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Chapter 1

Introduction

A massive star (> 8 M�) at the end of its life undergoes core-collapse and possibly ex-
plodes as a supernova (SN). The core-collapse supernova (CCSN) mechanisms have
been reviewed in past years, e.g. by Janka (2012), Burrows (2013), Janka (2017a), and
Janka (2017b). At the end of the star’s life, after subsequent nuclear burning stages,
a massive star forms an iron core with onion-like shells of silicon and other lighter
elements. The iron core is supported against gravity mainly by electron degeneracy
pressure. The iron core mass grows due to ongoing shell burning of silicon. When
the mass of iron core grows to a mass close to the Chandrasekhar mass, the iron
core collapses. The iron core collapse is accelerated by the photodisintegration of
iron group nuclei at high temperature and the deleptonization (electron capture on
nuclei). Both processes decrease the pressure support against gravity and the core
collapses in a homologous manner, the infall velocity increases linearly with radius.
The neutrinos produced by electron capture on nuclei, initially escape the core and
carry away energy and lepton number. When the central density of the core reaches
∼ 1011 g/cm3, neutrinos begin to become trapped and are carried inward with the
infalling material. The neutrinos are in equilibrium with the stellar material when
the density reaches a value of ∼ 1012 g/cm3.

When the core reaches the nuclear saturation density of ∼ 2.8× 1014 g/cm3, the
implosion of the core is stopped by the repulsive part of nuclear forces, forming a
proto-neutron star (PNS) and a pressure wave that turns into a shock front. The
shock propagates outwards and loses energy by dissociating iron group nuclei into
free nucleons (protons and neutrons). When the post-shock densities drop below
∼ 1011 g/cm3, previously trapped neutrinos can escape and produce the so-called
shock breakout neutrino burst.

The shock loses its energy by dissociation of the iron-group nuclei and delep-
tonization. Consequently, the shock stagnates. The temperature of the PNS rises
along with its ongoing compression and continuous mass accretion. The hot PNS
obtains additional thermal pressure support due to its high temperature. As a re-
sult, a hot PNS can support more mass than a cold neutron star (NS). Rotation can
add centrifugal support against gravity. Consequently, a rotating PNS can support
additional mass.

The matter accreting onto a newly born PNS releases its gravitational binding
energy partially in the form of neutrino radiation and, in addition, neutrinos con-
tinue to diffuse out of a hot PNS. A part of these neutrinos get absorbed on the layer
behind the shock. The neutrino absorption proceeds through the following charged-
current reactions:

νe + n→ e− + p
ν̄e + p→ e+ + n (1.1)
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These absorption processes lead to heating of the matter behind the shock. This
region between the PNS and the shock with net neutrino heating is called “gain re-
gion”. Different fluid instabilities can develop in this gain region: convection (see,
e.g. Herant et al. 1994; Janka and Mueller 1996; Murphy, Dolence, and Burrows 2013)
and the “standing accretion shock instability” (SASI, see, e.g. Blondin, Mezzacappa,
and DeMarino 2003; Foglizzo, Scheck, and Janka 2006; Foglizzo et al. 2007; Fernán-
dez 2015). SASI can cause large-scale deformation of the stagnating shock. Fluid
instabilities allow for enhanced neutrino heating and create turbulant pressure, thus
help to push the stagnating shock outward.

If enough energy is deposited behind the shock by neutrinos, the shock can be
revived leading to a successful explosion. If shock revival is not achieved, due to on-
going mass accretion through the shock the PNS will eventually collapse and form
a black hole (BH). Even if the shock is sucessfully revived, the deposited energy
may not be enough to overcome the gravitational binding energy of the star and
the shock-heated material can fall back and cause the collapse of the PNS to a BH.
After the shock revival, accretion onto the PNS can continue through downdrafts
surrounding the shock-heated material. A BH can be formed due to this ongoing
mass accretion. In this case, some shock-heated material may escape the gravita-
tional pull by the BH or all post-shock matter may fall back into the BH.

In this study, we conduct core-collapse simulations of the very massive stars
(' 100 M�, see, e.g. Vink 2015 for definition of very massive stars) which have
undergone phases of so-called pulsational pair-instability supernovae (PPISN). A
non-rotating very massive star may experience pulsational pair-instability (PPI) if it
forms a helium core of 35-64 M� (Woosley and Heger, 2015). If the central temper-
ature, Tc, of a very massive star reaches a value of ∼ 108 K, gamma-ray photons are
produced. In the post-carbon burning phase, if Tc > 3× 109 K, gamma-ray photons
are energetic enough to be converted to electron-positron pairs. As a consequence,
the outer layers of such a star, which are supported against gravity by the photon
pressure, experience contraction. The contraction causes the temperature to rise fur-
ther. Due to the high temperature, rapid burning of carbon, oxygen and in some case
even silicon can take place. If the burning releases enough energy, the contraction
is stopped and the star rebounds. So, the star experiences pulsations and this phe-
nomenon is called pulsational pair-instability (PPI). If the mass of the helium core is
above 65 M�, the energy released in the rapid burning is high enough to explode the
whole star in a single pulse. This is called a pair-instability supernova. For helium
core masses over 133 M� the pair-production instability leads to a direct collapse of
the star to a BH. In the case of PPI progenitors, the very massive star experiences
multiple pulsations and eventually forms an iron core at the center. Due to PPI the
outer hydrogen layer and in some cases the outer helium layer are ejected. This
phenomenon is called the (PPISN). Eventually, the iron core collapses.

The PPI has several astrophysical consequences. The helium shells ejected due to
pulsations can collide with each other or with previously ejected hydrogen. The col-
lision between shells can produce supernova-like light curves. For example, one of
the most massive stars in our galaxy, Eta Carinae, with a mass of approximately 120
M�, might encounter or already has undergone PPI. Smith (2013) made a plausible
claim that the 19th century “Great Eruption” of Eta Carinae requires an interaction
of the ejected shell, expelled by an explosive mechanism from the star, and the cir-
cumstellar material. This kind of eruption produces a Type IIn supernova-like light
curve and is sometimes called “supernova imposter”.

A rapidly rotating very massive star can leave a BH with an accretion disk as
remnant upon its death. The accretion disk can act as a source of neutrinos. In the
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so-called collapsar model, the emitted neutrinos deposit energy near the rotation
axes by pair annihilation or by scattering with electrons. If enough energy is trans-
ferred by neutrinos to the matter, a jet can be launched. The jet may eventually burst
out of the star and could lead to a long gamma-ray burst (see, e.g. Woosley 1993;
MacFadyen and Woosley 1999).

Recently, Chan et al. (2018) studied the core-collapse of a metal-free 40 M� pro-
genitor of Heger and Woosley (2010) and Kuroda et al. (2018) of a metal-free 70 M�
progenitor of Takahashi, Umeda, and Yoshida (2014) in three dimensions. Both pa-
pers reported shock expansion by neutrino heating before BH formation. Chan et al.
(2018) obtained the shock expansion by artificially increasing the neutrino heating.
In their model, after the shock expansion, due to ongoing accretion onto the PNS,
a BH is formed. Meanwhile, the shock has expanded to 4000 km. The energy of
the shock-heated expanding material is barely equal to the binding energy of the
overlaying stellar material. The shock-heated material transfers its energy to the
surrounding infalling material by mechanical work while still expanding. Eventu-
ally, most of the originally neutrino heated material falls back onto the BH, but the
energy transferred was enough to make the surrounding material unbound and the
supernova shock breaks out. In Kuroda et al. (2018), the shock expansion starts only
40 ms before BH formation. Kuroda et al. (2018) claimed that the shock expansion
starts due to the high neutrino emission before BH formation. Unfortunately the
authors did not continue the simulation beyond BH formation.

In this work, we conduct a systematic study of the core collapse of very mas-
sive stars with zero-age main sequence masses of 60 M� (rapidly rotating), 80 M�
(rotating and non-rotating) and 115 M� (non-rotating) with massive iron cores (>2.3
M�). We have conducted two dimensional general relativistic hydrodynamics sim-
ulations with neutrino transport. We aim to answer the following questions in this
work: what are the final remnants of the core collapse of the above-mentioned set of
very massive stars, BHs or NSs? Can shock expansion, as reported by (Chan et al.,
2018) and Kuroda et al. (2018), take place before BH formation? What is the impact
of rotation and progenitor mass? If a BH is formed, what are the properties of the
BH and what are the characteristics of the neutrinos emitted? What happens to the
expanding shock after BH formation?

A general relativistic treatment of gravity and hydrodynamics is desirable for
the study of CCSNe beyond BH formation. Also neutrino transport plays a crucial
role in this scenario. In this work, we developed a general relativistic multidimen-
sional neutrino transport solver and applied it in our core-collapse simulations of
very massive stars. CCSNe are the main distributors of heavy elements in the uni-
verse (A>12) (see, e.g. Janka et al. 2007), and the nucleosynthesis yields in CCSNe
depend sensitively on the neutron-to-proton ratio of the ejecta. This enhances the
importance of determining detailed properties of emitted neutrinos because neu-
trino interactions set the electron fraction and thus the neutron-to-proton ration in
the ejected matter.

During the last several decades, various approaches have been developed for
treating neutrino transport in hydrodynamical simulations. The most sophisticated
schemes solve the full Boltzmann equation, e.g. by direct discretization using fi-
nite differences (see, e.g. Liebendörfer et al. 2004; Livne et al. 2004; Sumiyoshi and
Yamada 2012), or by employing a Monte Carlo treatment (see, e.g. Janka and Hille-
brandt 1989; Abdikamalov et al. 2012; Richers et al. 2015), or by coupling a somehow
simplified Boltzmann solver to an additional system of equations for the lowest an-
gular moments of the Boltzmann equation (see, e.g. Rampp and Janka 2002; Foucart
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2018). While these methods have the advantage of providing the full phase-space in-
formation of the generally six-dimensional distribution function of neutrinos, they
still are too expensive in terms of computational resources to be used for long-term,
high-resolution simulations, or for exhaustive parameter exploration. In this work,
we construct and apply a multi-dimensional multi-energy-group flux-limited diffu-
sion scheme with energy-bin coupling in full general relativity. Although FLD is not
known to generally produce more accurate results than an M1 code, we opted for the
FLD approach mainly for two reasons. First, FLD evolves only a single equation per
neutrino species and energy bin, whereas M1 evolves three additional flux-vector
components. Particularly in GR this reduces the complexity of the equations and (at
least potentially) improves the computational performance. Second, the M1 method
is currently employed already in several existing codes. Developing different, com-
plementary algorithms therefore enhances diversity of applied methods and in the
long run might help to discriminate numerical artefacts from physical effects.

The concept of FLD was first introduced by Pomraning (1981) and Levermore
and Pomraning (1981) and since then has been used, apart from many applications
in the context of photon transport, for neutrino transport in CCSNe and PNS cooling
(Bowers and Wilson, 1982; Bruenn, 1985; Burrows and Lattimer, 1986; Myra et al.,
1987; Baron et al., 1989; Cernohorsky, 1990; Burrows et al., 2007; Lentz et al., 2015;
Bruenn et al., 2018). Cooperstein and Baron (1992) derived the FLD equation correct
to order v/c. The maximum entropy principle was applied by Cernohorsky, van
den Horn, and Cooperstein (1989) in FLD to determine Eddington factors. Baron
et al. (1989) generalized the FLD approach to the general relativistic context. An
improved flux-limiter was suggested by Janka (1992) based on the comparison with
a Monte-Carlo study. A two dimensional, multi-group (i.e. energy-dependent) FLD
scheme for neutrinos was developed by Swesty and Myra (2009).

General relativistic (GR) radiative transfer as a scientific discipline was estab-
lished with the formulation of the Boltzmann equation in GR by Lindquist (1966)
and of the corresponding two moment formalism in Thorne (1981). Until rather
recently, most numerical applications were restricted to spherical symmetry (e.g.
Baron et al., 1989; Bruenn, De Nisco, and Mezzacappa, 2001; Liebendörfer et al.,
2004). A few years ago, multi-group GR transport has found its way into multiple
dimensions. For instance, Müller, Janka, and Dimmelmeier (2010) have solved the
two-moment equations with a variable Eddington-factor method using the conformal-
flatness condition and the ray-by-ray-plus approximation (Buras et al., 2006). More-
over, Sekiguchi et al. (2016), O’Connor (2015), and Kuroda, Takiwaki, and Kotake
(2016), and Roberts et al. (2016) have employed the M1-method to solve neutrino
transport in full general relativity.

Our algorithm employs spherical polar coordinates and solves the GR equations
using the partially implicit Runge-Kutta method (Montero and Cordero-Carrión,
2012; Baumgarte et al., 2013). The transport equations are solved in the comoving
(i.e. fluid-rest) frame. In order to avoid multi-directional coupling of grid cells, and
therefore the inversion of matrices spanned over the entire grid, we employ operator
splitting. The source terms, the radial- and energy-derivatives, as well as the non-
radial derivatives are integrated separately, each using an appropriate discretization
scheme. In this way, the scheme can be parallelized in a straightforward manner and
remains numerically less complex than an unsplit, fully implicit solver.
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1.1 Organization of this Thesis

In chapter 2, we present the governing equations of general relativistic radiation
hydrodynamics. The Einstein equation in covariant BSSN formulation is shown.
We also show the hydrodynamics equations (the continuity and Euler equations)
in the generalized Valencia formulation suitable for a curvilinear coordinate system
(e.g. spherical-polar coordinates). We also present the evolution equation for the
comoving-frame neutrino energies and introduce the concept of the flux-limited dif-
fusion approximation. We present our new numerical algorithm for neutrino trans-
port and show the discretization method for the transport equation in detail.

In chapter 3, we present several idealized tests for radiation transport. We assess
different features of our newly developed algorithm for radiation transport and val-
idate our implementation by doing these tests. We also present a one-dimensional
CCSN simulation of a massive star with “realistic” microphysics. We compare our
results for Newtonian tests with results obtained with the ALCAR code of Just, Ober-
gaulinger, and Janka (2015). The ALCAR code uses an M1 scheme for neutrino trans-
port. We also evaluate general relativistic effects of neutrino transport and compare
with other existing work (Bruenn, De Nisco, and Mezzacappa, 2001; Marek et al.,
2006; Müller, Janka, and Marek, 2012).

In Chapter 4, we present the results from CCSN simulations of very massive
stars in two dimensions. We used several progenitors of very massive star for our
study. We show the dynamical evolution of the shock as well as different properties
of the newly formed compact remnant, gain layer and emitted neutrinos. We study
the dependence of the shock revival on the progenitor structure and the effects of
rotation on the shock dynamics and black hole formation. We evaluate properties
of the newly born BH. We also present one simulation after BH formation to see the
evolution of shock-heated material.
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Chapter 2

Numerical Method

In this section, we introduce the basic equations used for our general relativistic
radiation-transport method. We use a spherical polar coordinate system. Through-
out the paper we follow the convention that a, b, c, µ, ν run over space-time index
0, 1, 2, 3 and i, j, k, l run over space index 1,2,3. We denote quantities defined in the
comoving orthonormal frame by using an index with a hat (î, ĵ, k̂...) and quantities
defined in the comoving curvilinear frame index with a bar (ī, j̄, k̄...). We denote the
electron neutrinos and the electron anti-neutrinos as νe, ν̄e respectively and the muon
and tau neutrinos and their anti-neutrinos combinedly as νx.

2.1 Metric equations

We use a 3 + 1 decomposition in which the space-time manifold is foliated into
space-like hyper-surfaces Σ (see, e.g., Baumgarte and Shapiro 2010). We denote the
4-metric as gab. The time-like future pointing normal vector to Σ is na, and the space-
like 3-metric on Σ is γij. The line element is then given by:

ds2 ≡ gabdxadxb

= −α2dt2 + γij(dxi + βidt)(dxj + βjdt) , (2.1)

where α, βi are the lapse function and shift-vector, respectively, and

γab = gab + nanb ,
na = (1/α,−βi/α) ,
na = (−α, 0, 0, 0) . (2.2)

Moreover,

γ̄ij ≡ e−4φγij (2.3)

is the conformal metric, with the conformal factor exp(4φ) (see, e.g. chapter 3 of
Baumgarte and Shapiro 2010 for detail discussion about conformal transformation).
Furthermore, the extrinsic curvature, Kij, the conformal traceless extrinsic curvature,
Āij, and the trace of the extrinsic curvature, K, are defined as:

Kij ≡ −γi
kγj

l∇knl

= − 1
2α

∂tγij + D(iβ j) ,

Āij ≡ e−4φ(Kij −
1
3

K) ,

K ≡ Ki
i . (2.4)
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Here, We denote the symmetric parts of a tensor with a brackets (), e.g. A(ij) ≡
1
2 (Aij + Aji), where Aij is a tensor. The Minkowski metric in spherical polar coordi-
nates is γ̂ij = diag(1, r2, r2 sin2 θ). We denote the connection coefficients associated
with the metrics γab, γ̄ij, and γ̂ij as Γa

bc, Γ̄i
jk, and Γ̂i

jk, respectively. The covariant

derivatives associated with γij, γ̄ij, and γ̂ij are denoted by D, D̄, and D̂, respectively.
We define the connection vector Λi as

Λi ≡ γjk∆Γi
jk , (2.5)

with

∆Γi
jk ≡ Γ̄i

jk − Γ̂i
jk , (2.6)

and express the Ricci tensor as

R̄ij = −1
2

γ̄klD̂kD̂lγ̄ij + γ̄k(iD̂j)Λ̄
k + ∆Γk∆Γ(ij)k

+γ̄kl
(

2∆Γm
k(i∆Γj)ml + ∆Γm

ik∆Γmjl

)
. (2.7)

To evolve the space-time metric we solve the covariant BSSN equations (Baumgarte
et al., 2013), which are given by:

∂⊥γ̄ij = −2
3

γ̄ijD̄kβk − 2αĀij ,

∂⊥ Āij = −2
3

ĀijD̄kβk − 2αĀik Āk
j + αĀijK

+e−4φ
[
− 2αD̄iD̄jφ + 4αD̄iφD̄jφ

+4D̄(iαD̄j)φ− D̄iD̄jα

+α(R̄ij − 8πSij)
]TF

,

∂⊥φ =
1
6

D̄kβi − 1
6

αK ,

∂⊥K =
α

3
K2 + αĀij Āij

−e−4φ(D̄2α + 2D̄iαD̄iφ)

+4πα(ρ + S) ,

∂⊥Λ̄i = γ̄jkD̂jD̂kβi +
2
3

∆ΓiD̄jβ
j +

1
3

D̄iD̄jβ
j

−2Ājk(δi
j∂kα− 6αδi

j∂kφ− α∆Γi
jk)

−4
3

αγ̄ij∂jK− 16παγ̄ijSj . (2.8)

Here,

∂⊥ ≡ ∂t −Lβ ,
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where Lβ is the Lie derivative along the shift vector βi. The superscript TF denotes
the trace-free part of a tensor. The matter-radiation source terms are given by:

ρ ≡ nanbTab ,
Si ≡ γianbTab ,
Sij ≡ γiaγjbTab ,

S ≡ γijSij , (2.9)

where Tab is the total stress-energy tensor of matter and radiation (see below for
more explanation). We use the ‘1+log’ slicing and the gamma driver condition to
evolve α and βi, respectively, i.e.:

∂tα = −2αK ,
∂tβ

i = Bi ,

∂tBi =
3
4

∂tΛ̄i . (2.10)

The time integration of equations (2.8) and (2.10) is done using a 2nd-order partially
implicit Runge-Kutta method, which is described in detail in Montero and Cordero-
Carrión (2012) and Baumgarte et al. (2013). The integration time step is given by the
Courant-Friedrichs-Lewy condition:

∆t = CFL min{∆r, (∆r/2)∆θ, (∆r/2) sin(∆θ/2)∆φ} . (2.11)

Here, ∆r, ∆θ, ∆φ are the minimum widths in the radial, polar and azimuthal direc-
tions, respectively, and CFL refers to the chosen Courant number.

2.2 Hydrodynamics

The general relativistic hydrodynamics equations expressing the local conservation
of baryonic mass (with current density Ja), energy-momentum (with energy-momentum
tensor Tab

h ), and electron lepton number (with current density Ja
e ) read (e.g. Font

2008):

∇a Ja = 0 ,
∇aTab

h = sb ,
∇a Ja

e = SN , (2.12)

where

Ja ≡ ρua ,
Tab

h ≡ ρhuaub + pgab ,
Ja
e ≡ ρuaYe , (2.13)

and

h = 1 + e + p/ρ ,
u0 = W/α ,
ui = W(vi − βi/α) . (2.14)
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The symbols ρ, e, vi, W, p, h, and Ye denote the baryonic mass density, specific inter-
nal energy, 3-velocity, Lorentz factor, gas pressure, specific enthalpy, and electron
fraction (equal to the number of protons per nucleon), respectively. In order to ob-
tain explicit expressions of equations (2.12), we use the flux-conservative Valencia
formulation generalized to curvilinear coordinates, as described in Montero, Baum-
garte, and Müller (2014). In this formulation, singular terms proportional to 1/r and
cot θ are scaled out by using the reference metric γ̂ij. The conservative variables D,
Si, τ, and De that are evolved in time are defined in terms of the primitive variables
ρ, e, vi, p, and Ye as:

D ≡ Wρ ,
Si ≡ W2ρhvi ,
τ ≡ W2ρh− p− D ,

De ≡ DYe . (2.15)

The continuity, Euler, energy, and lepton-number equations in the generalized Va-
lencia formulation read:

∂t(
√

γD) + ∂j( fD)
j = 0 ,

∂t(
√

γ/γ̂Si) + ∂j( fS)i
j = (sS)i + ( fS)k

jΓ̂k
ji − ( fS)i

kΓ̂j
kj + α

√
γ/γ̂(SM)i ,

∂t(
√

γ τ) + ∂j( fτ)
j = sτ − ( fτ)

kΓ̂j
jk + α

√
γSE ,

∂t(
√

γDe) + ∂j( fDe)
j = α

√
γSN , (2.16)

where the flux functions are given by:

( fD)
j ≡ α

√
γD(vj − βj/α) ,

( fS)i
j ≡ αe6φ

√
γ̄/γ̂ (W2ρhvi(vj − βj/α) + pδi

j) ,

( fτ)
j ≡ α

√
γ
(

τ(vj − βj/α) + pvj
)

,

( fDe)
j ≡ α

√
γDe(vj − βj/α) , (2.17)

and the source functions are defined by:

(sS)i ≡ αe6φ
√

γ̄/γ̂
(
− T00α∂iα + T0

kD̂iβ
k

+
1
2
(
T00βjβk + 2T0jβk + T jk)D̂iγjk

)
,

sτ ≡ αe6φ
√

γ̄/γ̂
(

T00(βiβjKij − βi∂iα)

+ T0i(2βjKij − ∂iα) + TijKij

)
. (2.18)

The source terms SE, (SM)i and SN express the change of gas energy, momentum,
and lepton number, respectively, due to neutrino-matter interactions and will be
quantified in Section 2.3.1. To close the system of equations, an equation of state
is required that provides the pressure, temperature and composition as functions
of the primitive variables. The hydrodynamics equations are solved using a finite
difference Godunov-type High-Resolution-Shock-Capturing-Method (HRSC) (Toro,
2009). For the reconstruction of primitive variables at the cell interfaces, the PPM
(Colella and Woodward, 1984), CENO (Liu and Osher, 1998) and MP5 (Suresh and
Huynh, 1997) methods are implemented. The fluxes at cell interfaces are calculated
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from primitive variables using the HLL Riemann solver (Harten, Lax, and Leer,
1983). The time integration is done with a second-order Runge-Kutta method, where
the time step is the same as that used for integrating the BSSN equations (cf. equa-
tion (2.11)). The numerical implementation and test of the hydrodynamics part of
the code is discussed in Montero, Baumgarte, and Müller (2014).

2.3 Neutrino transport

In this section we present the evolution equations used in our FLD neutrino trans-
port scheme and their coupling to the evolution of the metric, eqs. (2.8), and of
the hydrodynamic quantities, eqs. (2.16). The formalism of fully general relativistic
truncated-moment schemes has been developed and extensively discussed in Shi-
bata et al. (2011), Endeve, Cardall, and Mezzacappa (2012), and Cardall, Endeve,
and Mezzacappa (2013), from who we adopt a great share of our notation. Like in
the aforementioned works, all (comoving-frame and lab-frame) angular moments
as well as the neutrino stress-energy tensor are expressed as functions of Eulerian
(i.e. lab-frame) space-time coordinates, xµ, and of the neutrino energy measured by
a comoving observer, ε. One difference of our scheme to that of the aforementioned
papers is, however, that we evolve the neutrino moments (i.e. the energy densities)
as measured in the orthonormal comoving frame, instead of those measured in the
lab frame. In that respect, our scheme is similar to that of Müller, Janka, and Dim-
melmeier (2010).

2.3.1 Basic definitions

In terms of the neutrino distribution function, f , the comoving-frame 0th-, 1st-, and
2nd-order moments are given by1:

J (xµ, ε) ≡ ε3
∫

f (xµ, pµ̂) dΩ ,

Hî(xµ, ε) ≡ ε3
∫

l î f (xµ, pµ̂) dΩ ,

K î ĵ(xµ, ε) ≡ ε3
∫

l îl ĵ f (xµ, pµ̂) dΩ , (2.19)

where pµ̂ ≡ ε(1, l î) denotes the neutrino momentum-space coordinates, with unit
momentum three-vector l î, and the angular integration is performed in the comoving-
frame momentum space.

The comoving-frame moments in eqs. (2.19) are related to the monochromatic
lab-frame neutrino stress-energy tensor, T ab

r , by

T ab
r (xµ, ε) = La

0̂Lb
0̂J + (La

0̂Lb
î + La

îL
b

0̂)Hî

+La
îL

b
ĵK î ĵ , (2.20)

from which the corresponding energy-integrated tensor is obtained as

Tab
r (xµ) =

∫
T abdε . (2.21)

1We note that our definition of the comoving-frame moments is consistent with Shibata et al. (2011),
but contains an additional factor ε2 compared to those of Endeve, Cardall, and Mezzacappa (2012) and
Cardall, Endeve, and Mezzacappa (2013).
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In eq. (2.20), the matrices La
b̂ ≡ ea

c̄Λc̄
b̂ are responsible for transforming tensors from

the orthonormal comoving frame to the global coordinate (i.e. lab) frame. Here,
the Lorentz transformation, Λc̄

b̂, converts orthonormal comoving-frame quantities
into an orthonormal (i.e. locally Minkowskian) tetrad basis in the lab frame, and
the tetrad transformation ea

c̄ converts from the orthonormal lab-frame tetrad basis
to the basis of global coordinates (which are generally not orthonormal in curved
space-time).

The lab-frame moments of 0th-, 1st-, and 2nd-order are respectively given in
terms of the comoving-frame moments by (cp. equations A18-A20 in Endeve, Cardall,
and Mezzacappa 2012):

E(xµ, ε) = W2(J + 2v̄îHî + v̄îv̄ ĵK î ĵ) ,

F i(xµ, ε) = W
[

ei
îH

î + WviJ + ei
î v̄ ĵK î ĵ

+
W

W + 1
vi{(2W + 1)v̄îHî + Wv̄îv̄ ĵK î ĵ}

]
,

S ij(xµ, ε) = ei
îe

j
ĵ
K î ĵ + W

(
viej

ĵ
H ĵ + vjei

îH
î)+ W2vivjJ

+
W2

W + 1
([

viv̄îe
j
ĵ
+ vjv̄ ĵe

i
î

]
K î ĵ + 2Wvivjv̄îHî)

+
W4

(W + 1)2 vivjv̄îv̄ ĵK î ĵ , (2.22)

where ei
î
= ei

j̄δ
j̄
î

and vi ≡ ei
î
v̄î, with v̄î being the three-velocity in the orthonormal

tetrad basis. Using these lab-frame moments instead of the comoving-frame mo-
ments, the monochromatic lab-frame stress-energy tensor (cp. Eq. (2.20)) reads:

T ab
r (xµ, ε) = Enanb +F anb +F bna + S ab . (2.23)

subsectionNeutrino interaction source terms The coupling between the transport
equations and the equations of hydrodynamics and the Einstein equations is done
as follows. We first compute the exchange rates of energy, momentum, and lepton
number as measured in the orthonormal comoving frame:

QE ≡ −∑
ν

∫
dεκa(J eq −J ) ,

Qî
M ≡ ∑

ν

∫
dεκtHî ,

QN ≡ −mu

∫
dε

[(
κa(J eq −J )

ε

)

νe

−
(

κa(J eq −J )

ε

)

ν̄e

]
,

(2.24)

where

J eq ≡ 4πε3

exp((ε− µν)/T) + 1
, (2.25)

and mu, T, and µν are the atomic mass unit, Boltzmann constant, fluid temperature,
and neutrino chemical potential of the equilibrium distribution. In eqs. (2.24), the
summation runs over all six neutrino species. To obtain the lab-frame source terms
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SE and (SM)i, we consider qb̂ ≡ (QE, Qî
M) as four-vector, apply a Lorentz- and tetrad

transformation, resulting in sa ≡ La
b̂
qb̂, and perform the projections SE = −sana and

(SM)i = sjγij (see, e.g. Müller, Janka, and Dimmelmeier 2010; Cardall, Endeve, and
Mezzacappa 2013). The lepton-number exchange rates, QN , are scalar and therefore
frame invariant. We end up with:

SE = W(QE + v̄îQ
î
M) ,

(SM)i = eiîQ
î
M + W(vi − βi/α)QE

+W
(

W
W + 1

vi − βi/α

)
v̄îQ

î
M ,

SN = QN . (2.26)

The neutrino contributions to the source terms for the Einstein equations (eqs. (2.26))
are obtained from the lab-frame neutrino angular moments (cf. eq. (2.22)) using
eq. (2.23) as:

ρr = ∑
ν

∫
dεE ,

Si
r = ∑

ν

∫
dεF i ,

Sij
r = ∑

ν

∫
dεS ij . (2.27)

2.3.2 Energy equation and flux-limited diffusion approximation

The evolution equation for the comoving-frame neutrino energies, J , can be derived
from the evolution equations for the lab-frame moments, E and F i, which are dis-
cussed in Shibata et al. (2011), Endeve, Cardall, and Mezzacappa (2012), and Cardall,
Endeve, and Mezzacappa (2013). We refer to Appendix A for the detailed derivation.
The resulting evolution equation reads:

1
α

∂

∂t
[W(Ĵ + v̄îĤî)] +

1
α

∂

∂xj [αW(vj − βj/α)Ĵ ] +

1
α

∂

∂xj

[
αej

î
Ĥî + αW

( W
W + 1

vj − βj/α
)

v̄îĤî
]
+

R̂ε −
∂

∂ε
(εR̂ε) = κa(Ĵ eq − Ĵ ) , (2.28)

where we use the notation (Ĵ , Ĵ eq, Ĥ, K̂) ≡ √γ(J ,J eq,H,K). The terms sub-
sumed in Rε− ∂ε(εRε) are responsible for spectral shifts in the energy-density distri-
bution due to Doppler- and gravitational effects. They are functions of the comoving-
frame moments by virtue of eqs. (A.14), (A.15), and (2.22). The specific shape of the
neutrino source terms on the right-hand side of eq. (2.28) takes account of the fact
that the current implementation is restricted to absorption and emission (or formally
equivalent) reactions, and iso-energetic scattering processes. We denote the absorp-
tion opacity, scattering opacity, transport opacity, and equilibrium energy distribu-
tion as κa, κs, κt ≡ κa + κs, and J eq, respectively.

The flux-limited diffusion (FLD) approximation is implemented as follows. The
flux density as measured in the orthonormal comoving frame,Hî, is in the diffusion
limit approximately given byHî,diff = ekî∂kJ /(3κt). This expression can be obtained
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from the evolution equation of the neutrino flux densities (shown, e.g., in eq. (A.9)),
by neglecting time derivatives, velocity terms, and general relativistic corrections,
which should all be subdominant. Going towards lower optical depths, radiation
approaches the causality limit, i.e. Hî,free ≈ J . In FLD, a smooth interpolation
between these two regimes is accomplished by the use of a scalar flux-limiter, λ ∈
[0, 1/3], in terms of which the flux is expressed as:

Hî −→ −Dekî∂kJ , (2.29)

where

D ≡ λ

κt
(2.30)

is the (scalar) diffusion coefficient. In doing so, it is implicitly assumed that the
partial time derivative of the flux vanishes, i.e. ∂tHî = 0. In this work, we use the
Levermore-Pomraning (LP) limiter (Pomraning, 1981; Levermore and Pomraning,
1981) and the Wilson limiter (Bowers and Wilson, 1982), which are computed as:

λLP ≡ 2 + R
6 + 3R + R2 ,

λWilson ≡ 1
3 + R

, (2.31)

where

R ≡ |ekî∂kJ |
κtJ

(2.32)

is the Knudsen number and we use the flat metric tetrad ekî = diag(1, 1/r, 1/(r sin θ))
in eq. (2.32).

The Eddington tensor, χij, which is related to the second moment tensor, Kij, by

χî ĵ =
K î ĵ

J , (2.33)

is in the FLD approximation given by (see, e.g. Pomraning 1981; Levermore and
Pomraning 1981; Swesty and Myra 2009):

χî ĵ =
1
2
[(1− χ)δî ĵ + (3χ− 1)hîh ĵ] , (2.34)

where hî is the unit vector alongHî and the (scalar) Eddington factor, χ, is given by

χ = λ + (λR)2 . (2.35)

For future reference, we also define the flux factor as

f î ≡ H
î

J . (2.36)
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The final FLD equation solved in our code reads:

1
α

∂

∂t
(WĴ ) +

1
α

∂

∂xj [αW(vj − βj/α)Ĵ ]−
1
α

∂

∂xj

[
α
√

γ
{

γjk + W
( W

W + 1
vj − βj/α

)
vk
}

D∂kJ
]
−

1
α

∂

∂t
(W
√

γv̄î)Dekî∂kJ + Rε −
∂

∂ε
(εRε)

= κa(Ĵ eq − Ĵ ) . (2.37)

The second, third and fourth terms in the above equation describe advection, diffu-
sion, and aberration due to fluid acceleration, respectively. We simplify the equation
by neglecting all spatial cross derivatives, which appear due to off-diagonal met-
ric components γrθ , γrφ and γθφ. Since these off-diagonal components are typically
strongly subdominant compared to the diagonal components, the corresponding er-
ror should remain small.

2.4 Numerical treatment of the transport

In this section, we describe the numerical method used to solve the neutrino trans-
port equations together with the Einstein and hydrodynamics equations. The neu-
trino energy space is discretized into energy groups, and for each of these and for
each neutrino species we solve the evolution equation for J , eq. (2.37), which gen-
erally depends on three spatial dimensions. We use finite-difference methods for
the spatial discretization on the same spatial grid as for the GR and hydrodynamics
steps.

The flow chart of our evolution algorithm is depicted in Fig. 2.1. After advancing
the GR and hydrodynamics equations by one integration step, we calculate the opac-
ity using updated hydrodynamics quantities as well as transport quantities from
the previous time step. Next, we evolve the neutrino energy densities. During the
transport steps, all hydrodynamics and GR quantities are kept fixed. Since the FLD
equations are generally parabolic and the propagation speed of information is in
principle infinity, many existing FLD codes employ a fully implicit time integration.
However, with the computational cost roughly increasing with the number of grid
points to the third power, unsplit, fully implicit integration schemes become partic-
ularly expensive in multi-dimensional applications, and they tend to scale poorly on
large numbers of computational cores. In the present scheme we avoid this incon-
venience by using operator splitting and treating parts of the equation explicitly. In
the following subsections, we first estimate the relevant timescales to motivate the
time-integration steps, and then we present the detailed discretization procedure
employed at each step.

For the calculation of the diffusion coefficient and the Eddington scalar and ten-
sor, we follow Swesty and Myra (2009) (see their Appendix H.4). In particular, we
compute a flux-limiter, λ(R), and diffusion constant, D, separately for each coordi-
nate direction. In what follows D1, D2, D3 will denote the diffusion coefficients in
the radial, polar, and azimuthal coordinate direction, respectively.

2.4.1 Relevant timescales and motivation of the integration scheme

Using simple dimensional estimates, we first identify the characteristic timescales
on which the different terms in the FLD equation induce a change of J . We denote
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GR-Hydro

Opacity Calculation

Source Terms for 
Transport (Implicit)

Radial Derivatives and
Spectral-Shift Terms 

(Implicit)

Lateral Derivatives
 (Explicit)

Source Terms for GR and Hydro

FIGURE 2.1: Flow Chart of transport algorithm.
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the grid spacing for simplicity by ∆x, keeping in mind that this quantity generally
depends on the grid location. For clarity, in this section we explicitly include the
speed of light, c.

Ignoring the energy derivatives, the FLD equation, eq. (2.37), is an advection-
diffusion-reaction equation (e.g. Anderson, 2011). The velocity-dependent terms of
eq. (2.37) are in this sense advection terms, the characteristic timescale of which is
bounded from below by the light-crossing time of a grid cell,

tlight =
∆x
c

. (2.38)

The reaction (i.e. neutrino source) terms are associated with timescales

tsource =
1

cκa
(2.39)

that are typically much shorter than tlight inside a hot PNS and practically infinity
far away from any neutrino sources. Finally, the characteristic timescale of the FLD-
related terms can be estimated by

tdiff =
∆x2

D
. (2.40)

The timescale that is actually used for the integration, ∆t, is according to eq. (2.11)
always less than or equal to the light-crossing timescale of a grid cell, i.e. ∆t <∼ tlight.
A useful quantity for assessing stability regimes of advection-diffusion equations is

rdiff ≡
∆t
tdiff

, (2.41)

in terms of which the condition for numerical stability is rdiff <∼ 0.5− 1 for conven-
tional explicit integration schemes. Assuming ∆t ∼ tlight and recalling that λ and
κt∆x denote the flux-limiter and the optical depth per grid cell, respectively, we can
use

rdiff ∼
λ

κt∆x
(2.42)

to obtain a crude estimate of rdiff for the (simplified) case of constant grid width of
∆x ∼ O(100 m): Inside the hot PNS we have λ ≈ 1/3 and κt∆x � 1, and there-
fore we expect rdiff � 1. Far away from any neutrino source the Knudsen number
roughly scales as R ∼ (κt∆x)−1, giving λ ∼ R−1 ∼ κt∆x and hence rdiff ∼ O(1).
However, values of rdiff greater than the aforementioned limits can in principle still
be achieved in the semi-transparent regime and for more complicated grid geome-
tries.

Motivated by these time-step considerations, we decompose eqs. (2.37) into three
parts and integrate each part in its own operator-split step: In the first step, we in-
tegrate the neutrino source terms implicitly using a Newton-Raphson scheme. Then
we solve for the contributions from the radial derivatives and the spectral-shift terms
(i.e. Rε − ∂ε(εRε)) using an implicit Crank-Nicolson scheme. Finally, we obtain the
contribution from the non-radial derivatives using the explicit Allen-Cheng method.
Although this method is explicit, it remains stable for any value of rdiff; see Sect. ??
for exemplary tests and, e.g., Anderson (2011) for detailed comparisons with other
methods. While the gain of using an explicit compared to an implicit scheme for this
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step is an improvement in efficiency and scalability, the trade-off is some loss of ac-
curacy at high values of rdiff >∼ 1. However, tests indicate (cf. Fig. 3.7 and the corre-
sponding discussion in Sect. 3.3) that in the CCSN problem high values of rdiff >∼ 0.5
tend to appear only close to shock, where lateral neutrino fluxes are subdominant
compared to radial fluxes.

2.4.2 Neutrino source terms

In the first step, we compute the contribution from the neutrino source terms in an
implicit manner. We solve the following equations:

W
α

∂tJν,ξ =

[
κa(J eq −J )

]

ν,ξ
,

W
α

ρ∂te(T, Ye) = −∑
ν,ξ

[
κa(J eq −J )∆εξ

]

ν,ξ
,

W
α

ρ∂tYe = −mu ∑
ξ

[[
κa(J eq −J )∆εξ

]
νe

−
[
κa(J eq −J )∆εξ

]
ν̄e

]

ξ

. (2.43)

The subscripts ν and ξ indicate the neutrino species and energy bin, respectively,
and ∆εξ is the width of the energy bin centered at εξ .

We discretize eq. (2.43) in time employing a backward Euler scheme and solve
the resulting system of equations for the neutrino energy densities, Jν,ξ , tempera-
ture, T and electron fraction, Ye, using the Newton-Raphson method. We keep α, W,
ρ, and κa constant during this step at values obtained after the GR-hydro step. The
Jacobian of eq. (2.43) is determined numerically, and a direct matrix from the LA-
PACK library (Anderson et al., 1999) is used for inverting the Jacobian. The values
of neutrino energy densities, Jν,ξ , obtained in this step are used as initial values in
the next step.

2.4.3 Radial derivatives and spectral-shift terms

In the next operator-split step, the following equation is solved:

W∂tĴ +Rr = 0 , (2.44)

where

Rr ≡ ∂t(W)Ĵ + ∂r[αW(vr − βr/α)Ĵ ]−

∂r

[
α
√

γ
{

γrr + W
( W

W + 1
vr − βr/α

)
vr
}

D1∂rJ
]
−

∂t(W
√

γv̄î)Derî∂rJ + α
[

R̂ε −
∂

∂ε
(εR̂ε)

]
. (2.45)

contains the radial advection and diffusion terms, the radial acceleration term, and
the spectral-shift terms. Equation (2.44) is integrated by using the implicit Crank-
Nicolson method. The old time is denoted as tn and the new time as tn+1. The time
indices for all GR and hydrodynamics quantities are omitted as they are kept fixed in
all transport steps. Using superscripts n and n + 1 to label quantities defined before
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and after this partial integration step, respectively, the discretized equation reads:

(W
√

γ)
J n+1

i −J n
i

∆t
=

1
2
(Rn+1

r,i +Rn
r,i) . (2.46)

Here, ∆t ≡ tn+1 − tn and i denotes quantities measured at the cell center in the
radial direction. In the following, we describe the constituents of Rn+1

r,i , while the
corresponding expressions for Rn

r,i are obtained by replacing n + 1 with n. For sim-
plicity, we assume a uniform radial grid with constant cell size ∆r; the generalization
to non-uniform grids is straightforward.

The diffusion term is spatially discretized as:

[
∂r(ArD1∂rJ )

]n+1
=

1
∆r

[
Ar

i+1/2Dn
1,i+1/2

J n+1
i+1 −J n+1

i

∆r

−Ar
i−1/2Dn

1,i−1/2
J n+1

i −J n+1
i−1

∆r

]
, (2.47)

where

Ar ≡ α
√

γ
{

γrr + W
( W

W + 1
vr − βr/α

)
vr
}

. (2.48)

Indices i + 1/2 and i − 1/2 denote the right and left cell interface of the i-th cell,
respectively. If not mentioned otherwise, all cell interface values of hydrodynamic
quantities and metric terms (contained in Ar and in other terms below) are calculated
by linear interpolation of the cell centered values.

The fluid-acceleration term (fourth term in eq. (2.45)) is computed as:

[
BrD∂rJ

]n+1
=

Br
i

2

[
Dn

1,i+1/2
J n+1

i+1 −J n+1
i

∆r

+ Dn
1,i−1/2

J n+1
i −J n+1

i−1

∆r

]
, (2.49)

where

Br ≡ ∂t(W
√

γv̄î)e
rî . (2.50)

The time derivative in eq. (2.50) is calculated using values of the hydrodynamic and
metric quantities before and after the initial GR-hydro step.

The advection term is discretized using an upwind-type method (see, e.g. A.
Dorfi 1998; Rampp and Janka 2002) as:

[
∂r(CrJ )

]n+1
=

1
∆r

[
Cr

i+1/2J n+1
ι(i+1/2) − Cr

i−1/2J n+1
ι(i−1/2)

]
, (2.51)

where

Cr ≡ α
√

γW(vr − βr/α) (2.52)

and

ι(i + 1/2) ≡
{

i, if vr
i+1/2 > 0 ,

i + 1, otherwise .
(2.53)
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The spectral-shift term, Rε − ∂ε(εRε), is discretized using the number-conservative
scheme developed in Müller, Janka, and Dimmelmeier (2010). The terms with H ĵ

and K î ĵ that appear in Rε are replaced by f ĵJ and χî ĵJ , respectively, and the flux
factor, f ĵ, and Eddington tensor, χî ĵ, are defined at instance tn, while only J is de-
fined at tn+1.

The Crank-Nicolson method requires to solve a linear system of equations. Di-
rect methods for solving linear systems are relatively expensive, we therefore use
the iterative “Generalized Minimal Residual Method with Restart” (GMRES) along
with the incomplete LU decomposition as a preconditioner from the NAG library2

for this purpose. The values of neutrino energy densities, J , obtained in this step
are used as initial values in the next step.

2.4.4 Non-radial derivatives

Finally, we include the contribution from the remaining lateral advection and diffu-
sion terms by integrating the equation

∂t(WĴ ) + ∂θ [αW(vθ − βθ/α)Ĵ ] + ∂φ[αW(vφ − βφ/α)Ĵ ] +

∂θ

[
α
√

γ
{

γθθ + W
( W

W + 1
vθ − βθ/α

)
vθ
}

D2∂θJ
]
+

∂φ

[
α
√

γ
{

γφφ + W
( W

W + 1
vφ − βφ/α

)
vφ
}

D3∂φJ
]
= 0 (2.54)

using the explicit Allen-Cheng method (Allen, 1970), where D2 and D3 are the diffu-
sion coefficients in polar and azimuthal direction, respectively.

The discretized version of eq. (2.54) is presented below exemplarily for a single
dimension (representative of the θ- or φ-direction) and a uniform grid, whose points
are labeled by k and spaced apart by ∆y. The method consists of two steps, a predic-
tor step and a corrector step. We again use n and n + 1 to label quantities before and
after the two substeps. The value of J obtained after the predictor step, J ∗, is used
in the corrector step to determine J n+1. The predictor step is given by

(W
√

γ)n

∆t
(J ∗k −J n

k ) = −
1

2∆y
(Fk+1J n

k+1 − Fk−1J n
k−1)

+
1

∆y2 (Ek+1/2(J n
k+1 −J ∗k )− Ek−1/2(J ∗k −J n

k−1)) (2.55)

and the corrector step by

(W
√

γ)n

∆t
(J n+1

k −J n
k ) = −

1
2∆y

(Fk+1J ∗k+1 − Fk−1J ∗k−1)

+
1

∆y2 (Ek+1/2(J ∗k+1 −J n+1
k )− Ek−1/2(J n+1

k −J ∗k−1)) , (2.56)

where we defined

F = α
√

γW(vj − βj/α) ,

E = α
√

γ
{

γjj + W
( W

W + 1
vj − βj/α

)
vj
}

D , (2.57)

2www.nag.co.uk



20 Chapter 2. Numerical Method

with j denoting the considered direction, θ or φ. The values J n+1 obtained in this
step are the final values at the new time tn+1. These values are used to calculate the
neutrino source terms for the hydrodynamics equations (cf. eqs. (2.26) and for the
metric equations (2.27) which are used in the next GR-Hydro step.

2.4.5 Boundary conditions

For our spherical polar coordinate system, we use the standard boundary conditions
in angular directions, namely reflecting boundary conditions in polar direction and
periodic boundary conditions in azimuthal direction. For the outer radial boundary,
we typically use the “free” boundary condition, meaning that the flux is set accord-
ing to free-streaming conditions, D∂rJ = J . For the inner radial boundary, the user
may choose a “flat” boundary condition, given by D∂rJ = 0, or a “fixed” boundary
condition, for which J is set to some predefined value.
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Chapter 3

Test Problems

In this section, we discuss various setups for testing and validating the transport
scheme. In Sects. 3.1 and 3.2, we will consider 1D and 2D tests with simplified
radiation-matter interactions, and in Sect. 3.3 we examine fully dynamic 1D core-
collapse supernova simulations with a microphysical equation of state and realistic
neutrino-matter interactions. For future reference, we define the L1 and L2 error
norm as

L1− error ≡ 1
N ∑

i

|J num
i −J an

i |
J an

i
,

L2− error ≡ 1
N

√
∑

i

(J num
i −J an

i
J an

i

)2
, (3.1)

where the sums run over all N grid cells, and J num and J an denote the numerical
and analytical solution for the radiation energy density, respectively.

3.1 1D test problems

We first consider 1D toy-model problems, namely the diffusion of a Gaussian pulse
and a differentially expanding isothermal atmosphere.

3.1.1 Diffusion of Gaussian pulse with Crank-Nicolson

We set up a well-known test problem consisting of a Gaussian-shaped pulse of radi-
ation that diffuses through a medium with constant scattering opacity, κs. The prob-
lem is chosen to test the basic working capability of the code, in particular the correct
implementation of the implicit Crank-Nicolson method used for the radial diffusion
terms. Diffusion of a Gaussian-shaped pulse with constant scattering opacity has
the analytical solution (e.g. Swesty and Myra, 2009; Kuroda, Takiwaki, and Kotake,
2016):

J an(r̃) =
(

κs

t

)d/2

exp
(−3κsr̃2

4t

)
(3.2)

in d = 1, 2, 3 dimensions, where r̃ is the distance to the center of the pulse. In the
present 1D case, a constant scattering opacity of κs = 103 is used. The pulse is
initialized at time t = 10−9 such that its peak coincides with the center of our com-
putational domain, which has a total length of 2. In our spherical polar coordinate
system, we mimic the 1D Cartesian grid by locating the computational domain at
some very large radius r ∼ 104. The domain is divided into N = {128, 256, 512} cells
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TABLE 3.1: Gaussian pulse test using the implicit Crank-Nicolson method (cf.
Sect. 3.1.1). For each CFL factor and grid resolution the L2-error is given together with
the ratio of the current L2-error to that resulting with half the resolution. The L2-error
decreases quadratically with the number of grid points, consistent with the 2nd-order

accuracy of the Crank-Nicolson method.

CFL resolution, N L2 error error ratio
1.0 128 0.258

256 0.054 4.751
512 0.013 4.023

10.0 128 0.259
256 0.055 4.711
512 0.013 4.062

TABLE 3.2: Gaussian pulse test using the explicit Allen-Cheng method (cf. Sect. 3.1.2).
For each value of rdiff the L2-error is given together with the ratio of the current L2-error
to that resulting with twice the value of rdiff. The L2-error decreases linearly with rdiff,

consistent with the 1st-order temporal accuracy of the Allen-Cheng method.

rdiff resolution, N L2 error error ratio
1.6 200 0.0583
0.8 200 0.0359 1.623
0.4 200 0.0206 1.742
0.2 200 0.0089 2.314
0.1 200 0.0037 2.405

and a single radiation energy bin is evolved. We employ a “flat" boundary condi-
tion for the inner boundary and a “free" boundary condition for the outer boundary,
following Swesty and Myra (2009). We consider two choices for the CFL value (cp.
eq. (2.11)), 1 and 10. The problem is stopped at t = 2× 10−9. In Table 3.1, the L2-error
and the ratio of the L2-error for two consecutive resolutions are shown. We obtain a
second-order accuracy for both CFL values, which is in agreement with the formal
accuracy of the Crank-Nicolson Method. The test confirms the basic functionality
of the code and validates the correct implementation of the Crank-Nicolson scheme
used for the diffusion terms.

3.1.2 Diffusion of Gaussian pulse with Allen-Cheng

As described in Sect. 2.4, we use the implicit Crank-Nicolson scheme only for the ra-
dial diffusion and advection terms, while for all lateral terms we employ the explicit
Allen-Cheng method. In this test problem, we want to check if the Allen-Cheng
method is implemented correctly and produces reasonable results, and if it remains
stable at conditions where conventional explicit schemes crash.

The setup is similar as in Sect. 3.1.1, except now we use a diffusion coefficient of
D = 10−3, a single resolution of 200 points, and we evolve the problem from time
t = 1 to t = 2. The only characteristic timescale of this problem is the diffusion
timescale tdiff = ∆x2/D, hence the performance of the integration method can be
characterized entirely by the ratio rdiff = ∆t/tdiff, where ∆t is the employed time
step. We conduct several simulations varying the value of rdiff by changing ∆t.

As can be seen in Table 3.2, the L2-error decreases roughly linearly with decreas-
ing time step in agreement with the formal temporal accuracy of the Allen-Cheng
method. Moreover, the test demonstrates that for rdiff > 0.5 the Allen-Cheng method
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FIGURE 3.1: Differentially expanding atmosphere (cf. Sect. 3.1.3). In the left plot, the
energy-integrated energy density, E(r) ≡

∫
J (r, ε) dε, normalized by E0 =

∫
J (r =

0, ε) dε is shown against radius for vmax = 0 (solid lines), 0.1 (dotted lines), 0.3 (dashed
lines), where blue (orange) lines denote solutions obtained with the LP (Wilson) flux-
limiter. The markers show the reference solution by Mihalas (1980). In the right plot,
the radiation spectra, normalized by the maximum of equilibrium distribution function,
J eq

max, resulting with the Wilson limiter are plotted at radius r = 5.5 (golden lines) and 11
(red lines), together with the equilibrium distribution function (see eq. (3.5), normalized

by J eq
max) at a temperature of T = 1 (black line).

indeed remains stable, and that, as expected, the accuracy decreases for higher val-
ues of rdiff. In Sect. 3.2.2, we will consider a similar test in two dimensions.

We compared the computing time required for solving this 1D test problem by
the Crank-Nicolson and the Allen-Cheng method. We see that the Allen-Cheng
method is two times faster than the Crank-Nicolson method with out any paral-
lelization. The Crank-Nicolson method requires solving of the system of linear equa-
tions by an iterative method. Since our code is MPI parallel, the iterative method
requires several collective communication1 per iteration. The number of iterations
needed for the convergence of the iterative solver depends on the size of the system
of linear equations. On the other hand, the Allen-Cheng method only requires one
point to point communication per time step. As a result, the Allen-Cheng method
has better parallel efficiency.

3.1.3 Differentially expanding atmosphere

Next, we consider a differentially expanding, isothermal atmosphere in spherical
symmetry having a temperature of T = 1 (Mihalas, 1980; Rampp and Janka, 2002;
Just, Obergaulinger, and Janka, 2015) in order to check the correct implementation
of the energy-bin coupling and velocity-dependent terms in our code. The velocity

1see, e.g. https://computing.llnl.gov/tutorials/mpi/
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profile is given by

vr(r) = vmax r− rmin

rmax − rmin
. (3.3)

in the region [rmin, rmax] and by vr = 0 elsewhere. We consider three cases with
vmax = {0.0, 0.1, 0.3}. The radius- and energy-dependent absorption opacity is given
by:

κa =





10a
r2 exp

(
− (ε−ε0)

2

∆2

)
+ a

r2

(
1− exp

(
− (ε−ε0)

2

∆2

))
, ε ≤ ε0 ,

10a
r2 , ε > ε0 ,

(3.4)

and the equilibrium distribution by:

J eq =
8πε3

exp(ε/T)− 1
. (3.5)

Here, kb is the Boltzmann constant, respectively. The parameters in the aforemen-
tioned prescriptions are given by {rmin, rmax, ε0, ∆, a} = {1.0, 11.0, 3.0 T, 0.2 T, 10.9989}.
We use 400 grid points to discretize the simulation domain within [0.1, 15], and em-
ploy 40 energy bins to cover the radiation energy range [0, 11.8 T]. At r = 0.1 the
“flat” boundary condition is applied and at r = 15 the free-streaming boundary con-
dition. Each simulation is performed using a CFL value of 0.5 and is stopped once
stationarity is reached. We perform a simulation for each of the three values of vmax

as well as for both the LP and the Wilson limiter (cf. eqs. (2.31).
In the left plot of Fig. 3.1 we show radial profiles of the energy-integrated radi-

ation energy density in the comoving frame, E(r) ≡
∫
J (r, ε) dε, normalized by

E0 =
∫
J eq(r = 0, ε) dε. In agreement with the reference solution (taken from Mi-

halas, 1980 and indicated by markers), E shows a gradual decrease with growing ex-
pansion velocities at a given radius r <∼ 10, which is because of Doppler redshifting
in the comoving frame. At higher radii, r >∼ 10, cases with higher velocities show,
again in agreement with the reference solution, higher values of E, mainly due the
cumulative effect of reduced absorption rates in the underlying layers where E is
reduced.

We notice that radiation in the FLD solutions departs from equilibrium and tran-
sitions into free-streaming conditions at somewhat lower radii than radiation in the
reference solution. However, the L1-error of the FLD solution with respect to the ref-
erence solution is still rather small, namely 4% for the LP limiter and 3% for the Wil-
son limiter. In this test, the Wilson limiter reproduces the reference solution slightly
better than the LP limiter.

In the right plot of Fig. 3.1, the radiation energy density spectra, normalized by
the maximum of equilibrium distribution function, J eq

max, are shown at radii r = 5.5
and 11.0, representative of optically thick and thin conditions, respectively, along
with the equilibrium spectrum at r = 5.5. The jump in the spectra is associated
with the jump in the absorption opacity at energy ε = ε0. Due to radiation being
redshifted on its way to the surface, the jump in the spectra around ε0 is smeared
out, all the more for higher values of vmax.

The good results of this test prove that our FLD code can handle the transition
of radiation from diffusion to free-streaming, and they indicate that the velocity-
dependent terms describing Doppler effects are implemented properly.



3.2. 2D test problems 25

0 5 10
x

−10

−5

0

5

10

y

0 5 10
x

−10

−5

0

5

10

y

−2.00

−1.75

−1.50

−1.25

−1.00

lo
g 1

0(
κ

s)

0 5 10
x

−10

−5

0

5

10

y

0 5 10
x

−10

−5

0

5

10

y

−10.00

−8.75

−7.50

−6.25

−5.00

lo
g 1

0(
J

)

a. Energy and Opacity

0 3 6 9 12
r

10−7

10−6

10−5

r2 J
,r

2 H
r

equator

north

south

r2J
r2Hr

b. Energy and Radial Flux

FIGURE 3.2: Hemispheric difference test (cf. Sect. 3.2.1). Panel (a): The top (bottom)
row shows color mappings of the logarithm of the scattering opacity (radiation energy
density). The left (right) plots are for the case of spherically symmetric (dipole-shaped)
opacity profiles. The angle-dependent locations r0, at which the optical depth τ(r0, θ) =
−
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∞ κs(r, θ)dr reaches 2/3, are marked by white lines in the bottom plots. (b) The r2J
(thick lines) and r2Hr (thin lines) is shown at the equator (solid line), north pole (dotted

line) and south pole (dashed line) for the dipolar opacity case.

3.2 2D test problems

In this section, we have a look at two-dimensional (2D) toy-model problems in order
to check basic multi-dimensional features of our transport solver.

3.2.1 Hemispheric difference test

We first discuss a simple configuration to test the basic ability of the code to deal with
multiple dimensions without becoming unstable or producing numerical artefacts.
We consider radiation diffusing out of a static scattering atmosphere. The absorption
opacity vanishes everywhere.

In the first of two versions of this test, the scattering opacity, κs, has a spherically
symmetric profile, given by

κs(r) =

{
1
r2 , r ≤ rmax,
10−10 , r > rmax ,

(3.6)

with rmax = 10, while in the second version we consider a dipole-shaped opacity
profile by multiplying the opacity with the factor (1+ 0.5 cos θ). We use 400× 64 uni-
formly spaced grid points to cover the simulation domain for (r, θ) ∈ [0.01, 11.0]×
[0, π]. A single energy group is used and the CFL value is set to 0.5.

In panel (a) of Fig. 3.2, the two top plots show the scattering opacity, while the
two bottom plots depict, at an exemplary time of t = 3.888× 10−10, the radiation en-
ergy density. The case of spherically symmetric (dipole-shaped) opacity is shown left
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FIGURE 3.3: Two-dimensional diffusion of a Gaussian pulse (cf. Sect. 3.2.2). The Allen-
Cheng method is applied along the x-direction and the Crank-Nicolson method along
the y-direction. On the left side, contour plots of the radiation energy density are shown
for the case of rdiff = 0.5 (top) and rdiff = 1 (bottom) at t = 1.995. On the right side,
profiles of the radiation energy density are plotted along the x-direction at y = 0.5 (top)
and along the y-direction at x = 0.5 (bottom). The numerical solutions for different rdiff

are shown by solid lines and the analytical solution by dashed lines.

(right). We see that for the spherically symmetric opacity configuration the solution
remains spherically symmetric, i.e. our mixed-type integration scheme combining
the Crank-Nicolson and Allen-Cheng method does not lead to spurious aspherici-
ties. The relative pole-to-equator and pole-to-pole differences of J are < 0.1 %.

In the case of the dipole-shaped opacity, in which the southern hemisphere has
lower scattering opacity than the northern hemisphere, we observe, as expected,
also a hemispheric difference in the radiation energy density: A greater amount of
radiation is able to escape out of the southern hemisphere compared to the northern
hemisphere. In panel (b) of Fig. 3.2, radial profiles of the radiation energy density, J ,
and radial flux density,Hr, both multiplied by r2, are shown along the θ = 0, π/2, π
directions. For higher θ, we observe enhanced fluxes and energies, as well as a transi-
tion to free-streaming (i.e. H/J → 1) at smaller radii. The stability of the conducted
simulation and the plausible physics results demonstrate the basic functionality of
the multidimensional version of our transport solver.

3.2.2 Diffusion of Gaussian pulse

We now investigate two-dimensional diffusion of a Gaussian pulse, which has been
considered already in 1D in Sects. 3.1.1 and 3.1.2. In contrast to the test in Sect. 3.2.1,
the diffusion test allows to compare with an analytical solution and, hence, we are
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TABLE 3.3: Neutrino opacities used for the 1D CCSN simulations discussed in Sect. 3.3.
“N” denotes nucleons and “A” and “A’ ” denote nuclei.

Reaction Neutrino
ν + A↔ ν + A νe, ν̄e
ν + N ↔ ν + N νe, ν̄e

νe + A↔ e− + A′ νe, ν̄e
νe + n↔ e− + p νe, ν̄e
ν̄e + p↔ e+ + n νe, ν̄e
ν + ν̄↔ e− + e+ νx

ν + ν̄ + N + N ↔ N + N νx

now able to check also on a quantitative level the proper functionality of the multi-
dimensional transport, with a particular focus on the impact of the dimensional
splitting with mixed explicit-implicit treatments.

We use Cartesian coordinates in a domain of size 1× 1. A uniform grid with 100
points is employed in each direction, and one energy bin is used. The diffusion coef-
ficient is set to D = 10−3 and the problem is initialized at t = 1. We again define the
characteristic time-step parameter rdiff = D∆t/∆x2, where, ∆t is the integration time
step and ∆x the grid spacing. The values of rdiff are varied between {0.1, 0.5, 1.0},
corresonding to CFL values of {1, 5, 10}, respectively. The Allen-Cheng scheme is
applied along the x-direction and Crank-Nicolson scheme is applied along the y-
direction. The simulation is stopped at t = 1.995.

The left panels in Fig. 4 show contour plots of the radiation energy density with
rdiff = 0.5 (top) and rdiff = 1 (bottom) at the end of the simulation at time t = 1.995.
The right column compares profiles along the lines at y = 0.5 (top) and x = 0.5 (bot-
tom) of the numerical solution with that of the analytical solution, which is given
by eq. (3.2) with d = 2 and r̃2 = (x − 0.5)2 + (y − 0.5)2. We first note that the in-
tegration remains well-behaved and numerically stable, which is indicated by the
circumstance that we see no spurious numerical features in the plotted data. More-
over, as one can see, the Gaussian pulse retains a circular shape up to a good degree,
even for rdiff = 0.5, although a non-circular deformation is visible and becomes
stronger for values of rdiff >∼ 0.5. The deformation is a result of the fact that for
high values of rdiff the diffusion rates are somewhat reduced in x-direction, along
which the explicit Allen-Cheng method is used. The error for higher values of rdiff
increases much stronger in x-direction than in y-direction as expected, because the
Allen-Cheng method is only first-order accurate while the Crank- Nicolson method
is second-order accurate. However, large relative errors only appear at energy den-
sities that are orders of magnitude smaller than the peak energy, such that the global
error is still small. The test confirms that the dimensional splitting of our algorithm
works well and that the Allen-Cheng method remains stable and reasonably accu-
rate even for values rdiff ∼ 0.5− 1.

3.3 Spherically symmetric core collapse

In this section, we discuss spherically symmetric simulations with more realistic mi-
crophysics of the collapse and post-bounce evolution of a 20 M� stellar progeni-
tor with solar metallicity (Woosley and Heger, 2007). We employ the SFHo nuclear
equation of state (Hempel et al., 2012; Steiner, Hempel, and Fischer, 2013). The radial
extent of our simulation domain is 10000 km, and we use 400 grid points, the widths
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FIGURE 3.5: Comparison of global properties as functions of time for several CCSN
simulations. Shown are results in the left column for the NADA (thick lines) and AL-
CAR (thin lines) simulations that both use Newtonian gravity, in the middle column
for NADA simulations with GR (thick lines) and Newtonian (thin lines) treatment of
gravity, and in the right column for NADA simulations with GR gravity using differ-
ent flux-limiters (cf. Sect. 2.3.2), namely the LP flux-limiter (thick lines) and the Wilson
limiter (thin lines). From top to bottom the panels display the luminosities, the mean
energies, the shock-, PNS-, and gain radii, the mass accretion rate measured at 500 km,

the mass in the gain layer, and the total neutrino-heating rate in the gain layer.
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of which are constant up to 4 km and afterwards increase by 3 % from cell to cell.
The energy grid is logarithmic, with 15 points covering energies from 0 to 400 MeV,
where 400 MeV is the upper boundary of the last energy bin. We evolve electron
neutrinos (νe), electron anti-neutrinos (ν̄e), and νx neutrinos that are representative
of the four heavy-lepton neutrinos. The neutrino reactions taken into account are
listed in Table 3.3. Their formulation is mostly based on Bruenn (1985) and Rampp
and Janka (2002), but additionally includes corrections due to weak magnetism and
recoil (Horowitz, 2002). We also take into account nucleon-nucleon bremsstrahlung.
Following the recipe suggested by O’Connor (2015), we neglect pair-processes for
electron-type neutrinos and treat pair-processes for νx neutrinos with a prescription
that is formally equivalent to emission/absorption.

We perform simulations with fully general relativistic hydrodynamics and trans-
port, denoted by NADA GR, using each of the two flux-limiters, LP and Wilson (cf.
eqs. (2.31)). However, in order to compare our code with a reference solution, we first
discuss a simulation, called NADA NEWT, that is identical to NADA GR with the
LP limiter, but that is conducted with a Newtonian treatment of gravity and special
relativistic hydrodynamics. We compare this model to model ALCAR NEWT which
is performed with the ALCAR code (Just, Obergaulinger, and Janka, 2015; Just et al.,
2018). Model ALCAR NEWT contains exactly the same input physics, but it em-
ploys the M1 approximation for the neutrino transport and assumes non-relativistic
hydrodynamics2.

In the left column of Fig. 3.4, we compare characteristic properties of the collapse
between models NADA NEWT and ALCAR NEWT, namely the electron fraction,
Ye, lepton fraction, Ylep, and entropy per baryon at the stellar center as function of
the central density, ρ. Neutrino trapping sets in once the central density reaches
∼ 2× 1012 g cm−3. After the onset of neutrino trapping, the lepton fraction remains
constant with a value around 0.37 for both codes. The electron fraction roughly
asymptotes at a central density of ∼ 2 × 1013 g cm−3. The deleptonization slows
down around 5× 1010 − 1011 g cm−3 in both models due to neutron shell blocking
and a low abundance of free protons (e.g. Bruenn, 1985). After the onset of trapping
because of a growing number of free nucleons and α-particles, the total entropy (stel-
lar gas and neutrinos) is conserved because of the adiabatic subsequent evolution,
but the entropy per baryon of the gas increases to ≈ 1.15 kb/baryon. Overall, both
simulations agree very well in their deleptonization behavior.

In the right column of Fig. 3.4, we show the neutrino luminosity as well as the
shock- and PNS-radii as functions of time until 20 ms post bounce. For the present
spherically symmetric case we define the comoving-frame luminosity as

Lν(r) ≡ 4πe4φr2
∫
Hν(r, ε) dε , (3.7)

where φ = 0 for the case of Newtonian gravity. The luminosity obtained with the
NADA code agrees well with that of the ALCAR code. The integrated energy loss
is ∼5 % higher in the NADA model than that in the ALCAR model within the first
20 ms of post-bounce evolution. The peak in the luminosities of νe and ν̄e around
10-15 ms post-bounce time is due to early expansion and subsequent compression
of matter behind the shock. In the bottom-right plot of Fig. 3.4, we see mass shells
between 0.8 to 1.16 M� undergo a early shock expansion until 4 ms post-bounce time
and then fall back. The compression of matter produces extra neutrinos.

2Note that in the considered simulations the velocities are so low that no significant differences
should arise from the different hydrodynamics treatment.
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The left column of Fig. 3.5 provides various quantities as functions of time for the
NADA NEWT and ALCAR NEWT simulations, namely the neutrino luminosities,
Lν, the neutrino mean energies,

〈εν〉(r) ≡
∫
J (r, ε) dε∫
J (r, ε) ε−1 dε

, (3.8)

the mass-accretion rates above the shock at 500 km, Ṁ, the total masses in the gain
layer, Mgain, and the total neutrino-heating rates, Qgain. The luminosities and mean
energies, as well as actually all remaining quantities agree remarkably well between
both codes. We notice slightly higher luminosities in the NADA runs and, particu-
larly at late times, a secular drift towards higher mean energies in the NADA NEWT
model. We speculate that this difference might be related to what we see in Fig. 3.6,
where radial profiles of the mean flux factor,

〈 fν〉(r) ≡
∫
Hν(r, ε) ε−1 dε∫
Jν(r, ε) ε−1 dε

, (3.9)

are plotted: In the NADA simulation, the flux factors rise at slightly smaller radii
than in the ALCAR simulation, which means that neutrinos are effectively released
from deeper within the PNS and therefore at higher temperatures (see below for fur-
ther discussion of Fig. 3.6). Nevertheless, the very good overall agreement between
both codes is encouraging and confirms that the combined neutrino-hydro solver is
working well and that the equation of state and the neutrino-interactions are imple-
mented correctly.

In the middle column of Fig. 3.5, we compare the fully relativistic NADA GR sim-
ulation with the NADA NEWT model, using for both cases the LP limiter. The main
impact of GR is to produce an effectively steeper gravitational potential. Hence, the
core bounces ≈ 40 ms earlier in the GR case compared to the Newtonian case. Sub-
sequently, the GR treatment produces a considerably more compact PNS and post-
shock configuration. As a consequence of the higher compactness, the temperatures
at the PNS surface are increased, which results in significantly enhanced neutrino
luminosities and mean energies. The enhancement is even strong enough to over-
compensate for the lower masses in the gain layer and to yield considerably higher
total neutrino-heating rates compared to the Newtonian model. The qualitative dif-
ferences found here between Newtonian and general relativistic CCSN models are
in good agreement with previous studies (e.g. Bruenn, De Nisco, and Mezzacappa,
2001; Marek et al., 2006; Müller, Janka, and Marek, 2012). We conclude that the cou-
pling of the neutrino-hydrodynamics components of the code to the Einstein solver
is working well, at least in spherical symmetry.

In order to test the sensitivity with respect to the chosen flux-limiter, we also com-
pare the NADA GR simulation that uses the LP limiter against a similar simulation
that employs the Wilson limiter; see the right column of Fig. 3.5 for the correspond-
ing quantities as functions of time. Using the Wilson limiter instead of the LP limiter
results in an overall less compact configuration, i.e. in higher values of the shock-
, PNS-, and gain-radii, particularly at earlier times, tpb >∼ 0.3 s, while later on the
differences become smaller. The most likely reason is found when comparing the
luminosities, which for electron-type neutrinos are significantly reduced during the
first∼ 0.2− 0.3 s of post-bounce evolution. The lower neutrino-cooling rates explain
the larger PNS radii, and those also cause (e.g. Janka, 2012) larger gain- and shock-
radii. The more powerful neutrino heating in the gain layer is thus mainly a result



34 Chapter 3. Test Problems

of the increased mass in the gain layer compared to the case with the LP limiter.
In Fig. 3.6, we show the radial profile of the mean flux factor, eq. (3.9), for models

NADA NEWT (with LP limiter) and ALCAR NEWT, at a time when the central den-
sity is 2× 1012 g cm−3 (left plot) and at 300 ms post bounce (right plot). Although
the M1 scheme used in ALCAR is not a fully accurate solution of the Boltzmann
equation either, it is likely somewhat more reliable than the FLD solution (see, Just,
Obergaulinger, and Janka 2015 for a comparison of FLD and M1 with a Boltzmann
solver for static CCSN-related configurations). In both cases, we see that the FLD
solution makes the transition to free-streaming conditions at smaller radii compared
to the M1-based ALCAR solution. Furthermore, in the FLD scheme, the flux factor
jumps to high values artificially strongly near sharp drops in the transport opacity
(see, Janka 1992 for a detailed discussion). As a result, the mean flux factor abruptly
becomes ≈ 1 at the shock, which lies at r ≈ 80− 90 km in the right panel of Fig. 3.6.
The results concerning the flux factor are consistent with previous investigations
of the FLD scheme; see, Dgani and Janka (1992) who identify a “missing opacity”
problem of FLD that can be solved, only in 1D however, by introducing an “artifi-
cial opacity”. However, the otherwise good agreement between NADA NEWT and
ALCAR NEWT suggests that the aforementioned deficiencies are small enough to
affect the 1D dynamics at most at the few-percent level.

As a final point we discuss the time-integration accuracy of a (future) multi-
dimensional CCSN simulation based on our 1D simulation data. As we recall from
Sect. 2.4, the time integration of the transport equations is done implicitly for the
source terms as well as the radial fluxes and energy derivatives, and explicitly for
the lateral fluxes. We consider for the case of an axisymmetric simulation the result-
ing characteristic time-step parameter,

rdiff = 〈Dν〉∆t/(r∆θ)2 , (3.10)

i.e. the ratio of the employed integration time step, ∆t, and the characteristic timescale
associated with the lateral diffusion terms, (r∆θ)2/〈Dν〉. We use the ∆t employed in
the 1D simulation and assume a reasonable value of 1.4 degree for ∆θ. The energy-
averaged diffusion coefficient, 〈Dν〉, is calculated as

〈Dν〉(r) =
∫

Dν(r, ε) Jν(r, ε) ε−1 dε∫
Jν(r, ε) ε−1 dε

. (3.11)

The estimates of rdiff, shown in Fig. 3.7 for an early and a late post-bounce time,
allow us to identify regions, rdiff >∼ 1, in which the explicit Allen-Cheng method is
potentially less accurate in describing the lateral neutrino propagation. We find that
high values, rdiff >∼ 1, are reached only near the center of the PNS and close to the
shock. This is reassuring, because deeply within the PNS neutrinos are trapped and
neutrino fluxes are strongly dominated by advection fluxes, while at large radii in
the vicinity of the shock lateral neutrino fluxes are anyway small compared to radial
fluxes. Hence, our estimate indicates that the explicit treatment of lateral terms in
multi-dimensional simulations will only have minor consequences on the dynamical
evolution.
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Chapter 4

Core-Collapse Supernova
Simulations of Very Massive Stars

In this chapter, we describe the core collapse simulations considering progenitors of
60, 80 and 115 M� of very massive stars.

4.1 Numerical Setup

The core-collapse simulation of the very massive star was conducted using the general-
relativistic hydrodynamics and transport code NADA (Baumgarte et al., 2013; Mon-
tero, Baumgarte, and Müller, 2014) in two dimension. It is a finite difference code
with spherical polar coordinates. The code solves the BSSN formulation of Einstein
equations using the second order partial implicit Runge-Kutta method (Montero and
Cordero-Carrión, 2012). In current study, we solve the BSSN equation under the as-
sumption of spherically symmetric metric. We use the “1 + log” condition for the
lapse function and the non-advective hyperbolic Gamma-driver for the shift vector
(Baumgarte, Montero, and Müller, 2015).

We use the generalized Valancia formalism for the hydrodynamics equations
(Montero, Baumgarte, and Müller, 2014). The finite difference high resolution shock
capturing method is used to solve the hydrodynamics equation. We use the PPM
method (Colella and Woodward, 1984) for the reconstruction of primitive variable
at the cell interface. The approximate Riemann solver HLL (see, e.g. Toro 2009)
is used for the numerical flux calculation at the cell interface. The second order
Runge-Kutta method (see, e.g. Anderson 2011) for the time integration of the hy-
drodynamics equations. We use a spherical core of 3 km to avoid extreme time step
size restriction imposed by Courant-Friedrichs-Lewy condition in the spherical po-
lar coordinates. The tabulated equation of state SFHo (Hempel et al., 2012; Steiner,
Hempel, and Fischer, 2013) is used for this study.

We employed the multi-dimensional multi-energy group flux limited diffusion
(FLD) scheme to solve the neutrino transport equation (see, chapter 2, for details).
The FLD equation is solved in the comoving frame. We used a mixed implicit-
explicit method to solve the FLD equation. The number of neutrino energy bin used
in this study is 16, spanning 2.5 MeV to 500 MeV. The energy bins are geometri-
cally spaced. We evolve the neutrino transport for electron neutrino νe, electron
anti-neutrino ν̄e and muon and tau neutrino and their anti-neutrino under a single
species νx. The neutrino reactions considered are shown in the Table 3.3. Details of
neutrino opacity can be found in Rampp and Janka (2002) and Bruenn (1985) and ref-
erences cited in those articles. The pair-process and Bremsstrahlung for νx is treated
using the recipe from O’Connor (2015).
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TABLE 4.1: Progenitor Properties. We tabulate the remnant mass of progenitor, Mrem,
just before core collapse, the iron-core mass, MFe, compactness of progenitor, ξ2.5, given
by equation (4.1), total angular momentum of remnant, Jrem, and iron core, JFe, the Kerr
parameter of remnant, arem, given by equation (4.2), the post-bounce time when shock
expansion starts, tsh−exp, and the post-bounce time when BH is formed, tBH. For details,

see Table 5 of Woosley 2017.

Model Mrem MFe ξ2.5 M� Jrem JFe arem tsh−exp tBH
[M�] [M�] [1050 erg s] [1048 erg s] [s] [s]

C115 79.46 2.44 0.89 0.210 0.400
NR80Ar 47.77 2.74 0.84 0.220 0.350
R80Ar 47.77 2.74 0.84 14 7.2 0.07 0.220 0.350
C60C 46.44 2.35 0.77 105 37 0.55 0.510

We used an uniform grid in the angular direction with an angular resolution of
1.4 degree and a non-uniform grid in the radial direction with 500 grid points. The
∆r/r is 1% in the gain region. We use a reflecting boundary condition at the center
for all GR-hydro-transport quantities. The outer boundary is at 109 cm. We em-
ployed a inflow boundary condition at the outer boundary for the hydrodynamics
equations. For the Einstein equations, the Sommerfeld boundary condition (Baum-
garte et al., 2013) is applied at the outer boundary. The free-streaming boundary
condition is applied for the transport equation at the outer boundary (see, chapter
2). A reflecting boundary condition is used at the poles for all quantities.

4.2 Progenitor Properties

In this section, we describe different properties of very massive star progenitors used
in this study (see, e.g. Vink 2015 for definition of very massive stars). We conducted
core-collapse simulation of several very massive star progenitors from the stellar
evolution calculation of Woosley (2017). The stellar evolution was conducted by the
KEPLER code (see, e.g. Heger, Langer, and Woosley 2000; Woosley, Heger, and
Weaver 2002; Heger, Woosley, and Spruit 2005; Sukhbold et al. 2016). A very mas-
sive star possibly can experience pulsational pair instability after the carbon burning
phase. In the post-carbon burning period electron-positron pair is produced if a star
have high enough temperature (> 3 × 109 K). During the pair creation thermal
energy is converted to rest mass energy of the pair which otherwise would have
contributed to the pressure of the star. As a result, the adiabatic index drops below
4/3. Due to lack of pressure support the star contracts and the temperature rises.
The temperature rise causes rapid burning of carbon, oxygen and, in some cases,
even silicon. The energy release from the burning increases the pressure and slows
down the collapse. If enough energy is released the star can experience rebound
and explosion is possible. These phenomenon is called the pulsational pair instabil-
ity and happens when the Helium core mass is approximately above 35 M�. If the
energy release from the burning is high, so that, the whole star explode in a single
pulse, then it is called “pair-instability supernova”. The star with Helium core mass
approximately above 65 M� undergoes pair-instability supernova. If the energy re-
lease is not enough to unbind the whole star in a single pulse, star can experience
multiple cycle of expansion and contraction. It is called “pulsational pair-instability
supernova”. Due to pulsation the star loses its outer Hydrogen and in some cases
the Helium envelops. We refer to Woosley and Heger (2015), for a review on the
topic of pulsation pair-instability in the very massive star.
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FIGURE 4.1: Progenitor Property. In the top row, we show the initial radial profile of
baryonic density (left) and temperature (right) for different progenitor models. In the
middle row, we show the initial radial profile of specific angular momentum (left) for
different progenitor models and the abundance of different nuclei against mass coordi-
nate for C115 model. In the bottom row, the initial abundance is shown against the mass

coordinate for R80Ar model (left) and C60C model (right).
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FIGURE 4.2: Specific angular momentum of the ISCO and the corresponding specific
angular momentum of the C60C model progenitor. An accretion disk can be formed on
mass coordinates where angular momentum of progenitor is higher than that of ISCO.

We studied the non-rotating 115 M� model (hereafter, C115) and rotating 80 M�
and 60 M� model (hereafter, R80Ar and C60C respectively). We also studied the
80 M� model without rotation (hereafter, NR80Ar). All model have zero-age-main-
sequence (ZAMS) metallicity of 10% Z�. The C60C model has undergone chemically
homogeneous evolution due to efficient mixing induced by the rapid rotation (see,
e.g. Woosley and Heger 2006). Some of the properties of the progenitors are shown
in Table 4.1 (for details, see Table 5 of Woosley 2017). Table 4.1 shows the remnant
mass, Mrem, after pulsational mass losses, the iron-core mass, MFe, the compactness
parameter, ξ2.5 M� , the specific angular momentum of remnant, Jrem, the iron-core
specific angular momentum, JFe and the Kerr parameter of the remnant, arem, after
pulsational mass losses. The compactness parameter is defined as in O’Connor and
Ott (2011):

ξM =
M/M�

R(Mbary = M)/1000 km
, (4.1)

and the Kerr parameter is defined as,

arem =
Jremc

GM2
rem

. (4.2)

The progenitors have iron-core of mass in the range of 2.35-2.74 M� (see, Table
4.1). The values of compactness of the progenitors are very high. The Fig. 4.1 shows
the density, ρ, temperature, T, and specific angular momentum, j, profile along the
radius for different progenitors. It also shows the abundance of different species
against the mass coordinate. The rotating model R80Ar and C60C has the specific
angular momentum of about 2.85× 1015 cm2/s and 1.68× 1016 cm2/s in the silicon
shell. The C115 model has lost the hydrogen envelop. The R80Ar and C60C model
has oxygen envelop mixed with helium.

The rapidly rotating C60C model can possibly form an accretion disk, after its
inner core have collapsed to a BH. In Fig. 4.2, shows the specific angular momentum
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of C60C model and the specific angular momentum of innermost stable circular orbit
(ISCO) of the kerr BH against mass coordinate, m(r). We use the rotating BH poten-
tial from Artemova, Bjoernsson, and Novikov (1996) for the calculation of specific
angular momentum of ISCO. If the specific angular momentum of the progenitor
at certain m(r) is higher than the specific angular momentum of ISCO, an accretion
disk can be formed at that m(r). In Fig. 4.2, we see the specific angular momentum
of the C60C progenitor is greater than that of ISCO at m(r) > 18 M�. Therefore, the
C60C model has the potential to form an accretion disk around a BH.

4.3 Definition

In this section, we show definitions of different diagnostic quantities used for the
analysis of the simulation results. The mass accretion rate at a radius r is defined as:

Ṁ(r) = r2e4φ
∫

dΩ Wρ(vr − βr/α) , (4.3)

where, φ, βr, α, ρ, vr, W are the conformal factor, radial component of the shift vector,
the lapse function, the baryonic density, the radial fluid velocity and lorentz factor,
respectively and dΩ = 2πd(cos θ). The mass of a shell is defined as:

m(r) =
∫

dV Wρ . (4.4)

Here, dV = drr2e6φdΩ. The integral spans over the width of the mass shell in
radial direction and from 0 to π in the polar direction. Similarly, the total angular
momentum along the rotation axes is calculated by:

Jtot
z (r) =

∫
dV e−2φW2ρhvz , (4.5)

where h is the specific enthalpy given by c2 + e + P/ρ. ε, P, vz are the specific in-
ternal energy with out rest mass, the pressure and the covariant component of fluid
velocity along the rotating axes, respectively. The mass in the gain layer is given by:

Mgain =
∫

Rg(θ)<r<Rsh(θ)
dV Wρ , (4.6)

and the specific angular momentum in the gain layer along the rotation axes is given
by:

jgain =
1

Mgain

∫

Rg(θ)<r<Rsh(θ)
dV e−2φW2ρhvz . (4.7)

We assume the surface density of PNS is 1011 g/cm3. The rotational period of PNS
is given by:

TNS =
2πINS

JNS
, (4.8)
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where INS and JNS are the moment of inertia and the total angular momentum of the
PNS. The angular average of any quantity X is given by:

〈X〉(r) ≡
∫

dΩXWρ∫
dΩWρ

. (4.9)

The energy is calculated using the below formula following Müller, Janka, and Marek
(2012):

etot = α(ρhW2 − P)− ρWc2 , (4.10)

The turbulent kinetic energy is given by:

eturb = ρ ∑
i=r,θ,φ

(vi − 〈vi〉)2 . (4.11)

The total energy in the gain layer is given by:

Etot
gain =

∫

Rg(θ)<r<Rsh(θ)
dV etot . (4.12)

Here, Rg and Rsh are the gain and shock radius, respectively. Similarly the turbulant
energy in the gain layer is given by:

Eturb
gain =

∫

Rg(θ)<r<Rsh(θ)
dV eturb . (4.13)

We define the diagnostic energy in the gain layer by:

Ediag
gain =

∫

Rg(θ)<r<Rsh(θ)
dV etot Θ(etot), (4.14)

where Θ is the Heaviside step function. The overburden energy is calculated using
below formula:

Eob =
∫

Rsh(θ)<r<Rout

dV etot , (4.15)

where Rout is the outer radius of the star. The Luminosity is given by the below
formula:

Lν(r) = e4φr2
∫

dΩ
∫

dεHν(r, θ, ε) . (4.16)

The mean neutrino energy is defined as:

〈εν〉(r, θ) ≡
∫

εJν(r, θ, ε) ε−1dε∫
Jν(r, θ, ε) ε−1dε

, (4.17)

and the RMS neutrino energy is defined as:

〈ε2
ν〉(r, θ) ≡

∫
ε2Jν(r, θ, ε)ε−1dε∫
Jν(r, θ, ε)ε−1dε

. (4.18)

Here, Jν andHν are the energy density and energy density flux of neutrino, respec-
tively. The spherical harmonics decomposition of the shock radius Rsh is done using



4.3. Definition 41

below formula:

al ≡
2l + 1

2

∫ π

0
Rsh(θ)Pl(cos θ)d(cos θ). (4.19)

The heating efficiency is given by:

η ≡ Qgain

Lνe(r = 500 km) + Lν̄e(r = 500 km)
, (4.20)

here, Q̇ν is the total heating rate by neutrinos in the gain layer. The Brunt-Väisälä
frequency is calculated by,

N2
BV ≡

αCL

ρhe4φ

∂α

∂r
, (4.21)

where CL is given by:

CL ≡
∂ρ(1 + ε)

∂r
− 1

c2
s

∂P
∂r

. (4.22)

The advection timescale through the gain layer is defines as:

τadv =
Mgain

Ṁ(r = 500 km)
, (4.23)

The heating timescale in the gain layer is given by the following formula:

τheat =
|Etot

gain|
Qgain

, (4.24)

The χ parameter is given by:

χ =
τadv

τconv
. (4.25)

Here, τconv is convection timescale in the gain layer. The convection timescale in
the gain layer is calculated using the Brunt-Väisälä frequency where NBV < 0. We
calculate the quadrupole amplitude, AE2

20 , according to the formula (see, e.g. Ober-
gaulinger, Aloy, and Müller 2006):

AE2
20 =

G
c4

16π3/4
√

15

∫ +1

−1
dz
∫ ∞

0
r2drρ

[
vrvr(3z2 − 1) + vθvθ(2− 3z2)

−vφvφ − 6vrvθz
√

1− z2 − r∂rΦ(3z2 − 1) + 3∂θΦz
√

1− z2
]

, (4.26)

where, z = cos θ and Φ is the gravitational potential. The dimensionless strain, h+,
measured by an observer at a distance R and at an inclination angle Θ is given by:

h+ =
1
8

√
15

π
sin2 Θ

AE2
20

R
. (4.27)

In this work, we assume the observe is located at equatorial plane (sin2 Θ = 1).
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4.4 Results: before black hole formation

In this section, we will discuss the result of our CCSN simulations. The model C115,
NR80Ar and R80Ar behave rather similarly. First, We will discuss the time evolution
of these three model. Later, we will discuss about the rapidly rotating C60C model.
In the top left plot of Fig. 4.3, the time evolution of the shock radius is show. We see
the rapid shock expansion after the bounce stops around 30 ms post-bounce time
(tpb) at a radius around 130 km for C115, NR80Ar and R80Ar model. We observe the
prompt proto-neutron star (PNS) convection created by the lepton number gradient
last until 20-25 ms post-bounce time. Since the rotation in the model R80Ar is weak,
we do not see impact of rotation on the prompt proto-neutron star convection in
R80Ar model. We see the stagnated shocks start to expand at around 210 ms post-
bounce time for above mentioned models.

In the top right plot of Fig. 4.3, we see the time evolution of the mass accretion
rate at a radius of 500 km. The mass accretion rate of C115, NR80Ar and R80Ar
model are similar. The mass accretion rates of all the mentioned model remain at
high value of 2-3 M�/s in between 100 ms and 250 ms post-bounce time.

The rapid contraction of the proto-neutron star (see the right plot in the second
row of Fig. 4.3) along with high mass accretion rate (see the top right plot of Fig. 4.3),
which decreases the advection timescale through the gain layer, trigger the standing
accretion shock instability (SASI) (see, e.g. Blondin and Mezzacappa 2007; Foglizzo
et al. 2007). Since we are conducting the simulation in 2D, we observe only the polar
sloshing SASI activities (see, e.g. Fernández et al. 2014 for detail discussion of SASI
in 2D dimensional CCSN simulation). The SASI causes the expansion of the shock
along the polar axis and brings more materials behind the shock. These material acts
as a fresh fuel and produces electron type neutrinos by the electron and positron cap-
ture on the free neutron and proton, respectively. The SASI activities continue until
around 180-200 ms post-bounce time. Afterward, due to strong neutrino heating in
the gain layer (see the right plot in the second row of Fig. 4.4), convection dominates
over the SASI. In the third row from the top of Fig. 4.4, the right plot shows the χ
parameter in the gain layer. The χ parameter, which is the ratio of the advection
timescale and the growth timescale of the convection, obtains a value larger than
3 around the time when the neutrino heated convection in the gain layer becomes
dominant over SASI (see, e.g. Foglizzo, Scheck, and Janka 2006; Fernández et al.
2014 for discussion about the χ parameter).

During the SASI activity period, the high entropy hot bubbles created at the both
poles flow down to the equatorial plane and merge together, forming large high
entropy bubble. The large equatorial hot bubble helps to push the shock in radially
outward direction.

In Fig. 4.3, we also show the spherical harmonics decomposition of the shock
radius according to equation (4.19). We show the l = 1, 2, 3 component normalized
by the mean shock radius, a0, in the third row right plot, bottom row left and right
plot of Fig. 4.3, respectively. we see that due to SASI, the shock is highly deformed.
The dipole (l = 1) and quadruple (l = 2) component of the shock is about 25%. We
also see that the quadruple component of the PNS radius (thin line) is close to zero
for C115, NR80Ar and R80Ar model.

In the top row of Fig. 4.5, we show the neutrino luminosities at 500 km for dif-
ferent type of neutrinos. The neutrino luminosity can be divided into two parts,
the diffusive part and the accretion part. The diffusive part is due to the diffusion
of neutrino out of the PNS. The infalling matter releases the gravitational binding
energy while settling down onto the surface of the PNS and a part of the released
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FIGURE 4.3: Shock and neutron star properties. In the top row, we show the time evo-
lution of shock radius (left) and mass accretion rate at r = 500 km (right) for different
models. In the second row, we show the time evolution of mass (left) and radius (right)
of PNS. In the third row, we show the time evolution of rotational period of PNS (left)
and dipole (l=1) component of shock radius (right). In the bottom row, we show the
time evolution of quadruple component (l=2) of shock (thick) and PNS (thin) in the left
plot and the right plot shows the l=3 component of the shock radius. The C115, NR80Ar,
R80Ar and C60C model is represented by blue, orange, green and violet line, respec-

tively.
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FIGURE 4.4: Gain region properties. In the top row, we show the time evolution of gain
radius (left) and gain layer mass (right) for different models. In the second row, we show
the time evolution of gain layer specific angular momentum (left) and gain layer heating
(right). In the third row, we show the time evolution of heating efficiency (left) and χ
parameter (right) in the gain layer. In the bottom row, we show the time evolution of
turbulant energy in the left plot and the right plot shows the diagnostic energy of the
shock-heated material. The C115, NR80Ar, R80Ar and C60C model is represented by

blue, orange, green and violet line, respectively.
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FIGURE 4.5: Neutrino properties. The top row shows the time evolution of luminosities
at r = 500 km for νe (left), ν̄e (middle) and νx (right). The middle row shows the time evo-
lution of mean neutrino energies and the bottom row shows the RMS neutrino energies

at r = 500 km.
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FIGURE 4.8: Mass shell plot of C115 model at different times. The iron core mass is 2.44
M�. The entropy per baryon of the gas is color coded.
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FIGURE 4.9: Mass shell plot of NR80Ar model at different times. The iron core mass is
2.74 M�. The entropy per baryon of the gas is color coded.
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FIGURE 4.10: Mass shell plot of R80Ar model at different times. The iron core mass is
2.74 M�. The entropy per baryon of the gas is color coded.
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FIGURE 4.11: Mass shell plot of C60C model at different times. The iron core mass is
2.35 M�. The entropy per baryon of the gas is color coded.
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FIGURE 4.16: Plot of entropy per baryon (left column) and radial velocity (right column)
of the gas for the model C60C at different times.
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energy produces accretion luminosity, Lacc. The high neutrino luminosities comes
from the high mass accretion of the mentioned model. The accretion luminosity is
proportional to the mass accretion rate and the gravitational potential energy of the
PNS (see, e.g. Müller and Janka 2014).

Lacc = ξ
G MNS Ṁ

RNS
, (4.28)

where MNS, RNS are the PNS mass and radius, respectively and Ṁ is the mass accre-
tion rate. The value of proportionality constant ξ is around 0.45 for all mentioned
models. In the top row of Fig. 4.5, we show the neutrino luminosities. The luminosi-
ties are about 150 erg/s for the electron type neutrinos in between 100 and 200 ms
post-bounce time. In the middle and bottom row of Fig. 4.5, we show the mean and
RMS energies of different neutrino species. we observe the rise of neutrino mean
and RMS energies which is in agreement with the rapid rise of the PNS mass and
rapid contraction of PNS radius (see the left and right plot in the second row of Fig.
4.3).

The gain layer, where the net neutrino heating takes place, is formed at around 70
ms post-bounce time at a radius of around 130 km (see the top left plot of Fig. 4.4). In
the right plot of second row of Fig. 4.4, we see the neutrino heating in the gain layer
rises to a high value of approximately 6× 1020 erg/g/s within 150 ms post-bounce
time and remains around that high value between 150-200 ms. Since the progenitors
have massive iron cores (see Table. 4.1) and due to large shock radius of 200 km,
initially the gain layer has large mass of around 5× 10−2 M� (see the top left plot
of Fig. 4.4). The heating per unit mass in the gain layer, Q+

gain, can be coined as (see
Müller, Janka, and Marek 2012):

Q+
gain ∝

Lν 〈ε2
ν〉

R2
gain

, (4.29)

where Lν, 〈ε2
ν〉 are the luminosity and RMS energy of electron type neutrinos, respec-

tively and Mgain, Rgain are the gain layer mass and radius, respectively. The high and
growing neutrino luminosities and RMS energies and also the high gain layer mass
and rapid contraction of the gain radius altogether causes the rise of gain layer heat-
ing to a high value. In the right plot of third row of Fig. 4.4, the heating efficiency,
defined according to equation (4.20), in gain layer is shown. We observe a high heat-
ing efficiency of 10-20%. Due to high heating, the heating timescale, τheat, in the
gain layer eventually becomes shorter then the advection timescale, τadv, of matter
passing through the gain layer. As a result, the shock starts expanding and the mean
shock radius crosses 300 km around 210 ms post-bounce time for all above men-
tioned models. The ratio of the advection and heating timescale crosses 1 around
same time as we can see in Fig. 4.6.

The matter behind the shock gains additional energy from the recombination of
the free nucleons into α-particle when the shock crosses 300 km. The shock expands
rather spherically. Accretion of matter behind the shock continues through several
down-flow channels. We observe strong outflow of matter along the poles and equa-
torial plane. The neutrino heated hot bubble has low density and high temperature
associated with high entropy. The hot bubble raises to a higher radial distance due
to buoyancy force. The shock velocity increases after the start of shock expansion.
Its reaches a steady value of around 10000 km/s within 50 ms after the start of shock
expansion.
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The mass accretion rate drops after the shock expansion sets in and continues
at a smaller rate as we can see from the top right plot of Fig. 4.3. In the right plot
of second row of Fig. 4.4, we see the neutrino heating of the shock-heated material
continues at a lower rate of 1− 2× 1021 erg/g/s after shock expansion.

The maximum mass supported by the SFHo equation of state at zero temper-
ature is around 2.059 M� (Steiner, Hempel, and Fischer, 2013). The hot PNS gets
additional thermal pressure support to sustain mass above 2.059 M�. The PNS mass
continues to increase and when the baryonic mass of the PNS crosses 2.66 M� a black
hole is formed around 400 ms post-bounce time for the C115 model and 350 ms for
the 80 M� rotating and non-rotating models. We see the rotation of the 80 M� model
do not impact the black hole formation time, as the weak rotation of this model do
not change the mass accretion rate of the PNS.

The interface between the iron core and the Si shell for the C115 model crosses
the shock around 180 ms post-bounce time (see the mass shell 2.44 M� in Fig. 4.8),
which is before the initiation of the shock expansion (around 210 ms post-bounce
time). On the other hand, for the NR80Ar and R80Ar model, the interface crosses
the shock around 280 ms post-bounce time (see the mass shell 2.74 M� in Fig. 4.9 and
4.10), which is after the shock expansion have started (around 220 ms post-bounce
time). After the shock has crossed 1000 km, the shock deposits enough energy into
the crossing mass shells and the crossing mass shells expand outward as can be
observed from Fig. 4.9 and 4.10.

In the bottom row of Fig. 4.4, we see the turbulent energy (left plot) and the
diagnostic energy (right plot) of the shock-heated material increases steadily after
the shock expansion. The diagnostic energy of the shock-heated material for C115
model at the BH formation is around 2.1× 1051 erg and the overburden energy is
around −6.8× 1051 erg. At the time of BH formation the magnitude of overburden
energy is still greater than the diagnostic energy of the shock-heated material. There-
fore, it is necessary to conduct simulation after BH formation to see if the diagnostic
energy of the shock-heated material can overcome the overburden energy of the ma-
terial outside shock and the shock expansion leads to successful shock breakout (see,
e.g. Bruenn et al. 2013 for discussion about overburden energy and its relevance to
explosion). The diagnostic energy for NR80Ar and R80Ar model at the time of BH
formation is around 1.9× 1051 erg and 1.98× 1051 erg, respectively. The overburden
energy is around −9.63× 1051 erg and −9.54× 1051 erg, respectively.

The mass accretion rate on to the PNS is slightly higher in the NR80Ar and R80Ar
model compared to C115 model. The Rossby number in the gain layer for the rotat-
ing R80Ar is around 5-10. We do not see strong impact of the rotation in the post-
bounce dynamics for the R80Ar model, which is expected from the high Rossby
number in the gain layer. The rotating R80Ar and non-rotating NR80Ar model have
similar time evolution. The rotation in the model R80Ar is not strong enough to
cause deformation of the PNS as we can see from the quadruple component of the
PNS radius deformation (thin line in the bottom-left plot of Fig. 4.3). In the left plot
of third row of Fig. 4.3, we see the rotational period decreases from 20 ms (at core
bounce) to 5 ms at the black hole formation time for the R80Ar model.

In Fig. 4.12, we show the dimensionless strain of the gravitational wave, h+, mul-
tiplied by the observer distance R for C115, NR80Ar and R80Ar model. The top plot
show early 150 ms post-bounce time and the bottom plot shows the whole time evo-
lution of the dimensionless strain. In the early phase (tpb < 30 ms), we see the gravi-
tational wave due to prompt PNS convection. Afterwards, we see the low frequency
gravitational wave due to SASI sloshing motion. The SASI motion stops around
tpb = 150 ms and the hot-bubble convection due to strong neutrino heating starts to
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dominate the fluid motion. Therefore, we see the high frequency gravitational wave
characterizing hot-bubble convection. After the start of shock expansion, the C115
and NR80Ar model has strong outflow of material in the equatorial plane and the
shock-heated material have oblate shape as we can see from Fig. 4.13 and 4.14. This
aspherical shock expansion leads to “memory” signature in the gravitational wave
strain (see, e.g. Favata 2010 for a review about the gravitation wave memory effect).
As a result, we see the negative value of dimensionless strain for C115 and NR80Ar
model. The dimensionless strain is positive for R80Ar model because in this model
the shock-heated material has prolate shape (strong outflow along the polar axes) as
we can see from Fig. 4.15 (see, e.g. Murphy, Ott, and Burrows 2009 for discussion
about gravitational wave produced by different fluid instabilities in 2D).

The C60C model is rapidly rotating. This model gains some centrifugal support
against gravity due to its rapid rotation. As a result the PNS has larger mean radius
in C60C model. In the bottom-right plot of Fig. 4.3, we see the quadruple compo-
nent of the PNS radius for C60C model (thin violet line) has large values, 10-25%
of the mean radius of the PNS. The PNS has a oblate shape. The C60C model also
has slightly lower mass accretion rate (see the top-right plot of Fig. 4.3) in the early
phase (tpb < 100ms). In the top-left plot of Fig. 4.3, the early shock expansion af-
ter bounce stops at 120-130 km at 20 ms post-bounce time. Afterwards, the shock
steadily expands to approximately 190 km and then the shock starts to contract. In
the right plot of third row of Fig. 4.4, we see neutrino heating efficiency, η, remains at
lower values compared to models where shock expansion occur (e.g. C115, NR80Ar,
R80Ar). The shock is not revived by neutrino heating in this model. The SASI slosh-
ing motion survives in this model until the BH formation, which is reflected in the
value of χ parameter in the right plot of third row of Fig. 4.4. The χ parameter
remain below 3 until the BH formation. In the top-right plot of Fig. 4.3, we see
the mass accretion rate continues at a high value. Eventually, a BH is formed around
510 ms post-bounce time when the baryonic mass of the PNS is around 2.88 M�. The
PNS can support additional mass due to high temperature and rapid rotation. High
temperature creates thermal pressure support and rapid rotation creates centrifugal
support against gravity. In the left plot of third row of Fig. 4.3, we see the rotational
period of PNS is around 3-4 ms at the time of BH formation. The kerr parameter of
the newly born BH can be estimated as:

aBH =
JNS,BHF c

G M2
NS,BHF

, (4.30)

where JNS,BHF, MNS,BHF are the total angular momentum and mass of the PNS at the
time of BH formation. We obtained a value of 0.66 for aBH.

4.5 Results: after black hole formation

We continued our simulation after BH formation. For this study, we used NR80Ar
model and applied Cowling approximation (kept metric fixed with time). We con-
ducted the simulation until ∼ 1 s post-bounce time. The initial gravitating mass
of the BH is around 2.58 M�. In the left plot of Fig. 4.17, we see the BH mass in-
creases with time and at the end of simulation BH has accreted 0.6 M� baryonic
mass. The left plot of middle row of Fig. 4.17 shows the mass accretion at 500 km
radial distance. The mass accretion rate remains at a high value of ∼ 0.8 M�/s and
the accretion flow near BH is supersonic.
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FIGURE 4.17: Time evolution of the black hole mass (left plot) and mass accretion rate at
a radial distance of 500 km (right plot).
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FIGURE 4.18: Time evolution of the turbulent kinetic energy (left plot) and the diagnostic
energy (right plot) of shock-heated material after BH formation.
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FIGURE 4.19: Entropy (left column) and radial velocity (right column) plot of the
NR80Ar model at different times after BH formation.
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FIGURE 4.20: Mass shell plot of NR80Ar model at different times after BH formation.

In Fig. 4.18, we see that the turbulent kinetic energy (left plot) and the diag-
nostic energy of shock-heated material after BH formation decline. At the end of
simulation, the diagnostic energy is around 0.8× 1051 erg, which is lower than the
overburden energy (−7.7× 1051 erg) of material ahead of the shock.

In Fig. 4.20, we show the mass shell plot for NR80Ar model after BH formation
along with shock radius. As a mass shell crosses the expanding shock, the shock
transfer enough energy to that mass shell and infalling mass shell expands initially.
Eventually, expansion of mass shell is stopped and it falls back onto BH. When the
shock reaches 7000 km, infalling mass shells through the shock no longer experience
expansion. The shock becomes spherical as it propagates outward. The steady shock
velocity of around 9500 km/s is maintained after BH formation. The information
about BH formation at the center propagate via rarefaction wave which travel at
sound’s speed. In our simulation, we observe the shock-heated material has a sound
speed of around 9000 km/s. Until the end of the simulation, the rarefaction wave has
not reached the shock. The shock continued to expand until the end of simulation
and average shock radius has a value of 8500 km (still inside Si-O shell). A long-term
simulation is required to see the final fate of the shock, does it continue to grow or
fall back into the BH?

In Fig. 4.19, we show the entropy (left) and the radial velocity (right) of NR80Ar
model at 510, 676, 840 and 1010 ms post-bounce time. After the BH formation, the
outflow of matter from the central object is stopped but the equatorial and polar hot-
bubbles (high entropy material) continue to expand. Density of the hot-bubbles is
lower compared to its surrounding. As a result, the hot-bubbles experiences buoy-
ancy force and rise radially outward. We see strong accretion flows surrounding
the rising hot-bubbles. The expanding hot bubbles have high pressure compared to
their surrounding material. The expanding bubbles transfer energy and momentum
to the surrounding material through mechanical work. Chan et al. (2018) claimed
based on their simulation after BH formation, that the surrounding material can
obtain radially outward velocity if sufficient energy and momentum is transferred
from the initial neutrino heated hot-bubble. Eventually, the original neutrino heated
hot-bubble falls back to BH but the shock continues to expand in Chan et al. (2018).
At the end of our simulation, the hot-bubbles have not fallen into BH. Although,
matter continues to fall into BH from the bottom of hot-bubble. The outer radius of
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the equatorial hot-bubble is around 5000 km at the end of our simulation. Further
long-term simulation is required to see whether the equatorial hot-bubble can rise
outward as the density of surrounding material drops.

As mentioned before, we conduct our simulation after BH formation in Cowl-
ing approximation. As a result, we underestimate gravitational force, which in turn
favors shock expansion. The Cowling approximation also prohibits us from contin-
uing the simulation further as the mass of BH has increased by 20%.

Another approximation we made is that we conduct our simulation in two di-
mension. The difference between 2D and 3D explosion dynamics after shock revival
have been studied by (Müller, 2015). In two dimension, the equatorial outflow will
represent (see, Fig. 4.19) a toroidal shape if it is mapped to three dimension. As a
result, the equatorial outflow in two dimension have to do more mechanical work,
which is proportional to surface area of outflow, compared to a three-dimensional
equatorial outflow. The two-dimensionality of the equatorial outflow disfavors its
expansion.
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Chapter 5

Conclusion

In this work, we presented a new code to solve multi-dimensional neutrino-transport
in spherical polar coordinates and coupled to fully general relativistic hydrodynam-
ics code (Baumgarte et al., 2013; Montero, Baumgarte, and Müller, 2014). The trans-
port solver assumes the flux-limited diffusion approximation and evolves the neu-
trino energy densities as measured in the frame comoving with the fluid. In order to
improve the computational efficiency and parallel scalability compared to a scheme
that solves the multi-dimensional FLD equations in a single, unsplit step, we employ
operator splitting such that different parts of the equations (and different coordinate
directions) are dealt with in separate, consecutive steps. The source terms as well
as the radial- and energy-derivatives are integrated implicitly, while the non-radial
derivatives are integrated explicitly using the Allen-Cheng method (Allen, 1970).

We tested the algorithm and its implementation by investigating several prob-
lems in 1D and 2D and comparing to reference solutions. The tests demonstrate that
the code runs stably and it robustly handles diffusion, transition to free-streaming,
energy-bin coupling, multi-dimensional transport, microphysical neutrino interac-
tions, and the coupling to GR-hydro. We confirmed that the Allen-Cheng method
is, in contrast to conventional explicit schemes, unconditionally stable even if the
diffusion timescale of a grid cell is shorter than the time step used for integration.
However, estimates showed that such situations are expected to appear in multidi-
mensional CCSN simulations only near the center of the PNS or close to the shock,
i.e. at locations where lateral neutrino fluxes are strongly subdominant.

In terms of physics ingredients the most sophisticated tests performed here con-
sider the core collapse and post-bounce evolution of a massive star in spherical sym-
metry. We compared a Newtonian version of this configuration with the results of
the M1 code ALCAR (Just, Obergaulinger, and Janka, 2015; Just et al., 2018) and
found that most global properties agree remarkably well, namely within 5− 10 %
for some quantities (e.g., the maximum shock radius and even better for most other
quantities). We also compared the Newtonian simulation with its GR counterpart
and were able to confirm the tendency of GR (e.g. Bruenn, De Nisco, and Mez-
zacappa, 2001; Marek et al., 2006; Müller, Janka, and Marek, 2012; O’Connor and
Couch, 2018) to lead to an overall more compact post-bounce configuration along
with higher neutrino luminosities and mean energies. A final comparison of the GR
simulation using the Levermore-Pomraning (LP) flux-limiter with another GR sim-
ulation using the Wilson limiter revealed quite significant differences. But we see
good agreement of the LP simulation with the ALCAR simulation.

We applied our newly developed general relativistic radiation hydrodynamics
code for core-collapse simulations of very massive stars (∼ 100M�; see, Vink 2015
for definition of very massive star). We used very massive star progenitors with
ZAMS masses of 60, 80 and 100 M� from (Woosley, 2017), denoted by C60C, R80Ar
and C115, respectively. The 60 M� mass progenitor is rapidly rotating and 80 M�
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mass model has slow rotation. We have also conducted a simulation of this 80 M�
progenitor without rotation (model NR80Ar) to discriminate the effect of rotation.
The 115 M� mass progenitor is non-rotating.

All models studied in this work have high mass accretion rate of the new born
NS. Strong SASI activity (see, e.g. Foglizzo, Scheck, and Janka 2006 for discussion
about SASI) is seen in all models. Due to the high mass accretion rates, the neutrino
luminosities are high, which in turn causes strong neutrino heating. The shock is
revived because of thus strong neutrino heating with the aid of hydrodynamical
instabilities in model C115, NR80Ar and R80Ar (see Fig. 4.3). Before shock revival
all these models show convective activity. Rotation does not have strong impact
on the dynamics of the 80 M� mass model. However, the shock-heated material
have a prolate shape in rotating model (see Fig. 4.15) and is slightly oblate in non-
rotating model (see Fig. 4.14). As a result, the gravitational wave (GW) amplitudes
have opposite sign in these two models (see Fig. 4.12) after explosion due to the
GW memory effect (see, e.g. Favata 2010). The rapidly rotating C60 model does not
show shock revival and eventually a rotating BH is formed with Kerr parameter of
0.66. After shock revival in C115, NR80Ar and R80Ar model, BHs are formed due
to continuous accretion through accretion downdrafts. At the time of BH formation,
the revived shock is at ∼ 2000 km and expands with a velocity of 10,000 km/s.

We continued our simulation after BH formation in model NR80Ar. We see that
the mass-accretion rate into the BH is around 0.8 M�/s and the accretion into the
BH is supersonic. The shock continues to expand after BH formation. As the shock
expands, it becomes more spherical (see Fig. 4.19). At the end of simulation, the
shock is around 8500 km. The mass shells falling through the shock get heated by
the shock and expand initially but eventually fall towards the BH (see Fig. 4.20). The
high-entropy bubbles continue to rise after BH formation due to buoyancy forces as
they have lower density compared to their surrounding material. The expanding
high-pressure hot-bubbles transfer energy to the surrounding material by expansion
work. The information about BH formation at the center propagates through fluid
medium by a rarefaction wave. At the end of simulation this rarefaction wave has
not reached the shock.

At the end of simulation of model NR80Ar, the shock is at 8500 km, still inside
Si-O layer. Further continuation of the simulation is required to see the final fate of
the shock and of the shock-heated material, whether they fall back into the BH or
expand through the outer layers of the star causing shock breakout and the ejecta of
some near-surface matter in an explosion-like event. Simulations after BH formation
are also required to see the evolution of the shock for model C115 and the rotating
model R80Ar and rapidly rotating model C60C. A Long-term simulation of C60C
model is needed to see whether an accretion disk is formed around the BH. If an
accretion disk is indeed formed, it might serve as a central engine of collapser model
(see, e.g. Woosley 1993; MacFadyen and Woosley 1999).

Recently, Bollig et al. (2017) have shown the muonization, which is neglected
in this study, of hot PNS matter can soften the equation of state, hence triggering
faster contraction of the PNS. As a result, neutrino luminosities and mean energies
increase, leading to enhanced heating in gain layer. Muonization can affect both
shock revival and BH formation. This effect is more pronounced in more massive
and thus hotter PNSs. Hence, muonization might have strong impact in CCSNe of
very massive stars where more massive and hotter PNS are formed. So, a study with
muons and muon type neutrinos of CCSN of very massive star is required.

In previous years, several 3D simulations of CCSN have been conducted by dif-
ferent groups (see, e.g. Lentz et al. 2015; Melson et al. 2015; Melson, Janka, and
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Marek 2015; Roberts et al. 2016; OConnor and Couch 2018; Summa et al. 2018). The
dynamics of the shock and flow geometry can be quite different in 2D and 3D (see.
e.g. Hanke et al. 2013; Müller 2015). In 3D, spiral SASI mode can develop in addition
to sloshing SASI motions. Since our models show strong SASI activity, inclusion of
spiral mode instabilities may alter the outcome of simulations. Also, the outflow in
2D after shock revival represents a toroidal structure because of the assumed axisym-
metry in 2D. As a result, the hot-bubbles need to do overestimated pressure-volume
work for their expansion and their buoyant rise is disfavored. Hence, a 3D study of
CCSNe of very massive stars is needed.
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Appendix A

Derivation of energy equation in
co-moving frame

The transport equation used in our code evolves the energy density, J , measured in
an orthonormal comoving frame. This Appendix shows how this evolution equation
can be obtained from corresponding equations evolving the lab-frame moments, E
and Fi. The lab-frame equations are derived and discussed in Shibata et al. (2011),
Endeve, Cardall, and Mezzacappa (2012), and Cardall, Endeve, and Mezzacappa
(2013). In Table A.1 we summarize the meaning of various quantities used here and
where to find more information about them. The lab-frame equations contain the
quantities, G, Ia, Pab, Qabc, which are related to the third-moment tensor,

U abc ≡ ε3
∫

lalblc f (xµ, pµ̂)dΩ , (A.1)

by

U abc = Gnanbnc + Ianbnc + Ibnanc + Icnanb + Pabnc + Pbcna + Pacnb + Qabc. (A.2)

We start from the lab-frame neutrino-energy equation as given in conservative
form by equations (171), (91-93), (146), (147), and (173) of Cardall, Endeve, and Mez-
zacappa (2013):

1√−g
∂

∂t
(
√

γE) + 1√−g
∂

∂xj {
√

γ(αF j − βjE)}+F j ∂ ln α

∂xj − S
jkKjk −

1
ε2

∂

∂ε
(ε2Fε)

= −nµ
1
ε

∫
pµCdΩ . (A.3)

The definition of different symbols can be found in Table A.1. Here,

Fε ≡ W{Ij
∂vj

∂τ
+ Pj

k ∂vj

∂xk +
1
2

Pjkvl ∂γjk

∂xl + (I j − Gvj)
∂ ln α

∂xj − PjkKjk + vj Ik
1
α

∂βk

∂xj }

+(Ijvj − G)
∂W
∂τ

+ (Pk
jvk − I j)

∂W
∂xj , (A.4)

with ∂
∂τ ≡ na ∂

∂xa . Equations (A.3) and (A.4) are copied directly from Cardall, Endeve,
and Mezzacappa (2013), who employs slightly different definitions than us concern-
ing the power of ε in the prefactor of the angular moments and third-moment projec-
tions. We now switch to our notation by doing the replacements ε2{E ,F i,S ij,Lijk} →
{E ,F i,S ij,Lijk} and ε{G, Ii, Pij, Qijk} → {G, Ii, Pij, Qijk}. Moreover, we multiply
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TABLE A.1: Meaning of various quantities used in Appendix A and where to find their
computation. The quantities G,Ia,Pab,Qabc used here are denoted by G,I a,P ab,Qabc in
Endeve, Cardall, and Mezzacappa (2012) and by Z ,Y a,X ab,W abc in Cardall, Endeve,
and Mezzacappa (2013), respectively. Also, note that all angular moments (projections of
U abc) in Endeve, Cardall, and Mezzacappa (2012) and Cardall, Endeve, and Mezzacappa

(2013) are defined with a factor ε−2 (ε−1) compared to ours.

J zeroth moment of distribution
function in comoving-frame

equation (2.19)

Hi first moment of distribution
function in comoving-frame

equation (2.19)

Kij second moment of distribution
function in comoving-frame

equation (2.19)

Lijk third moment of distribution
function in comoving-frame

equation (2.19)

ε
zeroth moment of distribution

function in lab-frame
equation (2.22)

Fi first moment of distribution
function in lab-frame

equation (2.22)

Sij second moment of distribution
function in lab-frame

equation (2.22)

G zeroth projection of Uabc

measured in lab-frame
equation (125) of

Cardall, Endeve, and Mezzacappa (2013)

Ii first projection of Uabc

measured in lab-frame
equation (126) of

Cardall, Endeve, and Mezzacappa (2013)

Pij second projection of Uabc

measured in lab-frame
equation (127) of

Cardall, Endeve, and Mezzacappa (2013)

Qijk third projection of Uabc

measured in lab-frame
equation (128) of

Cardall, Endeve, and Mezzacappa (2013)
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eq. (A.3) by ε2√γ and introduce the notation X̂ ≡ √γX for any quantity X to ob-
tain:

1
α

∂

∂t
(Ê) + 1

α

∂

∂xj (αF̂
j − βjÊ) + F̂ j ∂ ln α

∂xj − Ŝ
jkKjk −

∂
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(εF̂ε)

= −nµ
√

γε
∫

pµCdΩ , (A.5)

where the formal definition of Fε is still given by eq. (A.4). Multiplying eq. (A.5) by
W and using the product rule (i.e. W ∂ f

∂x = ∂(W f )
∂x − f ∂W

∂x ) one finds
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(WÊ) + 1

α

∂

∂xj {W(αF̂ j − βjÊ)}+ WF̂ j ∂ ln α
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∂xj = −nµW
√

γε
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pµCdΩ . (A.6)

We now extract the lab-frame energy-momentum equation from eqs. (172), (95-
97), (149), (150), and (174) of Cardall, Endeve, and Mezzacappa (2013), again keeping
their notation first:
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where

Sε
i ≡ W{Pij

∂vj

∂τ
+ Qij

k ∂vj

∂xk +
1
2

Qi
jkvl ∂γjk

∂xl + (Pi
j − Iivj)

∂ ln α

∂xj −Qi
jkKjk + vjPik

1
α

∂βk

∂xj }

+(Pikvk − Ii)
∂W
∂τ

+ (Qik
jvk − Pi

j)
∂W
∂xj . (A.8)

Switching to our notation by doing the same replacements as for the energy equation
above, we obtain:
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where the formal definition of Sε
i is still given by eq. (A.8). We multiply eq. (A.9) by

W and contract with vi, to end up with
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i )− viF̂i
1
α

∂W
∂t
− vi(αŜ j
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Subtracting eq. (A.10) from eq. (A.6) we get
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We further rewrite nµ ∂
∂xµ = ∂

∂τ with nµ = (1/α,−βi/α), W(nµ + γiµvi) = uµ,
−uµ pµ = ε, and redefine ε2C → C:
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∂xj + WviF̂j
1
α

∂βj

∂xi −WŜ jk(Kjk −
1
2

vi ∂γjk

∂xi )

−(Ê − viF̂i)
∂W
∂τ
− (F̂ j − viŜ j

i )
∂W
∂xj + WF̂i

∂vi

∂τ
+ WŜ j

i
∂vi

∂xj

− ∂

∂ε
{Wε(F̂ε − viŜε

i )} =
√

γ
∫

CdΩ . (A.12)

The term inside the energy derivative of eq. (A.12) is given by:

εW(Fε − viSε
i ) = εW[W{Ij

∂vj

∂τ
+ Pj

k ∂vj

∂xk +
1
2

Pjkvl ∂γjk

∂xl + (I j − Gvj)
∂ ln α

∂xj

−PjkKjk + vj Ik
1
α

∂βk

∂xj }+ (Ijvj − G)
∂W
∂τ

+ (Pk
jvk − I j)

∂W
∂xj

−viW{Pij
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∂τ
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jkvl ∂γjk
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−Qi
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1
α

∂βk

∂xj } − vi(Pikvk − Ii)
∂W
∂τ
− vi(Qik

jvk − Pi
j)

∂W
∂xj ]

= ε

{
W2[(Ij − viPij)

∂vj

∂τ
+ (Pj

k − viQij
k)

∂vj

∂xk

+{(I j − Gvj)− vi(Pi
j − Iivj)}∂ ln α

∂xj + vj(Ik − viPik)
1
α
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∂xj

+(Pjk − viQi
jk)(

1
2

vl ∂γjk
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+W{(Ijvj − G)− vi(Pikvk − Ii)}
∂W
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+W{(Pk
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jvk − Pi
j)}∂W

∂xj

}
. (A.13)

In order to express {G, Ii, Pij, Qijk} in terms of the lab-frame moments, {E, Fi, Sij},
we use eqs. (74)-(80) of Endeve, Cardall, and Mezzacappa (2012), however with ε set
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to 1 in their equations to account for the different definitions:

εW(Fε − viSε
i ) = ε

{
W
[
Fj

∂vj

∂τ
+ Sj

k ∂vj

∂xk + (F j − Evj)
∂ ln α

∂xj

+vjFk
1
α

∂βk

∂xj + S
jk(

1
2

vl ∂γjk

∂xl − Kjk)
]

−(E − viFi)
∂W
∂τ
− (F j − Sk

jvk)
∂W
∂xj

}
.

≡ εRε , (A.14)

where in the last line we defined Rε used in the main text of this paper. While Rε is
expressed in eq. (A.14) in terms of the lab-frame moments, it can be re-expressed in
terms of the comoving-frame moments using

E − viFi = J + v̄îHî,

F i − Sj
ivj =

1
W

ei
îH

î + viJ + Wviv̄îHî,

F i − Evi = W
(

ei
î −

W
W + 1

viv̂î

)(
Hî + v̂ ĵK î ĵ

)
(A.15)

as well as eqs. (2.22). Using the same transformations also for the remaining terms of
eq. (A.12), we finally obtain the neutrino energy equation in terms of the comoving-
frame neutrino moments as:

1
α

∂

∂t
[W(Ĵ + v̄îĤî)] +

1
α

∂

∂xj [αW(vj − βj/α)Ĵ ]

+
1
α

∂

∂xj [αej
î
Ĥî] +

1
α

∂

∂xj

[
αW
( W

W + 1
vj − βj/α

)
v̄îĤî

]
+

R̂ε −
∂

∂ε
(εR̂ε) =

√
γ
∫

CdΩ . (A.16)



69

Appendix B

Derivation of FLD flux and
transport equation

In this section, we show the derivation of the diffusive flux in the flat space-time
given by the spatial metric, γi

j = δi
j. The flat metric tetrad for spherical polar coor-

dinate is given by ekî = diag(1, 1/r, 1/(r sin θ)). We start with equation (A.9). We
neglect the time and energy derivative terms. We also drop all the terms with veloc-
ity. Under these approximation equation (A.9) simplifies to,

∂

∂xj (Ŝ
j
i)−

1
2

Ŝjk ∂γjk

∂xi = γiµ
√

γε
∫

pµCdΩ,

(B.1)

where

Sij ≡ ei
îe

j
ĵ
K î ĵ, (B.2)

In the diffusion limit,

K î ĵ =
1
3

δî ĵJ . (B.3)

For the elastic scattering the right hand side of equation (B.1) can be written as,

ε
∫

pµCdΩ

= ε2
∫

lµCdΩ

= −κtHi. (B.4)

Using equations (B.3) and (B.4) in the equation (B.1) one finds,

∂

∂xj (γ
j
i
√

γJ )− 1
2
√

γγjk ∂γjk

∂xi J = −√γ3κtHi,

∂

∂xi (
√

γJ )− 1
2
√

γγjk ∂γjk

∂xi J = −√γ3κtHi. (B.5)
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Using the Identity ∂i(
√

γ) = 1/2
√

γγjk∂iγjk we get,

∂

∂xi (J ) = −3κtHi,

Hi = − 1
3κt

∂

∂xi (J ),

Hî = − eiî

3κt

∂

∂xi (J ).

Now, introducing the flux-limiter λ and diffusion coefficient D = λ/(3κt) we obtain
the FLD flux,

Hî = −λeiî

3κt

∂

∂xi (J ).

Hî = −Deiî ∂

∂xi (J ).

(B.6)

Using the FLD flux in the equation (A.16) we obtain the FLD transport equation
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1
α

∂

∂xj [αW(vj − βj/α)Ĵ ]− 1
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+ Rε −

∂
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(εRε)

= κa(Ĵ eq − Ĵ ) (B.7)
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