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Abstract

In this paper the robust optimal control of deterministic information epidemics is

inspected taking into consideration the noisy transition rates. Distinct from con-

ventional works, the heterogeneous susceptible-infected-susceptible (SIS) model

is adopted where both the heterogeneities in the network topology and the in-

dividual diversity are considered. In light of the commonly existing noise in the

transition processes, we address the robust optimal control problem aiming at

maximizing the spreading performance at the finite time instant given a fixed

budget. By using the distribution analysis techniques, the inspected problem is

transformed to a constrained optimal control problem and solved by the Pon-

tryagin Maximum Principle (PMP). A novel approach combining the forward

backward sweep method and the secant method is proposed to efficiently reduce

the computation burden. The performance of the robust optimal control as well

as the influence of the parameters is examined by numerical experiments in real

social networks.
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1. Introduction

Information epidemics, which is analogous to epidemics spreading in popula-

tions, describes the information dissemination in social networks [1, 2]. Thus the

epidemics models are introduced to the field of information diffusion [3, 4, 5].

As modeling and control of information diffusion processes draw wider inter-5

ests in the fields of sociology, psychology, computer science and control[6, 7],

information-epidemics-based analysis and controller design has become attrac-

tive topics in recent years [8, 9].

Among all the information epidemics models, there exist several common

compartments, e.g., susceptible (S) and infected (I). These compartments are10

naturally connected to the individual states, e.g., awareness and unawareness, or

to accept and to refuse in the context of information diffusion. The susceptible-

infected-susceptible (SIS) model [10] is a basic epidemic model, which is widely

used in viral marketing and information diffusion processes. The mechanism of

the transitions in the SIS model can be described by a Markov chain with 2N15

states, where N is the number of nodes in the network. By using the mean

field approximation, a continuous-time node-based SIS model taking into con-

siderations the heterogeneity in networks and diffusion processes is adopted in

this article. This model characterizes the dynamics of the approximated infec-

tion probability of each individual with the state transition rates as parameters.20

Nevertheless, noise is inevitable in the diffusion processes in practical situations.

In recent works, noise is considered as the behavior of randomly accepting or

refusing the information [11] and the individualization force in opinion dynamics

[12]. Instead of the aforementioned scenarios, the transition processes between

different compartments are sensitive to perturbation caused by external noise25

[13]. Whereas this topic is seldom inspected.

Apart from modeling, an attractive topic on information epidemics is to de-

sign an optimal control strategy that guides information propagation in complex

networks as a desired way [14]. According to the recent survey [15], the opti-

mal control design for information epidemics is still an open problem, let alone30
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the robust optimal controller design for information epidemics with noise. Al-

though there exist several very recent works regarding optimal control or model

predictive control for epidemic models, e.g., [8, 16], none of them considers

time-variant control rules. Moreover, to the best of our knowledge, there exist

little literature regarding the control of such kind of model with perturbations.35

To this end, we address the robust optimal control problem for information

epidemics with noisy transition rates.

Contribution: In this article, for the first time, a robust optimal control strat-

egy enhancing the information diffusion with perturbed parameters is designed

for information epidemics over heterogeneous communication networks. Both40

the heterogeneities in the network structure and the transition processes are

considered by using directed graph description and different transition rates,

such that the diversities rooted in the social environment and the individual

character are considered. Moreover, the perturbation on the transition rates is

introduced, which generally covers most types of uncertainties in information45

diffusion processes. By manipulating the infection rates, the control input which

mimics word-of-mouth is to be designed to robustly maximizing the dissemina-

tion. In light of the practical scenarios, the fixed budget constraint is taken into

account. Recalling the distribution analysis approach, the inspected problem

is transformed into an optimal control problem with a cost function combining50

the nominal control performance and the influence of the noise. The solution to

the proposed problem is achieved taking advantage of the Pontryagin Maximum

Principle (PMP). To attain a practically efficient solution, a computationally

cheap algorithm combining the forward backward sweep method (FBSM) and

the secant method is provided. This result is especially significant for large scale55

social networks.

The remaining of this article are organized as follows: In Section 2, the

node-based SIS model is introduced based on the graph theory. Following the

preliminaries, we formulate the robust optimal control problem in Section 3. The

solution techniques including the distribution analysis approach and the novel60

numerical algorithms are presented in detail in Section 4. The simulations in
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Section 5 shows the effectiveness of the proposed control strategy.

2. Preliminaries

In this section, the knowledge of graph theory and the node-based SIS model

is introduced.65

2.1. Networks and Graph Theory

We consider a social network described by a digraph G(V, E ,W ) with N

(N ≥ 2) nodes, where V = {1, 2, . . . , N} and E ⊆ V×V are the sets of nodes and

edges, respectively. The terms individual, node, and agent are interchangeably

used to avoid ambiguity. The nonnegative matrix W = [wij ] ∈ RN×N is the

adjacency matrix. wij > 0 if and only if there exists a link from node j to

i. In this case, we say node j listens to node i or node i can influence node

j. Bearing in mind that multitudes of communications like campaigning and

news propagation are not mutual but with direction, digraphs are considered

throughout this article. To this end, wij = wji does not generally hold. It is also

assumed that there exists no self loop, i.e., wii = 0 and the adjacency matrix

is row stochastic, i.e.,
∑N
j=1 wij = 1,∀i ∈ V. For the convenience of further

presentation, the in-neighborhood of node i ∈ V is introduced as

N in
i = {j : wij > 0, j ∈ V}.

It is evident that a node i can only obtain information from the members in

its in-neighborhood. We confine ourselves that the graphs considered in this

article are strongly connected. A digraph is strongly connected if there exist

paths between any two vertices.70

2.2. The Node-Based SIS Model

In this article, the information epidemics is described as the SIS model with

heterogeneous transition rates. The SIS epidemic model could be naturally

modeled as a Markov chain which possesses two possible states i.e. susceptible

(S) and infected (I) [17]. Analogously, in the context of information diffusion,75
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Figure 1: Transitions between different states (S and I) of node i with rates ᾱi and βi in the

node-based SIS model.

these two states may refer to awareness and unawareness, respectively. In this

article, the infection process (from S to I) is considered as a proactive action,

i.e., each infected individual i infects his/her susceptible social neighbors with

rate αi [13]. The curing process (from I to S) is assumed to be passive with

rates βi. In light of the diversity of individual character, the transition rates80

are assumed to be generally different for each agent. This setting as well as the

directed communication networks leads to the heterogeneity of the inspected

dynamics.

To obtain the node-based SIS model, a mean field approximation approach

is utilized. Suppose that all the transition processes for node i are Poisson

processes with transition rates ᾱi and βi, where ᾱi is calculated based on the

infected neighbors of node i as

ᾱi = 1−
N∏
j=1

(1− αjwijpj) ≈
N∑
j=1

αjwijpj ,∀i, j ∈ V,

where pj is the probability of infection of node j. The equal transition map is

presented in Figure 1. It follows that the heterogeneous node-based SIS model

for node i in a directed network G = (V, E ,W ) is described as

ṗi = (1− pi)
N∑
j=1

αjwijpj − βipi. (1)

The interpretation of the node-base SIS model (1) is as follows: The change

of the infection probability of node i during a time interval dt consists of two85

parts, i.e. the influence of the infected neighbors if node i is susceptible; and

the curing probability if node i is infected.
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Remark 1. The node-based SIS model (1) is utilized in this article due to its

comprehensive physical meaning and far less computational consumption com-

pared with the Markov chain model. Numerical experiments to compare the90

performance of these two models in undirected graphs have been conducted in

[18], which shows the effectiveness of the node-based SIS model.

By denoting p = [p1, . . . , pN ]T, α = [α1, . . . , αN ]T and β = [β1, . . . , βN ]T,

the compact form of (1) reads

ṗ = (I − P )WAp−Bp, (2)

where P = diag(p), A = diag(α) and B = diag(β). Taking into consideration the

noise in the diffusion process, the transition rates in the system (1) are assumed

to be perturbed, which is described as

α = α̂+ δα, β = β̂ + δβ,

where α̂ and β̂ are the deterministic nominal transition rates which could be

obtained by statistics. δα and δβ are the noise reflecting the uncertainties in the

transition process. They might be related to the characteristics and decisions of

the individuals, as well as the disseminated information, in the social network.

For example, to what extent an infected individual would like to share the

information to his/her social neighbors is not constant. Without any further

investigation to the distribution of the noise, it is natural to assume them as

Gaussian Process and independent of each other. Specifically, suppose there

holds the following probability density function (PDF)

fp.d.(θ) =
1

(2π)N/2 det(Vθ)1/2
e−

1
2 δθ

TVθδθ, θ = α or β,

where Vα, Vβ ∈ RN×N are the positive definite covariance matrices. Similar

arguments could be referred to in [13]. Based on the node-based SIS model, we

are on the way to design the optimal control strategy to enhance the information95

diffusion.
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3. Problem formulation

By interacting with the infection rates, we introduce the control input ui ∈

R to each individual, which yields the compact form of the control as u =

[u1, . . . , uN ]T. Thus the controlled information epidemics reads

ṗ = (I − P )W (A+ U)p−Bp, (3)

where U = diag(u). The control input is required to be limited in the following

admissible set

U = {u : ui∈[umin, umax], Lebesgue integrable,∀i ∈ V},

where umin, umax ∈ R are the lower and upper boundaries of the input. Since

we consider enhancing the information spreading, it is assumed that 0 ≤ umin <

umax.100

The robust optimal control problem is described as follows.

min
u∈U

J = −1Tp(tf ),

s.t. (3), p(t0) = p0,∫ tf

t0

N∑
i=1

bi(ui) ≤ B,

(4)

where B > 0 is the fixed budget. p0 is the given initial condition, i.e. the

probabilities of each people being infected in the very beginning. The term

|J(tf )| = 1Tp(tf ) describes the (approximated) mathematical expectations of

the number of infected people at the fixed terminal time tf . The cost func-

tion only considers the terminal performance mimics many practical scenarios.105

For example, in a political campaign nothing counts but the final number of

supporters on the voting day. Apart from the cost, bi(·) : RN → R is the con-

sumption function and B ∈ R is the fixed budget, which forms the constraint. It

is rationally assumed that bi(·) is continuous, positive and increasing in ui. This

is based on the fact that the more increment of the infection rate, the more bud-110

get is needed as the incentives. Since companies or the campaign teams usually
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have limited budget, the constant B is introduced as the upper bound for the

overtime consumption. It is worth noting that one can calculate the maximum

resource needed by substituting umax into the consumption function. In this

paper we only consider the case when B <
∑
bi(umax). There is no doubt that115

the value of B plays an significant role in the performance of the information dif-

fusion process, which is further illustrated in Section 5. Inspired by the related

works e.g., [19, 20], the quadratic form is chosen to model the consumption, i.e.,

we choose uTQu as the consumption function where Q is a constant positive

definite diagonal matrix.120

Based on the problem formulated in (4), we then provide the solution tech-

niques to calculate the robust optimal control.

4. Solution to the Robust Control Problem

To deal with the optimal control for systems with noise, two fundamental

ways are commonly used. In the case when the disturbance is deterministic,125

the optimal control problem can be formulated as zero or non-zero differential

games [21]. However, it is not suitable for the situation in information epidemics

which is perturbed by the noise with stochastic nature, let alone the case in con-

jugation with the fixed time horizon. An alternative is the stochastic optimal

control which takes the expectation as the cost function. Nonetheless, the stan-130

dard approaches, e.g., solving the Hamilton-Jacobi-Bellman (HJB) equation and

utilizing stochastic maximum principle [22], are computationally expensive, es-

pecially for systems with large scales which is a general characteristic owned

by dynamics on social networks. To this end, a novel approach is provided to

solve the problem in (4) approximately. Taking advantage of the property of135

the dynamics (3), the distribution analysis technique is used to solve the ro-

bust optimal control problem. As the fundamental of the proposed method, the

optimal control of the nominal information epidemics is first introduced.
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4.1. Optimal Control of Nominal Information Epidemics

Before embarking on the robust optimal control problem (4), we investigate

the nominal control, i.e., the optimal control of the nominal system. By ignoring

the influence of the noise, the nominal system can be obtained as follows

˙̂p = (I − P̂ )W (Â+ Û)p̂− B̂p̂, (5)

where the variables and parameters are similarly defined as those in (2). Based

on the system (5), the problem in (4) can be rewritten as

min
û∈U

Ĵ = −1Tp̂(tf ),

s.t. (5), p̂(t0) = p0,∫ tf

t0

N∑
i=1

bi(ûi) ≤ B.

(6)

In order to solve the problem, the isoperimetric constraint in (6) is transformed

into the following differential equation

ḣ(t) := ûT(t)Qû(t), h(0) = 0, h(tf ) = B. (7)

Note that the equation of h(t) in (7) is obtained based on the fact that the

optimum is unlikely to be achieved unless the budget is sufficiently used. The

optimal control problem (11) is then solved based on Pontryagin Maximum

Principle (PMP). By introducing the Lagrangian multiplier λ̂p ∈ RN and σ̂ ∈ R,

we have the Hamiltonian

Ĥ = λ̂Tp [(I − P̂ )W (Â+ Û)p̂− B̂p̂] + σ̂ûTQû.

According to PMP, we have the dynamics of the costate as follows

˙̂
λp = −∂Ĥ

∂p̂
= −(Â+ Û)WT(I − P̂ )λ̂p +Bλ̂p − Λ̂pW (Â+ Û)p̂ (8)

with the transversality conditions λ̂p(tf ) = −1. Specially, by taking the con-140

straint (7) into consideration, one has ˙̂σ = 0, which implies that σ̂ is a constant

but to be fixed.
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By setting ∂Ĥ
∂û = 0, we can obtain the control input as follows

û∗ = − 1

2σ̂∗
Q−1

[
P̂ ∗WT(I − P̂ ∗)λ̂∗p

]
, û∗ ∈ Û . (9)

Although the solution can be analytically presented in the form of (9), the

problem in (5) are unlikely to be directly solved following this approach and

a numerical solution is necessary. However, inspired by the solution of the145

nominal information epidemics, the problem in (4) are transformed into a similar

formulation in the underlying subsection.

4.2. Distribution Analysis Approach

In order to solve the problem in (4), the distribution analysis approach is

introduced. It is evident that p is linear in the infection and curing rates,

respectively. According to [23], it implies that the covariance of J(t) = −1Tp(t)

can be computed by the covariance of α and β as

VJ = lTαVαlα + lTβVβlβ ,

where

lTα(t) =
∂J(t)

∂α

∣∣∣∣
α=α̂,β=β̂

, lTβ (t) =
∂J(t)

∂β

∣∣∣∣
α=α̂,β=β̂

.

Note that the numerator layout notation of the matrix calculus is used. In

order to calculate the terminal values of lα and lβ , an additional set of sensitivity

equations are integrated in [24]. However, this approach cannot be directly used

in (4) because what we consider here is a functional. With slight modification,

let Mα := ∂p
∂α and Mβ := ∂p

∂β . It is clear that lα = −1TMα|α=α̂,β=β̂ and

lβ = −1TMβ |α=α̂,β=β̂ . By using the chain rule and the rule for interchanging

the order of differentiation for certain mixed partials, the time derivative of Mα

and Mβ can be obtained as follows

Ṁα =
∂

∂t
Mα =

∂

∂t

∂p

∂α
=

∂

∂α
ṗ

=
∂

∂α
((I − P )W (A+ U)p−Bp) + J

∂p

∂α

= (I − P )WP + JMα

Ṁβ = −P + JMβ ,

(10)
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where J is the Jacobian matrix and reads,

J =
∂ṗ

∂p
= (I − P )W (A+ U)− diag(W (A+ U)p)−B.

To this end, the minimization of J in (4) can be approximated by the com-

bination of the following two parts

J1 = −1Tp̂(tf ), J2 = VJ(tf ),

where J1 is the nominal cost function with respect to the controlled nominal

system (5) and J2 is the variance of J around the nominal value caused by the

parameter uncertainty. Note that by introducing the auxiliary systems (10),

the problem with noise in (4) is transformed into the optimal control problem

in deterministic systems. Rather than formulating a multi-objective problem of

[J1, J2], we introduce the weighted sum of J1 and J2, which yields the following

optimal control problem.

min
u∈U

J1 + rJ2,

s.t. (5), (10), p̂(t0) = p0,∫ tf

t0

uTQu ≤ B

(11)

where r > 0 is the weighting coefficient. It is worth noting that as a trade-off

between the desired cost J1 and the influence of the noise J2, the value of r is150

of great significance in (11). Generally, r is set in advance by the companies

or the campaign teams based on their knowledge or prediction of the noise.

Specifically, smaller r infers that the influence of noise is not considered as very

important and vice versa. Further discussions are given in Section 5 to provide

valuable insights on the selection of r.155

Remark 2. By doing the distributional analysis, the robust optimal control

problem in (4) is transformed into the optimal control problem in (11). As

a sacrifice, the dynamics are augmented with 2N vector differential equations

in (10). To deal with this problem, the simultaneous corrector method is pro-

posed in [25] to solve this large-scale problem in an efficient manner. Bearing160
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in mind the following solution to the optimal control problem, an alternative

approach is used which is presented in detail in the last part of this section.

The optimal control problem (11) is then solved based on PMP. As a prior

step, the dynamics in (10) should be reshaped in a vector form. By denoting

mα,i the ith column of Mα|α=α̂,β=β̂ , ∀i ∈ V and similarly for mβ,i, one has

ṁα,i = p̂i(I − P̂ )Wi + Jmα,i

ṁβ,i = −p̂iei + Jmβ,i,∀i ∈ V,

where ei ∈ RN is the ith column of the unity matrix and Wi is the ith column

of the adjacency matrix W .

By introducing the Lagrangian multiplier λp, λα,i, λβ,i ∈ RN , ∀i ∈ V and

σ ∈ R, we have the Hamiltonian

H = λTp [(I − P̂ )W (Â+ U)p̂− B̂p̂] + σuTQu

+

N∑
i=1

λTα,i[p̂i(I − P̂ )Wi + Jmα,i] + λTβ,i[−piei + Jmβ,i].

According to PMP, the time-derivatives of the costates read

λ̇p = −∂H
∂p̂

= −(Â+ U)WT(I − P̂ )λp +Bλp − ΛpW (Â+ U)p̂

+

N∑
i=1

p̂i diag(Wi)λα,i − eiλ
T
α,i(I − P̂ )Wi + diag(ei)λβ,i

+

N∑
i=1

Λα,iW (Â+ U)mα,i + Λβ,iW (Â+ U)mβ,i

+ (Â+ U)WT(Mα,iλα,i +Mβ,iλβ,i),

λ̇α,i = − ∂H

∂mα,i
= −J Tλα,i, λ̇β,i = − ∂H

∂mβ,i
= −J Tλβ,i

(12)

with the transversality conditions

λp(tf ) = −1, λα,i(tf ) = −2r(1T ⊗ ei)VαMα(tf )1,

λβ,i(tf ) = −2r(1T ⊗ ei)VβMβ(tf )1, ∀i ∈ V.

Specially, in light of the constraint (7), one has σ̇ = 0, which implies that σ is165

a constant but to be fixed.
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By setting ∂H
∂u = 0, we can obtain the control input as follows

u∗ = − 1

2σ∗
Q−1

[
P̂ ∗WT(I − P̂ ∗)λ∗p +

N∑
i=1

Mα,iW
T(I − P )λα,i

+Mβ,iW
T(I − P )λβ,i − PWT(Mα,iλα,i +Mβ,iλβ,i)

]
, u∗ ∈ U .

(13)

Remark 3. On one hand, the terms in the dynamics of costates (8) and the

input (9) of the nominal system are reserved in (12) and (13), respectively. On

the other hand, the distinguishing terms shows the influence of the noise. To

this end, the distribution analysis approach reveals the consistency associated170

with the nominal optimal control solution.

As with the control in (9), u∗ in (13) cannot be directly calculated due to

the impossibility of attaining the optimum in advance. Thus a novel algorithm

is proposed to obtain the control input numerically, which is also applicable to

the problem (6) with slight modification.175

4.3. Solution Techniques

As a commonly adopted approach, the shooting method is used in [19]. How-

ever, in that case, the arbitrary initial condition of a scalar costate is hard to

choose. Taking advantage of the fact that σ is a constant scalar, an alternative

way to obtain its value becomes a natural idea to solve the problem in (11).180

Conventionally, the value of σ is obtained by trial-and-error [20] which is tech-

nically difficult and time-consuming to implement because a sufficiently small

initial guess is needed and no efficient update law is given. As a modifica-

tion, the secant method has been reported to be implemented to solve a similar

problem in [26]. However, the issue tacked there is of low dimension and the185

algorithm is not precisely presented. Inspired by the previous works, we provide

the a novel algorithm systematically. Apart from the secant method to search

the value of σ, the forward backward sweep method (FBSM) is also utilized to

calculate the control input iteratively. Thus we provide the combined approach

as in Algorithm 1.190

Apparently, once the costate σ is given, one can obtain a cost according to

the consumption function. It implies that there exists a map error = B − f(σ)
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Algorithm 1 Forward-backward sweep with secant method

1: Input: p0, initial guess u[0] = [u(0), . . . , u(end)], σ[1],σ[2],given tolerance

ε > 0, budget B

2: for k = 0 : 1 : end do

3: p̂(k + 1)← p̂(k) + ∆T ˙̂p(k)

4: end for

5: for k = end : −1 : 2 do

6: λp(k − 1)← λp(k)−∆T λ̇p(k)

7: λα(k − 1)← λα(k)−∆T λ̇α(k)

8: λβ(k − 1)← λβ(k)−∆T λ̇β(k)

9: end for

10: According to (13), compute u[1] using σ[1]

11: error[1] ← B − h[1](end)

12: According to (13), compute u[2] using σ[2]

13: error[2] ← B − h[2](end)

14: while (|error[1]| > ε or |error[2]| > ε or |error[1] − error[2]| > ε) do

15: error[1] ← error[2], σ[1] ← σ[2]

16: σ[3] ← σ[2] − error[2](σ[2] − σ[1])/(error[2] − error[1])

17: u[0] ← u[2]

18: Compute error[3] similarly as line 2 to 10

19: error[2] ← error[3], σ[2] ← σ[3]

20: end while

21: Output u[2]

14



where f(·) : R → R is a function of σ. It yields that σ is the root when the

error equals zero. Based on this fact, the FBSM and the secant method can be

combined together. Given the initial condition of p and initial guess of the con-195

trol input, the states overtime can be obtained by forwardly implementing the

dynamics (5). As a successive step, the costates can be computed backwardly.

By utilizing the errors between the budget and the consumption resulted from

two initial values of σ, the secant method can be applied to update this constant

costate. This iteration ends when the errors reach certain tolerance. The conver-200

gence analysis of the FBSM can be referred to in [27] and is saved for triviality.

Compared with conventional optimization algorithms, e.g., Matlab fmincon, the

proposed approach is computationally much cheaper and also capable of dealing

with high dimensional problems. Note that the proposed algorithm is able to be

applied to the problem in (6) by replacing the respective equations of costates205

in lines 6 to 8 by the ones in (8). The detailed discussions are presented in

Section 5.

5. Numerical Experiments

In this section, the performance of the node-based SIS model under robust

optimal control (4) is examined to show the effectiveness of the designed control210

strategy.

We inspect the information epidemics on two real networks with slight mod-

ification. The first network describes the friendship between boys in a small

highschool in Illinois [28] (referred as the highschool network), whose largest

strongly connected subgraph containing 67 nodes is utilized. The second net-215

work shows the friendship between the residents living at a residence hall located

on the Australian National University campus [29] (referred as the residence hall

network). Similarly, a 214-node strongly connected subgraph is extracted. The

weights of the in-edges are normalized such that the adjacency matrix is row

stochastic. The effectiveness of the proposed robust optimal control and its220

comparison with the nominal control are examined in both networks such that
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the results are convincing. The nominal transition rates α̂i and β̂i are randomly

chosen in the intervals (0.05, 0.15) and (0.005, 0.015), respectively. This guar-

antees the heterogeneity of the SIS model. The covariance matrices Vα and Vβ

are selected to be diagonally dominant and their diagonal entries are randomly225

chosen within (0.3, 0.35). The diagonal weighting matrix Q is selected accord-

ing to the cardinality of each node, i.e., the ith diagonal entry qi = 0.1|N in
i |,

which mimics the natural fact that more influential one individual is the more

incentives should be paid to gain his/her help for information spreading.

The initial condition pi(0) is a scalar in [0, 0.01) for all i ∈ V. Note that230

there are around 20% of the nodes with initial value zero. These configurations

are valid for all the simulations in this section. During all the simulations, the

information epidemics is discretized with the sampling period ∆T = 0.01. Other

fixed parameters are the initial time instant t0 = 0, umin = 0 and umax = 0.5.

The validation of the proposed robust optimal control is first conducted by235

comparing with the system under no control and heuristic control on the high-

school network. By choosing the budget B = 30, tf = 5, the robust optimal

control can be calculated by Algorithm 1. Note that according to [24], the

initial conditions for mα,i and mβ,i are both set to 0. To make an evaluable

comparison, a heuristic control is implemented such that the control input is240

identical for each node at every time instance. In light of the consumption func-

tion and the given budget B, this control input equals 0.4088 entry-wise. The

simulation results of the expectation of the number of infected people overtime

(|J(t)|) are shown in Figure 2. A similar numerical experiment is conducted

on the residence hall network. We set the budget as B = 30 while other pa-245

rameters remain unchanged. The respective heuristic control is 0.2602. The

results are presented in Figure 3. It is evident that the controlled epidemics,

both the heuristic and the robust optimal control, shows better performance,

since the diffusion processes are extraordinarily enhanced compared with the

uncontrolled. Apart from that, the proposed robust optimal control scheme250

reveals a superior performance in terms of |J(t)|. It is worth noting that this

performance is achieved by making full use of the budget over the fixed control
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horizon which implies that the constraints are fulfilled.

We then compare the performance of the dynamics under robust control

obtained by solving (11) with that of the nominal control using the same con-255

figuration as in the first simulations. The control inputs are calculated offline:

the robust control is obtained by solving (11) while the nominal control by solv-

ing (4) but with respect to the nominal system (5). The simulations on both

networks are conducted 1, 000 times, each of which contains noise in both in-

fection and curing rates. By taking the differences in 1Tp(tf ) (|J(tf )|) as the260

index, the performance is shown in Figure 4. For the highschool network (Figure

4 (a) and (b)) and the residence hall network (Figure 4 (c) and (d)), almost all

the simulations show that the robust optimal control results in slightly better

performance than the nominal control. It implies that under this configuration,

the information spreads generally wider under the robust control. Although the265

differences are not notably large, T-test for both scenario shows a two-tailed

p-value far less than 0.001, which means that the results are significantly differ-

ent and the results in Figure 4 are convincing. Note that if the control input

is dominant compared with the transition rates and social networks with larger

scale are considered, better performance can be expected.270

Based on the problem formulation and the proposed solution technique, the

weight r and the budget B are two of the most influential factors. Specifically,

r determines the trade-off between the real objective and the influence of the

noise and B stands for the upper bound of resources. By choosing r from 0 to 1

with step 0.1 and B from 15 to 35 with step 5, we compare |J(tf )| under each275

settings on the highschool network. Other configurations are the same with

those in the first simulation. As is presented in Figure 5, it is evident that for

the same weight r, more budget results in better spreading performance. It is

worth noting that the increment of |J(tf )| slows down as the budget increases.

This yields that companies and campaign teams should wisely plan their budget280

to reach a balance between the resource and objective. As for the case when the

budget is fixed, the performance of |J(tf )| fluctuate with respect to the change

of r. Taking B = 20 and 35 as examples, |J(tf )| reaches the peak when r = 0.1
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Figure 2: The performance of the diffusion process on the highschool network with 67 nodes.

(a) Comparison of |J(t)| with no control, with heuristic control (identical control input, 0.4088,

for each node at each time instance) and with robust optimal control. The robust optimal

controller shows better performance than the heuristic control and uncontrolled epidemics.

(b) The control input of the robust optimal control for each node, which is bounded in

[umin, umax]. (c) The consumption over time. For both heuristic control and robust opti-

mal control, the budget is adequately used. The initial condition is set as pi(0) ∈ [0, 0.01).

Other parameters are: α̂ ∈ (0.05, 0.15), β̂ ∈ (0.005, 0.015), B = 30, t0 = 0, tf = 5, umin = 0

and umax = 0.5.
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Figure 3: This simulation is conducted over the residence hall network with 214 nodes. The

initial condition is set as pi(0) ∈ [0, 0.01). Other parameters are chosen as: α̂ ∈ (0.05, 0.15),

β̂ ∈ (0.005, 0.015), B = 90, t0 = 0, tf = 5, umin = 0 and umax = 0.5. (a) The performance of

the diffusion process with no control, with heuristic control (identical control input, 0.2602,

for each node at each time instance) and with optimal control is compared in the form of

|J(t)|. The robust optimal controller shows better performance than the heuristic control and

uncontrolled epidemics. (b) The control input of the optimal control for each node, which

is bounded in [umin, umax] (c) The consumption over time. For both heuristic control and

robust optimal control, the budget is adequately used.
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Figure 4: Comparison between robust optimal control and nominal control in the form of

|J |rob − |J |nom on highschool network and residence hall network with 1000 runs. (a) and

(b) are the scatter plot and box plot of the index for the scenario on the highschool network,

respectively. (c) and (d) are for the scenario on the residence hall network. In both cases, the

robust optimal control results in slightly better performance than the nominal control.
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and 0.2, respectively. To this end, the choice of r is nontrivial which may highly

related with the feature of noise. Thus the prior knowledge and the estimation285

of the affordable impact of the noise are necessary.

Conclusion

In this paper we address the robust optimal control problem for information

epidemics in a heterogeneous network with noisy transition rates. Thus for

the first time, the effects of natural uncertainties of the transition rates are290

considered to determine a robust optimal control strategy. A numerical solution

is obtained based on distribution analysis. The diffusion is maximized in finite

horizon with the proposed control strategy allowing for the constraint of limited

budget. The proposed algorithm, which combines the forward backward sweep

method and the secant method, shows its effectiveness and efficiency in dealing295

with the diffusion processes over real networks. The numerical experiments on

the influence of parameters confirm the common sense that the more budget the

better dissemination performance. Apart from that, it is of great significance to

properly weigh the impact of the noise while utilizing the proposed approach.

The addressed formulation and the proposed optimal strategy not only solve the300

specific problem caused by the noisy transition rates but also provide a general

solution to social networks with stochastic perturbations.

Future works should also focus on the distributed control problem and drive-

node selection in information epidemics.
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