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This doctoral thesis is based on contributions to international peer-reviewed scientific journals.

The work presented in this thesis has been published, has been submitted for publication, or is in

a preprint form for forthcoming submission to an international scientific journal, by the time of

submission of this thesis.

This work describes the development of novel theoretical methods for the calculation of nonlinear

optical spectra, as well as the application of these methods for the analysis and interpretation

of spectroscopic signals. The applications cover the spectroscopy of molecular ensembles as

well as the spectroscopy of single molecules in the femtosecond time domain. The analysis is

based on a non-perturbative formalism for the treatment of molecules with the external fields.

Both the weak-field regime and the strong-field regime have been considered. A conspectus of

two published papers and a manuscript in preparation is given. These three contributions are

included in the Appendix.

E.P.G., Garching bei München, November 2018



Abstract

Modern techniques of nonlinear femtosecond spectroscopy are capable of unraveling

the photoinduced dynamics in polyatomic chromophores in great detail. However,

the information of interest is encoded in time- and frequency-resolved signal, the

interpretation of which requires theoretical analysis and numerical simulations. In

the present work, nonperturbative methods have been applied for the simulation of

ensemble spectra and single-molecule signals. These simulations emulate the actual

experiments: the response of the chromophore to the external fields of the laser pulses

is numerically evaluated. Pulse-overlap effects and strong-field effects are automatically

accounted for.

In the first part of this thesis, the concept of “ideal” and “real” transient-absorption

pump-probe signals is introduced. The ideal signal provides insight into the mechanisms

of detection of time- and frequency-resolved signals. It is demonstrated that the ideal

signal is a two-faceted object, which exhibits the features of moving wave packets and

stationary spectra. Its projection on short (good temporal resolution) or long (good

frequency resolution) probe pulse gives the measurable spectra. For this analysis, I

extended the method for the simulation of transient absorption signals [Chem. Phys. 312,

135 (2005)] to account for excited-state absorption. The pump pulse can be of arbitrary

strength, while the probe pulse is assumed to be weak. These results are illustrated for

a model system which exhibits nonadiabatic dissipative dynamics.

In the second part of this thesis, the theoretical foundations of femtosecond double-

pump single-molecule spectroscopy are developed. This novel spectroscopic technique is

based on the detection of the fluorescence of individual chromophores which are excited

by a pair of phase-locked pulses. I developed a general method for the simulation
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of these signals which is based on the numerical solution of driven master equations.

Fluctuations of the chromophore parameters induced by the environment are taken

into account by a stochastic model. I performed a series of simulations, both in the

regime of weak system-field coupling (when the signal scales linearly with the intensity

of the pulses) as well as in the regime of strong system-field coupling (when the signal

exhibits nonlinear scaling with the pulse intensity). In the weak-field regime, the signals

are dominated by the coherence of the electronic density matrix of the chromophore,

which is rapidly quenched by electronic dephasing. This restricts the information

content of weak-field signals. In the strong-field regime, on the other hand, electronic

populations contribute to the signals. The populations are not affected by electronic

dephasing, which renders strong-field signals more robust with respect to environmental

fluctuations.
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Zusammenfassung

Mit den modernen Techniken der nichtlinearen Femtosekunden-Spektroskopie kann die

photoinduzierte Dynamik von vielatomigen Molekülen im Detail untersucht werden.

Die interessante Information ist jedoch in Zeit- und Frequenz-aufgelösten Signalen

enthalten, deren Interpretation theoretische Analyse und numerische Simulationen

erfordert. In der vorliegenden Arbeit wurden nichtstörungstheoretische Methoden

benutzt, um sowohl Ensemble-Spektren als auch Einzelmolekül-Spektren zu simulieren.

Die Simulationen imitieren dabei das Experiment: die Reaktion des Chromophors

auf die externen Felder der Laser-Pulse wird numerisch berechnet. Die Effekte über-

lappender Pulse und starker Felder werden damit automatisch berücksichtigt. Im

ersten Teil der Arbeit wird das Konzept „idealer“ und „realer“ Pump-Probe-Signale

am Beispiel der transienten Absorption eingeführt. Das ideale Signal liefert Einsicht

in die Mechanismen der Detektion von Zeit- und Frequenz-aufgelösten Spektren. Es

wird gezeigt, dass das ideale Signal ein zwei-gesichtiges Objekt ist, welches Eigen-

schaften bewegter Wellenpakete und stationärer Spektren aufweist. Seine Projektion

auf kurze (gute Zeitauflösung) oder lange (gute Frequenzauflösung) Probe-Pulse liefert

die messbaren Spektren. Für diese Analyse erweiterte ich die Methode für die Sim-

ulation von transienten Absorptionssignalen [Chem Phys. 312, 135 (2005)] durch die

Berücksichtigung der Absorption aus dem angeregten Zustand. Der Pump-Puls kann

von beliebiger Stärke sein, während der Probe-Puls als schwach angenommen wird.

Diese Resultate werden für ein Modellsystem, welches nichtadiabatische und dissipative

Dynamik aufweist, illustriert. Im zweiten Teil der Arbeit werden die theoretischen

Grundlagen der Femtosekunden-Doppel-Pump-Einzelmolekülspektroskopie entwickelt.

Diese neuartige spektroskopische Methode basiert auf der Detektion der Fluoreszenz

einzelner Moleküle nach Anregung durch ein phasenstabilisiertes Paar von Laserpulsen.

Ich entwickelte eine allgemeine Methode für die Simulation dieser Signale, die auf der
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numerischen Lösung getriebener Mastergleichungen beruht. Fluktuationen der Parame-

ter der Chromophore, welche durch die Umgebung induziert werden, werden durch

ein stochastisches Modell berücksichtigt. Ich führte eine Reihe von Simulationen durch,

sowohl im Regime schwacher Kopplung von Chromophor und Feld (wenn das Signal

linear mit der Intensität der Pulse skaliert) als auch im Regime starker Kopplung (wenn

das Signal nichtlinear mit der Intensität der Pulse skaliert). Im Fall schwacher Felder

werden die Signale durch die Kohärenz der elektronischen Dichtematrix dominiert,

welche sehr schnell durch elektronische Dephasierung gelöscht wird. Dies schränkt den

Informationsgehalt der Signale beträchtlich ein. Im Fall starker Felder tragen anderer-

seits elektronische Populationen zu den Signalen bei, welche durch die elektronische

Dephasierung nicht beeinflusst werden. Aus diesem Grund sind Signale, die durch

starke Felder induziert werden, robuster gegenüber Fluktuationen der Umgebung.
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P R E FA C E

This dissertation is submitted for the degree of Doctor of Philosophy at the Technical

University of Munich.

As a former chemist by undergraduate background I could definitely be biased to

introduce this thesis from a chemical perspective. However, the reality is that it truly

rests in between chemistry, physics and computer science. Frankly, and being pragmatic,

I should definitely say physics is the main area in which we could set it. However, after

these years I understood that most of the chemistry of it resides behind the words of

“Theoretische Chemie Lehrstuhl”. It can be difficult to imagine how a chemist would

decide to pursue a doctorate in such a unfamiliar topic. Well, that is an interesting point,

and in fact it is the reason why I decided to write about it in the first place.

After graduating in a five-year Diploma degree in Chemistry in Spain and decided to

pursue a further career in science, I involved myself in a journey that would be the

starting point of my scientific life. Later of contacting Prof. Domcke with my enthusiasm

in doing a doctoral degree in his research group, he offered me different available PhD

topics to choose from. They covered different approaches from pure applicational work

in quantum chemistry to simulation of nonlinear optical spectra. At that point I should

say the closest topic to my expertise definitely was the first one mentioned, however, my

neuronal-based logics at that moment was highly influenced by the factor of curiosity

(or maybe unsensibility) and exploring new things in a different area that the one I

was used to. This made me choose at that time a PhD topic which could be untitled

as: “theoretical developments in nonlinear optical spectroscopies”. This broad topic
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ideas. Finally I am specially grateful for the support of my family, friends (including

my dog) and David, who gave me strength specially in the most challenging times of

these doctoral years and made me fully enjoy my stay in Munich.



To my parents

"I love being a stand up comedian. It’s probably the best job ever,
Uh... if I could have any job, I would be a cat.

But that’s not something I’m supposed to talk about in public."
-Iliza Shlesinger- stand up comedian





L I S T O F A B B R E V I AT I O N S

2PPE: Two-Pulse Photon-Echo

4WM: Four-Wave Mixing

CARS: Coherent Anti-Stokes Raman Scattering

DDA: Diabatic Damping Approximation

DW: Doorway-Window

ET: Electron Transfer

ESA: Excited-State Absorption

EOM-PMA: Equation of Motion Phase-Matching Approach

FSRS: Femtosecond Stimulated Raman Spectroscopy

GR: Golden Rule

GSB: Ground-State Bleach

HEOM: Hierarchy Equation-of-Motion

PP: Pump-Probe

RDM: Reduced Density Matrix

RWA: Rotating Wave Approximation

SA: Secular Approximation

xi



xii

SM: Single-Molecule

SE: Stimulated emission

TFG: Time and Frequency Gate

TA PP: Transient-Absorption Pump-Probe



C O N T E N T S

1 introduction 1

2 background 9

2.1 The Density Operator 9

2.2 The Reduced Density Matrix 11

2.3 Time Evolution of the Density Operator 13

2.4 Time-Dependent Perturbation Theory. The Interaction Picture 15

2.5 Redfield Theory for Open Quantum Systems 17

3 theory of nonlinear optical spectroscopy : response functions 23

3.1 Basic Concepts in Time and Frequency Resolved Spectroscopy 23

3.2 The Perturbative Approach: Nonlinear Response Functions 25

3.3 Reduction of the Number of Coherent Pathways 26

3.3.1 The Rotating Wave Approximation 26

3.3.2 The Phase Matching Condition 30

3.4 Representative Non-Linear Optical Spectroscopies and the Corresponding

Response Functions 32

3.4.1 Linear Absorption Spectroscopy 32

3.4.2 Pump-probe Spectroscopy 35

3.4.3 Two-Pulse Photon-Echo Spectroscopy 38

4 the non-perturbative formalism 41

4.1 The Equation of Motion Phase-Matching Approach for Three-Pulse Spec-

troscopy 42

xiii



xiv CONTENTS

4.2 Two-Pulse Based Methods: Ideal and Real Time- and Frequency-Resolved

Spectra 44

4.3 The Doorway-Window Representation of Nonlinear Response Functions 46

5 double-pump femtosecond fluorescence spectroscopy of single

molecules 49

6 publications and manuscripts 55

6.1 Analysis of transient-absorption pump-probe signals of nonadiabatic

dissipative systems 56

6.2 Theoretical aspects of femtosecond double-pump single-molecule spec-

troscopy I. Weak-field regime 58

6.3 Theoretical aspects of femtosecond double-pump single-molecule spec-

troscopy II. Strong-field regime 60

7 conclusions 63

8 appendix 73



1

I N T R O D U C T I O N

Spectroscopy is based on the interaction of matter and electromagnetic fields. The main

idea behind spectroscopy is to use the external perturbation by an electromagnetic field

to probe the structure and dynamical processes of matter. There are many different

radiative transitions that can occur. A classification of them can be based on different

criteria, such as the order of the response of the system to the external fields, the type

of resonances, the distinction between time- and frequency-domain techniques and

the properties of the system under study, among others. The information content of

various spectroscopic techniques is different and thus the choice of a technique depends

on the kind of information one wants to extract. When an external electromagnetic

field interacts with a molecular system, an induced polarization P(t) is generated in

the system as a consequence of response of the molecular ensemble to the external

perturbation. This polarization, which represents the density of induced electric dipole

moments per unit volume, constitutes the macroscopic observable of interest in most

spectroscopic studies. Experimentally, the measured quantity is the electric field radiated

by the induced polarization, which is expressed through the polarization as

E(t) ∝ −iP(t). (1.1)

1



2 introduction

Spectroscopic signals reveral how the induced polarization of a system varies with

wavelength and time.

The most general classification of spectroscopic techniques can be based on the do-

main in which they are performed: frequency-resolved techniques or time-resolved

techniques.1 Historically, spectroscopy has been perceived as a frequency-resolved tech-

nique, involving external electromagnetic fields of long duration and narrow bandwidth

interacting with the material system. In this context, UV/Visible, IR, Raman and X-ray

spectroscopies have been extensively performed. The emergence of picosecond and

femtosecond lasers has permitted the development of so-called ultrafast time-resolved

spectroscopies,2 in which short (and thus spectrally broad) pulses are employed to

obtain information about the dynamics of physical, chemical or biological systems.

The increasing shortening of the pulses down to the femtosecond (10−15 s) regime

has permitted the monitoring of nuclear motion and elementary processes of chemical

dynamics in real time.3 Ultrafast time-resolved spectroscopic techniques are widely

employed nowadays for the probing of ultrafast electron and proton transfer reactions

or solvation dynamics of diverse molecular systems.

Another classification of spectroscopic techniques can be based on the dependence of

the induced polarization on the external electric field. The polarization can be expanded

as

P = P(1) + P(2) + P(3) + . . . (1.2)

Here P(1)(t) is the linear polarization, which represents the linear optical response

of the system. It describes absorption of weak fields. Beyond this weak-field limit,

higher-order optical responses can be generated. The nonlinear polarization

PNL = P(2) + P(3) + . . . (1.3)
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becomes relevant when the external electric field is intense or when several light-matter

interactions occur with weak laser pulses.

The most commonly employed nonlinear techniques are referred to as “multi-wave

mixing” spectroscopies. An n-wave mixing process involves the interaction of the

system with n laser fields with wave vectors k1, k2, . . . kn and frequencies ω1, ω2, . . .

ωn. By this interaction, a coherent signal is generated and detected in the direction

given by the wave-vector ks and with frequency ωs. ks and ωs are given by linear

combinations of the applied wave vectors and frequencies. The different combinations

that arise from the particular choice of signs defining ks and ωs define the possible

processes that can be detected. Three-wave mixing processes (n = 2) are described

by second-order polarizations P(2)(t) (for example, second harmonic generation, sum

frequency generation or difference frequency generation). These processes vanish in

random isotropic media with inversion symmetry. Therefore, the lowest-order optical

nonlinearity is usually related to the third-order polarization P(3)(t). The spectroscopies

related to P(3)(t) are called four-wave mixing (4WM) processes. They are the most

widely used techniques in modern ultrafast spectroscopy. Examples are third harmonic

generation, photon echo, transient grating, coherent anti-Stokes Raman scattering

(CARS), among others. In these techniques, the signal is measured in a direction which

differs from the incoming waves, in contrast to other 4WM techniques like pump-probe

or hole-burning spectroscopy, in which the signal is generated in the direction of one of

the incoming beams and the effect on this beam is measured (self action).

While linear spectroscopic techniques cannot resolve couplings or spectral correlations

directly, nonlinear techniques can provide information on these properties.4 For example,

effects such as homogeneous or inhomogenous broadening cannot be uniquely deduced

from linear spectra. The interpretation of certain dynamics and relaxation processes

is out of reach for linear techniques. These processes are of particular relevance in

condensed-phase spectroscopy, where lineshapes are broad and spectra are congested.
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Nonlinear spectroscopies, on the other hand, provide a powerful tool for resolving

these phenomena due to the simultaneous and independent control over the different

frequencies involved or the time-ordering of the incoming fields, which allows the

probing of correlations between different spectral features.

Table 1.1 summarizes some of the linear and nonlinear techniques, classified as coherent

and spontaneous processes.

Table 1: Classification of some linear and nonlinear techniques according to their
coherent or spontaneous nature. (Source: Time-dependent Quantum Mechanics and
Spectroscopy Lectures, Andrei Tokmakoff, University of Chicago, 2014).

The traditional theoretical description of ultrafast nonlinear spectroscopy is based on

the concept of nonlinear optical response functions.1,5 The response functions are defined

within the perturbative formalism in which the interaction of material systems with
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external fields is treated in perturbation theory. Within this formalism, an intuitive

understanding of the dynamics of a molecular system undergoing excitation by external

pulses can be developed. The perturbative formalism is considered in some detail in

section 3.2.

This traditional way of studying light-matter interaction is restricted with respect to the

size of the system under consideration. When the complexity of the molecular system

increases, for example when nonadiabatic couplings or relaxation phenomena take place

in a polyatomic molecule, the perturbative method becomes computationally expensive.

To tackle such problems, nonperturbative descriptions based on the numerically exact

solution of the equation of motion have been developed in recent years.6–10 These

methods include the so-called equation-of-motion phase-matching approach (EOM-

PMA)7 for the calculation the third-order polarization, the two-pulse EOM-PMA6

and the Doorway-Window (DW) concept,8–12 among others. The main difference

between the perturbative and the nonperturbative formalisms consists in the way the

electric polarization P(t) is evaluated, perturbatively or nonperturbatively. One of

the advantages of the non-perturbative formalism is that it can readily be combined

with any numerical method describing the dynamics of the system. Nonperturbative

methods also allow us to deal with strong system-field couplings.

Usually ultrafast spectroscopic experiments are performed in the regime of weak field-

matter interaction, where the order of the induced polarization providing the signal

is determined by the number of fields used. However, a growing number of ultrafast

4WM techniques have revealed much richer information on the photodynamics of

different molecular systems by the use of more intense pulses.1,13–24,41 In this strong-

field regime, simulations based on a perturbative treatment of the polarization are

clearly inadequate (the perturbation series may even not converge). Instead, one has

to use a nonperturbative formalism, in which all relevant laser fields are incorporated
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into the Hamiltonian and the light-driven system dynamics is evaluated numerically

exactly.37,38

Molecular spectroscopy is usually performed on ensembles of molecules.39 The spec-

troscopic information is extracted from the response of the ensemble to the external

fields.40,41 Since the late 1990s, applications in molecular biology, photochemistry, poly-

mer chemistry, quantum optics and other fields have been advanced considerably by the

spectroscopic investigation of individual molecules.42–44 Historically, SM spectroscopic

responses were first measured in the frequency domain. The first spectroscopic studies

on single molecules date back to 1987,46 when Moerner and Carter applied a frequency

modulation technique47 to detect the homogeneously broadened absorption spectra

of pentacene molecules in solids.42 In 1990, Orrit and Bernar introduced a technique

based on fluorescence detection to study the absorption process of SMs,43 which served

as a motivation for latter work in SM detection such as the study of molecules in

jets.48 The study of single-molecule (SM) responses provides valuable information about

specific inter- and intra-molecular processes, which are absent in ensemble studies due

to the bulk conditions.45 SM responses are free of inhomogeneous broadening, while

ensemble experiments can provide only averaged information, in which information

about individual molecules is lost. Each chromophore is influenced by its local envi-

ronment, so that absorption/emission spectra, transition dipole orientation, etc., varies

from one chromophore to another. SM experiments indeed show this heterogeneity

for chemically identical molecules24. Another important aspect of SM spectroscopy

concerns the properties of the laser excitation. Weak laser pulses would not produce

a sufficient intensity of the signal. Therefore, strong pulses have to be used and only

extremely photostable molecules can be interrogated in this way.

Very recently, ultrafast techniques have been combined with SM spectroscopy. Note-

worthy in this respect is the technique developed in the van Hulst group.24,49 Using

fluorescence detection, they obtained for the first time information about the dynamics
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of individual molecules at the femtosecond timescale. In this technique (known as

double-pump technique) two phased-locked femtosecond pump pulses interact with a

highly photostable single chromophore in a polymer matrix. The fluorescence photons

are collected with a confocal microscope as a function of a varying delay time (on the

order of femtoseconds) between the two pulses. For individual dyes the detection of

vibrational wavepackets has been demonstrated.50–54

In this thesis, specific aspects of femtosecond two-pulse spectroscopies are analyzed,

using perturbative as well as nonperturbative theoretical descriptions. The first part

deals with ensemble spectroscopy. A previously developed EOM-PMA method6,8,55 has

been extended towards the inclusion of excited-state absoption (ESA). This extension

has permitted the evaluation and comprehensive analysis of transient-absorption pump-

probe (TA PP) signals. The main goal was to reveal in detail how the nonadiabatic

wavepacket dynamics occuring at crossings of PE functions56 can be revealed by the

detection of pump-probe (PP) transients. The computational method is based on an

exact numerical solution of the driven master equation governing the system dynamics,

including coupling to a dissipative environment. A novel aspect of this work is a two-

step calculation, involving first the evaluation of so-called ideal spectra which exhibit

perfect time- and frequency-resolution. In a second step, the measurable real spectra

are calculated. The ideal spectra contain the maximum level of information for a given

spectroscopic signal. The real spectra are obtained through a double convolution of the

ideal spectra with an appropiate time and frequency gate (TFG) function, which takes

account of the probe mechanism.

In our simulations of TA PP signals, we selected a model system with an intrinsic

dynamics which is well understood from previous studies.57–59 It consists of an elec-

tronic ground state, two coupled excited electronic states as well as a higher excited

electronic state. A single reaction mode of a polyatomic molecule is included, which is

weakly coupled to a dissipative bath. The effect of the bath is modeled perturbatively
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(in the system-bath coupling) within multi-level Redfield theory.57,60 I have performed

comprehensive simulations which reveal how the features of the system dynamics are

imprinted on the ideal and real TA PP signals.

The second part of this thesis focuses on a theoretical analysis of femtosecond SM

spectroscopy. This study was inspired by the recent experimental work of van Hulst and

coworkers.49 I developed a theoretical description of double-pump femtosecond SM

signals with fluorescence detection, exploring the effects of electronic dephasing, het-

erogeneity in radiation-matter coupling and slow fluctuations of molecular parameters

due to the environment. The theoretical model of the chromophore consists of two or

three electronic states and a single underdamped high-frequency Franck-Condon active

vibrational mode. As emphasized in a review from the van Hulst group,24 both weak

and strong coupling regimes are inherent in SM spectroscopy. In the first part of the

work I therefore considered weak radiation-matter coupling.61 In the second part of the

work, I extended the analysis to include strong-field effects.62 I analyzed the turnover

from the weak-field regime to the strong-field regime. It has been found that the signals

in both regimes exhibit qualitatively different behaviours.



2

B A C K G R O U N D

2.1 The Density Operator

In ordinary quantum mechanics (Hilbert space) vector notation is used to represent the

state of the system, while matrices are used to represent operators. When using the

density operator,1,63 the state of the system also is defined by a matrix.

Starting with defining a quantum system described by the wavefunction |ψ(t)〉, the

expectation value of any given operator A reads as

〈A〉(t) = 〈ψ(t)|A|ψ(t)〉. (2.1)

Expanding the wavefunction |ψ(t)〉 in an arbitrary basis set, {|n〉} and taking the

Hermitian conjugate of the expanded ket vector we have

|ψ(t)〉 = ∑
n
|n〉cn(t), (2.2)

〈ψ(t)| = ∑
m

c∗m(t)〈m|. (2.3)

9
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After the substitution of Eqs. 2.2 and 2.3 in Eq. 2.1, the expectation value of A is given

by

〈A〉(t) = ∑
n,m

cn(t)c∗m(t)〈m|A|n〉 ≡∑
n,m

cn(t)c∗m(t)Amn. (2.4)

The density operator (also known as the density matrix) is defined as

ρ(t) ≡ |ψ(t)〉〈ψ(t)|. (2.5)

An expansion of the density operator in the previously defined basis {|n〉} gives

ρ(t) = ∑
n,m

cn(t)c∗m(t)|n〉〈m| ≡∑
n,m

ρnm(t)|n〉〈m|, (2.6)

ρnm(t) ≡ cn(t)c∗m(t) being the density operator matrix element. Eq. 2.4 can thus be

rewritten as

〈A〉(t) = ∑
n,m

Amnρnm(t) ≡ Tr[Aρ(t)], (2.7)

being defined by the trace or sum of the diagonal elements for a given operator.

Eq. 2.6 can equivalently be written as

ρ(t) =




c1c∗1 c1c∗1 . . .

c1c∗1 c1c∗1
... . . . cNc∗N




. (2.8)

When the density matrix of a system is characterized by a single wavefunction, the

system is known to be in a pure state. However, a general state of a quantum system

may not be pure. The system may be in a statistical or mixed state. For an ensemble
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of systems being with a given probability distribution in several quantum states, the

density operator is defined by

ρ(t) ≡∑
k

Pk|ψk(t)〉〈ψk(t)|. (2.9)

When the system is in a pure state, all probabilities Pk except for one vanish, and the

system can be represented by a wavefunction. In a mixed state, the expectation value of

any operator A is

〈A〉(t) = ∑
k

Pk〈ψk(t)|A|ψk(t)〉 = Tr[Aρ(t)]. (2.10)

2.2 The Reduced Density Matrix

As discussed above, the density matrix notation allows us to work with statistical

ensembles. Another important aspect is the possibility to describe only a part of the

system in which one is interested in, providing a reduced description. Let us consider a

system-bath Hamiltonian defined as

H = HS(Q) + HB(q) + HSB(Q,q). (2.11)

HS, HB and HSB represent the system, a bath, and their interaction, while Q and q

refer to the system and bath coordinates. Typically one is interested in monitoring the

dynamics of a system operator, without being interested in the dynamics of the bath. This

way, the complexity of the total density operator reduces dramatically. The expectation

value of an operator A(qs) is given by
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〈A(qs)〉(t) = Tr[ρ(t)A(qs)]. (2.12)

To evaluate the trace, the eigenstates of system and bath can be defined

Hs|λ〉 = Ea|λ〉, (2.13)

HB|β〉 = Eα|β〉. (2.14)

The direct product states |λβ〉 forms a complete basis set

∑
λβ

|λβ〉〈λβ| = 1. (2.15)

Although these states are not eigenstates of the total Hamiltonian in Eq. 2.11 due to

HSB, they can be used to evaluate the trace of a system operator according to

Tr{ρ(t)A(Q)} = ∑
λµ
βα

〈λβ|ρ(t)|µα〉〈µα|A(Q)|λβ〉 = ∑
λµ
βα

〈λβ|ρ(t)|µβ〉〈µ|A|λ〉. (2.16)

The reduced system density operator is defined as

σλµ(t) ≡∑
β

〈λβ|ρ(t)|µβ〉 = TrB〈λ|ρ(t)|µ〉. (2.17)

According to the first part of the product defined in Eq 2.16, TrB denotes the partial

trace over the bath degrees of freedom.64 The expectation value of A(Q) is thus
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〈A(Q)〉(t) = ∑
a,b

σab(t)Aba ≡ TrS[σ(t)A] = TrS(TrB(ρ(t))A), (2.18)

where TrS denotes the trace over the system degrees of freedom.

2.3 Time Evolution of the Density Operator

The time derivative of the density operator for a pure state is given as

∂tρ(t) = ∂t|ψ(t)〉〈ψ(t)| = (∂t|ψ(t)〉) · 〈ψ(t)|+ |ψ(t)〉 · (∂t〈ψ(t)|). (2.19)

From Schrödinger equation, the dynamical behaviour of the density operator reads

∂tρ(t) = −i/h̄[H(t),ρ(t)], (2.20)

where H(t) represents a general Hamiltonian operator. Eq. 2.20 is the so-called Liouville-

Von Neumann equation. When ρ(t) is the density matrix of a pure state, the Schrödinger

and the Liouville-von Neumann equations are equivalent. The solution of the Liouville-

von Neumann equation contains the time evolution of the diagonal (populations) and

off-diagonal (coherences) elements of the density matrix according to

ρ(t) = U(t, t0)ρ(t0)U†(t, t0), (2.21)

where U is a time-evolution operator which propagates the ket and the bra acting from

the left and right sides, respectively.

For statistical mixtures representing closed systems, the dynamics is also governed by

Eq. 2.20. In the case of open systems interacting with an environment, the Liouville
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equation can include extra terms accounting for the decoherence of the off-diagonal

elements and relaxation among the diagonal elements of the density matrix as

∂tρ(t) = −i/h̄[H(t),ρ(t)]− Dρ(t) + Rρ(t). (2.22)

Here D is an operator which accounts for the dephasing of the coherence of the density

matrix. That is, the system loses coherence and the off-diagonal elements of the density

matrix eventually approach zero. R is another operator accounting for environmental

effects on the system dynamics and is called the relaxation operator.

The numerical solution of Eq. 2.22 becomes more expensive when the number of

system degrees of freedom increases, in comparison to the Schrödinger equation, due

to the higher number of coefficients involved. One of the main advantages of the

density operator is that it allows us to treat environmental effects that can affect the

system dynamics. Environmental degrees of freedom are the intramolecular degrees

of freedom not included in ρ(t) as well as the inter-molecular degrees of freedom of

the environment, e.g. a solvent. The simplest approach is to account for environmental

effects in a phenomenological way, by introducing an empirical dephasing operator, D.

In contrast to the density operator formalism, it is not possible to describe dephasing

in the wavefunction picture. In general, the dissipative operator R accounting for

environmental effects is time-dependent and gives rise to non-Markovian dynamics.

The simplest description applies in the case of weak system-bath couplings, when the

coupling can be treated perturbatively. In this case we can make use of the so-called

Redfield theory,33 which will be considered in subsection 2.5.
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2.4 Time-Dependent Perturbation Theory. The Interac-

tion Picture

In the context of spectroscopy we are interested in the interaction of molecular systems

with external time-dependent electric fields. In this case, the total Hamiltonian H(t)

becomes time-dependent and generally given by

H(t) = H0 + H′(t), (2.23)

where H′(t) represents a time-dependent external perturbation. When exploring the

dynamics of systems interacting with an external perturbation, a very useful approach

frequently used in spectroscopy is perturbation theory. This approach can be applied

only when the time-dependent part in Eq. 2.23 is “small” compared to the system

Hamiltonian, H0.

In order to get a perturbative solution of the Liouville equation (Eq. 2.20), it is neccessary

to express the system dynamics in the so-called interaction picture. To this purpose, we

define the time-evolution operator with respect to the system Hamiltonian, H0, as

U0(t, t0) = e−
i
h̄ H0·(t−t0). (2.24)

We denote by the subindex I the interaction picture. The density matrix in the interaction

picture is defined as

ρI(t) = U†
0 (t, t0)ρ(t)U0(t, t0). (2.25)

ρI(t) describes the time-evolution of the wavefunction caused exclusively by the time-

dependent interaction Hamiltonian, H′(t).
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The Liouville von Neumann equation 2.20 in the interaction picture reads

∂tρI(t) = −
i
h̄
[H′I(t),ρI(t)], (2.26)

where H′I(t) = U†
0 (t, t0)H′(t)U0(t, t0). With the Liouville equation in the interaction

picture, (Eq. 2.26), the dynamics of the system depends only on the “small” interaction.

It is therefore possible to use the perturbative approach for the solution of Eq. 2.26.

In the interacting picture, the first- and second-order perturbative expansions yield Eq.

2.27 and Eq. 2.28:

ρ
(1)
I (t) = ρ(t0)−

i
h̄

∫ t

t0

dτH′I(τ)ρ(τ), (2.27)

ρ
(2)
I (t) = ρI(t0)−

i
h̄

∫ t

t0

dτH′I(τ)ρ(τ) +
(−i

h̄

)2 ∫ t

t0

dτ2

∫ τ2

t0

dτ1H′I(τ2)H′I(τ1)ρI(τ1). (2.28)

Expanding the density matrix to nthorder one obtains Eq. 2.29:

ρ
(n)
I (t) = ρI(t0) +

∞

∑
n=1

(−i
h̄

)n ∫ t

t0

dτn

∫ τn−1

t0

dτn−1 . . .

. . .
∫

dτ1[H′I(τn), [H′I(τn−1), . . . [H′I(τ1),ρI(t0)] . . .]]. (2.29)

In the Schrödinger picture, this reads

ρ(n)(t) = ρ(0)(t) +
∞

∑
n=1

(−i
h̄

)n ∫ t

t0

dτn

∫ τn−1

t0

dτn−1 . . .
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. . .
∫ τ2

t0

dτ1U0(t, t0) · [H′I(τn), [H′I(τn−1), . . . [H′I(τ1),ρ(t0)] . . .]] ·U†
0 (t, t0). (2.30)

In Eq. 2.30, the interaction Hamiltonian is still in the interaction picture.

Considering an explicit interaction Hamiltonian in the dipole approximation described

by

H′(t) = E(t) · µ, (2.31)

Eq. 2.30 transforms into

ρ(n)(t) =
(−i

h̄

)n ∫ t

−∞
dτn

∫ τn−1

−∞
dτn−1 . . .

∫ τ2

−∞
dτ1E(τn)E(τn−1) · . . . · E(τ1)

. . .U0(t, t0) · [µ(τn), [µ(τn−1), . . . [µ(τ1),ρ(−∞)] . . .]] ·U†
0 (t, t0), (2.32)

where the dipole operator µ in the interaction picture, µI , is defined as

µI(t) = µ(t) = U
†

0(t, t0)µU0(t, t0). (2.33)

Note that the dipole operator becomes time-dependent in the interaction picture since it

evolves under the effect of the system Hamiltonian H0.

2.5 Redfield Theory for Open Quantum Systems

In this thesis, I restrict myself to the case of a system described by a single reaction

mode coupled to the electronic states which is at the same time weakly coupled to a
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dissipative environment, modeled within the linear response theory. This approach was

first introduced by Jean et al65 who adopted Redfield theory for relaxation.33

The general model established for describing dissipative dynamic processes consists

of several electronic energy levels coupled to a set of fluctuating coordinates. This

general model can explain a broad number of processes occuring in nature, for example,

electron transfer processes.

Within Redfield theory,33 the system is weakly coupled to a dissipative environment,

which allows a perturbative treatment of the system-bath coupling (Born approximation).

This situation corresponds to the case when a single or a few reaction modes are part

of the system, the rest of vibrational degrees of freedom being part of the bath. The

perturbative treatment simplifies considerably the numerical treatment of the problem.

In the reduced density matrix (RDM) formalism, we denote the reduced density matrix

by σ(Q, t), where Q is the system reaction mode which is considered to be (weakly)

coupled to the bath.

The following derivations were taken from references 33 and 66. The dynamics of the

system embedded in a dissipative environment in the RDM formalism64,67 is governed

by the following master equation

∂tσ = −i[H0,σ] +R(σ). (2.34)

R(σ) is the so-called Redfield operator, which is defined by

R(σ) = −
∫ t

0
dτtrB{[HSB, [HSB(τ),σ(t)ρB]]}, (2.35)

where HSB is the system-bath interaction Hamiltonian in the interaction picture (intro-

duced in section 2.4),
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HSB(τ) = e−i(HS+HB)τ HSBei(HS+HB)τ (2.36)

and ρB represents the equilibrium bath density matrix,

ρB =
e−HB/kT

trB{e−HB/kT} . (2.37)

Redfield theory is formulated in the system eigenstate representation defined by

H0|λ〉 = Eλ|λ〉. (2.38)

In this representation, Redfield equation (Eq. 2.34) adopts the following form33,

∂tσλµ(t) = −iωλµσλµ(t) + ∑
αβ

Rλµαβσαβ(t), (2.39)

where σλµ = 〈λ|σ|µ〉 and ωλµ = Eλ − Eµ. The first term on the right-hand side of Eq.

2.39 represents the system dynamics in the absence of the environment. The second

term, which is given by:

∑
αβ

Rλµαβσαβ(t) = 〈λ|R(σ)|µ〉, (2.40)

governs the relaxation dynamics of the system due to the presence of the bath. Rλµαβ,

the so-called Redfield tensor, is defined as follows:

Rλµαβ = Γ+
βµλα + Γ−βµλα − δµβ ∑

κ

Γ+
λκκα − δλα ∑

κ

Γ−βκκµ. (2.41)

Here,
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Γ+
βµλα =

∫ t

0
dτ〈〈β|HSB|µ〉〈λ|H̃SB|α〉〉Be−iωλατ, (2.42)

Γ−βµλα =
∫ t

0
dτ〈〈β|H̃SB|µ〉〈λ|HSB|α〉〉Be−iωβµτ, (2.43)

H̃SB(τ) = e−iHBτ HSBeiHBτ, and 〈...〉 denotes a trace taken over the bath degrees of

freedom.

The Hamiltonian HSB, is usually expressed as a sum of the type

HSB = ∑
n

QnFn, (2.44)

considering the different system and bath operators, Qn and Fn, respectively. With Eq.

2.44, the Redfield operator adopts the form

R(σ) = ∑
nm

∫ t

0
dτ{[Qn, Qm(τ)σ(t)]〈FnFm(τ)〉B − [Qm,σ(t)Qn(τ)]〈Fn(τ)Fm〉B},

where Qn(τ) = e−iHSτQneiHSτ is determined by the system Hamiltonian and Fn(τ) =

e−iHBτFneiHBτ, is determined by the bath Hamiltonian.

The tensor components (given by Eqs. 2.42 and 2.43) can now be expressed as

Γ+
βµλα = ∑

nm
〈β|Qn|µ〉〈λ|Qm|α〉

∫ t

0
dτ〈FnFm(τ)〉Be−iωλατ (2.45)

Γ−βµλα = ∑
nm
〈β|Qn|µ〉〈λ|Qm|α〉

∫ t

0
dτ〈Fn(τ)Fm〉Be−iωβµτ (2.46)

In the case of a single system reaction mode Q and a linear system-bath interaction
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HSB = Q∑
q

gqqq (2.47)

There exist a number of models which were developed to describe the bath.

36,68 The bath is usually described in the harmonic approximation, that is, as a collection

of harmonic oscilators:

HB = ∑
q

ωq

2
(p2

q + q2
q), (2.48)

pq and qq being the dimensionless coordinate and momentum operators. The system-

bath coupling is described by the spectral function

J(ω) =
π

2 ∑
q

g2
qδ(ω−ωq). (2.49)

The bath correlation functions are defined by:

〈FF(τ)〉B =
∫ ∞

0
dω

1
π

J(ω)(e−iωτ + 2n(ω)cos(ωτ)), (2.50)

〈F(τ)F〉B = 〈FF(τ)〉∗B =
∫ ∞

0
dω

1
π

J(ω)(eiωτ + 2n(ω)cos(ωτ)), (2.51)

where F = ∑q gqqq and n(ω) = 1/(eω/kT − 1) is the Bose distribution function.

We consider the specific case of the Ohmic spectral density69

J(ω) = ηωe−ω/ωc , (2.52)
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where η is a dimensionless parameter specifying the system-bath coupling strength and

ωc is a bath cut-off frequency.

In the present work, I apply an additional approximation to the general Redfield formal-

ism, which is called the Markovian approximation. The system dynamics is Markovian if

the bath correlation function decays to zero at a short time scale. Under this condition,

it can be assumed that the Redfield tensor is time independent and can be evaluated as:

Γ+
βµλα = 〈β|Q|µ〉〈λ|Q|α〉

∫ ∞

0
dτ
∫ ∞

0
dω

1
π

J(ω)(e−iωτ + 2n(ω)cos(ωτ))e−iωλατ, (2.53)

Γ−βµλα = 〈β|Q|µ〉〈λ|Q|α〉
∫ ∞

0
dτ
∫ ∞

0
dω

1
π

J(ω)(eiωτ + 2n(ω)cos(ωτ))e−iωλατ. (2.54)

The Markovian approximation considerably simplifies the numerics. Redfield theory

can also be expressed in the eigenstate representation of the reaction mode (so-called

multilevel Redfield theory65).
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T H E O RY O F N O N L I N E A R O P T I C A L S P E C T R O S C O P Y: R E S P O N S E

F U N C T I O N S

3.1 Basic Concepts in Time and Frequency Resolved Spec-

troscopy

In spectroscopy, the optical polarization P constitutes the main observable for the

interpretation of time- or frequency-domain spectroscopic measurements. The dynamics

of the electronic and nuclear degrees of freedom of the system and the environment-

induced relaxation processes will affect the optical polarization. Thus, the calculation of

the optical polarization is the primary goal of the theory of time and frequency resolved

spectroscopy.

Different spectroscopic techniques can be classified according to the dependence of the

induced polarization on the electric fields. The linear polarization is given by

P(1) = ε0χ(1)E, (3.1)

23
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where ε0 represents the dielectric constant, χ(1) is the linear susceptibility of the medium,

and E is the field amplitude. If multiple laser fields interact with the system or if the

intensity of the field is high enough the nonlinear polarization is required. It is defined

via an expansion in powers of the electric field amplitude E as

P(n)
NL = ε0(∑

n
χ(n)E(n)), (3.2)

where χ(n) represent the nonlinear susceptibilities. In isotropic media, even-order

optical susceptibilities vanish due to the isotropy of the environment. In practice, the

most common low-order nonlinear spectroscopic techniques are based on the 3rd-order

nonlinear polarization.

The optical polarization can be expressed as the expectation value of the dipole operator

µ:

P(n)(t) = Tr(µρ(n)(t)) ≡ 〈µρ(n)(t)〉, (3.3)

where ρ(n)(t) is nth-order term in the perturbative expansion of the density matrix. Eq.

3.3 shows that the electronic off-diagonal elements of the density matrix are the source

of the field-induced macroscopic polarization and the emitted light field. In other words,

the creation of electronic coherence elements in the density matrix by the interaction

with an external field gives rise to the polarization.

Making use of the perturbative expansion of the density matrix given by Eq. 2.30,

the nth-order polarization can be calculated by a n−fold convolution with the external

fields:

P(n)(t) =
(−i

h̄

)n ∫ ∞

0
dtn

∫ ∞

0
dtn−1 . . .

∫ ∞

0
dt1E(t− tn)E(t− tn− tn−1)E(t− tn− . . .− t1)×
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〈µ(tn + tn−1 + . . . t1) · [µ(tn−1 + . . . + t1), . . . [µ(0),ρ(−∞)] . . .]]〉, (3.4)

where µ(t) = U†
0 (t, t0)µU0(t, t0) represents the dipole operator in the interaction picture.

As it can be seen from Eq. 3.4, the system described by the initial density matrix

ρ(−∞) interacts n− 1 times with the external field, bringing the system to an electronic

coherence state (if n is odd) or population state (if n is even). The last interaction, which

originates from the detection of the signal, finally brings the system to a population

state.

3.2 The Perturbative Approach: Nonlinear Response Func-

tions

Perturbation theory is the standard approach used to describe the dynamics of a

material system interacting with an external electromagnetic field. One of the main

reasons of using perturbation theory in spectroscopy is the possibility of classification

and bookeeping of the different processes that can occur during the interaction of

the molecular system with the external fields. This renders it convenient for the

interpretation of spectroscopic signals of any material system.

The perturbative approach is restricted to weak (considerably weaker than the in-

tramolecular couplings) field-matter couplings. Beyond this limit, nonperturbative

approaches should be used (see chapter 4).

The nonlinear polarization P(n)(t) of Eq. 3.4 is a convolution of n electric fields with the

nth-order nonlinear response function
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S(n)(tn, . . . t1) =

(−i
h̄

)n
〈µ(tn + tn−1 + . . . t1) · [µ(tn−1 + . . . + t1), . . . [µ(0),ρ(−∞)] . . .]]〉.

(3.5)

The nth-order response function scales with the transition dipole moment as

S(n)(tn + tn−1 + . . . + t1) ∝ µn+1
nm . (3.6)

The commutators in Eq. 3.5 contain 2n terms characterized by various number of

interactions acting on the bra and ket vectors of the density matrix. There are always

pairs of terms which are the complex conjugate to each other. It is sufficient to consider

the 2n−1 independent terms.

3.3 Reduction of the Number of Coherent Pathways

As mentioned in the previous section, the commutators in Eq. 3.5 contain multiple

terms originating from different interactions with the electric field. This leads to a

relatively large number of possible coherent pathways. There exist several techniques

or approximations to reduce the number of these terms. Among these, I discuss the

rotating wave approximation (RWA) and the phase-matching conditions.

3.3.1 The Rotating Wave Approximation

The rotating wave approximation (RWA)70 implies the neglection of high-oscillatory

terms in the equations of motion describing the system dynamics after excitation. Let

H0 be the molecular Hamiltonian. For illustration, let us consider a two-level system
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H0 =




ε1 0

0 ε2


 , (3.7)

represented by the density matrix

ρ =




ρ11 ρ12

ρ21 ρ22


 . (3.8)

In the dipole approximation the total Hamiltonian describing interaction of the system

with a time-dependent monochromatic external field takes the form

H(t) =




ε1 −µE(t)

−µE(t) ε2


 , (3.9)

where the electric field is given by

E(t) ≡ 2E0cos(ωt) = E0(eiωt + e−iωt), (3.10)

which is assumed to be in near resonance with the system energy splitting: (ε1− ε2)/h̄∼
ω. Here, ω is the frequency of the field, E0 is its amplitude, and µ is the transition

dipole moment operator.

In the presence of an external field, the coherences of the density matrix oscillate with

the frequency of the field, ω. The diagonal elements are time-dependent, but do not

oscillate with the frequency ω and become stationary when the electric field is turned

off. We invoke the RWA71 as follows. The dynamics of the system in the absence of the

field obeys1
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ρ11(t) = ρ11(0), (3.11)

ρ22(t) = ρ22(0), (3.12)

for the diagonal and

ρ12(t) = ei (ε1−ε2)
h̄ tρ12(0), (3.13)

ρ21(t) = e−i (ε1−ε2)
h̄ tρ21(0), (3.14)

for the off-diagonal elements of the density matrix represented by Eq. 3.8.

We can define the evolution of the off-diagonal elements represented by Eqs. 3.13 and

3.14 in the so-called rotating frame (represented by tilde), which implies the transforma-

tion with additional frequency factors9

ρ̃12(t) = e−iωtρ12(t), (3.15)

ρ̃21(t) = e+iωtρ21(t), (3.16)

for the off-diagonal elements of the density matrix, while the diagonal terms remain

unchanged

ρ̃11(t) = ρ11(t), (3.17)
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ρ̃22(t) = ρ22(t). (3.18)

With this transformation, the off-diagonal elements vary slowly since for a near resonant

field the additional frequency factors in Eqs. 3.15 and 3.16 almost cancel the natural

evolution of the coherences. The Liouville equation under this framework reads9




˙̃ρ12

˙̃ρ21

˙̃ρ11

˙̃ρ22




= −i




∆ 0 −Ω̃(t) Ω̃(t)

0 −∆ Ω̃∗(t) −Ω̃(t)

−Ω̃∗(t) Ω̃(t) 0 0

Ω̃∗(t) −Ω̃(t) 0 0







ρ̃12

ρ̃21

ρ̃11

ρ̃22




, (3.19)

where ∆ is the frequency detuning given by

∆ ≡ (ε1 − ε2)/h̄ + ω, (3.20)

and

Ω̃(t) = Ω · (1 + ei2ωt) = Ω · (e−iωt + eiωt)eiωt. (3.21)

Eq. 3.21 possesses a time-independent (zero-frequency) contribution and a contribution

which oscillates as ei2ωt. When integrating the Liouville equation (Eq. 2.20), only the

term which rotates in the same direction as the rotating frame will survive. Due to the

highly-oscillatory integrand, the second integral is almost zero. In other words, we are

neglecting the fast oscillating part of the field, keeping the slowly varying envelope. To

illustrate the RWA for a simple case, let us consider the 1st order polarization,
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P(1)(t1) = −
i
h̄

µ2
01e−iωt

∫ ∞

0
dt1E(t− t1)e−Γt1 − i

h̄
µ2

01e+iωt
∫ ∞

0
dt1E(t− t1)e−Γt1e−i2ωt1

(3.22)

The RWA is valid in near resonant conditions, ∆ ∼ ω, and when the electric field

envelope varies slowly in time (much slower than the optical period, 2π/ω). This

approximation reduces the number of Liouville pathways by a factor of 2.

3.3.2 The Phase Matching Condition

Each of the spectroscopic techniques corresponds to a specific phase matching condition,

that is a linear combination of the incoming wavevectors, which defines the direction of

the emitted polarization72. This condition is selected experimentally by designing the

geometry of the experimental setup. This reduces the possible coherent pathways for a

given spectroscopic technique.

The explicit dependence of the external field on the wavevectors
−→
k is as follows

E(t) = E0(e−iωt+i~k~r + e+iωt−i~k~r) (3.23)

In the case of n electric fields, the total nth-order polarization will carry the wavevector

~ksignal = ∑
n
±~kn. (3.24)

By choosing a specific linear combination in Eq. 3.24, we select a particular contribution

to the signal.

Let us imagine two third-order experiments with pulses of identical frequency (ω1 =

ω2 = ω3 = ωsignal), which can be distinguished by the time-ordering of the pulses for
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a given signal direction. Assuming a box geometry for the three incident fields, the

radiated signal will be directed towards the upper right corner of the box, see Fig. 3.1

for the signal detected in the direction~ksignal = +~ka −~kb +~kc, the so-called rephasing

and non-rephasing contributions correspond to different time-orderings of the pulses

a = 1,b = 2, c = 3,

for the non-rephasing case and

a = 2,b = 1, c = 3,

for the rephasing case.

These definitions can be ilustrated a simple way as shown in Figure 3.1:

Figure 3.1: Definition of the signal wavevector for a box geometry for a specific phased-
matched direction. The rephasing and non-rephasing situations correspond to different
time ordering of the three incoming fields. (Adapted from: Time-dependent Quantum
Mechanics and Spectroscopy Lectures, Andrei Tokmakoff, University of Chicago, 2014).
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3.4 Representative Non-Linear Optical Spectroscopies and

the Corresponding Response Functions

In ultrafast spectroscopy, the various techniques can be classified according to the order

of the nonlinear response function representing the measured polarization. They differ

in several aspects, like the detection mechanism as well as the number and properties

of the fields involved.1 Each of the techniques delivers specific information about the

system dynamics.

In this section, representative spectroscopies will be discussed in the framework of

nonlinear response functions. I start by introducing the simplest technique, linear

absorption spectroscopy, and consecutively move towards some of the common higher-

order techniques. The idea behind the approach taken here is to connect particular

signals with their microscopic origin. To illustrate the processes involved in the different

techniques I consider the previously introduced two-level model given by Eq. 3.8.

3.4.1 Linear Absorption Spectroscopy

The simplest case that can occur is characterized by a linear scaling of the polarization

with the electric field. This is the linear absorption process, which is characterized by the

1st order response function1

S(1)(t1 =
−i
h̄
〈µ(t1)[µ(0),ρ(−∞)]〉.

Adopting the RWA and within the impulsive limit (E0(t) ∼ E0eiωtδ(t)) the 1st order

polarization is given by:
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P(1)(t1) = −
i
h̄

µ2
01e−iωtE0e−Γt1 (3.25)

The resulting polarization emits an electric field:

EP(1)(t) ∝ −iP(1)(t), (3.26)

and its time dependence determines the so-called free induction decay.

In the RWA, the number of Liouville pathways reduces to two, which are complex

conjugate to each other. Considering only the process with the last interaction on the

ket, we have the following Liouville pathway:

Figure 3.2: Liouville pathway for linear spectroscopy. The solid arrow represents
the interaction with the external fields. An arrow pointing to the right represents an
electric field with e−iωt+ikr, while an arrow pointing to the left represents an electric
field with e+iωt−ikr. Arrows pointing outside the system represent de-excitations,
while the opposite represent excitation processes. The signal is generated by the last
interaction with the transition dipole moment outside the commutator, which has
different nature than the previous interactions. Therefore, a different arrow (dashed) is
used to represent the emitted signal.

The system initially is in the electronic ground state. After excitation by the laser pulse

at time 0, a coherent state is generated with propability proportional to the transition

dipole moment
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ρ12(0) ∝ µ12. (3.27)

This coherent state evolves in time according to

ρ12(t) ∝ µ12e−
i
h̄ (ε2−ε1)t1e−Γt1 , (3.28)

where Γ is the dephasing rate of the transition. At time t1 the system emmits a light

field described by Eq. 3.26. Due to this interaction with the transition dipole operator

the system returns to a population, either in the electronic ground state or in the excited

electronic state.

When detecting the linear emitted field, an inherent measurement of the incoming

field is done along with the signal, since the incoming field is transmitted in the same

direction as the emitted field, as seen in Equation 3.25. Since the first order polarization

is always heteordyne detected (by using the input laser pulse as a local oscillator) and

the second order terms of the polarization are small compared to the first order, we can

use Eq. 3.28 to calculate the absorption spectrum. After taking Fourier transform with

respect to the time variable we obtain

A(ω) =
2Γ

(ω−ω0)2 + Γ2 . (3.29)

A general expression for the linear absorption spectrum reads

A(ω) ∝ 2R
∫ ∞

0
dt · eiωt〈µ(t)µ(0)ρ(−∞)〉. (3.30)
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3.4.2 Pump-probe Spectroscopy

One of the most common time-resolved third-order techniques is the pump-probe

transient-absorption (PP TA) spectroscopy.1 This technique can be used to record

many types of time-dependent processes which manifest themselves in the population

dynamics, such as relaxation processes, chemical dynamics, wavepacket dynamics and

quantum beats. In such experiments, the molecular system is initially prepared by a

first pump laser pulse into a nonequilibrium state. The dynamics of the new state is

probed by an interaction with a second probe laser pulse. The probe pulse is delayed in

time with respect to the pump pulse.

The transient transmittance PP signal is defined through the difference polarization5

P̃PP(t) = PPP(t)− Poff(t),

where Poff(t) is the polarization induced solely by the probe pulse.

In general, when the pulses are in resonance with the electronic excitation in the system,

the PP signal contains two contributions. Both of them reflect the system dynamics and

report different information: the resonance Raman contribution (reflecting electronic

ground-state dynamics) also called GSB, and the SE contribution (reflecting electronic

excited state dynamics).73 If transitions to higher-lying electronic excited states cannot

be neglected, the PP signal also contains the ESA contribution.

The measured 3rd order polarization is detected in the direction of the probe pulse.

To fulfill this condition, the pump pulse must interact twice with the system with

wave vectors +kpump and −kpump. This defines the phase-matching condition of TA PP

spectroscopy

kPP = +~kpu −~kpu +~kprobe = +~kprobe.
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In PP spectroscopy, the time delay between the pump and the probe fields determines the

sequence of the interactions. Hence, the system interacts first with the pump pulse (two

interactions) and then with the probe pulse (last interaction). Therefore, the contributions

originating from other sequences of interactions will not be present in the signal. If the

pump and the probe pulses overlap in time, additional contributions must be considered,

constituting the so-called coherence spike or coherent artefact.1 Overlapping pulses

should be avoided since the pulse overlap complicates the interpretation of the signal.

Due to the phase-matching condition and in the RWA, the Liouville pathways for the

possible coherent processes that take place in a TA PP measurement reduce to six.

Figure 3.3 shows these diagrams in detail.1

After the two interactions with the pump pulse at times t1 and t2, the system ends up in

a population state (excited electronic state for the SE and ESA contributions, or ground

electronic state for the GSB contribution). This state shows dynamical evolution with

respect to the probe time-delay. The third interaction is produced by the probe pulse at

t3, which brings the system into a coherent state, with probability µ12.

The PP signal is given by the 3rd order polarization. As shown in the diagrams in Figure

3.3, there are three different kinds of nonlinear response functions for the stimulated

emission, ground state bleach and excited-state absorption contributions:

S(3)
SE (t3, t2, t1) ∝

i
h̄3 µ4

21e−i (ε2−ε1)
h̄ t3e−Γt3 , (3.31)

S(3)
Bl (t3, t2, t1) = S(3)

SE (t1, t2, t3), (3.32)

S(3)
ESA(t3, t2, t1) ∝ − i

h̄2 µ2
10µ

(2)
32 e−i (ε3−ε2)

h̄ t3e−Γt3 . (3.33)
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The 3rd order response function S(3) is the sum of the above three contributions. Con-

sidering Dirac delta pulses, S(3) is equal to the 3rd-order polarization.

There are two different techniques to measure the PP signal. When the emitted field is

directly measured as it emerges from the sample, the time-integrated signal is measured.

If the emitted field is passed through a spectrometer dispersing the light the dispersed

signal is measured. The integrated and dispersed PP signals are defined as

Sint
PP(τ,ωpr) = Im

∫ ∞

t0

EP(t− τ)e−iωtPPP(t), (3.34)

and

Sdisp
PP (τ,ωpr,ω)= ImEP(ω−ωP)PPP(ω) (3.35)

respectively, where

PPP(ω) =
∫ ∞

−∞
dteiωtPPP(t), (3.36)

EP(ω) =
∫ ∞

−∞
dteiωtEP(t− τ). (3.37)

Two-pulse femtosecond stimulated Raman spectroscopy (FSRS) can be viewed as a

special case of PP spectroscopy,74–76 with a long (picosecond) pump pulse and a short

(femtosecond) probe pulse.
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Figure 3.3: Pump probe Liouville pathways.1 Figures a) and b) correspond to stim-
ulated emission, c) and d) correspond to the ground-state bleach and d) and f) cor-
respond to excited-state absorption contributions. There are two different kinds of
arrows in these diagrams. The solid arrows represent an interaction with the external
fields. An arrow pointing to the right represents an electric field with e−iωt+ikr, while
an arrow pointing to the left represents an electric field with e+iωt−ikr. Arrows pointing
outside the system represent de-excitations while the opposite represents excitation
processes. The signal is generated by the last interaction with the transition dipole
moment outside the commutator. A dashed arrow is used to represent the emitted
signal.

3.4.3 Two-Pulse Photon-Echo Spectroscopy

Another common third-order spectroscopy is the so-called two-pulse photon-echo (2PPE)

spectroscopy. This technique is commonly used to distinguish static and dynamic

broadening of spectral features, as well as to determine time scales of energy gap

fluctuations. This is usually done making use of the rephasing definition of the signal.

In this technique, two pulses interact with the sample with wavevectors k1 and k2. The

third-order polarization is detected in the phase-matching direction given by

~k2PPE = +2~k2 −~k1. (3.38)
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Figure 3.4: Two-pulse photon echo Liouville pathways1. Two-pulse photon echo
Liouville pathways. See caption of Fig 3.3 for the explanation of the symbol.

This implies that the system interacts twice with the second pulse. In contrast with the

PP experiment, the signal is detected in a direction which differs from the direction of

the incoming fields. This last aspect implies a homodyne detection of the signal, that is

|P(3)|2, in contrast to the heterodyne detection defined by E0P(3).

Within the RWA, the Feynman diagrams contributing to the signal are depicted in

Figure 3.4.

For both diagrams a) and b), the system is prepared in a coherence state after the single

interaction with pulse 1. The evolution of such a coherence state along t1 is given by

Eq. 3.28, with a phase determined by eiωt1 . The first interaction with the second pulse

converts the system to a population state. The second interaction with this pulse creates

again a coherence state, which oscillates now with an opposite sign of the phase, e−iωt3 .

This phenomenon is called rephasing, motivated by the presence of the inhomogenous

broadening in the media. This rephasing, which occurs at a specific separation time

between both pulses, gives name to the echo technique.1

Assuming pulses in the impulsive limit, we can neglect the time separation t2 between

the last two interactions occuring within the same pulse. The third-order response

function is given then by1
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S(3)
2PPE(t3, t2, t1) ∝

i
h̄3 µ4

21e+i (ε2−ε1)
h̄ t1e−i (ε2−ε1)

h̄ t3e−Γt3 =
i

h̄2 µ4
21e−i (ε2−ε1)

h̄ (t3−t1)e−Γ(t3+t1). (3.39)

The corresponding third-order polarization in the impulsive limit reads

P(3)(t; T,τ) = S(3)(t,0,τ), (3.40)

where t is the current time, τ is the coherence time and T is the population time. The

latter is considered to be neglegible.

Experimentally, the signal is measured by a detector which integrates it with respect to

the last time period t:

∫ ∞

0
dt|P(3)(t; T,τ)|2 ∝

µ8
21

h̄6 e−2Γτ ·
∫ ∞

0
dt|e−i (ε2−ε1)

h̄ te−Γt|2 = µ8
21

h̄6 e−2Γτconst. (3.41)

Homogeneous broadening is accounted for by the dephasing parameter Γ. Inhomoge-

nous broadening can be taken into account by taking a convolution of Eq. 3.41 with

a Gaussian distribution for the energy gap. The inhomogenously broadened signal is

given by1

P(3)(t; T,τ) ∝
i

h̄3 µ4
21e−i

ε
(0)
21
h̄ (τ−t)e−Γ(τ+t)e−σ

(τ−t)2
2 , (3.42)

where ε
(0)
21 is the central transition frequency and σ is the width of the inhomogenous

distribution.
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T H E N O N - P E RT U R B AT I V E F O R M A L I S M

The perturbative formalism is the conventional tool for the calculation of spectroscopic

signals. The calculation of response functions is easy for simple material systems, such

as few-level systems or shifted harmonic oscillators for which the response function

S(t3,, t2, t1) can be analytically calculated. When dealing with systems of higher com-

plexity, however, the evaluation of the response functions becomes computationally

challenging,68,77 resulting in long computation times. Hence alternative nonperturbative

methods based on a numerically exact treatment of the field-matter interaction have

been suggested in the past decades.6,8–10,78 In contrast to the perturbative approach,

these methods do not require the evaluation of multi-time nonlinear response functions.

They are based on computing of the overall polarization. However, an a posteriori decom-

position of the polarization for specific phase-matching conditions must be carried out.

The signals simulated by both perturbative and nonperturbative methods are identical

in regimes where both techniques are applicable.

Several nonperturbative methods for the calculation of nonlinear polarizations have

been proposed. These include the Equation of Motion Phase-Matching Approach

(EOM-PMA)7 for the calculation of the 3rd-order polarization in three-pulse four-wave-

mixing spectroscopy, the two-pulse EOM-PMA6 and the nonperturbative Doorway-

41
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Window Approach.8–12 These methods can be computationally more efficient than the

perturbative methods. This is important when dealing with systems of high complexity,

e.g. systems with strong vibrational and electronic couplings or systems involving

dissipative dynamics. Moreover, these methods allow us to explore driven system

dynamics beyond the weak-field limit, which in some cases can enhance the information

content of the signals. Tthe non-perturbative formalism is a powerful tool for studying

molecular excited-state dynamics induced by strong laser fields.

4.1 The Equation of Motion Phase-Matching Approach

for Three-Pulse Spectroscopy

The EOM-PMA is a hybrid approach which is valid up to the third order in the system-

field interaction.38 This method can be adapted for the evaluation of the polarization

for any third-order technique. To explain the EOM-PMA, I consider the three-pulse

photon-echo (PE) signal. In this technique, the system interacts with three laser pulses

with arrival times t1, t2 and t3 and the phase-matching condition is kPE =−k1 + k2 + k3.1

The evaluation of the PE polarization by the EOM-PMA method is based on the

propagation of three auxiliary density matrices (σ1,σ2,σ3) obeying the equations of

motion7

∂tσ1(t) = −i[H0 −V1(t)−V†
2 (t)−V†

3 (t),σ1(t)]−Rσ1(t) (4.1)

∂tσ2(t) = −i[H0 −V1(t)−V†
2 (t),σ2(t)]−Rσ2(t) (4.2)
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∂tσ3(t) = −i[H0 −V1(t)−V†
3 (t)]−Rσ3(t), (4.3)

Here Vn(t) = λnEn(t− tn)exp{iωnt}X, V†
n (t) ≡ Vn(t), En(t− tn) is the dimensionless

envelope, X is the transition operator, and λn is the scalar product of the transition

dipole vector ~µ with the vector of the external field. Within the RWA, the third-order

polarization in the PE direction is be evaluated as7

PPE(t) = eikPE·r〈X(σ1(t)− σ2(t)− σ3(t))〉+ c.c. (4.4)

The polarization, in the RWA, can therefore be evaluated by just performing three

density matrices propagations.

After the evaluation of the three-pulse induced polarization, the signal for any 4WM

technique can be calculated. For example, the heterodyne detected 2D PE signal is given

by a double Fourier transform with respect to two time delays, τ and T,

SPE(ωτ, T,ωt) ∼
∫

dτ
∫

dte−iωττeiωttPPE(τ, T, t), (4.5)

where τ = t2 − t1 and T = t3 − t2.

It should be noticed that the density matrices σ1,σ2 and σ3 in Eq. 4.4 are auxiliary

density matrices. In particularly, they are not Hermitian. Eq. 4.4 is valid in the leading

order of perturbation theory and coincides with the formula obtained by the response

function formalism.
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4.2 Two-Pulse Based Methods: Ideal and Real Time- and

Frequency-Resolved Spectra

The signals for several two-pulse spectroscopic techniques, such as TA PP, SE, or two-

pulse PE, can also be computed with nonperturbative methods.6 The calculation of the

spectra can be performed in a two-step procedure, involving the computation of (1)

“ideal” time- and frequency- resolved spectra1,6,8,79–81 and (2) subsequent evaluation

of “real” spectra by convolution of the ideal spectra with a proper time- and frequency-

gate function (TFG). This analysis assumes a sufficiently weak CW probe pulse. The

pump pulse, on the other hand, can be of arbirtrary strength and duration, which can be

useful for applications of optimal control theory. Although simultaneous perfect time-

and frequency-resolution cannot be obtained in real experiments, ideal spectra are free

of this constraint and therefore can provide much more information than real spectra.

The TFG functions emulate the effect of the actual probe pulse of finite duration, which

reduces the resolution of the spectra.

For the calculation of the ideal spectra within the EOM-PMA, Nω propagations of several

master equations (two for SE and three for PP and PE) at different emission frequencies

must be performed. This produces an ideal spectra on the grid Nt × Nω (Nt and Nω

represent the number of grid points for the time and frequency axes, respectively). In

contrast to the standard EOM-PMA, this method yields Nt points in the time grid with a

single propagation of the density matrix. Therefore the calculation of the ideal time- and

frequency-resolved spectra implies Nω separate propagations. This method is efficient

for overlapping (and possibly long) pump and probe pulses6.

As an example, I discuss how to calculate the time-and frequency-resolved SE spectrum.

Let us consider the system introduced in section 3.3, interacting with a pump pulse

giving rise to the interaction matrix element
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VL(t) = λLEL(t)exp{iωLt}X + H.c. . (4.6)

Here λL, EL(t) and ωL represent the pump pulse strength, dimensionless envelope and

carrier frequency, respectively. The calculation of the ideal SE spectrum involves the

propagation of the two master equations6

∂tρ̄(t) = −i[H̄ −VL, ρ̄(t)]− (R + Γ)ρ̄(t), (4.7)

∂tσ̄S(t) = −i[H̄ −VL, σ̄(t)]− (R + Γ)σ̄(t) + iV̄S(t)σ̄(t), (4.8)

where V̄S(t) = λSexp{iωSt}X, and λS is the probe pulse strength. It should be noted

that V̄S in Eq. 4.8 acts only on the left side of the density matrix σ̄, therefore no H.c.

must be considered.

The SE signal corresponds to the steady-state rate of the change of emitted photons

with the frequency ωs at a certain time t. The ideal time- and frequency-resolved SE

signal8 reads

SSE(t, ω̄S) = ImASE(t, ω̄S), (4.9)

ASE(t, ω̄S) = tr{V̄†
S (t)[σ̄(t)− ρ̄(t)]}+ O(λ3

S) (4.10)

The actual TFG SE spectrum, evaluated for probe pulse of finite duration, is calculated

by a two-fold numerical convolution of the ideal spectrum

STFG
SE (t, ω̄S) ∼ Im

∫ ∞

−∞
dω̄

∫ ∞

−∞
dt′φSE(t− t′, ω̄S − ω̄′)× ASE(t′ − ω̄′). (4.11)
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Here,

φSE(τ,Ω) = Et(−τ)φ(τ,Ω;γ) (4.12)

is the TFG function, Et is the probe pulse envelope and

φ(τ,Ω;γ) =
∫ −τ

−∞
dξEt(ξ)exp{(γ + iΩ)(τ + ξ)}, (4.13)

where γ is a parameter which controls the frequency resolution. In the calculation

of real spectra by Eq. 4.11 both real and imaginary parts of the ideal spectrum are

necessary.

4.3 The Doorway-Window Representation of Nonlinear

Response Functions

The Doorway-Window (DW) picture of spectroscopic signals8–12 was introduced in

1989 by Mukamel and coworkers82. It provides the basis for an alternative method

for the numerical calculation of the response of a system to external non-overlapping

fields. The application of this formalism has several advantages over the perturbative

formalism. For example, it is not restricted to weak system-field interactions and can be

employed to study strong-field effects.

The concept of the DW representation can be described as follow. The system of interest

(before the interaction with the first pulse) is represented by the density matrix ρ0(−∞).

At time t1, the so-called “Doorway” pulse with carrier the frequency ω1 interacts with

the system, and creates a Doorway state ρD(ω1). Once the pulse is over, the system

evolves during time T according to its intrinsic field-free (possibly nonadiabatic and
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dissipative) dynamics. At time t2, a second “Window” pulse with carrier frequency

ω2 interacts with the system, projecting the evolving Doorway state ρD(ω1, T) into a

Window state ρW(ω2). Any two-pulse signal can thus be evaluated by taking the trace

of this projection Tr〈ρD(w1, T)ρW(w2)〉.

In this thesis, the DW representation is employed for the analysis and evaluation of

double-pump signals in the strong field regime. A detailed description of the application

of the method is described in chapter 5.
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D O U B L E - P U M P F E M T O S E C O N D F L U O R E S C E N C E S P E C T R O S C O P Y

O F S I N G L E M O L E C U L E S

The first double-pump SM experiments have been reported in references 24 and 49. In

this technique, two phased-locked pulses with relative phase φ and time-delay τ interact

with a highly-photostable single chromophore in a matrix and the emitted fluorescence

photons are collected as a function of τ.

In general, the intensity of the double-pump fluorescence SM signal can be expanded

as:

IF(τ,φ) = ∑
k=2,4,6,...

Ik(τ,φ), (5.1)

where k denotes the number of interactions of the chromophore with the laser pulses.

For sufficiently weak pulses (equivalent to the perturbative limit) the signal scales

linearly with the field intensity and the signal is given by I2(τ,φ). For strong system-

field coupling, higher-order terms in the expansion 5.1 gain relevance. Any term in the

expansion given by Eq. 5.1 can be dissected into two parts:

Ik(τ,φ) = Ik + Ĩk(τ,φ). (5.2)

49
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Here the first term arises from the interaction of the system with the same pump pulse,

and gives rise to a τ- and φ-independent background. The second term represents an

odd number of interactions of the system with each of the two pulses.

If the pump pulses are well-separated in time, the double-pump signal can be evaluated

as62

Ik(τ,φ) = A(τ) + (B(τ)eiφ + B∗(τ)e−iφ)e−γ2τ + (C(τ)e2iφ + C∗(τ)e−2iφ)e−γ3τ. (5.3)

Here γ2 and γ3 are the single and double-coherence dephasing rates, A(τ) represents

the contribution which results from the evolution of the chromophore in the electronic

population, B(τ) is the single-coherence contribution, and C(τ) is the double-coherence

contribution. In the weak coupling case, A is τ-independent, contributing to the constant

background of the double-pump signal. In the strong coupling case, A is τ-dependent.

Explicit analytical expressions for A(τ), B(τ) and C(τ) can be obtained using the

strong-pulse doorway-window picture (see section 4.3). A(τ) and B(τ) are evaluated

by solving the master equation

∂tρ(t) =
−i
h̄
[H0 + HF(t),ρ(t)], (5.4)

where H0 and HF represent the system and system-field interaction Hamiltonians. The

SM signal is given by61,62

IF(τ,φ) = Tr{ρ22(t→∞)}, (5.5)

where Tr denotes the trace with respect to the vibrational degrees of freedom, and

ρ22(t→∞) is the total population of the excited state after the pulses have interacted
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with the system. For an electronic two-state system, A(τ) and B(τ) can be obtained by

the evaluation of Eq. 5.5 for three values of φ = 0,π/2,π:

IF(τ,0) = A(τ) + B(τ) + B∗(τ), (5.6)

IF(τ,π) = A(τ)− (B(τ) + B∗(τ)), (5.7)

IF(τ,π/2) = A(τ) + i(B(τ)− B∗(τ)). (5.8)

Inversion of these equations gives

A(τ) =
IF(τ,0) + IF(τ,π)

2
, (5.9)

ReB(τ) =
IF(τ,0)− IF(τ,π)

4
, (5.10)

B(τ) =
IF(τ,0) + IF(τ,π)

4
− IF(τ,π/2)

2
. (5.11)

The derivation of Eq. 5.3 for an electronic three-state system is analogous,

Evaluating Eq. 5.5 for φ = 0, π/4, π/2, −π/2, and π, we obtain after elementary

algebra:

A(τ) =
IF(τ,0) + IF(τ,π) + IF(τ,π/2) + IF(τ,−π/2)

4
, (5.12)
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ImB(τ) =
IF(τ,−π/2)− IF(τ,π/2)

4
, (5.13)

ReC(τ)=
IF(τ,0) + IF(τ,π)− IF(τ,π/2)− IF(τ,−π/2)

8
, (5.14)

ImC(τ) =
1
2
(A(τ)− IF(τ,π/4)) +

1√
2
(ReB(τ)− ImB(τ)) . (5.15)

The validity of Eq. 5.3 is based on the following two conditions. The pump pulses must

be (i) temporally well separated (τ� τp, the pulse-overlap effects can be neglected) and

(ii) relatively short (τp < γ−1
2 , γ−1

3 ), so that optical dephasing during the pulses can be

neglected. When both conditions are satisfied, the SM signals calculated analytically via

Eq. 5.3 match perfectly those obtained via a numerically exact solution of the master

equation. If (ii) is slightly violated (τp ∼ γ−1
2 , γ−1

3 ), the SM signals calculated by the two

methods differ quantitatively, but not qualitatively.

The environment plays a crucial role in shaping spectroscopic signals from single

chromophores embedded in a polymer matrix. The effect of the environment at room

temperature gives rise to modulations of the molecular parameters. For each time delay

of the pulses, the chromophore experiences a different local environment. To model

the effects of the environment on the chromophore Hamiltonian parameters (such as

excited electronic state energies, vibrational frequencies, potential energy shifts and

chromophore-field coupling parameters), I considered a simple stochastic law:

Aτ = Ā + δA(rτ − 1/2). (5.16)
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Here Aτ a stochastic realization of any of the mentioned parameters at a specific time-

delay τ, Ā represents its mean value, δA controls the amplitude of modulations and rτ

is a random number uniformly distributed in the interval [0,1].

It is potentially possible to uncover information on the environmental modulation of

the parameters by analyzing a large number of signals for a single chromophore. For

a set of N transient signals measured, IF(τ,φ,n)(n = 1,2, ..., N), the ensemble signal is

given by

Īk(τ,φ) = N−1 ∑
n

IF(τ,φ,n). (5.17)

The variance is given by

∆IR(τ,φ) = N−1 ∑
n

IF(τ,φ,n)2 − ĪF(τ,φ)2. (5.18)

Higher-order moments are defined accordingly. These moments carry information on

the stochastic properties of the environmental modulations.
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P U B L I C AT I O N S A N D M A N U S C R I P T S

This chapter contains the most relevant publications produced in this doctoral work.

Each of the publications is introduced by a brief conspectus. The papers are attached in

the Appendix section.

paper 1. Analysis of transient-absorption pump-probe signals of nonadiabatic dis-

sipative systems. E. Palacino-González, M.F. Gelin and W. Domcke. Manuscript in

preparation.

paper 2. Theoretical aspects of femtosecond double-pump single-molecule spec-

troscopy I. Weak-field regime. E. Palacino-González, M. F. Gelin and W. Domcke.

Phys. Chem. Chem. Phys. 19, 32296-32306 (2017).

paper 3. Theoretical aspects of femtosecond double-pump single-molecule spec-

troscopy II. Strong-field regime. E. Palacino-González, M. F. Gelin and W. Dom-

cke. Phys. Chem. Chem. Phys. 19, 32307-32319 (2017).
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6.1 Analysis of transient-absorption pump-probe signals

of nonadiabatic dissipative systems

Crossings of molecular potential-energy surfaces play a key mechanistic role in energy-

and charge-transfer processes.83 Electron transfer constitutes the basic step in a majority

of biological processes occurring in nature, such as in the cell metabolism and energy

balance in protein complexes. The comprehensive visualization of the ultrafast electronic,

vibrational and photochemical dynamics at curve crossings is therefore an important

goal of femtosecond time-resolved spectroscopy in chemistry. An explicit mapping

of the nonadiabatic wavepacket dynamics calls for the application of complementary

time and frequency resolved spectroscopic techniques. In this work, I introduce the

concept of ideal and real signals and simulate them for the case of transient-absorption

pump-probe (TA PP) spectroscopy. I considered a model of a spectroscopically accessible

one-dimensional curve crossing formed by the lowest two excited singlet states in the

vicinity of the Franck-Condon region of a polyatomic molecule. The considered reaction

mode is coupled to a harmonic bath, which introduces vibrational energy relaxation.

The electronic inter-state coupling is assumed to be strong, so that the nonadiabatic

electronic population dynamics deviates from the Fermi Golden rule (GR) behaviour,

showing electronic and vibrational beatings. The simulations are based on an exact

numerical solution of the driven time-dependent master equation. An extension of the

two-pulse EOM-PMA method6 is considered to account for excited-state absorption

(ESA). The effects of laser pulse shape and pulse overlap are implicit in the method. A

systematic decomposition of the TA PP signals into its building contributions (stimulated

emission (SE), ground-state bleaching (GSB) and excited-state absorption (ESA)) is performed

and the three processes are analyzed in detail. It is shown that a fairly complete and

orderly picture of the coupled electronic/nuclear dynamics at avoided crossings in a

dissipative environment can be obtained by this manner.
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Figure 6.1: Ideal time- and frequency-resolved TA PP signal

Individual candidate contribution: I contributed in extending the method used for the simulation

of two-pulse spectroscopy, implemented it in a MATLAB code and analyzed the results. I

contributed to writing the paper.
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6.2 Theoretical aspects of femtosecond double-pump single-

molecule spectroscopy. I. Weak-field regime

I developed a theoretical description of double-pump femtosecond single-molecule

signals with fluorescence detection. This work was motivated by recent experiments

of the van Hulst group.24,49 and considers the description and interpretation of the

measured signals in the weak-field regime.61 A simple model mimicking a chromophore

interacting with an environment was used.

The time-resolution of the SM fluorescence signals is provided by the time-delay between

two phased-locked femtosecond pulses. The simulation of the signals is performed by

solving numerically exactly the driven master equation describing the evolution of the

system density-matrix. In the weak-field limit, the signal can be evaluated in the leading

(second) order in the system-field interaction:

IF(τ,φ) = Ī2 + Ī2(τ,φ), (6.1)

where the subscript “2” indicates the number of interactions of the system with the

two pulses, and τ and φ denote the time delay and relative phase of the pulses. The

first term in Eq. 6.1 represents a constant (time-independent) contribution to the signal,

which originates from the interaction with a single pulse. The second term arises

from the amplitude in which each pulse interacts once with the system. The different

contributions to the signal are shown schematically in Fig. 6.2.
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Figure 6.2: Schematic view of the different coherent pathways contributing to the
double-pump fluorescence signal in the weak-field regime. λ denotes the system-field
coupling strength.

In a first approximation I studied how these contributions are reflected in the signal

without considering coupling to an environment, which allowed us to stablish a refer-

ence picture. Then I focused on how slow modulations induced by the environment

affect the SM responses.

The signals exhibit vibrational beatings arising from the electronic coherences of the

density matrix of the chromophore. These beatings are therefore quenched by electronic

dephasing. The signals are sensitive to the relative phase of the pulses. In particular, if

the phase is 0 and π, the signals oscillate in anti-phase. I showed that information on

the environment-induced fluctuations can be obtained, provided a suficiently large set

of SM signals is available.

Individual candidate contribution: I contributed in developing the methodology for the simu-

lation of the single-molecule signals and implemented it in a MATLAB code. I performed the

simulations, analyzed the results and produced the figures. I contributed to writing the paper.
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6.3 Theoretical aspects of femtosecond double-pump single-

molecule spectroscopy. II. Strong-field regime

As a continuation to the work of Paper 2. I investigated double-pump fluorescence

signals in the strong coupling case.61 I consider a chromophore with three electronic

states including a single Franck-Condon active harmonic vibrational mode*. The rest of

the vibrational modes of the system are included in an environment, which is described

by a dephasing operator introduced phenomenologically. In the strong-field regime, the

intensity of the double-pump SM signal can be expanded as

IF(τ,φ) = ∑
k=2,4,6,...

Ik(τ,φ), (6.2)

where k corresponds to the number of interaction with both pulses. Due to the higher

order contributions (k = 4,6, ...), phase-independent population states are produced

after an even number of interactions of the system with the first pulse. The SM signal is

a combination of coherence and population contributions and contains information on

the vibrational wavepacket dynamics in the electronic populations of the chromophore

density matrix. The origin of the population dynamics of the SM signals in the strong-

field case is ilustrated in Fig. 6.3.

Figure 6.3: Schematic view of the population contribution to the double-pump signal
in 4thorder. λ denotes the system-field coupling strength.

* Generalization towards chromophores with several Franck-Condon active modes is straightforward.
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I determined the critical value of the system-field coupling parameter which represents

the turnover from the weak-coupling to the strong-coupling regime. The information

content of the signals is higher in the strong-coupling regime, since electronic dephasing

does not completely quench the signatures of vibrational dynamics, even though the

signal becomes phase-independent. Strong-field signals for relative phases of 0 and π

are not mirror images of each other, as in the weak-field case. For pulse delay times

longer than the dephasing time, the signals with phases 0 and π coincide and reveal

vibrational beatings. The 2D maps (see Fig. 6.4) showing τ and φ dependence exhibit a

slight tilt of the phase-time profile, which is not as pronounced as in the weak-field case:

Figure 6.4: A representative 2D map of IF(τ,φ).

I investigated the effect of modulations of the system parameters by the environment

and found the critical values of the fluctuations for which the signals lose completely

their structure.

It can be concluded that SM signals in the strong-field case are more robust with respect

to fluctuations. It has been shown that the effect of higher-lying excited states on the

double-pump signals is significant, in particular in the phase dependence of the signals.

The analysis demonstrates that the adjustment of the system-field coupling can be
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viewed as a tool for the analysis of femtosecond double-pump SM signals and the

enhancement of the information in SM spectroscopy.

Individual candidate contribution: I contributed in developing the methodology for the simu-

lation of the single-molecule signals and implemented it in a MATLAB code. I performed the

simulations, analyzed the results and produced the figures. I contributed to writing the paper.
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C O N C L U S I O N S

The aim of this dissertation was the development of theoretical methods for the simula-

tion and analysis of nonlinear optical spectra of molecular systems on the femtosecond

timescale. The formalism adopted for the computation of the spectra is based on a

nonperturbative treatment of the external fields. This approach allows us to study the

spectroscopy of more complex systems, such as molecular chromophores in dissipative

environments. It is also possible to tune the intensity of the laser pulses to maximize

the information content of the spectroscopic signals.

The first part of the thesis focuses on transient-absorption pump-probe (TA PP) spec-

troscopy. The goal is a comprehensive understanding of the relationship of the nona-

diabatic dynamics of a molecular model system in a dissipative environment and the

TA PP spectra. For this purpose, I extended the so-called two-pulse equation-of-motion

phase-matching approach developed earlier by Gelin et al. [Chem. Phys. 312, 135-143

(2005)] towards the inclusion of higher-lying excited electronic states giving rise to

excited-state absorption. This method is based on the exact numerical solution of light-

driven auxiliary quantum master equations. It accounts for pulse-overlap effects and

is applicable for pump pulses of arbitrary strength. A central concept is the so-called

ideal TA PP signal. The ideal signal exhibits simultaneously perfect time and frequency

63
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resolution, but is per se not experimentally measurable. The measurable real signals

are obtained by the convolution of the ideal signals with a time and frequency gate

function, which is determined by the shape of the probe pulse. The concept of the

ideal signal provides insight into the mechanisms of the detection of ultrafast molecular

dynamics with TA PP spectroscopy. Moreover, it is an efficient computational tool for

the numerical calculation of TA PP signals.

As an application of these theoretical developments, I considered a model exhibiting

an energy crossing of excited states. The model comprises four electronic states, the

electronic ground state, two coupled excited electronic states, and a higher excited

electronic state. The nuclear motion is represented by a single Condon active vibra-

tional mode. To account for vibrational energy relaxation, the vibrational mode of

the model system is coupled to a harmonic bath. Electronic dephasing is included

phenomenologically by a decay constant for all electronic coherences. I systematically

investigated which features of the photoinduced system dynamics are imprinted in the

ideal and real TA PP signals. This analysis demonstrates that TA PP spectroscopy can

deliver a fairly complete picture of the nonadiabatic electronic/nuclear dynamics of such

systems. The ideal signal is a two-faceted object which combines the features of moving

wave packets and stationary spectra. Short (good temporal resolution) or long (good

frequency resolution) probe pulses reveal the corresponding facet. It is well known from

the response function formalism1,5 that the TA PP signal can be decomposed into the

ground-state bleach, stimulated emission and excited-state absorption contributions. I

developed an extension of the EOM-PMA formalism which allows the computation of

the three separate contributions84. A systematic analysis of the three contributions was

performed for the nonadiabatic dissipative model system.

The second part of this thesis deals with femtosecond time-resolved spectroscopy

of single-molecules. Motivated by recent pioneering experiments of van Hulst and

coworkers,24,49 I developed a theoretical description of double-pump single-molecule
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(SM) spectroscopy with fluorescence detection. In this spectroscopic method, two

phase-locked pump pulses are applied and the fluorescence signal is recorded as a

function of the time delay of the two pump pulses. In contrast to ensemble spectra, SM

spectra are free of inhomogeneous broadening. On the other hand, the SM spectra are

affected by slow fluctuations of the polymer environment in which the chromophores

are embedded. Femtosecond SM spectra contain information on the ultrafast dynamics

of the chromophore as well as on the coupling of the chromophore with the polymer

environment.

I have developed two variants of theoretical descriptions of femtosecond double-pump

SM spectroscopy. The first formulation is based on perturbation theory in the matter-

field interaction and is restricted to the weak-field regime and expressions for the spec-

troscopic signals can be derived analytically. In the second formulation, the matter-field

interaction is included nonperturbatively and the density matrix of the chromophore is

obtained by the numerical solution of driven master equations.

In the first article,61 I simulated femtosecond SM signals in the weak-field regime for a

model representing a chromophore with a single Condon-active mode. In this regime,

the SM spectra are dominated by the coherences of the electronic density matrix of the

chromophore, which are rapidly quenched by electronic dephasing, which limits the

information content of weak-field SM spectra. In the second article,62 I studied SM

signals in the strong-field regime, which is characterized by a nonlinear scaling of the

signal with the intensity of the pump pulse and the onset of Rabi cycling. In this regime,

populations of the electronic density matrix of the chromophore contribute to the SM

spectra. The electronic populations are insensitive to electronic dephasing and therefore

persist much longer than the electronic coherences. Therefore, femtosecond SM signals

in the strong-field regime provide more information on the chromophore dynamics.

The simulation of the effect of slow environmental fluctuations on the SM spectra in
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the weak-field and strong-field regimes revealed that strong-field SM signals are more

robust with respect to environmental effects than weak-field signals.
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Analysis of transient-absorption pump-probe signals of nonadiabatic
dissipative systems

Elisa Palacino-González, Maxim F. Gelin and Wolfgang Domcke1

Department of Chemistry, Technische Universität München, D-85747, Garching,
Germany

(Dated: November 15, 2018)

We introduce and analyze the concept of the ”ideal” time and frequency resolved transient-absorption pump-
probe (PP) signal. The ideal signal provides the most direct link between the ”real” (measurable) PP signal
and the material system dynamics. To this end, a method for the simulation of PP signals [Gelin et al., Chem.
Phys. 312, 135 (2005)] has been extended to take excited-state absorption into account. The simulation of
PP signals involves two steps. (i) The ideal signal, which exhibits perfect time and frequency resolution, is
calculated. For this purpose, the actual probe pulse is replaced by an auxiliary continuous-wave pulse. (ii)
The real signal is obtained by the convolution of the ideal signal with the appropriate time- and frequency-gate
function, which depends on the envelope of the actual probe pulse. This method has been used to simulate
integrated and dispersed PP signals for a model system exhibiting nonadiabatic and dissipative dynamics.
We demonstrated how the ideal signal, an object exhibiting the features of moving wave packets as well as
stationary spectra, is related to real signals detected with short (good temporal resolution) or long (good
frequency resolution) probe pulses.

I. INTRODUCTION

Broadly speaking, any time-resolved spectroscopic ex-
periment delivers the response of a material system
probed by several laser pulses. The response is detected
as a spectroscopic signal, which depends explicitly on
the carrier frequencies, delay times, phases, and tempo-
ral envelopes of the pulses and contains implicitly useful
information about the system dynamics. In transient-
absorption pump-probe (for brevity, PP hereafter) ex-
periments, for example, one detects integral (superscript
int) signals IintPP (t, ω2) or dispersed (superscript dis) sig-
nals IdisPP (t, ω2, ω)1. Here t is the time delay between
the pump and probe pulses, ω2 is the carrier frequency
of the probe pulse, and ω is the frequency correspond-
ing to the Fourier transform of the signal obtained with
a spectrometer. In the case of femtosecond third-order
spectroscopy, the link between spectroscopic observables,
e.g. IintPP (t, ω2) and IdisPP (t, ω2, ω), and the material sys-
tem is given by the third-order response functions1,2.
These response functions describe the system dynamics
in the electronic ground state and in the relevant excited
electronic states during three sequential time intervals,
and their behavior is difficult to understand intuitively
even in the case of exactly solvable model of damped
displaced harmonic oscillator, not to speak about the re-
sponse functions for more complicated material systems.
One can thus raise the question whether it is possible to
find a closer link between the measurable signal and the
intrinsic system dynamics.

One of such links is provided by the doorway-window
approach, which has been introduced and developed for
PP signals1,3,4 and later extended to photon-echo 2D
spectroscopy5 and strong-field spectroscopy6,7. This ap-
proach offers an intuitively appealing picture of the PP
experiment: the pump pulse prepares the material sys-
tem (that is, creates the doorway state), which then

evolves according to the intrinsic (field free) dynamics
and is finally detected by the probe pulse which creates
the window state. However, this transparent doorway-
window picture is only applicable for non-overlapping
laser pulses. Hence it cannot take into account, for ex-
ample, Raman-like sequences of the pulses (pump-probe-
pump) contributing to the PP signal.

An alternative link between signals and material dy-
namics is given by the concept of the ideal time and
frequency resolved spectrum, which has been introduced
for the description and interpretation of fluorescence up-
converted signals8–14. The application of this concept
is as follows: (i) One first calculates the ideal spectrum
which would be detected if perfect time and frequency
resolution were possible. (ii) The real (measured) signal
obtained with an up-conversion pulse of finite duration
is subsequently evaluated by the convolution of the ideal
spectrum with the appropriate time and frequency gate
(TFG) function. The ideal spectrum is independent of
the properties of the up-conversion pulse. Furthermore,
if the excitation pulse is short enough to be approxi-
mated by the Dirac delta function, the ideal time- and
frequency-resolved fluorescence spectrum is solely deter-
mined by the material system dynamics and is indepen-
dent of the properties of the laser pulses.

The aim of the present work is to introduce and
analyze the ideal time- and frequency-resolved spec-
trum IPP (t, ω) for femtosecond PP spectroscopy, both
as a useful and appealing concept and as an efficient
tool to evaluate real (measurable) signals IintPP (t, ω2) and
IdisPP (t, ω2, ω). We calculate the ideal signal IPP (t, ω)
by employing the two-pulse variant of the equation-of-
motion phase-matching approach (EOM-PMA)14–16. In
this approach, the actual probe pulse is replaced by a
fictitious continuous wave (CW) pulse, and the ideal
signal is obtained by the numerical solution of three
auxiliary master equations. In the present work, we
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extend the existing EOM-PMA formalism by including
higher-lying electronic states which give rise to excited-
state absorption (ESA). Motivated by recent transient-
absorption PP experiments monitoring ultrafast electron
transfer17–26, we consider a model system possessing two
non-adibatically coupled excited electronic states (mim-
icking donor and acceptor states for electron transfer)
which are strongly coupled to a high-frequency reaction
mode which, in turn, is bilinearly coupled to a harmonic
bath. We analyze the ideal spectrum and demonstrate
how the ideal spectrum IPP (t, ω) is converted into real
PP signals IintPP (t, ω2) and IdisPP (t, ω2, ω) detected with
transform-limited pulses of finite duration.

II. HAMILTONIAN AND EQUATIONS OF MOTION

We consider a chromophore with four electronic states,
which are the electronic ground state |e0〉, two nonadia-
batically coupled excited states |e1〉 and |e2〉, and a higher
excited electronic state |e3〉 which accounts for ESA. In
the diabatic representation, the Hamiltonian of the chro-
mophore assumes the form

HS = Hg +He +H3 (1)

(hereafter, the subscripts g, e, and 3 refer to the electron
ground state, two coupled excited states |e1〉 and |e2〉,
and the higher state |e3〉, respectively). Explicitly,

Hg = |e0〉h0〈e0|, (2)

He = |e1〉(h1 + ε1)〈e1|+ |e2〉(h2 + ε2)〈e2|+
+ v (|e1〉〈e2|+ |e2〉〈e1|) , (3)

H3 = |e3〉(h3 + ε3)〈e3|. (4)

Here ε1, ε2 and ε3 are the electronic excitation ener-
gies (to the energy minima of the excited states) and
v denotes the electronic coupling of the states |e1〉 and
|e2〉. The vibrational Hamiltonians are written in the
harmonic approximation,

hk =
ωvib

2

{
P 2 + (Q−∆k)2

}
, (5)

k = 0, 1, 2, 3. Here Q and P are the dimensionless co-
ordinate and momentum of the selected vibrational har-
monic mode (reaction mode) with frequency ωvib (which,
for simplicity, is assumed to be the same in all electronic
states). The ∆k are the horizontal shifts of the potential
energy functions with respect to the electronic ground
state (∆0 = 0).

To account for vibrational relaxation and dephasing
in the chromophore due to weakly-coupled intramolecu-
lar modes as well as possibly a solvent environment, we

adopt the system-bath approach and partition the to-
tal Hamiltonian into the system Hamiltonian, the bath
Hamiltonian, and their coupling,

H = HS +HB +HSB . (6)

We assume that the system mode Q is bilinearly coupled
to a harmonic heat bath which is responsible for vibra-
tional relaxation and dephasing:

HSB = Q
∑

a

caqa, (7)

HB =
1

2

∑

a

ωa{p2
a + q2

a}. (8)

Here pa, qa and ωa are the dimensionless momentum, co-
ordinate, and frequency of ath oscillator of the bath. The
system-bath coupling constants ca are taken, for simplic-
ity, the same for all electronic states involved. The influ-
ence of the bath on the system dynamics is determined
by the spectral density

g(ω) =
∑

a

c2aδ(ω − ωa). (9)

Consider a PP experiment, in which the system inter-
acts with pump (α = 1) and probe (α = 2) laser pulses.
The corresponding interaction Hamiltonian in the rotat-
ing wave approximation (RWA) is written as

HF (t) = H1(t) +H2(t), (10)

where

Hα(t) = −ηαEα(t−τα)e−i(kαr−ωα(t−τα))X+H.c. (11)

ηα is the system-field coupling parameter kα, ωα, τα and
Eα(t) denote the wave-vector, the carrier frequency, the
arrival time, and the dimensionless envelope of the αth
pulse. The transition dipole moment operator is defined
as

X = η02
α |e0〉〈e2|+ η23

α |e2〉〈e3|. (12)

We thus assume that the state |e2〉 is optically bright
from the electronic ground state |e0〉 while the state |e1〉
is optically dark. The higher excited state |e3〉 is optically
coupled to |e2〉, but not to |e1〉. Darkness of the lowest
excited electronic state |e1〉 from |e0〉 is a common feature
in many molecular chromophores, while the assumption
of absence of ESA from the state |e1〉 is arbitrary and is
adopted here for the sake of simplicity. In the following
we set, for convenience, η02

α = 1 and η23
α /η

02
α = λ.

In the present work, the influence of the vibrational
bath is accounted for at the level of multilevel Redfield
theory, which is justified when the system-bath interac-
tion is weak and bath memory is short on the system
dynamics timescale 27–29. The driven system dynamics
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is described by the reduced density matrix ρ(t) which
obeys the master equation

∂

∂t
ρ(t) = − i

~
[H0 +HF (t), ρ(t)] + (R+D)ρ(t). (13)

Here R is the Redfield relaxation operator which ac-
counts for vibrational (vibronic) relaxation and dephas-
ing caused by the system-bath coupling of Eq. (7) (see
Refs. 27–29 for detailed derivations). The operator

Dρ(t) = −ζ
∑

s6=s′
|s〉〈s′| 〈s|ρ(t)|s′〉 (14)

describes pure electronic dephasing, where s and s′ run
over all four electronic states. ζ is a phenomenological
dephasing rate which, for simplicity, is taken the same
for all electronic states.

Before the arrival of the first laser pulse, the system is
assumed to be at thermal equilibrium in the electronic
ground state,

ρ(−∞) = ρB |e0〉〈e0|, (15)

where

ρB = Z−1
B e−Hg/(kBT ) (16)

is a vibrational Boltzmann distribution (kB is the Boltz-
mann constant, ZB is the partition function, and T is the
temperature).

III. EVALUATION OF PP SIGNALS WITH THE
TWO-PULSE EOM-PMA METHOD

For the evaluation of PP signals, we employ the so-
called two-pulse EOM-PMA method, which has been de-
rived in Refs. 14–16 under assumption that ESA can be
neglected in the spectral region of interest. In the present
work, this method is extended to be able to account for
ESA. The detailed derivations of the method for a general
system Hamiltonian (A1) and a general transition dipole
moment operator (A2) can be found in the Appendix.
Here we summarize and adapt the results for the sys-
tem Hamiltonian (1) and the transition dipole moment
operator (12).

A. Evaluation of the ideal signal

To evaluate the ideal PP signal with the two-pulse
EOM-PMA method, we have to solve three master equa-
tions for the auxiliary density matrices ρ1(t), ρ2(t), ρ3(t):

∂

∂t
ρ1(t) = − i

~
[HS+H1(t)+H2(t), ρ1(t)]+(R+D)ρ1(t),

(17)

∂

∂t
ρ2(t) = − i

~
[HS +H1(t), ρ2(t)] + (R+D)ρ2(t), (18)

∂

∂t
ρ3(t) = − i

~
[HS +H2(t), ρ3(t)] + (R+D)ρ3(t). (19)

Here

H1(t) = −η1E1(t)eiω1tX + H.c. (20)

describes interaction of the system with the pump pulse
and

H2(t) = −η2e
iωtX (21)

describes interaction of the system with a fictitious CW
probe pulse. Note that H2(t) is non-Hermitian: the H.c.
term does is absent in Eq. (21). The auxiliary density
matrices in Eqs. (17)-(19) differ in the system-field in-
teractions included: ρ1(t) is driven by the pump pulse
and by the fictitious CW pulse, ρ2(t) is driven solely by
the pump pulse, while ρ3(t) is driven solely by the CW
pulse. Having solved Eqs. (17)-(19), one can calculate
the function

CPP (t, ω)= −iTr
{
X† (ρ1(t)− ρ2(t)− ρ3(t))

}
(22)

which determines the ideal PP signal

IPP (t, ω) = ReCPP (t, ω)

(there is a slight change of notation in comparison with
Ref.16).

As is well known, the PP signal can be split into
three contributions, ground-state bleach (GSB), stim-
ulated emission (SE), and ESA1,2. In the perturba-
tive response-function formalism, these contributions are
obtained separately1,2. To achieve this decomposition
within the two-pulse EOM-PMA, two extra steps are nec-
essary.

(i) We introduce the auxiliary left (superscript L) mas-
ter equation

∂

∂t
ρL1 (t) = − i

~
[HS +H1(t), ρL1 (t)]−

− i

~
H2(t)ρL1 (t) + (R+D)ρL1 (t). (23)

The difference between Eqs. (23) and (17) is as follows:
The system-field Hamiltonian H2(t) enters Eqs. (17) in
the usual manner, through a commutator, while it enters
Eq. (23) as an operator acting on the density matrix
from the left.

(ii) We define the quantity C̃PP (t, ω), which is evalu-
ated via Eq. (22), whereby in the density matrices in Eqs.
(17)-(19) are evaluated with λ = 0 (ESA is neglected).

With these definitions, we have (see Appendix)

CPP (t, ω) = CGSB(t, ω)+CSE(t, ω)+CESA(t, ω) (24)
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where

CSE(t, ω)= −iTr
{
X†
(
ρL11(t)− ρ10(t)

)}
, (25)

CGSB(t, ω) = C̃PP (t, ω)− CSE(t, ω), (26)

CESA(t, ω) = CPP (t, ω)− C̃PP (t, ω). (27)

B. Evaluation of the real signal

As is shown in the Appendix, the real integrated and dis-
persed PP spectra can be calculated by the convolution
of the ideal signals with appropriate TFG functions:

IintPP (t, ω2) = Re

∫ ∞

−∞
dt′dω′ΦintPP (t− t′, ω2 − ω′)×

× CPP (t′, ω′), (28)

IdisPP (t, ω2, ω) = Re

∫ ∞

−∞
dt′dω′ΦdisPP (t− t′, ω2 − ω′, ω)×

× CPP (t′, ω′). (29)

Here the ideal PP signal CPP (t, ω) is defined by Eq. (24).
One can also obtain the GSB, SE, and ESA contributions
to the real spectra by replacing CPP (t, ω) in Eq. (24) by
CGSB(t, ω), CSE(t, ω) and CESA(t, ω), respectively.

The TFG functions depend on the parameters of the
probe pulse according to Eqs. (A51) and (A56). Model-
ing the envelope of the probe pulse as an exponential8–14,

E2(t) = exp(−Γ|t|) (30)

(1/Γ being the pulse duration), the TFG functions can
be evaluated analytically14,16:

ΦintPP (τ,Ω) = exp(−Γ|τ |)Φ(τ,Ω; γ), (31)

ΦdisPP (τ,Ω, ω) =
Γ

Γ2 + (ω − ω2)2
ei(ω−ω2)τΦ(τ,Ω; γ)

(32)

where

Φ(τ,Ω; γ) = θ(τ)
exp{−Γτ}
Γ + γ + iΩ

+ θ(−τ)×

×
[

exp {(γ + iΩ)τ}
Γ + γ + iΩ

+
exp {(γ + iΩ)τ} − exp{Γτ}

Γ− γ − iΩ

]

(33)

and γ > 0 is a technical parameter (see below). In a hy-
pothetical case of simultaneous ideal time and frequency
resolution, ΦintPP (τ,Ω) = δ(τ)δ(Ω), the ideal PP signal
coincides with the real integrated PP signal.

C. Ideal vs real signals

Ideal time- and frequency resolved spectra have been
discussed in the literature, but mostly in the context of
fluorescence up-conversion signals8–14,16. The SE contri-
bution to the PP signal, ReCSE(t, ω), coincides (up to
a ω-dependent prefactor) with the time- and frequency-
resolved fluorescence signal, which is defined as a rate of
emission of photons of frequency ω at a time t1. The
precise simultaneous detection of ω and t violates the
Heisenberg uncertainty relation. The actually measured
time- and frequency-resolved fluorescence signal is ob-
tained by the convolution of CSE(t, ω) with the TFG
function ΦintPP (τ,Ω)8–14,16. In this case, the parameter
γ in Eq. (33) controls the spectral resolution (γ = 0
corresponds to ideal frequency resolution), while the du-
ration of the probe pulse controls the time resolution
(E2(t)→ δ(t) corresponds to ideal temporal resolution).
Eq. (31) reveals that ΦintPP (τ,Ω) cannot be approximated
as δ(τ)δ(Ω), revealing that perfect time and frequency
resolution cannot be achieved simultaneously.

The ideal PP spectrum ReCPP (t, ω) also has a clear
physical meaning: it is the rate of change of energy ab-
sorbed by the system from a CW field of a frequency
ω and time t. As in the case of fluorescence, simulta-
neous acquisition of CPP (t, ω) with high time and fre-
quency resolution is impossible, since the system can in-
teract with the CW pulse (21) at any time moment within
the interval [0, t]. The real PP signals, detected with a
probe pulse of finite duration, are obtained via Eqs. (31)
and (32). In contrast to fluorescence up-conversion14,16,
γ > 0 in Eq. (33) is a technical parameter which insures
causality (probe follows pump) and convergence (for dis-
persed signals).

There are certain restrictions on the time and fre-
quency resolution of PP signals. If the probe pulse is
short on the timescale of the system dynamics, the time
(t) and frequency (ω) resolution of IdisPP (t, ω2, ω) is not re-
stricted by the Heisenberg uncertainty relation, because
ω is the frequency corresponding to the Fourier transform
with respect to free induction decay time, while t is the
time delay between the pump and probe pulse1,30. As for
IintPP (t, ω2), its resolution with respect to ω2 is limited by
the probe-pulse duration, since the latter defines the de-
tection time of the integrated signal1,30. We also refer to
a recent elucidating discussion of the possibility of simul-
taneous time- and frequency-resolution in femtosecond
stimulated Raman scattering (FSRS) spectroscopy31,32

(without actinic pulse, FSRS is a variant of PP spec-
troscopy performed with a picosecond pump-pulse and a
femtosecond probe pulse).

D. Computational aspects

Superficially, the main working equation (22) for the
calculation of PP signals for a system with ESA coincides
with the corresponding formula derived in Ref.16. How-
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ever, the ingredients of this formula, the system Hamil-
tonian HS , the dipole moment operator X, and the dis-
sipation operator R+D are now defined in an extended
Hilbert space comprising the electronic ground state |e0〉,
two lower-lying excited electronic states |e1〉 and |e2〉, and
the higher-lying excited electronic state |e3〉.

The two-pulse EOM-PMA is an efficient method for
the evaluation of time- and frequency-resolved PP signals
for overlapping pump and probe pulses of arbitrary du-
ration. The pump pulse is allowed to be of any strength,
while the probe pulse is assumed to be weak. The cal-
culation of the spectra consists of two steps. (i) One
performs Nω propagations of three density matrices at
different emission frequencies according to Eqs. (17)-(19)
and calculates the ideal spectrum CPP (t, ω) on the grid
Nt×Nω (Nt and Nω are the number of grid points in the
time and frequency domain, respectively). (ii) The spec-
trum for the actual probe pulse is calculated by a two-
fold numerical convolution of the ideal spectrum with the
appropriate TFG functions (31) and (32).

With the two-pulse EOM-PMA method, the sig-
nals are calculated without resort to several com-
monly used simplifications, like the doorway-window
approximation1,3,4,6,7 or the neglect of dissipation effects
during the pulses1,33. The two-pulse EOM-PMA leads
to a ∼ Nω scaling for the computation of time- and
frequency-resolved spectra, in contrast to the ∼ Nt×Nω
scaling for the a posteriory decomposition of the total
polarization in the nonperturbative approach34 or in the
method of Tanimura and Mukamel35,36. The method of
Hahn and Stock37 also exhibits a ∼ Nω scaling, but it is
efficient only for temporarily well separated pulses (that
is, within the domain of validity of the doorway-window
approach).

IV. ILLUSTRATIVE CALCULATIONS

A. Model system and numerical details

The parameters of the model are specified as follows. The
vibrational frequency ωvib = 0.064 eV, which yields the
vibrational period τΩ = 2π/ωvib = 65 fs. The dimen-
sionless horizontal displacement of the lower excited-state
potential energy functions from the minimum of the elec-
tronic ground state (∆g = 0) are taken as ∆2 = −2 and
∆1 = −0.83, the difference of vertical adiabatic electronic
energies is set to ε2 − ε1 = 0.126 eV, and the electronic
coupling is v = 0.01 eV38,39. As for the higher electronic
state, we choose ∆3 = −1 and ε3 = 2ε2. This choice is
arbitrary, but it ensures a fairly well spectrally separated
ESA contribution to the total PP signal (see below). The
corresponding potential energy functions are sketched in
Fig. 1. It can be seen that the energies of the states |e1〉
and |e2〉 as a function of Q exhibit a crossing at Q = −3.
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Figure 1. Potential-energy functions of the model system:
|e0〉 (balck), |e1〉 (blue), |e2〉 (red), |e3〉 (green).

In the vicinity of the crossing, the coupling v becomes rel-
evant. While the diabatic energy curves cross, as shown
in Fig. 1, the adiabatic energy curves avoid crossing. The
near degeneracy of the potential energy functions around
Q = −3 leads to nonadiabatic effects, since v is smaller
than the vibrational frequency ωvib.

The pump pulse is weak (η1 = 0.001 eV), its envelope
is Gaussian,

E1(t) = exp
{
− (t/τp)

2
}
, (34)

and its duration, τp = 10 fs, is short on the timescale
of the system dynamics. The carrier frequency of the
pump pulse is fixed at ω1 = ε2 +2ωvib, which corresponds
to the vertical excitation energy of the bright state |e2〉.
We set ε2 = 2 eV. Within the RWA, the value of ε2 just
determines the origin of the frequency axis.

The vibrational relaxation operator R in the mas-
ter equation (13) is described by multi-level Redfield
theory27–29 with an Ohmic spectral density, J(ω) =
ηω exp{−ω/ωvib}. The dimensionless parameter η, which
controls vibrational relaxation, is set to 0.1, to ensure
underdamped coherent system dynamics. The depen-
dence of R on the external fields40 can be neglected for
weak pulses employed in the present work (see discus-
sion in Ref.41). The electronic dephasing is relatively
weak, ζ−1 = 200 fs. The temperature is set to zero (at
T = 300 K, ωvib/(kBT ) ≈ 2.5). The driven master equa-
tions (17)-(19) and (23) are converted into matrix form
by an expansion in terms of the eigenstates of the system
Hamiltonian HS and solved via the fourth-order Runge-
Kutta integrator. The ideal signals CPP (t, ω) and their
constituents CGSB(t, ω), CSE(t, ω), and CESA(t, ω) are
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evaluated via Eqs. (24)-(27). The real signals are then
calculated via Eqs. (31) and (32) with γ = 0.005 eV.

B. Discussion of the ideal signals

The three contributions to the ideal PP signal,
CGSB(t, ω) (a), CSE(t, ω) (b), CESA(t, ω) (c), as well as
the total ideal signal, CPP (t, ω) (d) are shown in Fig. 2 as
a function of t and ω. We first discuss general features of
these signals, and then discuss each of the contributions
separately.

As a function of t, the signals rise rapidly (∼ E2
1(t))42

around the arrival time of the pump pulse at t = 0. Up to
t ∼ τΩ they exhibit the wave-packet motion. The reason
is that the CW probe pulse does not have enough time to
perform a Fourier analysis of the system dynamics on this
time scale. For t > τΩ, the wave-packet signatures disap-
pear, and the signals exhibit series of peaks which reveal
predominately the vibrational frequency ωvib (along the
ω-axis) and vibrational period τΩ (along the t-axis). Ac-
cording the sign convention adopted in the present work,
the GSB and SE contributions to real PP signals are pos-
itive, while the ESA contribution is negative. As one can
see from Fig. 2, the ideal GSB (a) and SE (b) contribu-
tions are predominantly, but not completely, positive and
the ideal ESA (c) contribution is only predominantly, but
not completely, negative. The reason is that Raman-like
sequences of interactions, like pump-probe-pump, con-
tribute to the ideal signal. For the real signal, these con-
tributions are negligibly small for well separated pump
and probe pulses. In this case, only sequential interac-
tions, such as pump-pump-probe, contribute to the real
signal.

The GSB contribution (Fig. 2(a)) monitors the system
dynamics in the electronic ground state. In the impul-
sive limit (excitation with a Dirac-delta pulse) the wave
packet in the ground state is stationary1. Our pump
pulse is not impulsive and therefore several vibrational
levels in the electronic ground state are significantly ex-
cited, which leads to pronounced stripes around ω = 2.13,
2.19, and 2.25 eV. The time evolution of CGSB(t, ω) is
solely governed by Hg and reveals a purely harmonic
wave-packet motion.

The SE contribution (Fig. 2(b)) is identical to the ideal
time- and frequency-resolved fluorescence signal which
has been studied in detail in Ref.14. Among numer-
ous vibrational peaks, CSE(t, ω) exhibits a hump around
∼ 500 fs. This hump is an electronic coherence, which
is the manifestation of a partial wave-packet revival in-
duced by the non-adiabatic coupling. Along the ω-axis,
CSE(t, ω) narrows with t and eventually almost vanishes
at t = 1500 fs, due to an irreversible |e2〉 → |e1〉 popula-
tion transfer, which arises due to the |e2〉 → |e1〉 vibronic
coupling and is facilitated by the vibronic energy relax-
ation due to the coupling of the system to the heat bath.
The number of significantly populated vibronic levels in

Figure 2. Two-dimensional view of GSB (a), SE (b), ESA (c)
contributions to the ideal time- and frequency-resolved PP
signal (d).
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Figure 3. Cuts of the ideal PP signal at three frequencies
indicated in the legend.

|e2〉 is higher than in the ground state: the wave packet
created in |e2〉 by the pump pulse follows the gradient
towards the equilibrium position of this state, owing to a
significant shift ∆2 of the potential energy function |e2〉
relative to |e0〉. Hence the SE contribution along the
ω-axis is initially wider than the GSB contribution.

The ESA contribution is depicted in Fig. 2(c). The SE
and ESA contributions reflect different projections of the
wave-packet motion in the coupled |e2〉-|e1〉 states. SE
projects the wave packet on |e0〉, while the ESA projects
it in on |e3〉. The widths of CESA(t, ω) and CSE(t, ω)
along the ω-axis are approximately the same at short
t. This reflects the fact that the two contributions orig-
inate from the same |e2〉-|e1〉 wave packet. At longer
t, CESA(t, ω) shrinks significantly in comparison with
CSE(t, ω), which mirrors the difference in the reporter
states used for the detection of these contributions. In
particular, CESA(t, ω) exhibits a pronounced minimum
around ∼ 500 fs (recall that the ESA contribution is pre-
dominantly negative) which reveals the electronic coher-
ence.

Fig. 2(d) shows the total ideal PP signal. Note that
the GSB, SE, and ESA contributions are concentrated
around ω = 2.19, 2.00, and 1.85 eV, respectively, for the
present model. The maximum intensity of the GSB con-
tribution is roughly 7 times higher than the maximum
intensity of the SE contribution and 3 times higher than
the maximum intensity of the ESA contribution (cf Figs.
2(a)-(c)). As a result, CPP (t, ω) is dominated at higher
ω by CGSB(t, ω) with admixture of CSE(t, ω), while it
is dominated at lower ω by CESA(t, ω). The overall in-
tensity of CPP (t, ω) decreases with time, since the SE
and ESA contributions eventually vanish. PP signals at
conical intersections exhibit a similar behavior30,47.

For a more detailed view of the ideal PP signal, Fig.
3 shows cuts of CPP (t, ω) at ω = 2.19, 2, and 1.85 eV,

Figure 4. Three-dimensional view of the real integrated time-
and frequency-resolved PP signal for short (a, Γ−1 = 10 fs)
and relatively long (b, Γ−1 = 50 fs) probe pulse.

corresponding to the maximal intensities of the GSB, SE,
and ESA contributions, respectively. For ω = 2.19 eV
(red line), CPP (t, ω) exhibits vibrational oscillations with
a period of τΩ = 65 fs and reveals vibrational wave-packet
motion in the electronic ground state. On the other hand,
CPP (t, ω) at ω = 2 eV (black line, GSB+SE) and at
ω = 1.85 eV (blue line, ESA) show, additionally, the
electronic revival around 500 fs.

C. Discussion of real signals

Fig. 4 shows integrated PP signals IintPP (t, ω2) (Eq.
(28)) in the case of a short (a) and a relatively long (b)
probe pulse. These signals do not exhibit any signatures
of the Raman processes which are present in the ideal
signals, since these contributions are averaged out upon
the convolution of CPP (t, ω) with the TFG functions (31)
and disappear for non-overlapping pulses. As has been
mentioned above, the frequency resolution of the inte-
grated signals as well the width of IintPP (t, ω2) in the fre-



8

Figure 5. Three-dimensional view of the real dispersed time-
and frequency-resolved PP signal for short (a, Γ−1 = 10 fs)
and relatively long (b, Γ−1 = 50 fs) probe pulse. Note that
(b) is rotated with respect to (a)

quency domain are determined by the pulse duration.
Hence the vibrational peaks in IintPP (t, ω2) in Fig. 4(a)
are not resolved, while the signal in Fig. 4(b) shows clear
vibrational features both in the (GSB+SE) and ESA re-
gions. In the time domain, the picture is roughly the op-
posite, as expected. The signal in Fig. 4(a) reveals vibra-
tional wave-packet motion, while the signal in Fig. 4(b)
does not exhibit pronounced temporal dynamics. Yet,
since the duration of the probe pulse (50 fs) is close to
the vibrational period (τΩ = 65 fs), a low-amplitude vi-
brational beatings superimposed on the “ridges” reveal-
ing specific vibrational frequencies are clearly seen in the
signal in panel (b). If the duration of the probe pulse is
further increased, vibrational beatings disappear and the
signal becomes almost static (not shown). The weak elec-
tronic recurrence around 500 fs is visible in the signals in
both panels.

The intensity of the signals in Fig. 4(a) and (b) de-
creases with time, since the SE and ESA contributions
eventually disappear. However, the total signal does

not tend to zero for t → ∞, since the GSB contri-
bution does not vanish. By employing the doorway-
window picture1,3,4,6,7, it can be shown that the GSB
contribution at t → ∞ yields the window operator av-
eraged with the equilibrium Boltzmann distribution of
Eq. (16). If the probe pulse is short on the system dy-
namics timescale, this quantity is closely related to the
linear response function and steady-state linear absorp-
tion spectrum.

Fig. 5 shows dispersed signals IdisPP (t, ω2, ω) as a func-
tion of t and ω. Panel (a) corresponds to a short probe
pulse, while panel (b) corresponds to a relatively long
probe pulse. The frequency resolution of both signals is
not directly related to the duration of the probe pulse.
More precisely, the bandwidth E2(ω − ω2) of the probe
pulse determines, on the one hand, the number of vi-
brational (vibronic) levels which can be simultaneously
probed and, on the other hand, determines the width of
IdisPP (t, ω2, ω) in the ω-domain (see Eq. (A52)). For this
reason, the width of the signal in panel (a) of Fig. 5 is
significantly broader than the width of the signal in panel
(b), while both signals are much narrower than the inte-
grated signals in Fig. 4. The ESA is not visible in Fig.
5, since the domain of the ESA contribution, ω ∼ 1.85
eV, is not covered by the probe pulse.

Let us now consider the signals in panels (a) and (b)
of Fig. 5 separately. If the probe pulse is short (panel
(a)), IdisPP (t, ω2, ω) exhibits clear vibrational peaks in the
ω-domain as well as vibrational oscillations and an elec-
tronic revival in the t-domain. This illustrates that the
resolutions in t and ω are not mutually Fourier lim-
ited. If the probe pulse is relatively long (panel (b)),
IdisPP (t, ω2, ω) does not show any clear peak structure, be-
cause the bandwidth of the probe pulse, Γ−1 = 0.013
eV, is too narrow do accommodate a pair of vibrational
peaks separated by ωvib = 0.064 eV. In the t-domain,
on the other hand, the signal does exhibit low-amplitude
oscillations revealing vibrational and electronic features.

Summarizing, both integrated and dispersed PP sig-
nals, notably the signals induced by short pump and
probe pulses, deliver a fairly complete picture of the cou-
pled electronic/nuclear dynamics of the considered nona-
diabatic dissipative system.

V. CONCLUSIONS

We have introduced and analyzed the concept of the
ideal time- and frequency-resolved PP signal, IPP (t, ω).
This signal, which can hypothetically be measured as the
rate of change of energy absorbed by the system from a
CW probe pulse of frequency ω at time t, can be consid-
ered as the most direct link between spectroscopic observ-
ables and the dynamics of material systems. IPP (t, ω)
is a two-faceted object exhibiting the features of mov-
ing wave packets and stationary vibronic spectra. Its
projection on short (good temporal resolution) or long
(good frequency resolution) probe pulses reveals the cor-
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responding facet in the real (measurable) integrated and
dispersed PP signals IintPP (t, ω2) and IdisPP (t, ω2, ω).

To convert the concept of the ideal PP signal into an
efficient numerical tool, we have extended the two-pulse
EOM-PMA method of Ref.16 by the inclusion of ESA.
Within this method, the actual probe pulse is replaced by
a fictitious CW pulse, and the ideal signal IPP (t, ω) is ob-
tained by the numerical evaluation of three auxiliary mas-
ter equations. The real integrated and dispersed PP sig-
nals IintPP (t, ω2) and IdisPP (t, ω2, ω) are subsequently eval-
uated by a numerical convolution of IPP (t, ω) with the
appropriate TFG functions. Distinct from other nonper-
turbative methods43,44, the two-pulse EOM-PMA per-
mits the separate evaluation of the ideal and real GSB,
SE, and ESA contributions to the PP signal. The pump
pulse can be of arbitrary strength, while the probe pulse
is assumed to be weak.

We simulated the ideal and real SE, GSB, and ESA
contributions and total PP signals for a model system
possessing a Franck-Condon active reaction mode and ex-
hibiting strong electronic inter-state coupling among the
excited electronic states. Although the GSB is the domi-
nant contribution (and reveals ground-state wave-packet
dynamics), the signatures of the moving wave packets
in the coupled excited electronic states are pronounced
in the spectral region corresponding to the maximum of
SE. The ESA is manifested by negative contributions to
the total PP signals. Its time dependence also reveals
the wave-packet motion in the coupled electronic states
through vibrational oscillations and electronic population
recurrence. The ESA contribution is frequently regarded
as a nuisance which contaminates PP signals. However,
when the ESA is spectrally well separated, the higher
excited state serves as a ”reporter state”, revealing an
additional projection of the wave-packet dynamics in the
nonadibatically coupled lower excited electronic states.
This may be especially important if one of the coupled
states is optically dark from the ground state45,46.

In general, the information delivered by PP signals in
the time domain seems to be more instructive than the
information delivered in the frequency domain for the
considered model system. As a function of time, the sig-
nals exhibit oscillatory responses which reveal vibrational
wave packets and nonadiabatic electronic dynamics. As a
function frequency, (integrated or dispersed) PP spectra
exhibit vibrational peaks which are broadened by elec-
tronic dephasing.

In the present analysis, we considered a nonadiabati-
cally coupled system with a single Condon-active vibra-
tional mode. While single vibrations sometimes dom-
inate fluorescence of electron transfer systems48, sev-
eral active vibrational modes were clearly detected in
recent PP signals for a number of systems23,24,45. Al-
though the explicit treatment of several system modes
within multistate Redfield formalism is computation-
ally feasible27,49,50, a more general and more accurate
treatment could be achieved by combining the EOM-
PMA with the hierarchy equation of motion (HEOM)

method51, including the laser fields into the system
Hamiltonian52 and incorporating all optically active vi-
brational modes into the heat bath via a structured spec-
tral density53. It seems also promising to combine the
EOM-PMA with on-the-fly ab initio nonadiabatic quan-
tum or classical molecular dynamics simulations54,55.
Work in these directions is in progress.

Appendix A: Two-pulse EOM-PMA with ESA

The derivations in this Appendix generalize those of
Ref.16 toward the inclusion of ESA. In the main arti-
cle, the chromophore is modeled as a system with four
electronic states. Here, we consider the more general sit-
uation of a chromophore with an electronic ground state
g, a manifold of Ne (possibly coupled) lower-lying ex-
cited electronic states denoted collectively by e, and a
manifold of Nu higher excited electronic states denoted
collectively by u. We neglect possible non-adiabatic cou-
plings between the manifolds g and e, as well as e and
u. If necessary, triplet states and singlet-triplet couplings
can also be included into He. With these simplifications,
the system Hamiltonian can be written as a block 3 × 3
matrix operator in the electronic space

HS =



Hg 0 0
0 He 0
0 0 Hu


 . (A1)

Here Hg is the vibrational Hamiltonian of the electronic
ground-state, while the Ne × Ne matrix operator He

and the Nu × Nu matrix operator Hu are the electron-
vibrational (vibronic) Hamiltonians in the manifolds e
and u including internal vibronic couplings. The system
interacts with two laser pulses, and the corresponding
system-field Hamiltonian in the RWA is given by Eqs.
(10) and (11) in which the transition dipole moment op-
erators are defined as

X =




0 µge 0
0 0 µeu
0 0 0


 , X† =




0 0 0
µeg 0 0
0 µue 0


 (A2)

where the µeg = µ†ge is a Ne × 1 matrix and µue = µ†eu is
a Nu ×Ne matrix .
The driven system dynamics is described by the elec-
tronic density matrix ρ(t) which obeys the master equa-
tion (13), in which the system Hamiltonian and the tran-
sition dipole moment operators are defined by Eqs. (A1)
and (A2), respectively

1. Phase-matched nonlinear polarization

To simplify the subsequent derivations, we found it con-
venient to subdivide them in a sequence of steps.
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a. Evolution under the action of pulse #1

Consider the evolution of the system in the presence
of pulse #1 alone,

∂

∂t
ρ(t) = − i

~
[HS +H1(t), ρ(t)] + (R+D)ρ(t), (A3)

with the initial condition ρ(t = t′) = ρ(t′). We can
rewrite then Eq. (A3) in the operator form,

ρ(t) = G(t, t′)ρ(t′). (A4)

b. Explicit k1-dependence

Consider the unitary transformed density matrix

σ(t) = Oρ(t)O† (A5)

where

O =




1 0 0
0 e−ik1r 0
0 0 e−i2k1r


 . (A6)

Obviously, σ(t) obeys the master equation

∂

∂t
σ(t) = − i

~
[HS +H1(t), σ(t)] + (R+D)σ(t) (A7)

with the initial condition

σ(t′) = Oρ(t′)O† (A8)

and with the renormalized system-field Hamiltonian

H1(t) = −η1E1(t− τ1)eiω1(t−τ1)X + H.c. (A9)

To obtain Eq. (A7), we used the identities

OXO† = eik1rX, OX†O† = e−ik1rX† (A10)

and assumed that O(R+D)O† = R+D, which is valid
if operators R+D do no induce any transitions between
the manifolds g and e, e and u.

Rewriting Eq. (A7) in operator form as

σ(t) = G(t, t′)σ(t′) (A11)

we obtain

σ(t) = G(t, t′)
{
Oρ(t′)O†

}
. (A12)

The notation G(t, t′) {...} means that G acts on the entire
expression in the curly brackets. Returning back to the
original density matrix ρ(t) according to the transforma-
tion (A5), we obtain

ρ(t) = O†G(t, t′)
{
Oρ(t′)O†

}
O. (A13)

This expression gives, through the operators O, the ex-
plicit k1-dependence of the density matrix.

c. Perturbation expansion in pulse #2

Let us now solve Eq. (13) perturbatively in pulse #2.
Assuming that there are no external fields at t = −∞,
we obtain in the first order

ρ(t) = G(t,−∞)ρ(−∞) + i
η2

~

∫ t

−∞
dt′E2(t′ − τ2)×

× G(t, t′)A(t′) +O(η2
2) (A14)

where

A(t′) =
(
e−i(k2r−ω2(t′−τ2))X + ei(k2r−ω2(t′−τ2))X†

)
×

× G(t′,−∞)ρ(−∞)− G(t′,−∞)ρ(−∞)×
×
(
e−i(k2r−ω2(t′−τ2))X + ei(k2r−ω2(t′τ2))X†

)
. (A15)

Using the definition (A13), we can rewrite Eq. (A14) as

ρ(t) = O†ρ(t)O + i
η2

~

∫ t

−∞
dt′E2(t′ − τ2)×

× O†G(t, t′)A(t′)O +O(η2
2), (A16)

where

ρ(t′) ≡ G(t′,−∞)ρ(−∞) (A17)

and

A(t′) =
(
e−i(k2r−k1r−ω2(t′−τ2))X + ei(k2rk1r−ω2(t′−τ2))X†

)
ρ(t′)−

−ρ(t′)
(
e−i(k2r−k1r−ω2(t′−τ2))X + ei(k2r−k1r−ω2(t′−τ2))X†

)
.

(A18)

d. Evaluation of the polarization

The total nonlinear polarization is defined as

P (t) = Tr{(X +X†)ρ(t)}. (A19)

Inserting Eq. (A16) into Eq. (A19) and using Eq. (A10),
one obtains:

P (t) = eik1rPk1
(t) + e−i(k2r−2k1r)P−k2+2k1

(t)+

+ eik2rPk2
(t) + e−ik1rP−k1

(t)+

+ ei(k2r−2k1r)Pk2−2k1
(t) + e−ik2rP−k2

(t). (A20)

Here

Pk1
(t) = Tr {Xρ(t)} , (A21)
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P−k2+2k1(t) = i
η2

~

∫ t

−∞
dt′E2(t′ − τ2)×

× Tr
{
XG(t, t′)eiω2(t′−τ2) [X, ρ(t′)]

}
, (A22)

Pk2
(t) = i

η2

~

∫ t

−∞
dt′E2(t′ − τ2)×

× Tr
{
XG(t, t′)e−iω2(t′−τ2)

[
X†, ρ(t′)

]}
, (A23)

P−k1
(t) = Tr

{
X†ρ(t)

}
, (A24)

Pk2−2k1(t) = i
η2

~

∫ t

−∞
dt′E2(t′ − τ2)×

× Tr
{
X†G(t, t′)e−iω2(t′−τ2)

[
X†, ρ(t′)

]}
, (A25)

P−k2(t) = i
η2

~

∫ t

−∞
dt′E2(t′ − τ2)×

× Tr
{
X†G(t, t′)eiω2(t′−τ2) [X, ρ(t′)]

}
. (A26)

The last three terms in Eq. (A20) are the complex con-
jugate of the first three terms. Here we are interested
in the polarization P−k2

(t), which gives rise to the PP
signal. The term (A25), which yields two-pulse photon
echo1 and double coherence signal56, can be considered
very similarly.

e. Correlation functions

We define the correlation functions:

C(t, t′) = Tr
{
X†G(t, t′) [X, ρ(t′)]

}
, (A27)

CL(t, t′) = Tr
{
X†G(t, t′)Xρ(t′)

}
, (A28)

CR(t, t′) = −Tr
{
X†G(t, t′)ρ(t′)X

}
. (A29)

Evidently,

C(t, t′) = CL(t, t′) + CR(t, t′). (A30)

The correlation functions introduced above are re-
lated with the dressed response functions introduced in
Refs.57,58.

We also introduce the object

C(t, ω) =

∫ t

−∞
dt′e−iω(t−t′)C(t, t′), (A31)

as well as similar objects for the L and R correlation
functions. For t > τ ,
∫ ∞

−∞
dωeiω(t−τ)C(t, ω) = C(t, τ). (A32)

Hence we can recast Eq. (A26) in the form

P−k2(t) = i
η2

~

∫ t

−∞
dt′E2(t′ − τ2)eiω2(t′−τ2)C(t, t′)

i
η2

~

∫ t

−∞
dt′
∫ ∞

−∞
dωeiω(t−t′)E2(t′−τ2)eiω2(t′−τ2)C(t, ω).

(A33)

2. Evaluation of C, CL and CR

Solving the master equation (17) for the density ma-
trix ρ1(t) up to a first order in H2(t) and following the
procedure outlined in Sec. A 1, we obtain

P1(t) = Tr
{
X†ρ1(t)

}
= Tr

{
X†ρ(t)

}
+

+ i
η2

~

∫ t

−∞
dt′eiωt

′
C(t, t′) +O(η2

2) (A34)

(ρ(t) is defined b y Eq. (A17)). The application of the
same procedure to the auxiliary master equation (A35)
for the density matrix ρ2(t) yields

P2(t) = Tr
{
X†ρ2(t)

}
= Tr

{
X†ρ(t)

}
. (A35)

We thus obtain

P1(t)− P2(t) = i
η2

~
C(t, ω) +O(η2

2). (A36)

Note that P1(t) contains a contribution where the pump
pulse is zero, the so called pump-off contribution1. To
get rid of it, we have to additionally consider the master
equation (19) for the density matrix ρ3(t) , which simply
gives the linear response to pulse #2,

P3(t) = Tr
{
X†ρ3(t)

}
= i

η2

~

∫ t

−∞
dt′eiωt

′
C0(t−t′)+O(η2

2).

(A37)

Here

C0(t− t′) = Tr
{
X†G0(t− t′) [X, ρ(−∞)]

}
(A38)

where G0(t− t′) = G(t, t′) for η1 = 0. Hence we obtain

P1(t)− P2(t)− P3(t) = i
η2

~
CPP (t, ω) +O(η2

2). (A39)

The correlation function

CPP (t, ω) =

∫ t

−∞
dt′eiωt

′ {C(t, t′)− C0(t− t′)} (A40)

determines the ideal PP signal.
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a. Separate evaluation of the SE, GSB, and ESA
contributions

Consider the master equation (23) for the density matrix
ρL1 . Distinct from Eq. (17), the interaction Hamilto-
nian H2(t) is applied in Eq. (23) on the left only (hence
subscript L). Solving it up to a first order in H2(t), we
obtain

PL1 (t) = Tr
{
X†ρL1 (t)

}
= Tr

{
X†ρ(t)

}
+

+ i
η2

~

∫ t

−∞
dt′eiωt

′
CL(t, t′) +O(η2

2). (A41)

Then

PL1 (t)− P2(t) = i
η2

~
CSE(t, ω) +O(η2

2) (A42)

where

CSE(t, ω) =

∫ t

−∞
dt′eiωt

′
CL(t, t′) (A43)

specifies the ideal SE signal.
We can also solve the master equation

∂

∂t
ρR1 (t) = − i

~
[H0+H1(t), ρR1 (t)]+

i

~
ρR1 (t)H2(t)+RρR1 (t)

(A44)

in which H2(t) is applied on the right (hence subscript
R). It yields

PR1 (t) = Tr
{
X†ρR1 (t)

}
= Tr

{
X†ρ(t)

}

+ i
η2

~

∫ t

−∞
dt′eiωt

′
CR(t, t′) +O(η2

2) (A45)

Hence the GSB+ESA contribution to the ideal PP signal
reads

PR1 (t)− P2(t)− P3(t) =

i
η2

~
(CGSB(t, ω) + CESA(t, ω)) +O(η2

2). (A46)

We can further evaluate the GSB and ESA contributions
separately, by performing one extra calculation of the PP
signal without ESA. This is achieved by putting µue = 0
in Eq. (A2).

3. Ideal and real signals

Let us fix the arrival times of the laser pulse #1 and
#2 at

τ1 = 0, τ2 = T. (A47)

The integrated PP signal is defined as1

IintPP (T, ω2) = Im

∫ ∞

−∞
dtE2(t− T )e−iω2tP̃−k2(t),

(A48)

where

P̃−k2
(t) = P−k2

(t)− P off−k2
(t) (A49)

and P off−k2
(t) is the polarization evaluated without the

pump pulse. Using Eq. (A33) we obtain

IintPP (T, ω2) = Re

∫ ∞

−∞
dtdω′ΦintPP (T−t, ω2−ω′)CPP (t, ω′).

(A50)

Here

ΦintPP (τ,Ω) = E2(−τ)

∫ −τ

−∞
dt′E2(t′)ei(γ+iΩ)(t′+τ)

(A51)

is the integrated TFG function16.
The dispersed PP signal is defined as1

IdisPP (T, ω2, ω) = ImE2(ω − ω2)P̃−k2
(ω) (A52)

where

E2(ω) =

∫ ∞

−∞
dtexp{iωt}E2(t− T ), (A53)

P̃PP (ω) =

∫ ∞

−∞
dtexp{−iωt}P̃−k2

(t). (A54)

Using Eq. (A33) we get

IdisPP (T, ω2, ω) =

Re

∫ ∞

−∞
dtdω′Φdis(T − t, ω2 − ω′, ω)CPP (t, ω′),

(A55)

where the dispersed TFG function reads16

ΦdisPP (τ,Ω, ω) =

E2(ω − ω2)ei(ω−ω2)τ

∫ −τ

−∞
dτ ′E2(τ ′)e(γ+iΩ)(τ ′+τ).

(A56)

As is easy to see,
∫∞
−∞ dωIdisPP (T, ω2, ω) = IintPP (T, ω2), as

it should be1.
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27V. May and O. Kühn, Charge and Energy Transfer Dynamics in
Molecular Systems. Wiley-VCH, Berlin (2004).

28D. Egorova, M. Thoss, W. Domcke, and H. Wang, J. Chem.
Phys. 119, 2761 (2003).

29A.G. Redfield, Adv. Magn. Reson. 1, 1 (1965).
30G. Stock and W. Domcke, Phys. Rev. A 45, 3032 (1992).
31S. Mukamel and J. D. Biggs, J. Chem. Phys. 134, 161101 (2011).
32K. E. Dorfman, B. P. Fingerhut, and S. Mukamel, Phys. Chem.
Chem. Phys. 15, 12348 (2013).

33A. V. Pisliakov, M. F. Gelin, and W. Domcke, J. Phys. Chem.
A 107, 2657-2666 (2003).

34L. Seidner, G. Stock and W. Domcke, J. Chem. Phys. 103, 3998
(1995).

35Y. Tanimura and S. Mukamel, J. Phys. Soc. Japan, 63, 66
(1994).

36Y. Tanimura and Y. Maruyama, J. Chem. Phys. 107, 1779
(1997).

37S. Hahn and G. Stock, Chem. Phys. Lett. 296, 137 (1998).
38B. Wolfseder, L. Seidner, G. Stock, and W. Domcke, Chem. Phys.
217, 275 (1997).
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Theoretical aspects of femtosecond double-pump
single-molecule spectroscopy. I. Weak-field regime†

Elisa Palacino-González, Maxim F. Gelin* and Wolfgang Domcke

We present a theoretical description of double-pump femtosecond single-molecule signals with

fluorescence detection. We simulate these signals in the weak-field regime for a model mimicking a

chromophore with a Franck–Condon-active vibrational mode. We establish several signatures of these

signals which are characteristic for the weak-field regime. The signatures include the quenching of

vibrational beatings by electronic dephasing and a pronounced tilt of the phase-time profiles in the

two-dimensional (2D) maps. We study how environment-induced slow modulations of the electronic

dephasing and relevant chromophore parameters (electronic energy, orientation, vibrational frequency

and relative shift of the potential energy surfaces) affect the signals.

I. Introduction

Single-molecule (SM) spectroscopy comprises a set of techniques
which detect spectroscopic signals from individual molecules
imbedded in polymer matrices or in solution.1–5 Most SM
experiments are fluorescence excitation measurements. A tunable
narrow-band laser is scanned over the absorption band of a
single chromophore, and the absorption is detected as Stokes-
shifted fluorescence.6 SM signals are free of inhomogeneous
broadening inherent in ensemble experiments and are usually
recorded in the frequency domain. Because of the nanosecond
timescale of fluorescence, time-resolved detection of emitted
photons cannot provide information on fast (picosecond) and
ultrafast (femtosecond) processes in single chromophores.

SM spectroscopy has been extended into the femtosecond
time domain by van Hulst and coworkers.7–12 Chromophores
were excited with two phase-locked femtosecond laser pulses
and the fluorescence was collected with a confocal microscope.
In this coherent femtosecond technique, which was pioneered
by Scherer and coworkers in ensemble spectroscopy,13 the
fluorescence is detected as a function of the time delay between
the two phase-locked pump pulses. For a pure electronic (two-level)
transition in individual terrylenediimide (TDI) molecules in a
poly(methyl methacrylate) (PMMA) matrix at ambient temperature,
it was shown that electronic quantum coherence can be probed
and manipulated.9 For individual dinaphtoquaterrylenebis(dicarb-
oximide) (DNQDI) dyes, the detection of vibrational wave packets
has been demonstrated.7

In the present work, we give a theoretical analysis of
femtosecond double-pump SM spectroscopy. Inspired by the
experimental results of van Hulst and coworkers,7–9 we consider
a chromophore with two (ground and excited) electronic states
and a single underdamped high-frequency Franck–Condon
active vibrational mode. We explore the effects of electronic
dephasing, heterogeneity in laser-SM coupling and slow fluctuations
of relevant molecular parameters due to the environment.

The femtosecond double-pump SM experiments of ref. 7–9
were performed with relatively weak pump pulses. On the other
hand, it is emphasized in the review11 that weak-field and
strong-field regimes ‘‘are two extremes on a continuum of
increasing intensity. Our experiments morph quite naturally
from weak-field into strong field depending on the orientation
of the molecule in the sample, i.e. the overlap between the
excitation dipole and the incident electric field. It therefore
makes little sense to make a hard statement about the ‘‘regime’’
in which these experiments take place.’’ From the theoretical
perspective, the two regimes can clearly be defined and SM
signals simulated in the two regimes exhibit qualitatively
different behaviors. In the present paper, we concentrate on
the study of SM signals in the regime of weak radiation-matter
coupling. The strong-coupling regime is investigated in the
accompanying paper.14

II. Theoretical framework
A. Hamiltonian

Characteristic aspects of SM spectroscopy are the heterogeneity
of the ensemble of molecular chromophores as well as temporal
fluctuations of molecular parameters, both of which arise from
the embedding of the chromophores in a polymer matrix at
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ambient temperature. In the present context, the thermal
fluctuations can be considered as slow, with the exception of
the fluctuations of the vertical electronic excitation energy,
which lead to pure electronic dephasing.1,2,15,16 The electronic
dephasing will be included in the quantum equation of motion,
while the slow fluctuations of other parameters will be treated
as stochastic variables, see below.

In the weak-coupling regime, chromophores resonantly
excited by a pair of pump pulses can be considered as electronic
two-state systems, because optical transitions between the lowest
excited electronic state and higher-lying excited electronic states do
not contribute to the SM signal in the leading order in the system-
field interaction. We thus consider chromophores with an
electronic ground state |1i and a bright excited electronic state
|2i. The Hamiltonian specifying an individual chromophore is
written as a 2 � 2 matrix in the electronic state space:

H ¼
h1 0

0 eþ h2

 !
: (1)

Here e is the adiabatic electronic excitation energy, while h1 and
h2 are the vibrational Hamiltonians in the electronic ground
state and the lowest excited electronic state of the chromo-
phore. Note that e as well as the parameters specifying h1 and h2

may differ not only among various chromophores, but also for
the same chromophore at different detection times. This tem-
poral heterogeneity will be accounted for below.

The oscillatory transients detected in experiments of ref. 7
and 9 reveal predominantly a single frequency which can be
traced to the dominant Franck–Condon-active vibrational
mode of the chromophore.17 We thus explicitly include a single
harmonic vibrational mode of the chromophore into the system
Hamiltonian of eqn (1). The remaining vibrational modes of the
chromophore and the polymer matrix will be considered as a
thermal environment and accounted for by an appropriate
master equation. Hence

h1 ¼
�hO
2

P2 þQ2
� �

;

h2 ¼
�hO
2

P2 þ ðQ� DÞ2
� �

;

(2)

where O, P, and Q are the frequency, dimensionless momentum,
and dimensionless coordinate of the harmonic mode, respectively,

while D is the dimensionless shift of the minimum of the potential
energy function of the lowest excited electronic state with respect
to the minimum of the ground-state potential-energy function (see
Fig. 1). For simplicity, the vibrational frequency is assumed to be the
same in both electronic states. If necessary, different frequencies
can readily be considered.18–22 Generalization of the present
description towards chromophores with several separable
Franck–Condon-active vibrational modes is straightforward.

The interaction of the chromophore with a pair of phase-
locked pulses is described in the dipole approximation and in
the rotating wave approximation by the Hamiltonian

HF(t) = �[E(t)X† + E*(t)X] (3)

where

E(t) = E1(t) + E2(t),

E1(t) = E0 f (t + t)e�io1t,

E2(t) = E0 f (t)ei(f�o2t), (4)

and

X ¼ êl
0 1

0 0

 !
; Xy ¼ êl

0 0

1 0

 !
; (5)

are the dipole transition operators, l is the electronic transition
dipole vector, and ê is the unit vector of the polarization of the
two pump pulses. Eqn (4) describes pump pulses with the
amplitude E0, dimensionless envelope f (t) (which is assumed
to be the same for both pulses) and carrier frequencies o1 and
o2; t is the time delay between the pulses and f is their relative
phase. For further convenience, we set the arrival time of the
first pulse at t = �t, while the second pulse arrives at t = 0. In
general, f may depend on both t and t.23,24 In the present work,
we assume that f is t- and t-independent, which seems to be
consistent with the definition of phase shifts in the experiments
of ref. 7–9. On the other hand, recent variants of femtosecond
SM double-pump experiments of van Hulst and coworkers25 and
Kukura and coworkers26 employ an interferometric signal detection
scheme. These experiments correspond to f = o2t and can also be
simulated with the present theory.

It is convenient to introduce the system-field coupling
parameter

Z = Z0(êl̂) (6)

where

Z0 = E0m, (7)

l̂ is a unit vector along the transition dipole moment and
m = |l|. Z0 determines the maximal system-field coupling. The
actual coupling, Z r Z0, depends on the orientation of the
selected chromophore relative to the polarization of the laser
field. Furthermore, all parameters specifying the Hamiltonians
(1) and (3),

e,O,D, and êl̂, (8)

Fig. 1 (a) Sketch of a pair of phase-locked pump pulses. (b) Schematic
view of the potential-energy functions of a chromophore with two
electronic states.
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may be different for different chromophores and for different
measurements, depending on the local environment of the
chromophores. For example, the orientation êl̂ of the transition
dipole (and therefore the system-field coupling Z) may change
with time and a SM measurement performed at delay time t2 may
encounter a êl̂ which differs from êl̂ at delay time t1. Therefore,
the SM signal is governed by a ‘‘snapshot’’ Hamiltonian, which
changes from measurement to measurement due to the coupling
of the chromophore to its local environment. In other words,
every SM signal reveals a particular realization of the parameters
(8) sampled from certain distributions.

In a typical femtosecond SM double-pump experiment, the
signal as a function of the time delay t is detected with a certain
time step Dt,

t = jDt, j = 0, 1, 2,. . . (9)

In ref. 7–9, for example, Dt = 3 fs. Furthermore, the signal is
measured several times for every time delay and is averaged.11

This permits the detection of a sufficient number of photons
and improves the signal-to-noise ratio. The time interval
between all these measurements (those performed for a fixed
t and determined by the repetition rate of the SM experiment as
well as those performed for different t) is much longer than any
relevant microscopic time interval specifying electron-vibrational
dynamics and fluorescence detection of the single chromophore.
Hence, there is no correlation between the values of the para-
meters (8) in any two consecutive measurements.

To simulate such a measurement protocol, we introduce a
stochastic modulation of the chromophore parameters. For
simplicity and universality, we adopt a coarse grained picture.
Rather than explicitly simulating multiple measurements per-
formed at every fixed time delay jDt, we represent these multiple
measurements by an effective single measurement and assume that
at every time delay jDt the parameters (8) can take random values.
Specifically, we assume the following simple modulation law:

At = Ā + dA(rt � 1/2). (10)

Here At is a stochastic realization of any parameter from the list
(8) at a specific time delay t, Ā represents its mean value, dA

controls the amplitude of modulations, and rt is a random
number uniformly distributed in the interval [0,1]. Thus,
realizations of the parameters are modeled as uncorrelated
stochastic variables.

Obviously, the modulation law of eqn (10) is not unique.
Other modulation laws, e.g., Gaussian, are more common and
may be better justified physically. However, the distributions of
the parameters extracted from the experiments of ref. 7–9 are
difficult to associate with specific standard distributions. The
choice of the stochastic modulation law is further discussed in
Section IV.

B. Reduced density matrix, equation of motion, and SM signal

Each particular realization of the parameters (8) produces
a snapshot system Hamiltonian H and a snapshot system-
field interaction Hamiltonian H(t) for a given time delay t.
The chromophore is also coupled to the environment, which

includes the vibrational modes of the chromophore that are not
explicitly included in the system Hamiltonian H as well as the
degrees of freedom of the polymer matrix. Integrating out
the environmental degrees of freedom, the time evolution of
the chromophore is described by the reduced density matrix

rðtÞ ¼
r11ðtÞ r12ðtÞ

r21ðtÞ r22ðtÞ

 !
: (11)

The time evolution of r(t) is governed by the snapshot master
equation

@rðtÞ
@t
¼ � i

�h
½H þHFðtÞ; rðtÞ� þ GrðtÞ; (12)

where the snapshot relaxation operator G accounts for the
impact of the environment on the dynamics of the system.
The observable associated with an operator S of the system is
evaluated for t Z 0 through the reduced density matrix as

S(t) = Tr{r(t)S} (13)

where the trace is taken with respect to electronic and vibrational
degrees of freedom of the system. S(t) depends on the time delay
t of the pump pulses both explicitly (owing to H(t)) and para-
metrically (owing to random realizations of the chromophore
parameters according to eqn (10)).

The double-pump SM signal is defined as the total (time-
and frequency-integrated) fluorescence of a single chromophore
detected as a function of the interpulse delay t and relative
phase f. This signal is proportional to the time integral of the
population of the excited electronic state of the chromophore
(S = |2ih2|) and can be evaluated as

IFðt;fÞ �
ð1
t0

dtTr r22ðtÞf g; (14)

where t0 is any time moment before the arrival of the first pump
pulse such that Tr{r22(t0)} = 0.

As emphasized in the beginning of Section IIA, electronic
dephasing is the fastest and the most important environmental
effect at ambient temperature. It is caused by the modulation
of the electronic excitation energy of the chromophore by
intramolecular and intermolecular degrees of freedom or by
phase drifts of the laser pulses employed. It can be accounted
for by the dephasing operator

GrðtÞ ¼ �g
0 r12ðtÞ

r21ðtÞ 0

 !
(15)

where g is the snapshot electronic dephasing rate which obeys
the modulation law (10). A microscopic treatment of electronic
dephasing is also possible (see, e.g., ref. 27), but the phenomen-
ological description via eqn (15) is sufficient for the purposes of
the present work. Usually, dephasing is considered to be an
ensemble property and the concept of dephasing should be used
at the SM level with caution. An elucidative discussion of this
topic can be found in ref. 9 and 28. As discussed above, the
signals of ref. 7–9 were measured many times for a fixed inter-
pulse delay t. The application of ergodic arguments indicates that
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these signals (and therefore electronic dephasing) have a partial
ensemble character.

There exist several inter- and intra-molecular processes
affecting excited-state populations of individual chromophores
which are not described by the operator (15). They include
radiationless decay (intersystem crossing, internal conversion),
orientational relaxation, as well as vibrational relaxation and
dephasing. These processes, occurring on the picosecond-to-
nanosecond time scale, can be disregarded on the timescale of
a few hundred femtoseconds, which is determined by the time
delay between the two pump pulses. However, the timescale of
these processes is comparable with the timescale of the detection
of SM fluorescence (spontaneous emission).

Radiationless decay of the excited electronic state can be
taken into account by introducing the corresponding decay time
tR and setting GRr(t) = �tR

�1r22(t). Since GR causes exponential
decay of the population of the excited electronic state, radiation-
less decay can be simply disregarded by defining the SM
signal as

IF(t,f) B Tr{r22(tf)} (16)

where tf is a time moment at which the second pump pulse is
over. Eqn (14) and (16) are equivalent definitions of the same
SM signal, which is independent of the fluorescence accumulation
time. In the present work, we do not consider radiationless decay
explicitly and identify the signal IF(t,f) with the r.h.s. of eqn (16).
This renders the signal dimensionless and 0 r IF(t,f) r 1.

Fluorescence lifetimes can be comparable with characteristic
rotational diffusion times. However, the impact of rotational
diffusion on the SM signal is similar to that of radiationless
decay and can be treated in the same manner, replacing tR by
the rotational diffusion time tD. Hence, reorientation of the
chromophore during a single measurement is not explicitly
considered in the present work. A rigorous theory describing
the impact of rotational diffusion as well as finiteness of the
numerical aperture on the excitation and collection of fluores-
cence from individual chromophores can be found in ref. 29.

For a chromophore imbedded in a polymer matrix, the
environment is a source of vibrational relaxation and vibrational
dephasing. At the SM level, these processes can be accounted for by
invoking quantum stochastic equations30 or stochastic Schrödinger
equations.31 For polyatomic chromophores, vibrational relaxation
and vibrational dephasing typically occur on a picosecond time-
scale. For t 4 tf, however, vibrational relaxation and vibrational
dephasing do not affect the total electronic population Tr{r22(t)}:
these processes just redistribute energy among vibrational levels
within the excited electronic state. Vibrational relaxation and
vibrational dephasing are therefore irrelevant for the evaluation
of femtosecond double-pump SM signals.

Summarizing, the master eqn (12) with the relaxation
operator (15) is appropriate for the simulation of femtosecond
double-pump SM signals defined via eqn (16). Master equations
describing steady-state SM signals, on the other hand, are
constructed according to different criteria. These master equations
can be formulated for vibronic populations only (assuming fast

vibrational dephasing) and account for various dissipation
processes and lifetimes.32

C. Analytical results

According to eqn (3), interaction of the chromophore with the
external field is governed by the dipole coupling parameter Z of
eqn (6). The SM signal can be expanded in a power series in Z27

IFðt;fÞ ¼
X

k¼2;4;6;...
Ikðt;fÞ: (17)

Here Ik(t,f) B Z2k, where k corresponds to the number of
interactions of the chromophore with the pump pulses. For
sufficiently weak pulses, the SM signal is given by the lowest-order
contribution I2(t,f). In this case, the chromophore interacts twice
with the pump pulses and the signal scales linearly with the pulse
intensity. This is the weak-coupling regime which is the subject of
the present paper. For stronger pump pulses, higher-order terms
in the expansion (17) are relevant, and the signal depends non-
linearly on the pulse intensity (see the accompanying paper14).

The weak-field signal can be evaluated as:33

I2ðt;fÞ ¼
X2
a;b¼1

sabðt;fÞ (18)

where

sabðt;fÞ ¼ 2Re

ð1
�1

dt

ð1
0

dt1Ea
�ðtÞEb t� t1ð ÞR t1ð Þ (19)

and R(t1) is the linear response function which describes steady-
state linear absorption and relaxed fluorescence. For the model
system of the present work, R(t1) can be evaluated analytically as
explained in ref. 16. In our notation, the result reads:

R(t1) = Z2 e�(ie/h� +g)t1�g(t1), (20)

where

g t1ð Þ ¼
D2

2
coth

�hO
2kBT

� �
1� cos Ot1ð Þð Þ þ i sin Ot1ð Þ

� �
; (21)

kB is the Boltzmann constant and T is temperature.34

If the pulses have Gaussian envelopes

f (t) = exp{�(t/tp)2} (22)

(tp being the pulse duration) the integration over t in eqn (19)
can be done analytically with the result33

I2ðt;fÞ � Re

ð1
0

dt1 F0 t1ð Þ þ F1 t1; t;fð Þ½ �R t1ð Þ: (23)

Here

F0(t1) = e�t1
2/(2tp

2)(eio1t1 + eio2t1) (24)

is the contribution describing interaction of the chromophore
with the same pump pulse (pulse #1 or #2), while

F1(t1, t, f) = e�o
2tp

2/2eio12t1(e�(t�t1)2/(2tp
2)e�i(f�ot) + e�(t+t1)2/(2tp

2)ei(f�ot))
(25)
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is the contribution arising when the chromophore interacts
once with pulse #1 and once with pulse #2. In the above
expressions

o12 = (o1 + o2)/2, o = (o2�o1)/2. (26)

The term (24) yields the t-independent background, which is
inherent in double-pump signals.7–9 The term (25) determines
the t-dependence of the signal. If the pulses are short on the
vibrational dynamics time scale, have the same carrier frequencies
and are temporally well separated, eqn (23) simplifies to

I2(t,f) B Z2[2 + Re e�if�(i[e/h��o1]+g)t�g(t)]. (27)

The above analysis reveals that double-pump SM spectro-
scopy in the weak-field regime does not monitor vibrational
wavepackets which are associated with electronic populations
of the system density matrix. Double-pump spectroscopy rather
monitors the effect of vibrational motion on the electronic
coherence of the density matrix.

D. Computational details

The mean values of the model parameters (8) are designated
by an overbar and are selected as follows. The vibrational
frequency is set to �O = 0.13 eV, which yields a vibrational
period tO = 2p/ �O = 32 fs. These values are typical for the SM
signals of ref. 7 and 8. For such a high-frequency vibration,
coth[h� �O/(2kBT)] E 1 at ambient temperature. Hence the chromo-
phore is initially in its ground vibrational state in the electronic
ground state. The dimensionless shift of the excited-state potential
energy function is chosen as �D = 2. The pulses have Gaussian
envelopes (22), identical carrier frequencies (o1 = o2) and are
approximately in resonance with the 0–0 transition of the chromo-
phore, which is typical for SM spectroscopy. The detuning of the
carrier frequency,

�odet = o1 � �e/h� , (28)

as assumed to be of the order of the vibrational frequency �O and
is varied in the simulations. As in the experiments of ref. 7 and
8, we consider short pump pulses (tp = 10 fs, tp { tO) which are
capable to create/interrogate vibrational wavepackets.

While the perturbative expressions (18)–(21) could be used
for the evaluation of the double-pump SM signal in the weak-
coupling regime, we evaluated IF(t,f) by numerical solution of
the master eqn (12). This is the method of choice in the strong-
coupling regime considered in the accompanying paper.14 Both
methods yield identical SM signals in the weak-coupling regime.

The procedure for the numerical solution of the master
equation is briefly described as follows. For each particular
realization (10) of the model parameters (8), we expand the
density matrix in eqn (12) in the eigenfunctions of the vibrational
ground-state Hamiltonian and thereby convert the master equation
into matrix form. The so obtained system of linear first-order
differential equations is solved numerically by a fourth-order
Runge–Kutta integrator with a time step 0.25 fs.

The chromophore is assumed to be initially prepared in
the vibrational ground state of the electronic ground state.

Since the signals in the weak-coupling regime scale quadratically
with the system-field coupling parameter Z, it is not of interest to
vary Z0 of eqn (7). We thus set Z0 = 0.0025 eV throughout
the paper.

III. SM signals: no stochastic
modulation of parameters

In the present section, we analyze SM signals under the
assumption that environment-induced modulations of the
chromophore parameters (8) can be neglected. This establishes
a reference picture for the study of statistical distributions
of the parameters in Section IV. In the present section we set
êl̂ = 1, that is Z = Z0.

We start by the investigation of the influence of the detuning
of the pump-pulse frequency odet on the time evolution of the
signal. Fig. 2 shows IF(t,0) for several odet indicated in the
legend. The pulse with odet = �OD2/2 = 2 �O excites the chromo-
phore at the vertical excitation energy. The closer odet is to 2 �O,
the higher is IF(t,0) and the larger is the amplitude of the
vibrational beatings. For negative detunings, on the other
hand, the amplitude of these beatings drastically decreases
with |odet|. Hence vibrational oscillations are barely visible in
the two bottom curves in Fig. 2. All signals exhibit beatings with
the period tO = 32 fs, except the signal for odet = 2 �O, which
exhibits a twice shorter period. This is a manifestation of the
phase factor exp(i[o1 � e/h� ]t) in the expression for the linear
response function (27). If, for example, the detuning is
odet = 3 �O, then IF(t,0) oscillates with the period tO/3 (not
shown). For certain detunings, the SM signal therefore reveals
not only the fundamental of the vibrational frequency, but also
its overtones. Since it is common practice to excite SM chromo-
phores near the 0–0 transition, we set �odet = 0 in the remainder
of the paper.

Fig. 3 illustrates the influence of electronic dephasing on
double-pump signals by showing IF(t,0) for four dephasing
times. According to eqn (20), the SM signal reveals the linear
response function plus a constant background. If electronic
dephasing is absent, the signal exhibits vibrational oscillations

Fig. 2 SM signal IF(t,0) vs. pulse delay time t for different pump-pulse
detunings �odet/ �O indicated in the legend. The electronic dephasing time is
�g�1 = 50 fs.
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with a period tO = 32 fs and constant amplitude. Dephasing
quenches the signal.

It should be noted that the signals in Fig. 3 always decrease
at short pulse delay times t. This behavior is generic for signals
in the weak-coupling regime and can be understood as follows.
Two coinciding pump pulses (t = 0) with amplitude E0 are
equivalent to a single pump pulse with amplitude 2E0. Hence
IF(t { tp,f) B 4E0

2. As t increases, the two pulses become
non-overlapping and act independently, promoting a smaller
fraction of the electronic ground-state population to the excited
electronic state. This yields the scaling IF(t c tp,f) B 2E0

2. In
addition, the IF(t,0) evaluated with and without electronic
dephasing are different at t = 0. Accidentally, the effect is not
very pronounced for the signals in Fig. 3, but for other shifts of
the potential-energy surfaces (e.g., for �D = 1 or 4, see Fig. S1 of
the ESI†) it is more pronounced. Furthermore, electronic
dephasing even may enhance the signal (e.g., for �D = 4, see
Fig. S1(b) of the ESI†). This indicates that dephasing during the
action of the pulses cannot be neglected. This is a manifestation
of the intricate interrelation between the external driving and
dephasing/relaxation, which has been studied in detail in
ref. 35–38. The simplified formula (27) assumes instantaneous
pump pulses and does not capture these effects.

Fig. 4 displays two-dimensional (2D) plots of IF(t,f) vs. t and
f, so-called fluorescence maps,7,39 which are evaluated without
(a) and with (b) electronic dephasing. Panel (a) shows the time-
phase profile of the harmonic oscillator wavepacket, while
the phase portrait in panel (b) is attenuated on a timescale of
E100 fs due to electronic dephasing. Several general patterns
in Fig. 4 can be understood from the following considerations.
When two pump pulses overlap (t = 0) and have relative phase
f = p, they cancel each other (destructive interference) and do
not excite the chromophore. Overlapping pulses with f = 0,
2p, on the other hand, reinforce each other (constructive
interference). Hence 2D maps in the vicinity of t = 0 exhibit a
minimum at f = p and maxima at f = 0, 2p. Eqn (27) reveals
that IF(t,f) does not possess mirror symmetry relative to f = p.
Correspondingly, the 2D plots in Fig. 4 do not exhibit this
symmetry: the time-phase profiles are tilted to the right. This
tilt is caused by the phase factor exp(�if) in eqn (21) and can
be considered as a signature of the weak-coupling regime.

IV. SM signals: effect of stochastic
modulation of parameters

As has been discussed in Section IIA, a SM measurement for a
given delay time t selects a snapshot system Hamiltonian and a
snapshot relaxation operator specifying the master eqn (12).
The parameters of the Hamiltonian and relaxation operator
vary from measurement to measurement as modeled by
eqn (10) and the SM signal is evaluated according to eqn (16).
In the present section, we study the effect of these parameter
variations and discuss how information about the modulation
law can be extracted from the experimental signals. Similar to
the measurement protocol of ref. 7 and 9, we assume that the
time delay between the pump pulses is scanned with a time
step Dt = 3 fs.

Before embarking on simulations, let us discuss physically
motivated numerical values of the modulation amplitudes dA,
where A = O, e, D, j, g. The modulations are caused by the
heterogeneity of the environment which the SM chromophore
experiences at different measurements, that is, at different time

Fig. 3 SM signal IF(t,0) vs. pulse delay time t for different dephasing times
indicated in the legend.

Fig. 4 2D maps IF(t,f) for �g = 0 (a) and �g�1 = 50 fs (b).
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delays between the pump pulses. The amplitude of the electronic
energy modulations de is largely responsible for inhomogeneous
broadening in ensemble experiments and is a rather well
characterized quantity. It should typically be of the order of
several hundreds of inverse centimeters (100 cm�1 = 0.0124 eV),
as revealed e.g., by the steady-state SM experiments at ambient
temperatures.40,41 In the femtosecond double SM experiments
performed with relatively long (75 fs) pulses (no vibrational
wavepackets were excited) a rather small value of de = 0.0075 eV
was extracted after processing the data for 53 SMs.8 In a later
experiment performed with interferometric detection of the SM
fluorescence, on the other hand, a value was found which is
larger by an order of magnitude.25

The modulations of êl̂12 reflect reorientations of the chromo-
phore between measurements. Since the chromophore orientational
diffusion times are comparable with the fluorescence lifetimes
(see the discussion in Section IIA), unrestricted rotational
diffusion would correspond to high a amplitude of dj and full
chaotization of IF(t,f). This does not happen in the SM experi-
ments of ref. 7 and 9 and corroborates the general physical
picture of the restricted chromophore reorientation (wobbling)
in the polymer matrix. This restricted diffusion is usually
described via the diffusion-in-the-cone model,42,43 and the value
of dj can be traced back to the value of the cone angle arccos
(dj) within which the chromophore reorientation is restricted.
Modulations in the dephasing times extracted from the experi-
ments of ref. 8 scatter by several tens of femtoseconds around a
mean value of �g�1 E 50 fs, which also correlates with the
frequency-domain SM data.40 The parameters characterizing
the potential energy surfaces of the chromophores (vibrational
frequency O and displacement D) can also depend on the local
environment, but it is difficult to give universal numbers here.
In peptides, for example, the energy differences between amide I
vibrations are of the order of 10–100 cm�1, which is 0.6–6% of
the vibrational frequency.44

Summarizing, we can estimate a range of reasonable values
of the modulation amplitudes. However, the simulation of
IF(t,f) for several typical values of dA offers little information
about how the modulations affect the signals. To get insight
into this problem which goes beyond consideration of a specific
chromophore, we will follow two complementary strategies.
First, we select the values of dA (A = O, e, D, j, g) which produce
modulations in IF(t,f) of roughly the same amplitudes. This
permits us to establish the sensitivity of IF(t,f) to the modulation
of each particular parameter (Section IVA). Second, for each dA

(A = O, e, D, j, g) we establish the critical values for which IF(t,f)
becomes chaotic such that vibrational beatings become unde-
tectable (Section IVB).

A. Sensitivity of the signal to the parameter modulations

We begin our discussion with Fig. 5, which illustrates how
IF(t,0) (black line) and IF(t,p) (blue line) are affected by the
modulation of the parameters. Fig. 5(a), in which the signals
are evaluated for the mean values of the parameters (8),
establishes the reference picture. Both IF(t,0) and IF(t,p) exhibit
damped oscillations with the period tO = 32 fs and approach

the same constant background for t c �g�1, because the time-
dependent contribution to the signal decays to zero due to
electronic dephasing. As has been explained in the previous
section, IF(0,p) = 0 and therefore IF(t,p) increases non-
monotonically towards its background value. On the other
hand, IF(0,0) a 0 and IF(t,0) decreases non-monotonically
towards the same constant background. IF(t,0) and IF(t,p)
oscillate in anti-phase: maxima of IF(t,0) correspond to minima
of IF(t,p) and vice versa. This is a direct consequence of the
Bexp(�if) phase dependence of the SM signal in eqn (27). The
anti-phase evolution of the signals is a signature of the weak-
coupling regime, and several SM signals of ref. 7 and 8 clearly
exhibit this behavior. A related observation is that IF(t,0) and
IF(t,p) are exact mirror images of each other, so that (IF(t,0) +
IF(t,p))/2 is t-independent, being proportional to the constant
background. Hence, a nearly constant value of IF(t,0) + IF(t,p)
also can be considered as a witness of the weak-coupling
regime.

Fig. 5(b)–(f) show the same signal, but evaluated with para-
meter modulations as specified in the figure caption. The
signals in panels (b)–(f) look like noisy versions of the signal
in panel (a), but the vibrational beatings with the period
tO = 32 fs remain clearly visible. The numerical values of the
amplitude of modulations dA (A = O, e, D, j, g) were selected to
produce fluctuations of roughly the same amplitude in the
panels (b) through (f). This choice of dA illustrates the sensitivity
of SM signals to modulations of specific parameters. Indeed,
dO = 0.007 eV represents 5.4% of the mean vibrational frequency;
dD = 0.04 represents 2% of the mean displacement of the
potential energy function; dj = 0.03 represents 3% of the mean
coupling parameter Z = Z0(êl̂); dg�1 = 20 fs represents 40% of the
mean electronic dephasing. Hence, the parameters can be
arranged in the order of decreasing sensitivity of the SM signal
as follows: D, Z, O, g.

These results can be rationalized as follows. Modulations of
D modify Franck–Condon factors which scale Bexp{�D2/2} and
are responsible for Gaussian dependence of IF(t,f) on D (see
eqn (21) and (27)). The parameter (êl̂) controls the system-field
coupling Z and even relatively small variations of it produce
tangible effects on the signal, because IF(t,f) B Z2. Interestingly,
the signal in panel (e) of Fig. 5 (which exhibits orientational
modulations) is the only one which increases at very short t.
Since IF(t,f) B Z2, a relatively small increase of the system-field
coupling Z can beat the decrease of the signal owing to optical
dephasing. The sensitivity of the double-pump signals to
modulations of chromophore orientations has been emphasized
in ref. 7–9 and 11. IF(t,f) is quite sensitive to modulations of the
vibrational frequency, because O determines the period of
vibrational beatings. Dephasing controls the rate of decay of
the signal in the weak-coupling regime (see eqn (27)). The
exponential dependence of IF(t,f) on g is much weaker than
Gaussian dependence of IF(t,f) on D, hence a relatively low
sensitivity of the signal to fluctuations of g. Modulations of the
electronic energy e cannot be considered in the above manner,
because the absolute value of e does not matter in the present
context. However, the sensitivity of the signal to changes of e
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decreases fort short pulses, because the interaction of the
chromophore with Dirac-delta pulses is independent of the
electronic energy and the pulse carrier frequency.

Fig. 6 displays the effect of the simultaneous modulations of
all parameters on IF(t,0) and IF(t,p). Rather surprisingly, the
level of noise in Fig. 6 is comparable with that in Fig. 5(b)–(f).
The reason is that the changes in IF(t,p) are induced by
the low-amplitude modulations of the five parameters.
Modulations due to each of this parameters may either increase
or decrease the signal. Taken together, they largely cancel
each other.

Fig. 7 illustrates how the modulation of the parameter
e affects the 2D maps IF(t,f). For comparison, Fig. 4 displays
the same signals but without modulations. Since the amplitude
of the modulation of e is chosen to be relatively small, the 2D
maps in Fig. 7 look like blurred versions of those in Fig. 4.

Fig. 5 Panel (a) depicts the SM signal IF(t,0) (black line) and IF(t,p) (blue line) evaluated for the following mean values of the parameters: �O = 0.13 eV,
�odet = 0, �D = 2, êl̂ ¼ 1, and �g�1 = 50 fs. Panels (b–f) show the effect of modulation of the vibrational frequency, dO = 0.007 eV (b); electronic energy,
de = 0.01 eV (c); displacement of the potential energy function, dD = 0.04 (d); molecular orientation, êl̂ = cos(p/4 � j)/cos(p/4), dj = 0.1 (e); electronic
dephasing, dg�1 = 20 fs (f). The signals are evaluated with a discretization step of 3 fs in t.

Fig. 6 IF(t,0) (black line) and IF(t,p) (blue line) evaluated with the simultaneous
modulations of the parameters A = O, e, D, j, g. The numerical values of dA are
given in the caption for Fig. 5.

Paper PCCP

Pu
bl

is
he

d 
on

 2
0 

N
ov

em
be

r 
20

17
. D

ow
nl

oa
de

d 
by

 T
ec

hn
ic

al
 U

ni
ve

rs
ity

 o
f 

M
un

ic
h 

on
 2

7/
11

/2
01

7 
10

:5
4:

19
. 

View Article Online



This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys.

B. Critical values of the modulation amplitudes

Obviously, the level of noise in the SM signal increases with the
amplitude of the modulations. It is therefore instructive to
establish critical values of dA for which IF(t,f) loses discernible
vibrational beatings. This is illustrated by Fig. 8 and 9 which,
respectively, exemplify the effect of the electronic energy
modulations and orientational modulations. In Fig. 8, the
magnitude of de2

is twice (a) and three times (b) higher than
that in Fig. 5(c). In Fig. 9, the magnitude of dj is twice (a) and
three times (b) higher than that in Fig. 5(e).

The effect of increasing amplitude of modulation on the
signals in Fig. 8 and 9 is qualitatively very similar. Vibrational
beatings are still discernible in panel (a) but barely visible in panel
(b) of Fig. 8 and 9. The changes of IF(t,f) with the amplitudes of
other relevant parameters look qualitatively very similar and are
presented in the ESI† (Fig. 2–4). The critical values of the modulation
amplitudes, that is the values of dA for which vibrational beatings in
IF(t,f) become buried in noise, are collected in Table 1. The existence
of these critical values reveals certain limitations on the information
content of SM experiments.

Fig. 7 2D maps IF(t,f) for �g = 0 (a) and �g�1 = 50 fs (b). The electronic energy e is sampled according to eqn (10) with de = 0.01 eV.

Fig. 8 IF(t,0) (black line) and IF(t,p) (blue line) for different amplitudes of the electronic energy modulation: de2 = 0.02 eV (left panel) and 0.03 eV (right
panel). The remaining parameters assume the mean values as for Fig. 5(a).

Fig. 9 IF(t,0) (black line) and IF(t,p) (blue line) for different amplitudes of the molecular orientation, êl̂12 = cos(p/4 �j)/cos(p/4), dj = 0.2 (left panel) and
0.3 (right panel). The remaining parameters assume the mean values as for Fig. 5(a).
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We have assumed that the parameters (8) vary according to
the modulation law (10). SM signals simulated with a Gaussian
modulation of the parameters look qualitatively similar to
those in Fig. 5 and 6 and are presented in the ESI† (Fig. 5
and 6). An interesting question is whether one can uncover the
underlying modulation law by analyzing SM signals. We believe
that the answer is positive due to the following considerations.
Usually, signals of several individual chromophores are measured.7

A natural way to process these data is to fit the signal of each
individual chromophore to an appropriate trial function (for
example, eqn (27)) and thus obtain distributions of the para-
meters (8). This approach has been chosen in ref. 7–9. However,
as emphasized in the present work, each time delay t may
require specific parameters and fitting signals IF(t,f) for all t by
the same set of parameters may not be justified. Hence, an
alternative analysis may be appropriate. Let us assume that
several transients IF(t, f, n) (n = 1, 2,. . .,N) have been obtained.
If N is large enough, the ensemble signal can be evaluated as
�IFðt;fÞ ¼ N�1

P
n

IFðt;f; nÞ. This has been demonstrated in

ref. 7, where the ensemble double-pump signal was recovered
by the averaging of 52 SM signals. We suggest that also the
variance N�1

P
n

IFðt;f; nÞ2 � �IFðt;fÞ2 (which is not accessible

in ensemble spectroscopy) as well as higher-order moments of
the SM signal should be considered. These observables can be
evaluated even if individual SM transients are rather noisy. This
analysis may provide insight into stochastic properties (e.g. Gaussian
vs. uniform or classical vs. quantum) of the environment-
induced modulations. An interesting possibility related to the
above suggestion has recently been demonstrated in ref. 45.

V. Conclusions

We have developed a theoretical description of femtosecond
double-pump SM signals for a simple model of the chromo-
phore and its environment. It is based on driven master
equations for the density matrix of the chromophore and is
applicable in both weak-coupling and strong-coupling regimes.
In this paper, we concentrated on a detailed study of the weak-
coupling regime. In this case, the signal is determined by the
linear response function which can be evaluated analytically
for the displaced harmonic oscillator model. For numerical
illustrations, we considered a chromophore with a single high-
frequency Franck–Condon-active vibrational mode. We studied
how slow modulations of relevant molecular parameters due an
environment at ambient temperature affect the SM signals. We
propose that information on these statistical modulations can
be obtained by the analysis of a sufficiently large set of SM
signals.

The simulated double-pump SM signals exhibit vibration-
induced beatings of the electronic coherence of the density
matrix of the chromophore that are quenched by electronic
dephasing. The signals evaluated with a phase difference of 0 and
p are mirror images of each other and their mean value is delay
time independent. They oscillate in anti-phase: maxima of the
former signal correspond to minima of the latter signal and vice
versa. These features are signatures of the weak-coupling regime
and several SM signals of ref. 7 and 8 clearly exhibit this behavior.
2D maps of SM signals show a pronounced tilt of the phase-time
profiles. This tilt also is characteristic of the weak-coupling
regime. The signals in the strong-coupling regime are studied
in the accompanying paper.14

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work has been supported by the Deutsche Forschungsge-
meinschaft (DFG) through a research grant and the DFG-Cluster
of Excellence ‘‘Munich-Centre for Advanced Photonics’’ (www.
munich-photonics.de). E. P.-G. acknowledges support by the
International Max-Planck Research School of Advanced Photon
Science (www.mpq.mpg.de/APS).

References

1 P. Tamarat, A. Maali, B. Lounis and M. Orrit, J. Phys. Chem.
A, 2000, 104, 1.

2 Y. Jung, E. Barkai and R. Silbey, J. Chem. Phys., 2002,
117, 10980.

3 M. Orrit, T. Ha and V. Sandoghdar, Chem. Soc. Rev., 2014,
43, 973.

4 W. E. Moerner, Rev. Mod. Phys., 2015, 87, 1183.
5 W. E. Moerner, Y. Shechtman and Q. Wang, Faraday Dis-

cuss., 2015, 184, 9–36.
6 M. Orrit and J. Bernard, Phys. Rev. Lett., 1990, 65, 2716.
7 D. Brinks, F. D. Stefani, F. Kulzer, R. Hildner, T. H. Haminiau,

Y. Avlasevich and N. F. van Hulst, Nature, 2010, 465, 905.
8 R. Hildner, D. Brinks, F. D. Stefani and N. F. van Hulst, Phys.

Chem. Chem. Phys., 2011, 13, 1888–1894.
9 R. Hildner, D. Brinks and N. F. van Hulst, Nat. Phys., 2011,

7, 172.
10 D. Brinks, R. Hildner, F. D. Stefani and N. F. van Hulst,

Faraday Discuss., 2011, 153, 51.
11 D. Brinks, R. Hildner, E. M. H. P. van Dijk, F. D. Stefani,

J. B. Nieder, J. Hernando and N. F. van Hulst, Chem. Soc.
Rev., 2014, 43, 2476–2491.

12 L. Piatkowski, N. Accanto and N. F. van Hulst, ACS Photonics,
2016, 3, 1401.

13 N. F. Scherer, R. J. Carlson, A. Matro, M. Du, A. J. Ruggiero,
V. Romero-Rochin, J. A. Cina, G. R. Fleming and S. A. Rice,
J. Chem. Phys., 1991, 95, 1487.

Table 1 Critical values of the amplitude modulations

dO (eV) de (eV) dD dj (1) dg�1 (fs)

0.028 0.03 0.2 17 50

Paper PCCP

Pu
bl

is
he

d 
on

 2
0 

N
ov

em
be

r 
20

17
. D

ow
nl

oa
de

d 
by

 T
ec

hn
ic

al
 U

ni
ve

rs
ity

 o
f 

M
un

ic
h 

on
 2

7/
11

/2
01

7 
10

:5
4:

19
. 

View Article Online



This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys.
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32 P. Malý, J. M. Gruber, R. van Grondelle and T. Mančal, Sci.
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Theoretical aspects of femtosecond double-pump
single-molecule spectroscopy. II. Strong-field
regime

Elisa Palacino-González, Maxim F. Gelin* and Wolfgang Domcke

We investigate femtosecond double-pump single-molecule signals in the strong-field regime, which

is characterized by nonlinear scaling of the signal with the intensity of the pump pulses. The signals can

be decomposed into population and coherence contributions. In contrast to the weak-field regime

(in which only the coherence contribution is important) both contributions are relevant in the strong-

field regime and reveal the vibrational dynamics of the chromophore. Other than in the weak-field

regime, the detection of vibrational beatings is not limited by the electronic dephasing time of the

chromophore. Moreover, the signals in the strong-field regime are more robust with respect to the

environment-induced modulation of the chromophore parameters. It is shown that excited-state

absorption in chromophores with three electronic states is reflected in the phase dependence of single-

molecule signals. The simulations reveal that the information content of femtosecond double-pump

single-molecule signals is enhanced in the strong-coupling regime.

I. Introduction

The advent of picosecond and femtosecond lasers has revolu-
tionized the field of molecular electronic spectroscopy, allow-
ing researchers the monitoring of vibrational wave packets
and the making/breaking of chemical bonds in ensembles of
various molecular species in real time.1 Very recently, it has
been demonstrated that responses of individual molecules
in condensed-phase environments can be probed with femto-
second time resolution. Femtosecond time resolution has been
brought to the field of single-molecule (SM) spectroscopy by
van Hulst and coworkers.2–7 This group has developed double-
pump femtosecond SM spectroscopy, which combines the
fluorescence detection of SMs pioneered by Orrit and Bernard8

with pulse-shaping and the double-pump excitation scheme
pioneered in femtosecond ensemble spectroscopy by Scherer
and co-workers.9 In this technique, the fluorescence of individual
chromophores is scanned vs. the time delay between two phase-
locked pump pulses. This scheme reconciles the fluorescence
detection of molecular responses (which usually is associated
with a nanosecond time scale) with femtosecond time resolu-
tion, allowing the interrogation of the dynamics of individual
chromophores influenced by their local environment at ambient
temperature.

In the accompanying paper,10 we have developed a theore-
tical description of double-pump femtosecond SM spectroscopy
and applied it to simulate signals of individual chromophores
in the weak-field regime, where the SM signal scales linearly
with the intensity of the pump pulses. The weak-field regime
applies if the electric field of the two pump pulses is compara-
tively weak or if the projection of the transition-dipole moment
vector of the chromophore on the polarization vector of the
pump pulses is small. The weak-field/strong-field regimes are
therefore not only governed by the strength of the laser pulses,
but also by the orientation of the selected chromophore. In the
present work, we systematically study SM signals in the strong-
field regime, which is characterized by the nonlinear scaling of
the signal with the intensity of the pump pulses.

In SM spectroscopy, exceptionally photostable chromophores
with large transition dipole moments are usually employed. An
earlier variant of the SM pump–probe experiments by van Hulst and
coworkers relied on strong laser pulses and saturation effects.11 The
same experimental method has also been successfully applied to
individual multichromophore systems, such as the light harvesting
complex LH2 of purple bacteria.12 In these experiments, the phases
of the laser pulses were not controlled and the time resolution was
limited to several hundreds of femtoseconds. More recent femto-
second double-pump SM experiments with phase-locked pulses,
which monitored the electronic coherences of the chromophore’s
density matrix, were performed with weak-to-moderate pump
pulses, although the possibility of the detection of SM signals in
the strong-field regime was also clearly demonstrated.2
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Usually, chromophores in SM experiments are statistically
oriented in a polymer matrix, and the chromophore-field
coupling varies between weak and strong. This indicates that
femtosecond double-pump SM spectroscopy is inherently in
the strong-field regime when the orientation of the transition
dipole moment is nearly parallel to the polarization of the
pump pulses. Hence, a perturbative theory in the molecule-field
interaction13–15 may be not a universally useful approach and a
non-perturbative description of SM signals is required. Herein,
we analyze strong-field effects in double-pump SM spectroscopy.

II. Hamiltonian, equation of motion
and SM signal

A framework for the theoretical description and the simulation
of double-pump SM signals has been developed in the preceding
paper.10 There, we considered chromophores with just two
electronic states, the electronic ground state S0 and a single
bright excited electronic state S1. This level of description is
sufficient in the weak-field regime. Photostable chromophores
used in SM experiments can sometimes be considered as
electronic two-state systems even in the strong-field regime,
because optical coupling of S1 to higher lying excited electronic
states Sn (n Z 1) can be minimized by a judicious choice of the
chromophore (for example, by choosing a chromophore which
does not exhibit excited-state absorption in the spectral range of
interest). However, transitions to/from higher-lying electronic
states cannot in general be ignored in the strong-field regime.
In principle, the radiative coupling of S1 to Sn is an undesirable
process in SM spectroscopy, because any photochemistry occurring
in Sn states may destroy the chromophore.16 There exist several
exceptions though. Excited-state absorption is used in the pump–
probe optical microscopy of non-fluorescent chromophores to learn
about their local environment.17,18 Pump–probe force microscopy
of nanostructures, which also involves excited-state absorption, has
reached picosecond time resolution and may soon be optimized
towards the detection of individual chromophores.19 In general,
Sn states are expected to undergo rapid deactivation owing to

intra-chromophore processes or interactions with the environ-
ment. Carefully chosen chromophores may nevertheless survive
several measurement cycles and their Sn states may contribute
to double-pump SM signals. In the present work, we therefore
include a higher-lying second excited electronic state in the
model of the chromophore.

We consider a chromophore with the electronic ground
state |1i, a bright excited electronic state |2i, and a higher-
lying excited electronic state |3i. The Hamiltonian specifying an
individual chromophore is written as a 3 � 3 matrix in the
electronic state space,

H ¼
h1 0 0
0 e2 þ h2 0
0 0 e3 þ h3

0
@

1
A; (1)

where the ek are adiabatic electronic excitation energies from the
electronic ground state and hk are the vibrational Hamiltonians
(k = 1, 2, 3) of a specific chromophore detected in the SM
experiment. For simplicity, we consider chromophores with a
single Franck–Condon-active harmonic vibrational mode20

with frequency O, dimensionless momentum P, and dimen-
sionless coordinate Q,

h1 ¼
�hO
2

P2 þQ2
� �

;

h2 ¼
�hO
2

P2 þ Q� D2ð Þ2
� �

;

h3 ¼
�hO
2

P2 þ Q� D3ð Þ2
� �

:

(2)

Here D2 and D3 are dimensionless shifts of the potential energy
functions in the excited states |2i and |3i with respect to the
minimum of the ground-state potential-energy function (see
Fig. 1). The remaining modes of the chromophore as well as the
vibrational degrees of freedom of the polymer matrix will be
considered as an environment. The influence of the environ-
ment on the chromophore dynamics will be described by
relaxation operators in the master equation (see below).

In the dipole approximation and in the rotating wave approxi-
mation, the interaction of the chromophore with a pair of phase-
locked pulses is specified by the Hamiltonian

HF(t) = �[E(t)X† + E*(t)X], (3)

where

E(t) = E1(t) + E2(t),

E1(t) = E0f (t + t)e�io1t,

E2(t) = E0f (t)ei(f�o2t) (4)

and

X ¼

0 êl12 0

0 0 êl23

0 0 0

0
BBB@

1
CCCA; Xy ¼

0 0 0

êl12 0 0

0 êl23 0

0
BBB@

1
CCCA: (5)Fig. 1 (a) Sketch of a pair of phase-locked pump pulses. (b) Schematic

view of the potential-energy functions of a chromophore with three
electronic states.
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are transition dipole moment operators, l12 and l23 are their
matrix elements, and ê is the unit vector of the polarization of
the two pump pulses. In eqn (4), E0 and f (t) are the amplitude
and the dimensionless envelope of the pulses, o1 and o2 are
their carrier frequencies, t is the time delay between the pulses,
and f is their relative phase. For convenience, the arrival of
the first pulse is set to t = �t so that the second pulse arrives
at t = 0.

It is convenient to introduce the chromophore-field coupling
parameters

Z12 = Z(0)
12(êl̂12), Z23 = Z(0)

23(êl̂23) (6)

where

Z(0)
12 = E0m12, Z(0)

23 = E0m23, (7)

l̂12 and l̂23 are the unit vectors along the transition dipole
moments, m12 = |l12| and m23 = |l23|. Eqn (6) shows that the
system-field coupling in the SM experiment is determined
by two actors: constant factors (Z(0)

12 and Z(0)
23, which are

fixed for experiments with a given chromophore) and random
factors (êl̂12 and êl̂23, which may change from one SM
measurement to another due to reorientation of the chromo-
phore). Chromophores suitable for double-pump SM spectro-
scopy usually exhibit large transition dipole moments.21

Therefore, Z12 and Z23 can be in the strong-coupling regime
even for a rather moderate field amplitude E0 if êl̂12 E 1 and
êl̂23 E 1.

The ensemble of chromophores is highly heterogeneous and
the parameters specifying the Hamiltonians (1) and (3),

e2, e3, O, D2, D3, êl̂12, and êl̂23, (8)

depend on the local environment of the chromophore. Below
we describe how this effect is accounted for in the present work
(the details can be found in the accompanying paper10). In a
typical femtosecond SM experiment, the signal as a function of
the time delay t is detected with a certain time step Dt,

t = jDt, j = 0, 1, 2,. . . (9)

Since Dt is much longer than any relevant microscopic time
scale of the electron-vibrational dynamics of the single chro-
mophore, there is no correlation between the values of the
parameters (8) in any two consecutive measurements. Hence we
can assume that at every time delay (9) the parameters can take
random values according to the modulation law

At =
�
A + dA(rt � 1/2). (10)

Here At is a stochastic realization of any parameter from the list
(8),

�
A represents its mean value, dA controls the amplitude

of the modulation, and rt is a random number uniformly
distributed in the interval [0, 1].

Each particular realization of the parameters (8) produces a
snapshot (t-dependent) system Hamiltonian H and a snapshot

system-field interaction Hamiltonian H(t). The time evolution
of such a chromophore is described by the density matrix

rðtÞ ¼

r11ðtÞ r12ðtÞ r13ðtÞ

r21ðtÞ r22ðtÞ r23ðtÞ

r31ðtÞ r32ðtÞ r33ðtÞ

0
BBB@

1
CCCA:

obeying the master equation

@rðtÞ
@t
¼ � i

�h
H þHFðtÞ; rðtÞ½ � þ GrðtÞ: (11)

The snapshot (t-dependent) relaxation operator G accounts for
the pure electronic dephasing and is given by (cf. ref. 10)

GrðtÞ ¼ �g2

0 r12ðtÞ 0

r21ðtÞ 0 r23ðtÞ

0 r32ðtÞ 0

0
BBB@

1
CCCA� g3

0 0 r13ðtÞ

0 0 0

r31ðtÞ 0 0

0
BBB@

1
CCCA;

(12)

where g2 and g3 are the dephasing rates of the single (1, 2 and
2, 3) and double (1, 3) electronic coherences, respectively.

The signal is the total fluorescence of a single chromophore
detected as a function of the interpulse delay t and the relative
phase f. We identify this signal with the total population of the
excited electronic state of the chromophore after the action of
the second pump pulse,

IF(t,f) = Tr{r22(tf)}. (13)

Here the trace is taken with respect to vibrational degrees of
freedom of the chromophore and tf is a time moment after the
action of the second pump pulse. Eqn (1)–(12) fully specify
the dynamics of the SM chromophore and eqn (13) specifies the
double-pump SM signal which, in addition to its explicit
dependence on t, depends parametrically on t owing to ran-
dom realizations of the chromophore parameters according to
eqn (10). The assumptions underlying this description have
been discussed in detail in the preceding paper.10

III. Analytical results

A number of general trends and features in the behavior of SM
signals can be understood without numerical simulations. The
intensity of the double-pump SM signal can be expanded as10,22

IFðt;fÞ ¼
X

k¼2;4;6;:::
Ikðt;fÞ; (14)

where k corresponds to the number of interactions of the
chromophore with the laser pulses. Therefore Ik(t,f) B E0

k.
For sufficiently weak pulses, the signal is represented by
I2(t,f), scales linearly with the pulse intensity, and can be
evaluated analytically.10 For stronger chromophore-field coupling,
higher-order terms in the expansion (14) are relevant. The
k-wave-mixing contribution to the double-pump signal consists
of two terms,

Ik(t,f) = Ik + Ĩk(t,f).
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Here Ik describes a t- and f-independent background, which
results from the interaction of the chromophore with just one
of the pump pulses. The t- and f-dependent contribution
Ĩk(t,f) stems from the interaction of the chromophore with
both pulses. In principle, all Ik(t,f) can be evaluated analytically
through (k � 1)-order response functions,23,24 but the expres-
sions rapidly become cumbersome.

If the pump pulses are temporally well separated (that is, if
the time interval between the pulses, t, is much longer than the
pulse duration tp), the double-pump signal assumes the form

IF(t,f) = A(t) + (B(t)eif + B*(t)e�if)e�g2t + (C(t)e2if

+ C*(t)e�2if)e�g3t. (15)

Here A(t) is the contribution which results from the evolution
of the chromophore in the electronic population during the
pulse delay t. B(t) is the (single) coherence contribution, which
involves the electronic states 1, 2 and 2, 3. The term C(t) is the
double coherence contribution, which involves the electronic
states 1, 3.

The explicit expressions for A(t), B(t) and C(t) can be found
in the Appendix. The contributions B(t) and C(t) vanish if the
pump pulses are not phase-locked or if the time delay between
the pulses exceeds the optical dephasing time, t c g2

�1, g3
�1.

In this case, IF(t,f) yields the strong-pulse pump–probe signal
described in ref. 25 and 26. The SM experiments of ref. 11,
in which the pulses are not phase-locked, are exclusively
described by the A(t)-contribution.

If the optical coupling between the states |2i and |3i can be
neglected (m23 = 0, Z23 = 0), the model of the chromophore
reduces to an electronic two-state system. In this case, eqn (15)
simplifies to

IF(t,f) = A(t) + (B(t)eif + B*(t)e�if)e�g2t (16)

where A(t) and B(t) are the population and coherence
contributions.

Eqn (16) reveals that the phase dependence of the SM signal
of an electronic two-state system excited by temporally well
separated pump pulses of arbitrary strength reads

IF(t,f) = w + y1 cos(f + ~f1). (17)

Here w, y1, ~f1 are t-dependent parameters. In the weak-field
regime, eqn (17) applies also for overlapping pulses.10

Eqn (15) shows that the signal of an electronic three-state
system excited by temporally well separated pulses of arbitrary
strength exhibits the phase dependence

IF(t,f) = w + y1 cos(f + ~f1) + y12 cos(2f + ~f2), (18)

where y12, ~f2 are t-dependent parameters. The cos(2f + ~f2)
contribution stems from the double electronic coherence
involving the electronic states 1 and 3. This term can be
considered as a witness of the optical coupling to higher-lying
electronic states.

IV. Choice of parameters and
computational details

The mean values of the model parameters (8) are chosen as
follows. The vibrational frequency is set to �O = 0.13 eV which
corresponds to a vibrational period tO = 2p/ �O = 32 fs (these
values are typical for the signals of ref. 2–4). The dimensionless
shifts of the potential energy functions are chosen as �D2 = 2 and
�D3 = �1 (see Fig. 1). To illustrate the impact of higher-lying

electronic states, we assume that the energy gap between the
states 1 and 2 matches the gap between the states 2 and 3, that
is �e3 = 2�e2. Since it is common practice to excite SM chromo-
phores in resonance with the 0–0 transition, we set

o1 = o2 = �e2/h� . (19)

Hence the numerical values of �ek and oa are irrelevant for the
evaluation of IF(t,f). The pulses are assumed to have Gaussian
envelopes

f (t) = exp{�(t/tp)2} (20)

and short durations (tp = 10 fs, tp { tO).
We evaluate IF(t,f) by the exact numerical solution of the

master eqn (11). For each particular realization (10) of the
model parameters (8), we represent the master equation in
matrix form by an expansion of the density matrix in the
eigenfunctions of the vibrational ground-state Hamiltonian
and solve it numerically by a fourth-order Runge–Kutta inte-
grator with a time step of 0.25 fs. The chromophore is assumed
to be initially prepared in the vibrational ground state of the
electronic ground state.

V. Electronic two-state chromophores

If the optical coupling between state 2 and state 3 can be
neglected (Z23 = 0), the chromophore can be considered as an
electronic two-state system. In Section VA, we analyze signals of
such chromophores under the assumption that all model
parameters (8) assume their mean values and set êl̂12 = 1,
which renders Z12 = Z(0)

12. This establishes a reference picture for
the study of modulations of these parameters in Section VB.

A. No stochastic modulation of parameters

Fig. 2 shows typical examples of the evolution of the population
of the excited electronic state Tr{r22(t)} in the weak-coupling
regime (Z12 = 0.02 eV) and in the strong-coupling regime (Z12 =
0.4 eV). In this example, the pump pulse #1 comes at t = 0, while
pump pulse #2 arrives at t = 80 fs.

In the weak-coupling regime (black line), where Tr{r22(t)} B
Z12

2, pump #1 creates a certain excited-state population around
t = 0. Then Tr{r22(t)} remains constant until pulse #2 transfers
more population from the ground electronic state |1i to the
excited state |2i. It is this population which yields the weak-
coupling SM signal IF(t,f) = I2(t,f).

In the strong-coupling regime (blue line), the situation is
different. The linear scaling of Tr{r22(t)} with Z12

2 ceases to
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be valid, because the field-induced population exchange is
governed by Rabi oscillations.27,28 These oscillations are clearly
seen during the interaction of the chromophore with pulse #1
and #2. For this example, the frequency of Rabi oscillations is
estimated as �OR E 2Z12/h� , which for Z12 = 0.4 eV yields the
period 2p/ �OR = 5.17 fs. This is close to the period 5.25 fs of the
Rabi beatings visible in the figure. Pulse #2 may not only
increase but may also decrease the population, as shown in
the figure. This is a direct consequence of the oscillatory
(Bsin2( �ORtp/2)) dependence of the excited-state population
on the coupling parameter Z12. In the strong-coupling regime,
p-pulses ( �ORtp E p) can be used to invert the electronic
population and the field strength can be employed to manipulate
vibrational wave packets.29–31 The time resolution in the strong-
coupling regime is not limited by the pulse durations, in contrast
to the weak-coupling regime.32 This illustrates that the use of
strong pulses offers more possibilities to manipulate and control
double-pump SM responses.

The populations in Fig. 2 do not exhibit oscillations of
vibrational origin. However, the wave-packet motion is
imprinted into the value of Tr{r22(tN)} for each particular
interpulse delay and the SM signal exhibits signatures of
wave-packet dynamics. This is illustrated by Fig. 3, which shows
how the time evolution of IF(t,0) changes with the coupling
parameter Z12 for a moderate electronic dephasing rate. The
signals depicted by full lines are proportional to Z12

2 and
correspond to the weak-coupling regime. For t o �g2

�1,
they exhibit low-amplitude vibrational beatings with a period
tO = 32 fs which are quenched by dephasing for t 4 �g2

�1.10

When Z12 further increases, the linear scaling of the signal with
Z12

2 starts to break down. The signals depicted by dashed lines
correspond to the strong-coupling regime and show vibrational
oscillations, both for t o �g2

�1 and t 4 �g2
�1.

The considerations of Section III help us to rationalize the
behavior of the signals in Fig. 3. If the pulses are temporally
well separated, the signal can be split into the population
contribution A(t) and the coherence contribution B(t). In the
weak-coupling regime, A(t) is t-independent, and the time

evolution of the signal is determined exclusively by B(t), which
is quenched due to the electronic dephasing �g2.10 Hence the
full-line-signals in Fig. 3 exhibit weak vibrational beatings
which are quenched for t4 �g2

�1. In the strong-coupling regime,
on the other hand, both A(t) and B(t) are t-dependent. For
t 4 �g2

�1, B(t) is quenched by dephasing while A(t), which is
unaffected by dephasing, dominates the signal and exhibits
vibrational beatings (dashed lines in Fig. 3). The weak-coupling
signals (full lines) and the strong-coupling signals (dashed
lines) oscillate in anti-phase for t o �g2

�1. The former have
their minima at t = 14 and 46 fs, and a maximum at t = 30 fs. The
latter have their maxima at t = 14 and 46 fs, and a minimum
at t = 30 fs. Hence the signals exhibit a flip of p in the phase of
the beating upon change from the weak-coupling regime to the
strong-coupling regime. It is the interplay between the popula-
tion contribution A(t) and the coherence contribution B(t) which
produces the p-flip of the phase.33,34

The signal in Fig. 3 for Z12 = 0.03 eV is at the border line
between the weak-coupling regime and the strong-coupling
regime. Hence Z(c)

12 = 0.03 eV can be termed as the critical
system-field coupling. This value of Z(c)

12 is not universal and
depends on the characteristics of the material system and laser
fields. It is remarkable, however, that the critical value of
the system-field coupling parameter (that is, the coupling
indicating a turnover from the weak-coupling regime to the
strong-coupling regime) for pump–probe signals is the same for
a similar model system and laser field parameters.26 This is an
indication of the universality of the crossover between the
weak-coupling and strong-coupling regimes in femtosecond
molecular spectroscopy.

Fig. 4 presents an alternative view of how the signals change
with the coupling parameter. Panel (a) depicts IF(t,0) as a
function of t for different Z12. In the weak-field regime, the
signal scales linearly with the field intensity, IF(t,0) B Z12

2.
When Z12 attains the critical value Z(c)

12 = 0.03 eV discussed
above, the signals still increase with Z12, but increase slower
than BZ12

2. For Z12 Z Z(c)
12, the signal reaches a maximum and

starts to decrease, which manifests the onset of the oscillatory

Fig. 2 Time evolution of the excited-state population Tr{r22(t)} for t = 80 fs,
f = 0, �g2 = 0 and two system-field couplings Z12 indicated in the legend.

Fig. 3 SM signal IF(t,0) vs. t for different coupling parameters Z12 indicated
in the legend; the electronic dephasing time is �g2

�1 = 50 fs.
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dependence of IF(t,0) on Z12. Panel (b) depicts the same signal,
but scaled by Z12

2, IF(t,0)/Z12
2. This signal is Z12-independent in

the weak-field regime (small Z12 in panel (b)) and exhibits
vibrational beatings which are damped owing to electronic
dephasing.10 Once the coupling attains Z(c)

12 = 0.03 eV, the
vibrational beatings exhibit the p-flip discussed above. For
Z12 Z Z(c)

12, the signal in panel (b) decreases with Z12, showing
a clear deviation from the weak-coupling behavior. In the limit
Z12

2 - N, IF(t,f)/Z12
2 - 0.

Fig. 5 illustrates signals in the weak-field and strong-field
regimes for different relative phases f of the pump pulses.
Let us consider IF(t,0) (panel (a)) first. As explained in ref. 10,
weak-field signals always decrease at short t (blue line). The
strong-field signals can either decrease (green line) or increase
(black line). This is a direct reflection of Rabi cycling.27,28

Indeed, the two pump pulses at t = 0 are equivalent to a single
pump pulse with double amplitude 2E0. If this pulse is stronger
than the corresponding molecular p-pulse,30 then it is less
efficient in promoting the population to the excited electronic
state. Hence a pair of strong pump pulses of amplitude E0

separated by a time ta 0 can be more efficient in the excitation
than the same pulses at t = 0.

As discussed above, IF(t,0) exhibits a phase flip by p when
changing from the weak-field regime to the strong-field regime.
The signals depicted by blue and black lines in Fig. 5(a) clearly
show this behavior. If the coupling exceeds Z(c)

12 considerably,
the shape of the strong-field signal can also change (cf. black
and green lines in Fig. 5(a)). The reason is that the number of
Rabi cycles during the action of the pulse increases with Z12.
These Rabi cyclings produce highly non-equilibrium distribu-
tions involving multiple vibrational levels in the ground and
excited electronic states which modify the shapes of the vibra-
tional beatings.25,32

The IF(t,p) signals in Fig. 5(b) do not exhibit the p-flip. All
these signals start from zero, because the overlapping pulses
with f = p cancel each other and do not excite the system. In the
limit of Dirac delta-pulses, the difference between the weak-
field signals and strong-field signals reduces to a scaling factor
(see, e.g., the discussion in ref. 35). The analysis of ref. 10
reveals that IF(t,p) = 0 for �g2 = 0 and t = tOn (n = 0, 1, 2,. . .).
A slight deviation of the signals of Fig. 5(b) from this behavior
is caused by the finite pulse duration.

Fig. 4 The SM signal as a function of the time-delay t and the coupling
parameter Z12 for the moderate electronic dephasing time �g2

�1 = 50 fs. (a) IF(t,0).
(b) IF(t,0)/Z12

2. Note that the axes of (b) are rotated with respect to those of (a).

Fig. 5 SM signal IF(t,f) for f = 0 (a) and f = p (b) vs. t for several Z12 indicated in the legend; �g2 = 0.
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Fig. 6 depicts two-dimensional (2D) plots of IF(t,f) vs. t and
f, so-called fluorescence maps,2,5 calculated without (a) and
with (b) electronic dephasing. Several general patterns in Fig. 6
can be understood from the following considerations. When
the two pump pulses overlap (t = 0), the phase f = p creates no
excitation, because the pulses cancel each other (destructive
interference). In contrast, for f = 0, 2p the pulses reinforce each
other (constructive interference). These results are independent
of the pulse strength and electronic dephasing. Hence the 2D
maps for t o tp exhibit a minimum at f = p and maxima at
f = 0, 2p, both in the weak-field regime and in the strong-field
regime.

Apart from trivial intensity effects, there are fundamental
qualitative differences between the weak-field and strong-field
2D maps for t Z tp. For weak pulses, the 2D maps show
periodic phase-time profiles of the harmonic oscillator wave-
packet which are tilted to the right and wiped out for t Z �g2

�1

due to electronic dephasing.10 For strong pulses, on the other
hand, the phase-time profiles exhibit a weaker tilt to the right
(Fig. 6(a)). Furthermore, electronic dephasing does not quench
the signal for t Z �g2

�1 (Fig. 6(b)): IF(t,f) shows f-independent
stripes at t = 62, 94 and 126 fs, which reveal vibrational beatings
with the period of tO = 32 fs. The reason is that the population
(f-independent) contribution A(t) and the coherence (f-dependent)
contribution B(t) are both t-dependent and reveal vibrational
beatings for strong pulses.

B. Effect of stochastic modulation of parameters

As has been discussed in Section II, each setting of the time
delay (9) corresponds to a new experiment on the same chro-
mophore, in which it experiences a different local environment
and therefore has different molecular parameters. Hence
the parameters (8) of the chromophore Hamiltonian and the
dephasing operator change for each value of the time delay as
modeled by eqn (10). Similar to the measurement protocol of
ref. 2 and 3, we assume that Dt = 3 fs.

Fig. 7(a) shows the representative signals IF(t,0) and IF(t,p)
evaluated for mean values of the parameters (8) specified in the
figure caption. Fig. 7(b) through (e) show the same signals
simulated with modulation of the chromophore electronic

energy (b), orientation (c), electronic dephasing (d), and displace-
ment of the potential energy function (e). Panel (f) displays the
effect of the simultaneous modulation of all these parameters.

Let us start the discussion with panel (a). IF(t,0) initially
increases with t. This is a strong-field effect (recall the discus-
sion of Fig. 5). On the other hand, IF(0,p) � 0 and IF(t,p) also
initially increase with t. IF(t,0) and IF(t,p) converge for t Z �g2

�1

and reveal vibrational beatings which, notably, are not
quenched by dephasing. This is explained in terms of the
contributions A(t) and B(t): the population contribution A(t)
is phase-independent and not affected by dephasing while the
coherence contribution B(t) is f-dependent and decays as
exp(��g2t). Both B(t) and A(t) reveal vibrational beatings for
strong pump pulses.

Now we discuss the effect of the modulation of the para-
meters. In the previous paper,10 we have identified the critical
values of the parameters for which the SM signals in the weak-
coupling limit become so noisy that the vibrational beatings
cease to be undetectable. The modulation amplitudes dA of the
parameters selected for Fig. 7(b)–(f) are higher than the critical
amplitudes given in Table 1 of ref. 10. For such high values of
dA the weak-field signals are buried in noise and do not exhibit
any regular features, which renders the extraction of useful
information highly problematic. On the other hand, the strong-
field signals in Fig. 7(b)–(f), although noisy, do reveal the
vibrational beatings. Below we give a rationale for this finding.

Consider first the modulations of the electronic excitation
energy. The robustness of the strong-field SM signals to the
modulations of e2 (Fig. 7(b)) can be explained in terms of the
contributions A(t) and B(t): the coherence contribution B(t)
depends strongly on the electronic energy fluctuations. This is
the only t-dependent contribution to IF(t,f) in the weak-coupling
regime,10 hence the high sensitivity of the weak-field signals. In
the strong-coupling regime, on the other hand, the population
term A(t), which is much less sensitive to the modulations of e2,
is also t-dependent and contributes to IF(t,f) on an equal footing
with B(t).

The modulations of êl̂12 reflect restricted chromophore
reorientation (wobbling) in the polymer matrix, which is
normally described via the diffusion-in-the-cone model.36 In the

Fig. 6 2D maps IF(t,f) for Z12 = 0.05 eV. (a) �g2 = 0. (b) �g2
�1 = 50 fs.
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weak-coupling regime, IF(t,f) B Z12
2 and the dj-variations

produce quadratic modulations of the signal amplitude. In
the strong-coupling regime, on the other hand, the dependence
of IF(t,f) on Z12

2 is much weaker (recall Fig. 4 and its discus-
sion). That explains the higher robustness of the strong-field
signals against dj-modulations (Fig. 7(c)).

The effect of the modulation of the electronic dephasing
(Fig. 7(d)) is visible only on the timescale characteristic for the
electronic dephasing. For tZ �g2

�1, the effect disappears. Again,
this phenomenon is a direct consequence of the decomposition of
the signal into the coherence contribution B(t) B exp(�g2t) and the
dephasing-independent population contribution A(t). While the
signal is solely determined by B(t) in the weak-coupling regime,
both B(t) and A(t) contribute in the strong-coupling regime.

The effect of the modulation of the displacement of the
potential energy function, D2, is illustrated in Fig. 7(e). In the
weak-coupling regime, IF(t,f) has a Gaussian dependence on D2

(see eqn (20) and (26) of ref. 10). This indicates that D2 controls
the Franck–Condon factors of the relevant optical transitions.
Hence, the high sensitivity of IF(t,f). In the strong-coupling
regime, the system-field interaction is governed by Rabi cyclings
and significantly depends on the pulse amplitude and duration.
As a result, transitions with weak Franck–Condon factors can
be significantly enhanced.37 This diminishes the influence of
modulations of D2 on the signal in the strong-coupling limit.

Fig. 7(f) shows the effect of the simultaneous modulation of
all these parameters. Despite the signals the IF(t,0) (black line)
and IF(t,p) (blue line) are quite noisy, they still reveal signatures

Fig. 7 Panel (a) depicts the SM signals IF(t,0) (black line) and IF(t,p) (blue line) evaluated for the following mean values of the parameters: Z(0)
12 = 0.05 eV,

�O = 0.13 eV, �D2 = 2, êl̂12 = 1, and �g�1 = 50 fs. Panels (b) through (f) show the effect of modulation of the electronic energy, de2 = 0.08 eV (b); molecular
orientation, êl̂12 = cos(p/4 � j)/cos(p/4), dj = 0.6 (c); electronic dephasing, dg�1 = 70 fs (d) displacement of the potential energy function, dD2

= 0.32, (e).
Panel (f) displays the effect of the simultaneous modulations of all the above parameters. The signals are evaluated with a discretization step of 3 fs in t.
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of vibrational beatings, especially at longer time scales when
the dephasing-sensitive contributions have disappeared.

We did not include the effect of the modulation of the
vibrational frequency in Fig. 7. It turns out that the sensitivity
of IF(t,f) to the modulations of O is roughly independent of the
system-field coupling. The reason is that the time evolution of the
electronic population A(t) and the electronic coherence B(t) is
determined by vibrational motion which, in turn is governed by
the vibrational frequency. When the amplitude of the modulation
of the vibrational frequency, dO, is much smaller than the vibra-
tional period tO, a few vibrational beatings can be detected in
IF(t,f), notably at short t. Otherwise, coherent vibrational motion
ceases to be observable. These arguments are general and there-
fore applicable to both weak- and strong-coupling regimes. Yet,
keeping in mind the exclusive role of the vibrational frequency, we
can conclude that SM signals in the strong-coupling regime are
more robust to modulations of the system parameters than SM
signals in the weak-coupling regime.

Fig. 8 exemplifies the effect of the environment-induced
modulation of chromophore parameters on 2D maps IF(t,f). This
figure should be compared with Fig. 6, which displays the same
signals without parameter modulations. For short t, the maps in
Fig. 8 can be considered as blurred versions of those in Fig. 6. For
longer t, the differences between Fig. 6 and 8 are more substantial
and can be rationalized as follows. The population contribution
A(t) is f-independent and variations of e2 produce stripes for
t 4 �g2

�1, when the coherence contribution B(t) disappears. The
stripes in Fig. 7(b) reveal maxima around t = 62, 94 and 126 fs,
reflecting vibrational wave packet motion. These vibrational
features are totally absent in the weak-coupling 2D maps.10 Hence
the 2D maps allow a clear distinction between the weak-coupling
and strong-coupling regimes, even if the modulation of the system
parameters is relatively strong.

VI. Electronic three-state
chromophores

As has been explained in ref. 10, the weak-field SM signal IF(t,f)
given by I2(t,f) in the expansion (14) is not affected by radiative

coupling to higher-lying electronic states. If the system-field
coupling increases, the terms Ik(t,f) with k Z 2 in the expan-
sion (14) become non-negligible and higher-lying electronic
states may contribute to the signal, giving rise to excited-
state absorption and/or stimulated emission. These effects
are described by eqn (15), which partitions the signal of an
electronic three-state chromophore into three contributions:
the population A(t), the single-coherence B(t), and the double-
coherence C(t) (the latter is absent in two-state chromophores).
To simplify the presentation in the present section, we assume
the same strength of optical coupling between the electronic
states 1,2 and 2,3: Z12 = Z23. For brevity, we do not consider the
modulation of the molecular parameters.

As a function of t for fixed f, the signal IF(t,f) of an
electronic three-state chromophore does not show qualitatively
different behavior in comparison with the signal of the corres-
ponding two-state chromophore. A difference can arise when
the vibrational frequencies in the three electronic states are
different, but this situation is not considered here for brevity
(these effects have been studied in ref. 25 and 26 for strong-
pump strong-probe signals). On the other hand, the depen-
dence of IF(t,f) on f for fixed t may look qualitatively different
for two- and three-state chromophores. This effect has been
discussed in Section III and is illustrated in Fig. 9. The phase
dependence deviates from the cos(f + ~f1) form of eqn (17) due
to the presence of the double-coherence term cos(2f + ~f2) in
eqn (18). The deviation of the signal from eqn (17) can be
considered as a witness of the radiative coupling with higher-
lying electronic states.

2D maps IF(t,f) for a three-state chromophore without (a)
and with (b) electronic dephasing are depicted in Fig. 10. These
maps should be compared with those for the two-state chromo-
phore presented in Fig. 6. Let us consider first the dephasing-free
situation. The maps in Fig. 6(a) and 10(a) reflect the periodicity
of the vibrational wave-packet motion in the electronic states
involved. However, the third electronic state causes pronounced
qualitative differences between the two maps. The signals in
Fig. 10(a) do not exhibit phase-time profiles of a harmonic
oscillator wave packet which are clearly seen in Fig. 6(a) and
are typical for the electronic two-state chromophore. The signals

Fig. 8 2D maps IF(t,f) for Z(0)
12 = 0.05 eV. The electronic energy gap is sampled according to eqn (10) with de2 = 0.07 eV. (a) �g2 = 0. (b) �g2

�1 = 50 fs.
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in Fig. 10(a) rather show progressions of the three-maxima-two-
minima patterns of changing shape and increasing asymmetry
relative to the line f = p. This reflects nontrivial wavepacket
interferometry in all three electronic states driven by two strong
pump pulses. This asymmetry is a signature of the contributions
from higher-lying excited electronic states. Interestingly, the signal
in panel (a) of Fig. 10 displays a tilt of the t,f pattern to the right.
This tilt is reinforced by the double-coherence contribution
C(t) which has a Bexp(�i2f) phase dependence. The effect of
electronic dephasing on the 2D maps of two-state system (Fig. 6(b))
and three-state system (Fig. 10(b)) is qualitatively similar. The
signal in Fig. 10(b) shows equidistant stripes around t = 62, 94
and 126 fs which reveal vibrational wave-packet motion. They arise
from the population contribution A(t) and become visible when
the single-coherence term B(t) and the double-coherence term
C(t) are quenched by electronic dephasing. One thus can conclude
that radiatively coupled higher-lying excited electronic states can
substantially affect the phase-dependence of SM signals. Electronic
dephasing attenuates this dependence, rendering the SM signals
of two- and three-state chromophores similar.

In Section VA, we have demonstrated that the system-field
coupling can be used to manipulate and control the SM signals
of two-state chromophores. This is possible for three-state
chromophores too, even in the case of significant electronic
dephasing. Fig. 11 shows the SM signals IF(t,f) for a fixed t = 50
fs and different system-field couplings Z12 indicated in the
legend. In contrast to the weak-coupling regime, the variation
of Z12 in the strong-coupling regime does not significantly
change the overall signal intensity, but substantially alters the
shape of the signal. As Z12 increases, IF(t,f) in Fig. 11 evolves
from a single-maximum single-minimum structure (black line)
to double-maxima double-minima structures of different shapes
(blue, red, and green lines), which are similar to that in Fig. 9.
Hence the system-field coupling can be used to control and
manipulate the SM signals of three-state chromophores. This
may be important for applications, since the coupling of multi-
state chromophores with femtosecond laser pulses can be adjusted
to minimize the net population transfer to higher-lying excited
electronic states in order to prevent unwanted photodissociation
or photoisomerization.

Fig. 10 2D maps of the electronic three-state chromophore for Z12 = 0.05 eV. (a): �g2 = �g3 = 0. (b): �g2
�1 = �g3

�1 = 50 fs.

Fig. 11 SM signal IF(t,f) at a fixed t = 50 fs for different system-field
couplings Z12 indicated in the legend. �g2

�1 = �g3
�1 = 50 fs.

Fig. 9 Dependence of the SM signal IF(t,f) of the electronic three-state
chromophore on the phase f for a fixed time delay t = 150 fs, Z12 = 0.05 eV,
and �g2 = �g3 = 0.
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VII. Conclusions

In the present work, we have performed a systematic study of
femtosecond double-pump signals of individual two-electronic-
state and three-electronic-state chromophores in the strong-
coupling regime. The SM signal consists of population and
coherence contributions. In the weak-coupling regime, only the
coherence contribution depends on the time delay t between
the pump pulses, while the population contribution is static. In
the strong-coupling regime, on the other hand, both of these
contributions are t-dependent and contain information on the
vibrational dynamics of the chromophore.

For a specific chromophore, there exists a critical value of the
system-field coupling parameter which represents the turnover from
the weak-coupling regime to the strong-coupling regime. The
double-pump signals in the two regimes exhibit qualitatively differ-
ent behaviors and patterns. The signatures of the weak-coupling
regime are analyzed in the accompanying paper.10 The signatures of
the strong-coupling regime are as follows. The signals exhibit vibra-
tional beatings that are not quenched by electronic dephasing. These
beatings reflect vibrational wave-packet dynamics in the electronic
populations of the density matrix of the chromophore. Distinct from
weak-field signals, strong-field signals for the relative phases 0 and p
of the pump pulses are not mirror images of each other. When the
time delay between the pump pulses exceeds the electronic dephas-
ing time, the signals with relative phases 0 and p coincide and show
vibrational beatings. The 2D maps of strong-field signals do not
exhibit a substantial tilt of their phase-time profiles and are not
quenched by electronic dephasing. The SM signals in the strong-
coupling regime are more robust with respect to modulations of the
system parameters than the SM signals in the weak-coupling regime.

Higher-lying excited electronic states do not contribute to
femtosecond double-pump SM signals in the weak-coupling
regime. In the strong-coupling regime however, their contributions
may become significant. Our simulations of three-electronic-state
chromophores reveal that there exist clear signatures of these
contributions in the phase dependence of SM signals.

Our analysis suggests that the adjustment of the system-
field coupling (by changing the laser pulse intensity) can be
considered as an efficient tool for the judicious manipulation of
femtosecond double-pump SM signals and for the enhance-
ment of the information content of SM spectroscopy.
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Appendix A: derivation of eqn (15) and
(16)

A rigorous derivation of eqn (15) and (16) can be given in the
framework of the strong-pulse doorway-window method devel-
oped in ref. 25 and 38. Here we give a more intuitive derivation.

Let us consider an electronic two-state system first. The inter-
action of the system with external pulses is governed by the transition

dipole moment operator of eqn (3). Obviously, a single interaction of
the system with an external pulse transforms the electronic popula-
tions r11(t) and r22(t) into electronic coherences r12(t) and r21(t) and
the other way around: the electronic coherences r12(t) and r21(t) are
converted into the electronic populations r11(t) and r22(t).

Before the pump pulses arrive, the system is in the electronic
ground-state population. Since the SM signal IF(t,f) is proportional
to the electronic population in the excited state, it is generated by an
even number of interactions with the two pump pulses. There are
two options: an even number of interactions with pulse #1 and an
even number of interactions with pulse #2 (the contribution A(t)) and
an odd number of interactions with pulse #1 and an odd number of
interactions with pulse #2 (the contribution B(t)). Now assume that
the two pulses are temporally well separated, so that pulse #1 arrives
first and pulse #2 arrives later, with a delay t exceeding the pulse
duration. For the contribution A(t), the system after the interaction
with pulse #1 will be in the electronic population. For the contribu-
tion B(t), the system will be in the electronic coherence. In the
rotating wave approximation, each up-transition is associated with a
phase factor exp(�if) in the dipole moment operator of eqn (3),
while each down-transition is associated with exp(8if). Hence the
coherence contribution B(t) is proportional to a phase factor
exp(�if), while the population contribution A(t) is f-independent.
The population contribution is not affected by electronic dephasing,
but the coherence contribution decays exponentially with the elec-
tronic dephasing rate g2. We thereby obtain eqn (16).

The A(t) and B(t) are independent of electronic dephasing
and can therefore be evaluated via the Schrödinger equation

@jcðtÞi
@t

¼ � i

�h
H þHFðtÞð ÞjcðtÞi; (A1)

where H and H(t) are given by eqn (1) and (3). This may be of
advantage for applications, since a numerical solution of the
Schrödinger eqn (A1) is much cheaper computationally than
the solution of the master eqn (11). The SM signal is expressed
in terms of the wave function as follows:

IF(t,f) = Tr{|hc(t - N)|2i|2} (A2)

(trace implies summation over all vibrational states). The A(t) and
B(t) can be retrieved from eqn (A2), which is evaluated through
the solution of the Schrödinger eqn (A1) for f = 0, p/2 and p:

IF(t,0) = A(t) + B(t) + B*(t),

IF(t,p) = A(t) � (B(t) + B*(t)),

IF(t,p/2) = A(t) + i(B(t) � B*(t)).

Hence,

AðtÞ ¼ IFðt; 0Þ þ IFðt; pÞ
2

;

Re BðtÞ ¼ IFðt; 0Þ � IFðt; pÞ
4

;

Im BðtÞ ¼ IFðt; 0Þ þ IFðt; pÞ
4

� IFðt; p=2Þ
2

:
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The derivation of eqn (15) for an electronic three-state system
is very similar. The difference is as follows: By two inter-
actions with pulse #1, the system can be transformed from
the electronic ground state |1i to the electronic coherence
between the states |1i & |3i. Hence the phase factor exp(2if)
and the double-coherence contribution C(t). Solving the
Schrödinger eqn (A1) for f = 0, p/4, p/2, �p/2, and p, we obtain
after elementary algebra:

AðtÞ ¼ IFðt; 0Þ þ IFðt; pÞ þ IFðt; p=2Þ þ IFðt;�p=2Þ
4

;

Re BðtÞ ¼ IFðt; 0Þ � IFðt; pÞ
4

;

Im BðtÞ ¼ IFðt;�p=2Þ � IFðt; p=2Þ
4

;

Re CðtÞ ¼ IFðt; 0Þ þ IFðt; pÞ � IFðt; p=2Þ � IFðt;�p=2Þ
8

;

Im CðtÞ ¼ 1

2
AðtÞ � IFðt; p=4Þð Þ þ 1ffiffiffi

2
p Re BðtÞ � Im BðtÞð Þ:

The validity of eqn (15) and (16) is based on the following two
conditions. The pump pulses must be (i) temporally well
separated (t c tp, pulse overlap effects are neglected) and
(ii) relatively short (tp o g2

�1, g3
�1), so that the optical dephasing

during the pulses can be neglected. If both conditions are
satisfied, the SM signals calculated via eqn (15) and (16) match
perfectly those obtained via the numerically exact solution of the
master eqn (11). If (ii) is slightly violated (tp B g2

�1, g3
�1) the

SM signals calculated by the two methods differ quantitatively,
but not qualitatively.
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10 E. Palacino-González, M. F. Gelin and W. Domcke, Phys.
Chem. Chem. Phys., 2017, DOI: 10.1039/c7cp04809b.

11 E. M. H. P. van Dijk, J. Hernando, M. F. Garcia-Parajo and
N. F. van Hulst, J. Chem. Phys., 2005, 123, 064703.
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