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Abstract—Surveying, agriculture and the navigation of au-
tonomous robots, cars, ships and aerial systems require Global
Navigation Satellite Systems (GNSS) for precise positioning.

In this paper, we describe a Real-Time Kinematic (RTK)
positioning method, that uses both GPS and Galileo measure-
ments with a common reference satellite, estimates a pseudorange
multipath error for each satellite to prevent a mapping of
multipath errors into the position, and performs a hypothesis
testing for ambiguity fixing. The proposed method is tested on
the new Multi-Sensor, Multi-GNSS RTK positioning module of
ANavS, which includes up to 3 GNSS receivers, an inertial sensor,
a barometer and a processor for RTK positioning on a single
board. The measurement results show a repeatable millimeter-
level positioning accuracy.
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I. INTRODUCTION

Precise positioning is required for a variety of static and
kinematic applications, e.g. for surveying, for agriculture and
for navigation of autonomous robots, cars, ships and aerial sys-
tems. Real-Time Kinematic (RTK) positioning with a Global
Navigation Satellite System (GNSS) has become increasingly
popular over the last years since (a) it provides millimeter- to
centimeter-level positioning accuracies, (b) GNSS signals are
globally available and (c) GNSS receivers are quite cheap.

However, there are a few remaining challenges: First, pseu-
dorange multipath, cycle slips and temporary losses of lock
occur frequently in urban environments and reduce the posi-
tioning accuracy. Second, the fixing time of single-frequency
RTK systems is still in the order of minutes. A third challenge
is related to the periodicity of the ambiguous carrier phase
measurements: The conventional integer fixing techniques (e.g.
bootstrapping and the LAMBDA method of Teunissen [1]) are
invariant with respect to errors in the float ambiguity solution.
Thereby, any integer error in the float ambiguity estimates
translates into a substantial positioning error.

This paper has the following objectives: We increase the
number of available measurements by using both GPS and
Galileo satellites and a common reference satellite for both
constellations. Thereby, the fixing times are reduced. A pseu-
dorange multipath parameter is estimated for each double
difference pseudorange measurement as described by Henkel
et al. in [2]. The ambiguity fixing of LAMBDA is enhanced
by hypothesis testing, i.e. the accumulated sums of squared
phase measurement residuals are tracked for multiple integer
candidate vectors and used for final candidate selection. This

paper also includes the presentation of a new RTK position-
ing module that includes up to 3 multi-constellation GNSS
receivers (for attitude determination), an inertial sensor and
a processor for implementing the proposed RTK positioning
method and a tightly coupled sensor fusion on a single board.

The measurement results show a repeatable millimeter-level
positioning accuracy with this new module.

II. MULTI-GNSS REAL-TIME KINEMATIC POSITIONING

In this section, we describe our approach for Real-Time
Kinematic (RTK) positioning using pseudorange and carrier
phase measurements of both GPS and Galileo. The pseudor-
ange measurement of satellite k from the Global Navigation
Satellite System (GNSS) s ∈ {1, 2} as provided by the Delay
Locked Loop (DLL) of the r-th GNSS receiver is modeled
according to Misra and Enge [3] as

ρk,sr = (~e k,sr )T
(
~xr − ~x k,s

)
+ c(δτsr − δτk,s)

+Ik,sr + T k,sr + ∆ρk,sMPr
+ br + bk,s + ηk,sr , (1)

with the direction vector ~e k,sr = (~xr − ~x k,s)/‖~xr − ~x k,s‖
between satellite and receiver, the receiver position ~xr, the
satellite position ~x k,s, the speed of light c in vacuum, the
receiver clock offset δτsr being constellation-dependent (see
description of GPS-Galileo Time Offset (GGTO) as described
by Hahn and Powers in [4]), the satellite clock offset δτk,s,
the ionospheric delay Ik,sr , the tropospheric delay T k,sr , the
pseudorange multipath error ∆ρk,sMPr

, the receiver code bias
br, the satellite code bias bk,s and the receiver noise ηk,sr .

The satellite position and clock offset is provided by the
satellite navigation message. Thus, the respective terms can be
accounted for, and corrected measurements are defined based
on Eq. (1) as:

ρ̃k,sr := ρk,sr + (~e k,sr )T~x k,s + cδτk,s

= (~e k,sr )T~xr + cδτsr + η̃k,sr , (2)

with η̃k,sr being the lumped sum of atmospheric errors, receiver
and satellite biases, multipath errors and measurement noise:

η̃k,sr := Ik,sr + T k,sr + ∆ρk,sMPr
+ br + bk,s + ηk,sr . (3)

The position determination requires the joint use of multiple
satellites. Let us assume that s = 1 refers to GPS with K1

visible satellites and s = 2 refers to Galileo with K2 visible



satellites. We stack the corrected pseudorange measurements
of Eq. (2) of both GPS and Galileo in a single vector, i.e.
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with
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The absolute receiver position and clock offsets are obtained
by minimizing the sum of squared residuals, i.e. ~̂xr
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The accuracy of the absolute positioning is limited by atmo-
spheric errors and pseudorange multipath, and typically in the
order of a few meters.

A higher positioning accuracy is obtained by differential
positioning between the user (being indexed by u) and a close-
by reference station (being indexed by r) since the common
atmospheric errors, residual orbital and satellite clock errors
and biases are eliminated by differencing the measurements
between the user and the reference station. The positioning
accuracy can be further improved by using the much more
accurate carrier phase measurements.

We select a common reference satellite for all visible
satellites of both constellations and denote it by l, s̄. The
double difference measurement between the receiver pair u
and r and the satellite pair k, s and l, s̄ is modeled according
to Henkel et al. [2] as

ρk,s;l,s̄ur := (ρk,su − ρk,sr )− (ρl,s̄u − ρl,s̄r )

=
(
(~e k,su )T(~xu − ~x k,s)− (~e k,sr )T(~xr − ~x k,s)

)
−
(
(~e l,s̄u )T(~xu − ~x l,s̄)− (~e l,s̄r )T(~xr − ~x l,s̄)

)
+(cδτsu − cδτsr )− (cδτ s̄u − cδτ s̄r )

+∆ρk,s;l,s̄MPur
+ ηk,s;l,s̄ur . (7)

We use the approximation that the GGTO (GPS-Galileo Time
Offset) is equal for both receivers [4], i.e.

δτsu − δτ s̄u ≈ δτsr − δτ s̄r ∀ s 6= s̄, (8)

to approximate Eq. (7) by:

ρk,s;l,s̄ur ≈
(
(~e k,su )T(~xu − ~x k,s)− (~e k,sr )T(~xr − ~x k,s)

)
−
(
(~e l,s̄u )T(~xu − ~x l,s̄)− (~e l,s̄r )T(~xr − ~x l,s̄)

)
+∆ρk,s;l,s̄MPur

+ ηk,s;l,s̄ur , (9)

The double difference pseudorange measurements of Eq. (7)
are corrected for the known satellite positions of both GNSS
constellations and the known position ~xr of the reference
station, i.e.

ρ̃k,s;l,s̄ur := ρk,s;l,s̄ur

−
(
(~e k,su )T(~xr − ~x k,s)− (~e k,sr )T(~xr − ~x k,s)

)
+
(
(~e l,s̄u )T(~xr − ~x l,s̄)− (~e l,s̄r )T(~xr − ~x l,s̄)

)
.

(10)

Replacing ρk,s;l,s̄ur in Eq. (10) by Eq. (7) yields

ρ̃k,s;l,s̄ur = (~e k,su − ~e l,s̄u )T(~xu − ~xr)
+∆ρk,s;l,s̄MPur

+ ηk,s;l,s̄ur , (11)

where the direction vectors are known with sufficient accuracy
from the absolute positioning, and ~xu − ~xr denotes the
unknown relative position (“baseline”) between both receivers.

The (corrected) double difference carrier phase measure-
ments are modeled similar to the double difference pseudor-
ange measurements, i.e.

λϕ̃k,c;l,s̄ur = (~e k,su −~e l,s̄u )T(~xu−~xr)+λNk,s;l,s̄
ur +εk,s;l,s̄ur , (12)

with wavelength λ, integer ambiguity Nk,c;l,s̄
ur ∈ Z due to

the periodicity of the carrier phase measurements, and double
difference phase noise εk,s;l,s̄ur including phase multipath. The
corrected double differenced pseudorange and carrier phase
measurements of both constellations are stacked in a single
measurement vector at epoch n, i.e.

zn =
(
ρ̃1,1;l,s̄
ur , . . . , ρ̃1,K1;l,s̄

ur , ρ̃2,1;l,s̄
ur , ρ̃2,K2;l,s̄

ur , . . .

ϕ̃1,1;l,s̄
ur , . . . , ϕ̃1,K1;l,s̄

ur , ϕ̃2,1;l,s̄
ur , . . . , ϕ̃2,K2;l,s̄

ur

)T
.

(13)

This measurement vector can be expressed in terms of the
unknowns as given by Eq. (11) and (12), i.e.

zn = Hu,nξur,n +ANur + ηzn , (14)

with

Hu,n =


H1
u,n IK1×K1 0K1×K2

H2
u,n 0K2×K1 IK2×K2

H1
u,n 0K1×K1 0K1×K2

H2
u,n 0K2×K1 0K2×K2

 , (15)



in which the matrices H1
u,n and H2

u,n are defined as

H1
u,n =


(~e 1,1
u − ~e l,s̄u )T

...

(~eK1,1
u − ~e l,s̄u )T

 (16)

and

H2
u,n =


(~e 1,2
u − ~e l,s̄u )T

...

(~eK2,2
u − ~e l,s̄u )T

 , (17)

and ξur,n includes all real-valued unknowns, i.e.

ξur,n =
(

(~xu − ~xr)T,∆ρ1,1;l,s̄
MPur

, . . . ,∆ρK1,1;l,s̄
MPur

, . . .

∆ρ1,2;l,s̄
MPur

, . . . ,∆ρK2,2;l,s̄
MPur

)T

. (18)

The matrix A describes the mapping of the ambiguities into
the measurement space, i.e.

A =

(
0(K1+K2)×(K1+K2)

λ · I(K1+K2)×(K1+K2)

)
, (19)

and the vector Nur includes all double difference integer
ambiguities, i.e.

Nur =
(
N1,1;l,s̄
ur , . . . , NK1,1;l,s̄

ur , N1,2;l,s̄
ur , . . . , NK2,2;l,s̄

ur

)T ∈ Z,
(20)

and ηzn includes the stacked pseudorange and carrier phase
noise. The number of unknown position coordinates, carrier
phase ambiguities and pseudorange multipath errors exceeds
the number of measurements for a single epoch. Therefore,
the measurements of multiple epochs need to be considered
in combination with the time-constant ambiguities.

A state space model describes the temporal evolution of the
state parameters and, thereby, strengthens the system model.
The state space model is given by Henkel et al. [2] as

ξur,n = Φξur,n−1 + ηξur,n (21)

with the state transition matrix Φ, the state vector ξur,n−1

of the previous epoch and the process noise ηξur,n . The
state transition matrix becomes an identity matrix for static
positioning, i.e.

Φ = 1(3+K1+K2)×(3+K1+K2). (22)

We use a standard Kalman filter (see Brown and Hwang
[5]) to estimate the state parameters from the measurements
using both measurement and state space models. The obtained
ambiguity estimate of the Kalman filter is denoted by N̂+

ur and
is typically a real-valued vector since the Kalman filter does
not consider the integer property of the ambiguities.

Therefore, we search for all integer candidate vectors N j
ur

within a certain search space χ2 around the float solution, i.e

‖N̂+
ur −N j

ur‖2Σ−1

N̂ur

≤ χ2, (23)

where ΣN̂ur denotes the float ambiguity covariance matrix.
The ambiguity residuals N̂+

ur−N j
ur are invariant with respect

to integer errors of the float solution and, therefore, are not
appropriate for validation of the ambiguity fixing.

Therefore, a hypothesis testing is performed, i.e. the sum
of squared measurement residuals is determined for each
candidate vector and epoch n, and accumulated over time.
Finally, the candidate vector that minimizes the accumulated
sum of squared measurement residuals is considered to be
most trustworthy, i.e.

Ňur = arg min
Njur

(
N∑
n=1

min
ξur,n
‖zn −Hu,nξur,n −AN j

ur‖2Σ−1
zn

)
,

(24)
where Σzn denotes the measurement covariance matrix. Once
the ambiguities are fixed, the fixed baseline and multipath
errors are obtained by least-squares estimation, i.e.

ξ̌ur,n = arg min
ξur,n
‖zn −Hu,nξur,n −AŇur‖2Σ−1

zn

=
(
HT
u,nΣ−1

zn Hu,n

)−1
HT
u,nΣ−1

zn

(
zn −AŇur

)
.

(25)

III. DESCRIPTION OF THE NOVEL ANAVS MULTI-SENSOR,
MULTI-GNSS RTK POSITIONING MODULE

The proposed method of the previous section was imple-
mented on the novel Multi-Sensor, Multi-GNSS RTK position-
ing module of ANavS. The module has the following features:

• 3 integrated GNSS receivers with external antennas
for precise attitude determination

• 1 integrated inertial measurement unit
with 3D accelerometer, 3D gyroscope
and 3D magnetometer

• 1 integrated barometer for improved height estimation
in areas with limited satellite visibility

• 1 integrated processor for precise position
and attitude determination
with tightly coupled sensor fusion

Figure 1. Multi-Sensor RTK Positioning Module of ANavS
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• 1 integrated dual CSI-II camera port with circuits
for precise camera frame time stamping

• 1 integrated LTE module for wireless reception
of RTK corrections over the internet

• multiple communication interfaces:
LTE, WLAN, Ethernet, CAN, UART, USB

Fig. 1 provides a picture of the ANavS Multi-Sensor, Multi-
GNSS RTK positioning module. The module has a very small
form factor of only 110 mm x 80 mm. Fig. 2 provides a more
detailed picture of the board, i.e. the individual components
and their placement on the top and bottom side of the board
are shown.

IV. PERFORMANCE OF MULTI-GNSS RTK POSITIONING

In this section, we describe the performance of the proposed
Multi-GNSS RTK positioning method with the new ANavS
Multi-Sensor, Multi-GNSS RTK positioning module. Two
ANavS modules were placed next to each other at Pinakothek
in Munich, Germany, at a latitude of ϕ = 48.148841◦ and a
longitude of λ = 11.570333◦ on May 25, 2018.
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Figure 3. Elevation of GNSS satellites during measurement at Pinakothek,
Munich, Germany on May 25, 2018.
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Figure 4. Fixed phase residuals of GNSS double difference measurements at
Pinakothek, Munich, Germany.

A. Positioning Accuracy

Fig. 3 shows the elevations of the visible GPS and Galileo
satellites during the measurement of approximately 30 min-
utes. The Galileo satellite with PRN 26 had the highest
elevation throughout the measurement. Therefore, it was cho-
sen as common reference satellite for performing the double
differences with all other visible GPS and Galileo satellites.

Fig. 4 shows the fixed phase residuals for the GPS satellites
in subfigure a) and for the Galileo satellites in subfigure b).
The residuals are below 1 cm for almost all satellites and
epochs, which indicates a correct integer ambiguity fixing.
The GPS satellite with PRN 4 is setting after 1400 s and
the Galileo satellite with PRN 7 is raising just after 65 s.
Both satellites have a very low elevation and, therefore, are
affected by substantial phase multipath resulting in increased
phase residuals of up to 3 cm.

Fig. 5 shows the horizontal relative position estimates
between both RTK modules. We splitted the measurement data
into three parts to test the repeatability with three independent
ambiguity fixings. The figure shows the single-epoch least-
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Figure 5. Single epoch least-squares baseline estimates for three different
ambiguity fixings during measurement at Pinakothek, Munich.

squares baseline estimates as provided by Eq. (25) for the
three ambiguity fixings. The position estimates vary within
only a few millimeters and are consistent over the fixings.

B. Sensitivity to Interference from LTE

The GNSS measurements of the reference station are trans-
mitted to the mobile user by LTE to enable differential
positioning. The LTE signal is several orders of magnitude
stronger than the GNSS signals, and some harmonics of
the LTE signals are overlapping with the GNSS frequencies.
Therefore, a careful design of the RTK module is required.

The ANavS Multi-Sensor, Multi-GNSS RTK module uses a
shielded LTE module and external GNSS and LTE antennas to
minimize the potential interference between LTE and GNSS.
The interference of GNSS by LTE is analyzed by comparing
the GNSS signal strength with active and powered down LTE
module. Fig. 6 shows the carrier to noise power ratio of
all visible GPS and Galileo satellites with powered down
LTE module, and Fig. 7 refers to the signal strength with
simultaneous LTE transmission.

The two tests were performed after each other, i.e. the
satellite geometry has slightly changed between both tests. We
can observe that the maximum carrier to noise power ratio is 1
to 3 dB lower during active LTE transmission, which is caused
by some extent due to the LTE interference and to some extent
by the change of the satellite geometry. Obviously, the LTE-
based interference is quite small compared to the variation in
signal strength between different satellites. The latter one is
caused by the low-cost patch antennas, which have a typical
C/N0 degradation of ≥ 10 dB for low-elevation satellites
compared to high-elevation satellites.

V. CONCLUSION

The bottleneck of any precise GNSS-based positioning is
the carrier phase ambiguity fixing due the small wavelength.
This paper provides a Real-Time Kinematic (RTK) positioning
method, that uses the satellites from both GPS and Galileo,
selects a common reference satellite, estimates pseudorange
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Figure 6. Carrier to noise power ratio of GNSS satellites with powered down
LTE module.
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Figure 7. Carrier to noise power ratio of GNSS satellites with simultaneous
transmission of LTE and GNSS signals.

multipath errors, and extends the LAMBDA method by hy-
pothesis testing to overcome the previous shortcomings.

The method was implemented on the new ANavS Multi-
Sensor, Multi-GNSS RTK positioning module, and provided
a repeatable millimeter-level positioning accuracy. The inter-
ference of LTE signals on GNSS was also analyzed, and the
measurement results show that the LTE-based interference is
well-below the natural variation of the carrier to noise power
ratio between different satellites.
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