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Zusammenfassung

Sowohl im täglichen Leben als auch in vielen Forschungsbereichen ist die Beantwortung
der “Wo” - Frage eine wesentliche Aufgabe. Dabei handelt es sich oft um die Ortsidenti-
fizierung und nicht nur um eine Positionierungsaktion. Ort ist ein Begriff, der reichliche
semantische Information enthlt, und innerhalb eines spezifischen geographischen Raumes
begrenzt ist. Eine der einfachsten Möglichkeiten, einen Ort wahrzunehmen und seine In-
formation mit anderen zu teilen, ist es, Bilder davon zu machen. Bilder enthalten oft
semantische sowie rumliche Eigenschaften in verschiedenen Detaillierungsgraden. Ein Bild
von einer sichtbaren Szene wie einer Wste oder einem Strand kann uns helfen, das Bild
in einem relativ groben Detaillierungsgrad zu lokalisieren. Dagegen liefert ein Bild, das
materielle Gegenstände wie Gebäude, Straenschilder, oder topologische Merkmale eines
Geländes enthält, starke Hinweise darauf, die Geo-Lokalisierung in einem relativ feinen
Detaillierungsgrad zu untersttzen. Die rumliche Eigenschaft umfasst einerseits die räum-
liche Stelle der materiellen Gegenstände an einem Ort; andererseits spiegelt sie die Stelle
der Kamera, von der die materiellen Gegenstände fotografiert werden. Die radikale En-
twicklung von Deep Learning verbessert das maschinelle Verständnis von Bildinhalten. In
dieser Arbeit wird die Herausforderung angesprochen, einen Ort zu verstehen, indem die
visuellen und rumlichen Eigenschaften in freiwillig erhobenen Bilder auf Straenebene mit
komparativen Lernen und Variationsautokodierer (VAE).

In dieser Arbeit werden einen Rahmen vor, um die Ortsdefinition mit einer Datenper-
spektive zu betrachten. Dementsprechend werden zwei Orten Darstellungen aus dem La-
tentes Variablenmodell vorgeschlagen. Beide Darstellungen kodieren visuelle Inhalte und
räumliche oder semantische Eigenschaften aus Bildbeobachtungen über Orte. Eine, die
implizit kategorialen oder rumlichen Informationen codiert, repräsentiert Orte mit einer
einzelnen Wahrscheinlichkeitsverteilung oder einer Mischverteilung. Die andere beschftigt
sich mit einer holistischen latenten Ortsdarstellung, die die Kameraposition und die vi-
suellen Eigenschaften voneinander abgrenzt. Bei einer Kamerapose und einer entsprechen-
den Ortsdarstellung kann das Modell ein Bild erzeugen, von dem angenommen wird, dass
es von der gegebenen Kamerapose aufgenommen wird.

Es werden drei Experimente durchgefhrt, um die vorgeschlagenen Ideen ber die vi-
suellen und rumlichen Informationen in probabilistischen Ortsdarstellungen kombiniert
zu überprüfen. Im ersten Experiment verwenden wir Triplet-VAE und kategoriale In-
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formationen, d. H. die Kennzeichnung verschiedener Orte verbindet verschiedene Orte
mit einer einzigen Normalverteilung. Das Ergebnis zeigt, dass die latente Ortsdarstel-
lung kategoriale Informationen zu Orten kodiert. Im zweiten Experiment werden eine
gaussian mixture Ortsdarstellung (GMPR) vorgeschlagen. Eine Kombination aus vergle-
ichenden Lernmodellen und VAE wird verwendet, um eine solche Ortsdarstellung zu er-
lernen. Bei vordefinierten Ortsinformationen wird die Center-Triplet-VAE-Modellen zum
Erlernen des GMPR verwendet. Wenn keine vordefinierten Ortsinformationen vorhanden
sind, werden die Positionen (aus Kameraposition) der Bildbeobachtungen als schwaches
Uberwachungssignal verwendet, um das Lernen zu untersttzen. Das gelernte GMPR be-
wahrt einerseits die visuellen und rumlichen Informationen, um neuartige Bilder ber einen
bestimmten Ort zu erzeugen, andererseits kann es zu Unterscheidung die Herkunft das bes-
timmtes Bilder verwendet werden. Das dritte Experiment testet die ganzheitliche Darstel-
lung eines latenten Ortes. Mit gegebenen Ortsdarstellung und einer Kamerapose kann das
Modell ein entsprechendes Bild erzeugen.

Obwohl das Verstehen der visuellen und rämlichen Eigenschaften nur der erste Schritt
ist, um der Begriff des Ortes anzugehen, kann die erlernte Ortsdarstellung als Beweis oder
Hypothese verwendet werden, um weitere Deep-Learning-Aufgaben zu untersttzen, die
komplexeren rumlichen intelligenten Problemen gewidmet sind.



Abstraction

In both daily life and many research fields, answering the “where” question is one of the
essential tasks. It often deals with place identification rather than just a positioning action.
Place is a concept of rich semantic information bounded within a specific geographic space.
One of the most straightforward ways of perceiving a place and sharing its information with
others is to take pictures of it. Images often contain both semantic and spatial properties
at various levels of details. An image of a visible scene such as a desert or a beach may
help us to localize the image at a relatively coarse level of detail. An image containing
tangible objects, such as buildings, street signs, topographic features, provides strong clues
to support geo-localization at a relatively fine level of detail. The spatial property, on the
one hand, includes the spatial location of tangible objects in a place, on the other hand,
reflects the camera’s location from which the tangible objects are photographed. The
radical development of deep learning improves machine understanding of image contents.
In this work, the author addresses the challenge of understanding a place by detecting visual
and spatial property from voluntarily collected images with a combination of comparative
learning methods and variational autoencoder (VAE).

The author proposes a framework to approach place definition with a data-driven per-
spective. Accordingly, two place representations are proposed from the latent variable
model. Both representations encode visual contents and spatial/semantic properties from
image observations about places. The one that implicitly encodes categorical or spatial
information represents places with a single probabilistic distribution or a mixture of mul-
tiple distributions. Such place representation can be learned by combining comparative
learning methods with VAE. The other deals with a holistic latent place representation,
which disentangles the camera pose and visual properties. In this place representation,
camera pose is used as a condition in VAE. Given a camera pose and corresponding place
representation, the model is able to generate an image which is assumed to be taken by
the given camera pose.

Three experiments are carried out to verify the proposed ideas of combining visual and
spatial information in probabilistic place representations. In the first experiment we use
Triplet-VAE and categorical information, i.e., the label of different places connects different
places with a single normal distribution. The result shows that the latent place represen-
tation encodes categorical information about places. In the second experiment, a Gaussian
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Mixture Place Representation (GMPR) is proposed. A combination of comparative learn-
ing methods and VAE is used to learn such place representation. With pre-defined place
information, we use the Center-Triplet-VAE method to learn the GMPR. When no pre-
defined place information, locations (from camera pose) of image observations are used as
weakly supervision signal to help the learning. The learned GMPR, on the one hand, pre-
serves the visual and spatial information to generate novel images about a given place, on
the other hand, can be used to distinguish from which place a given image comes. The third
experiment tests the holistic latent place representation. Given the place representation
and a camera pose, the model is able to generate a corresponding image.

Understanding the visual and spatial properties is just the first step to approach the
concept about a place, the learned place representation can be used as evidence or hypoth-
esis to support further deep learning tasks dedicated to more complex spatial intelligent
problems.



Chapter 1

Introduction

1.1 Background

1.1.1 Locations and Places - the Science of “where”

In daily life, proposing and solving “where” problem compose a large portion of our daily
activities from the morning rush hour to the evening leisure time. Some of the decisions
are too familiar to be noticed as we make them too often in our life as a daily routine,
e.g., how to get from the home to the workplace and return. However, people may still
take some thoughts to answer other “where” questions, such as asking for a meeting place
with a friend. The answer to the question “Where shall we meet later?” can take various
forms. It can be a place where both the two persons are familiar with or a message with
location description from mobile phone applications. The meeting place can be described
as, for example, in an underground station, in front of a cafe, a pinpoint on Google maps,
or even merely coordinate values of a GPS reading.

Researchers are also interested in the “where” question, where spatial knowledge is con-
cerned. Spatial knowledge is the knowledge about geographic environments that enable
human or animals to perform spatial tasks, e.g., navigation and wayfinding (Montello,
2005). Researchers from different subject fields have various perspectives on spatial knowl-
edge. In this work, we name a few among them as examples. In cognition and behavior
research, it is important to understand the mechanism behind spatial cognition, i.e., acqui-
sition, organization, utilization, and revision of spatial knowledge. Many neuroscientists
are interested in identifying the functional regions in the neural system that support the
cognition of spatial environments. Scientists and engineers from robotics are making efforts
to enable robots and other autonomous machines to perform spatial tasks. Researchers
have designed various spatial cognition mechanisms for autonomous machines to support
them doing these tasks. In geographic information science (GIS) and cartography, spatial
knowledge consists of entities in a geographic environment, their spatial locations, and the
relationship between them. One of the major tasks in GIS and cartography is to survey,
record, organize, and represent spatial knowledge.
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Spatial knowledge as a cognitive map

In behavior geography and psychology, “cognitive map” is a widely accepted hypothesis
about spatial knowledge. Cognitive map, first proposed by Tolman (1948), is a hypothesis
of spatial knowledge for rats, and by analogy, for humans. In his experiments, the animals
act as if they had a map within their neural system to guide their movements. In the
most general terms, a cognitive map is a mental construct which we use to understand
and know the environment (Kaplan, 1973). The evolving of the term “cognitive map”
and “cognitive mapping” is reviewed comprehensively by Kitchin (1994). From a geog-
raphers perspective, Golledge (1999) proposed a four elements model to represent spatial
knowledge in terms of spatial distributions of places and features. The four elements are
points, lines, areas, and surface. Lynch (1960) associated urban structures with a cog-
nitive map in cities based on a study in several American cities. He summarized five
urban structures as cognitive map elements, i.e., path, edges, districts, nodes, and land-
marks. Landmark, Route, Survey\Configuration model (LRS) is probably the most widely
accepted spatial knowledge representation system (Siegel & White, 1975; Thorndyke &
Goldin, 1983). Couclelis, Golledge, and their colleagues proposed an anchor point hypoth-
esis to model spatial knowledge organization in a decision making context (Couclelis et al.,
1987; Golledge, 1978). Discrete places are the basic elements in the anchor point hypothe-
sis. In this hypothesis, a place is a region with a spatial extent and some salient spatial or
semantic properties. Places are “anchored” in geographic space through landmarks. Land-
marks are a strong spatial cue with salient characters that help people to recognize and
organize geographic places. Visually singularity or sharp contrast with the surroundings is
an important character in identifying landmarks (Sorrows & Hirtle, 1999).

Functional neural cells reflect spatial knowledge

Decades of neurological studies support the hypothesis of “cognitive map”. The evidence
has been accumulated since the early efforts from O’Keefe and Nadel (O’Keefe & Nadel,
1978). The hippocampus, a brain region of long-term memory, is suggested to store spatial
knowledge and serve as a cognitive map. A collection of comprehensive reviews covers a
broad range of progress under this topic (Burgess, 2008; T. Hartley et al., 2013; Moser
et al., 2008, 2017). “Places” in the neural system are characterized by the activation of
place cells, while “locations” can be estimated from a collaborative firing pattern among
grid cells. These cells, together with other spatial related cells, such as head-direction cells
which encode spatial knowledge to support human and animal’s navigation and wayfind-
ing behavior. In the following, we briefly introduce three major cell types to sketch a
representation of spatial knowledge in the brain.

• Place cell bursts firing when an animal is within a certain region (also known as
“place field”) while keeps almost silent at most other regions in the environment
(O’Keefe & Conway, 1978; O’Keefe & Dostrovsky, 1971; O’Keefe & Nadel, 1978).
Each place cell fires at different locations, such that a group of neighboring place
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cells in the hippocampus represent the entire accessible environment (Wilson & Mc-
Naughton, 1993).

• Grid cell fires at multiple locations when the animal is moving in the environment,
despite constant changes in humans or animals running speed and running direction
(Boccara et al., 2010; Doeller et al., 2010; Hafting et al., 2005). The firing pattern
of the individual grid cell is associated with a hexagonal or triangular tessellation
covering the entire space accessible to the animal. The observations indicate that
grid cells are topologically well organized, forming a multi-scale metric representation
from coarse to fine.

• Boundary cell is characterized as firing along boundaries of a local environment
(including vertical surfaces and drop edges) within a certain distance (T. Hartley et
al., 2000; Lever et al., 2002; O’Keefe & Burgess, 1996). The property of boundary
cells points out the importance of geometric information of a local environment in
defining the location of firing in place cells and grid cells. However, their function in
the animals perception of self-location remains unclear.

The formation of a place cell is relevant to various inputs, such as grid-cells, the sense
of environmental geometry, a combination of grid cells and boundary vector cells (Barry
et al., 2006). Although self-motion cues along can activate a place cell, changing the
appearance of the environment also activates place cell indicating the importance of visual
input (O’Keefe, 1976). Experiments on rats show that the place cell will update to the
correct location according to the external visual landmarks.

Mapping spatial knowledge for robots

Designing spatial cognition mechanisms to support the robot’s navigation is a long-
standing research topic in the name of robotic mapping (Thrun, 2003). Place recognition
and localization are two basic demands in robotic navigation. Simultaneous localization
and mapping techniques (SLAM) address both problems at the same time (Leonard &
Durrant-Whyte, 1991). Place recognition is particularly important in SLAM, such that a
robot knows whether the current place is previously mapped or a new one to be mapped
such that it “closes the loop” and avoids an ever-increasing map (Newman & Kin Ho,
2005).

Spatial knowledge modeling for robotic mapping, on the one hand, is largely influenced
by the research of spatial cognition, on the other hand, is deeply entangled with the devel-
opment of sensors and data processing technology. In the 1970s, Kuipers (1978) proposed a
TOUR model of a street network environment to support robots solving spatial tasks, i.e.,
route planning and relative position describing via rule-based inference technics. Schölkopf
and Mallot (1995) introduced the notion of view graph as a discrete representation covering
the whole environment for the robots navigation and path planning. Werner et al. (2000)
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proposed a route graph concept for merging possible routes for robots, which is an analog
to animals and humans spatial knowledge acquirement during navigation. These models
and their followers share many similarities with spatial cognition models. In these graph-
based representations, nodes contain spatial and semantic information (e.g., landmarks,
fingerprints, and keyframes) that help robots localization and decision-making during nav-
igation, while edges indicate the relationships (e.g., connectivity or routes) between two
nodes. Occupancy-grid and boundary model are two metric based spatial models that are
closer to the sensory data. Occupancy-grids represent occupied and free space of an envi-
ronment by decomposing space into uniform rectangular (for 2D) or cubic (for 3D) cells and
storing for each cell whether it is (at least partially) occupied or (entirely) free (Elfes, 1989;
Moravec, 1996; Moravec & Elfes, 1985). Boundary models represent spatial knowledge by
recording the boundaries of objects with geometric primitives (e.g., lines, points), and thus
distinguish between occupied space and free space (e.g., Y. Liu et al. 2001; Surmann et
al. 2003). It is worth pointing out that there are also landmarks in robotic navigation in
terms of different sensory input, and thus are very different from the landmarks in human
navigation (e.g., Dissanayake et al. 2001; Guivant et al. 2002; Guivant and Nebot 2001).

Position, location, and place in spatial knowledge

The interpretations of spatial knowledge may be varying from discipline to discipline.
However, they share three fundamental concepts, i.e., position, location, and place. Both
position and location are often used to refer specific spatial point in a given (local or
global) coordinate systems. In this sense, positioning and localization are interchangeable
when we refer “to determine a spatial point in a given coordinate system”. In some cases,
location and position are distinguished with subtle distinction. Location implies more on
the geometric property while positions bear more topological meaning about relations.
One consequence of this usage is that locations are geometrically equal, but positions are
unequal when they are nodes in graph-based models or hierarchical structures. Location
and position can be used to depict the spatial property of an entity including its geographic
location and its relations to other entities. “Place” is a cognitive concept that enables
mentally structuring of the spatial aspects of reality (Bennett & Agarwal, 2007). Place
reflects the way people perceive, understand, and interact with their environment (Tuan,
1977). It attracts the attention of many geographers as the study of place is to find “a way
of understanding the world” (Cresswell, 2014, p. 11). Given the importance of place in
science and social life, it is difficult to formalize the concept of place without ambiguous due
to its vagueness. The connotation and extension of place can be very broad as it “performs
a variety of functions in different settings” depending on the background and the purpose
of the analysis (Goodchild, 2011). For simplicity, some researchers reduce a place to a
geographic setting acting as a spatial container of human activities and environmental
entities.
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1.1.2 Bringing Places to Location-based Services

Location-based Service (LBS) researches aim at deriving, modeling, communicating, and
analyzing of location-based information. Locations delivered by global navigation satellite
systems (GNSS), especially the global positioning system (GPS), triggered the research and
development of LBS in the early 1990s. LBS have been rapidly developing since the early
2000s, after the removal of selective ability from GPS by the US President Bill Clinton.
In recent years there are more and more diverse LBS applications running on various
mobile devices, the attributes and semantic information attached to locations are getting
more attention (Huang et al., 2018). The combination of location and platial information
enriches the contents that LBS applications can provide. Examples include landmark-
based navigations, location-based recommendations, and health monitoring (Adibi, 2015;
Duckham et al., 2010; Huang, 2016). Analyzing the attributes and semantic information
from LBS-generated data facilitates a better understanding of humans subjective attitude
and social activities (e.g., Gebru et al. 2017).

GNSS embedded navigation guidance (e.g., car navigation and pedestrian navigation
system) is one of the most widely used LBS applications (Raper2007a). It is equipped
in vehicles to help drivers wayfinding and navigation. This commercially mature and
successful application faces new challenges in the emerging navigation scenarios, e.g., indoor
navigation and autonomous driving. Indoor navigation often suffers from the lack of reliable
positioning methods and geo-databases (Raper et al., 2007a, 2007b). Different location
sensor technologies, including Wi-Fi, RFID, Bluetooth, and digital camera have been tested
and deployed for indoor positioning (Davidson & Piche, 2017). Efforts have been made to
turn floor plans and 3D building models into indoor geo-databases as well.

GNSS-based localization methods are often insufficient for localization in terms of accu-
racy when adapted for autonomous driving. Positioning systems, such as GPS are subject
to errors since there is no perfect method to measure location. Map-matching or filtering
methods may reduce GPS errors, so that the final positioning result is sufficient enough
to determine a vehicles relative position along the street (Hunter et al., 2014; Y. Li et al.,
2013). However, autonomous vehicles require centimeter-level positioning precision and a
detailed map for decision-making in the driving environment. In the driverless age, posi-
tional errors for more than 5 cm may be unacceptable (Goodchild, 2018). The geo-database
for drivers navigation is also insufficient to support autonomous vehicles. The geo-database
for drivers navigation usually consists of streets and point of interests (POIs). Street cen-
terline (SCL) database, where the streets and road networks are represented as collections
of line edges connecting nodes is a commonly used type of street database. A POI is a
specific point location that may be useful or interesting for drivers. The geodatabase (SCL
database and POIs) for drivers though simple but is enough for the drivers to make their
decisions. Information such as turning curves, or lanes may be redundant for drivers and
seldom appears in navigation databased could be critical for autonomous vehicles. Drivers
can take that for granted. However, autonomous vehicles always need to know which lane
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they occupy or the exact location of a parking slot instead of a parking lot POI. The
geodatabase should also be compatible with the sensory system in autonomous vehicles.
Autonomous vehicles are equipped with a combination of sensors such as cameras, LiDAR,
GPS, IMU (inertial measurement unit), and radars to help them to perceive the driving
environment. The automotive industry goes towards a high-definition map (HD map) to
support multi-sensor localization and accurate streets information retrieval. Current HD
maps extend the SCL database and POIs with sensory compatible data models and more
detailed road and road furniture information. Productions about HD map can be found in
HERE1 , TomTom2.

Place as a collective concept combines locations and rich platial information in geo-
database (Bennett & Agarwal, 2007; Goodchild, 2011; Winter & Freksa, 2012). It enables
organizing locations and their attributes at a higher abstraction level to support geographi-
cal information retrieval (GIR) (Jones et al., 2001). Place recognition shares some common
principles. Place recognition can be performed by measuring the similarity among locations
in a continuous space or integrating locations of relevant semantics into a higher seman-
tic level (Bennett & Agarwal, 2007). On the contrary, the similarity measurement or the
content of a place largely depends on the specific tasks in different LBS applications (e.g.,
Alazzawi et al. 2012. Researchers have done extensive work on mining place names from
text descriptions Vasardani et al. 2013. As the geo-tagged photos became more accessible
on the Internet, mining place related information from images under the research of volun-
teered geographic information (VGI) began to emerge (L. Li & Goodchild, 2012). Visual
features in images contain sufficient locational and semantical information. Recognition of
places from images for localization and information retrieval also attract researchers from
computer vision (Lowry et al., 2016).

1.1.3 Place-based Research Trigged By Big Image Data

With the rapid development of Web 2.0 and camera embedded mobile phones in the last
20 years, the number of photos on the internet is consistently increasing with rather high
speed. In 2011 Flickr announced its 6 millionth photo uploading, with an annual increase
of 20% since 20063. “On average more than 350 million photos per day were uploaded
to Facebook in the fourth quarter of 2012. Over 240 billion photos have been shared on
Facebook” according to the Facebook annual report for 20124. Some figures show that
one trillion photos would be created in the year 2017, adding the total number of photos
up to 4.7 trillion. Most of these photos are taken by low-end embedded cameras in mo-

1Here HD map. https://www.here.com/en/products-services/here-automotive-suite/highly-
automated-driving/here-hd-live-map access date: 18.10.2018

2TomTom Road DNA. https://www.tomtom.com/automotive/automotive-solutions/automated-
driving/hd-map-roaddna/ access date: 18.10.2018

3Flickr blog. https://blog.flickr.net/en/2011/08/04/6000000000 access date: 11.22.2018
4Facebook annual report 2012. https://investor.fb.com/financials/ access date: 11.22.2018
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bile phones5. Figure 1.1 depicts the trends of an increasing number of digital photos over
the world in recent five years and the percentage of photography devices. In addition to
datasets that consist of voluntarily uploaded images, there are also purposefully collected
images on the internet. For example, Google Street View has a collection of 360-degree
street-level imagery from many cities. Camera systems embedded in and at cars collect
most images. Geographic-coordinates and 3D depth information are measured by a po-
sitioning system, e.g., GPS and LiDAR scanners, and provided along with these images.
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Figure 1.1: Estimated number of digital photos taken over years in the world (left), and
the percentage of photography devices (right). (Data credit: Info Trends via Bitkom).

Michael F. Goodchild predicted in 2007 that the contents generated by citizens have
been shaping the geographic information science (Goodchild, 2007). This trend also has
a large impact on other research fields. The rich image resources on the internet have
brought about new ideas in the field of computer vision. Among others, they are radically
fueling deep learning, which needs huge data amount to train its deep neural networks
(DNN). For example, the ImageNet6, a famous benchmark dataset in computer vision re-
search, contains over 1 million images, classified as 20 thousand classes, including animals,
natural objects, artifact, person, and activities (Deng et al., 2009). The ImageNet Large
Scale Visual Recognition challenge (ILSVRC) aims at evaluating vision algorithms in a
wide range of tasks, e.g., classification, detection, localization, and so on (Russakovsky et
al., 2015). Since AlexNet (Krizhevsky et al., 2012) competed in 2012 with a great score
ahead, deep learning methods have been gradually taking the dominant position in this

5 Here is How Many Digital Photos Will Be Taken in 2017. https://mylio.com/true-stories/tech-
today/how-many-digital-photos-will-be-taken-2017-repost access date: 11.22.2018

6ImageNet. http://www.image-net.org/ access date: 11.22.2018
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challenge. In a recently published dataset, Google released more than 2 million images de-
picting 30 thousand unique natural or human-made landmarks from across the world. The
dataset aims at advancing instant-level landmark recognition (Noh et al., 2016). Benefiting
from the rapidly advancing machine learning and computer vision, applying data-driven
research methods to large scale image data brings a new view to place related concepts.
Google Street View is a widely used data source in researches, such as place recognition
(Arandjelovic et al., 2016). Street-level images are also used to predict different types of
human perceptions of a place when combined with human ratings (L. Liu et al., 2016;
F. Zhang et al., 2018). Visual properties that learned from street level images by using
deep learning algorithms are used to identify characters of different cities (B. Zhou et al.,
2014). Autonomous driving is one of the most benefiting research fields that require both
huge image datasets for various visual perception tasks, and powerful deep learning tasks
to achieve high correctness and effectiveness. For autonomous driving, cameras are widely
equipped sensors for environment perception (Ziegler et al., 2014). As the autonomous
vehicle driving, its camera system captures a huge amount of images. Perception of the
environment includes vision tasks of motion estimation, object segmentation, vehicle and
pedestrian recognition, and traffic sign recognition. The success of deep learning in com-
puter vision encourages autonomous driving collects and utilizes images as the training
dataset. These images are recorded along a certain road spatially and in time dimension
consecutively. Widely used datasets, for example, are the KITTI vision benchmark suite7

(Geiger et al. 2012) and Cityscapes8 (Cordts et al. 2016).

1.1.4 Deep Learning, a Bridge between Images and Places

Deep learning is a family of computational models composed of non-linear processing
units arranged in multi-layer structures to learn representations from data for specific tasks.
Deep learning methods have achieved state-of-the-art results in many domains including
image recognition, speech recognition, and translation (LeCun et al., 2015). The embryo
of deep learning was developed and inspired by the study of the biological nervous system.
Pioneering achievements include McCulloch-Pitts Neurons, which introduces neurons and
neural networks as computational model(McCulloch & Pitts, 1943); Hebbian learning rule,
the first learning rule for self-organized systems (Hebb, 1949); and Rosenblatt perceptron,
the first supervised learning model (Rosenblatt, 1958). Then it evolved into artificial neu-
ral networks in the name of connectionism in the 1980s and 1990s. The work of Werbos
(1982) and Rumelhart et al. (1986) enables the training of a neural network through back-
propagating errors. Being rejuvenated as a powerful method in machine learning from a
huge amount of raw input data, deep learning is often developed for making data-driven
predictions and decisions other than following pre-defined static instructions. With the
networks going deeper and large training data being available, learning features from a
massive amount of data for a specific task became more and more popular and outper-

7KITTI. http://www.cvlibs.net/datasets/kitti/ access date: 11.22.2018
8Cityscapes. https://www.cityscapes-dataset.com/ access date: 04.25.2018
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formed the traditional ones in many tasks.

Image understanding is a strong application domain where deep learning achieves amaz-
ing results. The basic task of image understanding is, for short, is to let a computer know
“what objects exist where” in an image. We summarize some relevant sub-tasks here,

• Camera pose estimation and 3D reconstruction aim at recovering camera pose and
3D structure of a scene from image measurements (R. Hartley & Zisserman, 2004).
Structure from motion (SfM) and multi-view geometry are two basic techniques to
solve the problem. It also has an important application in robotic navigation and
autonomous driving.

• Object recognition and detection are performed at different granularity. At a rough
level, it is often regarded as a classification problem, i.e., classifying a dominant
object in an image into a known class, such as dogs or cats. The location of the
object is required and usually represented by a bounding box. In object detection,
the number of objects is not fixed, and thus several labeled bounding boxes should
be predicted to indicate “what exists where” in an image.

• Semantic segmentation, in contrast with object recognition and detection, aims at
pixel level image understanding. It requires the computer to assign each pixel with
a semantic class. In practice, the specific application decides which type of semantic
information should be recorded. It can be a discrete class type such as human,
animal, or vehicle, to be distinguished as foreground objects from the background, or
a continuous value such as depth information, height, or optical flow for each pixel.
Examples can be found in the research works from (Dosovitskiy et al., 2015; Eigen
et al., 2014; Horn & Schunck, 1981; Long et al., 2015; Mou & Zhu, 2018).

• Content-based image retrieval is a technique of indexing and searching images from
a large scale image database based on the visual content of images other than any
of their metadata such as keywords, tags, or other text information. Given a query
image an image retrieval system is supposed to return all images with the similar
content (Fei-Fei & Perona, 2005; Sivic & Zisserman, 2003).

• Image synthesis is a technique of creating new images from various image descrip-
tions. The description can be text, noise without explicit semantic meanings for each
element, another image, an image in a coarse resolution, or image with noise (Gatys
et al., 2016; Jain & Seung, 2009; H. Zhang et al., 2017).

Before deep learning methods achieve amazing results in image understanding tasks,
hand-crafted feature detectors are widely used to characterize images. These feature de-
tectors include SIFT (scale-invariant feature transform) (Lowe, 1999, 2004), SURF (speed
up robust feature) (Bay et al., 2008, 2006), FAST (features from accelerated segment
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test) (Rosten & Drummond, 2006), BRIEF (Binary Robust Independent Elementary Fea-
tures)(Calonder et al., 2010), ORB (Oriented Fast and rotated BRIEF) (Rublee et al.,
2011), etc.. Numerous images can thus be represented with a manageable number of the
detected features. Different from using such conventional feature detectors, convolutional
neural networks (CNN) learn feature detectors in an optimization process in a specific task
and use non-linearity functions to boost up their representation ability.

1.2 Research Questions and Objectives

With the notion of point set theory, we can formalize the relations between a place
and its observations. Suppose a distinctive observation of a place is associated with a
specific geographic location and orientation, then a place can be depicted as a set of all
observations. Particularly the geometric boundary of a place can be then inferred from
the geographic locations of the observations. Based on the above discussion, we have our
hypothesis for learning a place representation from observations,

• A place has a latent representation, which can be learned from observation data. The
geographic location of observation data is closely related to the formation of place,
however, the place can be hardly defined purely by specific geographic locations.

• Each observation can be associated with a latent code. The latent code is inferred
from the latent representation of its corresponding place. Observations the same
place are close in the latent space; observations from different places are far away (as
far as they are identified as from two distinct places) from each other in the latent
space.

• Geographically closed observations are probably taken from the same place.

Cognitively, salient tangible objects can provide strong visual clues to distinguish be-
tween different places. We assume that both spatial and visual properties contribute to
the formation of “place”. Imagery observations capture the visual property of a place from
different views, and their camera poses reflects how spatial property interacts with the
visual property. Since the cameras systems are extensively embedded in various machines
(e.g., mobile devices, autonomous machines), investigate the spatial and visual property
of a place is important to support intelligent behaviors, such as querying geo-information,
localizing and navigating autonomous vehicles and robots. Conventional techniques, such
as structure from motion (SfM) and multi(two)-view geometry, recover the geometric re-
lationship between pixels in image and points in 3D scenes. They produce point-based
representations such as point clouds about the 3D structure of the environment. Hand-
crafted features are often used to characterize the visual property of these points. With
the booming of deep neural networks, extracting visual features by learning becomes more
and more popular. The visual features learned by deep networks are thought to be able to
capture meaningful semantics at a high abstraction level.
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The main research question is formed as “how to approach a place definition that con-
nects visual and spatial/semantic property of the place from a large number of imagery
observations?” In order to answer the main research question, there are three sub-questions
to be answered,

1. How to model the latent place representation for connecting visual and spatial/semantic
property from a data-driven perspective?

2. How to learn the latent place representation model from large imagery observations
with the help of deep learning methods?

3. To what extent the learned visual representation can support specific spatial tasks
such as place recognition?

The objectives of this dissertation are three folds:

1. Investigate the role of geo-location and visual features in modeling and forming the
concept of a place.

2. Find possible data-driven methods and models that are adequate for learning place
representation.

3. Identify the advantages and limitations of the data-driven based approach to under-
stand a place.

1.3 Thesis Structure

This work aims at expanding the understanding of “place” from a data-driven perspective
with the help of advanced machine learning methods. In Chapter 2, we briefly introduce
the technical foundations of this work with the efforts on the mechanism behind deep
learning. We also show the connection between images and their camera pose. Camera
pose reflects the location and the orientation of an observer and thus bringing together
the information of a place and the information of the observer in the image. In Chapter
3, we first review recent advances in deep learning specifically on deep neural networks
including deep convolutional networks (deep CNN) and deep generative models. Deep
convolutional networks provide powerful tools to extract visual features for various vision
tasks as well as for our research. Generative models can jointly learn data distribution and
the distribution of a latent variable. In our research, it serves as a bridge connecting the
image data and the abstract concept of place. In the rest part of Chapter 3, we review
the two most relevant tasks of our work, place recognition and pose estimation. Most of
these works aim at enabling a machine to retrieve locational and positional information
from visual input. We roughly divided these works into two parts, researches on geometric
methods aim at rebuilding the consistency of geometric relationships from two or more
consecutive images to get camera pose and the 3D structure of a scene; while the learning
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methods are stronger in image understanding at the semantic level. We make our efforts
to reveal the influence of the rapidly developing deep learning as a bridge connecting the
two types of methods in place recognition and pose estimation.

In Chapter 4, we describe the methodology in a theoretical framework of place definition
and then derive our specific approach from a data-driven perspective for a collective place
definition. In this chapter, we propose a probabilistic place description based on the latent
variable model and introduce two learning techniques, i.e., variational autoencoders (VAE)
and comparative learning to implement the proposed approaches. Then we introduce the
computational models that we derived from VAE and comparative learning methods to
learn the latent place representation. The methodological road map is shown in Figure
1.2. To summarize, we first derive the specific methods to approach a collective place
definition from the general framework by Cresswell (Cresswell, 2014). These methods are
implemented via deep learning models. Three alternative functional evaluations are carried
out to check whether the learned place achieves the general and collective place definition.
In Chapter 5 we show several experiments regarding the functional evaluations for the
proposed methods. In the concluding chapter, i.e., Chapter 6, we summarize our work
and discuss whether such learning based place definition approach can be used as a bridge
connecting human cognition and machine cognition in terms of spatial knowledge. Some
future directions are given as well.
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Figure 1.2: The road map of the research methodology used in this work.
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Chapter 2

Fundamentals of Data-Driven Place
Learning

Deep learning as an advanced data-driven method plays a key role in this research.
This chapter builds a context for understanding the methodology and experiment by in-
troducing the most relevant terms and concepts in machine learning, neural networks, and
camera imaging. In the first part of this chapter, we introduce the basics of deep learning
under the umbrella of machine learning. In the second part, we put our effort on the
fundamental operators in deep convolutional neural networks and their functions in visual
feature extraction and image reconstruction. Back-propagation, the backbone algorithm
for training deep networks is briefly introduced as well. Detailed information about the
three topics can be found in corresponding textbooks (we referred some in this chapter).
In the last part, we show the relationship between camera poses and observed images, be-
cause camera pose (including geographic location and observing orientation) is important
auxiliary information that connects the spatial and visual properties of a place. Though
most of the content in this chapter can be found in textbooks, we put the most relevant
and fundamental knowledge in this chapter to make this dissertation self-contained and
barrier-free for readers who are not familiar with these things.

2.1 Machine Learning Basics

This section presents a brief introduction about deep learning basics. Important terms,
concepts, and techniques in machine learning are introduced to build up the context for
the rest of this thesis. The topics mentioned in this chapter are discussed in detail in
many textbooks on machine learning. The recent published “Deep Learning” book from
Goodfellow et al. (2016) is recommended as comprehensive reading material in the deep
learning field.
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2.1.1 Learning as an Optimization Problem

Deep learning is a specific machine learning method, sharing a large portion of common
basics with other machine learning methods. In terms of learning in machines, we find the
definition by Mitchell (1997) as:

“a computer program is said to learn from experience E with respect to some class
of tasks T and performance measure P, if its performance at tasks in T, as measured by
P, improves with experience E.”

Classification and regression are two typical tasks in machine learning. Classification
is the task of assigning each observation into one of k categories. Regression requires the
learning algorithm to produce a numerical value over the input. There are also other
machine learning tasks, such as synthesis and sampling, denoising, and density estimation.

Qualitative measurement P is used to evaluate the performance of learning for the specific
task T. Take the task of classification as an example, the correctness of classification is a
widely used evaluation metric. Counting the number of correctly classified data samples
could be a measurement, or we can calculate the portion of correctly classified ones as the
accuracy of the algorithm. If the desired output is available in training dataset, we can
calculate the Mean Squared Error (MSE) as the squared value of the difference between
the output value from the algorithm and the desired value (Equation 2.1):

MSE =
1

n

n∑
i=1

‖yi − ŷi‖2, (2.1)

where n is the number of data samples, yi is the desired output for the ith input data
sample, and ŷi is the prediction made by the algorithm.

Machine learning algorithms generally get experience E in two paradigms, i.e., supervised
and unsupervised, where a major difference is whether the desired output is provided during
training or not.

In supervised learning, each training sample x is given with a label y as its desired
output. The supervised learning task is to find out a function that approximates the true
conditional probability p(y|x) , given x. A deep model can be seen as a parametric function
family F characterized by parameters θ. Each parameter corresponds to a function that
maps input x to some value ŷ under the parameter set, i.e., Equation 2.2. The learning
algorithm aims to find an optimal parameter θ? such that the resulted function produces
a probability p(y|x;θ?) that is close enough to the true conditional probability p(y|x).

ŷ = f(x;θ) = p(y|x;θ). (2.2)
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A loss function L is used to measure the difference between estimated probability and
the true probability that we want to minimize. Take classification task as an example,
usually softmax activation (see Equation 2.3) is used to get the probabilities on each
class and the cross-entropy loss 2.4 is used to measure the performance. The training
procedure is needed to indicate how to adjust the trainable parameters to minimize the
loss function. Suppose there are m data samples associated with labels drawn from an
i.i.d. (independent and identically distributed) but unknown data-generating distribution
pdata(x|y), {〈x(1), y(1)〉, · · · , 〈x(i), y(i)〉, · · · , 〈x(m), y(m)〉}. Let pmodel(ŷ|x;θ) denotes the θ
indexed parametric family of probability distributions, which produces a value for each
sample x(i) as an estimation of the true probability pdata(y|x). We assume the existing
dataset is the most possible existence of x, and thus a surrogate to the true distribution.
We can thus use a maximum likelihood estimator for θ, which is defined as Equation 2.5
or using an equivalent logarithmic form as Equation 2.6.

p(y = j|x) =
ezj∑K
k=1 e

zk
, forj = 1, · · · , K. (2.3)

Lcross entropy = −
K∑
j=1

p(y = j) log p(ŷ = j). (2.4)

θML = arg max
θ

m∏
i=1

pmodel(y
(i)|x(i);θ), (2.5)

= arg max
θ

m∑
i=1

log pmodel(y
(i)|x(i);θ). (2.6)

Alternatively, we can also use maximum a posteriori (MAP) to get θ, if we have a prior
distribution (Equation 2.7 and 2.8).

θMAP = arg max
θ

m∏
i=1

p(θ|x(i), y(i)), (2.7)

= arg max
θ

m∑
i=1

log p(x(i), y(i)|θ) + log p(θ). (2.8)

Unsupervised learning includes a wide spectrum of scenarios including probability
density estimation, clustering, and reinforcement learning (see Sutton and Barto 1998).
Unsupervised learning includes tasks such as density estimation, denoise, and data synthe-
sis. Here we only focus on the probability density estimation, a topic that is closely related
to our work. To learn the probability distribution p(x) over a dataset X, the algorithms
must discover the internal structure of the dataset without explicit labels. Unsupervised
learning can be applied in a scene that we have observed some samples of a random vector
x and attempt to model the probability distribution p(x) or some interesting properties of
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that distribution. Using the chain rule of probability states, we can decompose the joint
distribution over the whole dataset as

p(x) =
n∏
i=1

p(x1, · · · .xi−1). (2.9)

This decomposition enables to turn the unsupervised problem into n supervised learning
problems by splitting it.

2.1.2 Gradient Descent Method

The gradient-based method is a widely used optimization technique. The basic ideas of
Gradient descent methods came from the observation that the minimum (local minimum)
of a differentiable loss function can be achieved by iteratively moving along the negative
direction of its gradient. Suppose we want to minimize a function f(x). Expanding the
function in Tylor series, we will have a first order approximation at the neighborhood of
x, i.e.,

f(x+ ε) ≈ f(x) + εf ′(x). (2.10)

The sign of f ′(x) indicates to which direction we move for a small step εf ′(x) will
decrease f . If the function is convex, it is guaranteed to find a global minimum point.
It is a necessary condition that the first order derivation is zero at the optimal point
(i.e., f ′(x?) = 0). However, zero derivation point can also be saddle point that is neither
(local) maxima nor (local) minima. We show different point types in Figure 2.1. In
deep learning cases where the objective function is non-convex, there are lots of local
minimum (maximum) points and saddle points that make the optimization difficult. In
our applications, it is sufficient to find a local minimum point that makes the object
function “low enough”.

local minima

local maxima
saddle point

global minima

local minima

Figure 2.1: An example of different point types on the plot of function f(x), including
local minima, local maxima, global minima, and saddle point.
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In deep learning, there is always a loss function (also called as objective function, cost
function, or error function) f(x;θ) to be optimized. This function must be continuously
differentiable for some parameter θ. A learning algorithm aims to find an optimal θ∗

such that for every input x, the objective function produces an minimum (or maximum)
value, i.e., f(x;θ∗) 6 f(x;θ) for the minimum optimization case. The gradient ∇f =[
∂
∂θ1
, ∂
∂θ2
, · · · , ∂

∂θM

]
f of the function indicates the direction in which f decreases the fastest.

Thus gradient descent method is also called steepest descent.

Gradient-based methods start from an initial point in the parameter space and search
its neighborhood to find another point with the decreased objective function value. The
methods usually choose a new point θ+∆θ along the negative gradient direction of point θ
as shown in Equation 2.11, with a properly small step-size ε. If such operation is iteratively
performed, i.e., for the nth iteration f(θn+1) < f(θn), it can be expected to find a point
where the gradient is zero. If the function f is convex, gradient descent is guaranteed to
find the global optimal value. However in cases when f is non-convex, the point where
the gradient is zero can be a local minimum or a saddle point. In cases where a method
cannot find a zero gradient point, it fails the learning as being divergent.

θn+1 = θn − εn+1∇f(θn). (2.11)

2.1.3 Stochastic Gradient Descent (SGD)

The loss function used in deep learning is often formulated as the average of the cost per
training sample. The average loss can be seen as the expectation when x and y obey the
modelled distribution pmodel as well (see Equation 2.12).

L(θ) =
1

m

m∑
i=1

L(x(i), y(i),θ) = Ex,y∼pmodel
L(x, y,θ). (2.12)

where L is the cost for each sample. The cost function L can be, for example cross-
entropy loss (recall Equation 2.4), and the corresponding gradient is given as the following
(Equation 2.13),

∇θL(θ) =
1

m

m∑
i=1

∇θL(x(i), y(i),θ) = Ex,y∼pmodel
∇θL(x, y,θ), (2.13)

In stochastic gradient descent, the expectation is approximated by a single sample or a
small portion of the whole samples, i.e., mimi-batch of samples. Thus the expectation of
gradient is approximated as Equation 2.14:

∇θL(θ) =
1

m′

m′∑
i=1

∇θL(x(i),y(i),θ) = Êx,y∼pmodel
∇θL(x,y,θ), (2.14)
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where m′ is usually much smaller than the total number of samples m. SGD is a
better mechanism to catch the information in the dataset than the non-stochastic version,
especially when there is much redundant information. When calculating with a large
number of samples, SGD can keep a balance between precision and computation cost.
More details we refer to the 4th part of Bottou’s work (Bottou et al., 2016).

Learning rate ε, a hyperparameter which is given priorly to determine how “fast” an
algorithm learns. If it is set too large or too small, the learning algorithm may miss the
optimal point or converge to slow. Especially in the late stage of learning, we often want
a smaller learning rate to ensure the algorithm does not miss the minimum point. Many
advanced gradient descent algorithms try to avoid such risk such as Momentum, AdaGrad,
RMSprop, Adaptive moment estimation (Adam). More introductory information about
gradient descent optimization algorithms we refer to Ruder’s work1 (Ruder, 2016).

2.2 Introduction to Neural Networks

There are two major types of artificial neural networks, the feed-forward network in
which information flows from the input neurons directly to the output, and the recurrent
neural network (RNN), which consists of a feed-forward network taking its output as part of
its input. In this section, we focus on a specific type of feed-forward network, convolutional
networks, as it is the major part of the learning model in our work.

2.2.1 Elements of Artificial Neural Network (ANN)

An artificial neural network is composed of many simple computing units as an analogue
to a biological neuron. The computing unit is often referred as neuron in the context
of ANN if it is not misleading with the biological neuron. In Figure 2.2, we present a
schematic drawing of a neuron used in ANNs. The neuron receives information from all
its connected predecessors, and spreads its output to all connected successors. The neuron
presented in Figure 2.2, marked as kth, receives m inputs, x1, x2, · · · , xm. Each input is
multiplied with a corresponding weight wi. The weighted sum of these inputs (including a
bias bk) vk is then passed through an activation function σ. The computation process can
be described by Equation 2.15,

yk = σ(
m∑
i=1

wki · xi) + bk. (2.15)

The activation function adds non-linearity to a neural network. Figure 2.3 presents
several commonly used activation function, such as Tanh (1− e−2x)/(1 + e−2x), the sigmoid
function 1/(1 + e−x), and the rectified linear unit (ReLU) max(0, x). The output of a Tanh

1http://ruder.io/optimizing-gradient-descent/index.html access date: 05.12.2018
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synapse

axon from a neuron dendrite

cell body

output axon

activation function

Figure 2.2: The schematic drawing of an artificial neuron, which takes input from the
output of its predecessors and produces a scalar output.

ranges from -1 to 1, which can be used in image generation to produce normalized pixel
values. Sigmoid that squeezes input into [0, 1] can be used to produce a probability. ReLU
is also widely used in the hidden layers of deep neural networks.
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Figure 2.3: Graphic explanation for activations functions, i).Tanh, ii).Sigmoid, iii). ReLU.

Generally, an artificial neural network consists of an input layer, one or more hidden
layer(s), and an output layer. Each layer consists of a set of neurons. Neurons in different
layers are connected, while neurons in the same layer are not. The phase “fully connected”
indicates that the neurons in one layer have connections to every neuron in the successor
layer. With vector and matrix notations, the computation in a neural network can be
represented by repeating matrix multiplication and element-wise non-linearity. In Figure
2.4, we represent three layers L, L+1, and L+2 in green, purple, and light red respectively,
where L + 1 is fully connected with both L and L + 2. Let u(`) and u(`+1) denotes the
output of layer L and L+ 1, the output of layer L+ 2 is written as Equation 2.16, 2.17,

u(`+2) = σ(w(`+2) · u(`+1)) + b(`+2), (2.16)

= σ(w(`+2) · σ(w(`+1) · u(`) + b(`+1)) + b(`+2)), (2.17)

where σ is a non-linear activation function, w and b are weights and bias in each layer.
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Layer LayerLayer

Figure 2.4: An example of three layers L, L+1, and L+2 in a neural network where layer
L+1 is fully connected with layer L and L+2.

2.2.2 Convolutional Neural Networks

The convolutional neural network, also mentioned as CNN or ConvNets, is a neural
network model that is particularly designed for uniformly sampled data, such as voice and
imagery data. A typical convolutional layer consists of three components in a cascaded
arrangement. The three components are convolution, activation, and pooling. Sometimes
the three components are seen as three simple layers, i.e., convolutional layer, activation
layer, and pooling layer. In this section, we introduce the three layers, together with
up-sampling operations (for image reconstruction) in the context of handling image data.

Convolution and convolutional layer

Mathematically, convolution is an operation on two functions to produce a third function.
For images we specially need discrete convolution in two dimensions. Let I(u, v) denotes
an image function which indexes pixel values with u and v, its convolution with a discrete
filter function φ is written as:

f(u, v) = I(u, v) ∗ φ(u, v)
.
=
∑
m

∑
n

I(m,n)φ(u−m, v − n), (2.18)

= I(u, v) ∗ φ(u, v)
.
=
∑
m

∑
n

I(u−m, v − n)φ(m,n). (2.19)

Convolution on images can be understood by using sliding window method. The filter
is referred as convolution kernel, and set kernel size to control the size of its neighboring
area. Stride controls the step length of the sliding window. With stride greater than 1,
the output size is reduced. Padding is used to indicate how to handle the edge situation.
If only valid image area is used in convolution, the output size is reduced. If the image
is expanded with designated values, the output can keep the same size as input. Figure
2.5 gives an example of image convolution. The upper left 3 × 3 matrix represents a
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convolutional kernel with size 3. The kernel slides along horizontal and vertical directions
on an image with stride equals to 1. With the case that valid image area is used in
convolution, the output size is reduced by kernel size -1. At each location, the filter is
element-wisely multiplied and summed with the corresponding image region to produce a
value for the location.
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Figure 2.5: An explanation of image convolution by showing sliding kernel along horizontal
and vertical directions. The symbol (.x) stands for the discrete convolution operation, i.e.,
an element-wise multiplication followed by a summation.

There is another view of convolution, where the kernels are expanded into a sparse
matrix, input and output are flattened. Figure 2.6 gives a simple example with kernel size
equals to 3, 4× 4 input and 2× 2 output. The kennel is expanded as a 4× 16 matrix, the
input is flattened as a 1×16 matrix, and the output is expected to be 1×4 by multiplying
the expanded kernel and flattened input.
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Figure 2.6: An example of image convolution with expanded kernel and flattened input.
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Convolutional layer is the most important component in CNNs. The filters in convolu-
tional layer are referred as kernel functions. The output of a convolutional layer is often
called as feature map. Though an efficient implementation of convolution can be very
different, we can intuitively imagine the kernel slides over the whole input image to produce
a feature map. A convolutional layer takes a B×H×W ×C tensor as input, where H, W ,
and C, denote the height, width, channel (or depth) of the input (either image or feature
map), and B stands for the number of images in a batch. For a single image input, the
batch size dimension can be omitted. The layer uses a k×k×C×D tensor as its kernel (k
represents the kernel size, C, and D are the input depth and output depth respectively).
We have two views to understand the convolution operation in terms of decomposing the
input into a stack of feature maps or spatially bundled fibers. When sliding the kernel on
the input feature map, in each step it operates on a slice of input with shape k × k × C.
In the first decomposition, the sliced tensor is C vectors of k× k elements, and the kernel
is C pieces of two-dimensional tensors with shape [D, k × k]. The affine transformation
is then applied to each vector with the corresponding tensor resulting in a vector with D
elements. The final result comes by summing up all C vectors element-wisely. In the fiber
decomposition, the sliced tensor is k × k vectors of C elements, and the kernel is k × k
pieces of two-dimensional tensors with shape [D,C]. Applying affine transformation and
then element-wise adding, results in the same vector. Figure 2.7 illustrates convolution on
the two decompositions. To emphasize the difference, each piece of feature maps is kept
as a k × k matrix other than a flattened vector. The kernel is not flattened as well.

Figure 2.7: Two decompositions on performing convolution operation. The input tensor
has shape [7, 7, 5], with a [3 × 3, 5] slice for convolution. Left: The slice is decomposed
into 5 feature maps of the shape [3, 3] and the kernel is reshaped as 5 matrices of shape
[3 × 3, 7]. The result is a vector of 7 elements Right: The slice is decomposed into a
bundle of 3× 3 fibers of 5 elements, and the kernel is reshaped as 3× 3 matrices of shape
[5, 7]. The convolution results the same vector of 7 elements.
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Transpose convolution (TransConv) layer

When we use neural networks to generate images, we need to up-sample from low res-
olution to high resolution. Conventional interpolation methods, such as nearest neighbor
interpolation, bi-linear interpolation, bi-cubic interpolation are training-free up-sampling
methods. Transpose convolution (sometimes is inappropriately mentioned as deconvolu-
tion) for up-sampling has trainable parameters. For example, the authors of DCGAN use
transpose convolution to generate images (Radford et al., 2015). There are also learning-
based up-sampling methods, such as PixelShuffle (Shi et al., 2016), but transpose convo-
lution is a simple and effective one.

Figure 2.8 gives a simple example of transpose convolution. The 3×3 convolutional kernel
is expanded as a sparse matrix of 16×4 dimension which can be seen as the transpose of the
kernel in normal convolution. The transpose convolution is similar to normal convolution
as they produce the output with the same resolution. However, when we set the stride
greater than 1, for example, 2, the output resolution is scaled up by 2. In this case we
up-sample a m × m input to a 2m × 2m. In a transpose convolution layer, the neurons
have the same connectivity as in the normal convolutional layer but with the backward
direction.

convolution

kernel input image patch
output feature map

convolution

expand & transpose flatten

16

flatten

16

Figure 2.8: Transpose convolution with a 3 × 3 kernel,2 × 2 input and a 4 × 4 output.
Compare to Figure 2.6, the expanded kernel is transposed.
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Pooling layer

Pooling layer is used to abstract information in a neighboring area to control overfitting
and further reduce the number of parameters. The pooling function affects independently
on every depth slice of the input and resizes it spatially. Commonly used pooling types
include maximum pooling and average pooling. Figure 2.9 shows an example of a most
common pooling with window size 2 × 2 and a stride of 2. The pooling layer with such
settings down-samples every depth slice in the input by 2 along both width and height,
discarding 3/4 of the values in inputs. The pooling operation enables a CNN invariant to
some minor translation. However, we can replace pooling by a convolutional layer with a
larger stride to have certain benefits as mentioned by Springenberg et al. (2014). A larger
stride of convolution kernels also results in reduced size of the output.
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Figure 2.9: An example of max pooling with 2× 2 filter and stride 2.

2.2.3 Back-propagation

Back-propagation is a method for computing gradients in neural networks. It is especially
important in the optimization of a neural network. During a gradient descent optimization,
the “error information” given by a loss function is back-propagated through layers, with
the gradient of each trainable weight. In this way, the algorithm adjusts the weights in each
layer according to their gradients. In this section, we first introduce the computational
graph as a formal language to describe computation processes. Then we illustrate how to
apply the chain rule of calculus to implement back-propagation.

Computational graph

The computational graph is a formal language to precisely describe computations. Re-
gardless of variations of computational graphs, we present one possible implementation
here. The graph consists of two types of nodes. The nodes that hold values, including
scalars, vectors, tensor, or other types, are called state nodes; the other type of nodes
are called operation nodes. Operation nodes are simple functions that take one or more
values from state nodes as input. Thus a directed acyclic graph is built by adding directed
edges between nodes to indicate how values floating from one node as output to another
node as input.
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Take the following function as a simple example. Let z = f(x) = w ∗ x + b, where ∗
represent matrix multiplication, + is element-wise adding; x and w are compatible tensors;
b and z are output values. Let y = w ∗ x, this function can be seen as a composition of
a tensor multiplication and a vector adding. Then we construct a computational graph as
shown in Figure 2.10(a), including two operation nodes, matrix multiplication and adding
(represented as round corner rectangles), and four state nodes (represented as circles)
holding the four values involved.

input value node

variable value node
operation node

(a)

value flow gradient flow partial derivative

(b)

Figure 2.10: The computational graph (a) of z = f(x) = w ∗x+ b representing a layer of
a neural network, and its back-propagation schema (b). (a) a computation graph example;
(b) the corresponding back-propagation schema.

Chain rule of calculus

The chain rule of calculus is used to compute the derivatives of functions that are com-
posed by two or more functions, whose derivatives are known. That is, if f and g are two
functions, then the chain rule expresses the derivative of their composition f ◦ g in terms
of the derivatives of f ′ and g′ is (f ◦ g)′ = (f ′ ◦ g) · g′. If x is a real number, and f , g
each maps a real number to a real number, let y = g(x) and z = f(y), the chain rule is
represented as the following:

dz

dx
=

dz

dy

dy

dx
. (2.20)
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For vectors x ∈ Rm, y ∈ Rn, if there are two functions g : x → y and f : y → z
(z ∈ R), i.e., y = g(x) and z = f(y), then the chain rule is represented as:

∂z

∂xi
=
∑
j

∂z

∂yj

∂yj
∂xi

, (2.21)

or written equivalently using vector notation:

∇xz = (
∂y

∂x
)T∇yz, (2.22)

where ∂y
∂x

is n×m Jacobian matrix of g. The gradient of a variable x can be obtained by

multiplying the Jacobian matrix ∂y
∂x

by the gradient ∇yz. For functions that take tensors
as input, the gradient is computed in the similar way by flattening and arranging the
elements in the tensor in a vector form. Let Y = g(X), and z = f(Y) are two functions
taking tensors as input, the tensor version of chain rule is written as:

∇Xz =
∑
j

(∇XYj)
∂z

∂Yj

. (2.23)

Back-propagation in ANNs

A single layer in a neural network can be represented as a computation graph in Figure
2.10(a). Their gradients for all operation nodes are derived as shown in Figure 2.10(b).
According to the chain rule of calculus, the partial derivative value between any two nodes
equals to the multiplication of all partial derivative values on the route connecting the two
nodes, e.g., in Figure 2.10(b).

∂ẑ

∂w
=
∂ẑ

∂z

∂z

∂y

∂y

∂w
. (2.24)

In back-propagation, the topmost node is assigned with value 1, and its child nodes,
for example ẑ, stores the sum of multiplications between 1 and its own gradient ∂ẑ

∂z
. Then

the next child nodes store their gradients that calculated similarly.

Now considering a supervised learning problem, in which loss is given by L(ŷ,y), solved
by a multilayer fully connected neural network. The value of loss function depends on the
output ŷ and the label y. Suppose we have ` layers in the model, each layer consists of a
linear transformation like y = wx + b and a non-linearity function σ, the computational
model can be expressed as Equation 2.25 :

h(0) = x,

h(i) = σ(w(i)h(i−1) + b(i)), (i = 1, · · · , `). (2.25)

We can obtain the loss for some input x by performing a forward pass (or forward
propagation) as shown in Figure 2.10(a). Then we can back-propagate the loss as shown
in Figure 2.10(b).
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2.3 Scene Observation and Camera Pose

In this part, we first introduce basics on camera pose and its relation to image content,
and then the relationship between image content and different camera poses. We use
“scene” to denote a place with a collection of tangible objects. The objects are assumed to
be static. The imaging process is to generate their perspective projections on a 2-D image
plane.

2.3.1 Pinhole Camera Model for Scene Observation

An imaging system generally consists of a “lighting” source and a “scene” that reflects
or absorbs light energy. Images are records of light intensity measured by sensors. In
the measuring process, the continuous image space is sampled and quantified to a set of
discrete numbers. For more introduction about digital imaging and sensors we refer to the
second chapter of the textbook Digital Image Processing (Gonzalez & Woods, 2002).

We use the simple pinhole camera model to represent an imaging process. A pinhole
camera catches the rays from a 3-D point to its optical center and projects them as points on
a 2-D image plane. Note only the points in front of the image plane are recorded. However,
this fact is ignored in our discussion when we need an “ideal camera”. Though simple, the
model is sufficient to reveal the imaging geometry of perspective projection. Suppose there
is a pinhole camera, whose optical center is at the origin of a “world” coordinate system
and the principal axis point to the positive direction of Z-axis. An image plane located at
Z = f and perpendicular with Z-axis, f is the focal length. The image coordinate system
locates at the interaction of the principal axis and the image plane and has an x-axis and
y-axis, parallel with X-axis and Y-axis in the world coordinate system respectively. A
point P with coordinates (X, Y, Z) is then projected onto the image plane at point p with
the image coordinate (x, y). Figure 2.11 is a schematic drawing for imaging geometry of a
pinhole camera model. The coordinates of a point on the image plane, corresponding to
the point in the scene, is given by the property of similar triangles (Equation 2.26):

x =
fX

Z
, y =

fY

Z
. (2.26)

A scene to be imaged can be formally represented as a function S: R3 → RK producing
a description vector S(P ) for each point P in the scene. The description vector includes
various properties of the point, for example, color, transparency, material, etc. The image
is also defined as a function I: R2 → RK , which takes the description values I(x, y) at
each point x, y on the image plane. When taking an image, a point in a physical scene
is either occluded or transformed as a ray from the point to the camera’s optical center.
Every observable point in the scene can be uniquely mapped to a point on a unit sphere
that is centred at the optical center of the camera. More formally, the observable scene is
a real projective space, denoted as RP 2. The sphere is a 2-D manifold embedded in 3-D
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Figure 2.11: The camera geometry in viewer-centered coordinate system: the image plane
locates at Z = f , where point P (X, Y, Z) in physical scene falls onto the image plane at
p(x, y); C:optical centre of a camera; f :distance from image plane to optical centre.

Euclidean space and denoted as S2. Let m be a unit vector representing a point on the
unit sphere, the observable scene is then represented as a function s(m). In a observer-
centred reference frame, i.e., X, Y , Z - coordinate system, and the image plane at Z = f ,
a physical scene is a function S(X, Y, Z) w.r.t points like P (X, Y, Z). The homogeneous
scene is s(m1,m2,m3), in which m = (m1,m2,m3)

T , and ‖m‖ = 1. Let I(x, y) denote a
image function obtained in the scene, it is written as (Equation 2.27):

I(x, y) = s(m1,m2,m3), (2.27)

where m1 = x√
x2+y2+f2

,m2 = y√
x2+y2+f2

,m3 = f√
x2+y2+f2

.

Let Π denotes the perspective projection operation, and the operation maps points in
the 3-D physical scene onto the 2-D image plane: Π : R3 7→ R2. Using homogeneous coor-
dinates to represent 2-D points on the image plane, the operator implements perspective
projection by matrix-vector multiplication

Π : P =

XY
Z

 7→ KP =

f 0 0
0 f 0
0 0 1

XY
Z

 =

fXfY
Z

 =


fX
Z

fY
Z

1

 = p, (2.28)

where K is the matrix form of intrinsic parameters of a camera and the last two steps are
established in the homogeneous coordinates context. With consideration of the realistic
situation where there are distortions, a more practical projection matrix is used:

K =

ax · f s tx
0 ay · f ty
0 0 1

 . (2.29)
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The matrix in Equation 2.29 represents a full intrinsic calibration of a pinhole camera. The
elements in the matrix are called intrinsic parameters of a camera, including the distorted
focal length ax ·f and ay ·f , the offset of the image origin from the optical axis intersection
(tx, ty), and a skew parameter s.

2.3.2 Camera Pose Representations

We can represent a camera pose in terms of a rotation and a translation. The camera
pose has 6 degrees of freedom (6DoF), 3 for translation and 3 for rotation. There are various
methods to represent rotations, including rotation matrix, principle rotations, Euler angle,
quaternions. A rotation representation with three additional parameters for translation can
represent the full 6DoF camera pose. Here we introduce rotation matrix and quaternions
as they are used in our experiment datasets. We refer the second part of the book State
Estimation For Robotics for readers who need a comprehensive introduction of camera
pose representation and relevant issues.

For a point (x, y) on 2D plane, we can easily write its counterpart (x′, y′) after rotating
θ in the counter-clock wise direction about the origin, (2.30)[

x′

y′

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

] [
x
y

]
. (2.30)

The rotations that are restricted on a planar formed by two axes can be written as the
Equation 2.33),

Rx(θ1) =

 1 0 0
0 cos θ1 sin θ1
0 − sin θ1 cos θ1

 (2.31)

Ry(θ2) =

 cos θ2 0 − sin θ2
0 1 0

sin θ2 0 cos θ2

 (2.32)

Rz(θ3) =

 cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

 (2.33)

With predefined rotation order, rotations in 3D space can be expressed by a sequence of the
above three principal rotations and implemented as matrix multiplication. One possible
implementation is as the following:

R = Rz(θ3)Ry(θ2)Rx(θ1). (2.34)



32 2. Fundamentals of Data-Driven Place Learning

Unit quaternion is another rotation representation. Quaternions are generally repre-
sented in the form w+ pi+ qj + rk, where w, p, q, r are real numbers, and i, j,k are three
imaginary quaternion unit. According to Euler’s rotation theorem, a rotation in 3D space
can be equally represented by a rotation of an angle θ about a fixed axis. The rotation axis
indicates a direction that can be represented by a unit vector u = uxi+ uyj + uzk. Then
a point (vx, vy, vz) in 3D space can be written in a pure quaternion as v = axi+ayj+azk,
a rotation of angle θ around the axis u to the point can be expressed as,

q = cos
θ

2
+ (uxi+ uyj + uzk) sin

θ

2
, (2.35)

v′ = qvq−1, (2.36)

where v′ is the rotated vectoer and q−1 = cos θ
2
− (uxi + uyj + uzk) sin θ

2
. Two rotation

quaternions q1, q2 can be composed into one equivalent rotation v′ = q2q1vq
−1
1 q

−1
2 by

quaternion’s multiplication. Quaternion is a more compact rotation representation com-
pare to rotation matrix, and consists of four unified parameter in the same space while the
axis-angle representation is composed of three values from euclidean metric and one from
angle which is more convenient for interpolation.

If a quaternion is represented by w+pi+qj+rk, then the equivalent matrix, to represent
the same rotation, is (2.37):

R =

 1− 2 ∗ q2 − 2 ∗ r2 2 ∗ p ∗ q − 2 ∗ r ∗ w 2 ∗ p ∗ r + 2 ∗ q ∗ w
2 ∗ p ∗ q + 2 ∗ r ∗ w 1− 2 ∗ p2 − 2 ∗ r2 2 ∗ q ∗ r − 2 ∗ p ∗ w

2 ∗ p ∗ r − 2 ∗ q ∗ r + 2 ∗ p ∗ w 1− 2 ∗ p2 − 2 ∗ q2

 .
(2.37)

2.3.3 SO(3) and SE(3)

In this part, we introduce two groups that are closely related to camera pose in terms
of rotation and translation in 3D space. All possible rotations consist of a group, i.e., the
3-D rotation group, denoted as SO(3). All 3-D translations and 3-D rotations compose
a group, 3-D Euclidean group, referred as SE(3). We can associate each element in
SE(3) with a camera pose.

Group is defined as a set G together with an binary operation · that combines any two
elements a and b to form another element c, i.e., c = ab, such that the combination (G, )
satisfies the four group axioms:

• Closure, for all a and b in G, the result of a · b is still in G;

• Associativity, for a, b and c in G, (a · b) · c = a · (b · c);
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• Identity element, there exists one element e in G such that for any element a in
G, e · a = a · e = a;

• Inverse element, for any element a in G there is another element b in G such that
a · b = e; b is the inverse of a and denoted as a−1.

Writing a 3-D space point in vector form, the transformation is a linear mapping by
multiplying a transformation matrix with the vector. We use R(n), T(n), (n = 2, 3) to
denote rotation matrix and translation matrix in 2-D and 3-D space respectively. When
the context is clear, the dimension indicator is omitted. The rotation matrix in 3-D space
is a 3 by 3 matrix and the point vector is written in form of (x, y, z)T . Besides, R is an
orthogonal matrix, i.e., RRT = 1, and detR = 1. We write a rotation group in matrix
form as Equation 2.38:

SO(3) = {R | R ∈ R3×3, RRT = 1}, R =

 r11 r12 r13
r21 r22 r23
r31 r32 r33

 . (2.38)

The translation matrix in 3-D space is a 4 by 4 matrix, it is a identity rotation combined
with a translation as Equation 2.39:

T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1

 , (2.39)

To be competitive to this matrix, the to be transformed vector is written in homoge-
neous form of (x, y, z, 1)T . The combination of rotation and translation, namely, Eu-
clidean transformation, is also a 4 by 4 matrix, which is the combination of R and T. Let
v = (tx, ty, tz)

T , the Euclidean transformation is written in the following form (Equation
2.40):

SE(3) = {E | E =

[
R v
0 1

]
, R ∈ SO(3) and v ∈ R3}. (2.40)

When there is no need to specify details of a transformation matrix, we often use marks
as gR or gE to represent a rotation with matrix R or an Euclidean transformation with
matrix E. Obviously, the multiplication of any two rotation matrix or two Euclidean matrix
results a new rotation matrix or new Euclidean matrix. Note that SO(3) and SE(3) are
non-abelian group or non-commutative group, which means that switch the order
of two rotation or Euclidean transformation usually leads to different results. When a
consecutive transformation is represented as a sequence of matrix multiplication, change
the order of any matrix will also affects the final results.
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2.3.4 Images with Different Camera Poses

When the perspective projection of a pinhole camera is introduced in the previous section,
we use an observer-centred coordinate frame (camera frame). However, to represent 3D
points in a scene a place-centred coordinate frame (world frame) is preferred. As moving
an object with respect to the camera is symmetrically equal to moving the camera with
respect to the object, we can derive the transformation from camera frame to world frame
as a rotation and a translation (denoted as [R|t]). Then we can derive the relationship
between a point on image plane in camera frame and its corresponding 3D scene point
in world frame. Let P and p denote a 3D scene point and its projection on 2D image
plane in camera frame, we have the relation p = K ·P as in Equation2.28, where K is the
projection matrix. Let P ′ and p′ denote the same 3D scene point and image point in the
world frame, we can relate the 2D image point in camera frame with its 3D scene point in
world frame as

p = K [R|t]−1P ′ (2.41)

p̂ = K−1p = [R|t]−1P ′, (2.42)

where p̂ is called as a canonical point that can be seen as projected with an identity
projection matrix (i.e., K = I) and M−1 represents the inverse matrix of M. With the
above equations, we can determine the location of an image point given a camera pose
and the corresponding 3D scene point and thus the cotent of an image can be related to
camera pose.



Chapter 3

Related Work to Place Learning

This chapter consists of three parts related to this work. In the first part, we draw a
sketch evolution route on deep neural networks. Milestone architectures are mentioned
and emphasized with the highlights on the ideas that enable deeper and more powerful
network structures. In the second part, we introduce two generative models, i.e., variational
autoencoders (VAEs) and generative adversarial networks (GANs), which are eye-catching
research topics on deep learning in recent years. We also justify the reason for using VAE
with stacked Conv / TransConv layers as the main network architecture in our experiments.
In the last part, we review state of the art on visual place recognition. Despite existing
reviews on this topic, such as Brejcha and Čad́ık (2017); Ji et al. (2015); Lowry et al.
(2016). We put our efforts to reveal the influence of the rapidly developing deep learning
on place recognition, camera pose estimation, and place representations.

3.1 The Evolution of Deep Convolutional Networks

The architecture of neural networks has a large impact on their performances in specific
tasks, while there are no “golden rules” to follow. The initial design of a convolutional
network consists of several stacked convolutional layers and fully connected subsequent
layers to generate task-specific output, e.g., the probability values over the classes. LeNet
5, an early implementation of multilayer convolutional network that consists of 3 convo-
lutional layers and two fully connected layers are used for handwrite number recognition.
Nowadays, convolutional networks become deeper and deeper, and new functional compo-
nents are designed to boost up the networks’ performance. We list here some well-known
network architectures, including AlexNet, GoogLeNet, VGGNet, ResNet.

AlexNet, developed by Alex Krizhevsky, Ilya Sutskever, and Geoff Hinton, is the first
popular convolutional network in Computer Vision, which has stimulated the deep learning
study (Krizhevsky et al., 2012). The network took the first place in image classification task
in the ImageNet challenge (ILSVRC) 2012 and outperformed other methods significantly
in the competition. Russakovsky et al. (2015) report the competition results. AlexNet has
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5 convolutional layers stacked on top of each other, followed by 3 fully connected layers (see
Figure 3.1). This work also introduce “Dropout” and Local Response Normalization (LRN)
as the means to prevent overfitting. Figure 3.1 illustrates the architecture of AlexNet. In
the original implementation, the network is split into two subnetworks running on two
GPUs to enable the training process.
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Figure 3.1: The AlexNet Architecture.

VGG-nets is proposed by Karen Simonyan and Andrew Zisserman in ILSVRC 2014
(Simonyan & Zisserman, 2014). VGG-nets has 4 blocks of stacked convolutional layers
followed by a pooling layer showing that the depth of a network matters in performance.
VGG16Net contains 13 3 × 3 convolutional layers, 5 2 × 2 max-pooling layers, and 3
fully connected layers. VGG19Net has 3 more convolutional layers. Figure 3.2 depict
the VGG16Net and VGG19Net structure. The success of VGG-nets proved that deeper
networks of stacked convolutional layers can improve the network’s performance. However,
VGG-nets is memory and training expensive because of its 140M parameters.

GoogLeNet, the ILSVRC 2014 winner, was proposed by Szegedy and his colleagues
from Google (Szegedy et al., 2015). They introduced “Inception Module” and used average
pooling instead of fully connected layers to reduce the number of parameters. In Figure
3.3 a), we depict a typical inception module, which takes advantage of convolutional layers
with different receptive fields. Output modules are given in Figure 3.3 as well. Average
pooling drastically reduces the number of parameters compares to fully connected layer
while not harm the performance much. The total number of inception network is 4M
(compared to AlexNet with 60M). There are also follow up versions of inception networks
for better performance by modifying the Inception modules (Szegedy, Ioffe, et al., 2016;
Szegedy, Vanhoucke, et al., 2016).
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ResNet, the winner of ILSVRC 2015 in classification task is developed by Kaiming
He and his colleagues (K. He et al., 2016). The winner network achieves 152 layers in
depth. ResNet is characterized by its skip connections, heavily used batch normalization,
and no fully connected layer at the end of the network. A residual block (ResBlock)
in ResNet consists of two convolutional layers and a skip connection that bridges the
input to the output as shown in Figure 3.4. The authors proposed that the residual
block which performs an identity mapping making training easier. Let H(x) denotes the
desired function that the block is supposed to learn, and the two convolutional layers
learn a function F (x). Without a by-pass connection, the two functions are identical, i.e.,
H(x) = F (x), while with the connection H(x) = F (x) + x, i.e., the convolutional layers
learn a residual F (x) = H(x)− x.

relu

relu

previous layer

+

+ element-wise add convolutional layer

Figure 3.4: A ResNet Block.

As we summarize the development of deep convolutional networks, we show how network
structures are evolving, first going deeper, and then more adding functional components.
In our experiment, we begin with a structure with 5 Conv / TransConv layers in the
encoder/decoder. In some experiments, we replace the usual convolutional layers with
ResBlocks for better performance.

3.2 Generative Models and Representation Learning

Generative models are often used to learn representations that preserve the information
of data distribution while revealing salient structures in the data distribution. Genera-
tive models are generally capable of unsupervised learning where labeling information is
missing. However, to supports learning semantically meaningful representations, adding
extra labeling information is also possible when it is available. The learned representations
capture to some extent the intrinsic structure of the data distribution; on the other hand,
one can use the learned properties to produce new data samples.



3.2 Generative Models and Representation Learning 39

Generative models are usually related to the latent variable model, where the latent
random variable is related to the data generation process. The goal of generative models is
to learn the dependency structure of the latent space and the data. Generative adversar-
ial networks and variational auto-encoder networks are two popular generative models in
recent years. They share a common setting that both models employ neural networks to
map a latent distribution p(z) to a generated distribution p̂θ(x) such that p̂θ(x) matches
the true data distribution p(x). Though we focus on the VAE-based methods in our ex-
periments, we still review both VAEs and GANs as we want to present a comprehensive
image on representation learning to show their potential for place representation learning.

3.2.1 VAE: Variational AutoEncoder

VAE is a special type of autoencoders. An autoencoder is a parametric function (im-
plemented as a neural network) to reconstruct its output from the input. Autoencoders
usually share similar architecture, i.e., an encoder part that maps an input to a latent
representation, while a decoder takes the latent representation to produce a reconstructed
input. Figure 3.5 shows a typical autoencoder structure, where z = f(x) is an encoder
takes input x and produces its latent variable z, and a decoder x̂ = g(z) = g(f(x)) tries to
reconstruct x from z. However, what matters is not to train an autoencoder to copy input
perfectly to output but to care about whether the learned latent representation reveals
some structural properties of the dataset.

VAE is an important unsupervised learning framework to learn complicated distributions
(Kingma & Welling, 2013). Compare to typical autoencoders, VAE makes a strong assump-
tion on the distribution of the latent variable, resulting in an additional regularization term
in VAEs loss function, i.e., the KL-divergence between the assumed distribution and the
encoded distribution. VAE uses variational approaches to learn the latent representation
with the Stochastic Gradient Variational Bayes (SGVB) algorithm for training.
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Figure 3.5: Schematic structure of an autoencoder, where encoder and decoder are imple-
mented as neural networks.
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There are conditional variations of VAE model when there are extra labels or other infor-
mation y is available. According to different assumptions about the relationship between
latent variable z, data sample x, and label y, there are different strategies to incorporate
the condition into VAE. The variations of VAE show that the conditional generative model
is not a fixed architecture but a rather flexible framework that we can incorporate extra
information or labels according to different assumptions and problem scenes. In the place
representation learning problem, the extra information can be categorical labels or camera
poses. A simple way of extending VAE to a conditional version is to consider the condi-
tional distribution p(x|y). This version of conditional VAE has not much difference to the
original non-conditional VAE and is also trainable with the similar reparameterization trick
and back-propagation algorithm. In another conditional VAE, the condition y is assumed
to be independent of the latent variable z, i.e., pθ(z|y) = pθ(z). This type of conditional
VAE is mentioned by Pandey and Dukkipati (2017). Sohn et al. (2015) focus on a label
prediction problem rather than image generation. The proposed conditional VAE takes
images as label information together with the latent variable in the generator to predict
labels. In this case, the label information is treated as the data to be generated while the
data x is treated as labels. Pandey and Dukkipati (2017) associate latent variable with the
labels other than data samples. The model, on the one hand, ensures the latent variable
containing structural features of the data distribution, on the other hand, makes the latent
variable containing label information.

3.2.2 GAN: Generative Adversarial Networks

Generative Adversarial Network (GAN) is first proposed by Goodfellow and his col-
leagues (Goodfellow et al., 2014). It achieves impressive results in various tasks related to
image generation, such as image generation (Radford et al., 2015), image to image transfer
(Isola et al., 2016), text to image generation (Reed et al., 2016), and super-resolution image
generation (Ledig et al., 2016).

The core idea of GAN can be summarized as a zero-sum game of two players, a generator
and a discriminator. In this game, the generator tries to fool the discriminator with
generated images, while the discriminator tries to distinguish between generated images
and real data images. The training process can be described by an adversarial loss which
consists of a generator loss and a discriminator loss for generator network and discriminator
network in the actual training process accordingly. Optimizing the adversarial loss, on the
one hand, increases the power of discriminator network to distinguish generated images
from real ones, on the other hand, drives the generator network to produce images as close
to the original images as possible. An ideal result for the generator is that the discriminator
network cannot distinguish real and generated samples, and gives a 0.5 probability guess
for both real and fake images.
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Although the adversarial training process is clear and simple, optimization of GAN often
leads to model collapse. Model collapse is a well-recognized problem in GAN training
(Arjovsky & Bottou, 2017). A collapsed model always produces a single sample or a small
set of similar images, which cover only a very limited portion of real data. Training stability
is still an evolving research topic, while there are already various methods to address
the problem. Salimans et al. (2016) suggest two methods to enforce the improvement of
diversity, i.e., feature mapping and mini-batch discrimination. Feature mapping, instead
of directly maximizing the output of discriminator, matches the generated samples with
the statistics of real data, while mini-batch discrimination allows the discriminator to
investigate the diversity from a batch of images. The Unrolled GAN (Metz et al., 2016) rolls
the generator parameters back after several adversarial steps, which enables the generator
to “predict” the future behavior of the discriminator. This operation prevents the generator
from producing similar images. The “unroll” operation can be implemented in a fully
differentiable way to perform back-propagation training. Mao et al. (2017) propose to use
a least square loss function for the discriminator such that generated samples that not fit
the real data distribution can be improved. Wasserstein GAN (WGAN) (Arjovsky et al.,
2017) is another important improvement of vanilla GAN to address the stable training
problem. WGAN uses Wasserstein distance as a better metric of two distributions than
KL- divergence. In the training process, a weight clipping trick is applied to prevent
large oscillations in weight values. Being aware of the fact that the weight clipping in
discriminator can cause a negative effect on stability and performance, a follow-up paper
introduces a gradient penalty to improve training WGAN (Gulrajani et al., 2017).

In GAN, both generator and discriminator can be implemented as neural networks.
In DCGAN (deep convolutional GAN) (Radford et al., 2015), convolutional/transpose
convolutional layers are used in generator and discriminator accordingly to take advantages
of their abilities in handling image data. The authors also proposed several strategies to
improve the stability, e.g. 1). to use convolutional layers with a larger stride instead
of convolutional layer followed by a pooling layer, and remove fully connected layers, 2)
applying batch normalization (see Ioffe and Szegedy 2015) in all convolutional layers, 3)
use leaky ReLU activation in discriminator, and Tanh for the last layer of generator and
ReLU for other layers. Figure 3.6 shows the generator network used in the DCGAN paper
(Radford et al., 2015). In practice, it is still necessary to balance the learning rate for
discriminator and generator carefully.

3.2.3 The Combination of VAE and GAN

There are research efforts on combining GANs and VAEs to take the advantages from
both. Makhzani et al. (2015) introduce adversarial training to an autoencoder architecture
to approximate an implicit prior on latent representation. The resulted adversarial auto-
encoder (AAE) matches the learned distribution of latent variable to an arbitrarily defined
prior. The model consists of three components, i.e., an encoder which maps an input data
samples to a latent vector, a decoder that reconstructs an input given a latent vector; and
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Figure 3.6: The generator network used in the original DCGAN paper.

a discriminator to distinguish between the encoded latent vector and the one sampled from
the real prior. AAE has a similar encoding-decoding structure as VAE; however, instead
of using KL-divergence as in VAE, the AAE employs adversarial learning to measure the
difference between two distributions. Mescheder et al. proposed to use an adversarial met-
ric to measure the difference between the prior distribution of the latent variable and the
recognized distribution rather than the KL-divergence in vanilla VAE (Mescheder et al.,
2017). A real value function is added to the VAE architecture as a discriminator to produce
such measurement. Similar ideas appear in Ian Goodfellow’s NIPS 2016 tutorial (Goodfel-
low, 2016). AAE and adversarial variational Bayes have a similar network structure but
vary in their theoretical background. Both models try to find a better replacement to KL
divergence (KL-divergence is not a metric since usually DKL(P ||Q) 6= DKL(Q||P )), and
the AAE model enforces the aggregated distribution

∫
qφ(z|x)pdata(x)dx to approximate

the prior p(z) while in adversarial variational Bayes the authors used a learned metric to
measure the difference between two distributions (Mescheder et al., 2017). Bidirectional
GAN (Donahue et al., 2016) adds an encoder to GAN, and modifies the discriminator to
take both latent variable and image data (including real data and generated data) as input,
and thus enables the GAN to project data distribution back into the latent space.

There is also a conditional version of the combined model. The CVAE-GAN model is an
example of (Bao et al., 2017). The proposed model has a classifier in parallel with discrim-
inator to ensure the generated image is compatible with the given conditional information
in the original dataset.

3.2.4 VAE for Visual Place Representation Learning

GANs and VAEs are widely investigated generative models in recent years. The core
idea of both models share some common characters, i.e., build up the relationship between
a prior distribution (usually a simple one, such as multi-dimensional normal distribution)
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and a much more complex data distribution. To build such relationship, GANs begin with a
simple distribution and try to find corresponding images in data distribution given samples
in the simple distribution, while VAEs begin from data distribution and try to map dataset
images to the simple distribution. By adding extra structure to a vanilla VAE or GAN,
researchers also try to combine both directions. Compare to GANs, VAEs tend to generate
blurry images. What causes such a phenomenon is not known yet, while there is one guess
that it is the intrinsic effect of maximum likelihood to minimize DKL(pdata||pmodel). We
employ VAE in our work, as we are interested in learning a latent space with VAE, while
GANs focus more on the generating part.

3.3 State of the Art of Place Recognition

Visual place recognition aims at recognizing geographic locations or places from an image
or an image sequence (video). The place to be recognized can be either natural or artificial
such as a mountain(see Baatz et al. 2012 and Saurer et al. 2016), a desert area (e.g., Tzeng
et al. 2013), or an extensively explored urban and indoor environment. Place recognition
can be performed at different granularity ranging from a very coarse level (e.g., in which
continent, country, city) to a much finer level (e.g., in which community, street). In a coarse
level place recognition method, the earth surface (or study area) is often divided into a
collection of non-overlapped cells representing different places, and visual contents are
associated with these cells so that an image is classified into one of these cells. We refer to
such problem setting as discrete visual place recognition. Discrete visual place recognition
is often modeled as a nearest neighborhood query problem or a classification problem.
In the former problem setting, when a new query is given, a place recognition system
should find out from its image dataset the geographically nearest ones. As a classification
problem, the query image should be assigned to a discrete place among various places.
Place recognition methods of estimating the exact coordinates (e.g., geographic lat/lon
coordinates from GPS) and orientations are referred to as camera pose estimation. We find
several definitions that address the characters of different place recognition granularities.
Hays and Efros (2008) generalize visual place recognition as “...estimating a distribution
over geographic locations from single image...”; Arandjelovic et al. (2016); Zamir and Shah
(2014) treat place recognition as an image retrieval problem. Bansal et al. (2011) combine
image retrieval techniques with geometric methods to get an exact camera geo-location.

3.3.1 Discrete Place Recognition

Place recognition with street-level images

In place recognition where geo-reference is not used, we can connect images to places
where they are taken, such as continent, country, city, or neighboring community. In
this context the geo-localization problem is thus equivalent to a classification problem,
i.e., categorizing images into different places. At an abstract level where rigorous geo-
reference is missing, space is divided by a set of images, and each image represents a
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non-overlapped subspace. The distance between the two images is not necessarily equal to
their geographical distance but measured by some similarity function. In this case, when
a query image is given, its geo-location can be approximately described by known images
which were taken in nearby places and stored in a database. When topologic information
is added, the scattered images can be connected if there exists a direct path.

Volunteered images can contain highly localizable content of unique geographic infor-
mation as well as noise and ambiguity images that are difficult to recognize in terms of
geo-localization. For example, if an image contains a scene of sea and beach, it must be
taken from the coastal area while an image of cat or dog even with GPS tag are hard to be
geo-localized from the image content. Hays and Efros (2008) propose an Im2GPS method
using a data-driven approach to learn image representations from a bunch of popular
hand-crafted features for image-retrieval based place recognition. The authors investigate
the relationship between the contents of volunteered images and their geo-location from
a worldwide image dataset of 6 million GPS-tagged images from Flickr. In the follow-up
work, Hays and Efros (2015) further improve their “Im2GPS” method by introducing local
descriptors (e.g., local color and texture histogram, a bag of SIFT words) and applied
a learning method that combines KNN (k-nearest neighbors) and SVM (support vector
machine) to refine the retrieval result. In the deep learning era, Im2GPS is enhanced by a
deep neural network for matching visual features to discrete places (Vo et al., 2017). The
authors model the place recognition as an image classification problem where query images
are assigned to a cell of earth surface tessellation, however in the test time they turn to the
original Im2GPS method and replace the original hand-crafted features with the deeply
learned features. Regarding the temporal properties of an image that are uploaded by the
same user, Kalogerakis et al. (2009) improve the geo-localization by integrating traveling
trajectories of the photographers. Being aware of connections between user tags and image
content. Gallagher et al. (2009) enrich the depiction of geolocation by adding semantic
information from user tags to visual content to of an image.

Associating volunteered images with landmarks is a special type of place recognition. In
both human and machine cognition, landmarks themselves provide strong visual and/or
semantic clues about places. Y. Li et al. (2009) represent a related work driven by a
massive amount of Flicker images. Their dataset consists of 30 million images with nearly
2 million of which labeled into one of 500 landmarks. The authors use a multi-class
SVM to learn vectorized interest point descriptors as features to represent these images.
Zheng et al. (2009) implement a web-scale landmark recognition engine that learns from
20 million GPS-tagged photos and online tour guide web pages resulting in visual models
for 5312 landmarks from 1259 cities in 144 countries. To investigate visual localization and
landmark identification on mobile devices, D. M. Chen et al. (2011) collect a set of 1.7
million images with ground-truth labels, geo-tags, and calibration, as well as a set of cell
phone query images in San Francisco. This dataset is collected by a mobile mapping vehicle
equipped with various surveying and imaging sensors, such as camera, GPS, IMU. For
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place recognition, a vocabulary tree of SIFT descriptors is used to characterize places with
geometric verification. Zamir and Shah (2010) collect about 100,000 GPS-tagged images
downloaded from Google Maps Street View for Pittsburgh, PA, and Orlando, FL. They
use SIFT descriptors to represent 360-degree panorama images and a nearest-neighbor
tree search pruning to find nearby images. Murillo et al. (2013) use Gist descriptor to
represent panoramic images for place recognition. Gist, in contrast to local visual features,
e.g., SIFT, is a global descriptor that characterizes the visual property of the whole image
(Oliva & Torralba, 2001).

Before the rise of deep learning, manually designed features are widely used to character-
ize the visual property of places in place recognition research. These features bring visual
place recognition to a certain level of success. With the amazing success of deep learning
in computer vision tasks, applying deep learning to place recognition is getting more and
more attention.

In the early stage when deep networks are introduced to handle place recognition prob-
lem, pre-trained networks (usually trained on large scale datasets, e.g., ImageNet) are
used to extract deep features as place description. The reason is the pre-trained net-
works though not specifically trained on place recognition task, capture some common
visual features from a large number of images. Z. Chen et al. (2014) report the usage
of pre-trained Overfeat for place recognition. Overfeat is a network that performs object
detection, localization, and classification tasks all into one. However, the generalization
ability of their method is questionable as they manually select layer output of the best
performance. Sun̈derhauf and his colleagues improve the performance of a pre-trained
CNN in place recognition by forcing the network to work on image patches where salient
landmarks are recorded (Sünderhauf, Shirazi, Dayoub, et al., 2015; Sünderhauf, Shirazi,
Jacobson, et al., 2015). Their experiments reveal that features produced by pre-trained
ConvNets are robust to viewpoint variance and conditional variance.

PlaNet (Weyand et al., 2016) can be viewed as a deep learning version of Im2GPS.
PlaNet tackles place recognition a classification problem by subdividing the earth surface
into thousands of multi-scale geographic cells. Its core component is a deep network that
is trained with millions of geo-tagged images. The deep network is modified from the
Inception network with batch normalization and a softmax layer generating the probability
distribution of a query image for all geographic cells. The authors also employ a long short
term memory (LSTM) architecture to enable the model to handle temporal coherence to
geo-locate uncertain photos.

The emergence of institutional collections of huge amount of geo-tagged images, such as
Google Street View, has fueled deep learning methods. These datasets are usually main-
tained by institutions and have geo-tags for supervised learning. Arandjelovic et al. (2016)
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proposed a learning version of VLAD (Vector of Locally Aggregated Descriptors) to repre-
sent images for place recognition. The authors tackle street-level image geo-localization as
an image retrieval problem. The proposed NetVLAD layer can be integrated into a neural
network to facilitate learning with a weakly supervised ranking loss. The resulted network
maps an image into a much lower dimension as NetVLAD vector, such that geographically
closed images in this feature space are close to each other as well. They tested their method
on Google Street View Time Machine dataset.

Cross-view place recognition

There are also researches about integrating multiple data sources for visual place recog-
nition, aerial images, for example, represent another important geo-locational information
source besides the street level images. This type of work is often referred to as cross-
view place recognition. Bansal et al. (2011) propose to geo-localize a street-view image
by matching building faade in that image with aerial images. If the correspondence of
the oblique aerial and ground image is established, the camera pose where the street level
image is taken can be calculated by geometric methods. Lin et al. (2013) propose to learn
the correlation of two appearances from ground level images and airborne images with
additional land cover information for geo-localization. Their method discriminates hand-
crafted features from ground-level images with the features from image patches taken from
aerial images and land cover map in a sliding window way. The authors built up a dataset
of 6756 ground-level images from Panoramio, 182988 aerial images from Bing Maps, and
land cover attribute from USGS GAP Land Cover Data Set. Castaldo et al. (2015) match
street-level images and a GIS map by semantic segmenting the image and find the corre-
spondence between the contact region of semantic patches and their counterpart features
in the map.

The cross-view place recognition requires to compare two images from different viewing
perspectives, which is the application scenario of Siamese networks (Bromley et al., 1993).
Lin et al. (2015) propose a Siamese-style network named “Where-CNN” which learns to
match ground-level images and aerial image patches with a margin loss. To test their
method, the authors built up a dataset of 78,000 aligned cross-view image pairs: they
collected Google Street View and 45-degree aerial view images from seven cities San
Francisco, San Diego, Chicago, and Charleston in the United States as well as Tokyo,
Rome, and Lyon including both urban area and suburban area.

Place recognition in SLAM

Besides estimating a robots location, visual place recognition has an important applica-
tion as “loop closure” in, such that a robot (or other autonomous systems) can “remember”
the place where it has already visited and thus generate accurate maps. The visual SLAM
literature frequently addresses visual place recognition in outdoor, indoor, and smaller-
scale environments using image or image sequence. In the comprehensive review of the
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progress in SLAM from Cadena et al. (2016), the authors reveal the importance of visual
and semantic representations for mapping and mention deep learning as an important tech-
nique that may bring significant changes to SLAM. Lowry et al. (2016) examine existing
works according to the 3 major components of a visual place recognition system, i.e., the
image processing module, the map, the belief generation module.

In many conventional visual place recognition systems, hand-crafted visual features and
place description methods (such as the bag of visual words, BoVW) are their backbones
(Sivic & Zisserman, 2003). Newman and Kin Ho (2005) illustrate how visually salient and
wide-baseline stable visual features help in loop-closure. Sünderhauf and Protzel (2011)
combine BRIEF, a local descriptor, and Gist, a global descriptor to encode places for
loop closure. Angeli et al. (2008) extend the BoVW method to incrementally encode
SIFT features and local color histograms for place description and use Bayesian filtering
to estimate the loop-closure probability. FAB-MAP (Cummins & Newman, 2009, 2011)
provides a highly efficient probabilistic SLAM system with visual place recognition and
BoVW techniques. Nicosevici and Garcia (2012) extend BoVW method with an incremen-
tal vocabulary building process. The visual vocabularies are built online as more images
are observed, new elementary clusters are extracted and added to the vocabulary and the
complete set of clusters gradually converges. F. Li and Košecká (2006) select a set of dis-
criminative SIFT features for characterizing individual locations to speed up recognition
while keeping a high recognition rate. Gálvez-López and Tardós (2011) use FAST key-
points and BRIEF descriptors in place recognition to improve the computational efficiency
of a SLAM system. In addition to point features, edge features are also used for place
recognition in SLAM (Eade & Drummond, 2009).

Images that are consecutively captured in a short time interval are more likely recording
the same place. The SeqSLAM system matches local query image sequences to a database
of image sequences in place recognition with the above hypothesis (Milford & Wyeth, 2012).
Similar efforts include Sequence Matching Across Route Traversals (SMART) (Pepperell
et al., 2014) and the work of Hansen and Browning (2014), where a Hidden Markov Model
(HMM) is used to capture the temporal property in image sequences.

Beside temporal property, additional spatial constraints are also used in the following two
examples. Cadena et al. (2012) add geometric verification to BoVW within a Conditional
Random Fields (CRF) model and use a novel normalized similarity score to measure the
similarity of recent images in the observed image sequence. Stumm et al. (2013) introduce
co-visibility graph for mutually visible landmarks (distinct visual features), such that the
spatial correlations can be used in a generative place recognition algorithm.
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3.3.2 Camera Pose Estimation

Knowing precise position gets more attention in robotics, and autonomous driving
(Levinson & Thrun, 2010). Though various devices have GPS chips embedded, such as
camera, mobile phone, and vehicle navigation device, the positions that are given by GPS
can be noisy and uncertain (Zamir & Shah, 2014). The vision-based positioning system
can be seen as a complementary or alternative solution to GPS-based localization: 1). GPS
is limited to access in some urban area where dense buildings will block GPS signal; 2).
Vision-based localization and pose recognition provide finer and richer information than
the GPS signal, which is required by applications such as autonomous robots and vehicles.

Geometry-based camera pose estimation

Structure from Motion (SfM) techniques (see Szeliski and Kang 1994) for an example,
are able to simultaneously reconstruct a 3D scene structure and camera pose from a set
of feature correspondences from observed images. Estimating the absolute pose of a given
query image with the help of such a pre-computed 3D model is often referred to as structure-
based localization. Nowadays, SfM approaches are able to reconstruct a large scale 3D
model from unordered images collected from the Internet and establish correspondences
between image features and 3D scene points. Here we show some examples. Snavely and
his colleagues present a framework for the creation of efficient correspondence and 3D
reconstruction for extremely large image data sets (Snavely et al., 2006, 2008). Agarwal
et al. (2009) present a system to match and reconstruct 3D scenes from a huge number
of photos to build a 3D point cloud model for city Rome. These photos are collected
from the Internet without knowing the calibration parameters of cameras. Heinly et al.
(2015) represent a stream computing paradigm to construct a world-scale 3D model from
unordered Internet image photo collections.

To reliably estimate the camera pose of a query image with a 3D point cloud of a scene,
we need to know the correspondences between 2D features and 3D points. Once corre-
spondences are found the camera pose can be estimated with high precision by geometric
methods. These methods are well explained in the textbook by R. Hartley and Zisserman
(2004). Consequently, the structure-based localization can be reduced to a problem of
searching correspondences between 2D features on the query image and 3D scene points.
The searching methods can be divided into approaches based on image retrieval and those
based on direct matching. Image retrieval based methods first search through the database
for similar images to the query image, then 2D-to-3D correspondences can be established
by matching features in the query image against those in the database images of which cor-
respondence of 3D points has been established. Direct matching approaches skip searching
the intermediate database images and instead directly match features in the query image
against 3D scene points.
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Irschara et al. (2009) build a 3D model with a collection of images by SfM and link the
point features on an image to their corresponding 3D point in the model. The vocabulary
tree-based indexing is used to retrieve relevant images of a query image from the database
where k highest ranked images are selected for feature matching. The authors apply a
regular SIFT feature matching to find correspondences between 3D points and the query
image features followed by pose estimation. In Prioritized Feature Matching (Y. Li et al.,
2010), place recognition is performed in an opposite way by matching a representative set
of SIFT features covering a large scene to a query image. Following heuristic searching
strategies, this method searches the representative features from a visibility graph where
each scene feature is matched to a set of images that contain the corresponding image fea-
ture. (Sattler et al., 2011) show that a vocabulary tree-based approximate search through
all point descriptors for direct 2D-to-3D matching achieves higher registration rate, but it
is still too computationally expensive to run in real time. Sattler and his colleagues also
propose an active correspondence search where the spatial property of the 3D points is
considered (Sattler, Leibe, & Kobbelt, 2012). If a 3D point has its corresponding feature
found in the query image, its neighboring points are also visible in the image. The active
search framework first identifies a 2D-to-3D correspondence between an image feature and
a scene point, then selects the neighboring area around the point as candidates for 3D-to-
2D matching. Y. Li et al. (2016) address the global pose estimation problem with 3D point
cloud data and image features. They employ a direct bidirectional matching schema (first
2D-to-3D, then 3D-to-2D) to establish the correspondence between image features and 3D
scene points in a large point cloud database covering many places around the world. To
find better correspondences in image matching, Zamir and Shah (2014) refine multiple
potential matches by selecting a single nearest neighbor for each query feature such that
all matches are globally consistent. Direct matching methods generally outperform image
retrieval methods which take intermediate images in the feature matching step, while di-
rect matching methods require high resource demand when the database is large. Sattler,
Weyand, et al. (2012) identify false positive votes as the major cause of the performance
gap between the retrieval method and the direct matching, and propose a retrieval method
that relies on a selective voting scheme to fill the gap. Their results show an improvement
in comparison with image retrieval methods and direct matching methods.

Considering the scalability when matching through a large image dataset, researchers
also try to develop compressed scene representations that leverage accuracy and efficiency.
Sattler et al. (2015) compress a 3D model with hyper-points and fine visual vocabulary.
A hyper-point records a set of locally unique matches between 3D scene points and an
image feature to reduce the matching ambiguity. Bearing in mind that there are similar
images of the same place with similar viewpoints in a large image dataset, Johns and
Yang (2011) suggest compressing the dataset by clustering similar images to differentiate
places and learn discriminative features for each place. Their method results in a set
of place descriptions consisting of visual words and thus the place recognition problem
can be addressed as matching features from the query image and the features of a place
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description.

In addition to point cloud models, researchers also try to make use of other models.
In the urban geo-localization scene, Bansal and Daniilidis (2014) extract 3D point-ray
features from Digital Elevation Map (DEM) to compute correspondences between building
corners in the DEM and a query image. Since the 3D models are usually constructed
using SfM methods from images, Sattler et al. (2017) even argue that 3D models can be
omitted in camera pose estimation. Their method illustrates that images with approximate
geo-locations suffice to estimate precise camera pose.

Usually, the camera pose estimation aims at calculating the full 6 DoF camera pose,
including 3 degrees for translation and 3 degrees for rotation (See Section 2.3). There are
also efforts on reduced camera pose estimation problem. Armagan et al. (2017) estimate
a reduced camera pose in 3 DoF, in which two for horizontal location, and one for direc-
tion from a coarse GPS position, by matching and recovering geometric correspondence
between semantic features in the observed image and 2.5D models of the surrounding build-
ings. Baatz et al. (2010) reduce camera pose estimation to a pure homothetic problem by
exploring the geometric constraints from vanishing points to remove 3D rotation. Košecká
and Zhang (2002) also solve a reduced camera pose estimation problem by only considering
the cameras orientation. They observed that in an indoor environment, lines are aligned
with the principal orthogonal directions of the world coordinate frame when projected onto
an image and impose strong constraints on camera pose in the scene.

Learning-based camera pose estimation

Undoubtedly, the geometric methods that reveal the geometric correspondence between
a 3D scene point and the 2D image point are reasonable and precise in camera pose esti-
mation. However, they suffer from inaccurate point feature extraction and correspondence
searching. Moreover, they usually employ hand-crafted point features which can hardly
represent semantic information. With the rise of deep learning, more efforts are being made
to improve part or the whole process of camera pose recovery by embedding or utilizing
deep networks in the pipeline. We roughly divided the efforts of embedding deep networks
in camera pose estimation pipeline into three categories, 1) employing deep networks to re-
place part of the pipeline where conventional methods meet their performance bottlenecks,
such as feature selection and correspondence matching; 2) building end-to-end architecture
to regress absolute camera pose directly; 3) building end-to-end networks to incorporate
geometric information in training to estimate relative camera pose.

DeTone et al. (2017) still follow the geometry-based pose estimation pipeline, i.e., first
detecting point feature correspondence and then recovering geometric relationship. The
whole system is a cascaded network architecture which consists of three sub-networks, i.e.,
two point-extractors to detect salient corner points from two consecutive images, and a
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wrapper net to match corresponding points by calculating a homography matrix. The
model is trained and tested on synthesized 3D models and 30 Static Corners Dataset
and achieves significant improvements in corner point detection compare to hand-crafted
detectors, and stronger robustness when the translation and rotation is large. RANSAC
(random sample consensus) is a widely used algorithm to exclude the mismatched 2D-
3D visual features in pose estimation. Brachmann et al. (2017) propose a differentiable
RANSAC algorithm by introducing two learning-based versions for sample selection in
RANSAC as 1). a softmax assignment, 2) stochastic expectation calculation. The proposed
method jointly trains a sampling network and a scoring network to minimize the difference
between generated matches and the optimal matches, such that the generated hypothesis
leads to a robust camera pose. Zamir et al. (2016) show a multi-task network to perform
wide-based line feature matching and camera pose estimation. The features are image
patches of the same points and remain invariant under viewpoint change. The tasks include
scene layout, object pose estimation, and surface norm estimation.

Kendall et al. (2016) made the first attempt to use deep learning method for camera
localization. The PoseNet model is modified from the Inception network by replacing
the softmax layer with pose regression layer to produce camera poses in quaternion form.
In the following work, the authors investigate the pose uncertainty by using Bayesian
ConvNets instead of the original PoseNet (Kendall & Cipolla, 2016). In another relevant
paper from Kendall and Cipolla (2017), the authors compared the original PoseNet loss
and two newly proposed loss functions. Since the translation and rotation are represented
in two different metric space, the original loss function uses a beta factor to balance the
two measurements. The first proposed loss function is a Laplace likelihood loss which
involves two homoscedastic uncertainties for translation and rotation accordingly. The
two parameters are learned during training. The second loss function is a geometric loss
that uses directly projection error, which measures the distance of an image point that
projected from a 3D point in the scene using estimated pose and the ground truth. This
loss function requires a 3D model to provide the ground truth positions on image plane
when performing re-projection.

In a series of works that follow PoseNet, 7-Scenes dataset1 (Glocker et al., 2013) and
Cambridge Landmarks dataset2 are extensively used for testing and evaluation among
different methods. Besides, TUM indoor dataset3 and some SLAM dataset such as Oxford
RobotCar dataset4 are also widely used benchmark datasets in similar researches. Such
dataset usually contains images and their ground truth camera poses or positions collected
from indoor or outdoor scenes.

1MS 7-Scenes dataset https://www.microsoft.com/en-us/research/project/rgb-d-dataset-7-scenes/ ac-
cess date 22.11.2018

2Cambridge Landmarks dataset http://mi.eng.cam.ac.uk/projects/relocalisation/ access date
22.11.2018

3TUM indoor dataset. https://hazirbas.com/datasets/tum-lsi/ access date 22.11.2018
4Oxford RobotCar dataset. http://robotcar-dataset.robots.ox.ac.uk/ access date 22.11.2018
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Walch et al. (2017) use LSTM (long short-term memory) unit to further refine the high
dimensional output from the first fully connected layer and regress translation and rotation
separately. They test their method on TUM indoor dataset and Cambridge Landmarks
dataset and show an improved result as compared to the original PoseNet. Melekhov et al.
(2017a) propose an encoder-decoder CNN architecture with short-cut connections between
encoder and decoder layers for estimating camera pose from a single RGB-image. They
name this model as Hourglass Network. Their network is tested on the 7-scenes dataset
and achieves better performance than PoseNet and LSTM-Pose. Motivated by multi-task
learning modality, Wu et al. (n.d.) suggest to use two branches to regress the translation
and the rotation separately, thus modify PoseNet by replacing the higher layers (near to
the output) with two branch nets. They also use sine and cosine values of Euler angles
to represent rotation. A data augmentation method named pose synthesis is designed to
produce more training data that covers more pose space to cope with overfitting in training.

Researchers also use deep learning methods to estimate the relative pose from consecutive
images by capturing the spatial-temporal correspondence between images. Melekhov et al.
(2017b) estimate relative camera pose with Siamese-style network. The network consists
of pre-trained AlexNet with a spatial pyramid pooling (SPP) layer instead of a common
pooling layer. The authors trained this model on five landmarks image data (incl. Montreal
Notre Dame, Piccadilly, Roman Forum, Vienna Cathedral, and Gendarmenmarkt) covering
altogether 581,000 image pairs and validated with a subset of Yorkminster covering 22,000
image pairs. The authors also use DTU dataset5 to evaluate the proposed method and
compare with the hand-crafted point-feature based methods. The results show that their
network structure achieves better accuracy compare to baseline CNN and geometry-based
methods. Laskar et al. (2017) also investigate relative pose estimation by combining image
retrieval and pose regression to make use of an existing image with known pose to predict
the relative pose between a query image and its reference image. A Siamese-style network
is first trained on the regression task and then fine-tuned for the retrieval task. In the
inference stage, the network retrieves Top-K nearest images to query image and then a
RANSAC-based method is used to filter out outliers and generate a final pose. Their
method is tested on two indoor datasets, i.e., the 7-Scenes dataset and 5 scenes in a
university building. Clark et al. (2017) graft a bi-directional LSTM unit on an Inception
network to capture the correspondence. The model has been evaluated on 7-Scenes dataset
and Oxford RobotCar dataset with an improved performance comparing to PoseNet.

Recently end-to-end deep learning based methods have employed geometric cues as su-
pervision signals in relative pose estimation, including depth and optic flow. Depth and
optic flow provide extra information other than color information in images. Costante et
al. (2016) investigate the dense optical flow as a geometric cue in the relative pose esti-
mation task. Motivated by researches in view synthesis such as DeepStereo (Flynn et al.,

5DTU dataset is collected in the section for Image Analysis and Computer Graphics at the Technical
University of Denmark http://roboimagedata.compute.dtu.dk/ access date 10.07.2018
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2015), a model which takes depth as intermediate information to interpolate views under a
new camera pose, T. Zhou et al. (2017) use depth as intermediate information for distilling
geometric structure from images. Their model consists of a single-view depth prediction
network, which takes a single monocular image as input and predicts a depth map of the
image as output, and a multi-view pose estimation network that estimates relative camera
poses from already observed images. The loss function consists of the differences of depth
between nearby warping views and the target image as well as pose. The warping views
are calculated by image warping proposed in STN (spatial transformer network). The two
functional networks are coupled by the loss during training but are decoupled at test time.
The per-pixel loss is also weighted by a soft mask to strengthen the pixels that are more
likely to be successfully modeled.

SfM-Net reported by Vijayanarasimhan et al. (2017) is another model that uses geomet-
ric cues to estimate the relative camera pose in terms of scene and object depth, camera
motion and 3D object rotations and translations. The proposed network is similar to that
in (Zhou et al. 2017) but designed for multiple tasks including optical flow prediction, depth
prediction, camera motion estimation, object detection, and point cloud generation. De-
MoN, reported by Ummenhofer et al. (2017), is a convolutional network trained end-to-end
for depth, camera motion, surface normal, and optical flow estimation from successive un-
constrained image pairs. The architecture is composed of multiple stacked encoder-decoder
networks, the core part being an iterative network that is able to improve its predictions.
The loss function consists of multiple terms of point-wise depth loss, motion loss, scale-
invariant gradient loss. The method is tested on multiple datasets of indoor scenes. MapNet
from Brahmbhatt et al. (2017) is a model that jointly performs relative pose estimation
and global pose estimation. Valada et al. (2018) report a similar model “VLocNet”, which
estimates global pose and relative pose simultaneously from consecutive monocular images.
The network architecture consists of a global pose regression sub-network and a Siamese-
style sub-network for the relative pose estimation with parameter sharing trained with a
Laplace likelihood geometric loss (Kendall & Cipolla, 2017). This network significantly
outperforms other learning-based methods including PoseNet, Bayesian PoseNet, LSTM-
Pose, VidLoc, Hourglass Pose, BranchNet, PoseNet-with geometric loss, and NNnet on the
7-Scenes dataset and Cambridge Landmarks dataset. VLocNet++, reported by Radwan
et al. (2018) extends the VLocNet for multi-tasks of semantics segmentation, global pose
regressing, and relative pose estimation. GeoNet also takes depth, optical flow, and camera
motion as geometric cues (Yin & Shi, 2018). The geometric relationships are extracted
over the predictions of individual modules and then combined as image reconstruction loss
for static and dynamic scene parts separately. The adaptive geometric consistency loss in-
creases the robustness towards outliers and non-Lambertian regions and is able to resolve
occlusions and texture ambiguities.
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Connecting visual place representation with camera pose

Buildings, bridges, the street signs, the topographical features of the terrain, all these
objects in image observations contain rich semantic information. They can serve as strong
clues to support place recognition or geo-localization. However, there are more generic
scenes that may not leave distinct landmarks on image observations. For example, an
image of an open office with wooden tables and computers may locate in San Francisco,
Beijing, Berlin, or other cities. Although these images must contain certain visual features
that are strongly correlated with a geographic place, the relationship is not strong enough
to specifically pinpoint their positions. To precisely localize an image, visual features must
be used with the combination of spatial information.

In discrete place recognition, spatial properties, specifically camera pose, are essential to
visual place recognition as in most cases visual features along sometimes are insufficient.
For example, the geometric relationship between two images can be used to verify the
retrieved images among image retrieval based place recognition methods. In learning based
methods, such as NetVlad or im2gps, the geographic locations of images are used to provide
supervision in training.

Manually designed visual features play an important role in geometric methods for cam-
era pose estimation. However, these features are insufficient to capture geographic property
of a place at a high abstraction level. The learned visual features for camera pose estima-
tion are implicitly bundled with certain to geographic locations in neural networks. The
implicit mapping makes it difficult to interpret.

Since both visual and spatial information of place is important to place recognition, a
specific mechanism to connect them can be beneficial for this task.



Chapter 4

An Approach of Learning Collective
Place Definition

The rapidly increasing geo-data and fast forwarding techniques enable a data-driven
approach to study the concept of place. In this Chapter, we begin from the attempts in
geography and GIScience to understand place, and then derive three approaches for a col-
lective place definition in the context of big geo-data and data driven-methods. Based on
this approach, we propose a probabilistic place definition and introduce two deep learning
techniques, i.e., VAE and comparative learning methods to approach this definition. Three
computational models are proposed from the two deep learning techniques addressing dif-
ferent concerns about learning the place representations.

4.1 Towards the Collective Place Definition by Com-

parison

In this part, we first introduce a general framework in GIScience for place definition.
Then we derive our specific approaches for the collective definition of place from a data-
driven perspective. We emphasize the importance of comparison in our method.

4.1.1 A Comparative Approach for Place Definition

Modeling place in a digital world is identified as an essential task in GISystem and
GIScience, due to the inherent vagueness and subjectivity of a place is often incompatible
with the strict binary digital representation (Goodchild, 2011). More specifically, “the
lack of precise locations, crisp boundaries and single universal names for many places that
people talk about in everyday life” rises the main challenge of modeling a place (Davies
et al., 2009, p. 175). Intuitively, the concept of place develops from space, where both
objective geographic entities and subjective human activities, perceptions, and experiences
settle. Based on the idea that place is anchored by “location”, either the tangible or
intangible entities can be assigned with locations in space with a spatial reference frame.
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Thus the definition of place is closely coupled with the entities locations. However, the
temporal, even spatial change of entities’ locations often harms the purely spatial definition
of place. Kabachnik (2012) provides an example of how the concept of place is shaped by
mobility and settlement. He argues for disentangling the spatial component from place
and considering a temporal component in place definition as well. Golledge suggests that
“regardless of whether the tangible or intangible position is taken with respect to examining
the sense of place, it should be possible to develop either a subjective or an objective
scale (or some combination of the two) that captures the essence of a place” (Golledge &
Stimson, 1997, p. 417). Cresswell constructs a framework of defining place by reviewing the
genealogy of place in different disciplines. The framework composes multiple perspectives
because “place stands for both an object (a thing that geographers and others look at,
research and write about) and a way of looking” (Cresswell, 2014, p. 15). In the framework,
the author identifies three levels at which geographers can approach the notion of place
(Cresswell, 2014, p. 51), namely,

• a descriptive approach to place the ideographic approach concerns the distinctiveness
and particularity of places;

• a social constructionist approach of place this approach focuses the unique attribute
of a place in some specific social processes; and,

• a phenomenological approach of place this approach emphasizes the human experi-
ence of “in-place”.

The three levels represent the level of depth in understanding places. They are not discrete
methods but overlaps with each other.

With the context of big geo-data and data-driven research methods, we can derive a
three-folds-approach accordingly from the general framework to achieve a collective place
definition,

• The constructive approach. The constructive approach suggests the concept of place
is constructed in a collective way by human generated data. No matter the users in-
tentionally or unintentionally attend this process, their postings or digital footprints
all contribute to the place formation process. This approach is comparable with the
social constructionist approach, but the construction process is not restricted in so-
cial processes but contains a broader range of user activities on the Internet. The
resulted place representation usually indicates the distribution of user activities in
space and reflects the boundary of the place. L. Li and Goodchild (2012) explore
the use of spatial footprints as a record of human interaction with the environment.
Specifically, the spatial footprints are geo-tagged photos posted in Flickr. The au-
thors construct a smooth surface according to the density of geo-tagged images in
spatial extent. The surface indicates the intensity of spatial points and is interpreted
as the significance and location of a place. Goodchild also suggests the use of VGI
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or crowdsourcing to formalize the concept of place, highlighting citizen-based initia-
tives, such as Wikimapia as a new type of gazetteer with the self-proclaimed aim of
“describing the whole world” (Goodchild, 2007).

• The contrastive approach. The contrastive approach defines a place by comparison.
This approach is related to the descriptive approach and the social construction-
ist approach, where the unique properties of different places are investigated and
compared. In the collective place definition, the observations of the same place al-
ways have similar properties, while the observations from different places have their
distinct properties to distinguish between them. It is necessary to have a relative
reference system that allows a comparison of places, such that distinct places can
be identified by contrast. Winter and Freksa (2012) approach the notion of place
by using the contrast principle in cognition and language. Their contrast principle
adopts Tuans perspective about place, i.e., places provide stability and permanence
as centers of perceived value, as the basis to construct a relative reference system
(Tuan, 1977, p. 29, p. 139).

• The comprehensive approach. The comprehensive approach property is a mixture
of social constructionist approach and phenomenological approach. In the social
constructionist approach, the driven force of place formation in a social process is
investigated. However, the comprehensive approach has a broader view of the driving
force, such as human perception or emotional response, not only been restricted in the
social aspects. Both the cognitive processes and social processes can be chosen as the
driven force to form a place. Specifically, in the collective place formation process, the
human experience of “in-place” can be obtained from either lab/wild investigation
or mined from their digital footprints. The subjective human experience is thus
quantitatively connected to the place forming process. The Place Pulse platform1

collects peoples emotional response to street level images by asking users to choose
a safer/livelier/more boring. between two street-level images. Based on the dataset
researchers are able to depict the images of different cities from subjective human
perceptions, such as safety (Salesses et al., 2013).

To implement the proposed approaches, we derive a probabilistic place representation
and use deep learning methods to learn it from data. In detail, CNNs are used to extract
essential features of a place from massive image observations. The numeric features are
assumed to be generated by a probabilistic process. Thus the visual feature of a place
is a random variable of some probabilistic distributions. VAE can be used to learn such
a probabilistic place representation, such that the place representation is comprehensive
to the observation process. Meanwhile, the learned features and place representations
should be put into a relative reference system, so different places can be compared and
distinguished. In deep learning, the comparative methods are used to find such a reference

1Place Pulse running by MIT Media Lab. http://pulse.media.mit.edu/ last access date: 1.11.2018
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system. These methods reflect the contrastive approach by comparing the learned place
descriptions.

4.1.2 A Probabilistic Place Model and VAE

A definition of place with latent variable model

Considering an image taken from a place as an observation of the place, we introduce a
probabilistic place definition based on the latent variable model. Latent variable model is a
widely used probabilistic model that relates an observable variable to a latent variable. In
our study, the unobservable latent variable preserves the visual information of a place and
thus defines a place, while each image observation captures part of the place’s visual infor-
mation. We denote image observations as x and the latent variable as z. We also assume
the observations and the latent variables are two continuous random variables. Figure 4.1
is a typical latent variable model in graph representation, where the arrows indicate the
interaction between the latent variable and the observation variable. In the next section,
we fully explain this figure in the context of VAE. Given the latent representation of a
place, we can write its joint distribution with image observation p(x, z). To get an image
observation of the place, we can use the following generative process given by the latent
model,

For each image observation i:

1. Drawing a latent variable zi ∼ p(z)

2. Drawing an image observation xi ∼ p(x|zi)

Figure 4.1: The typical latent variable model in directed graph representation, where
N represents the number of data samples, and arrows show the dependency relationship
between x and z.

Instead of seeking a geometric boundary to define a place, we define a place in a proba-
bilistic way with the latent variable model. The boundary and semantic information of a
place are constructively obtained from observations. Knowing the true distribution of the
latent model, i.e., the place definition, we can infer all possible observations by a sampling
process.
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The image observations capture the visual property of a place, even though they may
vary in appearance due to different conditions, such as season, weather condition, lighting
condition. Tangible objects, such as a building, a tree, or a road sign, all compose the visual
property of a place. These objects and their combinations may have the discriminative
power to distinguish the place from others and thus connect with the spatial property of
a place, such as the positions of these objects or camera poses of image observations. We
assume to represent the visual property with a latent variable. The latent variable, on
one hand, encodes the visual property of a place, on the other hand, can be distinguished
among different places.

Some conditions are irrelevant to specific places, such as lighting conditions, and random
noise, while others may be connected with a specific place, such as camera poses. Since
we can hardly distinguish these conditions exhaustively, only part of these conditions can
be explicitly represented. We refer them as controllable conditions, such as camera pose.
Others that are not explicitly considered such as lighting condition are referred to as
uncontrollable conditions. For those explicitly contained conditions, we have two different
ways to incorporate them with the latent representation, either by using them in the
learning process to make them implicitly contained in the latent representation or by
explicitly using them as a condition. Since we do not have any supervision information
about those uncontrollable conditions, they are inseparable from the latent variable. In
the rest of this section, we introduce VAE to facilitate the learning process.

Learning the latent place model with VAE

Suppose each image observation has its unique latent code z that is sampled from the
distribution P (Z). Generating an image observation of a place equals to sample from the
conditional distribution P (X|Z). Finding the latent code of an image observation turns to
evaluate the conditional distribution p(z|x), where the image x is given as the condition.
However, it is intractable to integrate over the latent variable for the marginal likelihood
p(x) =

∫
p(z)p(x|z)dz. The reason is that the true posterior of the latent variable z, i.e.,

p(z|x) is unknown. Kingma and Welling (2013) originally proposed VAE to tackle this
issue.

In the context of VAE, the true posterior distribution of image observations X over
the latent representation Z can be approximated by a variational distribution Q(Z), i.e.,
pθ(z|x) = qφ(z). Suppose there are N observations of a place X = {x(1),x(2), · · · ,x(N)}.
All observations are independent identically distributed (the i.i.d. condition), and these
observations are associated with the latent variable x ∼ pθ?(z|x), where θ? is the parameter
of the true distribution.

VAE approaches the 3 parts of this model, i.e., the parameters θ, the posterior of latent
variable z given an input x, and the marginal of variable x by introducing an approximation
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qφ(z|x) to the intractable true posterior pθ(z|x). The latent variables z can be seen as an
interpretation as a latent representation or code. Thus a VAE model can be divided into an
encoder and a decoder. The encoder (or recognizer) is a differentiable parametric function
qφ(z|x), where φ is the parameter. It approximate the intractable true posterior pθ(z|x) by
mapping the image observation to its corresponding latent code in a simpler distribution.
The decoder reconstructs an image observation from its latent code, i.e., mapping the
latent codes back to the image observations. The decoder function produces a distribution
of possible x given a latent code z, i.e., it estimates the conditional distribution pθ(x|z).
Both encoder and decoder functions can be implemented as neural networks.

The objective of VAE is to maximize the logarithmic marginal likelihood over a dataset
as the summation of the logarithmic marginal likelihoods of individual samples, i.e.,

log pθ(x
(1), · · · ,x(N)) =

N∑
i=1

log pθ(x
(i)), (4.1)

which can be rewritten as:

log pθ(x
(i)) = DKL(qφ(z|x(i))||pθ(z|x(i))) + L(θ,φ;x(i)), (4.2)

where the Kullback-Leibler divergence (KL-divergence) DKL measures the difference be-
tween the estimated posterior Q with parameters φ and the true posterior; L(θ,φ;x(i))
is called the variational lower bound (also known as the evidence lower bound, ELBO).
Since DKL(qφ(z|x(i))||pθ(z|x(i))) is non-negative and intractable, we turn to maximize the
ELBO. This also leads the recognition model to approximates to the true posterior pθ(z|x).
The ELBO is written as Equation 4.3. The KL-divergence term in ELBO measures how
close the recognized distribution approaches the prior of z. The expectation term measures
how much information of an input image can be recovered from the latent code. When the
recognized distribution is the same as the prior and the information of input images can
be perfectly recovered, the ELBO achieves its maximum value. In practice the encoder
network estimates the mean and variance of the latent code as a normal distribution to
estimate the KL-divergence term.

L(θ,φ;x(i)) = −DKL(qφ(z|x(i))||pθ(z)) + Eqφ(z|x(i))

[
log pθ(x

(i)|z))
]
. (4.3)

The core idea of VAE is to map the unknown prior distribution of the latent variable
to a simpler distribution. The idea is shown in Figure 4.2. Suppose we have a set of
image observations of a place and a well-trained VAE model. The encoder of the model
comprises an image into a latent code while the decoder takes a latent coder and reconstruct
the corresponding image observation. Given a simple distribution, e.g., normal distribution
as shown in Figure 4.2 (a), we can find corresponding value from the normal distribution
for all image observations when they go through the encoder. Similarly, each value in
the normal distribution can be mapped back to an image observation using the decoder
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network. As shown in Figure 4.2 (b), the VAE actually pushes the unknown complex
data distribution towards a standard normal distribution, i.e., the high probability part
of the data distribution is squeezed towards the center of the normal distribution (zero
value), while the low probability part of the data distribution is dispersed in the opponent
directions out of the center. In this case, we establish a connection between the image
observations and the standard normal distribution.

Figure 4.2: The core idea of using VAE in place learning, (a) the encoder maps each
image observation to its corresponding latent code while the decoder recovery the image
observation from a latent code, (b) VAE maps a complex data distribution to a simple
latent distribution.

VAE can be trained with the normal back-propagation algorithm, but the randomly
sampled latent variable causes unstable gradient values, so the authors of the original VAE
paper propose a reparametrization trick to get stable gradient in training (Kingma and
Welling 2013). The reparameterized random variable z is expressed as a “deterministic”
form z̃ = gφ(ε,x). For example, if z is a univariate Gaussian, i.e., z ∼ N (µ, σ2), then it
can be reparameterized as z = µ + σε, where ε is an auxiliary noise variable ε ∼ N (0, 1).
In this case the ε is an input for recognition network and µ, σ are the deterministic output
of the network to produce gradient.

4.1.3 Comparative Learning Methods

The motivation of using comparative methods

Though the place recognition problem, which requires to assign observations to their cor-
responding places and many other application domains, such as face recognition, person
re-identification (Re-ID) can be fitted well into a classification setting, comparative meth-
ods are more preferable than directly applying classification losses (e.g., softmax cross
entropy loss). The motivation of using comparative methods can be summarized as the
need for the investigation of learned representations rather than the classification scores.
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Moreover, Tadmor et al. (2016) point out that the classification-based training is easier
than the comparative training, but the classification-based method requires a large train-
ing set because of the significant increase in the number of parameters in the output layer.
In such cases, the learned representations are placed in a relative reference system, e.g., a
Euclidean space, to facilitate the comparison between different samples. In the place recog-
nition problem, an ideal situation is when images from the same place, their representations
are closer while images from different places are positioned far away from each other in
terms of the learned representations. In general, the learned representations should have a
small intra-class variation and a large inter-class variation. The comparative methods also
share the common idea as the contrastive approach for collective place definition. In the
rest of this part, we briefly review several comparative methods in deep learning. In the
next sections, we show how we combine some of the methods with VAE model for place
recognition.

Before we begin to introduce these methods, some concepts and terms are clarified first.
Suppose we have a collection of data X (in our case image observations) and a metric
distance function in the data space. Let function d(xi,xj) which takes two data samples
xi and xj to produce a non-negative scalar value defines the distance between them. We
use D to denote the distance computed by the metric function for short. The function
should satisfy the following conditions,

• non-negativity, d(xi,xj) ≥ 0;

• identity of indiscernible, d(xi,xj) = 0, ⇐⇒ xi = xj;

• symmetry, d(xi,xj) = d(xj,xi);

• triangle inequality, d(xi,xj) ≤ d(xi,xk) + d(xk,xj).

Due to the difficulty of finding such a metric distance function directly in data space (i.e.,
image space) when the data is high dimensional and complex, we turn to find a function in
its latent space. The metric distance function in the latent space enables to compare two
data samples with a known distance metric, e.g., Euclidean metric. If we have a parametric
function fθ that takes x as input and produces a vector value as the latent code, we can
require the function maps the image data into a latent space so that a metric is applicable
in the space. The function is usually implemented as a deep network. Let Z denotes the
h-dimension latent variable, zi ∈ Z denotes the latent code of data sample xi. The metric
distance function in the latent space is denoted as Dθ : (Rh,Rh) 7→ R+

0 .

Contrastive Loss

Contrastive loss is originally proposed as the functional component of a dimension reduc-
tion method to find meaningful (computable) metric distance in the latent space (Hadsell
et al., 2006). The method runs over pairs of samples with binary labels indicating a pair
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contains similar of distant data samples. The basic idea of contrastive loss is to construct
partial loss for pairs either of two similar samples or of distant samples. The label y = 1
if the two samples are similar and y = 0 if they are distinct. Given a pair of samples x1,
x2, and their label y, the loss function can be written as

L(θ, y,xi,xj) =
1

2
(1− y)(D̂θ(xi,xj))2 +

1

2
y{max(0,m− D̂θ(xi,xj))}2 (4.4)

where D̂θ(xi,xj) = d(fθ(xi), fθ(xj)) and m is the margin value, a hyper-parameter that
controls how much difference we want between zi = fθ(xi) and xj = fθ(xj).

The intuition behind contrastive loss is to push latent codes of similar data samples
closer and pull latent codes of distinct data samples further than a margin distance.

Triplet Loss

The triplet loss is first introduced in a paper from Google for face recognition (Schroff et
al., 2015). It is also used in image retrieval (Wang et al., 2014) and person re-identification
(re-ID) (Hermans et al., 2017).

A triplet of latent codes including the following three elements,

• an anchor xa,

• an positive xp of the same class as the anchor,

• and a negative xn of a different class,

The core idea of triplet loss is to push the negatives of an anchor point further while
pull positives towards the anchor point, until the distance between negatives and positives
greater than a margin. The metric function d that measures the distance on the latent
space, thus the loss of a triplet (xa,xp,xn) is defined as following,

L(θ,xa,xp,xn) = max{D̂θ(xa,xp)− D̂θ(xa,xn) +m, 0} (4.5)

To minimize this loss, the distances between the latent codes of the same class are pushed
towards 0, and the distances between the latent codes of different classes are pulled apart
from each other at least at a distance of D̂θ(xa,xp) +m. As the distance between anchor
and negative are greater than the distance, the loss becomes zero.

There are three possible categories of triplets depending on the distances,

• easy triplets, where D̂θ(xa,xp) +margin < D̂θ(xa,xn), its loss is 0;

• hard triplets, where D̂θ(xa,xn) < D̂θ(xa,xp), the negative is closer to the anchor
than the positive;
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• semi-hard triplets, where D̂θ(xa,xp) < D̂θ(xa,xn) < D̂θ(xa,xp) +margin, the neg-
ative is farther away from the anchor than the positive but not more than margin.

There are naturally two strategies to make use of these triplets, one is batch all strategy,
where all valid triplets are selected, and the overall loss is an average over all hard and
semi-hard triplets; the other one is batch hard strategy, where only triplets with the hardest
positives (largest distance among D̂θ(xa,xp)) and the hardest negative (smallest distance

among D̂θ(xa,xn)) among the batch are selected. Hermans et al. suggest that the batch
hard strategy yields the best performance (Hermans et al., 2017).

Center Loss and Its Combination with Comparative Losses

Center loss extends comparative losses by introducing the concept of class centers. A
class center is a point in the latent space and approximated by the mean of all latent codes
from the data sample of this class. Center loss has been brought up as an auxiliary loss in
classification tasks to enhance the discriminative power of deeply learned features (Wen et
al., 2016). In the training process, the center loss simultaneously updates class centers and
penalizes the distance between the learned features and their corresponding class centers.
Center loss is also possible to combine with other comparative losses. X. Zhang et al.
(2017) notice the negative effect of long tail distribution in training data and propose a
range loss to address this issue. The long tail effect indicates the unbalanced distribution
of data in different categories, i.e., the majority of training data comes from a small portion
of classes while the majority of the classes have limited number of data samples. The range
loss method assumes a center for each class and penalizes on the distance of both intra-
class and inter-class cases. Specifically, the loss function consists of two parts respectively,
the intra-class loss and the inter-class loss. For each class in a training batch, the method
calculates k-greatest range’s harmonic mean value of the latent codes for the intra-class
loss and uses the margined distance between class centers as the inter class loss. X. He
et al. (2018) combine triplet loss and center loss for multi-view 3D object retrieval. This
method uses class centers as anchors and calculates the distance between a class center
and a positive or a negative sample. It also uses the center loss proposed by Wen et al.
as a regularization term to ensure the intra-class similarity (Wen et al., 2016). Center
loss involves a set of data xk with labels indicating their classes and a set of class centers
C = {c1, · · · , cK}. Triplet center loss can be expressed by the following equation, where
m indicates a margin value.

L(θ,xk,C) = max{D̂θ(xk, ck)−
1

K − 1

K∑
i=1,i 6=k

D̂θ(xk, ci) +m, 0} (4.6)

A Brief Summary for Comparative Learning Methods

In Figure 4.3, we illustrate the basic ideas of the three comparative methods. The con-
trastive loss pushes samples of different classes away and drags the same samples together
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as shown in Figure 4.3 (a). After learning, the samples of the same class are close to each
other, while the samples of the different classes are at least at the distant of margin value.
Figure 4.3 (b) shows the idea of triplet loss, where the anchor is put in the center, the
circle is a positive sample, and the triangle represents a negative sample. Triplet loss pulls
the positive sample towards the anchor and pushes the negative sample away from the
anchor until the distance between the anchor and the positive sample is greater than a
margin value compares to the distance between the anchor and the negative sample. In
Figure 4.3 (c), a combination of triplet loss and center loss is shown. In this schema, on
the one hand, all data samples are pulled towards their corresponding class centers, on the
other hand when the distance between a sample and a different class center is less than a
margin value, it is also pushed away from the class center. Meanwhile, the class center is
also adjusted according to the positions of its corresponding data samples.

Figure 4.3: A summary of comparative methods in deep learning, (a) contrastive loss, (b)
triplet loss, (c) triplet center loss.

4.2 The Combination of Comparative Methods and

VAE for Place Representation Learning

In this section we combine triplet loss methods with VAE, so that a mapping from the
image space to the latent space can be found to facilitate the comparison in the latent
space.

4.2.1 Triplet-VAE for Place Representation Learning

We assume the latent place representation is a random variable of a simple distribution.
Generating an image observation is turned into a sampling process, which consists of two
steps, 1). sample a latent code z from its prior distribution P (Z), and 2). sample the image
observation via the posterior p(x|z). Given the labeling information that the observation
image data comes from several different place, we can use the Triplet-VAE model to refect
places in the latent space. The Triplet-VAE model combines triplet loss and VAE to learn
representations of different places.

In the Triplet-VAE model, the triplet formation is seen as a probabilistic process, where
the latent codes are sampled from the latent variable distribution and a Bernoulli likeli-
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hood is used to indicate whether randomly sampled three elements form a valid triplet
(Karaletsos et al., 2015). Given the supervision information, we can verify whether three
randomly drawn samples from the latent space form a valid triplet. Let valid(·) denote
a the verification function which takes three samples (i, j, k), i 6= j 6= k, and produces a
real scalar v in 0, 1, where 1 stands for a valid triplet group and 0 vice versa. For any
group of (z(i), z(j), z(k)) we can denote its probability distribution of being a valid triplet
as p(valid(i, j, k) = 1), if (i, j, k) forms a valid triplet then p(valid(i, j, k)) = 1, other wise
p(valid(i, j, k)) = 0. The distribution of sampling valid triplets is a Bernoulli distribution.
The joint distribution of N data samples and L potential triplet groups can be written as
(Equation 4.7),

p(x,v;θ) =

∫
z∈Z

N∏
n

[
p(z(n))pθ(x

(n)|z(n))
] L∏

l

[
p(v(l)|z(li), z(lj), z(lk))

]
dz. (4.7)

The probability of a triplet group of latent codes is a valid one can be estimated by the
following,

p(v(l)|z(li), z(lj), z(lk)) =
e−D̂i,j

e−D̂i,j + e−D̂i,k

. (4.8)

The joint distribution can be rewritten as Equation 4.9. The corresponding variational
lower bound with an extra term of triplet sampling is given as Equation 4.10,

log pθ(x,v) = DKL(q(z)||p(z|x,v)) + L(θ,φ;x,v), (4.9)

where

L(θ,φ;x,v) =− En
[
DKL(qφ(z(n)|x(n))||pθ(z))

]
+ En

[
Ez∼q(z|x) log pθ(x

(n)|z(n))
]

+ Ek
[
Ez∼q(z|x,v) log pθ(v

(l)|z(li), z(lj), z(lk))
]
. (4.10)

To maximize the likelihood of the above joint distribution we want to minimize the
KL-divergence term and maximize the other two expectations. The process of finding
an optimization to maximize the likelihood can be fitted into the original VAE training
process. We only focus on the last term, the expectation of v given z. If we always draw
samples from the valid triplets, the probability distribution p(valid(i, j, k) = 1) should
always be 1, which means the expectation should be maximized towards 1. In practice, to
maximize the triplet exception, we can just minimize the triplet loss to make the triplets
as valid as possible.

KL-divergence measures how one distribution is different from another one, but not con-
versely, i.e., DKL(P ||Q) 6= DKL(Q||P ) (P and Q are two probability distributions). Hence,
KL-divergence is not a distance metric. Jensen-Shannon divergence(JS-divergence) is a
metric that measures the similarity between two probability distributions. JS-divergence
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is symmetry and always a finite value compare to KL-divergence. For two probability
distributions P and Q their JS-divergence is defined as the following,

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M), (4.11)

where M = 1
2
(P + Q). Thus the metric function in the latent space can be defined with

the JS-divergence as

D̂θ = DJS(qφ(x)||pθ(x)). (4.12)

However the JS-divergence is commonly intractable due to the difficulty of knowing the
intermediate distribution M , and we use an approximation as Equation 4.13 instead.

D(P ||Q) =
1

2
DKL(P ||Q) +

1

2
DKL(Q||P ). (4.13)

If P and Q are two normal distributions, i.e., N1(µ1, σ
2
1) and N2(µ2, σ

2
2), the KL-

divergence has a closed-form as Equation 4.14,

DKL(N1||N2) = log
σ2
σ1

+
σ2
1 + (µ1 − µ2)

2

2σ2
2

. (4.14)

The alternative distance metric is

DKL(N1||N2) =
σ2
1 + (µ1 − µ2)

2

2σ2
2

+
σ2
2 + (µ2 − µ1)

2

2σ2
1

− 1. (4.15)

When µ1 = µ2 and σ1 = σ2, the distance gives 0, otherwise, it produces a positive real
value.

In Chapter 5, we implement this method for the first experiment. We describe the
network structure, dataset, as well as the results and discussions in the corresponding
section.

4.2.2 Learning Gaussian Mixture Place Representations (GMPR)

In the Triplet-VAE model, the prior distribution of the latent place representation is
assumed as a simple distribution such as the standard Gaussian distribution. The infor-
mation about different places is implicitly encoded in the latent codes via triplet loss. In
this section, we explicitly encode place information as unique distributions via mixture
models. This leads to Gaussian Mixture Place Representations, where multiple places can
be represented as unique Gaussian distributions.
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Representation of Places via Mixture of Gaussians

Gaussian mixture model is a linear combination of more than one basic Gaussian dis-
tributions for better approximation to the data distribution. By adopting the concepts
of Gaussian Mixture Model, we now formally describe a Gaussian Mixture Place Rep-
resentation. Given a collection of N observations X = {x(1),x(2), · · · ,x(N)} that are
captured from K different places C = {c1, c2, · · · , cK}, we assume their latent codes
Z = {z(1), z(2), · · · , z(n)} are generated from their corresponding probabilistic place rep-
resentations. Now introduce a K-dimensional binary variable c indicates from which place
an observation comes. When the latent representation zck (corresponding to the image
observation xck) is related to place ck, the kth dimension of c, i.e., ck is set to 1 and the
rest are set to 0. The probability distribution of a latent code given place indicator c can
be evaluated by the conditional distribution p(z|c) as

p(z|c) =
K∏
k=1

N (z|µk,Σk)
ck . (4.16)

Let π denotes the distribution probability of place indicator variable and πk = p(ck = 1),
the distribution of the latent code z over K places can be obtained by marginalizing out
the place indicator c as,

p(z) =
K∑
k=1

p(z|c)p(c) =
K∑
k=1

πkN (z|µk,Σk), (4.17)

Given a latent code z, the probability of which place belongs to can be estimated by the
conditional distribution using Bayes’ theorem as,

p(ck = 1|z) =
πkN (z|µk,Σk)∑K
j=1 πjN (z|µj,Σj)

. (4.18)

Equation 4.18 is also viewed as the responsibility that component k takes for “explaining”
the latent code z.

Back to the image observations, we are interested the relationship between an image ob-
servation and its latent code. Since usually we have no clue about the true posterior p(z|x)
which “encodes” the image observations to their latent codes, we can use a variational dis-
tribution instead as VAE. We are also interested in the posterior distribution p(x|z) which
“decodes” a given latent code to its corresponding image. Generating a random image
observation is expressed by the following process, where p(c) is the prior distribution of
place indicators and p(z|c) is the distribution of the corresponding latent code given c,
where ψ is used to denote the parameters of Gaussian components.

1. Choosing a place indicator, c ∼ Cat(π),

2. Sampling a latent code from place representation, z ∼ P (z|c),

3. Sampling an image observation x, x ∼ P (x|z)
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Center-Triplet-VAE for GMPR Learning

A functional GMPR model consists of three parts, the “encoder” that encodes an input
image into its latent code, the “decoder” recovers an image from the latent code and the
place representation as to the parameters of Gaussian components. We propose the Center-
Triplet-VAE model to learn such a functional GMPR model. Center-Triplet-VAE (CTV)
is inspired by the center loss (Wen et al., 2016) and Center-Triplet method (X. He et al.,
2018). The point of the mean value of a Gaussian component defines a “class center” in the
latent space, while the latent codes of image observations that come from the same place
are considered as positives while the latent codes from a different place are considered as
negatives. Instead of using a Euclidean distance in the center loss, we use probability to
indicate how close a latent code to a place representation. As the probability cannot define
a metric function, it actually measures the distances from a given latent code to all class
centers. The idea of CTV is shown in Figure 4.4.

Figure 4.4: The schematic drawing of CTV model, where two different places and their
representations are shown. The loss of CTV, on the one hand, pushes the latent codes from
different places away, as well as their corresponding representations, on the other hand,
ensures the latent codes of the same place as close to their corresponding distribution as
possible.

The Center-Triplet-VAE (CTV) model on a collection of images from different places
is trained to maximize the likelihood of the given N observations and place labels. The
log-likelihood of CTV log pθ(x

(1), · · · ,x(N), c(1), · · · , c(N)) =
∑N

i=1 log pθ(x
(i), c(i)) can be
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written as

log pθ(x
(i), c(i)) = DKL(qφ(z|x(i))||pθ(z|x(i), c(i))) + L(θ,φ;x(i), c(i)). (4.19)

The first right hand side (RHS) term is the KL divergence between the approximated
posterior distribution where only x(i) is given as a condition and the true posterior where
both x(i) and x(i) are given. The second right hand side term L(θ,φ,ψ;x(i), c(i)) is the
variational lower bound (ELBO) on the marginal likelihood of image observation i as,

L(θ,φ,ψ;x(i), c(i)) = −DKL(qφ(z|x(i))||pθ(z|c(i))) +Eqφ(z|x(i)) log pθ,ψ(x(i), c(i)|z). (4.20)

qφ(z|x(i)) is the variational posterior to approximate the true posterior pθ(z|x(i), c(i)). For
the GMPR model, we assume pθ,ψ(x(i), c(i)|z) can be factorized as:

pθ,ψ(x(i), c(i)|z) = pθ(x
(i)|z)pψ(c(i)|z). (4.21)

Then, the ELBO in Equation 4.20 can be rewritten as:

L(θ,φ,ψ;x(i), c(i)) =−DKL(qφ(z|x(i))||pθ(z|c(i)))
+ Eqφ(z|x(i)) log pθ(x

(i)|z)

+ Eqφ(z|x(i)) log pψ(c(i)|z). (4.22)

We want to differentiate and optimize the lower bound L(θ,φ,ψ;x(i), c(i)) w.r.t. the vari-
ational parameters φ, the generative parameters θ, and the parameters of the Gaussian
components ψ. The gradient of the lower bound can be computed by the Stochastic
Gradient Variational Bayes (SGVB) proposed in the original VAE paper with a “reparam-
eterization trick” (Kingma & Welling, 2013).

Now we provide some intuitions of the ELBO as Equation 4.22. More specifically, the
ELBO of the CTV adds a strong assumption about the distribution of z according to
the GMPR configuration. For each pair of observation samples < x(i), c(i) >, the encoder
qφ(z|x(i)) approximates the Gaussian component that is indicated by c(i), i.e., pθ(z|c(i)).
The assumption to factorize the joint distribution pθ(x

(i), c(i)|z) suggests that both the
image observation x(i) and its latent code z(i) contain the place information c(i). The second
RHS term in Equation 4.20 is thus rewritten as the last two RHS terms in Equation 4.22.
Eqφ(z|x(i)) log pθ(x

(i)|z) ensures the visual information in an input image can be restored
from its corresponding latent code as the same in the original VAE (see the second RHS
term in Equation 4.3). The term Eqφ(z|x(i)) log pψ(c(i)|z) guarantees that the latent code

preserves the place information as well. In CTV, pθ(c
(i)|z) is evaluated by Equation 4.18.

The mean value of each Gaussian component can be seen as “class center”. The distance
between a latent code and a class center is thus evaluated as a probability value. In practice,
we introduce the center triplet loss similar to Equation 4.6 requiring the probability of a
latent code belongs to its class at least greater than a certain value (between 0 and 1)
comparing to the probabilities of belonging to other classes. This term also prevents the
Gaussian parameters of different components collapsing into the same value.
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Weakly Supervised Place Learning

The Center-Triplet-VAE model is developed to learn GMPR when places are pre-defined.
We may notice that given an image observation and its class label the posterior is a Gaus-
sian distribution. The distribution of all latent codes over all places is thus a Gaussian
Mixture model. When there are no pre-defined place classes, the classes of image observa-
tions need to be evaluated as probabilities over all possible places. In this section, we first
use a GMM framework to tackle this problem and then introduce geographic constraints
as a weak supervision signal to facilitate the learning process.

When no pre-defined place information is given, the model is expected to some extent as
a kind of unsupervised generative approach to perform clustering. The generative process
is similar as we described in the previous section. Specifically, suppose there are K places
(clusters), an observed image is generated by the following process,

pθ(x, c, z) = pθ(c)pθ(z|c)pθ(x|z, c), (4.23)

and

1. Sampling a place indicator from its prior, c ∼ P (c)

2. Sampling a latent code from the corresponding place representation, z ∼ P (z|c)

3. Sampling an image observation x, x ∼ P (x|z, c)

While the place label is missing, we want to maximize the probability over all image
observations with an unobserved label variable c and a latent place representation z that
is related to c. The log likelihood of x is log pθ(x) = log

∫
z

∑
c pθ(c)pθ(z|c)pθ(x|z, c)dz.

Note that we will omit the index i whenever it is clear that we are referring to terms
associated with a single observation. If we assume pθ(c, z|x) = pθ(c|x)pθ(z|x, c), the
variational lower bound becomes,

pθ(x) ≥ DKL (qφ(z, c|x)||pθ(z, c|x)) + L(θ,φ;x) (4.24)

L(θ,φ;x) = Eqφ(z,c|x)
[
log(

pθ(c)

qφ(c|x)
+ log

pθ(z|c)
qφ(z|x, c)

+ log pθ(x|z, c)
]
. (4.25)

The first term Eqφ(z,c|x)
[
log pθ(c)

qφ(c|x)

]
seems to be anti-clustering, while avoid the place

information leak from the latent space to observation space. The second term implies
that the latent code acts as intermediary between the place information and the image
observation. The last term uses both the latent code z and place information to reconstruct
the image observation. We can further rewrite the new variational lower bound as

L(θ,φ;x) = −Eqφ(c|x) log
qφ(c|x)

pθ(c)
− Eqφ(z|x) log

qφ(z|x)

pθ(z|c)
+ Eqφ(z,c|x) log pθ(x|z, c) (4.26)
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Though this model performs clustering on the observed image dataset from a pure data
perspective, it misses the spatial property between places and their observations. We
assume that the geographically closed images are more likely from the same place while
two images that geographically far away from each other are taken from two different places.
This assumption motives us to add geographical constraints to the learning process. We add
a contrastive loss term to the variational lower bound to reflect the additional geographical
constraints. The contrastive loss involves a seed data sample and two groups, the positive
group, and the negative group. Data samples in the positive group are expected from
the same place as the seed sample while data samples in the negative group are from
different places. In our probabilistic model, we introduce Gaussian components to define
class centers. Instead of measuring Euclidean distance between two image observations
in the latent space (i.e., measuring the distance between their latent codes), we use the
probabilistic value p(c|z) to measure how much an image belongs to a place in the latent
space. We write out the value of pθ(c|z) as D̂θ(x, c). Given a seed image xs and its
location, a set of N images within a certain distance D+ of xs is selected as the target
group and a set ofM images further than a certain distanceD− is selected as the contrastive
group. We use D̂θ(x, ck) to denote the probability of x belonging to the place representation
that indexed by k, i.e., the component of the kth Gaussian distribution. Since the two
groups are geographically far away, they are highly possible from different places, such
that their activations should be different. Thus, we set the contrastive loss of the ith

contrastive group with marginal value m as,

Li =

|C|∑
c=1

(max(||D̂(f+, c), 0)− ˆD(f−, c)|| −m, 0). (4.27)

By combining the ELBO and this contrastive loss, we can learn a GMM-based repre-
sentation for several places. In the second part of the second experiment in Chapter 5,
we proof its feasibility of learning place representation without much prior knowledge of a
place.

4.3 Holistic Place Representation with Camera Pose

In this section, we address two issues related to latent place representation. The first issue
is how can we disentangle the uncontrollable conditions with the latent place representation.
The second issue is how to incorporate camera pose in the latent place representation
learning explicitly.

4.3.1 The Holistic Latent Place Representation

In the latent holistic place representation, we distinguish between three components from
image observations. They are the latent place representation, the variable for controllable
condition, i.e., camera pose in this work, and a latent variable for the uncontrollable
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conditions. The latent place representation is a latent variable r, and a latent variable z is
used to denote the uncontrollable conditions in image observations. Both latent variables
are treated as continuous normally distributed variables. The controllable condition in our
work is camera pose that is attached to each image observations.

Suppose we have a collection of images taken from some places. The places are indexed
by n. The set of images taken from place n is denoted as Xn, which is consisted of its an
image observations x

(m)
n . Each image observation has a camera pose or view attached. The

view is denoted as v
(m)
n . Thus we have pairs of such image observation, and its camera pose

to depict a place. We can also assume that, the uncontrollable condition, and the holistic
place representation are independent from each other, i.e., p(z, r) = p(z)p(r), while an
image observation depends on both latent variables and its camera pose. The problem can
be formulated from the following settings,

Observation Images Xn =
{
x(1)
n , · · · ,x(m)n

}
Corresponding Camera Pose Vn =

{
v(1)n , · · · ,v(m)

n

}
Place Representation rn ∼ P (R)

Uncontrollable Condition znP (Z),

In this latent place representation model, we extend the previous model by disentangling
the uncontrollable condition and the place representation. The problem setting is somewhat
similar to Generative Query Network (GQN) (Eslami et al., 2018), while the difference is
that we use a latent variable for place representation instead of a deterministic one. In
this research, the authors propose a VAE-based system, GQN to generate view dependent
images in a virtual environment. The authors separate the latent representation and camera
poses, and use camera pose as a condition in their generative framework. They define
an accumulative place representation that consists of several additive components. The
components are dependent on the view specified by an image. The authors employ a neural
network to produce such view dependent components. The place representation is thus
accumulated from multiple components. The resulted place representation is supposed to
be a holistic one that contains all necessary information of a place and is independent
from views. In this section we propose another latent place representation model similar
to GQN, but with a different place representation schema. This representation separates
the controllable and uncontrollable conditions to explicitly use camera pose in the VAE
model as supervision information.

4.3.2 VAE for Holistic Place Representation Learning

The holistic latent place representation enables us to generate an image observation
given the place representation, and a camera pose. The latent variable for the uncontrol-
lable conditions which we can hardly model adds some randomness to the generated image
observation. To describe how we can get the uncontrollable variable and the place repre-
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sentation, we begin with the generation of an image observation given the uncontrollable
condition z, place representation r, and camera pose v,

For an image observation i,

1. Drawing from the uncontrollable condition zi,

2. Drawing from the place representation ri,

3. Drawing an image observation given the uncontrollable condition, place representa-
tion, and a camera pose xi ∼ p(x|z, r,v).

We need to maximize the likelihood of the given data points (observed images),

log

∫∫
z,r

p(x, z, r|v)dzdr.

Given the assumption on p(z) and p(r), and the generation process, we can maximize the
following log-likelihood with Jensen’s inequality,

log p(x|v) = log

∫∫
z,r

p(x, z, r|v)dzdr (4.28)

≥ Eq(z,r|x,v)
[

log
p(x, z, r|v)

q(z, r|x, r)

]
= LELBO,

where LELBO is the variational lower bound (i.e., evidence lower bound, ELBO), q(z, r|x,v)
is the variational posterior to approximate the true posterior p(z, r|x),v). The ELBO can
be further rewritten as

LELBO = Eq(z,r|x,v)
[

log p(x|z, r,v) + log p(z) + log p(r) (4.29)

− log q(z|x,v)− log q(r|x,v)
]

(4.30)

LELBO = Eq(z,r|x,v)
[

log p(x|z, r,v)
]
−DKL(q(z, r|x,v)||p(z, r)) (4.31)

= Eq(z,r|x,v)
[

log p(x|z, r,v)
]

(4.32)

−DKL(q(z|x,v)||p(z))−DKL(q(r|x,v)||p(r)) (4.33)

From Equation 4.33, we can see the ELBO to be maximized is composed of three terms, the
first term represents the reconstruction of an image observation given all necessary condi-
tions, the second and third term measure the differences between the learned distribution
of the uncontrollable conditions and the place representation and their prior respectively.
Since two KL divergence terms are always greater than zero, to maximize this ELBO, we
need to on one hand maximize the reconstruction term, and on the other hand minimize the
two KL divergence terms. Only when the two KL divergence terms are zero, the optimal
can be achieved.
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To implement this model, we use a recognizer function qθ(·) to approximate the true
posterior p(z, r|x,v), and a decoder function gφ(·) for the conditional distribution. The
model can summarized as the following, where both functions can be implemented by
parametric deep networks.

Recognizer qθ(z, r|x,v)

Decoder gφ(x|z, r,v)

Prior Uncontrollable Variable pθ(z|x,v) = pθ(z) ∼ N (0, I)

Prior Latent Place Representation pθ(r|x,v) = pθ(r) ∼ N (µr, σ
2
rI)

Unlike the uncontrollable condition, we don’t assume a known prior distribution for
the place representation. The place representation is learned during the training process.
The model can be trained without much difference to the original VAE. In Chapter 5, we
illustrate the feasibility of this place representation with the third experiment.
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Chapter 5

Experiments

In this section, we present three experiments on place representation learning and image
observation sampling. In the first experiment, we use Triplet-VAE to learn place repre-
sentations and identify latent code clusters of pre-defined places. We also investigate the
model’s ability to decode a latent code and sample novel images, which suggest the learned
latent code preserves the visual information of a place. The second experiment consists
of two sub-experiments on the GMPR. In the first sub-experiment, we use Center-Triplet-
VAE model to learn such place representation given pre-defined place information and
investigate the discriminative power of the learned latent codes. The other sub-experiment
targets on a more complex situation without pre-defined place information. In the third
experiment, we show how to embed learned place description for view-dependent image
generation.

5.1 Learning Places Representations with Triplet-VAE

In this experiment, we illustrate the feasibility of using Triplet-VAE to learn place rep-
resentation given pre-defined place categories. To evaluate its effectiveness, we set up two
baseline models beside Triplet-VAE model, one is an autoencoder with triplet loss, and
the other is purely a variational autoencoder. All three models use the same encoder and
decoder network structure and the same hyper-parameters. We empirically compare the
three models in the following aspects,

• Does the latent place representation learned by Triplet-VAE can be used to distin-
guish different places?

• To what extent the latent representation captures the visual property of a place?

For the first question, we examine whether the image observations in latent space are
clustered according to their place information and whether the latent space generalizes
well on the test data samples. To answer the second question, we compare their ability to
generate new image sample for different places.
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5.1.1 The Model

We adopt similar network architectures as the encoder-decoder structure for the three
models. The VAE structure consists of an encoder network and a decoder network, pro-
ducing the value of latent variable and reconstructed input given an input respectively.
We assume the prior p(z) is a standard normal distribution i.e., N (0, 1), and the encoded
latent variable is a normal distribution as well. The probability distribution of possible
values for latent variable is described by mean and variance. Thus the encoder needs to
predict the mean and deviation at the same time. The latent code is sampled from the
normal distribution with the predicted mean and variance. In training phase, we also use
the reparameterization trick as Equation 5.1, which, as (Kingma & Welling, 2013) suggests,
to obtain stable gradients.

z = µ(x) + σ(x) ∗ ε, where ε N (0, 1). (5.1)

In the encoder network, we use convolutional layers (Conv layers) to extract features from
input images, and in decoder network, transpose convolution layers (TransConv layers) are
used to reconstruct images from the latent code. We also use batch normalization after
the Conv/TransConv layers, and Leaky ReLU/ReLU as the activation function. Batch
normalization transforms its input signal into a standard normal distribution to solve
the internal covariate shift problem (Ioffe & Szegedy, 2015). In practice, using batch
normalization can accelerate training and improve models’ performance. We refer to the
composition of a Conv/TransConv layer, batch normalization layer, and an activation
layer as a Conv/TransConv block. Figure 5.1 depicts the overall network structure. The
encoder consists of 5 Conv blocks followed by a fully connected layer to make predictions.
The decoder consists of a fully connected layer and 4 TransConv blocks with the last block
using a Tanh activation. The latent code is first transformed by the fully connected layer
and then reshaped for the following transpose Conv blocks. We set strides in both spatial
extensions as 2 to replace the pooling layer to reduce the spatial extent of input image and
feature maps. The strides 2 in decoder network helps to scale up the generated images.
Given the structure of this network, it handles input images of size (64, 64). The settings
of each layer, including kernel size and the number of output channel, is detailed in Figure
5.1 as well.

5.1.2 Data

We test our method on the Microsoft 7-scenes dataset (Glocker et al., 2013). The 7-
Scenes dataset captures color and 3D information of 7 discrete indoor scenes. The indoor
scenes are 7 places including a room with a chess board and two monitors (chess); a set
of two fire extinguisher at a room corner(fire); an office room with computer and heads
sculptures (heads); an office room with table, computer, and a shelf; a kitchen with red
furniture and a pumpkin on the floor (pumpkin); the red kitchen without the pumpkin;
and a staircase (stair). The 7-Scenes dataset is collected by a handheld Kinect RGB-D



5.1 Learning Places Representations with Triplet-VAE 79

input output

FC
La

te
n
t

La
te

n
t

sampling   from prior

reparameterization Tra
n
sp

o
se

 C
o
n
v

B
N

R
e
LU

reshaped as
8x8x512

s2k5c512
s2k5c256

s2k5c3
Ta

n
h

Encoder Network

C
o
n
v

B
N

Le
a
ky

R
e
LU

stride (s) 2
kernel size (k) 5
channel (c) 128

S2K5C256
S2K5C512

S2K5C1024

FC

s2k5c256

Decoder Network

Figure 5.1: The VAE architecture with Conv layers in encoder network and TransConv
layers in decoder network.

camera at 640 * 480 resolution. The dataset contains RGB images, depth images, and
camera poses. We use RGB images to provide visual features and the scenario names as
their class labels. The dataset is originally divided into two parts, one for training and
the other for testing. Since all images are captured by the same device, we do not need
to consider the influence of the intrinsic parameters of the camera, and thus enable us to
focus on the visual feature extraction. Figure 5.2 provides an overview of this dataset,
including a sample image, training set trajectories (red), and test set trajectories (green).

Figure 5.2: An overview of 7-scenes dataset, in the first row a sample image of each scene
is given, in the second row, camera poses of training images (in red) and test images (in
green) are plotted.
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5.1.3 Experiment Settings

In our experiment, we randomly select 500 images from each scene to form a training
set and 20 images for testing purpose. In total, there are 3500 images for training and
140 images for testing. The original partitions for training and testing are not affected in
our case as long as we assume the images in both datasets are generated from the same
stochastic process. The numbers of images for each scene are various, but we select the
same number of images for each scene to avoid the potential influence of class imbalance.
The imbalanced number of training images for different classes may introduce bias in
training. Generally speaking, a scene that has more training images gets more “attention”
by the training algorithm while a scene with less training images may be ignored to some
extent. To balance the value of different terms in the loss function, we add two composing
parameters λKL and λtriplet, which are pre-defined before training. The loss function is thus
represented as

L = Lreconstruction + λKLLKL−divergence + λtripletLtriplet (5.2)

The hyper-parameters and training details are listed in Table 5.1.

Table 5.1: Training Parameters

lambda(KL) lambda(triplet) margin Learning rate Batch size Epochs Weight Init
0.05 0.05 5.0 0.001 128 20000 N (0, 0.02)

All three models are trained on a computer with the following settings. Training each
model takes about 40 hours.

Table 5.2: Environment Details
CPU Intel Xeon(R)CPU W3580 @ 3.33GHz x 8

Memory 16GB
GPU Nvidia TITAN Xp GPU
OS Ubuntu 16.04.5 LTS (x64)

TensorFlow 1.10.0
Python 3.5

5.1.4 Results

We first show the encoding-decoding ability of the three models. The encoding-decoding
ability is to map an input image into latent space and recovers the image from the latent
code. In Figure 5.3, we show the results of the three models based on some randomly
selected test images. The first row shows the original images in the dataset with two images
for each place (5.3(a)). The rest rows illustrate the decoded images by autoencoder, VAE,
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and VAE with triplet loss accordingly. The complete list of all 140 test images and their
reconstructions are attached in the Appendix D. Though without rigorous evaluation, the
quality of these generated images can still be compared. Obviously the three models can
recover some visual features from encoded latent variables, however the simple autoencoder
lack the ability of recovering details of an image, it tend to generate more blurry images or
images contain noise; VAE and VAE with triplet loss performs better then autoencoder,
though there are also very blurry images made by VAE and VAE with triplet loss. Moreover
adding triplet loss to VAE seems not hurt its encoding-decoding ability much.

(a)

(b)

(c)

(d)

Figure 5.3: Randomly selected test samples showing the encoding and decoding ability of
the three models. (a) the original images; (b) reconstructed images from autoencoder; (c)
reconstructed images from VAE; (d) reconstructed images from VAE with triplet loss.

Now we turn to the learned embedding space from these three models. Figure 5.4 shows
that the latent codes of training data and test data. The latent codes from both datasets
are projected onto 2D plane by using t-SNE method (van der Maaten & Hinton, 2008)
running about 1000 iterations. The dot plots of 5.4(a), 5.4(b), 5.4(c), and 5.4(d) show
that it is difficult to distinguish the categorical information about different places in the
latent space. In 5.4(e), 5.4(f), the latent codes of observations form 7 clusters representing
different places. Images of different places in the latent space are thus clearly distinguished
and those from the same place are much closer. It is easy to reach a conclusion that
without a clustering mechanism, autoencoder and VAE can hardly learn a latent space
that preserves the categorial place information, while adding a triplet loss forces the VAE
model to encode the categorial place information in the latent codes.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Encoded latent variables of training and test images. (a) latent codes of
training image from autoencoder; (b) latent codes of test image from autoencoder; (c)
latent codes of training image from VAE; (d) latent codes of test image from VAE; (e)
latent codes of training image from VAE with triplet loss; and, (f) latent codes of test
image from VAE with triplet loss.
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Figure 5.5 shows a scatter plot summarizing the distribution of the latent code values
across dimensions. For each dimension, we plot the values from different latent codes of
this dimension in different colors. In some dimensions, the values are scattered in a large
range and show no relation with semantic information (i.e., place irrelevant); in some other
dimensions, the place related visual properties are clearly separated (marked in black box);
in the rest dimensions the values are restrained in a much smaller region near zero, which
suggests little information is preserved.

5.1.5 Discussions

Considering the composing parameters λKL and λtriplet for the KL-divergence loss and
the triplet loss are small values, their contribution to the loss is much smaller than the
reconstruction error. By adjusting the composing parameters, we can make a balance
between knowing better the data distribution or encoding more place information in the
latent codes. Through carefully selecting the composing parameters we may find two
suitable parameters for the two terms in the loss function, such that the three terms in
the loss can be optimized well. Similarly, other parameters can affect the final result,
including the number of dimensions of the latent variable, different network structures. In
this experiment, we do not search such parameters, and instead, we concern more about
whether the semantic difference between places is reflected in the latent space through the
VAE plus triplet loss method.

From Figure 5.3, we can see that the three models have the encoding-decoding ability,
which means the learned latent spaces maintain the visual information of a place from
the training images. Moreover, in generating novel images, the autoencoder is not as
powerful as VAE and Triplet-VAE and adding the triplet term in VAE loss do not hurt
VAE’s encoding and decoding power. After adding a triplet loss term, the model still
maintains the generative power to sample new images compare to the original VAE. Figure
?? shows some examples of newly sampled images that exist in neither training set nor
test set. In Figure 5.4, it is illustrated clearly that without the supervision signal the
autoencoder model and the original VAE cannot catch the place related information. To
further investigate how the latent space learned from VAE + triplet loss preserves the place
related information, we plot the distribution, extreme, mean, and medium values in Figure
5.5. It is interesting that most dimensions collapse into a tiny region near zero, while in
several dimensions, their value scatters at a large range, and there is also a dimension
shows a strong correlation to the place information.

The cause of this phenomenon that we observed from Figure 5.5 can be intuitively
explained by examining the two KL-divergence related terms. On the one hand, the KL-
divergence between recognized distribution p(z) and the prior qθ(z|x) pushes the recog-
nized distribution of the latent codes to a standard normal distribution, which makes most
of the dimension to collapse into a tiny region near zero. On the other hand, the KL-
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(a)

(b)

Figure 5.5: The scatter plot of latent code distributions across dimensions. (a) latent
codes of train images, (b) latent codes of test images.



5.2 Learning Gaussian Mixture Places Representations (GMPR) 85

divergence can be very small if two normal distributions have similar mean and similar
deviation, even the deviation is large enough, which means two individual samples drawn
independently from the two normal distribution can be very different. In this sense, the
dimensions in the latent space that contain place specified information are clustered into
small regions, and the clusters of different places are distinguished; the information that is
hardly compressed may contain uncontrollable conditions that vary among different images
but not related to places.

Through this experiment, we see that the Triplet-VAE model learn a place representation
that contains the visual information of places, and preserves place categories in the latent
codes. Adding the triplet loss does not hurt the generative power of original VAE. It is still
able to generate novel images of a different place. By altering the dimensions that preserve
the categorical information, we can generate novel image observations in terms of different
places. In this experiment, we do not pursue optimal hyper-parameters that can lead to a
better performance (e.g., generating clearer images). This experiment proofs that when we
have prior knowledge about a different place, we can adopt the triplet lose as a supervised
learning way to retain categorical information in the learned place representations. In the
next experiment, we will show how to use geographic distance as a weakly supervision
signal when there is no prior knowledge about places.

5.2 Learning Gaussian Mixture Places Representa-

tions (GMPR)

In the previous experiment, we show the Triplet-VAE learns place representations within
a single normal distribution. The results show the learned latent codes are clustered
according to which place they are from. This leads to our second place representation
model, the GMPR, where each place is represented as a component Gaussian distribution.
In this section, we illustrate the learning process of this place model under two conditions.
The pre-defined place information is known for each observation image in the first condition
while in the second no pre-defined place information is available.

5.2.1 Experiment Settings

In this experiment, the network structure for Center-Triplet-VAE is similar to the one
represented in the first experiment as shown in Figure 5.6. The network structure has the
same encoder network as in the first experiment, which consists of 4 Conv layers and a fully
connected layer (see Figure 5.1). The decoder network consists of 8 ResBlocks followed by 3
upsampling pixel shuffler layer. In the first part of the experiment, we evaluate the discrim-
inative power of the learned representation and compare the result with other methods in
terms of classification. In the classification task, the model determines from which place a
query image comes. We use the classification accuracy as the performance indicator. Clas-
sification accuracy can be simply computed as Equation 5.3. We compare the performance
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of Center-Triplet-VAE, Center-Triplet-VAE+softmax, CNN+softmax, center-triplet loss,
center-triplet loss + softmax. The Center-Triplet-VAE+softmax adds an additional loss
term to reinforce the classification power of the model. CNN+softmax uses a softmax layer
after the convolutional layers to output the classification result over all classes. Center-
triplet loss uses purely Euclidean distances between a class center and a latent code, while
center-triplet loss + softmax adds the softmax loss to reinforce the classification power of
center-triplet loss. To set up the baseline, we adopt the same structure of the encoder
network as the feature extractor for all these methods. Batch hard strategy is used in all
triplet relevant methods to form valid triplet groups. The training environment remains
unchanged as the first experiment.

Accuracy =
Number of correct predictions

Total number of predictions
(5.3)
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Figure 5.6: The network architecture used for Center-Triplet-VAE model. The encoder
network is similar to the one used in the first experiment. The decoder network is altered
by using residual blocks and pixel shuffler layer.

5.2.2 Data

In the first part of the experiment, we still use the 7 scenes data the same as in the
first experiment (see Figure 5.2 for an overview of this dataset). We randomly select 1,000
images from each scene to form a training dataset. For evaluation, we randomly select
another 500 images from each scene to form a testing dataset.
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Figure 5.7: Overview of Cambridge Landmarks Dataset and the “Street” subset. The red
dots stand for the camera positions of training images, while green dots are for the test
images. We plot all dots in their local reference frame. (a) The whole dataset; (b) The
“street” subset.
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In the second part of the experiment, Cambridge Landmarks Dataset is used. This
data set is first proposed to evaluate neural network based methods for urban camera
relocalization (Kendall et al., 2016). The data set contains more than 12,000 images
labelled with their 6DoF camera pose captured from 6 scenes around Cambridge University.
Different from the Microsoft 7 scenes dataset, it covers a large outdoor environment with
complex visual features and noise, such as vehicles and pedestrians. The dataset consists
of 6 outdoor scenes. The “street” subset contains images along St. Johns Street - Trinity
Street - King’s Parade - Trumpington Street while the images of the other scenes record one
salient building and its surrounding environment including the Great Court of Gonville &
Caius College, University of Cambridge, St Mary’s Church, King’s College, Old Hospital,
and a shop facade at street corner. In Figure 5.7(a) we give an overview of this data set,
where the left part shows the geographic region, the middle part is a list of data samples,
and the right side shows an example image for each scene. The dataset is originally
partitioned into a training set and a testing set as well. The training samples are marked
as red dots, and the test samples are green dots (see the upper middle part of Figure
5.7(a)). The numbers of images are seriously imbalance across the scenes. The smallest
dataset contains only about 400 images in training set and 300 images in the test set, while
the “street” contains the largest number of images, which is about 3,000 for training and
another 3,000 for testing.

5.2.3 Results of Learning GMPR with Pre-Defined Places

To evaluate the discriminative power of the learned latent representation by the pro-
posed Center-Triplet-VAE, we conduct extensive experiments on various methods, includ-
ing CNN+softmax, center-triplet loss, center-triplet loss + softmax and center-triplet-VAE
on the 7 scenes dataset. In this experiment, we set all hyperparameter lambda to 0.02.

We can see from Tab. 5.3, CNN+softmax performs the best on the 7 scenes dataset,
while center-triplet-vae and center-triplet follow tightly behind. The center-triplet loss +
softmax performs not so good respectively. Given the condition that we do not particularly
tune the hyperparameters to squeeze the performance of all these model, we can hardly say
which model is better. However, all the models except for the center-triplet loss+softmax
model show their power and robustness (not sensitive to the value of hyperparameters) in
this classification task.

Table 5.3: The performances (%) of different methods on 7 Scenes dataset.
methods accuracy

CNN+softmax 96.17
center-triplet loss 94.086

center-triplet loss + softmax 82.8
center-triplet-vae 95.03
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To visually explore the property of the learned latent codes, we adopt PCA (principal
component analysis) to visualize the latent codes on the 7 scenes dataset. As is shown in
Figure 5.8, some interesting properties can be observed, (1) the learned latent codes of the
same place form clusters by all these methods; comparing with softmax loss, the triplet-
based methods produce distinguishable clusters of learned latent codes from the same
place; (2) the proposed Center-Triplet-VAE performs better than “center-triplet loss” and
“center-triplet loss + loss” on achieving small intra-class variance and large inter-class
variance; (3) the latent codes that are produced by Center-Triplet-VAE locate around its
center, while the latent codes that are produced by center-triplet loss show an “angle-
edge phenomenon”. The “angle-edge phenomenon” is caused by the inner property of
triplet loss function. The function pushes the latent codes of different places to opposite
directions, but as long as the distance exceeds the margin value, the loss function provides
no information to the optimization process. In Marc-Olivier Arsenault’s blog, he analyses
this phenomenon and proposes an improved version of triplet loss1. Figure 5.8 show the
latent codes of test data.

Figure 5.8: The learned latent codes of test data in 7 Scenes dataset. Each visualization
consists of front, top and side view from left to right.

In Figure 5.9, we give some example images that are generated directly from the latent
codes. The latent codes are sampled from each place representations, i.e., Gaussian compo-
nents in the same way of reparameterization. Some very nice images are reconstructed from
these randomly generated latent codes, while there are also very blurry images. Though
some of these images are very blurry, it is still possible to tell some visual features that are
relevant to the place from these images, e.g., texture and color.

1Lossless Triplet loss. https://towardsdatascience.com/lossless-triplet-loss-7e932f990b24 access
date:22.11.2018
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Figure 5.9: Examples of images sampled from randomly generated latent codes. The first
column shows the images generated from the latent codes of mean value from each Gaussian
component.

The origin-reconstruction figure (Figure 5.10) are very interesting. The decoder success-
fully recovers some images and left some with small faults. Some of the recovered heads
images are mixed in some red and yellow textures, which may come from the fire or kitchen
data. Overall speaking, the quality of generated images is not as good as the Triplet-VAE.
However, considering we double the training data amount in this experiment, it could be
much harder for the encoder to learn the data distribution. Therefore, we assume that a
more powerful encoder can improve the generated image quality.
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Figure 5.10: Examples of decoding results. Every two rows represent images of the same
scene. The odd rows show the original images, and the even rows show the reconstructed
images.
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5.2.4 Results of Learning GMPR without Pre-Defined Places

In this experiment, weakly supervised Center-Triplet-VAE is used to learn a GMPR
without pre-defined place information. The available information includes the image ob-
servations themselves and their corresponding geo-locations (from their camera poses).
The geo-locations act as weakly supervision signal in training phase. However, we still
need to specify the number of places as a prior knowledge to set the number of Gaussian
components in GMPR. The supervision signal is generated according to the geo-location of
images. For each training sample, the anchor, we gather a set of potential positive samples
whose distances to the anchor are within a certain value (referred as PosDist). Meanwhile
a set of definite negative samples are collected with all their distances to the anchor is
greater than a certain value (NegDist). It is worth noticing that the PosDist and NegDist
are largely restrained by the number of assumed number of places. Too large PosDist can
cause too many samples from different places in the possible potential positive group and
lead to computational inefficiency. Similarly, too small NegDist can mix in some positive
samples in the definite negative group. Too small PosDist or NegDist can reduce the choice
when forming the triplet groups. To decide PosDist and NegDist we assume places centers
and their distances as reference. Assume the n number of place evenly divide the space into
n coverages, each with a center that every location in the place has the smallest distance
to the center. Given these centers, we can calculate the smallest distance between these
centers, and we choose 1/3 of this distance as PosDist and itself as the NegDist.

The following figures show the learned place representation on the “street” in Cambridge
Landmark dataset. We assume images of this dataset come from 6 places and estimate
suitable PosDist and NegDist to form the triplet group. Figure 5.11 show the classification
result of the images with 6 learned places, points in the same color indicate that they belong
to the same place. It is worth to point out that we actually get each image observation 6
values of the possibility to assign it to the 6 places, but when we decide from which place
it comes from, we simply choose the one with the largest possibility.

The learned latent codes is visualized in Figure 5.12 with PCA dimension reduction.
It shows the image observations from places are distinguished clearly in the latent space,
though some of them are geographically close to each other.
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Figure 5.11: The place classification result of the “street” images. Each image is assigned
with a color indicating its place class.

Figure 5.12: The learned latent codes of 6 places on “street” dataset visualized by PCA
dimension reduction method.
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5.2.5 Discussions

In this experiment, we show how to learn a GMPR under two conditions. When pre-
defined place information is given, we can easily build the correlation between a single
image observation and its corresponding place. A binary mixture coefficient can be in-
troduced according to this correlation. The learning problem can be tackled as simple
as we separately estimate the parameters (mean and variance) for each place. In this
case, the GMPR is not actually a mixture of distributions. The proposed Center-Triplet-
VAE can easily learn such a model and enable the discriminative power to distinguish the
observations from different places. The discriminative power is important to extend the
applications of the learned latent codes, such as place recognition.

When pre-defined place information is not given, no explicit correlation between place
and their observations can be found. A continuous variable is used as a mixture coefficient
to indicate the possibility of assign an observation image to a specific place. Estimating
the mixture coefficient, the GMPR parameters, and the parameters of the encoder network
are particularly difficult to facilitate learning and enhance the geographical relationships
between image observations, we turn to the geo-locations as a weakly supervision signal.
These experiments show that the learned place representations, on the one hand, preserve
the visual information in the latent codes, and on the other hand show strongly geographical
correlations between observations.

The experiment results also show that the latent space may be very sparse, as it is hard to
reconstruct realistic images from some of the randomly generated latent code. The reason
could be two folds. One is that the encoder is not powerful enough to approaching the true
data distribution. The other is the training data samples are sparse as well. If we deal
with the place representation learning problem at a much larger scale, on the one hand,
we may need more powerful networks (deeper and more advanced functional structure), on
the other hand, we can employ some data enhancement techniques to expand the amount
of training data.
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5.3 Learning Places Representations with Camera Poses

5.3.1 Experiment Settings

In this experiment, the network structure for conditional VAE in shown in Figure 5.13.
We use a similar encoder network as in the previous two experiments. The only change is
to add an auxiliary Conv block to combine the image input and the camera pose input.
The Conv block first transforms the camera pose with a convolutional layer (kernel size
=1, strides = 1) followed by a batch normalization layer and a ReLU activation layer.
Here the Conv block acts as a fully connected layer. Then the transformed camera pose
is reshaped into the same size as the feature map from the first Conv layer that takes
images as input. The output of the encoder network consists of three parts, the mean and
variance of the uncontrollable latent variable and the estimated parameters of the latent
place representation. We use the mean value of the estimated normal distribution to
approximate the parameters of the latent place representation (i.e., the mean and variance
of a Gaussian distribution). In this experiment, we set the variance of the latent place
representation as a fixed value. An empirical experiment is given in the next part showing
the impacts of different values. The decoder network is the same as shown in Figure
5.13. The input of the decoder network is the concatenation of the latent variable of
the uncontrollable condition, the latent place representation, and the camera pose. The
red dashed lines show the reparameterization trick to sample the latent variable z of the
uncontrollable conditions from the output µz and σz, and the estimation of the mean µr
for the latent place representation. In the inference stage, we sample from the standard
normal distribution N (0, I), i.e., the prior distribution of p(r), for the uncontrollable
latent variable, and use the estimated µr together with a specific camera pose to generate
a desired image observation.

The rotation parameter of the camera pose is represented as a quaternion of 4 parame-
ters. The 4 rotation parameters together with 3 translation parameters are then fed into
the network. The hyper-parameters and training details are listed in Table 5.4. The train-
ing parameters are similar to the previous two experiments. As the KL term that measures
the difference between the estimated distribution and the prior of the latent place repre-
sentation has been added in the loss function, add a new coefficient, lambda (KLr) for this
term. Another new hyper-parameter is the variance of the latent place representation µr,
which is fixed as 0.01. The training environment is the same as Table 5.2 shows.

Table 5.4: Training Parameters
lambda(KLz) lambda(KLr) learning rate batch size epochs

0.002 0.002 0.001 128 6000

weight init µz dim µr dim σr -
N (0, 0.02) 8 16 0.01 -
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Figure 5.13: The network architecture with extra camera pose component and a latent
variable for place representation.

5.3.2 Data

We select 5 image sequences from both the 7 scenes dataset and the Cambridge Land-
marks dataset to test our implementation. We select 3 sequences from “heads”, “red-
kitchen”, and “office” in the 7 scenes dataset. Another 2 sequences are from “the great
court” and “St.Mary’s church” in the Cambridge Landmarks dataset. Each image sequence
consists of 200 images, and about 50 images are selected evenly from the sequence for test
purpose. The rest images are used for training

5.3.3 Results

In the following figures (Figure 5.14), we show the result of each image sequences. In
each figure, 10 of the original test images are given in the first row, followed by a row
of reconstructed images and a row of sampled images. The reconstructed images are very
similar to the original test images. The sampled images are generated with the latent place
representation, randomly sampled latent uncontrollable conditions, and the same camera
pose of the original test images. Except for some details, the sampled images contain
the major visual information of a place. However, some of the generated images show a
slight change in the viewpoint. Figure 5.15 show the learned place representation from
the five image sequences. The 5 place representations show their unique patterns across
dimensions.
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(a)

(b)

(c)
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(d)

(e)

Figure 5.14: Original images, reconstructed images, and the sampled images for the
selected 5 image sequences. (a) “heads”, (b) “redkitchen”, (c) “office”, (d) “the Great
Court”, (e) “St Mary’s church”.

Figure 5.15: The learned latent place representations that are expended along the latent
dimensions.
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5.3.4 Discussions

In this experiment, we fixed the variance in the prior of the latent place representation,
and thus introduce one more hyperparameter. By altering this value, we can control
the range of possible values in the latent place representation. It is worth to point out
that theoretically when the variance is set to 0, the normal distribution degenerates to a
deterministic value. Usually, we expect the variance to be small, which intuitively means
that there is less uncertainty in the place representation. However, how different variance
value influences the performance of the model is unclear. We run a small scale empirical
experiment to address this issue. We set 5 different variance values (0.01, 0.1, 0.5, 1, 5) and
test these values on the “heads” sequence. The results (Figure 5.16) show little difference
in generating novel images among these values. However, using a larger variance leads to
faster converge than using a smaller variance, while a too large variance also needs more
time to converge. The smaller variance value usually causes large KL divergence term
and squeezes the estimated mean together, which may lead to difficulties in optimization,
while a too large variance may weaken the representation ability of the latent variable.
Since our data is relatively small, the network may be too powerful to overcome these
issues. There is another possible implementation where the variance of the latent place
representation is added as a learnable parameter in the same way of the mean. Though a
place has its geographical boundary such that the range of possible camera pose values is
limited, our image observations are still very sparse comparing to the limited range. The
sparse observations only provide incomplete visual information about a place from specific
viewpoints. The sampling images of the results show that the proposed method does learn
visual properties from image observations. However, these camera poses are close to the
camera poses of the training images, which leaves the question “to what extent the learned
visual properties can be used to infer the appearance of the unobserved part of a place?”
open. Another issue may rise in terms of the “resolution” of the camera pose in a learned
model as we notice that there are some sampled images showing contents under slightly
rotated and translated camera poses compare to the original test images.
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Figure 5.16: An example of a sampled image in the first 1000 steps (100 steps interval)
with 5 different variance values, 0.01, 0.1, 0.5, 1, and 5.



Chapter 6

Conclusion

6.1 Summary

In this dissertation, we addressed the challenge of understanding a place by detecting
visual and spatial(semantic) properties from voluntarily collected images. Starting from a
framework of place learning from a collective image dataset, we proposed two representa-
tions of place, which are based on the latent variable model to encode visual property into
place representations. By introducing a generative model, specifically variational autoen-
coder (VAE), the latent place representations can be jointly learned with the distribution
of image observations. In the first place representation, spatial information of the image
observations is implicitly injected in place representations during learning. The spatial
property of a place is not explicitly disentangled from the visual property of a place as
well. The second place representation is disentangled with visual property from camera
pose. Based on the two place representations, we performed three experiments to show
possible ways to encode visual and spatial information in latent place representations. We
model the first place representation as a probability distribution. In the first version, we
assume a single normal distribution can represent all the observations in the latent space.
Correspondingly in the first experiment, we adopt triplet loss and incorporate categori-
cal(semantic) information to learn the latent place representation. The results show that
the latent codes retain the visual information in the images; some of the dimensions in
the latent representation show a strong correlation with their place labels. The results of
the first experiment lead us to the second version, a GMM-based place representation (we
refer it as GMPR), where each place is represented as a normal distribution component
and the latent space in a mixture of these distributions. In the second experiment, we
learn such a GMPR under two situations, 1). the places are pre-defined and 2). no explicit
place information is available. We use Center-Triplet-VAE to learn GMPR. Especially, we
adopt geo-locations as a weakly supervision signal in the second situation to facilitate place
learning. The learned latent representation connects the spatial and visual property of a
place with a certain probabilistic distribution. The latent codes and place representations
are feasible for discrete place recognition. To disentangle the visual and spatial property,
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we introduced holistic place representation and a conditional VAE model. In the third
experiment, we use the conditional VAE to learn the holistic latent place representation
without the impact of camera pose and other conditions. Then the learned place repre-
sentation together with camera pose and other conditions can be used to generate novel
images with designated camera poses.

This work begins with the latent variable model and deep learning methods. We rep-
resent the visual and spatial properties of a place with latent variables. VAE, as an
extensively investigated generative model in recent years, is used to learn the relation-
ship between visual and spatial properties from voluntarily collected images. Comparative
methods are used to ensure that the image observations of different places are distinguish-
able in the latent space. We summarize our main contributions as the following,

1. We have extended the understanding of place in GIScience from a data-driven per-
spective. We have proposed probabilistic latent place representations, which links
the visual property of a place and visual observations. The place representations can
be enriched by involving semantic and spatial information in the learning process so
that the representations of multiple places contain an implicit map of the environ-
ment. The visual place representation is potentially helpful in querying the place
related information given images as the query condition.

2. We have proposed a specific framework to approach a collective place definition and
introduced deep learning methods, comparative learning, and VAE, to implement
this framework. The proposed methods include adding triplet loss and weakly su-
pervised triplet loss as a regularization term to the VAE loss function and using a
conditional version of VAE to involve camera pose in the learning process directly.
By adding triplet loss, semantic information of distinct places is preserved in the la-
tent representation. With weakly supervised triplet loss, geographically close images
are maintained close in the latent space. By involving camera pose in the learning
process, we show the possibility to synthesize a novel image about a place given a
new camera pose.

3. We have shown the possibility of connecting human perception of spatial knowledge
and the machine perception of spatial knowledge with the proposed place definition
and corresponding computational models. On the one hand, the place representa-
tion increases the accessibility of spatial information for human users; on the other
hand, the proposed place representation provides a way of interpreting how machine
perceives platial information.

6.2 Outlook

Understanding the visual and spatial properties is the first step to approach the concept
of a place. There is far richer information other than visual and spatial properties attached
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to a place. Place as a spatial container also bears various spatial-temporal phenomenon,
such as human emotional responses and social activities. In the very beginning of this
dissertation, we mentioned some researches about combining the visual properties of a
place to spatial-temporal phenomena. In these researches, supervised learning methods
are used to learn task dependent visual properties. This discriminative learning schema
can hardly capture structural information between the visual properties and the target
phenomena of a place. By introducing generative methods (e.g., GANs and VAEs), it is
possible to learn a latent representation of the visual property while encodes the target
phenomenon in the latent representation at the same time. Moreover, there are more and
more data sources available in recent years, especially about the urban area in the context
of smart cities. These data source also provide valuable information about a place. The
feature directions on this topic can be drawn as the following,

• The development of theories and tools to encode a specific kind of spatial-temporal
phenomenon into a latent representation as well as the methods to combine the visual
properties and the spatial-temporal phenomenon.

• The application domain of the learned latent representation. It is about the scope
and the usage of the latent representation to support further deep learning tasks
dedicated to more complex spatial intelligent problems.

• The development of theories and tools to take the advantages of rapidly growing data
sources. It is about how to extend the existing generative models to learning place
representations from multiple data sources.

With regard to the challenge of combining the visual and spatial properties about a
place itself, we may ask how to distinguish different places from the latent representation
and what can be the application scenarios of the latent place representation. Solving
the first question helps to answer the second question. Take the autonomous driving as an
example, the image observations are consecutively captured, and these images may contain
visual properties of a different place. Extract and distinguish the information from mixed
image observations can improve the understanding of place, and enable us to model broader
geographic space. The model of multiple places will help us to develop interpretable spatial
cognition models for machines, which can be used to support complex spatial intelligent
behaviors.
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Appendix A

KL-divergence Between Two
Gaussian Distributions

In this section, we describe how to derive the KL-divergence between two Gaussian
distributions. If the two Gaussians are univariate denoted as p(x) = N (µ1, σ
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Appendix B

The ELBO of Center-Triplet-VAE

In this section, we describe how to derive the evidence lower bound of Center-Triplet-
VAE.
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qφ(z|x(i))
[
log pθ(x

(i)|z) + log pθ(c
(i)|z)

]
dz

= −DKL(qφ(z|x(i))||pθ(z|c(i))) + Eqφ(z|x) log pθ(x
(i)|z) + Eqφ(z|x) log pθ(c

(i)|z)
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Appendix C

The ELBO of Clustering
Center-Triplet-VAE

In this section, we describe how to derive the evidence lower bound of clustering Center-
Triplet-VAE for place representation learning.

log pθ(x
(i))

= log pθ(x
(i))

∫
z

∑
c

qφ(z, c|x(i))dz

=

∫
z

∑
c

qφ(z, c|x(i)) log pθ(x
(i))dz

=

∫
z

∑
c

qφ(z, c|x(i)) log

[
pθ(x

(i))
pθ(z, c|x(i))qφ(z, c|x(i))

pθ(z, c|x(i))qφ(z, c|x(i))

]
dz

=

∫
z

∑
c

qφ(z, c|x(i))

[
log(

qφ(z, c|x(i))

pθ(z, c|x(i))
) + log(

pθ(x
(i), z, c)

qφ(z, c|x(i))

]
dz

≥ DKL

(
qφ(z, c|x(i))||pθ(z, c|x(i))

)
+ L(θ,φ;x(i))

L(θ,φ;x(i)) =

∫
z

qφ(z, c|x(i))

[
log(

pθ(x
(i), z, c)

qφ(z, c|x(i))

]
dz

suppose qφ(z, c|x(i)) can be factorized as qφ(z|x(i), c)qφ(c|x(i))

= Eqφ(z,c|x(i))

[
log(

pθ(c)

qφ(c|x(i))
+ log

pθ(z|c)
qφ(z|x(i), c)

+ log pθ(x
(i)|z, c)

]
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Appendix D

Results of Learning Places
Representations with Triplet-VAE

The complete list of test images and their reconstructions is given below (next page).
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(a)

(b)

Figure D.1: The full list of 140 test images and their reconstructions from different
methods. (a) original test images, (b) reconstructed by auto-encoder, (c) reconstructed by
VAE, (d) reconstructed by Triplet-VAE.
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(c)

(d)

Figure D.1: The full list of 140 test images and their reconstructions from different
methods. (a) original test images, (b) reconstructed by auto-encoder, (c) reconstructed by
VAE, (d) reconstructed by Triplet-VAE.
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