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Abstract

The reduction of carbon emissions is a global endeavor that requires increasing quantities of renewable
energy sources. These introduce new challenges to the electrical power system. Energy storage systems
are thought of as key component for the transition towards low carbon technology. This thesis is
concerned with the assessment of battery energy storage and with improving the operation.

Storage systems are widely investigated with regard to their economics. The multitude of applications,
evaluation metrics, and potential technologies complicate the generation of informative and comparable
results. This thesis discusses the economic metrics, used for the assessment of battery storage systems.
Each metric covered has its own benefits and disadvantages. The use of several metrics and in-depth
assessments of the deployment of storage systems are advised. The question of the aggregate value
added for the general public is addressed with a life-cycle analysis of battery storage systems on
greenhouse gas emissions. This aspect shows their impact on the original motivation: the carbon
reduction of the electric power system. In contrast to the economic benefits, the evaluation in respect
of carbon emissions is derived with a global scope. Instead of analyzing the reduction of a system-
bounded carbon footprint, the overall influence on the greenhouse gas emissions is taken into account.
This ensures the assessment’s meaning for the general public. Three applications are analyzed in
case-studies to demonstrate the evaluation metrics. A misalignment of the economic incentives and
the optimal operation, with regard to the carbon footprint, becomes apparent for the application of
increasing self-consumption.

Another area in the field of energy storage is the optimal operation of storage systems. The state-of-
the-art approaches are rule-based or optimization-based controllers. They both exhibit shortcomings
that prevent optimal operation, either because they are suitable only for specific scenarios, are designed
manually, or do not feature proper handling of prediction uncertainties, associated with renewable en-
ergy sources. A control algorithm is developed and presented in this work that alleviates the mentioned
disadvantages. It is composed of the rule-based framework fuzzy logic control and of the meta-heuristic
algorithm cuckoo search that solves the complex optimization problem of tuning the control parame-
ters. The novel algorithm features versatility for the use with any system and application, real-time
capability, optimized control, and systematic consideration of prediction uncertainties. Today, elec-
trical battery storage systems are deemed to be too expensive for most use cases. The execution of
multiple applications simultaneously, the multi-use, is suggested in academia and industry to increase
their economic value. The multi-use operation of storage systems faces the issue of multiple stake-
holders that take interest in the operation, in unbundled electricity markets, common in the European
Union. A method to enable the multi-user operation of battery storage systems and an implementation
concept, based on auction markets, are proposed in this thesis.

The thesis combines two related topics: The evaluation metrics set the optimal operating goals for
battery storage systems. The control algorithms determine how the systems achieve these goals.
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Kurzfassung

Die Vermeidung von CO2 Emissionen ist eine globale Bestrebung, die eine Steigerung der erneuerbaren
Energieerzeugung erfordert. Diese führen zu neuen Herausforderungen im Energieversorgungsnetz.
Energiespeichersysteme werden als Schlüsselkomponente für den Wandel zu kohlenstoffarmen Tech-
nologien erachtet. Die vorliegende Dissertation befasst sich mit der Bewertung von Batteriespeicher-
systemen und der Verbesserungen des Betriebs.

Speichersysteme werden häufig unter wirtschaftlichen Aspekten analysiert. Die Vielzahl an Anwendun-
gen, Bewertungsmethoden und potentieller Technologien erschweren das Generieren aufschlussreicher
und vergleichbarer Ergebnisse. Diese Dissertation erörtert wirtschaftliche Metriken für die Bewertung
von Batteriespeichersystemen. Jede behandelte Metrik hat ihre eigenen Vor- und Nachteile. Die Ver-
wendung mehrerer Kennzahlen und eine ausführliche Analyse des Speichereinsatzes werden empfohlen.
Der Gemeinnutzen von Batteriespeichersystemen wird durch die Life-Cycle Analyse für die Emissionen
von Treibhausgasen untersucht. Dieser Aspekt zeigt die Bedeutung für die ursprüngliche Motivation,
der Vermeidung von CO2 Emissionen im Stromsektor. Im Gegensatz zu den wirtschaftlichen Analy-
sen wird die Bewertung im Hinblick auf CO2 Emissionen unter globalen Gesichtspunkten hergeleitet.
Statt die CO2 Emissionen für Systemgrenzen zu evaluieren, wird der Gesamteinfluss betrachtet. Dies
gewährleistet die Bedeutsamkeit dieser Bewertung für die Allgemeinheit. Drei Speicheranwendun-
gen werden in Fallstudien untersucht, um die Verwendung der Bewertungsmetriken zu demonstrieren.
Hierbei stellt sich ein Widerspruch zwischen dem wirtschaftlichen Anreiz und des emissionsärmsten
Betriebs von Batteriespeichern zur Eigenverbrauchserhöhung heraus.

Ein weiterer Bereich für Energiespeicher ist der optimale Betrieb von Speichersystemen. Heutige
Methoden sind regelbasierte oder optimierungsbasierte Algorithmen. Beide weisen Unzulänglichkeiten
auf, die einen optimalen Betrieb verhindern. Entweder sind sie auf spezielle Szenarien zugeschnitten,
von Hand angepasst oder berücksichtigen Vorhersagefehler nicht systematisch. In dieser Dissertation
wird ein Steueralgorithmus entwickelt der nicht die genannten Defizite aufweist. Dieser besteht aus
einem formalisierten, regelbasierten Steuerungsansatz und einem meta-heuristischen Optimierer, der
die Steuerparameter anpasst. Der vorgeschlagene Algorithmus ist für verschiedene Anwendungen und
Technologien verwendbar, echtzeitfähig, optimiert und berücksichtigt Vorhersagefehler systematisch.
Heute werden Batteriespeicher als zu teuer für die meisten Anwendungsfälle erachtet. Die zeitgle-
iche Erfüllung mehrerer Anwendungen, der Multi-Use, wird zur Verbesserung der Wirtschaftlichkeit
empfohlen. Der Multi-Use Betrieb wird in liberalisierten Strommärkten, wie sie in der Europäischen
Union üblich sind, mit dem Problem konfrontiert, dass mehrere Akteure am Betrieb interessiert sind.
Ein Methode für den Multi-User Betrieb von Batteriespeichersystemen und ein Umsetzungskonzept,
basierend auf Auktionsmärkten, werden in dieser Dissertation vorgeschlagen.

Die vorliegende Arbeit kombiniert zwei zusammenhängende Themen. Die Bewertungsmetriken bes-
timmen das optimale Betriebsziel für Batteriespeichersysteme. Die Steueralgorithmen bestimmen, wie
diese Ziele erreicht werden.
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1 Introduction

1.1 Energy Storage for Low-Carbon Power Systems

Global warming is observed in the last 50 years with the fastest increase rates of the average global
temperature in the recorded history [1]. Greenhouse gases (GHG) have been identified as main cause
of the anthropogenic climate change [2]. Figure 1.1 illustrates the correlation of atmospheric carbon
dioxide concentration and the global annual average temperature [3]. Climate change is projected to
have a rogue impact on ecological systems, biodiversity, and mankind [4–6]. This leads to global effort
and inter-governmental collaboration to slow down global warming. Agreements, such as the Kyoto
Protocol [7] and the Paris Agreement [8] are compound to combat climate change, by mitigating the
carbon emissions, among other measures.
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Figure 1.1: Global annual average temperature has increased by more than 0.8◦C since 1880. Red
bars show temperatures above the long-term average, and blue bars indicate temperatures
below the long-term average. The black line shows atmospheric carbon dioxide (CO2)
concentration in parts per million (ppm). Despite year-to-year fluctuations in temperature
due to natural processes, such as the effects of El Niños, La Niñas, and volcanic eruptions,
the long-term global warming trend is clearly visible. [3]

25% of human-induced emissions are attributed to the electricity sector [9] and power systems world-
wide are shifting from fossil-fuel generation towards low-carbon technologies [10]. Germany is taking
the lead with its Energiewende, the popular term for the shifting of the power system towards renew-
able energy source (RES). The German federal government is committed to achieve a share of 80%
RES in the total electricity production by the year 2050 [11]. The share of RES in the electricity
production increased from 7% to 30.1% in the years 2000 to 2016 [12]. At the same time, the German
government pledged to issue the nuclear power phase-out, induced by the Fukushima Daiichi nuclear
disaster in 2011 in Japan [13; 14]. This narrows the options of low-carbon electricity generation down
to RES.
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1 Introduction

Growing shares of RES increase the intermittency and uncertainty. This introduces a number of
challenges for the electrical power system, having increased the demand for flexibility in power grids
in recent years [15]. With 27% of all RES capacity installed in low voltage grids in 2015 [16], the
integration of high shares of RES introduces problems for the low voltage-distribution grid. 98% of all
PV-units in Germany are connected to the low voltage-distribution networks [17]. Voltage deviations
caused by RES are one of the main issues for distribution system operators [18].

Energy storage systems (ESS) are acknowledged as a key component to facilitating the transition of
power systems towards low-carbon technology [19]. Pumped hydro storage systems have been part of
the power system since the early 20th century and represent the dominant share of all grid-connected
ESS [20; 21]. With arising challenges caused by RES and the higher flexibility of battery energy storage
system (BESS), new applications for ESS of different qualities and sizes emerge [22–24]. The amount
of projects for grid-scale BESS installations is growing steadily [25]. BESS’ capability to relieve the
grid of RES-induced problems have already been investigated [26; 27]. BESS are often discussed to
mitigate challenges like over-voltage or overloading of grid equipment, that are associated with high
shares of RES (Fig. 2.1).

High battery prices, however, prevent a widespread adoption of BESS [22; 28; 29]. The technical
feasibility of BESS to alleviate RES-induced grid problems has been shown, however, there are currently
no financial incentives for BESS in Germany for grid-supporting operation [30]. Further issues for
beneficial operations of BESS are the market mechanisms that are not necessarily aligned with the
technically optimal operation of the BESS [31].

1.2 Scope of the Thesis

Objectives

BESS are widely claimed as a key component for the decarbonization of the power system. The benefits
of some applications for the general public is, however, questionable [32]. This raises the question of
other non-obvious disadvantages of operating BESS. Besides cost savings, the deployment of BESS
with regard to GHG-emissions as not sufficiently clarified.

The benefit of BESS for its application and consequently the impact on the power system is determined
by its operation strategy [33; 34]. Even though the battery prices are rapidly falling [35], the BESS’
financial return requires further improvement. Operating BESS for single, dedicated applications
leads to low utilization [36], resulting in insufficient revenue that prevents widespread adoption and
integration into the electricity grid. Multi-use is suggested in the literature to improve the economics
of BESS [37] but there is a lack of appropriate operation methods [38]. Based on the status quo,
following research objectives for this Ph.D. thesis are therefore defined:

1. Development of a modeling framework for accurate simulations of BESS and the respective
application.

2. Derivation of assessment methods for a true valuation of BESS.

3. An examination of the alignment of climate benefits and economic incentives for the BESS
operation.

4. Development of control methods to improve the BESS performance.
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1.2 Scope of the Thesis

Outline of the Thesis

The thesis is composed of four parts: Part I: Introduction and Fundamentals, Part II: Evaluating
Stationary Battery Storage Systems, Part III: Improving Battery Storage Operation, and Part IV:
Conclusion and Outlook.

Figure 1.2 illustrates the structure of the thesis. Part I provides the fundamentals for the thesis. Part II
derives evaluation methods for the operation of BESS. These evaluation methods can be understood
as objectives and set the goals for favorable operation. Part III is concerned with the approach of how
to reach any desired objective (preferably the goals suggested in Part II). A method to incorporate
multiple stakeholders is presented, in consideration of unbundled electricity markets, common in the
European Union. Part IV concludes the thesis and gives an outlook, suggesting options for future
research.

Figure 1.2: Graphical outline of thesis.

The remainder of Part I provides the fundamentals for the thesis. An overview of stationary BESS
is given in Chapter 2. Three applications are described further analyzed in Section 2.1: PV-home
storage, peak-shaving, and hybrid renewable-diesel island grids. The prototype Energy Neighbor is
presented as the basis for stationary BESS. The simulation framework SimSES used throughout the
thesis is presented in Section 2.2.

Part II covers the evaluation of operating BESS. Chapter 3 describes technical evaluation metrics and
presents literature reviews on the economics and the carbon emissions of BESS. The business model
of BESS for the three applications and a discussion of economic metrics are presented in Chapter 4.
Chapter 5 gives an approximation of the GHG emitted by the production of stationary BESS and
derives the influence of operating BESS in the three applications on the carbon emissions. Case
studies on the three applications apply the derived evaluation approaches in Chapter 6. The Part
concludes with a discussion on the evaluation of BESS in Chapter 7.

Part III is concerned with improving the operation of BESS. It starts with Chapter 8 that outlines
the motivation, classifies approaches for the operation strategies, and conducts a literature review.
Chapter 9 presents an algorithm, developed to operate optimally towards any desired (multi-) objec-
tive, features real-time capabilities, and exhibits robustness against prediction uncertainties. Another
method to operate BESS for multiple stakeholders is presented in Chapter 10. Chapter 11 presents
a concept for transferring both operation methods to business logic and allow financial accounting of
the BESS operation to several stakeholders. The findings of this Part are concluded in Chapter 12.

Part IV closes the thesis. Chapter 13 concludes the thesis and an outlook is given in Chapter 14.
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2 Fundamentals

2.1 Stationary Battery Storage Systems

2.1.1 Storage Applications

This section gives a short overview of the energy storage applications covered in this thesis. The
PV-home storage, peak-shaving, and hybrid renewable-diesel island grid are explained. The PV-home
storage is an example for small-scale applications. Peak-shaving represents an application for BESS of
commercial scale. The hybrid renewable-diesel island grid is an application for BESS of utility scale.

2.1.1.1 PV-Home Storage

PV-home storage is one of two major applications for BESS deployment in Germany [39] with contin-
uously increasing installation [40]. They are installed at households with a rooftop PV-unit and aim
at increasing the household’s self-consumption, by storing surplus PV-power, instead of feeding it into
the grid and later consuming it at low generation periods.

The purpose of increasing a household’s self-consumption is to reduce the owner’s electricity bill [41;
42]. The case covered in this thesis is based on the German case, where PV-units below 10 kW are
legally remunerated with a fixed feed-in rate for 20 years [43; 44]. The financial benefits for the BESS
owner stem from the price spread between the electricity price and the feed-in tariff for PV-generated
electricity. Besides increasing the self-consumption, surveys show that other common motivations for
purchasing a home BESS are to hedge against rising electricity prices, a desire for increased autonomy
against utility companies, and to support the integration of RES [40].

A number of publications have assessed the economic impact of purchasing solar home BESS [28; 29;
45–48]. They generally conclude that PV-home storage systems are economically favorable only in few
cases. Considering battery prices of 2015, the savings of such systems under German market conditions
commonly undercut the battery investment cost within the projected system lifetime [28; 47].

Undesired voltage deviations that compromise grid operation are caused by feed-in peaks of the PV-
unit, especially in low voltage distribution grids [18]. The issue is illustrated in Figure 2.1. The blue
curve depicts the voltage level of the line, normalized to the nominal voltage. A sufficiently high and
simultaneous generation of PV-power raises the voltage U at the opposite end from the transformer
above legal and safety limits. Another possible issue is the violation of the grid equipment’s power
capacity. The orange curve in the Figure shows the apparent power S that exceeds the line’s power
capacity at its transformer end.

Voltage control is either conducted by limiting the feed-in peak of RES [26; 27; 34; 49–54], reactive
power provision [55; 56], or by combining both methods [18; 57–62]. Reducing the peak power of the
feed-in power into the grid is favorable for the distribution grid operator [51], but BESS owners are
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2 Fundamentals

Figure 2.1: Illustration of normalized apparent power flow S and voltage U along low-voltage grid line
with several rooftop solar panels. The orange curve shows the apparent power. The blue
curve depicts the voltage along the lines. (Graphic by Lorenz Viernstein; published in [31].)

not directly rewarded financially. Segundo Sevilla et al. suggest that curtailment is an economically
attractive option for the power system to enable high PV-penetration in distribution grids [63]. Rein-
forcement of the grid infrastructure is an alternative option, however, associated with high costs that
could be avoided by integrating BESS [64]. Future incentives for minimizing the peak feed-in are,
therefore, plausible and the peak feed-in reduction is assessed in this thesis.

2.1.1.2 Peak-Shaving

Peak-shaving is an application that is relevant for commercial electricity consumers with an electricity
contract that includes peak power charges. These charges are determined by the load peak over a
defined period of time, usually a year. Consumers with a load of more than 100 MWh per year are
subject to peak power charges in Germany. The peak is determined as mean value over a time period
of 15 minutes. The highest peak of the present year defines the peak power charge that is recalculated
if the actual peak load does not match the anticipated value. [65–69]

BESS deployed for peak-shaving supply the load that exceeds the desired maximum peak load. This
way the peak grid power is limited to that maximum value and the BESS avoids higher peak power
charges. Alternative options for peak-shaving are diesel generators, that provide the load power exceed-
ing the peak load threshold, or demand-side management. Demand side management is the scheduling
of controllable loads to avoid large load peaks. It requires coordination of numerous loads [70].

The economic benefits of peak-shaving strongly depend on the load profile of the consumer and the
contract with the grid operator. Thus each individual case needs to be studied. The case regarded in
this thesis is based on the German scenario and is valid for annual load energy to peak load ratios higher
than 2500 h. Besides reducing the electricity bill of the consumer, the peak power charges reflect the
financial and operational burden for the grid operator. The required grid capacity is determined by the
occurring power peaks and if the power peaks exceed the grid capacity, expensive grid-reinforcement
is required. Peak-shaving reduces the power peak in the grid and improves the utilization of the
electricity grid [71].

2.1.1.3 Hybrid Renewable-Diesel Island Grid

An island grid is an isolated electricity grid without connection to another (larger) electricity grid [72].
Island grids exist on, but are not limited to geographical islands [73]. Electricity grids in remote areas,
for example, are isolated island grids, if the connection to the larger grid is technically, or economically
not feasible [74].
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The integration of RES, such as PV and wind turbines, in an island grid, requires controllable dispatch
units that are capable of providing energy for the load in time periods without RES generation. BESS
are capable of fulfilling this task [75], yet conventional generators are usually part of hybrid renewable-
diesel islands because a 100% share of RES would require very large amounts of BESS [76].

The case regarded in this thesis is a hybrid renewable-diesel island grid that is composed of consumers,
PV-units, wind turbines, a diesel generator, and a BESS. The RES provide the load if they can. Any
surplus energy is stored in the BESS for later use, in times of insufficient RES generation. The diesel
generator supplies the load if neither RES nor BESS can provide the load.

The analysis of the island grid in this thesis is limited to power- and energy flows. Stability issues,
such as frequency, and spinning reserve, and line losses, are neglected. Another simplification is to
treat the grid participants as single entities, instead of distributed units.

2.1.2 Model Battery Storage System: The Energy Neighbor

The Energy Neighbor is a stationary BESS that has been developed in the research project EEBatt.
It is the basis for the simulation model and used for the estimation of the global warming potential
(GWP) of producing BESS in this thesis. The Energy Neighbor has been developed by the Technical
University of Munich (TUM), in cooperation with the project partners VARTA Storage GmbH and
ZAE Bayern. The BESS is tested in cooperation with the local grid operator and utility company of
the Kraftwerke Haag Gruppe. The field test has been executed in the Bavarian village Moosham in
Oberbayern, Germany. The prototype BESS Energy Neighbor (Figure 2.2) is installed in a rural low
voltage distribution grid that experiences challenges to date caused by a large share of RES. A large
portion of the system description in this Section has been published before [77].

Figure 2.2: Photography of the prototype battery storage system Energy Neighbor.

2.1.2.1 Similar Demonstration Systems

The amount of projects for grid-scale BESS installations is continuously emerging [25], however, only
little information about best practices and experiences in the setup of BESS has been published.

Thien et al. describe their lessons learned in planning and operating a 5 MW BESS within the research
project M5Bat [78]. Koller et al. assess the topology and experience with a 1 MW and 250 kWh
demonstration BESS installed 2012 in Zurich, Switzerland [79]. The M5Bat BESS serves frequency
response services and participates in energy wholesale markets for arbitrage. The Zurich BESS is
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installed within the urban grid and provides frequency reserve, applies peak-shaving, and is capable of
work in an island operation mode.

2.1.2.2 Goal and Demonstration-Grid

The field test grid in Moosham consists of about 50 households and a total installed PV-capacity of
about 300 kWp. The goal of the system is to enhance the local grid’s self-consumption of its PV-
generated electricity, relieve the grid, and provide secondary control reserve. The self-consumption is
increased by storing the generated surplus energy and supplying the load at low generation periods.

The grid experiences over-voltage issues during peak PV-feed-in periods. The occurring voltage-rise
may exceed legal limits (see Figure 2.1). Figure 2.3 shows the simulation results of the grid in Moosham.
The top figure is the worst-case of the grid without the Energy Neighbor, the bottom figure shows the
alleviating effect of connecting 2 stub lines to a ring line and the BESS. A rising number of rural,
low voltage distribution grids face this problem [80]. The operation of the Energy Neighbor aims at
relieving this issue, by charging during the peak production periods, hence reducing the current that
causes the undesired voltage rise.

Figure 2.3: Visualization of the simulated grid in Moosham. The colors illustrate the normalized
voltage level. The top figure is the worst-case of the grid without the Energy Neighbor, the
bottom figure shows the alleviating effect of connecting 2 stub lines to a ring line and the
BESS. [64]

The Energy Neighbor is intended to simultaneously serve another application to demonstrate its ability
to use multiple sources of revenue. Such multi-use scenarios have been proposed for the increased prof-
itability of BESS [37]. Dedicated shares of the BESS-capacity provide secondary control reserve because
the idle and active time periods complement the primary application well [81]. The academic prototype
system is, however, not viable because of effective regulations: Increasing the self-consumption of the
chosen village-grid results in twofold taxation of the electricity produced by the RES. This prevents
possible business cases under current legislation in Germany.
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Challenges of Developing Stationary Battery Storage Systems

BESS are subject to a variety of interdependent effects that need to be taken into account. Best
practices for the design of BESS are yet to be determined.

(Electro-) Chemical side-reactions within the battery-cells cause aging, i.e. battery capacity degra-
dation and increasing inner resistance. Both impair the overall system’s performance with regard to
energy capacity and efficiency. The aging of battery-cells is very sensitive towards non-optimal han-
dling, e.g. certain temperatures, charging- or discharging-currents, and average state-of-charge (SOC).
The battery-cells compose about 50% of the overall BESS cost, requiring careful system design even
more.

2.1.2.3 System Overview

The Energy Neighbor is situated in a single 20-foot ISO standard container for both power electronics
and batteries, to allow straightforward transport and installation. The current experimental configura-
tion of 8 independent battery-racks weighs about 7000 kg. The nominal energy capacity of the Energy
Neighbor is 192 kWh and the rated power is 248 kW.

Each battery rack is connected to the electricity grid via one-stage inverter with rated powers of 16 kW
and 36 kW. A battery-rack consists of 13 battery-modules, that are connected in series. The battery-
modules each comprise of 192 battery cells with 16 cells connected in series and 12 in parallel. Table 2.1
gives an overview on the key-properties of the system.

Table 2.1: Datasheet of the Energy Neighbor.
Parameter Value

Energy capacity 192 kWh (8x24 kWh batt.-racks)
Power capability 248 kW (2x16 kW, 6x36 kW)

Housing 20’ ISO standard container
Total weight ∼ 7000 kg

Batt.-type LFP:C, cylindrical 26650
Batt.-module 16s12p battery cells

Batt.-rack 13s1p battery modules
Converter type One-stage inverter per rack

Grid level 400 V low voltage
Applications Increase of self-consumption

Grid-relief
Secondary control reserve

The partition of the BESS into several independent battery-racks allows modular scaling of the to-
tal number of battery-racks and consequently the energy capacity and power capability. The BESS
can therefore easily be adapted to the application and scenario it is intended for. The module volt-
age is below 60 V, thus no additional training is legally required, for assembly and handling of the
modules [82].

The Energy Neighbor is connected to the low voltage distribution grid and thereby allows deployment
for a large number of applications. BESS in low voltage grids can serve more applications than BESS
placed in higher voltage grids [36] and still address issues in higher voltage grids [64].
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2.1.2.4 Battery Technology

The choice of the battery technology influences a variety of factors that determine the system per-
formance and may change the constraints and issues for design considerations for the auxiliary com-
ponents fundamentally. Lithium-ion technology is currently the most widespread battery type in the
major fields: automotive, stationary application, and consumer electronics. The main reason to use
lithium-ion batteries is the combination of long lifespan, high power and energy density, and technical
maturity. Even within lithium-ion technology, the choice of the different cell-chemistries for the anode
and cathode of the battery cells, significantly changes the system properties with regards to safety,
lifetime, energy density, ease of state-estimation, and more.

The Energy Neighbor consists of lithium iron phosphate (LiFePO4) (LFP) batteries with a graphite
(C) anode. The battery-cells are of cylindrical 26650 format and they are connected with a 16s12p
configuration to form modules. Even though LFP:C exhibits lower energy density than other lithium-
ion chemistries, other beneficial properties outweigh the disadvantage. The energy density is not as
important for stationary applications [21], in contrast to mobile applications, where size and weight
are crucial. LFP used as cathode material, tends to exhibit much larger cycle-stability than lithium
nickel cobalt aluminium oxide (NCA) and lithium nickel manganese cobalt oxide (NMC) [83], that
dominate the automotive sector.

Estimating the states of the battery, i.e. its state-of-charge and momentary power capability is crucial
to exploit the full potential of the system. The chosen LFP:C-chemistry exhibits a very flat open
circuit voltage (OCV), over a wide range of the SOC (Figure 2.4). The battery voltage is more
sensitive towards other factors like cell-temperature, current, and relaxation state. Consequently, the
information about the SOC that can be concluded from the battery voltage is imperfect.
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Figure 2.4: Open-circuit voltage of chosen lithium-iron-phosphate battery at 25 ◦C. Mean value of
voltage during charging and discharging is shown.

2.1.2.5 System Management

The BESS needs to be managed at different component levels (Figure 2.5). The battery management
system (BMS) supervises the battery states, to keep the operation of the BESS within constraints.
This avoids system failure and accelerated aging. The BMS is designed in a master-slave concept. The
BMS-slaves monitor the battery modules and send information to the BMS-master, that supervises the
battery rack. It communicates with the energy management system (EMS) and approves the charging
and discharging operations.

Decisions about the charging and discharging of BESS are made in the EMS. The distinction of BMS
and EMS allows independent development of both components, reducing the complexity of coordinating
the separate development teams.
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Figure 2.5: Illustration of battery to grid connection with dedicated inverters and hierarchy of man-
agement system.

Battery Management System

The battery management system (BMS) estimates the battery SOC, executes the balancing of the
serially connected battery-cell compounds, and communicates the relevant information to higher system
management entities. State-estimation of batteries is a complicated task and subject to inaccuracies
because of the high nonlinearity of battery cells. The relatively low sensitivity of the OCV towards
the battery SOC compared with its higher sensitivity towards other factors considerably enhances the
complexity of estimating the battery’s SOC.

Batteries in mobile applications are usually fully charged regularly, reaching an accurately defined
full-state that can be used as a reference to readjust the estimated state. Applications for stationary
BESS experience the problem of drifting SOC-estimation because the batteries are not necessarily
reaching certain states routinely. This is especially an issue for applications with a medium average
SOC and relatively small SOC-swings, such as primary control reserve for frequency control. The
estimation error is accumulating over time, resulting in necessary re-calibration cycles to re-adjust the
SOC estimation. To ensure comparable condition, these re-calibration cycles may require a long time
and inhibit standard operation. In addition, energy drain, caused by the batteries’ self-discharge, the
idle consumption of power electronic devices, and (dissipative) balancing, interferes with the state-
estimation.

Varying temperatures and manufacturing differences of the battery-cells result in an increasing spread
of their SOC. Balancing of the battery-rack is necessary, to keep the SOC gaps of the serially connected
batteries to a minimum and enable exhaustive utilization of their capacities. The Energy Neighbor is
equipped with dissipative balancing because of the method’s simplicity and small investment cost.
The balancing resistance is 33 Ω, resulting in a discharge current of 97 mA for a nominal voltage of
3.2 V for each parallel battery-cell compound. This is equivalent to a C-rate of 0.27% per hour. The
chosen balancing method is the commercial standard, however, causes inefficiencies because energy is
dissipated into heat and cannot be utilized. The activation of the balancing in the Energy Neighbor
is based on the battery-cell voltage. Temperature deviations cause the terminal voltage of the battery
cells to diverge. The OCV is more sensitive to the temperature than to the SOC. The balancing does
not actually result in converging SOC of the parallel battery compounds if the temperature deviation
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within the battery rack is too severe.

Energy Management System

The energy management system (EMS) is divided into internal and external systems. The external
EMS district is responsible for the BESS operation strategy and aims at maximizing the benefit of BESS
operation. The internal EMS container attempts to maximize the system efficiency by distributing the
power output among the battery racks, considering the efficiency of each component. The EMS rack
is the communication interface for the higher EMS levels and the power electronics. It also controls
the stand-by consumption of the BESS components.

2.1.2.6 Power Electronics

The battery-racks are individually interfaced to the low voltage distribution grid with direct one-stage
inverters. One-stage inverters are more cost effective than their two-stage counterparts that contain an
additional DC/DC converter. Omitting the additional conversion step also leads to higher efficiency,
but requires higher DC-voltage as input. A battery-rack voltage of at least

√
2 · 400 V = 565 V is

required, to allow direct connection of the AC-side of the inverter to the 400 V low voltage grid.

The trade-offs for the efficiency increase and component-cost savings are stricter safety requirements
for the operation and development of the BESS. The omitted galvanic insulation of the topology
requires the installation of additional residual-current measurement units, to detect electric faults.
The high voltage-levels raise the legal requirements for the maintenance and development personnel.
Additional training and qualification, as well as expensive testing and maintenance equipment and
facilities, are compulsory [82]. These cost drivers need to be carefully assessed, to justify the improved
BESS efficiency.

Dedicated inverters are used for each individual battery-rack. This allows higher efficiency at partial
loadings of the BESS. Figure 2.6 illustrates the efficiency curve of a single, central inverter in comparison
with an aggregated efficiency curve of two dedicated, individual inverters over the normalized output
power of the power electronics setup. Subsequent activation of the inverters avoids operating any of
them in partial load, where the efficiency drops significantly. The resulting efficiency curve is calculated
by compressing the original efficiency curve to half of the nominal power. The remaining curve above
0.5 of the normalized output power is calculated as the total efficiency of an inverter at nominal output
power and a second identical inverter with the respective power output. The efficiency at 0.8 is for
example calculated with the in- and output power of the inverter at 1.0 of the nominal output power
and at 0.6. The resulting efficiency is calculated based on the input and output power of both inverters.

Using independent inverters for shares of the BESS also enhances the system reliability against failures
of the inverter. The malfunction of one battery-rack can be compensated by the remaining functional
racks.

An important issue is the idle-consumption of the inverters [84]. Minimizing the idle-consumption
leads to an increase of the system efficiency. More importantly, the output on the AC-side is measured
to deliver specific power values for the application. The idle-consumption of the inverter is supplied
by the batteries, which may lead to an unintentional deep-discharge and consequently to damage of
the battery-rack, which must be avoided.
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Figure 2.6: Inverter efficiency of a single central inverter compared with the achievable efficiency with
two dedicated, individual inverters for each battery-rack. The Energy Neighbor contains
eight individual inverters.

2.1.2.7 Thermal Management

Battery aging is highly sensitive to the temperature and has a significant influence on the economic
viability of BESS [28]. Precise temperature control, however, requires careful engineering and may
result in additional electricity consumption for air conditioning. The conflicting goals of reduced aging
and achieving high efficiency need to be balanced.

The thermal management concept of the Energy Neighbor comprises of a multi-zone approach (Fig-
ure 2.7). While heat dissipating and temperature resistant inverters are placed in the Hot-Zone, the
components that benefit from moderate temperatures are located in the Cool-Zone.

The Hot-Zone has a wide temperature range, requiring little cooling and consequently little to no
energy expense. This is where heat-dissipating components, such as inverters, and components with
broad temperature tolerance are located. The Cool-Zone contains temperature sensitive components
(i.e. batteries) and is kept at a more restricted temperature range. The thermal absorption in this
zone is very small because of the spatial segregation of both thermal zones. Unnecessary cooling of
heat-dissipating components and undesired heating of sensitive components are minimized this way.

In addition to the container internal multi-zone concept, extra vents allow for switching between fresh-
air and circulating air supply. Their proper control allows to further increase the efficiency.

Figure 2.7: Thermal management with multi-zone concept. Main heat producers and low sensitivity
components are placed in the Hot-Zone. The Cool-Zone, where the batteries are located,
is kept at favorable temperatures.

The thermal management within the racks is also designed to avoid varying aging progress of the
batteries within a battery-rack. An air-channel is located at the center of a battery-rack from the top
to the bottom. At each row of battery modules vents on the side of the air-channel allow air to flow
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through the modules for temperature regulation. The vents’ width increases from top to bottom to
avoid the air-flow to drop along the vertical axis, This way, similar cooling of the battery-modules is
achieved.

The battery-cells in the modules are geometrically arranged to cause obstructed perfusion of the air-
flow. Instead of a chessboard pattern arrangement, the battery-cells are positioned in a shifted manner,
to maximize the convective heat transfer through air-turbulences.

2.1.2.8 Summary

The battery storage container prototype system presented is meant to alleviate the stress on the grid
imposed by a relatively large amount of RES. Features and drawbacks of the system-design choices
are analyzed and discussed in detail.

Auxiliary components are necessary to enable the operation of the batteries, but the choice of the
battery technology substantially impacts all other components of a BESS. The decision to use lithium
iron phosphate batteries is based on the technology’s favorable safety and aging properties, as well
as the dispensable role of energy density for stationary application. The associated issue of flat OCV
significantly influences the accuracy and complexity of state-estimation and consequently, the effec-
tiveness of the balancing method applied. The auxiliary components depend on the characteristics of
the chosen battery technology and require adaption for each technology. Furthermore, a sophisticated
thermal management concept has been implemented in the Energy Neighbor.

The grid connection topology determines the achievable conversion efficiency and at the same time the
control complexity. Dedicated inverters for each battery-rack have been installed in the system, as these
allow higher efficiency at partial output power. The chosen one-stage inverter reduce investment cost
and enhance overall efficiency, however, require high battery voltages that are monitored by additional
safety components.

The presented Energy Neighbor ’s structure is not intended to be a best practice approach, but rather
to illustrate and share the insights gained during the project EEBatt. The system is a prototype,
offering the potential for further improvement.

2.2 Simulation Model: SimSES

2.2.1 Background

The simulation model Simulation of Stationary Energy Storage (SimSES) has been originally developed
by Maik Naumann and the author of this thesis. The source-code is published as an open-source tool
under the BSD 3-clause license [85]. The model’s purpose is to simulate stationary ESS in their
respective application. At the same time, the technical effects within the system, such as conversion
losses or battery aging are considered.

The modeling framework is programmed in the commercial MathWorks MATLAB® software. The
main benefit is the modular structure of the framework. It allows coupling of models from different
developers and hereby promotes collaboration. The goal for the development of the tool is to enable
rapid analysis of any issue that concerns the operation of stationary BESS. The states and variables
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during the simulation are stored and saved. This allows detailed analyses after the simulation run.
A re-programming of essential components is avoided by re-use of existing components allowing new
researchers to focus on the area of interest. Another benefit of re-use is that the perpetual review and
revision of the code improves it and reduces the probability of bugs.

SimSES utilizes the object-oriented programming paradigm that simplifies consistent data handling. It
also enables the inheritance of classes. This way further developments of the basic model is immediately
transferred to specialized models and all applications, without the need for manual incorporation of
the new features into numerous model variants.

Both developers contributed equally to the tool. Maik Naumann focused on the aging model, the
input-data handling, and the acquisition of input parameters. The author of this thesis was mainly
responsible for the operation strategies, power electronics, and the battery model. The integration of
all components and sub-models into a framework, plotting functions, and evaluation functions were
equally developed. Both did support and assist each other in all areas of the development.

SimSES is further maintained and developed at the Institute for Electrical Energy Storage Tech-
nologies by younger Ph.D. students. Numerous publications, student, and Ph.D. theses have been
generated based on the simulation framework. Together with internships and working students, they
have contributed to the development of the simulation framework, in return.

2.2.2 Model Framework

The model simulates the BESS’s charging and discharging behavior and its performance on the re-
spective given applications. The simulation model includes load, generation units, and the BESS [86].
Conversion losses are considered for the battery inverter (2.1) and the battery (2.13). The BESS is con-
nected to the low-voltage grid via inverter without an additional transformer. Stand-by consumption
of inverter, thermal management, and auxiliary components are neglected in this thesis.

Measured profiles of solar generation PPV, wind generation Pwind, and consumer load Pload at the AC-
side are used. The power flows of the relevant components are computed (Figure 2.8): diesel generator
(DG) output PDG, the electricity grid supply Pgrid, and BESS power PBESS (positive sign for charging,
negative sign for discharging), considering (power-dependent) one-way efficiencies of inverter ηinv and
battery ηbatt.

3

~

3~

3

Figure 2.8: Overview of the simulated power flows in the model. Components implemented as fixed
profiles at the AC-side are depicted in grey. The more elaborate models are shown in black.
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The BESS provides the output power according to the reference power P ref
BESS (also power setpoint)

while maintaining the allowed operating range, with regard to SOC (2.6), power (2.2), current (2.10),
and battery voltage limits (2.11). The operating limits of the BESS are considered, regardless of the
power requested by the controller. The output power is limited to the momentary power capability
of the battery system. Hence, BESS specific constraints do not need to be further considered as
constraints in the formulation of optimization problems.

The load and renewable generation (wind and solar) are implemented as fixed profiles originating from
measurements. The power outputs of controllable units (i.e. BESS and DG) are determined during
simulation time by the effective operation strategy.

The toolbox structure of the model allows switching of sub-models, such as power flow model and equiv-
alent circuit model for the battery. Both are used for the simulation and described in Section 2.2.3.2.
The model includes output power dependent conversion losses of inverters and battery cell efficiency.

2.2.3 System Model

2.2.3.1 Inverter Model

The inverter is implemented as an efficiency model with a power dependent efficiency curve ηinv (2.1).
The function and the parameters are taken from Notton et al. [87] The inverter power may not exceed
its nominal power (2.2).

ηinv = f

(
p = PBESS

P nom
inv

)
= p

a · p2 + p + p0
(2.1)

|PBESS| ≤ P nom
inv (2.2)

The DC-power P DC
inv of the inverter is calculated based on the AC-power PBESS and the respective

efficiency ηinv (2.3). The power at the DC-side of the inverter is passed to the battery model as
reference battery power to calculate the SOC change and to verify that the battery can provide the
calculated power.

P DC
inv =

{
ηinv · PBESS for PBESS > 0

1
ηinv

· PBESS for PBESS < 0
(2.3)

The battery output power Pbatt returned by the battery model is the effective power. If it is different
from the calculated inverter DC-power, the inverter AC-power is adjusted accordingly. Two possible
cases are considered: If the SOC-limit de-rates the battery power, the output is adjusted to the same
ratio of the adjusted power and the initial DC-power of the inverter (2.4). In this case, the BESS
operates at the working point, originally computed, until the limit is reached. At this point in time,
the output is reduced to 0. The working point is therefore not adjusted with another efficiency value,
but the adjusted output P adj

BESS is equivalent to the average of the power over time.

P adj
BESS = PBESS · Pbatt

P DC
inv

(2.4)

If power or current limits de-rate the original DC-power, the valid AC-power P adj
BESS of the inverter is
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adjusted with the respective efficiency for the DC-power determined by the battery. In this case, the
calculated output power occurs over the entire sample time period.

P adj
BESS =

{
1

ηinv
· Pbatt for PBESS > 0

ηinv · Pbatt for PBESS < 0
(2.5)

Inverter Model Parameters

Two parameter sets are used for the inverter’s power flow model. The first set is a power dependent
efficiency curve that corresponds to the Type 2 high-efficiency inverter described by Notton et al. [87].
The second set corresponds to the Type 1 inverter described in the same publication. The parameters
for the efficiency curve (2.1) are given in Table 2.2.

Table 2.2: Parameters of two inverter types for efficiency formula [87].
a p0

Type 1 0.0437 0.0145
Type 2 0.0345 0.0072

Figure 2.9 depicts the efficiency curve of the two inverter types used. Efficiencies above 90% are
achieved for normalized power outputs larger than 10%, while partial loads below 10% of the nominal
inverter power result in significantly lower efficiencies.
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Figure 2.9: Efficiency curves of inverter model [87].

2.2.3.2 Battery Model

Electric Model

Two simulation models for the battery are used. The first model is an equivalent circuit model with a
measured OCV and an inner resistance. The second model is a power flow model.

The battery models maintain the allowed operating range with regard to SOC (2.6), current (2.10),
battery voltage limits (2.11), and power (2.12). The operating limits of the BESS are considered,
regardless of the power requested by the controller. The output power is limited to the momentary
power capability of the battery system. Hence, BESS specific constraints do not need to be further
considered as constraints in the formulation of optimization problems.

SOCmin ≤ SOC ≤ SOCmax (2.6)
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The equivalent circuit model of the battery is directly coupled to the inverter model by its power
value (2.7). The model uses the DC-power of the inverter as input and calculates whether this power
can be met by the battery. If this is not the case, the maximum battery power is computed and
utilized as DC-power. The output power is based on the current, the terminal voltage, and the SOC
that are calculated in the model. It includes a SOC-dependent open-circuit voltage UOCV and an
inner resistance Ri that is influenced by the direction and amplitude of the battery current Ibatt, the
SOC, and the battery cell temperature. The explicit parameter values are obtained by lookup-table
based linear interpolation. The terminal voltage Ubatt depends on the inner resistance Ri, the battery
current Ibatt and the open-circuit voltage UOCV (2.8). The SOC-change is determined by the battery
current Ibatt, the battery capacity Cbatt, and the self-discharge rate rSD (2.9).

The battery model is subject to the current limits (2.10) and voltage limits (2.11). The limits are given
as absolute, positive values. The signs, therefore, need to be considered in the equations. The voltage
limit leads to a de-rating of the current if the battery voltage is near its limit. The over-voltage caused
by the current at the inner resistance may not lead to the terminal voltage to exceed its limit. All
values are kept constant within a sample time period.

Pbatt = Ubatt · Ibatt (2.7)

Ubatt = UOCV + Ri · Ibatt (2.8)
d

dt
SOC = Ibatt

Cbatt
− rSD (2.9)

−Imax,dchg
batt ≤ Ibatt ≤ Imax,chg

batt (2.10)

Umin
batt ≤ Ubatt ≤ Umax

batt (2.11)

The battery power flow model takes the DC-power of the inverter as input and verifies, whether
this power is provided by the battery. The effective power is subject to the battery’s power limit
constraint (2.12). The SOC in this model refers to the energy level stored in the BESS normalized to
the nominal energy capacity (2.13). It deviates from the common definition of coulombic charge (2.9).

The output power constraint for the battery power flow model is the battery’s power limit (2.12). The
battery’s output power is adequate to the inverter power on its DC-side. A battery SOC of 100%, for
example, allows full discharge power, but no charging power (2.6).

|Pbatt| ≤ P nom
batt (2.12)

d

dt
SOC =

{
ηbatt · Pbatt

Enom
BESS

− rSD for Pbatt > 0
1

ηbatt
· Pbatt

Enom
BESS

− rSD for Pbatt < 0
(2.13)

Battery Model Parameters

Both models are parameterized with in-house measurements of a commercial LFP battery cell with a
C anode (Table 2.3). The allowed operating voltage range is 2.0-3.6 V and the inner resistance is about
28.5 mΩ, depending on the battery’s SOC and temperature. The equivalent circuit model is scaled
to the assumed battery pack configuration with a nominal voltage of 650 V. Influences of additional
connectors or variation of the battery cell parameters are very small [88] and therefore neglected. The
self-discharge rSD rate is 0.1% per month.
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Table 2.3: Battery cell parameters for the simulation model. [89; 90]
Parameter Value Unit

Battery type LFP:C
Nominal capacity 3.0 Ah
Nominal voltage 3.2 V

Voltage range 2.0-3.6 V
Max. charge current 2.85 A
Max. disch. current 20 A
Resistance RDC,10s 28.5 mΩ
Self-discharge rate 0.1 %/month

Aging Model

Batteries degrade over their lifetime because of electro-chemical side-reactions. The results are decrease
of usable capacity and increasing inner resistance. This has significant impact on the operation of BESS
and needs to be considered for the sizing of BESS. It influences the BESS performance in long-term
operation.

The model is built as two-step computation. First the parameters that influence aging are reduced by
battery stress characterization stress methods. The regarded influence parameters are the SOC, cell
temperature, depth of cycle, relative current or power (C-rate), and charge-throughput. Several stress
characterization methods with varying properties are implemented.

The reduced stress data are then used as input for the battery lifetime models that consist of calendar
aging model and cycle aging model. These are added to obtain the overall capacity fade and perfor-
mance decrease. Several models with varying degree of complexity are implemented in the simulation
framework. Different battery technologies based on datasheets, or warranty information are imple-
mented as simple models. Literature-based aging models with formulas and parameters are integrated
as well. The most sophisticated model is the lifetime model derived from experiments conducted by
Maik Naumann [89].

The aging models are executed periodically with the simulation. They update the parameters of the
battery model accordingly, to ensure further simulation with the correct battery capabilities. This way
the deteriorating battery performance is reflected in its operation with as little offset as possible.

One method is pointed out specifically because it has been used for the PV-home storage case study.
The method to estimate cycle aging of batteries is based on literature methods [48; 91–95]. Cyclical
degradation depends only on the inflicted stress on the battery; the aging progress itself does not
influence the aging speed, hence time-dependency is neglected in the system simulation.

The depth of cycle (DOC) describes the amplitude between the peak and the minimum state of-charge
within a cycle and determines the cycle-aging. The cycle-counting algorithm detects half-cycles. These
are distinguished between charging, discharging, and resting periods of the batteries. The cycle-counter
determines the cycles by detecting zero-crossing of the battery terminal power-flow. Every time the
power flow changes to zero, the end of a half-cycle is declared and the difference of the SOC at the
beginning and at the end of the detected cycle is calculated to obtain the DOC.

The calendric capacity degradation ∆Ccal
batt (2.14) and the cycle degradation ∆Ccyc

batt (2.15) depend
on the calendar lifetime tcal and the cycle stability nEOL. The calendar lifetime is the time period
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tEOL until 20% of the capacity is diminished by calendric aging. The cycle stability nEOL describes
the number of full equivalent cycles FEC until the battery degrades by 20% of its capacity just by
cycle aging. Each cycle k with its respective DOC contributes to the cycle aging (2.15). Assuming
independence of calendric and cycle aging, a superposition approach to account for both simultaneous
aging effects is used to calculate the current capacity degradation ∆Cbatt based on the current lifetime
t and the occurred cycles k (2.16).

∆Ccal
batt = 0.2 · Cbatt

tEOL
· t (2.14)

∆Ccyc
batt =

∑
k

0.2 · Cbatt

nEOL(DOCk) · DOCk
(2.15)

∆Cbatt = ∆Ccal
batt + ∆Ccyc

batt (2.16)

2.2.3.3 Diesel Generator Model

The diesel generator is implemented with certain operational constraints that are satisfied during the
simulation: The diesel generator keeps its output power PDG between the minimum and nominal
output power (2.17). It only ramps down, if the current runtime trun

DG exceeds the diesel generators
minimum runtime tmustrun

DG (2.18). The diesel generator only ramps up, if the current idle time tidle
DG

exceeds the minimum idle time tmustoff
DG (2.19). The process of ramping up and down is neglected.

Fuel is assumed to be always available and the fuel consumption Vfuel is computed with the diesel
generator’s efficiency ηDG, its output power PDG, and the lower heating value (LHV) of diesel (2.20).

P min
DG ≤ PDG ≤ P nom

DG (2.17)

trun
DG ≥ tmustrun

DG (2.18)

tidle
DG ≥ tmustoff

DG (2.19)

Vfuel =
∫

t

PDG

ηDG · LHV dt (2.20)

Diesel Model Parameters

The power dependent generation rates per liter of diesel are taken from literature and named after the
respective first authors of the publication Guinot, Ashari, and Bortoloni [96–98].

The generation efficiency of the diesel generator given by Ashari and Guinot is described by (2.22).
The curves describe the energy output as Joule per LHV of fuel and transformed to kWhel per liter
for the simulation. Bortoloni et al. describe the fuel consumption in kg per kWhel with (2.23). A
density of 0.835 kg/l is used to convert the diesel fuel’s mass into the volume. The given equation is
re-formulated into kWhel per liter for the simulation. The LHV of diesel is 34.7 MJ/l.

p = PDG

P nom
DG

(2.21)

ηDG = a + b · p + c · p2 + d · p3 + e · p4 + f · p5 + g · p6 (2.22)

rfuel =
{

a + b · p + c · p2 + d · p3 for 0.25 ≤ p ≤ 1
r0 for 0 < p < 0.25

(2.23)

The parameters for the efficiency curves are given in Table 2.4.
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Table 2.4: Parameters of power dependent diesel generator consumption [96–98].
Eq. a b c d e f g r0

Ashari (2.22) 0.24 0.084 0 0 0 0 0 -
Guinot (2.22) 0.011 2.8753 -15.116 42.045 -62.194 46.2 -13.54 -

Bortoloni (2.23) 0.369 -0.605 0.808 -0.330 - - - 0.263

Figure 2.10 shows the electricity generated per liter of fuel over the normalized output of the diesel
generators.
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Figure 2.10: Electricity generation rates of the diesel generator types per liter of diesel. [96–98]

A direct emission factor of 2.625 kg CO2eq/l and an indirect factor of 0.526 kg CO2eq/l for the diesel
consumption is assumed [99].

2.2.4 Application Models

2.2.4.1 PV-Home Storage Model

Figure 2.11 displays the relevant components of the PV-home storage model: PV-unit, household load,
electricity grid, and BESS.
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Figure 2.11: Topology of the modeled PV-household with relevant components.

The simulation model computes the power flow between solar generation PPV, household load Pload,
BESS PBESS, and the electricity grid Pgrid, considering inverter efficiency ηinv, and battery one-way
efficiency ηbatt. The net load Pnet is determined by the solar generation PPV and the household load
Pload (2.24). The BESS output power PBESS then determines the remaining power supplied by the
grid Pgrid (2.26). The grid power is subject to the constraint that limits the feed-in to a curtailment
limit P lim,curt

PV (2.27). Any feed-in power above that limit is curtailed P curt
PV and the power output P out

PV
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differs from the theoretic generation PPV (2.25).

Pnet = Pload − PPV (2.24)

PPV = P curt
PV + P out

PV (2.25)

Pgrid = Pnet + PBESS + P curt
PV (2.26)

−Pgrid ≤ P curt,lim
PV (2.27)

German regulations impose a limit of 70% of the PV-unit’s capacity [44]. The specific subsidy for
PV-home storage by the KfW -bank further tighten the curtailment limit to 50% of the PV-unit’s peak
power [100].

PV-Home Storage Operation Strategies

German regulations impose additional constraints that need to be considered for the operation strate-
gies. The BESS may not charge from the grid, but only store the household’s PV-generated energy.
It is also not allowed to discharge power into the grid, but only provide the load. The BESS charging
limit P chg,max

BESS (2.28) and discharging limit P dchg,max
BESS (2.29) depend on the algebraic sign of the net

load Pnet.

P chg,max
BESS =

{
0 if Pnet > 0
Pnet else

(2.28)

P dchg,max
BESS =

{
Pnet if Pnet > 0
0 else

(2.29)

Two rule-based operation strategies are used in this thesis. Both calculate reference powers P ref
BESS for

the BESS, depending on the momentary production net load Pnet. Figure 2.12 illustrates the power
flows of a PV-home with storage and the different operation strategies.
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Figure 2.12: Illustration of the evaluated control algorithms. On the left (a) is the Direct Charge op-
eration strategy. The right plot (b) shows the Dynamic Feed-in Limit operation strategy.

The first operation strategy is the Direct Charge operation strategy (Figure 2.12 (a)). It is the simplest
and most intuitive algorithm and achieves the maximum self-consumption rate. The BESS stores all
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occurring power surplus and discharges to meet the net load (2.30).

P ref
BESS = −Pnet (2.30)

The second control algorithm is the Dynamic Feed-in Limit operation strategy (Figure 2.12 (b)) [101].
It relies on a forecast of load and PV-production to calculate the lowest possible threshold Pth for the
excess power that can be stored in the BESS, each day (2.31). This method aims at limiting the feed-in
peak of the day to the power threshold Pth. The algorithm represents the theoretical optimum for
peak feed-in reduction while maximizing the self-consumption, given the future load and generation
are perfectly known. The discharging policy of the BESS discharges to fully meet the load, avoiding
power purchased from the grid. The Dynamic Feed-in Limit is simplified for this thesis, neglecting
sophisticated enhancements, originally proposed [50].

P ref
BESS =


−Pnet − Pth for − Pnet > Pth

0 for 0 < −Pnet ≤ Pth

−Pnet for − Pnet ≤ 0
(2.31)

The discharging behavior of the Dynamic Feed-in Limit operation strategy is identical with the Direct
Charge operation strategy (2.30) because high load power peaks are assumed not to occur simultane-
ously at night and lead to voltage violations in the grid. Therefore, no shifting is required.

2.2.4.2 Peak-Shaving Model

The components of a consumer with a BESS or a diesel generator for peak-shaving are shown in
Figure 2.13. The left Figure (a) shows the model with the BESS, the right Figure (b) shows the
configuration with a diesel generator.

3~

3

(a) (b)

Figure 2.13: Topology of modeled consumer for peak-shaving with a BESS (a) and with a diesel gen-
erator (b).

The BESS charges from the grid during base load periods. During peak load periods, the BESS
discharges to partially supply the load and reduce the grid power (2.32). In the second case, the diesel
generator ramps up to reduce the grid peaks (2.33).

Pgrid = Pload + PBESS (2.32)

Pgrid = Pload − PDG (2.33)
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Peak-Shaving Operation Strategy

The operation strategy for peak-shaving prevents the grid power Pgrid from exceeding the pre-determined
peak-shaving threshold Pth. If the load exceeds the limit, the BESS provides sufficient power to keep
the grid power at that limit. As soon as the load falls below the limit, the BESS charges to prepare
for future load peaks (2.34).

P ref
BESS = Pth − Pload (2.34)

The BESS is not capable of providing the necessary power, if the lower SOC-limit is reached and the
BESS cannot discharge further or if the BESS’s power capability is insufficient to buffer the peak. The
analysis in this thesis is performed with a perfect forecast of the load. The threshold for maximum
peak-reduction is pre-determined and the BESS is parameterized to be able to provide the necessary
power at all times. Figure 2.14 shows the power flows with the consumer load, grid power, and the
BESS charging and discharging.
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Figure 2.14: Illustration of peak-shaving operation. The BESS discharges to keep provide the consumer
load and keep the grid power below the peak-shaving limit Pth. It immediately charges
energy to prepare for the next peak.

2.2.4.3 Hybrid Renewable-Diesel Island Grid Model

All relevant components of a hybrid renewable-diesel island grid are shown in Figure 2.15. The model
includes RES, load, diesel generator, and BESS.
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Figure 2.15: Topology of modeled island grid with components.

The deciding variable for the operation of the island grid is the net load (2.35). Negative values describe
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surplus RES energy generation that is either stored in the BESS or curtailed to keep the grid power
balance. Positive net loads mean that the RES cannot provide the load by themselves and need to be
assisted by the BESS or the diesel generator.

Pnet = Pload − PPV − Pwind (2.35)

The BESS can only store available power that is excess RES-generation and diesel generator power if
the diesel generator is active (2.36). The BESS may not contribute to curtailment: If the generated
power exceeds the required load and must be curtailed or consumed by switchable loads, the BESS
cannot further discharge. Equation (2.37) describes the absolute value of the discharging limit. The
limits have a degree of freedom and allow the BESS to support the diesel generator or induce the diesel
generator to generate more power to charge the BESS. It may also not sufficiently supply the load and
cause the diesel generator to remain in run-mode.

P chg,max
BESS =

{
−Pnet if DG is off
−Pnet + P nom

DG else
(2.36)

P dchg,max
BESS =

{
Pnet − P min

DG if DG is active
Pnet else

(2.37)

Loads that are not supplied do not impair the grid operation in the simulation. The shortage of supply
is introduced as load shedding. Stability of the grid is not regarded.

Hybrid Renewable-Diesel Island Grid Operation Strategies

The two operation strategies described in this Section are shown in Figure 2.16. The operation strate-
gies are used for the case study (Section 6.3) or as a reference for the presented operation strategy
(Chapter 9).

The first operation strategy (On-Off ) operates the diesel generator in two modes: off and running
with full power output. The BESS stores any power generation surplus provided by wind and PV.
Otherwise, the net load is provided by the BESS (2.38). The diesel generator ramps up to full power
output if the BESS cannot sufficiently provide the load (2.39). The excess generated power is stored
by the BESS (2.40).

P ref
BESS = −Pnet (2.38)

P ref
DG =

{
0 for PBESS = −Pnet

P nom
DG for PBESS > −Pnet

(2.39)

P ref
BESS = PDG − Pnet if DG is running (2.40)

The second operation strategy (load follow) operates the diesel generator in load following mode. The
load is matched by the BESS first and the diesel generator produces electricity only if the BESS cannot
provide the load or the generator is currently running because of its minimum runtime constraint. If
the diesel generator must run because of the runtime constraint (2.18), it matches the load (2.41) and
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the BESS stores the excess power (2.42), if available.

P ref
DG = Pnet (2.41)

P ref
BESS = −Pnet + PDG (2.42)

If the load exceeds the nominal power P nom
DG , the BESS attempts to provide the remaining load. In

case the load is below the diesel generator’s minimum output power P min
DG , the generator will run at

its minimum output power (2.17) and the excess generated energy is stored in the BESS (2.42).

If the diesel generator may turn off or remain off, the BESS attempts to provide the net load (2.43).
In case the BESS is not capable of providing the load, the diesel generator supports the BESS (2.44).
Excess power generation that cannot be stored in the BESS is curtailed.

P ref
BESS = −Pnet (2.43)

P ref
DG = Pnet + PBESS (2.44)

The BESS output power reference is adapted, if the diesel generator reference P ref
DG cannot be met

because of its power constraint (2.17), to avoid unnecessary curtailment of the generated power. If the
diesel generator needs to run, it will try to match the load. PDG is subject to the diesel generator’s
constraints (2.17)-(2.19) at all times.
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Figure 2.16: Illustration of the reference operation strategies. The left figure (a) shows the On-Off
operation strategy. The right figure (b) depicts the load follow operation strategy.
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3.1 Technical Metrics

3.1.1 Efficiency

The efficiency η describes the share of power that is usable after a conversion step [84]. This value
is found in data sheets of BESS and usually describes the efficiency of the inverter. The second
parameter associated with efficiency is the standby consumption of the BESS Estby

BESS. The standby
consumption is sometimes given for single components, such as auxiliary electronics or the inverter.
The values describe the technical performance of the BESS, but the real performance during operation
may deviate from those numbers.

The round-trip efficiency ηBESS is related to energy storage and describes the share of energy that can
be used after the storing process (3.1). The equation is valid for identical SOC at the beginning and
the end of the measurement. The standby consumption Estby

BESS of all BESS components need to be
considered in the calculation together with the conversion losses ηconv. [84]

ηBESS = Eout
BESS

Ein
BESS

∣∣∣∣
SOC0=SOCend

= 1 − Eloss
BESS

Ein
BESS

∣∣∣∣
SOC0=SOCend

=

= ηconv · Ein
BESS − Estby

BESS
Ein

BESS

∣∣∣∣∣
SOC0=SOCend

(3.1)

The round-trip efficiency calculated is only valid for the specific system configuration and cycle-
procedure because of the power-dependent efficiencies of inverter and batteries. Using the round-trip
efficiency for evaluation and comparison purposes is fairly complicated and requires numerous con-
sideration. The German Energy Storage Association (BVES) for example developed a guideline to
correctly evaluate the efficiency of PV-home storage systems [102]. A total of 26 partners that consist
of universities, research institutes, and companies have contributed to the guideline.

3.1.2 Charge and Energy Throughput

The coulombic full equivalent cycles FECQ describe the charge throughput for the battery (3.2). The
energy full equivalent cycles FECE is similar but refers to the energy throughput (3.3). [103]

FECQ = Qin
batt + Qout

batt
2 · Cnom

batt
(3.2)

FECE = Ein
batt + Eout

batt
2 · Enom

batt
(3.3)
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3.1.3 System Utilization

The time utilization rate τtime that is the ratio between of the BESS’s working time trun
BESS and the

total time ttotal [84]. The runtime is defined as the overall time period when the BESS supplies or
charges power to serve its application (3.4). The idle time tidle

BESS is the remaining time when the BESS
waits for its operation.

τtime = trun
BESS
ttotal

= 1 − tidle
BESS
ttotal

(3.4)

A similar approach to assess the system utilization is the energy utilization rate τenergy. The energy
utilization rate is the ratio of the energy throughput and the theoretic maximum energy throughput,
that is the system charges and discharges at nominal power level without interruption [84]. It is related
to the full equivalent cycles but includes time-dependency. Low values indicate that the BESS is either
operating for short times and/or mostly in partial power.

τenergy = Ein
BESS + Eout

BESS
P nom

BESS · ttotal
= (1 + ηBESS) · Ein

BESS
P nom

BESS · ttotal
(3.5)

3.1.4 Self-Consumption and Self-Sufficiency

The self-consumption rate rsc is usually associated with the PV-home storage application. It is used as
a performance indicator of PV-home storage and often for marketing purposes. The self-consumption
rate describes the share of RES-generated energy that is consumed Edirect

RES in relation to the total
RES-generated energy ERES (3.6) [50]. In the PV-home context, the consumed energy refers to the
direct use of the RES-generated energy Edirect

RES and the stored energy Ein
BESS.

rsc = Edirect
RES + Ein

BESS
ERES

(3.6)

The benefit of a high self-consumption rate is a lower electricity bill under German legislation. Con-
sequently, high self-consumption rates mean that less self-generated PV-energy is sold to the grid.

The self-sufficiency rate rss is similar to the self-consumption rate, but its reference is the load, instead
of the generated energy [50]. It illustrates the share of the load supplied by RES-generated energy (3.7).

rss = Edirect
RES + Eout

BESS
Eload

= Edirect
RES + ηBESS · Ein

BESS
Eload

(3.7)

The self-sufficiency rate is more objective than the self-consumption rate because BESS losses decrease
the self-sufficiency rate, while the BESS losses are not considered in the self-consumption rate. Both
metrics self-consumption rate and self-sufficiency rate are virtual metrics, for simpler representation
of the BESS performance.
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3.2 Literature Review of Evaluation of Economics and Carbon
Emissions

The literature reviews below reveal that no unified method to assess ESS exists in the literature. The
majority of publications focus on the economics of ESS, as they are less abstract than environmental
impacts and are the main barrier for widespread adoption of ESS in the grid. A variety of metrics
exist, that need to be analyzed. Economic considerations of ESS are non-conform and the results from
several papers are usually not easily comparable. Especially the evaluation of the carbon footprint of
ESS is not established and incomplete reflection of the influence of ESS are common.

3.2.1 Economics

The main barrier for the deployment of energy storage systems in the grid are the costs [22; 29]. A
fraction of the body of publications that is concerned with the economics is discussed below.

Some contributions assess the overall result of a system coupled with ESS. A common research question
tackled in publications is the optimal sizing of RES and BESS for island grids. Publications often use
the levelized cost of energy (LCOE) for the assessment and various island and ESS-technologies have
been investigated [104–107].

Denholm et al. evaluate the economics of ESS for increasing the penetration of PV power plants. They
utilize the LCOE of the PV-plant as economic minimization objective [108]. Wissem et al. conduct an
optimization of an autonomous PV system. The objective is to minimize the overall LCOE [109].

Weniger et al. analyze the performance of PV-home storage systems and base their conclusions on the
annual cost and savings achieved by the BESS [50; 110]. Their conclusive evaluation criterion is the
average electricity price over the operation lifetime. Merei et al. conduct a techno-economic analysis
of PV-battery-systems for commercial applications [111]. They discuss both annuity costs and average
electricity costs.

The publications above analyze the economics of a power system or a building. The authors evaluate
the performance with the overall cost of the regarded system and do not explicitly isolate the benefit
of the BESS. The most common goal is the reduction of electricity cost, hence most authors utilize the
LCOE that can be directly compared to the electricity cost of alternatives.

The levelized cost of energy stored (LCOES) (4.22) is considered for technology comparisons, among
other metrics. Battke et al. compared the life-cycle costs for various storage technologies [46]. They use
a literature review, expert interviews, and Monte Carlo simulations for their assessment. Pawel et al.
compare different storage technologies based on the LCOES [112]. The author uses different assump-
tions that specifically favor one technology. Quoilin et al. utilize the LCOES to assess the economics
of increasing the self-consumption with PV-home storage systems [113]. The LCOES is comparable to
the LCOE and based on the delivered energy. It does, however, not take into account possible savings
or revenues of ESS, deployed to serve applications.

Other contributions apply different metrics, but also exclude possible revenues and restrict their re-
sults to the costs. Hittinger et al. evaluate the cost-effectiveness of several BESS technologies for four
different applications: Frequency regulation, baseload wind integration, load-following wind integra-
tion, and peak-shaving [114]. They calculate the annualized cost of providing the particular service,
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the cost-of-service. Jallouli et al. analyze the economics of a stand-alone PV power unit [115]. They
couple the PV-unit with a BESS and a hydrogen system. Their results are the net present value
(NPV) (4.19) of the costs.

Metrics that exclusively consider the expenses of ESS are suitable for the comparison of different
storage technologies. The LCOES, in particular, is suitable to compare ESS with generation units.
More comprehensive evaluations of ESS need to include the revenue and savings expected from the
respective application.

Celik et al. assess the optimal sizing of PV-home storage and conduct a life-cycle cost analysis [116].
Heymans et al. analyze the economics of second use electric vehicle batteries for two applications [117].
They obtain the offset of overall cost achieved by BESS for their economic analysis. Göbel et al.
investigate the profitability of residential BESS [118]. The authors above use the NPV to quantify
their results.

Hesse et al. optimize the size of PV-home storage systems [119]. They rely on the return on investment
(ROI) (4.17) for the objective function of their optimization. The authors give an overview of the cost
factors of BESS that determine the ROI in another publication [22]. They also identify the major
contributing mechanisms for the cost factors.

The internal rate of return (IRR) (4.23) is another metric used for economic assessments. Braun et al.
investigate the economics of PV-home lithium-ion BESS for increasing the household’s self-consumption,
based in the IRR [120].

Some authors conduct evaluations with several metrics. DiOrio et al. conduct several case studies for
peak-shaving and load-shifting on the economics of BESS [121]. Their financial metrics are the NPV
and the payback period (4.18). Colmenar-Santos et al. analyze the economics of PV-home storage [122].
They use the NPV, the IRR, and the payback period as key metrics. The fact that they use several
metrics, is an indicator that each is more suitable for another purpose.

Similar to the LCOE or LCOES, a more intuitive way of assessing the economics of ESS is to use annual
financial metrics. Battke et al. investigate the economics with regard to demand-pull policies [123].
They assess the ESS in annual profit (or loss) per installed electric capacity in EUR/kW per year.
Rathgeber et al. break the economics of ESS down to two equations [48]. They use the annuity
method to take into account different user classes, that vary in their interest rate assigned to the
capital costs and the intended payback period. The method is the NPV referenced to one year. Their
evaluation method is limited to an energy-based point of view. Applications, where power values are
the key metrics, such as frequency control or peak-shaving are not considered in their framework.

Both annual profit (or loss) per installed capacity and annuities directly quantify the economic perfor-
mance over the period of a year. They depict an illustrative metric that is easy to use.

Another metric introduced especially for the assessment of ESS is the profitability index or NPV
per EUR invested (PI) (4.24). Hoppmann et al. use the PI to evaluate the economic viability of
battery systems for PV-homes [41]. Naumann et al. analyzed the cost of PV-home storage systems
with lithium-ion batteries [28]. They utilize the ROI as a figure of merit, based on the NPV values
of cost and revenue without mentioning the term PI. Stephan et al. discuss the benefit of stacking
applications [37]. They undermine their conclusions with the PI.

Profitability is the key parameter for the deployment of BESS and therefore most common performance
metric in the literature. The number of different metrics utilized indicates that there is no common
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understanding on what metric to use and that the metrics are each suitable for different purposes.
The main differences are the scopes of the analyses. Either the whole power system or building is
regarded, rendering distinct metrics for ESS unnecessary. A comparison of storage technologies does
not require considering the revenue of the application, given that the technologies only differ in the
costs they induce. The LCOES is based on the established LCOE for energy generation. The metric is
therefore illustrative but requires that the focus on energy is sufficient. Any application that requires
considering the powers (e.g. frequency control or peak-shaving) cannot be evaluated with the LCOES.
A more detailed discussion of the different economic evaluation metrics follows in Section 4.2.

Table 3.1: Overview of literature reviewed on the economic metrics used.
Economic metric Sources

LCOE of generation system [50; 104–111]
annuity costs of generation system [111]

levelized cost of energy stored (LCOES) [46; 112; 113]
Annualized BESS costs [114]

net present value (NPV) of BESS costs [115]
net present value (NPV) of BESS costs and savings [116–118; 121; 122]

return on investment (ROI) of BESS [22; 119]
internal rate of return (IRR) of BESS [120; 122]

payback period of BESS [121; 122]
annual profit [48; 123]

profitability Index (PI) [28; 37; 41]

3.2.2 Carbon Emissions

ESS are regarded as a key component to reduce the carbon emissions of the electric power system.
The major share of scientific publications that assess BESS focus on the economics. Less attention has
been paid to the specific impact of BESS on the GWP.

Pettinger et al. estimated the ecological amortization time for different BESS [124]. The energy output
of the BESS is assumed to directly compensate for the energy required for producing the BESS. This
approach lacks the consideration that energy input is needed before and falsely treats the BESS energy
output identical to emission-free energy generation.

Denholm et al. [125] compare different ESS technologies based on a life-cycle assessment. They do not
consider possible positive effects of ESS but focus on the energy output. The approach is similar to
the analysis of electricity generation units and suitable for technology comparison.

Immendoerfer et al. compare the life-cycle assessment of a pumped hydro storage with a lithium-ion
BESS over a timespan of 80 years [126]. Both ESS are scaled to similar nominal energy capacity and
annual energy output. The parameters of the ESS are, however, not identical. While the pumped
hydro storage has a nominal power of 1 GW, the BESS is parameterized with a much larger nominal
power of 9.6 GW. Forcing identical parameter assumptions would lead to unreasonable parameters for
one of the technologies. In addition, the BESS is oversized by 10% to account for the aging of the
batteries. Their results show that the GWP of the BESS operation contributes to more than 90% of
the total GWP. Immendoerfer’s approach illustrates the issue of technology comparisons and supports
the claim that different ESS are suitable for different applications.

Hiremath et al. present a comparison of life-cycle assessment for four stationary BESS technologies
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in six different applications [127]. They acknowledge that a normalization of the impact to the to-
tal electricity delivered over the lifetime of the ESS allows a more realistic comparison, rather than
normalizing them against the mass, volume, or the storage capacities. The cradle-to-gate impact is
smaller than the emissions caused by BESS losses in all cases and all technologies regarded. The
operational impact on the GWP is not correctly depicted. The emissions of the charging energy are
considered, but an alternative use of the charging energy is disregarded in the analysis. The increase
of self-consumption, for example, has a very low emission factor because the BESS is solely charged
by the PV-unit, but grid feed-in instead of storing the energy is not considered. Their results are
therefore meaningful for the comparison of technologies, but not convincing for the assessment of the
applications’ benefit.

Vandepaer et al. compare the environmental impacts of lithium metal polymer batteries with lithium-
ion batteries [128]. The functional unit they utilize is one MWh delivered by the BESS. Their results
show that the battery manufacturing stage drives the majority of environmental impacts in the sce-
narios. The investigated application for the BESS is to store electricity of intermittent electricity
production source and use it to deliver it at a later time. The reason for the negligible impact of the
operation is that the BESS store wind-generated energy with very small emission values. Similar to
Hiremath, the alternative use of the generated energy is not considered.

Stenzel et al. conduct a life-cycle assessment for a real BESS with 5 MW nominal power and 5 MWh
nominal energy capacity [129]. The BESS provides primary control reserve in Germany. Their assess-
ment of the BESS is compared to the operation of coal power plants, however, lacks the holistic view
and does not represent a fair comparison. The provision of primary control reserve with coal power
plants also leads to a base electricity supply that serves loads. This reference is compared to BESS
that provide the same amount of primary control, but do not supply the same amount of energy. As
such the comparison is between a system (coal power plant), that provides primary control reserve
and at the same time generates a certain amount of energy, and another system (BESS) that provides
primary control reserve without generating the same amount of energy. This difference needs to be
considered for a meaningful comparison.

The literature discussed above is partially suitable for comparing different technologies, but the ap-
proaches are not conclusive with regard to the carbon reduction achieved by the applications. The
contributions also show that the technology comparison is complicated because identical system pa-
rameters may not be realistic or applicable for all technologies. The reference for comparisons, such
as a different system or an alternative use to storing the energy, are either neglected or not correctly
considered in all papers above.

Arbabzadeh et al. investigate an island grid with gas-turbine, wind turbine, and vanadium redox flow
batteries [130]. They conclude that wind turbines reduce the carbon emissions and BESS further
reduce the emission rate, only if sufficient wind turbines are installed.

Stenzel et al. conduct a life-cycle assessment for the annual electricity production of an island grid [131].
Their results show that RES with BESS annually reduce the environmental impacts by approx. 43%.
The main contributor to the environmental impact is the diesel generator even if coupled with RES
and BESS.

The two examples above illustrate that the assessment of BESS in isolated island grids is more straight-
forward than the assessment for grid-connected applications.

McKenna et al. investigated the environmental impact of lead-acid batteries that perform load shifting
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in the United Kingdom [132]. Their analysis includes the production and the usage of the BESS. They
conclude that the losses of the BESS increase the net fossil fuel generation leading to a negative envi-
ronmental impact. The carbon emissions for operation are about five times higher than the production
induced emissions in their investigation.

Jones et al. investigate the financial and environmental benefit of PV-home storage [133]. Their results
show that the carbon reduction originates from the PV-unit and is not improved by the BESS. They
draw the same conclusion as the author of this thesis in a previous publication [31].

De Sisternes et al. analyzed the value of energy storage in a de-carbonized electricity system [134].
They conclude that BESS are capable of reducing the carbon emissions of a power system if strong
reliance on RES is imposed. A more mixed generation composition with nuclear power plants renders
ESS less useful in their results.

Lin et al. investigate the impact of ESS for power system reserve [135]. Their results show that
adding energy storage does not necessarily reduce the emission, but the properties of the power system
determine the impact on the GWP. Systems with high renewable penetration levels and significant
renewable curtailment enable ESS to reduce emissions. In other systems the results are mixed. They
also found that enhancing dispatch algorithms improve the net carbon emissions by ESS operation.

The four authors above all conducted a meaningful life-cycle assessment of ESS, where the beneficial
effects of operating the systems are correctly considered. Their results show that the power system
parameters and the intention of operating ESS determine, whether the deployment of ESS is beneficial
or not. The authors did not narrow down the critical factors for the net outcome of the carbon
emissions.

Zheng investigates the impact of different ESS technologies for load shifting and peak-shaving strate-
gies, economically optimized in a demand response scheme [136]. The analysis includes the generator
dispatch curve based on the New York electric system. Both operation strategies shift the electricity
generation from high-emission generators to generators with lower emission rates. The emissions de-
crease only in one of the 14 cases investigated. The generation shift to low-emission generators does
not generally compensate for the losses induced by ESS operation.

Abdon et al. compare different storage technologies regarding their economic value and environmental
impact [137]. They acknowledge that ESS need to charge renewable energy that would otherwise have
been curtailed, in order to provide electricity with lower emissions than the grid average. Their benefit
depends on the emission mitigation achieved by substituting conventional supply.

Arbabzadeh et al. conduct a sensitivity analysis on the influence of the environmental impact of
BESS [138]. Both BESS parameters and power system parameters are analyzed. The results show
that the parameter influence depends on the application. Applications with high energy throughput,
such as time-shifting or frequency regulation benefit from high round-trip efficiencies of the BESS and
heat rates of the displaced generators. Other applications with low utilization, such as power reliability,
are more dependent on the BESS’s service life and the system production burden.

The author of this thesis previously published an analysis of the GWP of BESS for PV-homes in
a rural distribution grid [31]. The conclusion is that the key action for reducing carbon emissions
is avoiding the curtailment of RES-generated energy. The increase of self-consumption, in contrast,
does not reduce the carbon emissions, but the losses caused by the BESS increase the net load and
consequently the carbon emissions instead.
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The last four publications presented here, conclude that grid-connected applications need to shift the
energy generation from high-emission systems to low-emission generators. The losses induced by BESS
operation need to cause less energy consumption than the savings of the respective application.
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4.1 Financial Benefit of Storage Operation

This section describes the mechanisms for the revenue and savings of BESS for the applications PV-
home storage, peak-shaving, and hybrid renewable-diesel island grid. The equations capture the main
factors that determine the economic benefit.

4.1.1 PV-Home Storage

The German case is regarded for the PV-home costs. A fixed rate cremun is applied for the remuneration
of the feed-in of self-generated electricity (i.e. by the PV-unit). The BESS only charges surplus PV-
generated power and only discharges to provide the household consumption.

PV-generated electricity can be fed into the grid for a fixed remuneration rate cremun or stored for later
use and avoid purchase from the grid for the electricity price cel. The electricity costs CFhome

el of the
household without PV-unit or BESS are defined by the load Eload (4.1). The total electricity costs
CFPVhome

el for a household with a rooftop PV-unit are reduced by the self-consumed electricity Edirect
PV

and the grid feed-in Efeedin
grid (4.2). A BESS coupled with a PV-unit further reduces the electricity costs

CFPVBESShome
el by reducing the grid purchase by the BESS supplied energy Eout

BESS and possibly by
reduction of the energy curtailment Ecurt

PV . The grid feed-in is reduced by the energy stored in the
BESS Ein

BESS (4.3).

CFhome
el = Eload · cel (4.1)

CFPVhome
el = Epurch

grid · cel − Efeedin
grid · cremun =

=
(
Eload − Edirect

PV
)

· cel −
(
EPV − Edirect

PV − Ecurtail
PV

)
· cremun (4.2)

CFPVBESShome
el = Epurch

grid · cel − Efeedin
grid · cremun =

=
(
Eload − Edirect

PV − Eout
BESS

)
· cel −

(
EPV − Edirect

PV − Ecurtail
PV − Ein

BESS
)

· cremun (4.3)

The electricity bill reduction achieved by installing a PV-unit ∆CFPV
el is given by equation (4.4).

PV-generated energy reduces the electricity purchased and are fed into the grid for a remuneration.
The BESS reduces the grid purchase, but at the same time reduces the feed-in energy, thus the
remuneration (4.5).

∆CFPV
el = Edirect

PV · (cel − cremun) +
(
EPV − Ecurt

PV
)

(4.4)

∆CFBESS
el = Eout

BESS · cel −
(
Ein

BESS − ∆Ecurt
PV

)
· cremun =

= Ein
BESS · (cel · ηBESS − cremun) + ∆Ecurt

PV · cremun (4.5)

The external factors that determine the revenue are the electricity price, remuneration price, and
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the curtailment limit imposed. The BESS parameters that determine the achievable revenue are the
efficiency, the stored energy, and the avoided curtailment.

4.1.2 Peak-Shaving

Consumers exceeding a certain amount of load energy (usually commercial customers) are subject
to paying power prices cpeak for the largest occurring load peak P̂grid within a defined time period.
Peak-shaving (PS) serves the purpose to reduce the load peaks and achieve a lower peak power price.
The electricity costs of a consumer under the mentioned tariff scheme, without peak-shaving by either
diesel generator or BESS consist of both, purchased energy Eload and peak load charge (4.6).

The electricity bill for peak-shaving by a diesel generator, including fuel cost, is given by (4.7). The
LHV and the average system efficiency of the diesel generator are included in the equation. Consumers
that perform peak-shaving by a BESS have different electricity costs (4.8).

CFload
el = P̂load · cpeak + Eload · cel (4.6)

CFPS,DG
el = P̂grid · cpeak + (Eload − EPS) · cel + EPS · cfuel

η̄DG · LHV (4.7)

CFPS,BESS
el = P̂grid · cpeak +

(
Eload + Eloss

BESS
)

· cel (4.8)

The diesel generator reduces the peak load charge and supplies the associated peak-shaving energy
EPS. This energy replaces the grid-purchased energy of the same amount and causes fuel consumption
and costs cfuel instead (4.9). The diesel generator’s efficiency η̄DG describes its average efficiency. This
depends on the explicit operation of the diesel generator. The BESS is assumed to achieve an identical
peak-reduction as the diesel generator. The grid-purchase, in this case, is not replaced by (fossil-fuel
based) self-generated energy but is increased to compensate for the BESS-losses Eloss

BESS (4.10).

∆CFDG
el = ∆P̂ PS

grid · cpeak − EPS ·
(

cfuel

η̄DG · LHV − cel

)
(4.9)

∆CFBESS
el = ∆P̂ PS

grid · cpeak − EPS ·
(

1
ηBESS

− 1
)

· cel (4.10)

The external factors for the revenue of peak-shaving are the peak power price and the characteristics
of the load, i.e. how much energy is required to peak-shave a certain amount of power. The main
factors concerning the BESS are its nominal energy and the inverter’s nominal power.

4.1.3 Hybrid Renewable-Diesel Island Grid

The economic aim for the island grid is to reduce the fuel costs of the diesel generator and to establish
a stable, non-interrupted power supply. Added RES to the power system provide the load for certain
times, depending on the wind and solar irradiation. The BESS compensates for the time-mismatch of
electricity supply by RES and electricity demand.

The equation of the operational costs of island grids with only a diesel generator is determined by the
load Eload, the fuel cost cfuel, the LHV of diesel, and the diesel generator’s average efficiency η̄DG (4.11).
RES supply part of the load Edirect

RES and reduce the diesel generator output by that amount (4.12).
Equipping the RES with a BESS further reduce the diesel generator energy by the energy supplied by
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the BESS (4.13). In all cases, they comprise the energy provided by the diesel generator EDG and the
associated fuel price cfuel.

CFDG
el = Eload · cfuel

η̄DG · LHV (4.11)

CFHybrid
el =

(
Eload − Edirect

RES
)

· cfuel

η̄DG · LHV (4.12)

CFHybridES
el =

(
Eload − Edirect

RES − Eout
BESS

)
· cfuel

η̄DG · LHV (4.13)

The saving contributions achieved by RES (4.14) and BESS (4.15) are isolated below.

∆CFRES
el = Edirect

RES · cfuel (4.14)

∆CFBESS
el = Eout

BESS · cfuel (4.15)

The external factors for the revenue are the fuel price and the correlation of RES-generation periods
and load. The technical factors are the amount of energy, the RES can directly provide for the load,
the energy the BESS supplies, i.e. the nominal energy and the average system efficiency η̄DG. For
evaluating the overall economic outcome for the island grid, the investments for RES and BESS are
considered in the analysis.

4.2 Discussion of Economic Metrics

The high initial investments for installing BESS are the main barrier for the wide-spread deployment
of BESS [40]. As batteries constitute a large portion of the overall system costs and they are subject
to aging, possible replacement of the battery component needs to be considered [28].

The replacement costs are not the only component that increases the complexity of economic analyses
for BESS, but the operating costs need more precise assumptions as well. Due to the sensitivity of
battery aging to the battery temperature, the costs of the thermal management need to be considered,
together with other factors. Some applications, for example, require the participation of the BESS
at spot markets, to ensure a certain SOC-range for BESS to be able to meet the requirements of
its application. Smaller factors such as the standby consumption of auxiliary components are often
overlooked, but accumulate to a significant sum that may change the outcome of economic analyses.

For BESS to be economically reasonable, their revenue or achieved cost savings need to exceed the cost
they cause. The remaining manuscript will treat cost savings and revenue achieved by BESS equally.
BESS are limited in their ability to store energy that needs to be considered for the performance of
BESS for each application. As aging has a major influence on the nominal energy of a BESS, this
factor needs to be considered over the lifetime of such systems.

The complexity of assessing the economics of BESS is discussed in this Section. Several assessment
metrics, commonly found in the scientific literature are presented and each evaluated based on criteria
for economic metrics.
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4.2.1 Evaluation Criteria of Economic Metrics

Economic metrics for the assessment of BESS should meet certain criteria to be acknowledged as
favorable metrics. Five criteria are proposed that serve as qualitative indicators and framework to
evaluate and compare existing economic metrics. The criteria proposed are meaningfulness, the extent
of applicability, clarity, ease of use, and objectiveness.

Meaningfulness describes the property, whether an economic metric gives a meaningful assessment of
the economic viability. The user of the metric should be able to rely on the computed number and the
metric should give a good estimate of the overall value of the BESS.

The extent of applicability describes that the metric is open: applicable to any storage technology and
any application. Instead of specialized metrics, that are useful only for a small number of applications
or technologies, general assessment methods are favored.

Clarity means that the metric is understandable for the user. The easier the metric is to understand,
the more suitable it is to inform and explain to others.

Ease of use is the factor of how straightforward a metric is to use. This is related to the number of
assumptions and parameters and the accuracy of the BESS operation required. A large number of
parameters and the need for very accurate technical models result in an unfavorable ease of use.

Objectiveness is the compound of clarity and ease of use. This criterion determines, how robust
an assessment metric is against manipulations by favorable assumptions by the user. Even though
objectiveness is not an independent factor, it is explicitly considered because of its importance.

4.2.2 Return on Investment

A common metric to evaluate the benefit of an investment is the return on investment (ROI) [22;
119]. The ROI is the ratio of the cash flows of the generated return CFreturn (4.16) over the entire
depreciation period TDep against the investment (4.17). A value of 1 means that the return and
investment are equal. Values below 1 denote a deficient investment and values above 1 mean that the
investment achieves positive returns.

return =
∑
TDep

CFreturn (4.16)

ROI = return
investment (4.17)

The ROI is a meaningful measure because the savings/revenues are included. However, the time delay
of the return is not discounted. The ROI is easily applicable to a range of applications and storage
technologies. Savings can be treated as revenue and allows the analysis of investment deferral. It
exhibits high clarity because the ROI is a common metric that is understandable. Its ease of use is
of medium quality because quite some assumptions are required to predict the future revenue of the
BESS. This includes future electricity prices and future storage prices in case of replacement costs.

The objectiveness of the ROI can be quite low. This is especially relevant if the assumptions are not
clearly stated. In such a case, the figure can be misleading. Another issue is the disregard of the time
factor for the economic value of cash flows.
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4.2.3 Payback Period

The payback period (PP) gives the number of years, when the cumulated cash flow of the earnings of
the years n beginning with the first year surpasses the investment (4.18) [121; 122]. The shorter the
payback period is, the more attractive the investment is.

investment =
PP∑
n

CFreturn (4.18)

The payback period has a low to medium meaningfulness. It presumes positive returns and only
considers the time period until cumulated return and investment are equal. Any economic implication
after that period is neglected, therefore neither aging is not correctly considered, nor are future cash
flows discounted. The metric is easy to understand and illustrates the quality of the investment.
It is also easy to use without the need to assume a depreciation period or interest rate. Required
assumptions are limited to future cost and revenue. In case of assessing the economic value of BESS
for deferral of grid reinforcement, the payback period is not applicable because grid deferral does not
generate regular revenue. The applicability of the payback period is therefore low.

The objectiveness of the payback period is at a medium level because any revenue potential that arises
after the payback period is dismissed. The comparably low number of required assumptions reduce
the options for manipulating the result.

4.2.4 Net Present Value

The net present value (NPV) describes the sum of all projected cash flows of the regarded period TDep,
discounted to today’s value (4.19) [118]. The interest rate ri is required for the NPV and all metrics
based on the NPV.

NPV =
TDep∑

n

CFreturn · (1 + ri)−n − investment (4.19)

The NPV exhibits medium meaningfulness. It is good in terms of absolute valuation, but the value
is not related to the required investment to achieve the NPV. In terms of clarity, the NPV is also
average. No relation to the required investment and the introduction of the interest rate as an additional
parameter degrade the clarity. The NPV is rather complex to use. The number of required assumptions,
such as depreciation period, interest rate, and future prices require upfront thoughts and consideration.
In terms of applicability, the NPV is similar to the ROI. It is well suitable to include parameters and
constraints and not limited to certain applications or scenarios.

The NPV shows medium objectiveness, because of the detachment from the investment. Together with
the number of parameters and assumptions, the NPV can be manipulated.

The annuity of an investment is another metric, similar to the NPV. It calculates the NPV to even,
annual cash flows (4.21), based on the interest rate and the time period (4.20) [48]. The reference to
a single year allows easier comparison of different investments with diverse depreciation periods. It is
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treated and evaluated equally to the NPV in this thesis.

rannuity =
(1 + ri)T

Dep · ri

(1 + ri)T
Dep − 1

(4.20)

annuity = rannuity · NPV (4.21)

4.2.5 Levelized Cost of Energy Stored

A widespread metric that describes the cost-effectiveness of BESS is the levelized cost of energy stored
(LCOES) [46; 112; 113]. It denotes the total cost of ownership (TCO) for the BESS divided by the
total delivered energy Eout

BESS (4.22). The total cost of ownership is the sum of all cash flows, including
investment cost, operating cost, and revenues/savings.

LCOES = TCO
Eout

BESS
(4.22)

The LCOES is based on the LCOE that describes the cost of generating energy. Naumann introduced
sub-types of the LCOES that refer to the earnings and profit [28]. Further modifications with regard
to the reference energy have also been proposed. The profit per energy installed correlates the profit
to the nominal energy of the BESS, instead of the delivered energy.

The LCOES is a general financial figure, as only little assumptions for the application is required. The
revenue achieved by the BESS is disregarded and the metric is good to technically compare different
ESS.

Because of the disregard of the revenue, the metric is not very meaningful. It does not reflect the
context of the BESS operation. The reference towards energy describes power-based applications,
such as primary control reserve, incorrectly. Because the LCOE is a known metric for the cost of
generated energy, the derived LCOES has a high clarity. It is an understandable metric in the energy
sector and is established in the industry already. The figure is easy to use because only few assumptions
are required, compared to other metrics. Only parameters relevant for the costs are required, namely
the future cost and the depreciation period TDep. The LCOES is not generally applicable because it
only considers the costs and ignores the revenues, achieved by the BESS.

The high clarity and favorable ease of use give the impression that the metric exhibits a rather high
objectiveness. However, the seemingly fixed assumptions can be modified. The impact of the depre-
ciation period and the provided energy can be easily concealed, as demonstrated by Pawel [112]. The
author compares three different storage technologies and concludes that redox-flow batteries exhibit
the lowest LCOES. Careful analysis of the paper reveals that 365 cycles per year and a power of 1 MW
are assumed for all technologies, but the redox-flow system provides four times more energy than the
reference systems, hence the denominator for the LCOES is four times higher.
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4.2.6 Internal Rate of Return

The internal rate of return (IRR) is a hypothetical rate so that the return of the BESS over the
depreciation period TDep discounted with the IRR amounts to the initial investment (4.23) [120].

investment =
TDep∑

n

CF
(1 + IRR)n

(4.23)

The IRR yields a good trade-off with regard to accuracy against the number of required assumptions.
Financial constraints or cost caused by the replacement of the battery may render the IRR useless
because the IRR yields multiple solutions.

The metric has a high meaningfulness, but the replacement of the battery may prevent the applicability
of the IRR. The IRR exhibits a medium clarity, as it is a common financial metric, but more complicated
to explain than the ROI, NPV, or the LCOES. It is medium with regard to the ease of use, as no interest
rate assumption is required. The IRR is also well applicable to different analyses and assumptions.

The objectiveness is on a medium level because the number of parameters allows a rather easy ma-
nipulation of the results. However, omitting the interest rate eliminates one factor that allows subtle
manipulation of results.

4.2.7 Profitability Index

The ROI and NPV, introduced above, each have weaknesses. While the ROI does not take into
account the time fade of financial value, the NPV does not put investment and revenue into context.
The profitability index or NPV per EUR invested (PI) combines both metrics and compensates for
both disadvantages [37]. Similar to the ROI, the PI is the ratio of the sum of all cash flows within the
depreciation period and the investment. The PI additionally discounts all cash flows to the NPV (4.24).

PI = NPV
investment (4.24)

The PI has a high meaningfulness, as it combines both ROI and NPV. Both, accuracy by discounting
the cash flows and context to the required investment are given. The clarity of the metric is high. It
is similar to the ROI and therefore comparably easy to understand, but the combination with NPV
may be confusing. Because of the high amount of required assumptions, the PI features a low ease of
use. Similarly to both ROI and NPV, the PI is well applicable and well suitable to include varying
conditions and circumstances.

The large number of assumptions degrade the objectiveness of the metric to a medium level. Unlike
the NPV, it properly accounts for the amount of required investment and in addition, considers the
time factor.

4.3 Concluding Economic Metrics

None of the metrics can be the sole value for the decision on whether to purchase a BESS or not, but
several metrics and numbers need to be considered, instead. There is no clarity on which metric to
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use. Table 4.1 gives an overview of the qualitative comparison of the economic metrics presented.

Table 4.1: Qualitative assessment of economic metrics for evaluation of energy storage systems.
Meaningfulness Clarity Ease of use Applicability Objectiveness

ROI ** *** ** *** *
PP * ** *** * **

NPV ** ** * *** **
LCOES * *** *** * **

IRR *** ** ** *** **
PI *** *** * *** **

The requirement for comparisons based on any metric is that the assumptions are identical for each
case. Future cost and revenue projections are required for all metrics, to correctly asses the cash flows
and replacement costs. This requires an elaborate, technical simulation of the BESS to accurately
consider declining BESS performance, caused by aging. Aging, future revenue, and cost are important
for the reliability of the results but are uncertain.
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This chapter covers the carbon emissions associated with producing and operating BESS. First, the
life-cycle assessment method is presented in Section 5.1. An approximation for the production-induced
emissions of a BESS is derived in Section 5.2. The impact of operating BESS on the GHG emissions
are derived for the applications PV-home storage, peak-shaving and hybrid renewable-diesel island
grid in Section 5.3.

5.1 Life-Cycle Assessment

The life-cycle assessment (LCA) is a systematic method to determine the environmental impact of
a product. It is a well-established and internationally acknowledged method, defined in the ISO
standards 14040 and 14044 [139]. The life-cycle assessment calculates environmental and human health
impacts, as well as resource depletions which result from the necessary processes over the whole life-
cycle of a product or process, including its inputs (materials, energy) and outputs (emissions, waste).
Manufacturing with its upstream processes and all energy requirements throughout the life-cycle are
included. The upstream processes are processes that happen before those that are directly linked to
the item or system to be assessed, such as raw material extraction, the energy required for extraction,
production steps, and disposal at the end of life.

The method requires an accurate accounting of all energy and emissions related to the construction,
operation, and decommissioning of the system, as well as environmental impacts resulting from these.
This requires a complete bill of material and energy balances for each component of the system,
including its manufacturing and installation.

The end of life of Li-ion BESSs is not considered in this thesis because of non-established recycling
infrastructures. However, studies on recycling of batteries for electric vehicles show that especially
for resource depletion and acidification a high reduction can be expected [140–145], while the energy
savings and GWP are determined by the chosen recycling process [129]. The life-cycle inventory (LCI)
data sources vary. Studies, reports, and the ecoinvent database [146] are utilized for the life-cycle
inventory.

The GWP in CO2eq is chosen for the life-cycle impact analysis (LCIA). Both, IPCC2007 standard [147]
and IPCC2013 standard [148] are applied for the GWP-assessment. The mean value of both standards
is used in this thesis. The system boundary includes cradle-to-gate stage processes, i.e. raw materials
extraction, materials processing, product manufacture, transportation, and installation [125; 126; 128;
129; 132; 134; 137; 149]. The life-cycle assessment is used in this thesis to quantify the impact of BESS
in the production and use-phase.
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5.2 Production Induced Carbon Emissions

The Energy Neighbor is used as example system with an existing bill of materials. The system weighs
about 7 t and has eight independent inverters. Six 36 kW and two 16 kW inverters are used in the
system. The energy capacity of the LFP:C batteries amounts to 192 kWh. Monitoring and control
electronics are included in the analysis. A bottom-up approach for estimating the carbon emissions of
the production has been conducted. The components have been itemized and each component’s CO2eq
emission has been estimated based on existing literature values or by their material composition.

Robert Hierle collected most of the data and conducted the first analyses in his master thesis [150].
The author of this thesis continued the work and generalized the findings.

5.2.1 Breakdown of Components

The components of the Energy Neighbor are itemized in this Section and each component’s production-
induced emissions are calculated. The results are used for a bottom-up approximation of the carbon
emissions of the overall BESS.

5.2.1.1 Mass of Battery Storage System

The mass composition of Energy Neighbor is given in Figure 5.1. Total weight of the BESS is 7 t.
Batteries amount to 4 t of the mass, that is a share of 57.2%. The inverters contribute to the mass
with 227 kg, including relevant components for operation. This corresponds to only 3.2% of the total
BESS mass. Electronic components for safety, monitoring, control, and all other functions add about
367.6 kg to the BESS mass. That is a contribution of 5.3%. The last large component is the ISO-
container that contributes 34.3% of the overall mass with a weight of 2.4 t.

Batteries

57.2%

Container

34.3%
Inverter

3.2%

Electronics
5.3%

Figure 5.1: Mass composition of the Energy Neighbor. Its total weight is 7 t.

5.2.1.2 Emissions of Producing Battery Cells

Emissions of different battery-technologies are given in Table 5.1. These energy specific values are
taken from a review of Peters et al. [151]. The LFP:C-batteries with 192 kWh of nominal energy
capacity have a mass of about 4 t. This includes the connectors, mechanical attachment, and housing
components of the battery module and rack.
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Table 5.1: Energy-specific emission factors per kWh of energy capacities for battery technologies [151].
Spec. emissions (kg CO2eq/kWh)

Technology Min. Avg. Max.
LFP 30 161 275

NMC 40 160 245
NCA 50 116 170

The emissions caused by producing the batteries are obtained by multiplication of the energy-specific
emission factor ρman

batt and the nominal energy capacity Enom
batt (5.1). The resulting total emissions based

on the energy capacity and energy specific values in Table 5.1 caused by producing the batteries in the
Energy Neighbor amount to 5.8 to 52.8 t CO2eq. The emissions with the average value is 30.9 t CO2eq.

εbatt = ρman
batt · Enom

batt (5.1)

The values strongly vary because of a comparably weak basis of original life-cycle inventory data.
Not only is original inventory data scarce, but the studies investigated by Peters et al. made different
assumptions regarding the manufacturing energy demand. The choice of the battery chemistry has a
smaller influence on the environmental performance than the assumptions for the energy demand of
the manufacturing processes. [151]

5.2.1.3 Emissions of Producing Inverters

The CO2eq emissions emitted by the production of inverters are estimated based on values of specific
inverter sizes, given in the ecoinvent database and publications (Table 5.2) [146; 149; 152]. The inverter
values from the ecoinvent database are condensed to the mean value of IPCC2007 and IPCC2013 with
a global market share of 32% in Europe and 68% for the rest of the world. This impacts the assumed
energy mix for the production processes.

Table 5.2: Production emissions of reference inverters [146; 149; 152].
Nominal power kW 0.5 [146] 2.5 [146] 7.5 [149] 100 [152] 500 [146]

IPCC 2007 kg CO2eq 48.01 237.70 - - 14,180
IPCC 2013 kg CO2eq 48.96 242.80 - - 14,510

Mean emissions kg CO2eq 48.49 240.25 612 3978 14,345
Spec. emissions kg CO2eq/kW 96.97 96.10 81.60 39.78 28.69

The power-dependent emissions are approximated with a logarithmic function (5.2). The original
curve describes the embodied energy for the production of inverters [153]. It is adapted to represent
the carbon emissions of inverter manufacturing.

ρman
inv = −b · ln

(
P nom

inv
kW

)
+ c (5.2)

The parameters b and c are fit to minimize the mean squared error (MSE) of the curve and the data val-
ues to MSE = 45.88 (kg CO2eq/kW)2 (Figure 5.2). The best fit is achieved for b = 11.23 kg CO2eq/kW
and c = 97.96 kg CO2eq/kW.
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Figure 5.2: Power-specific emissions of inverters. The blue line depicts the function fit, the blue trian-
gles are the reference values [146; 149; 152].

The total CO2eq emissions for each of the inverter are calculated with (5.3). The total CO2eq emissions
of the inverters installed in the Energy Neighbor amount to 14.6 t CO2eq.

εinv = ρman
inv · P nom

inv (5.3)

5.2.1.4 Emissions of Producing Auxiliary Electronics

The estimation of the electronic components has been conducted with several approaches. Devices such
as circuit breaker, relays, or contactors have been disassembled and the materials have been weighed.
The emissions for the materials are then summed according to their mass portion for the estimated
total carbon emissions of the respective device. Other devices, such as processors have been estimated
with similar components found in the ecoinvent database [150].

The chosen approaches are associated with uncertainties regarding the results. As the mass of the
electronic components amounts to only 5.3% of the overall mass, the inaccuracy’s impact is neglected.
The estimated carbon emission caused by auxiliary electronic components add up to 2.50 t CO2eq in
the minimum case and to 3.79 t CO2eq in the maximum case, respectively.

5.2.1.5 Emissions of the System Housing

The last component of the Energy Neighbor is the container that accounts for 34.3% of the BESS mass
with its 2.4 t. It is made of steel and the weight-specific emission factor is estimated at 5.9 kg CO2eq/kg
to 7.2 kg CO2eq/kg. The total carbon emissions caused by producing a container of this mass amounts
to 14.16 t CO2eq up to 17.28 t CO2eq.

5.2.2 Emissions of a Battery Storage System

The obtained results of analyzing the Energy Neighbor with a bottom-up approach are summarized in
this Section and compared to available numbers found in literature to ensure plausibility.

5.2.2.1 Emissions of Producing the Energy Neighbor

The carbon emissions induced by producing a BESS similar to the Energy Neighbor add up to
37.1 t CO2eq in the minimum case, 88.5 t CO2eq in the maximum case, and amount to 64.35 t CO2eqwith
average values. The fraction of the components batteries, inverter, electronics, and the container are

50



5.2 Production Induced Carbon Emissions

shown in Figure 5.1. Assuming the lower emissions case, the inverters and housing cause the major
share of the carbon emissions (77%), while the battery emissions only amount to 16%. In the upper
emissions case the batteries contribute to 60% of the emissions and 48% in the average case.

The resulting emissions amount to 193.2 t CO2eq to 460.9 t CO2eq per MWh nominal energy capacity
of the Energy Neighbor, with an average of 335.2 t CO2eq per MWh. It would need to replace 193 to
576 times its energy capacity of coal-generated electricity (ρcoal = 0.8 − 1.0 t/MWhel) to make up for
the production emissions.

min. avg. max.

16%
37.1 t 48%

64.35 t
60%

88.5 t

39% 23% 16%
7% 5% 4%
38% 24% 20%

tC
O

2e
q

Battery
Inverter
Electronics
Container

Figure 5.3: Production emissions of the Energy Neighbor with LFP:C batteries.

5.2.2.2 Comparison with other Systems

A life-cycle assessment for a 5 MW BESS with a nominal energy capacity of 5 MWh has been conducted
by Koj et al., but no absolute numbers are given [154]. In their case, battery cells and inverter
contribute to 50% of the carbon emissions. Their BESS is situated in a concrete building instead
of a stainless steel container and the respective emissions are calculated. This leads to lower carbon
emission contributed by the housing. The remaining components’ contributions to the carbon emissions
are of the same magnitude.

Immendoerfer et al. [126] conducted the life-cycle assessment for a pumped hydro storage and a BESS
in comparison. They do not give explicit absolute numbers for the final result, but they assume an
annual energy output of 1855 GWh/a and total losses of 0.379 MWh per MWh of energy generated
for the BESS. The total losses include internal energy consumption, e.g. ventilation and lighting of
the system. With the given relative shares of more than 90% of the carbon emissions caused by the
system losses, the resulting overall GWP of the BESS is 38,870 Mt CO2eq, including its use-phase. The
contribution of the production amounts to 4-5%. Scaling the resulting emissions of the BESS down to
a BESS with a nominal capacity of 1 MWh and nominal power of 1 MW by simple division results in
about 155 t CO2eq to 195 t CO2eq per MWh.

The numbers are 20% to 58% lower than the values obtained from the Energy Neighbor. Beside
uncertainties, different system design could be the reason for the deviation. The prototype system
Energy Neighbor has an unusually high nominal power and uses several small inverters that have
higher power-specific emissions (see Figure 5.2). Smaller total inverter size and fewer, larger inverters
would equalize the carbon emissions of the systems. Other issues are the uncertain data sets. The
specific emissions for the LFP:C batteries, for example, deviate by a factor of almost 10.
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5.2.3 Generalized Approximation of Production Emissions of Battery Storage
Systems

Based on the findings of the Energy Neighbor, an approximation of the production induced emissions
of BESS, in general, is derived. The emissions of producing BESS with different sizes and battery
technologies can be approximated.

The battery is linearly scaled with its nominal energy capacity (5.1). The mean values for the energy-
specific emission factors from Table 5.1 apply and are listed in Table 5.3.

The inverters are scaled according to (5.3) depending on the structure of the system. Several inverters
in a system are each calculated with their individual emissions according to their nominal power and
summed.

The BESS is assumed to be situated in 20’ ISO-containers. The container is estimated to have sufficient
space for a certain energy capacity of batteries Emax

housing. The maximum capacity of the container
to accommodate LFP:C batteries is roughly estimated to 300 kWh. Other battery technologies are
estimated by scaling according to their energy densities w. The estimated maximum energy capacity
in a container for different battery technologies is given in Table 5.3.

Table 5.3: Battery parameters for emission approximation.
LFP NMC NCA

Energy density [22] kWh/m3 278 355 676
Container capacity kWh 300 383 728

The total number of containers for hosting a larger energy capacity is taken into account together with
the gravimetric emission factor ρman

container and the mass of one container mcontainer (5.4). Using fixed,
concrete buildings for containing the batteries would reduce the carbon emissions, but is not further
regarded in this thesis.

εhousing = ρman
container · mcontainer ·

⌈
Enom

BESS
Emax

housing

⌉
(5.4)

The auxiliary components have a comparably small contribution to the overall system’s emission and
are accounted with a share of raux = 7% of the total BESS emissions (5.5).

εaux = raux

1 − raux
· (εbatt + εinv + εhousing) (5.5)

The total emissions for the production of BESS are the sum of the components’ emissions (5.6). It
depends on the battery technology, the system’s nominal energy capacity, and the number of inverters
and their nominal power. Emissions of housing and auxiliary components are included in the equation.

εman
BESS = εbatt + εinv + εhousing + εaux (5.6)
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5.3 Calculating Emissions of Operating Battery Storage Systems

The emissions of RES include the production and installation of the respective generator. The necessary
balance of system (BOS) components, i.e. support structures, electronics, cables, and inverters are
considered. This approach has been performed by Peng et al. for PV systems [155]. While the emissions
of producing and installing the generator can be apportioned to the generated electricity, this approach
is not straightforward for BESS. The energy discharged from BESS is determined by their application
and their operation strategy. The emissions of producing and installing BESS is explicitly excluded in
this Section, but the impact of operating BESS on the use of the generated energy is the key subject.
Similarly, the emissions of diesel generators are limited to the emissions of fuel consumption, as the
operation depends on the operation strategy in the regarded applications.

5.3.1 PV-Home Storage

The aim of a PV-home storage is to reduce the energy purchase from the electricity grid and thus
achieve a higher self-sufficiency rate for the household. The energy flow of a PV-home with storage
is illustrated in Figure 5.4. The fundamental principle of the PV-home storage emissions has been
published before [31]. The topic is further discussed in this Section.

𝐸BESS
in

𝐸BESS
loss

𝐸BESS
out

𝐸grid
purch𝐸grid

feedin𝐸PV
curt

𝐸PV 𝐸load𝐸PV
direct

Figure 5.4: Illustration of energy flows in PV-Home with BESS.

The PV-generated energy EPV provides the load directly Edirect
PV , feeds the grid Efeedin

grid , is curtailed
Ecurt

PV , or charges the BESS Ein
BESS (5.7). The load Eload is supplied directly by the PV-unit Edirect

PV ,
by the grid Epurch

grid , or by the BESS Eout
BESS (5.8). The regulations for PV-home storage in Germany

stipulate that the BESS may only charge surplus PV-generated energy and discharge Eout
BESS only to

provide the household load.

EPV = Edirect
PV + Efeedin

grid + Ecurt
PV + Ein

BESS (5.7)

Eload = Edirect
PV + Epurch

grid + Eout
BESS (5.8)

The load Eload and the directly consumed PV-generated energy Edirect
PV are independent of the BESS

operation, hence identical for PV-homes with and without BESS. The motivation for increasing the
self-consumption in Germany, besides financial benefits, is the reduction of the carbon footprint of the
household εload [40]. The emissions caused by the load εload consist of the emissions of the purchased
grid energy εpurch

grid , the PV-generated energy εdirect
PV , and the BESS stored energy εBESS (5.9). The

purchased energy is generated and causes emissions with the average grid emission factor ρgrid.

Operating a BESS to increase the self-consumption leads to increased battery energy output Eout
BESS
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and therefore reduces the emissions caused by the household’s load εload because a larger share of
the load is supplied by the PV-generated energy, instead of grid-purchased electricity (5.10). The
claim that the BESS lowers its owner’s carbon footprint, is therefore correct on a local scope and the
conclusion is similar to the analysis of the island grid (Section 5.3.3).

εload = εpurch
grid + εdirect

PV + εBESS =

= Epurch
grid · ρgrid + Edirect

PV · ρPV + Ein
BESS · ρPV =

=
(
Eload − Edirect

PV − Eout
BESS

)
· ρgrid + Edirect

PV · ρPV + 1
ηBESS

· Eout
BESS · ρPV =

= Eload · ρgrid − Edirect
PV · (ρgrid − ρPV) −

(
ρgrid − ρPV

ηBESS

)
· Eout

BESS (5.9)

εBESS = −
(

ρgrid − ρPV

ηBESS

)
· Eout

BESS (5.10)

As the reduction of greenhouse gas emissions is not a local issue, a broader scope needs to be considered.
The discourse above does not take into account the interaction of the PV-home’s grid feed-in energy.
This effect is therefore considered in the following derivation. This step is crucial for the final conclusion
and represents the key difference to the island case, where increasing the self-sufficiency rate is essential
for the BESS to reduce the carbon emissions of operating the hybrid renewable-diesel island grid.

The feed-in energy is assumed to displace fossil-fuel generated electricity. The feed-in energy is gener-
ated with an emission factor of the PV-unit ρPV and replaces the same amount of energy that would
have been generated with the average emission factor of the grid ρgrid. The emissions of producing and
installing PV-units are converted to the total energy generation over the PV-units’ cycle lives to obtain
the emission factor ρPV. Energy curtailment is included in this conversion and treated as generated
energy for the emission calculation.

Considering the energy balance of the PV-generated energy (5.7), we obtain the emission reduction
by grid feed-in electricity (5.11). The generated energy EPV could replace the grid energy. The actual
displaced grid energy requires discounting curtailment Ecurt

PV , direct PV-supply Edirect
PV , and BESS-

stored energy Ein
BESS.

εfeedin = Efeedin
grid · (ρPV − ρgrid) = with (5.7)

=
(
EPV − Edirect

PV − Ecurt
PV − Ein

BESS
)

· (ρPV − ρgrid) (5.11)

Equation (5.11) applies if the amount of imported and exported energy does not significantly influence
ρgrid. This is fulfilled for this case because the amount of energy produced by the household’s PV-
unit (several MWh) is smaller by a factor of 108 compared to the traded energy in Germany (several
100 TWh) [156].

The resulting net-emissions of a PV-home without BESS εhome are determined by the load Eload, the
PV-generated energy EPV, and the curtailed energy Ecurt

PV (5.12).

εhome = εload + εfeedin with (5.9) and (5.11)

= Eload · ρgrid +
(
EPV − Ecurt

PV
)

· (ρPV − ρgrid) (5.12)

Operating PV-home storage causes a reduction of the purchased grid energy Epurch
grid , as well as a
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decrease of the feed-in grid energy Efeedin
grid . Reducing the purchased grid energy leads to reduced

generation of fossil-fuel-based electricity, while a reduction of the feed-in grid energy decreases the
amount of fossil-fuel-based electricity that is displaced by PV-energy. Concluding the equations (5.9)
and (5.11) reveal that the BESS influences the net emissions of a PV-home εhome,BESS both positively
and negatively (5.13).

εhome,BESS = εload + εfeedin =

= Eload · ρgrid − Edirect
PV · (ρgrid − ρPV) − Eout

BESS ·
(

ρgrid − ρPV

ηBESS

)
+

+
(
EPV − Edirect

PV − Ecurt
PV − Ein

BESS
)

· (ρPV − ρgrid) =

= Eload · ρgrid − EPV · (ρgrid − ρPV) − Eout
BESS ·

(
ρgrid − ρPV

ηBESS

)
+

+ Eout
BESS

ηBESS
· (ρgrid − ρPV) + Ecurt

PV · (ρgrid − ρPV) =

= Eload · ρgrid − EPV · (ρgrid − ρPV) + Eout
BESS ·

(
1

ηBESS
− 1

)
· ρgrid+

+ Ecurt
PV · (ρgrid − ρPV) (5.13)

The BESS emissions are the difference between the home case without BESS (5.12) and with BESS
(5.13) are determined by the energy provided Eout

BESS. The non-perfect efficiency ηBESS increases the
emissions, while a reduction of energy curtailment ∆Ecurt

PV decreases the carbon emissions (5.14). The
reduction of the energy curtailment is determined by the system’s operation strategy.

εBESS = Eout
BESS ·

(
1

ηBESS
− 1

)
· ρgrid − ∆Ecurt

PV · (ρgrid − ρPV) (5.14)

The Sankey diagrams of the energy flows for a PV-home without and with storage are illustrated in
Figure 5.5. Green color denotes the energy from PV-generation. Red energy flows depict the energy
losses. Energy flows in grey illustrate the energy purchase from the grid. Blue bars illustrate the usage
of the energy.

A large share of PV-generated energy is fed into the grid without PV-home storage (Figure 5.5 (a)).
The timing mismatch of PV-generation and load is compensated by grid purchase to supply the load
and with grid feed-in to use the PV-generated energy. Curtailment of the PV-generated power because
of regulatory curtailment limits and grid losses contribute to the overall energy losses.

The energy flow looks different for a PV-home with storage (Figure 5.5 (b)). The BESS stores part of
the PV-generated energy that does not coincide with the household’s load. The energy is later used
to provide the household consumption and consequently reduce the grid-purchased energy. While the
reduction of the grid-purchased energy reduces the electricity costs, the energy feed-in into the grid is
likewise reduced, diminishing the revenue obtained by feed-in remuneration. The reduction of energy
curtailment has a positive effect on the energy efficiency of the PV-home, but may be dominated by
the BESS-losses.

The optimal operation with regard to carbon emissions would be to minimize the BESS losses and
at the same time minimize the PV energy curtailment. The consequent operation mode would be to
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(a) (b)

Figure 5.5: Sankey diagram for PV-home without storage (a) and PV-home with storage to increase
self-consumption (b).

only store otherwise curtailed PV energy. This is, however, not aligned with the financial incentives
for PV-home storage.

Charging the BESS is not equal to avoiding wasting energy from RES. In the PV-home storage case,
the PV-generated electricity is stored in the BESS for later use, instead of using the energy to provide
another load in the grid. The BESS, in addition, causes energy losses. For this application to have a
positive effect on the carbon emissions, the reduction of grid losses, and curtailment need to outweigh
the BESS losses. Grid losses have not been considered, but only amount to 3.884% in Germany (2014),
6.3% in OECD countries (2015), and 9.6% in non-OECD countries (2015) [157; 158]. The case study
(Section 6.1.2) shows that their contribution to the overall losses are much lower than curtailment and
conversion losses.

5.3.2 Peak-Shaving

Peak-shaving is not usually associated with RES or carbon emissions. The goal is to reduce the peak
power charge of the electricity bill. The implication for the carbon emissions is evaluated by comparing
the deployment of BESS to two alternative options: First, the absolute impact of operating the BESS
in this application is derived. The second assessment compares the carbon emissions of peak-shaving
with a diesel generator.

The energy flow for peak-shaving is shown in Figure 5.6. The load is normally supplied by the grid. In
the event of peaks that need to be avoided, the peak-shaving device, either diesel generator or BESS,
provides power to reduce the grid load peak.

𝐸BESS
in

𝐸BESS
loss

𝐸BESS
out

𝐸grid 𝐸load𝐸grid
direct

𝐸DG

Figure 5.6: Illustration of energy flows for consumer with BESS for peak-shaving.

Providing the load peaks with the diesel generator reduces the amount of grid-purchased energy by
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the amount of the diesel generator’s energy output (5.15). The emissions of this case εPS,DG consist
of the purchased grid energy Edirect

grid and the diesel generator’s fuel consumption with the respective
emission factors (5.16). The added emissions of peak-shaving with a diesel generator εDG amount to
the diesel generator’s operational emissions minus the displaced grid purchase (5.17).

Eload = Edirect
grid + EDG (5.15)

εPS,DG = Edirect
grid · ρgrid + EDG · ρDG

η̄DG · LHV =

= Eload · ρgrid + EDG ·
(

ρDG

η̄DG · LHV − ρgrid

)
(5.16)

εDG = EDG ·
(

ρDG

η̄DG · LHV − ρgrid

)
(5.17)

For peak-shaving with a BESS the charging process needs to be considered. The overall load is
supplied by the energy drawn from the grid Edirect

grid and the BESS power output Eout
BESS (5.18). The

electricity purchase comprises the load energy Eload and the BESS system losses Eloss
BESS (5.19). The

overall emissions of this case εPS,BESS are determined by the amount of electricity purchased from the
grid (5.20). Thus the BESS increases the emissions εBESS because of its system losses (5.21).

Eload = Edirect
grid + Eout

BESS (5.18)

Epurch
grid = Edirect

grid + Ein
BESS =

= Eload + Eloss
BESS (5.19)

εPS,BESS = Epurch
grid · ρgrid =

=
(
Eload + Eloss

BESS
)

· ρgrid (5.20)

εBESS = Eloss
BESS · ρgrid =

=
(

1
ηBESS

− 1
)

· Eout
BESS · ρgrid (5.21)

Both peak-shaving cases are compared in the following. The premise is that both diesel generator and
BESS need to provide the same energy for peak-shaving (5.22). Using a BESS compared to a diesel
generator avoids diesel generator-generated energy, but grid electricity is used instead. The amount of
grid electricity purchase is increased by the BESS system losses (5.23).

EPS = EDG = Eout
BESS (5.22)

∆εBESS = εDG − εBESS =

= EPS ·
(

ρDG

η̄DG · LHV − ρgrid

)
−

(
1

ηBESS
− 1

)
· EPS · ρgrid =

= EPS ·
(

ρDG

η̄DG · LHV − ρgrid

ηBESS

)
(5.23)

Sankey diagrams for peak-shaving with a diesel generator (Figure 5.7 (a)) and with a BESS (Fig-
ure 5.7 (b)) are given. Grey flows represent the energy drawn from the grid. The brown flow illustrates
the diesel generator-generated energy. Red energy flows depict the occurring losses. The blue bar il-
lustrates the use of electricity. The diesel generator consumes fuel to provide the electricity required
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to execute peak-shaving. The generated energy replaces the same amount that would otherwise be
drawn from the grid. The BESS for peak-shaving increases the overall electricity purchased by the
grid because of the system losses.

(a) (b)

Figure 5.7: Sankey diagram for peak-shaving with a diesel generator (a) and a BESS (b).

From a carbon emission focused point of view, peak-shaving only introduces energy losses that deterio-
rate with the system efficiency and increase the generated electricity. The composition fo the emissions
are different for peak-shaving by a diesel generator and BESS. While diesel generator-generated elec-
tricity is expected to have a higher emission factor than the average electricity generation within the
grid, the BESS losses need to be compensated by added energy generation of the power system.

5.3.3 Hybrid Renewable-Diesel Island Grids

BESS for hybrid renewable-diesel island grids increase the utilization of RES and reduce fossil-fuel
based generation. Conventional generators provide the load, in times of insufficient RES-generation.
The BESS’s task is to store the excess RES-generated energy, that would otherwise be curtailed, and
supply the load instead of the diesel generator. Figure 5.8 illustrates the simplified energy flows in an
island grid. The following discussion of the principal mechanisms for the GWP neglects operational
inefficiencies that require more diesel generator generation.
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𝐸BESS
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𝐸RES 𝐸load𝐸RES
direct
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Figure 5.8: Illustration of energy flows in island grids with BESS.

RES-generated energy ERES either directly provides the load Edirect
RES , is stored in the BESS Ein

BESS, or
is curtailed Ecurt

RES (5.24). The load is supplied directly from RES Edirect
RES , by the BESS Eout

BESS, or by
the diesel generator EDG (5.25). BESS operation is associated with energy losses Eloss

BESS (5.26).

ERES = Edirect
RES + Ein

BESS + Ecurt
RES (5.24)

Eload = Edirect
RES + Eout

BESS + EDG (5.25)

Eloss
BESS = Ein

BESS − Eout
BESS =

(
1

ηBESS
− 1

)
· Eout

BESS (5.26)
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RES are the primary source to feed the load. Surplus power is stored in the BESS for later use. We
assume that the BESS is charged only with RES surplus and the remaining excess RES-generated
power is curtailed (5.24). The BESS provides the load if RES-generated power is insufficient. Only if
RES and BESS cannot sufficiently supply the load, the diesel generator provides the necessary power.

The power system’s carbon emissions εHybrid without BESS are caused by RES and diesel generator
fuel consumption (5.27). RES emission factors apportion the emissions of producing and installing the
RES among the energy produced over the system lifetime. This allows a straightforward comparison
with fossil-fuel based generation.

εHybrid = EDG · ρDG

η̄DG · LHV + ERES · ρRES =

=
(
Eload − Edirect

RES
)

· ρDG

η̄DG · LHV + ERES · ρRES (5.27)

Operating BESS influences the carbon emissions εHybridES of the island grid. It reduces curtailed RES
energy by storing that energy, to provide the load at later times, and consequently reduce the energy
production of the diesel generator (5.28). The more energy the BESS stores, the higher the carbon
reduction is (5.29). Higher BESS efficiencies further improve the carbon reduction. The negative sign
of the BESS emissions indicates that the BESS operation reduces carbon emissions.

εHybridBESS = EDG · ρDG

η̄DG · LHV + ERES · ρRES =

=
(
Eload − Edirect

RES − Eout
BESS

)
· ρDG

η̄DG · LHV + ERES · ρRES (5.28)

εBESS = εHybridBESS − εHybrid =

= −Eout
BESS · ρDG

η̄DG · LHV =

= −ηBESS · Ein
BESS · ρDG

η̄DG · LHV (5.29)

The Sankey diagrams of hybrid renewable-diesel island grids without and with BESS are shown below
in Figure 5.9. The red colored energy flows show the losses in the power system. The green colored
energy flows represent the energy generated from RES. The brown color is associated with energy
generated from fossil fuel. The blue bar illustrates the energy, that is utilized.

An island grid without BESS (Figure 5.9 (a)) only utilizes the RES-generated energy that coincides
with the load. The remaining RES generation is lost by curtailment. The consumers’ load that does
not coincide with RES generation needs to be supplied by the diesel generator.

The diagram for the island grid with a BESS (Figure 5.9 (b)) shows that the BESS stores a share of
the otherwise curtailed RESs’ excess energy and supplies the load at other times. The BESS causes
losses, but the avoided diesel generator-generated energy is equal to the energy provided by the BESS.

5.4 Concluding Carbon Emissions

An approximation of the production induced emissions has been derived. It is based on a bottom-up
analysis of the prototype system Energy Neighbor and is compared to other values in the literature.
This allows taking the production into account that needs to be compensated by the operation of BESS
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(a) (b)

Figure 5.9: Sankey diagram for island grid without storage (a) and with storage to increase RES-
utilization (b).

for a positive net reduction of the carbon footprint.

The net impact of operating BESS for three different applications on the carbon emissions has been
developed. The mechanisms are considered in a global manner to obtain the true net effect, instead
of displacing the cause of emissions to a process outside of the analysis. This way a credible method
of evaluating BESS’ direct impact on the GWP is available.

The literature review unveils that analyses of the GWP with narrow system limits are at risk to yield
distorted results and possibly wrong conclusions. Evaluation methods need to incorporate thorough
comparisons with reference scenarios to achieve eligible results and enable qualified conclusions.

The mechanisms reveal that the key-process to reduce the carbon emissions is to increase the utilization
of RES-generated energy and thereby avoid the use of fossil-fuel generated electricity. The results are
determined by the properties of the respective power system, with regard to its carbon emissions of the
generated energy. The BESS efficiency is another key factor. Low efficiencies cause more losses that
need to be compensated by increased fossil-fuel-based generation. Shifting of the energy generation
towards lower carbon technology needs to compensate for the introduced system losses.

Other targets for the operation of BESS, such as the increase of a household’s self-consumption have no
immediate positive effect on the overall carbon footprint. The positive coincidental effect of avoiding
curtailment does reduce the carbon footprint. The self-consumption is an ineffective incentive for the
reduction of the carbon footprint and even counteracts that goal. Instead, BESS operation needs to
aim at increasing the power system’s energy efficiency, reduce curtailment losses, solve stability issues,
or drive down public economic cost. Applications and corresponding elicited BESS operation need to
be reassessed and aligned to one of the mentioned goals, if necessary.

While PV-home storage for increase self-sufficiency adds carbon emissions, as well as raise general
public cost [32], peak-shaving may potentially reduce the general public cost of the power system
transformation, by deferring the necessity of grid reinforcement. Reducing the peak load avoids the
occupancy of the grid’s power capacity. The application has therefore potential to reduce the costs of
the overall power system.

Other indirect consequences of the deployment of BESS, such as appealing the installation of RES are
not regarded in this thesis.
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6.1 PV-Home Storage in Germany

Two case studies are performed for the PV-home storage application in Germany. First, an economic
case study is presented that has been published previously [29]. The second study investigates the
impact of BESS on the carbon emissions and has been presented before [31].

The economic case study is based on the first version of the Powerwall, a BESS announced by Tesla
Motors, Inc. (Palo Alto, California, USA). The product was of particular interest, as the announcement
promised a price that was 75% lower than the market price at that time, attracting considerable
attention in the industry and media.

The carbon emissions study was performed and presented independently, with different technical pa-
rameters for the BESS. It also considers the emissions of an entire community grid, instead of a single
household.

6.1.1 Economic Case Study

In spring 2015, Tesla Motors, Inc. (Palo Alto, California, USA) announced the Powerwall, a BESS
developed for residential PV-systems, surprising the renewable energy industry and gaining attention
in the media. The technical specifications are similar to previous lithium-ion battery systems, but the
announced system cost is significantly below the market prices of the time. The average retail price in
the German market in the first half of 2015 was about 2000 EUR/kWh [40]. The price of the Powerwall
in Germany was announced to be about 500 EUR/kWh [159], reducing the specific price by a factor of
four compared to previous average prices for lithium-ion based systems. It, however, remained vague
as to what exactly was included in the announced price.

In this case study, the economic benefit of a system with technical data based on Tesla’s announcements
regarding the Powerwall is assessed for the German market. The aim is to give a reliable evaluation of
Tesla’s Powerwall and to estimate the conditions under which the storage systems become financially
favorable.

6.1.1.1 Parameters

Technical Parameters

The simulation is conducted with parameter sets matching typical single-family houses in Germany
with a rooftop PV-system installation. Simulated PV-system sizes ranges from 1 kWp to 10 kWp.
PV-systems with sizes above 10 kWp operate under different economic framework conditions in Ger-
many [44] and are not considered in this study.
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The average annual consumption of four- and six-person households is 4300 kWh and 4750 kWh, re-
spectively [160]. Households with more than average power load are found to be more likely to invest
in PV-systems and BESS to reduce their dependency on the grid-electricity price [40]. Simulations are
run with a scaled annual consumption from 1000 kWh to 10,000 kWh to cover all relevant consumption
scenarios. Two reference households are discussed in detail: The average household with an annual
load of 4500 kWh and a PV-unit with 5 kWp peak power and a large household with an annual load of
7000 kWh and a PV-unit with 8 kWp peak power.

The annual load of the average household represents the average four- to six-person household with the
most common PV-system size of 5 kWp in Germany [161]. The large household has a larger annual load
than the German average of four- to six-person households. A large share of households that consider
the purchase of a BESS share this trait [40]. This household is assumed to have a PV-system of 8 kWp
installed on the roof, the second most common PV-system size, within the investigated range [161].

The load profile utilized for the simulation consists of 15-minute mean values of the average of about 100
measured households in Germany over a year [12] (Figure B.1). Consequently, fast load variations and
prolonged periods without major electricity use (for example, during holidays of individual households),
are not captured. The generation profile has been measured with a sample time of one minute at a PV-
system in Munich, Germany, in 2009 (Figure B.2). Both profiles are scaled to match the PV-system’s
peak power and annual consumption of the household respectively.

Tesla claims that no maintenance is required after the system’s commissioning, thus no operational
costs are considered in the cost calculations throughout the storage lifetime. The battery capacity is
guaranteed to retain at least 60% after 10 years [159]. The simulation includes the battery’s capacity
fade; the replacement of the battery after the warranty period is not considered to keep the number of
scenarios overseeable. It is important to note that a system lifetime below the assumed depreciation
period of 20 years corrupts the achievable savings.

The PV-home storage is analyzed for both, DC and AC-coupling. Coupling at the DC-side of the PV-
unit is cheaper because no additional inverter is needed. AC-coupling is more expensive but required
for retrofitting existing PV-unit installations. The conversion losses are simulated accordingly to the
topology, shown in Figure 6.1.
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Figure 6.1: Connection topologies for BESS in a PV-home. DC-coupled BESS is shown on the left (a).
AC-coupling of BESS on the right Figure (b).

Two aging characteristics are simulated. The first parameter set is a cycle stability of 5000 full cy-
cles until the capacity degrades to 80% of its nominal value. The second parameter set is a cycle
stability of 3000 full cycles. Both characteristics are based on the degradation curve described by
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Rosenkranz et al. [162]. According to their model, smaller DOCs lead to reduced aging when com-
pared to large DOCs. The model curve is scaled to attain 5000 full cycles for the battery with a
capacity degradation to 80% of its initial value, as announced for the Powerwall product [163]. The
cycle aging parameters are given in Table 6.1. The respective amount of equivalent full cycles for each
occurring DOC is obtained with piecewise cubic interpolation of the given parameter set.

Table 6.1: Number of full equivalent cycles with different DOCs until end-of-life (EOL) of SOH= 80%
is reached.

DOC in % 2.5 5 10 25 50 80 100
Reference aging 30,800 19,800 14,500 9,500 6,900 5,500 5,000

Strong aging 18,500 11,900 8,700 5,700 4,100 3,300 3,000

The calendrical aging is assumed with 15 years to 80% remaining capacity [28]. The same battery
chemistry is used in the Powerwall (Table 6.2). Cycle aging and calendrical aging are added to obtain
the overall battery aging.

Table 6.2: Powerwall device datasheet according to Tesla (denoted with superscript d) and assumptions
(denoted with superscript a) used in case study.

Parameter Value Unit
Usable energy capacityd 6.4 kWh

Nominal powerd 3.3 kW
Battery cycle efficiencyd 92.5 %

Calendrical lifetimea 15 years
Cyclical lifetimea 5,000 Full cycles

Pricea 3,615 EUR

Economic Parameters

The BESS’s performance is assessed based on the PI. A depreciation period of 20 years is chosen for
BESS, equivalent to the endorsed depreciation period for PV-systems [164]. An interest rate of 4%
p.a. and an inflation rate of 2% p.a. result in a real interest rate of about 2% being in the same
range as other publications [165–169]. The most significant parameters (electricity price, household
size, remuneration rate, subsidies, coupling-topology, and aging characteristics) are varied to cover the
possible range of the BESS’s value.

The average electricity price for German private households in 2015 amounted to 28.72 ct/kWh [169].
Two scenarios for the electricity price development are analyzed. First a constant electricity price
of 28.72 ct/kWh and secondly a rising electricity price with an annual price increase of 4.55% p.a.
starting with 28.72 ct/kWh. The constant electricity price refers to a constant nominal electricity price
and results in overall decreasing real electricity costs considering the effects of inflation. The rising
electricity price is an extrapolation of the average annual price increase of the historic electricity price
development from 2000 to 2014 [170].

The following cost assumptions are based on an AC-coupled system in 2016. Several publications
suggest a specific inverter price of 350 EUR/kW for micro-inverters [170–172]. The inverter, therefore
costs a total of 1250 EUR, hence the whole price for AC-coupling amounts to 6250 EUR. The DC-
coupled BESS does not require an additional inverter and the total costs amount to 5000 EUR.
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The regulations in Germany, including a subsidy for BESS that requires a stricter limit of the in-feed
power of the installed PV-system capacity, such as the subsidy by the KfW-Bank [173] are considered.
The assumptions for the subsidy are that it funds 30% of the BESS investment and imposes a feed-in
limit of 50% of the PV-unit’s peak power. The BESS is assessed with and without subsidy. This
concerns the subsidy imposed curtailment limit of 50% and the legal curtailment limit of 70% of the
installed PV-power.

The savings generated by a PV-home storage stem from the spread between electricity purchase price
and feed-in remuneration. The remuneration is granted for 20 years according to the German renewable
energy act (EEG) [43; 44] and equals to 12.31 ct/kWh in 2016. The first rooftop PV-units were installed
in the year 2000 and their remuneration after the guaranteed time period (after 2019) is uncertain. A
remuneration of 3.21 ct/kWh based on the average price at the EPEX-SPOT day-ahead market in the
time period of January and September 2015 is assumed [174]. The electricity price is calculated for
the time period from 2020 to 2040, accordingly.

Table 6.3 outlines the electricity price scenarios for each investigated parameter set, and the two
example households that are investigated in detail.

Table 6.3: Reference households and electricity price assumptions analyzed.
Variant 1 Variant 2

Electricity price scenario constant price increasing price
28.72 ct/kWh 28.72 ct/kWh in 2016 with

3.55% increase p.a.
Reference households average household large household

Load 4500 kWh/a 7000 kWh/a
PV-unit 5 kWp 8 kWp

The reference scenario for the parameter sensitivity is given in Table 6.4 along with the alternative
parameter variants.

Table 6.4: Overview of the reference scenario and the investigated parameter variations.
Reference scenario Alternative parameter variant

System coupling DC-coupling AC-coupling incl. inverter
5,000 EUR 6,250 EUR

Cycle aging 5000 full cycles 3000 full cycles
Subsidy 30% of the full price no subsidy

50% feed-in limit 70% feed-in limit
Remuneration 12.31 ct/kWh 3.21 ct/kWh

6.1.1.2 Results and Discussion

Figure 6.2 depicts the results of the different parameter variants. The left bars without border show
the results for the average household. The right bars with a black border represent the results of the
large household. The variations from the reference scenario are given on the x-axis. The bars show
the PIs for the electricity price scenarios. Blue bars represent the rising electricity price scenario. The
results for the constant electricity price are depicted by the grey bars. The grey line between the blue
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and grey bars represents a PI of 0%.

Reference AC-coupling 3000 cycles no subsidy market remun.

26.26
7.95 15.2 0.42

37.99

−23.54 −32.12 −27.68
−49.39

−11.81

28.41 14.96 15.34 6.36

49.27

−24.51 −28.4 −29.38
−46.57

−3.65

PI
in

%
Average household Large household
Rising electricity price Constant electricity price

Figure 6.2: Comparison of the PI for different scenarios. The bars show the PIs for the electricity
price scenarios. Blue bars represent the rising electricity price scenario. Grey bars with a
black edge show the results of the constant electricity price scenario. The left bars without
border represent the average household (5 kWp/4500 kWh). The right bars with a black
border show the results of the large household (8 kWp/7000 kWh). Bar groups shows the
different scenarios. The deviations from the reference scenario are given in the description
on the x-axis.

The BESS achieve PIs in the reference scenarios that range from -24% to 26% for the average household
and -25% to +28% for the large household. Each sensitivity scenario in Figure 6.2 shows a significant
change of the PI compared to the reference scenario on the left. Hence every single investigated
variation parameter strongly influences the probability of the BESS being able to generate a positive
return within a time period of 20 years.

Choosing to purchase an additional inverter to enable AC-coupling of the BESS reduces the PI to
ranges from -32% to +8% and from -28% to +15% for each of the two respective households.

Batteries that exhibit strong aging and have a cycle stability of only 3000 full cycles instead of 5000,
reduce the PI to a spectrum of -28% to +15% and -30% to +15%, respectively. The impairment is
more severe for the large household. This indicates that the BESS size is too large for small households.
The extra energy capacity serves as a buffer, compensating for the aging. The capacity decrease is
more perceivable at the larger household, where the BESS is utilized more intensely.

The scenario where the subsidy is omitted yields a strong decline of the PI to spans from -49% to
0% and from -47% to +6%, respectively. A very low remuneration of electricity feed-in increases the
household’s incentive to store the self-generated energy for later use. The soared PI without subsidy
ranges from -12% to +38% and from -4% to +49% respectively.

Reimbursement by subsidy directly translates to an improved PI. A more severe PV-feed-in limit,
however, has a noticeable negative influence on the PI. Lower feed-in limits cause larger waste of the
PV-generated electricity. Figure 6.3 shows the decrease of the PI for stricter curtailment limits. The
added losses yield noticeable impacts for lower feed-in limits.

The PI over all simulated PV-system sizes and annual loads are shown in Figure 6.4 for the reference
scenario (Table 6.4). The numbers in Figure 6.4 (a) are calculated assuming a constant electricity price
of 28.72 ct/kWh over 20 years. Figure 6.4 (b) shows the PI for the rising electricity price scenario.

The PI increases with both the PV-system size and the annual load, until saturation is reached. This
results in an U-shaped contour: Neither the annual load nor the PV-size directly correlate with the
economics of the BESS. Instead, both variables yield matching values for the BESS to achieve the
optimal PI.
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Figure 6.3: Change of the PI caused by curtailment limits lower than 70% for the BESS with a remuner-
ation rate of 12.31 ct/kWh. The solid curve shows the PI change for the average household
(5 kWp/4500 kWh). The dashed curve depicts the large household (8 kWp/7000 kWh). The
losses are more severe for larger PV-systems and increase with decreasing curtailment lim-
its.
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Figure 6.4: Overview of the PI in % for reference case. The left Figure (a) illustrates the PI for a
constant electricity price. The right Figure (b) shows the PI assuming a rising electricity
price.

The Figure shows that the PI decreases for larger loads and PV-sizes below 6 kW because they lead
to more direct supply by the PV-produced energy. The excess PV-produced energy is not sufficient to
fully charge the BESS, if the self-consumption is high, hence the BESS is not completely utilized and
appears oversized for the desired application. Smaller loads, however, generate situations where the
energy demand does not consume the entire energy stored in the BESS. In this case the BESS is not
fully discharged until the next charging period.

Larger PV-systems experience more curtailment losses. The storage-subsidy lowers the feed-in limit,
hence the increased losses account to the cost of the BESS, reducing its PI. Consequently, the additional
curtailment losses reduce the PI of households with larger PV-units,

In case of a constant electricity price (Figure 6.4 (a)), the cost savings generated by the BESS cannot
compensate for the system’s investment cost. Hence, deploying the BESS results in financial losses,
assuming the reference scenario.
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In the increasing electricity price scenario (Figure 6.4 (b)), the BESS is economically beneficial for
households with an annual load larger than 4000 kWh and a PV-system size of at least 4 kWp. The
majority of PV-systems below 10 kWp yield a capacity of 5 kWp and the average 4-person household
consumes more than 4000 kWh p.a., hence the average single-family house in Germany with a rooftop
solar facility achieves positive returns in this scenario.

The development of the electricity price has a major impact on the economics of BESS. The span
between the chosen scenarios of constant nominal electricity prices and of energy prices that increase
by 4.55% p.a. exceeds 50 percentage points difference in the resulting PI in some cases.

6.1.1.3 Summary of PV-Home Storage Economic Case Study

The results show no distinct trend on the possible economic benefit regarding PV-home BESS in the
price range of Tesla’s Powerwall. The product can be an economically viable purchase now with a PI
over 25% in some of the discussed cases with a rising electricity price. These numbers further improve
in future scenarios with lower remuneration rates and increasing electricity prices. Some investigated
scenarios yield a negative PI for the BESS, including the majority of scenarios with a constant electricity
price. This emphasizes the need to accurately analyze the situation for each installation to obtain a
realistic economic estimation. The high impact and distinct uncertainty of future electricity prices
need to be taken into account for such economic estimations.

Each of the investigated parameters exhibits a high impact on the total economics of BESS. Varying
both the electricity price and the remuneration rate underline the immense relevance of the price gap
between them for the economics of increasing the self-consumption.

The analysis regarding system coupling and the impact of subsidies emphasizes the significance of total
system costs. The anticipated subsidy scheme of the KfW -bank significantly improves the financial
benefit of installing a BESS.

The announced subsidy scheme is expected to require grid-relieving feed-in limits: electrical energy
storage systems are endowed with funding, provided the grid feed-in power is limited to a certain
fraction of the PV-systems peak power. Stricter limits will lead to larger energy waste in cases where
direct charging control algorithms are used. Residential BESS are technically capable of reducing the
power peak injected into the grid and diminish curtailment losses, hence providing more grid-relief,
without significantly compromising the benefits to the BESS-owner [175].

The economic value of BESS heavily depends on the load and generation profile: a large increase of
self-consumption, by usage of storage, results in higher savings. Households with large PV-systems
and high annual load and households with little simultaneity of load and generation are especially
favorable. The results illustrate that BESS with a usable capacity of 6.4 kWh, seem to be oversized for
the average German BESS-buyer.

6.1.2 Carbon Emissions Case Study

The case study in the following has been presented and published at the Conference on Sustainable
Energy Supply and Energy Storage Systems 2017 [31]. The net emissions caused by operating PV-home
BESS on the low voltage-distribution grid with 57 households have been investigated. The operation
strategy has a significant impact on the outcome. Combination of BESS with PV feed-in curtailment
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and the impact on the grid’s hosting capacity is also subject of the case study. Only active power
control by BESS is considered and preceding carbon emissions caused by the production of BESS is
not included in the analysis. The emissions of producing the PV system is implicitly included in the
emission factor ρPV.

6.1.2.1 Technical Parameters

To assess the BESS’ impact on the low voltage grid, a typical village grid is used for the simulation [176].
The grid consists of 57 households and a transformer with a rated power of 400 kVA. Since spatial
distribution of RES has a big impact on voltage distribution, every household is assigned a PV unit to
minimize the regarded variants and to isolate the effect of the applied BESS operation strategy. All
houses have uniform PV unit sizes and BESS system properties for a small number of analyzed cases.

Individual load profiles are used for each household, to achieve a realistic load profile calculation [177].
The annual consumed energy of the households ranges from 1527 kWh to 4673 kWh, with a mean value
of 2823 kWh. Because of the spatial proximity of the houses, a single measured PV generation profile
is applied to all PV units. The profile is measured at the AC-side of a solar panel in Munich, Germany
in 2009 (Figre B.2). The solar panel is assumed to have operated at the maximum power point in the
entire time. The influence of varying roof and PV setup directions, which in practice influence the PV
production in terms of amplitude and of the temporal profile, is neglected in this work.

PV feed-in limits of 50%, 70%, and 100% (i.e. no limit) of the installed PV capacity are simulated.
The simulations are run for the low voltage distribution grid with and without BESS.

The solar home BESS are uniformly chosen with 4.0 kWh usable energy and 4.0 kW rated power
for all simulations. This size is considered to be favorable for the most common household size in
Germany [28]. The inverter is modeled with the Type 1 efficiency curve (Figure 2.9). The study is
conducted with the power flow battery model described in Section 2.2.3.2. The parameters are taken
from Table 2.3).

Three different operation strategies are used to run the BESS. First the Direct Charge and the Dynamic
Feed-in Limit are used. The third operation strategy is the avoid curtailment operation strategy (avoid
curtailment). It only stores energy that would otherwise be wasted by curtailment. The mechanics
is like the Dynamic Feed-in Limit’s, but the threshold Pth is fixed at the curtailment limit of the PV
feed-in.

Perfect forecasting data is assumed to be available to avoid the influence of prediction errors on the
performance of the Dynamic Feed-in Limit. The remaining energy that can be stored by the BESS is
estimated without considerations of the system’s output dependent efficiency. This results in a slight
impairment on the self-sufficiency rate, apparent in Figure 6.5.

Emission factors for the PV produced electricity unit and the average produced energy in the power
system are required to assess the grid’s impact on the total balance of greenhouse gas emissions. The
emission factor for the PV produced electricity ranges between 10.5 g CO2eq/kWh and 50 g CO2eq/kWh
for several technologies [155]. The worst case value of 50 g CO2eq/kWh is used in this work. The average
emission factor of the electricity production in Germany was 534 gCO2eq/kWh in 2015 [178] and is
used for the grid electricity.
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6.1.2.2 Simulation

The simulation uses two models, the BESS model is simulated for each household individually. The
resulting profiles are then handed to the grid simulation model to obtain the effects on the electricity
grid. The electricity grid is modeled as a standard load-flow model [179]. The simulation has been
conducted with a commercial grid software. Apparent, real and reactive power, as well as voltage, are
computed at all nodes and the transformer to obtain the grid’s hosting capacity. This also includes
the evaluation of grid losses. Steady-state operation of the grid phases is assumed, neglecting transient
effects. The simulation is run for one year and the results represent one year.

The hosting capacity of the grid is defined as the maximum installable RES power that does not lead
to limit violations. For lines and the transformer, the rated current is set as the maximum admissible
limit. Node voltages are limited to rise 3% above the state without connected generation units, as
defined by AR 4105 [180]. The hosting capacity of the low voltage grid is determined for the different
BESS operation strategies and curtailment limits, by increasing the nominal power of every PV unit
in 0.5 kW steps for the simulation. The different profiles of each household are generated by the BESS
simulation and passed to the grid simulation. A complete data set for the consideration of losses and
self-sufficiency rate is obtained by performing a load flow calculation for a whole year and verifying
the adherence to the limits.

6.1.2.3 Results and Discussion

For the assessment of the BESS’ impact on the distribution grid, the self-sufficiency rate, the energy
balance, and the greenhouse gas emissions are calculated. The values refer to the entire low voltage
distribution grid, instead of single households.

The impact of installing solar home BESS on the hosting capacity of the distribution grid are shown
in Table 6.5. Results on BESS’ increase in the self-sufficiency rate (Figure 6.5) are comparable to
literature values [47]. The losses for different BESS cases and the resulting CO2eq balance for the
different scenarios are discussed.

Hosting Capacity and Self-Sufficiency

The hosting capacity of the example distribution grid without relieving means, obtained from the
simulations, is a total of 256.5 kWp. This corresponds to equipping each of the 57 households with a
4.5 kWp PV unit.

Imposing a curtailment limit of 70% on the feed-in of PV power raises the installable PV power by
44.4% to 6.5 kWp per house. The potential PV unit size on each household rises to 9.0 kWp if a more
severe curtailment limit of 50% is in effect.

Deployment of BESS with Direct Charge does not increase the hosting capacity of the investigated low
voltage distribution grid (Table 6.5). Voltage violations appear as early as in the case without BESS.
BESS with the chosen size and the Dynamic Feed-in Limit, in contrast, are capable of increasing the
hosting capacity by 44.4%. The effect is similar to a curtailment limit of 70%. BESS with Dynamic
Feed-in Limit are therefore capable of increasing the PV hosting capacity of distribution grids. Other
BESS sizes would lead to a different increase of the hosting capacity. The avoid curtailment operation
strategy does not noticeably contribute to the self-sufficiency rate and is therefore not shown.
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The resulting self-sufficiency rate rss is saturating after reaching a certain amount of PV-power in
the distribution grid is shown in Figure 6.5. BESS significantly elevate the self-sufficiency rate for
the distribution grid, almost doubling the number. The Direct Charge achieves a slightly higher self-
sufficiency rate than the Dynamic Feed-in Limit. Inaccuracies of estimating the remaining storing
capacity of the BESS lead to slightly inferior results compared to the Direct Charge. The Dynamic
Feed-in Limit enables larger PV unit sizes, establishing the potential for higher self-sufficiency rate.
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Figure 6.5: Self-sufficiency rate over PV-size. Solid lines show the self-sufficiency rate rss for feasible
operation where no voltage violations occur. PV unit sizes at the dashed lines cause voltage
limit violations according to simulations. Dotted lines illustrate PV unit sizes where the
transformer limit is exceeded.

Energy Analysis

The resulting amounts of exported PV-energy, produced PV-energy, household consumption, imported
grid energy, and losses are shown in Figure 6.6 on the left bar of each group. The resulting net export
energy is depicted by the white bar with a black border on the right of each group. The x-axis
indicates the scenario, describing the curtailment limit, the BESS case (either the operation strategy
or nor BESS at all), and the respective PV size per house.

Increasing the installed PV power does not increase the time correlation between load and generation.
Consequently, the imported energy is not reduced significantly, but the amount of exported energy
rises (Figure 6.6).

Running all BESS with Dynamic Feed-in Limit results in similar PV hosting capacity as a 70% cur-
tailment limit for the specific BESS size; the BESS introduce significant losses, though (Figure 6.7).
The BESS reduce the imported energy, as well as the exported energy. Consequently, the resulting
net export energy decreases. BESS reduce the amount of energy flowing through the lines and as a
consequence the grid losses. The losses caused by BESS are, however, significantly higher and outweigh

Table 6.5: Hosting capacity of the low voltage distribution grid for different curtailment limits and
battery deployment scenarios. The capacity of the PV unit of each house P unit

PV , the total
installed capacity in the grid P grid

PV , and the increase of the hosting capacity ∆P/P0 for each
scenario compared to the scenario without BESS and curtailment are given.

no curtail. lim. (100%) 70% curtail. lim. 50% curtail. lim.
no BESS direct feed-in limit

P unit
PV 4.5 kWp 4.5 kWp 6.5 kWp 6.5 kWp 9.0 kWp

P grid
PV 256.5 kWp 256.5 kWp 370.5 kWp 370.5 kWp 513.0 kWp

∆P/P0 - 0% 44.4% 44.4% 100.0%
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Figure 6.6: Energy balance of the scenarios for the largest PV unit sizes without voltage limit violations.

the line loss reduction.

A curtailment limit at 70% of the PV peak power causes curtailment losses smaller than the grid losses
for the chosen load and PV profiles. Imposing a limit of 50%, in comparison, leads to a significant rise
of the curtailed energy.
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Figure 6.7: Detailed losses of the scenarios for the largest PV unit sizes without voltage limit violations.
The labels on the x-axis denote the curtailment limits, BESS scenarios, and the PV unit
sizes per household.

Figure 6.8 displays the losses in the distribution grid for the case of a 50% curtailment limit and
a 9.0 kWp PV unit size. The Direct Charge has no noticeable effect on the curtailment losses but
adds BESS losses. The Dynamic Feed-in Limit, in contrast, achieves a substantial reduction of the
curtailment losses that is larger than the internal BESS losses, leading to an overall loss reduction.
The total losses are smaller than the losses in the case of PV systems without BESS.

The results are improved further by the avoid curtailment operation strategy. As increasing the self-
consumption is not an objective, but only storing the energy that would be curtailed, the achieved
self-sufficiency rate is barely higher than in the case without BESS. The smaller energy throughput
decreases the total BESS losses.
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Figure 6.8: Detailed losses for a 50% curtailment limit for different BESS scenarios.
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Emissions of the Distribution Grid

The total emissions of the distribution grid without PV units amount to 86 t CO2eq if supplied ex-
clusively by the power system. The emission reduction of the 57 households for different PV unit
sizes, BESS operation, and curtailment limits are shown in Table 6.6. Non-feasible cases are shown
for reference but put in brackets to mark that voltage violations occur.

Table 6.6: Carbon emission reduction by the PV units of the distribution grid for different PV unit
sizes in the grid, curtailment limits, and BESS deployment scenarios. The reference scenario
without PV units leads to the distribution grid emitting 86 t CO2eq. Configurations, where
voltage violations occur, are shown in brackets.

no curt. lim. (100%) 70% curt. lim. 50% curt. lim.
PPV 4.5 kWp 6.5 kWp 4.5 kWp 6.5 kWp 4.5 kWp 6.5 kWp 9.0 kWp

no BESS 115 t (165 t) 114 t 165 t 107 t 153 t 211 t
direct 107 t (157 t) 106 t 156 t 100 t 146 t 203 t

feed-in limit 108 t 158 t 108 t 158 t 107 t 157 t 217 t
avoid curt. - - 115 t 165 t 113 t 162 t 222 t

PV-units cause a reduction of the distribution grid’s emissions. Equipping every house with a 4.5 kWp
PV unit leads to sufficient replacement of fossil-fuel based energy so that the grid at last saves more
CO2eq emissions than it requires to serve its load.

Avoiding curtailment with BESS yields a positive effect on the emission balance. Operating BESS with
Dynamic Feed-in Limit generally results in fewer losses, hence higher carbon reduction, compared to
the Direct Charge operation strategy. In the case of 50% curtailment limit, BESS with Dynamic
Feed-in Limit avoid more losses than they cause, resulting in an improved CO2eq balance. The avoid
curtailment operation strategy outperforms the Dynamic Feed-in Limit in all cases and avoids more
curtailed energy than the losses it inflicts in general.

The comparison of similar PV unit sizes with different curtailment limits shows that imposing such
limits impairs the carbon balance because of the curtailment losses. Increasing the installed PV unit
size has a tremendous impact on the reduction of the carbon emissions. Besides further reducing the
imported energy, the replacement of fossil-fuel based electricity with the exported energy contributes
more to the positive record.

The results on the carbon emissions of the entire distribution grid are based on several simplifying
assumptions. The precision of the computed CO2eq emissions is determined by the accuracy of the
computed energy amounts and the correctness of the underlying emission factors.

The exported energy is assumed to fully replace electricity in the power system, that would other-
wise be generated by fossil-fuel power plants. Further grid losses in higher voltage levels have not
been considered. The amount of replaced energy and avoided CO2eq emissions are therefore slightly
overestimated.

The emission factor of the actually replaced energy is likely to be higher than the grid’s average
emission factor. Especially controllable generation units’ output, such as gas turbines or coal-fired
thermal plants, is probably reduced to balance the additional renewable energy. Coal-fired power
plants produce energy with almost double the emissions per kWh than the average generation [181;
182]. Assuming the grid average emission factor for the replaced electricity is an approximation. The
influence on the dispatch of conventional power generation needs to be analyzed further for more
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accurate results.

The production of the BESS needs to be taken into account to assess the overall effect of the systems.
Assuming that all households have identical BESS with LFP:C batteries, the resulting carbon emissions
of producing and installing the systems, amount to 1.37 t CO2eq per household. The total emissions
of the BESS in the distribution grid equal to about 77.8 t CO2eq. The numbers for the inverter and
batteries are calculated with average assumptions for the parameters, according to (5.6). The housing
and auxiliary components are assumed to contribute to 29% of the total emissions, like in the average
case shown in Figure 5.3. That means that the BESS with the avoid curtailment operation strategy
reduce sufficient carbon emissions of a curtailment limit of 50%, to justify their emissions after 13, 9,
and 7 years in case of PV-units with peak powers of 4.5 kWp, 6.5 kWp, and 9.0 kWp.

6.1.2.4 Conclusion

Operating BESS introduces losses that outweigh the curtailment losses of PV up to a curtailment of
70% of the installed capacity. This deteriorates the carbon balance in a setting that corresponds to
the German legislation today. Even though BESS are acknowledged to be a key component to support
low-carbon energy sources, they may be ineffective, even in established applications, such as increase
of self-consumption. The charging and discharging behavior of BESS determine their benefit.

Increasing the self-consumption is not positively correlated with the reduction of carbon emission and
the goal by itself does not promote the integration of RES. The increase of self-sufficiency rate is useful
for reducing the carbon emissions in cases, where the feed-in peak is reduced. It is remarkable that
carbon reduction does not occur in scenarios, that correspond to the current situation in Germany (for
the utilized profiles).

Significant energy waste appears for a curtailment limit of 50%. BESS improve the carbon balance
if they avoid energy waste by storing and later use. The energy waste would otherwise be replaced
by fossil-fuel based electricity. Solely avoiding curtailment losses, without aiming at increasing the
self-sufficiency rate, results in fewer BESS losses and further carbon reduction. BESS are therefore a
beneficial solution to avoid carbon emission if a 50% curtailment limit is put into effect.

Increasing the self-consumption leads to a poorer CO2eq balance in all cases, compared to the case
that does not aim at increasing the self-consumption. Not using BESS is superior to BESS with Direct
Charge, and BESS that only avoid curtailment reduce more carbon emission than BESS with the
Dynamic Feed-in Limit. Consequently, increasing households’ self-consumption does not increase the
utilization of RES, hence reduce the usage of fossil fuel or necessarily result in grid relief. It solely
improves an individual household’s electricity bill.

The simulated cases without curtailment of the PV feed-in show that BESS with the Dynamic Feed-in
Limit increase the potential of installable PV units in the low voltage distribution grid. Exploiting the
additional potential and increasing the installed PV capacity, improves the carbon emission balance.

BESS are thus capable of deferring grid upgrades, enabling high shares of RES. Grid-relieving operation
may, therefore, avoid additional cost for the general public. Pursuing such a task is, however, not
incentivized, even though suggested for BESS in the literature.

Instead of rewarding self-consumption, the reduction of energy losses or grid-relief to increase the
general use of renewable generated electricity should be incentivized. Increasing the hosting capacity
of a distribution grid is, however, only useful if the grid’s current hosting capacity is fully utilized.
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Policy and regulations are determining the explicit usage of BESS and decide whether residential BESS
are useful for reducing CO2eq emission or just exploit the market financially without generating real
value. The incentives should align with the overall target of reducing greenhouse gas emissions.

6.2 Peak-Shaving for a Sawmill and a Grocery Store

Peak-shaving is studied for two scenarios. The first scenario is a sawmill in Bavaria, the Weiss Holz- und
Palettenwerk GmbH in Julbach. The data were kindly provided by its shareholder-managing director
Dipl. Inform. (FH) Jürgen Martlmüller. The plant produced 1.5 million pallets in the year 2015 and
consumed about 1.8 GWh of electrical energy. A large share of the load is covered by on-site combined
heat and power plants (CHP). The electricity purchased from the grid amounts to 459.06 MWh per
year. The influence of the combined heat and power plant is not further considered and peak-shaving is
analyzed for the factory with the existing generation schedule of the combined heat and power plants.

The second scenario studied is a grocery store in Germany. The commercial load amounts to 438.93 MWh
per year. Both consumers are subject to peak load charges because their consumptions exceed
100 MWh [66].

6.2.1 Parameters

6.2.1.1 Technical Parameters

The load profiles are actual measurements with a sample time of 15 minutes over the period of a
year. The annual load of the sawmill accounts to 459.06 MWh and has a power peak of 184.39 kW
(Figure B.3). Two combined heat and power plants with a nominal electrical power output of 140 kW.
The heat generation is used in the sawmill for drying processes, further improving its efficiency but
is not regarded in this thesis. The schedule for the combined heat and power plants is one base-
load generator that runs continuously without interruption and another peak-load generator that is
switched on from Monday to Thursday at 6:45 in the morning to 15:45 in the afternoon and on Friday
6:45 in the morning to 13:30 in the afternoon. The grocery store consumes 438.93 MWh electricity
per year and the load profile peak is 142.45 kW (Figure B.4). Table 6.7 gives a brief overview of both
consumers’ parameters.

Table 6.7: Parameters of consumers for peak-shaving study.
Sawmill Grocery store Unit

Annual load 459.06 438.93 MWh
Peak load 184.39 142.45 kW

The BESS has been varied from 0 to 500 kWh nominal energy capacity. The achievable threshold
for peak-shaving has been iteratively determined for each BESS size. The inverter size is chosen
accordingly with the nominal power rounded up to full kilowatts.

The diesel generator’s nominal power is identical. All mentioned efficiency curves of the diesel generator
are simulated and the results compared (Figure 2.10). The curve given by Guinot et al. is chosen as
the standard case [96].
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Table 6.8: BESS parameters for peak-shaving study.
Parameter Value

Nominal energy capacity 10 - 500 kWh
Nominal inverter power 10 - 80 kW

Battery model equivalent circuit model Table 2.3
Inverter type Type 2 Figure 2.9 [87]

6.2.1.2 Economic Parameters

Since peak-shaving is exercised in a commercial context, shorter depreciation periods than for the
residential PV-home case apply. A depreciation period of 5 years is the commercial standard [48],
10 years is chosen as a trade-off for longer-term investments, and 20 years is the longest depreciation
period analyzed, for comparison with other applications. The reference depreciation period is 10 years.
The interest rate is assumed to be 2% [29].

An overview of the grid charges with respect to the load peak prices has been surveyed (Table A.1). The
peak prices range from 42 to 180 EUR/kW per year for the annual peak load. A price of 139 EUR/kW
per year is chosen as reference price because the sawmill is located in the area of the grid operator
Bayernwerk in the medium voltage grid, where this price applies. The respective electricity price
is 0.005 EUR/kWh according to the price for consumers at the medium voltage grid with an annual
utilization time (Jahresbenutzungsdauer) of over 2500 h given in Figure A.3.

A parameter variation of the battery prices is based on literature values and an example quotation
from a manufacturer (see Figure A.1). The prices are assumed with 550 EUR/kWh of battery capacity
from the quotation. A buffer for peripheral components has been added to obtain this number that
serves as the standard reference. Hesse et al. surveyed a price of 752 EUR/kWh nominal battery energy
capacity [119].

The inverter price is assumed with 120 EUR/kW being the current lower end of inverter market
prices confirmed by several manufacturers (Q2 2018). This price is compared with literature values of
155 EUR/kW in the analysis [119].

Diesel generator costs are taken from a quotation (Figure A.2) and amount to 162 EUR/kW. Mainte-
nance cost for running the diesel generator is assumed with 0.08 EUR/kW for 24 h [96] and the startup
cost of 0.19 EUR/kW is used [183]. The diesel fuel price is varied between 0.7 EUR/l [98], 2 EUR/l,
and 3 EUR/l [96]. 2 EUR/l is the chosen reference price. The overview of the economic parameters is
given in Table 6.9.

6.2.2 Results

The simulation results for both cases, sawmill and grocery store are presented and discussed in this
section. The economic results are given as annuities to allow an easier comparison of outcomes with
different depreciation periods.

Figure 6.9 (a) shows the maximum peak reduction by the BESS. The solid line represents the sawmill
case and the dashed line the grocery store. The inverter is set with the respective nominal power
rounded to the next higher full kW value.
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Table 6.9: Economic parameters of the peak-shaving case.
Parameter Value Unit Sources

Depreciation period 5 / 10 / 20 years [48]
Peak power charge 42 / 139 / 180 EUR/kW/a Table A.1, Figure A.3

Electricity price 0.005 EUR/kWh Figure A.3
Diesel generator price 162 EUR/kW Figure A.2

Battery price 550 / 752 EUR/kWh [119], Figure A.1
Inverter price 120 / 155 EUR/kW [119]

Fuel price 0.7 / 2 / 3 EUR/l [96; 98]
Diesel generator maint. 0.08 EUR/kW/d [96]

Diesel generator start 0.19 EUR/kW [183]

The achieved peak reduction is greater for the grocery store profile than the sawmill load profile, up
to a BESS size of 440 kWh. The peak reduction achieved at the sawmill increases with the BESS size
in a steady manner. The peak reduction at the grocery store exhibits a steep slope in the beginning
that slowly abates with larger BESS sizes.

The BESS’ utilization rates are shown in Figure 6.9 (b). They increase with the BESS size. This is
because BESS are simulated to reduce the peak as much as possible. Larger BESS, therefore reduce
more peaks and need to operate more frequently. The time utilization rates, shown as blue lines, are
higher for the grocery store case (dashed line). This indicates that the grocery store’s load profile
comprises more and spikier peaks than the sawmill’s load profile.
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Figure 6.9: Peak reduction of BESS for peak-shaving at both cases over the BESS nominal capacity on
the left (a). Time and energy utilization rates of BESS for peak-shaving at both scenarios
on the right (b).

A parameter variation of the depreciation period for the BESS has been conducted and the effect on
the net saving annuities is depicted in Figure 6.10. The sawmill case is represented by solid lines.
The dashed lines represent the grocery store case. The depreciation periods 5 years, 10 years, and 20
years are indicated by the colors grey, blue, and orange, respectively. The BESS achieves higher net
savings for the grocery store than for the sawmill. Smaller system yield net-savings, while the savings
of larger peak reduction do not justify the added investment costs for larger BESS in the sawmill case.
A depreciation period of 5 years, the business standard, results in BESS deployment being hardly
economical.

Small BESS achieve positive net savings for all parameter variations in the grocery store case. Longer
periods for the depreciation are obviously favorable for BESS investments because the costs for BESS
virtually all incur at the beginning as investment costs. Longer depreciation periods stretch these costs
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to more time periods and add the achieved revenues/savings fairly linearly.
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Figure 6.10: Sensitivity of depreciation period on the net savings.

Figure 6.11 (a) depicts the net savings for both consumer cases with varying BESS prices. Solid and
dashed lines represent the sawmill and the grocery store. The quotation based price is denoted by blue,
literature values are displayed with grey lines. Cheaper BESS significantly improve the profitability
of the application. The impact of the BESS price is of similar magnitude for both peak-shaving cases
and increase with larger BESS.

A sensitivity of the peak prices on the BESS net savings is illustrated in Figure 6.11 (b). The peak
prices cause the incentive for peak-shaving and specify the achieved savings. The prevailing price range
in Germany renders BESS to being economically both viable or non-viable, depending on the contract
with the grid operator. The consumer cases are again distinguished by solid and dashed lines. The
annual peak load charges are indicated by the different colors orange, blue, and grey for 42 EUR/kW,
139 EUR/kW, and 180 EUR/kW.
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Figure 6.11: Sensitivity of battery prices (a) and peak prices (b) on the net savings.

The BESS reference case is compared to peak-shaving with a diesel generator in Figure 6.12. The
standard diesel generator with a consumption curve taken from Guinot et al. is computed with varying
fuel prices. The black, dashed lines represent the BESS. The solid lines denote the savings by the
diesel generator with fuel prices of 0.7 EUR/l, 2.0 EUR/l, and 3.0 EUR/l in grey, blue, and orange.

The diesel generator is more economical in the sawmill case (Figure 6.12 (a)) for most peak-shaving
limits, regardless of the fuel prices. The diesel generator is favorable in the grocery store case (Fig-
ure 6.12 (b)) for the low fuel price of 0.7 EUR/l. BESS and diesel generator yield comparable net
savings for a fuel price of 2.0 EUR/l and the savings shift in favor of the BESS for larger peak load
reduction. BESS become economical even earlier if the fuel price is 3.0 EUR/l.
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Figure 6.12: Sensitivity of fuel prices on the net savings. Left figure (a) represents sawmill case. Right
figure (b) shows the savings for the grocery store.

Figure 6.13 shows the economics of diesel generator for peak-shaving with different efficiency curves.
The diesel generator type does not impact the net savings significantly. The efficiency curves from
Guinot, Ashari, and Bortoloni are represented by the blue, orange, and grey solid lines. All diesel
generator types improve the net savings compared to a BESS in the sawmill case (Figure 6.13 (a)).
In the grocery store case (Figure 6.13 (b)), BESS are generally more expensive, except against the
Guinot type diesel generator for larger peak load reduction. The high-efficiency diesel generator with
parameters from Bortoloni et al. is more economical for greater peak reductions.
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Figure 6.13: Sensitivity of the diesel generator type on the net savings for the sawmill case (a) and the
grocery store case (b).

Figure 6.14 plots the carbon reduction achieved by the BESS compared to the diesel generator types.
The production of all components is included in this analysis. The diesel generators are represented by
the same colors as before (Figure 6.13). Larger BESS with greater peak reduction of the load profile
save carbon emission compared to diesel generators in both consumer cases.
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Figure 6.14: Sensitivity of diesel generator type on carbon reduction by BESS instead of diesel gener-
ator. Sawmill case on the left (a). Grocery store case shown on the right (b).
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6.2.3 Summary

Two cases for peak-shaving are studied in this chapter. The first case is an sawmill, the second case is
a grocery store.

The sawmill case achieves marginal or negative returns in most parameter cases. This becomes apparent
in Figure 6.9 (a) that depicts the achievable peak reduction over the BESS energy capacity. The
achievable peak reduction per storage capacity is too low and the peak charges cannot compensate for
the required investment costs. The properties of the peaks are not favorable for BESS, as they contain
more energy that need to be provided for the peak reduction.

The grocery store case yields a different result. BESS for peak-shaving achieve positive returns for
a wide range of parameter assumptions. The achievable peak reduction is significantly higher in this
case (Figure 6.9 (a)) and is reflected in the net savings. The choice of the depreciation period has
a large impact on the financial results. Longer depreciation periods shift the results in favor of the
BESS. The BESS price and the peak charge naturally influence the profits.

A comparison with diesel generators shows that the diesel generator case is more economic in the
reference scenario. The carbon emissions, in contrast, are reduced by using BESS, instead of diesel
generators for larger peak reductions. The results also show that the fuel price is more important than
the specific diesel generator type, but it may still change the outcome of the results.

6.3 Hybrid Renewable-Diesel Island Grid in Graciosa

The hybrid renewable-diesel island grid case is based on Graciosa Island, one of the Azores islands that
belong to Portugal. The grid parameters are chosen according to Stenzel et al., who analyzed the effect
of BESS on the power system of Graciosa [131]. The modeled grid consists of the consumers’ load, a
diesel generator, a BESS, a PV unit, and a wind turbine (Figure 2.15). The BESS aims at minimizing
the fuel consumption of the diesel generator, by shifting the load to times with excess renewable energy
generation.

6.3.1 Parameters

6.3.1.1 Technical Parameters

The load and RES-generation profiles of the island grid simulation are not taken from Graciosa, but
from Tenerife, another island that is approximately 1500 km away from Graciosa island. Tenerife is part
of the Canary Islands of Spain. The profiles are publicly provided by the local utility company with
a sample time of 10 minutes and the profiles of the year 2016 are used [184]. This affects the electric
load, solar generation, and wind generation. The latitude of the solar generation profile is 28◦16′07′′N
and a total of 114.9 MWp is installed in Tenerife. 36.7 MW of wind generation capacity is installed in
the island grid and the electrical load amounts to 3.45 TWh/a [185]. The annual PV-generation of the
profile amounts to 1835 kWh per kWp installed. The wind turbines generated 2174 kWh electricity per
kW installed in 2016.

The measured load profile of January 1st to December 31st 2016 is scaled to match the annual load
of Graciosa Island with 14 GWh/a (Figure B.5) The renewable generation profiles are scaled to match
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the installed capacity of Graciosa Island that has a wind generation capacity of 4.5 MW (Figure B.7)
and PV-generation capacity of 1.0 MWp [131] (Figure B.6). The parameters of both islands are shown
in Table 6.10.

Table 6.10: Parameters of islands Graciosa and Tenerife [131; 185].
Parameter Graciosa Tenerife Unit

Load 14 3450 GWh/a
PV capacity 1.0 114.9 MWp

Wind capacity 4.5 36.7 MW
Latitude 29◦15’06” 28◦16’07”

The simulation is run with varying RES-generation capacity and BESS nominal energy capacity. The
RES range from 1 MW to 20 MW total installed RES capacity, with a fixed ratio of 1:4.5 for PV
units and wind turbines, like in the Graciosa island grid. The BESS nominal energy is varied between
2 MWh and 40 MWh with a fixed nominal power of 6 MW.

Two reference scenarios are chosen for further sensitivity analyses. The scenarios consist of a total RES
capacity of 5.5 MW with a BESS with 5.3 MWh energy capacity and 16 MW and 16 MWh, respectively.

Table 6.11: RES and BESS parameters for the study on hybrid renewable-diesel island grid.
Parameter Value

RES installed capacity 1 - 20 MW
Wind:PV ratio 2:9

Nominal energy capacity 2 - 40 MWh
Nominal inverter power 6 MW

Battery model equivalent circuit model Table 2.3
Inverter type Type 1 Figure 2.9

The island’s diesel generator is used to provide the electrical load, whenever the renewable energy
sources and the BESS cannot provide the required electrical power. The maximum load of the profile
is about 2.3 MW and the model diesel generator has a nominal power of 2.5 MWel.

Once it is turned on, it is required to run a minimum uptime of six hours before being able to shut down
again. Similarly, if the diesel generator is shut down, it needs to stay off for at least six hours. The
minimum off-time is taken from Carrion et al. [186]. They used this assumption for a unit commitment
problem for thermal unit commitment problems. Diesel generators today should be more versatile with
fewer constraints. Another constraint of the diesel generator is the minimum output power of 30% of
the nominal power [187]. The diesel generator model is described in Section 2.2.3.3 and the parameters
utilized are given in Table 6.12.

6.3.1.2 Economic Parameters

The depreciation period for the power system is 20 years. The diesel fuel price variation is identical
to the peak-shaving study between 0.7 EUR/l [98], 2 EUR/l, and 3 EUR/l [96]. The interest rates are
0%, 2% [29], and 4%. The parameter variation of the battery prices done like in the peak-shaving case
study. The prices are 550 EUR/kWh (see Figure A.1) and 752 EUR/kWh [119]. The inverter price is
assumed identical to the peak-shaving study with 120 EUR/kW and 155 EUR/kW [119]. The diesel
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Table 6.12: Diesel generator parameters.
Parameter Value Source

Model type power-flow model
Efficiency ηDG power dependent [96–98]

Nominal power P nom
DG 2.5 MWel

Min. output power P min
DG 30% P nom

DG [187]
Min. runtime τmustrun

DG 6 h [186]
Min. downtime τmustoff

DG 6 h [186]

generator costs are also equivalent to the peak-shaving study with 162 EUR/kW.

Costs for PV units are 1250 EUR/kWp and maintenance cost of 12.50 EUR/kWp/a [17]. Specific costs
for wind turbines are 1120 EUR/kW and annual maintenance of 56 EUR/kW [188]. The overview of
the parameters is given in Table 6.13.

Table 6.13: Economic parameters of the island grid case.
Parameter Value Unit Sources

Interest rate 0 / 2 / 4 % [28]
Diesel generator price 162 EUR/kW Figure A.2

PV price 1250 EUR/kWp [17]
Wind turbine price 1120 EUR/kW [188]

Battery price 550 / 752 EUR/kWh [119], Figure A.1
Inverter price 120 / 155 EUR/kW [119]

Fuel price 0.7 / 2 / 3 EUR/l [96; 98]
Diesel generator maint. 0.08 EUR/kW/d [96]

Diesel generator start 0.19 EUR/kW [183]
PV maint. 12.50 EUR/kWp/a [17]

Wind turbine maint. 56 EUR/kW/a [188]

6.3.2 Results

Figure 6.15 shows the time utilization rate of the BESS deployed on the hybrid renewable-diesel island.
The utilization rates are depicted in a contour plot over the BESS size from 0 to 40 MWh (x-axis) and
the total RES power from 0 to 20 MW. The utilization rate increases with the BESS size. Smaller
BESS exhibit longer idle-times because they are fully charged or empty for long time periods, being
incapable of further storing surplus energy or supplying the load, respectively.

Figure 6.16 gives an overview of the NPV of the net savings. The left Figure 6.16 (a) shows the net
savings achieved by RES without BESS. Larger RES increase the savings that saturate with increasing
power capacity. This is the case when the benefits rise slower than the investment costs of the RES.

The added savings by the BESS are shown in the middle Figure 6.16 (b) and the total net savings of
both components are shown on the right Figure 6.16 (c), compared to the diesel only case. The BESS
net savings depend on both, the BESS size and the installed RES capacity. Larger BESS decrease the
net savings at a certain size because the added savings do not compensate for the larger BESS costs.
The benefits of BESS also decrease for larger RES.

The RES contribute more to the overall savings than the BESS. The BESS still increases the savings in
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Figure 6.15: Time utilization rate of BESS in pu.

all cases. The largest total net savings are achieved with 13 MW installed RES capacity and 16 MWh
energy capacity of the BESS, marked in the Figure as a triangle.
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Figure 6.16: NPV of net savings of RES without a BESS (a), the NPV of the added savings of a BESS
(b), and the NPV of the total savings of both components (c) in million EUR.

The PI of the configurations are shown in Figure 6.17. Smaller investments are more favorable for the
PI because the revenue rises slower with larger components than the necessary investment costs.

With regard to the carbon reduction, the RES contribute considerably more than the BESS, as shown
in Figure 6.18. Larger RES and larger BESS improve the carbon footprint of the island grid. The
largest parameters of the sensitivity range achieve the best results. The carbon reduction by fuel
savings outweigh the emissions caused by producing RES and the BESS.

Table 6.14 gives a cost overview of three cases: a hybrid renewable-diesel island grid with 5.3 MWh
BESS and 5.5 MW of RES, a hybrid renewable-diesel island grid with 16 MWh BESS and 16 MW RES,
and a diesel island grid without BESS or RES. Deploying RES and BESS shifts the costs away from
the fuel cost towards their investment costs. The fuel costs constitute a large share of all costs in all
cases and is tremendously reduced by RES and BESS.

Figure 6.19 shows the influence of the fuel price. The white bars with a black edge on the left of each
bar group represent a fuel price of 0.7 EUR/l. The blue bars in the middle of the group depict the
reference case with 2.0 EUR/l and the grey bars on the right of each bar group show the NPV of the
net savings, assuming a total fuel price of 3 EUR/l. The left bar group shows the net savings of the
small case, the right group illustrates the net savings for the 16 MWh BESS and 16 MW of RES. The
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Figure 6.17: Profitability index of RES without BESS (a), PI of the BESS and its added value (b),
and the PI of both components (c) in pu.
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Figure 6.18: Carbon reduction by RES without BESS (a), further reduction by the BESS (b), and
carbon reduction by both components (c) in kilotons.

fuel price has a tremendous impact on the economics that is higher than the chosen size for RES and
BESS. Assuming the cheaper diesel price reduces the net savings by 80% in the larger case. More
expensive diesel for 3 EUR/l increases the achieved savings by more than 60% for the larger island
case. This is congruent to the fact that the fuel costs are the largest contributor to all costs.
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Figure 6.19: Sensitivity of the NPV of the net savings to the fuel prices.

The impact of the interest rate is shown in Figure 6.20 (a). The influence is not negligible for the
depreciation period of 20 years. Discounting the net savings with an interest rate of 2% reduces the
NPV by about 20% of the cash flows. An interest rate of 4% discounts the NPV by more than 35% of
the nominal net savings.

The BESS price surprisingly has a minor influence on the overall net savings, as shown in Fig-
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6 Case Studies

Table 6.14: Costs (MEUR) of island grid with 5.3 MWh BESS and 5.5 MW RES, 16 MWh BESS and
16 MW RES, and island grid with only diesel generator.

Island case Small Island Large Island Diesel shares/%
5.5 MW RES 16 MW RES

5.3 MWh BESS 16 MWh BESS
Diesel gen. invest 0.41 0.41 0.41 0% 1% 0%

PV invest 1.25 3.64 - 1% 5% -
Wind invest 5.04 14.66 - 5% 22% -
BESS invest 3.63 9.52 - 4% 14% -
Wind maint. 4.12 11.99 - 4% 18% -

Diesel gen. start 3.69 1.27 0 4% 2% 0%
Fuel cost 73.55 24.66 206.73 80% 37% 100%

Total 91.92 66.74 207.20

ure 6.20 (b). This is because of the tremendous savings by reducing the fuel consumption in the
first place. BESS costs are more ponderous at marginal cases that achieve lower revenues/savings.
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Figure 6.20: Sensitivity of the NPV of the net savings to the interest rates (a) and to BESS prices (b).

The sensitivity of different diesel generator types (Figure 6.21) with respective efficiency and fuel
consumption is shown in Figure 6.21. The small reference island with a 5.3 MWh BESS and 5.5 MW
total RES is shown on the left (a) and the larger reference is represented on the right (b). The grey bar
represents the operational costs of the hybrid renewable-diesel island grid with respective configuration.
The blue bar stacked on top represents the savings achieved by both RES and BESS. The total heights
of the stacked bars with the respective value on top depict the reference costs of the same island grid
without RES and BESS. Higher fuel consumption because of worse efficiencies increases the operational
costs and therefore also the achievable savings by RES and BESS.

The results illustrate that the diesel generator itself or the composition of conventional generators are
substantial for the costs and savings. Model-based assessment requires adequate accuracy of these
generators to achieve reliable results.
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Figure 6.21: Sensitivity of the NPV of the net savings to the diesel generator type for the small reference
island (5.3 MWh and 5.5 MW) (a) and for the large reference island (16 MWh and 16 MW)
(b).
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6.3 Hybrid Renewable-Diesel Island Grid in Graciosa

The carbon emissions are significantly influenced by the diesel generator types, as well (Figure 6.22).
The stacked bar plots are similarly structured as in the previous Figure 6.21. The grey bars represent
the hybrid renewable-diesel island grid’s total emissions. The blue bars stacked on top represent the
carbon reduction achieved by equipping the island grid with RES and BESS and the sum on top are
the emissions if the island grid would operate only with the diesel generator. Savings are larger for
less efficient diesel generators, but so are absolute emissions.
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Figure 6.22: Sensitivity of CO2eq emission reduction to the diesel generator type. Sensitivity for the
small reference island on the left (a), results for the large reference island on the right (b).

6.3.3 Summary

A case study for Graciosa island is conducted. The BESS is deployed to increase the use of RES-
generated energy and avoid fuel consumption by the diesel generator.

The installation of RES and BESS in the island grid yields tremendous savings and carbon reduction.
The major contributor to the benefits are the RES, but the BESS benefit is perceivable.

The economic metrics PI and NPV indicate distinct optima for the sizing of RES and BESS. PI favors
small components, while the NPV designates 13 MW of RES and a 14 MWh BESS to achieve the
highest net savings. Carbon reduction is higher for systems that even exceed the analyzed range of
20 MW RES and 40 MWh BESS.

Fuel costs constitute a large share, even for large RES and BESS. Consequently, the fuel price has a
heavy impact on the economics. Yet, BESS achieve positive net savings even for very low fuel prices.

The interest rate has a moderate impact on the economic outcome. The BESS price has a surprisingly
small influence on the savings. This is because the savings are immense in the first place, rendering
the importance relevantly low.

The large role of the fuel is reflected in the sensitivity of several diesel generator types. The varying
diesel consumption influences both, financial savings and carbon reduction, significantly.

85





7 Concluding Storage Evaluation

Part II deals with the evaluation of stationary BESS. Technical evaluation metrics for stationary BESS
are described and the literature review on economics, and carbon emissions of BESS is reviewed. The
economic goals of the applications increasing the self-consumption, peak-shaving, and integrating RES
in an island grid, are described. Different economic metrics are analyzed and discussed.

The analysis of economic metrics and the case studies show that any assessment of BESS requires
consideration of multiple factors and metrics. Each metric that is regarded in isolation may (mis-)lead
to false conclusions. The hybrid renewable-diesel island grid case, for example, shows that PI and
NPV indicate different optimum solutions for the system sizing.

Technical metrics do not give exhaustive insights about system performance but are more suitable for
identifying possible improvements. The efficiency of BESS is an exception. It is a key parameter that
determines other technical metrics, economics and the GWP of BESS for different applications. The
BESS performance improves in all areas with higher efficiencies. This metric must not be underesti-
mated because low values are easily reached, impairing the performance of the whole system.

A method for approximating the carbon emissions of producing BESS is derived in this Part. The
method is generic and enables transferring the results to other BESS with varying sizes and technolo-
gies. The method is based on a bottom-up, component-wise analysis of the Energy Neighbor. Both,
literature values and the life-cycle inventory database ecoinvent are used for data.

The overall impact on the carbon emissions by operating BESS for the three specific applications is
derived. A holistic approach is chosen to capture the overall carbon value of BESS, instead of shifting
the emissions’ cause out of the assessment scope. This avoids overly optimistic valuations of BESS in
their respective application.

Case studies demonstrate, how to evaluate BESS. They illustrate that evaluation metrics should not
be utilized in isolation. Different metrics lead to different conclusions and may not be informative. A
thorough study of such results and cases is necessary.

The case studies show the potential of BESS for the applications. The PV-home storage systems in
Germany are not favorable with regard to economics and GWP. PV-home storage systems that only
avoid curtailment losses instead of increasing the self-consumption combined with a curtailment limit
of 50% achieve the largest carbon reduction of all cases analyzed. Peak-shaving depends on the load
profile that defines the achievable peak reduction per storage energy capacity. The first case at the
sawmill shows negative returns for the deployment of BESS for peak-shaving, while the second case at
the grocery store leads to positive net savings. The carbon footprint, in contrast, is not reduced in this
application. BESS yield remarkable benefits for RES-integration in island grids. The case study on
Graciosa island shows tremendous savings and a significant reduction of the carbon emissions compared
to island grids with only diesel generators. The results are sensitive to the parameter assumptions.
Especially the battery prices are expected to further decline. This may render currently non-profitable
deployment to profitable cases and needs to be re-assessed in the future.
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GWP analyses reveal that economic incentives for deploying BESS in different applications do not
necessarily align with carbon reduction objectives. This is especially apparent for increasing the
self-consumption in the residential context. While the personal carbon footprint is improved, the
application worsens the carbon footprint for the general public. The case study shows that increasing
the self-consumption even increases the fossil fuel electricity generation and the carbon emissions.
A fixed feed-in limit of 50% for the PV-units combined with BESS to only avoid curtailment losses
achieved the most favorable carbon reduction of the investigated cases.

The displacement of grid energy is assumed to avoid emissions with an emission factor of the average
grid. The emission factor of displaced energy is most likely higher because especially fossil-fuel-based
generators, such as gas-turbines or coal-fired power plants keep the power system balance. Coal-fired
power plants, for example, generate energy with almost double the emissions compared to the grid
average [181; 182]. This constitutes an underestimation of the carbon reduction by displacing fossil-fuel
generated energy [31]. Larger carbon reduction of PV feed-in further worsens the effect of increasing
the self-consumption on the carbon emissions.

Jägemann et al. discuss the inefficiency of PV-home storage systems for the general public [32]. They
conclude that increasing the self-consumption raises the public cost. Even though the self-sufficiency
(also energy autonomy) is the main motivation for many decentralized communities [189]. The metric
should, nevertheless, be avoided as objective because it contradicts its own underlying motivation to
decarbonize the power system.

The SolarPower Europe association recently published a whitepaper that proposes specific changes of
regulations to enable and facilitate grid-supporting operation of solar with storage [30].

Von Appen et al. agree that the current regulatory framework for PV-home storage systems in Germany
(i.e. its incentives) do not foster grid-relieving operation of BESS [190]. They suggest a change of the
regulatory framework to incentivize grid-relieving BESS operation. They do not question the use of
increasing the self-consumption but acknowledge that other objectives, such as avoiding curtailment
or limiting the feed-in are beneficial goals. The author of this thesis doubts the benefit of increasing
the self-consumption fundamentally and suggests that the grid-relief should not only be included in
the incentives but replace any incentive for increasing the self-consumption.
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Part III

Improving Battery Storage Operation
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8 Motivation and Fundamentals

8.1 Motivation

BESS face profitability issues because of their high costs [22; 28; 29]. Even though the battery prices
are rapidly falling [35], the BESS’ economic return during operation requires further improvement. The
benefit of BESS for its application and consequently the impact on the power system is determined
by its operation strategy [33; 34]. Operating BESS for single, dedicated applications leads to low
utilization [36], resulting in insufficient revenue that prevents widespread adoption and integration
into the electricity grid.

In order to increase the stream of revenue and thus improve the economic value of BESS, serving
multiple applications (multi-use) has been proposed and shown to have promising potential [36]. How-
ever, only a few algorithms have been published and they exhibit some considerable weaknesses. The
value of multi-use can only be reliably determined if interdepending and possibly conflicting effects of
applications are taken into account [36; 37].

Multi-use results in a dynamic dispatch of BESS and is not compatible with rather static electricity
markets and regulations. Multiple applications within one system require a conciliating mechanism
that maps the BESS efforts and resulting benefits to market-based obligations. This is especially
relevant in unbundled energy markets, common in the European Union, where the ownership and
operation of BESS need to be decoupled. This allows value generation of shared BESS across different
market players.

8.2 Classification of Multi-Use Operation

Synonyms for the multi-use of BESS in the literature include multi-objective, multi-purpose, and
stacked services. Multi-use generally describes the concurring execution of multiple applications. The
author of this thesis classifies the existing approaches for multi-use into two categories: multi-objective
optimized control and stacking of applications.

The literature review reveals two distinct types of multi-use of BESS. First the multi-objective optimized
control, where timing and value of the output power determine the performance towards the set of
applications. Secondly the stacking of applications, that leads to a distinct partitioning of the BESS
resources (power, energy capacity, and energy stored). The latter allows a straightforward mapping of
the BESS usage to market logic.

Multi-Objective Optimized Control

The first type of multi-use is the multi-objective optimized control. In this operating mode, the BESS
meets several objectives by adapting the output power with regard to absolute value and timing. The
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BESS serves multiple objectives but the battery power or energy capacity (the battery resources)
cannot be assigned clearly to an objective. It may also be impossible to determine separate power
profiles for each goal.

Examples of this multi-use type have been proposed by Weniger et al. [47] and Zeh et al. [51]. Both au-
thors proposed the operation of PV-home battery systems that increase a household’s self-consumption
and at the same time reduce the peak feed-in of the PV unit during mid-day, to relieve rural distribution
grids with high shares of RES.

Figure 2.12 illustrates how both goals are achieved, compared to the conventional direct charging
behavior. The black line describes the net load of the household. The blue area shows the BESS
charging (negative values) and discharging (positive values) behavior. The green area displays power
exchanged with the grid. Negative values illustrate energy that is fed into the grid.

The Direct Charge operation strategy shown in Figure 2.12 (a) stores an excess generated energy in the
BESS immediately to maximize the self-consumption. The grid relieving operation in Figure 2.12 (b)
exhibits a smaller peak of the feed-in. Instead of immediately storing any surplus power, the charging
time is shifted towards midday and the energy of the high generation period is stored instead of fed
into the grid. The Dynamic Feed-in Limit operation strategy, shown in Figure 2.12 (b), pursues
both goals of maximizing the self-consumption and at the same time decreasing the feed-in peak of
the household, while the direct strategy does not aim at reducing the peak. Both operation strategies
shown require the entire energy storage capacity and the BESS resources cannot be distinctly allocated
to the objectives.

Application Stacking

The second type of multi-use is the stacking of applications by partitioning the storage. This multi-use
type divides the physical energy capacity, nominal power, and state of charge (SOC) of the BESS into
virtual segments and associates each segment to one specific application. Each application requires
a certain power profile that can be independently assigned to a segment and the resulting physical
output is the sum of the applications’ output power.

Fig. 8.1 illustrates this operation mode and displays the allocation of BESS resources to the applications
A and B over time. The applications may only use these resources and cannot exceed the assigned
resources. A redistribution of the resources is depicted twice in Figure 8.1 at t1 and t2.

𝑡
𝑡1 𝑡2

Figure 8.1: Illustration of time-varying energy capacity distribution for two applications (AP).

A fixed partitioning of the battery segments would be the static case for this multi-use type, while a
sequential alternation of applications represents the most dynamic case of application stacking.

The disadvantage of this operation mode is that the capability of the system may not be fully utilized,
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as the limits may lead to either under-utilization of the BESS or to the insufficient fulfillment of the
application’s objective. Any reduction of the assigned BESS resource for the application increases the
utilization of that BESS resource but diminishes the capability for the respective application. The
available BESS resources for the remaining applications, however, increase.

8.3 Literature Review

The following literature review analyzes algorithms for the EMS of BESS. The scenarios of the reviewed
contributions are not comparable but are tested in different scenarios and applications. The review
is based on the underlying structures of the algorithms that have been analyzed and abstracted. The
given results have not been considered because they would require a pre-analysis and consequently a
normalization of the scenarios and assumptions. The abstraction of the reviewed algorithms and the
resulting classification is comparable to the review conducted by Weitzel et al. [38].

8.3.1 Multi-Objective Optimized Control

Different algorithms for the optimal energy management of stationary energy storage systems have
been proposed in the recent past. Yet unresolved issues remain throughout the literature, such as
incorporating demand response in a commercial context, integrating different planning horizons for
different markets, applying adequate solution techniques for usage-related model formulations, and
systematic uncertainty handling [38].

The control methods can be roughly classified into two categories: rule-based algorithms and optimized
scheduling algorithms. Rule-based controllers comprise of parametric and fuzzy logic controllers. Op-
timized scheduling algorithms are deterministic, stochastic and robust optimization algorithms, and
model predictive control (MPC). Some approaches, such as adaptive MPC and optimized rule-based
control, utilize principles of both classes and are regarded as a hybrid. A similar classification of con-
trol approaches for hybrid energy storage systems has been presented before [191]. A more detailed
discussion in the following section outlines the subtle differences between the categories. Table 8.1
provides an overview of the classification.

Table 8.1: Classification of control algorithms.
Rule-based Optim.-based

Parametric controller x
Fuzzy logic controller x

Determ. optim. x
Stoch. / Robust optim. x

MPC x
Adaptive MPC (x) x

Optim. rule-based control x (x)

8.3.1.1 Rule-Based Algorithms

Rule-based controllers use input variables to calculate the BESS output according to predetermined
rules. They are designed for specific applications and goals and determine their output at the instant
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of operation. We classify rule-based algorithms for the control of BESS into two different classes:
parametric and fuzzy logic.

For the application of increasing the self-consumption of households coupled with PV-generation,
parametric control algorithms have been proposed to additionally minimize the feed-in limit of the
PV-system [101]. Zeh et al. improved the robustness by considering the BESS state and the predicted
sunshine duration [51]. This serves the purpose to relieve the local distribution grid and avoid voltage
issues at peak PV-production periods [18]. A similar controller is proposed to reduce the load peak
and defer the reinforcement of distribution infrastructure [192]. In this case, perfect foresight of
local demand and generation is assumed. Another proposed controller smoothes the fluctuation in a
residential microgrid based on forecast generation and load [193]. Moshövel et al. develop a parametric
controller that adapts its parameters, based on the deviations of the real system state from the predicted
system state [42]. Kennedy et al. propose a voltage-based controller to reduce the network stress [194].
Their controller is not limited to determining the active power of the BESS but also includes the
reactive power. Fleer et al. investigate the impact of different parametric controllers for primary
control reserve [195].

Parametric controllers generally exhibit a few disadvantages: They need to be designed by experts and
often require time-consuming parameterization for every system. They also require manual tuning and
non-optimal performance is a common outcome. Different applications and objectives require complete
re-development of the control algorithm. Methods to cope with prediction-errors have been presented,
but do not seem to follow a systematic approach.

Fuzzy logic control is a general approach to develop rule-based controllers from a linguistic representa-
tion of the desired system behavior. Fuzzy logic-based algorithms for the control of stationary BESS
have been proposed in several works.

The controller proposed by Lühn et al. is used only for certain time periods and parametric algorithms
are active in the remaining time [196]. This requires decision criteria for switching between the control
modes. Arcos-Aviles et al. propose a fuzzy logic controller for the energy management of a microgrid
to smooth the power profiles [197]. The controller’s parameters, its membership functions, and ruleset
are parameterized manually. The forecast profiles are included as input to determine the setpoint and
the prediction error is used as input for the reference setpoint correction.

The results shown with fuzzy logic control-based algorithms are usually promising, but they are very
specific to the demonstration scenarios. Their performance under different circumstances usually
remains unclear and the parameter tuning is often incomprehensible. Rule-based control algorithms
are easier to develop with the fuzzy logic control-framework, however, the parameter tuning is not
straightforward and requires extensive knowledge about the application and the fuzzy logic approach.
Also compensating for prediction errors has been approached differently for each individual case.

8.3.1.2 Optimized Scheduling

Optimized scheduling algorithms determine the power setpoints of the BESS for each sample time
period of the optimization horizon, by means of optimization algorithms. Optimized scheduling al-
gorithms do not react on events below the sample time of the power setpoints unless enhanced by
additional rule-based methods. The sample time cannot be infinitely small because the computation
time of the optimization depends on the number of power setpoints that are treated as optimization
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parameters. Among these algorithms, we distinguish three different subtypes that can be partially
combined: Deterministic optimization, stochastic and robust optimization, and model predictive ap-
proaches.

Deterministic optimization does not consider prediction uncertainties. The results are therefore only
feasible for perfect prediction or may be regarded as a retrospective optimization to obtain the the-
oretic best performance. Consequently, the control algorithms require high-quality forecast and are
sensitive to forecast errors [198; 199]. They suffer from low time-resolution in prediction data. The
method can be applied with different optimization algorithms, such as linear programming [119], dy-
namic programming [200], or differential evolutionary algorithm [201]. The fundamental principle of
prediction based scheduling is, however, independent of the explicit method and not limited to these
algorithms.

Stochastic and robust optimization approaches capture the ambiguity of predictions, by considering a
multitude of scenarios with varying prediction data. Stochastic optimization relies on a large number
of scenarios, while robust optimization reduces the number of scenarios to the most significant ones,
for example, a best- and a worst-case scenario.

Nejad et al. propose stochastic optimization for the energy management of microgrids, including energy
storage and controllable loads. They run Monte-Carlo simulations to increase the microgrid’s expected
operational profit [202]. Choi et al. describe a control method for a microgrid energy storage system
based on robust optimization. Their algorithm requires a detailed system model and includes a variety
of constraints [203].

Model predictive control or receding horizon control is the repeated optimization after a determined
time to consider updated and more certain information on the prediction and the system. This ap-
proach aims to decrease the accumulation of the errors caused by prediction uncertainty. Each time,
the optimization is executed, the current system state and an updated forecast are utilized with the
assumption that the near-term forecast is more accurate.

The model predictive control has been suggested for the control of BESS in a microgrid [204; 205]
and also as controller of multiple microgrid units [206]. Zheng et al. propose a short-term scheduling
by means of convex optimization to minimize the cost for distribution system operators caused by
forecast uncertainties [207]. Model predictive control is also suitable to consider battery degradation,
but the combination with prediction uncertainties has not been investigated [208]. Arnold et al. use a
2-step optimization, where the energy storage system is scheduled the day before and a nested model
predictive control is used to minimize the impact of the prediction error [209]. Oliviera et al. compared
optimization-based control with parametric controllers [210]. They have shown that receding horizon
optimization with simplified models is sufficiently accurate if the optimization problem is solved with
a certain frequency.

While the impact of prediction errors is reduced by employing model predictive control, compared to the
deterministic optimization, the extent of the performance deterioration is still strongly determined by
the forecast quality and time-resolution, as well as the frequency of the optimization. Model predictive
control captures power changes that have longer time-periods than the sample time of its resulting
output. Any power deviation below that sample time is not captured by the scheduling method but
requires a real-time controller.

Following papers combine model predictive control with stochastic optimization approaches to capture
the prediction uncertainties and use the receding horizon method to utilize the updated system state
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and a more accurate forecast of the near-term.

Kumar et al. suggest that deterministic model predictive control may cause significant inefficiencies
and propose a stochastic model predictive control instead, which is basically a two-stage stochastic
programming problem [211]. This approach can be further improved by reducing the number of
forecast scenarios with a backward reduction method [212]. Niknam et al. propose a gravitational
search algorithm to determine the output power of all units in a microgrid and use a 2m point estimate
method to consider the prediction uncertainties [213]. Lara et al. develop a robust energy management
for isolated microgrids. Their approach comprises a nested robust optimization, where the day-ahead
unit commitment determines the target state-of-charge (SOC) of the BESS, and a more frequent
optimal power flow optimization compensates for the forecast errors. They use polyhedral uncertainty
sets to obtain probabilistic characteristics of the forecast system [214].

Optimization-based control algorithms that determine the explicit power output are highly sensitive
to prediction errors. They are also incapable of real-time control of energy storage systems and are
therefore at risk of undesired system behavior.

8.3.1.3 Hybrid Approaches

Both rule-based control and optimization algorithms are combined in several publications. One option
is an adaptive, model predictive control that pre-determines an optimization-based scheduling and
uses a rule-based controller during operation to compensate for prediction errors. Another hybrid
approach is to utilize a rule-based controller and predictively optimize its parameters. Weitzel et al.
describe this approach as policy function approximation, where the policy (i.e. control parameters) of
the BESS-controller is determined, instead of the explicit power output [38].

Following publications are adaptive, model predictive control approaches: Wang et al. introduce a
nested 2-stage hierarchical control algorithm. The global tier is a feed-forward controller based on
convex optimization. The local tier is a rule-based feedback controller, where the energy storage
system is used to compensate for the prediction uncertainties and keep the grid power at the predicted
level [215]. Qin et al. propose a 2-step model predictive control. The first step determines the power
output schedule and the parameters of the correction term for the second step. The second step
optimizes the output power using the correction parameters to shift the operation towards the globally
desired solution. The correction factor considers the SOC, as well as the best and worst case prediction,
to hedge against prediction errors [216]. Sachs et al. use a two-layer model-predictive control for the
energy management system of a diesel-PV-battery island grid, where the first layer is an optimal control
problem. The second layer is a boundary value problem that improves the system robustness against
prediction errors, by shifting the diesel generator’s operation. They achieve improved robustness with
an additional controller to keep the reference point determined in the first layer, by means of operating
reserve [217].

Policy function optimization methods have also been suggested: Barelli et al. propose a rule-based
controller for the load management of a residential microgrid [218]. The control-parameters are tuned
by an artificial neuronal network that uses historic and predicted weather data for the tuning process.
Mueller et al. utilize a simple, parametric controller and optimize its parameters in a model-predictive
manner [219]. Abdoos et al. also suggest parameter tuning of a rule-based controller. They utilize a
particle swarm algorithm for the optimization [220]. Henri et al. use a similar approach, where different
operation strategies that best satisfy the objectives in the prediction based simulation of the system are
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chosen. Instead of a general controller with parameters, a control algorithm is chosen from a fixed set
of possible control algorithms [221]. Mamun et al. optimize a parametric controller with a differential
evolutionary algorithm to satisfy multiple objectives [222]. Their controller aims at maximizing the
economic revenue achieved by the BESS and at the same time minimizing battery degradation. The
parametric controllers used by the authors above are suitable only for the specific application.

Fuzzy logic controllers can, for example, be tuned by differential evolution to best follow the optimal
power flow previously determined by linear programming [223]. Fossati et al. use a genetic algorithm
to determine the optimal parameters of a fuzzy logic controller for the control of a microgrid. The
fuzzy logic controller controls the BESS power and is optimized by the genetic algorithm based on the
forecast power generation and load. No prediction errors have been considered [224].

The challenge of prediction errors needs to be combined with optimization and has not been researched
exhaustively [38]. The method proposed in this paper falls into the category of policy function op-
timization but extends the mentioned literature. By combining the rule-based fuzzy logic controller
with an optimization algorithm, we achieve the control algorithm’s general applicability for different
applications, real-time capability, optimal performance, and at the same time a robustness against
prediction uncertainties.

8.3.2 Application Stacking

The concept of multi-use has been proposed in numerous publications, to improve the economic value
of BESS. The majority of the reviewed manuscripts analyze specific sets of applications and propose
particular solutions. The multi-use category, multi-objective optimized control is more prevalent in
the literature, as this problem can be solved by established multi-objective optimization, that has
been proven to be effective on other topics. There are fewer publications that propose a stacking of
applications and even less that explicitly describe the methodology.

Fitzgerald et al. [36] state that multi-use customer-sited BESS deliver maximum service and value to
the customers and the grid. They claim that the value of applications cannot be generalized and that
regulations are the main barrier for the market participation of BESS since behind-the-meter assets are
hindered by regulations to receive payment for deferral services, grid services, or wholesale markets.
Their meta-study does not describe the necessary BESS operation to capture the value of multiple
applications.

Another shortcoming of numerous papers is the assumption of perfectly known future profiles, such as
load and renewable power generation. Their methods are not tested against forecast errors and likely
to be sensitive to uncertainties. Some papers simulate multi-use of BESS but do not discuss conflicting
applications [225; 226].

Tsakgou et al.[225] describe a stacking of services without reservation of BESS resources for the specific
applications. They show an example, where the power requests do not occur at the same time.

Di Wu et al.[226] optimize the hourly output and the amount of balancing service of an energy storage
system. They introduce optimality constraints to achieve a sequential order of the applications.

Other publications determine the optimal power output of BESS for several applications by means of
numerical optimization algorithms but do not consider the presence of multiple stakeholders. While
their approaches achieve good results, they are limited to cases with a single stakeholder, who attempts
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to serve several applications. If several stakeholders seek to serve different, potentially conflicting
applications, by operating the BESS, the remuneration remains unclear with these methods. There is
no apparent procedure to determine the financial obligations and to achieve mutual agreements on the
operation of the BESS.

Megel et al. [227] suggest a time-varying stacking of two applications and the corresponding allocation
of the energy capacity of the BESS. They have not looked into the issue of sharing the system among
several stakeholders.

Stephan et al. [37] assessed the economic value of BESS with a variety of applications. They conclude
that combining applications can improve the investment attractiveness substantially. Their analysis
is limited to two applications at a time, where the primary application is given priority, while the
secondary application is served only if sufficient idle capacity is available based on pre-known profiles.

Metz et al. [228] optimize multiple applications, considering perfect forecast of the BESS profiles. The
benefits are summed up, but a single stakeholder is assumed and the resource splitting of the BESS
among several stakeholders has not been considered.

Zeh et al. [81] propose a multitasking of BESS to provide both secondary control reserve and grid-
friendly storing of PV-generated energy. They consider the strict separation of energy capacities as
necessary, to avoid a clash of different storage tasks. They also mention that legal proof of delivery
for certain applications requires the installation of measuring devices. Concepts for metering devices
designed specifically for the multi-use of BESS have been proposed [229].

Hollinger et al. [230] describe a multi-use method for home BESSs that provide primary control reserve
and increase the self-consumption of the household. The state-of-charge determines the power output
for increasing the household’s self-consumption. The introduced rules of operation modify the output
for the second application and aim to keep the BESS capable of providing primary control reserve.
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This chapter presents a general-purpose method for the control of BESS with the multi-objective
optimized control approach. The algorithm combines the real-time capability and wide applicability of
a general fuzzy logic controller and the short-term optimal parameter tuning of the control parameters
by a cuckoo-search algorithm with model prediction in a receding horizon manner. Having the cuckoo-
search algorithm tune the control parameters of the fuzzy logic controller, instead of the reference
power/ power setpoint of the BESS, raises the algorithm’s robustness against prediction errors. The
methodology is outlined in Section 9.1. The algorithm’s performance is demonstrated for two case
studies in Section 9.2. The chapter concludes with a summary in Section 9.3. Most of a published
manuscript is used in this chapter [231].

9.1 Proposed Control Algorithm

In this section, the proposed control algorithm is outlined (Figure 9.1). First, the general structure and
the interdependency of fuzzy logic control and cuckoo-search are explained before the implementation
of each method and the constraint handling is described.

9.1.1 Overview of the Algorithm Structure

The core of the algorithm is the fuzzy logic controller that determines the BESS’s output power based
on the input values. The fuzzy logic controller’s parameters are tuned by predictive model-based
optimization. Recurring tuning of the fuzzy logic controller’s parameters is executed with the cuckoo-
search. An overview of how the fuzzy logic controller and cuckoo-search are coupled in the proposed
algorithm is shown in Figure 9.1. The cuckoo-search optimizes the controller parameters with regard
to the objective function J . After determining the optimal parameters x∗ based on the simulation
with the forecast profiles, the fuzzy logic controller is run with the actual profiles.

9.1.2 Description of Methods

9.1.2.1 Cuckoo-Search

The cuckoo-search is a bio-inspired meta-heuristic algorithm that mimics the behavior of cuckoos that
lay eggs in nests and look for most promising habitats. Meta-heuristic algorithms generally show good
performance at solving global optimization problems [232]. They usually require only little knowledge
about the problem and exhibit the capability of avoiding local minima due to their stochastic nature.
It cannot be mathematically proven that they are able to always find the global optimum. However,
their results are usually satisfactory for various real-world problems. [233]

The modified cuckoo-search by Li et al. [234] is adopted in this paper. Different solution candidates
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Figure 9.1: Structure of the simulation-based rolling-horizon fuzzy logic control optimization. The
cuckoo-search is executed kmax times. The best parameter-set x∗ is then used for the actual
(simulated) control of the BESS until the reeding horizon is reached and the cuckoo-search
is run from this new starting point.

are created with random generation of the parameters x until the number of solutions reaches the
population size N . The cuckoo-search consists of three steps that are repeated every optimization
iteration k: Lévy flight, selection, and discovery. Lévy flight produces N new solutions xk

gen, each
based on one existing solution xk−1

pop (9.1). The Lévy flight is a random walk with step-lengths that
have a Lévy distribution [235].

xk
gen = xk

pop + αk · Lévy (9.1)

These generated solutions are evaluated by computing the objective function value (fitness) J(x) of
each solution x. Depending on the respective fitness, a fraction of the solutions is kept for further
optimization in the selection step. The nests xk−1

pop and cuckoos xk
gen are randomly assigned pairwise

and the fitness values J(xk
gen) and J(xk−1

pop ) of each pair are compared. Of each pair, the solution with
superior fitness is kept for further optimization, while the remaining solution is discarded (9.2).

xk+1
pop =

{
xk

pop for J(xk
pop) < J(xk

gen)
xk

gen otherwise
(9.2)

The subsequent discovery step randomly choses a share of the population and between (9.3) and (9.4),
introducing additional stochasticity to the production of new solution candidates. The variable r|1|

denotes a random number between 0 and 1 with uniform distribution: r|1| ∼ U([0, 1]) that is generated
each time. xr denotes the parameters of a randomly chosen solution. x∗ are the parameters of a
randomly chosen Pareto candidate. ϕ is a random value generated from a Gaussian distribution with
the standard deviation σCS and mean value µ: ϕ ∼ N

(
µCS, σ2

CS
)
.

x = xr1 + ϕ · (xr2 − xr3) (9.3)

x = x∗ + ϕ · (xr1 − xr2 + xr3 − xr4) (9.4)

The explicit choice of meta-heuristic algorithms is not essential for the proposed control-structure.
Meta-heuristic, swarm optimization algorithms exhibit similar characteristics. They are population-
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based, hence a number of solution candidates exist and they basically consist of three mechanisms: a
random walk, a mutation technique, and an elite mechanism.

The Lévy flight is the mechanism corresponding to the random walk that provides the search algorithm
with explorative properties. The search space is expanded by the random walk and not limited by the
existing population.

The mutation mechanism of the cuckoo-search is the discovery step. New parameters are generated,
based on the existing population and the purpose is to search the solution space within the area covered
by the population and improve the existing solution. Depending on the explicit search algorithm, this
could be implemented as an exchange of parameter values (e.g. genetic algorithm [232]) or some kind
of calculation based on the existing parameter values, such as deviating the search direction towards
existing solutions (e.g. particle swarm [232]).

The elite mechanism emphasizes the current (Pareto-) optimal solutions and aims at increasing the
convergence rate towards the global optimum. The presented cuckoo-search integrates this mechanism
in its selection step, where inferior solutions are discarded. The elite is further included in the discovery
strategy, where the best solution x∗ is the origin of the discovery step (9.4).

Cuckoo-search is employed to recurrently optimize the fuzzy logic parameters for the desired behavior,
determined by the objective function J . The forecast profiles are used within the cuckoo-search to
determine the solutions’ fitness and choose the optimal parameter set. The fuzzy logic controller is
simulated for each solution candidate x over the predetermined look-ahead time horizon, to obtain the
corresponding BESS behavior and consequently the solutions’ fitness. The optimization parameters x

describe the fuzzy logic controller’s parameters, that is the coordinates of the membership functions.

The simulation within the cuckoo-search utilizes the simplified models, that is a power dependent
one-way conversion efficiency of the inverter with a resolution of 10 values. The values correspond
to the efficiency curve of the Type 1 inverter (Figure 2.9). A power flow model for the battery with
a constant conversion efficiency of 95% is used. The model outside of the cuckoo-search utilizes the
more sophisticated model, where the inverter has the output power dependent efficiency of the Type
2 inverter described (Figure 2.9). The EC-model is used for the battery outside of the cuckoo-search.
The purpose of utilizing simplified and less accurate models is to accelerate the optimization speed
and, more importantly, to emulate a model error between optimization and simulation model. The
proposed control algorithm is ultimately tested for controlling a real BESS with an inevitably erroneous
system model for the parameter optimization.

The Lévy flight mechanism (9.1) continuously decreases its step size αk to 30% of its initial length α0

towards the last optimization iteration kmax (9.5). This results in a smaller search area for the existing
solution candidates x and aims at more refined solutions and improved search convergence at later
optimization stages. Lévy flight is followed by the selection step, to discard inferior solutions and keep
the superior solutions (9.2).

αk = α0 ·
(

1 − k

kmax
· 0.7

)
(9.5)

The mutation mechanism randomly chooses a share of the population to modify their parameters.
During the first iteration k = 1 of the optimization, half of the solutions has a low chance to mutate
(probability of 12%). The remaining solutions mutate each with a high probability of 85%. The
number of solutions with a high mutation probability rmut steadily decreases to 0 at the end of the
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optimization run, where every solution has a low probability of 12% to mutate (9.6). The mutation
probability is randomly assigned to each solution with uniform distribution.

rmut = 0.5 ·
(

1 − k

kmax

)
(9.6)

Of the randomly chosen individual solutions for the mutation, their chance relitist to mutate in an
elitist way (9.4) and the probability of more random mutation (9.3) is 0% against 100% at the first
optimization iteration k = 1. This probability continuously shifts with the optimization progress to
100% and 0% distribution at the last optimization iteration k = kmax (9.7). The search area shifts
towards the best solution candidate x∗.

relitist = k

kmax
(9.7)

At the end of the optimization a Pareto candidate is chosen as the result of the multi-objective opti-
mization. The method implemented for the solution choice takes the two outer Pareto candidates to
span a subspace. The distances are normalized to the value range defined by all Pareto candidates.
The solution with the largest distance to the spanned subspace is chosen as final result.

9.1.2.2 Fuzzy Logic Control

The fuzzy logic approach changes the exact matching of input and output of conventional functions to
an approximate matching, by applying a continuous, real-valued logic instead of the discreet Boolean
logic. This blurring is usually associated with a qualitative description of ranges (e.g. high and low)
and therefore allows for the development of controllers based on linguistically expressed behavior.

Fuzzy logic controllers are usually expert-designed and tuned, to obtain the desired behavior. The
fuzzy logic approach has proven to be capable of controlling complex or unfamiliar systems with noisy
inputs [236]. It is therefore powerful in dealing with vague inputs and nonlinear systems and promising
for the control of BESS in uncertain environments.

Fuzzy logic controllers express the input by assigning the values to membership functions that describe
the input value’s degree of membership to the specific membership function. A Takagi-Sugeno fuzzy
logic controller is implemented, hence the output membership functions have singular values. The
Takagi-Sugeno type fuzzy logic controller has a computational advantage over the Mamdani type
fuzzy logic controller, as the defuzzification step is omitted [237].

The unity of all membership functions and their weights corresponding to the input value are then
subject to the ruleset. Any combination of the input membership functions is assigned to separate
output membership functions. The ruleset for the mapping of the membership functions consists of
AND operations. Uniform heights and weights are chosen for the membership functions of the fuzzy
logic controller. The ruleset determines the weight of the output membership function of the fuzzy
logic controller, based on the fuzzified input. The rules are mapped to exact output values and the
resulting output of the fuzzy logic controller is determined by the weighted average of the outputs,
instead of conventional defuzzification. The output value of the fuzzy logic controller represents the
BESS’s reference power P ref

BESS. An illustration of the Takagi-Sugeno fuzzy logic controller with two
inputs that each have three membership functions is shown in Figure 9.2.
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Figure 9.2: Illustration of the Takagi-Sugeno fuzzy logic controller. All combinations of the input mem-
bership functions are combined the ruleset. Each rule is assigned to an independent output
membership function. The the input values’ degree of membership to each membership
function are the weight of the output membership function. The resulting output is the
respective weighted average of the output membership functions.

The fuzzy logic controller determines the reference output power of the BESS based on the input
variables that can be chosen arbitrarily. Each input has been varied with two and three membership
functions in all combinations and the number with the best results were chosen for further analysis.
For each input variable, both outer membership functions are trapezoidal. The remaining membership
functions in between are triangular. All possible combinations of input membership function are
assigned to separate output singletons in a mutually exclusive way.

The parameter set for the optimization fully describes all membership functions of the fuzzy logic
controller. The parameters x for the optimization represent the position of the membership functions’
defining points. Each outer trapezoidal membership function of the input variables is described by
four values, each triangular membership function by three values, and each output singleton by one
value. The outer two values of the trapezoidal values are treated as non-tunable parameters and kept
at their original position.

9.1.2.3 Constraint Handling

Operational constraints of the BESS are handled by the simulation model and cannot be violated
by the control algorithm. Constraints with regards to the membership functions are considered by
the cuckoo-search’s repair functions. The effective constraints are illustrated in Figure 9.3. The
membership functions are required to overlap or at least connect, and the outer edge of any membership
function cannot exceed the center of a neighboring membership function. The left edge BL of the right
membership function is, for example, subject to AC ≤ BL < AR.

Figure 9.3: Illustration of membership function constraints.

If a newly generated solution either by Lévy flight or discovery violates any of the given constraints, the
positions are reassigned to different membership functions to satisfy the constraints. If, for example,
BL > AR, their positions are switched: BL will be placed at the position of AR and vice versa.
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9.2 Case Studies

The proposed algorithm’s capability is demonstrated for two scenarios, a PV-home storage and a
BESS for a hybrid renewable-diesel island grid. Its results are compared to reference algorithms under
different assumptions. Both, ideal assumptions, as well as more realistic ones that include prediction
errors of the generation and load profiles, are used for the assessment.

Measurements of renewable energy production and measured as well as synthetic load profiles are used
for the simulation of the scenarios. Objective functions illustrate the metrics for the evaluation of the
operation strategies performance for each scenario.

The aim is to maximize the benefit of operating BESS with regard to the chosen goals. Guidance on
whether to invest in BESS or not and the optimal sizing need to be assessed for each case individually
and are not subject of this work.

The simulations were conducted on a Dell Precision T7610 with Intel Xeon E5-2650 v2 workstation
with 2.60 GHz with MATLAB R2017b 64 bit. The computation time depends on the number of
the fuzzy logic controllers inputs. With the given optimization parameters of 80 iterations and a
population of 45 solutions, the optimization of two inputs requires on average 71 seconds, three inputs
85 seconds and four input values require 110 seconds. The simulation of the PV-home case conducts
three optimization runs per day to capture the forecast-based net load profile, obtain an updated
forecast at the beginning of the peak-generation period, and to allow for a correction after the peak-
generation period. It takes about 85 minutes for the two input fuzzy logic controller and 100 minutes
for the three input fuzzy logic controller for the simulation and optimization time of 28 days. The
simulation of the island grid with an optimization frequency of four per day requires about 205 minutes
for a simulation period of 28 days. The island grid performs more optimization because the generation
period is not limited to daylight periods because of the wind generation.

9.2.1 Scenarios and Assumptions

9.2.1.1 Battery Energy Storage System

Two parameter sets are used for the inverter’s power flow model, described in Section 2.2. The first
set is a power dependent efficiency curve that corresponds to the Type 2 high-efficiency inverter. The
second set is a less accurate efficiency curve consisting of 10 values, based on the Type 1 inverter
(Figure 2.9). The sample time of the simulation is set to ∆t = 15 min.

9.2.1.2 PV-Home Storage

The first scenario is a household with a rooftop solar unit and a PV-home BESS. The simulation and
analysis span over a time period of 28 days. A week of each season has been chosen to generate a
set of days to avoid seasonal influence in the operation strategy’s performance. Each continuous week
contains only days with solar generation to enable (reasonable) BESS operation.

The operation is compared with the Dynamic Feed-in Limit(Figure 2.12 (b)). The reference operation
strategy does not emulate the actual Dynamic Feed-in Limit but simplified to copy the behavior of
algorithms that optimize the immediate power output of the BESS instead of (dis-)charging policies
that consider the momentary situation. No correction method to compensate for prediction errors
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is implemented, thus the Dynamic Feed-in Limit’s effectively reduced feed-in peak may be less than
anticipated. The algorithm is executed with a perfect forecast and normally distributed forecast error
to schedule the future BESS output power. This way the theoretic optimum and a non-perfect BESS
behavior that shows the algorithm’s sensitivity to prediction uncertainties are obtained.

9.2.1.3 Objective of PV-Home Storage

The evaluation metric is the reduction of the feed-in peak P̂grid of the grid power Pgrid of each day,
compared to the daily generation peak P̂net of the net load Pnet (9.8). The fuzzy logic controller’s
parameters x are optimized with regard to simultaneously minimizing both objective functions J1 (9.9)
and J2 (9.10) by the cuckoo-search.

P̂red = P̂net − P̂grid (9.8)

min
x

J1 = min
x

(−rss) (9.9)

min
x

J2 = min
x

(
−P̂red

)
(9.10)

9.2.1.4 Load and Generation of PV-Home

The investigated household is a large household in Germany with an annual electricity consumption of
7000 kWh and a rooftop PV unit with a capacity of 8.0 kWp [29]. The load is modeled as a synthetic
load profile of an individual household, obtained from a profile generator [177].

The generation profile of the PV unit is measured from a solar panel with a tilt angle of 0◦ at a latitude
of 48◦08′59′′ N. The energy produced per kWp installed is 899.34 kWh per year. The measurements
were taken at the AC-side of the inverter in 2009 (Figure B.2). Both load and generation profiles are
scaled to the values of the chosen household parameters.

The BESS has a usable energy capacity of 4.0 kWh and a rated power of 4.0 kW, suggested as the
optimal size for the most common household size in Germany [28]. Table 9.1 gives an overview of the
household parameters.

Table 9.1: Household model parameters.
Parameter Value Unit

Household load 7,000 kWh/a
Rooftop PV unit size 8.0 kWp

PV energy production 899.34 kWh/kWp/a
BESS useable energy 4.0 kWh
BESS nominal power 4.0 kW

9.2.1.5 Forecast of PV-Home Profiles

Realistic prediction errors for generation are implemented to analyze their impact on the operation
strategy. The modeled prediction error for the PV production is based on statistical errors of actual
predictions. A normal error distribution is assumed and a standard deviation σFC of 0.1924 normalized
to the PV-peak power is used in this work to model the prediction error. The average 24h ahead baseline
prediction of the solar utilities Tucson Electric Power (Arizona), Green Mountain Power (Vermont),
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and Smyrna (Tennessee) of the year 2013, given by Zhang et al., are used to calculate the standard
deviation [238].

The erroneous forecast is generated based on the actual profile that has been measured. The hourly
average value of the profile is used as the base and offset with a random, normal distributed error
generated with the respective standard deviation σFC. This produces hourly prediction values with
the respective standard deviation (Figure 9.4). The synthesized forecast is similar to actual forecasts
with respect to uncertainty, as we use the same statistical parameters to generate them.

6 12 18
Time in h

Po
w

er

Generation
Prediction

Figure 9.4: Illustration of the synthetic prediction error.

The optimization of the fuzzy logic controller parameters uses an updated short-term forecast of
the PV-generated energy in addition to the modeled prediction error, described above. Adapted
predictions are based on a clear-sky prediction and the PV generated energy of the day. The short-
term prediction method is illustrated in Figure 9.5. The clear-sky prediction depends on the latitude,
tilt angle, the azimuth angle of the PV-panel, and the time and date of the year. The intensity of
direct sun radiation is calculated and assumed to correspond to the output power of the PV-unit. At
the time of the optimization, the PV-generated energy of the previous three hours is compared to the
theoretic maximum generated energy according to the clear-sky prediction. The fraction of the actually
generated energy (yellow area) is then multiplied with the clear-sky prediction (grey, dashed line), to
obtain the adapted PV-prediction (blue line). The next three hours of PV-generation forecast are
assumed to equate that adapted prediction, while more distant future predictions remain according to
the forecast described above. This update is considered for the calculation of the PV-generated energy
forecast only.
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Figure 9.5: Illustration of the short-term adapted clear-sky prediction.

The load is less generalizable and its predictability correlates with the number of households considered.
Single households are hardly predictable without additional information. The load of the previous day
is used as persistent forecast.

9.2.1.6 Optimization Parameters and Fuzzy Logic Structure

The cuckoo-search algorithm is executed with 45 nests and a total of 80 iterations. The cuckoo-search’s
parameter standard deviation σCS is 0.4 and its mean value µCS is 0.5. The simulation is run eight
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times to account for the stochastic mechanisms of cuckoo-search and to ensure that the result is not a
single outlier.

Two well-performing fuzzy logic controllers have been identified from the simulation results. The first
controller uses the net load Pnet and the BESS’s SOC as input, each with three membership functions.
Fuzzy logic controllers with lower numbers of membership functions achieved inferior results. The
second analyzed fuzzy logic controller uses the generated energy forecast of the look-ahead period
as an additional input value for the computation of the output value. The numbers of the input
membership functions with the best results are two membership functions for the net load and three
membership functions each for the inputs SOC and energy generation forecast. The number of output
singletons comprises of the amount of all possible combinations of the input membership function,
thus 9 values for the output of the first fuzzy logic controller and 18 values for the second controller.
Table 9.2 gives an overview of the input parameters and the membership functions.

Table 9.2: Configuration of fuzzy logic controller for PV-home case.
fuzzy logic controller 2 inputs 3 inputs

Parameter membership functions
net load 3 2

SOC 3 3
energy gen. forecast 0 3

output 9 18

The outputs of the fuzzy logic controllers are subject to the constraints that the BESS may only
discharge to provide the household’s load (9.11) and only charge excess PV-generated energy (9.12).

0 ≥ P ref
BESS ≥ −Pnet for Pnet ≥ 0 (9.11)

0 < P ref
BESS ≤ −Pnet for Pnet < 0 (9.12)

The look-ahead period for the cuckoo-search that performed best for the chosen objective is 24 hours
and the cuckoo-search’s recurrence is three times each day at 3 AM, 10 AM, and 1 PM.

9.2.1.7 Hybrid Renewable-Diesel Island Grid

The second scenario is the hybrid renewable-diesel island grid of Graciosa Island, already analyzed in
Section 6.3. A total of 28 days have been chosen for the simulation (days 40-46, 137-143, 235-241,
and 324-330 of the year 2016). One week for each of the four seasons has been chosen to obtain a
representative set of days and avoid seasonal influence on the overall performance of the operation
strategies.

The BESS is parameterized with a nominal power of 6 MW and usable energy of 5.3 MWh, identical
to Stenzel et al. [131].

9.2.1.8 Objective for Island Grid Storage

The objective J for the optimization consists of the fuel cost of the diesel generator and the cost of load
shedding (9.13). The load shedding is introduced to force the BESS to supply the required net load.
The economic assumptions for the diesel operation are fuel costs cFuel of 2 EUR/l [96] and a penalty
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cshed
load of 800 EUR/MWhel for load energy Eshed

load that is shed/not supplied. The penalty is chosen to be
higher than the electricity produced by the diesel generator, to prioritize the supply of the load [239].

J = cFuel · VFuel + Eshed
load · cshed

load (9.13)

9.2.1.9 Forecast of Island Grid Profiles

The modeling of the prediction errors for PV and the load is identical to the PV-home case. The
PV error is a normal distribution with a standard deviation σFC of 0.1924 normalized to the nominal
PV-peak power. The load forecast is the persistence of the previous look-ahead period of 24 hours.

The forecast of the wind generation is modeled as hourly predicted values, according to probability
density functions analyzed by Hodge et al. [240]. They describe the prediction errors with a hyperbolic
distribution, that are modeled in the same way as the PV-prediction error. The hourly average of the
actual profile is offset with a random value, generated with the respective error distribution.

The forecast is modeled using the error parameters of the Spanish case (Table 9.3) presented by
Hodge et al., with a mean value µFC of 0.0162, a standard deviation σFC of 0.0514, a skewness γ1,FC of
0.3855, and a kurtosis γ2,FC of 3.0180 [240]. The values are normalized to the installed wind generation
capacity.

Table 9.3: Parameters of the wind forecast error [240].
Parameter Value

Distribution type Hyperbolic
Mean value µFC 0.0162

Std. deviation σFC 0.0514
Skewness γ1,FC 0.3855
Kurtosis γ2,FC 3.0180

9.2.1.10 Optimization Parameters and Fuzzy Logic Configuration

The cuckoo-search algorithm is executed with 45 nests and a total of 80 iterations. The cuckoo-search’s
parameter standard deviation σCS is 0.4 and its mean value µCS is 0.5. The simulation is run eight
times to account for the stochastic mechanisms of cuckoo-search and to ensure that the result is not a
single outlier.

The fuzzy logic controller uses the power system’s current net load, the BESS’s SOC, the diesel
generator state (must run or must remain off), and the diesel generator’s time since the last state
change as input. The fuzzy logic controller uses two membership functions for the net load and
three membership functions for each of the remaining inputs. Each possible combination of input
membership functions is assigned to an output membership function, resulting in 54 output singletons.
The chosen number of membership functions performed best among all 16 tested combinations. The
algorithm considers a look ahead time period of 24 hours and the parameters are optimized four times
each day at 3 AM, 10 AM, 1 PM, and 4 PM. Table 9.4 gives an overview of the input parameters and
the membership functions.
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Table 9.4: Configuration of fuzzy logic controller for island grid case.
Parameter membership functions

net load 2
SOC 3

diesel generator state 3
time since diesel generator state change 3

output 54

9.2.2 Results

9.2.2.1 Results of PV-Home Storage

Figure 9.6 shows the achieved self-sufficiency rates by the BESS with different operation strategies.
The white bars on the left represent the self-sufficiency rate achieved with the ideal forecast. The blue
bars on the right of each group illustrate the self-sufficiency rate based on the flawed forecast.

The self-sufficiency rate of the analyzed PV-home without BESS is 33.6%. The ideal self-sufficiency
rate for the given BESS is 59.1% achieved by the Dynamic Feed-in Limit operation strategy. Forecast
errors reduce the self-sufficiency rate to 46.2%. Fuzzy logic control with ideal forecast and two inputs
net load and SOC achieves a smaller self-sufficiency rate of 56.5%. Prediction errors further reduce the
achieved self-sufficiency rate to 53.5%. Similar values are achieved with the fuzzy logic controller that
considers the forecast energy generation. In this case, the self-sufficiency rate achieved with perfect
prediction is 56.7% and 54.2% with the erroneous forecast.

The self-sufficiency rates achieved by the fuzzy logic controllers are lower for the perfect prediction
case but are less sensitive to flawed prediction compared to the forecast based pre-scheduling of the
BESS power.

PV onlyDyn. Feed-In
Limit

FLC
2 inputs

FLC
3 inputs

34%

59% 56% 57%

34%
46% 54% 54%

Se
lf-

su
ffi

ci
en

cy
ra

te

Ideal FC
Flawed FC

Figure 9.6: Self-sufficiency rates of reference algorithm and optimized fuzzy logic controllers for ideal
and erroneous forecast.

The power flows of the household operating the BESS are shown in Figure 9.7 for two exemplary
days. The top left figure (a) is the BESS with Dynamic Feed-in Limit with perfect prediction. The
bottom left plot (b) shows the Dynamic Feed-in Limit with forecast error. This is equivalent to an
optimization based controller without adaption to prediction uncertainties. The top right figure (c)
shows an exemplary fuzzy logic controller with two inputs net load Pnet and SOC. The bottom right
figure (d) depicts an exemplary fuzzy logic controller that in addition considers the generated energy
forecast of the look-ahead period EFC

PV. Both fuzzy logic controllers shown are tuned with erroneous
predictions of load and generation. The black line represents the net load of the household, the blue
area is the battery power, and the green area is the power exchanged between the household and the
electricity grid. The grey and yellow area are, respectively, the household load and PV-generation
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that determine the net load. The feed-in peaks of each day are denoted with red dashed lines and the
respective value.

The Dynamic Feed-in Limit with perfect forecast (a) achieves maximum self-sufficiency rate and feed-
in peak reduction. However, the performance deteriorates, if the operation strategy is confronted
with prediction errors (b). The output of the BESS is pre-determined for each time-step based on
the prediction. Any deviation immediately reflects on the performance. Feed-in peaks are not well-
predicted and therefore not well-handled. The last peak on the second day, for example, has not
been well-predicted and the BESS even discharges at that time, instead of charging, because of the
deviating forecast. The inappropriate discharge is marked with a red circle. A similar issue occurs at
the evening of day one, where the operation strategy expects a larger load and discharges the BESS,
resulting in grid feed-in. Both events do not conform to regulations of the applications and illustrate
that forecast-based optimization of the power output is not suitable for real-time energy management
of BESS.

Both fuzzy logic controllers generally exhibit better results than the prediction based pre-scheduling,
when forecast errors are present. The shown profile of the fuzzy logic controller with two inputs reveals,
that the controller charges too quickly on the first day and cannot reduce the feed-in in the second
half of the peak generation period and is even worse than the pre-scheduled Dynamic Feed-in Limit
with forecast errors (b). Introducing the forecast energy generation as an input variable for the fuzzy
logic controller leads to slightly better feed-in peak reduction on the first day (d). However, the last
feed-in peak of the second day is not well handled by the fuzzy logic controller with three inputs (d).
In this specific case, the simpler fuzzy logic controller with two inputs leads to a better feed-in peak
reduction.
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Figure 9.7: Profiles of PV-home BESS. The left figures show the BESS output with Dynamic Feed-in
Limit. The upper plot (a) is shown with perfect forecast. The bottom figure (b) is the
case with prediction error. The two right plots (c) and (d) show the fuzzy logic controllers,
both with prediction error. The top plot (c) is the profile of the fuzzy logic controller with
two inputs. The bottom plot (d) depicts the fuzzy logic controller with three inputs.

The daily feed-in peak reduction achieved by the BESS with different operation strategies is shown
in Figure 9.8. The days are not in a chronological order but the values are sorted in a descending
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order of the peak reduction achieved by the respective operation strategy. The dashed lines show
the peak feed-in reduction by the operation strategies run with the perfect forecast. The solid lines
represent their performance if only non-perfect forecast is available for their optimization. The feed-in
peak reduction achieved by the Dynamic Feed-in Limit is illustrated by grey lines. The fuzzy logic
controller with two inputs (net load and SOC) is represented by blue lines. The fuzzy logic controller’s
performance with the generated energy forecast as additional input is shown by orange lines.

While the Dynamic Feed-in Limit performs perfectly with the ideal forecast, it suffers severely from
prediction errors. The feed-in peaks may even increase because of the prediction errors and no cor-
rection method is in effect that may prevent unfavorable BESS behavior. Figure 9.8 reveals that this
happens in 5 of the 28 analyzed days. This issue is also apparent in Figure 9.7 at the last peak of the
second day, where the BESS is scheduled to discharge and consequently raise the grid feed-in power.

The fuzzy logic controllers, in contrast, both achieve a comparably good performance, despite erroneous
prediction. In case of perfect prediction, however, they are not capable of utilizing the whole BESS
potential for the peak reduction. The fuzzy logic controller with two inputs achieves slightly better
results than its three-input equivalent over all days in the flawed forecast case.
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Figure 9.8: Feed-in peak reduction of optimized fuzzy logic controller compared with reference opera-
tion strategies for each of the 28 simulated days in descending order.

Figure 9.9 compares the peak reduction of the fuzzy logic controllers and the Dynamic Feed-in Limit
with erroneous prediction. The increase of feed-in peak-reduction by the fuzzy logic controllers com-
pared to the pre-scheduling by the Dynamic Feed-in Limit with forecast errors is shown. The difference
in peak reduction of the same days is shown in a descending order. The fuzzy logic controllers consis-
tently achieve better results in the presence of prediction errors. The fuzzy logic controller with two
inputs (blue line) only achieves a slightly lower feed-in peak-reduction than the rule-based reference in
three days. Adding the generated energy forecast as input for the fuzzy logic controller (orange line)
leads to slightly poorer results for the majority of the days.

The proposed control algorithm achieves slightly inferior results compared to the reference operation
strategy under perfect conditions but is considerably more robust to prediction errors that are common
in real-world applications.

9.2.2.2 Results of Island Grid

The proposed algorithm’s performance is evaluated by the fuel reduction compared to the island
without BESS. Figure 9.10 shows the profiles of the island for an exemplary day. The top figure shows
the load follow operation strategy. The optimized fuzzy logic controller is shown in the middle figure.
The bottom figure depicts the profiles of the On-Off operation strategy. The figures show the load
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Figure 9.9: Difference of feed-in peak reduction of optimized fuzzy logic controller against the reference
operation strategy with forecast error for each of the 28 simulated days in descending order.

(grey area), the wind generation (orange area), the PV-generation (yellow area, stacked on the wind
generation), the consequent net load (black line), the DG generation (green area), the BESS power
(blue area), and the resulting curtailment (red area).

The load follow operation strategy provides the load with the BESS first but does not plan ahead.
Instead of charging the BESS with the running DG to prevent later ramp-up, only the minimum power
output of the DG is used. The On-Off operation strategy leads to larger DG output and higher fuel
consumption. However, the BESS is charging the excess power and has sufficient energy to provide
the load at the end of the day and prevent an additional ramp-up of the DG. The optimized fuzzy
logic controller behaves similarly to the load follow operation strategy but does not follow the load as
well. It evokes larger DG power output and the curtailment of the RES indicates that the RES are
not optimally utilized.

A bar chart with the fuel reduction achieved by operating the BESS is shown in Figure 9.11 (a). The
ratio of the load shed to the overall load is depicted in Figure 9.11 (b). The results represent the
performance over all of the 28 simulated days compared to an island grid without BESS. The BESS
with On-Off reduces the fuel consumption by 9.4% and the load following algorithm leads to 63.8%
reduction of the fuel consumption. The fuzzy logic controller reduces the fuel consumption by 47.4%
under perfect conditions. Prediction errors deteriorate the reduction to 34.4% less fuel consumption.
The shed load is below 1% of the energy consumption.

The results summarize the BESS behavior shown in Figure 9.10. While the load following algorithm
is superior in reducing the diesel generation, the fuzzy logic controllers are not sufficiently accurate to
achieve comparable results. The On-Off algorithm leads to unnecessary power output, as seen in the
figure, and is therefore not capable of reducing the diesel generation substantially.

Varying residual energy in the BESS for the different cases has not been taken into account for the
results. The island grid without BESS, however, requires the diesel generator to generate 311 MWh of
electricity, largely exceeding the BESS’s nominal energy capacity of 5.3 MWh.

9.2.2.3 Discussion of both Scenarios

The proposed controller has been demonstrated for different scenarios. The results are in general
acceptable, though can probably be improved. Compared to the reference operation strategies, that
rely on prediction data, the optimized fuzzy logic controller is more robust against prediction errors.

The optimization recurrence has been varied from several times a day to once every day. The look-
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Figure 9.10: Profiles of the island grid of day 238 of 2016 with different operation strategies for the
BESS. The figure on top (a) shows the profiles with the load following operation strategy.
The middle figure (b) illustrates the performance of an optimized fuzzy logic controller
with forecast error. The bottom figure (c) depicts the power flows with an On-Off oper-
ation strategy.

ahead horizon has been varied from one day up to seven days. Longer look-ahead horizons, as well as
less frequent optimization, lead to inferior results.

Increasing the use of RES in an island grid is a more straightforward application and the reference
operation strategies do not require profile prediction. In this case, the optimized fuzzy logic controller
is inferior to the load follow reference operation strategy, yet outperforms the non-optimal reference
On-Off strategy.

More inputs, such as the generated energy forecast provide the controller with additional adaptiveness
and, if feasible, lead to better performance. This can be seen in the PV-home case, where the fuzzy
logic controller with three inputs is consistently better than the one with two inputs. The increased
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Figure 9.11: Reduction of fuel consumption (a) by reference algorithms and optimized fuzzy logic
controller compared to island grid without BESS. The rate of load shedding is depicted
in the right Figure (b).
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adaptiveness, however, seems to also increase the sensitivity against certain prediction errors, like on
day 2, where the fuzzy logic controller with two inputs is superior to its three-input counterpart that
underestimates the last feed-in peak. Other input values, such as the time of the day, did not improve
the controller’s performance and partially increased its sensitivity to forecast uncertainties.

The proposed fuzzy logic control-structure is exploited as a general controller, that can be adapted for
a wide range of objectives and system configurations. The property of fuzziness reduces the impact of
prediction errors, as demonstrated in the PV-home case. At the same time, it does not handle discrete
events well, such as preventing the ramp-up of the DG, even though the BESS would be capable of
doing so. The controller does not excel at tasks that require the BESS to provide exact values output
power.

The proposed algorithm can be deployed for different applications without changing its general struc-
ture. The algorithm is more suited for complex applications with high degrees of freedom, where
reference operation strategies are not as obvious. The method can be utilized as a systematic ap-
proach to gradually develop control algorithms, by varying input membership functions and possible
input values. The resulting fuzzy logic controller and its linguistic representation could be used as the
basis for the development of a parametric, rule-based controller.

9.3 Summary of Multi-Objective Optimized Control

The proposed algorithm is based on a fuzzy logic controller that is optimized in a recurring manner,
by a cuckoo-search algorithm. It shows superior robustness against prediction errors, compared to
the reference parametric controllers in the PV-home case. As demonstrated in two example cases, the
algorithm may be deployed for different systems and applications. The combination of the fuzzy logic
controller with meta-heuristic optimization overcomes the drawback of widespread manual tuning of
the fuzzy logic controller. The use of fuzzy logic control allows a wide range of desired behavior based
on the momentary input. The cuckoo-search ensures optimality within the ability of the controller for
a variety of scenarios instead of the need to optimize parameters for a specific scenario. Results show,
however, that the configurations of the fuzzy logic controller with the best performance under realistic
forecast uncertainties, do not capture the full potential in the ideal case.

A limitation is the complexity of the controller that requires meta-heuristic optimization, fuzzy logic
control, and a system model. It furthermore relies on prediction data, which may not always be
available. The use of the controller is limited to applications, that allow a certain freedom to operate.
BESS applications that impose fixed rules on the BESS output power, such as primary control reserve
are not suitable for the proposed control algorithm.

The proposed method represents a systematic approach to handle prediction uncertainties, associated
with renewable energy generation. The controller’s real-time capability is ensured by the underlying
rule-based fuzzy logic controller. The algorithm uses forecasts with a longer sample time for the pa-
rameter optimization than the profiles of the simulation, indicating that it can process shorter sample
periods. Optimization to achieve improved results is included with the meta-heuristic search algo-
rithm, to optimize the controller’s parameters based on prediction data. The algorithm is adaptive
to changing environment because of its receding horizon principle, instead of a one-time offline pa-
rameter optimization. This allows exploiting more accurate near-term forecast and adjusted control
parameters.
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10 Application Stacking

This chapter proposes a concept to operate BESS with the application stacking approach. The structure
is described in Section 10.1 and illustrated with examples in Section 10.2. A summary (Section 10.3)
concludes this chapter. A large proportion of this chapter has been published in [241].

10.1 Structure of Concept

A two-layer concept for the stacking of applications is proposed. The first layer consists of a time-ahead
planning of the BESS partitions for a defined time period (e.g. a day ahead). The partitions comprise
the BESS resources and right of use. The second layer allows shifting of the pre-determined storage
partitions between the planning phases.

The first layer determines the expected use of storage partitions of each application for planning pur-
poses and to resolve financial obligations. The second layer allows an exchange of BESS-resources
within the operation period of the time-ahead planning between the applications. This allows consid-
eration of forecast uncertainties and to react on them.

10.1.1 Time-Ahead Planning for Battery Resources

The first layer is the pre-planning where BESS resources and right of use (energy capacity, stored
energy, priority power value, and rank) for each application are determined, depending on their forecast
needs.

The virtual energy capacity segments EC
k of the BESS are assigned to each stakeholder k. The sum

of all n capacity segments is equal to the total physical nominal energy Enom
BESS of the BESS (10.1).

A segment that is not allocated to any application may exist. The physically stored residual energy
Er in the BESS is distributed among the applications and is associated to the state-of-charge (SOC)
(10.2). Consequently, the residual energy segments Er

k may not be negative and must not exceed the
corresponding energy capacity segment EC

k (10.3). This translates to constraints (10.4) and (10.5) for
the power Pk assigned to the segments. The variables with a bottom index (k, A or B) denote the
segments in general or the specific value for the respective stakeholder.

Enom
BESS =

n∑
k

EC
k (10.1)

Enom
BESS · SOC = Er =

k∑
n

Er
k (10.2)

0 ≤ Er
k ≤ EC

k ∀k (10.3)

Pk ≥ 0 if Er
k = 0 (10.4)

Pk ≤ 0 if Er
k = EC

k (10.5)
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An illustration of the energy asset segmentation is shown in Figure 10.1. The physical reality of the
BESS is shown on the left, while the virtual segmentation is depicted on the right of the Figure. The
residual energy segment Er

k is the energy stored in the respective energy capacity segment EC
k . The

balanced energy segment Eb
k = EC

k − Er
k represents the storable energy until the segment is fully

charged.

Virtual distribution of BESS
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Figure 10.1: Illustration of BESS segmentation and distribution according to the planning stage.

Unlike energy, power is only limited by momentary values, instead of persisting system states. The
constraints for the power distribution are therefore not as strict as the energy constraints. The sum of
assigned power values determines the physical output of the BESS. Each application is given a rank
Rk and yields a priority power value P P

k .

Equations (10.6) to (10.9) describe the power allocation to each application if the total requested
reference power

∑
k P ref

k exceeds the nominal power P nom
BESS of the system. During the first distribution,

a maximum of prioritized power value P P
k is assigned.

Equations (10.6) to (10.8) are computed for each application sequentially in the order of their rank
Rk. If physical power is available after assigning the powers P̃k for all applications in the first step, the
unmet reference powers P̃ ref

k (10.8) are met with the remaining BESS power capability P rem (10.6).
The ratios of the unmet reference powers P̃ ref

k , after execution of (10.6) to (10.8) for all applications,
determine the allocation of the power for each application Pk (10.9). If the BESS reaches its power
limit P nom

BESS at any step of the power assignment, the current value is set to maximize the output
power. All following reference powers are then set to 0.

P rem = P nom
BESS −

∣∣∣∣∣
n∑
k

P̃k

∣∣∣∣∣ (10.6)

P̃k =
{

min
{

P ref
k , P rem, P P

k

}
for P ref

k ≥ 0
− min

{
−P ref

k , P rem, P P
k

}
for P ref

k < 0
(10.7)

P̃ ref
k = P ref

k − P̃k (10.8)

Pk = P̃k + P̃ ref
k∣∣∑n

l P̃ ref
l

∣∣ · P rem ∀k (10.9)
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10.1.2 Intra-Day Battery Resource Shifting for Real-Time Control

The second layer allows re-allocation of resources in cases of prediction errors. Stakeholders may
require obtaining additional resources to fulfill their objectives because of prediction errors. The control
algorithm may detect the shortage of resources for each stakeholder individually during operation and
trigger the request for more resources from another resource holder.

These new resources allow the receiving stakeholder to meet his objectives, while the resource provider
may suffer performance losses and consequently financial losses. The terms of the transactions and the
respective compensation that the parties agreed on in the first operation layer apply.

A general description and the associated constraints of the transactions and the implications on the
BESS state are given in (10.10) to (10.12). Energies (both energy capacity EC

k or residual values
Er

k) may be changed at any time (10.10), given that any increase ∆Ek is taken from other segments
(10.11). This ensures the overall energy balance (10.1) and (10.2). The superscript star denotes the
new value E∗

k , the superscript 0 denotes the previous value E0
k. The redistribution is not limited to

pairs of applications but may include more parties (10.12). ∆Ekl denotes an energy transfer from
application k to application l. The notation with shifting residual energy implies that the shifting
of energy capacity refers to empty capacity. If both energy capacity and residual energy should be
shifted, this is done in two separate operations.

E∗
k = E0

k + ∆Ek ∀k (10.10)
n∑
k

∆Ek = 0 (10.11)

∆Ek =
n∑
l

∆Elk ∀k (10.12)

10.2 Illustrating Examples

The first examples in this Section show the proposed behavior of the BESS with two stakeholders.
Charging power is defined by positive power values. Negative power values represent a discharging.
Suppose a BESS with following states and allocation of the properties to each stakeholder A and B.

The physical properties and states are the nominal energy capacity Enom
BESS = 100 kWh, nominal power

P nom
BESS = 50 kW and the stored (residual) energy Er = Er

A = 5 kWh. The properties of application A,
application B, and the total values, are given in Table 10.1.

Table 10.1: Example values of the right of BESS-use and virtual states of applications.
Application k Energy Capacity EC

k Residual Energy Er
k Priority Power P P

k Rank Rk

A 75 kWh 5 kWh 10 kW 2
B 25 kWh 0 kWh 20 kW 1

Total 100 kWh 5 kWh 30 kW -
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Negating Output Powers

Opposing power requests P ref
k of the stakeholders’ operation strategy negate each other and the residual

power is executed by the BESS if all relevant constraints are fulfilled. Suppose application A requires
a power P ref

A of 30 kW and application B requests a power P ref
B of -25 kW, the resulting reference power

is the sum of both reference powers (10.13).

n∑
k

P ref
k = 5 kW (10.13)

Energy Capacity Allocation

The next example illustrates how the allocated energy capacity segments EC
k of stakeholder k limits

the requested power P ref
k . Suppose that both applications request a discharging power of both 10 kW

(10.14). As application B has no energy left for discharge (Table 10.1), its residual energy is at the
limit and the application must keep the energy constraint (10.3). Consequently, application B does
not discharge (10.15). The overall output power of the BESS is equivalent to the output of application
A (10.16).

P ref
A = P ref

B = −10 kW (10.14)

PB ≥ 0 kW → PB = 0 kW (10.15)

P = PA + PB = −10 kW (10.16)

Hierarchical Distribution of Power

If the sum of the requested power exceeds the nominal power (10.17), a priority based distribution
of the BESS’s nominal power to the requested output of each application is executed. Suppose the
reference power of application A is P ref

A = 50 kW and application B requires P ref
B = 30 kW. Application

A is assigned power first because it has a higher rank RA = 2 than application B with a rank of RB = 1.

In the first step, A receives its reference power up to a maximum of its prioritized power P P
A or the

remaining power P rem (10.18). Since no power allocation has taken place in this iteration yet, the
remaining power P rem equates to the nominal power P nom

BESS (10.6). P̃A is the preliminary power that
is allocated in the first step according to (10.7). The remaining power P rem (10.19) is then assigned to
application B (10.20), with the same rules that the priority power P P

B and remaining capacity P rem

limit the allocated power P̃B (10.7).

After assigning all preliminary powers P̃k, the remaining power P rem (10.21) is distributed among
the residual P̃ ref

k powers (10.8) according to their proportions (10.9) and the definite powers Pk are
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assigned to the applications (10.22) and (10.23). Figure 10.2 graphically represents (10.18) to (10.21).

n∑
k

P ref
k = 80 kW > P nom

BESS (10.17)

P̃A = min
{

P ref
A , P rem, P P

A

}
= min {50 kW, 50 kW, 10 kW} = 10 kW (10.18)

P rem = P nom
BESS − P̃A = 50 kW − 10 kW = 40 kW (10.19)

P̃B = min
{

P ref
B , P rem, P P

B

}
= min {30 kW, 40 kW, 20 kW} = 20 kW (10.20)

P rem∗ = P rem0 − P̃B = 40 kW − 20 kW = 20 kW (10.21)

PA = P̃A + P̃ ref
A∣∣∑n

k P̃ ref
k

∣∣ · P rem = 10 kW + 40 kW
50 kW · 20 kW = 26 kW (10.22)

PB = P̃B + P̃ ref
B∣∣∑n

k P̃ ref
k

∣∣ · P rem = 20 kW + 10 kW
50 kW · 20 kW = 24 kW (10.23)
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Figure 10.2: Sequential assignment of available power to the power demands.

Shifting of Stored Energy

Equations (10.24) to (10.27) illustrate how residual energy is exchanged between two parties (10.26)
and (10.27), while the allocated energy capacities remain (10.24) and (10.25). The superscript star
denotes the new value E∗

k , the superscript 0 denotes the previous value E0
k. This is a mere re-declaration

of ownership. The equations ensure that the physical energy within the BESS remains identical to
the assigned energy to their owners. This example procedure is intended to compensate for single-
events where stakeholder A needs to shed energy ∆Er

AB that stakeholder B is willing to receive. The
constraint of the redistributed energy (10.11) is fulfilled because ∆EAB = −∆EBA.

EC∗
A = EC0

A (10.24)

EC∗
B = EC0

B (10.25)

Er∗
A = Er0

A + ∆Er
BA (10.26)

Er∗
B = Er0

B + ∆Er
AB (10.27)

The example is graphically illustrated in Figure 10.3. A redistribution of the residual energies Er
k also

changes the SOC of the application and generates a discontinuity in the graph. The amount of ∆Er
AB

is shifted from Er
A to Er

B . This way stakeholder A is able to store more energy in the future.
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Figure 10.3: Illustration of shifting residual energy Er between applications triggered by short-term
control outside of bidding.

Shifting of Energy Capacity

The next example illustrates a re-assignment of each application’s assigned energy capacity (10.28) and
(10.29), but the stored energy remains unchanged (10.30) and (10.31). This transaction is intended
for a more persistent increase of energy capacity for application A.

EC∗
A = EC0

A + ∆EC
BA (10.28)

EC∗
B = EC0

B + ∆EC
AB (10.29)

Er∗
A = Er0

A (10.30)

Er∗
B = Er0

B (10.31)

The shifting of the energy capacity is illustrated in Figure 10.4. A re-assignment is triggered, where
EC

A is increased by ∆EC
BA. The graphical discontinuity of Er

A is caused by the shifting of its bottom
reference.
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Figure 10.4: Shifting of energy capacity EC from stakeholder B to stakeholder A.

10.3 Summary of Application Stacking

The proposed application stacking concept partitions the BESS into segments of energy capacity and
stored energy. The approach consists of two layers. The first layer is the time-ahead-layer, where
the auction market determines the technical parameters: control algorithm, energy capacity, priority
power, and rank. Optimal allocation of the segments requires model prediction of the achieved benefits
in the respective applications. The second layer is the real-time-layer, where the control algorithm
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triggers the re-allocation of energy and priority power.

The first auction layer enables a transparent allocation of BESS resources and some certainty for
planning. The second auction layer introduces short-term flexibility and additional BESS buffer.
Prediction uncertainties and emergency situations are covered, as well as general situations with a
low probability could be covered by the second layer instead of completely occupying resources. The
flexibility introduced by the redistribution mechanism is expected to avoid the hedging and blocking
of BESS resources. Accurate estimation of the SOC is, however, assumed.

As these short-term triggered events are expected to be more elaborate, accurate capacity allocation is
probably beneficial for all stakeholders. This short-term event and priority-based re-assignment allow
the stakeholders to omit comprehensive hedging by liberally blocking large segments of the BESS. Yet,
the added flexibility does not exhibit ambiguity because the explicit occurrence and value of obligations
are pre-declared and the flexible BESS deployment is made accountable for all parties. This increases
the utilization and thus improves the benefit per BESS energy capacity.
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11 Implementation Concepts for Improved Operation

This chapter proposes concepts that allow implementing the presented operating algorithms to ade-
quately map the operation to business logic, that is determining financial obligations. This is especially
important in scenarios with multiple stakeholders. The problem in the first place and existing liter-
ature regarding auction markets for BESS is outlined in Section 11.1. The blockchain technology is
described in Section 11.2. It enables the implementation of low-cost aggregators that are responsible
for the market clearing. The concept is proposed in Section 11.3 and Section 11.4 summarizes the
chapter.

11.1 Auction Markets to Include Multiple Stakeholders

An auction market to allow operating BESS for multiple stakeholders is proposed. Other approaches
require a pre-determined priority setting that all stakeholders need to agree on. It also does not
consider changing environment and requirements of the stakeholders. Auction markets, on the other
hand, allow the stakeholders determine their priorities themselves by their bidding behavior.

Auction markets for BESS have been proposed to allow a sharing of the BESS among multiple stake-
holders [242; 243]. In order to propose a sound mathematical framework, their constraints and as-
sumptions for the markets are rather strict.

He et al. [242] are the first to propose a business model that allows the systematic aggregation of
several revenue streams of energy storage systems. They propose a series of auctions for the right to
utilize the energy storage to ensure non-conflicting usage of the energy storage by different actors. The
optimal composition of the stacking is determined with perfectly forecast power profiles. They set the
constraint that the charged and discharged energy of each application is equal, to avoid conflicts of
interest between the auctions. No consideration of prediction errors has been given.

Brijs et al. [243] propose the usage of auction markets, where storage owners can offer rights of physical
storage usage. They introduce an aggregator for clearing the auction market. This limits the deploy-
ment of the proposed market to large-scale BESS with powers of several MW, as the aggregator adds
further operating cost that can only be compensated by large-scale BESS with higher absolute revenue.
The deployment of their concept excludes smaller BESS such as community BESS in distribution grids
that would address the most severe challenges of RES [64].

Besides setting very strong constraints, both proposed auction market concepts require a clearing of
the market by an additional party, the aggregator. This introduces another cost factor that impairs the
added economic value of multi-use and thus limits the application to larger BESS for financial reasons.
Another systematic issue is the role of the aggregator. Holding the monopoly to market decisions
automatically creates strong incentives to exploit market power, requiring complex regulations to
remedy these incentives [244].

Even though multi-use has been suggested, no concept has been proposed, that allows for both, optimal,
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technical operation and transfer to business logic with multiple stakeholders. Multi-use, as proposed,
results in a dynamic dispatch of BESS and is not compatible with rather static electricity markets
and regulations. Multiple applications within one system require a conciliating mechanism that maps
the BESS efforts and resulting benefits to market-based obligations. This is especially relevant in
deregulated energy markets, common in the European Union, where the ownership and operation of
BESS need to be decoupled. This allows value generation of shared BESS across multiple market
players.

11.2 Blockchain to Enable Automated Low-Cost Aggregators

The blockchain is currently a much-noticed topic that is discussed in a variety of industries. It is
mostly known in its application for cryptocurrencies, such as Bitcoin or Ethereum. The blockchain
is a distributed database that allows every participant to verify the authenticity of any transaction,
registered in the blockchain. Some blockchain projects exist in the energy sector, with the majority
dealing with using the blockchain for simple trading transactions [245–249]. Only a few concepts
extend the use of blockchain to address technical issues [244; 250–254].

The blockchain technology exhibits properties for trusting agreements, that may enable a more flexible
and dynamic use of BESS in the future. Immutable proof of agreements and the utilization of so-
called smart contracts hold the potential to enable local auction markets that are compatible with
both business logic and flexible multi-use of BESS for optimized performance.

Blockchain Technology

The blockchain is a distributed database where each agent has an identical copy. The database com-
prises a chain of blocks. Any agent can generate blocks that store the block header, transactions, and
smart contracts. The distributed nature, the cryptographic mechanisms, and the proof-of-work mech-
anism enable transparency and validity of the transactions. The blockchain technology is assumed to
be independent of central authorities, yet ensures the agreement between all parties by peer to peer
validation. [246]

Generating new blocks start with a new block header that includes a timestamp, a hash of the previous
block in the chain, and the result of the proof-of-work that is generated by the mining mechanism.
These elements protect the block and prevent a subsequent change of the database entries. Each
generated block is broadcast in the blockchain network for validation by each individual agent, before
they add that block to their own chain, leading to a synchronization of the distributed blockchains. [250]

Mining is the solving of a pre-defined problem to validate the generated block. Higher complexity of
the problem raises the security of the mechanism, but also requires more time and energy to be solved.

A smart contract is a user-defined program in a block that specifies the rules of transactions. They can
be reviewed by all blockchain-participants and serve as a substitute for written, legal contracts. [255]
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11.3 Structure of Concept

This Section proposes a basic concept that combines two promising topics: multi-use of BESS and
blockchain technology. It allows a market-based multi-use of a BESS with several stakeholders while
providing flexibility for real-time energy management. The concept consists of a two-layer architecture,
combined with a blockchain to implement a business logic that determines the financial obligations.
The first layer provides the cyclical (pre-)allocation of the BESS resources and determines the control
parameters. The second layer serves the purpose of real-time re-allocation of the resources, triggered
by the technical control algorithm. The concept is shown graphically in Figure 11.1.

Figure 11.1: Graphical illustration of the proposed multi-use concept. Multiple stakeholders bid on use
priorities. An automated aggregator clears the market and sets the operating parameters
of the BESS. The behavior of the BESS is recorded and the financial obligations according
to the terms agreed on at the bidding process are distinctly determined.

The implementation for the multi-use approach merging of multiple objectives can be applied as follows:
The stakeholders bid on the weight of their objective that then form the objective function J for the
optimization, consisting of the weighted sum of the individual objectives. The operation of the BESS
is then optimized by its EMS. This operating mode is more complex than the application stacking but
allows to reach global optima. It is, however, not suitable for strict applications, like energy wholesale
or frequency control, where the output is completely determined.

This implementation concept can be applied to the stacking of applications as follows: The first layer,
the time-ahead planning of the BESS segments and rights of use are determined by auction. This
auction also determines the terms for the second layer, i.e. triggers and (financial) consequences.
The blockchain registers all submitted bids. The disclosure of all bids and the rules for the clearing
process allow all blockchain participants to acknowledge and verify the results. This is transferred to
the market via smart contracts to register the technical transaction and financial obligations in the
blockchain. The priorities of the stakeholders depend on their willingness to pay for the BESS service.

A hybrid of stacking and merging is possible. This results in several segments for the stacking of
applications and any segment can be used for a merging of multiple objectives. It is possible to have
several segments with a certain set of objectives that are merged into a single objective function J .

Suggested Properties of Blockchain

A permissioned blockchain is advisable because it ensures that only stakeholders with a reasonable
interest in operating the BESS may participate in the auction market. With limited agents in the
blockchain, the proof-of-work mechanism can be designed as a simple problem to consume only little
energy with short computation. Even though this compromises the security against manipulation of
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the transactions, the limited access to the blockchain reduces that risk.

The less elaborate proof-of-work enables reasonable mining without high-performance computers and
is therefore possible for all or at least a large share of the market participants, to further minimize the
risk of manipulation and reinforce the validity of transactions.

11.4 Summary of Auction Markets for Multiple Stakeholders

The issue of multiple stakeholders is a challenge for multi-use concepts. The introduced market for
BESS is suitable to handle dynamics in future electricity grids. The multi-use of BESS is combined
with blockchain technology to remedy the drawbacks of a conventional aggregator that coordinates
the multiple stakeholders. This may be a catalyzing link between technical control and business logic.
This extension avoids the need for an expensive aggregator, as automated algorithms are utilized
instead. The author suggests a local auction market, where stakeholders bid for use priorities. The
suggested blockchain-based aggregator is responsible for automated, computer-based market clearing,
BESS execution, proof of delivery, and determination of financial obligations among the stakeholders.

Smart contracts are incorporated in the proposed concept to allow mechanisms that compensate for
the intermittency of load and generation with the associated prediction uncertainties. The dynamics
of the power grid are expected to increase with growing shares of RES and battery electric vehicles.
Instead of adding energy buffer for each stakeholder during the auction, smart contracts allow more
flexible sharing of the BESS within the auctioned periods. This consequently prevents oversizing of
BESS, but increases their utilization ratio instead and eventually improves their economic value.

The properties of the blockchain technology presumably enable a generic, low-cost solution that can
be applied to any BESS-size, down to small systems, such as community BESS with a few tens of kWh
energy capacity. Consequently, the majority of applications for stationary BESS is covered [64]. The
key-property of blockchain in the proposed multi-use concept for BESS is that all transactions (i.e.
auctioned or triggered allocations of BESS use priorities) are registered in the blockchain and allow
accountable actions and obligations between all stakeholders, without an added central authority [246].
A few conditions are necessary for the proposed concept to be feasible. First, all relevant stakeholders
need to understand and adopt smart contracts and the consequences of the programming code included.
Second, these smart contracts need to be legally effective and binding.

An essential issue that remains to be investigated in the according field is to guarantee the congruence
of blockchain transactions and physical processes. The transfer between digital and physical world,
the tokenization is a general issue of cyber-physical systems. Regulations today require approved
measurement devices [81]. The concept is not strictly bound to the blockchain but could be operated
with an independent aggregator instead. The benefits of blockchain seem to outweigh its complexity,
as the cost for an additional aggregator renders the concept unattractive and creates incentives to
exploit the market power [244].
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Improvement methods for the operation of BESS are proposed in Part III. A classification of multi-use
operation is presented: Multi-objective optimized control is the energy management of a BESS to serve
several technical objectives at the same time. Application stacking is the simultaneous execution of
several applications, by partitioning the physical BESS into virtual segments and specifically assigning
them to applications.

Multi-objective control algorithms exist in literature but exhibit significant drawbacks. An optimization-
based algorithm is proposed, that can be deployed for most applications, considers prediction errors,
and features real-time capabilities.

The literature on application stacking reveals that the approach is suggested to increase the economic
benefit of BESS. A concept for operating BESS with application stacking is proposed in this thesis. The
BESS is partitioned into segments of energy capacity and stored energy. The distinct segmentation of
battery resources and priorities strictly separates the operation of different applications. The results
may, however, not be optimal, if several objectives lead to resource conflicts.

The issue of multiple stakeholders that would like the BESS to achieve objectives is especially present
in unbundled power systems, such as most electricity markets in the European Union. With regard
to the proposed the multi-objective optimized control method and the application stacking approach,
multiple stakeholders cause ambiguity of how to segment the BESS partitions or how to weight the
different objectives. An auction market is proposed for both approaches to introduce clarity and
transparency. Instead of introducing another stakeholder that coordinates and clears the auction
market, an automated, computer-based aggregator is proposed.

The remuneration of operating BESS in a multi-objective optimized control manner is determined by
the physical power output. The contribution of each application to the BESS operation cannot be
definitely distinguished. Instead, the stakeholders pay for the weight of their objective(s) in the global
objective function J . In this case, the BESS operator bears the responsibility for the achieved value.
The optimization stage of BESS control follows the bidding of the auction market, in this approach.
This leads to a central optimization by the BESS’s energy management system and a cooperative
operation with the according weights for each objective.

The accountable revenue of the application stacking method is based on virtual profiles. Stakeholders
pay for their assigned BESS segment and gain direct control. The stakeholders bear the responsibility
to operate their BESS segment to fulfill the task. This causes distributed optimization by each stake-
holder, preceding the auction. The BESS resource allocation problem is solved independently and the
BESS output is made of the subsequent superposition of BESS segments’ operation.

The fulfillment of applications is more comprehensible with application stacking. The increased com-
plexity of multi-objective optimized control allows less obvious manipulation and requires all stakehold-
ers to trust the BESS operator or the aggregator even more. Hybrid multi-use appeals both stakeholder
preferences to either have direct control or just delegate the responsibility.
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13 Conclusion

A comprehensive simulation framework for stationary BESS SimSES has been developed and is pre-
sented in Part I. The tool enables the simulation of BESS with technical accuracy and embed the system
in an application context. Thus, analyses with regard to stress on the system, operating points, and
system behavior, as well as its significance for the respective application can be conducted conjointly.
It serves as fundamental tool for the study of the remaining topics of this thesis.

Evaluation metrics for BESS are derived in Part II. Both economic and GWP metrics are formulated
and reasoned for three applications: increasing the self-consumption, peak-shaving, and integrating
RES in an island grid. They describe BESS performance in a global manner and capture the true value
of BESS for the operator. The efficiency of BESS is identified as a key parameter that determines the
performance of BESS. The overall BESS value in all applications improves with higher efficiencies.

The assessment of BESS with regard to the carbon emissions in literature varies greatly. Narrow scopes
of the analyses that neglect important aspects are common. A generic method for approximating the
carbon emissions of producing BESS is derived Part II. It can be generally applied to BESS with
varying sizes and technologies. The overall impact on the carbon emissions by operating BESS is
derived for the three applications. A holistic approach is ensured to capture the key-effects of BESS
operation. The prevents neglecting relevant processes and yields more credible results.

Case studies show the potential of BESS in the applications and illustrate that several metrics should
be used for a reasonable assessment. Isolated metrics may not be informative. Thorough study of such
results and cases is necessary.

GWP analyses reveal that economic incentives for deploying ESS in different applications do not neces-
sarily align with carbon reduction objectives. This is described in detail for the case study of increasing
the self-consumption in the residential context. While the carbon footprint of the individual household
is reduced on a narrow scope, increasing the self-consumption raises the overall carbon emissions. The
importance of operation strategies is shown in this case: BESS that only avoid curtailment losses
achieved the most favorable carbon reduction.

The next step is to accomplish an improvement of BESS with regard to the presented metrics. This
task is covered in Part III of the thesis. Large body of literature deals with optimal sizing and design
of components. The literature review on control of BESS unveils weaknesses of existing approaches.
Rule-based operation strategies for specific applications are state of the art. They are not necessarily
optimal and need to be developed for each scenario. Optimization-based approaches display optimal
results, but are deteriorated by prediction errors.

A novel control algorithm is proposed that is versatile, uses prediction for optimal performance, and
withstands forecast errors. The method uses the fuzzy logic control approach for the controller and
recurrently optimizes the control parameters with a cuckoo-search algorithm. A case study with the
two applications PV-home storage and hybrid renewable-diesel island grid display the versatility of
the algorithm. While the method achieves inferior results compared to the optimal reference opera-
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tion strategies it features better robustness against forecast uncertainties. The fuzzy logic controller
possesses real-time capabilities and compensates for prediction errors. The cuckoo-search algorithm
provides optimality for the control parameters and enables the use of freely chosen objective functions.
The method is, however, rather complex and relies on a system model, prediction data, fuzzy logic
controller, and cuckoo-search.

Unbundled electricity markets constitute the majority of electricity markets in Europe and introduce
a new issue: Multiple stakeholders that want the BESS to achieve their objectives. The introduced
multi-use, more specifically the application stacking addresses this issue. The application stacking
method partitions the BESS into virtual energy capacity segments with associated residual energy
segments. The energy segments are assigned to serve individual applications. A power distribution
scheme is included in the segment assignment. The method’s structure is based on existing power
planning approaches. The planning of the BESS segmentation recurs after for a defined time (e.g.
daily). In addition an adjustment mechanism is featured that allows re-allocation of the segments in
between the planning phases. This introduces the flexibility to act on prediction errors. The flexibility
is expected to avoid hedging/blocking of BESS resources for buffering against prediction errors and a
higher utilization of BESS instead.

Multiple stakeholders are incorporated in this concept by an auction market for the segments. The
bidding determines the energy segments for the stakeholders. This way the distribution of the energy
segments and associated power distribution scheme are clear and transparent to all stakeholders. The
auction market is proposed to use the Blockchain technology for the automated, computer-based
aggregator that is responsible for the market clearing of the bidding. This allows a low-cost solution,
applicable to smaller BESS, such as community storage systems, and reaches the grid issues in the
low voltage-distribution grid. Existing auction markets are limited to utility-scale BESS of several
megawatt hours.

The proposed auction market is also applicable to multi-objective optimized control, but the attri-
bution of the achieved values to distinct stakeholders and the associated financial obligations is not
straightforward, in contrast to the application stacking approach. The application stacking method is
therefore more appropriate than the multi-objective optimized control in a multi-stakeholder scenario
with distinct applications. The multi-objective optimized control is more adequate in a single-operator
scenario because it can exploit the technical BESS capability more exhaustively. A hybrid approach
is possible, where individual segments use the multi-objective optimized control for their purpose.
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14.1 Evaluating Stationary Battery Storage Systems

The efficiency of BESS is an important factor that needs to be considered in future improvements
of the systems. The measures for increasing the system efficiency are technical improvements of the
inverter, battery, and the standby consumption of the system components.

Besides using improved components, operational enhancements can reduce energy losses as well. The
conversion efficiency may be increased by improving the internal power distribution, in case several
inverters exist in the system. The power distribution algorithm would avoid partial load for the inverter
and consequently prevent operating points with low-efficiency. Improved thermal management and the
ability to completely shut down idle components would reduce the standby consumption of the system.
The influence on battery aging and the reaction of the system with increased ramp-up time need to
be analyzed before implementing such measures.

The assessment of BESS with regard to the GWP is disunited. Even with the ISO standards for
life-cycle assessment, the chosen scopes are often too narrow and important aspects are neglected.
A derivation of global effects for additional applications than covered in this thesis is necessary. A
comparison with alternative options, such as hydrogen storage also supports the endeavor of reducing
the carbon emissions caused by the power systems.

The presented methods can be improved. The PV-home case, for example, can be further extended:
Self-consumption and capping of the feed-in power are the only tasks investigated under German reg-
ulations. Time-of-use schemes instead of fixed rate assumptions need to be investigated for evaluating
the use of self-consumption under different circumstances. It may especially be more beneficial if the
prices are correlated to the carbon emission factor of the instantaneous production.

The assumptions for replacing conventionally produced energy presumably underestimates the benefit
of exporting the PV produced energy into the grid. A more precise analysis that reflects the dispatch
behavior of generators further elaborates the evaluation of the GWP impact of PV-home storage
systems. An appropriate approach has been presented by Zheng, who considered the dispatch curve of
generators in a power system [136]. Appen et al. [190] discuss the effect of PV-home storage systems.
They conclude that regulatory framework needs to change, to incentivize grid-supporting operation of
residential BESS.

Misalignment of incentives and general public benefits are presented in Part II. The author of this thesis
suggests care inspection of effective regulations and adjustments to align the incentives with global
benefits. The multi-objective optimized control framework combined with the proposed GWP metrics
and economic incentives enable the investigation of possible incentive frameworks and the congruency
with global usefulness. The approach reproduces the shortened BESS capabilities in the presence of
prediction errors, in contrast to pure optimization based operation strategies. This way more effective
incentives can be designed and proposed for policymakers.
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14.2 Improving Battery Storage Operation

The multi-objective optimized controller has been proposed in this work. It represents the first working
version and can be further developed and investigated.

The deployment of the controller for more input variables, BESS applications, and objective goals
needs to be conducted to further analyze the algorithm’s performance. Further investigation of the
influence of varying forecast quality and simulation over a full year add value to the assessment of
the proposed algorithm. In addition, the real-time capability has not been explicitely demonstrated.
However, fuzzy logic controller are used for applications that require fast responses. Its capability,
especially for the island grid case, should be demonstrated in the future.

Battery aging, for example, could be regarded as an objective for the control of the BESS and included
in the simulation to be minimized. This allows finding a trade-off between the marginal cost of efficiency
loss and battery aging, against the achievable revenue of operation.

The specific choice of cuckoo-search and fuzzy logic control is expected to be non-essential. The
proposed algorithm structure could be tested with other optimization methods and other algorithms
for the rule-based controller. Smarter initial values for the optimization algorithm based on previously
found optimal solutions could improve the convergence of the cuckoo-search and should be investigated
in the future. Another enhancement of the algorithm could be, to expand the control of a single BESS
to controlling more units in a microgrid.

For the actual implementation of the presented controller, a cloud architecture is proposed, where the
CPU-intensive cuckoo-search for optimization of the fuzzy logic controller’s parameters is run on a
central computer. The fuzzy logic controller’s optimal parameters are then transmitted to the local
controller of the BESS, that is responsible for the real-time control with an implemented fuzzy logic
controller. The parameters comprise of about 3 times the number of membership functions and the
execution of a fuzzy logic controller can be handled with low computational effort.

As for the application stacking method, the proposed algorithm needs to be simulated in the future to
quantify its capabilities. This allows a sound comparison of the expected benefits with the single-use
operation. Especially the rules for power distribution need further elaboration for handling more than
two applications. The impact of inaccurate state-estimation with regard to SOC and aging needs to be
analyzed and finally, an extension to other units than BESS should be developed to obtain a general
framework for the control of microgrids with multiple stakeholders.

Other distributed ledgers, such as tangle, may be more suitable for the proposed method, than
blockchain [256]. A potential analysis of different technologies and a comparison to the concept of
a dedicated aggregator, are necessary for the future to prove the cost benefits claimed in this thesis.
Further research on new methods that address security issues associated with tokenization is neces-
sary, the transfer between physical reality and virtual data. This is not only beneficial for the proposed
concept but concerns all fields, where tokenization is necessary.

The present thesis combines two relevant topics in the field of BESS: Evaluation of operating BESS and
control algorithms that set the operation to optimize these evaluation objectives. Future research needs
to further deepen the understanding of how BESS influences the power system in terms of technical,
financial, and GWP-related benefits. Aligning economic incentives for BESS with carbon reduction
operation is crucial for a reasonable transformation of the power system. Further improvement of
BESS control ensures beneficial operation.
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Figure A.1: Quotation for battery price.
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Table A.1: Grid charges in Germany. Overview of ten national and ten municipal distribution grid
operators. Prices are from 2017 for a usage period larger than 2700 h per year. [257]

Grid operator Power charge / EUR/kW/a
LV MV

Netze BW GmbH 113.18 79.63
Bayernwerk 115.65 139.12
Westnetz 49.87 83.77
NEW Netz 65.72 60.77
EnergieNetzMitte 114.72 113.76
TEN 147.83 141.31
Avacon 128.52 140.04
E.DIS 98.64 72.60
WEMAG 155.38 137.89
Schleswig-Holstein Netz 146.76 122.26
Stromnetz Berlin 92.55 41.88
Stromnetz Hamburg 48.62 51.20
Stadtwerke München 143.00 109.80
Rheinische NetzGesellschaft 88.68 57.14
NetzDienste RheinMain 97.10 67.65
Stuttgart Netze 55.94 67.65
Düsseldorf Netz Düsseldorf 59.36 77.00
Dortmund Dortmund Netze 63.46 83.16
Leipzig Netz Leipzig 127.59 180.71
Bremen Wesernetz 55.28 93.65

Table A.2: Bill of materials of the Energy Neighbor. Components of 230 V supply.
Bezeichnung
im Schaltplan Menge Hersteller Artikel Nummer Beschreibung

F02 NA-Sicherung, von KWH spezifiziert
F02 NA-Sicherung, von KWH spezifiziert

FI1 1 SIEMENS 5SV3312-6 FI Schutzschalter 25A/0,03A 2pol.
für 230 V Steckdosen

F1 1 SIEMENS 5SY6116-6 Sicherungsautomat 1pol.B16A für
230 V Steckdosen

F51 1 SIEMENS 5SY6116-7 Einpoliger Leitungsschutzschalter;
C-16A für Alarmanlage

F52 1 SIEMENS 5SY6325-7 Dreipoliger Leitungsschutzschalter;
C-25A für Klimasystem

F100 1 SIEMENS 3RV2411-1HA10 Leistungsschalter A-AUSL. 5,5...8A,
N-AUSL. 163A, für 24 V Netzteile

F_NA1 1 SIEMENS 5SY6306-6 Dreipoliger Leitungsschutzschalter;
B-6A für NA-Schutz
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Anhang

A Datenblatt Kosten Dieselgenerator

Preis bezieht sich auf Modell WA- D500 "G".

 

WA Notstromtechnik GmbH 

Hausanschrift:                    Postanschrift: 
Waldstr. 11                        Postfach 12 60 

D – 33415 Verl                   D - 33399 Verl 

  

Internet: www.wa-stromerzeuger.de 

Amtsgericht: Gütersloh | HRB: 7913 
Geschäftsführer Wolfgang Asbach 

Ust. Ident Nr.: DE227905627 

  

Tel.: 0 52 46 / 92 00 - 0 

Fax.: 0 52 46 / 92 00 - 16 
 

 

  
WA – D 250 Ausführung „G“  

mit manueller Schaltanlage & Ölauffangwanne 

1500 U/min | 50 Hz 

400/230 Volt 

Cos.-phi 0,8 

Powered by: 

 

 

 STROMERZEUGER AUF GRUNDRAHMEN Ausführung „G“ 
 

Modell kVA KW Gewicht Motortyp Leistung Verbrauch Ampere 

Modell 100% 100% KG   bei 100 % Last Genschalter 

WA- D 20 „G“ 20 16 550 F3M 2011 20,0 KW 6,7 L/h  28 

WA- D 30 „G“ 30 24 640 F4M 2011 27,6 KW 8,9 L/h  43 

WA- D 40 „G“ 40 32 720 BF4M 2011 36,4 KW 11,6 L/h  57 

WA- D 60 „G“ 60 48 820 BF4M 2011 C 52,0 KW 14,4 L/h  86 

WA- D 85 „G“ 85 68 1.240 BF4M 1013 E 78,5 KW 21,0 L/h  122 

WA- D 100 „G“ 100 80 1.300 BF4M 1013 ECG2 91,1 KW 25,8 L/h  144 

WA- D 130 „G“ 130 104 1.480 BF4M 1013 FC 117,8 KW 32,3 L/h  187 

WA- D 150 „G“ 150 120 1.580 BF6M 1013 EC 138,1 KW 38,5 L/h  216 

WA-D 180 „G“ 180 144 1.610 BF6M 1013 FCP 159,8 KW 45,90 L/h 260 

WA- D 200 „G“ 200 160 1.820 BF6M 1013 FCG2 178,6 KW 50,8 L/h  288 

WA- D 250 „G“ 250 200 2.200 TCD 2013 L06 4V 216 KW 49,9 L/h  360 

WA- D 300 „G“ 300 240 2.660 BF6M 1015 C 271 KW 76,6 L/h  432 

WA- D 380 „G“ 380 304 2.740 BF6M 1015 CP 327 KW 94,3 L/h  547 

WA- D 430 „G“ 430 344 3.300 BF8M 1015 C 369 KW 103,5 L/h  619 

WA- D 450 „G“ 450 360 3.350 BF8M1015 C2 -/- KW 117,5 L/h  648 

WA- D 500 „G“ 500 400 3.600 BF8M 1015 CP 440 KW 131,3 L/h 720 
 

PREISE ab Werk Verl zzgl. MwSt. 
 

Modell 
Verkabelt auf 

Klemmleiste 

manueller Start mit  

3 pol. Genschalter 

inkl. integrierte 

Notstromautomatik / AMF 

mit Generatorschalter 4-polig 

(ohne Netzschalter) 

externe Umschaltung mit 

Netzschalter / ATS 

 4-polig 

 
Nettopreis 

in € ab Werk 

Nettopreis 

in € ab Werk 

Nettopreis 

in € ab Werk 

Nettopreis 

in € ab Werk 

WA- D 20 „G“ 7.752 8.337 8.711 474 

WA- D 30 „G“ 8.103 8.730 9.119 520 

WA- D 40 „G“ 9.167 9.869 10.146 586 

WA- D 60 „G“ 11.295 12.003 12.219 678 

WA- D 85 „G“ 13.803 14.561 14.925 755 

WA- D 100 „G“ 14.990 15.633 15.698 927 

WA- D 130 „G“ 17.513 18.373 18.786 1.224 

WA- D 150 „G“ 19.353 20.542 20.859 1.224 

WA- D 180 „G“ 21.750 23.124 23.619 1.224 

WA- D 200 „G“ 24.699 25.839 26.291 1.760 

WA- D 250 „G“ 28.430 29.973 30.871 2.819 

WA- D 300 „G“ 36.117 37.674 38.721 2.819 

WA- D 380 „G“ 42.315 44.190 45.018 2.819 

WA- D 430 „G“ 46.112 48.477 49.070 2.819 

WA- D 450 „G“ 51.971 50.726 51.971 3.008 

WA- D 500 „G“ 53.910 56.331 56.805 3.008 
 

Abbildung A.1: Preisliste Deutz Dieselgeneratoren

92

Figure A.2: Price list for diesel generators. The price assumption is based on the diesel generator
WA- D 500 “G” with a nominal power of 440 kW. The configuration with integrated
backup power automation and 4-pin generator switch is chosen (56,805 EUR). An external
switching with a 4-pin power switch is included (3008 EUR). A VAT of 19% is added to
the given net price resulting in a gross price of 70,613 EUR or 162 EUR/kW.
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Netzentgelte für Entnahmestellen mit Leistungsmessung 
- Jahresleistungspreis - (Preisblatt LG JLP)

Gültig ab 01. Januar 2017

Jahresbenutzungsdauer

Entnahmestelle

Umspannung Höchst-/ Hochspannung 16,97 3,30 94,15 0,22

Hochspannung 15,85 3,95 111,69 0,12

16,05 4,05 114,85 0,10

Mittelspannung 12,78 5,55 139,12 0,50

12,85 5,66 142,50 0,47

14,17 5,63 115,65 1,57

Bei Entnahme der elektrischen Energie aus der Mittelspannungsebene und deren Erfassung durch eine 

niederspannungsseitige Messeinrichtung wird ein Zuschlag für Transformatorenverluste in Höhe von 1,5 % auf die 

Arbeitsmengen und die Leistungswerte erhoben.

Die Jahresbenutzungsdauer (h/a) wird als Quotient aus der im Abrechnungsjahr bezogenen 

Verrechnungswirkarbeit (kWh) und der Verrechnungsleistung (kW) ermittelt.

Der Preis in €/a für die Nutzung des Netzes ergibt sich als Summe der beiden Produkte:

- ,Maximale jährliche Leistung P' x ‚Leistungspreis LP' sowie

- ,Jahresenergie W' x ‚Arbeitspreis AP'

Das Entgelt für die Vorhaltung sowie die Inanspruchnahme der Netzkapazität während eines Abrechnungsjahres 

wird anhand der Jahresabrechnungsleistung in Abhängigkeit der erreichten Benutzungsstunden bestimmt.

Leistungspreis 

€/ kW*a

Arbeitspreis

ct/kWh

Arbeitspreis

ct/kWh

< 2.500 Bh

Leistungspreis 

€/ kW*a

≥ 2.500 Bh

Umspannung Hoch-/ Mittelspannung

Umspannung Mittel-/ Niederspannung   

Niederspannung

Seite 1 von 2

Figure A.3: Price list for power price of electricity provider Bayernwerk of 2017.
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Table A.3: Bill of materials of the Energy Neighbor. Components of 24 V supply.
Bezeichnung
im Schaltplan Menge Hersteller Artikel Nummer Beschreibung

SITOP1,
SITOP2,
SITOP3

3 SIEMENS 6EP1437-2BA20 SITOP PSU300S 40A; geregelte 24 V
Stromversorgung, mit jeweils 40 A;

USV 1 SIEMENS 6EP4137-3AB00-
2AY0

SITOP UPS1600 40A; 24 V
USV-Einheit mit 40 A und Ethernet
Schnittstelle

Bat 1 SIEMENS 6EP4135-0GB00-
0AY0

SITOP UPS1100; Batterie für USV
mit 12Ah

F101 1 SIEMENS 5SY6116-7 Einpoliger Leitungsschutzschalter;
C-16A für USV-Einheit

F_Licht 1 SIEMENS 5SY6110-6 Einpoliger Leitungsschutzschalter;
B-10A für Beleuchtung

F_Lüfter 1 SIEMENS 5SY6125-7
Einpoliger Leitungsschutzschalter;
C-25A für LE-Schrank- und
Containerlüfter

F-Sicherheit 1 SIEMENS 5SY6106-6
Einpoliger Leitungsschutzschalter;
C-25A für Hauptschalter und
NA-Schutz Signale

F_RCMU 1 SIEMENS 5SY6106-7 Einpoliger Leitungsschutzschalter;
C-6A für RCMU

F_IT 1 SIEMENS 5SY6106-7
Einpoliger Leitungsschutzschalter;
C-6A für sämtliche IT Komponenten
im LE-Schrank

F_NotAus 1 SIEMENS 5SY6306-6 Einpoliger Leitungsschutzschalter;
B-6A für Not Aus Schaltgerät

F-HS_1 ...
F-HS_2 2 SIEMENS 5SY6113-7 Einpoliger Leitungsschutzschalter;

C-13A für Hauptschalter

F-Janitza 1 SIEMENS 5SY6306-6 Einpoliger Leitungsschutzschalter;
B-6A für Janitza Messgerät

F_LS_S1 ...
F_LS_S8 8 SIEMENS 5SY6113-7 Einpoliger Leitungsschutzschalter;

C-13A für Stringschalter
F_LE1 ...
F_LE8 8 SIEMENS 5SY4106-8 Einpoliger Leitungsschutzschalter;

D-6A für Wechselrichtereinheiten
F_R1 ...
F_R8 8 SIEMENS 5SY6110-7 Einpoliger Leitungsschutzschalter;

C-10A für Rackversorgung
F_R1_USV
...
F_R8_USV

8 SIEMENS 5SY6110-7 Einpoliger Leitungsschutzschalter;
C-10A für USV-Rack-Versorgung
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Table A.4: Bill of materials of the Energy Neighbor. Safety and control components.
Bezeichnung
im Schaltplan Menge Hersteller Artikel Nummer Beschreibung

NA 1 1 SIEMENS 5TT3427
Spannungs- und Frequenzrelais 5TT3
427 zur Überwachung von
Netzeinspeisungen größer 30 kVA

OR_1, OR_2 2 Weidmüller 8218440000 Oder-Funktionsbaustein für
Inselnetzerkennung

Insel 1 SIEMENS LZS:RT3A4L24 Steckrelais, 1 Wechsler, 24 V
RCMU 1 Bender RCMS 490 D Differenzstrom-Überwachungssystem

AN1, AN2 2 Bender AN110 Netzgerät für allstromsensitive
Messwandler

W1 ... W8 8 Bender W20AB Allstromsensitive Messwandler in den
Stringabgängen

KEMS_S 1 SIEMENS LZS:RT3A4L24 Steckrelais, 1 Wechsler, 24 V
K100 1 SIEMENS 3SK1111-2AB30 Sicherheitsschaltgerät (Not Aus)

S100 2 Ähnlich zu: Ähnlich zu: Not Aus Schalter neben Eingangstüre
und in LE-Schrank

S100.1 SIEMENS 3SB3000-1HA20
S101 1 Ähnlich zu: Ähnlich zu: Not Aus Reset Taster

SIEMENS 3SB3001-0AA61
PilotR1_rück
...
PilotR8_rück

8 POENIX
CONTACT

RIF-1-RPT-LDP-
24DC/2X21AU Steckrelais, 2 Wechsler, 24 V

PilotLE1 ...
PilotLE8 8 SIEMENS LZS:RT3A4L24 Steckrelais, 1 Wechsler, 24 V

Table A.5: Bill of materials of the Energy Neighbor. AC switching gear components.
Bezeichnung
im Schaltplan Menge Hersteller Artikel Nummer Beschreibung

LS1, LS2 2 SIEMENS 3VA2340-5HL32-
0AA0 Leistungsschalter (Hauptschalter)

4 SIEMENS 3VA9988-0AA12 Hilfsschalter, je zwei in LS1 und LS2
integriert.

Mo1, Mo2 2 SIEMENS 3VA9467-0HA10 Motor für Leistungsschalter LS1 und
LS2

USA_Mo1,
USA_Mo2 2 SIEMENS 3VA9908-0BB11 Unterspannungsauslöser

LS_S1 ...
LS_S8 8 SIEMENS 3VA1110-4EE36-

0AA0 Leistungsschalter (Stringschalter)

8 SIEMENS 3VA9988-0AA12 Hilfsschalter, je zwei in LS1 und LS2
integriert.

MO_S1 ...
MO_S8 8 SIEMENS 3VA9157-0HA10 Motor für Leistungsschalter LS_S1

bis LS_S8
USA_S1 ...
USA_S8 8 SIEMENS 3VA9908-0BB11 Unterspannungsauslöser
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Table A.6: Bill of materials of the Energy Neighbor. IT-components.
Bezeichnung
im Schaltplan Menge Hersteller Artikel Nummer Beschreibung

Switch_in-
nen,
Switch_außen

2 POENIX
CONTACT

FL SWITCH SF
16TX

Ethernet Switch, 16 TP-RJ45-Ports,
100 Mbit/s

Switch_WAN 1 POENIX
CONTACT

FL SWITCH
SFNB 5TX

Ethernet Switch, 5 TP-RJ45-Ports,
100 Mbit/s

EMS_Spe-
icher 1 SIEMENS 6AG4140-6BL20-

1HA0 IPC mit CORE I7-3517UE Prozessor

PoKey1 1 VARTA – Ethernet to I/O-Wandler

PoKey_Lüfter
1,
PoKey_Lüfter
2

2 VARTA – Ethernet to I/O-Wandler
(Lüftersteuerung)

Table A.7: Bill of materials of the Energy Neighbor. Inverter components.
Bezeichnung
im Schaltplan Menge Hersteller Artikel Nummer Beschreibung

CU1 ... CU8 8 SIEMENS 6SL3040-1MA01-
0AA0 Control Unit CU320-2

AIM1 ...
AIM6 6 SIEMENS 6SL3100-0BE23-

6AB0
Active Interface Module für 36 kW
Wechselrichter

AIM7, AIM8 2 SIEMENS 6SL3100-0BE21-
6AB0

Active Interface Module für 16 kW
Wechselrichter

ALM1 ...
ALM6 6 SIEMENS 6SL3130-7TE23-

6AA3
Active Line Module: bidirektionaler
36 kW Wechselrichter

ALM7, ALM8 2 SIEMENS 6SL3130-7TE21-
6AA4

Active Line Module: bidirektionaler
16 kW Wechselrichter

VSMR1 ...
VSMR8 8 SIEMENS 6SL3053-0AA00-

3AA1

Voltage Sensing Module;
Spannungsmesskomponente für
Wechselrichtereinheit

8x3 MAG-
NETEC M-614

Filterringe für Zwischenkreisfilterung
(voraussichtlich drei Stück pro
String)

Table A.8: Bill of materials of the Energy Neighbor. Auxiliary components.
Bezeichnung
im Schaltplan Menge Hersteller Artikel Nummer Beschreibung

UMG1 1 Janitza UMG 96RM-E Leistungsmessgerät
I1, I3 3 Janitza 6A315.3 Messwandler für Leistungsmessgerät
LE_Lüfter_1
...
LE_Lüfter_4

4 EBM Papst RG 220-
43/14/2TDMO

Radiallüfter mit Gehäuse für
LE-Schrank Lüftung

Con-
tainer_Lüfter 1 EBM Papst RG 220-

43/14/2TDMO
Radiallüfter mit Gehäuse für Lüfter
an Luftlanze

A1 1 SIEMENS 5SD7443-1 Überspannungsschutzeinrichtung
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Table A.9: Bill of materials of the Energy Neighbor. Components of a battery rack (1/2).
Bezeichnung
im Schaltplan Menge Hersteller Artikel

Nummer Beschreibung

1 Rittal 8606009 / TS8
TS8 Schrank mit IT-Türe,
Anschlag wahlweise rechts oder
links, incl. Rückwand und Deckel

1 Rittal 8106235 Seitenwände, paarweise verpackt.
-1 Rittal 8609060 Alternativ: Trennwand

-1 Rittal 8800470
Anreihbefestigung zur Verbindung
der Trennwände (8 Stück pro
Verpackungseinheit)

-1 Rittal 8800490
Anreihbefestigung zur Verbindung
nebeneinander stehender Schränke
(6 Stück pro Verpackungseinheit)

1 Rittal 8100000 Sockel für die Racks (4 Stück pro
Verpackungseinheut)

1 Rittal 8100600 Blenden für Sockel (2 Stück pro
Verpackungseinheit)

1 VARTA-
Storage Luftlanze und Regalböden

Modul1 ...
Modul13 13

VARTA-
Storage /
TUM

Batteriemodule

BMS-Master 1 TUM Master BMS

EMS-Rack 1 VARTA-
Storage Rack EMS

2 POENIX
CONTACT

VS-08-A-
RJ45/MOD-1-
IP20

RJ45 Anbaurahman,

2 POENIX
CONTACT

VS-08-BU-
RJ45/BU

RJ45 Buchseneinsatz (Buchse auf
Buchse)

1 POENIX
CONTACT HDFK 50 Durchführungsklemme bis 150 A

1 POENIX
CONTACT HDFK 50/Z Durchführungsklemme bis 150 A

mit Rastzapfen

1 POENIX
CONTACT

DP-HDFK
50/7,2

Distanzplatte für
Durchführungsklemme bis 150 A

1 POENIX
CONTACT UW 4 Durchführungsklemme bis 41 A

5 POENIX
CONTACT UW 4/S Durchführungsklemme bis 41 A mit

Rastzapfen

2 POENIX
CONTACT DP-UW 4 Distanzplatte für

Durchführungsklemme bis 41 A

13 POENIX
CONTACT

VC-TFS
5/1M-PEA

Stecker: Kontakteinsatz für
Leistungspins

13 POENIX
CONTACT VC-TFS 8 Stecker: Kontakteinsatz für

Signalpins
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Table A.10: Bill of materials of the Energy Neighbor. Components of a battery rack (2/2).
Bezeichnung
im Schaltplan Menge Hersteller Artikel

Nummer Beschreibung

24V_Ver-
sorgung 1 POENIX

CONTACT

RIF-0-RPT-
24DC/
1AU

Steckrelais, 1 Schließer, 24 V

R_HV_P,
R_HV_N 2 POENIX

CONTACT

RIF-1-RPT-
LDP-
24DC/2X21AU

Steckrelais, 2 Wechsler, 24 V

Switch_Rx 1 POENIX
CONTACT

FL SWITCH
SFNB 5TX

Ethernet Switch, 5 TP-RJ45-Ports,
100 Mbit/s

diverse POENIX
CONTACT

PT
2,5-QUATTRO Durchgangsklemmen

X1_FR1,
X1_FR2 2 POENIX

CONTACT
ZFK 6-DREHSI
(6,3X32)

Zugfeder-Sicherungsklemme für
G-Sicherungseinsätze

X1_FR1,
X1_FR2 2 SIBA 7017240 G-Sicherungseinsatz 6,3 x 32 mm

IsoW 1 Bender ISOMETERő
iso685 Isolationsüberwachungsgerät

I_DC 1 Isabellen-
hütte

IVT-100-U3-
TOI-CAN2-24 Stromsensor

GV200_P,
GV200_N 2 GIGAVAC GIG/GV200CAB-

1
DC-Leistungsrelais

LS_DC 1 ABB 1SDA054183R0001Leistungsschalter

LS_DC 1 ABB 1SDA054910R0001Hilfskontakt für Leistungsschalter

LS_DC 1 ABB 1SDA054929R0001Drehantrieb für Leistungsschalter

LS_DC 1 ABB 1SDA055006R0001
Anbausatz für Leistungsschalter
(Anschlussbolzen)

Lüfter 1 ebmpapst RER220-
44/14/2TDMO Racklüfter

3 Mini Kunststoff Schaltdosen
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Emissions of Producing Auxiliary Electronics

The components are grouped into several categories: Cables, 24 V supply, AC-switchgear, IT-components,
230 V supply, safety and control components, and miscellaneous components. The cables are included
in the bill of materials and are estimated based on an existing BESS [154]. The 24 V supply converts
the 230 V grid power to 24 VDC. It consists of power circuit breaker, converter, and an interruptible
power supply. The AC-switchgear is responsible for connecting and disconnecting the BESS from the
local electricity grid. Components such as power circuit breaker, servomotors for switches, and un-
dervoltage releases belong to this group. IT-components are the sum of (micro-) processors, switches,
and ethernet I/O converters. 230 V supply allows lighting and other standard devices to work with
standard power supply. Components that fall into this category are power circuit breakers and fuses.
The devices that belong to the safety and control group ensure the monitoring of the BESS and enable
safety functions, as well as control of the BESS. Voltage and frequency supervision relays, differential
current monitors, and emergency switches belong to this group. Miscellaneous devices comprise sensors
and the ventilation system.

A breakdown of the electronic component groups regarding their carbon emissions is given in Ta-
ble A.11.

Table A.11: Production emissions of auxiliary electronics of the Energy Neighbor.
Spec. emissions (kg CO2eq/kg) Total emissions (kg CO2eq)

Component Mass (kg) Min. Max. Min. Max.
Cables 322.00 0.79 1.43 254.22 461.55

24 V supply 24.23 60.82 83.80 1473.54 2030.03
AC-switchgear 8.11 15.56 17.39 126.19 140.96
IT-components 4.71 96.92 190.28 456.61 896.50

230 V supply 1.79 4.28 8.60 7.68 8.60
Safety and control 1.77 49.55 82.98 87.47 148.24

Misc. 5.00 17.77 20.76 88.90 103.86
Total 367.61 2494.61 3789.74
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B Profiles for Simulation
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Figure B.1: Load profile for PV-home simulation
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Figure B.2: Solar generation profile for PV-home simulation
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Figure B.3: Load profile of sawmill for peak-shaving simulation
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Figure B.4: Load profile of grocery store for peak-shaving simulation
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Figure B.5: Load profile of island for island grid simulation
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Figure B.6: Solar generation profile for island grid simulation
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Figure B.7: Wind generation profile for island grid simulation
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