
Technische Universität München
Fakultät für Elektrotechnik und Informationstechnik
Lehrstuhl für Entwurfsautomatisierung

Graph-Grammar-Based IP Integration (GRIP) Tool for
Efficient IP Reuse in Software-Defined SoCs

Munish Jassi

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik zur
Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing. Georg Sigl

Prüfer der Dissertation: 1. Prof. Dr.-Ing. Ulf Schlichtmann

2. apl. Prof. Dr.-Ing. Walter Stechele

Die Dissertation wurde am 27.11.2018 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am

28.01.2019 angenommen.

Abstract

In modern system-on-chip (SoC) designs, IP reuse is considered a driving force to increase
productivity. To support various designs, a large number of Intellectual Property (IP)
hardware blocks have been developed. The integration of those IPs into an SoC may
require significant effort - up to days or weeks depending on experience and complexity.
This work presents a novel approach to significantly reduce the design effort to bring-up
a working SoC design by automatic IP integration as part of a library-based Software-
defined SoC flow. In detail, the IP supplier prepares a HW-accelerated software library
(HASL) for the SoC architect, who wants to use the IP in an SoC design. As a key
point of the presented approach, IP integration knowledge is encoded in the library as
a set of integration rules. These rules are defined in the machine-readable standardized
IP-XACT format by the IP supplier, who has a good knowledge of the IP’s hardware
details. The library preparation step on the IP supplier’s side is also partly automated
in the proposed flow, including generation of configurable HW drivers, schedulers, and
the software library functions. For the SoC architect, the graph-grammar-based IP-
integration (GRIP) tool is developed. The software application is developed using the
functions supplied in the HASL. According to the calls to the HASL functions, the GRIP
tool automatically integrates IP blocks using the rule information supplied with the
library and runs a full Design Space Exploration. For this, the SoC architecture and rules
are transformed into the graph domain to apply graph rewriting methods. The GRIP tool
is model-driven and based on the Eclipse Modeling Framework. With code generation
techniques, SoC candidate architectures can be transformed to hardware descriptions
for the target platform. The HW/SW interfaces between SW library functions and IP
blocks can be automatically generated for bare-metal or Linux-based applications.

The approach is demonstrated with two case studies on the Xilinx Zynq-based ZedBoard
evaluation board using a HASL for computer vision. It can yield 10x - 150x perfor-
mance improvement for the bare-metal application versions and 4x - 7x performance
improvement for the Linux-based application versions, when executed on an optimized
HW-accelerated SoC architecture compared to a non HW-accelerated SoC. The effort
for IP integration is comparable to using a software library, hence, providing a significant
advantage over a manual IP integration.

i

Acknowledgements

I would like to thank my supervising professor, Prof. Ulf Schlichtmann, for giving me
an opportunity to research on the topic of my interest. His guidance and support during
my research work was invaluable, without which this research would not have been
possible. I would like to thank my advisor, Dr. Ing.- Daniel Müller-Gritschneder, for all
his technical feedbacks and guiding the research project. Daniel has been the first go-to
person for any deep-dive discussions, and he has provided valuable inputs on numerous
topics. The mentorship from both Prof. Schlichtmann and Daniel went beyond the
research to other topics including project management, teaching, and supervision, which
I am also carrying further into my next career steps.

It was an honour to collaborate with researchers from Technical University of Munich
(TUM), as well as beyond TUM. I would like to thank my colleague Yong Hu for work-
ing together on graph grammar algorithms. Thanks to Alessandro Bernardini for his
insightful ideas on defining mathematical completeness of algorithms. Thanks to Prof.
Walter Stechele for guidance on the optical flow use-case study. More importantly, I owe
much credits to all students who helped me on various sub projects including Jian Lyu,
Umair Razzaq, and Benjamin Bordes.

I would like to thank my parents - Simro Devi and Mohan Lal - who have always sup-
ported and encouraged me to pursue my interests. I would like to thank my friends –
Dr. Dinesh Kumar, Vlastimil Zwiefelhofer, Navjot Singh, Inderpal Singh, Vivek Ku-
mar, Shushanik Karapatyan, Andreas Herrmann, Chunfeng Liu, Ravi Pujara, Simona
Gavrilova, Irfan Karabegovic and Matthias Fasching – who have not only helped me to
keep motivated for my research, but also made my stay at TUM and Munich enjoyable.

This research project is sponsored by the German Research Foundation (DFG). I am
grateful to Deutsche Forschungsgemeinschaft (DFG) for contributing to fund this re-
search. This research is partly funded by the DFG under the research grant SCHL
347/3-1.

ii

Contents

1. Introduction 1
1.1. Introduction and Motivation . 1
1.2. Problem Statement . 4
1.3. Contributions . 5
1.4. Publications on this Thesis . 8
1.5. Organization of the Thesis . 9

2. Background 11
2.1. State of the Art . 11
2.2. Background . 15
2.3. Conclusions . 25

3. IP Packaging for Automated IP Integration 27
3.1. Introduction and Problem . 27
3.2. IP Packaging with IP-Integration Rule 28
3.3. Verification of Integration Rules . 36
3.4. Writing an IP-Integration Rule . 41
3.5. Conclusions . 42

4. Library Preparation - Hardware-Accelerated Software IP-Library 43
4.1. Introduction and Problem . 43
4.2. Generic Hardware-Software Interface . 44
4.3. Hardware-Access Drivers Generation from IP-XACT 46
4.4. Hardware-Accelerated Software Library - Bare Metal 51
4.5. Hardware-Accelerated Software Library - Linux OS 52
4.6. Software Application Development using HASL 57
4.7. Conclusions . 58

5. Automated IP-Integration and Design Space Exploration of SoCs 59
5.1. Introduction and Problem . 59
5.2. Model-Based Graph Rewriting . 60
5.3. Automated IP Integration . 62
5.4. GRIP Design Space Exploration . 68
5.5. Code Generation of HW and SW Projects for Xilinx FPGA 74
5.6. GRIP Tool Integration with the Xilinx Toolchain 77
5.7. GRIP Tool Integration with the Linux OS 78

iii

Contents

5.8. Conclusions . 80

6. Computer-Vision Case Studies on the ZedBoard 81
6.1. Introduction . 81
6.2. Host SoC on the Zynq FPGA . 82
6.3. Case Study 1 - Motion Detection Application 83
6.4. GRIP DSE for the Motion Detection Application 87
6.5. Case Study 2 - Acceleration of Video Processing Filters 93
6.6. Conclusions . 99

7. The GRIP Tool with Feedback - SoC Performance Monitoring 101
7.1. Introduction and Problem . 101
7.2. Problem Formulation - Bin Packing . 102
7.3. Integration with the GRIP tool . 104
7.4. Case Study: Bus-Load Monitoring of a Video-Processing SoC 105
7.5. Conclusions . 108

8. Conclusions 109

Bibliography i

iv

List of Figures

1.1. Increasing gap between the SoC complexity and designer’s productivity . 2
1.2. SW performance vs. HW cost trade offs under different operating systems 4
1.3. The contributions of this work to bridge the knowledge gap between the

IP suppliers and the SoC architects using the GRIP flow 6

2.1. (a) A sample graph-rewriting rule with the LHS and the RHS pattern;
(b) Graph matching and application of the rule on the host graph 16

2.2. Simplified UML model diagram for IP-XACT showing design and com-
ponents hierarchies . 18

2.3. Key components required for model-based designs 21
2.4. Block diagram of the Zynq chipset with PS and PL parts 24

3.1. Traditional IP packaging includes hardware descriptions, abstracted IP
interfaces and documentation . 28

3.2. The proposed IP packaging includes the IP-integration knowledge using
IP-integration rules on top of traditional IP package 29

3.3. Standard IP-integration rules for the possible structural modification sce-
narios. 33

3.4. Figure shows the model-to-model transformation of an IP-XACT design
to the corresponding architecture graph 35

3.5. Block diagram of IP-XACT static verification engine 39
3.6. IP-XACT dynamic verification and conflicts resolution during IP-integration 40

4.1. a) SW adapting for the traditional HW-SW interface, b) proposed generic
HW-SW interface, interface accommodates the HW changes, 45

4.2. Accessing either a hardware subsystem or software function from a soft-
ware application through the generic HW-SW interface 46

4.3. Hardware drivers generation . 47
4.4. Hierarchy of generated HW drivers for Bare-metal 52
4.5. FreeMarker template files for generation of HW drivers 53
4.6. The generated HW drivers files for bare-metal HASL package 54
4.7. Essential elements of the Linux kernel facilitating access HW devices . . 55
4.8. Hierarchy of generated HW drivers for Linux OS 56
4.9. Generated hardware drivers package containment. 57

5.1. Flow diagram for automated IP-integration using IP-integration rules . . 66
5.2. Flow diagram for the GRIP IP-integration Engine. 67

v

List of Figures

5.3. Overview of steps for automated IP-integration in an SoC using the GRIP 68
5.4. An example design space exploration tree 69
5.5. Flow diagram for SoC design space exploration using the GRIP DSE engine 70
5.6. DSE trees generation with the associated DSE constraints 72
5.6. DSE trees generation with the associated DSE constraints (cont.) 73
5.7. SW and HW packages generation using the GRIP code-generation engine. 75
5.8. Mapping of IP-XACT properties to the MHS description for the HW project 76
5.9. Xilinx XPS and SDK tools to generate respectively the HW and SW binaries 77
5.10. Xilinx FPGA SoC prototyping using the HASL in the GRIP environment 78
5.11. Building the Linux kernel using GRIP generated HW drivers 79

6.1. The host SoC with associated IP components and bus interconnections . 82
6.2. Implementation of the host SoC in the Zynq chipset 83
6.3. Data flow of the motion detection application 84
6.4. Signature generation and matching signature steps for motion detection . 85
6.5. IP-integration rules for the motion detection application 88
6.6. DSE trees for the motion detection with and without the associated DSE

constraints (width of 4 hardware accelerators and tree depth of 4) 89
6.7. The candidate SoC with all four HAs for motion detection on Zynq-chipset 90
6.8. Performance analysis for the application as (a) bare-metal, (b) Linux . . 92
6.9. Motion detection application with bare metal and SW only implementation 94
6.10. Motion detection application on the Linux OS and SW only implementation 95
6.11. Data flow of the video processing application 95
6.12. Design space exploration tree for the video processing case study. 96
6.13. Block-diagram for the video-processing SoC set-up on Zynq FPGA . . . 97
6.14. Performance analysis for the application as (a) bare-metal, (b) Linux . . 98
6.15. HW access overhead for the generated and manually written flat drivers. 99

7.1. Debugging and performance monitoring on AXI-bus on the ZedBoard . . 102
7.2. GRIP tool with the FPGA resources estimation feedback for SoC monitoring104
7.3. FPGA resource constraints defined in an XML constraints file 105
7.4. Video processing SoC setup on ZedBoard with three hardware accelerators106
7.5. IP-integration rule to integrate an AXI-monitor IP to an AXI4 bus . . . 107

vi

List of Tables

2.1. Comparison of the key features of the Xilinx SD-SoC, DIPLODOCUS
UML DSE and the GRIP tool . 14

6.1. HW-SW mapping of the four tasks of the motion detection application
for the host SoC and 15 generated candidate SoCs 92

6.2. Performance comparison (frame processing time) of the motion detection
application in the software and hardware implementations 93

6.3. Performances of various filter tasks executed on CPU and as dedicated HW 96
6.4. HW-SW mapping of tasks of the video processing application for 12 gen-

erated SoCs. ’YES’ in Pipe column indicates pipelining among adjacent
HAs . 98

vii

1. Introduction

1.1. Introduction and Motivation

Previous decades of research and technology advancements in semiconductors have en-
abled us to discover unforeseeable applications of electronic devices. The benefits of
electronic devices for us are ubiquitous, and are relevant for the production and organi-
zation of knowledge, social cooperation, productivity, safety and health. These devices
automate our day-to-day tasks, maintain health, enable communication and transporta-
tion, distribute information and provide entertainment. In all these tasks, the electronic
devices interact with us and our environment to collect relevant data, and further trans-
mit and process the data for desired tasks. The desired tasks are realized by a collection
of functions, which are implemented either by hardware (HW) components or by software
(SW) applications executed on programmable hardware processing units.

The advancements of innovative software applications, supporting our improving quality
of life, are demanding higher computation capabilities from electronic devices. In the
previous decades, we have made significant technical progresses and breakthroughs to im-
plement increasingly complex tasks on electronic devices. The technology breakthroughs
have lead us to shrink HW elements, including analog and digital HW components, HW
processing units etc.. This progressive HW shrinking has helped to combine multiple
HW elements in a single chip, called system-on-chip (SoC). The SoCs have now be-
come fundamental building blocks of any electronic devices. By integrate increasingly
complex HW elements into an SoC has significantly improved computation capabilities.
These computation improvements are primarily because of the availability of increasing
number of computational resources on a same chip, and by avoiding slow off-chip data
communications. A typical electronic device contains multiple SoCs to perform required
digital or analog processing tasks.

An SoC contains multiple computational resources connected via various data commu-
nication channels. The computational resources on an SoC are the HW modules that
process, store or transmit data. The communication channels on an SoC are the wire
connections that transmits data and signals among HW modules. In order to support
increasing complexities of SoCs, it requires increasing design effort from the SoC design-
ers. Studies have shown that SoC designers are unable to cope with the increasing SoC
design complexities. Fig. 1.1 shows the increasing gap between the SoC designs com-
plexity and the designers’ productivity (SEMATECH 2011). The SoC design complexity
is still following Moore’s law of 58% annual increase, while the SoC designers are seeing

1

1. Introduction

1980 1985 1990 1995 2000 2005 2010

100M

10M

1M

100K

10K

1K

100

10

10G

1G

100M

10M

1M

100K

10K

1K

Lo
gi

c
Tr

an
si

st
or

 N
um

be
r

Tr
an

si
st

or
 N

um
be

r P
er

 P
er

so
n

M
on

th

SoC Design Complexity Increase
58%/year

Productivity Increase
21%/year

Productivity
Gap

Figure 1.1.: Increasing gap between the SoC complexity and designer’s productivity

productivity increase of 21% annually with the improving design methodologies. This
require novel solutions to keep up with the increasing SoC complexities.

Many industrial SoC design methodologies use divide and conquer approaches as a strat-
egy to handle the complexity of state-of-the-art SoCs. This has led to the concepts of
intellectual property (IP) based design flow and IP reuse for SoC implementation. In the
IP based design flow, some computationally heavy SW tasks of an application are imple-
mented on dedicated HW IP components. The dedicated SW tasks may include handling
communication protocols (e.g. UART, Ethernet, PCIe), dedicated data processing units
(e.g. data encryption), or domain-specific functions (e.g. Fourier transforms, signal
and image processing filters). These HW IPs are independently optimized and imple-
mented, and later integrated into an SoC design. The HW IPs such implemented can
be reused in multiple SoC designs. The international technology roadmap for semicon-
ductors (ITRS 2011) includes a prediction for the amount of HW IP reuse in future
system-on-chip (SoC) designs. It states that IP reuse in SoCs will grow from around
70% in 2016 to more than 90% by 2020. Thus, IP-based SoC design methodologies have
gained attention in industry as well as in academia. The IP reuse promotes using IP
components available from either previous design projects or third-party IP suppliers.
In IP-based flows, there are two primary actors: the IP supplier and the IP user, in
the following referred as the SoC architect. The challenges in IP-based flows are mainly
related to an increasing knowledge gap among these actors. The challenges are related to
both the SoC HW implementation, and the associated HW drivers and SW application
implementation to bring-up the associated HW-SW system.

In IP-based design, an IP supplier owns a dedicated HW IP or a domain-specific IP
library containing dedicated HW IPs for domain-specific functions (e.g. Computer vision
domain). The IP supplier progressively optimizes the HW IPs, and transfers them to
the SoC architect either as hard IPs or soft IPs. These HW IPs are associated with HW
drivers, which are required by SW applications to access the HW IPs. An objective for

2

1.1. Introduction and Motivation

the IP supplier is to prepare an IP library containing sufficient knowledge on efficiently
integrating the provided IPs into an SoC, and prepare required HW drivers. A hindrance
for the IP supplier is his limited knowledge about the scope of SoCs in which the IPs
will be utilized. In the existing design methodologies, the IP integration knowledge is
provided as documentations in the IP library. While utilizing the IPs available from IP
suppliers, the challenges for an SoC architect are efficiently integrating IPs to implement
a synthesizable SoC, implementing and configuring HW drivers, adapting SW application
to utilize available HW resources, and for the systems with operating systems (OS) -
preparing kernel drivers and board support packages (BSP). An inefficient IP integration,
or IP handling using the HW drivers can incur significant performance overhead because
of data communication and HW-access latency. This process of IP integration using the
available documentations can be an error-prone and laborious task.

In order to find optimal SoC candidates for targeted SW applications, the SoC architect
must perform design space exploration (DSE) to guarantee desired SW performances.
The SoC DSE utilizing the available IP library must also obey to SoC design constraints
of HW resources area, power, and latencies. With multiple available HW IPs in an IP
library, there are primarily two challenges for the SoC architect, first, find an optimal set
of HW IPs to accelerate target SW applications, and second, integrate the HW IPs to
the SoC design in efficient architectural configurations. Each set of SoC structural mod-
ifications associated with the DSE iteration requires re-implementation of HW drivers
stack and adaptation of the SW application to utilize additional HW IPs. The number
of candidate SoCs during DSE grows exponentially with increasing HW IPs. The chal-
lenges for an SoC architect during DSE are to constrain the SoC design space to quickly
find the optimal candidate SoCs and evaluate their performances.

The SoCs are primarily realized as application-specific integrated circuits (ASICs). Many
of the ASIC design flows utilize field programmable gate array (FPGA) platforms for SoC
prototyping, performance evaluations, and eventual design space explorations. With re-
cent advances in FPGA technology, FPGAs are no more only a cluster of programmable
logic. Some recent FPGA chipsets, like Xilinx Zynq7000 series (ZedBoard 2012), provide
powerful microprocessors with other essential interfacing IP hard-cores and a dedicated
programmable fabric interfaced via multiple high-speed buses. These FPGAs are self-
sufficient to prototype a complete or a sub-system of an SoC. In recent years, these
FPGAs are been used for prototyping as well as implementing application-specific SoCs.
For some application domains off-the-shelf ASICs are not able to meet the desired per-
formance requirements. SoC architects are opting for FPGAs as an alternative solution
to ASICs for these highly customized SoCs for targeted applications.

The design flexibility offered by these FPGAs has led to the concept of software-defined
SoCs. In this approach, first, the target software applications are executed on an SoC
with bare-minimum HW computational resources. Progressively, some of the SW tasks
are transferred to additional dedicated HW computing resources (hardware accelerators).
For DSE, the SoC architect must explore feasible SoC architecture candidates using an IP

3

1. Introduction

So
ftw

ar
e

La
te

nc
y

(D
el

ay
)

Hardware Usage (Cost)

x
x

x

x

x

x

x

x

x

x
x

x

x

x

x

x x

x

x

x

x

x

x

xx

x

x
x

OS 3

OS 2

OS 1

Figure 1.2.: SW performance vs. HW cost trade offs under different operating systems

library for a targeted SW application. Fig. 1.2 shows a representative distribution of the
SW performance vs. HW cost trade offs for SoC architectures under different operating
systems (OSs). In the figure, the ’x’s represent candidate SoCs obtained by integrating
different combination of HW IPs (in the figure, the ’x’s are targeted on OS2). The
candidate SoCs that are closest to the origin provide the optimal performance-cost trade
offs (Green colored ’x’s). These optimal SoCs form the Pareto optimal front under OS 2.
The set of SoCs on the Pareto optimal front changes with different operating systems.
This is because each OS is associated with different data handling and communication.
So, SoC DSE needs to be performed separately for each targeted OS. Evaluating the
candidacy of each SoC architecture is very expensive. It requires the HW synthesis,
SW application adaptation, and finally the system bring-up and evaluations. So, one of
the objectives during the SoC DSE is also to eliminate the non-optimal SoC candidates,
while still keeping the Pareto optimal SoC candidates.

This work tries to tackle the challenges of SW-defined SoCs approach related to the IP
packaging, IP-library preparation, IP Integration and the SoC design space exploration.
The next sections will provide the problem statements for this thesis and summarize the
contributions of this work.

1.2. Problem Statement

The core problem addressed in this work is to bridge the knowledge gap among the IP
suppliers and the SoC architects, while strengthening IP-based SoC design methodolo-
gies and IP reuse. This is to further help reducing the productivity gap between SoC
designers’ productivity and demands for increasing SoC complexities. In the IP-based
SoC design flow, one challenge for an IP supplier is to efficiently encode the IP integra-
tion knowledge. The key challenges for an SoC architect are to efficiently integrate IPs,

4

1.3. Contributions

synthesize SoC on HW platforms, implement HW drivers, utilize HW drivers in the SW
application for improving performances, and perform SoC design space exploration.

Current SW-defined SoC design flows are limited to semi-automated approaches using
high level synthesis for HW IP implementation. This significantly limits the usage of
available third-party HW IPs or IP libraries, restricts the SoC to limited architectural
configurations, and increases the effort to perform the SoC design space exploration.
Existing problems in the SW-defined SoCs include inefficient IP exchange and IP library
preparation, and lack of automated IP integration and SoC design space exploration
targeted on a domain-specific hardware IP library. This work tries to handle these
problems in the SW-defined SoC design while widening its scope to include third-party
domain-specific IP libraries.

The SW-defined SoC design and optimization is targeted to enable SoC system bring-up
on an FPGA platform. The HW-SW system prototyping on an FPGA gives better per-
formance correlation to the final SoC. However, SoC prototyping and DSE on an FPGA
require optimized HW-SW interfaces for data and control handling besides the genera-
tion of synthesizable HW project and compilable SW project descriptions. This work
addresses these challenges of generation of HW drivers to enable the SW applications to
efficiently utilize the available SoC resources.

1.3. Contributions

This work presents a novel approach for a SW-defined SoC design flow. The core ideas
of the method are, (1) encode knowledge exchanged between the IP supplier and the
SoC architect in machine-readable formats, (2) provide automation tools that can use
this encoded knowledge to automate IP integration, (3) use model-based approaches
and code generation to support any target HW prototyping platform. In order to be
independent of any custom models, the method binds to industrial standards such as
the IP-XACT IEEE 1685-2009 (IEEE 2009) and SW definition of the SoC functionality
based on C/C++.

Fig. 1.3 provides an overview over the proposed approach. It starts at the side of
the IP supplier, who generates a HW-accelerated software library (HASL). The HASL
includes the hardware IP implementations, e.g., in Verilog or VHDL (.v/.vhdl), the
interface descriptions using IP-XACT, and HW driver functions. As the key idea of
this approach, it proposes to additionally encode IP-integration knowledge using a set of
integration rules. The IP supplier encodes his strategy of efficient IP integration using
these IP-integration rules. Using the declaration of SW functions for the application and
the integration rules configurable HW drivers and simple schedulers are automatically
generated. Only basic customization steps to configure the values of the control registers
in the generated HW drivers are required from the IP supplier. The HW-SW interface
between the HW IPs in the library and software functions is provided in the HASL. The

5

1. Introduction

IP-Integration
Rules

IP-
Implementation

(.vhd, .v)

SW-Function
(.h/.c)

IP Interface &
Register Map

(IP-XACT)

HW-drivers
& Scheduler
Generation

IP-Integration
Rule Writing

HW-acc SW
function &

Drivers
Package

IP &
GRIP
Rule

Package

Hardware-
Accelerated

Software
Library
(HASL)

Software
Application

Initial SoC
Architecture

(IPXACT Design)

GRIP IP-
Integration

Engine

Design Space
Exploration

Engine

Candidate SoC
Architecture
(IP-XACT)

Code-
Generation

Engine

Target
HW-Project

Linux &
utility funcs

Chapter 3 Chapter 4 Chapter 5

IP Supplier SoC Architect
Platform

HAL drivers

Target
SW-Project

 DSE
Constraint
Definition

 DSE
Constraints

Figure 1.3.: The contributions of this work to bridge the knowledge gap between the IP
suppliers and the SoC architects using the GRIP flow

result is a set of SW functions that have the capabilities to run hardware-accelerated
using the available HW IPs.

The HASL forms the basis for bridging the gap between the IP supplier and the SoC
architect. The SoC architect defines an application using the hardware-accelerated SW
functions provided by the HASL. This SW definition for the SoC does not include any
HW-related information. Based on this SW-defined SoC, an automatic IP integration
is performed. In the proposed IP integration, first, an initial SoC architecture and the
rules are translated from IP-XACT descriptions to their graph representations. Then,
using the formal principles of graph grammars, also known as graph rewriting (Ehrig
et al. 1981),(Geiss et al. 2006), new HW IPs can be integrated into the SoC. The SoC
modeling in graph-space works transparently with IP-XACT, i.e. the IP-XACT SoC
description can be read-in or generated from the graph domain at any stage of the
design flow. All SoC modifications are transparent and can be backtracked or undone.
After each architectural change, the generated IP-XACT SoCs are verified for design
correctness. The consistency of bus protocols and signals is maintained during the IP
integration. An iterative application of the rules spans a design space exploration (DSE)
tree based on the IPs in the HASL. The proposed design flow enables a high-degree of
automation for the SW-defined SoC design. From here, we will call this proposed flow
the GRaph-grammar IP integration (GRIP) flow. In this work, an electronic design
automation (EDA) tool is implemented to support the GRIP flow, called the GRIP
tool.

The GRIP tool is implemented model-based such that code generation techniques can
be used to generate SoC implementation files for any hardware platform. The generated
files include SoC top-level descriptions for the HW project, the HW drivers as well as
a task scheduler for the SW project. The SW definition in C/C++ does not need to
be adapted, but the underlying HW driver functions are configured based on the SoC
architecture. The GRIP tool supports at the moment the generation of HW and SW

6

1.3. Contributions

projects for the Xilinx toolchain. With these project files, bare-metal and Linux-based
SW applications with HW acceleration can be compiled for the Xilinx Zynq FPGA
(ZedBoard 2012).

The main contributions of this work are:

1. The formalization of IP-integration knowledge in a set of IP-integration rules.
These rules describe the step-by-step IP-integration knowledge of an IP supplier
in a machine-readable form. They are described in the widely accepted IP-XACT
standard. The rules can encode structural modifications desired during the IP-
integration process. These rules are used in the GRIP flow to automate the IP-
integration process.

2. The automation of preparing the hardware-accelerated SW library. The HASL
bridges the knowledge gap between an SoC architect, a SW application developer
and an IP supplier. The generation of HASL uses the available HW information
of IPs and IP integration from IP packages to generate HW drivers and a simple
scheduler, eliminating the need for an SoC architect to dig into the hardware details
of an IP. The novelity of the approach is to use IP-XACT descriptions to generate
hierarchical HW drivers in the HASL. The hierarchical implementation of the HW
drivers helps to re-use the generated code, and hence eliminate the redundancy
within the generated HW drivers code. The HW drivers are generated both to
support a bare-metal application as well as a Linux OS based application.

3. The GRIP engine to automate the IP integration in an SoC using the IP-integration
rules available via HASL. The tool uses model-based languages and graph grammar
algorithms for implementation. At the first step, the IP-XACT description of the
input SoC design and the integration rules are transformed to the graph domain.
Graph transformations, corresponding to structural modifications in the SoC, are
obtained by applying graph grammar rules. One novel contribution is to repre-
sent an IP-XACT SoC with a corresponding graph representation in its complete
and contained form. This further helped to automate IP integration, HW drivers
generation, and SoC DSE by utilizing graph grammar.

4. The interactive search using the design space exploration (DSE) tree spanned by
iterative execution of rules, and thus an efficient design space exploration becomes
possible in an automated way. The size of DSE tree grows exponentially to the
number of available rules in the HASL. In order to restrict the exponential growth
of the DSE tree, DSE constraints can be applied motivated by the data flow of
the SW application. These constraints help prune non-optimal SoC candidates
for the target software applications. In the interactive DSE, an SoC architect can
also manually direct the step-by-step design exploration and back-trace undesired
structural changes.

7

1. Introduction

5. The code generation support for HW drivers and the SoC design files for the Xilinx
Zynq FPGA SoC platform. In the code generation, the platform-independent IP-
XACT SoC designs are transformed to the target platform-dependent descriptions.
It is an intricate step at which the generated HW drivers in HASL are associated
with the SW application using the configurations generated from the IP-XACT
SoCs. The final outputs of the code generation engine are the SW project and
HW project, which are respectively cross-compiled and synthesized for the target
platform using the platform-specific toolchains.

6. The last contribution of this work is to use the GRIP tool with feedback of perfor-
mance estimations of the generated SoCs. This is to dynamically guide the GRIP
tool for SoC architecture exploration. This is demonstrated for a problem of per-
formance monitoring of an SoC prototype on an FPGA. The insertion of hardware
monitors into an SoC for performance monitoring constrained to available FPGA
hardware resources was formulated as a bin-packing problem. The GRIP tool gen-
erated the minimum number of SoC candidates with hardware monitors required
for comprehensive SoC performance monitoring.

1.4. Publications on this Thesis

The key contributions of this work have been published in the following three conference
publications and one journal paper,

1. Jassi, M., Mueller-Gritschneder, D. & Schlichtmann, U. (2015): GRIP: Grammar-
Based IP Integration and Packaging for Acceleration-Rich SoC Designs, Proceed-
ings of Design Automation Conference (DAC 2015) S. 383–397

2. Jassi, M., Bordes, B., Mueller-Gritschneder, D. & Schlichtmann, U. (2015): Au-
tomation of FPGA Performance Monitoring and Debugging Using IP-XACT and
Graph-Grammars, 2015 International Conference on Synthesis, Modeling, Analysis
and Simulation Methods and Applications to Circuit Design (SMACD), S. 1–4

3. Jassi, M., Sharif, U., Mueller-Gritschneder, D. & Schlichtmann, U. (2016): Hardware-
Accelerated Software Libraries Drivers Generation for IP-Centric SoC Designs, 2016
International Great Lakes Symposium on VLSI (GLSVLSI), S. 287–292.

4. Jassi, Munish, Hu, Yong, Mueller-Gritschneder, Daniel & Schlichtmann, Ulf (2018):
GRIP - Graph-Grammar-Based IP-Integration - An EDA Tool for Software-Defined
SoCs, ACM Trans. Des. Autom. Electron. Syst. 23(3): 40:1–40:26.

The first publication (Jassi, Mueller-Gritschneder & Schlichtmann 2015) focused on the
SoC HW design automation, which presented the ideas of IP packaging, automated IP
integration and SoC design space exploration. These are the contributions 1, 3, and 4
of the previous section. In the second publication (Jassi, Bordes, Mueller-Gritschneder

8

1.5. Organization of the Thesis

& Schlichtmann 2015), the SoC HW design automation flow was utilized to solve the
problem of FPGA-based SoC performance monitoring. This work was awarded as the
second best EDA tools paper of the SMACD’15 conference. This is the contribution 6 in
the previous section. The third publication (Jassi et al. 2016) focused on the automation
of HW drivers and HW-SW interface generation, which are the contributions 2 and 5 of
the previous section.

This thesis combines these published works and presents a bigger picture as the GRIP
flow for SW-defined SoC design. The thesis presents the proposed GRIP flow as a SW-
defined SoC design methodology, and the associated EDA tools developed in this work.
The fundamental ideas of this big picture are also presented in the fourth publication
(Jassi et al. 2018). The GRIP flow is demonstrated on two computer vision (CV) ap-
plications case studies. These applications resemble the complexities of real-world use
cases. In both applications, the target SoC captures video frames from a physical camera
and perform CV tasks on the ARM Cortex-A9 CPU (ARM 2016). For the DSE, a few
of the CV tasks are progressively transferred to dedicated HW accelerators. The results
show a 4x to 150x processing time improvement with HW-accelerated image processing
when compared to pure SW processing for different case scenarios with and without
using an operating system.

1.5. Organization of the Thesis

The other chapters of this work are structured as follows. Chapter 2 discusses related
work and background. Chapter 3 discusses the IP packaging for the GRIP flow. Chapter
4 discusses the generation of HW drivers and HW-SW interface for the HASL. Chapter
5 describes the automated IP integration and DSE targeted on the prepared HASL.
Chapter 6 discusses the two CV case studies. Chapter 7 describes the FPGA-based SoC
monitoring problem. Finally, Chapter 8 concludes.

9

1. Introduction

10

2. Background

In this chapter, we will discuss previous contributions related to this work. We will also
overview the mathematical principles of graph grammars and existing frameworks for
model-based designs, which are utilized in this work.

2.1. State of the Art

The existing research works related to this thesis can be broadly segmented into the
following categories: model-based design, the IP-XACT standard and IP reuse method-
ologies, HW-SW interface and HW drivers, SoC design space exploration, and FPGA
bring-up and system performance estimations. Some of the key related contributions
are presented below.

Model-Based Design: In order to support VLSI design with progressive refinements
over various design abstractions, Gajski and Kuhn (Gajski & Kuhn 1983) proposed
the ’Y’ chart, with corresponding computer-aided design (CAD) tools to support the
model refinements. This approach is generalized and further standardized by the Object
Management Group (OMG) (Lecomte et al. 2011) for the Model Driven Architecture
(MDA) approach (OMG - MDA 2003). The MDA approach describes using platform-
independent models (PIM) in software development, and later refinements to platform-
specific models (PSM). These models are meant to be defined by using OMG standards,
like Unified Modeling Language (UML) (ISO 2004), MetaObject Facility (MOF) (OMG -
MOF 1997), and Common Warehouse Metamodel (CWM) (OMG - CWM 2003). Mean-
while, UML originated as a formal general-purpose modeling language, and was accepted
as an OMG and ISO standard. These model-based approaches were initially utilized for
software development, and were lated evolved for HW designs. Over time, many UML
profiles have been developed for HW designs, some of the popular ones include,

• SPT (OMG - SPT 2005) - Schedulability Performance Time,

• MARTE (MARTE 2007) - Modeling and Analysis of Real-Time Embedded systems,

• UML4SOC (OMG - UML4SOC 2005) UML for SoC,

• DIPLODOCUS (Apvrille et al. 2006) profile for fast SoC simulation and verifica-
tion,

• Tampere University of Technology (TUT) profile (Kangas 2006) describes SW ap-
plications, HW platforms, and mapping of them.

11

2. Background

A lot of tool chains have been developed to support various UML profiles. Papyrus
(Papyrus 2016) provides a development platform for the MARTE profile. ACCORD/UML
(Gérard et al. 2002) is developed to support real-time embedded systems using UML. In
(Ecker et al. 2008), the author used a UML profile for HW-SW interface code generation.
A work from D. Aulagnier et al. (Aulagnier et al. 2009) targets to develop SoC using
MARTE.

All these UML profiles above are restrained by limitations of UML to describe HW-
SW systems and Systems engineering semantics. Later, UML was extended with two
additional diagrams to form the SysML profile (OMG - SysML 2008) (requirements
diagram, parametric diagram), as a UML profile for the Systems engineering. However,
there are still key problems associated with using UML for HW designs (Ecker et al.
2009),

1. It is very tedious and lacks expressiveness to include the IP interface details in a
UML profile, like register memory map, bus and signal interfaces. This makes the
UML profiles impractical to use for IP exchange.

2. The UML profiles that describe HW designs as the PIM lack enough details to be
refined to HW models for the implementation on a target HW platforms.

The model-based approaches are seen as the most advanced methods for IP integration.
An overview of such works is presented in (Vincentelli et al. 2009). Two tools, Ptolemy
(Brooks 2005) and Metropolis (Balarin 2001) are described, which focus on model-based
and platform-based design. Yet, these approaches still require the SoC architect to
understand the inherent trade-off and requirements of third-party IP components. Thus,
these methods are very valuable for system design and early prediction but do not solve
the discussed challenges of IP reuse.

IP-XACT and IP reuse: IP-XACT originated to describe IP interfaces in the user-
friendly XML format to promote IP reuse. IP-XACT is a widely accepted IEEE 1685-
2009 (IEEE 2009) standard for electronic design descriptions. It is established by the
Accellera Initiative (Accelera 2009). The initial industrial use cases of IP-XACT are
presented by (Kruijtzer et al. 2008), which illustrates using IP-XACT for integration of
IP cores and design verification. A few works have also proposed vendor extensions to
IP-XACT standard to include timing information (Khan et al. 2008), software related
features (Kamppi et al. 2013), and reconfigurable computing (Nane et al. 2011). The
work from (Ochoa-Ruiz et al. 2011) used IP-XACT for dynamic partial reconfiguration
systems. That work also presented using IP-XACT component interfaces meta-data
information for verifying the interfaces. The work from (Liu et al. 2012) comes close to
ours, it explored describing IP components using SystemC and later generating high-
level synthesis on these components for complete implementation. This is a top-down
flow that cannot make use of third-party IP components. There have been few works
focusing on the UML profile to IP-XACT transformations, and vice-versa. The work

12

2.1. State of the Art

presented by C. Andre et.al. (André et al. 2008) used the MARTE UML profile to model
IP-XACT descriptions.

IP-XACT is an accepted SoC modeling standard, and is continuously being revised,
IEEE-1685-2014 (IEEE 2014) (revision to IEEE-1685-2009 (IEEE 2009)). By using IP-
XACT as interface to the GRIP tool, the tool benefits from the advantages of this
standardization.

SoC Design Space Exploration: The earlier works on SoC optimization focused
on heuristic-based methods. The works from (Li et al. 2005) and (Ascia et al. 2004)
tackled this problem using genetic algorithms. The works from (Ferrandi et al. 2010),
(Bhattacharya et al. 2010), and (Beltrame et al. 2010) respectively used ant-colony
optimization, particle-swarm optimization, and Markov decision process for exploration.
The work from (Lukasiewycz et al. 2009) used graph-based models for simultaneous
optimization of the design, process mapping and communications in a system. Another
work from (Givargis & Vahid 2002) developed the Platune tool that optimizes the SoC
platform parameters.

The DIPLODOCUS profile is used by L. Apvrille et.al. (Apvrille et al. 2006) to perform
system design space exploration. This profile benefits from the independent application
and architecture modeling. On the UML application models, this work uses SystemC
simulations and static analysis for fast estimations. It maps the application models on
the architecture models, and later refinements to the final implementation.

The work presented in (Kamppi et al. 2013) is also related to the presented work in
this thesis. It proposes extensions to IP-XACT to include SW changes for any HW
change. Another related work from (Herrera et al. 2012) proposed IP-XACT extensions
to include additional information on SW mapping. The IP-XACT models are extracted
from MARTE and executable performance models are generated targeted to SCoPE
(Botella et al. 2010) for performance estimations.

One common thing that is lacking in the existing methods is the encoding of design
knowledge and incremental structural optimization. In industrial SoC designs, SoC
architectures are incrementally optimized from the previous generation SoCs. Various
SoC architecture alternatives are explored using SoC prototying. This requires encoding
of design knowledge for repeatability and incremental optimization. Additionally, the
earlier works do not allow to encode the knowledge of IP integration and the SoC design
generation for targeted HW platforms. This work facilitates all these requirements for
IP integration in the industrial SoC designs. The SoC optimization targets an IP library
and provides required HW & SW code generation from IP-XACT for enabling SoC
prototyping on FPGAs.

Software-defined SoCs: The recent Xilinx Software-defined SoC (SD-SoC) develop-
ment platform (Xilinx 2015) provides a comprehensive platform for performing auto-
mated HW-SW partitioning of designs targeted for Xilinx-FPGAs. The limitation of
this platform is that it uses high-level-synthesis to implement IP components with fixed

13

2. Background

register-map for setting communication flags. This limits its usage to integrate custom
third-party IPs and allows only restricted SoC architectural changes. The generated
drivers limit the HW usage to few fundamental operations and are non-extendible. Ta-
ble 2.1 compares the key features of the SD-SoC platform, DIPLODOCUS UML profile
based DSE and the GRIP tool.

Features Xilinx SD-SoC DIPLODOCUS
UML DSE

GRIP Tool

SoC Modeling Support IP-XACT DIPLODOCUS
UML

IP-XACT

Targeted platform-specific model HDL (FPGA) SystemC HDL (FPGA)
HW-SW Co-design YES YES YES
HW drivers generation YES NO YES
SW-defined SoC design space exploration YES NO YES
HW-platform independent IP integration NO NO YES
Third-party IP-library (IP exchange) NO NO YES
Customized IP-integration schemes NO NO YES

Table 2.1.: Comparison of the key features of the Xilinx SD-SoC, DIPLODOCUS UML
DSE and the GRIP tool

HW-SW co-design: Most of the earlier works on the HW-SW co-design used custom
specification language to describe the HW-SW partitioning, and used code generation
for synthesizing the hardware and software projects. In the work from (Chou et al.
1995) a HW-SW co-synthesis tool, Chinook, is developed that uses HW-SW design
behavior specifications, and it generates hardware drivers and resource allocation using
the specifications. In (King et al. 2012), the HW-SW interface is described by using
Bluespec codesign language, which also describes the HW-SW partitioning. There are
other works that dealt with the HW-SW co-design for unix-OS-based systems from
(Ryzhyk et al. 2009) (Chen et al. 2014) (Wang et al. 2003) (Katayama et al. 2000) (King
et al. 2015). In contrast, this thesis does not define any new specification language
to describe HW-SW partitioning. This work differs from earlier works by proposing
encoding IP-integration knowledge in IP-XACT rules, i.e. the knowledge of HW-SW
mapping and the SoC design space is encoded within the available rules in the IP library.
Further, this work proposes pruning of the design space using the DSE constraints, and
the SW drivers generation.

FPGA bring-up and system performance estimations: There exists a lot of
research work on system performance estimations for SoCs at various abstraction levels.
For FPGA-based SoC prototyping, fast FPGA bring-up is very important. The paper
(Gries 2003) reviews the major developments in design space exploration till early 2000s.
It describes the challenges for design evaluation as well as the simulation and analytic
models for system evaluation used during early design phases. The paper gives an essence
of utilizing evaluation at multiple abstraction levels for doing extensive design space
exploration (DSE) for hardware systems. (Densmore et al. 2006) proposes a method for
improved estimations from the simulation engines by annotating the FPGA generated

14

2.2. Background

performance analysis. In that work new system architectures are generated by permuting
directly the FPGA-vendor system specification files. In contrast, this work proposes a
fast FPGA prototyping by automating the SoC modeling, and a vendor-independent
IP-XACT description for SoCs that can later be targeted on a specific FPGA.

Work from (Guo et al. 2008) looked into FPGA-based performance analysis for crypto
IPs when used in the scope of a complete system. Additional Timer and Debug IPs
were manually integrated into the system for estimating one set of performances and
removed for the other set. For complex heterogeneous SoCs, requiring detailed anal-
ysis, a manual approach would become impractical. In Chapter 7, we will discuss
about using bin-packing algorithms to perform design partitioning for SoC monitor-
ing. (Coffman 2013) reviews bin packing algorithms. Recent work from (Lewis 2009)
proposes the hill-climbing method for the minimum grouping problem. The GRIP work
on FPGA performance monitoring, in general, does not focus on finding a better bin-
packing algorithm, but to formulate the problem in-hand, finding an optimal solution
and automating the FPGA bring-up process. In the GRIP approach, required analy-
sis tasks can be formulated using provided interfacing methods and hence is extendible
(limited by available FPGA resources).

Model-based languages: For the implementation of the GRIP tool, we have opted for
using model-based languages and tools. The paper from (Paige et al. 2009) presents and
compares the principles behind different approaches to implement domain-specific lan-
guages for model management and discusses the Epsilon model management framework.
The GRIP tool is implemented using the Eclipse Modeling Framework (EMF) (Eclipse
Modelling Framework (EMF) 2011), and the Epsilon (Epsilon 2006) family of languages
and tools for model operations. This work uses the following modeling languages, Ep-
silon Object Language (EOL) (Epsilon - EOL 2006), Epsilon Validation Language (EVL)
(Epsilon - EVL 2006), Object Constraint Language (OCL) (OMG - OCL 2006), and the
Java FreeMarker template engine (Java - FreeMarker 2015).

2.2. Background

The foundation of this work lies in the principles of graph grammar and model-based
tools, like OCL, EMF, OVL, & EVL. This section will discuss the theory of graph
grammars and the model-based tools used in the GRIP tool.

2.2.1. Graph Grammars and Graph Rewriting

Graphs have been used for formulating structural information in computer science,
mechanical & electronic engineering, and bioinformatics (Königseder & Shea 2014a)
(Königseder & Shea 2014b) (Buchmann et al. 2012). Over time, multiple tools have

15

2. Background

Left Hand Side Right Hand Side
l1

context context

(b)

h1

Host Graph New Graph
after Rule Application

M A T C H -> CHOOSE -> A P P L Y

(a)

l2

l3

l4

r1

r4
r3

r5

h2

h5

h6

h3
h4

h1
h2

h3
h4

r3

h7

r2

r2

Figure 2.1.: (a) A sample graph-rewriting rule with the LHS and the RHS pattern; (b)
Graph matching and application of the rule on the host graph

been developed to support graph-grammar-based modeling and structural transforma-
tions (GrGen tool v3.0 20011) (Booggie tool 2009) (eMoflon n.d.). Graph grammars
are based on sound mathematics and offer a well-formulated way of describing evolving
structural systems using graphs. The challenges of the evolving structures are: encoding
the desired changes, localization of the changes, validation of the correctness of the final
structures, and guiding & back-tracing the changes. Graph grammars can conveniently
deal with these requirements. Yet, they require the target domain model to transform
correctly and completely to the graph domain and vice-versa.

The structural changes in the graphs are achieved by using the principles of graph
rewriting. Graph rewriting offers rule-based encoding of structural changes, and the
application of rules on a host graph achieves those desired changes. A rule consists of
a pair of graphs: a left-hand-side (LHS) pattern graph and a right-hand-side (RHS)
rewriting graph. The graph rewriting is a three-step process, which is illustrated in
Fig. 2.1 on a simple example. In the first step: match step, a match of the LHS is found
in the initial host graph. A match is a sub-graph of the host graph, which has the same
graph structure as the LHS, and whose node and edge properties match with the LHS.
In Fig. 2.1 the nodes have properties indicated by their shape. In the choose step one of
possible several matches is selected. Finally, in the apply step, the host graph is modified
by replacing the LHS with the RHS to generate the new host graph. In the example, a
new node r5 is added and nodes l2 and l3 get modified to nodes r2 and r3 respectively.
These modifications are applied on the node properties, in this case illustrated by the
shape of the nodes. Thus, one needs also to know whether a certain node of the RHS
reflects a new node or a modification of an existing node. It can also be seen that the

16

2.2. Background

nodes h2 and h3 are part of the matching process but remain unmodified. They form
the context of the rule, which is kept unchanged during rule application as it is common
to both sides. The context can be used to describe conditions under which the rule can
be applied. We use a model-based graph rewriting approach described in Section 5.2. It
allows to formally describe the matching process in the LHS as well as the required steps
for node modification and creation in the RHS using model-based languages. Model-to-
model transformations can be used to move across the domain meta-model, in our case
among the IP-XACT domain and the graph domain.

2.2.2. IP-XACT Modeling of SoCs

A meta-model is a model of the model which represents the valid structure of the model.
In this work, we have used the meta-model for SoC architectures described by the IP-
XACT IEEE 1685-2009 standard. All the SoC architectures used in this work, whether
those are the input SoCs or the generated output SoCs, are confined to IP-XACT. IP-
XACT describes a system using XML files. An IP-XACT design object can be described
using the available meta-models for component instances, bus and signal interconnec-
tions, library references, and vendor-specific customization. An IP-XACT design object
can be seen as an SoC netlist. The IP-XACT component objects are described for
their input and output bus ports and signals, parameters of configurable components,
clock and interrupt signals, and memory-mapped registers and bit fields. An IP-XACT
component object defines the interfaces of an IP component. The standardization of
IP-XACT enables the portability of IP components across multiple vendors to support
IP reuse.

Fig. 2.2 describes a simplified IP-XACT design and component modeling hierarchy as
a UML diagram. An IP-XACT XML file describes either a design or a component un-
der the DocumentRoot element. An IP-XACT design contains component instances,
bus and signal interconnections, memory-map, top-level design IO ports, and design
parameters. Each instantiated component in the IP-XACT design is described in its
respective IP-XACT component instance file, and has a reference to a library compo-
nent uniquely referred by the VLNV (vendor, library, name, version). The IP-XACT
component instance describes the buses and signal pins I/O interfaces, registers and bit-
field memory maps, and configuration parameters. The bus interfaces of an IP-XACT
component refer to BusAbstraction abstractions via VLNV. The BusInterface describes
a bundle of signal ports for a bus protocol. Further, the signal ports are described with
their respective signal types, directions, and vector widths for their usage as Master,
Slave, Mirrored-Master, or Mirrored-Slave. This hierarchical system description makes
it suitable to accumulate design knowledge at multiple usage levels and realize reuse at
different design abstractions. In this work, we have utilized this hierarchy of IP-XACT
while implementing the GRIP engines for IP-XACT design validation and IP integra-
tion. It helped the implemented algorithms to abstract the design details at the signals
and registers level to the buses and interfaces level, and hence speed-up the processes.

17

2. Background

Figure 2.2.: Simplified UML model diagram for IP-XACT showing design and compo-
nents hierarchies

2.2.3. Model-Based Design (MBD)

Model-based design (MBD) addresses the problems of designing complex systems by
utilizing models that characterize continuous-time or discrete-time functional behav-
iors of complex blocks used in the systems. It has been instrumental in improving the
productivity of designing complex engineering systems in previous years, especially in
automotive, industrial and software engineering (Denney & Trac 2008). In MBD, the
low-level implementations of system modules are abstracted by their high-level behav-
ioral models. The models are complete to interpret the desired characteristics and leave
away unnecessary details. By using MBD approaches, a designer can focus on integration
of models to design a complete system, analyze and verify high-level system functional-
ities, rather on the implementation details. It helps finding system errors in the early
design phases, rectifying and optimizing the system, and save time and effort spent on
developing extensive software code and detailed system implementations. Later, after
designing the complete system, the same models can be used with code generators to
implement a system.

2.2.4. Eclipse Modeling Framework (EMF)

For the implementation of the GRIP tool, we have used the eclipse modeling framework
(EMF). EMF is a powerful framework for model-based design, which provides a frame-
work for interpreting, modeling, code generation and run-time facilities for developing

18

2.2. Background

new software tools based on structured data models. It is a Java-based platform and
provides powerful utilities to handle models and XML files based on meta-models defined
in the Ecore format. Ecore is the meta-model used by EMF to describe other models.
Ecore is similar to an UML class diagram. EMF automatically generates the required
Java classes and API to work with models defined by the meta-model. There are three
types of code generation supported by EMF,

a. Model classes generation, it contains all the interface and implementation classes
for the data model described by the meta-model.

b. Adapter classes generation, it contains the Java classes to adapt the model classes.

c. Editor generation, it provides the classes for Eclipse model editor.

EMF allows also to generate Ecore meta-models from XML Schema. An XML Schema
describes the structure of an XML file. It defines constraints on the tags, elements and
the content of the desired XML descriptions. In this work, we have used the XML Schema
for IP-XACT published by (Accelera 2009) to generate the Ecore IP-XACT meta-model
and API. Using these EMF generated IP-XACT meta-model and API, custom model-
to-model transformations are implemented to the graph domain. In the graph domain,
Ecore meta-models can be defined for describing nodes and edges and their configuration
properties.

2.2.5. Model-Based Languages

The model-based approach for the SoC domain and graph domain enables to use formal
model-based languages and tools, including Object Constraint Language (OCL), Epsilon
languages and Freemarker for the implementation of the GRIP tool.

Object Constraint Language (OCL)

The Object Management Group (OMG) published the Unified Modeling Language (UML)
standard (UML ISO/IEC 19505-1 2011) for general-purpose objects modeling, especially
for software systems. UML provides a graphical way to describe and analyse software
designs. The visual UML modeling is accurate and complete, and leaves less space for
ambiguities and misinterpretations. One key element in UML is the class diagram, which
describes the class objects and relationship between them. However, UML is limited in
usage to describe constraints on the class attributes and methods. OCL is a specification
language which is very powerful to query UML models and can be used to write rules
to specify model properties to some legal values or ranges. It is released by the OMG
and published as ISO/IEC 19507 (OCL ISO/IEC 19507 2012), as an extension to UML.
OCL is a declarative language, i.e. it only specifies what computation to be performed,
but without how that computation must be performed. This makes it a side effects free

19

2. Background

programming language, which doesn’t modify the states of calling functions. OCL has
precise semantics and can be used to specify invariants of objects, which must remain
true through the lifetime of an object. OCL can also formally define constraints on pre-
and post conditions on model operations and methods.

In this work, OCL is used together with EMF to implement an IP-XACT verification
tool. It reads component definitions from the IP-XACT formated library and translates
design rules into OCL rules. These rules are then checked to verify whether compo-
nents are integrated legally in an SoC design under consideration. In Fig. 2.2, we can
observe the class relationship for signal connections. The class SignalConnection has
an associational relationship with multiplicity of one-to-many with the classes Inter-
nalPortReference and ExternalPortreference. The association is of type ”composition”,
i.e. the InternalPortReference and ExternalPortReference classes can not exist inde-
pendently of the class SignalConnection. Each of these reference classes contains the
attribute of type of the class Port. However, this UML class diagram does not specify
what are the legal signal connections, in other words, what are the legal attributes for the
InternalPortReference and ExternalPortReference classes for a legal signal connection.

These legality constraints are specified by the OCL constraints. In the following are a
few examples of the OCL invariant constraints,

1 s e l f . ex t e rna lPor tRe f e r ence −> s i z e () = 0 and
s e l f . i n t e rna lPo r tRe f e r e nc e −> s i z e () = 1

Code 2.1: OCL constraint checks for floating signal connections

s e l f . model . por t s . port−>s e l e c t (p : PortType | p . wire . d i r e c t i o n =
ComponentPortDirectionType : : out)−>c o l l e c t (p : PortType | p . name)−>
s i z e () > 1

Code 2.2: OCL constraint checks for the nets with multiple masters

Code 2.1 checks for floating nets in an IP-XACT design by evaluating if a signal net
has only one connected port. Code 2.2 checks for the nets with multiple masters. It
evaluates if a net has more than one connected ports with ’out’ direction.

Epsilon Languages and Tools

Previously, we have seen the domain-specific richness of IP-XACT and EMF Ecore
meta-model to model an SoC. Besides, the MBD also requires the model-management
languages for constraining, modifying, validating and transforming the models. Fig.
2.3 shows the four key components required for the model-based design methodologies.
These model management components interact with the model-handling framework dur-
ing model design. Extensible Platform for Specification of Integrated Languages for
mOdel maNagement (Epsilon) is a family of languages and tools for model operations,

20

2.2. Background

model-to-model transformations, constraint validation, and code-generation. The Ep-
silon family of languages consists of Epsilon Object Language (EOL), Epsilon Transfor-
mation Language (ETL), Epsilon Validation Language (EVL), Epsilon Generation Lan-
guage (EGL), Epsilon Wizard Language (EWL), Epsilon Comparison Language (ECL),
and Epsilon Merging Language (EML). In our work we have extensively used EOL and
EVL for the implementation of the graph re-writing engine.

Model-Based Design
Model-Handling Framework

Model-to-Model
Transformations

Model
Constraints

Model
Validations

Model Refinement
(Code Generation)

Figure 2.3.: Key components required for model-based designs

EOL (S. Kolovos et al. 2006) is a model management language which is used for modi-
fying, creating and querying models. It is a meta-model-independent language extended
from OCL. It overcomes the limitations of OCL, e.g. OCL can’t be used for modifying,
and creating new elements which is essential for model modification. Unlike OCL, EOL
allows sequential statements for queries on models, besides it also supports debugging
and error queries, model modification, and access to multiple models. In this work,
EOL is used to describe the creation and modification of nodes during the apply step of
graph rewriting. Code 2.3 shows an example OCL script to create a bus interconnection
between a CPU component (CPU 1) and a bus (bus 0).

var i n t e r c o n n e c t = new Interconnect ionType ;
2 var i n t e r f a c e 1 = new I n t e r f a c e ;

i n t e r f a c e 1 . componentRef = ” bus 0 ” ;
4 var i n t e r f a c e 2 = new I n t e r f a c e ;

i n t e r f a c e 2 . componentRef = ”CPU 1” ;
6 i n t e r c o n n e c t . a c t i v e I n t e r f a c e . add (i n t e r f a c e 1) ;

i n t e r c o n n e c t . a c t i v e I n t e r f a c e . add (i n t e r f a c e 2) ;
8 Interconnect ionType . a l l . add (i n t e r c o n n e c t) ;

Code 2.3: An example EOL script for adding a new bus interconnection.

EVL is a model validation language which uses constraints on a model. EVL (Epsilon
- EVL 2006) inherits most of the OCL features, additionally it supports dependencies
among the constraints. In this work, EVL is used to implement the graph matching step.
Code 2.4 shows an EVL example script for the component instance matching, it specifies

21

2. Background

constraints to match the desired IP instance (component) name and library name. In the
code, it can be seen that the constraint: type has a guard before check. This ensures
that the constraint: size must be satisfied before checking the constraint: type.

An engine is provided by Epsilon to execute those languages in the EMF platform. It
can read model objects from Java and modify them according to EOL scripts or return
a boolean value showing whether they satisfy rules defined in EVL scripts.

FreeMarker Template Language

FreeMarker is a code generation engine to generate text outputs from templates and
a Java object. Templates are composed of a mixture of sections, including the text,
interpolation and FreeMarker Template Language (FTL) tag. The text section is printed
to the output as it as. The interpolation section can print a calculated value, which can
use both standard math and string operators provided by FTL and member methods of
the input Java object. The FTL tag sections are used to provide programming language
features, such as conditional statements, loops and containers. This template code
generation engine is used to output the platform-specific files. Code 2.5 is an example
FreeMarker template for generating EVL script as in the code 2.4. The template provide
placeholders for variables identified by ’$’, which get the values from Java function
calls.

1 context EObject{
c o n s t r a i n t s i z e {

3 check : s e l f −>s i z e () = 1
}

5 c o n s t r a i n t type {
guard : s e l f . s a t i s f i e s (” s i z e ”)

7 check : ComponentInstanceType . a l l . s i z e () = 1
}

9 }

11 context ComponentInstanceType{
c o n s t r a i n t r e f {

13 check : s e l f . componentRef . name = ” bus 0 ”
}

15 c o n s t r a i n t l i b {
check : s e l f . componentRef . l i b r a r y = ” soc ”

17 }
}

Code 2.4: An example EVL script for checking valid identifiers of a component.

22

2.2. Background

1 <#−− the template input i s an ”ComponentInstanceType”−−>
<#−− the template output i s an EVL f o r ”ComponentInstanceType” −−>

3 context ComponentInstanceType{
c o n s t r a i n t r e f {

5 check : s e l f . componentRef . name = ”${getComponentRef () . getName () }”
}

7 c o n s t r a i n t l i b {
check : s e l f . componentRef . l i b r a r y = ”${getComponentRef () .

ge tL ibrary () }”
9 }
}

Code 2.5: An example FreeMarker template file for generating an EVL script file.

2.2.6. ZedBoard FPGA

In this work, FPGAs are chosen to be the target HW platform for SoC system prototyp-
ing. Specifically, the Digilent ZedBoard FPGA (ZedBoard 2012) is targeted by the GRIP
tool engines. The GRIP code generation engine transforms the IP-XACT SoC descrip-
tions to the HW specifications for the ZedBoard FPGA. The ZedBoard is an evaluation
and development board based on the Xilinx Zynq-7000 All Programmable SoC. Besides,
the board supports multiple IO interfaces: UART, USB, Ethernet, VGA, HDMI, PMOD
- Peripheral Module interface, Push Buttons, and FMC - FPGA Mezzanine Card.

Xilinx Zynq Chipset

The Xilinx Zynq (Xilinx 2016) is among the first generation of FPGA chipsets that
provide both a powerful hard-wired CPU and HW programmable fabric on the same
chip. The architecture of the Zynq chip is split in two parts: Programmable System
(PS), and Programmable Logic (PL). The PS part contains the ARM Cortex-A9 dual
core processor, and few other hard-core IO interface IP components, including USB,
UART, QSPI, GPIO, DMA, etc. The PL part is the FPGA part, which provides 106K
FFs and 53K LUTs in the programmable fabric. The data transfers across the PS and
PL parts can occur either through two General Purpose (GP) AXI-Lite interfaces, or
four High Performance AXI4 interfaces. Additionally, there are other signal interfaces,
including GPIOs, memory interfaces, interrupts, clocks and resets etc. Fig. 2.4 shows
the block diagram for the Zynq chipset.

23

2. Background

Programmable
Logic

High-Performance Ports ACP

AXI GP 32 bit
AXI HP 64 bit
AXI4 Stream

GP0

Processing System

.

.

.

.
OCM

Interconnect
256K

SRAM

Memory
Interfaces
SRAM/

NOR
ONFI 1.0
NAND
Q-SPI
CTRL

IRQ

Clock
Generation

Reset SWDT

 TTC

System
Level

Control
Resigter

DMA 8
Channel

512 KB L2 Cache & Controller

DDR2/3,
LPDDR2

Controller

DAP
Programmable Logic to Memory

Interconnect

M
IO

I/O
Peripherals

USB
USB
GigE
GigE
SD

SDIO
SD

SDIO
GPIO
UART
UART
CAN
I2C
I2C
SPI
SPI

2 x USB
2 x GigE
2 x SD

Central
Interconnect

General-Purpose Ports DMA Sync IRQEMIO

DevC

CoreSight
Components

Memory
Interfaces

Application Processing Unit

FPU and NEON FPU and NEON

ARM Cortex-A9 ARM Cortex-A9

32 KB
I-Cache

32 KB
D-Cache

32 KB
I-Cache

32 KB
D-Cache

GIC Snoop Controller, AWDT, Timer

HP0

FFs: 106400
LUTs: 53200
BRAM: 560
DSP: 200

Figure 2.4.: Block diagram of the Zynq chipset with PS and PL parts

Xilinx ISE Toolchain for FPGA

Xilinx provides the software toolchain for the SoC modeling, synthesis, as well as soft-
ware application development and compilation for the ZedBoard. The Xilinx Embedded
Development Kit (EDK) is a combination of Xilinx Platform Studio (XPS) and the
Software Development Kit (SDK). The XPS tool provides the development environment
for designing the hardware project of the embedded system. It can be used to add
desired IPs to an existing design and create interconnections between the IP compo-
nents. The configurations of processor and other HW IPs, interconnection among these
IP components and their address maps can be specified in XPS.

The SDK is an integrated development environment, complementary to XPS, that is used
for C/C++ embedded software application development and SW binaries generation.
SDK may also be used to debug software applications. SDK is based on the Eclipse
open-source framework.

24

2.3. Conclusions

2.3. Conclusions

In this chapter, we discussed about the previous key research works related to the model-
based designs, HW-SW co-design, IP reuse, IP integration, and the IP-centeric SoC
design space explorations. The chapter compared the key contributions of the GRIP
tool to the existing solutions. It advocated the need of more automation in the scope of
SW-defined SoCs and SoC DSE to bridge the knowledge gap among the two actors in
the SoC design: the IP supplier, and the SoC architect.

Lastly, we had an overview on the principles of graph grammars, and the existing tools
and technologies for model-based design, which are utilized during the implementation
of the GRIP tool.

25

2. Background

26

3. IP Packaging for Automated IP Integration

”On the digital side, it means if traditionally we shipped a piece of RTL to the customer,
you shipped documentation that goes along with it, the customer is going to figure out
how to use this IP. So, they [customers] ask us, ‘Hey, you ship us this IP, you ship
us documentation, but we have no time to read this. Help us more.’” Johannes Stahl,
Director System-Level, Synopsys, Inc.

3.1. Introduction and Problem

The increasing IP reuse has put a lot of burden on the efficient exchange of IP knowledge
from the IP supplier to the SoC architect. For the SoC architect, an efficient IP exchange
means to acquire sufficient knowledge to quickly integrate a new IP into an existing
SoC in its most suitable configurations. At the same time, adapt the associated SW
application to efficiently utilize the available HW resources. This problem becomes
many-fold when multiple IPs are available in an IP library for an SoC DSE. A typical SoC
can contain tens of IP components with thousands, even tens of thousands of registers
and a number of SRAMs.

The IP supplier prepares an IP package in order to transfer an implemented IP and
associated IP knowledge to the SoC architect. The IP package contains description
of an IP in the hardware description language (HDL), hardware interface abstraction
models (e.g. IP-XACT, SystemC), HW drivers, and documentations. A challenge for the
IP supplier is to understand the system contexts in which the prepared IP will be used,
and provide the required IP-integration information in the documentations. The SoC
architect must extract the required information of valid bus protocols and interfaces for
an IP, signal connections for interrupts, control and clock ports, configuration of control
registers, data-communication handling and other relevant operational information. The
standardization of IP interfaces using IP-XACT standard has facilitated to bridge the
knowledge gap between the IP supplier and the SoC architect.

The main contribution of this chapter is the IP packaging to efficiently encode the IP-
integration knowledge. The proposed packaging extends the current IP packaging with
the additional information on the IP integration using the machine-readable integration
rules, which are described in IP-XACT. The definition of rules uses the principles of
the graph grammars. The chapter will discuss the rules definition using IP-XACT,
completeness of the rules for different IP-integration scenarios, rules verification for their
correctness and the rules preparation.

27

3. IP Packaging for Automated IP Integration

3.2. IP Packaging with IP-Integration Rule

In this chapter, we are proposing a solution to overcome the hassle of extracting the IP-
integration information from an IP package. Fig. 3.1 shows the traditional IP packaging,
which contains RTL descriptions of an IP, IP interface descriptions in IP-XACT, and
IP documentation. In the proposed solution, the IP supplier can describe IP-integration
knowledge using IP-integration rules. Each IP-integration rule describes one incremental
change of the SoC architecture. The SoC architect can use these IP-integration rules to
automate the IP-integration. The rules must be easy to develop, hence the rules must
utilize the existing SoC modeling standards and available modeling tools.

HW
IP-Package

IP
Documentations

(.doc/.pdf)

IP
Implementation

(.v/.vhdl)

IP Interface &
Register Map

(IP-XACT
Component)

Ref. by
VLNV

Interface+Bus
Library

(IP-XACT
BusDefinition

IP-XACT
Component)

Figure 3.1.: Traditional IP packaging includes hardware descriptions, abstracted IP in-
terfaces and documentation

3.2.1. What is an IP-integration rule?

The IP-integration rules are motivated by graph rewriting principles of the graph gram-
mar theory (Sec. 2.2.1). Each IP-integration rule is composed of a left-hand-side (LHS)
pattern design and a right-hand-side (RHS) pattern design. The LHS and RHS patterns
are defined with IP-XACT design objects. The LHS pattern is matched to the input
host SoC design. The match of LHS serves two purposes; first, it confirms the availabil-
ity of required IP components in the host design, second, the found match localizes the
position at which the change must be attained. The RHS pattern defines the desired
changes, i.e. the IP-integration, on the host design. The IP integration is associated
with changes in bus interfaces, signals and register configurations to other components
on the host SoC, these changes are also specified by the RHS pattern. The application
of a rule is a three step process, I. Match, II. Choose, III. Apply. In the match step,
the LHS pattern is searched in the host SoC design. If the LHS pattern is found in the
host design, and if multiple matches are found, as a next step, one of those matches is

28

3.2. IP Packaging with IP-Integration Rule

IP & GRIP
Rule

Package

IP
Documentations

(.doc/.pdf)

IP
Implementation

(.v/.vhdl)

IP Interface &
Register Map

(IP-XACT
Component)

IP-Integration
Rule

(2x IP-XACT
Design)

LHS
(IP-XACT
Design)

RHS
(IP-XACT
Design)

Ref. by VLNV

Interface + Bus
Library

(IP-XACT
BusDefinition,

IP-XACT
Component)

Figure 3.2.: The proposed IP packaging includes the IP-integration knowledge using IP-
integration rules on top of traditional IP package

chosen. In the final apply step, the chosen LHS match in the host design is replaced
by the RHS pattern of the rule. The IP integration steps are explained in Chapter 5.
Figure 3.2 shows the inclusion of IP-integration rules as an extension to the traditional
IP packaging. The IP-integration rules must satisfy few necessary aspects of SoC design
methodologies to make it suitable for SoCs. In Section 3.2.2, we will discuss the key
characteristics of the IP-integration rules necessary for SoCs.

In IP-based SoC design, there are various structural changes of interest in an SoC. The
IP-integration rules must assure the completeness of accommodating all possible SoC
structural changes and scope of future extensions. Section 3.2.3 discusses the complete-
ness of encoding structural changes using the IP-integration rules.

In the GRIP approach, all the SoC structural changes take place in the graph domain.
One challenge here is to accurately model the SoC descriptions and IP-integration rules
in the graph domain. The transformation functions for IP-integration rules must be
a bijection from the IP-XACT domain to the graph domain. This bijection assures
that the SoC design descriptions can be transparently transformed among the IP-XACT
domain and the graph domain at any stage of the SoC structural transformations using
the GRIP tool. The SoC description transformation from the IP-XACT domain to the
graph domain is described in Section 3.2.4. These graph domain SoC descriptions are
utilized later-on for verfication of IP-integration rules, as will be described in Section
3.3.

29

3. IP Packaging for Automated IP Integration

3.2.2. Characteristics of IP-Integration Rules

The IP-integration rules for SoCs must satisfy following characteristics to be suitable for
automating IP-integration.

1. Standardization: The description of IP-integration rules must extend from the
existing methodologies and standards for SoC implementation. In the proposed
methodology, the IP-integration rules and the SoCs are described using the IP-
XACT standard. It avoids the requirement to learn new modeling languages, also
benefits from reuse of available IP-XACT SoC and IP interface descriptions from
earlier projects. This is useful when modeling an SoC architecture one-time and
targeting to multiple platforms during design refinement.

2. Completeness: The integration rules must cover all possible structural change sce-
narios in an SoC during IP-integration, and also be flexible for custom extensions.
Since all the structural changes are performed in the graph domain, the com-
pleteness of structural changes require appropriate modeling of SoCs in the graph
domain to abstract the heterogeneity of SoCs in the IP-XACT domain without
losing any necessary information.

3. Localization: The desired structural changes during the IP integration are tar-
geted at specific locations in an SoC w.r.t. existing IPs and bus-systems. The
IP-integration rules must support to encode knowledge on localization in an SoC
for attaining localized structural changes. In the proposed IP-integration rule defi-
nition, the left-hand-side (LHS) design pattern assures the localization of a desired
change in an input host SoC.

4. Verification: One essential element while attaining a rule-based change in an input
design is that the change shouldn’t lead to an infeasible output design. The design-
incorrectness in an integration rule will result in a structurally-incorrect final output
design after application of the rule. Therefore, the integration rules must be verified
for design correctness before applying them on SoCs.

5. Repeatability: The repeatability of a rule application is necessary to record the SoC
structural changes, and iteratively apply those changes for progressive refinement
of SoC architectures. Repeatability is also required to concatenate multiple rules
for bigger architectural changes. Chapters 6 and 7 will describe a few case studies
on SoC structural optimization using the IP-integration rules.

6. Handling: Writing, or editing an IP-integration rule should not be overhead for
an IP supplier. Any new custom programming language to describe IP integration
steps and HW-SW mapping would be an additional overhead for the IP supplier
and SoC architect. In our work, all graph modeling and graph-grammar algorithms
are kept hidden from the users, and all the user interfaces are via the IP-XACT
standard.

30

3.2. IP Packaging with IP-Integration Rule

All these characteristics are satisfied by an appropriate graph-domain modeling of SoCs,
graph-rewriting principles to localize the desired change, an OCL-based SoC verification
engine, choosing model-based approaches, and using IP-XACT for rules definition. The
rest of this chapter and next chapters will describe these topics in detail. Section 3.2.3
describes completeness. The localization is achieved by applying graph grammars on
graph abstractions of IP-XACT SoC descriptions, this is described in sec. 3.2.4. Section
3.3 describes verification of IP-XACT rules and SoC. Sec. 3.4 describes steps to write IP-
integration rules for the GRIP tool. The repeatability and iteration of rules application
is explained in Sec. 5.4.

3.2.3. Completeness of the Rules - Typical Cases for Rule Application

When considering the structural modifications in an SoC, there are global as well as local
modifications. The global modifications include, addition, removal or modification of IP
components, bus systems, and the interconnections. The local modifications are within
the IP components, which include changes in IP parameters, IP-library component map-
ping, register memory map etc.. By the nature of these hardware modifications, most of
them are independent of each-other and can be transformed into concatenation of sim-
plified modifications. While, the interdependent hardware modifications where multiple
IP components are required for the tasks processing and/or data communication, those
must be described using a single IP-integration rule.

The specific IP-integration scenarios are formulated by the IP supplier, who has full
knowledge about his IP components and their optimal integration. We have identified a
range of typical SoC modifications listed below, which describe standard IP integration
steps:

1. Adding a new bus system.

2. Adding an IP component or IP subsystem in parallel on an already existing bus.

3. Adding an IP component or IP subsystem in parallel on a new dedicated bus.

4. Adding a new IP component in pipeline.

5. Removing an existing IP component from an SoC.

6. Modifying bus or signal connections, without changing IP components.

7. Modifying IP component parameters, without any structural change.

The corresponding IP-integration rules for each class of changes are illustrated in Fig.
3.3. For each rules definition, a pair of IP-XACT design descriptions, one for the LHS
and one for the RHS design pattern, must be prepared, e.g. using existing tools that
provide a graphical interface such as (Kactus2 tool 2012). In the figure, the modifications
in existing IPs from LHS to RHS are highlighted by yellow, while newly added IPs are

31

3. IP Packaging for Automated IP Integration

highlighted by blue in the RHS pattern designs. The integration rules are integrated
into the IP & IP-integration rule package (Fig. 3.2). The rules also allow to compose IP
subsystems. An IP subsystem is an SoC part that consists of two or more IP components.
As can be seen, most rules of Fig. 3.3 integrate IP subsystems composed of a hardware
accelerator IP and VDMA (video direct memory access) IP.

The rule 1 in Fig. 3.3 encodes adding a new bus system, axi3, to an SoC which satisfies
the corresponding LHS design pattern. During this modification, few signals of the CPU
(ps7_system) are altered (CLKs, RST) to accommodate the new bus system, which is
highlighted by the yellow color (for simplicity, signals are not shown in the figure). For
the rule 2, integration of an IP subsystem consisting of a hardware accelerator (HA)
IP connected to a video direct memory access (VDMA) IP is shown. The HA and
VDMA IPs are connected via axis (AXI-streaming bus protocol) bus interface. The
new subsystem is added to an existing bus-system in the LHS design (axi3). The rule
3 is an integration of a HA and VDMA IP subsystem on an additional dedicated bus
system. This complex rule can be simplified as concatenation of rule 1 and rule 2. The
complex rules can help to reduce the size of generated DSE tree. Rest of the rules are
the manifestations of the descriptions above.

The IP instances in an IP-integration rule description (both LHS and RHS) are as
described in the corresponding HASL. The IP instance mapping from the IP-integration
rule to the HASL is defined during the IP-integration rule writing, and is essential for
the rules verification.

3.2.4. Graph Transformation: IP-XACT to Architecture Graph (AG)

In the GRIP tool, the IP-XACT rules and the host design descriptions are first trans-
formed to corresponding architectural graph representations (AGR). The architectural
graph is an undirected graph. Each node and edge can store arbitrary parameters with
different types, names and values. According to their data types, graph elements can be
categorized into three types of nodes and two types of edges as follows.

1. IP component instance nodes: Each IP component instance is one node in the
architectural graph (AG). Since in the IP-XACT standard, a bus-system is also
instantiated as a IP component, each bus system is a node in the AG. These
nodes contain common parameters that are the instance name and the compo-
nent identifier, including the vendor name, the library name, the component name
and the version (VLNV). Besides, each node also contains parameters that are
specific to its instantiated IP component, such as component configuration, avail-
able bus interfaces and signal ports, memory spaces and so on. Code 3.1 shows
a sample IP-XACT design file, in which IP components are instantiated as the
componentInstances XML element. The IP component parameters are extracted
from an IP-XACT component file, including VLNV and the IP component identifier
under their respective XML elements (Code 3.2).

32

3.2. IP Packaging with IP-Integration Rule

Left hand side (LHS) design Right hand side (RHS) design

ps7_systemCamIF

hdmi vdma0

axi1
axi2

GRIP
Rule 4

GRIP
Rule 2

GRIP
Rule 3

GRIP
Rule 7

GRIP
Rule 5

GRIP
Rule 6

ps7_systemCamIF

hdmi

vdma0

axi1
axi2
axi3

vdma1

ER_top

vdma2

GR_top
axis

ps7_systemCamIF

hdmi

vdma0

axi1
axi2

vdma2

GR_top

axi3

axis

#PARAM 44
#SIGNALS 6

#PARAM 4
#SIGNALS 2

#SIGNALS ALTERED 4

#SIGNALS 1

axis

vdma1

ER_top

ps7_systemCamIF

vdma0

axi1
axi2

vdma1ER_top

axi3
axis

hdmi

ps7_systemCamIF

hdmi vdma0

axi1
axi2
axi3

ps7_systemCamIF

hdmi

vdma0

axi1
axi2

vdma2

GR_top

axi3

axis

#PARAM 44
#SIGNALS 6

#PARAM 4
#SIGNALS 2

#SIGNALS ALTERED 4

#SIGNALS 1

axis

vdma1

ER_top

ps7_systemCamIF

hdmi

vdma0

axi1
axi2

vdma1

ER_top

axi3

axis
#SIGNALS 1

ps7_systemCamIF

vdma0

axi1
axi2

vdma1ER_top

axi3
axis

#PARAM 44
#SIGNALS 6

#PARAM 4
#SIGNALS 2

#SIGNALS ALTERED 4

#SIGNALS 1
hdmi

ps7_systemCamIF

vdma0

axi1
axi2

vdma1ER_top

axi3
axis

#PARAM 44
#SIGNALS 6

#PARAM 4
#SIGNALS 2

#SIGNALS ALTERED 4

#SIGNALS 1
hdmi

ps7_systemCamIF

vdma0

axi1
axi2

vdma1ER_top

axi3
axis

hdmi

ps7_systemCamIF

hdmi vdma0

axi1
axi2

GRIP
Rule 1

ps7_systemCamIF

hdmi vdma0

axi1
axi2
axi3

CamIF

hdmi vdma0

axi1
axi2
axi3

ps7_system
#SIGNALS ALTERED 4

ps7_sys

axi1

axi2

camIF

vdma0
hdmi

Left hand side (LHS) AG Right hand side (RHS) AG

vdma1

ER_top

axi3

axi1

axi2

camIF

vdma0
hdmi

ps7_sys

vdma1

ER_top

axi3
ps7_sys

axi1

axi2

camIF

vdma0
hdmi

ps7_sys

axi1

axi2

camIF

vdma0
hdmi

ps7_sys

axi1

axi2

camIF

vdma0
hdmi

axi3

ps7_sys

axi1

axi2

camIF

vdma0
hdmi

axi3

vdma1

ER_top

axi3
ps7_sys

axi1

axi2

camIF

vdma0
hdmi

vdma1

ER_top

axi3
ps7_sys

axi1

axi2

camIF

vdma0
hdmi

vdma2

GR_top

vdma1

ER_top

axi3
ps7_sys

axi1

axi2

camIF

vdma0
hdmi

ps7_sys

axi1

axi2

camIF

vdma0
hdmi

vdma1

ER_top

axi3
ps7_sys

axi1

axi2

camIF

vdma0
hdmi

vdma2

GR_top

vdma1

ER_top

axi3
ps7_sys

axi1

axi2

camIF

vdma0
hdmi

vdma2

GR_top

ps7_systemCamIF

vdma0

axi1
axi2

vdma1ER_top

axi3
axis

#PARAM 4
hdmi

#PARAM 4

vdma1

ER_top

axi3
ps7_sys

axi1

axi2

camIF

vdma0
hdmi

vdma1

ER_top

axi3
ps7_sys

axi1

axi2

camIF

vdma0
hdmi

Figure 3.3.: Standard IP-integration rules for the possible structural modification sce-
narios.

33

3. IP Packaging for Automated IP Integration

2. Bus-interface nodes: Each bus interface associated to an IP component instance is
one node. It is always connected with another bus-interface node and one instance
node, which owns this bus interface. Each bus-interface node has only one parame-
ter that is the name of the interface. This name should be contained in the available
bus interfaces of the connected IP instance node. The IP instance node also stores
properties of the bus interface, such as the interface protocol, data width, etc..
The bus interfaces of an IP component are available under busInterfaces XML
element in an IP-XACT component file.

3. Signal port nodes: Both signal ports of each IP component and primary input-
output external signal ports of an SoC are represented with nodes. These nodes
have common parameters, including port name, MSB index and LSB index. The
internal port node is connected to another port node and one instance node, while
the external port node is only connected to another port node. The signal ports
are available under model XML element in an IP-XACT component file.

4. Logical connection edges: They are used to connect IP component instance nodes
to bus-interface and signal port nodes. It is only a logical connection to store an
IP component instance to which the ports and bus interfaces belong. These logical
connections are available through IP-XACT component description files.

5. Physical connection edges: They are used to connect two bus-interface nodes or
two signal port nodes. They represent physical nets in an SoC. Each of these edges
also keeps a parameter for their respective net name. The physical connections are
represented in IP-XACT design file under the XML elements, interconnections
for bus interconnections and adHocConnections for signal connections.

Code 3.1: A sample IP-XACT design file showing the key XML elements

34

3.2. IP Packaging with IP-Integration Rule

Code 3.2: A sample IP-XACT component file showing the key XML elements

Fig. 3.3 shows the graph representations of various IP-integration rules. Each of these
node and edge classes are modeled with the EMF Ecore meta-model. This allows to
use model-based languages for rewriting these nodes as will be shown in chapter 4. The
architectural graph can be generated from the IP-XACT description using IP-XACT2AG
transformation. As IP-XACT and AG nodes and edges are all modeled with the EMF
Ecore, a model-to-model (M2M) transformation can be used. The architectural graph
can be transformed back to an IP-XACT design without any loss using AG2IP-XACT
M2M transformation, by using IP-XACT component descriptions from the associated
IP library. Fig. 3.4 shows the M2M transformation of an example IP-XACT design to
the corresponding AG. For simplification, the nodes and edges corresponding to signal
connections are not shown in the AG. Further, a simplified AG is shown without the bus-
port nodes. In the figure, the dashed-red, green and black edges respectively correspond
to AXI-Lite, AXI-Stream and AXI4 bus protocols. All buses are transformed to EMF
Ecore edge classes with their respective configurations.

ps7_systemClkGen CamIF

vdma0

hdmi

spi

spiIFtxi2s

iic

axi0
axi1
axi2

ps7_sys

axi0

axi1

axi2

spi
i2s

iic
clkgen

camIF

vdma0

hdmi

 dma

 i2s

 dma
axis

IP-XACT design

ps7_sys

axi0

axi2

spi

i2s
axi1

vdma0 hdmi i2s dma

clkgen

iic

camIF

Architecture Graph (without signal nodes & edges) Simplified Architecture Graph

IP-XACT2AG

AG2IP-XACT

Figure 3.4.: Figure shows the model-to-model transformation of an IP-XACT design to
the corresponding architecture graph

35

3. IP Packaging for Automated IP Integration

3.3. Verification of Integration Rules

Before the GRIP integration rules are applied to a host design, they must be checked for
design correctness. The GRIP verification engine checks for the validity of LHS and RHS
design patterns of each IP-integration rule. The valid LHS and RHS patterns assure that
the structural changes by the application of the IP-integration rule will not result in an
invalid output SoC design. A single incorrect rule when applied iteratively would result
in consecutive generation of invalid designs. There are two types of verification under
consideration, static verification and dynamic verification. The static verification of an
IP-integration rule verifies the correctness of LHS and RHS IP-XACT designs before
applying the rule. It is performed during the IP packaging and IP-library preparation
stages in the IP-XACT design space. The dynamic verification is required during the
process of rule application, which ensures the valid structural modifications are applied
in the graph space.

3.3.1. Static Verification of IP-Integration Rules

The valid IP-XACT input SoCs and the IP-integration rules are necessary to ensure the
correctness of SoC models in the graph space and further the correctness of encoding
structural modifications. The static verification of the IP-integration rules includes the
verification of both the LHS and RHS design patterns. The IP-XACT design verifi-
cation tasks can be broadly segmented into two categories: IP component checks and
interconnection checks.

IP component checks:

1. IP bus-signal ports verification

2. Floating IPs checks

3. IP design parameters verification

Interconnection checks:

1. Bus interconnection verification

2. Signal connection verification

3. Primary I/O signal connection verification

4. Special signals, clock, interrupt, power-ground checks

The IP component checks verify the correct instantiation of IP components in an IP-
integration rule w.r.t. the corresponding component definitions in the IP library. The
same checks are also applicable for correct instantiation of IP components in the SoC
design. It verifies if all the bus and signal ports are correctly utilized in the design,
and also check for floating IPs and the range of parameters values. The interconnection

36

3.3. Verification of Integration Rules

checks are for maintaining the bus and signal integrity of the design. It verifies the bus
port connections (e.g. Master to Mirror Master), multiple drivers and floating nets, and
handles the special signal nets.

In this work, the IP-XACT SoC design verification framework is developed using model-
based languages, object constraint language (OCL). OCL is a specification language
and can be used to write rules on legal values or ranges of XML model properties. This
work, in my knowledge is the first effort to develop a design verification framework for
IP-XACT using model-based formal methodologies.

2 p r i v a t e s t a t i c void ge n e r a t e I n t e r c o nn e c t i on C on s t r a i n t s (<args >) {
. . .

4 q u e r i e s [i] = o c l . createQuery (he lpe r . createQuery (” s e l f .
b u s I n t e r f a c e s . bus In t e r f a c e−>s e l e c t (i : BusInter faceType | not i . ”
+s +” . oc l I sUnde f ined ())−>c o l l e c t (i : BusInter faceType | i . name)−>
asSet () ”)) ;

6 // generate c o n s t r a i n t s
S t r ing [] [] searchMap = {

8 { ”0” , ”0” , ”1” , ”1” , ”Master” , ” S lave ” } ,
{ ”1” , ”0” , ”0” , ”1” , ”Master” , ” S lave ” } ,

10 { ”0” , ”0” , ”1” , ”2” , ”Master” , ” MirroredMaster ” } ,
{ ”1” , ”0” , ”0” , ”2” , ”Master” , ” MirroredMaster ” } ,

12 { ”0” , ”1” , ”1” , ”3” , ” Slave ” , ” MirroredSlave ” } ,
{ ”1” , ”1” , ”0” , ”3” , ” Slave ” , ” MirroredSlave ” } } ;

14 . . .

16 cs += ” ((s e l f . a c t i v e I n t e r f a c e−>at (1) . componentRef=’”
+ c i [I n t e g e r . pa r s e In t (searchMap [k] [0])]

18 + ” ’ and s e l f . a c t i v e I n t e r f a c e−>at (1) . busRef=’” + p1
+ ” ’ and s e l f . a c t i v e I n t e r f a c e−>at (2) . componentRef=’”

20 + c i [I n t e g e r . pa r s e In t (searchMap [k] [2])]
+ ” ’ and s e l f . a c t i v e I n t e r f a c e−>at (2) . busRef=’” + p2

22 + ” ’) or (s e l f . a c t i v e I n t e r f a c e−>at (1) . componentRef=’”
+ c i [I n t e g e r . pa r s e In t (searchMap [k] [2])]

24 + ” ’ and s e l f . a c t i v e I n t e r f a c e−>at (1) . busRef=’” + p2
+ ” ’ and s e l f . a c t i v e I n t e r f a c e−>at (2) . componentRef=’”

26 + c i [I n t e g e r . pa r s e In t (searchMap [k] [0])]
+ ” ’ and s e l f . a c t i v e I n t e r f a c e−>at (2) . busRef=’” + p1 + ” ’)) ” +

” or ” ;
28 . . .

}

Code 3.3: OCL constraints generation for correct bus interconnections in an SoC design

37

3. IP Packaging for Automated IP Integration

1 p r i v a t e s t a t i c void generateAdHoconnect ionConstra ints (<args >) {
. . .

3 switch (i) {
case 0 :{ s = ” out ” ; break ;}

5 case 1 :{ s = ” inout ” ; break ;}
}

7 q u e r i e s [i] = o c l . createQuery (he lpe r . createQuery (” i f not s e l f . model .
por t s . o c l I sUnde f ined () then s e l f . model . por t s . port−>s e l e c t (p :
PortType | p . wire . d i r e c t i o n = ComponentPortDirectionType : : ”+s+”)−>
c o l l e c t (p : PortType | p . name)−>asSet () e l s e Set { ’ nu l l ’}−>asSet ()
e n d i f ”)) ;

. . .
9 St r ing cs = ” (s e l f . name . su b s t r i ng (s e l f . name . s i z e ()−2, s e l f . name . s i z e

()) = ’ vdd ’) or ”
+ ” (s e l f . name . su b s t r i n g (s e l f . name . s i z e ()−2, s e l f . name . s i z e ()) = ’

vss ’) or ”
11 + ” (s e l f . name . su b s t r i n g (s e l f . name . s i z e ()−2, s e l f . name . s i z e ()) = ’

vcc ’) or ”
+ ” (s e l f . ex t e rna lPor tRe f e r ence −> one (er :

ExternalPortReferenceType | ” + eos
13 + ”) and not s e l f . i n t e rna lPo r tRe f e r enc e −> e x i s t s (i r :

Interna lPortReferenceType | ” + i o s + ”)) ”
+ ” or (not s e l f . ex t e rna lPor tRe f e r ence −> e x i s t s (e r :

ExternalPortReferenceType | ” + eos
15 + ”) and s e l f . i n t e rna lPo r tRe f e r enc e −> one (i r :

Interna lPortReferenceType | ” + i o s + ”)) ”
+ ” or (not s e l f . ex t e rna lPor tRe f e r ence −> e x i s t s (e r :

ExternalPortReferenceType | ” + eos
17 + ”) and not s e l f . i n t e rna lPo r tRe f e r enc e −> e x i s t s (i r :

Interna lPortReferenceType | ” + i o s
+ ”) and (s e l f . ex t e rna lPor tRe f e r ence −> e x i s t s (e r :

ExternalPortReferenceType | ” + e i o s
19 + ”) or s e l f . i n t e rna lPo r tR e f e r enc e −> e x i s t s (i r :

Interna lPortReferenceType | ” + i i o s + ”))) ” ;
. . .

21 }

Code 3.4: OCL constraints generation for correct signal interconnections in an SoC design

The required OCL constraints for static verification are dynamically generated according
to the IP-XACT IP library, and design rule constraint templates. The generated OCL
constraints are evaluated on the SoC design under verification. The code 3.3 shows an
OCL constraint that checks for the correct bus ports usage as defined in the IP library.
In this, the queries array is of size 4, and it collects all the Master, Mirror Master,
Slave, and Mirror Slave bus ports of each IP from the IP library. The table searchMap

38

3.3. Verification of Integration Rules

(2D array) defines the valid bus interconnections (eg. a Master to Mirror Master port).
Then, according to this table, all the OCL constraints for valid bus interconnections are
generated in the cs String. This check is iterative performed for all the SoC design bus
ports. The codes 2.1 and 2.2 respectively are for floating nets and multi-master nets
checks. As can be seen that verification checks are modular and independently target
dedicated design checks. The checks are applied on SoC design descriptions in IP-XACT,
and can be modified and extended as the IP-XACT standard evolves.

The code 3.4 generates OCL constraints to verify correct signal connections. The special
nets, including power-ground nets are excluded from the signal interconnection checks. In
the code, the queries accumulate all the out and inout ports of IP library components,
and OCL constraints are generated for valid signal connections originating from these
output ports. For all externalPortReference XML elements (IP-XACT SoC primary
input-output ports), constraints are generated for valid IN direction to the IN direction
of internalPortReference elements (signal pins on IP components).

Fig. 3.5 describes the OCL constraints generation and evaluation steps involved in the
static verification engine. The inputs to the IP-XACT verification engine are the IP-
XACT SoC description, IP library and design parameter constraints (optional). The
engine generates all the required OCL constraints, and sequentially evaluates the gener-
ated constraints on the SoC design under test, as according to the earlier descriptions.

Generate IP
Ports & Pins

OCL
Constraints

Generate
Floating IPs

OCL
Constraints

Evaluate IP
Ports & Pins
Constraints

Evaluate
Floating IPs
Constraints

Evaluate
Design

Parameters
Constraints

Generate
Bus

Connections
OCL Constraint

Generate
I/O & Signal
Connections

OCL Constraint

Evaluate
Bus

Connections
Constraints

Evaluate
I/O & Signal
Connections
Constraints

IP-XACT
IP Library

IP-XACT
Design

Under Test

OCL Design
Parameters
Constraints

(optional)

Verification
Reports

IP Components Static Verification Checks

Interconnections Static Verification Checks

Figure 3.5.: Block diagram of IP-XACT static verification engine

3.3.2. Dynamic Verification of IP-Integration Rules

The dynamic verification confronts structural modifications during IP integration on
a host SoC design. Though the modifications described by an IP-integration rule are
independent of the host SoC design, when an IP-integration rule is applied to a host
SoC design multiple design conflicts can arise because of newly added or modified IP

39

3. IP Packaging for Automated IP Integration

components and interconnections. All these design conflicts must be probed and resolved
for correct IP integration. The dynamic verification considers the IP-integration rule
together with the host IP-XACT SoC design to which the rule is being applied. Some
of the identified conflicts are listed below.

1. IP component or bus instance conflicts between the host SoC design and the RHS
pattern of the rule.

2. Signal and bus net conflicts among the host SoC and the RHS pattern.

3. Ports or pins conflicts between existing bus or signal interconnections of the SoC
and new interconnections in the RHS design.

4. Floating nets when disconnecting an interconnection from a pin or bus port.

5. Handling of special signals, interrupts, clock signals and power-ground nets.

6. Legalization of IP components and nets names for the final output IP-XACT SoC.

Dynamic Verification Checks and Conflicts Resolution

IP-
Integration

Engine

Candidate
SoC

Design

SoC
Design

Legalization

Legal
Candidate

SoC
Design

Host
SoC Design

Graph

IP-XACT
IP Library

Resolve
Signal Ports

Conflicts

Resolve
Special
Signals

Resolve
Names

Conflicts

Resolve
Bus Ports
Conflicts

Rule
Graph

(RHS & LHS)

Figure 3.6.: IP-XACT dynamic verification and conflicts resolution during IP-integration

When using graph grammars for the IP integration, the structural changes as described
in the RHS are performed on the host SoC, so only RHS pattern of the IP-integration
rule is utilized during the dynamic verification. These mentioned conflicts are han-
dled in the graph domain within the verification engine. The engine uses IP interface
information available via the associated target IP library for various steps during veri-
fication. Figure 3.6 summarizes the dynamic verification and conflict resolution during
the IP integration. At first, the RHS pattern of a IP-integration rule is compared to
the host SoC design, which labels all the signals, nets and ports conflicts in the RHS
pattern. Then, a copy of the RHS pattern is created and appropriately modified to
resolve the labelled conflicts. The bus ports conflicts are resolved by iteratively recon-
necting the conflicting connections to the available equivalent bus ports (reconnect if
not used). If no equivalent bus port is available, the verification engine flags an er-
ror and the IP integration fails. For signal connections conflicts, the signal nets of
RHS pattern and the SoC design are merged as long as each net has single driver pin
(direction: OUT). If signal merging leads to multiple driver pins for a net, the engine
flags an error and the IP integration fails. The interrupt signals are handled sepa-
rately, by default, a new interrupt signal (in the RHS pattern) is considered as the

40

3.4. Writing an IP-Integration Rule

least priority extension to existing interrupts in the host SoC. At the end of the gen-
eration of new candidate SoC, the final design is legalized for the bus, signal, IP in-
stance logical name conflicts. The design legalization is performed hierarchically for
faster runtime. First, all IP instances names are uniquified, all conflicts are resolved by
adding unique post-fix integer. Second, the bus names are derived by concatenating,
<From instance name>_<From instance bus port name>_<To instance bus port

name>_<To instance name>. Next, the interconnection names are derived by concate-
nating, <From instance name>_<From instance pin port name>.

3.4. Writing an IP-Integration Rule

The IP-XACT standard provides the required XML elements to describe the IP interfaces
and SoC designs, both for platform-independent as well as platform-specific descriptions.
The platform specific details are used by the code generator engine to generate HW
projects for the target HW platform. In this work, the GRIP tool is targeted to support
the IP integration and SoC DSE on the Xilinx Zynq FPGA chipset. This section will
describe the writing of IP-integration rules to target a Xilinx Zynq FPGA.

In the IP-integration rules, the required platform specific details are included in the
parameter XML elements and the design descriptions. The Xilinx synthesis tool uses an
SoC description in the Microprocessor Hardware Specification (MHS) format. Following
are the key elements in an MHS description,

1. Top-level SoC I/O ports (direction, type, and size) and design parameters

2. IP component instances in an SoC with their parameters, clocks, memory map etc.

3. Bus-system instances with bus properties, clocks, bus ports etc.

4. Port-based bus and signal interconnections among instantiated IP components

5. Special signal nets, system clocks, interrupts, power-ground

The first step is to describe the bus protocols used in SoCs in IP-XACT. The target
hardware platform (Zynq FPGA) uses ARM-based bus protocols, including Advanced
Extensible Interface 4 (AXI4), AXI Lite, and AXI Stream (AMBA Specifications 2012).
These bus protocols are described in their busDefinition IP-XACT files. The descriptions
include the required logical signals, together with their respective properties (direction,
size, type etc.) for all bus types (Master, Slave, Mirror Master, and Mirror Slave).

The second step is to describe the IP-XACT components required for the SoCs. The
available bus definitions are used to describe the IP component bus interfaces, and are
references by VLNV (vendor, library, name, version) XML elements. The IP component
signal ports and parameters are described according to the Xilinx MHS specifications.
Moreover, each IP component is also described for registers and bit-field memory map.

41

3. IP Packaging for Automated IP Integration

It should be noted that the Xilinx hardware synthesis (using an MHS file) doesn’t require
the register memory map. However, it will be required for generating hardware drivers
and scheduler for software applications, as it will be discussed in chapter 4.

As a next step, these IP components are instantiated in IP-XACT design descriptions for
LHS and RHS patterns. For the LHS design pattern, those IP components are instanti-
ated that are prerequisites in a host SoC design for desired structural modifications. The
RHS design pattern contains a set of IP components according to the desired structural
modifications. In the IP-integration rules, the data communication as described by the
bus interconnections in the LHS design are prerequisites for the rule application (edges
in the graph space). However, signal connections of the LHS pattern are not set as the
prerequisites, i.e. the signal connections of LHS pattern are not matched to signals of a
host SoC during IP integration. The IP-integration still makes signal connection changes
according to the differences between LHS and RHS patterns. The GRIP IP-integration
engine makes modifications in a host SoC design according to the following guideline,

1. All changes in bus and signal interconnections from the LHS to RHS pattern,
including addition, removal, or modification.

2. Addition or removal of IP components from the LHS to RHS pattern.

3. For the matching IP components between LHS and RHS patterns: all new IP com-
ponent parameters in the RHS pattern are appends in a host SoC, and parameters
with the identical keys are updated according to values from the RHS pattern.

4. The system I/O ports, and parameters are modified as from LHS to RHS pattern.

5. A new interrupt signal in the RHS pattern is appended as a least priority interrupt.

6. Register map for each IP component is kept unchanged.

3.5. Conclusions

This chapter presents one key idea of including the IP integration knowledge using IP
integration rules in the IP packages. These IP-integration rules are based on the graph
rewriting principles of graph grammar theory. An IP-integration rule has a left-hand-side
(LHS) pattern design and a right-hand-side (RHS) pattern design, described in the IP-
XACT standard. Each IP-integration rule describes one incremental change of the SoC
architecture. By confining the IP data to the existing IP-XACT standard, it increases
usability and portability.

The chapter discusses the completeness of SoC structural modifications using the IP-
integration rules. It describes the associated GRIP engines to support rule-based IP-
integration encoding, including OCL verification engine, IP-XACT to architecture graph
representation (AGR) transformations.

42

4. Library Preparation - Hardware-Accelerated Software
IP-Library

”Exacerbating the problem is the ever-present tension and lack of communication between
chip architects and software developers, who generally have a limited understanding of
what’s going on inside the hardware. Yet these architects, developers, and hardware
designers must work together as a team if the newest phase of the SoC revolution –
platform-based design –is to become a reality for more than just a few large companies
with vast resources.”, Jack Shandle and Grant Martin, EEtimes.

4.1. Introduction and Problem

A few IP suppliers, like Xilinx OpenCV HW IP library (Stephen et al. 2015), supply
multiple hardware IPs as a HW IP library for performing functional tasks of a specific
application domain, e.g. computer vision domain. This domain-specific library also
packages hardware drivers associated to the HW IPs. These HW drivers are utilized by
the software developers to implement target software applications. While using these IP
libraries, the software developers have to overcome a few challenges, as follows,

1. For utilizing available hardware resources, a SW developer must handle the initial-
ization of the HW system, as well as setting the control register values of HW IPs,
e.g. enabling or disabling processing, polling, data communication, synchronization
etc.

2. While performing an SoC design space exploration (DSE) targeted to a domain-
specific IP library, an SoC architecture goes through progressive structural changes.
Adapting a target software application for each architectural change can be tedious.

3. If a desired HW-SW system utilizes an operating system (OS), another challenge
is to reconfigure kernel-space drivers and build the OS kernel for each new SoC.

4. Another challenge is to take care of task scheduling on available HW resources, and
appropriately handle the data processing control among the CPU and the hardware
accelerator sub-systems.

To overcome all these challenges, the SW developer is required to understand hardware
details of the target SoC system. It can be quite challenging for a software developer with
insufficient HW knowledge to implement hardware interface and control functions.

43

4. Library Preparation - Hardware-Accelerated Software IP-Library

In this chapter, we propose to resolve some of the mentioned software application devel-
opment challenges by automatic generation of HW drivers by utilizing HW information
available in the proposed IP packaging (in the previous chapter). The proposed stack
of generated HW drivers of an IP library is divided into two levels: hardware-access
drivers and HW-SW interface. The GRIP HW drivers generation engine uses IP-XACT
design, component interfaces and register-map information to generate hierarchical HW
drivers and a simple scheduler. In the generated HW-access drivers, at the lowest-level
are hardware abstraction layer (HAL) drivers which are specific to a target hardware
platform, then there are hardware IP drivers, and finally IP-subsystem drivers. The
proposed HW-SW interface in this work associates the generated HW-access drivers to
their corresponding functions in the software library. This HW-SW interface sched-
ules an application task either as a SW task (available from SW library) on a CPU or
on a dedicated HW accelerator. The accesses to multiple HW accelerating subsystems
are handled by a generated Scheduler, which also forms a part of the generic HW-SW
interface. These two layers of drivers - HW-access drivers and the generic HW-SW in-
terface form the hardware-accelerated software library (HASL). The objective of this
proposed HASL is to make hardware IP usage as simple as using a function call to the
SW library.

The main contribution presented in this chapter is the hierarchical generation of HW
drivers and the proposed generic HW-SW interface in compliance with the HW-access
drivers from IP-XACT descriptions for both OS and non-OS environments. This en-
ables SW applications to get automatically adapted to an underlying SoC architecture,
especially during DSE.

4.2. Generic Hardware-Software Interface

In addition to the IPs and IP-integration rule packages, the HW-accelerated SW library
also contains a package with the generic HW-SW interface and the HW-access drivers.
These software codes need not to be written all manually but can be partly generated
by the IP supplier based on the IP-XACT descriptions. This proposed automation of
IP drivers code generation conceals HW details while providing access to HWs as simple
function calls for the software applications. Separating the complete automation into
the generic HW-SW interface and hardware-access drivers makes the solution modular
and improves the scope of automation.

Fig. 4.1(a) shows that in the traditional software development a software needs to be
adapted when an underlying SoC architecture changes. Using the proposed generic HW-
SW interface, SoC architectural changes are accounted by automatically adapting the
generic HW-SW interface and drivers (Fig. 4.1(b)). Figure 4.2 describes the flow diagram
to access the HW resources from the SW application using the generated HW drivers. In
this approach, a function call from the software application goes to the generic HW-SW

44

4.2. Generic Hardware-Software Interface

HW-SW IF &
HW Drivers

Application
(ver.-α)

HW-SW IF &
HW Drivers

HW IP-1 HW IP-2

IRQDATA

IRQDATA

Application
Layer

Hardware
Layer

HW-SW
Interface

Application
(ver.-β)

HW IP-1 HW IP-2

HW Driver

Application
(ver.-α)

HW Driver

HW IP-1 HW IP-2

Application
(ver.-α)

HW IP-1 HW IP-2

Generic HW-SW IF Generic HW-SW IF

HW Driver HW Driver

Application
Layer

Hardware
Layer

HW-SW IF
Automated
generation
from IP-XACT

(a)

(b)

HW-SW IF &
HW Drivers

Figure 4.1.: a) SW adapting for the traditional HW-SW interface, b) proposed generic
HW-SW interface, interface accommodates the HW changes,

interface, and the task scheduler performs the hardware checks to execute the SW tasks
on a CPU or on a dedicated HW IP subsystem. It checks for the existence of targeted
IPs or IP subsystem in an SoC, and if the IP subsystem is ”not busy” for allocating
an application task. If multiple IP subsystems exist in an SoC for an application task,
the scheduler does round-robin-based task allocation. The generic interface provides an
identical function call access to the SW as by the SW methods. For the target SoC, the
HW-SW interface functions use generic configs (IPs base-address, interrupt IDs, register
maps and drivers mapping for OS) obtained from the IP-XACT design descriptions.

In the Linux OS based systems, the virtual memory space is divided in two levels - kernel
space and user space. The kernel space contains the HW drivers that are included and
compiled together with the Linux kernel. The user space contains the SW applications
and the user-space drivers, which are pre-compiled or compiled together with the SW
application. The generic HW-SW interface forms a part of the user space.

Additionally, the generic HW-SW interface contains a few other functions for interrupt
handling and initializing. These functions are used to associate the interrupts from HW
subsystems to general interrupt controller (GIC) used in the SW application, in order
to handle interrupt-based control synchronization (using interrupt service routines).

45

4. Library Preparation - Hardware-Accelerated Software IP-Library

Function Call from
a SW Application

HW Subsystem
Exists

Execute SW
Function (SW Lib)

HW Subsystem(i)
IS BUSY

If (Multiple HW)
Incr. HW, i -> i+1

Initialize
HW Subsystem(i)

Start Task
Processing

WAIT
(Process Finished)

Stop Processing
Return Results

Return

Return
Generic HW-SW Interface

Hardware-Access Drivers

i = 0
Yes

YesNo

No

Figure 4.2.: Accessing either a hardware subsystem or software function from a software
application through the generic HW-SW interface

4.3. Hardware-Access Drivers Generation from IP-XACT

The hierarchical system descriptions in IP-XACT makes it suitable to accumulate design
knowledge at multiple usage levels and realize reuse at different design abstractions. The
hierarchy of HW-access drivers functions generated by the GRIP tool is as described
below.

• At the lowest layer are the hardware abstraction layer (HAL) and driver codes for
accessing IPs and setting certain modes by writing to the register interface and
setting specific bit fields. This layer contains the target platform-specific functions.

• The next layer contains IP drivers. This layer contains the functions to access the
individual bit fields and registers of all the IPs contained in an IP library.

• A set of IPs that collectively processes an application task forms an IP subsystem.
At the next layer are the drivers to access IP subsystems, which use the drivers of
IPs in the subsystem.

• At the top layer are the generic HW-SW interface functions. It also has a simple
scheduler that schedules an application task on an available IP subsystem, or on a
CPU if IP subsystem is not available. These HW-SW interface functions are called
by the application. Each function call corresponds to a task execution that can
then be scheduled by the scheduling layer to an IP subsystem for HW execution
or the CPU for SW execution.

46

4.3. Hardware-Access Drivers Generation from IP-XACT

Generic HW-SW
Interface with

Scheduler
Default Version

(.c/.h)

IP-Subsys
Drivers

Default Version
(.c/.h)

IP Drivers
Default Version

(.c/.h)

Customization

Generic
HW-SW
Interface

with
Scheduler

(.c/.h)

IP
Subsystem

Drivers
(.c/.h)

IP Drivers
(.c/.h)

Scheduler
Code-

Generator

IP-Subsystem
Drivers Code-

Generator

SW Function
(.c/.h)

IP-Integration
Rule

(LHS and RHS
IP-XACT designs)

IP Interface &
Register Map

(IP-XACT
Component)

Platform HAL
(.c/.h)

IP Drivers
Code-

Generator

Generic
HW-SW

Interface &
HW Drivers

Package

Linux Utility
Functions

(.c/.h)

Figure 4.3.: Hardware drivers generation

Fig. 4.3 shows the SW code generation process. It can be seen that the inputs to the code
generator engines are: IP-integration rules (LHS and RHS patterns), IP components
available from IP packages, and SW functions for Linux utilities, SW task functions
and target platform HAL. Based on the inputs, a default set of HW-access drivers
is generated, which contains IP drivers, IP subsystem drivers, and a generic HW-SW
interface with scheduler. Later, these drivers can be customized by the IP supplier to
prepare the HW-access drivers package. These hierarchical drivers are explained in detail
below.

The hardware abstraction layer (HAL) forms the lowest layer in the generated HW
drivers, which varies for the bare metal and Linux OS based drivers. This layer contains
read/write functions to the HW control registers and initialize the target HW platform.
For the bare metal drivers, the HAL consists of HW drivers specific to the target HW
platform, and are provided as the HW board support package (BSP) by the hardware
platform vendors. For the Linux OS, the HAL compromises of kernel-space drivers.

The IP drivers are generated from the available IP-XACT component descriptions.
The IP-XACT component gives the information on IP interfaces and register map. The
code 4.1 shows an example IP-XACT description for a register in an IP-XACT compo-
nent file. For each component IP in an IP-XACT SoC, registers and bit fields mapping
can be extracted from their respective IP-XACT component descriptions. This work
has only considered memory-mapped HW IPs. However, the principles used for code
generation are generic and compliant to the IP-XACT standard, hence are extendible.

47

4. Library Preparation - Hardware-Accelerated Software IP-Library

As a first step, all the IP-XACT components files from an IP library are parsed to
generate a C struct of register map for each component. The register map C struct
such prepared has the offset, value, and mask information for each register of an IP
component. Here, the mask can be set to read or write to bit-field values of a register.
The code 4.2 shows an example of C struct for register map of a sample VDMA (video
direct memory access) IP component.

There are additional functions generated to read/write to the registers by individually
addressing, or by writing the registers according to the values defined in the register map
C struct. In case of writing the register values w.r.t. the register map C struct, we call
it setting an IP component to a specific mode. These generated functions are as shown
in the code 4.3.

1 < s p i r i t : r e g i s t e r >
< s p i r i t : name>myRegister</ s p i r i t : name>

3 < s p i r i t : addre s sOf f s e t >0x04</ s p i r i t : addre s sOf f s e t>
< s p i r i t : s i z e >32</ s p i r i t : s i z e>

5 < s p i r i t : f i e l d >
< s p i r i t : name>mySliceA</ s p i r i t : name>

7 < s p i r i t : b i t O f f s e t >0</ s p i r i t : b i t O f f s e t >
< s p i r i t : bitWidth>24</ s p i r i t : bitWidth>

9 < s p i r i t : acces s>read−only</ s p i r i t : acces s>
</ s p i r i t : f i e l d >

11 . . .
</ s p i r i t : r e g i s t e r >

Code 4.1: Sample IP-XACT description for register

typede f s t r u c t {
2 unsigned i n t o f f s e t ;

unsigned i n t value ;
4 unsigned i n t mask ;
} RegType ;

6

typede f s t r u c t {
8 RegType MM2S DMACR;

RegType S2MM DMACR;
10 RegType S2MM DMASR;

RegType MM2S START ADDRESS1;
12 // . . . 55 r eg s not shown here f o r s i m p l i c i t y //
} VDMAIP RegMap ;

Code 4.2: Sample VDMA registers struct generated from IP-XACT component description.

48

4.3. Hardware-Access Drivers Generation from IP-XACT

void VDMAIP RegWrite(unsigned i n t addr , unsigned i n t mask , unsigned
i n t va lue) ;

2

unsigned i n t VDMAIP RegRead(unsigned i n t addr) ;
4

s t a t i c void SetHAMode(VDMAIP RegMap ∗mode , unsigned i n t baseaddr) ;

Code 4.3: Generate IP drivers functions to handle register read-write operations

Various functional operations of an IP component are controlled by writing appropriate
values to its control registers. The most typical HW-access tasks include IP initializa-
tion (INIT), availability check (IS BUSY), start HW processing (START), stop HW
processing (STOP), control handling among CPU and HW IP, and interrupt handling.
These are basically the different operational modes of an IP. The generated IP drivers
have functions to configure an IP to a desired functional mode using the mode struct.
Code 4.4 shows an example mode struct and associated mode-set functions for a sample
VDMA IP. The associated mode-set functions use the SetHAMode(<args>) function to
write the control register values. By default, the code generator generates the mode
structs for HW initialization, start and stop modes (INIT, START, STOP), which can
be extended further by any other custom modes.

VDMAIP RegMap VDMAInitMode = {
2 .MM2S DMACR = { . o f f s e t =0x00 , . mask=0x00000004 , . va lue=0x00000004 } ,

. S2MM VSIZE = { . o f f s e t =0xa0 , . mask=0x00000000 , . va lue=0 x f f f f f f f f } ,
4 . S2MM HSIZE = { . o f f s e t =0xa4 , . mask=0x00000000 , . va lue=0 x f f f f f f f f } ,

.S2MM START ADDRESS1 = { . o f f s e t =0xac , . mask=0x00000000 ,
6 . va lue=0 x f f f f f f f f } ,

// . . . 55 r eg s not shown here f o r s i m p l i c i t y //
8 } ;

10 VDMAIP RegMap VDMAStartMode = { . . . } ;
VDMAIP RegMap VDMAStopMode = { . . . } ;

12

void VDMA Dr ive r in i t i a l i z e (<args >) ;
14 void VDMA Driver start(<args >) ;

void VDMA Driver stop(<args >) ;
16 bool VDMA Driver isBusy(<args >) ;

void VDMA Driver ISR(<args >) ;

Code 4.4: mode struct and functions for setting IP operation modes

The IP subsystem drivers utilize the information available from the GRIP IP-
integration rules. Using the rules, the SW code generator knows the hardware IPs
used in an IP subsystem, and generates the drivers for the corresponding IP subsystem.

49

4. Library Preparation - Hardware-Accelerated Software IP-Library

The IP subsystem drivers have the RegMap structs and mode structs to configure the
functional modes of IP subsystems. Both of these C structs are concatenation of the
C structs of the HW IP components utilized in an IP subsystem (Code 4.5). Similarly,
the generated functions to set the functional modes on an IP subsystem, initialization
(INIT), availability check (IS BUSY), start HW processing (START), and stop HW
processing (STOP), are also concatenated w.r.t. utilized IP components (Code 4.6).

In the generic HW-SW interface, the generated HW drivers are made available
for accessing HW IP subsystems from SW applications. SW methods in the IP library
are extended with a HW-SW interface layer to provide a generic interface for a SW
application. A few additional functions and configs are also generated to check for the
availability of HW IP subsystem in an SoC design. An application task is assigned for
HW processing by calling available HW drivers, otherwise the processing is done in SW.
The required flags and configs are extracted from the considered IP-XACT designs for
the generated HW-access drivers and the HW-SW interface.

1 typede f s t r u c t {
sobe l f i l t e r IP RegMap sobe l f i l t e r IP RegMap ;

3 VDMAIP RegMap VDMAIP RegMap ;
} Subsystem Rule1 RegMap ;

Code 4.5: Concatenation of RegMap struct for IP subsystems

1 Subsystem Rule1 RegMap Subsystem Rule1 InitMode = {
. s obe l f i l t e r IP RegMap = {

3 .AP CTRL = { . o f f s e t =0x00 , . mask=0x00000000 , . va lue=0 x f f f f f f f f } ,
. GIE = { . o f f s e t =0x04 , . mask=0x00000000 , . va lue=0 x f f f f f f f f } ,

5 . . . } ,
. VDMAIP RegMap = {

7 .MM2S DMACR = { . o f f s e t =0x00 , . mask=0x00000000 , . va lue=0 x f f f f f f f f } ,
.S2MM DMACR = { . o f f s e t =0x30 , . mask=0x00000000 , . va lue=0 x f f f f f f f f } ,

9 . . . }
} ;

11

void S u b s y s t e m R u l e 1 i n i t i a l i z e (Subsystem Rule1 Dr iver Instance ∗
InstancePtr , Subsystem Rule1 RegMap Subsystem InitMode) ;

13 void Subsystem Rule1 start (Subsystem Rule1 Dr iver Instance ∗
InstancePtr , Subsystem Rule1 RegMap Subsystem Rule1 StartMode) ;

void Subsystem Rule1 stop (Subsystem Rule1 Dr iver Instance ∗
InstancePtr , Subsystem Rule1 RegMap Subsystem Rule1 StopMode) ;

15 bool Subsystem Rule1 isBusy (Subsystem Rule1 Dr iver Instance ∗
Ins tancePtr) ;

Code 4.6: mode struct for setting IP subsystem operation mode and generated IP-
subsystem drivers header

50

4.4. Hardware-Accelerated Software Library - Bare Metal

4.4. Hardware-Accelerated Software Library - Bare Metal

Fig. 4.4 shows the hierarchy of generated HW-access drivers and generic HW-SW in-
terface with the Scheduler. These form the hardware-accelerated software library for
the bare-metal package. The structure of IP drivers and IP subsystem drivers functions
is identical for both the bare-metal and Linux OS packages. The structure is as dis-
cussed in the previous section. The generated IP drivers functions use the register map
struct and the HAL API drivers to access the registers and bit fields of an IP. Code 4.7
are the register-access read-write functions available as HAL from Xilinx board support
package.

For the data flow control, commonly used approaches are either acknowledging an issued
interrupt or polling of the completion status bit within an IP. The interrupt handling
requires initialization of interrupts within an application and execution of the corre-
sponding interrupt service routines (ISR) by an application (Code 4.8). The generated
HW drivers also contain interrupt initialization routines. The interrupt initialization
drivers expect a handle of system’s general interrupt controller (GIC) instance, interrupt
port ID extracted from IP-XACT, and a pointer to a default ISR. With this interrupt
handing, the method registers the IP’s ISR with the processing system. For polling
based communication, IS Busy method is generated for IP subsystems which has func-
tions to poll for IP’s busy flag. Fig. 4.4 shows generation of HW-access drivers from
IP-XACT metadata and shows interface of a software application to the underneath
HW IP control registers. The interrupt handling using functions are generated together
with IP and IP subsystem drivers, with ISR functions as empty placeholders. The
figure shows the hierarchy of the generated HW-access drivers and HW-SW interface.

void Xil Out32 (u32 Addr , u32 Value) ;
2 u32 Xi l In32 (u32 addr) ;

Code 4.7: Register-access read-write HAL functions for Xilinx hardware platforms

void v d m a I P D r i v e r i n t r I n i t i a l i z e (vdmaIP DriverInstance ∗ InstancePtr
, I n t C n t r l t ∗ I n t e r r u p t C o n t r o l l e r) ;

2 void s o b e l f i l t e r I P D r i v e r i n t r I n i t i a l i z e (
s o b e l f i l t e r I P D r i v e r I n s t a n c e ∗ InstancePtr , I n t C n t r l t ∗
I n t e r r u p t C o n t r o l l e r) ;

4 void S u b s y s t e m R u l e 1 i n t r I n i t i a l i z e (Subsystem Rule1 Dr iver Instance ∗
InstancePtr , I n t C n t r l t ∗ I n t e r r u p t C o n t r o l l e r) ;

Code 4.8: Generated functions for Interrupt handling

The HW drivers for the HASL are generated using the Java-based FreeMarker template
engine. The code generator is implemented on the eclipse modeling framework (EMF),

51

4. Library Preparation - Hardware-Accelerated Software IP-Library

Software
Library

IP-XACT
Descriptions

Software
functions

IP-XACT subsystem
design

IP-XACT component
description

G
en

er
at

io
n

Software Application

Config
Access-map

Config
Architectural

SW Interface
library

IP IP

SF
Rs

SF
Rs

CPU

SW Application

IP

SF
Rs

IP

SF
Rs

IP

SF
Rs

HW-access
drivers

C
us

to
m

iz
at

io
n

IP-subsystem
drivers

IP-drivers
access SW

INPUTS

C
ro

ss
C

om
pi

la
tio

n

Hardware access IRQ

IRQ

 IRQ-ISR
Mapping

IRQ
Handler

SW
Functions

HAL

SW tasks Scheduler

Figure 4.4.: Hierarchy of generated HW drivers for Bare-metal

which uses XML handler to parse IP-XACT files. Fig. 4.5 shows the list of .ftl files as
HW drivers templates under their respective generation hierarchy. The FTL templates
under IPsDrivers->IP->drivers directory are for generating IP drivers for configuring
mode operations. The templates under IPsDrivers->IP->platform are for HAL. The
directory IPSubsysDrivers->Rule->drivers has templates for generating IP subsys-
tem drivers with concatenated IP drivers. While the directory IPSubsysIFDrivers->

implementation->Rule has templates for interface functions for the Scheduler, which
are later made available to the generic HW-SW interface. Further, Fig. 4.6 shows the
HW-access drivers generated for an example IP-integration rule containing two HW IP
components - VDMA IP and Sobel filter IP. The generated C/C++ header file of the
HW-SW interface can be included in the software applications (for bare-metal projects)
to execute generated SW functions, similar to function calls to SW library functions.

4.5. Hardware-Accelerated Software Library - Linux OS

When generating the drivers for the Linux OS, we must consider the details of OS
architecture. There are three important elements in the OS that make a SW application
access available HW resources: kernel-space drivers, user-space drivers, and device tree
blob (DTB). An OS divides the virtual memory into kernel and user spaces. The kernel
space is only accessible to privileged kernel operations, while user space memory is
available for application software and other HW drivers. The DTB is a compiled binary
generated from a device tree source (DTS). The DTS is a tree-based data structure to

52

4.5. Hardware-Accelerated Software Library - Linux OS

FTL-Templates
IPsDrivers

IP
drivers

IPS DRIVERS driver C.ftl
IPS DRIVERS driver H.ftl
IPS DRIVERS ipconfig H.ftl

platform
IPS PLATFORM common C.ftl
IPS PLATFORM common H.ftl
IPS PLATFORM platform config H.ftl

IPSubsysDrivers
Rule

drivers
IP SUBSYS DRIVERS config H.ftl
IP SUBSYS DRIVERS driver C.ftl
IP SUBSYS DRIVERS driver H.ftl

IPSubsysIFDrivers
implementation

Rule
IP SUBSYS IF DRIVERS config H.ftl
IP SUBSYS IF DRIVERS function C.ftl
IP SUBSYS IF DRIVERS function H.ftl

Figure 4.5.: FreeMarker template files for generation of HW drivers

describe hardware system architectures. Fig. 4.7 shows these three elements, their build
steps, and inclusion in the Linux kernel.

There are two key differences of using the generic HW-SW interface in the Linux OS
compared to the bare-metal,

• With the Linux OS, the HW-drivers generation is a two step process, generation for
– kernel-space drivers and user-space drivers. For the kernel space, it also requires
to generate device tree source file. These two drivers spaces are bridged by a set of
Linux utility functions. In the Bare-metal implementation, the software application
can directly access the available HW resources by using the generated HW drivers.

• In the Linux OS, the hardware abstraction layer (HAL) drivers are handled as
kernel-space drivers, which are pre-compiled in the Linux kernel and are accessed
from the software application using the generated user-space drivers. For the bare-
metal, all HW-access drivers are complied together with the software application.

The Linux OS prevents a software application to directly access the SoC hardware re-
sources. When building the Linux kernel, the available HW subsystems of the SoC must
be defined in the device tree source (DTS) file, which is included in the Linux boot-up

53

4. Library Preparation - Hardware-Accelerated Software IP-Library

IPSubsysIFDrivers
implementation

Rule1
config.h
function.c
function.h

Rule2
...

IPSubsysDrivers
Rule1

drivers
config.h
driver.c
driver.h

Rule2
...

IPsDrivers
vdmaIP

drivers
ipconfig.h
vdmaIP driver.c
vdmaIP driver.h

platform
common.c
common.h
platform config.h

software
-
-

IPsDrivers
sobelIP

drivers
ipconfig.h
sobelIP driver.c
sobelIP driver.h

platform
common.c
common.h
platform config.h

software
sobel sw.c
sobel sw.h

Figure 4.6.: The generated HW drivers files for bare-metal HASL package

routine. The Linux OS interprets the hardware abstraction information from the DTS
to generate system functions (udev or HAL). The DTS is targeted to a desired HW
platform. In this work, the GRIP tool generates the DTS file for the custom HW IPs
in the programmable logic (PL) part of Xilinx Zynq chipset (Xilinx 2016). The code
4.9 shows a new device node for a custom HW IP, sobel_filter_top, in the generated
DTS file. This DTS file is generated using the IP-XACT SoC descriptions.

s obe l : s o b e l f i l t e r t o p @ 7 1 8 0 0 0 0 0 {
2 compatible = ” gener i c−uio ” ;

reg = < 0x71800000 0x10000 >;
4 i n t e r r u p t s = < 0 35 0 >;

i n t e r rupt−parent = <&gic >;
6 } ;

Code 4.9: An example of a generated device node in a DTS fils

The kernel-space drivers consist of functions with pre-defined interfaces, which are
accessible to the user space using only the system calls. Depending on the memory ac-
cessibility of HW devices, the kernel drivers can be of following types: character device
drivers, network device drivers, block device drivers etc. Since in this work the acceler-
ation of software functions using memory-mapped hardware accelerators is of interest,
only the character device drivers are of interest. For this, the kernel drivers from user-
space I/O drivers (UIO) provide sufficient functions to access memory-mapped address
space of the HW accelerators used in the context of this work (Corbet et al. 2005). First,
the available devices are recognized in the DTS, then the recognized devices are linked

54

4.5. Hardware-Accelerated Software Library - Linux OS

Linux Kernel
Incld. DTS map and
kernel-space drivers

Build uImage
Compiled for ARM arch.

Build DTB
(device tree blob)

Build
Linux

Generated User-space IP/IP-sub. drivers
HW-SW Scheduler functions

Software Application

BOOT.bin

FSBL *.bit uBoot
uImageDTB LINUX

FILE SYSTEM

/sys/* :Compiled HAL /dev/* :Recognized HW devices

Device Tree Source
Incld. HW address map,

interrupt, HW abstraction

DTS &
K-Space
Drivers

Linux
Operating

System

U
se

r S
pa

ce
K

er
ne

l S
pa

ce

Figure 4.7.: Essential elements of the Linux kernel facilitating access HW devices

to the corresponding kernel-space functions using the compatible = "generic-uio"

string (Code 4.9). The kernel-space C struct in the Code 4.10 declares the system call
mappings to the kernel-space functions. In this case, .write will be the system call to
access uio_write function in the kernel space to write to HW device registers.

The user-space drivers are generated from IP packages as discussed in Section 4.3.
Figure 4.8 shows the hierarchy of the generated HW drivers for the Linux OS. For Linux
OS, udev is a device manager, which manages the recognized device by the Linux kernel.
For each recognized driver, a device node is created in the \dev directory. The user-space
drivers can access the recognized devices using system calls.

s t a t i c const s t r u c t f i l e o p e r a t i o n s u i o f o p s = {
2 . owner = THIS MODULE,

. open = uio open ,
4 . r e l e a s e = u i o r e l e a s e ,

. read = uio read ,
6 . wr i t e = u io wr i t e ,

.mmap = uio mmap ,
8 . p o l l = u i o p o l l ,

. f a sync = u io fa sync ,
10 . l l s e e k = noop l l s e ek ,
} ;

Code 4.10: Kernel-space drivers mapping to corresponding system calls in the user space

55

4. Library Preparation - Hardware-Accelerated Software IP-Library

Software
Library

IP-XACT
Descriptions

Software
functions

IP-XACT sub-system
design

IP-XACT component
description

G
en

er
at

io
n

Software Application

Config
Architectural

SW IF library

Linux OS

IP IP

SF
Rs

SF
Rs

CPU

SW Application

IP

SF
Rs

IP

SF
Rs

IP

SF
Rs

C
us

to
m

iz
at

io
n

IP-access SW
User-space drivers

INPUTS

C
ro

ss
C

om
pi

la
tio

n

Hardware access IRQ

IRQ

Access
map

Config

Device Tree Blob

HW Kernel-space
drivers

Kernel-space drivers
User-space drivers

Linux OSSW tasks Scheduler

IP-subsystem
U-space drivers

SW
Functions

Figure 4.8.: Hierarchy of generated HW drivers for Linux OS

For the Linux OS, in addition to previously discussed HW drivers, it is also required that
a few additional functions for linking the recognized devices (HW subsystems) to the
user-space drivers are defined. The user-space drivers are appended by a set of utility
functions to access the hardware devices from the /dev/ and /sys/ directories under
the Linux file system. These utilities are implemented using some available Unix binary
functions. The code 4.11 shows the Linux utility functions. These functions are used
in the user space together with the generated user-space drivers to recognize the HW
accelerating sub-systems in the SoC.

1 void resetDev () ; // Resets the Sys d e v i c e s

3 i n t HAexists (const char ∗archDir , const char ∗haName ,
i n t l e v e l , const char ∗ f i l) ; // Returns # of HA of same type

5

char ∗getDev (const char ∗archDir , const char ∗haName ,
7 i n t l e v e l , const char ∗ f i l) ; // Returns the dev i ce node name
} ;

Code 4.11: The Linux utility functions in the user space to access the HW devices

56

4.6. Software Application Development using HASL

4.6. Software Application Development using HASL

In this section, we will look at using the hardware-accelerated software library from the
software developers’ view. Fig. 4.9 shows the containment of the HASL. A software
developer can use HASL in place of a SW library, in order to efficiently utilize available
HW resources in a candidate SoC. The software application calls HW-accelerated SW
functions, which call their scheduler.

calls

calls

calls

calls

Platform HAL
(.c/.h file)

calls

calls

calls
Sobel_HWacc(..)

Sobel_SW(..)

Subsystem_RuleX_init(..)
Subsystem_RuleX_isBusy(..)
Subsystem_RuleX_start(..)
Subsystem_RuleX_stop(..)

Subsystem_RuleX_StartMode
->_sobelfilterIP_RegMap->SetHAMode(..)

sobelip_init(..)

sobel_hw_acc_package

Subsystem_RuleX VDMAIP
SobelIP

Xil_Out32(..)/Xil_In32(..)

HW-SW
Interface &

Drivers Package

HW-SW
Interface with

Scheduler
(.c/.h)

IP-Subsystem
Drivers

IP Drivers
mode-set
Functions

(.c/.h)

SW Function
(.c/.h)

Reg-Access
Functions

(.c/.h)
IRQ Handler

(.c/.h)

mode-set
Functions

(.c/.h)

VDMAIP_Driver_init(..)
VDMAIP_Driver_start(..)
SobelIP_Driver_init(..)
SobelIP_Driver_start(..)

VDMA_RegWrite(..)
Sobel_RegWrite(..)

IRQ handler
(.h/.c file)

Reg-access
functions
(.c/.h file)

Figure 4.9.: Generated hardware drivers package containment.

Fig. 4.9 illustrates the hierarchy of function calls between the generated software
codes. It shows the hierarchical calls for an example IP subsystem with a VDMA
(video direct memory access) and a Sobel-filter IP. The generated functions package,
sobel_hw_acc_package, corresponds to one specific IP-integration rule for this IP sub-
system. The SW can call the generic HW-SW interface function (Sobel_HWacc()).
This call goes to either the Sobel_SW(..) function, which is the SW implementa-
tion of the Sobel filtering task, or it calls the HW-access drivers. The IP subsystem
functions (Subsystem_RuleX_*()) to configure the IP subsystem access the required
IP components as described in the corresponding IP-integration rules. The IP sub-
system drivers utilize the generated HW drivers of individual IPs of the IP library
(VDMAIP_Driver_*(), SobelIP_Driver_*()). Further, the HAL uses HW platform
specific drivers (Xil_Out32(..)/Xil_In32(..)) to read and write to the IP registers
and bit fields. These generated HW drivers together with the hardware information that
comes with the IP packages make the complete HASL. In the HASL, the HW drivers
are still configurable as the final SoC architecture is not yet generated. The generation

57

4. Library Preparation - Hardware-Accelerated Software IP-Library

of mode structs and driver code enables the IP supplier to quickly generate major parts
of the driver layer of the HASL. The IP supplier can customize the driver layer further
as required by the IPs, while configuring the control register values.

4.7. Conclusions

In this chapter, we discussed the challenges of adapting the software application for the
SoC architecture changes. For complex SoC designs, the software developers lack suffi-
cient HW knowledge to efficiently utilize the available HW resources for optimizing the
application performances. We extended the available HW knowledge in the proposed IP
packaging (Chapter 3) to generate the HW drivers, which comprises HW-access drivers
and a generic HW-SW scheduler. These HW drivers are generated using IP-XACT
descriptions of the available IPs and the IP-integration rules.

The domain-specific IP packages and the associated HW drivers form the hardware-
accelerated software library (HASL). In the next chapter, we will utilize the HASL to
perform IP-integration and SoC design space exploration.

58

5. Automated IP-Integration and Design Space
Exploration of SoCs

”While the goal of purchasing IP is to reduce the engineering effort, the process of inte-
grating IP is not a ”drop and done” process — it requires a lot of engineering skills and
effort for it to be successful.”, Helena Zheng, VP, 3DSP Corp.

5.1. Introduction and Problem

In the previous two chapters, we discussed the IP-packaging and hardware-accelerated
IP library (HASL) preparation steps from the perspective of an IP supplier. This chapter
will look at the GRIP tool utilities for an SoC developer. With the existing IP-integration
methodologies, the SoC architect faces the following challenges:

1. The SoC architect is required to understand the details of HW interfaces of IP
components, before they can be correctly integrated in an SoC. After introduc-
ing structural changes in an SoC, the new candidate SoC must be validated for
correctness and design integrity for the HW synthesis. This is the problem of sys-
tem integrity and HW-SW bring up. The challenges originate because of the SoC
architect’s lack of sufficient knowledge on the third-party IPs.

2. In SoC designs, typically, multiple targeted design abstraction levels, e.g. TLM in
SystemC, RTL on an FPGA, are desired for an SoC at various stages of the SoC
design flow. It requires a laborious effort to implement HW-SW system models for
all these abstraction levels.

3. For the target-platform code generation, the key challenges are three fold: a) map-
ping the IP-XACT SoC descriptions to the synthesizable HW descriptions of the
target platform; b) integrating the HW drivers with the SW application (bare
metal or with OS) and the SW cross-compilation; c) enabling a seamless interface
between the SW and HW resources via the interface routines (Scheduler).

This chapter will discuss the algorithms to automate IP integration and enable SoC
design space exploration using HASL. The automated IP integration and HW-SW bring-
up on a targeted HW platform requires seamless alignment of the following aspects of a
HW-SW system: generating a synthesizable SoC, generating HW drivers, and adapting
the SW application to utilize HW resources. Further, we will also discuss the integration

59

5. Automated IP-Integration and Design Space Exploration of SoCs

of the GRIP tool with the external HW synthesis tools and building a custom Linux OS
for the generated candidate SoCs.

This chapter discusses the following three contributions of this work,

1. The GRIP IP-integration engine to automate the process of IP integration for SoC
design. We will discuss the utilized automation algorithms and the model-based
implementation of the engine.

2. The GRIP design space exploration (DSE) engine to explore the SoC design space
for a software application targeted on the HASL. This SoC design space is encoded
by the IP-integration rules of a domain-specific HASL.

3. The GRIP code generation engine for generating HW and SW projects targeted for
Xilinx FPGA prototyping. We will discuss the transfer of SoC design descriptions
from the GRIP environment to the Xilinx design flow.

5.2. Model-Based Graph Rewriting

In Chapter 1, we discussed the background on the mathematics of graph grammars to
describe structural systems and grammar rules to describe structural changes on graphs.
In this chapter, we will build on that foundation to describe model-based mathematics
and algorithms utilized in this work to perform structural transformations. In the fol-
lowing, we describe the model-based process of graph rewriting. Our approach is general
in the sense that there is no restriction on the models as long as their relation can be
expressed in a graph. In this section we give the general description of the model-based
graph rewriting engine. Its application on IP integration is illustrated in Section 5.3. To
start, we need a host graph and rewriting rule defined as follows:

Host graph: The input graph G = (NG, EG) to the graph rewriting process is called
the host graph. In order to support model-driven principles, meta models are defined for
possibly multiple node and edge types. In our approach the EMF Ecore meta-modeling
framework is used to define node and edge classes.

Graph Rewriting Rule: We define a graph rewriting rule Ri as a triple, Ri =
(Li, Ri,mR2L,i). Li and Ri are two connected graphs. mR2L,i is a bijection between
the two graphs.

LHS pattern graph: Li = (NL,i, EL,i) is called the left-hand-side (LHS) pattern graph
of the rule. For every node lx and edge (ly, lz), with lx ∈ NL,i, (ly, lz) ∈ EL,i, we define
a node-level match function matchnode and edge-level match function matchedge. The
matchnode function takes as input one LHS node lx and one host graph node na ∈ NG.
It evaluates to true, when the properties of na satisfy the match pattern given in the
pattern node lx of the LHS, otherwise it evaluates to false. The same applies for the edge
patterns. We use Epsilon validation language (EVL) to implement the match patterns

60

5.2. Model-Based Graph Rewriting

for the LHS nodes and LHS edges. As already described in Sec. 2.2.5, Epsilon provides
a family of languages and tools for model operations and EVL is a model validation
language of the Epsilon family. The match functions just need to evaluate the EVL
script on the host graph node because its class is based on an Ecore meta-model.

RHS rewriting graph: Ri = (NM,i ∪ NC,i, EM,i ∪ EC,i) is called the right-hand-side
(RHS) rewriting graph of the rule Ri with two different node and edge sets. The node
set NM,i and edge set EM,i of the RHS are modify nodes and edges with associated
modify functions modifynode and modifyedge. The modify functions modifynode and
modifyedge take as input a host graph node or edge and return a new host graph node
or edge. In contrast, the create functions createnode and createedge of the create
node set NC,i and edge set EC,i take no input but also return a new host graph node or
edge. We use EOL scripts to implement the modify and create functions.

Mapping for Modification Nodes: For the modification nodes, an additional bijec-
tion mR2L,i : NM,i → N̂Li

⊆ NL,i, EM,i → ÊL,i ⊆ EL,i between LHS and RHS is given. It
is used to determine the nodes in the host graph that need to be modified.

Rule Execution Steps: Given a set of rules Ri and a host graph G, graph rewriting
is a three step process:

1. Match: In the match step, all possible graph matches Ĝi,j of the LHS graphs Li

for all rules Ri are found in the host graph G with their respective match function
mL2G,i,j.

2. Choose: One match Ĝi,j of Li in G is chosen.

3. Apply: The RHS Ri is applied to the chosen match Ĝi,j based on the respective
matching function mL2G,i,j for rewriting graph G to attain a new graph F .

Rule Match step: The first step of the graph rewriting is the matching. Given an
host graph G = (NG, EG) and the left-hand-side graph Li = (NL,i, EL,i) of a rule Ri, the

subgraph Ĝi,j of G is called a match of Li in G if:

• Ĝi,j = (N̂G,(i,j), ÊG,(i,j)) is isomorphic to Li w.r.t. the bijection mL2G,i,j : NL,i →
N̂G,(i,j) ⊆ NG, EL,i → ÊG,(i,j) ⊆ EG.

• mL2G,i,j is called the matching function and must be total.

• Foreach na ∈ N̂G,(i,j) with mL2G,i,j(na) = lx it must hold:
matchnode (lx, na) = True

• Foreach (nb, nc) ∈ ÊG,(i,j) with mL2G,i,j((nb, nc)) = (ly, lz) it must hold:
matchedge ((ly, lz), (nb, nc)) = True

61

5. Automated IP-Integration and Design Space Exploration of SoCs

Basically, we look for a subgraph in G, which has the same node-edge structure as the
Li and whose nodes’ and edges’ properties match the patterns given in the LHS nodes
and edges. There can be any number (including zero) of matches Ĝi,j of Li in G.

Algorithm 1 illustrates our implementation of the Matching algorithm. The matching
function returns a set,ML2G,i, of all the complete matches of Li in a host graph G. The
setML2G,i = {mL2G,i,j}j∈{1,2,...,n} is a collection of n matching functions from Li to G for
n matches. In the algorithm, at first, a root node of Li is randomly picked and matched
to a node in the G (if a match is possible). Then, iteratively the matching is expanded
to nodes connected to the root node of Li. With each iteration, the matching function
continues to append the matching function mL2G,i,j with new mappings. Further, the
matching continues from the matched nodes of Li to unmatched nodes, till all nodes of
Li are explored. The algorithm removes a match function mL2G,i,j fromML2G,i, when a
node lx ∈ Li does not find a match in G (i.e. mL2G,i,j(lx) = null).

Rule Choose Step: There can be several rules with several matches for G. In the
choose step, one rule Ri and one respective match Ĝi,j (by default, the first complete
match for fast tree exploration) are selected for application.

Rule Application Step: The application will yield a new final graph F by rewriting
the matched subgraph Ĝi,j in G with the RHS graph Ri. Our implementation of the
rule application step is shown in Algorithm 2. At first, corresponding to all the matched
nodes and edges between Li and Ri, modified nodes and edges are created in the final
graph F using modifynode and modifyedge functions. Similarly, by using createnode

and createedge corresponding to unmatched nodes and edges among Li and Ri new
nodes and edges are created in the F . Finally, the unmatched nodes and edges among
Li and G are created in F . This yields a new final graph F from a host graph G after
applying rule Ri.

5.3. Automated IP Integration

In order to utilize the mathematics of graph grammars for automating SoC IP inte-
gration, all the SoC structural changes are performed in the graph space. For this,
the current candidate design and the IP-XACT integration rule are first transformed to
graph-based representations before the rule application. There are three types of graphs
used in this methodology, namely, architectural graphs (AGs), pattern graphs (PGs) and
rewriting graphs (RGs). Each AG describes one complete SoC design. PGs define the
LHS graph of a rule and RGs are used to describe the RHS graphs. The transformation
of IP-XACT SoC design to the corresponding AG has been discussed in Section 3.2.4.
In the following, we will discuss about LHS PG and RHS RG generation in detail.

62

5.3. Automated IP Integration

Algorithm 1: Rule Matching Algorithm
Input : Host Graph G = (NG, EG), LHS Li = (NL,i, EL,i)
Output: Set of matching functions ML2G,i

Match(G,Li)

Select lroot ∈ NL,i // Select a root node from the LHS
UL,i ← NL,i \ {lroot} // UL,i is the set of unmatched nodes
foreach nk ∈ NG do

if matchnode (lroot, nk)= True then // Match the LHS root node to the host graph nodes
mL2G,i,new(lroot)← nk

foreach lz ∈ NL,i \ {lroot} do
mL2G,i,new(lz)← null

end
ML2G,i ←ML2G,i ∪ {mL2G,i,new} // Append all matches in the host graph to ML2G,i

end
while UL,i 6= ∅ do

V ← ∅
foreach (lx, ly) ∈ EL,i, lx ∈ UL,i, ly ∈ NL,i \ UL,i do // (lx, ly) Expand the matched sub-
ML2G,i ← mapNextNode(lx, ly,ML2G,i, G) // graph to the unmatched nodes of Li

V ← V ∪ {lx}
end
UL,i ← UL,i \ V // Remove matched nodes from UL,i

end
returnML2G,i

end
mapNextNode(lx, ly,ML2G,i, G) // Match lx ∈ Li to a node of host graph G
ML2G,new ← ∅
foreach mL2G,i,j ∈ML2G,i do

foreach nk ∈ NG do
if matchnode(lx, nk) & matchedge((lx, ly), (nk,mL2G,i,j(ly))) & @lz∈NL,i

mL2G,i,j(lz) = nk

then
if mL2G,i,j(lx) = null then // If match is not set for lx, new mL2G,i,j is set

mL2G,i,j(lx)← nk

mL2G,i,j(lx, ly)← (nk,mL2G,i,j(ly))
end
else // If match already exists for lx, create mL2G,i,new and append it to ML2G,i

mL2G,i,new ← mL2G,i,j

mL2G,i,new(lx)← nk

mL2G,i,new(lx, ly)← (nk,mL2G,i,j(ly))
ML2G,new ←ML2G,new ∪ {mL2G,i,new}

end

end

end

end
foreach mL2G,i,j ∈ML2G,i do // Remove partial matches from ML2G,i

if mL2G,i,j(lx) = null then
ML2G,i ←ML2G,i \ {mL2G,i,j}

end

end
returnML2G,i ∪ML2G,new

63

5. Automated IP-Integration and Design Space Exploration of SoCs

Algorithm 2: Rule Application Algorithm
Input : Host Graph G = (NG, EG), RHS Ri = (NM,i ∪NC,i, EM,i ∪ EC,i), LHS Li = (NL,i, EL,i),

Mapping mR2L,i, Match function mL2G,i,j

Output: Rewritten Graph F = (Nf , Ef)
ApplyRule(G,Li, Ri,mR2L,i,mL2G,i,j)

foreach rs ∈ (NC,i ∪NM,i) do // Initialize create/modify nodes NC,i/NM,i of Ri

mR2F (rs)← null // Reset match function mR2F from Ri to F
end
foreach ng ∈ Ng do // Reset match function mG2F from G to F

mG2F (ng)← null
end
foreach rc ∈ NC,i do // Create new nodes in Nf corresponding to NC,i

nf ← createnode(rc)
Nf ← Nf ∪ {nf}
mR2F (rc)← nf

end
foreach rm ∈ NM,i do // Create modified nodes in Nf corresponding to NM,i

ng ← mL2G,i,j(mR2L,i(rm))
nf ← modifynode(rm, ng)
Nf ← Nf ∪ {nf}
mR2F (rm)← nf

mG2F (ng)← nf

end
foreach (rx, ry) ∈ EC,i do // Create new edges in Ef corresponding to EC,i

(mR2F (rx),mR2F (ry))← createedge((rx, ry))
Ef = Ef ∪ {(mR2F (rx),mR2F (ry))}

end
foreach (rx, ry) ∈ EM,i do // Create modified edges in Ef corresponding to EM,i

(ng, nh)← mL2G,i,j(mR2L,i((rx, ry)))
(mR2F (rx),mR2F (ry))← modifyedge((rx, ry), (ng, nh))
Ef ← Ef ∪ (mR2F (rx),mR2F (ry))

end
foreach ng ∈ NG do // Create unmatched nodes (Li matching with G) of NG in Nf

if @lx∈NL
mi,j(lx) = ng then

nf ← ng

Nf ← Nf ∪ {nf}
mG2F (ng)← nf

end

end
foreach (ng, nh) ∈ EG do // Create unmatched edges (Li matching with G) of EG in Ef

if @(lx,ly)∈El
(mi,j(lx) = ng & mL2G,i,j(ly) = nh) then

if mG2F (ng) 6= null & mG2F (nh) 6= null then
(mG2F (ng),mG2F (nh))← (ng, nh)
Ef ← Ef ∪ {(mG2F (ng),mG2F (nh))}

end

end

end

64

5.3. Automated IP Integration

5.3.1. LHS Generation

Each IP-integration rule in the HASL consists of one LHS and one RHS IP-XACT de-
sign object. The LHS pattern graph is generated from IP-XACT in the IP-XACT2PG
transformation using only the LHS IP-XACT design object. From the component in-
stances all set properties are translated into EVL constraints except the instance name.
This includes VLNV identifier and all set configuration values. The EVL constraints are
evaluated with the matching functions matchnode and matchedge as was described in
Section 5.2.

5.3.2. RHS Generation

The RHS rewriting graph is generated in the IP-XACT2RG transformation, which re-
quires to analyze the LHS and RHS IP-XACT designs. For each component of the RHS
design object, it is first checked if there exists a component with the same instance
name in the LHS design object. If this is the case, a modify node is created in the
RHS rewriting graph, otherwise a create node. The rewriting operations are described
in the EOL model language from the Epsilon project. EOL scripts allow to modify and
generate new model instances based on the Ecore meta-model used for AG nodes and
AG edges. The modify node describes the differences in the properties of the LHS and
RHS. All differences are implemented as modifications in the EOL script of the node
called by the modifynode and modifyedge functions. Properties which are not set in
the LHS and RHS IP-XACT components are left untouched during modification. This
allows e.g. to define a context node to set conditions for matching, which would have an
empty EOL modification script. The create nodes and edges copy all properties set in
the RHS component to a EOL script to create a new node or edge with the createnode

and createedge functions.

5.3.3. IP Integration

The inputs to the GRIP tool are: a) an input IP-XACT host SoC design, b) an IP-XACT
IP-integration rule, and c) input software application; and the final outputs are: a) a
new IP-XACT SoC design with the changes described by the integration rule, and b)
HW drivers for the SW application. The output IP-XACT design can be taken further
through GRIP code generation to generate hardware description files for a target hard-
ware platform, e.g. an FPGA prototyping board. Fig. 5.1 describes the flow diagram for
IP-integration using GRIP. The key component doing the structural transformations is
the Graph-Rewriting Engine using the algorithms as described in Section 5.2. Another
key component is the OCL-based IP-XACT Verification Engine. The verification engine
performs the design verification checks on the given IP-XACT design description. The
verification engine complies to a predefined set of design rule checks described using

65

5. Automated IP-Integration and Design Space Exploration of SoCs

OCL scripts, which check for the correctness of bus interconnections and protocols, and
signal ports integrity of the design connections w.r.t. to IP components in the IP-library,
including clocks and interrupts. It is an important step to assure that the ports conflicts
and the component instances conflicts are correctly handled by the GRIP engine to keep
the design integrity during the structural transformations.

Additionally, in the GRIP tool, there are multiple model-to-model (M2M) transforma-
tion engines, which perform the required transformations from the IP-XACT space to
the graph space and vice-versa. In Fig. 5.1, as a first step, an input SoC design goes
through the verification checks, and then M2M transformation to generate an initial
design graph. The second input, an IP-integration rule, has LHS and RHS IP-XACT
designs. The LHS design goes through M2M transformation to generate an EVL Pattern
graph, while the RHS design transforms to generate an EOL rewrite graph. The RHS
design transformation also requires the LHS pattern design and initial host SoC design
to generate EOL rewrite graph. All these graph inputs go to the graph grammar engine,
which generates the new design graph.

IP-integration
Rule

(2x IP-XACT
Design)

Initial Architecture
(IP-XACT Design)

IP-XACT
Verification

Engine

IP-XACT
Verification

Engine

Valid Candidate
Architecture

(IP-XACT Design)

Candidate
Architecture

(IP-XACT Design)

RHS
(IP-XACT Design)

LHS
(IP-XACT Design)

Valid Initial
Architecture

(IP-XACT Design)

IP-XACT2AG
Trafo

IP-XACT2PG
Trafo

AG2IP-XACT
Trafo

IP-XACT2RG
Trafo

New Design Graph
(Architecture Graph)Graph Grammar EngineInitial Design Graph

(Architecture Graph)

LHS
(EVL Pattern Graph)

RHS
(EOL Rewrite Graph)

Figure 5.1.: Flow diagram for automated IP-integration using IP-integration rules

Fig. 5.2 describes the flow steps for the Graph Grammar Engine. It follows the three
graph-rewriting steps, I. Match, II. Choose, III. Apply. The matching step searches
sub-graphs of the input architectural graph that satisfies LHS. Each EVL pattern graph
node or edge stores an EVL script, with which an evaluation function can be executed to
check whether the architectural graph node or edge satisfies constraints. This function is
used to overload comparison between nodes and edges, therefore this matching problem
can be formulated as a standard sub-graph isomorphism problem and can be solved with
our own graph isomorphism algorithm or VF2 algorithm in (Cordella et al. 2001). From

66

5.3. Automated IP Integration

the graph matcher, multiple matches might be found. Each of these matches records
not only the matched sub-graph, but also a mapping function from the matched LHS
graph nodes and edges to the architectural graph nodes and edges. A graph can only be
rewritten according to one match at a time, so all matches are sent to the selector. In
the selector, three selection mode are supported, first-match selection, multiple selection
and user defined selection. The first-match selection mode is the fastest, since it selects
the first detected match. Multiple selection means all matches are selected and they
will be executed one by one and generate multiple separate outputs. In the user-defined
selection, the user sets the selection manually. On the selected match, the RHS can
be applied to the input architectural graph to generate a new output graph. The RHS
operations are implemented by execution of EOL scripts as discussed in Sec. 5.3.2. For
modification, the corresponding node or edge in input architectural graph is first cloned,
then modified and added to the output graph, so that the output graph contains no
reference and is completely independent from the input graph. For the matched LHS
nodes in the host graph that do not have an equivalent RHS nodes in the corresponding
rule (i.e. deletion of nodes is intended in the rule), the deletion of those matched nodes
of the host graph is required. During deletion, all connected edges are deleted as well
because it is illegal to have floating edges in graphs. After generating the matched sub-
graph, the remaining nodes and edges of the input architecture graph are cloned and
added to the output graph as well.

The generated new design graph is then transformed to a candidate IP-XACT SoC
design and it goes through the verification checks. After passing the verification checks,
the valid candidate architecture is generated.

LHS
(EVL Pattern Graph)

RHS
(EOL Rewriter Graph)

Initial Design Graph
(Architecture Graph)

Graph
Matcher

MATCH

Matches Selector Chosen
Match

Graph
Rewriter

New Design Graph
(Architecture Graph)

APPLYCHOOSE

Figure 5.2.: Flow diagram for the GRIP IP-integration Engine.

Fig. 5.3 shows an example of using the GRIP tool for automating IP-integration on a
sample input design using the IP-integration Rule-3 in Fig. 3.3. The integration-rule
describes the integration of an IP subsystem (VDMA and ER top) on a dedicated bus-
system. The input IP-XACT design is transformed to an architecture graph (the figure
shows a simplified AG) to apply the IP-integration rule to first generate the new design
graph and later its transformation to the final IP-XACT candidate architecture. In the
figure, the blue color nodes and components denote the newly added entities, and the
yellow color nodes donates the modified entities from the input design.

67

5. Automated IP-Integration and Design Space Exploration of SoCs

ps7_systemClkGen CamIF

vdma0

hdmi

spi

spiIFtxi2s

iic

axi0
axi1
axi2

ps7_sys

axi0

axi1

axi2

spi
i2s

iic
clkgen

camIF

vdma0

hdmi

 dma

 i2s

 dma
axis

ps7_systemClkGen CamIF

vdma0

hdmi

spi

spiIFtxi2s

iic

axi0
axi1
axi2

 dma
axis

vdma1

ER_top

axi3

axis

ps7_sys

axi0

axi1

axi2

spi
i2s

iic
clkgen

camIF

vdma0

hdmi

 dma

 i2s

vdma1

ER_top

axi3

ps7_sys

axi1

axi2

camIF

vdma0

hdmi

vdma1

ER_top

axi3

ps7_sys

axi1

axi2

camIF

vdma0

hdmi

Right Hand SideLeft Hand Side

GRIP
INTEGRATION RULE

AUTOMATION OF IP-INTEGRATRATION USING GRAPH-GRAMMAR

ps7_systemCamIF

hdmi vdma0

axi1
axi2

M A T C H -> CHOOSE -> A P P L Y

ps7_systemCamIF

vdma0

axi1
axi2

vdma1ER_top

axi3

axis

#PARAM 44
#SIGNALS 6

#PARAM 4
#SIGNALS 2

#SIGNALS ALTERED 4

#SIGNALS 1
hdmi

Figure 5.3.: Overview of steps for automated IP-integration in an SoC using the GRIP

5.4. GRIP Design Space Exploration

In the previous section, we mentioned that the graph matcher can find multiple matches
of the LHS in the input host design. This leads to the branching and the generation of
multiple candidate architectures. In this section, we will discuss the branching of the
generated SoCs from the host SoC design.

During SoC design space exploration, an SoC architect iterates over available HW IPs to
explore candidate SoC architectures which give best trade-offs for SW application per-
formances and HW costs. A DSE targeted on a domain-specific HW IP library confines
the design space to an attainable set of SoCs by that library. The design space explo-
ration starts from an initial SoC design, also called a host SoC. The host SoC contains
minimum required HW components to execute the target software applications. These
components can be a master CPU, memories, I/O interfaces, and system buses. Then,
progressively some of the software tasks are off-loaded from the master CPU to other
computing IP subsystem units. The SoC architect must integrate an IP subsystem in
desired configurations, and quickly synthesize and bring-up the HW-SW system for ap-
plication profiling. Another dimension of complexity is various configurations in which
a HW IP can be integrated in an SoC, eg. pipeline, parallel, and how the data commu-
nication is handled, eg. CPU, or direct memory access (DMA) based, interrupt-based
or polling.

In the rest of this section, we will discuss the automation of SoC DSE by iterative usage
of GRIP IP-integration engine to explore the SoC design space.

68

5.4. GRIP Design Space Exploration

5.4.1. Design Space Exploration (DSE) Tree

In the proposed domain-specific HASL with each IP-integration rule describing a feasible
structural change, all the available IP-integration rules together describe all feasible
changes on a host SoC. The iterative application of the rules leads to a design space
exploration (DSE) tree based on the HASL. In the DSE tree, each node represents
a candidate SoC architecture, and each edge is a rule application. The available IP-
integration rules in the HASL define the structure of the DSE tree, and hence the
design space. This is where the HASL preparation containing the potentially useful
IP-integration rules is necessary to yield an efficient SoC design space exploration.

Fig. 5.4 shows an example DSE tree for three integration rules and depth of three. The
root of the DSE tree is the host SoC design. The feasible changes on each SoC candidate
node are obtained by application of rules, and the DSE tree is expanded to the next depth
level. As can be seen all modifications on the SoC architecture are incremental, can be
backtracked and can be undone by returning to the previous node.

Apply
Rule 3, ER

Apply
Rule 3, SO

Apply
Rule 2, SO

Apply
Rule 4, ER

ps7_systemClkGen CamIF

vdma0

hdmi

spi

spiIFtxi2s

iic

axi0
axi1
axi2

 dma
axis

ps7_systemClkGen CamIF

vdma0

hdmi

spi

spiIFtxi2s

iic

axi0
axi1
axi2

 dma
axis

vdma1

ER_top

axi3

axis

ps7_systemClkGen CamIF

vdma0

hdmi

spi

spiIFtxi2s

iic

axi0
axi1
axi2

 dma
axis

vdma1

SO_top

axi3

axis

ps7_systemClkGen CamIF

vdma0

hdmi

spi

spiIFtxi2s

iic

axi0
axi1
axi2

 dma
axis

vdma1

SO_top

axi3

axis
ER_top

vdma2

ps7_systemClkGen CamIF

vdma0

hdmi

spi

spiIFtxi2s

iic

axi0
axi1
axi2

 dma
axis

axi3

vdma2

ER_top
axis

vdma1

SO_top
axis

Figure 5.4.: An example design space exploration tree

As soon as this automation for the SoC bring-up and iterative structural changes is
available, some of the available optimization or decision-making algorithms can be ap-
plied to achieve the desired HW-SW system design objectives. In Chapter 7, we will
discuss a problem of an SoC performance monitoring on a resource-limited FPGA. In
the proposed solution, the GRIP DSE engine uses an estimator of the FPGA resource

69

5. Automated IP-Integration and Design Space Exploration of SoCs

utilization to provide a guidance (feedback) for selecting an appropriate IP-integration
rule for progressive rule application. In the rest of this section, we will discuss tree-
based SoC DSE, which mimics an SoC architect’s step-by-step approach to achieve SoC
optimization targeted on an IP-library.

In the proposed approach, an SoC architect can interactively search the DSE tree or
select an iterative search mode. In the iterative mode, the GRIP tool considers the leaf
nodes of the DSE tree as initial designs and applies all the applicable integration rules
to the leaf nodes, expanding the DSE tree to the next depth level. Figure 5.5 shows
the flow diagram of iterative design space exploration targeted on the HASL using the
GRIP DSE engine. The DSE starts from a host SoC design, and the DSE tree is grown
from the leaf SoC candidates. Firstly, a candidate SoC is picked from a list of leaf
SoCs. For each selected candidate SoC, a candidate IP-integration rule is selected for
the HASL and applied (if a match is found), till all the available rules are exhausted.
The DSE tree is expanded width first (unless the tree is constrained, as discussed in
Sec. 5.4.2). A valid rule application generates a new candidate SoC. This new SoC is
appended as a new node to the DSE tree. This node is connected to the input SoC node
by a directed edge (from the input SoC to the new SoC). Once all the leaf nodes of the
DSE tree at a certain depth are consumed, the DSE process moves to the next set of
leaf nodes at the next depth level. Fig 5.6a shows the growth of the DSE tree during
the design exploration. However, many of the nodes of Figure 5.6a have identical SoC
architectures, which are obtained through different sequences of rules application. Fig.
5.6b merges the nodes that have identical SoC architectures, and it shrinks the DSE
tree. It can be seen that the DSE tree grows exponentially in number of nodes with the
increasing width (number of rules) and the depth (successive application of rules). Here,
it becomes necessary to control the exponential growth of the DSE tree, because as the
tree grows, the subsequent design implementation and performance evaluation runtime
for all generated candidate also grows exponentially.

GRIP
IP-INTEGRATION

Concat

Candidate
Rule

Candidate
Architecture

Pick
Cand. Arch.

if (#LeafArchs = 0)
move (NewLeafArchs -> LeafArchs)

New Leaf
Architectures

(NewLeafArchs)

All
Candidate Archs

Select
Rule

All Rules
Utilized

HASL
(IP-XACT

Integration
Rules)

Leaf Candidate
Architectures
(LeafArchs) New Candidate

Architecture

NoYes
Start

Figure 5.5.: Flow diagram for SoC design space exploration using the GRIP DSE engine

70

5.4. GRIP Design Space Exploration

5.4.2. Constraints on the Design Space Exploration Tree

In order to restrict the generation of candidate SoCs, the GRIP tool allows to inter-
actively define constraints for the DSE tree. The constraints are defined on the search
space in order to prune all non-optimal SoC candidates from the DSE tree. These con-
straints are defined based on the data flow of the target application, and also from the
SoC architect’s knowledge of the design space. The data flow of the target application
gives indicators on the scope of parallelism or pipeline of execution of SW tasks. Based
on this data flow, a limited set of IP-integration rules can be included in the HASL to
restrict the DSE tree.

Based on the feasible SoC structural changes, we have identified a set of DSE constraints
to establish a control over the DSE tree. These constraints can be used to prune the
SoC candidates that fall away from the Pareto optimal front of the performance-cost
plot. The GRIP tool allows the following constraints on the DSE tree:

1. Constraints on the width by limiting integration rules in the HASL.

The width of the DSE tree corresponds to the number of available IP-integration
rules in the HASL, and the multiple matches of a single rule. The constraint on
the width is applied by limiting the IP-integration rules in the HASL applicable for
DSE, and constraint the number of matches during the rule application. Limiting
the available IP-integration rules reduces the size of branching from each DSE tree
node, hence the width. Fig. 5.6a and 5.6b show the DSE tree with restricted width
to only three hardware accelerating subsystems.

2. Constraints on the depth by limiting the number of iterations of rules application.

The depth of the DSE tree corresponds to number of successive application of the
rules on the host SoC. Limiting the successive rules application restricts the depth.
A multiplicity of the rule application instantiates multiple IP subsystems of same
kind. This improves the HW parallelism, so limiting the depth means limiting the
HW parallelism. Fig. 5.6a and 5.6b show a DSE tree of depth 3.

3. Constraints on the application data flow.

The DSE can be restricted for either parallel or pipeline data flow. This is a
derivative of the width constraint, where the HASL includes the IP-integration
rules for the desired data flow. In Fig. 5.6c, the bold edges are the rule application
for attaining non-pipeline SoC architectures.

71

5. Automated IP-Integration and Design Space Exploration of SoCs

+ HW Acc.1
+ HW Acc.2
+ HW Acc.3

+ Non-Pipeline
+ Pipeline

(a) A DSE tree with the width of 3 hardware accelerators and the depth of 3

(b) A DSE tree after merging the identical SoC architecture nodes

(c) A DSE tree with the task-processing constraints allowing parallel processing only

Figure 5.6.: DSE trees generation with the associated DSE constraints72

5.4. GRIP Design Space Exploration

+ HW Acc.1
+ HW Acc.2
+ HW Acc.3

+ Non-Pipeline
+ Pipeline

(d) A DSE tree with the data-flow constraints allowing sequential data flow

(e) A DSE tree with a combination of task-processing and data flow constraints

(f) A sample DSE tree with a complex fusion of DSE constraints

Figure 5.6.: DSE trees generation with the associated DSE constraints (cont.)

73

5. Automated IP-Integration and Design Space Exploration of SoCs

4. Constraint on the task-processing schemes.

The design space can be restricted to the sequential execution of application tasks.
In a sequential application, the current processing task must finish before the next
task can get started. So, the DSE must not consider multiple instantiation of a
same hardware acceleration subsystem. This will still allow task pipelining, but
prevent redundancy of identical hardware accelerator subsystems. The bold edges
in Fig. 5.6d shows a design space for sequential data flow. By using the constraint
to allow multiple instantiation of an IP subsystem enables parallelism.

Using a combination of these available constraints during DSE helps to prune the un-
necessary design space. Fig. 5.6e shows an example of a design space with fusion of
constraints for data flow and task processing. The bold edges show the design space
for a sequential data flow, and parallel as well as pipeline data flow. Fig. 5.6f shows
a design space obtained by a set of complex constraints. In this, the constraints are,
a) sequential execution, b) pipeline and parallel data flow, c) sequential task-processing
constraint of HW accelerator (HA) 2 follows HA1, and HA3 follows HA2.

The information for DSE constraints is generally extracted from the target software ap-
plication. By analyzing the data flow of an application, the SoC architect can prepare
the DSE constraints, and the HASL. Then, the GRIP engine generates all the candi-
date SoCs according to the specified constraints on the prepared HASL. In Chapter 6,
the details on the DSE tree pruning will be discussed with two computer vision case
studies.

5.5. Code Generation of HW and SW Projects for Xilinx FPGA

The target-platform code generator generates the design descriptions for a specific target
platform from the IP-XACT design object of the SoC architecture. In the current state,
the GRIP tool supports code-generation for Xilinx FPGAs. It generates a microprocessor
hardware specification (MHS) file for Xilinx synthesis tool, this forms a part of the HW
project. The generated HW drivers of the HASL form a part of the SW project. Fig.
5.7 gives an overview of the code generation steps.

5.5.1. HW Project Preparation

The target HW project contains the SoC descriptions and the HW IP library, containing
all the IPs utilized in the SoC, in the target HW-platform-specific language. The HW
project can be taken through the design steps of HW synthesis, performance evaluation
etc. using the software tool chains supporting the target platform.

The GRIP code generator engine uses the Java file writer (Oracle 2014) to generate the
MHS hardware description file. The MHS describes an SoC in term of its instantiated IP

74

5.5. Code Generation of HW and SW Projects for Xilinx FPGA

Software
Application

(.c/.h)

Target Platform
config

(.h)

Target SW Project

Linux Image
(uImage)

Target HW Project

Kernel
Compiler

Linux Device Tree
Source
(.dts)

Valid Candidate
Architecture
(Xilinx .mhs)

Target Platorm
Code Generator

Valid Candidate
Architecture

(IP-XACT Design)

HW-Acc.
SW

Function +
Driver

Package

Figure 5.7.: SW and HW packages generation using the GRIP code-generation engine.

components, component parameters, and signal and bus connections among the instan-
tiated IPs. The MHS is restricted to describe the top-level physical interfaces among
IPs of an SoC, and does not consider the IP register memory maps. The mapping from
the IP-XACT design description to MHS is one-to-one, except that IP-XACT describes
more details on the IP register mapping which are not required in the MHS description.
Fig. 5.8 describes the transformation mapping from the IP-XACT description to the
Xilinx MHS description. This transformation requires both IP-XACT design and com-
ponents descriptions. The code generator extracts the instantiated IPs, bus and signal
interconnections from the IP-XACT design file, while it extracts the IP parameters from
the IP-XACT components. The SoC top-level parameters and the IO interfaces are
extracted from the IP-XACT design description.

There is one subtle difference in the IP-XACT and MHS SoC description. In IP-XACT
there is no dynamic dependence among the design properties (parameters or intercon-
nections), i.e. all the design properties can be independently handled, and any change
in a certain property does not affect other properties. In the MHS description, there are
few special parameters and ports (Interrupt and power-ground) that depend on other
design properties. The code generator engine exclusively handles these scenarios as a
final legalization step of the MHS generation. Fig. 5.8 shows one such dependency for
the interrupt port (IRQ_F2P) of the CPU (processing_system7). It can be seen that
the port IRQ_F2P has the list of nets separated by "&". The order of the interrupt signal
nets defines the interrupt priorities among the list of nets (first net being the highest
priority interrupt). This list is extracted dynamically from the design interrupt signal
connections. The following properties of the MHS description require post processing,

• PORT IRQ_F2P

• PARAMETER C_INTERCONNECT_S_AXI_HP<*>_MASTERS

75

5. Automated IP-Integration and Design Space Exploration of SoCs

• PARAMETER C_USE_S_AXI_HP<*>

• PARAMETER C_USE_S_AXI_GP<*>

• Power-ground nets net_vcc and net_gnd

Figure 5.8.: Mapping of IP-XACT properties to the MHS description for the HW project

After the SoC design description in the MHS format is available, it can be included
in the HW project together with the available HDL description of IP components in
the IP library. The design timing constraints can be configured in the HW project.
Or otherwise, as in the Xilinx design flow, the design clock frequencies are included as
parameters in the MHS file. This HW project can be taken through the HW synthesis in
the Xilinx platform studio (XPS) tool chain. After HW synthesis, a HW bit-stream file
is generated to program the FPGA. Further, the XPS generates board support package
(BSP) drivers to support SW cross-compilation.

5.5.2. SW Project Preparation

The SW project consists of the custom software application and the associated HW
drivers (from HASL). It also contains the board support package (BSP), which contains
software code to configure the FPGA board. The BSP is generally available with the
software tools support for the target board. The SW project is cross-compiled by the
target platform-specific tool chain.

In the GRIP-based flow, the input SW application is not required to be modified for
each SoC structural change. Instead, the underlying HASL HW drivers are adapted
to the modified SoC architecture by generating the design configuration files from the
IP-XACT design object. The HW drivers are generated as discussed in Chapter 4. The
configuration file includes parametric information on the SoC address map, available IP
subsystems (according to the applied IP-integration rules) and the register configurations

76

5.6. GRIP Tool Integration with the Xilinx Toolchain

for the mode structs. The GRIP engine uses the design configuration files and the
hardware drivers from the IP library to complete the target SW project. The SW
project is built in the Xilinx Software Development Kit (SDK) tool chain to generate
the SW binary (ELF) for the FPGA. Figure 5.9 shows the design flow in the Xilinx tool
chain from the HW and SW projects to generate the binary files (BIT for HW and ELF
for SW) for the FPGA.

If a SW application has to run on Linux OS, the code-generator also generates the device
tree source (dts) files for the kernel. The integration of the GRIP tool to generate the
Linux kernel will be discussed in Sec. 5.7.

Configure
MHS and

HW Project

HW Synthesis
and Generate

Bit-Stream

Import
HW

Platform

Create
SW Project
with BSP

Build SW
Project and

Generate ELF

BIT

BIT

ELF

XPS

SDK

Export HW
Abstraction

to SDK

Figure 5.9.: Xilinx XPS and SDK tools to generate respectively the HW and SW binaries

5.6. GRIP Tool Integration with the Xilinx Toolchain

Fig. 5.10 illustrates a possible integration of the GRIP tool into the Xilinx design flow.
The GRIP tool is called before the standard design tools and supplies SoCs candidates
with HW acceleration according to the SW definition of the SoC given by the input
application. These candidates are forwarded to the code generation engine to obtain the
HW and SW project for the target platform (in our case, Xilinx Zynq FPGA).

In this work, the GRIP tool is used together with the Xilinx ISE tool chain, including
Xilinx platform studio (XPS) for the HW project and Xilinx software development kit
(SDK) for the SW project. The GRIP code generator transforms the IP-XACT SoC
descriptions to the corresponding MHS descriptions. The generated candidates are taken
through the synthesis steps using the XPS. The synthesis process generates the HW
binary file for an FPGA, also called bit-stream file. The SDK cross-compiles the SW
applications for the ZedBoard FPGA (bare metal version). The SDK takes the C/C++
implementation of a software application and the HW drivers, together with the board
support package (BSP), and cross-compiles it for the targeted ARM core executable
binary code (ELF file). These SW and HW binaries are used to program the FPGA for
system prototyping.

77

5. Automated IP-Integration and Design Space Exploration of SoCs

SW ApplicationInitial SoC (IP-XACT)

SW Tasks (.c)

GRIP
Automated IP-Integration

Candidate SoC
Architecture (IP-XACT)

HW drivers configs
(bare-metal/Linux)

GRIP Code Generation Engine (Xilinx HW Platform)

Xilinx HW SoC Project (MHS) Xilinx SW Project (SDK)

Xilinx FPGA Design Tools

HW-Acc. SW
Library (HASL)

IP & GRIP
Rule Package

HW-acc. SW
Functions &

Drivers Package
- HW-SW Scheduler
- IP/IP-subsys drivers

- Metadata on
 IP-integration
- Metadata on
 interfaces
- IP-blocks library

HW-binary file (BIT FILE) SW-binary file (ELF FILE)

Figure 5.10.: Xilinx FPGA SoC prototyping using the HASL in the GRIP environment

5.7. GRIP Tool Integration with the Linux OS

In the case of Linux OS based SoC prototyping, in addition to the HW and SW projects
generation, it also requires the Linux build process to be integrated with the GRIP tool.
Fig. 5.11 describes the integration of GRIP generated descriptions with the Xilinx tools
and Linux build process. The Linux OS has four main components in the kernel space:

a) Boot.bin, b) Device tree blob (DTB), c) uImage, d) Linux File system.

Boot.bin contains the HW bit-stream file, uBoot, and the first stage boot loader
(FSBL). The HW project is prepared and synthesized in the Xilinx XPS tool to generate
the HW bit-stream file. The uBoot (Universal Boot Loader) contains the set of instruc-
tions to boot the OS kernel. It initializes the memory table, drivers required for different
peripherals, and starting-up of the Linux kernel. It is built using the scripts provided as
a package for Linux kernel compilation (Xilinx 2012) (generally using Makefile scripts).
The FSBL provides the target platform initialization routines. The FSBL is built using
the Xilinx SDK, after the HW system is synthesized and corresponding HW abstraction
is available from the XPS project. Finally, all three - FSBL, BIT file, uBoot - are
bundled together in the SDK to create the Boot.bin file.

The DTB contains the system address map and compatibility string based mapping of
the IP components to the corresponding kernel space drivers. It is built directly from

78

5.7. GRIP Tool Integration with the Linux OS

the device tree source (DTS) files using the cross-compile scripts available in the Linux
kernel package.

Candidate SoC Architecture (IP-XACT)

SoC Synthesis

Generate *.bit

Export to SDK
Xilinx XPS

Build FSBL

Create BOOT.bin

Configure
U-Boot

Build
U-Boot

Configure Linux
Kernel

Incld. kernel-space
drivers and DTS map

Build uImage
Compiled for ARM arch.

Build DTB
(device tree blob)

Xilinx SDK

GRIP
Code

Generation

Hardware
Synthesis

&
Build
Linux

Linux
Operating

System

U
se

r S
pa

ce

Generated User-space IP/IP-sub. drivers
HW-SW Scheduler functions

Software Application

BOOT.bin

FSBL *.bit uBoot
uImageDTB LINUX

FILE SYSTEM

/sys/* :Compiled HAL /dev/* :Recognized HW devices

Code Generation (MHS) DTS Generation

K
er

ne
l S

pa
ce

Figure 5.11.: Building the Linux kernel using GRIP generated HW drivers

The uImage is the compressed Linux kernel image for a specific CPU architecture. It
includes the HW drivers corresponding to the kernel configurations specified during the
build process. It is generated from the Linux kernel build routines. This work only uses
memory-mapped IP subsystems for hardware acceleration, the character (char) device
drivers were included as kernel-space drivers while building the uImage.

The Linux file system is the file system image of the Linux operating system. The
Linux operating system has a well defined structure for the file system. The file system
contains user files, application programs, administrative files, shared libraries etc.. In

79

5. Automated IP-Integration and Design Space Exploration of SoCs

this work, we use version 12.04 of the ubuntu file system. The file system is not affected
by any structural changes at the HW architecture level.

In the kernel space, for the integration of the GRIP tool with the Linux build, the
GRIP tool generates the the MHS and DTS files from IP-XACT SoC descriptions. The
MHS file goes through HW synthesis in the Xilinx tool chain to generate the FSBL, bit
file, and uBoot as the BOOT.bin. The DTS file is built to create the DTB file. While
the configurations in the DTB file are used to link the kernel space drivers to the HW
abstraction in DTB, and build the uImage Linux kernel.

Finally, in the user space, the GRIP generated HW drivers, together with the Linux util-
ity functions form the user-space IP-subsystem drivers. These user space drivers
use the predefined system calls to access the kernel space (Code 4.10, Code 4.11) These
drivers provide the functions for the software applications to access the kernel space,
and the HW resources.

5.8. Conclusions

In this chapter, we discussed the details of the three core engines of this work: the
IP-integration engine, the DSE engine, the code generation engine.

The IP-integration engine uses the IP-integration rules of the HASL to automate SoC
structural changes. This is extended by the GRIP DSE engine, which iteratively ap-
plies the IP-integration rules to explore the SoC design space. This mimics the SoC
architect’s step-by-step DSE approach, and the structural changes can be backtracked
and undone. The SoC architect can control the automated DSE process by applying the
DSE constraints. Finally, the code generation engine generates HW and SW projects for
the targeted HW platform. We also discussed the integration of the GRIP tool with the
external platform-specific software tool chains and with the Linux OS build process.

The chapter extends the available graph-grammar principles to the model-based graph
modeling and graph rewriting. The algorithms used for the IP integration and DSE
are also adapted to the model-based frameworks, while they use OCL, EVL, and EOL
frameworks.

80

6. Computer-Vision Case Studies on the ZedBoard

”...Mapping a design to FPGA prototype hardware can also be time-consuming and prone
to error. When a design does not work in a prototype, it can be because of physical
problems, design errors, or mapping issues. Without good techniques and the necessary
tools, bringing up a prototype board can add months to your project schedule.”, Ron
Green, Technical Communications Manager, S2C Inc.

6.1. Introduction

In the previous chapters, we have described the key elements of the GRIP tool, and
proposed an SoC design methodology using the GRIP tool. This chapter demonstrates
the proposed design approach using GRIP on two computer vision (CV) case studies:
a motion detection application and a video filtering application. We will take these
computationally intensive applications and explore the architectural design space to
accelerate the applications. The DSE uses domain-specific HASLs containing hardware
accelerators for computer vision functions. The GRIP tool is utilized to prepare the
HASL and corresponding IP-integration rules. This chapter will discuss the step-by-
step approach of performing the proposed GRIP tool based DSE.

In the presented case studies, the HW and SW projects are targeted to be programmed
on the Digilent ZedBoardTM FPGA development board. The bring-up of an FPGA is te-
dious, it requires the implementation of a synthesizable HW design and a compilable SW
application with valid HW drivers. Typically, the implementation using the available
”drag-and-done” based tools require multiple iterations of the HW and SW projects for
FPGA bring-up. Depending on the complexity of the HW design and the SW applica-
tion, an FPGA bring-up can take up to few weeks of effort. The GRIP tool off-loads the
manual effort to instantiate, configure and integrate IP components into an SoC for the
HW project, and the implementation of HW drivers for the SW project. The proposed
GRIP-based IP-integration and DSE methodology requires one-time effort to prepare
IP-integration rules associated to each IP component. However, the atomic structural
changes encoded by each IP-integration rule can be iteratively utilized to explore a much
bigger design space than practically feasible using manual schemes.

81

6. Computer-Vision Case Studies on the ZedBoard

6.2. Host SoC on the Zynq FPGA

The design space exploration for both CV applications starts from the host SoC archi-
tecture. This host SoC contains the minimal HW setup to execute a general computer
vision application in the pure software implementation without any hardware accelera-
tion. The DSE is targeted on the ZedBoard FPGA evaluation board with Zynq FPGA
SoC chipset (ZedBoard 2012).

The host SoC design contains IP components for IO interfaces in the processing system
(PS), and the camera and HDMI interface IPs in the programmable logic (PL) part of
the Zynq chipset, specifically:

1. An ARM cortex a9 Dual-CPU (operating at 667MHz, ps7 system).

2. A 512 DDR2 RAM (operating at 566MHz).

3. (with Bare metal) An external camera interface via PMOD ports of the ZedBoard,
configured by an I2C IP (10fps, VGA 640x480, RGB556, 100MHz System Clock).

4. (with Bare metal) An HDMI interface module for connecting an external monitor
to observe the output (using VDMA at 200MHz).

5. (with Linux OS) A USB IP interface in the PS for connecting an external USB
camera (10fps, VGA 320x240).

6. (with Linux OS) An HDMI interface module in the PS for connecting an external
HDMI Monitor.

clkgeniic

axi0
axi1
axi2

dma

i2s

vdma0

hdmi spiIFtx

spi

camIFps7_system

Figure 6.1.: The host SoC with associated IP components and bus interconnections

Fig. 6.1 describes the block diagram of the host SoC with the minimal IP components
required for software only implementation of a computer vision application. It contains
a CPU (ps7 sys), camera interface (camIF), HDMI interface (hdmi), clock generator
(clkgen), and other interface modules for configuring the peripherals. Fig. 6.2 describes

82

6.3. Case Study 1 - Motion Detection Application

the block diagram of the host SoC in the context of the Zynq chipset. The figure shows
the instantiated IP components and their corresponding bus interconnections. In the PL,
axi_1 is the AXI-LITE bus, axi_0 and axi_2 are the AXI4 buses, while AXI-Stream
buses are highlighted with green color.

Programmable
Logic

High-Performance Ports ACP

AXI_1
AXI_2

AXI
VDMA 0

HDMIClk
Gen

Camera IF
AXI GP 32 bit
AXI HP 64 bit
AXI4 Stream

GP0

Processing System

.

.

.

.
OCM

Interconnect
256K

SRAM

Memory
Interfaces
SRAM/

NOR
ONFI 1.0
NAND
Q-SPI
CTRL

IRQ

Clock
Generation

Reset SWDT

 TTC

System
Level

Control
Resigter

DMA 8
Channel

512 KB L2 Cache & Controller

DDR2/3,
LPDDR2

Controller

DAP
Programmable Logic to Memory

Interconnect

M
IO

I/O
Peripherals

USB
USB
GigE
GigE
SD

SDIO
SD

SDIO
GPIO
UART
UART
CAN
I2C
I2C
SPI
SPI

2 x USB
2 x GigE
2 x SD

Central
Interconnect

General-Purpose Ports DMA Sync IRQEMIO

DevC

CoreSight
Components

Memory
Interfaces

Application Processing Unit

FPU and NEON FPU and NEON

ARM Cortex-A9 ARM Cortex-A9

32 KB
I-Cache

32 KB
D-Cache

32 KB
I-Cache

32 KB
D-Cache

GIC Snoop Controller, AWDT, Timer

HP0

DMA

i2S

AXI_0

SPI

spiIFtx

HP2

iic

Figure 6.2.: Implementation of the host SoC in the Zynq chipset

6.3. Case Study 1 - Motion Detection Application

The motion detection application considered in this case study is based on Optical Flow
(Stein 2004). In this application, the motion of the objects in the captured video is
detected and shown as motion vectors on the display monitor. It uses census transfor-
mation algorithms for detecting relative motion of objects in alternate frames. The use
cases of the motion detection algorithms can be seen for motion segmentation, 2D or 3D
object shape recognition, alignment and calibration, video compression etc.

83

6. Computer-Vision Case Studies on the ZedBoard

Fig. 6.3 describes data flow of the motion detection application. The application consists
of four main SW tasks,

1. Census transformation

2. Matching signatures

3. Ego-motion estimation

4. Ego-motion compensation

Read Frame New FrameWait(IRQ)

Camera Input

New Frame
IRQ

Census
Transformation

Matching
Signatures

Ego-Motion
Estimation

Ego-Motion
Compensation

Figure 6.3.: Data flow of the motion detection application

Census transformation

Census transformation transforms each pixel of an image frame in proportion to its
intensity value in the range 0 to 255. In the simplest form, each pixel is thresholded to
obtain a binary 0 or 1 value. In a slightly more complex implementation, each pixel can
be thresholded in the range of intensities to obtain 2-bit encoding, 00, 01, 10, or 11.

As a first step, census transformation is used to obtain a signature value for each pixel
of an input frame. These signatures for individual pixels are then used in the next step
(matching) to find the corresponding pixels across alternate frames. For a candidate
pixel, a signature is formed by the concatenated census transformed values of neighboring
pixels. In the simplest form, the candidate pixel is considered together with a 3x3 pixels
window with the candidate pixel at the center (3x3 - 1 = 8 bit signature). In this case
study, a more complex signature of a 15x15 window is used around a candidate pixel to
generate a 32 bit signature (Fig. 6.4a). The signature is formed by concatenating the 16
neighboring pixels (NPs) as shown in Fig. 6.4a, with each NP census transformed to a
2-bit value. The signature width defines the trade-off of accuracy of the matching step
and the computation time.

Matching signatures

The signature matching is used to match pixels with identical signatures across alternate
frames. It is a window based operation, where a candidate pixel signature is matched
to all the pixels in a match window (Fig. 6.4b). For each pixel that is found moved
across alternate frames, a motion vector is generated representing the motion of the
pixel. The motion vector indicates the effective displacement of a candidate pixel. This
is computationally the most expensive step of the motion detection application. The
processing load depends exponentially on the match window.

84

6.3. Case Study 1 - Motion Detection Application

NP

C

NP NP

NP

NP NP NP

NP

NP NP NP

NP

NPNPNP

NP

(a) Signature generation using census trans-
formation (15x15 window, C = Candidate
pixel, NP = Neighbouring pixel). ”Thresh-
olding” is done specifically for the 16 NPs

Frame n

Frame n+1

Pixel a

Pixel a

Pos. 0

Pos. 1
Match
window

Si

Si

(b) Signature matching across alternate frames
restrained to a match window

Figure 6.4.: Signature generation and matching signature steps for motion detection

Ego-motion estimation

This step together with the next step is required to tackle the scenario of video captured
by a moving camera device. In this step the effective motions of the camera device is
estimated using the First Order Flow (FOF) model (Paul 2010) (Lyu 2016). The FOF
model considers three motions, namely, a) Dilation element (D), b) Rotation element
(R), c) Shear element (S). The dilation effect is because of moving in and moving out of
camera w.r.t. an object. The rotation element comes from the rotation of the camera
along the vertical axis. The shear effect is because of lateral movement of the camera.

Equation 6.1 describes the FOF model applied on a pixel at (X, Y) coordinates. In the
equation Vx and Vy are the X- and Y-components of the optical flow motion vector V on
the pixel at (X, Y) coordinates. In Eq. 6.1, θ represents the rotation along the vertical
axis, and Xc and Yc are for the focus of expansion of dilation.

[
Vx
Vy

]
=

[
cos θ − sin θ
sin θ cos θ

] [
D + S −R
R D − S

] [
cos θ sin θ
− sin θ cos θ

] [
X −Xc

Y − Yc

]
(6.1)

85

6. Computer-Vision Case Studies on the ZedBoard

A simplification is applied to this equation, θ is set to zero degrees assuming only lateral
motion of the camera, and shear element (S) is set to zero with an assumption of slow
moving camera device. Eg. 6.2 gives the simplified FOF model used in computation.

[
Vx
Vy

]
=

[
D −R
R D

] [
X −Xc

Y − Yc

]
(6.2)

Eq. 6.2 has four unknowns (D, R, Xc, Yc) and the matrix gives two equations. In order to
find the model unknowns, two randomly selected pixels are used in Eq. 6.2 to form four
equations (assuming that the motion of the camera device has same motions effect on
most of the frame pixels). If (x1, y1) and (x2, y2) are the two pixels with corresponding
motion vectors (vx1, vy1) and (vx2, vy2), then the FOF model unknowns can be found
using the equations 6.3. Further, Ego-estimation engine (EEE) tries multiple iterations
to find the best FOF model. The best FOF model is selected based on the outlier rate,
which is the ratio of motion vectors that do not fit the model and total number of motion
vectors. The EEE fails to generate the FOF model, if the outlier rate is more than a
minimum required outlier rate.

Xc =
e1 + e2 + e3

vx1 × (vx1 − 2× vx2) + v2x2 + v2y1 − vy2 × (2× vy1 − vy2)

Yc =
e4 + e5 + e6

vx1 × (vx1 − 2× vx2) + v2x2 + v2y1 − vy2 × (2× vy1 − vy2)

D =
(x1 − x2)× (vx1 − vx2) + (y1 − y2)× (vy1 − vy2)
x1 × (x1 − 2× x2) + x22 + y1 × (y1 − 2× y2) + y22

R =
(x1 − x2)× (vy1 − vy2) + (y2 − y1)× (vx1 − vx2)
x1 × (x1 − 2× x2) + x22 + y1 × (y1 − 2× y2) + y22

Where e1 to e6 are:

e1 = vx1 × (−vx2 × x1 + vx1 × x2 − vx2 × x2 + vy2 × y1 − vy2 × y2)
e2 = vy1 × (−vy2 × x1 + vy1 × x2 − vy2 × x2 − vx2 × y1 + vx2 × y2)
e3 = x1 × (v2y2 + v2x2)

e4 = vx2 × (vy1 × x1 − vy1 × x2 − vx1 × y1 + vx2 × y1 − vx1 × y2)
e5 = vy2 × (−vx1 × x1 + vx1 × x2 − vy1 × y1 + vy2 × y1 − vy1 × y2)
e6 = y2 × (v2x1 + v2y1)

(6.3)

Ego-motion compensation

At this step, the FOF model parameters as computed in the previous step are used to
compute the effective optical flow accounted to the moving camera device. The motion

86

6.4. GRIP DSE for the Motion Detection Application

vectors generated during the matching signature step are subtracted by the motion vec-
tors obtained from the best Ego-estimation FOF model. Out of the four SW tasks, this
is computationally the least expensive SW task.

A SW library is prepared which contains the C/C++ implementation of these functions
for the motion detection application. The library is available both for the bare metal
as well as Linux OS based motion detection application development. The implemented
functions in the library are targeted for the ARMv7 architecture of the ARM cortex-A9
CPU (cross-compilable using the ARM GCC compiler).

In the next section, we will discuss using this SW library, together with the HW im-
plementation of previously described four functions of the motion detection application
to prepare the HASL. The prepared HASL is then employed for the GRIP design space
exploration.

6.4. GRIP DSE for the Motion Detection Application

The objective is to implement the software only version of the motion detection applica-
tion on the host SoC architecture, and progressively improve the application processing
time by iteratively transferring the SW tasks from the CPU to the hardware accelera-
tors. The effective change in the application processing is the cumulative effect of SW
tasks performance improvement by HW acceleration and associated data communication
overhead. In the subsequent sub-sections, we will discuss the steps to perform design
space exploration using the GRIP tool.

6.4.1. HASL Preparation for the Motion Detection Application

The first step in the proposed approach is to prepare a domain-specific HASL for the
target application. As discussed in the previous section, the motion detection applica-
tion has four main computationally expensive SW tasks. So, these SW tasks offer the
scope of HW acceleration in the application. This requires the availability of hardware
accelerators in the IP library for each of the SW tasks.

IP Packaging: The four hardware accelerators corresponding to the SW tasks are
implemented by using the Xilinx high level synthesis (HLS) tool, Vivado-HLS (Xilinx
2014). The synthesizable software implementation (C/C++) of each SW task is given as
input to the Vivado-HLS. These SW descriptions include HLS directives, which enable
HW optimizations within the Vivado HLS tool, including pipelining, loop unrolling, HW
parallelization etc. Inclusion of these directives require analysis of data flows within each
SW task, while making a trade-off among HW resources and performances. The HLS

87

6. Computer-Vision Case Studies on the ZedBoard

is used to quickly implement the hardware accelerators. However, the GRIP approach
doesn’t rely on HLS. The HW IPs available for this DSE include:

1. Hardware accelerator (HA) for the census transformation (CE)

2. HA for the matching signature (ME)

3. HA for the Ego-motion estimation (EEE)

4. HA for the Ego-motion compensation (ECE)

5. Other IPs for camera & display interfaces

Left hand side (LHS) design Right hand side (RHS) design

ps7_systemCamIF

hdmi vdma0

axi1
axi2

GRIP
Rule 1

GRIP
Rule 2

ps7_systemCamIF

hdmi vdma0

axi1
axi2
axi3

ps7_systemCamIF

axi1
axi2

HA_top

axi3

#PARAM 4
#SIGNALS 2

#SIGNALS ALTERED 4

hdmi vdma0

ps7_systemCamIF

axi1
axi2

HA_top

axi3

#PARAM 4
#SIGNALS 2

#SIGNALS ALTERED 4

hdmi vdma0

Figure 6.5.: IP-integration rules for the motion detection application

For each accelerator IP (CE, ME, EEE, ECE), the integration rules are prepared for
integration on a dedicated new bus, and on an existing bus (Fig. 6.5). Thus, in total eight
IP-integration rules for all HA IPs are prepared. The IP-XACT components together
with their HDL descriptions and the associated IP-integration rules make up the IP
packages for our IP library.

HW-accelerated SW library (HASL): Using the HASL drivers generator, the re-
quired HW drivers and schedulers are generated. The available IP-XACT hardware
meta-model information is utilized to generate the driver and scheduling layer. For each
of the four motion detection application tasks, the HASL also has a SW implementation.
Thus, all four SW tasks can be executed either on the HW accelerator subsystem or on
the ARM CPU.

88

6.4. GRIP DSE for the Motion Detection Application

+ ECE HA

+ CE HA
+ ME HA
+ EEE HA

+ Non-Pipeline

1 2 3 4

0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

21 84

85 340

(a) DSE tree with no DSE constraints

+ ECE HA

+ CE HA
+ ME HA
+ EEE HA

+ Non-Pipeline

1 2 3 4

0

5 6 7 8 9 10 11 12 13 14

15 34

35 69

(b) DSE tree with merged nodes and no DSE constraints

1 2 3 4

0

5 6 7 8 9 10

11 12 13 14

15

+ ECE HA

+ CE HA
+ ME HA
+ EEE HA

+ Non-Pipeline

(c) DSE tree with merged nodes and with DSE constraints

Figure 6.6.: DSE trees for the motion detection with and without the associated DSE
constraints (width of 4 hardware accelerators and tree depth of 4)

89

6. Computer-Vision Case Studies on the ZedBoard

6.4.2. DSE for the Motion Detection Application

The DSE is an interactive process to explore the performance and utilized HW resources
trade-off. First, we run a broad search with a depth of four (Fig. 6.6a). Node 0 is the
initial SoC with accelerator IP, node 1 to 4 have one IP for CE, ME, EEE, and ECE.
Progressively more IPs are added to reach higher tree depth. It is clear from the figure
that the number of DSE tree nodes grows exponentially. However, the SoC candidate
architectures represented by the DSE tree nodes are not unique. At each DSE tree
depth, the nodes with identical SoC architectures can be merged into a single node. In
the DSE tree with depth four, after merging similar nodes, there are 69 feasible candidate
SoCs (Fig. 6.6b). Fig. 6.7 shows the Zynq-chipset block-diagram for the SoC candidate
architecture with all hardware accelerators instantiated, CE, ME, EEE, and ECE. The
figure also shows the task mapping on the HW processing units. The application control
and task mappings are handled by the generated HW drivers from the HASL

Programmable
Logic

High-Performance Ports ACP

AXI_1
AXI_2

AXI
VDMA 0

HDMI
Clk

GenCamera IF

AXI_3

AXI GP 32 bit
AXI HP 64 bit
AXI4 Stream

GP0

Processing System

.

.

.

.
OCM

Interconnect
256K

SRAM

Memory
Interfaces
SRAM/

NOR
ONFI 1.0
NAND
Q-SPI
CTRL

IRQ

Clock
Generation

Reset SWDT

 TTC

System
Level

Control
Resigter

DMA 8
Channel

512 KB L2 Cache & Controller

DDR2/3,
LPDDR2

Controller

DAP
Programmable Logic to Memory

Interconnect

M
IO

I/O
Peripherals

USB
USB
GigE
GigE
SD

SDIO
SD

SDIO
GPIO
UART
UART
CAN
I2C
I2C
SPI
SPI

Census
Engine

2 x USB
2 x GigE
2 x SD

Central
Interconnect

General-Purpose Ports DMA Sync IRQEMIO

DevC

CoreSight
Components

Memory
Interfaces

Application Processing Unit

FPU and NEON FPU and NEON

ARM Cortex-A9 ARM Cortex-A9

32 KB
I-Cache

32 KB
D-Cache

32 KB
I-Cache

32 KB
D-Cache

GIC Snoop Controller, AWDT, Timer

HP0 HP2

Matching
Engine

Ego-Motion
Estimation

Engine

Ego-Motion
Compensation

Engine

Read Frame

new Frame

Wait(IRQ)Camera
Input

New Frame
IRQ

+
Application

Control

Census
Transformation

Matching
Signatures

Ego-Motion
Estimation

Ego-Motion
Compensation

Figure 6.7.: The candidate SoC with all four HAs for motion detection on Zynq-chipset

DSE Constraints: The FPGA synthesis for all 69 candidate SoCs would take very long
if done sequentially, or would require many computing resources if done in parallel. So,
we apply additional constraints on the DSE tree synthesis in order to prune non-optimal
candidate SoC architectures. We look at the data flow of the application (Fig. 6.3) to

90

6.4. GRIP DSE for the Motion Detection Application

extract the following DSE constraint: Restrict to single instantiation of each accelerator
IP: Application has sequential SW tasks execution on each frame. Architectures with
parallel computation on two IPs of same type bring no benefit, as at the max one IP is
active at any given time.

After applying this DSE constraints, the number of candidate SoCs is reduced to 15,
which are shown by the bold edges in Fig. 6.6c. DSE constraints require understanding
on the application, otherwise they may prune pareto-optimal candidates.

Code Generation: The GRIP code-generation engine generates the platform-specific
hardware description files, which are then taken through Xilinx SoC synthesis with
available RTL IP components, to generate a bit-stream file for the FPGA hardware
programming. For the SW project, the application uses the generated HW-SW scheduler
& IP-subsystem drivers and cross-compiled to generate the SW binary file, and is loaded
to the instruction memory of the CPU. Fig. 5.11 describes the steps for building Linux-
OS and including user-space drivers. The code-generation engine generates the device-
tree source (DTS) for building device-tree blob (DTB). The HW devices are recognized
by Linux from the DTB and appear under /dev/*. The application can access these
drivers using generated user-space drivers and utility functions.

6.4.3. Results Analysis

In the previous subsection, all the generated MHS descriptions are taken through Xilinx
synthesis runs to generate the bit-stream files. Each of the synthesis runs takes around 60
mins to complete. However, all the synthesis runs can be executed in parallel. Table 6.1
summarizes the architectures of all 15 generated candidate SoCs. The table describes
for each candidate SoC which SW task is executed on a CPU or by a corresponding
hardware accelerator (HA).

Fig. 6.8 shows the application profiling results of all the 15 generated SoCs. The figures
show the total CPU processing time of the application vs. the FPGA resources (LUT
count) utilized for each SoC. The edges indicate the corresponding IP-integration rules,
with the starting point as the input SoC and and the end point as the output SoC.
Both the bare metal and the Linux OS versions were considered in order to evaluate the
effect of HW access latency overhead and data communication overhead on the overall
application performances. In the figure, the host SoC architecture node 0 for the bare
metal case has more LUTs than the node 0 for the Linux OS case. This is because the
host SoC for the Linux OS has camera interface and display units as hard macros in the
processing system part of the Zync FPGA.

In both cases, progressive integration of the hardware accelerators reduces the CPU
processing time for the application with the increasing cost of additional FPGA resources
usage. The figures show the different spread of the performance-area tree for the bare-
metal and Linux OS, indicating that the overheads vary for both cases. We can see

91

6. Computer-Vision Case Studies on the ZedBoard

Candidate SoCs CE
Processing

ME
Processing

EEE
Processing

ECE
Processing

Candidate 0 CPU CPU CPU CPU
Candidate 1 HA CPU CPU CPU
Candidate 2 CPU HA CPU CPU
Candidate 3 CPU CPU HA CPU
Candidate 4 CPU CPU CPU HA
Candidate 5 HA HA CPU CPU
Candidate 6 HA CPU HA CPU
Candidate 7 HA CPU CPU HA
Candidate 8 CPU HA HA CPU
Candidate 9 CPU HA CPU HA
Candidate 10 CPU CPU HA HA
Candidate 11 HA HA HA CPU
Candidate 12 HA HA CPU HA
Candidate 13 HA CPU HA HA
Candidate 14 CPU HA HA HA
Candidate 15 HA HA HA HA

Table 6.1.: HW-SW mapping of the four tasks of the motion detection application for
the host SoC and 15 generated candidate SoCs

2 2.5 3 3.5 4

Total LUT Count 104

0

500

1000

1500

2000

2500

3000

3500

4000

4500

C
PU

 P
ro

ce
ss

in
g

Ti
m

e
(m

s)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

12

13

14

15

×

Adding CE with additional bus interconnection
Adding ME with additional bus interconnection
Adding EEE with additional bus interconnection
Adding ECE with additional bus interconnection
Adding CE to exisitng bus interconnection
Adding ME to exisitng bus interconnection
Adding EEE to exisitng bus interconnection
Adding ECE to exisitng bus interconnection

0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

Total LUT Count 104

500

1000

1500

2000

2500

3000

3500

4000

C
PU

 P
ro

ce
ss

in
g

Ti
m

e
(m

s)

 0

 1

 2

 3
 4

 5

 6

 7

 8
 9

10

11
12

13

14

15

Adding CE with additional bus interconnection
Adding ME with additional bus interconnection
Adding EEE with additional bus interconnection
Adding ECE with additional bus interconnection
Adding CE to exisitng bus interconnection
Adding ME to exisitng bus interconnection
Adding EEE to exisitng bus interconnection
Adding ECE to exisitng bus interconnection

×

Figure 6.8.: Performance analysis for the application as (a) bare-metal, (b) Linux

a wider spread with the Linux OS mainly because of less performance gains obtained
with using CE and EEE HAs. Since the overall HW acceleration of these two HAs is
not significant, so the larger OS overheads of data communication and drivers latency
is diminishing the overall effectiveness (Table. 6.2).

In the figure, the SoC architectures that are nearer to the origin offer the best performance-
area trade-off. These architectures form the Pareto optimal front of the performance-area
trade-off. For the bare-metal case, Arch. 0, 3, 1, 2, 8, 5, and 11 form the Pareto front,
and with the Linux-OS case, Arch. 0, 3, 1, 2, 5, and 11 form the Pareto front. In this
case study, both Pareto fronts contain same set of candidate SoCs except the additional

92

6.5. Case Study 2 - Acceleration of Video Processing Filters

Arch. 8 in the bare-metal case. By comparing the processing times of Arch. 0 and
Arch. 15, it can be seen that the frame processing time was reduced for the bare-metal
application by a factor of 11x and for the Linux application by 7x. Fig. 6.9 and Fig.
6.10 show the computed motion vectors on the external monitor for the bare metal and
the Linux OS based computing respectively.

In this case study, by encoding the SoC DSE knowledge in the IP-integration rules of
the IP library, has helped to potentially reduce the couple of days of effort for DSE to a
couple of hours using the GRIP tool. The proposed methodology required us to prepare
the HASL. It is a one time effort, and at the same time it helps to progressively grow
the IP-integration knowledge in the HASL.

Performance (ms) Resource Utilization
Software Hardware (HLS) FFs LUTs

Census Engine 612 102 1812 (1%) 3280 (6%)

Matching Engine 2291 127 1852 (1%) 6539 (12%)

Ego-Motion Estimation 694 21 1700 (1%) 1832 (3%)

Ego-Motion Compensation 41 10 1231 (1%) 1377 (2%)

Table 6.2.: Performance comparison (frame processing time) of the motion detection
application in the software and hardware implementations

6.5. Case Study 2 - Acceleration of Video Processing Filters

Target Application: The second case study is about the acceleration of a video-
processing application on the ZedBoard FPGA using the GRIP tool. This application
performs three filtering operations in sequence on an input video stream from an external
camera device: Sobel filtering, Erosion filtering and Grayscale conversion. The Sobel
filter is an edge detection filter, its iterative gradient operations on 3x3 pixel windows
make it computationally expensive. The Erosion filter is also a window-based operation
which erodes the brightness of a frame. The Grayscale conversion is a pixel scaling
operation, which works pixel-by-pixel. Fig. 6.11 illustrates the data flow for this SW
application.

The software application is targeted on the host SoC architecture which is discussed in
Sec. 6.2. In the following, we will use that host SoC as a start point to perform DSE
for the application using the GRIP approach for both the bare-metal and the Linux-OS
based set-ups.

IP Packaging: The IPs required in this case study are: (1) IPs for hardware acceleration
for the Sobel filter (SO), Erosion filter (ER) and Grayscale filter (GR) as well as (2) video

93

6. Computer-Vision Case Studies on the ZedBoard

(a) Frame 2 (b) Frame 4

(c) Frame 6 (d) Frame 8

(e) Frame 6, non Ego compensated (f) Frame 8, non Ego compensated

Figure 6.9.: Motion detection application with bare metal and SW only implementation

direct memory access (VDMA) for memory communication and (3) other IPs for camera
& display interfaces. Each of these functional HW IPs (SO, ER, GR) is associated with
three IP-integration rules for integration on a dedicated bus, on an existing bus and
in pipeline to an existing HW accelerator IP (See rule 2 to rule 4 in Fig. 3.3). Thus,

94

6.5. Case Study 2 - Acceleration of Video Processing Filters

(a) Frame 1 (b) Frame 2

(c) Frame 3 (d) Frame 4

Figure 6.10.: Motion detection application on the Linux OS and SW only implementation

Erosion
Filtering

Sobel
Filtering

Sobel
processed

Frame

Read
Frame

New
Frame

Wait(IRQ)
Erosion

processed
Frame

Grayscale
processed

Frame

Grayscale
Filtering

Camera Input

New Frame
IRQ

Figure 6.11.: Data flow of the video processing application

in total nine IP-integration rules for all HW IPs. Table 6.3 shows a comparison of the
processing times for the SW and HW implementations of these three filtering tasks.

HW-accelerated SW library (HASL): At this step, IP-XACT descriptions for all
the required HW IPs and associated IP-integration rule are used to generate the required
HW drivers and scheduler. In this case study, an IP subsystem compromises of a VDMA
IP connected either to a single HW accelerator IP or to a set of pipelined HW accelerator
IPs. Overall, ∼ 3000 lines of driver code are generated, while it was required to write
∼ 200 lines to customize the drivers to specific IP needs.

95

6. Computer-Vision Case Studies on the ZedBoard

Performance (ms) Resource Utilization
Software Hardware (HLS) FFs LUTs

Sobel Filter 149.2 6.75 980 (1%) 1080 (2%)

Erosion Filter 166.42 6.75 1174 (1%) 1975 (3%)

Grayscale Filter 27.02 6.30 651 (1%) 1007 (2%)

VDMA IP NA NA 4176 (4%) 3887 (7%)

Table 6.3.: Performances of various filter tasks executed on CPU and as dedicated HW

Design Space Exploration (DSE): In this DSE, the design space is explored to the
depth of three (Fig. 6.12). The node 0 is the host SoC with no accelerator IP, the nodes
1 to 3 have one IP for SO, ER, GR and one VDMA each. At each further depth, more
HAs are progressively added to the host SoC. In the figure, the solid edges are indicating
parallel integration of HW IPs and the dotted edges indicate IP-integration in pipeline.
Fig. 6.13 shows the block diagram for the SoC candidate architecture for node 12. The
block diagram shows that the SO and ER filters are operating in pipeline, while ER is
integrated in parallel. The DSE tree with depth three has 82 feasible candidate SoCs.

1

0

23

4
56

7

89

1011 12

+ HW Grayscale
+ HW Sobel
+ HW Erode

+ Non-Pipeline
+ Pipeline

Figure 6.12.: Design space exploration tree for the video processing case study.

DSE Constraints: In this case study, the following DSE constraints are applied to
prune the non-optimal SoC architectures from the DSE tree.

1. Allow pipeline integration for SO, ER & GR IP: Application has sequential SW
tasks execution on frames without custom operations between the functions. Pipelin-
ing reduces communication overhead for writing frames back to memory.

96

6.5. Case Study 2 - Acceleration of Video Processing Filters

Programmable
Logic

EMIO General-Purpose Ports DMA Sync IRQ High-Performance Ports ACP

AXI_1

AXI_2

AXI
VDMA0

HDMI
Clk
GenCamera IF

AXI_3

AXI
VDMA2

AXI
VDMA3

AXI
VDMA4

Sobel Edge
detection

AXI GP 32 bit

AXI HP 64 bit

AXI4 Stream

GP0 HP0 HP1

- -

Processing System

.

.

.

.

Central
Interconnect

2x SD
2x GigE
2x USB

Application Processing Unit

FPU and NEON

ARM Cortex-A9

32 KB
I-Cache

32 KB
D-Cache

FPU and NEON

ARM Cortex-A9

32 KB
I-Cache

32 KB
D-Cache

GIC Snoop Controller, AWDT, Timer

OCM
Interconnect

256K
SRAM

Memory
Interfaces

SRAM/
NOR

ONFI 1.0
NAND
Q-SPI
CTRL

IRQ

Clock
Generation

Reset SWDT

TTC

System
Level

Control
Registers

DMA 8
Channel

512 KB L2 Cache & Controller

CoreSight
Components

Memory
Interfaces

DDR2/3,
LPDDR2

Controller

DAP

DevC Programmable Logic to Memory
Interconnect

M
IO

I/O
Peripherals

USB
USB
GigE
GigE
SD

SDIO
SD

SDIO
GPIO
UART
UART
CAN
I2C
I2C
SPI
SPI

GrayScale
Filter

Erosion
Filter

Figure 6.13.: Block-diagram for the video-processing SoC set-up on Zynq FPGA

2. Restrict to single instantiation of each accelerator IP. Since each SW task in the
application is sequentially executed once for each frame, the parallel computation
will not benefit.

After applying these DSE constraints, the candidate SoCs number is reduced to 12,
which are shown as the bold edges and nodes in Fig. 6.12. Table 6.4 describes HW-SW
mapping and leveraged pipelining between HAs for these 12 generated SoCs,

Results: Fig. 6.14 shows the performance-area trade-off for implementation as (a) bare-
metal application and (b) Linux application. The SoC architectures 0 to 12 correspond
to the DSE tree nodes of Fig. 6.12. Arch-0 is the initial SoC design with full SW
processing. The bare-metal application accesses the camera inputs via a custom camera
interface IP in the FPGA, while the Linux application accesses camera inputs via the
USB module in the processing system part of the Zynq chipset. The Y-axis shows the
frame processing time (performance) and the X-axis shows the utilized FPGA resources
(area) for all SoC candidates. For the bare-metal application, the integration of any

97

6. Computer-Vision Case Studies on the ZedBoard

Candidate SoCs SO
Processing

Pipe ER
Processing

Pipe GR
Processing

Candidate 0 CPU CPU CPU
Candidate 1 CPU CPU HA
Candidate 2 CPU HA CPU
Candidate 3 HA CPU CPU
Candidate 4 HA CPU HA
Candidate 5 CPU HA HA
Candidate 6 HA HA CPU
Candidate 7 HA HA HA
Candidate 8 CPU HA YES HA
Candidate 9 HA YES HA CPU
Candidate 10 HA YES HA YES HA
Candidate 11 HA HA YES HA
Candidate 12 HA YES HA HA

Table 6.4.: HW-SW mapping of tasks of the video processing application for 12 generated
SoCs. ’YES’ in Pipe column indicates pipelining among adjacent HAs

1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5
x 104

0

50

100

150

200

250

300

Design S pace Exploration

Fr
am

e
Pr

oc
es

si
ng

 T
im

e
(m

s)

Total LUT Count

0
1

2
3 4

5

6

7

8

9

10 1112

All tasks on
CPU, SW
processed

All tasks on
HAs, parallel
HW processed

All tasks on
HAs, pipelined
HW processed

0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5
x 104

0

30

60

90

120

Fr
am

e
Pr

oc
es

si
ng

 T
im

e
(m

s)

Total LUT Count

0

1

2

3

4

5

6

7

8

9 10

12
11

All tasks on
CPU, SW
processed

All tasks on
HAs, parallel
HW processed

All tasks on
HAs, pipelined
HW processed

150
Design Space Exploration

Figure 6.14.: Performance analysis for the application as (a) bare-metal, (b) Linux

accelerator IP yields performance improvement. Most improvement is gained by the SO
IP. Pipelining brings some additional improvement.

For the Linux based application, non-pipelined integration of ER & GR filters lead to
worse (longer) frame processing time. This is caused by larger communication overheads
for accessing hardware accelerators with the OS-layer. The system memory of the Linux-
OS is inaccessible for the hardware accelerators and the CPU must transfer the video
data from the system memory to the non-system memory for hardware processing, which

98

6.6. Conclusions

requires additional processing cycles. When ER and GR are integrated in pipeline, the
overhead is removed and some benefit can be observed. This shows the importance of
performing the design estimations at the FPGA prototyping level, as the communication
loads can be accurately observed. In the performance curves, for non-OS, the architec-
tures 0, 2, 3, 9, and 10 form the Pareto front, while the architectures 0, 2, 9, and 10
form the Pareto front for the Linux-based case. Frame processing time was reduced for
the bare-metal application by a factor of 150x and for the Linux application by 4x.

In this case study, an additional analysis is performed on the performance overhead of
the generated HW drivers w.r.t. manually developed HW drivers. Fig. 6.15 shows the
overhead of accessing the IP subsystems for all 12 candidate SoCs. It was observed that
the generated HW drivers are up to 3x slower than manual HW drivers. However, CPU
cycles used by HW drivers are only a few thousand clock cycles compared to couple of
million of clock cycles for application processing. For this case study, the worst-case
overhead for the generated HW drivers was found to less than 0.28% of the overall
application processing.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

0.5

1

1.5

2

2.5
x 104

Architectures

C
PU

 C
lo

ck
 C

yc
le

s

Hardware Drivers Load Analysis
Sys Initialization: Generated drivers
Sys Initialization: Manual drivers
HW Access: Generated drivers
HW Access: Manual drivers

Figure 6.15.: HW access overhead for the generated and manually written flat drivers.

6.6. Conclusions

In this chapter, we discussed two computer vision applications as independent case stud-
ies: a motion detection application; a sequential video processing filtering application.
Using the proposed approach in the previous chapters, a SW-defined design space explo-
ration is performed on both of these applications using the GRIP tool. We discussed the
preparation steps of the required hardware-accelerated software libraries (HASL) and

99

6. Computer-Vision Case Studies on the ZedBoard

the IP-integration rules. During the DSE, progressively the computationally intensive
SW tasks are moved from the targeted ARM CPU to the respective HW accelerators.

Through the DSE of these case studies, we achieved the Pareto optimal candidate ar-
chitecture for the performance-area trade-off, both for the bare metal and the Linux OS
based implementations. The different SoC candidates on the Pareto optimal fronts for
the bare metal and Linux OS confirm the varying influences on the performance-area
trade-off of the data communication within the HW-drivers layer.

In these case studies, the application performances are improved by a factor of 10x-150x
for the bare metal, and a factor of 4x-7x for the Linux OS during the DSE.

100

7. The GRIP Tool with Feedback - SoC Performance
Monitoring

”...major FPGA vendors today have internal logic analyzers to address the visibility
issue [signals probing inside FPGA]. However, many of these internal logic analyzers
have several limitations, including support for only single FPGA debug, limited memory
size using FPGA internal memory, and long place-and-route times to change probes.”,
Ron Green, Technical Communications Manager, S2C Inc.

7.1. Introduction and Problem

Accurate system performance estimation on an FPGA is important for SoC architecture
refinements. Typically, for the performance analysis of the SoCs, the FPGA vendors
provide multiple hardware monitoring and debugging IPs. Analyzing an SoC FPGA
prototype requires the correct integration of additional monitoring and debugging IPs
into an SoC. Integration of IPs into an SoC is a challenging task as it requires additional
HW knowledge on these IPs. In addition, under the resource constraints of the FPGA,
not all desired hardware monitors (HM) may fit into the FPGA together with the SoC
under investigation. The set of desired analysis tasks is split into multiple subsets, and
the required HMs in each subset must fit into the FGPA. This splitting must be done
in a way to minimize the number of these subsets. Fig. 7.1 shows the integration of an
AXI-bus monitor IP in an SoC.

In this chapter, we are automating the process of integrating HMs into SoCs using the
GRIP tool on resource-constrained FPGAs. With this automation we are making the
FPGA bring up process faster and less error-prone than the available ad-hoc methods.
Our work solves this problem in a two step approach. As first step, we prepare the
IP-integration rules for HMs in the GRIP tool , and then formulate the problem of HMs
integration as the bin packing problem. A bin packing algorithm is used to generate an
extensive set of SoC monitoring architectures required for complete analysis, constrained
to the target FPGA resources. The algorithm uses the estimated resource utilization as
the feedback in this automation. The GRIP tool generates the required FPGA design
description files of the SoCs with integrated HMs to be taken further for HW synthesis.

The main contribution of this chapter is the bin-packing problem formulation for gener-
ating SoCs for analysis under FPGA resource constraints, within the GRIP tool.

101

7. The GRIP Tool with Feedback - SoC Performance Monitoring

clkgenAXI
Exerciser

axi_1
axi_2

vdma0

hdmi

Monitorps7_system camIF

vdma2

Sobel

vdma3

Erode

vdma4

GrayScale

axi_3
axi_4

Figure 7.1.: Debugging and performance monitoring on AXI-bus on the ZedBoard

7.2. Problem Formulation - Bin Packing

The GRIP platform provides powerful utilities for the IP-based SoC design automation.
Previously, we have discussed using the GRIP tool progressive design space exploration.
In that approach, the DSE constraints extracted from the data flow of the target SW
application are utilized to guide the DSE. The approach is sequential, and has the
advantage that without the design performance estimations, it can quickly generate a
set of candidate SoCs.

In this chapter, the GRIP tool is utilized for automating SoC performance monitoring
and debugging on an FPGA. Each monitoring task requires a set of additional hardware
monitors (HMs) to be integrated at specific positions in an investigated SoC. For the
resource-constrained FPGAs, the complete set of monitoring or debugging tasks is to be
split into multiple subsets, which form the partition of the original set. The partition
of the original set means that all the subsets are non-empty and mutually disjoint,
and their union forms the original set. The splitting of original set into the subsets is
constrained to the available FPGA resources, i.e. the total FPGA hardware resources
required to perform analysis tasks defined by each subset must not exceed the available
FPGA resources.

We propose to formulate this as a bin-packing problem. The algorithm uses the estima-
tion of the FPGA resources while bounding them to the maximum available resources.
Here is the formulation of the problem,

102

7.2. Problem Formulation - Bin Packing

A = {x : x is a desired analysis task} (7.1)

P = {Y : Y ⊆ A} (7.2)

s.t. P
is a partition

:

∀Y ∈P (Y 6= ∅)

∀X,Y ∈P (X 6= Y → X ∩ Y = ∅)

(∪Y ∈PY) = A

(7.3)

and, with ∀Y ∈P (F(Y) ≤ C) (7.4)

The problem statement is a classical bin packing problem (formulated as equations 7.1-
7.4), which is computationally a NP-hard problem. For the SoC analysis problem, set A
contains all the desired analysis tasks and C is a set of the FPGA-resource constraints.
The complete set of FPGA monitoring tasks is split into set of subsets of the analysis
tasks P , where each element (Y ∈ P) ⊆ A obeys the FPGA resource constraints.
Function F estimates the resource utilization of the modified SoC architecture on the
desired FPGA, and this must fit to the resource constraints vector C. The set P is a
partition of the set A, the union of tasks of each element Y of set P covers the complete
space of the set A.

Algorithm 3: Given an input set A of all required analysis tasks, a vector C of maximum available

FPGA resources, the algorithm returns the set P of the subsets of the analysis tasks, each element of

which obeys the FPGA resource constraints C

Input : A: analysis tasks set;
C: FPGA resource constraints set

Output: P : set of subsets of monitoring tasks

Reduce (A, C):
N = ∅;
if F(A) ≤ C then

return A;
else

foreach x ∈ A do
A = A/{x};
N = N ∪ {x};
if F(A) ≤ C then

return {A, Reduce(N, C)}
end

end

end

P = Reduce (A, C);
return P;

103

7. The GRIP Tool with Feedback - SoC Performance Monitoring

Algo. 3 is used to solve this problem, it generates a partition P of A as defined by
equation (7.3), which has the minimal cardinality, s.t. each element of P obeys the
constraints of equation 7.4. The algorithm recursively uses the function Reduce(A,C) to
reduce the set A into the set of subsets, P. The set A of all the desired analysis tasks
is defined as a set of IP-integration rules (already available in the IP library). Each
rule corresponds to the integration of a single HM IP. The algorithm then generates the
partition set P of elements Y : Y ⊆ A using the Algo. 3.

The IP-integration rules in each subset Y contain the integration knowledge for required
HW IPs to be added to the SoC under consideration (host SoC) for the desired moni-
toring or debugging tasks. In the next section, we will discuss the details of using this
algorithm with the GRIP tool. The GRIP tool uses the structural information of Y .

7.3. Integration with the GRIP tool

Fig. 7.2 shows the integration of the FPGA resource estimation feedback with the GRIP
tool. As discussed in the previous section, the feedback is used in the bin packing algo-
rithm. The GRIP tool generates the new SoC candidates with the integrated HMs. This
is achieved by few vendor extensions in the IP-XACT component descriptions. Each IP-
XACT component description in the IP library is appended with additional information
on their respective estimated FPGA resource usages. These vendor extensions are used
with the IP-XACT design description of the generated candidate SoCs to estimate the
required FPGA resources. Later, the estimated SoC resources are compared to the max-
imum available FPGA resources, which is available in an FPGA resource constraints file.
Fig. 7.3 shows the FPGA constraints file for the Xilinx Zynq chipset.

GRIP
IP-INTEGRATION

Select HM
Integration Rule

HASL
(IP-XACT

Integration
Rules)

New Candidate
Architecture

Estimate SoC
FPGA Resources

Candidate
Rule

Candidate
Architecture

Create
New Copy

Input SoC
for Monitoring

If (SoC Resources >
FPGA Resources)

Yes No

Start

Figure 7.2.: GRIP tool with the FPGA resources estimation feedback for SoC monitoring

The set of analysis tasks is defined by the user by listing already available IP-integration
rules in the IP library. The GRIP engine then generates the set of subsets of IP-
integration rules that are compliant to the FPGA constraints (the set P for the Algo.

104

7.4. Case Study: Bus-Load Monitoring of a Video-Processing SoC

<?xml version="1.0" encoding="ASCII"?>

<fpga:FPGAconstraints>

<fpga:fpgaSynopsis/>

<fpga:fpgaXilinx>

<fpga:product>Zynq-7000</w3schools:product>

<fpga:family>Zynq-7000</w3schools:family>

<fpga:package>cgl484</w3schools:package>

<fpga:speed>-1</w3schools:speed>

<fpga:resourceconstraints>

<fpga:maxLUT>53200</w3schools:maxLUT>

<fpga:maxFF>106400</w3schools:maxFF>

<fpga:maxBRAM>560</w3schools:maxBRAM>

<fpga:maxDSP>200</w3schools:maxDSP>

<fpga:maxLogic>85000</w3schools:maxLogic>

</fpga:resourceconstraints>

</fpga:fpgaXilinx>

</fpga:FPGAconstraints>

Figure 7.3.: FPGA resource constraints defined in an XML constraints file

3). The set of IP-integration rules in Y are then applied to the host SoC, to generate the
IP-XACT description for new SoCs corresponding to each set Y . The code generation
engine generates all the required design files for the new SoCs that are then programed on
an FPGA. In the current implementation we support the FPGA design files generation
for the targeted Xilinx-Zynq FPGA chipset.

The methodology as described above is used when an extensive set of analysis tasks on
an SoC is desired. In another mode, the system architect can also step-by-step guide
the SoC generation for specific and limited SoC analysis (especially for the debugging
purposes, where limited number of debugging IPs are required to be integrated to the
SoC).

7.4. Case Study: Bus-Load Monitoring of a Video-Processing SoC

In this case study, the developed performance analysis partitioning algorithm is used
to perform bus-load analysis for a candidate SoC obtained for the video processing
case study 2 from Chapter 6. The architecture of the SoC is as shown in Fig. 7.4.
The SoC contains four bus systems: AXI_1: AXI LITE; AXI_2, AXI_2, AXI_3: AXI4.
The AXI_1 is a slow speed bus, which transfers video frames from the external camera
device to the DDR memory. AXI_2, AXI_3, and AXI_4 are the high speed buses for
handling the image data transfers to-and-from the hardware accelerators. The bus load

105

7. The GRIP Tool with Feedback - SoC Performance Monitoring

analysis is important to understand the data communication conflicts and their impact
on the overall system performance 1.

Programmable
Logic

EMIO General-Purpose Ports DMA Sync IRQ High-Performance Ports ACP

AXI_1

AXI_2

AXI
VDMA0

HDMI
Clk
GenCamera IF

AXI_3

AXI
VDMA2 AXI

VDMA3
AXI

VDMA4

Sobel Edge
detection

AXI GP 32 bit

AXI HP 64 bit

AXI4 Stream

GP0 HP0 HP1

- -

Processing System

.

.

.

.

Central
Interconnect

2x SD
2x GigE
2x USB

Application Processing Unit

FPU and NEON

ARM Cortex-A9

32 KB
I-Cache

32 KB
D-Cache

FPU and NEON

ARM Cortex-A9

32 KB
I-Cache

32 KB
D-Cache

GIC Snoop Controller, AWDT, Timer

OCM
Interconnect

256K
SRAM

Memory
Interfaces

SRAM/
NOR

ONFI 1.0
NAND
Q-SPI
CTRL

IRQ

Clock
Generation

Reset SWDT

TTC

System
Level

Control
Registers

DMA 8
Channel

512 KB L2 Cache & Controller

CoreSight
Components

Memory
Interfaces

DDR2/3,
LPDDR2

Controller

DAP

DevC Programmable Logic to Memory
Interconnect

M
IO

I/O
Peripherals

USB
USB
GigE
GigE
SD

SDIO
SD

SDIO
GPIO
UART
UART
CAN
I2C
I2C
SPI
SPI

HP0

AXI_4

Erode Gray Scale
Filter

Figure 7.4.: Video processing SoC setup on ZedBoard with three hardware accelerators

For the extensive performance analysis of this system the Xilinx AXI-Monitor IP (HW
monitor, HM) is used to monitor all the AXI4 system buses (AXI_2, AXI_3, and AXI_4).
AXI-Monitor IP is one of the performance monitoring and debugging IP to analyze the
Read/Write transactions and latencies of the data accesses from the Masters modules
in the programmable logic (PL). The complete analysis of all three AXI4 buses required
to insert three AXI-Monitor IPs, one on each AXI4 bus. However, insertion of all three
HMs overshoots the available FPGA resources.

For this simple case study, the IP-integration knowledge of the AXI-monitor IP is en-
coded by the IP-integration rule (Fig. 7.5). Since the bus-load analyses on these three

1In this case study, the off-chip data communication overhead is much more dominant than the on-chip
data communication conflicts. This is also seen in the results presented in Chapter 6 as the varying
Pareto front of the performance-area trade-offs for the Bare metal and with Linux OS.

106

7.4. Case Study: Bus-Load Monitoring of a Video-Processing SoC

buses are independent, a single rule can describe the required changes. In the case of
dependent analysis, the dependency is captured by the context among the LHS and
RHS patterns of the rule. After defining the problem using the HM-integration rule,
the GRIP tool generated two IP-XACT SoC architectures for the extensive performance
analysis 2.

Left hand side Right hand side

ps7_system

AXI4

ps7_system

AXI4

AXI4-Monitor

GRIP
Rule

AXILITE AXILITE

ps7_sys

AXI4

AXI4-Monitor

AXIL

ps7_sys

AXI4 AXIL

#PARAM 20
#SIGNAL 5

Figure 7.5.: IP-integration rule to integrate an AXI-monitor IP to an AXI4 bus

For step-by-step interaction mode, the same hardware system was evaluated for
the target of analyzing the system performance when the AXI_3 bus is fully utilized. An
AXI-Exerciser IP is used to overload the bus and an AXI-Monitor IP to analyze the bus
load. The strategy for load analysis is as defined below using the available tool functions
and shown in a simplified block diagram in Fig. 7.1.

addExerciser = GenerateSpecificRule(<HA Exerciser>, <AXI4,axi_3>)

addMonitor = GenerateSpecificRule(<HA Monitor>, <AXI4,axi_3>)

newAGR = ApplyRule(addExerciser, hostAGR)

newAGR = ApplyRule(addMonitor, newAGR)

ExportIPXACT(newAGR, <outDir>)

In the code above, we use function GenerateSpecificRule(<args>) to generate IP-
integration rules for integrating Exerciser IP and Monitor IP. The function takes ar-
guments as a desired HA and a bus instance name as the location of IP integration
to generate an IP-integration rule. After implementing the desired strategy, the tool
executed all the steps defined by the strategy. At completion, the tool generated IP-
XACT SoC architecture descriptions and the FPGA design configuration files to be
taken forward for synthesis on the ZedBoard.

2The results of SoC on-chip bus-load analysis are not relevant in the scope of this chapter, hence are
not presented.

107

7. The GRIP Tool with Feedback - SoC Performance Monitoring

7.5. Conclusions

In this chapter, we tried to solve the problem of SoC performance monitoring (using HW
monitors) with the FPGA resource constraints. Under the FPGA resource constraints,
the insertion of HW monitors might be required to split into multiple SoC architectures.
The problem is formulated as a multi-dimension bin-packing problem, with the objective
to obtain a set of candidate SoCs with minimum cardinality. So, the objective is to
obtain minimum candidate SoCs that are sufficient to perform all required performance
monitoring tasks.

This chapter extends the GRIP tool to include the HW resources estimation as feedback,
while performing the iterative rules application. For this, the GRIP IP integration engine
is extended to estimate the required FPGA resources for the generated candidate SoCs,
and eventually generating only those candidate SoCs that are implementable on the
Zynq FPGA.

This approach is demonstrated on a bus-load analysis case study, where the GRIP tool
generates the set of synthesizable SoCs covering the complete bus-load analysis set.

108

8. Conclusions

The objective of the presented work is to bridge the knowledge gaps among the two
actors in the IP-based SoC designs: the IP Supplier, and the SoC architect. The goal
is to further strengthen the increasing IP reuse for the IP-based SoC designs. More
precisely this work dealt with the challenges of the IP exchange. An objective for the
SoC architect is to quickly explore the design space to obtain the Pareto optimal SoC
architectures, which offer best performance-cost trade-offs. This work tries to enable
using the third-party IP library for the SoC design as easy as using the software library
for software application development.

The software-defined SoC design is one special case of the IP-based SoC design method-
ologies. Here, the SoC design information is encoded in the target software applica-
tion description. The computationally intensive tasks of the target application are pro-
gressively transferred to the dedicated hardware (HW) IP subsystems available in the
hardware IP library. Another objective of this work is to solve the challenges of the
software-defined SoC design of iteratively introducing new HW IP subsystems into an
SoC and adapting the software drivers accordingly.

The target hardware platform for SoC prototyping of choice is the FPGA-based devel-
opment board, the Xilinx ZedBoard. One intent that is followed in this work is to enable
the SoC design automation targeted to generate synthesizable HW descriptions. So, the
objective of all the automation algorithms developed is to bring-up the generated system
on the FPGA development board. This objective deals with generating HW and SW
descriptions, and seamless transfer of controls among various HW processing units.

The proposed solutions allow the possibility of efficient design automation for HW syn-
thesis together with HW drivers generation for SW. The solution utilizes the graphs and
principles of graph grammars to formulate structural information of the SoCs. It uses
rule-based graph rewriting to encode and automate the structure transformations. The
domain-specific SoC descriptions are represented using the IEEE-1685-2009 IP-XACT
standard. In the graph space, an SoC is represented using the architectural graph rep-
resentation (AGR). Various model-to-model transformation engines are developed to
transparently transform the SoC descriptions among the domain-specific space and the
graph space. An IP-XACT rule encodes the desired SoC structural changes. The rule
consists of LHS and RHS IP-XACT design patterns. The IP-XACT IP components
together with the IP-integration rules form the IP package.

109

8. Conclusions

In order to adapt the target software application to the modified SoC, we propose to gen-
erate the HW-access drivers from the IP-XACT descriptions during the library prepa-
ration. The HW drivers are generated by the GRIP HASL generation engine, which
generates the drivers for both the bare metal and the Linux OS based application devel-
opment. The drivers also have a simple scheduler that takes care of executing a software
application task either on the Master CPU or the dedicated HW-accelerating sub-system
of the SoC. The hardware-accelerated software library (HASL) so prepared contains the
IP-XACT IPs, corresponding IP-integration rules, and the HW-access drivers. In this
way, the HASL bridges the HW knowledge gap of the software developer.

During the SoC structural transformations, the IP-XACT rules are first transformed to
corresponding graph representations and then applied to a host SoC design to attain a
structural change. All the structural changes are performed in the graph space using
the GRIP IP-integration engine. After the structural changes, the SoC is transformed
back to the domain-specific IP-XACT space. Here, the SoC is verified using the GRIP
design verification engine and is then targeted to the desired HW platform using the
GRIP code generation engine.

Once the automation for both the software (HW-access drivers) and hardware genera-
tion is available, the iterative application of the HASL IP-integration rules explores the
SoC design space. The candidate IP-XACT SoCs obtained by the GRIP design space
exploration (DSE) engine are transformed to the HW descriptions for the target HW
platform using the GRIP code generation engine. In this work, the code generation
engine supports the system bring-up on the Xilinx Zynq FPGA chipset. It is observed
that the number of SoC candidates during the DSE of a software-defined SoC grows
exponentially w.r.t the available IP-integration rules in the target HASL. This work in-
troduces DSE constraints to prune the non-desirable SoCs, and to quickly attain the
Pareto optimal SoCs for the performance-cost trade-offs.

The proposed methodology and the GRIP tool are demonstrated on two computer vision
application case studies. In these case studies, the GRIP tool is utilized to accelerate the
target software applications by performing the SoC DSE on a domain-specific HASL. As
result, we obtained designs on the Pareto optimal front for both the bare-metal and with
the Linux OS. In the case studies, the non-optimal SoC candidates are pruned using the
DSE constraints extracted from the data flow of the application. In these case studies,
the application performances are improved by a factor of 10x-150x for the bare metal,
and a factor of 4x-7x for the Linux OS during the DSE. This design automation reduces
the time for DSE from a couple of days, when performed manually or partly automated,
to few hours using the GRIP tool.

110

Bibliography

Accelera (2009): Accelera website, http://www.accellera.org.

AMBA Specifications (2012): https://www.arm.com/products/system-ip/amba-
specifications.

André, C, Mallet, F, Mehmood, A & de Simone, R (2008): Modeling SPIRIT IP-XACT
with UML MARTE, Proceedings of the DATE workshop on modeling and analysis
of real-time and embedded systems with the MARTE UML profile.

Apvrille, L., Muhammad, W., Ameur-Boulifa, R., Coudert, S. & Pacalet, R. (2006): A
UML-based Environment for System Design Space Exploration, 2006 13th IEEE
International Conference on Electronics, Circuits and Systems.

ARM (2016): ARM Cortex-A9, Technical Reference Manual (revision r4p1).

Ascia, G., Catania, V. & Palesi, M. (2004): A GA-Based Design Space Exploration
Framework for Parameterized System on-a-Chip Platforms, IEEE Trans. Evolu-
tionary Computation.

Aulagnier, D., Koudri, A, Lecomte, S, Soulard, P, Champeau, J, Vidal, J, Perrouin, G
& Leray, P (2009): SoC/SoPC Development Using MDD and MARTE Profile.

Balarin, F. (2001): Metropolis: A Design Environment for Heterogeneous Systems,
Cadence Tech. Conference.

Beltrame, G., Fossati, L. & Sciuto, D. (2010): Decision-theoretic design space explo-
ration of multiprocessor platforms, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems.

Bhattacharya, A., Konar, A., Das, S., Grosan, C. & Abraham, A. (2010): Hardware Soft-
ware Partitioning Problem in Embedded System Design Using Particle Swarm Opti-
mization Algorithm, International Conference on Complex, Intelligent and Software
Intensive Systems.

Booggie tool (2009): http://www.booggie.org.

Botella, P., Sánchez, P. & Posadas, H. (2010): Automatic Generation of SystemC SMP
Models for HW/SW Co-Simulation”, Conf. on Design of Circuits and Integrated
Systems (DCIS).

i

Bibliography

Brooks, C. (2005): Heterogeneous Concurrent Modeling and Design in Java (Vol. 1:
Introduction to Ptolemy II), Tech. report UCB/ERL M05/21, Univ. of California,
Berkeley.

Buchmann, T., Westfechtel, B. & Winetzhammer, S. (2012): The Added Value of
Programmed Graph Transformations, A Case Study from Software Configuration
Management, Applications of Graph Transformations with Industrial Relevance,
Lecture Notes in Computer Science.

Chen, H., Godet-Bar, G., Rousseau, F. & Petrot, F. (2014): Device Driver Generation
Targeting Multiple Operating Systems Using a Model-driven Methodology, Rapid
System Prototyping (RSP).

Chou, P.H., Ortega, R.B. & Borriello, G. (1995): The Chinook Hardware/Software
Co-Synthesis System, International Symposium on System Synthesis.

Coffman, EG (2013): Bin packing approximation algorithms: survey and classification,
Handbook of Combinatorial Optimization. Springer New York.

Corbet, J., Rubini, A. & Kroah-Hartman, G. (2005): LINUX DEVICE DRIVERS,
Third Edition, O’Reilly.

Cordella, L. P., Foggia, P., Sansone, C. & Vento, M. (2001): An Improved Algorithm
for Matching Large Graphs, Proceedings of the 3rd IAPR TC-15 Workshop on
Graph-Based Representations in Pattern Recognition.

Denney, E. & Trac, S. (2008): A Software Safety Certification Tool for Automatically
Generated Guidance, Navigation and Control Code, Proceedings of Aerospace Con-
ference,IEEE.

Densmore, D., Donlin, A. & Sangiovanni-Vincentelli, A. (2006): FPGA Architecture
Characterization for System Level Performance Analysis, Design, Automation, and
Testing in Europe, DATE.

Ecker, W., Esen, V., Nageldinger, U, Steininger, T. & Velten, M. (2008): UML based
Code Generation for the HW/SW Interface, I5th International UML for SoC Design
Workshop, DAC.

Ecker, W., Mueller, W. & Doemer, R. (2009): Hardware-dependent Software: Principles
and Practice, Springer Science and Business Media.

Eclipse Modelling Framework (EMF) (2011): www.eclipse.org/modeling/emf/.

Ehrig, H., Kreowski, H. J., Maggiolo-Schettini, A., Rosen, B. K. & Winkowski, J. (1981):
TTransformations of Structures - An Algebraic Approach, Math. Syst. Theory, Lec-
ture Notes in Computer Science.

eMoflon (n.d.): http://www.moflon.org/.

Epsilon (2006): http://www.eclipse.org/epsilon/.

ii

Bibliography

Epsilon - EOL (2006): http://www.eclipse.org/epsilon/doc/eol/.

Epsilon - EVL (2006): http://www.eclipse.org/epsilon/doc/evl/.

Ferrandi, F., Lanzi, P. L., Pilato, C., Sciuto, D. & Tumeo, A. (2010): Ant Colony
Heuristic for Mapping and Scheduling Tasks and Communications on Heterogeneous
Embedded Systems, Computer-Aided Design of Integrated Circuits and Systems.

Gajski, D. D. & Kuhn, R. H. (1983): Guest Editors’ Introduction: New VLSI Tools,
Computer.

Geiss, R., Batz, G. V., Grund, D., Hack, S. & Szalkowski, A. (2006): GrGen: A Fast
SPO Based Graph Rewriting Tool, Graph Transformations, Springer, Berlin.

Gérard, S., Terrier, F. & Tanguy, Y. (2002): Using the Model Paradigm for Real-
Time Systems Development: ACCORD/UML, Springer Berlin Heidelberg, Berlin,
Heidelberg.

Givargis, T. & Vahid, F. (2002): Platune: A Tuning Framework for System-on-a-
Chip Platforms, IEEE Trans. Computer-Aided Design of Integrated Circuits and
Systems.

GrGen tool v3.0 (20011): http://www.info.uni-karlsruhe.de/software/grgen/.

Gries, M. (2003): Methods for Evaluating and Covering the Design Space during Early
Design Development, VLSI Journal.

Guo, X., Chen, Z. & Schaumont, P. (2008): Energy and Performance Evaluation of
an FPGA-Based SoC Platform with AES and PRESENT Coprocessors, Embedded
Computer Systems: Architectures, Modeling, and Simulation.

Herrera, F., Posadas, H., Villar, E. & Calvo, D. (2012): Enhanced IP-XACT Platform
Descriptions for Automatic Generation from UML-MARTE of Fast Performance
Models for DSE, Digital System Design (DSD).

IEEE (2009): IEEE 1685-2009 IP-XACT, http://standards.ieee.org.

IEEE (2014): IEEE 1685-2014 IP-XACT, http://standards.ieee.org.

ISO (2004): ISO/IEC 19501:2005 Unified Modeling Language (UML) Version 1.4.2,
International Organization for Standardization.

ITRS (2011): International Technology Roadmap for Semiconductors, www.itrs.net,
http://www.itrs.net.

Jassi, M., Bordes, B., Mueller-Gritschneder, D. & Schlichtmann, U. (2015): Automation
of FPGA Performance Monitoring and Debugging Using IP-XACT and Graph-
Grammars, 2015 International Conference on Synthesis, Modeling, Analysis and
Simulation Methods and Applications to Circuit Design (SMACD).

iii

Bibliography

Jassi, M., Hu, Y., Mueller-Gritschneder, D. & Schlichtmann, U. (2018): GRIP - Graph-
Grammar-Based IP-Integration - An EDA Tool for Software-Defined SoCs, ACM
Trans. Des. Autom. Electron. Syst., ACM, New York, NY, USA.

Jassi, M., Mueller-Gritschneder, D. & Schlichtmann, U. (2015): GRIP: Grammar-Based
IP Integration and Packaging for Acceleration-Rich SoC Designs, Proceedings of
Design Automation Conference (DAC).

Jassi, M., Sharif, U., Mueller-Gritschneder, D. & Schlichtmann, U. (2016): Hardware-
Accelerated Software Libraries Drivers Generation for IP-Centric SoC Designs, 2016
International Great Lakes Symposium on VLSI (GLSVLSI).

Java - FreeMarker (2015): ver. 2.3.24, http://www.http://freemarker.org/.

Kactus2 tool (2012): http://www.funbase.cs.tut.fi.

Kamppi, A., Matilainen, L., Maatta, J.-M. & Salminen, E. (2013): Extending IP-XACT
to Embedded System HW/SW Integration, System on Chip (SoC).

Kangas, T. (2006): Methods and Implementations for Automated System on Chip Ar-
chitecture Exploration, PhD Thesis, Tampere University of Technology. Publication
616.

Katayama, T., Saisho, K. & Fukuda, A. (2000): Prototype of the device driver generation
system for UNIX-like operating systems, Proceedings. Intern. Symp. on Principles
of Software Evolution.

Khan, A.M., Mallet, F., André, C & De Simone, R. (2008): Marte Timing Requirement
and Spirit IP-XACT.

King, M., Dave, N. & Arvind (2012): Automatic generation of hardware/software
interfaces, SIGPLAN Not., ACM, New York, NY, USA.

King, M., Hicks, J. & Ankcorn, J. (2015): Software-Driven Hardware Development,
ACM/SIGDA International Symposium on FPGA.

Königseder, C. & Shea, K. (2014a): Strategies for Topologic and Parametric Rule Appli-
cation in Automated Design Synthesis using Graph Grammars, American Society
of Mechanical Engineers (ASME).

Königseder, C. & Shea, K. (2014b): Systematic rule analysis of generative design gram-
mars, Artificial Intelligence for Engineering Design, Analysis and Manufacturing.

Kruijtzer, W., van der Wolf, P., de Kock, E., Stuyt, J., Ecker, W., Mayer, A., Hustin,
S., Amerijckx, C., de Paoli, S. & Vaumorin, E. (2008): Industrial IP Integration
Flows based on IP-XACT standards, DATE’08.

iv

Bibliography

Lecomte, S., Guillouard, S., Moy, C., Leray, P. & Soulard, P. (2011): A co-design
methodology based on model driven architecture for real time embedded systems,
Mathematical and Computer Modelling : Telecommunications Software Engineer-
ing: Emerging Methods, Models and Tools.

Lewis, R. (2009): A general-purpose hill-climbing method for order independent mini-
mum grouping problems: A case study in graph colouring and bin packing, Com-
puters & Operations Research.

Li, M., Azarm, S. & Aute, V. (2005): A multi-objective genetic algorithm for robust
design optimization, GECCO05.

Liu, H., Petracca, M. & Carloni, L. P. (2012): Compositional System-Level Design
Exploration with Planning of High-Level Synthesis, DATE.

Lukasiewycz, M., Streubühr, M., Glaß, M., Haubelt, C. & Teich, J. (2009): Combined
system synthesis and communication architecture exploration for MPSoCs, DATE.

Lyu, J. (2016): Acceleration of Motion-Detection Application on ZedBoard FPGA using
ARM Cortex-A9 CPU and Vision Hardware Accelerators, M.Sc. Thesis, Technical
University of Munich.

MARTE (2007): UML Profile for MARTE, Object Management Group.

Nane, R., v. Haastregt, S., Stefanov, T., Kienhuis, B., Sima, V. M. & Bertels, K. (2011):
Ip-xact extensions for reconfigurable computing, ASAP 2011 - 22nd IEEE Interna-
tional Conference on Application-specific Systems, Architectures and Processors.

Ochoa-Ruiz, G., Bourennane, E., Rabah, H. & Labbani, O. (2011): High-level Mod-
elling and Automatic Generation of Dynamicaly Reconfigurable Systems, DASIP,
Tampere.

OCL ISO/IEC 19507 (2012): http://www.omg.org/spec/OCL/.

OMG - CWM (2003): http://www.omg.org/spec/CWM/.

OMG - MDA (2003): MDA Guide Version 1.0.1, Object Management Group.

OMG - MOF (1997): http://www.omg.org/mof/.

OMG - OCL (2006): http://www.omg.org/spec/OCL/.

OMG - SPT (2005): UML Profile for Schedulability, Performance, and Time, version
1.1, Object Management Group.

OMG - SysML (2008): Systems Modeling Language Specification v1.1, Object Manage-
ment Group.

OMG - UML4SOC (2005): A UML Profile for SoC, Object Management Group.

Oracle (2014): Java - Computer programming language, Java 8u5.

v

Bibliography

Paige, R., Kolovos, D., Rose, Louis M., Drivalos, N. & Polack, F. (2009): The design
of a conceptual framework and technical infrastructure for model management lan-
guage engineering, International Conference on Engineering of Complex Computer
Systems (ICECCS).

Papyrus (2016): Papyrus Modeling environment 2.0.2 Neon, Eclipse Org.

Paul, J. (2010): FPGA based real-time moving object detection for a mobile platform,
M.Sc. Thesis, Technical University of Munich.

Ryzhyk, L., Chubb, P., Kuz, I., Le Sueur, E. & Heiser, G. (2009): Automatic device
driver synthesis with termite, Symposium on Operating Systems Principles, SOSP
’09, ACM.

S. Kolovos, D., F. Paige, R. & A. C. Polack, F. (2006): The Epsilon Object Language
(EOL), In: Proceedings European Conference in Model Driven Architecture (EC-
MDA) 2006, Springer.

SEMATECH (2011): Semiconductor Manufacturing Technology (SEMATECH),
http://www.sematech.org.

Stein, F. (2004): Efficient Computation of Optical Flow Using the Census Transform,
Joint Pattern Recognition Symposium.

Stephen, N., Thomas, L. & Devin, W. (2015): Accelerating OpenCV Applications
with Zynq-7000 All Programmable SoC using Vivado HLS Video Libraries, Xilinx
Application Note XAPP1167 (v3.0).

UML ISO/IEC 19505-1 (2011): http://www.omg.org/spec/UML/.

Vincentelli, A. S., Shukla, S. K., Sztipanovits, J., Yang, G. & Mathaikutty, D. A. (2009):
Metamodeling: An Emerging Representation Paradigm for System-Level Design,
IEEE Design & Test of Comp.

Wang, S., Malik, S. & Bergamaschi, R. (2003): Modeling and Integration of Peripheral
Devices in Embedded Systems, Design, Automation and Test in Europe Conference
(DATE).

Xilinx (2012): Xilinx uboot, https://github.com/Xilinx/u-boot-xlnx.

Xilinx (2014): Vivado Design Suite User Guide - High-Level Synthesis, Xilinx Applica-
tion Note UG902 (v2014.1).

Xilinx (2015): Software-Defined SoC Development Enviroment,
http://www.xilinx.com/products/design-tools/software-zone/sdsoc.html.

Xilinx (2016): Zynq-7000 All Programmable SoC Overview, Xilinx Product Specification
DS190 (v1.10).

ZedBoard (2012): http://www.zedboard.org.

vi

Bibliography

vii

Bibliography

viii

List of Corrections

ix

	Introduction
	Introduction and Motivation
	Problem Statement
	Contributions
	Publications on this Thesis
	Organization of the Thesis

	Background
	State of the Art
	Background
	Conclusions

	IP Packaging for Automated IP Integration
	Introduction and Problem
	IP Packaging with IP-Integration Rule
	Verification of Integration Rules
	Writing an IP-Integration Rule
	Conclusions

	Library Preparation - Hardware-Accelerated Software IP-Library
	Introduction and Problem
	Generic Hardware-Software Interface
	Hardware-Access Drivers Generation from IP-XACT
	Hardware-Accelerated Software Library - Bare Metal
	Hardware-Accelerated Software Library - Linux OS
	Software Application Development using HASL
	Conclusions

	Automated IP-Integration and Design Space Exploration of SoCs
	Introduction and Problem
	Model-Based Graph Rewriting
	Automated IP Integration
	GRIP Design Space Exploration
	Code Generation of HW and SW Projects for Xilinx FPGA
	GRIP Tool Integration with the Xilinx Toolchain
	GRIP Tool Integration with the Linux OS
	Conclusions

	Computer-Vision Case Studies on the ZedBoard
	Introduction
	Host SoC on the Zynq FPGA
	Case Study 1 - Motion Detection Application
	GRIP DSE for the Motion Detection Application
	Case Study 2 - Acceleration of Video Processing Filters
	Conclusions

	The GRIP Tool with Feedback - SoC Performance Monitoring
	Introduction and Problem
	Problem Formulation - Bin Packing
	Integration with the GRIP tool
	Case Study: Bus-Load Monitoring of a Video-Processing SoC
	Conclusions

	Conclusions
	Bibliography

