted to new situations, and replicate the real-world driving conditions more 

realistically. 

As part of this effort, many models proposed for the decision-making algorithms and motion 

planning of automated vehicles were investigated. Optimal control models and 

motion-prediction models define models having various parameters. Despite the promising 

results of these algorithms, exact solutions to the motion planning problem are in most cases 

computationally intractable [PADEN ET AL., 2016]. A high-fidelity model which accurately reflects 

the response of the vehicle to various factors may complicate the planning and control 

problems due to the added details. This presents a trade-off between the accuracy of the 

selected model and the difficulty of the decision problems [PADEN ET AL., 2016]. Therefore, 

integrating the same models in microscopic traffic simulation models is not feasible.   

Another category of developed models for control of automated cars is based on learning from 

demonstrations is usually done by two methods: IL or Inverse IRL. IL is the process of directly 

learning the mapping between the states and the actions (the policy), whereas IRL relies on 

the assumption that the expert’s policy is optimal with respect to an unknown reward function. 

By means of IRL, the detailed information buried in the data, such as the correlation between 

different features as well as the significance (weight) of each feature can be captured. The 

result of the second modeling approach showed that it is capable of learning reward functions 

and reproducing different driving styles and socially acceptable driving behavior using data 

from real drivers [VINKHUYZEN & CEFFKIN, 2016]. 
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A general modeling approach should be developed that, like the IRL-based model developed 

for control of automated vehicles, reflect the underlying nature of driving behavior in various 

traffic situations and in different driving cultures without the need to perform the iterative and 

time-consuming approach of calibration and validation. This approach should reflect the 

detailed information buried in the data such as the impact of the factors discussed in Tab. 2.2 

on diving behavior, while being computationally reasonable and implementable in microscopic 

traffic simulation software. However, due to lack of data about the demographics of drivers, 

the focus of this dissertation is on the integration of the perceived environment (social and 

cultural norms) as well as the driving environment in the driving behavior model, specifically 

on lane changing behavior.  

Among the reviewed modeling approaches, data-driven approach was found to be the most 

appropriate for achieving the goal of this study. This approach has the strength of not 

depending on human to accurately describe a set of rules on how the model should work. 

There are so many different rules and exceptions to those rules and components that cannot 

be defined by humans and capture the knowledge and derive decisions through explicit 

representation and rules from data. However, these models have specific data requirement 

with regard to the amount and variety and representativeness of training data. The proposed 

data-driven methodology for lane change will significantly increase the accuracy of the models 

used for impact assessment of automated vehicles with microscopic simulation tools.  
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 Traffic Observations 

Having access to detailed traffic data is a vital component in driving behavior modeling [LIMA 

AZEVEDO, 2014]. Calibration and validation of any lane changing model parameters require 

detailed trajectory data, including vehicle positions at discrete points in time, as well as other 

variables such as the number of lane changes, speeds, accelerations, headways, and intra-

vehicle gaps in traffic [RAHMAN ET AL., 2013], many studies attempted to calibrate their models 

with empirical data [YANG & KOUTSOPOULOS, 1996; LECLERCQ ET AL., 2007; THIEMANN ET AL., 

2008; MORIDPOUR ET AL., 2010a; SCHAKEL ET AL., 2012; KNOOP & BUISSON, 2014; PARK ET AL., 

2015; JIN ET AL., 2018]. In this Chapter, the work carried out for the collection of vehicle 

trajectories for the specific case study is presented. First, state-of-the-art traffic data collection 

types are briefly reviewed. The selection of the observation area and video data collection 

system are presented in chapter 3.2 and 3.3. The method used for vehicle trajectory extraction 

is presented in chapter 3.4. Finally, the results of this collection are discussed in the last 

section. 

3.1 Data Collection Types 

In the last couple of decades, behavior modeling research has devoted efforts to collect and 

analyze detailed traffic data [LIMA AZEVEDO, 2014]. This data can be generally divided into two 

categories considering the collection procedure used: 

a) Vehicle-based methods: The data provided the probe vehicles equipped with sensors 

and cameras which records the data while traveling in the traffic stream [National 

Highway Traffic Safety Administration (NHTSA), 2004; US Department of 

Transportation; National Highway Traffic Safety Administration (NHTSA), 2013; 

BRACKSTONE ET AL., 1999; SAYER ET AL., 2007; KONDYLI & ELEFTERIADOU, 2010; VAN 

SCHAGEN ET AL., 2011; SWOV Institute for Road Safety Research, 2013]. This type of 

data, also called naturalistic driving behavior data, provides an overview of the driving 

behavior of the driver and the adjacent vehicle, as long as they are in the field of view 

of the sensors. This data type provides data from the limited number of probe vehicles 

but in many locations and scenarios. 

b) Site-Based methods: These methods provide the data from the sensors installed in a 

specific area. This type of data collection can provide a vast amount of data for a limited 

number of locations. This method is mainly done with the video cameras  [BÉLISLE ET 

AL., 2017; KATHS, 2017; ST-AUBIN ET AL., 2015; KNOOP ET AL., 2012a; KOVVALI ET AL., 

2007; LAURESHYN, 2010] although technologies such as RADAR [AOUDE ET AL., 2011; 

KOVVALI ET AL., 2007] and infrared [BHATTACHARYA ET AL., 2011] has also been used 

by the researchers. This type of data collection can be divided into two groups: 

Stationary and dynamic. In static observations, the sensor is installed on a static object 
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such as buildings, poles or infrastructure whereas, in dynamic observations, airborne 

technologies such as drones, helicopters and airplanes are used [DAAMEN ET AL., 

2010]. 

c) Mixed methods: These methods fuse data from various sources. Chan and 

Bougler [2005] deployed the data from different sensors to assess the conflicts at the 

intersection. Christoph et al. [2010] used the combination of both in-vehicle and 

site-based observations for naturalistic driving analysis. 

In order to reach the aim of this dissertation, which is applying data-driver methods to learn the 

lane changing behavior, a vast amount of data is required. For the purpose of this dissertation, 

site-based stationary data observation method is selected for data collection. It is noteworthy 

to mention that despite delivering the required data, this kind of database has the weakness 

of considering only one single observation site with limited variability of the infrastructure 

environment. 

3.2 Traffic Scenario Selection 

In the traffic context, a scenario is a description that contains the actors, which are in this case 

road users, some background information about the history of movement of the actors and the 

assumptions about the environments and goal of each actor and this description can be 

defined as a list of what-is questions followed by the answered. Based on the requirements 

mentioned in section 3.2, it is necessary to collect enough amount of data from a traffic 

scenario in which a lot of lane changes happens. The traffic scenario was selected with the 

goal of having as many lane changes as possible with the stationary observation. The location 

of the data observation is the on-ramp from A9 freeway to the Mittlerer Ring, which is high-

capacity ring road (urban highway) around the city center of Munich. The observations were 

made from the IBM Highlight tower 1, the location of which is shown in Fig 3.1. 
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Fig 3.1 Location of the research observation [google maps,2018] 

3.3 Video Data Collection 

Video data were collected using a GoPro Hero5 Black Edition in full HD resolution with multiple 

cameras with different views. For this study, a super-wide view of the camera was used to 

maximize the camera’s Field Of View (FOV). The screen resolution was 3840x2160 and the 

videos have a resolution of 24 frames per second. The camera was mounted on the 23rd floor 

of the highlight tower 1, as shown in Fig 3.2. In order to record the traffic, cameras were 

installed in three different positions so that their views overlap. 
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Fig 3.2 Location of the IBM Highlight tower and the observations’ view (in yellow). The figures at 
the bottom show the camera view from three positions. 
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Fig 3.3 illustrates the view of the camera from which the trajectories were extracted. As it can 

be seen in the figure, the camera was installed in the building, and the reflection of the scene 

in the glass as well as the sun can lead to problems when extracting the trajectories. 

 

Fig 3.3 Camera view from the observation point 

Videos were recorded in three days and at different times of the day to cover the various time 

of the year, traffic states, and different types of commuting traffic. Tab. 3.1 presents the 

summary of observations:  

Tab. 3.1  Overview of traffic observations 

Observation Number Date Time Camera position 

1 11.07.2017 08:50 - 16:00 1 

2 09.08.2017 09:30 - 10:50 1 

3 09.08.2017 10:58 - 12:18 1 

4 09.08.2017 12:30 - 12:56 1 

5 15.01.2018 11:30 - 16:50 1 

6 15.01.2018 07:45 - 11:30 1 

7 15.01.2018 11:30 - 16:50 2 

8 15.01.2018 15:11 - 16:52 3 

3.4 Trajectory Extraction  

Individual vehicle trajectories were extracted from the videos by using the commercial software 

DataFromSky developed by RCE systems [RCE systems, 2018]. For the extraction of the 



50  Data-driven Lane Change Model 

 

trajectories from the video recordings, several inputs should be provided for the software. The 

first input is a reference image from the traffic scene captured by the same camera that 

recorded the videos. The videos are then registered to this image and georeferenced. The next 

parameter defined for the camera extraction is the intrinsic parameters of the camera used for 

the observations. These parameters in the intrinsic matrix are illustrated below:  

𝑘 = [

𝛼𝑥 𝛾 𝑢0

0 𝛼𝑦 𝑣0

0 0 1
] 

These five parameters represent the focal length, image sensor format and principal point. The 

parameters 𝛼𝑥 = 𝑓.𝑚𝑥  and 𝛼𝑦 = 𝑓.𝑚𝑦 represent the focal length in terms of pixels, where 𝑚𝑥 

and 𝑚𝑦 are the scale factors which relates pixels to distance and 𝑓 is the focal length in term 

of distance [HARTLEY & ZISSERMAN, 2015]. 𝛾 represents the skew coefficient between 𝑥 and 𝑦 

axis. The parameters 𝑢0 and 𝑣0 represent the principal point, which would be in the center of 

the image ideally. The video frames are rectified using the following parameters for the go pro 

Hero5 camera: 

𝐾 = [
862.5202 0 959.2693 

0 886.36 500.8769
0 0 1

]  

For the distortion of the camera, 8 parameters are determined. 𝑘1, 𝑘2, 𝑘3, 𝑘4, 𝑘5 and 𝑘6 are 

radial distortion coefficients. 𝑃1and 𝑃2 are tangential distortion coefficients and is shown as: 

[
 
 
 
 
 
 
 
𝑘1

𝑘2

𝑝1

𝑝2

𝑘3

𝑘4

𝑘5

𝑘6]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 

0.84511
−0.14147

1.05431 ∗ 10−4

6.902 ∗ 10−4

−6.89179 ∗ 10−3

1.2127
−3.8962 ∗ 10−2

−3.7148 ∗ 10−2 ]
 
 
 
 
 
 
 

 

The registration engine attempts to align the two sets of tie points to identical geographic 

locations using the adjustable parameters. In order to reference the map, at least four 

corresponding points, also called control points, with the correspondences between the 

provided reference image and real-life coordinates, should be provided to the software. 

Moreover, the traffic scene annotation file should be provided for the extraction of trajectories. 

Annotations are the areas within which vehicles are expected, can be designated as entry and 

exit. 

The trajectory extraction provides the georeferenced trajectories of vehicles. Meaning that the 

trajectories have longitude and latitude in UTM coordinate system, the speed, longitudinal and 

lateral acceleration and the class of vehicles for each time step. In this stage, the vehicles are 

detected and localized by application of coupled weak and strong vehicle classifiers, across 
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the whole area of the video frame to produce a set of detections [ADAMEC ET AL., 2017]. For 

the classification of the vehicles, the dimension settings shown in Tab. 3.1 are deployed: 

 

Tab. 3.2  Dimensions of each vehicle category for trajectory extraction 

Class 
Vehicle 

Length [m] 

Vehicle 
Width 

[m] 

Vehicle 
Height [m] 

Vehicle Pivot x 
(in Width) [m] 

Vehicle Pivot y 
(in Length) [m] 

Car 5.0 2.00 1.40 1.00 2.50 

Medium vehicle 5.83 2.67 1.70 1.33 1.67 

Bus 12.50 4.00 2.80 2.00 0.83 

Heavy Vehicle 12.50 3.33 2.90 1.67 0.83 

From the mentioned datasets in the table, the trajectories from observations number 1, 2 and 

8 could not be extracted due to high sun reflection. Moreover, the focus lies only on a specific 

area of the view which is illustrated in Fig 3.4. 

 

Fig 3.4 Research focus area   

In total, the trajectories were extracted from twelve hours and 25 minutes of videos and saved 

in a MySQL database to facilitate the retrieving and accessing the data. The total length of 

trajectories is 9341.811 kilometers of trajectories and contains the trajectories from 46,918 

road users. The extracted trajectories cannot capture all the driving behavior-decisive factors, 

which were mentioned in Tab. 2.2, however, it provides information about the heterogeneous 

diving behavior of human drivers under different traffic conditions and driving situations. In 
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order to visualize the variations in the speed, longitudinal and lateral accelerations of vehicles, 

the histogram and density plots of each vehicle class were plotted and analyzed separately. 

As shown in Fig 3.5, a density plot is a smoothed, continuous version of a histogram estimated 

from the data. For these plots, Gaussian kernel density estimation is used. In this method, a 

continuous curve is drawn at every individual data point and then all of these curves are added 

to make a single smooth density estimation. The vertical axis in a density plot is the probability 

density function for the kernel density estimation, which is different than probability. 

 

Fig 3.5 Histogram and density plots of speed, longitudinal acceleration and lateral acceleration for 
a) cars, b) medium vehicles, c) heavy vehicles and d) buses in the dataset. 

As illustrated in Fig 3.6, the extracted trajectories show the precise location of the vehicles and 

the precise alignment of the vehicles within the lane. In this figure, the blue trajectories are the 

future paths that the vehicles will take, and the green lines illustrate the part of the trajectory 

that has already been driven by the vehicles. 

c) 

b) 

b) 

a)

())
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Fig 3.6 Resolution of vehicle trajectories 

3.5 Summary 

In this chapter, a description of the method used for the extraction of vehicle trajectories is 

presented. In order to collect detailed traffic variables required for microscopic lane change 

modeling, over twelve hours of video observations were recorded from real traffic on three 

days. The videos were post-processed with DataFromSky software and a large set of motion 

parameters, which allowed for the characterization of driving behavior were successfully 

extracted from the observations. As a result, the data collected consists of 46,918 vectors of 

10 values of type vehicle ID, vehicle type, traveled distance, average speed, x and y 

coordinates, speed, tangential acceleration, longitudinal acceleration, and time step.  
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 Clustering Driving Behavior 

Identifying aggressive drivers is crucial in developing safe automated driving algorithms and 

advanced driving assistant systems [CHEUNG ET AL., 2018]. The term driving style usually 

refers to the typical behavioral patterns of a driver and defensiveness‐aggressiveness is a 

metric that is commonly used for differentiating the driving styles [BASU ET AL., 2017]. Other 

studies categorized driving style to aggressive/assertive versus defensive [KARJANTO & YUSOF, 

2015]; or mild versus moderate versus aggressive [XU ET AL., 2015]. Another study identified 

four broad driving styles: (1) reckless and careless driving; (2) anxious driving; (3) angry and 

hostile driving; and (4) patient and careful driving [TAUBMAN-BEN-ARI ET AL., 2004]. The driving 

style was categorized as angry driving, anxious driving, dissociative driving, distress-reduction 

driving and careful driving style in a similar study [VAN HUYSDUYNEN ET AL., 2015]. Another 

study [HONG ET AL., 2014] differentiated the driving behavior styles in terms of defensiveness, 

as well as the propensity for violation of rules.  

The goal of the driving behavior categorization in this thesis is to extract a set of features from 

trajectories that can be mapped properly to driving behaviors and categorize the driving 

behaviors into separate driving behavior clusters. Although the captured data includes the 

vehicle classes, it fails to provide detailed information about the characteristics, such as the 

brand of each vehicle, engine type, the source of drivers’ distraction, as well as drivers’ mental 

and emotional condition, that might have an impact on driving behavior. The result of different 

number of clusters are discussed in the next section. Based on the result, this dissertation 

focuses mainly on three driving behavior of timid, moderate and aggressive, which are mutual 

categories in most of the driving behavior categorizations and can be captured with the 

observed data. 

Due to the increase in data size, human manual labeling has become extremely difficult and 

expensive, and the use of automatic methods has gained interest. Clustering is a 

well-developed field of data analytics and one of the most widely-used tasks in the data mining 

process for discovering categories and automatically identifying interesting distributions and 

patterns in the underlying data [HALKIDI ET AL., 2001]. Therefore, In this dissertation, a 

clustering was deployed for mapping and extracting the driving behavior style from the 

observed trajectories. The clustering of driving behavior shows how certain behaviors repeat 

throughout the data between drivers. The basic steps to develop a clustering process are 

presented in Fig 4.1. 
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Fig 4.1 Steps of clustering [FAYYAD ET AL., 1966] 

These basic steps can be summarized as follows [FAYYAD ET AL., 1966]: 

• Feature selection: the goal is to properly define the features on which the clustering is 

to be performed to encode as much information as possible. The process in which from 

a set of features in the dataset, the ones that have the most significant influence on the 

outputs are automatically extracted is called feature selection [CHANDRASHEKAR & 

SAHIN, 2014].  

• Clustering algorithm: This step involves the choice of an algorithm that results in a good 

clustering scheme considering the dataset. The clustering algorithm is mainly 

characterized by two criteria: 

1. Proximity measure quantifies the similarity between two data points. When 

selecting the proximity measure, it has to be ensured that all selected features 

have equal contributions to the computation of the proximity measure and none 

of the features dominate others. 

2. Clustering criterion can be expressed with a cost function with consideration of 

the type of the clusters which are expected to occur in the dataset.  

• Validation of the results: The correctness of the results of clustering algorithm is 

examined using appropriate techniques and criteria [HALKIDI ET AL., 2001]. 

• Interpretation of the results: In the application area, the clustering results have to be 

integrated with other experimental evidence in order to draw the correct conclusion 

[HALKIDI ET AL., 2001]. 
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4.1 Feature Selection 

Feature selection also called pattern representation [JAIN & DUBES, 1988], is the process of 

selecting or extracting the features which describe the observation. Each feature defines a 

particular aspect of observation and can be continuous or categorical. Feature extraction is the 

augmentation of original features to provide information into the clustering algorithm that 

involves choosing directly measured variables. The selection and extraction of features that 

adequately describe the data and include important and relevant attributes that make it 

possible to separate the observations into clusters is a crucial step in the clustering process 

[KATHS, 2017]. Irrelevant features in the data set may degrade the quality of learning and 

consume more memory and computational time. From the clustering point of view, removing 

irrelevant features will not negatively affect clustering accuracy whilst reducing required 

storage and computational time [ALELYANI ET AL., 2013].  

As mentioned in chapter 2.5, the focus of this dissertation lies on factors such as driver 

aggressiveness, social norms as well as driving environment such as traffic state. However, 

all these factors are not directly extractable from the available dataset. For this study, the 

features listed in Tab. 4.1 were extracted from the available features of the data set and used 

to create a profile for each individual driver. 

 

Tab. 4.1 Features for clustering 

Symbol Notation Description Unit 

𝑓0 𝑣 Average velocity 𝑚

𝑠
 

𝑓1 ∆𝑣𝑎𝑙𝑙 Average Relative speed to the vehicles in the scene 𝑚

𝑠
 

𝑓2 𝑗 Average longitudinal jerk 𝑚

𝑠2
 

𝑓3 ∆𝑣𝑓 Average relative speed to the vehicle in front 𝑚

𝑠
 

𝑓4 𝑑𝑓 Average distance to the front vehicle 𝑚 

𝑓5 ∆𝑣𝑏 Average relative speed to the vehicle in the back 𝑚

𝑠
 

𝑓6 𝑑𝑏 Average distance to the vehicle in the back 𝑚 

 

After the feature extraction, the frequency of values in the data set were plotted in histograms. 

The plots in Fig 4.2 represent the histogram of different features for all the datasets. 
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Fig 4.2 Histogram of features 

As it can be seen from the plots shown in Fig 4.3, the features have different units, and this 

may lead to a very different clustering structure, giving more importance to the features with 

the largest scales during dissimilarity calculation and bias in the clustering result. In order to 

avoid the dependence clustering structure on the choice of feature units, a common practice 

is to standardize the features. Standardization is the process of scaling individual samples to 

have unit norm. This is a crucial step as the 𝑘-mean clustering method, which works with 

Euclidean distances. Therefore, the features were standardized with the z-transformation, 

which subtracts the mean of the data from all values and divides them by the standard 

deviation based on the following formula: 

𝑍𝑠𝑐𝑜𝑟𝑒 =
𝑥𝑖𝑗 − 𝜇𝑗

𝜎𝑗
 

 

Where 𝜇𝑗 and 𝜎𝑗 represent respectively the mean and variance of feature 𝑓𝑗. After the 

z-transformation, the distribution of the data has a mean of zero and a variance of one. This 

transformation preserves the original distribution of the data and is less influenced by outliers. 

The plots in Fig 4.3 represent the values after the standardization. 
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Fig 4.3 Histogram of standardized features 

In clustering, it is essential to discover and quantify the degree to which variables (features) in 

the dataset are dependent upon each other due to the fact that multicollinearity (if two or more 

variables are tightly related) can deteriorate the performance of the algorithm. When the 

variables used in clustering are collinear, some variables are weighted higher than others. 

Basically, two variables that are perfectly correlated represent the same concept and the 

concept is represented in the data twice and hence gets twice the weight of all other variables. 

Therefore, the Pearson correlation coefficients [PEARSON, 1895] were calculated and 

significant correlation coefficients of the features were examined closely. The Pearson 

correlation coefficient is a nonparametric measure of linear correlation between two variables. 

For a sample of size n raw scores 𝑋𝑖 ,𝑌𝑖  , 𝑟𝑠  is calculated from: 

𝜌𝑋,𝑌 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝜎𝑋𝜎𝑌
 

Where 𝜌𝑋,𝑌 denotes the Pearson correlation coefficient. 

 𝑐𝑜𝑣(𝑋, 𝑌) is the covariance of variables. 

𝜎𝑋 and 𝜎𝑌 are the standard deviations of the variables. 

Fig 4.4 summarizes the correlations between the features in a correlogram. In this figure, 

histograms of the features appear along the matrix diagonal and the scatter plots of feature 

pairs appear in the off-diagonal. The slopes of the least-squares reference lines in the scatter 

plots are equal to the displayed correlation coefficients. 
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Fig 4.4  Correlogram between the features  

 

The correlation matrix among pairs of features shown in  Fig 4.5 confirms that some of the 

features are slightly correlated. To overcome this problem, the Principal Component 

Analysis (PCA), developed by Karl Pearson [1901] was used. PCA deploys the eigenvalue 

decomposition of data to find an orthogonal basis set that describes the variance in data points 

and convert the set of observation of possibly correlated variables into a set of values of linearly 

uncorrelated variables, also called principal components (PCs). This means that preserving as 

much variability as possible decodes into finding new variables that are linear functions of 

those variables in the original dataset, that maximize variance and are uncorrelated with each 

other [JOLLIFFE & CADIMA, 2016]. Finding such new variables (PCs), reduces to solving an 

eigenvalue or eigenvector problem. This analysis tends to simplify the complexity in the high-

dimensional dataset while retaining trends and patterns. However, a disadvantage of this 

method is that the new PCs are usually linear functions of all the original features, and it is 

often the case that many features have non-trivial coefficients in the first few components, 

which makes the PCs difficult to interpret [JOLLIFFE & CADIMA, 2016].  

After performing the PCA with the threshold of 0.85 for the variance, five remaining PCs were 

constructed. The correlation of these features is illustrated in Fig 4.5. As it can be seen, the 

correlation coefficients of the PCs are 0. 
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Fig 4.5 Correlogram between principal components 

4.2 Clustering Algorithm 

Clustering is a widely-used field of data analytics, and in recent years, a wide choice of 

clustering algorithms has been proposed in the literature. A complete overview of clustering 

algorithms can be found in Introduction to Data Mining [TAN ET AL., 2005] or Data Mining and 

Predictive Analytics [LAROSE & LAROSE, 2015]. Based on Halkidi et al. [2001], the 

representative algorithms can be categorized into the following groups: 

Partitional algorithms: 

Partitional clustering algorithms categorize the dataset into a set of disjoint clusters directly. In 

other words, these algorithms determine an integer number of partitions that optimize a certain 

criterion function. This criterion function emphasizes on the local or global structure of the 

dataset and is optimized in an iterative approach. Among the partitioning algorithms, the 𝑘-

mean clustering algorithm developed by MacQueen [1967] is a commonly used algorithm. It is 

simple and can be used for a wide variety of data types. It is also efficient, even though multiple 

runs are often performed. 𝑘-mean is one of the most straightforward clustering algorithms that 

partitions 𝑛 objects into 𝑘 clusters in which each object belongs to the cluster with the nearest 

mean. The objective of 𝑘-mean clustering is to minimize the total intra-cluster variance, or 

squared error function. The objective function is formulated as follows: 

𝐽 = ∑∑ ∥ 𝑥𝑖
𝑙 − 𝑐𝑙 ∥2

𝑛

𝑖=1

𝑘

𝑙=1
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Where 𝑘 is the number of clusters, 𝑛 is the number of cases, 𝑐𝑙  is the centroid of each cluster 

and 𝑥𝑖
𝑙 is the case 𝑖. The 𝑘-mean clustering algorithm has the following steps shown in 

Algorithm 4.1: 

 

Algorithm 4.1 K-means clustering algorithm 

Randomly select 𝑘 points as initial centroids where 𝑘 is predefined. 

While true 

Assign objects to their closest cluster center according to the Euclidean distance function 

Calculate the centroid or mean of all objects in each cluster. 

If centroids do not change: 

Break 

The most widely used mean to measure the similarity between the observations in the dataset 

is the Euclidean distance. However, other measures such as Manhattan distance and 

categorical variables were also proposed for measuring the proximity [LAROSE & LAROSE, 

2015]. The Manhattan distance is plausible for the grid-based situations, and categorical 

variables are used when measuring the physical distance is not possible [KATHS, 2017]. 

Partitional algorithms are computationally inexpensive and applicable mainly to numerical 

datasets. However, some variants of these algorithms can handle categorical data. These 

algorithms are unable to handle noise, and outliers and they are not applicable to the clusters 

with a non-convex shape. Another characteristic of these algorithms is that the number of 

clusters, except for Clustering Large Applications based on Randomized Search (CLARANS) 

algorithm [NG & HAN, 2002], should be specified in advance. [HALKIDI ET AL., 2001] 

Hierarchical algorithms 

Hierarchical algorithms proceed successively by merging smaller clusters into bigger ones or 

by splitting the large clusters into smaller ones. A tree of clusters, called a dendrogram, is 

obtained as a result of the algorithm, which shows the relation between the clusters. A 

clustering of the data items into disjoint groups is achieved by cutting the dendrogram at the 

desired level. Based on Theodoridis & Koutroumbas [2009] the hierarchical algorithms can be 

divided into according to the method of producing clusters: 

• Agglomerative algorithms: These set of algorithms produce a sequence of clustering 

schemes of decreasing number of clusters at each step in which the clustering scheme 

results from the previous one by merging two closest clusters.  

• Divisive algorithms: These divisive algorithms produce a sequence of clustering 

schemes of an increasing number of clusters at each step. In these algorithms, the 

clustering at each step results from the previous one by splitting a cluster into two 

separate clusters. 

Hierarchical clustering algorithms are computationally expensive, and the number of clusters 

should be predefined. Although they are more efficient than partitional algorithms in handling 
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noise and outliers, the finality of the merges can lead to an error when handling noisy or 

high-dimensional data. 

Density-based algorithms 

Density-based spatial clustering of applications with noise is a data clustering algorithm 

proposed by Ester et al. [1996]. The key idea of density-based clustering is to group 

neighboring objects of a data set into clusters based on density conditions. These algorithms 

typically regard clusters as dense regions of objects in the data space that are separated by 

regions of low density. 

Density-based algorithms do not require one to specify the number of clusters in the data a 

priori. These algorithms can handle arbitrarily shaped collections of data (e.g., ellipsoidal, 

spiral, cylindrical) as well as clusters of different sizes. Moreover, they can efficiently separate 

noise [HALKIDI ET AL., 2001]. However, it is challenging to apply these algorithms to high-

dimensional dataset and clusters with widely varying densities.  

Grid-based algorithms are one type of density-based algorithms and are typically used for 

spatial data mining. These algorithms quantize the space into a finite number of cells and 

perform the operations on the quantized space. Firstly, each observation is labeled as either 

core, border or noise based on the number of observations within a predefined radius. After 

deleting the noise observations, the most suitable cluster core is assigned to the border 

observations. These algorithms are believed to be resistance noise and outliers and deliver 

good results when dealing with irregularly shaped data. Moreover, these approaches are very 

efficient for large databases, however, they might not be so efficient in high dimensional space 

[HAN ET AL., 2012]. 

After reviewing the clustering algorithms, based on the nature of the observations and the fact 

that the number of clusters is known a priori and can be fed as an input to the algorithm, the 

𝑘-mean clustering algorithm is selected for this dissertation. However, for determining the 

optimum number of clusters, the elbow function [THORNDIKE, 1953] was used. As shown in Fig 

4.6, the distortion goes down rapidly with K increasing from 1 to 2, and from 2 to 3, and then 

reaches an elbow at K=3, and then the distortion goes down very slowly after that. Therefore, 

the number of clusters is set to three in this study. 
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Fig 4.6 Result of elbow method for determining the optimal number of clusters 

4.3 Validation of Results 

One of the most critical issues in cluster analysis is the evaluation of clustering results to find 

the partitioning that can best fit the underlying data. The procedure for evaluating the result of 

the clustering algorithm is known as cluster validity [HALKIDI ET AL., 2001]. Based on 

Theodoridis & Koutroumbas [2009], the cluster validation can be divided into three categories: 

• External criteria (indices): This approach is based on evaluating whether the points of 

the dataset are randomly structured or not and is used to measure the extent to which 

the cluster labels match externally supplied class labels. Entropy and purity are 

examples of external measures for cluster validity. 

• Internal criteria (indices): In this approach, the goal is to evaluate the clustering result 

of the algorithm using only quantities and features inherent to the dataset. Cohesion, 

separation, Sum of Squared Error (SSE), and Silhouette coefficient are examples of 

the internal measures used to validate clustering. 

• Relative criteria (indices): this criterion compares different clustering or clusters. 

Relative criteria are able to compare two clustering structures and point out which one 

is better in relative terms. These criteria are often based on the general idea of 

measuring somehow the balance between intra-cluster scattering and between-cluster 

separation, with differences arising mainly from different formulations of these two 

fundamental concepts [JASKOWIAK ET AL., 2016]. 

As a result of 𝑘-mean clustering procedure, the drivers were categorized into three different 

clusters. Once the clusters are developed, the quality of the clusters must be assessed to 

ensure that they reflect valid clusters in the data [LAROSE & LAROSE, 2015], and the similarities 

between the observations included in each cluster should be examined. For this aim, the 

silhouette value [ROUSSEEUW, 1987] was used in this study. The silhouette value is an internal 
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criterion, which is used for interpretation and validation of consistency within a cluster of data 

and for each point measures how similar that point is to points in its cluster when compared to 

points in other clusters. The silhouette value for the 𝑖th point, 𝑠𝑖, is defined as: 

𝑆𝑖  =
𝑏𝑖 − 𝑎𝑖

𝑚𝑎𝑥(𝑎𝑖 , 𝑏𝑖)
 

where 𝑎𝑖 is the average distance from the 𝑖th point to the other points in the same cluster as 𝑖, 

and 𝑏𝑖 is the minimum average distance from the 𝑖th point to points in a different cluster, 

minimized over all clusters. The silhouette value ranges from -1 to +1. A high silhouette value 

indicates that observation 𝑖 is well-matched to its own cluster and poorly-matched to 

neighboring clusters. A high silhouette value for most points means that the clustering solution 

is appropriate. On the other hand, many points with a low or negative silhouette value represent 

that the clustering solution may have either too few or too many clusters. The silhouette 

clustering evaluation criterion can be used with any distance metric. Tab. 4.2 illustrates the 

average silhouette score and the number of each cluster. 

 

Tab. 4.2 Number of samples and average Silhouette score in each cluster 

Cluster # Mean Silhouette Score 

1 18490 0.71 

2 18326 0.69 

3 3953 0.79 

 

4.4 Interpretation of Results 

In the application area, the clustering results have to be carefully investigated and integrated 

with other experimental evidence and analysis to ensure the correct interpretation of the 

results. In order to fulfill the aim of clustering in this study, which was the identification of 

aggressive driving behavior and elimination of the corresponding driving behavior from the 

dataset for the model development for automated vehicles, first, the histograms of the PC 

values for each cluster were analyzed. However, as mentioned in chapter 4.1, the 

interpretation of the meaning of each PC is not possible. Therefore, the histograms of the 

features for each cluster are illustrated in Fig 4.7. Some features like relative distance or 

relative speed are traffic-situation specific and cannot be used alone to judge the style of 

driving behavior. However, drivers in cluster 3 had considerably higher average longitudinal 

jerks. This kind of jerky driving behavior can be linked to a higher risk of accidents. Therefore, 

this cluster is considered to contain the profile of aggressive drivers. It is noteworthy to mention 

that the dataset with more information about the vehicle type can further improve the accuracy 

of the proposed clustering method for driving behavior analysis. 
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Fig 4.7 Histogram of features for each cluster 

4.5 Summary 

This chapter demonstrated how to use clustering, which is a common unsupervised learning 

approach, to identify distinct driving patterns from a large-scale observational data set 

collected from individual vehicle trajectories. Specifically, the average speed and relative 

speed to the neighboring vehicles, average jerk and distance to the preceding and following 

vehicles were used to create a driver profile. After profiling the drivers with the features, a 

𝑘-mean cluster analysis was performed to identify various driver groups. It has been shown 

that driving behavior can be classified into three distinct groups such as aggressive drivers, 

moderate drivers and timid drivers. For developing the driving behavior of automated vehicles 

in the next chapters, the observations from the aggressive drivers were filtered out from the 

data. 
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 Modeling Lane Change Behavior 

Lane changing has a substantial impact on traffic operation and safety. Research studies have 

revealed the crucial role of lane changing in traffic breakdown and capacity drop [CASSIDY & 

RUDJANAKANOKNAD, 2005; JIN, 2013], traffic oscillation [ZHENG ET AL., 2011], relaxation 

[LECLERCQ ET AL., 2007; LAVAL & LECLERCQ, 2008], and moving bottleneck [LAVAL & DAGANZO, 

2006]. Therefore, accurate modeling of the lane changing behavior for traffic studies and 

especially for studying the impact of emerging forms of mobility such as automated vehicles is 

of high importance. As Toledo [2007] mentioned, lane change models usually assume two-step 

decision process, lane selection, and lane change execution. This chapter also describes the 

modeling of lane change decisions (section 5.1) and lane change execution (section 5.2). For 

each part, the core design of the model, objective and assumptions, as well as the results of 

each model are described. 

5.1 Modeling Lane Change Decision 

In this chapter, the methodology used for modeling the tactical behavior of lane changing is 

explained. Part of this chapter was published in Modeling tactical lane-changing behavior for 

automated vehicles: A supervised machine learning approach [MOTAMEDIDEHKORDI ET AL., 

2017]. The goal of this modeling approach is to learn the tactical behavior of drivers from the 

available dataset. As the advantages of ML methods over the traditional physical models were 

highlighted in chapter 2, a ML approach was used for this task. ML has different types: 

unsupervised, semi-supervised, supervised, RL [MARSLAND, 2014]. 

In this study, the tactical decisions made by drivers are embedded in the database, and the 

ML task infers the function from the labeled dataset. Therefore, for modeling the tactical 

behavior of lane changing, supervised ML was used in which the input variables (𝑥) and an 

output variable (𝑦) are given by the data an algorithm is used to learn the mapping function 

from the input to the output. 

𝑦 =  𝑓(𝑥) 

The goal is to approximate the mapping function so well that when new input data (𝑥) is 

provided to the model, it can predict the output variables (𝑌) for that data. The general process 

for a ML process is shown in Fig 5.1. 
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Fig 5.1 Supervised machine learning framework 

 

Supervised ML algorithms have been vastly used in different disciplines to understand and 

model human behaviors, including driving behavior task. A Feature-based method was used 

in one study [KUDERER ET AL., 2012] for predicting trajectories of pedestrians by a robot with 

the help of maximum entropy. In another study [KRETZSCHMAR ET AL., 2014], the authors have 

presented an approach to learn the composite behavior of multiple interacting agents from 

demonstrations. In their research, the Hamiltonian Markov chain model was used to learn the 

behavior of pedestrians. In  [PAPATHANASOPOULOU & ANTONIOU, 2015] 

and  [PAPATHANASOPOULOU & ANTONIOU, 2016], the authors deployed data-driven methods 

(local regression method) to model car-following models. Some studies used ML algorithms to 
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understand, analyze and model decision-making processes  [Huikun Bi et al., 2016] with 

different classifiers (naive Bayes and decision trees  [HOU ET AL., 2014b], regression tree 

[MENG & WENG, 2012] ) to predict the drivers’ behavior.  

 Core Design, Objectives and Assumptions 

The prediction of tactical lane changing behavior is defined as a classification problem. 

Classification predictive modeling aims to approximate a mapping function (𝑓) from input 

variables (𝑥) to discrete output variables (𝑦), and the mapping function predicts the class for 

a given observation [KOTSIANTIS, 2007]. In this model, the feature vector is the input, and the 

classifier predicts whether the driver would decide to change the lane to the right, to the left or 

stay within one lane in each specific driving situation. Therefore, the classification is a 

multi-class classification problem. The flowchart of the classification problem is illustrated in 

Fig 5.2. 

 

Fig 5.2 Classification flowchart 

 

As it can be seen in Fig 5.2, the main core of the modeling is on the classifier. The are many 

algorithms for solving classification problems: Examples of these are: Naïve Bayes, Support 

Vector Machine (SVM) with Radial Basis Function (RBF) kernel and linear kernel, Logistic 

Regression (LR), k-Nearest Neighbors (kNN), Extra Trees classifier, Decision Trees, Artificial 

Neural Network (ANN) and ensemble methods such as RF. These classification algorithms 

are here briefly reviewed and compared: 
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Naïve Bayes classifiers are a set of supervised learning algorithms based on applying Bayes’ 

theorem [Bayes & Price, 1763] with the naive assumption of independence between pairs of 

features. In other words, Naïve Bayes classifier technique assumes that the predictors are 

independent. This classifier is easy to build, appropriate when the dataset is high-dimensional 

and represents how generative assumptions and parameter estimation can simplify the 

learning process [Shalev-Shwartz & Ben-David, 2014].  

SVM, also known as support vector networks [CORTES & VAPNIK, 1995], is appropriate for 

learning linear predictors in high dimensional feature spaces [SHALEV-SHWARTZ & BEN-DAVID, 

2014] and are based on the concept of decision planes that define decision boundaries. A 

decision plane is one that separates between a set of objects having different class 

memberships. SVM classifier tries to find a hypothesis ℎ, for which the true error can be 

guaranteed to be the lowest. RBF kernel nonlinearly can map samples into a higher 

dimensional space to handle the nonlinear relationship between attributes and class 

labels. SVM algorithm is suitable for both regression and classification tasks and can handle 

multiple continuous and categorical variables. This classifier is known to have high accuracy 

for small and clean datasets; however, it is not suitable for large datasets. Moreover, the 

classifier does not perform well when dealing with noisy or overlapping datasets. 

LR is named after the core of the method, the logistic function [VERHULST, 1838]. LR describes 

the relationship between explanatory variables and a discrete response variable [YAN ET AL., 

2005]. In LR, the goal is to find the best fitting model to describe the relationship between the 

dichotomous characteristic of interest and a set of independent variables. Maximum-likelihood 

estimation should be used to estimate the coefficients of the LR algorithm from the training 

data [SHALEV-SHWARTZ & BEN-DAVID, 2014]. The output of the linear function is squashed 

within the range of [0,1] using the sigmoid function (logistic function) [CYBENKO, 1989]. As 

shown in Fig 5.3, the sigmoid function is a bounded differentiable real function defined for all 

real input values and that has a positive derivative everywhere. This S-shaped curve can take 

any real-valued number and map it into a value between the range of 0 and 1. Moreover, it 

shows a sufficient degree of smoothness and is also a suitable extension of the soft limiting 

nonlinearities used previously in neural networks [HAN & MORAGA, 1995]. 

 

Fig 5.3 Sigmoid function 
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Typically, if the squashed value is higher than a threshold value, it is assigned to a label 1, 

else it is assigned to a label 0. Therefore, LR classifier is typically used for the binary 

classification; however, for extending LR to multiple classes two methods are used: 

1) One-vs-All/ One-vs-Rest: This strategy consists of fitting one classifier per class 

against all the other classes. This method is computationally efficient and has high 

interpretability of results. Since each class is represented by one classifier only, it 

provides the possibility to gain knowledge about the class by inspecting its 

corresponding classifier. [BUITINCK ET AL., 2013]. 

2) One-vs-One: This strategy consists of fitting one classifier per class pair and 

selecting the class which received the most votes at the prediction time. Since it 

requires to fit   
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 ∗ (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠 – 1)

2
   classifiers, this method is 

usually slower than One-vs-Rest, due to its complexity [BUITINCK ET AL., 2013]. 

3) Softmax function: This function is a generalization of the sigmoid function that is 

used to handle the multi-class classification [BOLTZMANN, 1868]. This function 

takes values as an input and returns the proper probabilities. In this function, the 

sum of returned values is equal to 1. The mathematical formulation of this function 

is as follows: 

𝑆(𝑦𝑖) =
𝑒𝑦𝑖

∑ 𝑒𝑦𝑖𝑖
1

 

kNN classification, which is based on 𝑘-nearest neighbor rule [FIX & HODGES, 1989], is one of 

the most fundamental and simple classification methods mostly used when there is a lack of 

prior knowledge about the data distribution. The nearest neighbor method is based on 

memorizing the training dataset and finding a predefined number of training samples closest 

in distance to the new instance, and predicting the label from them [Shalev-Shwartz & Ben-

David, 2014]. 𝐾 represents the number of clusters or neighbors that the algorithm will check. 

For calculating the class membership, each object is classified by a majority vote of its 

neighbors, and the object is assigned to the class most common among its 𝑘 nearest 

neighbors. Although kNN classification algorithms are simple to understand and interpret and 

usually show high accuracy, they are computationally expensive and require a lot of memory. 

Decision Tree [BREIMAN, 1984]  is a non-parametric supervised learning method used 

for classification and regression and tries to find the best split of data at each point. The goal 

is to develop a model that can predict the value of a target variable by learning decision rules 

derived from the data features. Decision Tree builds regression or classification models 

following a tree structure. In this process, the dataset is broken down into smaller and smaller 

subsets while at the same time an associated decision tree, with decision nodes and leaf 

nodes, is gradually developed. A decision node has two or more branches, and a leaf node 

represents a classification or decision. Decision Trees have several advantages such as 

http://scikit-learn.org/stable/modules/tree.html#tree-classification
http://scikit-learn.org/stable/modules/tree.html#tree-regression
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simplicity for understanding, being applicable to both categorical and numerical data, and 

mirroring human decisions more closely; however, they have the risk of creating over-complex 

trees without generalizing the data well [QUINLAN, 1986; MITCHELL, 1997].  

RF classifier consists of tree predictors, and each tree depends on the values of a random 

vector sampled with the same distribution and independently for all trees in the forest [BREIMAN, 

2001]. Based on [BUITINCK ET AL., 2013], this classifier fits several tree classifiers on various 

subsamples of the dataset and improves the predictive accuracy and controls overfitting by 

averaging them. RF classifier is among the very easy to use algorithms due to the limited 

number of hyper-parameters that are straightforward to understand and usually delivers good 

accuracy. RF also tackles one of the most significant problems in ML, namely overfitting. 

Overfitting the classifier to fir the model can be controlled by defining enough number of trees. 

The main limitation of RF is that a large number of trees can make the algorithm slow down in 

real-time predictions. In general, these algorithms are efficient in training, but they might be 

slow to create predictions on test dataset when the number of trees is high.  

Extra Tree Classifier, also known as an “Extremely randomized trees” classifier, is a variant of 

a RF in which the splits are selected randomly instead of using some criteria [GEURTS ET AL., 

2006]. The difference between the Extra Tree classifier and the classical Decision Trees is 

their splitting structure. As part of looking for the best split to separate the samples of a node 

into two groups, random splits are drawn, and the selection of features is made completely 

randomly, and the best split is chosen. Therefore, their structure is independent of the output 

values of the learning data set [GEURTS ET AL., 2006].  

ANN classifier uses the neural network for the classification tasks. Neural network is composed 

of a number of simple, interconnected neurons working in parallel within the network. ANN has 

the capability of developing an internal representation of a signal pattern that is presented as 

input to the network [MCCULLOCH & PITTS, 1943]. A key feature of ANN is an iterative learning 

process. In this process, records are presented to the network one at a time, and the weights 

associated with the input values are tweaked each time. After presenting all cases, the process 

is often repeated, and the network trains by adjusting the weights to predict the appropriate 

class label of input samples. In the training phase of classification, the network’s calculated 

values for the output nodes are compared to the correct values of each class an error term for 

each node is calculated. These errors are later used to adjust the weights in the hidden layers 

in a way that in the next iteration, the output values will be closer to the correct values [WAN, 

1990]. 

Tab. 5.1 summarizes the advantages and disadvantages of the classification algorithms. After 

reviewing the complexities of the algorithms and comparing their advantages and 

disadvantages, the RF and LR classifiers were chosen and implemented to model the lane 

changing decision of drivers.  
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Classification 
method 

Advantage Disadvantage 

Naïve Bayes • based on simple probability 
principles  

• fast 

• works well with high dimensions 

• interdependencies between the 
attributes 

SVM • high accuracy 

• works well even with non-
linearly separable base features 

• High complexity and extensive 
memory requirement 

• Susceptible to 
overfitting/training issues 
depending on kernel 

LR • convenient probability scores for 
observations 

• efficient implementations 
available across tools 

• Multi-collinearity is not an issue 
and can be countered with L2 
regularization to an extent 

• pretty efficient in terms of time 
and memory requirement 

• Prone to bias 

kNN • classes should be linearly 
separable 

• usually robust with regard to 
noisy data 

• well-suited for multi-dimensional 
classes 

• finding the nearest neighbors in 
large training dataset can be 
time-consuming 

• sensitive to noise and irrelevant 
attributes 
 

Decision 
Trees 

• simplicity for understanding 

• applicable to both categorical 
and the numerical data 

• prone to overfitting 

• possible issues with diagonal 
decision boundaries 
 

ANN • easy to implement and use, with 
few parameters to adjust 

• applicable to wide range of 
real-life problems 

• requires high processing time if 
neural network is large 

• difficult to determine the number 
of necessary neurons and 
layers 

• slow learning 

RF • high predictive accuracy 
compared to decision trees 

• control overfitting by averaging 

• easy to use algorithm  

• low number of hyper-
parameters 

• can be slow down in real-time 
predictions 

• not as easy to visually interpret 

Tab. 5.1 Classification methods comparison  

RF was chosen due to its simplicity to interpret the results. The only disadvantage linked to RF 

is the slow speed with the existence of many trees, which can be easily addressed and 

controlled by avoiding to choose a high number of trees as a hyper-parameter. This hyper-

parameter is the number of trees the algorithm builds before taking the maximum voting or 
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taking averages of predictions [BUITINCK ET AL., 2013]. Generally, a higher number of trees 

increases the performance and improves the stability of the prediction, but it also slows down 

the computation. LR does not have a discrete output. Instead of delivering discrete outputs, it 

delivers class membership probabilities associated with each observation as an output. For 

LR models, it is possible to test the statistical significance of the coefficients in the model 

[HOSMER JR ET AL., 2013]. 

In this study, the information about the ego vehicle’s environment is extracted as a form of 

features that describe the basic properties of the surrounding vehicles. Since the decision for 

lane changing depends on the traffic situation for consecutive steps, a finite length of features 

was considered, which was called a scenario-slice in the study by Reichel et al. [2010]. A 

scenario-slice 𝑆[𝑡]𝜖 𝑅𝐿∗𝑄 consists of 𝐿 time-series each of length 𝑄. The task is to find a 

mapping from 𝑆[𝑡] to a decision 𝑦[𝑡] 𝜖 {−1,0,1}, where 𝑦[𝑡] = 1 indicates that at the time 

instance 𝑛 the ego-car decided to change lane to the right, 𝑦[𝑡] = 0 there was no lane change 

and 𝑦[𝑡] = −1 a lane change to the left happened. However, in the classical classification 

problem, it is assumed that the observations are the realizations of random variables. In this 

context, the random variables from the same scenario-slice e.g., 𝑠[𝑘] and 𝑠[𝑘 − 1], are 

statistically dependent. Therefore, independent entire scenarios were defined as 

𝑆𝜖𝑅𝐿∗(𝑡𝑒𝑛𝑑+𝑄+1), which consists of 𝑡𝑒𝑛𝑑  scenario-slices 𝑠[𝑡], where 𝑡 = 1,… , 𝑡𝑒𝑛𝑑. Therefore, 

when looking for a classifier:  

𝑓: 𝑅𝐿×𝑄  → {−1,0,1}, 𝑠[𝑡] ↦ ŷ [𝑡] 

It maps a scenario-slice 𝑆[𝑡] to a decision, 

ŷ [𝑡] = 𝑓(𝑠[𝑡])𝜖 {−1,0,1} 

In order to simplify a complex classification task, namely mapping 𝑓 from 𝑆[𝑡] to ŷ [𝑡], is divided 

into two steps: 1) a feature generation step where 𝑆[𝑡] is transformed into a feature vector 

𝑥[𝑡]and a classification step where 𝑥[𝑡] is mapped to ŷ [𝑡].  

Feature extraction: 

The first step in classification is the translation of the vehicles and its surrounding into the 

features. In order to percept the individual driving situation and environment of the driver, the 

general skeleton defined for situation aspect models introduced by [REICHEL ET AL., 2010] was 

deployed. According to his theory, the situation can be modeled by a protagonist (ego 

vehicles), further actors, the stage, and constellation of all of them. In this case, these elements 

are the data about the ego vehicle, dynamic objects such as other road users, environment 

components such as road infrastructure, and static objects. Fig 5.4 illustrates the model used 

for defining the situation. 

https://www.sciencedirect.com/topics/computer-science/statistical-significance
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Fig 5.4 General situation aspect model [REICHEL ET AL., 2010] 

In order to translate the individual driving situation and environment of the vehicle as an input 

vector consisting of features, the description of the situation aspect using the abovementioned 

model for an ego vehicle, which is shown in red in Fig 5.5, was used. The inputs summarize 

the state of the ego car, which consists of internal and external information as a feature.   

 

 

Fig 5.5 Ego vehicle and its environment. Vehicle j can be one of the following vehicles: P: preceding 

vehicle, P2: preceding vehicle of the preceding vehicle, PL: preceding vehicle on the left lane, 

PR: preceding vehicle on the right lane, L: vehicle on the left lane, R: vehicle on the right lane, 

F: following vehicle, F2: following vehicle of the following vehicle, FL: following vehicle on the left lane, 

FR: following vehicle on the right lane. 

A set of features for the target vehicle (for which the future action is to be computed) and for 

its surrounding vehicles as described above were generated from the dataset. These features 

can be divided into three categories: 1) core feature for ego vehicle, 2) roadway features for 

the environment and 3) vehicle relative features for dynamic objects. The features constructed 

for this study are inspired by those used in the literature [SCHLECHTRIEMEN ET AL., 2014; 

KASPER ET AL., 2012; WHEELER, 2014; SCHLECHTRIEMEN ET AL., 2015].  

The core features category addresses the ego vehicle and its dynamic characteristics. For the 

target vehicle, the features such as absolute speed, longitudinal and lateral speed, and 

acceleration were defined. As mentioned in chapter 2.1.2, the driving environment, such as 

roadway geometry and traffic situation, are decisive factors on driving behavior. Driver's 

reactions not only depend on the adjacent vehicles but also vary with the traffic conditions in 
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a broader sense. Therefore, the second set of features translates these attributes into the 

feature vector. An influential factor is general traffic characteristics, such as the average 

velocity on a lane, or the traffic state. As a result, the mean relative velocity of the ego vehicle 

from the other vehicles in the scene was defined as a feature in the input vector. The choice 

of feature of other vehicles was made to replicate the information a human driver is likely to 

base his decisions upon the features from surrounding vehicles are all relative to the target 

vehicle, as the drivers are expected to usually make decisions based on perceived distances 

and relative speeds rather than their values in an absolute frame [ALTCHÉ & LA FORTELLE, 

2017]. For each vehicle 𝑗 ∈  {𝑃𝐿, 𝑃, 𝑃2, 𝑃𝑅, 𝐿, 𝑅, 𝐹𝐿, 𝐹, 𝐹2, 𝐹𝑅}, the following features were 

defined: 

• Distance 

• Longitudinal relative speed 

• Longitudinal acceleration 

• Lateral acceleration 

• Type of vehicle 𝑗 (car, medium sized vehicle, truck) considering the unique physical 

characteristics of heavy vehicles (e.g., length and size) and their operational 

characteristics (e.g., acceleration, deceleration, and maneuverability) [RAHMAN ET AL., 

2013]. 

As a history of movement of each vehicle plays an important role and decides whether other 

vehicles are behaving cooperatively or not, the value of the feature for three consecutive time 

steps was defined in the input vector. Tab. 5.2 summarizes the features and specifies whether 

they are continuous or discrete features. 

Core features of ego features 

‖𝑣‖  𝑚

𝑠
  continuous Speed 

𝑣𝑒𝑔𝑜  𝑚

𝑠
  continuous Speed in lane 

𝑎𝑥
𝑒𝑔𝑜

  
𝑚

𝑠2  continuous Longitudinal acceleration in lane 

𝑎𝑦
𝑒𝑔𝑜

  
𝑚

𝑠2  continuous Lateral acceleration in lane 

Driving environment features 

𝑙𝑎𝑛𝑒  - discrete Index of the closest lane 

∆𝑣𝑦𝑥
𝑠𝑐𝑒𝑛𝑒  𝑚

𝑠
  continuous The mean velocity of vehicles in the scene 

Vehicle relative features 

𝑑𝑗   𝑚  continuous Distance between the ego vehicle and vehicle 𝑗 

∆𝑣𝑗   
𝑚

𝑠2  continuous Relative speed between ego vehicle and vehicle 𝑗 

𝑎𝑥 ,𝑗   
𝑚

𝑠2  continuous Longitudinal acceleration of vehicle 𝑗 

𝑎𝑦,𝑗   
𝑚

𝑠2  continuous Lateral acceleration of vehicle 𝑗 

𝐶𝑙𝑎𝑠𝑠𝑗  - discrete Class of vehicle 𝑗 

Tab. 5.2 Features for classification. Vehicle j can be any of the surrounding vehicles 
{𝐵𝐿, 𝐵, 𝐵2, 𝐵𝑅, 𝐿, 𝑅, 𝐹𝐿, 𝐹, 𝐹2, 𝐹𝑅} 
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One step toward explanatory models is annotating datasets with theoretically motivated labels 

or semantic features. Therefore, the next step was to identify the lane changing events, label 

them based on the features and assign them a target class value. The target class values were 

assigned in response to the question “Does the ego vehicle perform a lane change to the 

maneuver to the right or to the left?”. In order to label the events, as shown in Fig 5.6, a blue 

band which has the width of the quarter of the lane width was defined in the middle of each 

lane. An event was labeled as lane changing in case the lateral position of the vehicle shifts 

from the defined band of the lane without any oscillations. The classifier here calculated the 

membership of each instance to the three classes.   

 

 

Fig 5.6 Labeling lane change events 

Feature selection:  

For selecting the features that contribute the most to the prediction and reduce the 

dimensionality on the sample set, a feature importance analysis was performed on the dataset. 

As the dataset was high-dimensional, the dimensionality reduction might help to boost the 

estimator’s performance. Different methods such as recursive feature elimination, feature 

importance ranking, and univariate selection are available to perform feature selection. The 

feature selection task is generally divided into three types [CHANDRASHEKAR & SAHIN, 2014; 

MIAO & NIU, 2016; TANG ET AL., 2014]: 

1. Filter methods select the most discriminative features through the data character. The 

feature selection in this method is done before the classification and is divided into two 

ŷ 𝜖{𝐿𝑎𝑛𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑡𝑜 𝑟𝑖𝑔ℎ𝑡} ŷ 𝜖{𝐿𝑎𝑛𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑡𝑜 𝑙𝑒𝑓𝑡} ŷ 𝜖{𝑁𝑜 𝑙𝑎𝑛𝑒 𝑐ℎ𝑎𝑛𝑔𝑒} 
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steps. First of all, the variables are ranked, and then 𝐾 highest ranked features are 

selected [SÁNCHEZ-MAROÑO ET AL., 2007]. 

2. Wrapper methods use the intended learning algorithm itself to evaluate the features. 

One of the most known wrapper methods is Recursive Feature Elimination (RFE) 

[GUYON ET AL., 2002]. The goal of RFE is to select features by repeatedly considering 

smaller and smaller sets of features. After estimating the importance of features, the 

least important features are pruned from the current set of features. That procedure is 

recursively repeated until the desired number of features to select is eventually reached 

[BUITINCK ET AL., 2013]. 

3. Embedded models in which the feature selection is embedded in the process of model 

construction. These methods are independent of the classifier and avoid the 

cross-validation step. Therefore, they are computationally very efficient. However, they 

do not take into account the biases of the classifier [TANG ET AL., 2014]. 

For feature importance in the classification task of this dissertation, the extra tree classifier was 

used. Extremely-randomized Tree is a method for supervised classification problems which 

strongly randomizes the attribute and cut-point while splitting a tree node. In this method, when 

looking for the best split to separate the samples of a node into two groups, unlike RF, the idea 

of using bootstrap copies of the learning sample drops. Instead of trying to find an optimal 

cut-point for each one of the randomly chosen features at each node, random cut-points are 

drawn for the 𝐾 randomly selected features and the best split among those is chosen. This 

method is believed to have good performance in high-dimensional datasets [JODOGNE ET AL., 

2006] and a better bias-variance due to the explicit randomization of the cut-point and attribute 

combined with ensemble averaging [GEURTS ET AL., 2006]. The tabular version of the 

Extra-Trees splitting procedure for numerical attributes developed by Guerts et al. [2006] is 

given in Algorithm 5.1. The splitting procedure has two parameters: 𝐾 which is the number of 

attributes randomly selected at each node and 𝑛𝑚𝑖𝑛, which is the minimum sample size of the 

splitting a node. This parameter is used several times with the original learning sample to 

generate an ensemble model. The final prediction of the model is the aggregation of the 

prediction of trees.  
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Algorithm 5.1 Extra trees splitting algorithms [GEURTS ET AL., 2006] 

Split_a_node(𝑆) 

𝐼𝑛𝑝𝑢𝑡: the local learning subset 𝑆 corresponding to the node we want to split 

𝑂𝑢𝑡𝑝𝑢𝑡: a split [𝑎 < 𝑎𝑐] or nothing 

‒ If Stop_split (𝑆) is TRUE then return nothing. 

‒ Otherwise select 𝐾 attributes {𝑎1, … , 𝑎𝐾} among all non-constant (in 𝑆) candidate 

attributes; 

‒ Draw 𝐾 splits {𝑆1, … , 𝑆𝐾}, where 𝑆𝑖 = Pick_a_random_split (𝑆, 𝑎𝑖),∀ 𝑖 = 1,… , 𝐾; 

‒ Return the split 𝑠∗  such that Score (𝑠∗, 𝑆) = 𝑚𝑎𝑥𝑖=1,…,𝐾  Score(𝑠𝑖, 𝑆). 

 

Pick_a_random_split(𝑆, 𝑎) 

𝐼𝑛𝑝𝑢𝑡𝑠: a subset S and an attribute a 

𝑂𝑢𝑡𝑝𝑢𝑡: a split 

‒ Let 𝑎𝑚𝑎𝑥
𝑆    and 𝑎𝑚𝑖𝑛

𝑆  denote the maximal and minimal value of 𝑎 in 𝑆; 

‒ Draw a random cut-point 𝑎𝑐  uniformly in [𝑎𝑚𝑖𝑛
𝑆 , 𝑎𝑚𝑎𝑥

𝑆 ]; 

Return the split [𝑎 < 𝑎𝑐]. 

 

Stop_split(𝑆) 

𝐼𝑛𝑝𝑢𝑡: a subset 𝑆 

𝑂𝑢𝑡𝑝𝑢𝑡: a Boolean 

‒ If |𝑆| < 𝑛𝑚𝑖𝑛 then return TRUE; 

‒ If all attributes are constant in 𝑆, then return TRUE; 

‒ If the output is constant in 𝑆, then return TRUE; 

     ‒ Otherwise, return FALSE. 

It is noteworthy to mention that before performing the classification algorithms, as the features 

had different scales, the features were standardized with the same method mentioned in 

chapter 4.2. 

The results of feature importance with extra tree classifier for human drivers’ and automated 

vehicle dataset are illustrated in Fig 5.7. In this plot, the horizontal axis shows the features 

ranked based on their importance, and the value of the contribution of each feature to the result 

is shown on the vertical axis. This value is between 0 and 1 and the higher values correspond 

to the higher importance of the feature during the lane changing process. The list of the 

features is illustrated in Tab. 5.3. Five most important features in this model are: Speed of ego 

vehicle, longitudinal and lateral acceleration of ego vehicle, average relative speed to the other 

vehicles in the scene, lane number, and distance to the preceding vehicle. On the other hand, 

the class of surrounding vehicles is not influencing factors in the decision-making process of 

lane changing behavior. The results for the automated vehicles showed the same trends and 

very similar importance scores for the features. 
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Fig 5.7 Feature importance result for human drivers and automated vehicles 
 

 

Number Feature Number Feature Number Feature 

1 𝑣𝑒𝑔𝑜 16 𝐶𝑙𝑎𝑠𝑠𝐵 31 𝐶𝑙𝑎𝑠𝑠𝐵𝐿 

2 𝑎𝑥
𝑒𝑔𝑜

 17 ∆𝑣𝐵 32 ∆𝑣𝐵𝐿 

3 𝑎𝑦
𝑒𝑔𝑜

 18 𝑎𝑥 ,𝐵 33 𝑎𝑥 ,𝐵𝐿 

4 𝑙𝑎𝑛𝑒 19 𝑎𝑦 ,𝐵 34 𝑎𝑦,𝐵𝐿 

5 ∆𝑣𝑦𝑥
𝑠𝑐𝑒𝑛𝑒 20 𝑑𝐵 35 𝑑𝐵𝐿 

6 𝐶𝑙𝑎𝑠𝑠𝐹 21 𝐶𝑙𝑎𝑠𝑠𝐵2 36 𝐶𝑙𝑎𝑠𝑠𝐹𝑅 

7 ∆𝑣𝐹 22 ∆𝑣𝐵2 37 ∆𝑣𝐹𝑅 

8 𝑎𝑥 ,𝐹 23 𝑎𝑥 ,𝐵2 38 𝑎𝑥 ,𝐹𝑅 

9 𝑎𝑦,𝐹 24 𝑎𝑦 ,𝐵2 39 𝑎𝑦,𝐹𝑅 

10 𝑑𝐹
 25 𝑑𝐵2 40 𝑑𝐹𝑅 

11 𝐶𝑙𝑎𝑠𝑠𝐹2 26 𝐶𝑙𝑎𝑠𝑠𝐹𝐿 41 𝐶𝑙𝑎𝑠𝑠𝐵𝑅 

12 ∆𝑣𝐹2 27 ∆𝑣𝐹𝐿 42 ∆𝑣𝐵𝑅 

13 𝑎𝑥 ,𝐹2 28 𝑎𝑥 ,𝐹𝐿 43 𝑎𝑥 ,𝐵𝑅 

14 𝑎𝑦,𝐹2 29 𝑎𝑦 ,𝐹𝐿
 44 𝑎𝑦,𝐵𝑅 

15 𝑑𝐹2 30 𝑑𝐹𝐿
 45 𝑑𝐵𝑅 

Tab. 5.3 List of features 
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In the classification of high-dimensional data containing groups of correlated features, the 

requirements of model sparsity and retrieving of all predictive features are in direct competition 

[DO ET AL., 2010]. In applications in which assessment of feature importance is the main 

objective, models that give priority to the latter requirement should be preferred. However, as 

mentioned at the beginning of this chapter, having too many features might lead to overfitting, 

which is referred to as the "curse of dimensionality" [BELLMAN, 1957]. Before eliminating the 

unimportant features, it should be examined whether the features are in any sense correlated 

and can be transformed into a set of values of linearly uncorrelated variables called PCs. In 

this case, the PCs can capture most of the information without losing any of the features. 

Dimensionality reduction: 

As mentioned in chapter 4.14.1, If the features are perfectly correlated, then one does not add 

any additional information, so if the number of features is too high, reducing the number of 

features through dimensionality reduction techniques such as PCA would be beneficial. In 

classification problems, a high correlation between the explanatory features might decrease 

the classification accuracy. Dimensionality reduction is the introduction of a new feature space 

where the original features are represented. The new space is of a lower dimension than the 

original space. Therefore, the correlation between the features should be examined. The 

correlations between the variables are determined using the Spearman method [SPEARMAN, 

1904], in which the correlation between the variables is determined based on their monotonic 

relationship and not their linear relationship. 

In order to visualize the correlations between the features, the correlation matrixes of features 

were plotted. As can be seen from Fig 5.8, the matrix is symmetrical, and the bottom left of the 

matrix is the same as the top righthand the color shows the correlation between the variables. 

It can also be seen that each variable is perfectly positively correlated with each other in the 

diagonal line from top left to bottom right. As can be seen from the matrix, some features are 

correlated, for instance, a high correlation can be observed between the speed of the ego 

vehicle and the average speed difference from the surrounding vehicles.  

http://en.wikipedia.org/wiki/Feature_extraction
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Fig 5.8 Correlation with Spearman method between the features for human drivers 

The correlation matrix for the automated vehicles shown in Fig 5.9 has a very similar trend as 

one for normal drivers, and apart from very slight differences in the correlation values, the 

matrix is very close to one of human drivers. 

 

Fig 5.9 Correlation with Spearman method between the features for automated vehicles 
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A good strategy for reducing the correlation bias is to group the correlated features prior to 

model fitting and derive corresponding feature representatives as a summary of each 

group. Therefore, a PCA was conducted in which the features were grouped in 11 PCs. The 

importance of each PC is for human drivers and automated vehicles are shown in Fig 5.10. 

 

Fig 5.10 Principle components importance for human drivers and automated vehicles 

 Model Training and Testing  

Based on the reviewing the classifiers in chapter 5.1.1, extra tree classifier and LR were 

chosen as a classifier for this dissertation and the models were trained in python with help of 

Scikit-learn [BUITINCK ET AL., 2013; PEDREGOSA ET AL., 2011] the details of which are explained 

below: 

RF training: 

A number of estimators is the number of trees in the RF classification. In the RF used in this 

dissertation, ten trees were chosen. In the RF, criterion is the function to measure the quality 

of a split. Supported criteria in scikit-learn are “gini” for the Gini impurity and “entropy” for the 

information gain. Gini impurity is a measure that determines how often a randomly chosen 

element from the set would be labeled incorrectly if it was randomly labeled based on the 

distribution of labels in the subset [BREIMAN, 1984]. Gini impurity for a set of items with 𝐽 

 PC Importance after PCA – Human Drivers 

 PC Importance after PCA – Automated Vehicles 
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classes, suppose 𝑖 ∈  { 1 , 2 , . . . , 𝐽 } , and let 𝑝𝑖 be the fraction of items labeled with class 𝑖 in 

the set.  

𝐼𝐺(𝑝) = 1 − ∑ 𝑝𝑖
2

𝐽

𝑖=1

 

Information gain, on the other hand, is based on the notation of entropy which characterizes 

the impurity of an arbitrary set of examples [QUINLAN, 1993]. The expected information 

provided by a message with respect to the class membership can be expressed as: 

𝐻(𝑇) = −∑𝑝𝑖 log2 𝑝𝑖

𝐽

𝑖=1

 

Where 𝑝1, 𝑝2, … are fraction that add up to 1 and represent the percentage of each class present 

in the child node which results from a split in the tree. For this study, the entropy option has 

been picked. 

LR training: 

As the classification problem in this study is multi-class case, the training algorithm which uses 

One-vs-Rest scheme was deployed. In LR classification problem, one can specify the norm to 

be used in the penalization. L1-norm loss function is minimizing the sum of the absolute 

differences (𝑆) between the target value (𝑦𝑖) and the estimated values (𝑓(𝑥𝑖)): 

𝑆 = ∑|𝑦𝑖

𝑛

𝑖=1

− 𝑓(𝑥𝑖)| 

 

L2-norm loss function is minimizing the sum of the square of the differences (𝑆) between the 

target value (𝑦𝑖) and the estimated values (𝑓(𝑥𝑖)): 

𝑆 = ∑(𝑦𝑖 − 𝑓(𝑥𝑖))
2

𝑛

𝑖=1

    

In order to solve the optimization problem for classification, saga solver [DEFAZIO ET AL., 2014]  

is a variant of sag solver [SCHMIDT ET AL., 2017] was used. Despite being fast in large datasets 

like sag solver, saga has the advantage of supporting the non-smooth penalty L1 option. This 

makes this solver appropriate for sparse multinomial LR. Saga solver can only handle L1 

penalty. Therefore, in the L1 norm used in the penalization. Moreover, parameter C in this 

model specifies the inverse of regularization strength and the smaller values specify stronger 

regularization. For this study, the regulation value was set to 0.9. 
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In the dataset, the number of lane changing and non-lane changing events is not equal, which 

means that the training dataset is imbalanced. In this case, the classifiers are typically more 

sensitive to detecting the majority class, and less sensitive to the minority class and the 

classification method might be biased toward always predicting the majority class [CHAWLA, 

2005], which in this study is remaining on the lane. Therefore, there is a need to address and 

solve this problem. Two different methods were tested for this dissertation: Oversampling the 

minority class and undersampling the majority class. 

A simple method for oversampling the minority class is to duplicate the entries. However, if this 

step is done before the cross-validation, it might result in overfitting and misleading the results. 

Oversampling the dataset with the SMOTE [CHAWLA ET AL., 2002] method, in which the new 

samples of the minority class are artificially generated using the nearest neighbors of these 

cases, and training the model resulted in a very slow learning process. 

In undersampling, the majority class, 𝑛 samples are chosen randomly from the majority class, 

where 𝑛 represents the number of samples for the minority class and are used in the training 

phase. While different techniques have been proposed for undersampling, testing more 

advanced methods like undersampling specific samples that are further away from the decision 

boundary [JAPKOWICZ, 2000] and informative undersampling [LIU ET AL., 2009] on a small 

subset of data did not improve the accuracy significantly compared to selecting samples at 

random. Therefore, the random undersampling was used further, and only the results of 

random undersampling are presented here. After conducting the undersampling, 1807 events 

were in each class.  

In ML methods, there is a need to test the stability of the model and make sure that the model 

does not overfit. Overfitting is the situation that the model would have a perfect prediction score 

but would fail to predict properly on the yet-unseen data [KOHAVI, 1995]. 𝑘-fold cross validation 

is performed as per the following steps: 

 

1. Partition the original training data set into 𝑘 mutually exclusive equal subsets of equal size. 

Each subset is called a fold. Let the folds be named as 𝑓1, 𝑓2, … , 𝑓𝑘 . 

2. For 𝑖 =  1 to 𝑖 =  𝑘 

3. Keep the fold 𝑓𝑖  as validation set and keep all the remaining 𝑘 − 1 folds in the 

cross-validation training set. 

4. Train the ML model using the cross-validation training set and calculate the model accuracy 

by validating the predicted results against the validation set. 

5. Estimate the model accuracy by averaging the accuracies derived in all the 𝑘 cases of 

cross validation. 
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In 𝑘-fold cross validation method, all the entries in the original training data set are used for 

both training as well as validation. This method is believed to reduce the bias as most of the 

data is also being used for fitting and also reduced variance significantly as most of the data 

is used in the validation set. The authors in [HASTIE ET AL., 2009] suggest setting  𝑘=5 or 𝑘=10 

and the performance of cross-validation is the average of the values computed in the loop. 

 Results 

Once the classification is done, its performance should be measured. This section presents 

the results of the classifier for the prediction of lane change decisions of the drivers. A 

systematic analysis of 24 performance measures used in the complete spectrum of ML 

classification tasks was introduced by Solokova & Lapalme [2009]. Many of these measures 

are based on the confusion matrix. The confusion matrix is a performance measurement for 

ML classification problems. Each row of the matrix illustrates the instances in the actual class 

while each column represents the instances in the predicted class. Four important 

terminologies used for the confusion matrix are: 

• True positive: the prediction was positive and it is true. 

• True negative: the prediction was negative and it is true. 

• False positive (type 1 error): the prediction was positive and it is false. 

• False negative (type 2 error): the prediction was negative and it is false. 

Some other performance measures derived from the confusion matrix are recall, precision, F1-

score and Reciever Operating Characteristics (ROC) curve. In multi-class classification 

problems, the measures are calculated for each class and averaged over all the classes. 

Recall estimates how many of the actual positives of the model capture through labeling it as 

positive (True Positive). Recall shall be the model metric for selecting the best model when 

there is a high cost associated with False Negative. Precision illustrates the percentage of the 

predicted positive cases that were true positives. In summary, recall expresses the ability to 

find all relevant instances in a dataset, and precision expresses the proportion of the data 

points our model says was relevant actually were relevant. Precision and recall are defined as: 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
  

The F1 score is defined as the harmonic mean of precision and recall taking both metrics into 

account, and is the best metric when seeking the balance between precision and recall. F1 

score is calculated based on the following equation: 
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𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

The ROC curve illustrates how the recall versus precision relationship changes as the 

threshold for identifying a positive in the model varies. The threshold determines the value 

above which a data point is considered in the positive class. ROC curve plots the true positive 

rate on the y-axis and the false positive rate on the x-axis. The True Positive Rate (TPR) is the 

recall, and the False Positive Rate (FPR) is a false alarm probability. Both of these can be 

calculated from the confusion matrix: 

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒 =
𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝑡𝑟𝑢𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
 

Any classifier that has discrete outputs such as decision trees is designed to produce only a 

class decision, i.e., a decision for each testing sample, and hence it generates only 

one confusion matrix, which in turn corresponds to one point into the ROC space [THARWAT, 

2018]. However, many methods were introduced for generating full ROC curve from a classifier 

instead of only a single point such as using class proportions [ZOU, 2002] or using some 

combinations of scoring and voting  [FAWCETT, 2006]. In order to quantify a model’s ROC 

curve, the total Area Under the Curve (AUC) can be calculated. This metric falls between 0 

and 1 with a higher number indicating better classification performance. 

RF results:  

The total confusion matrices for both human drivers and automated vehicles are summarized 

in Tab. 5.4. This matrix considers the confusion matrices for each fold and sums their values 

to get the total confusion matrix. 

 

https://www.sciencedirect.com/topics/computer-science/classifier
https://www.sciencedirect.com/topics/computer-science/decision-trees
https://www.sciencedirect.com/topics/computer-science/confusion-matrix
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve


Modeling Lane Change Behavior  89 

 

 Human Drivers Automated Vehicles 

Actual vs. 

Predicted 

Lane 

Change 

to Left 

No Lane 

Change 

Lane 

Change 

to Right 

Lane 

Change 

to Left 

No Lane 

Change 

Lane Change 

to Right 

Lane 

Change to 

Left 

1687 61 66 1761 21 25 

No lane 

Change 51 1722 49 37 1752 23 

Lane 

Change to 

Right 

63 62 1714 42 38 1749 

Tab. 5.4 Total confusion matrix for human drivers and automated vehicles with RF classifier 

Tab. 5.5 illustrates the recall, precision, and F1 for each class and the overall indicators, which 

are the average of each indicator for a single class for both human drivers and automated 

vehicles. Overall, the prediction accuracy of both models was good; however, the overall 

performance of the model for automated vehicles, due to the elimination of aggressive drivers 

whose behavior and actions are unpredictable, was better than the model for human drivers. 

Moreover, none of the models performed better in the prediction of one class compared to the 

other two, and the prediction accuracy of all the classes are similar.  

 

 Model  class Recall Precision F1 

Human drivers 

Lane change to left 0.94 0.93 0.93 

No lane change 0.93 0.95 0.94 

Lane change to right 0.94 0.93 0.93 

Overall performance 0.94 0.94 0.94 

Automated vehicles 

Lane change to left 0.97 0.97 0.96 

No lane change 0.97 0.97 0.97 

Lane change to right 0.96 0.96 0.97 

Overall performance 0.97 0.97 0.97 

Tab. 5.5 Classification performance for each class with RF classifier 

LR results: 

Total confusion matrix results for the classification with the LR method are illustrated in the 

matrixes shown in Tab. 5.6. As can be seen from the results, the classification capability of 



90  Data-driven Lane Change Model 

 

automated vehicles model is, as the RF classifier, higher than the model for human drivers. 

However, the general prediction capability of RF outstands the LR for this specific task. 

 

 Human Drivers Automated Vehicles 

Actual vs. 

Predicted 

Lane 

Change to 

Left 

No Lane 

Change 

Actual vs. 

Predicted 

Lane 

Change to 

Left 

No Lane 

Change 

Actual vs. 

Predicted 

Lane 

Change to 

Left 

1587 115 112 1520 93 96 

No lane 

Change 126 1512 109 172 1482 168 

Lane 

Change to 

Right 

142 184 1514 130 124 1575 

Tab. 5.6 Total confusion matrix for human drivers and automated vehicles with LR classifier 

The indicators resulting from the confusion matrices are shown in Tab. 5.4 for both human 

drivers and automated vehicles are depicted in Tab. 5.5. 

 

 
 Model 

 class Recall Precision F1 

Human drivers 

Lane change to left 0.87 0.86 0.85 

No lane change 0.86 0.85 0.83 

Lane change to right 0.82 0.85 0.87 

Overall performance 0.85 0.85 0.85 

Automated vehicles 

Lane change to left 0.89 0.87 0.86 

No lane change 0.88 0.88 0.88 

Lane change to right 0.86 0.87 0.88 

Overall performance 0.87 0.88 0.88 

Tab. 5.7 Classification performance for each class with LR classifier 

As mentioned earlier, one common way of assessing the usefulness of a binary classifier is 

the ROC curve as well as the area under the ROC curve (AUC), which shows the trade-off 

between the TPR and the FPR of a classifier for various choices of the probability threshold. 

A model with high differentiation ability will have high sensitivity and specificity, resulting in a 
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ROC curve, which goes close to the top left corner of the plot. Therefore, the closer the curve 

follows the left-hand border and then the top border of the ROC space, the more accurate the 

test. Moreover, AUC represents the degree or measure of separability to discriminate between 

the events, and the closer this value is to 1, the better the separation capability of the model. 

When AUC is approximately 0.5, the model has no discrimination capacity to distinguish 

between positive class and negative class. When AUC is approximately 0, the model is 

reciprocating the classes. In other words, the model is predicting negative class as a positive 

class and vice versa. In a multi-class model, ROC Curves for three classes are plotted using 

One-vs-All methodology. Fig 5.11 illustrates the ROC curve and AUC of the classifier for three 

classes as well as the micro- and macro-average curve for each. In micro-average method, 

individual true positives, false positives, and false negatives of the system for different sets are 

summed up, whereas in the macro-average method, the average of the precision and recall of 

the system on various sets are calculated. In other words, for extending the ROC curve to 

multi-class classification, the output is binarized, and a ROC curve is once drawn by 

considering each element of the label indicator matrix as a binary prediction (micro-averaging) 

and once drawn by giving equal weight to the classification of each label (macro-averaging). 

As can be seen from the graph, the prediction capability of the lane change to the right is the 

lowest among the three classes and the AUC score for this curve is 0.71. This means that 

there is 71% chance that the model will be able to distinguish between lane change to right 

class and other classes. The prediction capability of the model for no lane change class and 

lane change to the left is almost the same.  

 

Fig 5.11 ROC curve  
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In summary, the prediction capability of RF for this specific task was better than LR. It is 

noteworthy to mention that although the model could predict the tactical lane changing 

behavior of the vehicles based on their surrounding environment (feature vector), the 

parameters such as motivation behind the lane changing and the desired speed of the driver 

were not existent in the database and therefore are not reflected in the model. However, by 

having a more comprehensive and detailed database, one can capture those variables in the 

driving behavior model developed by this modeling approach.  

5.2 Modeling Lane Change Execution 

This chapter focuses on the operational lane changing behavior and explains the maximum 

entropy IRL-based model which was deployed for learning the operational lane change 

behavior from demonstrations (individual vehicle trajectories). 

 Core Design, Objectives and Assumptions 

As mentioned in chapter 2.4.2, many studies use RL defined by [SUTTON & BARTO, 1998] for 

learning behavior models [KONIDARIS & HAYES, 2005; INFANTES ET AL., 2011; HE ET AL., 2016; 

SHTEINGART & LOEWENSTEIN, 2014]. In RL, the agent is provided with a reward function, which 

provides feedback about the agent’s performance whenever it executes an action in some 

state. The given reward function is used to obtain an optimal policy, one where the expected 

future reward is maximum. The problem with the RL is that in most tasks, there is no natural 

source for the reward function. Instead, it has to be carefully defined to accurately represent 

the task [SUTTON & BARTO, 1998]. The difficulty comes with trying to design a reward function 

that encourages the desired behaviors while being learnable. The common approach is to 

manually tweak the rewards of the RL agent until the desired behavior is observed. A better 

way of finding a well-fitting reward function for some objective might be to observe an expert 

agent (human) performing the task to automatically extract the respective rewards from these 

observations with IRL [KONIDARIS & HAYES, 2005]. 

In IRL, the setting is exactly the opposite of RL. In this method, the agent’s policy or a history 

of behavior (which is in this study the individual vehicle trajectories) is given, and the goal is to 

learn reward function that explains the given behavior. The motivation for IRL is that it is often 

very difficult to manually specify a reward function for a task. In the real world, it is often not 

clear what the reward should be and there are rarely intrinsic reward functions. Manually 

designing and tweaking a reward function for a task is very challenging and comes with pitfalls 

and potential for errors [RATNER ET AL., 2018]. In many cases, it is easier to observe expert’s 

behavior instead and let them demonstrate how to achieve the desired goal. Instead of simply 

imitating the expert’s behavior, IRL tries to learn the underlying unknown reward function which 

is articulable as a linear combination of known features and the expert is trying to maximize 

[NG & RUSSEL, 2000]. In this case, IRL will provide a theoretical model that describes the 

objectives of the observed agents and can be deployed in many different scenarios. In this 
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method, the strong assumption is that the experts acted optimally and always chose the best 

possible action. As described in a paper by Ng & Russel [2000], The reward function is a 

transferable description of the task. Even when the observed agent is very different from the 

target agent, the reward function contains all relevant information in a way that is usable for 

the other agent, which is very important when trying to transfer human tasks to robots or 

automated vehicles. Fig 5.12 explains the general methodology used for IRL: 

 

Fig 5.12 Inverse reinforcement learning framework 

As defined by Ng & Russel [NG & RUSSEL, 2000], the model is informally characterized as 
follows:  

Given:  

1. measurements of an agent's behavior over time, in a variety of conditions 

2. if needed, measurements of the agent’s sensory inputs (environment states) 

3. if available, a model of the environment (transition probabilities) 

Determine: the reward function being optimized. 

Notation and formulation: 

The formulation of the model in this dissertation is inspired by the model formulation by [NG & 

RUSSEL, 2000]. This model uses the Markov decision process (MDP) which provides a 

mathematical framework for modeling the decision-making situations where outcomes are 

partly random and partly controlled by the decision maker. There are mainly three types of IRL 

problem formulation: 

1. Finite-state MDP with known optimal policy. 

2. Infinite-state MDP with known optimal policy. 

3. Infinite-state MDP with unknown policy, but with given demonstrations. 
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Since in practical problems, mostly the experts’ demonstrations are available rather than the 

explicit policy, the third method is the most widely-used one [LEE & POPOVIĆ, 2010].  

MDP is defined via a state space, an action space, a function of transition probabilities between 

the states, a reward function, a discount factor for future reward and initial state distribution. 

The process is shown as a tuple ⟨𝑆, 𝐴, 𝑅, 𝑇, 𝛾, 𝐷⟩ with: 

𝑆: is the finite set of 𝑛 environment states.  

𝐴:  is the set of 𝑘 actions.  

𝑅: is the reward function which maps each state to a real valued reward 𝑆 → ℝ. 

𝑇: 𝑆 × 𝐴 × 𝑆 → [0,1] contains the transition probabilities, e.g. 𝑇(𝑠′|𝑠, 𝑎) is the probability of 

landing in state 𝑠′ after performing an action 𝑎 in state 𝑠. 

𝛾:  is the discount factor for future rewards, which has the value between 0 and 1.  

𝐷: initial-state distribution, from which the start state 𝑠0 is drawn. 

In this process, the decision maker (agent) takes action and get a reward from its environment 

while the environment changes its state. The state transitions are probabilistic and depend 

only on the current state and the action taken by the agent. The reward obtained by the agent 

depends on the action taken, and on both the original and the new state of the environment. 

Assuming that the trajectory is an ordered list of states and actions which were sampled from 

some policy the trajectories can be defined as:  

휁 = ⟨(𝑠0, 𝑎0), (𝑠1, 𝑎1),… ⟩.  

𝑅  is the real reward function (only known to the demonstrator/expert). A reward is gained when 

taking an action 𝑎 in the state 𝑠 and the environment changes to the successor state 𝑠’. The 

reward function of a trajectory is expressed as a linear combination of the feature counts. 

It was assumed that there is some vector of features ∅:𝑆 × 𝐴 → [0,1]𝑘 over states where the 

true reward function 𝑅(𝑠) = 𝜔.∅(𝑠). In driving behavior modeling, ∅ is a vector of features 

indicating the various desiderata in the driving that should be trade-off [ABBEEL & NG, 2004]. 

Incorporating feature construction into IRL has been a challenging task and most of the studies 

in this area focus on the parametrization of the reward function based on pre-determined 

features and expressed as a weighted linear combination of hand-selected [ZIEBART ET AL., 

2008; ABBEEL & NG, 2004; LOPES ET AL., 2009; RATLIFF ET AL., 2006]. The difficulty is that many 

of the features may have important logical relationships that make it impossible to represent 

the reward function as their linear combination [LEVINE ET AL., 2010]. For this dissertation, the 

feature vector is the linear combination of the features determined in feature importance 

defined in chapter 5.1. However, all the features which are relevant for the decision-making 

during lane changing are not necessarily relevant for the execution of lane changing. When 
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trying to imitate the behavior of the expert, utilizing all the available features in the environment 

might not be necessary. Using all features may lead to overfitting, especially in the lack of a lot 

of training data [Kim, Beomjoon and Pineau, Joelle, 2016]. To tackle this problem, a 

regularization technique was implemented within the IRL. This model selection technique 

prevents overfitting by eliminating unnecessary features using a penalty term. The popular 

choice for the penalty term for model selection is the 𝐿1 norm  [Robert Tibshirani, 1994]. The 

optimization target then becomes: 

 

𝜔∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 {𝐿(𝜔) + 𝛽||𝜔||
𝟏
} 

The vector 𝜔 specifies the relative weighing between the desiderata relevant for the execution 

of lane changing and 𝛽 is the regularization parameter; higher 𝛽 means fewer features are 

considered, and vice versa. Following the method used by Kim et al. [2016], modification of 

Newton-Raphson method [FAN & LI, 2001] was used in this dissertation. On the other hand, a 

policy 𝜋 maps the states to the actions. If the policy is stationary deterministic, it outputs exactly 

one deterministic action for each state: 𝜋: 𝑆 → 𝐴. If the policy is stochastic, it will contain 

probabilities of choosing each action for each state: 𝜋: 𝑆 × 𝐴 → [0,1].  

𝑉𝜋(𝑠) is the value function for the policy 𝜋 evaluated at any state 𝑠 under policy 𝜋. By Bellman 

equation [1952], this value function would turn into: 

𝑉𝜋(𝑠) = 𝑅(𝑠) + 𝛾 ∑ 𝑇(𝑠′|𝑠, 𝜋(𝑠))

𝑠′∈𝑆

𝑉𝜋(𝑠′) 

𝑄𝜋(𝑠, 𝑎) is the value of state-action pairs under the policy 𝜋 and can be derived from the 

following formula: 

𝑄𝜋(𝑠, 𝑎) = 𝑅(𝑠) + 𝛾 ∑ 𝑇(𝑠′|𝑠, 𝑎)𝑉𝜋(𝑠′)

𝑠′∈𝑆

 

It is assumed that the agent attempts to optimize a function that linearly maps the features of 

each state, to a state reward value representing the agent’s utility for visiting that state. The 

optimal policy is retrieved if and only if, for all  𝑠 ∈ 𝑆 : 

𝜋(𝑠) ∈ 𝑎𝑟𝑔max
𝑎 ∈𝐴

𝑄𝜋(𝑠, 𝑎)   

 

An alternate method had been proposed by Abbeel & Ng [2004], which was is based on the 

matching feature expectations between an observed policy and a learner’s behavior. However, 

both normal IRL and the alternate method have ambiguity in the matching of feature counts 

and can be optimal for many reward functions and many policies lead to same feature counts. 

Therefore, Ziebart et. al [2008] proposed the MaxEnt IRL to overcome the ambiguity, in which 

they employ the principle of maximum entropy developed by Jaynes [1957]. As shown in 

Ziebart’s work, principal benefits of the Maximum Entropy paradigm include the ability to 
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handle expert suboptimality as well as stochasticity by operating on the distribution over 

possible trajectories [WULFMEIER ET AL., 2015].  

For the stochastic policies, the probability of taking an action is weighted by the expected 

exponentiated rewards of all the trajectories that begin with that action. Maximizing the entropy 

of the distribution over the trajectory subject to the feature constraints imposed from observed 

data suggests that the model maximizes the likelihood of the observed data under the 

maximum entropy distribution over the demonstrations. In this model, optima can be obtained 

using gradient-based optimization methods where the gradient is the difference between 

expected empirical feature counts and the learner’s expected feature counts [ZIEBART, 2010; 

ZIEBART ET AL., 2008]. In other words, gradient-based optimization minimizes the norm of the 

distance between the resulting feature values and the feature values of the behavior that was 

to be imitated. At the maxima, the feature expectations match and it guarantees that the learner 

performs equivalently to the agent’s demonstrated behavior regardless of the actual reward 

weights the agent is attempting to optimize [ABBEEL & NG, 2004]. Value iteration is one from 

Sutton and Barto [1998] and can be formulated as shown in Algorithm 5.2: 

 

Algorithm 5.2  Approximation of value iteration algorithm 

1:  𝑉(𝑠) = −∞ 

2:  𝒓𝒆𝒑𝒆𝒂𝒕 

3:  𝑉𝑡 = 𝑉;  𝑉(𝑠𝑔𝑜𝑎𝑙) = 0 

4:  𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝐸
𝑇(𝑠,𝑎,𝑠′)

[𝑉(𝑠′)] 

5:  𝑉 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥𝑎𝑄𝑖(𝑠, 𝑎) 

6:  𝒖𝒏𝒕𝒊𝒍 max𝑠 (𝑉(𝑠) − 𝑉𝑡(𝑠)) < 휀 

7:  𝜋(𝑎|𝑠) = 𝑒𝑄(𝑠,𝑎)−𝑉(𝑠) 

 

The framework used in this dissertation for the implementation of IRL for learning the 

operational behavior of lane changing is illustrated in Fig 5.13. As can be seen in the diagram, 

first the features are extracted from the observation and imported into the reward function. With 

the assumption of the optimality of experts’ trajectories, IRL learns the underlying reward 

function from the trajectories. This process is done by learning the weight of each feature from 

the data. Thereafter, the reward function is used to make predictions in the future. 
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Fig 5.13 Maximum Entropy IRL framework 

 Model Training and Testing 

In order to train the model, first, the grid world should be created. A grid world is an idealization 

of a robot in an environment. At each timestep, the agent is at some location and can move to 

neighboring locations, collecting rewards. The majority of existing approaches for robot 

mapping assume a static world, an assumption that does not hold in most practical application 

domains [MEYER-DELIUS ET AL., 2011]. In a study by Tanzmeister et al. [2014], an approach 

was presented that estimates a uniform, low-level, grid-based world model including dynamic 

and static objects, their uncertainties, as well as their velocities. Previtali et al. [2015]  

proposed a representation of the monitored environment based on a set of non-uniform grids, 

thus allowing for an effective and efficient representation of the monitored environment. The 

grid is periodically updated based on the information provided and high-density locations are 

described richly by increasing the granularity of the grid mapping around that location, whereas 

parts of the environment having fewer interactions are described sparsely. Their approach is 

linearly scaled with respect to the size of the environment as well as the computational 

resources required for solving the optimization problem. Although their model showed effective 

and computationally efficient results, their approach was tested only for the autonomously 

planning robots and pedestrians, and its plausibility for driving behavior is not clear.  

For this dissertation, a uniform grid is implemented and since the geometry of the road, 

specifically the number of lanes, varies within the study area, two offline grids were predefined 

in the model. The grid size is a trade-off between the computation power and accuracy of the 
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model. The two grids defined in this study area are matrices of 28x40 and 2x40 as the border 

region. Each cell in the grid captures the movement of up to 0.5 m in the lateral direction and 

1 m in the longitudinal direction. The 4-Lane Markov Grid are matrices of 56x40 and 2x40 as 

the border region. Each cell in the grid captures the movement to 0.5 m in the lateral direction 

and 1 m in the longitudinal direction. For the environment dynamics, a stochastic grid world 

was defined. In order to incorporate the dynamic nature of the surrounding environment, the 

grid of each vehicle is rolling every 120 ms as the ego vehicle moves within the study area and 

the probability of moving to the existing cells in the Markov grid is calculated. However, if a 

dynamic obstacle lies outside of the abovementioned grids, the features such as relative 

distance and relative speed are still considered in the reward function. The reward dedicated 

to the static obstacles such as study area borders and dynamic obstacles such as moving cars 

are -1 and -0.5, respectively, to reduce the probability of an agent moving to a preoccupied 

cell.  

The discount factor of MDP, which is denoted as 𝛾, is for penalizing future awards and 

regulating how far ahead in time the algorithm looks for penalizing future rewards. The values 

close to one prioritize rewards in the distant future, whereas a discount factor closer to zero 

indicates that only rewards in the immediate future are being considered, implying a shallow 

lookahead. As discussed in a study by François-Lavet et al. [2015], the discount factor may 

have an impact on the stability and convergence of deep reinforcement learning 

algorithms. Having a discount factor smaller than one assures that the total expected value 

converges to a finite solution. If no discounting factor is defined, the total expected value 

explodes and would not converge [CARMON, 2007]. In other words, if it were not a discounted 

problem (𝛾 =1), all policies that have to acquire on average a positive reward at each time step 

would sum up to infinity. In this study, after testing the values between 0.5 and 1, the discount 

factor is set to 0.8. 

Another parameter that was set in the training is the learning rate. Learning rate is a 

hyper-parameter that can control how much the weights can be adjusted with respect to the 

loss gradients. Like any other hyper-parameter, learning rate needs optimization which is the 

problem of optimizing a loss function over a graph-structured configuration space [BERGSTRA 

ET AL., 2011]. Choosing a low value for learning rate assures that the model will not miss any 

local minima, however, the model will take a long time to converge while too large learning rate 

will make the training algorithm diverge [BENGIO, 2012]. Moreover, the learning rate can affect 

the training time by order of magnitude. In order to find the right learning rate, the model was 

trained with a subset of data with 48 different learning rates, from 0.000001 to 100 at 

logarithmic intervals. Based on the result of the test, the gradient descent learning rate for this 

dissertation was set to 0.01.  

The number of trajectories that illustrated the number of sampled point from trajectories was 

set to 200 points. As the problem is solved by the gradient descent method, the algorithm is 

iterative meaning that there is a need to get the results multiple times the avoid underfitting 
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and overfitting and get the optimum solution. The gradient descent iteration was set to 20 

meaning that the weights updated with 20 epochs. 

The actions are the set of possible alternative choices the agent can choose [RABINER & JUANG, 

1986]. With the assumption that the actions are stochastic, there is a probability distribution 

over the resulting states given the respective action and the state. The main problem of solving 

an MDP is to find the optimal action to take in each particular state of the world [LITTMAN ET 

AL., 1995]. As this model is dealing with the vehicles driving on a freeway-like road segment, 

any abrupt movements of the vehicles and driving backward is not allowed. Therefore, the 

agent can choose the following four actions shown in Fig 5.14 to move around in the grid. 

However, the determination of the action alone cannot replicate the movement of vehicle 

realistically because the speed by which the vehicles perform an action is not predicted. The 

actions can illustrate the direction of the movement; however, they are not capable of predicting 

the speed by which the vehicle moves properly. To overcome this issue and to incorporate the 

speed prediction into the model, regression analysis with RF was employed.  

 

 

Fig 5.14 Actions in the Markov grid 

 

Regression analysis estimates the functional relationships between the independent (predictor 

or explanatory) variables and a dependent (response or outcome) variable [DRAPER & SMITH, 

2014]. The dependent variable is the main factor that the model tries to understand or predict 

and independent variables are the factors that the model hypothesizes have an impact on the 

dependent variable [ABRAHAM & LEDOLTER, 2006]. Linear regression is a classical parametric 

method that requires explicit modeling of nonlinearities and interactions, when necessary, and 

is believed to be robust if the number of observations is distinctly larger than the number of 

variables [BERK, 2004]. RFs, on the other hand, are non-parametric and allow learning the 

nonlinearities and interactions from the data without the explicit need model them [GRÖMPING, 

2009].  

In this dissertation, a RF regressor was embedded in the IRL model. A RF is an ensemble 

method that fits several decision trees on various subsamples of the dataset and uses 

averaging to increase the accuracy of prediction and control overfitting [BREIMAN, 2001]. 
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Regression trees are used as base learners in the RF regression algorithm. A regression tree 

is built by recursively portioning the sample into more homogenous groups called nodes, down 

to the terminal nodes. Each split is based on the values of one variable and is selected 

according to the splitting criterion [GRÖMPING, 2009]. After selecting the number of trees in the 

forest, each regression tree is grown on a separate bootstrap sample derived from the initial 

training data. Each node in a tree represents a binary test against the selected predictor 

variable. The sub-sample size is always the same as the original input sample size, however, 

the samples are drawn with replacement by default [BUITINCK ET AL., 2013]. Moreover, when 

splitting node during the construction of the tree, the chosen split is no longer the best split 

among all the features. Alternatively, the picked split is the best among the random subset of 

the features. Although during this process, as the result of randomness, the bias might slightly 

increase, due to averaging the variance decreases usually more than the compensating for 

the slight increase in bias, hence resulting in an overall better model [BUITINCK ET AL., 2013]. 

The RF regressor in this study takes the speed of the vehicle in the previous time step, lane 

id, relative speed and distance to the preceding vehicle as input to predict the speed of the 

vehicle for each time step. Although it has been discussed that the RF does not require an 

external cross-validation procedure to estimate the model accuracy as the bagging during 

training preserves the data from overfitting [SIROKY, 2009], there is no guarantee that all the 

instances will be used at least once. Therefore, in this study, a 10-fold cross validation 

discussed in chapter 5.1.2 was performed. The last step of solving a ML problem is to evaluate 

the performance. For regression, problems the metrics used to evaluate an algorithm are often 

mean absolute error, mean squared error, and root mean squared error. Mean absolute error 

was calculated as the function to measure the quality of a split, which can be calculated with 

the following formula for 𝑛 observation points: 

𝑀𝐴𝐸 =
∑ |𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑝𝑒𝑒𝑑𝑖 − 𝑎𝑐𝑡𝑢𝑎𝑙 𝑠𝑝𝑒𝑒𝑑𝑖|

𝑛
𝑖=1

𝑛
 

The model was trained on the NVIDIA Quadro P4000 Graphic Processing Unit (GPU). The 

model was trained using two datasets once training with the whole dataset to replicate the 

result for the human drivers and once with the dataset excluding the aggressive drivers to 

account for the automated vehicles. 

 Results 

The results discussed here include two types of results: first, the result of the regression 

analysis embedded in the IRL algorithm and second: the result of the trajectory prediction of 

the whole IRL Model. 

Speed Prediction result: 

The estimated speed comes from the predictions made on the data withheld from training in 

each round of cross-validation. MAE, Mean Squared Error (MSE) and Root Mean Squared 
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Error (RMSE) were deployed as the indicator for evaluating the performance of the regressor. 

For this model, the number of estimators, which is the number of trees in the forest, was tested 

with 5, 10, 20, 50, 100 and 200 trees. First of all, the feature importance was calculated to 

estimate to what extent the input samples’ features contribute to speed. As can be seen from 

Fig 5.15, increasing the number of trees did not have a substantial influence on the importance 

of each feature. Moreover, for both normal drivers and automated vehicles, the relative 

distance to the preceding vehicle contributes the most to the speed prediction. This is followed 

by the speed of the vehicles in the previous timestep. The third influencing factor on the speed 

of the ego vehicle is the relative speed and the feature with the least important was the ID of 

the lane. 

 

Fig 5.15 Feature importance for human drivers and automated vehicles with various number of 
trees 

Fig 5.16 illustrates the average of regression results for all ten folds. In this plot, the horizontal 

axis represents the number of estimators, and the vertical axis illustrates the average MAE, 

MSE and RMSE of the regressor in degrees. The bag error rate has shown that after 20 trees, 

the error levels out and that an increase in the number of trees does not boost the prediction 

ability of the regressor.  
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Fig 5.16 MAE, MSE and RMSE result of the RF regressor for speed prediction of human drivers and 
automated vehicles. 

In order to make the prediction for the speed of automated vehicles, the aggressive drivers, 

which were identified with the means of clustering the driving behavior (Chapter 4) were filtered 

out from the dataset, and the RF regressor was trained with the data. As can be seen from Fig 

5.16, the prediction accuracy of the regressor for human drivers is not considerably different 

than the one for human drivers. Moreover, increasing the number of trees more than 20 did 

not lead to improvement in the prediction capability of the system. Based on the result of the 

speed prediction, the RF regressor with 20 trees was deployed in the IRL model in order to 

predict the speed of the vehicle in each time step. 

Trajectory prediction result 
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In order to analyze the difference between the observed behavior and the modeled most 

probable trajectory, as suggested by Kuderer et al. [2012; 2015], the norm of the discrepancy 

between the behavior predicted by the model and the recorded trajectories averaged over all 

ten folds. The following metrics were deployed for evaluating the prediction capability of the 

model and computing the error: 

 

1. Total displacement error is the sum of the Euclidean distance over all the estimated 

points at each time step in the predicted trajectory and true trajectory is calculated. 

Assuming that the two curves 𝑃 and 𝑄 represent the observations and the predictions 

respectively and 𝑁 is the number of points, this indicator can be calculated based on: 

∑√(𝑥𝑖
𝑃 − 𝑥𝑖

𝑄
)
2
+ (𝑦𝑖

𝑃 − 𝑦𝑖
𝑄
)
2

𝑁

𝑖=1

 

2. Average displacement error is similar to the metric used in a study by Pellegrini [2009]. 

This indicator computes the mean Euclidean distance over all estimated points at each 

time-step in the predicted trajectory and true trajectory.  

∑ √(𝑥𝑖
𝑃 − 𝑥𝑖

𝑄
)
2
+ (𝑦𝑖

𝑃 − 𝑦𝑖
𝑄
)
2𝑁

𝑖=1

𝑁
 

3. Fréchet distance is the measure of similarity between the curves. This method 

developed by M. Maurice Fréchet [1906] is to measure how much two given curves 

resemble each other. As illustrated in Fig 5.17, supposing that a man is walking his dog 

and he is constrained to walk a curve (blue curve) and his dog on another curve (red 

curve) and both the man and dog are allowed to control their speed independently, but 

they are not allowed to go backward, then the Fréchet distance of the curves is the 

minimal length of a leash that is necessary. Mathematically the Fréchet distance 

between the two curves is defined as:  

𝛿𝐹(𝑃, 𝑄) = min {max𝑑( 𝑃(𝛼(𝑡)), 𝑄 (𝛽(𝑡)))} 

𝛼[0,1] → [0, 𝑁] 𝑡 ∈ [0,1] 

𝛽[0,1] → [0,𝑀] 

where 𝛼(𝑡) and 𝛽(𝑡) range over continuous and increasing functions with 𝛼(0) =  0  

, 𝛼(1) =  𝑁 , 𝛽(0) =  0 and 𝛽(1) =  𝑀 only. This equation reads like: for every possible 

function 𝛼(𝑡) and 𝛽(𝑡), find the largest distance between the man and its dog as they 

walk along their respective path; finally, keep the smallest distance found among these 

maximum distances. For this study the discrete Fréchet function developed by Eiter 

and Mannila [1994] was deployed. 
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Fig 5.17 Fréchet distance 

In order to make the predictions, first, the subset of the trajectory is analyzed and plotted for 

better illustrations. For each scenario, the corresponding reward function at the specific 

situation is plotted. As can be seen from the graphs in      Fig 5.18, the ego vehicle takes the 

path in which it receives the highest award. In these graphs, the cells with very low reward are 

those occupied by other vehicles.  
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Fig 5.18  Examples of real and recovered reward function and predicted trajectories 
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During the testing process, in some specific traffic scenarios, the model failed to predict the 

vehicle movement correctly. Fig 5.19 illustrates two examples of anomalous scenarios. As can 

be seen from plot a), the driver decided to move to the left lane as the scene was empty, while 

the model predicted the highest probability for the action of going straight in an empty scene. 

The Fréchet Distance for this particular prediction was 3.4 m. The predicted trajectory follows 

a straight line, whereas the drives’ movements were very stochastic. Due to the fact that the 

observed data does not represent the motivation of the drivers as well as the rareness of this 

situation in the dataset, the model could not learn the stochasticity of the driver’s behavior in 

this situation. 

The situation depicted in plot b) shows a vehicle entering the scene from the ramp where no 

other vehicles were driving on the ramp. This situation was infrequent in the dataset, and 

therefore in the prediction, the ego vehicle entered the scene with diagonal movements using 

both lanes, and when it reached the borders of the road, it was found to be stuck at a particular 

position. Analysis of the data shows that not many training samples encountered this particular 

scenario; hence, the action predicted was to stay at the current position. The Fréchet Distance 

for this particular prediction is 4.68 m. 
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Fig 5.19 Examples of anomalous scenarios 

Tab. 5.8 summarizes the results of the model prediction over all the trajectories, excluding the 

anomalous scenarios. As the table illustrates, the average total displacement error and 

average displacement error of all trajectories was 0.26 m of 0.098 m, respectively. It is 

noteworthy to mention that by increasing the number of cells in the Markov grid and reducing 

the grid size, which results in higher computation time, better results can be achieved.  

a) b) 
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Tab. 5.8 Overview of the trajectory prediction results 

Indicator 
Average 

[m] 
Histogram 

Total 

Displacement 

Error 

0.265 
 

 

Average 

Displacement 

Error 

0.098 
 

 

Fréchet Distance 0.061 
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5.3 Summary 

This chapter discussed the approach used for modeling the operational behavior of lane 

changing of drivers from the observed trajectories in the study area. For modeling the highly 

stochastic behavior of drivers, an IRL framework was deployed to solve sequential planning 

and decision-making problems in the stochastic environment under study. The key notion in 

IRL is that the driver act to optimize a reward function defined as a linear function of features. 

The IRL problem is then reduced to recovering the weights of the features in the reward 

function that induces the demonstrated behavior. However, IRL might be ambiguous, meaning 

that each policy can be optimal for many reward functions and many policies lead to the same 

feature counts. To resolve the ambiguity, the principle of maximum entropy was used. 

Moreover, a RF regression model was integrated into the model for making predictions about 

the speed of the ego vehicle.  

The results showed that the model could recover the real reward of vehicles from the 

demonstrated trajectories and as a result, the model has the capability of making predictions 

about the operational behavior of drivers in most situations. The resulting variation the actual 

trajectory and predicted one in specific situations stems from the discrete nature of Markov 

grid and the rareness of those situations, which can be tackled by gathering more observations 

and reducing the resolution of Markov grid.  
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 Simulation Experiment 

Microscopic simulation software is an indispensable powerful, and important tool in traffic 

analysis for modelers and transport planners. A well-calibrated microscopic simulation model 

is able to replicate the statistical distribution of detailed traffic variables and emulate the flow 

of individual vehicles through a road network [LIMA AZEVEDO, 2014; BARCELO ET AL., 2005]. 

Moreover, microscopic simulation tools provide a cost-efficient and safe mean to test emerging 

technologies such as automated vehicles; however, for achieving this goal, the microscopic 

traffic simulation should realistically replicate the microscopic level driving behavior and 

consider the detailed interactions between the vehicles.  

In this chapter, the process and results of using the existing microscopic traffic simulation 

software SUMO [KRAJZEWICZ ET AL., 2012] to analyze the feasibility of the developed model 

are explained. The main reason for choosing SUMO as the simulation software was its API 

that treats the SUMO simulation as a server and allows users to gain information from a traffic 

simulation or modify the simulation [WEGENER ET AL., 2008]. This feature makes SUMO an 

attractive tool for reinforcement learning and Inverse reinforcement learning studies. A 

computational framework for deploying reinforcement learning for autonomous vehicles and 

its integration in microscopic traffic simulation SUMO was proposed in Flow project 

[KHETERPAL ET AL., 2018] and Genders and Razavi [2016] applied deep reinforcement learning 

to build a truly adaptive traffic signal control agent SUMO. As the focus of this dissertation is 

on lane changing, this model was studied more precisely, and the details are described in the 

following chapter. 

6.1 Simulation Framework 

SUMO provides the possibility to import the network from OpenStreetMaps as an OSM-data, 

which contains an extract of the OpenStreetMap database, is saved in an XML structure and 

always has WGS84 geo coordinates [KRAJZEWICZ ET AL., 2002]. This coordinate system 

converts automatically to the UTM coordinate system, which is compatible with the observation 

data, when using the netconvertor and creating the SUMO network file. A SUMO network file 

describes the traffic-related part of a map, the roads and intersections the simulated vehicles 

run along or across and is encoded as XML files. However, the data from OpenStreetMap is 

not simulation-ready and should be further enhanced. Not only the geometry of the network 

was improved, but also the speed limit and type of the street. Fig 6.1 provides an overview of 

the steps to create the simulation network for SUMO. 
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Fig 6.1 Overview of the steps to create the SUMO network file from OpenStreetMaps 

After converting the network with the SUMO netconvertor, improving the geometry and 

attributes the network is simulation-ready. Fig 6.2 illustrates the simulation ready network 

plotted on the background map. 

 

Fig 6.2 Simulation network in SUMO (Background image is from Google maps, 2018) 

In order to check the plausibility of the model for unseen data with the simulation tool, 

observation number three, which was left aside and not used during the training process, was 

used. The duration of this video is 30 minutes; therefore, the simulation was conducted for 30 

minutes with 15 minutes warmup time. Fig 6.3 summarizes the speed, longitudinal and lateral 

acceleration of each vehicle type in the dataset used for calibration and validation of the model. 

As can be seen from the speed graphs, the data was chosen in a way that the building up of 

congestion (low speeds) and dissolving of the congestion are included in the dataset. 
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Fig 6.3 Calibration dataset histogram and density plots of speed, longitudinal acceleration and 
lateral acceleration for a) cars, b) medium vehicles, c) heavy vehicles and d) buses in the 
dataset 

In order to check the safety of the situation, TTCs of the vehicles were calculated, and the 

normalized histogram of all TTCs was analyzed to display relative frequencies. It then shows 

the proportion of cases that fall into each of several categories, with the sum of the heights 

equaling 1. Fig 6.4 illustrates the histogram of TTCs below 10 seconds. As can be seen from 

the graph, the diagram is skewed to the left, and the traffic situations with very low TTCs were 

not frequent events in the dataset.  

c) 

b) 

b) 

a)

())

https://en.wikipedia.org/wiki/Categorization
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Fig 6.4 Histograms of TTC values of normal drivers in traffic observation 

Analyzing the distribution of the lanes is also of high importance. As it can be seen in Fig 6.5, 

in the major stream, where two streams come together, the third lane was the most frequently 

used lane, whereas the rightmost lane was not popular among the drivers.   

 

Fig 6.5 Distribution of lanes in the observed dataset 

As mentioned in chapter 2.2.3, in order to have credible results, the base scenario should be 

first calibrated. Calibration is necessary to improve the ability of the model to accurately 

reproduce the traffic condition observed in this dataset. Many studies have already used 

individual vehicle trajectories for the calibration and validation of SUMO [RIVOIRARD ET AL., 

2016; POURABDOLLAH ET AL., 2017; KATHS, 2017]. 

For the calibration, the approach proposed by U.S. federal highway administration  [DOWLING 

ET AL., 2004] was used. This guideline suggested keeping the number of adjustable 

parameters as small as possible to reduce the amount of effort associated with the calibration. 

The modeler should trade-off between the number of chosen parameters to adjust, and the 
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degrees of freedom to better fit the calibrated model to a specific traffic situation. This approach 

subdivides further the adjustable parameters based on their magnitude of effect into global 

parameters and localized parameters. The global parameters should be calibrated first, and 

then the model should be fine-tuned by tweaking the local parameters. The Three-step strategy 

that has been suggested by this methodology is as follows:  

1. Calibrate capacity parameters. 

2. Calibrate route choice parameters. 

3. Calibrate overall model performance (travel times and queues). 

As the study area of this dissertation does not have any parallel routes, the second step is not 

relevant in this study. 

The goal of the capacity calibration step is to come as close as possible to matching the field 

measurements for traffic. For calibration of capacity in the study area, the part of the dataset 

in which at least 15 minutes queues persist was identified, and the hourly flow rates were 

estimated. Then the model parameters were changed to replicate the reality. The list of 

parameters that can be changed in sumo for car-following and lane changing is shown in 

Appendix I. For car-following of normal vehicles the default model in SUMO, which is a 

modification of the model defined by Stefan Krauss [1997]. For lane changing model, LC2013 

default model developed by Jakob Erdmann [2014] was chosen. In the first step, the 

parameters with a significant impact on the capacity should be identified. 

In order to calibrate the model, the values which lie within the acceptable range for each 

attribute were selected. Geistefeldt et al. [2015] attempted to calibrate SUMO for different 

freeway segments, including on ramps. Although the study area of this research is an urban 

freeway, it has free flow characteristics similar to E 5-2 segment (based on German highway 

capacity manual [Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV) - The 

committees of the Road and Transportation Research Association, 2015b]) of freeways. 

Therefore, the values selected for this study were defined around those values. The simulation 

ran with different combinations of the abovementioned set of parameters. In some cases, not 

all vehicles could make the lane change in the desired time and remain stationary. In order to 

avoid unrealistic disturbances, the time after which a stationary vehicle was taken out of the 

simulation was set to -1 in order to avoid vehicles disappearance. It is important to mention 

that the calibration and validation process was performed only for passenger cars and for the 

behavior of trucks and buses the default SUMO parameters were deployed.  

SUMO, like many other microscopic simulation tools, a series of random numbers is used to 

generate randomness when loading vehicles (type distribution, speed deviation, etc.), 

probabilistic flows, vehicle driving dynamics and vehicle devices. SUMO implements 

the Mersenne Twister algorithm for generating random numbers. Mersenne Twister algorithm 

was developed by Matsumoto and Nishimura [1998] and is by far the most widely used 

http://en.wikipedia.org/wiki/Mersenne_twister
http://en.wikipedia.org/wiki/Mersenne_twister
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general-purpose pseudorandom number generator [MARSLAND, 2014]. This variation has a 

large impact on simulation outputs as different simulation runs could produce very different 

results [BURGHOUT, 2004]. Therefore, it is essential to calculate the minimum number of runs 

to achieve reliable estimates of measures of performance. In order to account for stochastic 

behavior of traffic simulation, the required number of simulations were calculated based on the 

following formula and choosing the 95% confidence interval: 

𝑛 ≥
𝑡(𝛼, 𝑛 − 1)2 ∗ 𝑠2

𝐶2
 

  

Where: 

𝑛 = Number of necessary simulation runs 

𝑡(, 𝑛−1) = Value from the student distribution for a one-sided error 

𝑠 = Standard deviation of the examined parameter 

𝐶 = Desired confidence interval 

The objective function of calibration is set to minimize the mean squared error (RMSE) 

between the estimated model and the field measurements. As the requirements to calculate 

the capacity in the observation dataset was not fulfilled, average travel times measurements 

were chosen as an indicator to compare the model and each set of repetitions has a single set 

of model parameters with eight different random seeds for each repetition within the set.  

After finding the optimal global parameter set, the fine tuning was done. In the last step of 

calibration, the overall traffic performance of the model was calibrated. For this aim, the traffic 

volumes are considered and the parameters were further refined to reach the observed values. 

In order to compare the simulation result with the calibration acceptance target, defined by the 

guidelines [Wisconsin DOT, 2002], the GEH statistics is calculated as follows: 

𝐺𝐸𝐻 = √
(𝐸 − 𝑉)2

𝐸 + 𝑉
2

 

where 𝐸 is the model estimated volume and 𝑉 is the measured volumes on the road. For the 

simulation model, 𝐺𝐸𝐻 value was calculated 1.58 for the simulation based on the traffic 

volumes from data and from observations are illustrated in Tab. 6.1. Based on the calibration 

criteria table, the 𝐺𝐸𝐻 value is below 5 for individual link flow and therefore, the value lies 

within the calibration acceptance range. 

 

 

 

https://en.wikipedia.org/wiki/Pseudorandom_number_generator
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  Observation Simulation 

Stream Vehicle Type 
Inflow 

[veh/h] 

Outflow 

[veh/h] 

Inflow 

[veh/h] 

Outflow 

[veh/h] 

M
a

jo
r 

S
tr

e
a
m

 

Car 1681 3094 1679 3012 

Medium Vehicle 123 201 119 198 

Heavy Vehicle 58 122 55 115 

Bus 0 7 0 7 

R
a

m
p

 

Car 1515 - 1498 - 

Medium Vehicle 88 - 82 - 

Heavy Vehicle 70 - 67 - 

Bus 8 - 8 - 

Tab. 6.1 Inflows and outflows in observation and simulation 

In order to examine the goodness of the chosen parameter set and validate the model, a part 

of the dataset that was not used for calibration was chosen, and it was simulated with the exact 

entry of each vehicle in the network. Then, the travel time of each individual vehicle in the 

network was compared with those of traffic data observations. Fig 6.6 illustrates the plot of the 

real and simulated travel time of each vehicle with bivariate and univariate graphs. The graph 

on the left shows the hexagonal bins, whereas the graph on the right shows the scatter for 

better illustration of the deviations. Comparing the densities of real data and simulation data 

proves that the calibrated model can reproduce a credible result. 

 

 

Fig 6.6 Bivariate and univariate graphs of real and simulated travel time 
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6.2 Model Implementation 

In order to implement the model, the TraCI interface in SUMO was used. TraCI is the short 

term for Traffic Control Interface. Giving access to a running road traffic simulation, it allows to 

retrieve values of simulated objects and to dynamically manipulate their behavior [WEGENER 

ET AL., 2008]. As illustrated in Fig 6.7, TraCI provides the opportunity that for each simulation 

step, the surrounding environment of the ego vehicle be transferred to the driving behavior 

manager and after deciding about the actions, the actions be implemented in SUMO. The 

experts’ trajectories, which are saved in the database, are the inputs of the IRL Lab. IRL Lab 

is the name given to the process performed for learning the lane changing behavior which was 

described in chapter 5. The resulting reward function is transferred to the behavior manager 

module for each following traffic situation which is translated into features. The reward is 

computed, and the corresponding action is decided upon. These actions are then converted 

into the new position and new speed of the ego vehicle and implemented in SUMO. In SUMO, 

the simulation time step length can be specified. As the observations were recorded with the 

resolution of 40 ms, the simulation timestep was set accordingly.  

 

 

Fig 6.7 System architecture and an operation example of the command-response exchange 
between the SUMO and driving behavior manager module 

 
   

When implementing an external model with TraCI, for the internal lane change motivations, 

the following options can be independently configured [ERDMANN, 2015] : 

a) Ignore the internal request. 
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b) Ignore the internal request when in conflict by an external request. 

c) Always follow the internal request regardless of the external request. 

 Furthermore, the following options for configuring the urgency of external requests:  

a) Following request regardless of surrounding vehicles, perform urgent speed 

adaptions. 

b) Follow request unless it would cause an immediate collision but ignore safety gaps to 

surrounding vehicles, perform urgent speed adaptions. 

c) Only change if all safety constraints are met, perform urgent speed adaptions. 

d) Only change if all safety constraints are met, perform no speed adaptions. 

As the IRL-based model calculated the new positions and new speeds, the implemented model 

ignores the internal request by SUMO model completely and follows the request. 

6.3 Simulation Scenario 

In this section, the simulation scenarios are discussed. With the objective of testing the 

capabilities of the developed models, various real-world traffic situations were modeled with 

50% penetration rate of automated vehicles. In total, four traffic scenarios are considered, and 

for every test, the simulation time is set to 1.5 hours to ensure the run-time is long enough. 

The simulation scenarios are as follows: 

Scenario 1: the calibrated and validated model 

The first simulated scenario aims to examine the capability of the developed models in the 

base scenario, compare their performances with the internal SUMO model and validated them 

with the data. In this scenario, all the traffic conditions are identical except the fact that the 

driving behavior model of passenger cars is overwritten by either of the two developed models.   

Scenario 2: Accident on the second lane 

In order to examine the transferability of the model to other traffic scenarios, as shown in Fig 

6.8, an artificial traffic incident was created on the second lane of the major stream downstream 

of the ramp. The objective in developing this scenario to compare the underlying lane change 

model in SUMO with the developed models for human drivers and automated vehicles and 

examine the transferability of the data to the scenarios which were nonexistence in the training 

data. The artificial accident happened in minute 5 of the simulation and lasted for 10 minutes. 

Thereafter, the collided vehicles were removed, and the capacity of the road returned back to 

normal. In SUMO, the vehicles which cannot find the necessary gaps and execute the lane 

changing within a certain time are removed from the network. This behavior is one of the 
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unrealistic behaviors in the microscopic simulation, which is in contrast with the conservation 

law of traffic flow [LIGHTHILL & WHITHAM, 1955]. In order to avoid the disappearance of the 

vehicles on the network, the teleoperating time in SUMO was set to -1. 

 

Fig 6.8 Location of accident in the network 

Scenario 3: high pressure from on-ramp traffic 

Traffic is generally more turbulent around freeway ramps due to route choice-related lane 

changes and anticipatory or cooperative maneuvers [VAN BEINUM ET AL., 2018] and the ramp 

inflow also varies the number of courtesy gaps that have to be created. In order to evaluate 

the merge action of the model in the situation with the higher traffic flow from the on-ramps, in 

the base scenario, the inflow from the ramp was increased by 15%, and the main inflow volume 

was reduced by 15% to ensure the merging ability of vehicles and the simulations run were 

completed. Tab. 6.2 illustrates the original and new inflows of vehicles. 

 

Stream Vehicle Type 
Original Inflow 

[veh/h] 

New Inflow 

[veh/h] 

M
a

jo
r 

S
tr

e
a
m

 

Car 1681 1428 

Medium vehicle 123 104 

Heavy vehicle 58 49 

Bus 0 0 

R
a

m
p

 

Car 1515 1742 

Medium vehicle 88 101 

Heavy vehicle 70 80 

Bus 8 9 

Tab. 6.2 Traffic Flows in scenario 3 
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Scenario 4: higher speed limit 

One way to examine the transferability of the model to other situations is the variation of traffic 

regulations and constraints that the vehicles might face. The speed limit is one of those 

limitations, the effects of which on various traffic aspects have been studied extensively in the 

literature [YANG ET AL., 2012; SORIGUERA ET AL., 2017; ROCK, 1995; OSSIANDER & CUMMINGS, 

2002]. A speed limit enforcement can reduce the difference in speed between vehicles and 

reduce the number of lane changes [KNOOP ET AL., 2012a]. For this aim, in this scenario, an 

evaluation of the speed limit increase from 60 km/h to 80km/h on the major road was 

performed.  

6.4 Evaluation 

In this section, simulation results of the developed model are reported and compared against 

SUMO’s default lane change model. In order to evaluate the performance of the models, the 

following three indicators are looked at mainly: 

• Distribution of TTCs: TTC is often a critical element of a driver’s trajectory management 

decision-making process [HOU ET AL., 2014a], and is the parameter frequently utilized 

in the literature to assess the interaction intensity among vehicles lane changing 

maneuvers. For instance, Farah et al. [2008] developed a model which predicts the risk 

in terms of the TTC associated with the passing behavior. In this study, the distribution 

shows the TTCs below 10 seconds are analyzed. 

• Throughput of the network: This is an indicator of the productivity of the system, the 

number of vehicles that managed to go through the traffic network during the analysis 

period [Federal Highway Administration (FHWA), 2017]. The throughput can be 

compared for different alternatives to determine the relative productivity of each 

alternative. 

• Number of lane changes: A driving simulator experiment by Yang et al. [2018] has 

shown that as traffic density increases, drivers’ lane changing and overtaking intentions 

are enhanced. Both initial overtaking distance and headway decrease with traffic 

density, which might influence road safety.  

Scenario 1: the calibrated and validated model 

Fig 6.9, compares the TTC distributions of the different models and the number shown in red 

and dark blue are the number of vehicles that managed to go through the traffic network within 

the simulation period and the number of lane changes, respectively. As can be seen from the 

graphs, In SUMO model, in total more vehicles could perform a lane change maneuver when 

compared to IRL-based models; however, those which were involved performed the 

maneuvers with lower TTCs. Moreover, when comparing the two IRL-based models, a lower 
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number of lane changes and higher TTC values prove that the models for automated vehicles 

reacted more conservatively during lane changing.    
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a) 

 

Throughput: 3424 veh/hr 
N= 1515 
 

b) 

 

Throughput: 3218 veh/hr 
N= 1322 
 

c) 

 

Throughput: 3387 veh/hr 
N= 1521 

d) 

 

Throughput: 3322 veh/hr 
N= 1487 

Fig 6.9 TTC distributions of vehicles for scenario 1 in a) traffic observations, b) SUMO model, c) 
IRL-based model for human drivers and d) IRL-based model for automated vehicles.  

. 
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Scenario 2: accident on the second lane 

As mentioned in Chapter 6.3, this scenario includes an artificial accident within the network. 

Fig 6.10 compares the results of scenario 2 with different models. Comparing the results of 

IRL-based models with the default SUMO model proves that the model could successfully 

perform the lane changes, although this specific situation was not existent in the dataset. 

Moreover, the graphs illustrated that the IRL-based model for automated vehicles was more 

conservative when compared to the developed model for human drivers.  

a) 

 

Throughput: 2465 veh/hr 

N= 1781 

 

b) 

 

Throughput: 2732 veh/hr 

N= 1853 

 

c) 

 

Throughput: 2654 veh/hr 

N= 1821 

Fig 6.10 TTC distributions of vehicles for scenario 2 in a) SUMO model, b) IRL-based model for 
human drivers and c) IRL-based model for automated vehicles.  

The next step is to compare the macroscopic indicators of three models. The comparison of 

three scenarios conveyed that after removing the traffic incident, in the scenario with SUMO 
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lane change model the queue was dissolved after 14 min and 10 seconds, whereas these 

values were 10 minute and 26 seconds for the IRL model for human drivers and 9 minute and 

15 seconds with the IRL model for automated vehicles.  

Scenario 3: Higher pressure from on-ramp traffic 

Fig 6.11 illustrates the result of scenario 3 in which the traffic flow from the on-ramp is higher. 

In this scenario, the difference between the TTC distributions are not as considerable as the 

previous scenarios, but the result of Scenario 3, especially the throughput of the network 

confirms that in case of higher traffic flow from the on-ramp, the vehicles controlled by 

underlying model in SUMO had difficulty merging into traffic stream, whereas the vehicles 

controlled by IRL models show more cooperative behavior. This has led to higher throughput 

for both human drivers model and automated vehicles model compared to SUMO model. 
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a) 

 

Throughput: 3012 veh/hr 

N= 1585 

 

b) 

 

Throughput: 3451 veh/hr 

N= 1673 

c) 

 

Throughput: 3417 veh/hr 

N= 1624 

Fig 6.11 TTC distributions of vehicles for scenario 3 in a) SUMO model, b) IRL-based model for 
human drivers and c) IRL-based model for automated vehicles.  

Scenario 4: Higher speed limit 

Scenario 4 intended to examine the effect of traffic regulation, namely speed limit, on the 

performance of the developed models. As the results in Fig 6.12 illustrate, the values are not 

significantly different from scenario 1. The results prove that the increased speed limit did not 

influence the performance of the model, neither in the SUMO model nor in IRL-based models. 

Higher speed limits increased the throughput slightly in all the models. However, in the SUMO 

model, the increase in speed limit resulted in fewer successful lane change executions. 
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a) 

 

Throughput: 3502 veh/hr 

N= 1285 

 

b) 

 

Throughput: 3534 veh/hr 

N= 1498 

c) 

 

Throughput: 3513 veh/hr 

N= 1473 

Fig 6.12 TTC distributions of vehicles for scenario 4 in a) SUMO model, b) IRL-based model for 
human drivers and c) IRL-based model for automated vehicles.  

 

6.5 Summary 

In this chapter, the simulation framework for examining the transferability of the IRL based 

model was discussed. The process for calibration and validation of the base model with the 

subset of the dataset that was not used during training was explained in detail. Furthermore, 

the framework used for the implementation of developed external IRL-based models 

(discussed in chapter 5) SUMO with TraCI interface was described.  

In order to test the capability of the developed models, various traffic situations, which were 

not existent in the training dataset, were simulated. Simulation results illustrated that both 
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models captured trade-offs between that a human driver would take in such a traffic situation 

and could execute the lane changing safely and efficiently. However, the safety gains were 

more significant in the model for automated vehicles, where aggressive driving behavior was 

not considered during the model training. It is noteworthy to mention that the integration of lane 

change model into simulation tools was only for passenger cars and developing a 

socially-acceptable model for heavy vehicles can further make the traffic flow smooth and 

improve the lane changing behavior model. 
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 Conclusions 

This chapter summarizes the research presented in this dissertation, highlights the major 

contributions achieved, and points out the limitations. Some directions for future research are 

suggested in the closing section.  

7.1 Summary 

The initially stated overarching aim of this research was to deploy a data-driven approach to 

learn the lane change behavior of vehicles from traffic observations and help improve the 

microscopic simulation models in terms of replicating the behavior of drivers in mixed-traffic. 

In order to conclude the work, the three research questions were answered: 

• How can the socially acceptable driving behavior be sampled from the dataset of 

individual vehicle trajectories? 

In terms of the initial objectives, the dissertation successfully recruited the clustering 

approach. The 𝑘-mean clustering algorithm analyzed the driving profile of each driver 

resulted from collected traffic observations and categorized the driving behaviors into three 

groups: “timid”, “moderate” and ”aggressive”. As intended, the clustering algorithm 

extracted the driving style of the drivers in the scene and could identify which driving 

behavior should be used as a training sample in the model development step. 

• Can the tactical and operational lane changing behavior for automated vehicles be 

learned from the observations of lane changing behavior of human drivers? 

The tactical lane changing behavior of the models was modeled with classification 

methods. For this aim, the state of the ego vehicle and the surrounding environment were 

translated into the feature vector. The significance of the features in the feature vector 

identified how drivers trade-off between different factors when making their tactical decision 

of changing the lane. Moreover, they were very useful in determining which factors can be 

addressed through driving behavior development for automated vehicles. The results 

showed that the tactical decision of the drivers could be successfully modeled in this 

particular traffic situation of a multi-lane freeway with keep-right traffic regulation. 

The operational behavior of drivers during lane changing was learned from the observed 

trajectories in the study area with an IRL method. Due to the stochastic nature of the 

operational behavior of drivers, Markovian processes, that have long been previously used 

to model stochastic environments, were deployed. The IRL framework has been 

implemented to solve sequential planning and decision-making problems in the stochastic 

environment under study. Besides, a speed predictor with random forests was embedded 

in the IRL framework for making predictions about the speed of the ego vehicle. The results 
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showed that in the defined study area and its specific nature, the model has the capability 

of making predictions about the operational behavior of vehicles in situations with 

reasonable accuracy. 

• How can this methodology be generalized for the behavior of automated vehicles in 

different driving situations?  

The driving behavior models in this study were built on observed data in a specific traffic 

situation. However, the challenging question is to know if the model will predict the future 

and unseen data. To answer this question, traffic flow simulations were used due to the 

lack of data from various traffic scenarios. The developed models were integrated into the 

microscopic simulation model SUMO to evaluate the plausibility of the models and examine 

their performance in new events, unseen traffic situations and traffic regulations which were 

non-existence in the training dataset: creating an artificial accident on the freeway, 

increasing the vehicle flow from the ramp and increasing the speed limit. The simulation 

results proved that the model for human drivers and automated vehicles could both capture 

the trade-offs that a conventional driver would take in such traffic situations and could 

execute the lane changing safely and efficiently. However, the model for automated 

vehicles resulted in higher TTC values than human drivers.  

7.2 Transferability 

Motorized road traffic comprises a system with very diverse players whose goal is to convey 

road users to their destinations safely, quickly, and without incident, and the heterogeneous 

driving behavior of drivers adds more complexity when modeling their driving behavior. The 

modeling approach in this study, instead of supplying the vehicle with a fixed structure (rule-

based model) from which the right action for each scenario can be inferred, feeds the model 

with many traffic situations and specify the correct action for each situation by learning the 

reward function. The model then searches by itself for the best configuration of internal 

parameters (feature weights in reward function) and internal decision logic (actions), which 

allow it to act correctly in all of those situations. The proposed modeling approach in this 

dissertation could successfully model the tactical and operational lane changing behavior in 

the traffic situation under study. However, the question of the degree of transferability of the 

modeling approach to other locations and traffic situations has important implications on the 

practical application of this model. In order to transfer the modeling approach to other traffic 

situations, in addition to a substantial amount of traffic observations, some modeling details 

should be adapted to each situation. In this chapter, examples of traffic situations and the 

necessary changes to adjust the proposed modeling approach are discussed briefly.  

In order to drive automated in urban areas, the complexity of the driving situations is very high, 

and the vehicles face more road users such as pedestrians and bicyclist. These traffic road 

users impose major challenges for the researchers and developers of the necessary 

technologies. These road users have more degree of freedom in their movement and 
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predicting their actions and movements becomes more complex than predicting the movement 

of the vehicles on the freeway. Moreover, more complex road layouts in the urban areas lead 

to more possible scenarios that can happen in comparison to freeway driving, in which the 

range of behavioral states for the vehicle is limited. Applying the proposed methodology in this 

research to urban areas requires a more comprehensive feature vector and the corresponding 

movement in all directions for different road users such as pedestrians and bicyclists.  

Another complex traffic situation for both normal drivers and automated vehicles is overtaking 

in the opposite lane. This driving situation is accompanied by a lot of uncertainties and risks 

[FARAH, 2016] and blind spots can arise from perception limitations [ANDERSEN ET AL., 2017]. 

For instance, the automated vehicle may have to move slightly into the opposite lane, as 

human drivers do, to clearly see in front of a car ahead. However, as this event is a rare event 

and the exact location of the overtaking is not clear in comparison with lane changing, which 

was the focus of this dissertation, naturalistic driving data are more convenient for this purpose. 

In this traffic situation, crucial features such as the speed and distance to the approaching 

vehicle in the opposite lane should be added to the feature vectors and the size of Markov grid 

should be dynamically adapted to include all the players in the scene. 

In some situations, human drivers are allowed to break the traffic regulations in order to avoid 

a deadlock situation. An example of this would be crossing a solid lane marking to overtake a 

broken-down truck on a two-lane street. The human drivers would break the rules and drive 

around the truck when the road is clear. The proposed methodology in this dissertation can be 

used and adapted to learn the behavior of human drivers in this particular situation or similar 

situations and overcome the deadlock situation problem that automated vehicles are currently 

facing. 

Construction zones are the next challenging situation to model for automated vehicles 

[FERGUSON & BURNETTE, 2013]. The signs and markings in the construction zone change 

based on the location and the undergoing task. Due to the dynamic nature of work and different 

lane markings, a rule-based model and a single way to standardize how the vehicle interprets 

and reacts to the construction zone is not sufficient. Therefore, the application of the proposed 

methodology in this dissertation can provide the opportunity to study the behavior of human 

drivers in the construction zones, model their behavior and safely navigate the automated 

vehicles in construction zones based on the learned knowledge. For this aim, the distance to 

the construction zone, type of construction, type of barrier and the magnitude of deviation from 

the original lane are the candidate components for adding to the feature vector. 

7.3 Limitations 

Although this dissertation has reached its aims, there were some unavoidable limitations. First 

of all, the focus dissertation was on site-based traffic observation. However, the other 

influencing factor of drivers, such as emotion and aggressiveness, as well as the motivation 
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behind the lane changing and strategic behavior are not observable with this dataset. The 

combination of the method provided here with some naturalistic data and driving simulator 

study, in which the drives can also be questioned during and after the experiment, can 

empower the understanding of the motivation behind human’s action during driving and 

enhance the quality of the provided methodology. 

The foundational methods of IRL are able to achieve their results by leveraging the knowledge 

obtained from a policy that has been executed by a human expert. However, the goal for ML 

systems is to learn from a wide range of human behavior data and perform tasks that are 

beyond the abilities of human experts without error. A strong assumption in the IRL method is 

that the expert demonstrations are locally optimal, which in general is not true for drivers, and 

it depends on hand-crafted features. Furthermore, the reward function is not unique and 

depends on the features. Despite allowing for the tractability of the problem, this possesses 

several limitations, as it relies on human experience and domain knowledge in order to select 

appropriate features. Even with well-selected features, its discriminative power is often 

unknown before the learning process. However, this limitation was tackled in this thesis by 

creating a generic set of features that can translate various driving patterns significantly in 

different driving cultures and IRL was used as a simple and tractable way of modeling human 

drivers. 

Markov decision processes, which are a standard method for decision-theoretic planning, have 

the drawback that they require an explicit state representation. The IRL in this study also 

deployed a discrete Markov decision and Maximum Entropy used a grid discretization for both 

states and actions. Although a large amount of work on approximate inference in continuous 

state spaces does exist [AGHASADEGHI & BRETL, 2011; LEVINE & KOLTUN, 2012], these 

algorithms are computationally more expensive and whether or not these models can be 

solved in a reasonable time or the possibility of their implementation in a traffic simulation tool 

is not clear yet. 

7.4 Future Research 

There are a number of gaps in this dissertation that follow from the findings and would benefit 

from further research: 

1. The primary difference between the data-driven and rule-based modeling approaches 

is the level of analysis. Due to the fact that the data-driven modeling approach is built 

on learned information, it enables the analysis of the past and to predict the future 

under the same condition when training. On the other hand, since the rule-based 

modeling approach is based on underlying physical models, it enables a higher level 

of analysis and interpretation in comparison with the data-driven approach. In 

summary, the data-driven modeling approach has an advantage in that analysis is 

possible regardless of knowledge of the system, but it has a weakness regarding the 

depth of analysis. Conversely, while the rule-based modeling approach requires 
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knowledge, it enhances the depth of analysis and facilitates the conduction of profound 

knowledge. Therefore, a new integrated modeling approach that is able to overcome 

the deficiencies and combine the merits of both modeling approaches should be 

examined in the future line of research. 

Most of ML algorithms are only capable of interpolating data and making predictions 

about situations that are among known situations and events. For instance, Lohninger 

[1999] showed how neuronal networks behaviors are consistent with training data but 

cannot do anything outside of this subspace. These algorithms usually fail to 

extrapolate data and make predictions about situations outside of the known events 

because they learn to locally fit the known data as closely as possible, regardless of 

how it performs outside of these situations. Moreover, collecting sufficient data for 

plausible interpolation and the required data from extreme or dangerous situations is 

both time- and resource-intensive. A recent study [SAHOO ET AL., 2018] has already 

proposed a new method, based on their previous study [MARTIUS & LAMPERT, 2016], which 

strives to reveal the true dynamics of the situation for robots. This method takes in data and 

returns the equations that describe the underlying physics using a shallow neural network 

approach. The authors of this study claim that their approach allows understanding 

functional relations and generalizing them from observed data to unseen parts of the 

parameter space. In other words, the algorithm can make predictions about situations 

outside of the known. However, this method has not been tested for the task of driving, 

and future research should cover the methods capable of extrapolation of the model 

for driving task to the unseen situations.  

2. Connected vehicles are vehicles that use different communication technologies to 

communicate with other vehicles on the road (vehicle-to-vehicle [V2V]), roadside 

infrastructure (vehicle-to-infrastructure [V2I]), and the cloud [V2C]. This technology can 

be used to not only improve traffic safety but also to improve traffic efficiency [JURGEN, 

2012]. Adding connectivity to automated vehicles can provide the opportunity to have 

more cooperative driving behavior and should be studied more extensively [FARAH & 

KOUTSOPOULOS, 2014]. For instance, a communication component enables the vehicle 

to know when another vehicle far ahead intends to change lanes or starts to decelerate 

even if it is beyond the line of sight. Next research should target the cooperative driving 

behavior with the existence of the communication. 

3. The proposed model in this dissertation is applicable to the timeline when the roads 

are shared among human drivers and automated vehicles. In a scenario with 100% 

penetration rate of automated vehicles, the infrastructure can be adapted accordingly, 

and the driving behavior can be optimized differently. In this case, other methods such 

as swarm intelligence [DARIO ET AL., 1993] can be applied for controlling the vehicles 

in which vehicles communicate and relay their planned trajectory to other vehicles in 

the local vicinity [PRAKASH ET AL., 2014]. Therefore, the cumulative intelligence of all 
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these vehicles enables them to think and work together and share data in the effort of 

finding a solution and have more cooperative driving behavior.  

4. Automated vehicles are deemed to eliminate human errors, the cause of most traffic 

accidents [National Highway Traffic Safety Administration (NHTSA), 2015]. These 

vehicles will not get tired, distracted, impaired by alcohol and drugs, will not get upset, 

will not take risks and will always be on high alert. However, there are still certain 

limitations regarding detecting their surroundings with their sensors. Although with the 

help of their sensors, the distance and velocities can be calculated more precisely than 

humans, there are still certain limitations linked to the sensor technology [COMBS ET 

AL., 2018]. The accompanying uncertainty with the sensor technology and how it might 

affect the driving behavior of automated vehicles should be studied more into detail. 

5. The proposed data-driven approach conveyed successful results for the present case 

study. Yet, a couple of future enhancements were detected during the development 

and application tasks:  

• With regard to the modeling approach with IRL, when discussing potential avenues 

for further research, the problem of sub-optimality in the agent’s actions has already 

been pointed out as an important problem [NG & RUSSEL, 2000]. While human experts 

can provide a baseline level of performance that RL algorithms could learn from, it is 

rarely the case that the expert policy given is the global optimum. The next problem to 

solve in IRL would be to extract a reward function without the assumption that the 

human policy is optimal.  

• Another possible line of research would consider the reward functions, which are not 

necessarily the linear combination of features. The next line of research should 

combine IRL methods to work with deep learning systems. For some specific tasks, 

understanding the underlying policy is beyond human’s capability. Therefore, 

combining the deep learning models and the IRL can facilitate the application of this 

method to more complex tasks. 

• In order to deliver good results, IRL requires a lot of observations, and the learning is 

not at a rapid pace. Other lines of research should apply the methods such as one-shot 

[SANTORO ET AL., 2016a] and few-shot learning, which have already been studied for 

image recognition [VINYALS ET AL., 2016; KOCH, 2015; SANTORO ET AL., 2016b], 

generative modeling [EDWARDS & STORKEY, 2016; REZENDE ET AL., 2016], learning fast 

reinforcement learning agents with recurrent policies [SHIMOSAKA ET AL., 2017; DUAN 

ET AL., 2016] and imitation learning [DUAN ET AL., 2017].
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Tactical behavior Behavior at tactical level deals with choices and 

actions related to the interaction with the road 
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Appendix 1 

model Attribute Description Unit Parameter 

Range 

C
a
r-

fo
ll

o
w

in
g

 

Acceleration The acceleration ability of vehicles  𝑚

𝑠2
 [2.5 , 4] 

Deceleration The deceleration ability of vehicles  𝑚

𝑠2
 [-4 , -1.5] 

Emergency 

Deceleration 

The maximum deceleration ability of vehicles in case of emergency 𝑚

𝑠2 [5 , 8] 

Sigma The driver imperfection (between 0 and 1) - [0.3 , 0.8] 

Tau The driver's desired minimum time headway. Exact interpretation varies by model.  𝑠 [0.8 , 2] 

Minimum Gap The offset to the leading vehicle when standing in a jam. 𝑚 [1.5 , 3.5] 

Maximum Speed The maximum speed that a vehicle will travel 𝑚

𝑠
 [15 , 50] 

Speed Factor The vehicles expected multiplicator for lane speed limits - [1 , 1.4] 

Speed Deviation The deviation of the speed factor - [0.1 , 0.3] 

L
a

n
e

 c
h

a
n

g
e
 

Lane change 

Strategic 

The eagerness for performing strategic lane changing. Higher values result in earlier lane-changing.  - [0 , 3] 

Lane change 

Cooperative 

The willingness for performing cooperative lane changing. Lower values result in reduced cooperation.  - [0.3 , 1] 

Lane change Speed 

Gain 

The eagerness for performing lane changing to gain speed. Higher values result in more lane-changing.  - [0 , 3] 

Lane change Keep 

Right 

The eagerness for following the obligation to keep right. Higher values result in earlier lane-changing. - [0 , 3] 

Lane change Look 

ahead Left 

Factor for configuring the strategic lookahead distance when a change to the left is necessary. - [0 , 3] 

Lane change Speed 

Gain Right 

Factor for configuring the threshold asymmetry when changing to the left or to the right for speed gain. By 

default the decision for changing to the right takes more deliberation.  

- [0 , 0.5] 

Lane change 

Assertive 

Willingness to accept lower front and rear gaps on the target lane. The required gap is divided by this value. - [1 , 3] 

Tab. 7.1 List of parameters in SUMO default models and range used for model calibration



  

 

 


