
Precise Positioning of Robots
with Fusion of GNSS, INS, Odometry, Barometer,
Local Positioning System and Visual Localization

Patrick Henkel∗,∗∗, Andreas Sperl∗, Ulrich Mittmann∗, Robert Bensch∗, Paul Färber∗ and Christoph Günther∗,∗∗,∗∗∗
∗Technische Universität München (TUM), Munich, Germany

∗∗ANavS GmbH - Advanced Navigation Solutions, Munich, Germany
∗∗∗German Aerospace Center (DLR), Oberpfaffenhofen, Germany

BIOGRAPHIES

Patrick Henkel received his B.Sc. and M.Sc. in Electrical and Computer Engineering and his PhD from theTechnische
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ABSTRACT

The autonomous driving of robots requires precise and reliable positioning information with low-cost sensors. In thispaper,
we propose a tightly coupled sensor fusion of multiple complementary sensors including GNSS-RTK, INS, odometry, Local
Positioning System (LPS) and Visual Positioning. The focusof this paper is on the integration of LPS and vision since the
coupling of GNSS-RTK, INS and odometry is already state of the art. We include the positions of the LPS anchors and the
bearing vectors and distances from the robot’s camera towards the patch features as state vectors in our Kalman filter, and show
the achievable positioning accuracies.

INTRODUCTION

The purpose of this section is two-fold: First, we introducethe complementary properties of5 positioning sensors: Global
Navigation Satellite System (GNSS) receivers, Inertial Measurement Units (IMU), wheel odometry, Local Positioning Systems
(LPS), and camera-based Visual Positioning. Second, we present the ANavS Multi-Sensor module [1] that carries multiple low-
cost sensors, communication interfaces and a processor forperforming the sensor fusion. Tab. 1 lists the5 positioning sensors
and the advantageous/ challenging environments for each sensor.

Tab. 1: Comparison of complementary positioning sensors: description of conditions resulting in high performance andof
conditions resulting in poor performance for each individual sensor.

Sensor Conditions Conditions
enabling a high positioning accuracy resulting in poor positioning accuracy

GNSS open-sky conditions any area with less than 4 visible satellites
with at least 4 visible satellites with continuous phase tracking
with continuous phase tracking (e.g. below trees, bridges or tunnels)

Inertial Measurement any area for a few seconds any areaafter a few seconds
Unit (IMU) after initialization after initialization
wheel odometry any area with paved roads gravel-ground roads (slippage)
Local Positioning any area with line of sight any area with line of sight
System (LPS) toat least3 anchors toless than3 anchors
Visual positioning any area with clear textures, during fogor heavy snowfall,

e.g. road markings and road signs, resulting in camera images without textures

In this paper, the new Multi-Sensor Fusion RTK module of ANavS is used for positioning. The module is shown below and
offers the following key features [1]:

• 1 to 3 integrated GNSS receivers
for RTK positioning and
attitude determination

• integrated inertial sensor and
barometer for robust positioning

• integrated CAN-bus interface
for odometry and CSI-interface
for camera

• integrated LTE module for
reception of RTK corrections

• integrated processor for
Multi-Sensor, Multi-GNSS
tightly coupled RTK positioning

SMA connector
for GSM/ LTE
module

Plug−In connector for processor

Multi−GNSS receivers
with SMA antenna
connectors



LOCAL POSITIONING SYSTEM

In this section, we describe the Local Positioning System (LPS) and its integration into the sensor fusion. There are twotypes
of LPS range measurements: The first type of range measurements refers to the range between a certain anchor (with indexk)
and the user/ robot (with indexu), and is modeled as

rku = ‖~xu − ~x k‖+∆rkMPu
+ ηku =

(

~e k
u

)T (

~xu − ~xk
)

+∆rkMPu
+ ηku, (1)

with the following notations:

~xu user/ robot position
~x k anchor position

~e k
u = ~xu−~x k

‖~xu−~x k‖ normalized direction vector between anchor and robot
∆rkMPu

multipath error of LPS range measurement
ηku noise of LPS range measurement

The second type of range measurements refers to the anchor-to-anchor measurements. The range measurement between
anchorsk andl is modeled similar to Eq. (1) as

rkl = ‖~x k − ~x l‖+∆rklMPu
+ ηklu =

(

~e kl
)T (

~x k − ~x l
)

+∆rklMPu
+ ηklu . (2)

We determine the positions of the robot and all anchors jointly in a Kalman filter. The anchor-to-robot and anchor-to-anchor
measurements are stacked in a single column vector as

z =
(

r1u, . . . , r
K
u , r12, . . . , r1K , . . . , r(K−1)K

)T

, (3)

which includesK + (K−1)K
2 linear independent measurements.

The LPS can not provide a unique solution, i.e. the positionsof all anchors and the robot can be shifted by a common,
arbitrary vector and be rotated by a common, arbitrary rotation matrix without affecting the range measurements. This leaves6
degrees of freedom. We use them

• to set the coordinate center of the Local Positioning System(LPS) to the position of the first LPS anchor

• to define the x-axis of the coordinate frame,
such that it points from the coordinate center towards the second LPS anchor

• to define the y-axis of the coordinate frame,
such that it lies in the plane spanned by the first two anchors and the third anchor

• to define the z-axis of the coordinate frame,
such that it complements a right-hand coordinate frame

Fig. 1 shows the LPS coordinate frame based on the positions of three anchors.
The{x, y, z} coordinates of the anchor positions in the LPS coordinate frame are noted as

~x 1 =





0
0
0



 , ~x 2 =





d2x
0
0



 , ~x 3 =





d3x
d3y
0



 , ~x 4 =





d4x
d4y
d4z



 , . . . , ~xK =





dKx
dKy
dKz



 , (4)

where6 coordinates are0. The remaining3(K − 2) coordinates are unknown and have to be estimated in the Kalman filter.
The state vector comprises the unknown position coordinates of the robot and all anchors, i.e.

x =
(

~xT
u , d

2
x, d

3
x, d

3
y, (~x

4)T, . . . , (~xK)T
)T

. (5)

The anchor positions are assumed to be constant and the robotis assumed to move with a low speed. Thus, the state space
model is straight forward, i.e. we assume constant state parameters. The change of the robot’s position is accounted forin the
process noise.

We a use a standard Kalman filter [6] for the Local PositioningSystem (LPS), and consider the following aspects:

• iterative approach required for state update due to linearization of range measurements

• certain movement required for convergence of positions of anchors and robot
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Fig. 1: Local Positioning System (LPS): The right-hand coordinate frame is spanned by the locations of three anchors.

INTEGRATION OF LOCAL POSITIONING SYSTEM INTO SENSOR FUSION

In this section, we briefly describe the sensor fusion of the Local Positioning System (LPS), the Inertial Measurement Unit
(IMU), and wheel odometry. We perform a tightly coupled sensor fusion as shown in Fig. 2, i.e. the raw measurements of all
sensors are directly used to estimate the state vector comprising the position, velocity, acceleration, attitude angles and angular
rates of the robot, the anchor positions, and the IMU and odometry biases. A standard extended Kalman filter is used for the
sensor fusion as described by Brown and Hwang in [6].

angular rates of
sensor fusion

LPS anchor−to−robot
and anchor−to−anchor
range measurements

Prediction of states including
position, velocity, acceleration,
attitude angles and angular rates
of robot, anchor positions and
biases of inertial and odometry sensors

Update of states including
position, velocity, acceleration,
attitude angles and angular rates
of robot, anchor positions and
biases of inertial and odometry sensors

Kalman filter
LPS/ INS/ odometry

Inertial sensor measurements:
3D accelerations and
3D angular rates

Wheel odometry measurements:

position, velocity,

wheel speeds

acceleration, attitude,

Fig. 2: Sensor Fusion of LPS, INS and Odometry: A Kalman filteris used to predict and update the state vector at every
measurement epoch. The state vector includes the position,velocity, acceleration, attitude angles and angular ratesof the robot,
the anchor positions, and the IMU and odometry biases.



VISUAL-INERTIAL ODOMETRY

In this section, we describe some fundamentals for visual-inertial odometry with a monocular camera.

Projection model and linear warping

In this subsection, we discuss the relationship between thepixel coordinates of a landmark and the bearing vector pointing
from the robot to the landmark. We use the Robust Visual-Inertial Odometry (ROVIO) method of Blösch et al. and closely
follow their description in [2]-[4]. The pixel coordinatespln of landmarkl in framen are expressed in terms of the camera
modelπ with known intrinsic calibration, and the bearing vectorµl

n of the landmark:

pln = π
(

µl
n

)

. (6)

Solving this equation forµl
n yields

µl
n = π−1

(

pln
)

. (7)

The bearing vector is predicted to the next camera frame witha certain process model, i.e.

µl
n+1 = f(µl

n), (8)

and then re-projected to pixel coordinates:
pln+1 = π

(

µl
n+1

)

(9)

Concatenating the projections of Eq. (7) to (9) relates the pixel coordinates of a certain landmark in two subsequent frames:

pln+1 = π
(

f
(

π−1
(

pln
)))

(10)

We linearize these projections for the Kalman filter and obtain the following linear warping matrix:

D =
∂pln+1

∂pln
=

∂π(µl
n+1)

∂µl
n+1

∂f(µl
n)

∂µl
n

∂π−1(pln)

∂pln
. (11)

Photometric error

The photometric error is defined as the pixel-wise intensitydifference between a (given multi-level) patch feature andthe
related image, whereas we have to account for the warping of the patch feature due to a frame (as described in the previous
subsection) and eventual changes in illumination between the different frames/ levels:

eln,j(p
l, Pn, In, D) = Pn(p

l
j)− aIn(p

lsln +Dplj)− b, (12)

with the following notations:

Pn intensity of multi-level patch at framen
pl coordinates ofl-th patch feature relative to center of image
plj coordinates of patch pixel of patch feature relative to center of patch feature
In intensity of image at framen
sln scaling factor accounting for downsampling
a intensity model parameter to account for changes in illumination
b intensity model parameter to account for changes in illumination

This photometric error is used directly as measurement to update the state vector in our tightly-coupled sensor fusion with a
Kalman filter.



INTEGRATION OF VISUAL-INERTIAL ODOMETRY INTO SENSOR FUSIO N

In this section, we describe the integration of the visual-inertial odometry into the sensor fusion. Fig. 3 shows the architecture
for the sensor fusion of GNSS, INS, wheel-odometry and visual-inertial odometry. The LPS measurements are not considered
in this section since both GNSS and LPS provide position information.

The visual-inertial odometry uses a Kalman filter that processes the images from a monocular camera and the measurements
from an inertial sensor. Our implementation is based on the ROVIO (RObust Visual-Inertial Odometry)-framework of Blösch
et al. [2]-[4], that tracks thebearing vectoranddistanceof each patch featureas state parameter besides the position, velocity,
attitude and biases of the inertial sensor. The individual steps of the visual-inertial odometry are highlighted in red. The first step
includes the prediction of the state parameters using inertial measurements. Subsequently, the locations of the feature patches
are searched in the new camera image around the predicted locations of the feature patches. Finally, the state vector is updated
based on the found feature patches.

The obtained position, velocity and attitude estimates serve as measurements for the main Kalman filter, that also uses the
GNSS-, INS- and wheel-odometry measurements to update its state vector. The state vector of the main Kalman filter includes
the position, velocity, acceleration, attitude angles, angular rates, carrier phase ambiguities, pseudorange multipath errors, and
biases of the inertial sensor and wheel odometry. A standardKalman filter [6] is used for this overall sensor fusion and the
respective state prediction and state update steps are highlighted in blue in Fig. 3.

carrier phase ambiguities,
pseudorange multipath errors
and biases of inertial sensor
and odometry

Update of states including

Ambiguity fixing of GNSS
DD carrier phase measurements
of attitde baseline

Ambiguity fixing of GNSS
DD carrier phase measurements
of RTK baseline

Camera/ INS
Kalman filter

position, velocity,
acceleration, attitude,
angular rates of
sensor fusion

Measurements of 1−3 GNSS
receivers and reference station:
pseudorange, carrier phase
and Doppler measurements

Inertial sensor measurements:
3D accelerations and
3D angular rates

Wheel odometry measurements:
wheel speeds

Predition of states including
position, velocity, acceleration,
attitude angles, angular rates,
carrier phase ambiguities,
pseudorange multipath errors
and biases of inertial sensor
and odometry

position, velocity, attitude, biases of IMU,
State prediction including

Search of features in camera images

State update including
position, velocity, attitude, biases of IMU,

Camera images

GNSS/ INS/ odometry/ vision
Kalman filter

bearing vectors and distances of each patch feature

position, velocity, acceleration,

bearing vectors and distances of each patch feature

attitude angles, angular rates,

Fig. 3: Architecture for Sensor Fusion of GNSS, INS, wheel-odometry and visual-inertial odometry in Kalman filter.



MEASUREMENT RESULTS

Performance of Local Positioning System

Fig. 4 shows the performance of the Local Positioning System(LPS) with a model train. The positions of three anchors and
the robot are jointly estimated. The track of the model trainis a closed loop, which enables an analysis of the repeatability of
the position solution. The enlarged view provides two insights: First, the point cloud at (3.3 m, 1.95 m) refers to the initial static
position, and has a standard deviation of a few centimeters only. Second, the multiple parallel lines refer to differentrounds of
the model train and indicate a consistent position solution.
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Fig. 4: Performance analysis of Local Positioning System (LPS) with a model train.

Comparison of Local Positioning System and Multi-GNSS Real-Time Kinematic Positioning

Fig. 5 includes a comparison between the ANavS tightly coupled LPS/ INS and the ANavS tightly coupled Multi-GNSS/ INS
RTK positioning [7] - [9]. The closed-loop track is installed at a roof-top with open-sky conditions, i.e. both satellite signals
and anchor signals are received without obstructions. Bothsystems are coupled with an IMU and provide consistent solutions
with an uncertainty of less than10 cm for most epochs. The systematic offsets between both positioning solutions around the
lower left part and also at the rightmost part of the track areLPS errors that occur if the angle between an LPS antenna plane
and the signal path is very small.
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Fig. 5: Comparison between ANavS tightly coupled Multi-GNSS/ INS RTK positioning and ANavS tightly coupled LPS/ INS
positioning with model train.



Fusion of Local Positioning System, Wheel Odometry and Inertial Measurements

Fig. 6 shows a comparison between the horizontal position estimates of the ANavS Multi-Sensor Fusion of Local Positioning
System, wheel odometry and inertial sensor and the horizontal position estimates of the tachymeter-based reference solution. In
principle, both solutions are well aligned for almost all epochs. A slight offset of the LPS/Odo/IMU solution can be observed
near the start at (0,0) since the Kalman filter needs some timeto converge. The tachymeter solution has occasional gaps due to
the lack of a line of sight between tachymeter and robot. Moreover, a temporary reduction of accuracy can be observed for the
LPS/ODO/IMU solution in areas where the LPS signals from at least one anchor point were shadowed or blocked, e.g. around
(1.5 m, -3.0 m).
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Fig. 6: Comparison of horizontal position estimates between the ANavS Multi-Sensor Fusion of Local Positioning System,
wheel odometry and inertial sensor with the tachymeter-based reference solution.

Fig. 7 includes a quantitative assessment of the positioning accuracy of the LPS/ INS/ odometry sensor fusion using a
tachymeter as reference. The position offset remains below15 cm for95 % of the epochs.

Fig. 7: Histogram of horizontal position deviation betweenANavS Multi-Sensor Fusion of Local Positioning System, wheel
odometry and inertial sensor and tachymeter-based reference.



Integration of Visual Positioning into Multi-GNSS RTK/ Odo metry/ IMU tightly coupled positioning

Fig. 8 shows a comparison of the Multi-GNSS/ wheel odometry/IMU tightly coupled RTK positioningwith andwithout
integrated visual odometry: The trajectory starts with a rectangular, repetitive pattern at an open field. The initial convergence
of the RTK float solution is also shown. The position estimates with and without visual positioning are well-aligned. This
indicates the correctness of positioning with and without visual odometry. After the rectangular pattern, the robot drove towards
trees and bushes (upper part of trajectory) to test the positioning performance in more challenging conditions. We can observe
a certain deviation between the position trajectories withand without visual odometry. The benefit of the visual odometry
becomes apparent at the RTK refixing after passing the sections with trees and bushes: The position correction is only20 cm
with visual odometry compared to30 cm without visual odometry. The diagram also shows three highlighted locations. The
respective camera images are provided in Fig. 9 and 10.
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Fig. 8: Analysis of Multi-GNSS/ IMU/ wheel odometry tightlycoupled RTKwith andwithout integrated visual odometry.

Fig. 9 includes camera images with∼ 20 patch features on the grass at Pinakothek, Munich, with trees in the background.
The illumination is higher in the left image than in the rightimage. The multilevel patch features are determined by ROVIO,
and represented by squares. Green color denotes successfully tracked patch features and red color denotes rejected patches. The
final (i.e. after iterative convergence) location of each landmark is shown with a small red dot surrounded by4 green or red
dots. The surrounding locations are checked for higher innovation residuals to keep (green) or reject (red) the patch features.
The estimated uncertainty of each landmark location is shown by yellow ellipses. The largest uncertainty has the patch feature
in the upper right part of the left image, where the image is very dark. We can observe that almost all patch features are in green,
which indicates that grass patches can be tracked well.

Fig. 9: Camera images with∼ 20 patch features on the grass at Pinakothek, Munich, with trees in the background.



Fig. 10 shows the camera image at the third highlighted location in Fig. 8. The patch features are again well-distributedover
the camera image. The landmark locations are shown with red dots. The consistency of each patch feature/ landmark location is
checked at the surrounding dots. The checks passed successfully for all patch features except for the patch feature in the upper
right part close to the centre, where two out of four consistency checks failed. Nevertheless, the patch feature is stillused since
two consistency checks confirmed the patch.

Fig. 10: Camera image with tracked patch features at Pinakothek, Munich, Germany.

CONCLUSION

The autonomous driving of robots requires a precise and reliable positioning. In this paper, we analyzed the sensor fusion
of GNSS-RTK, INS, odometry, Local Positioning System (LPS)and visual positioning. The focus was put on the LPS and
visual positioning, and their integration into the sensor fusion. The paper provided a quantitative performance analysis with real
measurements, and showed that centimeter-level positioning accuracy is feasible with low-cost sensors.
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