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Abstract

In modern vehicle concepts the outlet temperatures of automotive Heating,
Ventilation and Air Conditioning (HVAC) units are measured and regulated by
an Automatic Climate Control (ACC) to guarantee pleasant thermal comfort
for the passengers. A Reduced Order Model approach for HVAC units is de-
veloped for model-based climate control to eliminate costly temperature sen-
sors and increase comfort. The methodology combines the strength of well
established first law modeling methods with Proper Orthogonal Decomposi-
tion (POD) to form an accurate description of flow and mixing in HVAC units.

The core component of the approach is a POD model of the mixing process in
the HVAC unit. The proposed POD approach focuses only on control-relevant
outlet values in contrast to the traditional application of the POD, which is
the POD-Galerkin projection. The methodology developed was first assessed
with numerical simulations of a simplified HVAC model. It was shown that
the proposed POD method predicts the outlet values with high accuracy. Next,
the developed procedure was applied to a real HVAC unit using measurements
from a test rig. High accuracy of the predicted outlet values was demonstrated.
Measurement data from the transient heat up of a vehicle cabin was used to
assess the system simulation of the HVAC unit under real driving conditions.
The model remains accurate in quasi-steady state while larger errors occur
during highly transient heating due to the missing description of heat transfer
phenomena upstream of the ventilation ducts.

This HVAC system simulation was further integrated into a model-based con-
trol scheme as an alternative to the standard control procedure in vehicles.
The model-based approach exploits the HVAC model to calculate the valve
positions for a set of desired outlet values. The proposed control procedure
was demonstrated by using a test rig and a vehicle. The calculated valve posi-
tions produced only minor differences between the desired outlet values and
the measured quantities. The need for temperature sensors can be eliminated
with the model-based control scheme while saving money and maintaining
or even increasing comfort and safety standards for passengers.
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1 Introduction

From the beginning of modern vehicle mobility pleasant thermal comfort is
an important aspect [1]. In 1953 the first heating, ventilation and air condi-
tioning (HVAC) systems were mainly installed in premium vehicles and sold
at high price [14]. The HVAC unit was controlled by the driver and high knowl-
edge about the system was needed to obtain thermal comfort under different
operating conditions.

The market penetration of cars with HVAC system increased first in hot
climate areas and from the 1990s also in colder areas as shown in Fig. 1.1 on
the example of United Kingdom (UK). Nowadays almost all vehicles are sold
with an HVAC system.

Figure 1.1: Market share of cars with HVAC systems in UK [20]

1



Thus, the passenger comfort has become a major aspect in the design pro-
cess of cars. The customers expectations regarding the climate control system
changed with growing market penetration. While initially high user experi-
ence was required to manipulate the HVAC unit, most of the current users
are not willing to occupy themselves with comfort regulation but expect this
to work automatically. To account for this, the first automatic climate control
(ACC) was already introduced in 1964 [54]. Modern ACC receives sensor data
about ambient conditions, individual inputs from the passengers, the vehi-
cle state and the cabin temperature. Based on this information the ACC pre-
scribes outlet temperatures of the HVAC unit as setpoints to produce pleas-
ant thermal comfort. Thus, the ACC aims to link the passenger comfort with
the thermal state of the vehicle. Given the example of low ambient tempera-
tures (around 0 ◦C), the ACC would provide a setpoint for the outlet temper-
atures of 60 ◦C at the foot region but only 50 ◦C at the chest region as shown
by the test drive in chapter 5. This is because of the different thermal sensa-
tion of the human body parts. Therefore, the air temperatures at the outlets of
the HVAC unit are measured by sensors and they provide the most important
variables for climate control. Beyond pleasant thermal cabin conditions, ve-
hicle air conditioning systems must comply with legal regulations [2]. These
regulations include safety-related features such as de-icing of the windshield.
The interpretation of thermal comfort and the resulting control strategy to ob-
tain pleasant conditions depends on the car manufacturer, the vehicle and the
country [99]. Although the control strategy is adopted according to the mar-
kets needs, the HVAC unit remains identical for different vehicles to reduce
manufacturing costs.

A HVAC unit is shown schematically in Fig. 1.2. The blower generates the air
volume flow rate by moving the air in the HVAC unit. Downstream of the
blower, the air flow is dehumidified and cooled down in the evaporator. Valves
split the total air volume flow rate in two parts leaving the evaporator. One part
is heated in the heat exchanger. The rest bypasses the heat exchanger. Both air
streams are then mixed inhomogeneously in the mixing cavity such that the
air temperatures at the outlets of the HVAC unit are different. Further down-
stream, ventilation ducts connect the outlets of the HVAC unit with the vehicle
cabin.
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Figure 1.2: Schematic sketch of a representative HVAC unit

The temperature distribution of the air flow leaving the cavity is inhomo-
geneous too as a result from the inhomogeneous mixing in the cavity. This
causes deviations between the bulk mean and the sensor temperature, which
reduces the robustness of the climate control system. Also, these sensors es-
sentially contribute to the manufacturing cost. Due to increasing electrifica-
tion of the vehicles, energetic optimization becomes a focus in future climate
control concepts and requires more efficient control strategies of the ACC [45].

A way to address these challenges is to incorporate a real-time HVAC model in
the ACC. A model-based control scheme, which integrates actuator and sensor
signals to model the HVAC unit, has several advantages. It allows diagnostics
for sensor plausibility to increase robustness, a control strategy with energetic
optimization and to eliminate sensors reducing costs.

The low-dimensional description of the HVAC unit and its functions for real-
time control is subject of this work. The model should have high generaliza-
tion capability for application within an industrial process. This is an impor-
tant feature since the interface components between HVAC unit and passen-
ger cabin vary greatly, depending on the design of the vehicle. Extensive mea-
surements are not practical for the same reason. So, only a moderate amount
of data is available for model calibration. Although only a few operating condi-
tions can be used for model calibration, the model results must respect phys-
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1.1 State of the Art

ical laws, e.g. mass conservation, for the complete operating range. Implau-
sible values can lead to great discomfort and dissatisfied costumers. To save
time and to automate the modeling procedure, no tuning of the model archi-
tecture should be required and the model should be easy to generate.

In summary, four requirements are particularly important to select a suitable
model procedure. The procedure must have high generalization capability,
which is important to apply the method to different vehicles. Furthermore,
the model should be easy to generate without tuning of the model architec-
ture and a moderate amount of data must be sufficient for model calibration.
Finally, the model always must deliver plausible results to avoid discomfort.

1.1 State of the Art

In this section the state of knowledge is reviewed. First, modeling approaches
for HVAC systems are presented and categorized. These approaches are then
compared with respect to their applicability to model flow and mixing in
HVAC units. Suitable modeling techniques are selected based on this com-
parison.

1.1.1 Overview of Modeling Approaches

HVAC modeling techniques can be divided into three different categories:
physical models, black-box models and gray-box models [3, 4, 7]. These three
model types are outlined below and relevant literature regarding HVAC sys-
tems is presented. A summary of the techniques from the reviewed literature
and their application is given in Tab 1.1.
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1.1 State of the Art

Physical Models
Physical models are based on the physical laws, which govern the HVAC sys-
tem. Typically the momentum, mass and energy balance are applied to model
the flow and heat transfer. Physical models are mostly used to assess HVAC
systems at an early design stage or to investigate control strategies.

Sambandan and Valencia [79] describe a fluid resistance network to model
the airflow distribution from the HVAC outlets to the cabin. A core compo-
nent of the model was the description of heat transfer in the heat exchanger
for different inlet temperatures and volume flow rates of both air and coolant.
A mixing model was not required, because the bypass of the HX was closed
and no mixing occurred. Different concepts for HVAC systems were analyzed
in Hager and Anzenberger [34] using a fluid resistance network. The fluid re-
sistance network was coupled to a cabin model and an engine model to evalu-
ate the heating performance of vehicle configurations. Several physical mod-
els have been developed for control purposes to quantify the heat and power
consumption [16, 17, 29, 38, 48, 49, 87]. The aims of the investigated control
strategies were consumption reduction, improved thermal comfort or both
of them. Farzaneh and Tootoonchi [29] applied a fuzzy controller acting on
a physical model to achieve thermal comfort in a vehicle cabin. The setpoint
was based on the Predicted Mean Vote (PMV) index proposed by Fanger [28].
None of the cited references has addressed the effect of inhomogeneous ther-
mal mixing on the outlet temperatures since the warm and cold inflows were
considered to be perfectly mixed.

In summary it can be stated that physics-based models are often applied at
an early design stage of HVAC units since no calibration data is required for
model generation. HVAC concepts can be analyzed qualitatively without the
need of conducting expensive measurements or simulations. They can be
easily applied to different HVAC units but assumptions are required to esti-
mate parameters of the models. For this reason, only moderate accuracy is
achieved. The inhomogeneous mixing process in the HVAC unit has been sim-
plified to homogeneous mixing of the air streams through the bypass and the
HX. This does not reflect the reality as stated in the introduction.
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Black-box Models
Black-box models are generated from recorded data of HVAC systems. Several
techniques to process the data and to develop a mathematical correlation of
the values have been proposed. Representative data-driven modeling types
are data mining algorithms, Fuzzy Logic (FL) models or statistical models. An
approach for the first modeling type is an Artificial Neural Network (ANN) and
for the third type is an Autoregressive Moving Average Exogenous (ARMAX)
model [3, 4, 7]. ANN is the most prominent technique for system identification
among these data-driven methods. Traditionally, these methods are applied to
input and output data of a component or the complete HVAC system [43, 66].

ANN aim to mirror brain functions in a computerized way. The model consists
of connected devices, which are called neurons. The connections are weighted
and summed to calculate the corresponding output. The weighting of the neu-
rons is optimized by the training data. Kamar et al. [44] used ANN to predict
the performance of the refrigerant cycle. Test rig data were used to train the
ANN. Several configurations of the model architecture have been analyzed to
optimize the prediction accuracy. Durovic and Kovacevic [25] applied ANN
to generate an HVAC model for model-based control. The required data was
collected by test drives. These test drives are usually performed during the de-
veloping process of a vehicle. The gathered data was not sufficient to generate
an ANN with acceptable accuracy for climate control. Other research stud-
ies [69, 70, 88] proposed offline and online training of the ANN to handle the
amount of data needed. In the offline stage an initial model is generated and
the model architecture is optimized. Afterwards in the online stage the model
is fed with online data to increase the accuracy. It can be stated that ANN are
particularly applied if large data sets were available or can be measured. To
model the HVAC unit outlined in chapter 3 with ANN and considering only
the valve positions as parameters, approximately 820 days would be needed
for the test rig measurements. This goes beyond an industrial applicability.
No understanding of the physical HVAC system is required and the physical
structure is not preserved. This results in a low generalization capability and
the model structure needs to be tuned to obtain accurate model values. Con-
sequently ANN do not meet the model requirements outlined in the introduc-
tion.
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1.1 State of the Art

The FL method has been developed in 1968 to deal with inexact process data.
The fuzzy algorithm involves if-then rules to model the system behavior qual-
itatively. Watanuki and Murata [94] controlled the temperature in a car cabin
to provide pleasant comfort of the passengers. However, high process knowl-
edge and data is required to apply FL models [72]. The correlation between
volume flow rates and enthalpy flow rates at the outlets is very complex and
unknown. Therefore, FL models are difficult to apply and are not suitable to
model the mixing process in the HVAC unit.

Statistical models are based on an assumption for the probability density dis-
tribution. These models usually result in a polynomial description of the input
and output correlation. Dong et al. [23] generated a polynomial function for
a blower to calculate energy consumption using the fan speed signal. Musta-
faraj et al. [67] compared different statistical modeling procedures to calculate
the room temperature of a building. Collected data from 9 months have been
used for model generation. It was shown that the effort to identify parameters
for a large number of inputs and outputs of the system increases significantly.
Hence, regression models are particularly suitable for a single input and out-
put correlation [3, 7]. But, the models required for the HVAC unit (see Tab. 1.1)
have multiple inputs and multiple outputs.

A method, which has not been applied yet to HVAC systems, is Proper Orthog-
onal Decomposition (POD) [3, 4, 7]. Lumley [62] stated that the POD has been
independently discovered by different researchers, e.g. Kosambi [68] or Pear-
son [74]. It is also known as Karhunen-Loève-Decomposition [73], POD [15]
or Principal Component Analysis (PCA) [50], among others. The basic idea re-
mains the same although different names are used for this method [97]. Typi-
cal application fields are process monitoring [43, 76, 98], data analysis [47, 84]
and fluid dynamics [12]. The POD method aims to decompose a set of ob-
servations into a series expansion of orthogonal basis functions. These basis
functions are also called POD modes and only few POD modes are sufficient
to describe the complete data set with high accuracy. This method has been
firstly applied to image processing, e.g. face recognition [89] or data compres-
sion of static images [52]. For image processing, the pixel values of digital im-
ages are provided as observations. While the name PCA is particularly used
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in the context of image processing, POD refers to the application to fluid me-
chanics and was introduced by Lumley [35]. In fluid mechanics, the obser-
vations are the values of the flow variables. For the classical application of
the POD, each flow observation corresponds to a time instance of a dynamic
flow field and the POD has been used to analyze the flow [12]. Kobayashi et al.
[53] performed the POD on numerical data of a cooling fan to identify dom-
inant structures in the pressure field. These flow structures were related fur-
ther to the performance of the fan. The POD is also widely used to generate
Reduced Order Models (ROM) besides the analysis of flow fields. The weight-
ing coefficients for the POD modes of the series expansion need to be esti-
mated for observations which are not included in the original data set. The
most popular approach to calculate these coefficients is the Galerkin projec-
tion. This weighting procedure utilizes the fact that the POD modes preserve
the physical characteristics of the flow observations such as mass and energy
conservation. Therefore, the underlying governing equations can be exploited
to restrict the values of the weighting coefficients. The Galerkin projection re-
sults in ordinary differential equations (ODE) applied to spatio-temporal flow
fields [60, 93]. Ling et al. [58] used the POD-Galerkin projection to model the
cabin of a vehicle. In comparison to CFD simulations the cabin model pre-
dicts the temperature distribution in the cabin within an error margin of less
than 1 K. Recently, the POD-Galerkin procedure was also applied to paramet-
ric variations of a flow system. Instead of flow observations at different time
instances, the observations correspond to a specific parametric variation. The
Galerkin projection results in an equation system, which can be solved to ob-
tain the weighting coefficients. Vendl et al. [90] modeled the steady flow over
an air-foil at different angles of attack using the Galerkin projection. However,
the Galerkin projection is limited to spatially resolved flow observations since
it incorporates the Navier Stokes Equations. These flow observations are ob-
tained from numerical simulations. Other research studies proposed interpo-
lation methods to estimate the weighting coefficients [13, 63, 75, 82]. But in-
terpolation methods have been reported to perform worse than the physically
motivated Galerkin projection [92].
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Gray-box Models
Gray-box models combine both, the physical modeling approach and data-
driven black-box methods. The models represent the physical structure of the
system, but its parameters are estimated based on the analysis of collected
data. Therefore, an optimization procedure needs to be applied for parame-
ter estimation. Gray-box models are often applied in combination with nodal
networks to model transient heat transfer [26, 36, 42, 100, 101] or in fluid re-
sistance networks to compute the fluid flow [31, 83]. Zhang et al. [101] mod-
eled the refrigerant cycle of the HVAC unit for model-based control. The heat
transfer coefficients were calibrated by using a single operating condition of a
vehicle. It was shown that the residual mean square error is less than 10 % for
different operating conditions. A similar approach has been applied by Sho-
jaei et al. [83]. The refrigerant cycle of the HVAC system for an electric car has
been modeled to analyze different strategies for the reduction of energy con-
sumption. A Nusselt correlation was formulated to calculate the heat transfer
at the air side of the evaporator. The coefficients of this correlation were ob-
tained by a set of experimental data. Furthermore, the coolant flow was de-
scribed by an hydraulic network. In the PhD thesis of Ghebru [31], the coolant
flow of a vehicle’s engine has been modeled by means of a resistance model.
The resistances were calibrated by numerical simulations of the coolant loop.
Afram and Janabi-Sharifi [5] used a physical description of a residential HVAC
system to calculate the energy consumption. Parameters such as heat capac-
ities and heat transfer coefficients were estimated from experimental data by
using a least square algorithm.

It can be summarized from the literature presented above that gray-box mod-
els are often applied to increase the accuracy of physic-based models. Higher
accuracy can be achieved using collected data, which cover relevant operating
conditions. Also state variables can be applied and not only input and output
data of the HVAC system. These models preserve the physical structure of the
system and only a moderate amount of data is needed.
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1.1.2 Selection of Modeling Techniques

Table 1.2 summarizes the modeling techniques presented before and ranks
them with respect to the requirements regarding the model procedure stated
in the introduction. As discussed above, physical models are very powerful if a
sufficiently generalized description can be formulated. The accuracy of these
models can be tuned by incorporating a moderate amount of data.

An example is the heat exchanger where zero- or one-dimensional energy bal-
ances can be used together with correlations of the convective heat transfer
[78]. Furthermore, during the design of a vehicle performance data of the heat
exchanger is recorded. From these measurements the heat transfer can be es-
timated as an alternative to correlations from literature. This leads to a scal-
able and flexible model, which is robust against large geometrical variations.
The same can be stated for the blower. Therefore, these components are de-
scribed by energy balances in this thesis.

The mass flow rate distribution has been proven to allow quasi-one-
dimensional simplification. Downstream of the evaporator particularly the
flow resistance of the valves, the heat exchanger and the ventilation ducts
dominate the distribution of the air flow. These valves are located in the ven-
tilation ducts. The dynamic pressures in the ducts are comparatively high due
to the large ratio of area change AC avi t y /ADuct between mixing cavity and duct.
Therefore, the loss of total head in the mixing cavity ∆pt ,C avi t y is very low in
comparison to the losses induced by the components listed above and is con-
sidered to be negligible. Correlations for valve losses have been comprehen-

Table 1.2: Comparison of selected modeling techniques for HVAC systems (+:
high, o: medium, -: low)

Model Generalization Ease of model Amount of Physical Applicability to
type capability generation needed data behavior mixing process
ANN - o - X
POD based o + o X X
Gray-box o + o X
Physical + o + X
Requirement + + o X X
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sively investigated and documented in literature. The pressure loss of the ven-
tilation ducts and heat exchanger is a performance indicator for the design
process and measured by the car manufacturers. These measurements and
the correlations for the valve loss can be applied to generate a flexible and ro-
bust model. Modifications of the vehicle design easily can be accounted by
adjusting the loss coefficient of the respective component.

Transient heat transfer is considered to be mainly determined by the sur-
rounding dashboard geometry of the ventilation ducts. A one dimensional
discretization of this geometry has been shown to provide good approxima-
tions for the heat transfer between vehicle structure and air flow [31, 59]. The
discretization of the geometry by layers is referred as nodal network according
Incropera et al. [41]. Well-correlated heat transfer coefficients can be used to
model the transient behavior of outlet temperatures. Therefore, a nodal net-
work provides high flexibility for an application to different vehicles.

In summary, an energy balance is applied to model the blower and the heat ex-
changer. Furthermore, a nodal network of thermal resistances and capacities
of the ventilation ducts is generated to calculate the heat transfer to the vehi-
cle structure. The air flow in the HVAC unit is described by a fluid resistance
network model.

The inhomogeneous mixing process in the mixing cavity of the HVAC unit can
not be described by these physical approaches mentioned above. Neverthe-
less, a physical framework to model the mixing process would be preferable
since it requires less measurement data. One method, which maintains the
physical behavior of the system and allows a physical modeling framework,
is the POD. However, POD so far has been applied to spatial flow fields. The
application of the POD to the outlet values has not been discussed in litera-
ture. But this application is particularly interesting because only the integral
enthalpy flow rates are needed for climate control. Furthermore, these values
can be acquired easily from experiments eliminating the need of numerical
simulations. Coupling well established physical model approaches with the
POD is a remaining knowledge gap.

12
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1.2 Goal and Structure of the Thesis

The goal of this thesis is to create a Reduced Order Model of the mixing pro-
cess based on POD. Furthermore, the aim is to develop the methodology to
combine this POD model with a first principle system simulation of a HVAC
unit for climate control. The input data for the POD is the system response
for selected parameter combinations of the HVAC unit, which cover the rel-
evant operating range. The traditional application of the POD-Galerkin (G-
POD) projection models the high dimensional flow fields based on a set of
numerical simulations using the selected parameter combinations. From the
modeled flow fields, integral values are calculated. But, these simulations are
very time consuming and only the outlet values are needed for climate con-
trol. Considering practical application, the ROM should solely require mea-
sured data of control-relevant output values of the HVAC unit. These output
values are the volume flow rates and enthalpy flow rates at the outlets. There-
fore, a new weighting procedure is developed, which focuses only on the infor-
mation needed for climate control. This procedure is known as Output-based
POD (O-POD).

The evaluation of the proposed O-POD approach and application to automo-
tive climate control covers three essential steps:

1. The development of the O-POD approach based on the fundamentals of
the POD procedure and Galerkin projection.

2. The integration of the O-POD procedure in a HVAC system simulation
using experimental calibration data from a test rig and assessment of the
resulting model with experimental validation data.

3. The application of the validated model to a real driving scenario and the
presentation of a model-based control scheme.

This thesis is structured according to these steps. In chapter 2, the basics of
POD are explained. The theoretical background is necessary to understand
the O-POD approach, which is derived by inspecting the traditional POD

13
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Galerkin method. In the following chapter 3, the experimental setup and mea-
surement procedure are introduced. The measurements are needed to acquire
experimental data of selected operating conditions as input for the O-POD
procedure. Furthermore, the same setup is used to generate comprehensive
validation data. Then in chapter 4, the O-POD approach is evaluated. This
chapter is divided into two main parts: First, the O-POD approach is applied to
a numerical benchmark model and assessed with reference simulations. Sec-
ond, the O-POD approach is used to model mixing in the real HVAC unit. The
CFD model in the first part is needed to obtain a consistent data set, which has
a complexity similar to the real HVAC unit, without experimental uncertain-
ties. Deviations between the predicted values and the reference simulations
can be traced back to the O-POD approach. For this purpose, the volume flow
rates and enthalpy flow rates are computed from a set of numerical simula-
tions as input for the O-POD. The traditional Galerkin projection is also ap-
plied to the numerical benchmark model and the differences between O-POD
and POD-Galerkin are demonstrated. As the O-POD approach shows good re-
sults, the procedure is applied to the real HVAC system in the second part of
chapter 4. The measurement data of chapter 3 is provided as input to generate
the O-POD model for the real mixing cavity in the HVAC unit. The resulting
O-POD model is then integrated into a system simulation of the HVAC unit.
Experimental validation data is used for the model assessment in this chapter.
Afterwards, the HVAC model developed in chapter 4 is applied in chapter 5 to
a driving cycle and the model performance under real operating conditions is
evaluated. Finally, the HVAC model is incorporated in a model-based control
scheme to eliminate the need of expensive temperature sensors. This thesis
ends with a summary and conclusions of the major results in chapter 6.
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2 Proper Orthogonal Decomposition

The Proper Orthogonal Decomposition (POD) method is introduced to model
the mixing process in HVAC units in this chapter. The POD method requires
measurements or numerical data of selected operating conditions as input
and delivers a series expansion of POD modes as output. This series expan-
sion is the basis for the POD model approach. Therefore, the fundamentals of
the POD are given in section 2.1. The modes need to be weighted to gener-
ate a Reduced Order Model of the mixing process. Two weighting procedures
are introduced: The POD-Galerkin projection (G-POD) and the Output-based
POD (O-POD). The G-POD procedure is presented in section 2.2. This method
is usually applied in literature to model high dimensional flow fields as de-
scribed in the first part of the section. The G-POD method is also capable to
model only the volume flow rates and enthalpy flow rates by using integral bal-
ances of the flow in the HVAC unit. This application of the Galerkin procedure
is discussed in the second part of section 2.2 to understand the output based
POD (O-POD) method and the differences between the two weighting proce-
dures. In the next section 2.3, the O-POD is introduced. This method focuses
solely on the integral outlet values of the HVAC unit. For the O-POD method,
measurements can be used and numerical data is not required. First, the gen-
eral procedure of the O-POD is presented. Then, the application to the mix-
ing process in HVAC units is discussed. A summary and comparison of both
weighting procedures is given in the last section.

2.1 Introduction to Proper Orthogonal Decomposition

The POD generates a series expansion of orthogonal basis functions. The basis
functions are needed for the G-POD method and O-POD approach. However,
the general POD procedure remains identical for both methods.
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The difference is only the data base provided as input for the POD. Therefore,
the basic definitions and the generalized POD procedure is explained in this
section.

A system is considered where observationsϕ(m) can be made. The observation
ϕ(m) is a vector of Nx values of the systems state taken at the same instance m

ϕ(m) = [
ϕ (s1) ,ϕ (s2) , ...,ϕ

(
sNx

)](m)
. (2.1)

Considering a time varying system, the instance is the time m at which the
observed Nx values are acquired at a location s. An observation could be pixel
values of a digital image in a sequence of frames. Given this example, the num-
ber of observed values Nx is the number of pixels in the image. More generally,
the instance m refers to a parameter combination of a system. In the present
work, each instance is a combination of valve positions. The objective of the
POD is the optimal approximation of such an observation ϕ(m) from the en-
tire ensemble of Ns observations by orthogonal basis functionsθi , or so-called
POD modes

θi =
[
θ (s1) ,θ (s2) , ...,θ

(
sNx

)]
i . (2.2)

The number Ns refers to the number of instances or parameter combinations
at which observations ϕ(m) are obtained. The basis function θi is again a vec-
tor of Nx values and with orthogonality follows θiθ j = 0 for i 6= j . Accordingly,
the observationϕ(m) can be expressed by

ϕ(m) =
Ns∑

i=1

a(m)
i θi . (2.3)

In Eq. 2.3, a(m)
i is the weighting coefficient of the i -th mode and the current

observation m. The coefficients a(m)
i result for a mode i to

a(m)
i = [

a(1)
i a(2)

i · · · a(Ns )
i

]T
. (2.4)
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The POD modes are generated from the ensemble of Ns observations. First,
the autocorrelation tensor R of the observations is computed. This results in a
Nx-by-Nx matrix

R = 1

Ns

Ns∑
m=1

ϕ(m) [ϕ(m)]T = 1

Ns

Ns∑
m=1

 ϕ (s1)
...

ϕ
(
sNx

)


(m) [
ϕ (s1) · · · ϕ

(
sNx

)](m)
. (2.5)

Second, an eigenvalue problem can be solved for the direct calculation of the
basis function θi

Rθi =λiθi , (2.6)

where λi refers to the eigenvalue of the respective POD mode. A detailed
derivation of Eq. 2.6 is given in [35, 37]. The computational effort and memory
to solve the eigenvalue problem of a Nx-by-Nx matrix is a formidable task and
quickly exceeds the limits of practical application for a large number of states
Nx , e.g. for numerical simulations.

To perform the POD with few Ns observations of high-dimensional size Nx ,
the Method of Snapshots was presented by Sirovich [86]. In this method, the
observations are called snapshots. In literature, snapshots refer usually to flow
observations at different time instances, e.g. different time steps of Large Eddy
Simulations (LES). But in the present work, the observations are gathered
based on selected valve positions to cover the relevant operating range of the
HVAC unit. Therefore, the term snapshot is not used to describe the data set
for the POD in the following. The idea of the Method of Snapshots is to first
calculate the weighting coefficients a(m)

i and to compute the POD modes af-
terwards using these weighting coefficients [71]. The calculation of the POD
modes yields again an eigenvalue problem

Ca(m)
i =λi a(m)

i . (2.7)

The correlation tensor C is calculated from the inner product of the different
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2.1 Introduction to Proper Orthogonal Decomposition

instances m and follows to

C = 1

Ns

[
ϕ(m),ϕ(n)]= 1

Ns

[
ϕ (s1) · · · ϕ

(
sNx

)](m)

 ϕ (s1)
...

ϕ
(
sNx

)


(n)

, (2.8)

where m,n = 1 to Ns . The size of the correlation tensor C scales now with
the number of observations Ns and not with the number of observed states
Nx . Therefore, the Method of Snapshots is applied in particular with Com-
putational Fluid Dynamics (CFD) since the number of observations is much
smaller than the number of system states: Ns ¿ Nx . The POD modes are then
generated by using the weighting coefficients

θi = 1√
Nsλi

Ns∑
m=1

a(m)
i ϕ(m). (2.9)

A maximum of Ns POD modes can be calculated from Eq. 2.9. But in practice,
the series expansion is truncated after Nr modes since the first few modes
cover most of the information provided by the observations. The Relative In-
formation Content (RIC) is calculated for this purpose. The RIC is a measure
for the cumulative information content of the POD series expansion by in-
creasing the number of eigenfunctions. First, the eigenvalues are sorted in de-
scending order of magnitude λ1 > λ2 > ... and then the RIC is calculated by

RIC (Nr ) =
∑Nr

i=1λi∑Ns
j=1λ j

. (2.10)

With respect to the HVAC application, the extension of the series expansion
with the mean average is of advantage, since the mean value can be often es-
timated from basic conservation laws. The difference between the mean aver-
age of the entire ensemble and the observations is calculated and provided as
input data set for the POD. As a result, both the input data set and the modes
correspond to a deviation from the mean average, which is a more generalized
approach for a given set of instances. The mean average is introduced as ze-
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Proper Orthogonal Decomposition

roth mode θ0 with a weighting coefficient of a(m)
0 = 1. Accordingly, the mode

θ0 describes the mean of the observation ensemble, while the POD modes
compute the deviation from the mean values for the actual observation

ϕ̃(m) = a(m)
0 θ0 +

Nr∑
i=1

a(m)
i θi =

Nr∑
i=0

a(m)
i θi (2.11)

with Nr < Ns and

θ0 = 1

Ns

Ns∑
m=1

ϕ(m). (2.12)

The POD modes remain constant for a given set of input data. To reconstruct
a parameter combination m, only the weighting coefficients need to be modi-
fied. In Eq. 2.7 it can be seen that the weighting coefficients of the POD modes
are known for the observations. Instances, which are not included in the en-
semble of observations, need to be determined. Estimating the weighting co-
efficients for a parameter combination m, e.g. a combination of valve posi-
tions, is the objective of the G-POD method and the O-POD approach.

2.2 Galerkin Projection (G-POD)

The basics of the Galerkin projection are explained in this section. The general
procedure is presented below. In the first part of this section, the traditional
application to model the high dimensional flow field of the numerical bench-
mark model from section 4.1 is discussed. Based on these fundamentals, the
Galerkin method applied to integral balances of the HVAC unit is briefly intro-
duced in the second part of this section. This is necessary to derive the O-POD
approach in the next section 2.3 and to understand the differences between
both methods.

The general idea of G-POD is to use the governing equations of a system to
generate a ROM. Since the basis functions θi are constructed from the obser-
vations (see Eq. 2.9), the modes preserve the physical behavior of the system,
e.g. mass or energy conservation. This allows to incorporate them into the gov-
erning equations, which describe the system. Suppose that the values of the
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2.2 Galerkin Projection (G-POD)

observations ϕ(m) are the values of the variables from a governing equation
N

[
ϕ

]
. These variables can be substituted by the series expansion of Eq. 2.3

N
[
ϕ

]≈N
[

Nr∑
i=0

aiθi

]
. (2.13)

Instead of projecting the solution of the governing equation onto the POD
modes θi to obtain the weighting coefficients, the operator N is projected

(
ϕ,θi

)−→ (
N

[
Nr∑
j=0

a jθ j

]
,θi

)
. (2.14)

A system of Nr equations is generated based on Eq. 2.14 and can be solved. The
estimated weighting coefficients ãi are obtained as the result. Subsequently,
the real coefficient ai is replaced with the estimated coefficient ãi and the re-
constructed observation follows to

ϕ̃=
Nr∑
i=0

ãiθi . (2.15)

A schematic flowchart of the Galerkin procedure is shown in Fig. 2.1.

2.2.1 Application to Flow Fields in HVAC Units

Now, the flow in a HVAC unit is considered and the values of observations
ϕ(m) (x) are the flow variables at the location x of the domain Ω. The Galerkin
procedure is applied to the steady Reynolds-Averaged-Navier-Stokes (RANS)
and scalar transport equations. Both equations are required to model scalar
mixing in the turbulent flow of the mixing cavity. The traditional G-POD ap-
proach requires numerical simulations and uses the Navier-Stokes equations
to model the flow field. The needed observations are CFD simulations of dif-
ferent valve positions.
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POD

Data setϕ(m)

Solve GS

Substiute ai by ãi

Result

ROM

Substituteϕ in

N
[
ϕ

]
by

∑Nr
i=0 aiθi

Project onto θi

N
[∑Nr

i=0 aiθi

]

POD modes θi

Galerkin equation system (GS)

ãi

Figure 2.1: Schematic flowchart of the G-POD approach

The operator of the governing equations reads for the RANS equations

NI := 0 = (u ·∇)u−∇· [νeff

(∇u+ (∇u)T )]+∇p

ρ
+S, (2.16a)

0 =∇·u (2.16b)

and for the scalar transport equation

NI I := 0 = (u ·∇)T −∇· [(D +D t ) (∇T )] . (2.17)

In the momentum Eq. 2.16a S refers to an arbitrary source term. This source
term is used at the end of this subsection to model different valve positions.
The effective viscosity νeff is the sum of the kinematic molecular viscosity ν
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2.2 Galerkin Projection (G-POD)

and the turbulent apparent viscosity νt

νeff = ν+νt. (2.18)

For incompressible and laminar flows, the POD is only applied to the velocity
field and the variables have the same dimension. But the state vector of the
flow field from Eq. 2.16a and 2.17 consists of the velocities u, pressure p, ef-
fective viscosity νeff and temperature T . In a straightforward application of the
Method of Snapshots outlined in section 2.1, one notes that the inner product
of Eq. 2.8 is not consistent for different flow quantities. This is because the
units may not agree. The most common approach to cope with the dimen-
sionality of the flow quantities is to use vector-valued modes with an appro-
priate scaling of the variables. The flow quantities of the spatially distributed
field variablesϕ (x) are scaled by nominal values as follows

ϕ+ (x) =


u+(x)
p+(x)
ν+t (x)
T +(x)

=


u(x)/U0

p(x)/U 2
0

νt (x)/(U0L)
(T (x)−Tmin)/(Tmax −Tmin)

 . (2.19)

The state vector of the flow field in Eq. 2.19 is expanded in a series expansion
of vector-valued POD modes

ϕ+ (x) =


u+ (x)
p+ (x)
ν+t (x)
T + (x)

≈


ũ+ (x)
p̃+ (x)
ν̃+t (x)
T̃ + (x)

=
Nr∑
i=0

ai


θu

i (x)
θ

p
i (x)
θ
νt
i (x)
θT

i (x)

 . (2.20)

The POD modes θi can be substituted in the operator NI and NI I and the
terms of the governing equations are projected on the subspace spanned by
the POD modes.

For better understanding, the Galerkin procedure is demonstrated in detail by
an example using the convection term of the RANS equation. First, the series
expansion in Eq. 2.20 is substituted into the governing equations.
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Applied to the convection term this leads to

(u ·∇)u ≈ (
a0θ

u
0 ·∇

)
a0θ

u
0 +

(
a0θ

u
0 ·∇

)
a1θ

u
1 + . . .

+
(
aNrθ

u
Nr

·∇
)

aNrθ
u
Nr

= a0a0

(
θu

0 ·∇
)
θu

0 +a0a1

(
θu

0 ·∇
)
θu

1 + . . .

+aNr aNr

(
θu

Nr
·∇

)
θu

Nr

= ∑Nr
j=0

∑Nr
k=0 a j ak

(
θu

j ·∇
)
θu

k .

(2.21)

Subsequently, the terms with the substituted POD modes can be projected
onto the POD subspace by calculating the inner product of the respective
term and POD mode.

The projected convection term with the substituted POD modes of Eq. 2.21
yields

[∑Nr
j=0

∑Nr
k=0 a j ak

(
θu

j ·∇
)
θu

k ,θu
i

]
Ω
=∑Nr

j=0

∑Nr
k=0 a j ak

[(
θu

j ·∇
)
θu

k ,θu
i

]
Ω
=∑Nr

j=0

∑Nr
k=0 a j akCi j k .

(2.22)

with

Ci j k =


C000 . . . C0Nr Nr

C100 . . . C1Nr Nr

...
...

...

CNr 00 . . . CNr Nr Nr

=



[(
θu

0 ·∇
)
θu

0 ,θu
0

]
Ω

. . .
[(
θu

Nr
·∇

)
θu

Nr
,θu

0

]
Ω[(

θu
0 ·∇

)
θu

0 ,θu
1

]
Ω

. . .
[(
θu

Nr
·∇

)
θu

Nr
,θu

1

]
Ω

...
...

...[(
θu

0 ·∇
)
θu

0 ,θu
Nr

]
Ω

. . .
[(
θu

Nr
·∇

)
θu

Nr
,θu

Nr

]
Ω

 .

(2.23)

Each term of the governing equation NI and NI I results in a matrix as shown
for the convection term. The entries of the respective matrices are summa-
rized in Tab. 2.1
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Incorporating Boundary Conditions
Since the aim of the G-POD is to generate a ROM for different valve positions
of the HVAC unit, these parameters need to be incorporated in the Galerkin
System. In the real HVAC unit, the operating conditions are specified by valve
positions or the total mass flow rate. Different approaches have been pre-
sented in literature to account for parameter variations [46, 85]. However, only
different valve positions were considered to evaluate the POD models with nu-
merical data in section 4.1. Instead of physically modeling the valves, a flow
resistance is applied to a specific sub-domain of the numerical model to regu-
late the flow field. The flow resistance S describes a pressure drop proportional
to the squared velocity. It can be computed by

S = 1

2
Fn |u|u, (2.24)

where Fn is the scaling factor of the resistance for the sub-domain n.

As a final result of the Galerkin projection, the Galerkin system of the steady
RANS and scalar transport equations can be written as∑Nr

j=0

∑Nr
k=0 a j ak

(
Ci j k −Ti j k +FnSi j k

)
Momentum Eq. +∑Nr

j=0 a jPi j

= 0,

Continuum Eq.
∑Nr

j=0 a jMi j = 0,

Scalar transport Eq.
∑Nr

j=0

∑Nr
k=0 a j ak

(
Bi j k −Di j k

)= 0.

(2.25)

The Galerkin system can be solved iteratively. In the present work, Newtons
method is applied. The solution of the Galerkin System leads to the estimated
weighting coefficients ãi . These coefficients are further used to reconstruct
the complete flow field from which integral volume flow rates and enthalpy
flow rates are computed by

V̇n =
∫
Γ

ud A, (2.26a)

Ḣn = ρcp

∫
Γ

uT d A, (2.26b)

where n corresponds to the respective outlet (e.g. defrost).
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2.2 Galerkin Projection (G-POD)

In summary, the Galerkin projection applied to RANS results in a ROM of the
high dimensional flow fields for the temperature, velocity, etc.. Therefore, this
application is in particular suitable if the distribution of the flow variables, e.g.
a temperature profile at the outlet, is required. However, the Galerkin projec-
tion can also be applied to integral values as described in the following sub-
section.

2.2.2 Application to Integral Balances of HVAC Units

Particularly the volume flow rates and enthalpy flow rates are important for
climate control. The application of the Galerkin projection to these values is
explained below. This is necessary to derive the O-POD approach in the next
section and to understand the link between both weighting methods.

In Fig. 2.2 the most important components and values to model the flow in the
HVAC unit are shown. In this figure, integral volume flow rates are denoted by
V̇ and enthalpy flow rates by Ḣ . The density ρ0 is considered to be constant
for the sake of simplicity. In Fig. 2.2, pt is the total pressure at a specific lo-
cation. In particular, the pressure at the inlet cross section pt ,0, in the mixing

Ḣ0,V̇tot

ρ0
pt ,0

pt ,1

pt ,2ḢByp

V̇Byp∆pt ,Byp

∆pt ,HX

∆pt ,Foot

∆pt ,Face

∆
p

t,
D

ef
r

ḢHX

V̇HX

Q̇HX

V̇Defr ḢDefr

V̇Foot ḢFoot

V̇Face

ḢFace

Figure 2.2: Integral flow variables of a HVAC unit
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cavity pt ,1 and in the vehicle cabin pt ,2 are important. Furthermore, the flow
path through the HVAC unit is shown. The total pressure drop introduced by a
component i , e.g. a valve, is described by ∆pt ,i

(
ζi ,V̇i

)
. The pressure drop de-

pends on a loss coefficient ζi and the flow through this component (for more
details see also 4.1.1).

Following the G-POD approach, the operator of the governing equations for
the flow through the HVAC unit reads

Momentum Eq. NI := 0 =∆pt ,HX

(
ζHX,V̇HX

)−∆pt ,Byp

(
ζByp,V̇Byp

)
,

(2.27a)

0 =∆pt ,Defr

(
ζDefr,V̇Defr

)−∆pt ,Face

(
ζFace,V̇Face

)
,

(2.27b)
...

Continuum Eq. NI I := 0 =
(∑

l=1

V̇l

)
Inflow

−
(∑

l=1

V̇l

)
Outflow

, (2.27c)

Energy Eq. NI I I := 0 =
(∑

l=1

Ḣl

)
Inflow

−
(∑

l=1

Ḣl

)
Outflow

. (2.27d)

In Eq.2.27 it can be seen that the data set used for the POD must contain the
volume flow rates and enthalpy flow rates. A data set of these values for dif-
ferent parameter combinations m can be obtained by calculating the integral
volume flow rates and enthalpy flow rates from numerical simulations or by
an experimental approach as described in chapter 3. The input data set is then
structured as follows

ϕm =


V̇De f r

...
ḢDe f r

...


m

(2.28)
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and the POD delivers the series expansion of vector-valued POD modes


˙̃VDe f r

...
˙̃HDe f r
...

=
Nr∑
i=0

ai


θ

V̇De f r

i
...

θ
ḢDe f r

i
...

 . (2.29)

In the next step of the Galerkin procedure, the integral flow variables of Eq.
2.27 are substituted by the series expansion of Eq. 2.29 and projected onto
the the POD modes. As a result, a system of equations is generated similar
to the RANS application. This system of equations can be solved to estimate
the weighting coefficients ãi . Afterwards, the coefficients ai of the series ex-
pansion in Eq. 2.29 are substituted by the estimated coefficients ãi and the
volume flow rates and enthalpy flow rates can be directly reconstructed. The
series expansion with substituted coefficients is given in matrix form by


˙̃VDe f r

...
˙̃HDe f r
...

=


θ

V̇De f r

1 θ
V̇De f r

2 . . . θ
V̇De f r

Nr
... . . .

θ
ḢDe f r

i θ
ḢDe f r

2 . . . θ
ḢDe f r

Nr
... . . .




ã1

ã2
...

ãNr

 . (2.30)

However, two major conclusions can be made by inspecting the G-POD pro-
cedure applied to integral balances. First, Eq. 2.27a and Eq. 2.27b are the same
equations needed to generate a flow resistance network of the HVAC unit. The
flow resistance (FR) network is a well established method and frequently used
in literature to model the flow distribution as stated in the introduction. In
comparison to the Galerkin projection, the network model is more efficient
because only few iterations are needed to compute the volume flow rates (see
subsection 4.2.1). Second, in Eq. 2.30 it can be seen that the POD modes in-
clude two subsets. One subset are the volume flow rates and the other subset
are the enthalpy flow rates at the outlets. Although the two subsets refer to dif-
ferent quantities, the coefficients used are identical due to the vector-valued
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modes. Considering that the volume flow rates are the results of the flow re-
sistance network, these flow rates can be exploited to estimate the weighting
coefficients instead of performing the Galerkin projection. Based on these two
conclusions, the O-POD approach is introduced in the following section.

2.3 POD Based on Control-Relevant Output Parameters (O-
POD)

The methodology to combine the results of the traditional flow resistance (FR)
network with the POD is the focus of this section. The general idea of the O-
POD is to structure volume flow rates and enthalpy flow rates in vector-valued
POD modes. The task is then to minimize the deviation between the result of
the FR network and the series expansion of the volume flow rates by changing
the weighting coefficients. Afterwards, the estimated weighting coefficients
are further applied to compute the values of the enthalpy flow rates. The major
difference between the Galerkin projection and the O-POD is that the Galerkin
projection exploits the governing equations, while O-POD incorporates the re-
sult of the governing equations for the estimation of the coefficients. Although
the O-POD is introduced in the present work to model mixing in HVAC units,
it is not limited to this application. Therefore, the generalized procedure is
presented in the first subsection. Next, the application to the HVAC unit is de-
scribed.

2.3.1 Introduction to O-POD Procedure

The generalized concept of the O-POD method is explained below since it can
be applied to different technical fields. First, basic definitions are given and
then the procedure is explained.

More generally, the volume flow rates at the outlets are observed output vari-
ables of the HVAC system. The definition of an observed output variable yObs is
that the actual value is available due to measurements or other models while
operating the system. In contrast, the enthalpy flow rates are not observed
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output variables. The not observed output yNon−Obs is not known during op-
eration of the system, but it is required for system control. Therefore, whether
a variable is observed or not depends only on their availability during opera-
tion The objective of the output based POD is to generate a ROM to predict
the not observed output values by using the observed states. It is known as
output based POD (O-POD) method. The basic idea goes back to Everson and
Sirovich [27]. They used POD to reconstruct incomplete images of faces. The
theory developed by Sirovich was extended by Astrid [9, 10] to accelerate the
estimation of the coefficients for high dimensional flow fields. A major differ-
ence to applications presented in literature is that observed volume flow rates
and not observed values enthalpy flow rates are structured in vector-valued
modes (see Eq. 2.30 as example). This allows to separate two subsets of the
modes and to estimate the coefficients by using only one of these subsets.

Perform POD1

POD series expansion ai

(
θObs

i
θNon−Obs

i

)

Vector-valued
input dataϕ(m) =

(
ϕObs

ϕNon−Obs

)(m)

Separate subsets2

POD subset∑Nr
i=0 aiθ

Non−Obs
i

yObs =∑Nr
i=0 aiθ

Obs
i

2. Estimate ãi3

ãi

ỹ Non−Obs =∑Nr
i=0 ãiθ

Non−Obs
iResult

Substitute ai by ãi4

Model or measure

yObs

Data set of parameter combinations

ROM

Figure 2.3: Schematic flow chart of the O-POD procedure

30



Proper Orthogonal Decomposition

The O-POD procedure consists of four steps, which are explained below. A
flowchart of this method is shown in Fig.2.3. The numbers in this figure high-
light the step of the procedure.

Step 1: Generate vector-valued data set and perform POD
The input data set for the POD consists only of the relevant output data, e.g.
integral outlet values of the HVAC unit. An ensemble of observed and not ob-
served variables is obtained for different instances m

ϕ(m) =
[

yObs

yNon−Obs

](m)

. (2.31)

Experiments are used in the present thesis to acquire the input data. The POD
delivers vector-valued basis functions θi , which contain a subset related to the
observed quantity θObs

i and a subset for the not observed quantity θNon−Obs
i

θi =
[
θObs

i

θNon−Obs
i

]
. (2.32)

Accordingly, the resulting series expansion of the POD modes follows as[
ỹObs

ỹNon−Obs

]
=

Nr∑
i=0

ai

[
θObs

i

θNon−Obs
i

]
, (2.33)

where Nr < Ns . A change of ỹObs results in different weighting coefficients ai

as shown in Eq. 2.33. This also leads to a different weighting of the POD modes
for the not observed output values ỹNon−Obs. For this reason, the modes of the
observed variables are linked to the modes of the not observed output vari-
ables by the weighting coefficients. Since yObs is available during operation,
the task is now to estimate the weighting coefficients from this current ob-
served value. The estimated coefficients ãi can then be used to reconstruct
the estimated system output ỹNon−Obs for unknown instances.
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Step 2: Separate POD modes into subsets
For this purpose, the vector-valued modes generated by the POD procedure
are separated into two subsets. One subset corresponds to the known value
ỹObs and the other to the needed output value ỹNon−Obs

ỹObs =
Nr∑
i=0

aiθ
Obs
i , (2.34a)

ỹNon−Obs =
Nr∑
i=0

aiθ
Non−Obs
i . (2.34b)

Step 3: Project onto POD modes and estimate ãi

The observed actual value yObs is utilized to estimate the weighting coeffi-
cients from Eq. 2.34a. This results in the minimization of the error between
the actual value yObs and the series expansion in Eq. 2.34a

min
ai∈R

∥∥yObs − ỹObs
∥∥2 = min

ai∈R

∥∥∥∥∥yObs −
Nr∑
i=0

aiθ
Obs
i

∥∥∥∥∥
2

. (2.35)

Mathematically, this can be expressed by the projection of Eq. 2.35 onto the
POD modes, which yields to

0 =∑Nr
i=0

∑Nr
j=0

[(
yObs,θObs

i

)−a j

(
θObs

j ,θObs
i

)]


0
0
...
0


T

=


(
yObs,θObs

0

)(
yObs,θObs

1

)
...(

yObs,θObs
Nr

)


T

− [
1 a1 . . . aNr

]


(
θObs

0 ,θObs
0

)
. . .

(
θObs

0 ,θObs
Nr

)
(
θObs

1 ,θObs
0

)
. . .

(
θObs

1 ,θObs
Nr

)
... . . . ...(

θObs
Nr

,θObs
0

)
. . .

(
θObs

Nr
,θObs

Nr

)

 ,

(2.36)
where i , j ∈ [1, Nr ]. The system of equations in Eq. 2.36 is solved by an itera-
tive procedure to estimate the weighting coefficients ãi . Newtons method has
been applied. At this point, a limitation of the O-POD approach has to be re-
ported. The number of modes used by the O-POD procedure is limited by the
Degrees of Freedom (DOF) of the system of equations in Eq. 2.36.
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Thus, the number of POD modes Nr has to fulfill the following criterion:
Nr ≤ DOF . Otherwise the system of equations is overdetermined.

Step 4: Substitute ai by ãi

The needed output ỹNon−Obs is calculated in the last step. The weighting
coefficients ai are substituted by the estimated weighting coefficients ãi in
the series expansion of Eq. 2.34b. Then, the approximated output ỹNon−Obs is
computed

ỹNon−Obs =
Nr∑
i=0

ãiθ
Non−Obs
i . (2.37)

2.3.2 Application to Flow and Mixing in HVAC Units

The O-POD procedure is applied to the mixing process in HVAC units. The
not observed output quantities are the enthalpy flow rates Ḣ+ at the outlets
downstream of the mixing process in the HVAC unit. The observed values are
the volume flow rates V̇ +, since they can be easily computed with a Fluid Re-
sistance (FR) network. Volume flow rates and enthalpy flow rates are scaled by
the total inflow of the mixing chamber

V̇ +
n = V̇n∑N

n=1 V̇n

, (2.38a)

Ḣ+
n = Ḣn∑N

n=1 Ḣn

, (2.38b)

where N is the number of outlets. Thus, the input data for the O-POD proce-
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dure is structured as follows

ϕ(m) =
[

yObs

yNon−Obs

](m)

=
[

V̇+

Ḣ+
](m)

=



V̇ +
HX

V̇ +
Defr
...

V̇ +
Foot

Ḣ+
Defr
...

Ḣ+
Foot



(m)

. (2.39)

The first value of the vector V̇ +
HX corresponds to the dimensionless volume flow

rate through the HX. The other values V̇ +
Defr to V̇ +

Foot refer to the air distribution
at the outlets. The input data set for the POD can be obtained by calculating
the integral values from numerical simulations or experiments. In section4.1
numerical simulations of a simplified model are used to assess the O-POD
procedure without experimental uncertainties. To model the real HVAC unit,
measurement data from section 3.1 is provided as input since experiments
require less time than CFD simulations of the HVAC unit . From the vector-

valued observations in Eq. 2.39, the POD modes θi =
[
θV̇ +

θḢ+]T

i
can be calcu-

lated and the series expansion yields (step 1)

[
˙̃V+
˙̃H+

]
=

Nr∑
i=0

ai

[
θV̇ +

θḢ+

]
i

=
Nr∑
i=0

ai



θV̇ +
HX

θV̇ +
Defr
...

θV̇ +
Foot

θḢ+
Defr
...

θḢ+
Foot


i

. (2.40)

The modes from Eq. 2.40 are then separated into two subsets according to
step 2 of the O-POD procedure. The first subset corresponds to the volume
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flow rates as observed output parameters

ỹObs = ˙̃V+ =
Nr∑
i=0

aiθ
V̇ +
i . (2.41)

The actual volume flow rates at the outlets from Eq. 2.41 can be computed
by using the fluid resistance model (see section 1.1.2). The second subset of
Eq.2.40 describes the not observed output parameters, which are the enthalpy
flow rates

ỹNon−Obs = ˙̃H+ =
Nr∑
i=0

aiθ
Ḣ+
i . (2.42)

The subset of the volume flow rates in Eq. 2.41 is used to estimate the weight-
ing coefficients ãi for instances, which are not included in the parameter com-
binations of the input data (step 3). It is considered that the calculated volume
flow rates V̇+

F R from the FR model are the actual observed output values yObs.
The error between the reconstructed volume flow rates ˙̃V+ and the actual value
from the FR model is minimized

0 = yObs − ỹObs

= V̇+
F R − ˙̃V+.

(2.43)

In Eq. 2.43 the series expansion of the volume flow rates from Eq. 2.41 can
be substituted. Subsequently, Eq. 2.43 is projected onto the POD modes. This
results in

Substitute 0 = V̇+
F R −∑Nr

j=0 a jθ
V̇ +
j

Project
(∑Nr

i=0θ
V̇ +
i ,0

)
=

(∑Nr
i=0θ

V̇ +
i , V̇+

F R

)
−

(∑Nr
i=0θ

V̇ +
i ,

∑Nr
j=0 a jθ

V̇ +
j

)
∑Nr

i=0

(
θV̇ +

i ,0
)

︸ ︷︷ ︸
=0

=∑Nr
i=0

(
θV̇ +

i , V̇+
F R

)
︸ ︷︷ ︸

Fi

−∑Nr
i=0

∑Nr
j=0 a j

(
θV̇ +

i ,θV̇ +
j

)
︸ ︷︷ ︸

Ci j

.
(2.44)

The reconstruction of the series expansion in Eq. 2.41 and 2.42 must respect
mass conservation and energy conservation, respectively

Mass conservation 0 = V̇ +
Inflow −∑N

n=1 V̇ +
n ,

Energy conservation 0 = Ḣ+
Inflow −∑N

n=1 Ḣ+
n .

(2.45)
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The total flow rates V +
Inflow and H+

Inflow result in 1 since all volume flow rates
and all mass flow rates are scaled by the corresponding total inflow. The POD
modes are substituted in Eq. 2.45 and the resulting system of equations of the
O-POD procedure reads

Constraint FR model 0 =∑Nr
i=0Fi −∑Nr

i=0

∑Nr
j=0 a jCi j ,

Mass conservation 0 = 1−∑N
n=1

∑Nr
j=0 a jθ

V̇ +
j ,

Energy conservation 0 = 1−∑N
n=1

∑Nr
j=0 a jθ

Ḣ+
j .

(2.46)

2.4 Summary of the POD Models

In summary, two procedures have been presented in this chapter to estimate
the weighting coefficients of POD modes. These weighting methods are com-
pared in Tab. 2.2 with each other.

The ROM generated by G-POD models the high dimensional flow fields. Nu-
merical data of the complete flow field is required as input for the POD proce-
dure. This data set is obtained by CFD simulations for selected valve positions.
The governing equations are incorporated to estimate the coefficients for the
POD modes. Afterwards, the high dimensional flow field of the HVAC unit can
be reconstructed using the POD series expansion and the integral enthalpy
flow rates are computed from these flow fields. This procedure is in particu-
lar suitable if detailed information about the distribution of the flow variables
is needed, e.g. a temperature profile on a surface. Regarding climate control,
the flow fields cover more information than needed because only the integral
outlet values are important.

In contrast to the G-POD method, the ROM generated by the O-POD proce-
dure models only the control-relevant parameters. The POD input are ob-
served and not observed output values. Applied to the HVAC unit, the ob-
served parameters are the volume flow rates and the not observed parameters
are the enthalpy flow rates. Therefore, the resulting POD modes have a lower
dimension in comparison to the modes from the G-POD method and include
only necessary information. The input data to perform the POD is obtained
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Table 2.2: Summary of the POD procedures applied to the mixing process

Traditional POD-Galerkin Output based POD

Input data Spatial flow field Integral values

ϕ (x) =


u+(x)
p+(x)
ν+t (x)
T +(x)

 ϕ=
(

V̇+

Ḣ+
)

Applicability Numerical simulations Measurements or simulations
Number of POD ≤ Ns ≤ DOF
modes Nr (see Eq. 2.9) (see systems of equations in Eq. 2.36)
Additional modeling Not required Fluid resistance network
Constraints RANS Equations Observed volume flow rates

Scalar Transport Equation

for relevant operating conditions of the HVAC unit by calculating the integral
values from numerical simulations or by measurements. In section 4.1 the ap-
plication to a numerical benchmark model is shown, while the O-POD model
for the real HVAC unit in section 4.2 is generated from an experimental data
set. The weighting coefficients are estimated by using only the volume flow
rates. These flow rates are computed by a FR network. The estimated weight-
ing coefficients are then utilized to reconstruct the estimated enthalpy flow
rates at the outlets.
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3 Experiments

The experimental approach is described in this chapter. The measurements
were needed to obtain the experimental data set of the enthalpy flow rates
and volume flow rates for the generation of the O-POD model. This data base
was acquired from a laboratory test rig of the HVAC unit. The test rig and the
structure of the experimental input data for the POD are described in section
3.1. Furthermore, a test vehicle was equipped with additional measurement
technique. The vehicle and applied sensor hardware are presented in section
3.2. Validation data from the test rig and a real driving scenario were finally
used in chapter 4 and chapter 5 to evaluate the generated O-POD model.

3.1 Test Rig

3.1.1 Structure and Function of the Test Rig

The test rig provided integral volume flow rates and enthalpy flow rates at the
outlets as a function of operational parameters. The piping and instrumen-
tation diagram of the test rig is shown in Fig. 3.1. The detailed specification
of its components is given in subsection 3.1.2. The set up is explained below
following the flow through the set up.

The bellmouth intake nozzle was used to determine the total mass flow rate
induced by the blower (see 1 in Fig.3.1). The Revolutions Per Minute (RPM)

of the blower 2.1 were regulated to control the total mass flow rate. The HVAC

unit provided conditioned air for three climate zones (front left, front right
and rear) of the vehicle cabin and was separated into two parts (left and right
climate zone).
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Experiments

These parts were almost symmetrical and contained the same components.
The rear flow path was connected to a secondary HVAC unit in the vehicle.
However, the flow path to the rear has been shut off at the test rig and is not
discussed further to reduce the experimental effort. From the blower, the air

passed the evaporator 2.2 . There it was cooled down and dehumidified. The

air temperature at the outlet of the evaporator was measured and used for the

control of the refrigerant cycle. Mixing valves 2.3 after the evaporator deter-

mined the amount of air flow through the heat exchanger (HX) 2.4 and the

bypass. The evaporator has been connected to an external refrigerant cycle
and the HX to an external heating loop. The external components are shown
in Fig. 3.2. The cold air stream from the bypass and the hot air stream from the

HX were then mixed in the mixing cavity 2.5 .

HVAC unit

External refrigerent cycle External control unit

External heat source

Figure 3.2: Test rig
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From the mixing cavity, the air left the HVAC unit through the outlets and
through the measurement channels. Each climate zone of the HVAC unit had
four outlets: side, foot, face and defrost. The mass flow rates through the out-

lets were independently regulated by air distribution valves 2.6 . In the mea-

surement channels 3 , static mixers 3.1 homogenized the temperature pro-

file of the flow. A flow straightener 3.2 created a uniform velocity profile for

the volume flow rate measurements downstream of the mixer. The outlet tem-
peratures were measured by 4 thermocouples. Anemometers 3.3 were used

for the determination of the mean velocity at each outlet. The velocities mea-
sured were further utilized to calculate the dimensionless mass flow rate at the
corresponding outlet.

Pressure tappings

Tapping
connections

Inlet nozzle

Differential pressure
sensor (SDP 1000L)

1

0

(a) Real nozzle

4 x 90°

Pressure
tappings

1

0

80

126

340

(b) Sketch

Figure 3.3: Bellmouth inlet nozzle for the measurement of total mass flow rate
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3.1.2 Design of Components

The bellmouth inlet nozzle and the measurement channels were used to de-
termine the mass flow rate and enthalpy flow rate distribution in the test rig.

Bellmouth inlet nozzle
The nozzle geometry was based on DIN EN ISO 5801[22] and is shown in Fig.
3.3. The differential pressure∆p between the the environment (section 0) and
the cross section 1 was measured. Due to the bellmouth, the total air mass
flow rate can be calculated from the measured differential pressure

ṁtot = πD2

4

√
2ρE∆p. (3.1)

D =0.08 m was the diameter of the inlet throat andρE was the ambient air den-
sity. The error of the measured mass flow rates has been evaluated according
to [80, 81, 91].

Figure 3.4: Range and uncertainty uṁtot of the total mass flow rate measured
with the bellmouth inlet nozzle
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3.1 Test Rig

For the expected operation range of the total air mass flow rate (3-10 kg min−1),
an error of < 2% of the mass flow rate was determined for the measurement
configuration as shown in Fig. 3.4.

Measurement channels
The measurement channel is illustrated in detail in Fig. 3.5. It contained the
static mixer, the flow straightener, the thermocouples and the anemome-
ter. Temperatures above 60 ◦C were expected during operation of the test
rig. Polypropylene channels have been selected as they provide good ther-
mal properties and have a recommended operating temperature ≤85 ◦C. The
diameter DO = 90 mm has been chosen according to the diameter of the
anemometers. The geometrical data of the measurement channels is summa-
rized in Tab. 3.1.

Static
mixer

Flow
straightener

4 Thermocouples Anemometer

L1 L2 L3 L4D I /2x

Thermal Insulation BIsoλIso

x 90°

A

A

A-A

Air flow

Duct

Insulation

D I

DO

DIso

Figure 3.5: Channel for the measurement of temperature and volume flow
rates at the outlets of the HVAC unit

Table 3.1: Geometrical data of the measurement channels

Specification Value
Outer diameter duct DO 0.090 m
Inner diameter duct D I 0.0856 m
Outer diameter insulation DIso 0.135 m
Static mixer - Length L1 0.25 m
Flow straightener - Length L2 0.4 m
Thermocouples - L3 0.65 m
Anemometer - L4 2 m
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Thermal insulation was used to minimize heat loss along the channel. The
thickness of the insulation BIso was 22.5 mm with a thermal conductivity of
0.035 Wm−1 K−1. The heat loss to the ambient air of the flow with an inlet tem-
perature of 45 ◦C and a mass flow rate of 3.3 kgmin−1 was 0.2 % of the respec-
tive enthalpy flow rate [24]. Thermocouples have been utilized for the temper-
ature measurements. Four thermocouples were arranged at a 90° angle over
the circumference of the duct (see Fig. 3.5) to verify that no temperature inho-
mogeneities remained in the air flow. A static mixer has been designed, which
allowed the sequential placement of mixing elements (see Fig. 3.6). The ob-
jective of the mixer was to eliminate temperature differences in the air flow
resulting from the mixing process in the HVAC unit. This was necessary to
measure a bulk mean temperature and to compute the enthalpy flow rates
for the O-POD procedure.

Duct fitting 1st element 2nd element 3rd element 4th element 5th element

90

84

(a) Sketch

(b) 3D computer-aided design model

Figure 3.6: Geometry of the static blade mixer
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Figure 3.7: Loss of total head of the mixer for varying number of elements

CFD simulations and measurements were conducted to optimize the balance
between the induced pressure drop and mixing quality. The loss of total head
is shown in Fig. 3.7 for the mixer configurations. Furthermore, the head loss
for two representative ventilation ducts is shown. They were used as permis-
sible loss for the measurement duct to have a similarity of the operating be-
havior between test rig and car application. This was important since the O-
POD model generated by measurements from the test rig was also applied
to a real driving scenario using the test vehicle in subsection 4.2.1. It can be
seen that the maximum permissible number of mixing elements is two since
three or more elements significantly exceed the loss of the ventilation ducts
in the vehicle. The maximum temperature deviation between the thermocou-
ples for one and two mixing elements is very small (< 0.2 K) and is within the
measurement uncertainty of the calibrated thermocouples (≈ 0.15 K, see Fig.
B.2 in the appendix). Thus, mixers with one element were applied for further
experimental investigations as a compromise between low pressure loss and
sufficient mixing performance.
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3.1.3 Measurement Procedure

The integral volume flow rates and enthalpy flow rates were calculated from
the measured velocities and temperatures at the outlets. An anemometer
measured the mean velocity Un,k at each outlet. The subscript k refers to the
climate zone of the HVAC unit and n denotes the corresponding outlet. As an
example, k could be the left climate zone and n the defrost outlet. These ve-
locities were further applied to compute the dimensionless mass flow rate at
a specific outlet

ṁ+
n,k =

ρn,k An,kUn,k∑2
k=1

∑4
n=1ρn,k An,kUn,k

. (3.2)

The anemometers had identical cross sections. The corresponding mass flow
rate of the outlet was then be calculated with the dimensionless mass flow rate
from Eq. 3.2 and the total mass flow rate ṁtot

ṁn,k =
ρn,kUn,k∑2

k=1

∑4
n=1ρn,kUn,k

ṁtot = ṁ+
n,kṁtot . (3.3)

The dimensionless enthalpy flow rates are computed by

Ḣ+
n,k =

ṁ+
n,kṁtot cpTn,k∑2

k

∑4
n ṁ+

n,kṁtot cpTn,k
=

ṁ+
n,kcpTn,k∑2

k

∑4
n ṁ+

n,kcpTn,k
. (3.4)

A constant value was assumed for the heat capacity cp and Eq. 3.4 simplifies
to

Ḣ+
n,k =

ṁ+
n,kTn,k∑2

k

∑4
n ṁ+

n,kTn,k
. (3.5)

The error of both dimensionless volume flow rate and dimensionless enthalpy
flow rate at an outlet was approximately 0.015 for a representative operating
condition of the HVAC unit (see appendix B.1).

The step response of the temperature was investigated to obtain a time scale
for the measurement campaign. The step response of the dimensionless tem-
perature to a large step at the left side outlet is shown in Fig. 3.8. The dimen-
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Figure 3.8: Step response of the dimensionless temperature at the left side
outlet

sionless outlet temperature is the ratio of the actual temperature increase to
the maximum permissible temperature increase

T + = T −TEvap

THX −TEvap
. (3.6)

Steady state is reached after 20 minutes where the dimensionless outlet tem-
perature difference∆T + falls below 0.005. Therefore, each operating condition
was run for 20 minutes before the temperature was measured for 1 minute.
The average was calculated from the measured data. The test rig was pre-
heated for 60 minutes to reduce the effect of initial transients before a series
of operating conditions was measured to account for the dynamic behavior of
external components.

3.1.4 Structure of the Experimental Data Set

The selection of operating conditions is explained below. The selected operat-
ing conditions were measured by the test rig and the resulting experimental
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data set was provided as input for the O-POD procedure in section 4.2. The
aim was to balance measurement time with coverage of the parameter space.
First, combinations for the positions of the air distribution valves were speci-
fied. Then, these valve combinations were measured at different mixing valve
angles. Three positions have been selected for each air distribution valve as
shown in Tab.3.2. In this table, 100% corresponds to an opened valve and 0 %
to a closed valve. The operating conditions of the valves for both climate zones
were identical, which led to a total of 34 = 81 valve combinations. From these
combinations only those valve combinations were measured, which corre-
sponded to a realistic operating scenario of the real vehicle. The following cri-
terion was used to down-select the initial set of operating conditions

150% ≤
N∑
n
α+

n ≤ 300%, (3.7)

where N denotes the number of outlets. This avoided that all valves were com-
pletely opened or almost closed. As a result, 41 combinations remained. This
set of operating conditions for the air distribution valves was applied for differ-
ent positions of the mixing valves. From prestudies it was known that mixing
valve positions from 30 % to 60 % with steps of 10 % covered the interesting
range of the mixing process. So, 4 · 41 = 164 operating conditions were mea-
sured. Approximately 60 h were required to obtain these 164 valve combina-
tions.

In comparison to CFD simulations, the measurements require significantly
less time. The average time to perform a CFD simulation of the real HVAC unit
is 5 hours using 120 CPU cores at 2.4 GHz on a cluster architecture[55]. 820
hours would have been required if the input data for the POD had been ob-
tained by CFD simulations.

The experimental data set for the O-POD procedure should cover large vari-
ations of the valve positions. This was necessary to maintain accuracy over a
wide operating range and to cover asymptotic behavior as shown in section
4.2.2. Therefore, the 164 valve combinations were extended based on physi-
cal assumptions: The total volume flow rate was heated in the HX at a mixing
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3.2 Vehicle Measurement

valve position of 100 %. So at V̇ +
H X =1, all outlet temperatures corresponded ap-

proximately to the air temperature at the outlet of the HX. The dimensionless
enthalpy flow rates resulted in Ḣ+ (

V̇ +
H X = 1

) = V̇+ (
V̇ +

H X = 1
)
. The dimension-

less volume flow rates at the outlets were particularly influenced by the air
distribution valves. Therefore, the volume flow rates measured were provided
as observations for the enthalpy flow rates at a mixing valve position of 100
% to extend the operating range of O-POD model. The data set generated by
using this physical assumption is named as extended data set in the following.

3.2 Vehicle Measurement

A vehicle was equipped with additional measurement instrumentation to gain
measurement data similar to the experimental data from the test rig. This al-
lowed the validation of the model under real driving conditions. The test ve-
hicle and HVAC system of the car are described in the first subsection. Sub-
sequently, in the second subsection the additional sensor hardware for the
model validation is outlined.

Table 3.2: Parameters for experimental data set

Parameter Value

Valves
Left/Right defrost 0% - 20% - 40%
Left/Right face 0% - 50% - 100%
Left/Right side 0% - 50% - 100%
Left/Right foot 0% - 50% - 100%
Left/Right mixing valves 30% - 40% - 50% - 60%

Blower and external cycles
Total mass flow rate ṁtot 4 kgmin−1

Air outlet temperature evaporator TEvap 10 ◦C
Coolant inlet temperature HX TH X 70 ◦C
Volume flow rate coolant HX V̇H X 25 Lmin−1
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Experiments

3.2.1 Test Vehicle

The test vehicle was an Audi Q7 model. The front HVAC unit of this vehicle and
the test rig were identical. In the test vehicle a secondary rear HVAC unit was
connected to the rear outlets. This rear HVAC unit operated in the recircula-
tion mode and drew air from the cabin. It was regulated independently from
the front HVAC unit and will not be considered here. Ventilation ducts dis-
tributed the air flow to the car cabin. The design of ventilation ducts resulted
in a complex geometry with small cross sections and high length to height ra-
tios to fit in the car package. The outlet temperatures were measured by stan-
dard sensors. These standard sensors were only applied at the side and foot
outlets. This led to a total of 4 standard sensors (left side, left foot, right side
and right foot) for the HVAC system. The actual driving situation and ambient
conditions were determined by a large number of standard sensors in the car.
These sensors provided the input for the ACC to calculate the setpoints for the
outlet temperatures (see also section 5.2.2 ).

3.2.2 Measurement Setup

Additional measurement hardware was integrated in the vehicle to allow a
comprehensive validation of the HVAC model. In Tab. 3.3 the standard and
additional measurement instrumentation is summarized. At the inlets of the
ventilation ducts thermocouples measured the temperature. The thermocou-
ples are shown for the left side ventilation duct in Fig. 3.9. Five thermocouples
were distributed evenly over the inlet cross section. This was necessary be-
cause no mixer was applied to produce a homogeneous temperature profile.
These 5 thermocouples detected temperature inhomogeneities in the airflow.
It had been assumed that the mean average of these 5 thermocouples corre-
sponded approximately to the caloric mean temperature. A grid of thermo-
couples measured the air temperatures at the outlet of the HX and evaporator.
In total 98 thermocouples were used for measurements in the air path of the
HVAC unit. In the heating loop thermocouples measured the coolant temper-
ature at the inlet and outlet of the HX. Furthermore, the volume flow rate was
determined by a flow sensor to calculate the heat transfer in the HX.
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3.2 Vehicle Measurement

Table 3.3: Important sensor hardware in the test vehicle

Measured Unit Standard Additional
Location quantity sensors sensors

Air path HVAC unit
Left/Right defrost Air temperature ◦C - X
Left/Right side Air temperature ◦C X X
Left/Right face Air temperature ◦C - X
Left/Right foot Air temperature ◦C X X
Cabin Air temperature ◦C X -
HX outlet Air temperature ◦C - X
Evaporator outlet Air temperature ◦C X X

Heating loop
Inlet HX Coolant temperature ◦C - X
Outlet HX Coolant temperature ◦C - X
Inlet HX Coolant volume flow rate Lmin−1 - X

Ambient conditions
Ambient air Air temperature ◦C X -
Ambient pressure Air pressure bar X -
Solar radiation Radiant flux Wm−2 X -

(a) Left side ventilation duct (b) Thermocouples at the inlet
of the ventilation duct

Figure 3.9: Left side ventilation duct equipped with thermocouples for driving
measurements
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4 Prediction of Flow and Mixing in HVAC
Units

The O-POD approach is evaluated in this chapter. In the first section, integral
outlet values were computed from numerical simulations of a simplified mix-
ing cavity as input for the O-POD. Furthermore, the same simulations were
used to perform the Galerkin projection. The aim of the numerical model was
to produce fully consistent data (i.e. without experimental uncertainty), which
had a complexity similar to the real mixing process. This ensured that the re-
sults of the model evaluation were also valid for the real HVAC unit. The per-
formance of O-POD and G-POD was compared with reference simulations
and the major differences between both methods were discussed. Based on
the model evaluation, it was shown that the O-POD method was suitable to
model mixing in HVAC units. Thus, the O-POD procedure was applied to the
real HVAC unit and integrated into a system model in section 4.2. Measure-
ments from the test rig were provided in section 4.2 as input for the POD to
generate the O-POD model of the real HVAC unit. Experimental validation
data was also used to assess the resulting HVAC model.

4.1 Numerical Benchmark Simulation

In this section, the performance of the O-POD procedure is evaluated and the
differences between the traditional G-POD and O-POD method are shown.
Since the Galerkin projection required spatially resolved flow fields (see sec-
tion2.4), a simplified mixing cavity was modeled. CFD simulations with dif-
ferent combinations of the valve positions were conducted to obtain the in-
put data for the G-POD and the O-POD model. The G-POD method used the
spatial flow fields for the POD. In contrast, the integral volume flow rates and
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4.1 Numerical Benchmark Simulation

enthalpy flow rates at the outlets were calculated from the same simulations
as input for the O-POD model (see subsection 2.3.2). Besides the input data, a
second numerical data set was computed and the integral outlet values were
calculated. This data set is known as test data. It contained valve combina-
tions, which were not included in the input data for the POD. The accuracy of
the integral enthalpy flow rates modeled by the G-POD method and by the O-
POD procedure was then evaluated using the test data set. Furthermore, the
resulting POD modes and weighting coefficients of G-POD and O-POD were
analysed and compared with each other.

4.1.1 Physical Model

HVAC units consist of a blower, an evaporator, an heat exchanger (HX) and
several ventilation ducts leading into the cabin. Since the focus of the inves-
tigation is the mixing cavity, the full system has been reduced to a simpli-
fied mixing cavity benchmark geometry. The two-dimensional generic cavity
model consisted of two inlet ducts and three outlets as seen in Fig. 4.1.

Defrost

0.5L

Inlet 1
HX

Inlet 2
Bypass

Face

Foot

L

1.5L

10L

2.05L

Γ6

5L

0.2L

Γ1

Γ2

Γ3

Ω3
Ω4

Ω5

Γ4

Γ5

x

Mixing
Cavity

Figure 4.1: Two-dimensional HVAC model (orange: cell region Ωn with flow
resistance)
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A0

pt ,2

A1/2
α

ṁ

ρ, pt ,1

(a) Characteristic valve geometry (b) Loss coefficient (from Idelchik and Fried
[39])

Figure 4.2: Loss of total head in a cylindrical butterfly valve

Inlet 1 represents the hot inflow from the HX. Inlet 2 supplies the mixing cavity
with cold air. The length of both inlet channels have been chosen to 10L to
guarantee independence of the numerical results in the mixing cavity from
the boundary conditions. Corresponding to a real HVAC geometry, the outlets
3 to 5 referred to the defrost, face, and foot ducts.

In real HVAC units the distribution of the mass flow rates to the ventilation
ducts is regulated by valves. Butterfly valves are commonly utilized. The char-
acteristic geometry of a butterfly valve is shown in Fig. 4.2a. The valves were
treated as a loss of total head, which was described by the the dimensionless
loss coefficient ζ

ζ= ∆pt A2
0ρ

ṁ2
. (4.1)

The loss coefficient ζ is specified based on the modeled total pressure loss, the
mass flow rate and the reference cross section as well as the reference density.
In literature experimental data and correlations can be found to estimate the
dimensionless loss coefficient ζ for different valve types and geometries [32,
39, 51, 56]. Fig. 4.2b shows the loss coefficient for different valve blockages ω.
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4.1 Numerical Benchmark Simulation

Table 4.1: Boundary Conditions

Boundary Velocity Pressure Temperature
Γ1 U0 ∇p ·n = 0 1
Γ2 U0 ∇p ·n = 0 0
Γ3,Γ4,Γ5 ∇u ·n = 0 p = 0 ∇T + ·n = 0
Γ6 (0,0) ∇p ·n = 0 ∇T + ·n = 0

The valves and actual blockages were not modeled to reduce the computa-
tional effort of the CFD simulations. Instead, the flow resistance of the sub-
domain Ω3, Ω4 and Ω5 (see Fig. 4.1) was varied using the loss coefficients
shown in Fig. 4.2b. The flow field of the simplified mixing cavity was consid-
ered to be steady and incompressible. The mixing in the cavity was computed
with RANS (see subsection 2.2.1).

The transport of the sensible enthalpy was reduced to that of a passive scalar
T + to further simplify the benchmark simulation. The passive scalar T + de-
notes the dimensionless temperature

T + = T −TB y pass

TH X −TB y pass
. (4.2)

A constant value of 20 ·10−6 m2 s−1 was used for the thermal diffusion coeffi-
cient D . Reynolds Analogy was employed to compute the turbulent diffusion
coefficient according to D t = νt Pr −1

t with Prt = 0.85.

At both inlets Γ1 and Γ2 from Fig. 4.1 a mean velocity U0 of 2.5 ms−1 was pre-
scribed. This corresponds to a Reynolds number Re of 25,000 with L = 0.1 m
and is a typical operating scenario for HVAC units. Further boundary condi-
tions are summarized in Tab 4.1. The numerical simulations were performed
using the open source tool OpenFoam. The k-ω-SST model and the Boussi-
nesq assumption were utilized [65] as closure for the RANS Equations.

As stated in the introduction of this section, two data sets of numerical sim-
ulations were obtained. The first numerical data set was the POD input. This
data set contained simulations for selected valve angles covering the relevant
operating range of the HVAC unit. These angles and the respective loss coeffi-
cient are given in Tab. 4.2.
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Table 4.2: Loss coefficient for different butterfly valve angles [39] applied as
input for the POD

Angle α [◦] 0 10 20 30 40
Loss Coefficient ζ [-] 0 0.52 1.54 3.91 10.8
Valve blockage R1/R0 [-] 0 0.17 0.34 0.5 0.64

Table 4.3: Loss coefficient for different butterfly valve angles [39] applied as
reference to evaluate the POD models

Angle α [◦] 5 15 25 35
Loss Coefficient ζ [-] 0.24 0.9 2.51 7
Valve blockage R1/R0 [-] 0.09 0.26 0.42 0.57

In total 53 = 125 CFD simulations were performed using 5 valve angles at 3
outlets. For the G-POD method, the variables of the resulting flow fields were
provided directly as observations. According to O-POD, the needed integral
volume flow rates and enthalpy flow rates were computed from the numer-
ical data set. Subsequently, the second numerical test data set was obtained
to evaluate both methods. It contained numerical simulations for valve angles
different to the POD input data. These positions are shown in Tab.4.3 resulting
in 43 = 64 CFD simulations. The integral values were computed from the sim-
ulations and applied as reference to evaluate the results of the G-POD model
and O-POD model in subsection 4.1.2.

Following the O-POD procedure presented in subsection 2.3.2, the volume
flow rates at the outlets were required. These volume flow rates were com-
puted by the FR network model. The network model of the simplified mix-

ζDefr,Flow

ζFace,Flow

ζFoot,Flow ζFoot,Valve

ζFace,Valve

ζDefr,Valve

Flow path

Cavity Vehicle cabin

Figure 4.3: Flow resistance network
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4.1 Numerical Benchmark Simulation

ing cavity is shown in Fig. 4.3. A constant density was considered. Each flow
path was described by two loss coefficients ζn,Flow and ζn,Valve. The valve losses
ζn,Valve refer to the values given in Tab. 4.2 and Tab. 4.3. The coefficients ζn,Flow

were introduced to increase the accuracy of the network model. To calibrate
ζn,Flow, the numerical data set for the POD input was used. The following opti-
mization problem was solved to determine ζn,Flow

min
ζn,Flow∈R

∣∣V̇+
m − V̇+

F R

(
ζn,Flow

)∣∣ . (4.3)

4.1.2 Comparison of Galerkin Projection With O-POD Procedure

Two Reduced Order Models were generated from the numerical simulations
of the last section. One with the O-POD approach and the other one based
on the Galerkin procedure. The difference of the resulting POD modes, the
truncation error and the performance of both models is evaluated below.

O-POD modes
The capability of the POD to reveal inherent mechanisms of correlated data
can be analysed in particular by the modes of the O-POD procedure. These
modes are the result of the POD procedure using the integral outlet values of
the numerical data set. Accordingly to Eq.2.40 in subsection 2.3.2, the series
expansion of the POD modes for the volume flow rates yields

Mean distribution︷︸︸︷ Variational modes︷ ︸︸ ︷
˙̃V+ = θV̇ +

0 +a1 θV̇ +
1 +a2 θV̇ +

2 +a3 θV̇ +
3

˙̃V +
Defr

˙̃V +
Face

˙̃V +
Foot

 =


0.31

0.33

0.36

 +a1


0.17

0.16

−0.33

 +a2


0.71

−0.71

0

 +a3


−0.12

−0.17

0.29


∑= 1

∑= 0
∑= 0

∑= 0
(4.4)
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and for enthalpy flow rates follows

Mean distribution︷︸︸︷ Variational modes︷ ︸︸ ︷
˙̃H+ = θḢ+

0 +a1 θḢ+
1 +a2 θḢ+

2 +a3 θḢ+
3

˙̃H+
Defr

˙̃H+
Face

˙̃H+
Foot

 =


0

0.29

0.71

 +a1


0

0.64

−0.64

 +a2


0.03

−0.02

−0.01

 +a3


−0.75

0.49

0.26

 .

∑= 1
∑= 0

∑= 0
∑= 0

(4.5)
In Eq. 4.4 and Eq. 4.5 the mode θ0 denotes the mean average of the observa-
tions. This mode delivers a mean distribution of the respective quantity, e.g.
the volume flow rates. Therefore, the sum of the entries for the defrost, face
and foot outlet is 1. Higher modes from θ1 to θNr can be described as varia-
tional modes. These modes lead to a change of the volume flow rates or en-
thalpy flow rates at the outlets but do not affect the total mass or energy bal-
ance. The sum of their entries is 0 since the POD modes maintain mass and
energy conservation. Each mode corresponds to an individual change of the
volume flow rates and enthalpy flow rates at the outlets, which can be seen
by analyzing the mode values. This is shown using the first volume flow rate
mode as example

θV̇ +
1 =


θ

V̇ +
Defr

1

θ
V̇ +

Face
1

θ
V̇ +

Foot
1

=


0.17

0.16

−0.33

−→


Defrost

Face

m
Foot

 . (4.6)

This mode leads to a change of the volume flow rate from the foot to the de-
frost and face outlet. The difference in the volume flow rate at the foot outlet is
almost equally distributed to the defrost and face outlet. The deviation of the
actual flow distribution from the mean distribution θV̇ +

0 can be calculated by
using the result V+

F R of the fluid resistance network model

∆ ˙̃V+ = ˙̃V+
F R −θV̇ +

0 . (4.7)

59



4.1 Numerical Benchmark Simulation

0.25 0.3 0.35 0.4 0.45 0.5

Volume flow rate foot V̇ +
Foot /-

0.15

0.2

0.25

0.3

0.35

V
ol
u
m
e
fl
ow

ra
te

fa
ce

V̇
+ F
a
ce
/-

∆V̇
+
Foot

∆V̇
+
Face

(3)

(2)

(1)

Flow distribution

Mean distribution θ
V̇

+

0

Figure 4.4: Deviation of the actual flow distribution from the mean distribu-
tion

In Fig. 4.4 the flow distribution of three operating conditions (1 to 3) from the
numerical model are shown. These operating conditions serve as example to
discuss the effect of changing the volume flow rates on the weighting coef-
ficients. The volume flow rate at the foot outlet of the first operating condi-
tion is less than the mean distribution and increases for the second and third
flow distribution. In contrast, the face volume flow rates of all shown operat-
ing conditions are smaller than the mean distribution. Furthermore, the dif-
ference between the mean distribution and the flow distribution (3) is high-
lighted. Based on the change of the volume flow rates shown in Fig. 4.4 the
weighting coefficients are estimated by the O-POD method.

The resulting coefficients can be seen in Fig.4.5 for the first and second mode.
The coefficients of the first mode decrease by increasing the volume flow rate
at the foot outlet. This is because the first mode describes a change of the vol-
ume flow rates between the foot outlet and the other outlets (see Eq. 4.6 ).
For the same reason, the first coefficient is almost 0 for the second operating
condition (2) because the deviation of the volume flow rate at the foot outlet
from the mean distribution is approximately 0. The second mode leads to a
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Figure 4.5: Weighting coefficients for the three operating conditions of Fig 4.4

change between the defrost and face outlet. Thus, this coefficient scales with
an increased volume flow rate at the face outlet. The individual deviation from
the mean distribution introduced by a specific mode is calculated by aiθi and
illustrated in Fig. 4.6 for the three operating conditions.

While the first mode influences the flow distribution at all outlets, the second
mode has no significant effect on the volume flow rate at the foot outlet. More-
over, the change of the volume flow rates between the operating conditions
introduced by the second mode is smaller than the change by the first mode.
This is because the modes are sorted according to their information content
(see section 2.1) and the first mode covers most of the information. The su-
perposition of the individual changes of the volume flow rates by the modes
is shown in Fig. 4.7. Only two modes are sufficient to reconstruct the volume
flow rates with minor errors to the exact flow distribution.

The exact deviation of the enthalpy flow rates from the mean distribution is
unknown due to different outlet temperatures. But it can be used that the
modes for the volume flow rates and enthalpy flow rates are linked with each
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Figure 4.7: Superposition of the weighted POD modes for the volume flow
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other due to the same weighting coefficients of the POD modes
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Defrost

m
Face

Foot

 .

(4.8)

Instead of estimating the exact deviation of the enthalpy flow rates from the
mean value, only the individual changes of the most dominant modes are con-
sidered. The series expansion of these modes lead to the approximate change
of enthalpy flow rates for an unknown operating condition as shown in Fig.4.8.
In this figure it can also be seen that the second mode has almost no influence
on the enthalpy flow rates. As shown in Eq. 4.6, the values for the enthalpy flow
rates of the second modes are small (< 0.03). Accordingly, this mode does not
lead to a significant change of the enthalpy flow rates. The POD modes reveal
that the most important mechanism of the mixing process (1st mode) reflects
a change of the volume flow rate from the foot outlet to the other outlets. But
this change of the volume flow rate leads only to a difference of the enthalpy
flow rates between the face and foot outlet because the temperatures at the
outlets are different.
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Figure 4.8: Reconstruction of the enthalpy flow rates

G-POD modes
The modes used for the G-POD method reflect the spatial changes of the flow
variables as the POD was performed with the complete flow fields. For each
flow variable, e.g. velocity or temperature, a G-POD mode is generated (see
subsection 2.2.1). As an example, the temperature modes are analysed below.
These modes are shown in Fig. 4.9. The zeroth temperature modeθT

0 describes
again the mean distribution for the temperature. The higher modes θT

1 and
θT

2 are the variational modes. It is shown that the general appearance of the
modes is similar. Temperature gradients occur at the mixing layer of the cold
and warm inflows. The modes θT

1 and θT
2 lead particularly in this region to

a deviation from the mean distribution. The relation of the integral volume
flow rates and enthalpy flow rates is less obvious due to the spatial distribu-
tion of the field variables at the outlets. Further post-processing of the modes
would be necessary for an analysis. These POD modes contain more infor-
mation than required since the spatial distribution of the temperature is not
needed. Regarding climate control, the increased information content has not
a significant advantage.

64



Prediction of Flow and Mixing in HVAC Units

(a) Mean distribution temperature (b) Variational temperature mode 1 (c) Variational temperature mode 2

Figure 4.9: Isolines of the temperature mean distribution (4.9a), temperature
mode 1 (4.9b) and temperature mode 2 (4.9c).

Truncation error
As it is seen, the dimension of the G-POD modes is much higher than the
dimension of the O-POD modes. Therefore, the information content of the
modes from both procedures is compared with each other. The Relative Infor-
mation Content (RIC) is shown for the POD modes of both procedures in Fig.
4.10. It can be seen that the O-POD procedure requires only 3 modes to reach
a RIC of ≥ 99.9%, while for the G-POD procedure 7 modes are needed for an
equal RIC. This difference can be explained by the different data base, which
is used to construct the POD modes. The G-POD procedure aims to capture
the most significant information from the spatial flow fields as shown in Fig.
4.9. More modes are needed to reconstruct the high dimensional flow fields
in comparison to the O-POD method, which extracts only the most dominant
features from the integral outlet values. The DOF of the flow field modeled by
the G-POD procedure is 168480 times higher than the dimension of the inte-
gral values used of the O-POD method. Since the dimensionality of the data
base is different for both procedures, the RIC is not a suitable measure for a
comparison of the POD methods with each other. Thus, only the prediction
capability of the integral volume flow rates and enthalpy flow rates are dis-
cussed below.
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Figure 4.10: Eigenvalue spectrum

The numerical data set used as input for the POD is applied for an evaluation.
For this data set, the exact weighting coefficients are available from Eq. 2.7 in
section 2.1. Thus, a deviation of the reconstructed integral enthalpy flow rates
from the CFD reference can be accounted to the number of modes used. The
error of the respective model is given by

εH+ =
N∑

n=1

∣∣Ḣ+
n,Model − Ḣ+

n,CFD

∣∣ , (4.9)

where Ḣ+
n,Model denotes the modeled enthalpy flow rate at the outlet and Ḣ+

n,CFD

refers to the reference value from the CFD simulation. In Fig. 4.11 the trunca-
tion error of the reconstructed integral enthalpy flow rates for both procedures
are shown. For this purpose, the mean error µε and maximum error is calcu-
lated. The mean error follows as

µε = 1

Ns

Ns∑
m=1

εḢ+
(m) . (4.10)

The mean error of the O-POD method is < 0.02 by using only 2 modes. In con-
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(a) Mean error of the enthalpy flow rates (b) Maximum error of the enthalpy flow rates

Figure 4.11: Maximum and mean truncation error of the observations for the
enthalpy flow rates by O-POD procedure and Galerkin method

trast, the G-POD procedure requires 9 modes to reach a similar error margin.
With 4 modes all observations of the O-POD approach are reconstructed ex-
actly. With the G-POD procedure even 10 modes are not sufficient to exactly
represent the input data set. As for the RIC vs. mode result, this can be ex-
plained by the higher dimensionality of the G-POD modes covering the com-
plete flow field and not only the outlet region of the mixing cavity. Comparing
Fig. 4.11a and 4.11b for the O-POD method, it is seen that the modes con-
tribute differently to the accuracy of the reconstructed enthalpy flow rates. Be-
tween 1 and 2 modes, only the maximum error decreases slightly. The mean
error is almost unaffected. Increasing the number of modes to 3, the maxi-
mum error decreased significantly. Additionally, it is seen that for both proce-
dures the maximum error is high in comparison to the mean error.

The error distribution of the O-POD method using 2 modes is illustrated in
Fig. 4.12a for a detailed analysis. The error µH+

ε is shown in colors for the com-
binations of volume flow rates at the face and foot outlets. The overall error
distribution is low (< 0.03). Larger errors are seen only at low volume flow rates
at the face and foot outlets. The operating condition with the maximum error
is the same for both POD models. For this operating condition the flow resis-
tances at the outlets were prescribed as ζDefr = 0, ζFace = 540 and ζFoot = 540.
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The resistances at the face and foot outlets are high while the resistance at the
defrost outlet is low. The defrost outlet is mostly fed by the cold bypass be-
cause of the small distance between the bypass inlet and defrost outlet and
the two-dimensional domain. But for this operating condition, the enthalpy
flow rate at the defrost outlet increases suddenly as shown in Fig. 4.12b. In
this figure the dimensionless enthalpy flow rate is illustrated for varying vol-
ume flow rates at the face and foot outlets. The volume flow rate at the defrost
outlet is fed by both the hot air flow from the HX and the cold air flow from the
bypass due to the high resistances at the other outlets. This significant change
of the systems output behavior for few operating conditions is not predicted
accurately by neither the O-POD nor G-POD procedure. Fig. 4.12b also indi-
cates an important mechanism of the mixing process of the two-dimensional
cavity. The enthalpy flow rate at the defrost outlet remains very small for al-
most all observations. Consequently, a change of the volume flow rates partic-
ularly has an influence on the enthalpy flow distribution at the face and foot
outlets. This is in good agreement with the analysis of the O-POD modes. As
stated above, the first O-POD mode reveals this mechanism and is crucial for
the mixing process. This demonstrates the strength of the O-POD method for
data analysis.

(a) Coefficients of the first mode (b) Coefficients of the second mode

Figure 4.13: Reference coefficients and estimated weighting coefficients by
the O-POD procedure of the first (4.13a) and second mode (4.13b)
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(a) Coefficients of the first mode (b) Coefficients of the second mode

Figure 4.14: Reference coefficients and estimated weighting coefficients by
the G-POD procedure of the first (4.14a) and second mode (4.14b)

Prediction accuracy
The accuracies of both ROM approaches are now compared with each other
using the test data set. This data set includes numerical simulations of valve
combinations different to the POD input. In Fig. 4.13 and 4.14 the estimated
weighting coefficients of the O-POD procedure and the G-POD approach are
shown. For the comparison, the exact weighting coefficients are computed as
reference by using the test data set. It can be seen that both approaches predict
the coefficients with good accuracy. This indicates that reliable results can be
expected.

The mean error of the enthalpy flow rates is shown in Fig. 4.15 for the O-POD
method and G-POD procedure to compare the accuracy. The G-POD proce-
dure requires 7 POD modes for a similar accuracy while only 2 modes are
needed using the O-POD method. As described in chapter 2, the number of
POD modes used with the O-POD is limited by the degree of freedom (DOF)
of the provided equation system. Applied to the benchmark model shown in
Fig. 4.1, the DOF is 2 because only at two outlets the volume flow rates can vary
independently due to mass conservation. The error increases significantly ex-
ceeding the permissible number of modes because the equation system is
overdetermined.
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Figure 4.15: Comparison of the error for the test cases between the O-POD
method and the G-POD approach

This can be seen in Fig. 4.15 where the error increases using more than 2
modes. This limitation of the POD modes is not a major drawback since few
dominant modes describe the system with high accuracy (< 0.04).

The number of modes has an impact on the computational effort to calcu-
late the enthalpy flow rates. The mean prediction time t̄ is calculated to give a
estimate for the computational effort

t̄ = 1

Nc

Nc∑
c=1

tc , (4.11)

where Nc denotes the numbers of test cases and tc is the required time to solve
the equation system and reconstruct the the flow variables for a specific test
case. The computation is conducted with a single core at 2.7 GHz and 32 Gb
RAM on a 64 bit platform. The mean prediction time is compared for both
methods in Fig. 4.16. While the O-POD method requires 0.02s to estimate the
enthalpy flow rates with two modes, for the same number of modes 0.03s are
needed with the G-POD procedure. However, the G-POD method models the
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Figure 4.16: Average time to reconstruct enthalpy and volume flow rates at the
outlets

full complexity of the flow field and provides results with high accuracy. Con-
sidering that numerical simulations of the real HVAC unit require approxi-
mately 5 hours[55], the G-POD method can be seen as a powerful method if
distributed flow variables are needed.

Based on these results, the following conclusions from the comparison can be
made to model the integral outlet values of the benchmark model:

• Significant changes of the system behavior, which are not sufficiently
represented by the data set for the POD, lead to an increased error by
both O-POD and G-POD. The data selection is therefore important for an
accurate low dimensional description.

• The G-POD procedure requires more modes for a similar accuracy of
the enthalpy flow rates at the outlets. Each mode carries less informa-
tion of the output values than the O-POD method due to the high-
dimensionality of the spatial flow field.
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• Both procedures require low computational effort to estimate the weight-
ing coefficients. Considering that the G-POD method generates a ROM
for the complete flow field, this method can be seen as an efficient alter-
native to numerical simulations.

• Due to different outlet temperatures, the enthalpy flow rates scale non-
linearly with the volume flow rates. Inherent physical features of the rela-
tion between volume flow rates and enthalpy flow rates can be obtained
by analyzing the modes of the O-POD method. The series expansion in-
cludes the mean distribution and variational modes. Each variational
mode corresponds to an individual deviation from the mean distribu-
tion. The variational modes of the volume flow rates and enthalpy flow
rates are linked with each other by the weighting coefficients. Due to this
link, the change of volume flow rates can be directly related to a change
of the enthalpy flow rates.

The O-POD procedure shows good performance to model the integral en-
thalpy flow rates at the outlets of HVAC units. The resulting ROM has high ac-
curacy. Furthermore, experimental data can be applied as input for the POD,
which is shown in the following section to generate the O-POD model for the
real HVAC unit.

4.2 HVAC Model

The O-POD procedure was applied to model the real HVAC unit studied exper-
imentally as detailed in chapter 3. In the first subsection, the system model
and the integration of the O-POD model is described. This is followed by an
assessment of the resulting HVAC model in the second subsection.

4.2.1 Modeling Approach

The aim of the system model was to describe the remaining components of
the HVAC unit and to integrate the O-POD approach.
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These components were the blower, the heat exchanger and the ventilation
ducts with heat transfer. They are discussed below.

The signal flow between these sub-models is illustrated in Fig. 4.17. The evap-
orator was not included in the modeling approach since the air temperature
downstream of the evaporator is generally measured in vehicles to protect the
evaporator from icing. This temperature value was applied as bulk temper-
ature of the total air inflow. The system simulation and sub-models are ex-
plained below following Fig. 4.17. A description of the sub-models is given in
the appendix A. The numbers in Fig. 4.17 are equivalent to the numbers in Fig.
3.2 to highlight the components modeled by the respective sub-model.

The total mass flow rate ṁtot was determined experimentally at the test rig. But
this was not possible in the test vehicle because of missing measuring hard-
ware (see section 3.2). Therefore, the total inflow was calculated by a blower
model for the application of the HVAC model to the car. This blower model
was based on an energy balance using performance data of the blower, the
RPM and the torque M .

The total mass flow rate calculated was then provided as input for the FR net-
work model. This network model represented the air distribution system and
is shown in Fig. 4.18. It was used to compute the distribution of the air volume
flow rate through HX, bypass and the outlets based on the valve positions.

The resistance network had two major flow branches. Each flow branch re-
ferred to the left or right climate zone and contained the individual losses in-
duced by the bypass or flow through the HX (1) and the valves and ducts of
the air distribution system (2). Since changes of density had influence on the
air distribution, inner iterations of the HVAC model were performed until the
difference of the volume flow rates at all outlets between the last and actual
iteration felled below 10−5. Usually, 2 iterations were sufficient to reach this
criterion. The density of the last time step was used as initial value.

These mass flow rates were provided as input values for the O-POD model
following the approach developed in chapter 2. The HVAC unit had two mixing
cavities (see chapter 3).
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Figure 4.18: Flow resistance network of the HVAC unit

An individual O-POD model was generated for each mixing cavity. These O-
POD models calculated the dimensionless enthalpy flow rates at the outlets,
which were needed in the next step by the HX model.

The HX model computed the total heat transfer in the HX by using an energy
balance together with a look-up table for the HX efficiency. For this purpose,
the air mass flow rate through the HX, the volume flow rate of the coolant
and the coolant temperature at the HX inlet was provided by sensors. Then,
the outlet temperatures of the HVAC unit were evaluated from the total heat
transfer, the mass flow rates at the outlets and the dimensionless mass flow
rates. The outlet temperatures were fed back to the FR network to account for
variations in density.

A nodal network of the discretized ventilation ducts and surrounding dash-
board geometry modeled heat transfer in the left and right side ducts. Mod-
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Figure 4.19: Nodal network of the ventilation ducts and surrounding material
layers

eling the heat transfer was in particular important for the application of the
HVAC model to the vehicle in section 5.1. In the car, the ducts had no ther-
mal insulation and heat transfer was expected. The nodal network is shown
in Fig. 4.19. The dashboard was discretized by three volumes and an explicit
finite-difference scheme was applied. Heat transfer in the defrost, foot and
face ducts was not considered because of their small length. Nusselt corre-
lations from literature ([39, 40, 64]) were used for the convective heat trans-
fer. The thermal properties of the dashboard and the duct were applied from
Flieger [30] and Ghebru [31], respectively.

The O-POD model generated from the test rig measurements can easily be ap-
plied to different vehicles due to this hybrid, i.e. physical FR network coupled
with O-POD mixing model, approach. An identical HVAC unit is frequently
utilized for different vehicle versions for economy of makers. With the pro-
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Table 4.4: Modifications to apply the HVAC model from the test rig to different
vehicles using the same HVAC unit

Test Rig Vehicle A Vehicle B
Blower ṁtot measured

No modifications required
Model (see subsection 3.1.2)

Fluid Resistance Loss coefficients Loss coefficients Loss coefficients
Network measurement channels ventilation ducts A ventilation ducts B
O-POD

No modifications required
Model

Heat Exchanger
No modifications required

Model
Nodal Not required Geometrical Geometrical

Network due to measurement channels parameters parameters
ventilation ducts A ventilation ducts B

posed combination of modeling procedures only those models need to be
modified, which depend on the specific vehicle configuration. Hence, minor
parameter adaptions may be required for the FR network and the nodal net-
work while keeping the O-POD description of the mixing cavity. As a conse-
quence, the test rig measurements are obtained only once for a specific HVAC
unit to generate the O-POD model. This O-POD model can then be used for
different vehicle versions with an identical HVAC unit. In Tab. 4.4 the required
model modifications to apply the proposed HVAC model to different vehicles
are summarized.

4.2.2 Model Assessment

The model quality is assessed comparing model results with measurements
from the test rig. Similar to the numerical benchmark model, an experimental
test data set was acquired. This test data set was used as reference. It included
operating conditions, which were different to the experimental data provided
as POD input. In particular, the temperature control curve (TCC) [77] is used
for the comparison. The TCC is a characteristic measurement procedure com-
monly applied in the design process of HVAC units. To obtain the TCC, the air
distribution valves have a constant position and only the angle of the mix-
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Table 4.5: Test cases for the model validation

Parameter Case 1 Case 2

Left/Right defrost position 31 % / 31 %
Left/Right face position 45 % / 45 % 45% / 0 %
Left/Right side position 100 % / 100 %
Left/Right foot position 67 % / 67 %
Total air mass flow rate ṁtot 4 kgmin−1

Air temperature outlet evaporator TEvap 10 ◦C
Coolant temperature inlet HX THX 70 ◦C
Coolant volume flow rate HX THX 25 Lmin−1

ing valves is varied. This results in a specific change of the temperatures at the
cabin outlets due to the non-trivial mixing phenomena in the mixing cavity. In
Tab. 4.5 the two test cases used for the model assessment are shown. In Case
1 the positions of the air distribution valves are symmetrical for both climate
zones of the HVAC unit. In the second test case, the valve face right is closed
and the rest of the parameters is identical. For these two operating conditions,
the positions of the mixing valves varies in steps of 5%. The second case re-
flects in particular the complex operating conditions resulting from individ-
ual passenger input who might shut off one of the outlets for their personal
comfort.

Fluid Resistance Network
In Fig. 4.20 the error of dimensionless volume rates at the outlets are shown
for case 1 and case 2, respectively. The error is calculated by

∆V̇ +
n = V̇ +

E xp.,n − V̇ +
F R,n, (4.12)

where V̇ +
E xp.,n refers to the measured value and V̇ +

F R,n to the modeled value from
the FR network. Furthermore, the measurement uncertainty uV̇ + of the vol-
ume flow rates at the outlets is illustrated in these figures. The error of the vol-
ume flow rates is less than the measurement uncertainty for both operating
conditions. The accumulated absolute error at the outlets results in 0.05 for
test case 1 and 0.06 for test case 2. Hence, the FR network provides accurate
results and input values for the O-POD model and HX model.
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Figure 4.20: Error of the dimensionless volume flow rates at the outlets
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O-POD Model
Two experimental databases, an original and an extended data set, were avail-
able as input for the O-POD model. The extended data set was introduced in
subsection 3.1.4 to improve the accuracy over a large operating range of the
HVAC unit and to capture asymptotic behavior. The RIC of the POD modes
for both data sets is shown in Fig. 4.21. The POD modes from the extended
data set carry less information in comparison to the modes generated with the
original data set. The Degree of Freedom (DOF) of the equation system of the
O-POD model is 4, because the volume flow rates at the 3 outlets and the flow
through the HX can be varied independently. The RIC of both databases are
above 99.9% for this mode number. Based on the RIC, the databases are equiv-
alent in their information content at 4 modes. The prediction performance of
the O-POD models generated from these two data bases are compared with
each other in Fig. 4.22 and Fig.4.23. The accumulated error is computed for
this comparison according to

εḢ+ =
N∑

n=1

∣∣∣Ḣ+
E xp.,n − Ḣ+

POD,n

∣∣∣ . (4.13)

Figure 4.21: RIC using the original and extended data set
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+
HX

/-

0

0.1

0.2

0.3

0.4

E
rr
or

n
or
m
al
iz
ed

en
th
al
p
y
fl
ow

ra
te

ǫ
Ḣ
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Figure 4.22: Error of the enthalpy flow rates for test case 1
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Figure 4.23: Error of the enthalpy flow rates for test case 2

Outside of calibration range at low mass flow rates through the HX, the error
is high for both models. But this is not a major drawback, because most of the
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air flows through the bypass and the heat input QH X is very low. The error re-
mains low for the extended data base outside of calibration range at high flow
rates through the HX while the error increases significantly using the original
data set. This reflects the observations made above in the simplified numerical
benchmark simulation (Fig. 4.12a) and motivates manipulating the original
data set based on physical assumptions. This ensures the proper asymptotic
behavior of the ROM. Hence, the POD modes from the extended experimental
data set are used for further modeling. The general error margin of both test
cases is approximately 0.1 over a wide operating range.

In Fig. 4.24 the absolute error of predicted and measured enthalpy flow rate at
the outlets is illustrated. Similar to the accumulated error, high error margins
(> 0.05) occur at low flow rates through the HX outside of calibration range.
For the rest of the operating conditions (ṁ+

H X > 0.18), the error is less than
0.05 at each outlet. The error is evenly distributed between the outlets. This is
important to avoid high temperature error occurrence at the outlets.
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Figure 4.24: Absolute error of the enthalpy flow rates at the right climate zone
outlets for test case 1 using the extended data set
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The POD modes from the extended data set for the left climate zone of the
HVAC unit are

Mean
distribution︷︸︸︷ Variational modes︷ ︸︸ ︷

˙̃V +
HX

˙̃V +
Defr
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and

Mean
distribution︷︸︸︷ Variational modes︷ ︸︸ ︷
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(4.15)
It can be seen in Eq. 4.14, that the value of the flow through the HX for the
first volume flow rate mode θV̇ +

1 is high (0.7) in comparison with the value
of the other modes (0.07, -0.03 and -0.05). This indicates that the first mode
describes particularly the influence of the volume flow rate through the HX
on the volume flow rate distribution and enthalpy flow rate distribution at the
outlets. Changing the volume flow rate through the HX does not significantly
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affect the flow rate distribution at the outlets. This is because the flow rates at
the outlets are mainly determined by the valves at the outlets and not by the
mixing valves. For this reason, the values corresponding to the volume flow
rates at the outlets of the first mode θV̇ +

1 are very small (-0.02, -0.02, 0 and
0.04). In contrast, the influence on the enthalpy flow rate distribution is higher.
Varying the flow rate through the HX results in a change of the enthalpy flow
rates from the defrost and foot outlets to the side and face outlets. The POD
modes θ2 to θ4 contain the influence of the flow distribution on mixing.

It can be expected that the weighting coefficient of the first mode scales with
the mass flow rate through the HX, since a change of the hot inflow requires
particularly a different weighting of this mode. In Fig. 4.25 and Fig. 4.26 the
weighting coefficients are shown. The value of the first coefficient varies al-
most linearly with the mass flow rate through the HX. The coefficient a1

crosses 0 at a normalized mass flow rate through the HX ṁH X of approximately
0.47. This flow rate is almost equal to the value from the mean distribution
θV̇ +

0 . The deviation from the mean distribution is very small and the weighting
coefficient a1 results in 0.

0 0.2 0.4 0.6 0.8 1
Normalized mass flow
rate through HX ṁ
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Figure 4.25: Weighting coefficients ai of the right climate zone for test case 1
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Figure 4.26: Weighting coefficients ai of the right climate zone for test case 2

Furthermore, it is seen in Fig. 4.25 and in Fig. 4.26 that the weighting coef-
ficient a1 is almost identical for both test cases although the flow distribu-
tion at the outlets is different. Since the first mode describes particularly the
change of the flow rate through the HX, this coefficient is almost independent
of the flow distribution and operating condition of the air distribution valves.
Changing the inflow of the HX has consequently no significant impact on the
modes 2 to 4. Therefore, these coefficients remain almost constant as illus-
trated in Fig. 4.25 and Fig. 4.26. But the weighting coefficients a2 to a4 vary
between the different test cases, because the flow distribution at the outlets is
different. This has an impact on the weighting coefficients a2 to a4. Particu-
larly the coefficient a2 is influenced by the face outlet valve, which is different
in test cases 1 and 2. The change of the enthalpy flow rates at the outlets intro-
duced by the flow rate through the HX is depicted in Fig. 4.27.The individual
change of the enthalpy flow rates by the first mode is calculated from

∆Ḣ+
1 = a1θ

Ḣ+
1 . (4.16)

86



Prediction of Flow and Mixing in HVAC Units

0.2 0.4 0.6
Normalized mass flow
rate through HX ṁ
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Figure 4.27: Influence of the flow through the HX on the mixing process

It can be seen that the influence of the flow through the HX on the enthalpy
flow rate distribution is < 0.06 and linear. If the mixing process would depend
non-linearly on the HX inflow at least two modes would be required to model
this process. For this reason, three POD modes (2,3,4) reflect the influence of
the flow distribution at the outlets on the mixing process. The relation be-
tween flow distribution and enthalpy flow rates at the outlets is non-linear
due to different outlet temperatures and more POD modes are required for
modeling.

Heat Exchanger Model
The heat transfer in the HX is illustrated for test case 1 and test case 2 in Fig.
4.28 and Fig. 4.29, respectively. The experimental value is calculated from the
flow distribution, total mass flow rate and temperatures at the outlets

Q̇H X =
N∑

n=1
ṁtot ṁ+

n cp(Tn,E xp −TEvap). (4.17)

It can be seen that the heat transfer in the HX is overestimated for all test cases.
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(a) Left climate zone of the HVAC unit (b) Right climate zone of the HVAC unit

Figure 4.28: Heat transfer Q̇H X in the HX at the left and right climate zone of
the HVAC unit for test case 1

(a) Left climate zone of the HVAC unit (b) Right climate zone of the HVAC unit

Figure 4.29: Heat transfer Q̇H X in the HX at the left and right climate zone of
the HVAC unit for test case 2

This is a result of the different valve positions for this operating condition.
The right face valve is closed. Thus, the mass flow rate and the heat transfer at
the right zone drop. The error of the predicted heat transfer is < 15 % of the
measured value. However, heat transfer in the HVAC unit before entering the
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measurement channels is not considered in Eq. 4.17. This might explain an
overestimated heat transfer by the HX model.

System Model
The absolute error between the outlet temperatures predicted by the HVAC
unit model and the experiment are illustrated in Fig.4.30 for test case 1 and in
Fig.4.31 for test case 2.

(a) Left climate zone of the HVAC unit (b) Right climate zone of the HVAC unit

Figure 4.30: Temperature error for test case 1 using the extended data set

(a) Left climate zone of the HVAC unit (b) Right climate zone of the HVAC unit

Figure 4.31: Temperature error for test case 2 using the extended data set
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Table 4.6: Error evaluation of the outlet temperatures modeled

Test case 1 Test case 2
Mean error µ|T | Max. error |∆T | Mean error µ|T | Max. error |∆T |

Outlet /K /K /K /K
Left defrost 1.2 2.5 1.5 4.4
Left foot 1.5 3.7 2.5 4.2
Left side 1.5 3.6 1.4 2.1
Left face 0.8 4.2 1.5 3.7
Right defrost 2 3.6 1 2.5
Right foot 1.4 6 1.4 2.8
Right side 1 4.3 1.2 1.9
Right face 1.5 3.6 Closed Closed

In these figures, the extended data set has been used for the O-POD model. Al-
though the O-POD model performs worse at low mixing valve positions out-
side the calibration range, this has not a significant impact on the accuracy
of the outlet temperatures. The error remains low (< 3K) at almost all outlets.
Only at the foot outlet, higher error margins can be observed. A summary of
the mean temperature error and maximum temperature error is given in Tab.
4.6.
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Figure 4.32: Comparison of the absolute temperature error for test case 1 us-
ing the extended and the original data set
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From this table it can be seen that the mean error is very low and below 1.5
K for almost all test configurations. In general, the maximum error is smaller
than 4.4 K.

In Fig.4.32 the predicted outlet temperatures are compared for the HVAC
model with the original and extended data set with each other. Using the POD
modes generated from the extended experimental data set leads to higher ac-
curacy over a wide operating range. Hence, extending the observations based
on physical assumptions can be seen as reliable strategy to enhance the ro-
bustness of the HVAC model.

As a major outcome of this chapter, it is shown that the HVAC model provides
the temperatures and volume flow rates at the outlets with high accuracy. The
following conclusions can be made from the model assessment:

• The error of the flow rates at the outlets predicted by the FR network is
less than the measurement uncertainty (0.015) of the test rig data. The
accumulated absolute error is smaller than 0.06 for both operating sce-
narios.

• The mixing process can be analyzed by inspection of the POD modes.
The enthalpy flow rates depend linearly on the flow through the HX. This
linear dependency is described by the first mode. An increased volume
flow rate through the HX leads to a change of the enthalpy flow rate dis-
tribution from the defrost and foot outlets to the side and face outlets.

• The enthalpy flow rates at the outlets change non-linearly with the flow
distribution at the outlets due to different outlet temperatures. This is
described by three modes (2 - 4). The second mode reflects the most im-
portant effect, which is a change from the face outlet to the other outlets.
Hence, the POD procedure is capable to identify linear and non-linear
mechanisms between the flow rate distribution and the enthalpy flow
rates at the outlets.
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• The O-POD model generated with the extended data set remains ac-
curate over a larger operating range than the model from original data
set. The extended data set includes an additional observation to capture
asymptotic behavior. Especially at high flow rates through the HX outside
of calibration range, the O-POD model remains quite accurate. Extend-
ing the data set can be seen as an appropriate measure to increase the
robustness of the O-POD model.

• The mean temperature error of the complete HVAC model is almost
equal to the measurement uncertainty of the thermocouples (1.5 K). The
maximum absolute error is below 4 K for almost all experiments. Both,
maximum and mean error are considered to be sufficiently small for an
application of the model to climate control.
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The application to a real driving cycle and the accuracy of the derived HVAC
model are demonstrated in the first part of this chapter. Then in section 2, a
model-based control scheme is discussed and evaluated for both the test rig
and the real car.

5.1 Vehicle Application

The HVAC model was applied to a real vehicle since the ultimate goal is to
predict the outlet temperatures during driving. A challenging driving cycle was
selected to test the performance of the model. This driving cycle is described
in the first subsection before the accuracy of the predicted outlet temperatures
is evaluated.

5.1.1 Driving Cycle

The HVAC unit was controlled by the ACC using standard settings and sen-
sors during the driving cycle. All temperatures, valve positions, coolant flow
rates etc. were recorded using the additional measurement hardware. The
experimental driving data was then provided to the HVAC model as input. In
comparison to the test rig, the HVAC model was extended by a nodal network
of the discretized dashboard to account for the transient behavior of the
vehicle structure. This nodal network was applied at the left and right side
outlets (see subsection 4.2.1). Afterwards, the calculated outlet temperatures
were compared with the measured values.
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In reality, the temperature changes of the vehicle structure are highly tran-
sient. A typical operating scenario of the car, representing this transient be-
havior, is the heat up of the vehicle cabin. Therefore, the driving cycle included
a heat up scenario as well as urban and highway driving. The heat up scenario
was particularly interesting because unsteady thermal boundary conditions
have not been considered in the model validation with the test rig. The influ-
ence of time varying input parameters on the prediction capability was anal-
ysed. Due to the heat up of the vehicle cabin, different operating conditions
were prescribed by the ACC. This resulted in large variations of the valve posi-
tions and operating conditions for the heating loop and refrigerant cycle.

Ambient and Vehicle Condition
In Fig. 5.1 the cabin temperature is shown over driving time. The cabin tem-
perature is measured by a standard sensor and is used for climate control by
the ACC. This temperature reaches 20 ◦C at the end of the driving cycle. The
cabin temperature is almost equal to the ambient temperature at the begin-
ning of the driving cycle, which is approximately 0 ◦C. Since the thermal radia-
tion q̇ was low< 50 Wm−2, the initial temperature of the vehicle structure used
for the heat transfer model of the dashboard is considered to be TAmb (t = 0).

The vehicle velocity U over cycle time is shown in Fig. 5.2. The first 30 min cor-
respond to the urban cycle and the following 30 min to highway driving. The

Figure 5.1: Ambient temperature and cabin temperature during the driving
cycle
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Figure 5.2: Driving velocity during the driving cycle

urban driving cycle is characterized by moderate velocities (50 kmh−1) and
time intervals where the vehicle comes to halt. The highway cycle includes
high velocities (>100 kmh−1) and no halt.

Operating Conditions of the HVAC Unit
The vehicle velocity leads to different operating conditions of the vehicles en-
gine and of the flow conditions at the exterior of the vehicle. This has only
minor influence on the total coolant mass flow rate to the heat exchanger or
the air mass flow rate moved by the blower while the ACC is active. The coolant
mass flow rate remains almost constant at 8 Lmin−1 and the total air mass flow
rate seen in Fig. 5.3 shows only small fluctuations of the supplied air flow.

Figure 5.3: Total air mass flow rate during the driving cycle
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This is because the ACC aims to maintain a constant mass flow rate by regu-
lating the blower’s speed. The total air mass flow rate is low (2 kgmin−1) during
the first 6 minutes. Then from 6 to 10 minutes, the mass flow is ramped up to
5 kgmin−1 and reduces afterwards to 4 kgmin−1. The total mass flow rate re-
mains at this value for the rest of the driving cycle. In Fig. 5.3 three time inter-
vals are highlighted. These time intervals refer to three significantly different
operating conditions of the air distribution valves.

These operating conditions are as follows

• I: Ventilation mode (0 minutes to 6 minutes),

• II: Defog mode (6 minutes to 9 minutes),

• III: Heater mode (9 minutes to 60 minutes).

The valve positions for these operating conditions and the resulting dimen-
sionless mass flow rates are shown in Fig. 5.4 for the left zone, which is
the same as the right zone in this test. During the ventilation mode (I), the
total mass flow rate is approximately 2 kgmin−1. This operating condition
might be seen as an idle mode for the first few minutes while the coolant
temperatures are still low. The valves change to the defog mode (II) with
increasing coolant temperature. In the defog mode most of the air flow is
blown through the defrost outlet into the cabin to avoid fogging on the
windshield. The dimensionless mass flow rates at the other outlets are low.
Then the HVAC unit switches to the heater mode (III). In the heater mode
the defrost, foot and side outlet are all opened. This indicates that air flow
through the defrost outlet is still required to maintain good view through
the windshield without fogging. As the air stream from the face outlet usu-
ally passes the passengers closely, the high outlet temperatures during the
cabin heat up might lead to thermal discomfort. So, the face outlets are closed.

96



Application of the HVAC Model

(a) Left defrost outlet

(b) Left foot outlet

(c) Left side outlet

(d) Left face outlet

Figure 5.4: Valve positions and mass flow rates in the left climate zone
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The high outlet temperatures result from the position of the mixing valves,
which are illustrated in Fig. 5.5a. No temperature regulation is required for
the first 14 minutes of the cycle due to low coolant temperature at the inlet
of the HX. The inlet temperature of the HX is shown in Fig. 5.5b. Once the
engine coolant temperature is higher than the desired outlet temperatures,
the mixing valve is used to control the outlet temperatures as highlighted
in Fig. 5.5. As a consequence, the bypass of the HX is closed for the first 14
minutes and the dimensionless mass flow rate through the HX results in 1.

(a) Position of the mixing valve and air mass flow rate through the HX

(b) Coolant inlet temperature of the HX

Figure 5.5: Position of the mixing valve of the HVAC unit and the coolant inlet
temperature of the HX
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Figure 5.6: Summary of the different operating conditions during the driving
cycle

After 90 ◦C has been reached the temperature remains constant for the rest of
the driving cycle (33 min to end). The air temperature at the outlet of the evap-
orator is approximately 1 ◦C and slightly higher than the ambient temperature
because of heat transfer upstream of the evaporator. Temperature differences
at the outlet of the evaporator are small (<1 K) and the outlet temperature is
considered to be homogeneous. A summary of the different operating condi-
tions are given in Fig. 5.6.

5.1.2 Results and Accuracy of the HVAC Model

The measured and simulated total heat transfer of the HX are compared with
each other in Fig. 5.7. The experimental value is derived from an energy bal-
ance applied to the coolant of the HX. The simulated value is the heat transfer
to the air in the HX. During the highly transient heating period from 3 to 6
minutes, large deviations can be observed between the simulated and mea-
sured heat transfer. In this time period the relative error is larger than 40% of
the measured value as shown in Fig. 5.7b. The error becomes low (<10%) af-
ter this highly transient time interval (3 to 6 minutes) until the mixing valves
are regulated at 14 minutes. Major deviations (700 W) are observed between
14 minutes to 33 minutes. The HVAC model overpredicts the heat transfer as
seen before in Fig. 4.28. This time interval refers to the urban driving cycle.
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(a) Total heat transfer HX

(b) Relative error total heat transfer HX

Figure 5.7: Comparison of the measured and simulated total heat transfer of
the HX

The total heat transfer is predicted with high accuracy (<10%) for the rest of
the driving cycle (33 minutes to end). The overpredicted heat transfer from 14
minutes to 33 minutes shows that the efficiency of the HX ηH X used to predict
the heat transfer is wrong. The efficiency ηH X used in the model was deter-
mined for almost homogeneous air flow conditions at the inlet of the HX. But
in the HVAC unit, the mixing valves upstream of the HX lead to inhomoge-
neous flow conditions at the HX inlet. This indicates a drop of efficiency ηH X

at valve positions <100%.
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(a) Left face outlet (b) Left side outlet

Figure 5.8: Face and side outlet temperatures during the driving cycle in the
left climate zone of the HVAC unit

The highly transient behavior in the beginning of the driving cycle (3 to 6 min-
utes) reflects a particular weakness of the current HVAC model structure. It
results from the missing description of heat transfer upstream of the outlet
ducts. The quasi-steady energy balance of the HX and the steady POD model
of the mixing chamber result in higher enthalpy flow rates at the outlets of the
HVAC unit. In turn, the outlet temperatures are overpredicted. This is shown
in Fig. 5.8 from 3 to 6 minutes for the side and face outlets. The measured value
corresponds to the mean average of the five thermocouples. This period refers
to the ventilation mode ( I ) and only the face and side outlet are opened. The
simulated face outlet temperature is the air temperature at the outlet of the
HX because no heat transfer is considered for this flow path and the bypass
is closed. Although a nodal network models the heat conduction in the side
duct, an absolute temperature error up to 6 K remains. This shows that the
heat capacity of the HX and the heat conduction in the mixing chamber have
a significant influence during highly transient heating or cooling.
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(a) Left defrost outlet

(b) Left foot outlet

(c) Left side outlet

Figure 5.9: Outlet temperatures during the driving cycle in the left climate
zone of the HVAC unit
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The outlet temperatures of the other outlets are presented in Fig. 5.9. The
face outlet is not shown because it is only opened for the first 6 minutes. The
highly transient behavior at the beginning of the driving cycle leads again to
increased errors. In the defog mode (II), the defrost valve and the foot valve
open. Approximately 3 minutes are required until the approximate steady
state temperatures at these outlets are reached as depicted in Fig. 5.9a. The
transient temperature difference of the defrost and foot outlets show the typi-
cal temperature response of transient conduction, which has the form

T −T∞
T0 −T∞

= exp

(
− t

τ

)
. (5.1)

In Eq.5.1, τ is the thermal time constant. Only minor deviations ( <3 K ) are
observed once steady state is reached. The small error between measured and
simulated outlet temperatures corresponds with the small error of the total
heat transfer in the HX for this time period. Similarly, the temperature error in-
creases from 14 to 33 minutes where larger errors of the calculated heat trans-
fer can be seen. The HVAC model overestimates the temperature at all outlets
for this time interval. The temperature differences ( <5 K ) are highlighted in
Fig. 5.9b and can be traced back to the error of the predicted heat transfer
in the HX. In the time period of highway driving (33-60 minutes), the HVAC
model predicts the outlet temperatures at high accuracy. The model perfor-
mance is almost equal to the error of the standard sensor used by the ACC (
<1.5 K ).

To evaluate the absolute temperature deviations, the relative temperature er-
ror is computed as

εT + = TSi m − T̄E xp

T̄E xp −TEvap
, (5.2)

where T̄E xp refers to the mean averaged value of the five thermocouples and
TSi m is the simulated value. Furthermore, the maximum and minimum tem-
perature inhomogeneity IH is calculated from the measured data as

IH = max/min
(
TE xp − T̄E xp

)
T̄E xp −TEvap

. (5.3)
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(a) Left defrost outlet

(b) Left foot outlet

(c) Left side outlet

Figure 5.10: Relative temperature error during driving cycle in the left climate
zone of the HVAC unit
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It serves to show the difficulty to determine the caloric mean temperature us-
ing only one standard temperature sensor. It can be seen in Fig. 5.10 that the
relative temperature error is less than 0.1 for almost the complete driving cy-
cle. The error exceeds 0.1 only during the highly transient time interval from
0 to 10 minutes. The measured inhomogeneity indicates huge temperature
differences in the air flow at the defrost and foot outlets. This demonstrates
the difficulty to provide accurate feedback to the ACC with the standard sen-
sor. The air flow is homogeneous at the side outlet compared with the other
outlets. The length and topology of this ventilation duct leads to a better ho-
mogenization of the air flow. A model error εT +

of less than 0.1 is considered
to be sufficiently low.

In summary, the results show that the HVAC model applied to real driving data
of the test vehicle delivers reliable results and high accuracy for the outlet tem-
peratures. Based on the comparison of measured and simulated data, the fol-
lowing conclusions can be made:

• In steady state, the heat transfer is predicted with satisfying accuracy.
This indicates also that the total air mass flow rate ṁtot is computed with
minor deviations since this value is an input signal for the HX model.
Inhomogeneous air flow at the inlet of the HX may lead to deviations
between model and measurements. An improved HX efficiency model
would be required to increase accuracy

• The absolute maximum error of the outlet temperatures is less than 5 K
for almost the complete driving cycle. Higher deviations result from the
transient behavior of the mixing chamber and the HX during the first
minutes of the driving cycle. It was shown that the accuracy of the out-
let temperatures is directly related to the calculated heat transfer in the
HX. Further effort might be spend in modeling the HX and heat conduc-
tion to increase the prediction performance. However, the error between
measured and simulated outlet temperatures is less than 10% of the total
temperature increase at the corresponding outlet of the HVAC unit when
quasi steady state is reached.
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• The HVAC model was calibrated using an experimental data set from the
test rig. Only minor parameters variations were sufficient for a transfer
of the model to the vehicle according to the model approach in section
4.2.1. The results show high prediction accuracy. This demonstrates the
applicability to vehicles, which have a HVAC unit identical to the test rig.

5.2 Model-based Control

The derived HVAC model is used for climate control in this section to elim-
inate the need for temperature sensors while saving money and increasing
comfort. Therefore, a model-based open loop control approach is presented
as an alternative to the standard feedback control. First, the application to the
test rig is demonstrated. The approach is then extended to the real vehicle.
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Figure 5.11: Standard feedback control of the HVAC unit [95]
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The aim of the Automatic Climate Control (ACC) is to provide pleasant ther-
mal conditions for the passengers of the car. The ACC receives the measured
cabin temperature, inputs from the passenger and additional driving data as
shown in Fig. 5.11. Based on these inputs, desired outlet temperatures and vol-
ume flow rates are determined by the ACC to obtain thermal comfort. These
outlet values are the setpoint (SP) for the standard feedback control proce-
dure of the HVAC unit. The valve positions are regulated based on tempera-
ture measurements in the outlet ducts to meet the specified outlet tempera-
tures. Typically, Proportional-Integral (PI) controllers are applied in the feed-
back loop.

To avoid the costly temperature sensors in the outlet ducts an open-loop
model-based control procedure is proposed as illustrated in Fig. 5.12. The in-
put for the proposed control scheme is the setpoint for the outlet tempera-
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Figure 5.12: Model-based control approach of the HVAC unit
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tures and volume flow rates. Subsequently, the difference between these set-
points and the modeled values are computed. Based on the difference, an op-
timizer changes the valve positions used as input for the HVAC model until
the error is sufficiently low. The optimizer calculates the error by

min
α+∈[0,100]

([(
V̇+

SP − V̇+
Si m

)
W

]2 + [TSP −TSi m]2
)

, (5.4)

where the subscripts SP and Sim denote the prescribed setpoint and simu-
lated value, respectively. Eq. 5.4 is solved in a least square sense. The weighting
factor W can be modified to increase or decrease the influence of the volume
flow rates on the optimization procedure.

5.2.1 Test Rig

The model-based control of the test rig is demonstrated in the following. Three
operating conditions were selected. The prescribed values are shown in Tab.
5.1 and Tab. 5.2 for the dimensionless mass flow rates and temperatures at the
outlets, respectively.

Table 5.1: Selected setpoints for the volume flow rates V̇+
SP

Case 3 Case 4 Case 5
Outlet / - / - / -

Left/Right defrost 0.2 / 0.2 0.1 / 0.1 0 / 0
Left/Right foot 0.175 / 0.175 0 / 0 0 / 0
Left/Right side 0.125 / 0.125 0.175 / 0.175 0.25 / 0.25
Left/Right face 0 / 0 0.225 / 0.225 0.25 / 0.25

Table 5.2: Selected setpoints for the outlet temperatures TSP

Case 3 Case 4 Case 5
Outlet /◦C /◦C /◦C

Left/Right defrost 39 / 39 24 / 24 Valve closed
Left/Right foot 41 / 41 Valve closed Valve closed
Left/Right side 38 / 38 13 / 13 44 / 44
Left/Right face Valve closed 15 / 15 40 / 40
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Table 5.3: Estimated valve positions α+ for the specified operating conditions

Valve /% Case 3 Case 4 Case 5

Left/Right defrost 41 / 41 21 / 21 0 / 0
Left/Right foot 100 / 100 0 / 0 0 / 0
Left/Right side 51 / 52 77 / 73 100 / 100
Left/Right face 0 / 0 100 / 71 76 / 62
Left/Right mixing valve 61 / 62 20 / 24 64 / 66

These operating conditions correspond to a typical application in the vehicle.
For example, case 3 is a heating scenario. The face outlet is closed since the
hot air flow from the outlet may lead to local discomfort in the head region of
the passenger. Furthermore, deviations of the selected temperatures between
the cases are large (> 20 K) to ensure that the model-based approach provides
good results over a wide operating range. The total mass flow rate ṁtot was set
to 4 kgmin−1. The parameters of the refrigerant and heating loop were identi-
cal to those from the test cases in Tab. 4.5 in subsection 4.2.2. The coefficient W
was 100 as this value leads to good results as shown at the end of this section.
The computed valve positions by the model-based approach are summarized
in Tab. 5.3. Measurements with the test rig were conducted using these valve
positions.

The experimental results for the left climate zone are compared in the follow-
ing with the specified setpoints and simulated values in Fig. 5.13 and Fig. 5.14.
The operating condition from 0 to 20 minutes refers to case 3. In the following
20 minutes, case 4 was measured and the last 20 minutes correspond to
operating case 5.

Volume Flow Rates
Only minor deviations can be observed for the dimensionless volume flow
rates between the setpoints, experimental value and predicted quantity from
the HVAC model. The maximum difference to the measured mass flow rates
of both SP and simulation is less than 0.015. This is considered to be accurate
regarding a measurement accuracy of 0.015.
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Figure 5.13: Comparison of the simulated and measured values with the set-
points for the left defrost and foot outlets

Outlet temperatures
The maximum difference of simulated and measured outlet temperatures is
< 2 K. However, larger deviations of the simulated values from the specified
temperatures can be seen. The maximum errors are 3 K for case 3 and 4, while
deviations up to 5 K can be observed for case 5. These differences can be traced
back to the arbitrarily specified setpoints. As the heat transfer is coupled to the
mass flow rate, certain combinations of flow distribution and outlet tempera-
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Figure 5.14: Comparison of the simulated and measured mass flow rates and
outlet temperatures with the setpoints for the left side and face
outlets

tures might not be possible to obtain. The optimizer aims to balance the error
between the volume flow rates and temperatures in a least square sense. This
also results in deviations from the setpoint for both quantities. Therefore, the
outlet values should be chosen in a reasonable range.
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Table 5.4: Measured volume flow rates and outlet temperatures at steady state

Case 3 Case 4 Case 5

Measured volume flow rates V̇E xp

Left/Right defrost 0.21 / 0.21 0.1 / 0.09 0 / 0
Left/Right foot 0.18 / 0.18 0 / 0 0 / 0
Left/Right side 0.11 / 0.11 0.17 / 0.17 0.24 / 0.25
Left/Right face 0 / 0 0.23 / 0.24 0.24 / 0.27

Measured outlet temperatures TE xp

Left/Right defrost 37.8 / 38.6 22.3 / 22.4 Valve closed
Left/Right foot 39.8 / 42.9 Valve closed Valve closed
Left/Right side 39.8 / 36.8 14.2 / 15 42.2 / 39.3
Left/Right face Valve Closed 15.9 / 16.3 40.5 / 46.1

The influence of the model accuracy and weighting factor W on the predicted
valve positions was assessed. For this purpose, the measured values for the
volume flow rates and temperatures from Tab. 5.4 were prescribed as setpoints

V̇+
E xp = V̇+

SP and TE xp = TSP . (5.5)

The difference between the real and estimated valve positions from Tab. 5.3
can be subjected to the model accuracy. Furthermore, the procedure was per-
formed for weighting coefficients W of 10, 100, and 1000. The predicted posi-
tions are summarized in Tab. 5.5 for these three weighting coefficients. Factors
of W = 10 and 1000 lead to major deviations between the actual and predicted
operating condition. Especially in case 4, the model-based control approach is
not capable to provide good values. In contrast, a weighting factor of W = 100
is a good compromise and accurate valve positions are estimated. The differ-
ence of the predicted and real valve angles using W=100 leads to a temperature
deviation of 1 K for the investigated operating conditions.

The major outcome from these results can be summarized as follows:

• The deviations between the simulated and the experimental values are
similar to the errors observed before in subsection 4.2.2. The valve po-
sitions are optimized in a least square sense for the specified setpoints.
Therefore, differences of the simulated outlet quantities and the speci-
fied values are inevitable for arbitrarily selected values.
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Table 5.5: Estimated valve positions α+ using the outlet quantities measured
as setpoint

Case 3 Case 4 Case 5
Estimated Reference Estimated Reference Estimated Reference

W=10
Left/Right defr 25 / 25 41 / 41 22 / 22 21 / 21 0 / 0 0 / 0
Left/Right foot 6 / 56 100 / 100 0 / 0 0 / 0 0 / 0 0 /0
Left/Right side 52 / 96 51 / 52 1 / 96 77 / 73 71 / 100 100 / 100
Left/Right face 0 / 0 0 / 0 74 / 100 100 / 71 50 / 24 67 / 72
Left/Right mix 66 / 57 61 / 62 40 / 20 20 / 24 63 / 67 64 / 66

W=100
Left/Right defr 42 / 42 41 / 41 20 / 20 21 / 21 0 / 0 0 / 0
Left/Right foot 83 / 100 100 / 100 0 / 0 0 / 0 0 /0 0 /0
Left/Right side 54 / 48 51 / 52 62 / 60 77 / 73 87 / 100 100 / 100
Left/Right face 0 / 0 0 / 0 88 / 69 100 / 71 66 / 64 67 / 72
Left/Right mix 60 / 62 61 / 62 22 / 27 20 / 24 65 / 66 64 / 66

W=1000
Left/Right defr 41 / 41 41 / 41 16 / 16 21 / 21 0 / 0 0 / 0
Left/Right foot 97 / 97 100 / 100 0 / 0 0 / 0 0 / 0 0 /0
Left/Right side 42 /42 51 / 52 47 / 46 77 / 73 88 / 100 100 / 100
Left/Right face 0 / 0 0 / 0 59 / 56 100 / 71 67 / 66 67 / 72
Left/Right mix 61 / 62 61 / 62 20 / 30 20 / 24 65 / 66 64 / 66

• Three different coefficients W have been applied to change the relative
influence of the volume flow rates and the outlet temperatures on the
optimization procedure. A coefficient of 100 shows the best results as the
valve positions are predicted precisely.

5.2.2 Vehicle

The model-based control procedure was applied to the real vehicle. In the ve-
hicle, the HX was connected to the cooling loop of the vehicle engine. Hence,
the coolant volume flow rate and temperature depended on the engines op-
erating condition . Furthermore, only the temperatures were measured in the
vehicle, but not the volume flow rates.
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Table 5.6: Valve positions applied for model-based control in the vehicle

Operating condition
Valves I II III IV V
Defrost 0 0 0 0 0
Foot 60 100 100 100 100
Side 100 0 60 0 60
Face 60 100 100 100 100
Mixing valve 50 50 50 50 50
Operation Stationary Driving

Therefore, vehicle measurements were conducted at specified valve positions
and with deactivated ACC. The resulting experimental data was used as input
for the HVAC model to compute the volume flow rates at the outlets. Subse-
quently, the simulated volume flow rates and the outlet temperatures mea-
sured were selected as setpoints

V̇+
Si m = V̇+

SP and TE xp = TSP . (5.6)

Three different valve positions have been selected during stationary opera-
tion of the vehicle and two operating conditions were applied during driving.
These valve positions were identical for the left and right climate zone of the
vehicle and are realistic for a real driving scenario. They are summarized in
Tab.5.6. As a consequence, the volume flow rates at the outlets were almost
equal for both climate zones. The dimensionless volume flow rates for the left
climate zone are depicted in Fig 5.15b. The blower speed has been set to 2000
RPM during the complete driving cycle. Fluctuations of the total mass flow
rate can be observed due to different vehicle velocities as shown in Fig. 5.15a

The outlet temperatures were set to an almost equal value than the cabin
temperature and ambient temperature to reduce heat transfer in the ducts
and mixing chamber. This resulted in a mixing valve position of 50 %. The
air temperature at the outlet of the evaporator was approximately 4 ◦C and
the coolant temperature was 90 ◦C. The first operating condition was set for
40 minutes to obtain the measured values at quasi-steady state. Afterwards,
each operating condition was measured at least for 12 minute since the mix-
ing valve was not varied for temperature regulation.
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(a) Vehicle velocity

(b) Total air mass flow rate

Figure 5.15: Velocity profile and total mass flow rate for model-based control

The estimated and reference mixing valve positions are presented in Fig. 5.16
for the specified operating conditions. Only minor differences from the ref-
erence operating conditions can be observed. While the reference position
remains constantly at 50 % as prescribed, the estimated values are approxi-
mately 52 % during the stationary operation of the car. This corresponds to a
difference of 0.02 regarding the dimensionless volume flow rate through the
HX. Minor deviations can be seen for the operating condition IV and V, which
refer to the transient driving of the vehicle.

The total mass flow rate is influenced by the velocity of the vehicle since the
ACC is deactivated and the total mass flow rate was not controlled. This leads
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5.2 Model-based Control

Figure 5.16: Estimated mixing valve positions α+

to fluctuations of the total mass flow rate introduced by transient driving as
shown in Fig 5.15b. The model-based control approach aims to compensate
the fluctuating flow rates by varying the mixing valve positions.

The valve positions of the air distribution valves are depicted in Fig 5.17. The
model-based approach is capable to track the variations of the valve angles for
both stationary operation and driving of the vehicle. Typical deviations from
the real valve positions are∆α+ < 20%. This corresponds only to a difference of
the dimensionless volume flow rates< 0.015. Major deviations occur only dur-
ing the transition between the different operating conditions. The estimated
positions remain also accurate under transient driving and good results are
delivered.

In Fig. 5.18 the simulated and measured outlet temperatures are compared
with the temperatures predicted by the model based approach. The simu-
lated outlet temperatures refer to the values which are computed from the real
valve positions of Tab. 5.6. It can be seen that the absolute temperature error
is less than 4 K at all outlets. This corresponds approximately to 0.1 of the to-
tal temperature increase at the respective outlet. As expected, the temperature
differences between the measured outlet temperatures and the temperatures
predicted by the model-based approach are smaller. This is a result from the
minimization procedure, which aims to meet the measured values.
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(a) Left foot

(b) Left side

(c) Left face

Figure 5.17: Estimated valve positions α+ using the outlet quantities mea-
sured as setpoints
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(a) Left foot outlet

(b) Left side outlet

(c) Left face outlet

Figure 5.18: Estimated valve positions α+ using the outlet temperatures mea-
sured as setpoints
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According to these results, it can be concluded that the model-based approach
is also applicable to the real vehicle. The procedure tracks the changes of the
valve positions accurately and provides good estimates for the operating con-
ditions. These estimated parameters result in the prescribed outlet tempera-
tures of the HVAC unit. The application of the model-based procedure elim-
inates the need of temperature sensors since the input values for the HVAC
unit are computed by using the HVAC model.
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6 Summary and Conclusions

A modeling approach for HVAC units was developed to predict the outlet tem-
peratures aiming at model-based climate control. Proper Orthogonal Decom-
position (POD) was used together with a novel weighting procedure to model
the mixing process in the HVAC unit. The proposed weighting procedure is
a combination of well-established physical models with POD to generate an
accurate Reduced Order Model.

Based on the literature review it was shown that physical models perform with
high accuracy and are easy to generalize. This is in particular important to in-
tegrate the model procedure in the industrial development process. A physical
model was applicable for most of the components of the HVAC unit. Only the
mixing process in the mixing cavity could not be described by these methods.
To overcome this issue, Proper Orthogonal Decomposition was proposed for
Reduced Order Modeling of the mixing process. POD has been widely applied
to fluid mechanics. Traditionally, it is used to extract orthogonal eigenfunc-
tions or so-called POD modes from spatial flow fields. By incorporating the
Navier Stokes Equations, a Reduced Order Model can be generated. This ap-
plication of the POD is known as POD-Galerkin (G-POD) procedure. The high
dimensional flow field is modeled by the G-POD method and afterwards the
integral outlet values can be computed for climate control. However, the G-
POD procedure is in particular suitable if distributed flow variables, e.g. the
temperature distribution at the outlet, are required. In addition, high compu-
tational effort is needed to obtain the numerical input data set for the G-POD
method. For example, one CFD simulation of the investigated HVAC unit re-
quires 5 hours using 120 CPU cores. The same operating condition is mea-
sured in 0.3 hours using the experimental setup from chapter 3. The time to
obtain data for a parameter combination of the HVAC unit is important, be-
cause the input for the POD is a data set acquired at selected operating condi-
tions covering the relevant operating range.
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Therefore, a novel application of the POD was proposed to eliminate the need
for numerical simulations while increasing accuracy. The developed POD ap-
proach focused solely on the control-relevant output parameters, which were
the volume flow rates and enthalpy flow rates at the outlets. Instead of incor-
porating the Navier Stokes Equations, the POD model was combined with a
traditional fluid resistance network model. This network model provided the
volume flow rates at the outlets. From the flow distribution, the weighting co-
efficients for the POD modes were estimated. Afterwards, the integral enthalpy
flow rates were computed using these estimated coefficients. The strength of
this method is that not observed output values are estimated from observed
states. This is known as Output-based POD (O-POD). O-POD was compared
with the traditional Galerkin method to predict the integral outlet values. A
numerical benchmark model of a two-dimensional mixing cavity was used to
gather an adequate data set for both POD methods. Based on these results, the
following conclusions were made from the two-dimensional benchmark case:

• Operating conditions, which lead to a significantly different system be-
havior and are not sufficiently represented by the input data set, can not
be predicted accurately. Therefore, the selection strategy of the data set
is important to guarantee model robustness.

• The POD-Galerkin method models the high dimensional flow field. Con-
sequently, G-POD needs more modes than O-POD for a similar predic-
tion accuracy of the integral outlet values. For climate control, the in-
creased information of the complete flow field has no significant advan-
tage since only integral values are required. However, in comparison with
CFD simulations, G-POD is a powerful alternative to obtain distributed
values of the flow field.

• The modes from the O-POD method reflect important mechanisms of
mixing. These mechanisms can be analyzed by inspecting the modes.
Since the outlet temperatures are different at the outlets, the mode val-
ues of the flow distribution and enthalpy flow rates are different too. Each
mode corresponds to an individual change of the outlet values. For ex-
ample, the first mode reflects a change of the flow distribution from the
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foot outlet to the defrost and face outlets. Due to different outlet temper-
atures, this leads only to a change of the enthalpy flow rates between the
foot and face outlets.

The O-POD procedure showed good performance to model the mixing pro-
cess of the numerical benchmark model. Next, the approach was integrated
into a system simulation of a real HVAC unit. The HVAC model consisted of 4
sub-models, beside the O-POD model. These sub-models covered the blower,
the air distribution system, the heat exchanger and the heat transfer in the
ventilation ducts. Two experimental data sets were acquired by a laboratory
test rig as input for the O-POD to generate a model of the real mixing pro-
cess of the HVAC unit. The first data set is known as original data set and in-
cluded only measured values. This original data set was extended based on
physical assumptions to increase the accuracy over a wide operating range
of the model and to cover asymptotic behavior. An individual O-POD model
was generated from each data set. To compare the models generated from the
original data set and extended set with each other, parameter configurations
different to the POD input were measured with the test rig. The measurements
used for the model assessment are known as test data set. Additionally, real
driving data was obtained by a test vehicle. Finally, the derived and calibrated
HVAC model was compared with the measured test data set from the test rig
and measurements of the real driving scenario. The main findings can be sum-
marized as follows:

• The results show that the performance of the POD models generated by
the original and the extended data set are equivalent in the calibrated
range of the model. Outside of calibration range, the POD model from the
extended data set remains accurate (accumulated error < 10 %). In con-
trast, the error of the model from original data set increases (accumulated
error > 20 %) significantly. Introducing data on physical assumptions can
be seen as a good strategy to improve the robustness of the procedure.
The POD model generated from the extended data set was utilized for
further investigations.
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• As expected, the physical models exhibit high accuracy. The accumulated
absolute error of the volume flow rates at the outlets is less than 6 %. The
heat transfer in the heat exchanger can be predicted with an accuracy of
15 %. On the system level, the mean error of the outlet temperatures is
approximately 1.5 K. The maximum error is below 4 K for almost all test
configurations. The model provides accurate values also under real driv-
ing conditions. Typical deviations of the outlet temperatures are around
2 K and the maximum error is less than 5 K. This is equivalent to a relative
error below 10% at the outlets. Only during the first minutes of transient
heating, temperature errors up to 10 K occur.

• Linear and non-linear relations of the mixing process are revealed by
analysing the POD modes. This a strength of the POD applied to out-
put values. A change of the flow through the heat exchanger has almost
a linear influence on the enthalpy flow rates at the outlets. In contrast, a
deviation of the flow distribution from the mean distribution results in a
non-linear shift of the enthalpy flow rates among the outlets due to dif-
ferent outlet temperatures.

The system simulation of the HVAC model was further integrated into a
model-based control approach. This approach was proposed as an alterna-
tive to the standard feedback control approach used in vehicles. Instead of
measuring the outlet temperatures as feedback, the HVAC model provided the
valve positions for the outlet values prescribed by the Automatic Climate Con-
trol (ACC). To evaluate the model-based control scheme, different setpoints
for the outlet temperatures and volume flow rates were selected. These set-
points corresponded to typical operating conditions of the HVAC unit in the
vehicle. As output of the model-based control approach, valve positions were
obtained. Subsequently, the temperatures and volume flow rates for these
valve positions had been measured with the test rig. Furthermore, the control
approach was assessed with real driving data from the test vehicle. Finally, the
experimental data acquired from the test rig and the vehicle was compared
with the setpoints.
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The following findings were obtained:

• The results from the test rig show that the predicted valve positions lead
in general to the specified volume flow rates and steady temperatures
at the outlets. The errors of the flow rates at the outlets are lower than
the measurement accuracy (0.015). The differences between the modeled
and measured outlet temperatures are smaller than 2 K.

• Deviations up to 4 K between specified outlet temperatures and mea-
sured values are seen, because the model-based control approach aims
to meet all outlet values in a least square sense.

• Also in the vehicle, good results are delivered by the model-based con-
trol scheme at quasi-steady state. The predicted valve positions lead to
differences around 3 K. Thus, the proposed control approach eliminates
the need for costly sensors.

Outlook
The elimination of the temperature errors identified during highly transient
operation could be in the focus of a future work. It is expected that these de-
viations can be reduced by introducing a suitable description of the transient
heat transfer upstream of the ventilation ducts.

It is recommended to study different structures of the experimental data set
provided as input for the POD as this was identified to be important for the
model robustness. It can be expected that a suitable selection procedure en-
hances the accuracy of the POD model and reduces the amount of experimen-
tal data needed. Both aspects are important for the industrial application.

While in this work the elimination of sensors was discussed using model-
based control, it could also be applied for system diagnostics of the utilized
sensor equipment. Unexpected differences between measured and predicted
values resulting from hardware failure could be detected. This would increase
the robustness of the ACC.

In future work, the POD could also be applied to other application fields to re-
veal relevant system dynamics for a deeper understanding of dominant pro-
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cesses and physical phenomena. The approach is in particular suitable if only
a moderate amount of data is available.
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A Sub-Models of the HVAC Unit

Blower Model
The blower provides the total mass flow rate for the HVAC unit. A simplified
sketch of the blower is shown in Fig. A.1.

The system is considered to be steady state and incompressible. Changes in
the potential and kinetic energy are neglected and the energy balance reads

2πMnηtot = V̇tot

(
p2 −p1

)
, (A.1)

where M denotes the torque of the blower and ηtot is the efficiency. The torque

1

2

c1

c2

p2

p1

P T = 2πMn

Figure A.1: Energy balance applied to the blower
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M is available from the Electric Control Unit (ECU) in the vehicle. The differ-
ential pressure ∆p = (

p2 −p1

)
and the efficiency ηtot can be described by a

function of the RPM and the volume flow rate V̇tot

∆p = f
(
n,V̇tot

)
, (A.2a)

ηtot = f
(
n,V̇tot

)
. (A.2b)

The functions in Eq. A.2 are substituted in Eq. A.1 and can be solved for the
volume flow rate V̇tot.

Fluid Resistance Network
The fluid resistance network contains two parallel major flow branches, which
correspond to the left and right climate zone of the HVAC unit. These branches
and the complete network are shown in Fig. 4.18. The pressure p0 corresponds
to the pressure at outlet of the evaporator while the nodal pressure pcabin de-
notes the cabin pressure. The pressure in the mixing cavity pcavity is consid-
ered to be constant. Each flow branch consists of the bypass, the air flow path
through the HX 1 and the air distribution system 2 .

As the result of the network model, the dimensionless mass flow rate at a spe-
cific outlet of the left climate zone is calculated from [61]

ṁ+
L,n = 1

1+
√

R2
L,M+R2

L,D√
R2

R,M+R2
R,D

· RL,D

1
AL,n

√
ζL,n

2ρL,n

(A.3)

and for the right zone from

ṁ+
R,n = 1

1+
√

R2
R,M+R2

R,D√
R2

L,M+R2
L,D

· RR,D

1
AR,n

√
ζR,n

2ρR,n

. (A.4)

The coefficients RL,M to RR,D are summarized in Tab. A.1.

Inner iterations i of the FRN are performed to account for the dependence of
the Reynolds number on the resistance of the HX. The FR network is solved
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Table A.1: Summarized coefficients of the FR network model

Mixing valves and HX Air distribution valves and ventilation ducts

Left RL,M =
1p
2

AL,B y p.

√
ρL,B y p.
ζL,B y p.

+AL,H X

√
ρL,H X
ζL,H X

RL,D =
1p
2∑4

n=1

(
AL,n

√
ρL,n
ζL,n

)
Right RR,M =

1p
2

AR,B y p.

√
ρR,B y p.
ζR,B y p.

+AR,H X

√
ρR,H X
ζR,H X

RR,D =
1p
2∑4

n=1

(
AR,n

√
ρR,n
ζR,n

)

Table A.2: Loss coefficients of the FRN

Loss Coefficient Individual losses Description Data
ζn,k = ζV al ve

(
α+)

Air distribution Idelchik and Fried [39]
valve and Massoud [64]

k= Left/Right +ζDuct Ventilation duct Measurements
n= Defrost, ... ,Foot +ζEmp Empirical Minimization problem Eq. 4.3

ζn,B y pass = ζV al ve
(
α+)

Valve Idelchik and Fried [39]
and Massoud [64]

+ζEmp Empirical Minimization problem Eq. 4.3
ζn,H X = ζV al ve

(
α+)

Mixing Idelchik and Fried [39]
valve and Massoud [64]

+ζH X (Re) Heat Exchanger Measurements

from an initial guess of the loss coefficients and the mass flow rates are cal-
culated. The updated mass flow rates are subsequently applied to update the
loss coefficients. Afterward the FRN is solved again with the updated coeffi-
cients. This iteration procedure is performed until the difference between the
actual and updated resistances is∑∣∣ζ (Re)i −ζ (Re)i−1

∣∣< 10−5. (A.5)

Usually 3 iterations are required to meet the criterion from Eq. A.5. The loss
coefficients of the FR network are summarized in A.2.

Heat Exchanger Model
The heat exchanger in the HVAC unit is separated into three sections. These
sections are front left, front right and rear as shown in Fig. A.2.

Usually single component measurements are conducted during the design
process of HVAC units. From these measurement, look up tables are gener-
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ated for the efficiency of the HX. The efficiency ηHX is given by

ηHX = Q̇HX

ṁAi r cp,Ai r

(
TCool ant ,In −TAi r,In

) . (A.6)

It is the ratio of transferred energy scaled by the maximum permissible energy
transfer. The efficiency is shown in Fig. A.3 for varying coolant volume flow
rates and air mass flow rates. This data is gathered for homogenous inflow
conditions for the entire inlet cross section of the HX.

The mass flow through the respective section n is scaled with an effective mass
flow rate to compute the air temperature at the outlet of the HX. The effective
mass flow rate reads

ṁeff
n,H X = ṁn,H X

AH X

An
, (A.7)

where AHX denotes the entire inlet area of the HX and An refers to the area of
the respective section of the HX, e.g. front left. It is considered that the effi-
ciency of the HX is also applicable to a specific section of the HX. Thus, the
efficiency is computed for the effective mass flow rate by linear interpolation.
The actual air temperature at the outlet of the HX is determined from the effi-

Figure A.2: Sections of the heat exchanger
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Figure A.3: Efficiency of the heat exchanger

ciency. Furthermore the heat transfer in the HX can be computed

TAi r,n,H X = ηH X

(
TCool ant ,In −TAi r,In

)+TAi r,In, (A.8a)

Q̇n,H X = ṁn,H X cp,Ai r

(
TAi r,n,H X −TAi r,In

)
. (A.8b)

Heat Transfer in the Ventilation Ducts
The heat transfer in the ventilation ducts is modeled with a nodal network as
shown in Fig. 4.19. The temperatures of the nodes correspond to the ventila-
tion duct, the surrounding air layer of the duct and the discretized dashboard
[57, 96]. It is assumed that the heat transfer of the vehicle structure can be
simplified to that of a one dimensional plane wall and that temperature gradi-
ents of the vehicle structure in axial direction are negligible dT

d x ≈ 0. An explicit
discritization scheme is applied, which results in a linear set of equations

Tt+∆t = [
KTt + Q̇

]
∆t +Tt . (A.9)

where the matrix K includes the resistances introduced by forced convection
and thermal conduction. The non-linear terms, e.g. radiative heat transfer, are

131



included in the matrix Q̇ and calculated from the actual temperatures Tt . For
the driving data in chapter 5, it was considered that the vehicle structure tem-
perature, cabin temperature and ambient temperature are almost equal be-
cause of low solar radiation and a large time interval (≈ 12 hours) without
operating the vehicle. Therefore, the cabin temperature TC (t = 0) has been
prescribed as initial temperature of the vehicle structure at t=0 for the driv-
ing cycle. The nodal network is only applied for the left and right side outlets.
Model the heat transfer in the other ducts is not considered to be necessary
due to their small length and thus low heat transfer.
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B Measurement Instrumentation

B.1 Detailed Error Analysis of the Test Rig

To estimate uncertainties, a propagation method is used which reads for the
total mass flow rate

uṁtot =
√(

∂ṁtot

∂∆p

)2

u2
∆p +

(
∂ṁtot

∂ρ

)2

u2
ρ+

(
∂ṁtot

∂D

)2

u2
D . (B.1)

The propagation equation links the partial derivatives of Eq. B.1 with the mea-
surement error of the differential pressure sensor, the expected errors of the
diameter and the error of the ambient air density. The density is calculated by
[40]

ρ = p

RsT
, (B.2)

where p is the ambient pressure, Rs the specific gas constant and T the ambi-
ent temperature. The specific gas constant is given by

Rs = Rd

1− ϕpv

p

(
1− Rd

Rv

) . (B.3)

In Eq. B.3 Rs denotes the specific gas constant for dry air with 287.058 J
kg−1K−1, pv =23.385 Pa is the pressure of water vapor, Rv =461.523 J kg−1K−1 cor-
responds to the specific gas constant for water vapor and ϕ refers to the rela-
tive air humidity. The fluctuations of these quantities are expected to be small
(see Tab. B.1) since the measurements are performed in an air-conditioned
laboratory.
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B.1 Detailed Error Analysis of the Test Rig

Table B.1: Expected fluctuations of the ambient air

Quantity Value
Relative humidity ϕ 0.2 ± 0.1
Ambient pressure 102000 Pa
Ambient temperature 23◦C±3 ◦C

Thus, an average density of ρ=1.2 kgm−3 has been used for the calculation of
the total mass flow rates. According to the expected fluctuations of the ambi-
ent air from Tab.B.1 the uncertainty of the density uρ results in 2 %. The partial
derivatives from Eq. B.1 lead to(

∂ṁtot

∂∆p

)
= πD2

4
p

2

√
ρ

∆p
, (B.4a)

(
∂ṁtot

∂ρ

)
= πD2

4
p

2

√
∆p

ρ
, (B.4b)(

∂ṁtot

∂D

)
= πDp

2

√
ρ∆p. (B.4c)

In Fig. B.1 the relative error norm of total mass flow rate uṁtot is shown for
varying mass flow rates. It can be seen that relative error is comparatively high
at low mass flow rates (< 3 kg min−1) because the measured differential pres-
sure becomes less accurate. For the mass flow range from 3 kg min−1 to 10 kg
min−1 the error is less than 2%, which is considered to be sufficiently accurate
and covers a typical operating range of HVAC units. The error of the mass flow
rates at the outlets is evaluated. The propagation equation for dimensionless
mass flow rates at the outlets results in

uṁ+
n,k

=
√√√√ 2∑

i

4∑
j

(
∂ṁ+

n,k

∂ρi , j

)2

u2
ρi , j

+
2∑
i

4∑
j

(
∂ṁn,k

∂ui , j

)2

u2
ui , j

. (B.5)
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uṁtot
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∂ṁtot

∂DN

)

uDN
/ṁtot

Figure B.1: Relative error of the total mass flow rate

with the partial derivatives

i = n, j = k :

(
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)
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To evaluate error of the mass flow rates at the outlets a representative operat-
ing condition of a HVAC unit is chosen. The error is calculated for each outlet
with the uncertainties given in Tab B.2. The resulting absolute error and the
relative error of ṁn,k are summarized in Tab.B.3. From this table it can be seen
that the error of the dimensionless mass flow rates is lower than 0.015 at al-
most all outlets. The relative error at a specific outlet is approximately 10%
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B.1 Detailed Error Analysis of the Test Rig

Table B.2: Uncertainties of the measured quantities used to evaluate the error
of the mass flow rates at the outlets of the HVAC unit

Quantity Uncertainty Value Comment
Mean velocity uU 1% FS = 0.2 ms−1 + Datasheet

1.5% MV
Density uρ 2%=0.024 kg m−3 Expected uncertainty

Table B.3: Errors of the mass flow rates at the outlets of the HVAC unit

Outlet Uncertainty umnk Relative uncertainty umnk

Defrost left 0.0122 0.0975
Defrost right 0.0123 0.0978
Foot left 0.0112 0.0927
Foot right 0.0116 0.0945
Side left 0.0164 0.1146
Side right 0.0141 0.1054
Face left 0.0088 0.0799
Face right 0.0106 0.0899

which is considered as sufficiently accurate.

For the error evaluation of the enthalpy flow rates the propagation equation
reads

uḢ+
n,k

=
√√√√ 2∑

i
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j

(
∂Ḣ+
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2∑
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4∑
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(
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u2
Ti , j

. (B.7)
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with the derivatives according to
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As it is shown in Tab. B.3 the error of the dimensionless mass flow rates is sim-
ilar at each outlet. Thus, a constant uncertainty uṁ+

n,k
of 0.015 is assumed for

further calculations. Since the deviation of the 4 thermocouples of the mea-
surement channels from each other are not significant (≤ 0.2 K), it is con-
sidered that the temperature inhomogeneity has no major influence on the
results. Thus, the measurement tolerance uT of the temperature (see calibra-
tion protocol Fig. B.2 of the calibrated thermocouples type K) leads to 0.2 K.
With these values the uncertainty of the measured dimensionless enthalpy
flow rates uḢ+

n,k
become 0.015.

B.2 Specification of Measurement Instrumentation

Table B.4: Technical specification of the differential pressure sensor sensirion
SDP1000L provided by the manufacturer

Specification Value
Measuring range 0 Pa to 500 Pa
Output signal 0.25 V to 4 V
Accuracy 0.1% from full scale (FS) +

1% from measured value (MV)
Operating temperature -10 ◦C to 60 ◦C
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Table B.5: Technical specification of the 3D printer and material of the printed
components

Specification Value
System EOS P 396
Technique Selective laser sintering (SLS)
Material Polyamide PA2200

Table B.6: Technical specification of the anemometers Schiltknecht MiniAir6
Macro provided by the manufacturer

Specification Value
Measuring range 0.2m s−1 to 20 m s−1

Output signal 0 V to 2 V
Accuracy 1% from full scale (FS) +

1.5% from measured value (MV)
Operating temperature -10 ◦C to 80 ◦C
Response time of vane 8 s



Measurement Instrumentation

Figure B.2: Calibration protocol of the thermocouples
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