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Abstract 

This thesis investigated neural correlates of cognitive control of human motivated behavior. Cogni-

tive control refers to the regulation of aversive emotions (like fear) or impulses towards rewarding 

stimuli (like food) based on cognitive models of long-term goals or societal norms. For example, one 

can suppress the craving towards a chocolate cake due to long-term weight considerations. Thus, 

cognitive control can be conceptualized as model-based decision making, i.e., as selection of context-

appropriate behaviors based on internal models. On the other end of the decision making spectrum 

is model-free behavior, which only relies on previous experience. These decision making concepts 

can be used to describe fundamental mechanisms underlying all human motivated behaviors. 

 

Macroscopic in-vivo imaging, namely magnetic resonance imaging (MRI) and positron emission to-

mography (PET), was used to study neural correlates of cognitive control in three projects: 

Project 1 investigated whether brain activation patterns of cognitive control of (i) emotions and (ii) 

rewards overlap. Via coordinate-based meta-analysis of task functional MRI studies, an overlapping 

activation pattern focusing on prefrontal cortices was identified, suggesting a common model-based 

mechanism for the cognitive control of emotion and reward. 

Project 2 tested theories that propose - additionally to such regional brain activations - increased 

global interaction of functional brain networks during cognitive control. This was done paradigmati-

cally for cognitive emotion regulation via graph analysis of task functional MRI data. Increased global 

interaction of stable functional brain networks was observed during cognitive emotion regulation. 

The embedding of specific nodes overlapped with local activation patterns, suggesting complemen-

tary roles of global and local processes during cognitive control. 

Project 3 focused on molecular aspects of cognitive control, namely the role of dopamine in the stria-

tum for reward-based decision making and its impairments in schizophrenia. FDOPA-PET plus behav-

ioral analyses was employed to analyze the link between model-based decision making and striatal 

dopamine transmission. Impaired decision making was then further studied in patients with schizo-

phrenia, a disorder associated with abnormal dopamine transmission. Results showed a link between 

ventral striatal dopamine synthesis and the tendency towards model-based decision making. In 

schizophrenia, specifically model-free behavior was impaired, associated with aberrant dopamine 

transmission in the dorsal striatum. 

 

Taken together, this work provides evidence for conceptualizations of cognitive control as model-

based decision making, which relies on both local brain activation and global whole-brain interaction 

and is linked with dopamine transmission in the striatum. In schizophrenia, however, aberrant do-

pamine transmission in the striatum seems to impair rather model-free behavior. 
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Zusammenfassung 

Diese Arbeit untersuchte neurale Korrelate kognitiver Kontrolle von menschlichem motiviertem Ver-

halten. Kognitive Kontrolle bezeichnet die Regulation von aversiven Emotionen (wie Furcht) oder von 

auf belohnende Stimuli (wie Essen) gerichteten Impulsen auf der Basis von Langzeitzielen oder sozia-

len Normen. Kognitive Kontrolle kann also als Modell-basierte Entscheidungsfindung verstanden 

werden, d. h. als Auswahl von Kontext-entsprechenden Verhaltensweisen auf der Basis von internen 

Modellen. Am anderen Ende des Entscheidungsfindungs-Spektrums befindet sich Modell-freies Ver-

halten, das nur auf früheren Erfahrungen beruht. Diese Konzepte der Entscheidungsfindung können 

zur Beschreibung aller humanen motivierten Verhaltensweisen verwendet werden.  

 

Magnetresonanztomographie (MRT) und Positronenemissionstomographie (PET) wurden benutzt, 

um neurale Korrelate kognitiver Kontrolle in drei Projekten zu studieren: 

Projekt 1 untersuchte, ob Hirnaktivierungs-Muster kognitiver Kontrolle von Emotion und Belohnung 

überlappen. Eine Koordinaten-basierte Meta-Analyse Aufgaben-basierter funktioneller MRT-Studien 

zeigte ein überlappendes Aktivierungsmuster v. a. im Präfrontalkortex, was einen gemeinsamen Mo-

dell-basierten Mechanismus für die kognitive Kontrolle von Emotion und Belohnung nahelegt. 

Projekt 2 testete Theorien über erhöhte globale Interaktion von funktionellen Hirnnetzwerken (zu-

sätzlich zu regionaler Aktivierung) während kognitiver Kontrolle. Dazu wurde paradigmatisch für kog-

nitive Emotionsregulation eine Graphenanalyse von task-fMRT Daten durchgeführt, die eine erhöhte 

globale Interaktion von stabilen funktionellen Netzwerken während kognitiver Emotionsregulation 

zeigte. Die Einbettung spezifischer Knoten überlappte mit lokalen Aktivierungsmustern, was kom-

plementäre Rollen globaler und lokaler Prozesse bei kognitiver Kontrolle nahelegt. 

Projekt 3 fokussierte auf molekulare Aspekte kognitiver Kontrolle, nämlich die Rolle von striatalem 

Dopamin für Belohnungs-basierte Entscheidungsfindung und ihre Störung bei Schizophrenie. FDOPA-

PET und Verhaltensanalysen wurden verwendet, um die Verbindung zwischen Modell-basierter Ent-

scheidungsfindung und Dopamintransmission zu analysieren. Weiter wurde gestörte Entscheidungs-

findung bei Schizophrenie, einer mit veränderter Dopamintransmission assoziierten Erkrankung, un-

tersucht. Die Ergebnisse zeigten eine Verbindung zwischen ventral-striataler Dopaminsynthese und 

der Tendenz zu Modell-basiertem Entscheiden. Bei Schizophrenie war spezifisch Modell-freies Ver-

halten beeinträchtigt und mit veränderter Dopamintransmission im dorsalen Striatum assoziiert. 

 

Zusammengefasst zeigt diese Arbeit Evidenz für Konzeptionalisierungen von kognitiver Kontrolle als 

Modell-basierter Entscheidungsfindung, die sowohl auf lokaler Hirnaktivierung als auch globaler Hirn-

interaktion beruht und mit striataler Dopamintransmission assoziiert ist. Bei Schizophrenie scheint 

veränderte striatale Dopamintransmission jedoch eher Modell-freies Verhalten zu beeinträchtigen. 
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1 Introduction 

1.1 Theoretical background 

1.1.1 Introduction to cognitive control 

1.1.1.1 Cognitive control of aversive emotions 

Let us start with an example: imagine encountering a venomous snake in the jungle. In hu-

mans, this sight usually triggers certain physiological reactions: an increase in heart rate, respi-

ration rate, skin conductibility, and pupil diameter, accompanied by facial expressions (e.g., 

wide opening of the eyes, screaming) and flight behavior. When you experience these pro-

cesses simultaneously, you will interpret your reaction to this situation as "fear" or "fearful 

emotion". 

Now imagine viewing the same snake in a terrarium. In this case, the physiological reaction will 

be much less pronounced or even absent. Even if you experience some "fearful emotion" in 

the first moment, you will be able to intentionally downregulate the reaction, for example by 

telling yourself that the terrarium glass provides effective protection. 

 

This example shows that emotions can be cognitively controlled or regulated. According to 

current views, an emotion can be defined as a psychological state that comprises physiological 

reactions (e.g., increasing heart rate), expressive behavior (e.g., screaming or running away), 

and subjective experience [Gross & Barrett, 2011]. In this way, emotions could be seen as "sit-

uated conceptualizations": the brain conceptualizes, i.e., makes meaning of, a specific situation 

that combines external (e.g., a snake) and internal (e.g., heart rate increase) stimuli using 

knowledge about previous similar situations [Barrett et al., 2014]. This process is also de-

scribed as "perception-valuation-action sequence": the brain perceives a stimulus, evaluates it, 

and acts based on this evaluation [Etkin et al., 2015]. 

Cognitive control of emotions or cognitive emotion regulation (CER), in turn, refers to the cog-

nitive modulation of emotional responses [Gross, 1998]. Of note, every single step of the per-

ception-valuation-action sequence can be modified, for example, the bodily response can be 

suppressed [Gross, 1998]. But the term "CER" is specifically restricted to the evalua-

tion/interpretation part; in Gross's process model of emotion regulation, this is called "ante-

cedent-focused" as opposed to "response-focused" strategies [Gross, 1998]. Popular CER 

strategies include self-distancing (i.e., telling yourself that the situation does not affect you) 
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and reappraisal (i.e., re-appraising the situation as unreal or movie scene) [Buhle et al., 2014; 

Gross, 1998]. The clinical importance of studying CER lies in its being a core symptom of sever-

al psychiatric disorders, for example major depressive disorder [Joormann & Gotlib, 2010], 

schizophrenia [Grezellschak et al., 2015], or anxiety disorders [Hofmann et al., 2012]. 

 

This relevance has led to the development of research paradigms to study CER. Commonly, 

subjects lie in a magnetic resonance imaging (MRI) scanner while they are presented with 

emotional pictures. In one condition of the experiment, they are instructed to just "naturally" 

attend to the pictures and not alter their emotional responses. In the other condition, they are 

told to cognitively change their emotional reaction, for example by reappraisal. To cite one 

study, Ochsner et al. showed aversive photos to subjects during functional MRI (fMRI) acquisi-

tion. The participants were instructed to either not alter their emotional response ("Attend" 

condition) or to reinterpret the photos to decrease the negative feeling ("Reappraise" condi-

tion) [Ochsner et al., 2002]. 

Across many studies, images of both positive and negative valence (i.e., both pleasant and 

aversive pictures) have been used, and subjects were instructed to both up- or downregulate 

their emotional responses [Morawetz et al., 2017b]. In this thesis, however, usage of the term 

"CER" will be restricted to the cognitive downregulation of negative emotions. 

 

1.1.1.2 Cognitive control of impulses towards rewarding stimuli 

Let us continue with another example: coming home from work in a hungry state, you can 

decide between eating vegetables or a chocolate cake. You will almost certainly feel an urge 

(or impulse) to eat the cake in order to replenish your glucose storages. However, thinking 

about long-term health consequences or societal weight norms might make you reconsider 

your choice. In this way, you may overcome the craving towards the cake and instead select 

the vegetables. 

This example shows that impulses, just like emotions, can be cognitively controlled. An impulse 

can be defined as a temporally and spatially immediate urge to approach or consume a hedon-

ic (rewarding) stimulus (e.g., food, sex, drugs) [Hofmann et al., 2009]. As impulses are usually 

directed towards attainment of short-term gratifications, they often collide with long-term 

goals or societal norms. Therefore, suppression of such unwanted behaviors is necessary for 

everyday life [Hofmann et al., 2009]. Like for emotion regulation, one could also think of the 

modulation of distinct steps in the impulse-generating process. Again, this thesis focuses only 

on cognitive control of impulses rewarding stimuli, for example by thinking about long-term 
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health consequences. This concept will be called "cognitive reward control" (CRC) in the fol-

lowing - it is related to concepts called "self-regulation" or "self-control" [Heatherton, 2011; 

Hofmann et al., 2009; Kelley et al., 2015]. 

 

Failure of CRC can have severe health consequences such as addiction [Heatherton, 2011]. For 

this reason, fMRI paradigms were developed to study human CRC in-vivo. Usually, subjects are 

shown pictures of tempting cues (e.g., high-calorie food). In one condition, they shall react 

naturally towards the stimulus; in the other condition, they have to cognitively down- (or up-) 

regulate their impulse towards the stimulus (as with CER, this thesis will only focus on 

downregulation). To cite one study, Brody et al. presented subjects with cigarette videos. In 

one condition, participants should allow themselves to crave the cigarettes; in the other condi-

tion, they were instructed to resist the craving [Brody et al., 2007]. 

 

1.1.2 Theories of cognitive control based on reinforcement learning 

How can CER and CRC be brought together? In other words, might there be an overarching 

neural mechanism underlying distinct instances of cognitive control? 

Building on concepts from reinforcement learning, recent models suggest that similar model-

based decision making mechanisms underlie both CER and CRC [Etkin et al., 2015]. In the realm 

of motivated behavior, decision making refers to the selection of context-appropriate behav-

iors from competing alternatives; this selection is based on prior knowledge and current con-

text [Striedter, 2016]. When the selection probability of a certain behavior changes over time, 

this is called learning. As such changes in behavior are usually driven by rewarding/reinforcing 

(i.e., leading to an increased selection probability) or punishing action outcomes, this learning 

process is called reinforcement learning [Maia, 2009; Sutton & Barto, 2018]. The modern field 

of reinforcement learning developed in the 1980s as a synthesis of approaches dealing with 

optimal control in dynamical systems, such as dynamic programming [Bellman, 1957], and 

animal trial-and-error learning research [Pavlov, 1927; Thorndike, 1898; Tolman, 1932]. 

Drawing on reinforcement learning theories, human decision making strategies can be de-

scribed as being located in a continuum between "model-free" and "model-based" [Daw et al., 

2005]. "Model-based" means that a subject employs a complex cognitive model of the "deci-

sion tree" (i.e., which decision leads to which next stage?) to guide her/his selections. For this 

reason, it is sometimes called reflective or prospective control [Dolan & Dayan, 2013]. "Model-

free", in contrast, means that decisions are driven solely by previous experience. Therefore, it 

is sometimes called reflexive or retrospective control [Dolan & Dayan, 2013]. In mathematical 
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descriptions of model-free learning such as "temporal difference learning", it is assumed that 

prediction errors (i.e., the difference between predicted and actual outcome) serve to update 

the subjects' reward predictions and therefore influence future choices [Sutton, 1988].  

Historically, concepts of model-free decision making are related to theories of stimulus-

response associations and habit behavior [Dolan & Dayan, 2013; Thorndike, 1898]. Model-

based concepts, on the other hand, are related to early theories of goal-directed learning and 

cognitive maps [Dolan & Dayan, 2013; Tolman, 1932, 1948]. 

It is important to understand that model-based and model-free decision making are part of a 

continuum. Nobody employs either of them; they are always used both - however, the degree 

to which each strategy is applied, i.e., their balance, can vary. 

 

These considerations can now be used to describe cognitive control processes with more pre-

cision. According to a recent model, both CER and CRC can be seen as model-based decision 

making [Etkin et al., 2015]. This concept assumes that in CER, an internal model is applied to 

select the appropriate emotion-regulatory action for achieving a desired emotional state. 

Likewise, in CRC, a cognitive model of long-term goals or societal norms is employed to regu-

late one's craving towards a rewarding stimulus, e.g., food, sex, or drugs. Taken together, 

computational models and underlying neural mechanisms of CRC and CER might resemble 

each other: both model-based control strategies involve decisions about actions, which alter 

either one's emotional state or one's craving towards consumption of a rewarding stimulus. 

 

1.2 Neurobiological implementation of cognitive control 

1.2.1 Possibly overlapping neural correlates for CRC and CER 

On a neurobiological level, concepts of similar mechanisms for CRC and CER suggest that neu-

ral correlates of CER should resemble neural correlates of CRC. Such an overlap of neural sub-

strates would in turn indicate similar generating neural mechanisms. Previous literature sug-

gests a widespread overlap of neural activation across CER and CRC in ventromedial and dorso-

lateral prefrontal cortices as well as in supplementary motor cortex [Etkin et al., 2015]. How-

ever, this hypothesis has not been tested across single studies with possibly varying methodol-

ogy. Therefore, part of the current thesis addressed this question by use of coordinate-based 

meta-analysis of task-fMRI studies concerning CRC and CER (Project 1). 
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1.2.2 Global models of cognitive control using the example of CER 

As described above, previous studies report widespread regional brain activation during cogni-

tive control. However, theories differ with regard to the spatial extent of brain changes under-

lying cognitive control. In the following, this question is paradigmatically restricted to CER. 

While local theories view CER as a regionally confined process, global models point to in-

creased whole-brain interactions across functional brain networks during CER. More specifical-

ly, local and related ‘intermediate’ models of CER emphasize that circumscribed cortical areas, 

like in the medial and lateral prefrontal cortices, control activity in spatially more-or-less dis-

tinct brain regions such as in amygdala and orbitofrontal-insular cortices [Ochsner et al., 2002; 

Wager et al., 2008]. Global theories, in contrast, propose that larger functional brain modules, 

which comprise brain regions of local/intermediate theories, underlie emotional processes 

both with and without CER, but with increased global across-module interactions during CER 

[Barrett, 2009; Barrett et al., 2014; Lindquist & Barrett, 2012]. While evidence for lo-

cal/intermediate views is overwhelming (for recent meta-analyses, see [Buhle et al., 2014; 

Frank et al., 2014]), evidence for global theories is scarce.  

For this reason, part of this thesis tested key predictions of global CER theories by combining a 

typical CER paradigm on aversive emotional pictures during fMRI with a graph theory-based 

approach to brain activity (Project 2). 

 

1.2.3 Selection mechanisms underlying model-based decision making 

As described above, cognitive control strategies like CRC and CER can be conceptualized as 

model-based decision making. Several studies have shown that model-based decision making 

depends on dopamine levels. Wunderlich et al. presented evidence that application of L-DOPA 

(a precursor of dopamine) leads to increased model-based decision making in a sequential 

learning task [Wunderlich et al., 2012]. However, the design of this study prevented any con-

clusions about the regional specificity of dopamine effects. This gap was closed by the study of 

Deserno et al.: they combined a sequential decision making task with FDOPA positron emission 

tomography (PET) [Deserno et al., 2015]. Results indicated that dopamine synthesis in the nu-

cleus accumbens is positively correlated with a tendency towards model-based behavior. 

The following paragraphs will elaborate on dopamine's role in selection processes underlying 

decision making (remember that decision making can be defined as selection of context-

appropriate behaviors from a repertoire of competing behaviors). 
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1.2.3.1 Selection of competing behaviors in the striatum 

Current neurobiological models emphasize the role of the striatum in selection processes. Such 

hypotheses are based on the underlying anatomy and physiology of the striatum as part of the 

basal ganglia. The striatum is part of topographically arranged parallel and largely segregated 

cortico-striato-pallido-thalamo-cortical loops [Alexander et al., 1986; Haber, 2016]. Since the 

cortico-striatal input arrives mostly from frontal cortices, sometimes the term "frontostriatal 

system" is used [Striedter, 2016]. The net effect of these loops is positive feedback to the cor-

tex [Striedter, 2016]. Their supposed function is the selection of context-appropriate behaviors 

from competing alternatives, or more general: the selection of cortical co-activation patterns, 

which then lead to specific behaviors.  

The main mechanism of selection is thought to be the strength (and/or simultaneity) of corti-

cal input onto direct pathway GABAergic medium spiny neurons (MSNs) in the striatum. Direct 

pathway means that these inhibitory neurons project directly onto GABAergic neurons in the 

pallidum, which in turn tonically inhibit the thalamus. Thus, activation of a striatal MSN leads 

to selective disinhibition of the thalamus as net effect [Striedter, 2016].  

 

Further mechanisms supporting and sharpening selections are:  

(i) a winner-takes-all mechanism: active MSNs inhibit less active MSNs via axon collaterals, 

which makes the selection more precise;  

(ii) the so-called indirect pathway leading to a diffuse excitation of pallidum via globus pallidus 

externus and subthalamic nucleus. The effect is a diffuse inhibition of non-selected co-

activation patterns and therefore a more precise selection;  

For the next two points, a short introduction of the human dopaminergic system is needed. 

The bodies of dopaminergic neurons are located in the midbrain, more specifically in 

substantia nigra pars compacta and ventral tegmental area. The densest projection of dopa-

minergic cells is towards the striatum. However, other brain areas are targeted too, for exam-

ple pallidum, thalamus, and cortex (particularly frontal regions) [Sanchez-Gonzalez et al., 2005; 

Weinstein et al., 2017]. The two basic firing modes of dopamine neurons are tonic (regular, 

low-frequency "pacemaker" firing) and phasic (high-frequency spike bursts) [Grace & Bunney, 

1984a, b].  

(iii)  tonic or spontaneously phasic dopamine release in the striatum. Dopaminergic synap-

ses are located at dendritic spines of MSNs "below" cortico-striatal synapses and excite the 

direct pathway via D1 receptors while inhibiting the indirect pathway via D2 receptors. Thus, 

this input facilitates the selection of specific co-activation patterns in the striatum;  
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(iv) stimulus-associated phasic dopamine bursts, at first during the consumption of a reward 

achieved by a certain action. After classical conditioning, however, the burst moves forward to 

the time point when a cue associated with the reward is presented. Thus, stimulus-associated 

phasic dopamine bursts act as teaching signals to learn sequences of actions. They further alter 

selection probabilities of specific co-activation patterns over time via long-term potentia-

tion/depression at cortico-striatal synapses [Striedter, 2016]. 

 

1.2.3.2 Regional specificity and hierarchy of selections 

Current models suggest that topographical conservation of cortico-striato-pallido-thalamo-

cortical loops gives rise to a regional specificity of selection processes underlying decision mak-

ing. The orbital prefrontal cortex (PFC) projects primarily to the ventral striatum (including 

mainly nucleus accumbens), supporting the selection of high-level goals. Lateral and medial 

PFC project to dorsomedial striatum (caudate nucleus), leading to the selection of actions to 

achieve the selected goals. Finally, (pre-)motor cortices project to dorsolateral striatum (puta-

men), subserving the selection of movements to perform the selected actions. Such theories 

assume a hierarchy from the ventral over the dorsomedial to the dorsolateral frontostriatal 

system. The ventral system is active over longer time scales since it represents high-level deci-

sions, the dorsal system over shorter time scales [Striedter, 2016]. 

Consequently, it has been suggested that model-based decision making is represented mainly 

in ventral striatum since it is based on high-level cognitive decisions requiring input from or-

bital PFC [Daw et al., 2005; Dolan & Dayan, 2013]. This assertion is supported by fMRI studies 

showing brain activation in the nucleus accumbens to be associated with model-based deci-

sions [Daw et al., 2011; Deserno et al., 2015]. Model-free behavior, on the other hand, seems 

to be represented by the whole striatum with focus on dorsal regions, because model-free 

behaviors rely mostly on somehow automatized actions and movements. Support for such 

claims comes from studies showing that activity shifts from ventral to dorsolateral striatum as 

actions are learned, indicating a transition from goal-directed to habit behavior or from model-

based to model-free decision making [Graybiel, 2008]. 

 

1.2.3.3 Dopaminergic abnormalities in schizophrenia 

As we have seen, dopamine plays an important role in the selection of competing behaviors in 

the striatum and thus in decision making. Schizophrenia has long been associated with aber-

rant dopamine transmission [Howes & Kapur, 2009]. It is a disease that affects about 1% of the 
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world's population and usually begins in young adulthood [Owen et al., 2016]. Its symptoms 

are generally categorized into positive (including delusions and hallucination), negative (includ-

ing anhedonia, loss of motivation, asociality etc.), and cognitive (e.g., impaired working 

memory, cognitive speed, task switching etc.) symptoms. 

 

First theories of excessive dopamine transmission in schizophrenia emerged from findings that 

antipsychotic drugs exert their effect through blockade of dopamine D2 receptors [Carlsson et 

al., 1957; Creese et al., 1976; van Rossum, 1966] and that dopamine agonists like ampheta-

mine can cause psychotic symptoms [Lieberman et al., 1987]. These theories were later modi-

fied, now suggesting prefrontal cortical hypodopaminergia versus subcortical 

hyperdopaminergia [Davis et al., 1991]. The advent of in-vivo imaging tools like PET then 

demonstrated that particularly presynaptic dopamine synthesis in the striatum is reliably ele-

vated in schizophrenia [Howes et al., 2012]. Of note, however, these data were almost exclu-

sively acquired from patients during psychotic episodes; such a primary association between 

increased presynaptic dopamine and psychosis in general is supported by similar findings in 

subjects at risk for psychosis [Howes et al., 2009] and patients with psychotic bipolar disorder 

[Jauhar et al., 2017]. 

Therefore, the question arises whether abnormal dopamine transmission in schizophrenia is 

associated with an impaired balance between model-based and model-free decision making. 

The study of Culbreth et al. has hinted at such an imbalance [Culbreth et al., 2016]; however, 

as they did not acquire in-vivo dopamine imaging data, evidence for associations with dopa-

mine transmission is still missing. This problem is addressed by Project 3. 

 

1.3 Technical background of applied imaging methods 

1.3.1 Functional magnetic resonance imaging (fMRI) 

1.3.1.1 Physical basics of MRI 

MRI is a non-invasive in-vivo imaging technique based on the spin of hydrogen nuclei, i.e., pro-

tons. "Spins" are spinning or rotating electrical charges, for example protons, that generate a 

magnetic dipole moment.  

In an MRI tomograph, a static magnetic field B0 leads to alignment of proton spins with the 

direction of the field along the z-axis (longitudinal magnetization). More precisely, the protons 

precess around the direction of B0 with the Larmor frequency (defined by the field strength of 

B0 and the gyromagnetic ratio of the proton). Then a radiofrequency pulse equaling the Larmor 



9 

 

frequency excites the protons and flips them by 90° (transverse magnetization), which causes a 

spinning of the net magnetization vector (the sum of all proton spins) in the x-y-axis. Such a 

magnetization shift induces an electrical current in the receiver coils of the MRI machine. After 

the end of the radiofrequency pulse, the net magnetization vector returns to the alignment 

with B0. This so-called relaxation is determined by two time constants: T1 describes the recov-

ery of longitudinal magnetization, while T2 describes the loss of transverse magnetization due 

to spin dephasing caused by spin-spin-interactions. However, inhomogeneities in the external 

magnetic field accelerate the dephasing; this process is described by the T2* relaxation time, 

which is shorter than T2.  

Body tissues differ in their T1 and T2 times. Thus, one can define contrasts by varying repeti-

tion time (TR, time between two radiofrequency pulses) and echo time (TE, time between ra-

diofrequency pulse and measurement of MRI signal). A short TR leads to T1 weighting, because 

differences in the recovery speed of longitudinal magnetization are emphasized. A long TE 

causes T2 weighting, since differences in dephasing speed are accentuated. 

For three-dimensional spatial encoding of spin excitation, several strategies are used. On the 

one hand, frequency encoding uses gradient coils. This leads to different Larmor frequencies 

along a certain axis, which can then be selectively excited by specific radiofrequency pulses. 

Usually, this strategy is used for slice selection and for encoding in x-direction. On the other 

hand, phase encoding applies a short magnetic gradient pulse that causes phase difference of 

transverse magnetization vectors. This is usually employed for encoding in y-direction 

[Weishaupt et al., 2009]. 

 

1.3.1.2 Blood oxygen level-dependent (BOLD) signal  

fMRI is based on the measurement of T2* relaxation time, which is influenced by the ratio of 

oxygenated versus deoxygenated hemoglobin. For this reason, the measured signal is called 

"blood oxygen level-dependent" (BOLD) [Ogawa et al., 1990]. The BOLD signal is an indirect 

marker for neuronal activity and, according to current understanding, arises from the following 

process: Neuronal activity consumes energy, e.g., for the reuptake and recycling of transmit-

ters of for the restoration of membrane potentials [Shulman et al., 2004]. This energy in form 

of adenosine triphosphate (ATP) is provided by oxidative glucose metabolism [Sibson et al., 

1998]. Therefore, neuronal activity leads to increased consumption of oxygen, which is 

brought to neurons by hemoglobin via the blood. Initially, neuronal activity causes a decrease 

in the local concentration of oxygenated hemoglobin. After a short time, however, a process 

called neurovascular coupling leads to a local increase of cerebral blood flow. The exact mech-
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anisms are still unclear; possible candidates include interneurons [Cauli et al., 2004], astrocytes 

[Takano et al., 2006], and pericytes [Peppiatt et al., 2006]). The increase in cerebral blood flow 

leads to a supply of oxygen that exceeds its consumption, so the net effect is an increasing 

ratio of oxygenated versus deoxygenated hemoglobin [Logothetis, 2008]. The temporal dy-

namics of this process follow the "Hemodynamic Response Function": it starts about 500 ms 

after onset of a stimulus and peaks at 3-5 s after stimulus onset (Fig. 1) [Hillman, 2014; 

Logothetis & Wandell, 2004]. Oxyhemoglobin and deoxyhemoglobin differ in their magnetic 

susceptibility: deoxyhemoglobin is paramagnetic and shortens T2* relaxation, whereas 

oxyhemoglobin is diamagnetic and has no or only minimal influence on T2* relaxation. Thus, 

an increase in the concentration of oxyhemoglobin causes an increased signal in T2*-weighted 

MRI sequences like echoplanar imaging (EPI) [Logothetis, 2008; Schneider & Fink, 2013; 

Weishaupt et al., 2009]. 

 

 

 

Figure 1: Hemodynamic response.  

Temporal dynamics of increase in oxygenated hemoglobin (HbO, red line) and its association 

with calcium response (Ca
2+

, dark grey line). The HbO increase reaches its peak about 3-5 se-

conds after stimulus onset (stimulus is indicated by grey shading). Data show a stimulus-evoked 

response in the rat somatosensory cortex. Figure taken from [Hillman, 2014]. 
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The neurophysiological basis of the BOLD signal is still poorly understood, particularly concern-

ing neurovascular coupling mechanisms [Attwell et al., 2010; Hillman, 2014] and whether vas-

cular dynamics not precisely related to neuronal activity contribute to the signal [Girouard & 

Iadecola, 2006; O'Herron et al., 2016]. However, multiple animal studies showed a high corre-

lation of BOLD signal and underlying neuronal activity, justifying its use in neuroimaging re-

search (Fig. 1) [Logothetis et al., 2001; Matsui et al., 2016; Pan et al., 2013]. Possible candi-

dates for neural sources of the BOLD signal are local field potentials, reflecting mostly synaptic 

activity [Logothetis et al., 2001; Pan et al., 2013], and local spiking activity [Cardoso et al., 

2012; Lima et al., 2014]. In any case, it has to be kept in mind that the fMRI signal reflects a 

population or mass signal, since a typical MRI voxel contains about 5 million neurons and 50 

billion synapses [Logothetis, 2008]. 

 

 

1.3.1.3 Task-based fMRI 

Tasks used in fMRI studies range from simple (e.g., eyes open/closed, finger tapping) to com-

plex (e.g., learning tasks). Two basic types of designs are distinguished: in blocked designs, a 

certain period of one experimental condition (e.g., eyes open) is followed by a period of an-

other condition (e.g., eyes closed). In event-related designs, in contrast, discrete single events 

occur multiple times with fixed or variable intervals (e.g., a picture is shown for 3 seconds). The 

whole sequence comprising one event is usually called a trial, which is repeated multiple times 

during one experimental run. One such run in an event-related design can contain only trials of 

one condition (e.g., watching an aversive picture without emotion regulation) or alternating 

trials of several conditions (e.g., watching an aversive picture with or without emotion regula-

tion). 

In common experimental setups, the subject is presented with certain stimuli during acquisi-

tion of an fMRI sequence. For example, these stimuli can be visual (pictures/videos shown on a 

screen at the end of the scanner, which can be watched by the subject through a mirror above 

her/his head) or auditory (via headphones). If the task includes decision making or feedback by 

the subject, a set of buttons is provided through which the subject can give a response via 

button press. Furthermore, physiological data can be recorded, e.g., electrodermal activity, 

heart rate, or pupil diameter. 
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1.3.2 Positron emission tomography (PET) 

1.3.2.1 Physical basics of PET 

PET is an invasive in-vivo functional imaging technique based on the emission of positrons by a 

radionuclide. A radionuclide is an atom that exhibits radioactive decay. For example, the most 

commonly used radionuclide in nuclear medicine is the radioactive fluorine isotope 18F (half-

life: 110 min [Conti & Eriksson, 2016]). Such a radionuclide is chemically inserted in a certain 

molecule, which usually occurs naturally in the human body. The product is called radiotracer 

and allows for the investigation of a specific metabolic process. For example, glucose metabo-

lism can be analyzed using fluorodeoxyglucose (FDG). In PET imaging, the radiotracer is intra-

venously applied to the subject and taken up by the tissues that normally take up this specific 

molecule. 

Within these tissues, the radionuclide emits positrons (β+ radiation) which, after a short dis-

tance of "traveling" (about 1 mm for 18F [Conti & Eriksson, 2016]), annihilate with an electron. 

Annihilation leads to the emission of two photons (γ radiation) with a characteristic energy of 

511 keV in opposite directions (i.e., with an angle of 180°). These coincident pairs of photons 

are then detected by PET detectors positioned in a ring around the subject. Such coincidences 

allow for the reconstruction of the location of annihilation [Reiser et al., 2011]. 

 

1.3.2.2 PET imaging of dopamine metabolism 

Several aspects of dopamine metabolism can be investigated by in-vivo molecular imaging in 

humans. The most widely used techniques are PET and single-photon emission computed to-

mography (SPECT); due to the focus of this thesis, the discussion will be restricted to PET. PET 

is used to study dopamine synthesis, release, postsynaptic receptor binding, and transport 

[Weinstein et al., 2017]. 

First, dopamine synthesis capacity can be measured with the tracer FDOPA, which is L-DOPA 

radioactively labeled with 18F [Garnett et al., 1983]. L-DOPA, in turn, is a precursor of dopamine 

that can, contrary to dopamine itself, cross the blood-brain barrier. In the brain, FDOPA is tak-

en up by dopaminergic neurons in substantia nigra and ventral tegmentum and transported to 

axon terminals. Then, FDOPA is converted by the enzyme amino acid decarboxylase (AADC) 

into 6-[18F]Fluorodopamine, which is stored in presynaptic vesicles [Weinstein et al., 2017]. In 

this way, the uptake of FDOPA in a specific brain area can be used to quantify dopamine syn-

thesis (for the biophysical models used in the quantification process, e.g., Patlak modeling, see 

the Methods section). 
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Second, availability of postsynaptic dopamine receptors is measured with tracers that bind to 

these receptors (i.e., radioligands). For example, [11C]NNC 112 binds to D1 receptors [Abi-

Dargham et al., 2000], while [11C]raclopride binds to D2 receptors [Farde et al., 1986]. The out-

come measure of these studies is binding potential, which corresponds to receptor availability. 

However, it has to be kept in mind that a considerable number of receptors might be occupied 

by endogenous dopamine and are therefore not available for radioligands. Depletion para-

digms try to circumvent this issue: alpha-methyl-para-tyrosine suppresses endogenous dopa-

mine synthesis (via blockade of the enzyme tyrosine hydroxylase) and in this way "unmasks" 

occupied dopamine receptors, revealing the "true" receptor density [Laruelle et al., 1997; 

Verhoeff et al., 2001]. The reduction in binding potential is interpreted as baseline synaptic 

dopamine [Weinstein et al., 2017]. 

Third, D2 receptor tracers can also be used to study dopamine release. In order to do so, sub-

jects undergo two PET scans: once at baseline and once after application of amphetamine, an 

agent that stimulates dopamine release [Breier et al., 1997; Laruelle et al., 1995]. The change 

in binding potential across the two conditions is then taken as proxy for dopamine release. 

Finally, dopamine reuptake via presynaptic dopamine transporters can be investigated using 

tracers binding to these transporters, for example [18F]CFT [Laakso et al., 1998]. The outcome 

measure (binding potential) quantifies transporter availability. 

 

 



14 

 

2 Objectives and Hypotheses 

2.1 Project 1: Overlapping model-based mechanisms of CRC 

and CER 

This project addresses two questions. First, is there a consistent pattern of brain activation for 

cognitive reward control (CRC) across a wide range of reinforcing stimuli, e.g., food, sex, drugs? 

Although multiple fMRI studies have investigated task activation patterns during CRC via 

changes in blood oxygenation [Brody et al., 2007; Crockett et al., 2013; Kober et al., 2010], due 

to heterogeneous methods and results no consistent pattern across studies and stimulus types 

has been identified so far. A recent meta-analysis has shown consistent brain activation in 

dietary reward control across insular, prefrontal, and parietal cortices [Han et al., 2018]. How-

ever, it is unclear whether this pattern generalizes also for other stimulus types.  

This question was addressed using coordinate-based meta-analysis of task-fMRI studies in CRC 

as an experimental proxy for reward-related model-based decision-making. Meta-analysis is a 

powerful tool to detect consistent neural correlates across methodologically heterogeneous 

studies. We included all fMRI studies using tasks in which subjects cognitively controlled he-

donic impulses towards rewarding cues (e.g., food, sex, cigarettes, money) and synthesized 

results using Multilevel Kernel Density Analysis (MKDA) [Wager et al., 2007]. We hypothesized 

consistent activation in ventrolateral and dorsolateral prefrontal cortex, parietal, and (pre-) 

supplementary motor areas (pre-SMA, SMA) [Etkin et al., 2015; Kelley et al., 2015]. 

 

Second, we investigated whether the extension of computational models based on reward-

related decision making onto cognitive emotion regulation (CER) is justified. Based on theories 

drawn from reinforcement learning, Etkin et al. had suggested that CRC and CER can both be 

described as model-based decision making strategies [Etkin et al., 2015]. Consequently, their 

neural activation patterns should overlap. 

We tested this hypothesis by complementing the CRC meta-analysis with a coordinate-based 

meta-analysis of task-fMRI studies in CER, i.e., studies in which subjects cognitively downregu-

lated negative emotional responses elicited by aversive pictures via reappraisal [Goldin et al., 

2008; Gross, 2002; Ochsner et al., 2002]. Then we tested for common and distinct activation 

patterns across CRC and CER via meta-analytic contrasts and conjunction analysis [Radua et al., 

2013]. We expected common activation in ventrolateral PFC, dorsolateral PFC, SMA, pre-SMA, 

and parietal cortices [Etkin et al., 2015].  
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2.2 Project 2: Increased global brain interaction during CER 

The second part of this thesis investigates global processes (complementing locally confined 

activation) during cognitive control, paradigmatically for the example of CER. Such global mod-

els point to increased whole-brain interactions across functional brain networks during CER 

[Barrett, 2009; Barrett et al., 2014; Lindquist & Barrett, 2012]. We addressed this question by 

graph analysis of fMRI data acquired during a CER paradigm. 

Graph-based analysis is a powerful tool to investigate interaction patterns among large-scale 

brain networks, covering the whole brain [Bullmore & Sporns, 2009]. A graph consists of nodes 

and edges; in the context of emotion-related brain activity, a graph consists of regions-of-

interest (ROIs) representing the whole brain as nodes and emotion-related functional connec-

tivity between these ROIs as edges between nodes (for a glossary of graph terms, see Table 1). 

The topology of such a whole-brain graph can be described both at global and nodal levels by 

measures of integration, segregation, and community structure [Rubinov & Sporns, 2010]. 

Particularly, the community or modular structure describes how the whole graph can be sub-

divided into functional network modules with high intra-modular but low inter-modular con-

nectivity [Girvan & Newman, 2002]. More specifically, global community structure has two 

characteristics: modularity quantifies how 'easily' a graph can be decomposed into separate 

modules [Newman, 2004]; global participation quantifies how 'strongly' each node of the 

graph is connected to nodes in other modules [Guimera & Amaral, 2005b].  

Applying these concepts to the global CER perspective, we expected stable functional brain 

network modularity across the two emotional states with and without CER, due to the idea 

that similar functional networks subserve emotional processing with and without CER. On the 

other hand, we expected increased global participation across these networks during CER, 

reflecting an increased interaction across modules during CER, compared to without CER. 

Complementary, at nodal level we expected that nodes driving increased global participation 

across modules are also part of known regions from local/intermediate perspectives on CER, 

such as amygdala or prefrontal cortex. This suggestion was based on the idea that altered local 

activity, which shows the strongest activation-based change during CER, might also affect the-

se nodes' functional embedding into the whole-brain graph. 
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Graph term Definition 

Graph Set of nodes linked by edges 

Node In this thesis: spherical brain regions of interest 

Edge 
In this thesis: functional connectivity during emotion or cognitive 

emotion regulation 

Cost Number of edges divided by the maximal possible number of edges 

Module 
Group of densely interconnected nodes with only sparse connections 

to other modules 

Within-module 

connectivity 
Connectivity of a node with all other nodes in its module 

Between-module 

connectivity 
Connectivity of a node with all nodes outside of its module 

Modularity 
Quantifies the degree to which a graph can be subdivided into non-

overlapping modules 

Participation 

coefficient 

Quantifies the between-module connectivity on nodal and global 

levels 

Within-module 

degree 
Quantifies the within-module connectivity of a node 

Functional 

segregation 
Ability for specialized processing within densely connected clusters 

Clustering 

coefficient 

Fraction of interconnected neighbors around a node; quantifies 

segregation 

Functional 

integration 
Ability for rapid combination of spatially distributed information 

Characteristic path 

length 

Average shortest path length across all pairs of nodes; quantifies 

integration 

 

Table 1: Glossary of graph terms. 

Definitions were largely derived from [Bullmore & Sporns, 2009; Rubinov & Sporns, 2010]. 
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2.3 Project 3: Dopamine and decision making in health and 

schizophrenia 

This project investigates two questions. First, does presynaptic dopamine synthesis, as meas-

ured by FDOPA-PET, influence the balance of model-based and model-free decision making? 

Dopamine modulates selection processes in the striatum that underlie decision making. This 

suggests that it affects model-based decisions such as cognitive control. Indeed, Wunderlich et 

al. could show that application of L-DOPA (a dopamine precursor) increases the tendency to-

wards model-based decision making [Wunderlich et al., 2012]. Deserno et al. further specified 

this finding by showing that specifically presynaptic dopamine synthesis in the nucleus 

accumbens correlates with the tendency towards model-based behavior [Deserno et al., 2015]. 

In a first step, we sought to confirm these results in healthy subjects.  

Second, we tested whether the association between dopamine and decision making is im-

paired in patients with schizophrenia. Previous results suggest an impaired balance between 

model-based and model-free decision making in schizophrenia [Culbreth et al., 2016]. Howev-

er, the relationship with dopamine metabolism remains unclear. We addressed this issue by 

conducting a decision making task plus FDOPA-PET in patients with chronic schizophrenia (at 

least 2 psychotic episodes) and healthy controls. Of note, patients were in a state of psychotic 

remission during the study, meaning that positive symptoms were absent, but negative and 

cognitive symptoms present [Andreasen et al., 2005]. In this way, any bias from psychotic 

symptoms can be avoided. Subjects' decision making behavior in the task was described by 

mathematical models allowing for the quantification of model-based and model-free behavior. 

Presynaptic dopamine synthesis capacity in the striatum, on the other hand, was quantified by 

graphical Patlak analysis of FDOPA-PET data. The outcome of this analysis is the influx constant 

ki
cer that quantifies the uptake/accumulation of the radiotracer in a certain brain region. Deci-

sion making parameters were compared across groups and correlated with ki
cer measures. 
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2.4 Publication of projects in peer-reviewed journals 

Project 1 was published in "Cerebral Cortex" in the following article:  

Brandl F, Mulej Bratec S, Xie X, Wohlschläger AM, Riedl V, Meng C, Sorg C:  

Increased Global Interaction Across Functional Brain Modules During Cognitive Emotion Regu-

lation.  

Cereb Cortex. 2018 Sep 1;28(9):3082-3094. 

 

Project 2 has been revised according to reviewer comments from a submission to "Neurosci-

ence and Biobehavioral Reviews" and is currently under peer review at "NeuroImage" with the 

following title:  

Brandl F, Le Houcq Corbi Z, Mulej Bratec S, Sorg C:  

Cognitive reward control recruits medial and lateral frontal cortices, which are also involved in 

cognitive emotion regulation - A coordinate-based meta-analysis of fMRI studies. 

 

Project 3 has been presented as poster at the conferences "Annual Meeting of the Society of 

Biological Psychiatry 2018" and "FENS Forum of Neuroscience 2018". It is now prepared for 

publication under the following title: 

Brandl F, Avram M, Cabello J, Leucht C, Scherr M, Mustafa M, Leucht S, Ziegler S, Wunderlich K, 

Sorg C:  

Association between impaired model-free decision making and dopamine synthesis in schizo-

phrenia. 

 



 

3 Methods 

3.1 Project 1 

3.1.1 Coordinate-based

3.1.1.1 Literature search

PubMed and Web of Science
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CRC is usually studied by instructing subjects to control their craving towards rewarding stimuli 

(e.g., food, money, or sex), whose consumption is not compatible with internal long-term goals 

or societal norms. For example, when feeling the impulse of eating a chocolate dessert, an 

internal model of long-term health consequences may inhibit this impulse [Hare et al., 2011]. 

Thus, the experiment design in the selected CRC studies contrasted two conditions: “Reward 

baseline”, in which subjects were asked to allow themselves to crave a desirable reward cue 

they were viewing, e.g., cigarettes or tasty food, and “CRC”, in which participants should resist 

any desirable reward by, for example, thinking about long-term consequences of repeatedly 

consuming the substance [Brody et al., 2007; Crockett et al., 2013; Kober et al., 2010]. We only 

included studies using visual stimuli such as pictures and videos [Buhle et al., 2014; Kohn et al., 

2014]. Furthermore, only studies in which subjects were instructed to downregulate their he-

donic impulses towards reinforcing cues were considered; studies with different goals like 

upregulation were not included. Further exclusion criteria were: (i) use of subjects with mental 

disorders, (ii) no whole-brain analysis (restriction to predefined regions of interest), (iii) no 

report of coordinates in MNI or Talairach space. Publications using identical subject samples 

were counted as one single study; thus, there were less included studies than included publica-

tions. 

 

3.1.1.2 Data extraction and meta-analysis 

Peak coordinates of activation differences between the two conditions (CRC vs. Reward base-

line) were extracted from the studies and converted to Montreal Neurological Institute (MNI) 

space if necessary. For coordinate-based meta-analysis, we used Multilevel Kernel Density 

Analysis (MKDA) [Etkin & Wager, 2007; Wager et al., 2007], which comprises the following 

steps: first, peak coordinates of each study contrast map were convolved separately with a 

spherical kernel (radius = 15mm) to create a so-called comparison indicator maps. In these 

indicator maps, each voxel had either the intensity value 1 (= at least one peak within 15mm of 

this voxel) or 0 (= no peak within 15mm of this voxel). Subsequently, indicator maps were 

weighted by sample size and averaged across studies to yield so-called density maps, showing 

the weighted proportion of contrast maps reporting a peak within 15mm of each voxel (= den-

sity statistic). In this step, the hypoactivation map was subtracted from the hyperactivation 

map in order to identify brain regions which are specifically hyperactivated, but not 

hypoactivated during CRC. Due to our hypothesis, we only investigated the meta-analytic con-

trast "CRC > Reward baseline".   
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To test for statistical significance of meta-analytic result clusters in the density maps, a Monte 

Carlo simulation with 15,000 iterations was performed to establish a family-wise error rate 

(FWER) threshold. Significant result clusters were detected for p<0.05 (FWER-corrected), both 

based on voxel-wise density statistic (height-based threshold) and cluster size (extent-based 

threshold) [Wager et al., 2007]. Both thresholds were reported since they provide complemen-

tary information [Kaiser et al., 2015]. To control for potential confounding effects (like dispro-

portionate influence of single studies) on our meta-analytic results, several post-hoc control 

analyses were performed, which are presented in detail below after the description of the CER 

meta-analysis. 

 

3.1.2 Coordinate based meta-analysis of cognitive emotion regulation 

PubMed and Web of Science were searched until May 01, 2018 using the keywords emotion 

regulation AND (fMRI OR neuroimaging). Additional relevant studies were identified using 

reviews and reference lists (Fig. 2B). CER is typically studied by contrasting ‘pure’ emotional 

stimulation (e.g., viewing aversive pictures) with emotional stimulation during CER (i.e., while 

reappraising the stimulus). For example, when seeing the picture of a snake, re-appraising the 

situation as being part of an experiment typically decreases induced fear [Eippert et al., 2007]. 

Thus, the experiment design in the selected CER studies contrasted two conditions: “Emotional 

baseline”, in which subjects watched aversive pictures and were asked to naturally experience 

the emotional state elicited by the picture, and “CER”, in which participants attempted to 

down-regulate their negative emotional responses towards the aversive pictures using reap-

praisal [Goldin et al., 2008; Gross, 2002; Ochsner et al., 2002]. 

Inclusion and exclusion criteria for studies were the same as for CRC (only visual stimuli, only 

downregulation). Note that only studies using aversive stimuli were included. Furthermore, we 

selected only studies that employed reappraisal to modulate emotional responses; studies that 

used suppression or manipulation of attention such as distraction were excluded. These strict 

criteria were selected to achieve design homogeneity across CER and CRC studies, resulting in 

a smaller number of included studies than in other meta-analyses of CER [Morawetz et al., 

2017b]. Publications using identical subject samples were counted as one single study; thus, 

there were less included studies than included publications. 

Data extraction, meta-analysis, and post-hoc control analyses (see below for details) were 

conducted as for CRC, using MKDA [Wager et al., 2007]. Due to our hypothesis, we only inves-

tigated the meta-analytic contrast "CER > Emotional baseline".   
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3.1.3 Conjunction analysis between CRC and CER 

In order to find overlapping brain regions activated during both CRC and CER, we performed a 

conjunction analysis of the two individual meta-analyses, i.e., "CRC > Reward baseline" and 

"CER > Emotional baseline". To do so, we computed the union of p-value result maps of both 

individual analyses, correcting for potential errors in the estimation of p-values during individ-

ual meta-analyses (p<0.005) [Radua et al., 2013]. 

In order to find differential activation patterns between CRC and CER, we investigated the 

meta-analytic contrast "(CER > Emotional baseline) > (CRC > Reward baseline)" and vice versa. 

Results were conjuncted with results of individual meta-analyses to ensure that activation 

differences were located in areas of significant activation. 

 

3.1.4 Post-hoc control analyses  

Several control analyses were conducted for both the CRC and the CER meta-analysis.  

Jackknife analyses were performed to test for disproportionate effects of any single study on 

the results. The density statistic of each significant meta-analytic result cluster was iteratively 

recalculated (each time leaving out one study) and then compared to the original density sta-

tistic via χ²-test [Etkin & Wager, 2007]. 

Furthermore, we conducted post-hoc analyses to test for disproportionate influences of the 

following variables on the results: (i) gender (only female, only male, or mixed), (ii) age (child 

[0 to 18 years], young adult [18 to 30 years], or older adult [more than 30 years]), (iii) cognitive 

control strategy subtypes (antecedent-focused, i.e., instruction was given before stimulus, or 

postcedent-focused, i.e., instruction was given during or after stimulus), and (iv) stimulus type 

(e.g., food vs. non-food pictures). For each variable, studies were divided into categories as 

described above. Then the density statistic of each significant cluster was recalculated for each 

category and compared to the other categories of this variable via χ²-test [Kaiser et al., 2015]. 
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3.2 Project 2 

3.2.1 Overview 

This project tested the hypothesis of increased global participation during CER (Fig. 3A) by 

applying graph analysis to fMRI data acquired during a CER task [Mulej Bratec et al., 2015]. 

Participants faced aversive emotional pictures in two conditions: Attend and Regulate. A single 

trial of the task started with a fixation cross, followed by the instruction of whether to simply 

attend to the stimulus or to regulate the emotions induced by the upcoming picture, employ-

ing a cognitive reappraisal strategy (Fig. 3B) [Gross, 2002]. Regulation strategy defined the 

contrasting conditions of our analysis (Attend vs. Regulate), which focused on graph-scores 

derived from emotion-related functional connectivity in response to aversive pictures (Fig. 3C). 

 

3.2.2 Participants 

19 healthy female subjects (mean age 24.8 ± 2.4 years) were recruited for the fMRI-based CER 

experiment. Subjects had to be free of any current or past neurological or psychiatric disor-

ders, as verified by interview and psychometrics (Beck Depression Inventory and State-Trait 

Anxiety Inventory), and without any psychotropic medication. Only females were selected to 

exclude any gender bias in emotion processing and regulation [McRae et al., 2008b]. The study 

was approved by the ethics committee of Technische Universität München, and written in-

formed consent was obtained from all participants. Furthermore, all subjects were right-

handed native German speakers with normal or corrected-to-normal vision. 

 

3.2.3 Task paradigm 

After a 20 min training of the paradigm outside the scanner, each participant completed 2 task 

runs in the MRI scanner [Mulej Bratec et al., 2015]. Each run comprised one task condition 

defined by the regulation strategy and consisted of 80 trials. Runs/tasks were counterbalanced 

across subjects. In the Attend condition, subjects were instructed to attentively look at the 

pictures and to not change the evoked emotional feelings. In the Regulate condition, subjects 

were instructed to down-regulate their emotions using a so-called antecedent-focused strate-

gy of cognitive reappraisal in the form of self-distancing (e.g. ‘The content of the images has 

nothing to do with me or my situation. I am not affected and none of my loved ones is affect-

ed’). Each trial started with a fixation cross presented for 1s, followed by 1) the instruction (2s) 

of whether to simply attend to the stimulus or to regulate the emotions induced by the up-
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coming picture; 2) an anticipation phase (6s), during which participants prepared for the emo-

tional stimulus; 3) a picture presentation phase (6s), to induce negative emotions; and 4) a 

rating phase (3s), in which participants rated the intensity of their emotional feelings (on a 7-

point scale ranging from -3 = very negative to +3 = very positive). Negative emotional intensity 

scores describe a negative emotional feeling, positive emotional intensity scores a positive 

emotional feeling. This means that the higher (i.e., less negative) this score in the Regulate 

condition compared to the Attend condition, the greater the success of emotion regulation. 

Finally, a black screen was presented for a jittered inter-trial interval (3 ± 2s) (Fig. 3B). During 

the picture presentation phase, aversive pictures from the International Affective Picture Sys-

tem (IAPS) were presented to elicit negative emotions [Lang et al., 1997]. Overall, pictures 

were presented in 40 trials (i.e., in 50% of the 80 trials per condition); in the other 50% of tri-

als, no picture was shown. The psychological factor in the subsequent psychophysiological 

interaction analysis was the presence of a picture (i.e., contrast picture present vs. baseline) in 

order to specifically investigate emotion-related brain activity. 

 

3.2.4 fMRI acquisition and preprocessing 

The experiment was conducted on a 3T Siemens MRI scanner at Klinikum rechts der Isar, Tech-

nische Universität München. Stimuli were presented using Presentation software (Neurobe-

havioral Systems) and were back-projected onto a screen behind the scanner. Subjects could 

see the screen through an adjustable mirror mounted to the head coil. T1-weighted anatomi-

cal images were obtained using an MPRAGE sequence (1 × 1 × 1 mm resolution). Functional 

T2* images were acquired using a gradient-echo EPI sequence (repetition time: 2 s, echo time: 

30 ms, flip angle: 90°, acquisition matrix: 64 × 64, 35 slices, slice thickness: 3 mm, inter-slice 

gap: 0.6 mm; 3x3x3 mm resolution). In each of the two task conditions, 881 functional images 

were obtained per subject. 

Data preprocessing was performed using SPM8 (Wellcome Department of Cognitive Neurolo-

gy, London, UK). For each subject, the first two volumes of each session were discarded to 

account for magnetization effects. The remaining functional images were slice-timed, head 

motion corrected, coregistered to T1 images, spatially normalized into MNI standard space 

through T1-based segmentation, and spatially smoothed with a Gaussian kernel of 8mm 

FWHM (full width at half maximum). To control for confounding influences of spatial smooth-

ing (especially in subcortical ROIs, some of which were less than 8mm apart), we repeated the 

complete analysis with smoothing kernels of 6mm, 4mm, and 2mm FWHM. 
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for the Attend condition, (B2) for the Regulate condition. After instructing (2s) and preparing 

(6s) the regulation strategy, an aversive picture from the International Affective Picture System 

(IAPS; Lang et al., 1997) was presented (6s) in 50% of trials. Finally, subjects had to evaluate 

their emotion intensity on a scale from -3 to +3. (C) Group-level connectivity matrices for At-

tend and Regulate conditions, with nodes grouped into functional brain network modules. 

Module borders are indicated by colored frames; corresponding modules (i.e., modules with 

similar functional composition across conditions) are marked with the same color. Below the 

matrices, color bars show the anatomical and functional affiliation of each node (functional 

networks were derived from Power et al. (2011)). Color legends of anatomical structures and 

functional networks are printed in the lower left part of the figure. MTL = medial temporal lobe. 

(D) Differences in functional connectivity between conditions (Regulate - Attend). Connectivity 

differences were calculated by subtracting the two group-level matrices shown in (C). Hot col-

ors depict stronger, cool colors weaker connectivity in Regulate than Attend. Plots are overlaid 

on a reference surface projection of the brain using BrainNet Viewer [Xia et al., 2013]. 

 

3.2.5 Construction of connectivity matrices 

Nodes were defined by 286 cortical and subcortical spherical ROIs. 241 isocortical and 8 cere-

bellar ROIs with 4 mm radius each, as well as 5 thalamic ROIs with 3 mm radius, were taken 

from Power and colleagues (2011); these ROIs were asymmetrically distributed across the 

brain. ROI labels were in line with brain anatomy, by matching the ROI center coordinates to 

the Harvard-Oxford brain atlas implemented in FSL (FMRIB, Oxford University). For other corti-

cal and subcortical structures, we relied on different sources to ensure better brain coverage, 

including brain regions potentially relevant for emotions. For each hemisphere, 8 hippocampus 

ROIs with 2 mm radius and 6 striatum ROIs with 3 mm radius were created, based on the co-

ordinates reported by Kahn et al. [Kahn et al., 2008] and Di Martino et al. [Di Martino et al., 

2008], respectively. For the amygdala, 2 ROIs (basolateral and centromedial amygdala) with 2 

mm radius were generated in each hemisphere, based on center coordinates from the SPM 

Anatomy toolbox [Amunts et al., 2005]. 

Edges were calculated by connectomic psychophysiological interactions (PPI) using the gener-

alized PPI (gPPI) method, which is believed to be superior to the standard PPI approach in ex-

amining inter-individual functional connectivity differences, by allowing greater model flexibil-

ity and improving model fit, sensitivity and specificity of findings [Cisler et al., 2014; McLaren 

et al., 2012]. Connectomic PPI, in which one gPPI analysis is conducted for each pair of nodes, 

captures task-dependent changes in whole-brain functional connectivity [Gerchen et al., 2014]. 
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GPPI is a special type of multiple regression that includes a psychological regressor (in our case 

presentations of aversive pictures), a physiological regressor (BOLD time course of the "seed" 

node), and a condition-specific interaction regressor (product of the psychological and the 

deconvolved physiological regressor). To control for nuisance variables, we additionally added 

6 head motion regressors to the model, specifically rotation and translation in 3 directions 

each. Seed time-courses for each node were obtained by extracting voxel-wise BOLD time se-

ries and then averaging them across all voxels in the ROI. Absolute beta values of PPI interac-

tion regressors, reflecting the strength of task-dependent functional connectivity between 

each pair of ROIs, were then entered as edge weights into the connectivity matrix.  

As the connectomic PPI analysis was performed separately for each regulation condition, it 

resulted in two condition-specific 286 x 286 whole-brain connectivity matrices for each sub-

ject. Since we did not assume any directionality of the connections, the two triangles of each 

matrix were then averaged to create symmetric connectivity matrices. To improve inter-

subject comparability, matrices were normalized by rescaling the edge weights to the range 

[0,1] [Rubinov & Sporns, 2010]. For purposes of visualization and analysis of topological node 

roles, two group-level connectivity matrices were generated (one for the Attend and one for 

the Regulate condition) by averaging the individual condition-specific matrices and again 

rescaling them to the range [0, 1].  

 

3.2.6 Graph analysis 

Connectivity matrices were thresholded by cost (i.e., connection density) following previous 

graph-based studies of task-related brain connectivity [Godwin et al., 2015; Kinnison et al., 

2012]. Cost equals the number of existing edges divided by the maximal possible number of 

edges in a graph; thus, a cost of x% means that only the x% of strongest edges are kept. The 

term "cost" derives from economical constraints of wiring costs [Bullmore & Sporns, 2009]. We 

investigated the cost range between 10% and 50% (with intervals of 5%) since at lower costs, 

graphs become increasingly unstable and fragmented and at higher costs, topology becomes 

increasingly random [Bullmore & Bassett, 2011; Humphries et al., 2006]. Graph scores were 

stable over the entire cost range; we report results for the cost of 30%, because at this cost, 

the number of modules was most stable across subjects. However, to ensure that results did 

not depend solely on one cost, we also calculated for each graph score the area under the 

curve over the entire cost range [Spielberg et al., 2015]. 

Functional segregation, integration, and community structure were assessed by calculating 

several global and nodal graph scores for the individual connectivity matrices. Functional seg-
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regation was quantified by global clustering coefficient, functional integration by characteristic 

path length, and community structure by modularity, participation coefficient and within-

module degree. All graph scores were calculated using the Brain Connectivity Toolbox 

[Rubinov & Sporns, 2010].  

Brain modules were identified by maximizing modularity, i.e., the degree to which a graph can 

be subdivided into non-overlapping sub-graphs or modules. Modularity thus quantifies the 

ratio of within-module edges to between-module edges [Newman, 2004]. Modularity was 

maximized using Newman's algorithm [Newman, 2006] followed by the Kernighan-Lin fine-

tuning algorithm [Kernighan & Lin, 1970], and averaged over 100 repetitions. 

Participation coefficient, which quantifies the between-module connectivity of a graph, was 

calculated based on the modular partition with highest modularity [Guimera & Amaral, 

2005b]. For node i, the nodal participation coefficient ���ranges between 0 and 1: values close 

to 1 indicate that node i is uniformly connected among all modules; a value of 0 means that it 

is only linked to nodes in its own module [Guimera & Amaral, 2005b]. Thus, nodes with high 

nodal participation are likely to facilitate global inter-modular integration [Rubinov & Sporns, 

2010]. The global participation coefficient of a network is then computed as the average nodal 

participation coefficient across all nodes [Godwin et al., 2015]. 

To characterize functional segregation in the whole-brain network, global clustering coefficient 

was calculated [Watts & Strogatz, 1998]. Finally, functional integration was quantified by char-

acteristic path length [Watts & Strogatz, 1998]. 

 

The following formulas were used to calculate graph scores: 

Modularity. We calculated the weighted modularity �� [Newman, 2004] by  

�� = 1
�� � 	
�� − 
��
���� � ���,���,�∈�

 , 
where �� is the sum of all edge weights and N the set of all nodes in the network, 
�� the con-

nection weight of the edge linking nodes i and j, 
�� the weighted degree of node i, and �� the 

module containing node i; ���,��  = 1 if i and j are in the same module, otherwise ���,�� = 0. 

 

Participation coefficient. For node i, the nodal participation coefficient ���was calculated by 

��� = 1 − � �
�����

��

�
�

�∈�
 , 

with M being the set of all modules and 
����� the connection weight of edges linking node i 

and all nodes in module m [Guimera & Amaral, 2005b]. 
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Global clustering coefficient. Global clustering coefficient ��was calculated by  

�� = 1
 � 2"��
��
� − 1��∈�

 , 
where n is the number of nodes in the network and "�� the connection weight of the triangles 

around node i [Watts & Strogatz, 1998]. 

 

Characteristic path length. Characteristic path length #� was calculated using the following 

formula [Watts & Strogatz, 1998]: 

#� = 1
 � ∑ �����∈�,�%�

 − 1�∈�
 , 

with ���� being the weighted shortest path length between nodes i and j. 

 

All global graph scores were normalized at the subject level by dividing them by the respective 

average graph score across 100 random graphs with conserved size, cost and degree distribu-

tion of the original graph [Bullmore & Sporns, 2009]. Statistical comparison of graph scores 

across conditions was performed using Wilcoxon's signed-rank test (p<0.05), as no assump-

tions about the normal distribution of data were made [Bullmore & Sporns, 2009]. For nodal 

scores, an false discovery rate (FDR) correction was applied to account for multiple compari-

sons [Benjamini & Hochberg, 1995]. To control for the testing procedure, we re-evaluated our 

findings with a permutation test (100,000 permutations) [Spielberg et al., 2015]. 

 

3.2.7 Node roles in the whole-brain community structure 

To assess the role of nodes in the community structure of the functional whole-brain network, 

we assigned them to different categories based on their pattern of within- and between-

module connectivity. For this step, the two condition-specific group-level graphs were used.  

Within-module connectivity was measured by within-module degree, which is large for nodes 

with a large number of intra-modular connections. The within-module degree of node i is nor-

malized as the z-score over all nodes in i's module, and therefore quantifies how well connect-

ed node i is within its own module [Guimera & Amaral, 2005a]: 

&�� = 
������ − 
'�����
()*����  , 

where 
'�is the mean and ()* the standard deviation of the within-module degree of all 

nodes in module ��. 
Between-module connectivity, in contrast, was measured by nodal participation coefficient. 
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Within-module degree &�� and nodal participation coefficient ��� define a two-dimensional 

parameter space, the z-P plane, on which all nodes can be plotted. Depending on its position 

on the z-P plane, each node is then assigned to one of seven categories [Guimera & Amaral, 

2005b]. According to the within-module degree, nodes with z ≥ 2.5 are classified as "hubs" and 

nodes with z < 2.5 as "non-hubs". According to the nodal participation coefficient, non-hubs 

are further subdivided into "ultra-peripheral nodes" (P ≤ 0.05), "peripheral nodes" (0.05 < P ≤ 

0.62), "connector nodes" (0.62 < P ≤ 0.80), and "kinless nodes" (P > 0.80). Hubs are further 

subdivided into "provincial hubs" (P ≤ 0.30), "connector hubs" (0.30 < P ≤ 0.75), and "kinless 

hubs" (P > 0.75) [Guimera & Amaral, 2005b]. Thus, connector hubs have both high within- and 

high between-module connectivity and play a key role in inter-modular communication, as 

they can mediate information flow between their own module and other modules. 

In networks with m ≥ 2 modules, the maximal possible P is 1 − �1 �⁄ � [Fuertinger et al., 2015]. 

The group-level graphs for the Attend and Regulate condition both have 3 modules, so the 

maximal possible P is 0.67. Therefore, kinless nodes and kinless hubs cannot occur in the con-

dition-specific group-level graphs. The "highest" possible node categories are "connector 

nodes" (z < 2.5; 0.62 < P ≤ 0.80) and "connector hubs" (z ≥ 2.5; 0.30 < P ≤ 0.75). 

 

3.2.8 Correlation of graph scores with CER success 

To evaluate the specificity of global interaction for CER outcome, correlation analysis with 

emotional intensity rating scores was performed. Pearson correlations were calculated be-

tween the averaged emotional intensity scores of the Regulate condition and the global partic-

ipation coefficient during Regulate. 

 

3.2.9 Voxel-wise activation analysis 

To detect potential overlaps between nodes with increased functional embedding during CER 

and clusters of specialized local activity during emotional processing with and without CER, an 

activation analysis based on a general linear model (GLM) was conducted. The GLM contained 

the following regressors convolved with the hemodynamic response function: regulation strat-

egy, preparatory cue, aversive picture, blank screen (no-picture trials), and emotion intensity 

scale. Additionally, 6 movement regressors derived from realignment were included as 

regressors of no interest. On the group level, β-maps for aversive picture presentation in pic-

ture trials were entered into paired t-tests. Activation maps were generated for contrasts At-

tend - Regulate (p<0.005, uncorrected) and Regulate - Attend (p<0.005, uncorrected). 
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3.3 Project 3 

3.3.1 Participants 

15 patients with schizophrenia (42.1±12.5 years; 6 female) and 15 healthy controls (43.3±10.1 

years; 6 female) were included in the study. Patients met DSM-IV criteria for schizophrenia 

based on the Structured Clinical Interview for DSM-IV (SCID). and were recruited from the De-

partment of Psychiatry of Klinikum rechts der Isar, Munich, Germany. Inclusion criteria com-

prised at least 2 psychotic episodes and a state of symptomatic remission of positive symp-

toms at the time of study. This latter criterion was defined based on Andreasen et al. 

[Andreasen et al., 2005]: Positive and Negative Syndrome Scale (PANSS) items 'hallucinations' 

(P2), 'delusions' (P3), 'bizarre behavior' (G5), and 'thought disorder' (G9) had to be ≤3 

[Andreasen et al., 2005; Wils et al., 2017]. For negative and general symptoms, no remission 

criteria had to be fulfilled. Antipsychotic medication was kept stable for at least 2 weeks before 

scanning. All participants gave informed consent after receiving a complete description of the 

study. The study was approved by the Ethics Review Board of the Klinikum Rechts der Isar, 

Technische Universitat München, Germany. Approval to administer radiotracers was obtained 

from the Bundesamt für Strahlenschutz. Clinical assessments were performed by trained psy-

chiatrist C.L. Schizophrenic symptom severity was quantified by PANSS [Kay et al., 1987].  

 

3.3.2 FDOPA-PET analysis 

3.3.2.1 Imaging 

FDOPA-PET data were acquired with a hybrid whole-body mMR Biograph PET/MRI scanner 

(Siemens Healthcare, Erlangen, Germany) using a vendor-supplied 12-channel phase array 

head coil. Participants were instructed not to smoke or drink coffee or alcohol for 12 hours 

before scanning [Bloomfield et al., 2014]. 150 MBq of FDOPA were administered by bolus in-

travenous injection 30s before scan start. The PET acquisition lasted 70min. Ordered subset 

expectation maximization (OSEM) (21 subsets, 3 iterations) was used to reconstruct PET data 

with a voxel size of 1.7×1.7×2mm3, with a 3 mm Gaussian post-reconstruction filter, corrected 

for attenuation and scatter based on anatomical MRI information. PET data were framed into 

30 dynamic frames (1×30s, 10×15s, 3×20s, 2×60s, 2×120s, 12×300s). Anatomical T1-weighted 

MRI data were acquired simultaneously with the PET data (TR/TE/flip angle: 2,300 ms/2.98 

ms/9°; 160 slices (gap 0.5 mm) covering the whole brain; FoV: 256 mm; matrix size: 256×256; 

voxel size: 1.0×1.0×1.0 mm3). 
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3.3.2.2 Image analysis 

FDOPA-PET data were analyzed with SPM12 (Wellcome Trust Centre for Neuroimaging, Lon-

don, UK). First, PET data were corrected for motion by realigning all PET frames to the last 

frame. Since anatomical information is fuzzy in the first frames, the transformation matrix of 

the frame at minute 5 was applied to all preceding frames [Deserno et al., 2015]. The individu-

al T1 image was coregistered to the last PET frame and then spatially normalized into MNI 

space. The inverse transformation matrix of this normalization was then used for the trans-

formation of striatum and cerebellum ROIs (see below for details) into individual PET space. 

Next, we calculated the influx constant ki
cer, a quantitative measure reflecting dopamine syn-

thesis capacity, in a voxel-wise manner using Gjedde-Patlak linear graphical analysis with cere-

bellum as reference region [Patlak et al., 1983]. The formula of the Patlak plot is the following: 

�,-.�"�
�/01�"� = 
�

2 �/01�3��34
5 �/01�"� + 75 

where �,-.�"� is the tracer blood plasma concentration in a certain voxel at time t, �/01�"� is 

the tracer blood plasma concentration in a reference region at time t, and V0 is the distribution 

volume of the central compartment. ki and V0 are estimated using linear regression fitting. 

When using cerebellum as reference region, ki is called ki
cer. 

The time activity curve of the cerebellum (excluding vermis) was extracted using an anatomical 

mask created in FSLview from the Probabilistic cerebellar atlas [Diedrichsen et al., 2009]. PET 

frames acquired between 20 and 60min were used for linear fitting [Deserno et al., 2015], 

resulting in whole-brain voxel-wise ki
cer maps.  

Mean ki
cer values of limbic, associative, and sensorimotor subdivisions of the striatum were 

extracted (by averaging over all voxels in each ROI) from individual maps using functionally 

defined masks from the Oxford-GSK-Imanova connectivity atlas. 

 

3.3.3 Behavioral analysis 

3.3.3.1 Decision making task 

Model-based/model-free behavior was investigated with a sequential decision making task 

[Daw et al., 2011]. The task comprised 150 trials with the goal of winning as much money as 

possible. The structure of the task is depicted in Fig. 4.  

Each trial consisted of two stages, in each of which the subject had to pick one symbol (stimu-

lus) out of a pair of symbols. In total, 6 stimuli were employed in the task: one pair of stimuli in 

the first stage, and two (fixed) pairs in the second stage. 
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Crucially, the transition between first and second stage was probabilistic: each first-stage stim-

ulus led with 70% probability (= common transition) to a certain second-stage stimulus pair 

and with only 30% probability (= uncommon transition) to the other second-stage stimulus 

pair. These common/uncommon transitions remained stable over the whole task - they did not 

change. Each second-stage stimulus, in turn, led to monetary reward with a certain probability 

that changed over the course of the task. After each trial, subjects received feedback about 

whether or not they had achieved a reward. At the end of the task, they received the amount 

of won money. 

Before starting the task, subjects were instructed about the structure of the task. However, 

they were not told about the exact probabilities and common/uncommon transitions. Instead, 

they had to learn these associations during the task. To facilitate this process, subjects per-

formed a training run (consisting of 25 trials) before the task. 

 

 

 

 

Figure 4: Structure of the sequential decision making task . 

(A) Logic and (B) time sequence of one trial. Figure taken from [Wunderlich et al., 2012]. 
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3.3.3.2 Analysis of stay-switch probability 

First, we checked whether subjects used both model-based and model-free decision making 

strategies. Therefore, we analyzed their stay-switch behavior. More specifically, we looked at 

the probability of selecting the same first-stage stimulus as in the trial before (= stay probabil-

ity). This probability is influenced by two factors: reward (i.e., reward or no reward in the trial 

before), and transition (i.e., common or uncommon transition between first and second stage 

in the trial before).  

If someone acted purely model-free, then only reward would influence her/his behavior: if 

s/he has received a reward in the trial before, s/he will choose the same first-stage stimulus 

again, regardless of whether the transition from first to second stage was common (70%) or 

uncommon (30%). 

However, if someone also acted model-based, we would expect that the transition in the trial 

before plays an important role, too. This means that when a certain first-stage stimulus has led 

to a reward via an uncommon transition, one would switch to the other first-stage stimulus in 

the next trial to increase the probability of winning a reward. In the same vein, no reward after 

a rare transition would not trigger a switch, since in the next trial one can expect a common 

transition again, which will likely lead to a reward again. This suggests that model-based deci-

sion making is influenced by an interaction of reward and transition. 

To quantify subjects' behavior, stay probabilities for four categories were calculated: reward 

and common transition, reward and uncommon transition, no reward and common transition, 

no reward and uncommon transition. Then, a repeated-measures ANOVA was conducted with 

the factors reward and transition. For model-based behavior, a main effect of reward is ex-

pected. For model-based behavior, an significant interaction between reward and transition is 

expected [Daw et al., 2011]. 

 

3.3.3.3 Computational modeling of decision making behavior 

Second, in order to quantify the balance between model-based and model-free behavior, sub-

jects' decision making behavior was computationally modeled. Following previous studies 

[Daw et al., 2011; Deserno et al., 2015; Wunderlich et al., 2012], we employed a hybrid model-

free/model-based algorithm. The basic idea of such reinforcement algorithms is to define a 

value for each action (i.e., selection of a certain stimulus) which quantifies the expected re-

ward. These values are updated after each trial using the prediction error, i.e., the difference 
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between actual and expected reward. In a second step, values are translated into action prob-

abilities using a softmax function. 

 

In the second stage, values were updated in the same way for both model-based and model-

free decision making, since the two strategies did not differ at this stage. A SARSA(λ) temporal 

difference learning algorithm was used [Rummery & Niranjan, 1994]. Value Vs2 at time point 

t+1 is defined as: 

78�9:�,4;<= = 78�9:�,4= + >��?�"� − 78�9:�,4=� 

where a2 is the second-stage action (selection of second-stage stimulus), α2 the second-stage 

learning rate, and r(t) the reward obtained at time point t. 

First-stage values were computed as a weighted combination of model-free and model-based 

values: 

78<@AB/�C = D78<�E + �1 − D�78<�F 

where ω is a weighting factor quantifying the balance between model-based and model-free 

decision making (1 means purely model-based, 0 means purely model-free). 

First-stage model-free values were updated using SARSA(λ) temporal difference learning 

[Rummery & Niranjan, 1994]. In the first stage, stimulus values were updated on a trial-by-trial 

basis using the following formula: 

78<�F9:<,4;<= = 78<�F9:<,4= + >< G78��F9:�,4= − 78<�F9:<,4=H + I><�?�"� − 78�9:�,4=� 

where a1 is the first-stage action (selection of first-stage stimulus), α1 the first-stage learning 

rate, and λ an eligibility parameter quantifying how much first-stage values are influenced by 

second-stage prediction errors. 

First-stage model-based values were updated taking into account the transition probabilities 

between the two stages [Daw et al., 2011]: 

7<�E9:<,4;<= = 0.7 × max G7Q�F�"�, 7R�F�"�H + 0.3 × max G7T�F�"�, 7U�F�"�H 

In this case, first-stage stimulus 1 leads with a probability of 70% to second-stage stimuli 3 and 

4, and with 30% probability to second-stage stimuli 5 and 6. 

 

Values were transformed into action probabilities using the following formula: 

�9:�,4 = :VW�,4= = exp �Z�[7@AB/�C9W�,4 , := + \ × ?]^�:�_�
∑ ,` exp �Z�[7@AB/�C9W�,4, :a= + \ × ?]^�:a�_� 

where β represents the softmax temperature (can be interpreted as performance [Maia & 

Frank, 2017]) and π describes perseverance (choosing the same or a different first-stage stimu-

lus in the next trial). 
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In summary, the modeling algorithms had seven parameters: first-stage learning rate α1, se-

cond-stage learning rate α2, first-stage performance β1, second-stage performance β2, perse-

verance π, eligibility parameter λ, and model-based/model-free weighting ω. 

Parameters were transformed to normal distributions using logistic (for α, λ, ω) or exponential 

(for β, π) functions. Models were first fitted for each subject individually using maximum likeli-

hood and then refitted using the population distribution to ensure normal distribution. The 

best model was selected using Bayesian Information Criterion (BIC). 

Group comparisons and correlations analyses were restricted to ω, which prevented multiple 

testing problems. 

 

3.3.4 Correlation between FDOPA-PET and decision making parameters 

To test for associations between presynaptic dopamine synthesis and decision making, Pear-

son correlations between ki
cer measures of striatal subdivisions and the model-based/model-

free weighting parameter ω were computed. 

To test whether these associations differed between patients and controls, interaction anal-

yses (linear regressions) were conducted, with ω as dependent variable and group, ki
cer, and 

group*ki
cer as independent variables. In such analyses, a significant interaction group*ki

cer indi-

cates a group-differential association between dopamine synthesis and model-based/model-

free balance. 
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4 Results 

4.1 Project 1 

In total, the literature search yielded a sample of 22 CRC studies, in which subjects had to re-

sist craving towards a reinforcing stimulus, with 741 subjects (Table 2, Fig. 2A) and 47 CER 

studies, in which subjects had to downregulate their emotional responses to aversive visual 

stimuli using reappraisal strategies, with 1455 subjects (Table 3, Fig. 2B).  

 

 

Table 2: Studies included in the CRC meta-analysis. 

F = female, M = male. 

Author, year 
Subjects 

(n) 
Gender Mean age Stimulus type 

Brody et al. (2007) 42 
12 F, 

30 M 
38 Cigarette videos 

Crockett et al. (2013) 28 28 M 18-35 Erotic pictures 

Diekhof et al. (2012) 32 16 F, 16 M 24.5 Desire reason task 

Dietrich et al. (2016) 43 43 F 26.7 Food pictures 

Dong et al. (2016) 27 27 F 21.56 Food delayed discounting 

Giuliani et al. (2014) 50 33 F, 17 M 21.77 Food pictures 

Giuliani et al. (2015) 60 60 F 16.66 Food pictures 

Harding et al. (2018) 30 14 F, 16 M 24.17 Food pictures 

Hare et al. (2011) 33 23 F, 10 M 24.8 Food pictures 

Hartwell et al. (2011) 32 19 F, 14 M 33.5 Pictures of people smoking 

He et al. (2014) 30 17 F, 13 M 19.7 Food pictures 

Hill et al. (2017) 26 19 F, 7 M 24 Monetary reward 

Hollmann et al. (2012) 17 17 F 25.3 Food pictures 

Hutcherson et al. (2012) 26 9 F, 17 M 22 Food pictures 

Kober et al. (2010) 21 9 F, 12 M 26.8 Food and cigarette pictures 

McClure et al. (2004) 14 9 F, 5 M 21.4 Monetary reward 

Norman et al. (2017) 20 20 M 12-18 
Monetary reward: delay 

discounting task 

Petit et al. (2016) 23 10 F,13 M 25.91 Food pictures 

Silvers et al. (2014) 105 71 F, 34 M 14.27 Food pictures 

Tuulari et al. (2015) 41 41 F 44.9 Food pictures 

Van der Laan et al. (2014) 20 20 F 21.2 Food pictures 

Yokum et al. (2013) 21 13 F, 8 M 15.2 Food pictures 
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Author, year 
Subjects 

(n) 
Gender Mean age Stimulus type 

Belden et al. (2014) 19 8 F, 11M 10.05 Pictures: IAPS 

Denny et al. (2015) 17 12 F, 5 M 24.1 Pictures: IAPS 

Domes et al. (2010) 33 17 F, 16 M 24.9 Pictures: IAPS 

Dörfel et al. (2014) 36 36 F 18-39 Pictures: IAPS 

Doré et al. (2017)  20 12 F, 8 M 24.6 Pictures: IAPS 

Eippert et al. (2007) 24 24 F 23.30 Pictures: IAPS 

Engen et al  (2015) 15 5 F, 10 M 56.1 Film clip 

Erk et al. (2010) 17 8 F, 9 M 43.9 Pictures: IAPS 

Goldin et al. (2008) 17 17 F 22.7 Videos 

Hallam et al. (2015) 40 20 F, 20 M 20 Pictures: IAPS 

Hayes et al. (2010) 25 11 F, 14 M 21.6 Pictures: IAPS 

Koenigsberg et al. (2009) + (2010) 16 9 F, 7 M 31.8 Pictures: IAPS 

Krendl et al. (2012) 16 10 F, 6 M 21.6 Pictures: IAPS 

Lang et al. (2012) 15 15 F 24.73 Scripts: ANET 

Leiberg et al. (2012) 24 24 F 24.1 Pictures: IAPS 

Mak et al. (2009a) 12 12 F 24 Pictures: IAPS 

Mak et al. (2009b) 24 12 F, 12 M 24 Pictures: IAPS 

McRae et al. (2008) 25 13 F, 12 M 20.6 Pictures: IAPS 

McRae et al. (2010) 18 18 F 24.4 Pictures: IAPS 

McRae et al. (2012) 38 21 F, 17M 16.5 Pictures: IAPS 

Modinos et al. (2010) 18 7 F, 11M 21.1 Pictures: IAPS 

Morawetz et al. (2016a) 59 20 F, 39 M 32.47 Film clip  

Morawetz et al. (2016b)  60 30 F, 30 M 30.48 Pictures: FACES 

Morawetz et al. (2017a)  23 12 F, 11 M 25.70 Pictures: IAPS 

Mulej Bratec et al. (2015) 20 20 F 24.8 Pictures: IAPS 

Nelson et al. (2015) 22 11 F, 11 M 25.2 Pictures 

New et al. (2009) 14 14 F 31.7 Pictures: IAPS 

Ochsner et al. (2002) 15 15 F 21.9 Pictures: IAPS 

Ochsner et al. (2004) 24 24 F 20.6 Pictures: IAPS 

Paschke et al. (2016)  108 55 F 26.12 Pictures: EPS 

Perlman et al. (2012) 14 6 F, 8 M 15.1 Pictures: IAPS 

Phan et al. (2005) 14 8 F, 6 M 27.6 Pictures: IAPS 

Pitskel et al. (2011) 15 6 F, 9 M 13.03 Pictures: IAPS 

Qu et al. (2017)  29 14 F, 15 M 19.2 Photos 

Sarkheil et al. (2015) 14 8 F, 6 M 20-27 Pictures: IAPS 

Schulze et al. (2011) 15 15 F 24.53 Pictures: IAPS 

Silvers et al. (2015a) 56 31 F, 25 M 16.45 Pictures: IAPS 

Silvers et al. (2015b) 30 13 F, 17 M 21.97 Pictures: IAPS 

Silvers et al. (2017)  112 65 F, 47 M 15.73 Pictures: IAPS 

Sripada et al. (2014) 49 23 F, 26 M 23.63 Pictures: IAPS 

Stephanou et al. (2016) + (2017) 78 44 F, 34 M 19.91 Pictures: IAPS 

Uchida et al. (2015) 62 32 F, 30 M 22.3 Pictures: IAPS 

Vanderhasselt et al. (2013) 42 42 F 21.26 Pictures: IAPS 
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Walter et al. (2009) 18 18 F 24 Pictures: IAPS 

Winecoff et al. (2011) 42 n.a. 25 Pictures: IAPS 

Winecoff  et al. (2013) 31 21 F, 10 M 
F: 23.1 

M: 69 
Pictures: IAPS 

Zaehringer et al. (2018)  20 13 F, 7 M 39.65 Pictures: IAPS 

 

Table 3: Studies included in the CER meta-analysis. 

ANET: Affective Norms for English Text, EPS: Emotional Picture Set, F = female, IAPS: International 

Affective Picture System, M = male. 

 

4.1.1 Meta-analysis of cognitive reward control: CRC > Reward baseline 

Significant stronger activation during CRC compared to reward baseline (i.e., craving towards a re-

warding stimulus without regulation) was found for bilateral supplementary motor area (SMA), pre-

SMA, dlPFC, vlPFC, anterior insulae, and angular gyrus (Fig. 5A). 

  

4.1.2 Meta-analysis of cognitive emotion regulation: CER > Emotional base-

line 

We found significant stronger activation during CER compared to baseline emotion (i.e., attending to 

an aversive stimulus without regulation) mainly in bilateral dlPFC, vlPFC, SMA, and pre-SMA (Fig. 5B). 

Additional clusters were located in temporal gyrus (superior, middle, and inferior), angular gyrus, 

anterior and posterior cingulate cortex, precentral gyrus, caudate nucleus, occipital cortex, and cere-

bellum.  

 

4.1.3 Common activation patterns of CRC and CER 

To test for brain regions that are activated during both CRC and CER, we conducted a conjunction 

analysis of the contrasts "CRC > Reward baseline" and "CER > Emotional baseline". We found signifi-

cant overlap in the following regions: bilateral SMA, pre-SMA, dlPFC, vlPFC, and anterior insulae, as 

well as left angular and superior temporal gyrus (Fig. 5C). 

 

4.1.4 Differential activation patterns of CRC and CER 

To complement the conjunction analysis, we also tested for regions with increased stronger activa-

tion during CER compared to CRC and vice versa.   
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4.2 Project 2 

4.2.1 CER success 

To control for CER accomplishment, we assessed CER success via emotional intensity rating scores. 

After each trial, subjects rated the intensity of their emotions on a scale from -3 to +3 (with intervals 

of 1; set to 0 on each trial, negative scores reflect negative valence) via button press. These emotion-

al intensity scores were then, for each condition, averaged over all trials and compared via paired 

two-sample t-test between Attend and Regulate conditions. During the Regulate condition, emotion-

al intensity scores were significantly less negative than during the Attend condition (p<0.0001), indi-

cating successful CER across subjects. 

 

4.2.2 Increased global participation across network modules during success-

ful CER 

To perform a whole-brain graph-analytical approach on CER neurobiology, we parcellated the brain 

into 286 cortical and subcortical nodes. Edges were constructed from gPPI, reflecting task-dependent 

functional connectivity [McLaren et al., 2012]. For each subject, this procedure resulted in two 

286x286 connectivity matrices representing the whole-brain graph, once for the Attend and once for 

the Regulate condition (Fig. 3C). Graphs were thresholded at different costs (i.e., connection densi-

ties) from 10 to 50% (intervals of 5%) and network topology was investigated by graph analysis, 

which was focused on community structure quantified by both global participation coefficient 

[Guimera & Amaral, 2005b] and modularity [Newman, 2004]. To control for the specificity of find-

ings, we also examined global measures of segregation (i.e., global clustering coefficient) and integra-

tion (i.e., characteristic path length) [Watts & Strogatz, 1998] and related CER-sensitive whole-brain 

graph results with emotional intensity rating scores across subjects.  

As expected, we found that modularity (i.e., decomposability of the graph into network modules) 

was unchanged across Attend and Regulate conditions (Fig. 6A; Wilcoxon's signed-rank test, 

p=0.687); for both conditions, we found three stable modules, which were very consistent (though 

not completely identical) across conditions (Fig. 3C). On the group level, only 10% of the nodes 

switched modules from the Attend to the Regulate condition. The normalized mutual information 

(NMI) between the group-level modular partitions in the two conditions was 0.64 (NMI is a measure 

of similarity that is 1 if two modular partitions are identical and 0 if they are totally independent 

[Kuncheva & Hadjitodorov, 2004; Meunier et al., 2009]). To visualize this modular consistency, we 

colored the nodes according to both their anatomical position (i.e., brain location) and functional 

network membership (i.e., sub-graphs such as the default mode network, derived from Power et al. 

2011); the coloring thus shows, for example, a "yellow" module of the graph (Fig. 3C), built up con-
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sistently of nodes belonging to the default mode, the fronto-parietal task control, and the salience 

network.  

Critically, and in contrast to module decomposability, we found that global participation across net-

work modules (i.e., the overall connectivity of nodes of one module with nodes of other modules) 

was increased during CER (Wilcoxon's signed-rank test, p=0.022) (Fig. 6A). This finding indicates that 

CER is associated with an increased interaction across functional brain network modules.  

These results were not influenced by: (i) a specific cost, since they were consistent over the whole 

cost range, and usage of the area under the curve (representing the entire cost range) confirmed the 

result of significantly increased global participation during CER (p=0.032); (ii) the testing procedure, 

since permutation testing confirmed the finding of significantly increased global participation during 

CER (p=0.035); (iii) the preprocessing protocol concerning smoothing, since results were stable over 

different sizes of smoothing kernels. (iv) Furthermore, in order to get further evidence that increased 

global participation was related with CER in terms of CER success, we correlated the global participa-

tion coefficient with the mean emotional intensity rating score over all trials. In the Regulate condi-

tion, global participation showed an at-trend-significant positive Pearson correlation with emotional 

intensity (r=0.43, p=0.069); robustness against outliers was confirmed by Grubbs' test [Grubbs, 

1969]. However, this correlation could be confounded by low statistical power due to the rather low 

number of subjects. 

Moreover, global clustering coefficient, a key measure of network segregation describing the inter-

connectedness of neighboring nodes (Wilcoxon's signed-rank test, p=0.376), and characteristic path 

length, a key measure of network integration describing the average distance between nodes (Wil-

coxon's signed-rank test, p=0.314), were not affected by CER (Fig. 6A). This result suggests that the 

interaction increase during CER was specific for interactions across network modules and not simply 

across neighboring nodes or node pairs. Taken together, results indicate that the brain's global mod-

ular structure remains stable during CER, compared to during attending to emotional stimuli. Emo-

tional processing both with and without CER is thus likely based on the same functional brain net-

work modular structure. Notably, however, during CER, interaction across these networks increases, 

underlying the successful cognitive regulation of aversive emotions. 

 

4.2.3 Nodal participation and connector hub analysis 

4.2.3.1 Increased nodal participation of amygdala and cuneus during CER 

To investigate the community structure further at nodal levels, we first focused on nodes that drove 

the increase of global participation during CER. Note that global participation coefficient is defined as 

the average nodal participation coefficient of all nodes of the graph [Godwin et al., 2015]. Nodal par-
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the z-P plane allows for classification of nodes according to their within- and between-module con-

nectivity (Fig. 7A). Crucially, nodes classified as so-called connector hubs have both high within- and 

high between-module connectivity and are assumed to mediate communication between their own 

module and other modules [Guimera & Amaral, 2005b]. As an example, the major airport hubs in the 

world are connector hubs [Guimera et al., 2005]. Fig. 7 shows the node roles in group-level graphs 

for the Attend and the Regulate condition, respectively. We observed a different set of connector 

hubs for each condition. During the Attend condition, connector hubs were located in posterior parts 

of the brain (i.e., right occipital fusiform gyrus, right occipital pole, left precuneus) (Fig. 7A/B). In the 

Regulate condition, however, connector hubs were located in relatively more anterior regions of the 

brain (right anterior medial PFC (mPFC), left posterior cingulate cortex (PCC)) (Fig. 7A/B). This result 

indicates that when simply attending to visual-emotional stimuli, the communication across modules 

is mainly mediated by nodes in visual-occipital cortices. During CER, in contrast, between-module 

information transfer occurs mainly through nodes in more anterior regions, such as mPFC and PCC. 

Interestingly, the mPFC node "switched" from module 3 (consisting mainly of default mode, fronto-

parietal task control, and salience network nodes) in the Attend condition to module 1 (consisting 

mainly of visual and subcortical nodes) in the Regulate condition. This switch across modules during 

CER might indicate that the mPFC thus enabled regulatory control over areas processing visual emo-

tional stimuli. Acting as a connector hub in its "new" module, it could perfectly mediate information 

flow between other brain modules and the "visual-subcortical module". 

 

4.2.4 Spatial overlap of nodal functional embedding into the whole brain and 

specialized local activity during aversive emotional processing 

Finally, we tested whether nodes sensitive for changes in functional embedding (i.e., nodal participa-

tion or connector hub properties) overlapped with areas whose local activity is specialized for emo-

tional processing with and without CER. We applied canonical voxel-wise paired t-testing to contrast 

activation β-maps at a threshold of p<0.005 (uncorrected), and found typical activation patterns for 

emotional processing with CER (Regulate - Attend) and without CER (Attend - Regulate), in line with 

previous findings [Buhle et al., 2014; Ochsner et al., 2002; Wager et al., 2008]. Critically, amygdala 

and cuneus nodes, which showed increased nodal participation during CER, overlapped with clusters 

of decreased activation during CER (Attend - Regulate) (Fig. 8A). This result indicates that increased 

embedding of these nodes into the whole-brain network during CER is accompanied by suppression 

of local activity. Concerning connector hub properties, neither did connector hubs of the Attend con-

dition overlap with activation clusters for the contrast Attend - Regulate, nor did connector hubs of 

the Regulate condition overlap with activation clusters for the contrast Regulate - Attend  (Fig. 8B). 
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4.3 Project 3 

4.3.1 Decision making and dopamine in healthy subjects 

4.3.1.1 Stay-switch behavior 

The repeated-measures ANOVA of stay probability in healthy subjects showed a significant main ef-

fect of reward (p=0.01) and a significant interaction reward*transition (p=0.046). The main effect of 

reward indicates significant model-free behavior, the interaction between reward and transition 

significant model-based behavior. So both model-free and model-based components contributed to 

decision making behavior in healthy subjects (Fig. 9). 

 

 

Figure 9: Stay-switch behavior. 

Stay probability of healthy controls (HC) and patients with schizophrenia (SZP) shown for 4 categories: 

com rew = common transition and reward in the trial before; uncom rew = uncommon transition and 

reward in the trial before; com unrew = common transition and no reward in the trial before; uncom 

unrew = uncommon transition and no reward in the trial before. 

 

4.3.1.2 Association between decision making and dopamine synthesis 

To validate our approach based on the results from [Deserno et al., 2015], we tested whether we 

could replicate their findings of a positive association of dopamine synthesis capacity in nucleus 

accumbens and the tendency towards model-based behavior. Indeed, we also found a positive Pear-

son correlation between limbic striatal (covering primarily nucleus accumbens) ki
cer and the weighting 

parameter ω between model-based and model-free behavior (r=0.43, p=0.04). 
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4.3.2 Impaired decision making and aberrant dopamine in schizophrenia 

4.3.2.1 Demographic and clinical characteristics 

Patients with schizophrenia and healthy controls did not significantly differ regarding age (p=0.76, 

two-sample t-test) or gender (p=1, χ²-test). Patients' mean PANSS score was 46.1. 

 

4.3.2.2 Stay-switch behavior 

The repeated-measures ANOVA of stay probability in patients showed a significant interaction re-

ward*transition (p=0.027), but no significant main effect of reward (p=0.27) (Fig. 9). A mixed ANOVA 

comprising both subject groups revealed a significant interaction reward*group (p=0.048), indicating 

group-differential model-free behavior. In contrast, there was no significant interaction re-

ward*transition*group (p=0.7), indicating preserved model-based decision making in schizophrenia. 

 

4.3.2.3 Computational modeling of decision making 

Decision making parameters were fitted using a computational model that described subjects' deci-

sion making behavior. We restricted group comparisons to the model-based/model-free weighting 

parameter ω to avoid multiple comparison problems. ω was significantly higher in patients (p=0.02, 

two-sample t-test), indicating an increased tendency towards model-based behavior in schizophre-

nia. 

 

4.3.2.4 Striatal dopamine synthesis capacity 

The FDOPA-PET analysis showed significantly reduced ki
cer in associative striatum (p=0.001, two-

sample t-test; patients: 0.0120min−1; controls: 0.0143min−1) and sensorimotor striatum (p=0.007; 

patients: 0.0129min−1; controls: 0.0153min−1) for patients with schizophrenia. No significant differ-

ence was observed for limbic striatum (p=0.58; patients: 0.0125min−1; controls: 0.0127min−1). 

 

4.3.2.5 Association between decision making and dopamine synthesis 

For patients, no significant correlations between  the model-based/model-free weighting parameter 

ω and FDOPA ki
cer were found. Next, we conducted interaction analyses to test for group-differential 

associations between model-based/model-free balance and dopamine synthesis. We observed signif-

icant interactions group*ki
cer for limbic striatum (p=0.04) and sensorimotor striatum (p=0.03). 



49 

 

5 Discussion 

5.1 Project 1 

This study investigated two complementary questions; first, is there a consistent pattern of brain 

activation in CRC across stimulus types? Second, inspired by the idea of a common neurocognitive 

mechanism generating cognitive regulation of both rewarding stimuli and negative emotions, does a 

common activation pattern exist for both CRC and CER? We collected fMRI activation studies in CRC 

and CER and conducted a coordinate-based meta-analysis followed by conjunction to assess brain 

areas recruited by CRC and CER. First, we identified consistent CRC activation across stimulus types 

mainly in supplementary motor area, pre-supplementary motor area, ventrolateral and dorsolateral 

prefrontal cortices. Second, we found that this activation pattern overlapped largely with CER-related 

activation. This link between CRC and CER supports models of a common neurocognitive mechanism 

for CRC and CER, generating cognitive control of both reward and negative emotions. A candidate for 

such a common mechanism is model-based decision making for actions that alter either one's craving 

towards consumption of a rewarding stimulus or one's emotional state. 

 

5.1.1 Consistent activation in CRC across stimulus types 

The CRC meta-analysis revealed that brain regions in bilateral SMA, pre-SMA, vlPFC, dlPFC, anterior 

insula, and angular gyrus were consistently more strongly activated during CRC than during reward 

cue exposure without control (Fig. 5A). This is the first coordinate-based meta-analysis of fMRI-

studies in the field of CRC that investigated studies across stimulus types. The included literature was 

restricted to studies using paradigms in which subjects viewed pictures/videos of rewarding stimuli 

and had to control their craving towards these stimuli in the "CRC" condition [Brody et al., 2007; 

Kelley et al., 2015; Kober et al., 2010]. Distinct paradigms, e.g., involving depletion of self-regulatory 

resources [Wagner et al., 2013], were not considered in order to avoid methodological inconsisten-

cies. We ensured maximal coverage of the existing literature by including studies with a wide range 

of rewarding stimuli, for example money, food, sex, or cigarette smoking (Table 2). To ensure that no 

particular stimulus type (e.g., food pictures) had a disproportionate influence on the results, we con-

ducted post-hoc analyses to control for this factor. These analyses showed no significant effect of a 

specific stimulus type. Further control analyses demonstrated that neither any single study nor the 

factors age, gender, or cognitive control strategy (i.e., antecedent- or postcedent-focused) had a 

significant influence on results. 
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The results support recent theoretical suggestions and a qualitative review by Kelley et al., hypothe-

sizing that lateral PFC, ventromedial PFC, and anterior cingulate cortex are critical for CRC (their con-

cept of "self-regulation" is very akin to our concept of CRC) [Kelley et al., 2015]. While we could con-

firm consistent activation in lateral prefrontal cortices during CRC, we did not observe robust activa-

tion in ventromedial PFC and anterior cingulate. Lateral PFC is thought to be more involved in cogni-

tive aspects of self-regulation (e.g., planning), while ventromedial PFC activation might rather reflect 

adverse consequences of excessive behavior [Kelley et al., 2015]. As we restricted studies to be based 

on paradigms of cognitive reward control, our results seem well in line with these predictions.  

Furthermore, our findings extend the recent meta-analysis of Han et al., who reported consistent 

activation in SMA, pre-SMA, lateral PFC, insula, and parietal cortices during dietary self-control [Han 

et al., 2018]. We also included other stimuli like cigarettes or erotic pictures and observed a similar 

pattern, although more extended in lateral PFC. This suggests that the activation pattern relevant for 

food-control is comprised within a slightly larger pattern for domain-general cognitive control of 

hedonic stimuli. So in summary, results indicate that SMA, pre-SMA, and lateral fronto-parietal corti-

ces are consistently activated during CRC across a wide range of rewarding stimuli. 

 

5.1.2 Common activation in both CRC and CER 

Combining the results of the CRC meta-analysis with the CER meta-analysis, we showed that activa-

tion patterns of CRC and CER converged on bilateral SMA, pre-SMA, dlPFC, and vlPFC, as well as on 

insular, parietal, and temporal cortices (Fig. 5C).  

This result is composed of several subresults: (i) Consistent activation during CER comprised bilateral 

vlPFC, dlPFC, SMA, pre-SMA, cingulate, temporal, parietal, and subcortical regions (Fig. 5B). These 

results confirm almost exactly results of several previous meta-analyses of reappraisal studies, which 

also highlighted regions in dlPFC, vlPFC, SMA, pre-SMA, temporal, and parietal cortices [Buhle et al., 

2014; Kohn et al., 2014; Langner et al., 2018; Morawetz et al., 2017b], thereby confirming the reli-

ability of our meta-analytic approach. Moreover, the findings were not affected by any single study, 

age, gender, or regulation strategy, as shown by post-hoc control analyses. 

(ii) We linked CRC and CER activation via conjunction analysis. This analysis revealed a common 

multi-regional activation pattern in bilateral SMA, pre-SMA, dlPFC, vlPFC as well as anterior insula, 

left angular and superior temporal gyrus (Fig. 5C). While CRC controls approach behavior towards 

rewarding stimuli, CER controls avoidance behavior regarding aversive stimuli [Corr & McNaughton, 

2012]. This conceptualization suggests overlapping mechanisms and complementary activation pat-

terns. According to appraisal models of emotions [Gross & Barrett, 2011], negative emotions arise 

from the valuation of an aversive stimulus, which then leads to avoidance behavior. In emotion regu-
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lation, in turn, the emotion itself becomes the subject of valuation, and emotional reactivity repre-

sents the outcome action to be altered [Etkin et al., 2015]. In CER, for example, the emotion is cogni-

tively reappraised, contrary to other regulation strategies like response inhibition [Gross & Barrett, 

2011]. Similarly, rewarding stimuli are valued, leading to approach behavior. In CRC, in turn, this 

valuation itself is valued and modulated. This renders CRC akin to CER reappraisal; we likewise re-

stricted CRC to cognitive re-valuation, as opposed to response inhibition strategies [Han et al., 2018].  

Deepening this line of thought in terms of cognitive mechanisms of reappraisal, common activation 

across CER and CRC is consistent with a recent theory suggesting shared model-based control 

mechanisms for CER and reward-related decision-making such as CRC [Etkin et al., 2015]. Etkin and 

colleagues suggested particularly that vlPFC, dlPFC, SMA, and pre-SMA are critically involved in CER 

due to their typical involvement in reward model-based decision-making. This overlap of suggested 

and observed common activation across CER and CRC with its implications for underlying model-

based control mechanisms will be discussed in detail below in paragraph 5.1.3. 

(iii) When testing for differences in activation patterns between CRC and CER, CER was found to re-

cruit a larger activation pattern than CRC in bilateral angular gyrus, left superior and medial temporal 

gyrus, and parts of left vlPFC and pre-SMA (Fig. 5D). In contrast, CRC did not show any differentially 

larger activation pattern than CER. A possible explanation for the selectively larger activation pattern 

of CER in predominantly left-sided cortical regions, which are essentially involved in language func-

tions [Knecht et al., 2000], might be an association between language function and CER-reappraisal. 

CER-reappraisals comprise re-interpretation of a stimulus and its situation, which is often guided by 

language-based re-formulation (e.g. ‘this stimulus is not real, but part of an experiment’) and which 

therefore may recruit relatively more language-relevant regions than CRC [Ochsner et al., 2012].  

Notably, a very recent meta-analysis published during data analysis addressed a related question: do 

neural patterns of CER overlap with cognitive action control (comprising a wide range of tasks like 

response inhibition, response conflicts, or task switching) [Langner et al., 2018]? Langner et al. found 

overlapping activation in pre-SMA, vlPFC, insula, and temporoparietal junction, but rather extended 

activation differences in prefrontal and parietal cortices. Our study differed in several ways from 

their approach, in that our questions were more focused: first, we restricted CER to downregulation 

of emotion, whereas they also allowed for upregulation, and to cognitive reappraisal, whereas they 

also included other strategies like response suppression. Second, their concept of cognitive action 

control comprised a wide range of tasks, whereas we restricted CRC tasks to the cognitive control of 

rewarding stimuli. Thus, we addressed a more specific question. Our results showed a slightly differ-

ent pattern: the pattern of overlapping activation was more pronounced, while the activation differ-

ences were more restricted (however, results from Langner et al. were also dominated by greater 

activation during CER).  
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5.1.3 Potential common model-based mechanisms of CER and CRC  

Our finding of shared neural correlates of CRC and CER is consistent with the idea of a common neu-

rocognitive mechanism of CER and CRC. One candidate for such a shared mechanism is model-based 

control: Etkin et al. have recently transferred empirically supported concepts from reward-based 

learning to emotion regulation, suggesting that model-based control strategies might underlie both 

CER and CRC [Etkin et al., 2015]. This approach provides a unifying framework for the investigation of 

CER and CRC, and maybe even for further distinct instances of cognitive control/self-regulation, such 

as cognitive task control. In concepts of model-based reward decision making such as CRC, decisions 

about action selection are driven by internal models, which take into account information about 

stimulus value, context, short- and long-term goals etc. [Daw et al., 2005; Dolan & Dayan, 2013]. 

Likewise, in CER, decisions about which emotion-regulatory action to select for achieving a desired 

emotional state might be guided by such a cognitive model [Etkin et al., 2015]. Thus, both model-

based control strategies involve decisions about actions, which alter either one's emotional state or 

one's craving towards consumption of a reinforcing stimulus. Our data provide empirical evidence for 

these theories by identifying shared neural correlates of CER and CRC, which might underlie shared 

mechanisms based on model-based decision making. 

Speculatively, this finding might also extend to other domains of model-based cognitive control, such 

as task switching [Braver et al., 2003; Sohn et al., 2000]. Coordinate-based meta-analyses of task-

switching showed a consistent domain-general frontoparietal activation pattern [Derrfuss et al., 

2005; Kim et al., 2012]. Moreover, another meta-analysis observed common activation in frontopa-

rietal cortices across a wide range of cognitive control task domains [Niendam et al., 2012]. This sug-

gests shared neural correlates for CER, CRC, and other instances of cognitive control, possibly hinting 

at shared neural mechanisms. Future studies/meta-analyses are needed to address this question.  

To sum up, our finding of shared neural correlates of CER and CRC provides evidence for common 

underlying mechanisms, which might be model-based decision making mechanisms. However, future 

studies are needed to specifically test this hypothesis by comparing CER and CRC decision making 

mechanisms with a suitable task paradigm.  

 

5.1.4 Cognitive control and intrinsic brain networks 

The common activation pattern of CRC and CER resembles multi-regional activation patterns during 

top-down cognitive control and top-down attention tasks [Corbetta & Shulman, 2002; Dosenbach et 

al., 2006; Duncan & Owen, 2000; Sohn et al., 2000]. Remarkably, these ‘task-control systems’, re-

cruited during task states, link systematically with spatial patterns of correlated, slowly fluctuating 

brain activity during rest (i.e., so-called intrinsic functional connectivity networks as measured by 
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resting-state fMRI) across frontal and parietal cortices [Power et al., 2011]. In other words, intrinsic 

fronto-parietal networks, whose coherent ongoing activity mirrors the spatial outline of distinct task-

control systems, both reflect previous cognitive control performances and support future cognitive 

control requirements [Cole et al., 2014]. This specific issue mirrors a more general theme, namely 

that organized ongoing brain activity reflects and shapes cognitive task activations in general [Berkes 

et al., 2011; Cole et al., 2016; Rosenberg et al., 2016; Smith et al., 2009; Tavor et al., 2016]. Future 

studies are needed to test whether the same intrinsic domain-general networks underlie multiple 

forms of model-based decision-making ranging from CRC, CER, to cognitive control of perceptual 

tasks. Indeed, a recent meta-analytic approach has provided first hints of a ‘core network’ underlying 

cognitive control across a wide range of tasks [Langner et al., 2018]. 

 

5.1.5 Limitations 

The following limitations are worth noting. First, studies differed with regard to demographic factors 

like age and gender. We controlled for these variables by post-hoc analyses, finding no dispropor-

tionate effects. Second, our meta-analytic approach is limited in testing whether both CRC and CER 

represent model-based decision making. We have suggested this interpretation based on overlap-

ping neural substrates and theoretical models [Etkin et al., 2015]. But certainly, future task-fMRI 

studies are needed to specifically address this question by directly comparing CRC and CER, for ex-

ample with model-based decision making paradigms. 

 

5.1.6 Conclusion 

We show a consistent brain activation pattern for cognitive reward control focused on prefrontal 

cortices, which largely overlaps with the activation pattern of cognitive emotion regulation. This 

common activation pattern suggests a common neurocognitive mechanism for the control of both 

emotion and reward. 
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5.2 Project 2 

This project provides first evidence that global interaction changes across brain networks spanning 

the whole brain contribute to human CER, more specifically that global participation across stable 

functional brain network modules increases during successful CER. The increase in global participa-

tion was critically driven by medial PFC and amygdala nodes, which overlapped with specialized local 

activity. These findings indicate the complementary global-local nature of human CER. 

 

5.2.1 Increased global interaction of stable functional modules during CER 

On a global whole-brain scale, we found that during CER, in comparison to emotional processing 

without regulation, global participation significantly increased, whereas modularity (i.e., decomposa-

bility into functional modules with high within-module connectivity) remained stable (Fig. 6A). Mod-

ules’ composition was largely the same during emotions with and without CER (Fig. 3C). The behav-

ioral significance of the increase in global participation was supported by its at-trend significant posi-

tive correlation with emotional intensity scores reflecting CER success, even though this analysis suf-

fered from low statistical power. Both global clustering coefficient and characteristic path length 

remained unchanged during CER in comparison to emotions without CER, indicating that CER is spe-

cifically linked with an interaction increase between functional brain modules and not with interac-

tion increases in general (Fig. 6A). These results suggest that CER is associated with an increased 

global interaction of stable functional whole-brain networks. Global models of CER anticipated that 

CER emerges from changing interactions of stable functional whole-brain networks [Barrett, 2009; 

James, 1884]. As we have shown, the composition of functional network modules indeed remains 

largely identical across conditions with and without CER (Fig. 3C); what changes is their interaction 

on a global level (Fig. 6A). This interaction increase across modules is consistent with previous net-

work-focused results by Sripada et al. [Sripada et al., 2014], who found increased region-to-region 

connectivity between regions of a visual network and those of cortical control networks during CER 

while participants observed aversive pictures. In addition, global theories of CER further assume that 

CER arises from interactions of domain-general brain networks [Lindquist & Barrett, 2012]. This indi-

cates that these networks are not limited to subserving distinct mental "faculties" (i.e., specific func-

tions or emotions) [Touroutoglou et al., 2015]. This view is supported by our finding that each of the 

three brain modules in the current study comprised nodes in brain regions associated with a wide 

variety of functional domains (Fig. 3C). Therefore, one should note that the term "brain module", as 

it is used in this study, has to be clearly distinguished from domain-specific cognitive modules hy-

pothesized in faculty psychology approaches [Fodor, 1983]. 
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5.2.2 Global interaction increase is pronounced in specific nodes 

The increase in global interaction across functional brain networks during CER was driven by key 

nodes of increased functional embedding, quantified by both nodal participation and connector hub 

properties (Fig. 6B and 7). The left basolateral and centromedial amygdala, for example, showed 

increased nodal participation during the cognitive regulation of aversive emotions, indicating an in-

creased embedding in the functional whole-brain network (Fig. 6B). The amygdala has widespread 

structural [McDonald, 1998] and functional [Robinson et al., 2010] connections with both cortical and 

subcortical regions of the brain, thus acting as a hub in the whole-brain network [Mears & Pollard, 

2016]. Beyond widespread connectivity, the amygdala is particularly involved in the processing of 

visual emotional stimuli [Adolphs et al., 1994]. In studies testing global emotion theories, particularly 

the left amygdala showed increased centrality or hubness during emotional processing [Koelsch & 

Skouras, 2014; Wheelock et al., 2014; Zhang et al., 2015]. Our results extend these findings by show-

ing that during CER, specifically the left amygdala becomes more strongly embedded in the whole-

brain network. This increased functional embedding occurs both in the basolateral and the 

centromedial amygdala (Fig. 6B). These two subregions can be distinguished based on their differen-

tial connectivity patterns with cortical and subcortical regions [Swanson & Petrovich, 1998]. Both 

amygdala subdivisions form part of brain circuits that enable adaptive behavior in response to aver-

sive stimuli [Gross & Canteras, 2012; LeDoux, 2012]. 

The bilateral cuneus similarly exhibited increased nodal participation in the Regulate compared to 

the Attend condition (Fig. 6B). The cuneus contains brain regions associated with primary and higher 

visual processing [Felleman & Van Essen, 1991]. Its structural and functional connectivity with amyg-

dala and prefrontal cortices provides support for its involvement in the processing of aversive visual 

stimuli [Narumoto et al., 2000]. We found that the cuneus was more tightly embedded in the func-

tional whole-brain network during CER than during emotional processing without CER.  

 

Connector hubs differed between Regulate and Attend conditions (Fig. 7). Exhibiting both high with-

in-module and high between-module connectivity, connector hubs are critical for mediating inter-

modular information transfer, much like airport hubs [Guimera et al., 2005]. During emotional pro-

cessing without regulation, connector hubs were located in posterior regions of the brain, especially 

in the occipital cortex. This brain part is strongly involved in the processing of aversive visual stimuli 

[Sabatinelli et al., 2011]. During CER, however, the role of connector hubs was taken over by more 

anterior parts of the brain, particularly the medial PFC and the PCC. Crucially, the medial PFC node 

switched from a cortical control module to a visual-subcortical module during CER, possibly to enable 

regulatory control over areas involved in emotional processing. In this way, the medial PFC could 

control ‘information flow’ between its new module and other brain modules during CER. One should 
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also note that medial PFC and PCC are important constituents of the default mode network, which is 

specifically associated with emotional decisions [Andrews-Hanna et al., 2010], cortical fear represen-

tation [Gross & Canteras, 2012], and emotion regulation [Sheline et al., 2009]. 

 

5.2.3 Linking global and local theories of CER 

Nodes with increased nodal participation, i.e., amygdala and cuneus, overlapped with clusters of 

decreased local activity during CER compared to emotional processing without regulation (Fig. 8A). 

Suppression of local amygdala activity is consistently found in studies testing local theories of CER 

[Buhle et al., 2014]. Our results thus suggest that increased whole-brain participation of amygdala 

and cuneus might be accompanied by suppressed local activity during CER. In contrast, connector 

hubs of either the Attend or the Regulate condition did not overlap with clusters of specialized local 

activity during CER (Fig. 8B). Connector hub status reflects both high within- and between-module 

connectivity [Guimera & Amaral, 2005b]. Therefore, it is possible that this complex node property 

might not be directly represented by patterns of specialized local activity. 

In summary, increased nodal participation was associated with specialized local activity, thus linking 

global and local models of CER. So far, local and global theories of CER have coexisted as - potentially 

contradictory - extremes in a continuum of theoretical perspectives of CER [Gross & Barrett, 2011]. 

Our study now provides initial experimental evidence that local and global models of CER may in-

stead be viewed as complementary aspects of CER, rather than dichotomous perspectives. 

 

5.2.4 Clinical implications 

Our results may carry implications for the integration of distinct neurobiological models of affective 

disorders, particularly major depressive disorder (MDD). On the one hand, local neurobiological 

models of MDD are based on local perspectives of CER, which is a core symptom of depression 

[Hamilton et al., 2012; Mayberg, 1997]. For example, medial PFC and amygdala exhibit abnormalities 

in major depression, such as grey matter volume loss [Hamilton et al., 2008; Koolschijn et al., 2009] 

or simultaneous amygdala hyperactivation and mPFC hypoactivation [Siegle et al., 2002]; these alter-

ations are thought to underlie impaired PFC control over amygdala activity as a central mechanism of 

impaired CER in particular and major depression in general [Mayberg, 1997]. On the other hand, 

global accounts of MDD propose major depression as a disorder of the human connectome [Gong & 

He, 2015]. Substantially altered structural and intrinsic functional large-scale brain organization has 

been found in MDD, including aberrant mPFC and amygdala hubness [Jin et al., 2011; Singh et al., 

2013]. Such connectome-related changes are relevant for the course of MDD [Meng et al., 2014].  
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However, these different conceptualizations of major depression have been largely unrelated to each 

other. Linking global and local accounts of CER, our result can likewise provide a link between global 

and local neurobiological accounts of major depression in the context of impaired CER. For example, 

aberrant local amygdala activity during emotional processing in depressed patients might be not only 

due to impaired local control by PFC [Erk et al., 2010], but also due to the amygdala's impaired global 

functional embedding [Jin et al., 2011], which is relevant for effective CER (Fig. 6B). Likewise, struc-

tural and functional abnormalities of the medial PFC [Bludau et al., 2016] might not only impair the 

control over local amygdala activity during CER [Erk et al., 2010], but also affect impaired global in-

teraction within and across modules (Fig. 7). Suggestively, the impairment of CER in major depres-

sion might be characterized by processes we found in healthy subjects during emotions without CER, 

such that across-module interaction might be dominated by occipital nodes (Fig. 7). Interestingly, 

such ‘occipital dominance’ of changes in several brain modalities has been reported in major depres-

sion, for example regarding reduced volume [Peterson et al., 2009], functional hubness [Meng et al., 

2014], and metabolism [Sanacora et al., 2004]. Future studies focusing on a global perspective of CER 

impairments in major depression should test these suggestions. 

 

5.2.5 Limitations and future directions 

The following limitations should be considered for the correct evaluation of results. 

First, we used a rather small sample size of 19 subjects. Low sample sizes decrease statistical power, 

inflate effect sizes, and lead to an increased rate of false positive results [Button et al., 2013]. This 

issue has been highlighted particularly for correlation analyses and therefore affects particularly the 

correlation results between graph scores and CER success [Yarkoni, 2009]. Moreover, the low sample 

size might limit the universal validity of our findings. On the other hand, this study is, to our 

knowledge, the first graph-based fMRI study in the field of cognitive emotion regulation, providing a 

proof of principle. Future studies are needed to test the replicability of results in independent subject 

samples. 

Second, we used a typical experimental design to investigate CER via Attend vs. Regulate contrasts, 

which had already been employed extensively before [Buhle et al., 2014; Ochsner et al., 2002; Wager 

et al., 2008]. An inherent problem of this design is that actively regulating one's emotions could be 

cognitively more demanding than simply attending to a stimulus, or in other words: cognitive cost 

may confound results. The current study cannot fully exclude this confound. Nevertheless, a) results 

fit both expected hypothesis and other studies’ findings, as discussed above, and b) we made an ef-

fort to minimize this possible confound as much as possible by applying an antecedent-focused reap-

praisal strategy [Gross, 2002; Sheppes & Meiran, 2008], and by using young healthy female partici-
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pants, whose high Reappraisal scores on the Emotion Regulation Questionnaires (normative female 

mean = 4.61 [SD = 1.02, N = 1483], current study mean = 5.12 [SD = 0.52, N = 20]); t (1501) = 2.25, p = 

0.025;  normative mean taken from Gross & John (2003)) signify that they used reappraisal with min-

imal associated cognitive costs. Future studies of more rigorous design, additionally controlling for 

difficulty, are necessary to support our observations.  

Third, we included only female subjects to exclude any gender influences concerning emotion pro-

cessing and regulation [McRae et al., 2008b], a strategy applied by numerous other studies in the 

field [Frank et al., 2014]. Therefore, inferences of our results to the human brain as a whole should 

be treated carefully. Future studies could address this issue by examining male subjects or mixed 

groups with subgroup and comparison analyses. 

Fourth, future studies could also investigate how global interaction changes during downregulation 

of responses to pleasant emotional stimuli or during upregulation of emotional responses. We specu-

late that results on a global level might be similar to our results. However, on a nodal level, regula-

tion of positive emotions might implicate a changed participation of the ventral striatum [Buhle et 

al., 2014], while emotional upregulation, typically associated with enhanced amygdala local activity 

[Frank et al., 2014], might go along with decreased nodal participation of the amygdala. 

 

5.2.6 Conclusion 

Cognitive emotion regulation is associated with an increased global interaction of stable functional 

brain networks. This interaction is mainly driven by an increased embedding of specific nodes, such 

as amygdala, cuneus, medial prefrontal and posterior cingulate cortex, in the functional whole-brain 

network. As these key nodes partly coincide with regions involved in specialized local activation dur-

ing CER, current results link global and local views on human CER as complementary perspectives.   
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5.3 Project 3 

This study employed a sequential decision making task and FDOPA-PET in healthy subjects and pa-

tients with schizophrenia. Task data were used to describe subjects' decision making behavior via 

stay-switch probability and computational modeling. PET data were used to derive striatal dopamine 

synthesis capacity via graphical Patlak analysis. In this way, several connected questions were inves-

tigated: first, is the balance between model-based and model-free decision making associated with 

striatal dopamine synthesis (confirming previous studies)? Second, is the balance between model-

based and model-free decision making altered in schizophrenia? Third, is such an aberrant balance 

associated with striatal dopamine synthesis? We found a positive correlation between the tendency 

towards model-based behavior and ventral striatal dopamine synthesis in healthy controls. In pa-

tients with schizophrenia, specifically model-free decision making was impaired and appeared to be 

particularly associated with reduced dorsal striatal dopamine synthesis. 

 

5.3.1 Decision making and striatal dopamine synthesis in healthy subjects 

We found a positive correlation between FDOPA ki
cer of limbic striatum and the tendency towards 

model-based behavior in healthy subjects. This means that the higher the dopamine synthesis, the 

more a subject acts in a model-based way. The model-based/model-free balance parameter was 

calculated with a well-established computational model [Daw et al., 2011; Deserno et al., 2015; 

Wunderlich et al., 2012]. The functional subdivision used in this study (limbic striatum) covers mostly 

the ventral striatum, particularly the nucleus accumbens. Therefore, our results are consistent with 

previous findings by Deserno et al., who reported a positive correlation between model-

based/model-free balance and FDOPA-PET ki
cer in the nucleus accumbens [Deserno et al., 2015]. This 

consistency supports the validity of our approach. Further support for such claims comes from the 

pattern of stay-switch probability (Fig. 9): this analysis quantified how likely a subject was to select 

the same first-stage stimulus in the next trial again, depending on reward and transition in the trial 

before. Results showed that healthy subjects acted both in a model-free and a model-based fashion. 

This finding is in line with previous studies and theories stating that everyone uses both decision 

making strategies - what varies is the balance between the two. 

 

5.3.2 Model-based/model-free decision making in schizophrenia 

Computational modeling results showed that patients with schizophrenia exhibited a significantly 

increased tendency towards model-based behavior. The stay-switch analysis revealed that model-

free decision making was significantly different between patients and controls, whereas model-based 
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behavior was not changed. Taken together, these two subresults suggest that in schizophrenia, spe-

cifically model-free decision making is impaired. As a consequence, patients' decision making balance 

seems to be relatively (or maybe as compensation) shifted towards model-based behavior, which 

explains the computational modeling result. This result is contrary to findings by Culbreth et al., who 

reported specifically aberrant model-based decision making in patients with schizophrenia [Culbreth 

et al., 2016]. However, the patients used in this thesis were in remission of psychotic symptoms, 

whereas patients in Culbreth et al. were psychotic. Thus, during psychosis, it seems that complex 

decisions requiring model-based computations are impaired. This might reflect a temporary disease 

state. In contrast, remission of (usually fluctuating) psychotic symptoms, but presence of negative 

and cognitive symptoms, might represent a disease trait, as such a constellation often persists for 

long periods. In such patients, model-free decision making is impaired. This could explain cognitive 

impairments: patients have to rely on computationally expensive model-based behavior instead of 

the faster, automatized model-free one. Future studies should elucidate this possible connection. 

 

5.3.3 Decision making and striatal dopamine synthesis in schizophrenia 

We observed no significant correlation between model-based/model-free balance and dopamine 

synthesis in patients with schizophrenia. However, when conducting an interaction analysis to look 

whether associations differ between patients and healthy controls, we found significant interactions 

for limbic and sensorimotor striatum. Focusing first on the limbic striatum, this result shows that the 

positive correlation between dopamine synthesis and tendency towards model-based behavior in 

healthy subjects is not present in patients with schizophrenia. However, dopamine synthesis was not 

significantly different across groups for limbic striatum. Therefore, abnormal ventral striatal dopa-

mine transmission might not be the primary factor leading to impaired decision making in schizo-

phrenia. In contrast, dopamine synthesis in the sensorimotor striatum was significantly reduced in 

patients. The sensorimotor striatum ROI covered mostly putamen (dorsolateral striatum). This corre-

sponds with theories positing that model-free decision making is mainly associated with dorsolateral 

striatum [Daw et al., 2005; Dolan & Dayan, 2013; Graybiel, 2008; Striedter, 2016]. So, aberrant dorsal 

striatal dopamine synthesis might be a crucial factor in the specific impairment of model-free deci-

sion making in schizophrenia. 

 

5.3.4 Conclusion 

Results suggest that model-free decision making is specifically impaired in schizophrenia (during re-

mission of psychotic symptoms) and associated with altered dopamine synthesis in dorsal striatum. 
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6 Conclusion 

This thesis investigated neural correlates of cognitive control of motivated behavior. Cognitive con-

trol was conceptualized as model-based decision making, i.e., the selection of context-appropriate 

behaviors based on a internal model of the world.  

In Project 1, we could show a consistent and overlapping brain activation pattern for two instances of 

cognitive control, namely cognitive regulation of aversive emotions and cognitive control of impulses 

towards rewarding stimuli. This pattern, identified via coordinate-based meta-analysis of task fMRI 

studies, comprised mainly prefrontal cortices. Such a common activation pattern suggests a common 

model-based mechanism for the control of both emotion and reward. 

In Project 2, we investigated whether - additionally to such regional brain activations - also global 

interaction among functional brain networks is important for successful cognitive control. This was 

done paradigmatically for cognitive emotion regulation via graph analysis of task fMRI data. Indeed, 

we observed increased global interaction of stable functional brain networks, mainly driven by an 

increased embedding of specific nodes, such as amygdala, cuneus, medial prefrontal and posterior 

cingulate cortex, into the functional whole-brain network. These key nodes partly coincided with 

regions of local activation during cognitive emotion regulation, suggesting a link between global and 

local theories of cognitive control.   

In Project 3, the link between ventral striatal dopamine transmission and model-based decision mak-

ing was confirmed via a sequential decision making task coupled with FDOPA-PET. Patients with 

schizophrenia, however, showed specifically impaired model-free decision making behavior, which 

was associated with aberrant dopamine synthesis in the dorsal striatum. 

Taken together, these findings support conceptualizations of cognitive control as model-based deci-

sion making, which - apart from local brain activation - also involves global processes. In schizophre-

nia, however, aberrant striatal dopamine transmission seems to impair rather model-free behavior. 
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