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ABSTRACT

The autonomous driving of robots requires precise andhielipositioning information with low-cost sensors. In theper,
we propose a tightly coupled sensor fusion of multiple camnpntary sensors including GNSS-RTK, INS, odometry, Local
Positioning System (LPS) and Visual Positioning. The foolithis paper is on the integration of LPS and vision since the
coupling of GNSS-RTK, INS and odometry is already state efdlt. We include the positions of the LPS anchors and the
bearing vectors and distances from the robot's camera tlathe patch features as state vectors in our Kalman filtdrslaow
the achievable positioning accuracies.

INTRODUCTION

The purpose of this section is two-fold: First, we introdtice complementary properties dfpositioning sensors: Global
Navigation Satellite System (GNSS) receivers, Inertiabstgement Units (IMU), wheel odometry, Local Positioniygtems
(LPS), and camera-based Visual Positioning. Second, veeptéhe ANavS Multi-Sensor module [1] that carries mudtiplwv-
cost sensors, communication interfaces and a processpeffmrming the sensor fusion. Tab. 1 lists thpositioning sensors
and the advantageous/ challenging environments for eacose

Tab. 1: Comparison of complementary positioning sensagscidption of conditions resulting in high performance afd
conditions resulting in poor performance for each indialdaensor.

Sensor Conditions Conditions
enabling a high positioning accuragy resulting in poor pasing accuracy
GNSS open-sky conditions any area with less than 4 visilidlses
with at least 4 visible satellites with continuous phasekirg
with continuous phase tracking (e.g. below trees, bridgésrmels)
Inertial Measurement any area for a few seconds anyaftepa few seconds
Unit (IMU) after initialization after initialization
wheel odometry any area with paved roads gravel-groundsrsigpage)
Local Positioning any area with line of sight any area wittelbf sight
System (LPS) tat least3 anchors tdess thar8 anchors
Visual positioning any area with clear textures, during dodpeavy snowfall,
e.g. road markings and road signs, resulting in camera isnaghout textures

In this paper, the new Multi-Sensor Fusion RTK module of ANa&s used for positioning. The module is shown below and
offers the following key features [1]:

Plug-In connector for processor

i i SMA connector i - Multi-GNSS receiver
e 1to 3 integrated GNSS receivers oGt ‘ = e

fOI’ RTK pOSItIOﬂIng and module g | connectors
attitude determination x ‘ '

e integrated inertial sensor and
barometer for robust positioning

e integrated CAN-bus interface
for odometry and CSl-interface
for camera

e integrated LTE module for
reception of RTK corrections

e integrated processor for
Multi-Sensor, Multi-GNSS
tightly coupled RTK positioning




LOCAL POSITIONING SYSTEM

In this section, we describe the Local Positioning SysteRS).and its integration into the sensor fusion. There araypes
of LPS range measurements: The first type of range measuteneéers to the range between a certain anchor (with ihdlex
and the user/ robot (with inde®, and is modeled as
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with the following notations:

Zu user/ robot position

zk anchor position

ek = % normalized direction vector between anchor and robot
Argp, multipath error of LPS range measurement

nk noise of LPS range measurement

The second type of range measurements refers to the arelaochor measurements. The range measurement between
anchorst and/ is modeled similar to Eq. (1) as
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We determine the positions of the robot and all anchorsljpinta Kalman filter. The anchor-to-robot and anchor-totarc
measurements are stacked in a single column vector as

T
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which includesk + @ linear independent measurements.

The LPS can not provide a unique solution, i.e. the positmhall anchors and the robot can be shifted by a common,
arbitrary vector and be rotated by a common, arbitrary imanatrix without affecting the range measurements. Tdas¢s
degrees of freedom. We use them

e to set the coordinate center of the Local Positioning Sygté$) to the position of the first LPS anchor

¢ to define the x-axis of the coordinate frame,
such that it points from the coordinate center towards toerse LPS anchor

¢ to define the y-axis of the coordinate frame,
such that it lies in the plane spanned by the first two anchatglze third anchor

¢ to define the z-axis of the coordinate frame,
such that it complements a right-hand coordinate frame

Fig. 1 shows the LPS coordinate frame based on the positfdhsa® anchors.
The{z,y, z} coordinates of the anchor positions in the LPS coordinatmaérare noted as
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where6 coordinates ar@. The remaining (K — 2) coordinates are unknown and have to be estimated in the Kéfitte.
The state vector comprises the unknown position coordinatthe robot and all anchors, i.e.

@Y (@O ©)

The anchor positions are assumed to be constant and theisohggumed to move with a low speed. Thus, the state space
model is straight forward, i.e. we assume constant statnpeters. The change of the robot’s position is accounteih fitre
process noise.

We a use a standard Kalman filter [6] for the Local Positior8ggtem (LPS), and consider the following aspects:

v =(Z,,d2, d, d
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e iterative approach required for state update due to liratian of range measurements

e certain movement required for convergence of positionsiohars and robot
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Fig. 1: Local Positioning System (LPS): The right-hand cliaate frame is spanned by the locations of three anchors.

INTEGRATION OF LOCAL POSITIONING SYSTEM INTO SENSOR FUSION

In this section, we briefly describe the sensor fusion of thedl Positioning System (LPS), the Inertial Measuremerit Un
(IMU), and wheel odometry. We perform a tightly coupled smrfsision as shown in Fig. 2, i.e. the raw measurements of all
sensors are directly used to estimate the state vector ¢gingpthe position, velocity, acceleration, attitude asghnd angular
rates of the robot, the anchor positions, and the IMU and @dgnbiases. A standard extended Kalman filter is used for the
sensor fusion as described by Brown and Hwang in [6].

LPS anchor-to-robot
and anchor-to—anchor
range measurements

Inertial sensor measurements:
3D accelerations and
3D angular rates

Wheel odometry measurements:
wheel speeds

LPS/ INS/ odometry
Kalman filter

|

Prediction of states including
position, velocity, acceleration,
attitude angles and angular rates
of robot, anchor positions and

biases of inertial and odometry sensars

}

|

Update of states including
position, velocity, acceleration,
attitude angles and angular rates
of robot, anchor positions and

biases of inertial and odometry sensars

position, velocity,
acceleration, attitude,
angular rates of
sensor fusion

Fig. 2: Sensor Fusion of LPS, INS and Odometry: A Kalman fiseused to predict and update the state vector at every
measurement epoch. The state vector includes the posigtogity, acceleration, attitude angles and angular raitédse robot,
the anchor positions, and the IMU and odometry biases.



VISUAL-INERTIAL ODOMETRY

In this section, we describe some fundamentals for visuattial odometry with a monocular camera.

Projection model and linear warping

In this subsection, we discuss the relationship betweepitted coordinates of a landmark and the bearing vector pant
from the robot to the landmark. We use the Robust Visualtimle@dometry (ROVIO) method of Blésch et al. and closely
follow their description in [2]-[4]. The pixel coordinates, of landmark! in framen are expressed in terms of the camera
modelr with known intrinsic calibration, and the bearing vectdrof the landmark:

P = (1) - (6)
Solving this equation for!, yields
p, =7 (pl,) - ()
The bearing vector is predicted to the next camera frameauitbrtain process model, i.e.

P = F(,), (8)
and then re-projected to pixel coordinates:
piH»l =7 (Milﬂ) 9
Concatenating the projections of Eq. (7) to (9) relates tkelgoordinates of a certain landmark in two subsequemés
Prr =7 (f (7 (1)) (10)

We linearize these projections for the Kalman filter and imlttze following linear warping matrix:
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(11)

Photometric error

The photometric error is defined as the pixel-wise intengitfierence between a (given multi-level) patch feature tred
related image, whereas we have to account for the warpinigeopatch feature due to a frame (as described in the previous
subsection) and eventual changes in illumination betweeulifferent frames/ levels:

€ (P, Pay In, D) = P (p}) — alu(p'sy, + Dp}) — b, (12)
with the following notations:

P, intensity of multi-level patch at frame

coordinates of-th patch feature relative to center of image

coordinates of patch pixel of patch feature relative to eeaf patch feature
intensity of image at frame

scaling factor accounting for downsampling

intensity model parameter to account for changes in illatian

intensity model parameter to account for changes in illatian

»
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This photometric error is used directly as measurementdatgthe state vector in our tightly-coupled sensor fusiih &
Kalman filter.



INTEGRATION OF VISUAL-INERTIAL ODOMETRY INTO SENSOR FUSIO N

In this section, we describe the integration of the visnakial odometry into the sensor fusion. Fig. 3 shows thhitecture
for the sensor fusion of GNSS, INS, wheel-odometry and Vigwetial odometry. The LPS measurements are not consitler
in this section since both GNSS and LPS provide positiorrinégion.

The visual-inertial odometry uses a Kalman filter that psses the images from a monocular camera and the measurements
from an inertial sensor. Our implementation is based on @¥IR (RObust Visual-Inertial Odometry)-framework of Bi¢h
et al. [2]-[4], that tracks thbearing vectoranddistanceof each patch featuras state parameter besides the position, velocity,
attitude and biases of the inertial sensor. The individiggdsof the visual-inertial odometry are highlighted in.réle first step
includes the prediction of the state parameters usingigeneasurements. Subsequently, the locations of thereeaaitches
are searched in the new camera image around the predictgwblog of the feature patches. Finally, the state vectopiated
based on the found feature patches.

The obtained position, velocity and attitude estimatesesas measurements for the main Kalman filter, that also higes t
GNSS-, INS- and wheel-odometry measurements to updataits\sector. The state vector of the main Kalman filter inekid
the position, velocity, acceleration, attitude anglegjudar rates, carrier phase ambiguities, pseudorangepatiiterrors, and
biases of the inertial sensor and wheel odometry. A standahaan filter [6] is used for this overall sensor fusion and th
respective state prediction and state update steps aréghitgi in blue in Fig. 3.

i GNSS/ INS/ odometry/ vision
Predition of states including Kalman filter
position, velocity, acceleration,
attitude angles, angular rates,
Mea;urements of 1-3 GNSS carrier phase ambiguities,
receivers and refer_ence station: pseudorange multipath errors
pseudorange, carrier phase and biases of inertial sensor
and Doppler measurements and odometry
i Ambiguity fixing of GNSS

Inertial sensor measurements:
3D accelerations and .
3D angular rates

DD carrier phase measurements
of attitde baseline

Update of states including
position, velocity, acceleration,
attitude angles, angular rates,
carrier phase ambiguities,

Wheel odometry measurements:
wheel speeds

pseudorange multipath errors
and biases of inertial sensor
and odometry

Ambiguity fixing of GNSS

DD carrier phase measurements

of RTK baseline

}

position, velocity,

State prediction including

position, velocity, attitude, biases of IMU,
bearing vectors and distances of each patch feature

acceleration, attitude,
angular rates of
sensor fusion

}

Camera images

Search of features in camera images

Camera/ INS
Kalman filter

}

State update including

position, velocity, attitude, biases of IMU,
bearing vectors and distances of each patch feature

Fig. 3: Architecture for Sensor Fusion of GNSS, INS, whedtimetry and visual-inertial odometry in Kalman filter.



MEASUREMENT RESULTS

Performance of Local Positioning System

Fig. 4 shows the performance of the Local Positioning SygteP$) with a model train. The positions of three anchors and
the robot are jointly estimated. The track of the model tisia closed loop, which enables an analysis of the repetyadil
the position solution. The enlarged view provides two ihgsgFirst, the point cloud at (3.3 m, 1.95 m) refers to th@ahstatic
position, and has a standard deviation of a few centimetdys 8econd, the multiple parallel lines refer to differeminds of
the model train and indicate a consistent position solution
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Fig. 4: Performance analysis of Local Positioning SysteS) with a model train.

Comparison of Local Positioning System and Multi-GNSS Realime Kinematic Positioning

Fig. 5 includes a comparison between the ANavS tightly cedipPS/ INS and the ANavsS tightly coupled Multi-GNSS/ INS
RTK positioning [7] - [9]. The closed-loop track is install@t a roof-top with open-sky conditions, i.e. both satelignals
and anchor signals are received without obstructions. Bypdkems are coupled with an IMU and provide consistent ismisit
with an uncertainty of less thai) cm for most epochs. The systematic offsets between bothigrasig solutions around the
lower left part and also at the rightmost part of the trackld?& errors that occur if the angle between an LPS antenna plan
and the signal path is very small.

— ANavS Multi-Sensor LPS + IMU
— ANavS Multi-Sensor RTK + IMU

y [m]

15 2 25 3 35 4 45 5
x[m]

Fig. 5: Comparison between ANavsS tightly coupled Multi-GRENS RTK positioning and ANavs tightly coupled LPS/ INS
positioning with model train.



Fusion of Local Positioning System, Wheel Odometry and Indgral Measurements

Fig. 6 shows a comparison between the horizontal posititmates of the ANavS Multi-Sensor Fusion of Local Positiani
System, wheel odometry and inertial sensor and the hodkposition estimates of the tachymeter-based refereriggsa In
principle, both solutions are well aligned for almost albeps. A slight offset of the LPS/Odo/IMU solution can be alied
near the start at (0,0) since the Kalman filter needs somettirnenverge. The tachymeter solution has occasional gaptodu
the lack of a line of sight between tachymeter and robot. Meee a temporary reduction of accuracy can be observethéor t
LPS/ODO/IMU solution in areas where the LPS signals froneast one anchor point were shadowed or blocked, e.g. around
(1.5m, -3.0 m).

y [m]

X [m]

Fig. 6: Comparison of horizontal position estimates betwd® ANavS Multi-Sensor Fusion of Local Positioning System
wheel odometry and inertial sensor with the tachymeteetasference solution.

Fig. 7 includes a quantitative assessment of the positipacturacy of the LPS/ INS/ odometry sensor fusion using a
tachymeter as reference. The position offset remains belawmn for 95 % of the epochs.
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Fig. 7: Histogram of horizontal position deviation betweXavS Multi-Sensor Fusion of Local Positioning System, elhe
odometry and inertial sensor and tachymeter-based raferen



Integration of Visual Positioning into Multi-GNSS RTK/ Odo metry/ IMU tightly coupled positioning

Fig. 8 shows a comparison of the Multi-GNSS/ wheel odomdiviJ tightly coupled RTK positioningvith andwithout
integrated visual odometry: The trajectory starts with@amrgular, repetitive pattern at an open field. The init@wergence
of the RTK float solution is also shown. The position estireatgth and without visual positioning are well-aligned. $hi
indicates the correctness of positioning with and withastial odometry. After the rectangular pattern, the robovditowards
trees and bushes (upper part of trajectory) to test theiposig performance in more challenging conditions. We daseove
a certain deviation between the position trajectories \aitld without visual odometry. The benefit of the visual odagnet
becomes apparent at the RTK refixing after passing the ssotvith trees and bushes: The position correction is @filgm
with visual odometry compared 81 cm without visual odometry. The diagram also shows thregliggted locations. The
respective camera images are provided in Fig. 9 and 10.
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Fig. 8: Analysis of Multi-GNSS/ IMU/ wheel odometry tightboupled RTKwith andwithoutintegrated visual odometry.

Fig. 9 includes camera images with 20 patch features on the grass at Pinakothek, Munich, witls frethe background.
The illumination is higher in the left image than in the rigimage. The multilevel patch features are determined by RDVI
and represented by squares. Green color denotes suctesaftked patch features and red color denotes rejectetigaitThe
final (i.e. after iterative convergence) location of eaaidiaark is shown with a small red dot surroundeddbgreen or red
dots. The surrounding locations are checked for higheniation residuals to keep (green) or reject (red) the patatufes.
The estimated uncertainty of each landmark location is shimywellow ellipses. The largest uncertainty has the pageluire
in the upper right part of the leftimage, where the image iy dark. We can observe that almost all patch features aneeng
which indicates that grass patches can be tracked well.

Fig. 9: Camera images witk 20 patch features on the grass at Pinakothek, Munich, witls irethe background.



Fig. 10 shows the camera image at the third highlighted iocamn Fig. 8. The patch features are again well-distributeer
the camera image. The landmark locations are shown withatsd @ihe consistency of each patch feature/ landmark ot
checked at the surrounding dots. The checks passed sudbefsfall patch features except for the patch feature etipper
right part close to the centre, where two out of four consisgechecks failed. Nevertheless, the patch feature isustt since
two consistency checks confirmed the patch.

Tracker0

Fig. 10: Camera image with tracked patch features at PihakoMunich, Germany.

CONCLUSION

The autonomous driving of robots requires a precise andbielipositioning. In this paper, we analyzed the sensooifusi
of GNSS-RTK, INS, odometry, Local Positioning System (LR&Y visual positioning. The focus was put on the LPS and
visual positioning, and their integration into the sensmsidn. The paper provided a quantitative performance aisahjth real
measurements, and showed that centimeter-level posij@tcuracy is feasible with low-cost sensors.
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