
Fakultät für Informatik
Technische Universität München

Axiomatic Specification and Interactive Verification of
Architectural Design Patterns in FACTum

Diego Marmsoler

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender:
Prof. Tobias Nipkow, Ph.D.

Prüfende der Dissertation:
1. Prof. Dr. Dr. h.c. Manfred Broy
2. Prof. Dr. Alexander Knapp,

Universität Augsburg

Die Dissertation wurde am 09.11.2018 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 23.01.2019 angenommen.

Architectural design patterns (ADPs) are an important concept in software engi-
neering used by architects for the design and the analysis of architectures. Usually, an
ADP addresses a recurring architectural design problem by constraining an architectural
design. To this end, it provides a set of guarantees for architectures implementing the
pattern, which formalize correct solutions to the pattern’s addressed design problem.
With this thesis, we address the problem that ADPs, as specified in literature, are

usually not verified, i.e., it is not verified whether the imposed design constraints indeed
lead to an architecture satisfying the claimed guarantee. This entails two undesired
consequences: (i) The constraints imposed by a pattern may be too weak to ensure the
guarantee. Thus, an architecture satisfying the constraints may indeed fail to correctly
solve the intended design problem. Therefore, since patterns are usually selected based
on the design problem they address, the architecture may not satisfy its requirements.
(ii) The constraints imposed by a pattern may be too restrictive for the provided guaran-
tee. While unnecessary constraints are not as severe as missing constraints, they might
unnecessarily restrict the application scope of an ADP.

Existing approaches to address this problem usually model ADPs in terms of state
machines and apply model checking techniques to verify them. In this thesis, however, we
argue that pattern specifications are axiomatic, focusing on a few, important properties
an architecture must obey. Thus, their verification requires axiomatic reasoning, which
is usually not supported by traditional approaches.
With this thesis, we propose an approach which is based on axiomatic specifications

and interactive theorem proving. Accordingly, the major outcome of the thesis is FAC-
Tum, a methodology for the axiomatic specification and interactive verification of ADPs.
To this end, we provide the following contributions: (i) We provide specification tech-
niques to support the axiomatic specification of patterns. (ii) We formalize a model for
dynamic architectures in Isabelle/HOL and provide a sound algorithm to map an ax-
iomatic pattern specification to a corresponding Isabelle/HOL theory. (iii) To support
the axiomatic verification of patterns, we introduce a calculus to reason about axiomatic
pattern specifications, show its soundness, and implement it in Isabelle/HOL. (iv) We
evaluate the approach by means of three well-known ADPs and a larger case study from
the domain of Blockchain architectures.

FACTum is implemented in Eclipse/EMF to support the specification and interactive
verification of ADPs. Our results suggest that the approach is well-suited to specify and
verify patterns for (potentially dynamic) architectures. In our case studies, for example,
we discovered 16 different constraints for four different ADPs. Two of them can be con-
sidered fundamental but were not mentioned in any specification of these patterns, so far.
In the long term, this research aims to establish a repository of verified ADPs, which

can be filled with verification results for existing or even new patterns. When verifying
an architecture, an architect can connect to the repository and verify the architecture
against the assumptions provided by the ADPs. The corresponding guarantees are then
automatically transferred to the architecture, where they can be used to support in its
verification.

iii

iv

Acknowledgements
I would like to thank my adviser Prof. Manfred Broy for the freedom in pursuing new,
sometimes also unconventional, ideas. His critical look at my work has been a source of
constant improvement. I am also grateful for his financial support, which allowed me to
present my work to the broader scientific community. I am thankful to Prof. Alexander
Knapp for introducing me to the beauty of Formal Methods and reviewing my thesis.
I would also like to thank my fellow doctoral students, in particular the Mensa-Broy

group, for their company over the last five years. I would like to thank Vasileios Kout-
sumpas for his support and friendship. Special thanks go also to Mario Gleirscher, for
interesting discussions and fruitful collaborations. I am thankful also to Maximilian
Junker, for his valuable feedback on my work and his regular reviews of my papers. I
am grateful to Wolfgang Böhm for his support in any project-related concern. Finally, I
would like to thank all the anonymous reviewers for their comments on papers related
to my thesis.
Last but not least, I would like to thank my parents Irmgard and Andreas for their

lifelong support. Thanks go also to my brother Tobias for being my brother. Finally, I
am thankful to my wife Veronika, not only for her feedback on my work, but also for
her support in any other concern. Thank you!

v

vi

Accompanying Publications This thesis is accompanied by the following publications:

• Diego Marmsoler. Towards a theory of architectural styles. In Proceedings of
the 22nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering - FSE 2014, pages 823–825. ACM, ACM Press, 2014

• Diego Marmsoler, Alexander Malkis, and Jonas Eckhardt. A model of layered ar-
chitectures. In Bara Buhnova, Lucia Happe, and Jan Kofron, editors, Proceedings
12th International Workshop on Formal Engineering approaches to Software Com-
ponents and Architectures, FESCA 2015, London, United Kingdom, April 12th,
2015., volume 178 of EPTCS, pages 47–61, 2015

• Diego Marmsoler and Mario Gleirscher. Specifying properties of dynamic archi-
tectures using configuration traces. In International Colloquium on Theoretical
Aspects of Computing, pages 235–254. Springer, 2016

• D. Marmsoler and M. Gleirscher. On activation, connection, and behavior in dy-
namic architectures. Scientific Annals of Computer Science, 26(2):187–248, 2016

• Diego Marmsoler and Silvio Degenhardt. Verifying patterns of dynamic architec-
tures using model checking. In Proceedings International Workshop on Formal En-
gineering approaches to Software Components and Architectures, FESCA@ETAPS
2017, Uppsala, Sweden, 22nd April 2017., pages 16–30, 2017

• Diego Marmsoler. On the semantics of temporal specifications of component-
behavior for dynamic architectures. In Eleventh International Symposium on The-
oretical Aspects of Software Engineering. Springer, 2017

• Diego Marmsoler. Towards a calculus for dynamic architectures. In Dang Van Hung
and Deepak Kapur, editors, Theoretical Aspects of Computing - ICTAC 2017 -
14th International Colloquium, Hanoi, Vietnam, October 23-27, 2017, Proceedings,
volume 10580 of Lecture Notes in Computer Science, pages 79–99. Springer, 2017

• Diego Marmsoler. Dynamic architectures. Archive of Formal Proofs, July 2017.
http://isa-afp.org/entries/DynamicArchitectures.html, Formal proof de-
velopment

• Diego Marmsoler. Hierarchical specication and verication of architecture design
patterns. In Fundamental Approaches to Software Engineering - 21th International
Conference, FASE 2018, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, 2018

• Diego Marmsoler. A theory of architectural design patterns. Archive of Formal
Proofs, March 2018. http://isa-afp.org/entries/Architectural_Design_
Patterns.html, Formal proof development

vii

http://isa-afp.org/entries/DynamicArchitectures.html
http://isa-afp.org/entries/Architectural_Design_Patterns.html
http://isa-afp.org/entries/Architectural_Design_Patterns.html

• Diego Marmsoler and Habtom Kahsay Gidey. FACTum Studio: A tool for the
axiomatic specification and verification of architectural design patterns. In Formal
Aspects of Component Software - FACS 2018 - 15th International Conference,
Proceedings, 2018

• Diego Marmsoler. A framework for interactive verification of architectural de-
sign patterns in Isabelle/HOL. In The 20th International Conference on Formal
Engineering Methods, ICFEM 2018, Proceedings, 2018

• Diego Marmsoler and Habtom Kahsay Gidey. Interactive verification of architec-
tural design patterns in FACTum. Formal Aspects of Computing, 2019. Under
review

• Diego Marmsoler. A calculus of component behavior for dynamic architectures.
Science of Computer Programming, 2019. Under review

viii

Contents

Contents ix

I Introduction 1

1 Introduction 3
1.1 Architectural Design Patterns . 3
1.2 Problem: Unverified Patterns . 8
1.3 Approach . 10
1.4 Contributions . 11
1.5 Related Work . 13
1.6 Outline . 16

2 A Model of Dynamic Architectures 17
2.1 Messages and Ports . 17
2.2 Port Valuations . 18
2.3 Interfaces . 18
2.4 Component Types . 18
2.5 Architecture Specifications . 22
2.6 Summary . 30

II Specification 33

3 Specifying Architectural Design Patterns 35
3.1 Specifying Data Types . 36
3.2 Specifying Component Types . 37
3.3 Specifying Architectural Constraints . 43
3.4 Summary . 47

4 Advanced Specifications 49
4.1 Activation Annotations . 49
4.2 Connection Annotations . 51
4.3 Dependencies . 53
4.4 Specifying Pattern Instantiations . 56
4.5 Summary . 58

ix

Contents

III Verification 61

5 A Calculus for Architectural Design Patterns 63
5.1 Evaluating Behavior Trace Assertions over Architecture Traces 63
5.2 Rules of the Calculus . 68
5.3 Summary . 75

6 Interactive Pattern Verification in Isabelle/HOL 77
6.1 Coinductive Lists . 78
6.2 Formalizing Architecture Traces . 80
6.3 Specifying Architecture Traces . 83
6.4 Formalizing the Calculus . 84
6.5 Creating Pattern Theories . 87
6.6 Summary . 89

IV Evaluation 91

7 Singletons, Publisher-Subscribers, and Blackboards 93
7.1 Singleton . 93
7.2 Publisher-Subscriber . 96
7.3 Blackboard . 100
7.4 Summary . 105

8 Verification of Blockchain Architectures 109
8.1 Blockchain Architectures . 109
8.2 Formalizing Blockchain Architectures . 111
8.3 Data Types and Ports . 111
8.4 Component Types . 112
8.5 Architectural Constraints . 115
8.6 Verifying Blockchain Architectures . 118
8.7 Discussion . 121
8.8 Summary . 123

V Conclusion 127

9 Conclusion 129
9.1 Summary . 129
9.2 Implications . 132
9.3 Limitations . 133
9.4 Outlook . 134
9.5 Future Work . 134

x

Contents

A Conventions 137
A.1 Sets . 137
A.2 Functions . 137
A.3 Sequences . 138
A.4 Logics . 139

B Proof for Thm. 1 141
B.1 =⇒ . 141
B.2 ⇐= . 141

C Behavior Trace Assertions 143
C.1 Behavior terms . 143
C.2 Behavior assertions . 144
C.3 Behavior trace assertions . 144
C.4 Architecture Trace Assertions . 148

D Remaining Rules of the Calculus 155
D.1 Elimination Rules for Basic Logical Operators 155
D.2 Elimination of Behavior Assertions . 155
D.3 Natural Numbers . 157
D.4 Extended Natural Numbers . 158
D.5 Lazy Lists . 158
D.6 A Model of Dynamic Architectures . 160
D.7 Dynamic Components . 165
D.8 Projection . 166
D.9 Activations . 173
D.10 Projection and Activation . 179
D.11 Least not Active . 181
D.12 Next Active . 183
D.13 Latest Activation . 186
D.14 Last Activation . 187
D.15 Mapping Time Points . 189
D.16 Extended Natural Numbers . 195
D.17 Lazy Lists . 195
D.18 Dynamic Evaluation of Temporal Operators 195
D.19 Basic Operators . 198
D.20 Temporal Operators . 208
D.21 Proof of Completeness . 237

E Soundness of Algorithm 1 241
E.1 Case =⇒ . 241
E.2 Case ⇐= . 242

xi

Contents

F Pattern Hierarchy 243
F.1 A Theory of Singletons . 243
F.2 A Theory of Publisher-Subscriber Architectures 246
F.3 A Theory of Blackboard Architectures . 248

G Verification of Blockchain Architectures 261
G.1 Some Auxiliary Results . 261
G.2 Relative Frequency LTL . 263
G.3 A Theory of Blockchain Architectures . 274

Bibliography 325

Glossary 335

xii

Part I

Introduction

1

1 Introduction

The architecture of a system describes the overall organization of a system into compo-
nents and connections between these components. Since software systems are becoming
increasingly big and complex, the architecture of a system plays an ever more important
role in their development.
There exist many different definitions of what constitutes an architecture [PW92,

SG96, otSEC+00, BS01, BCK07, TMD09]. For the scope of this thesis, we consider the
following definition of architecture:

Definition: Architecture.

An architecture is a set of components and a description of how these components
communicate to each other. Each component has an interface, in terms of input
and output ports, and a behavior describing which output is produced for a given
input. An architecture may be dynamic, in which case the number of components
and connections between these components may change over time.

1.1 Architectural Design Patterns

Architectural design patterns (ADPs) are an important tool in software engineering
employed for the conceptualization and analysis of architectures. They capture design
experience and are regarded as the “Grand Tool” for designing a software system’s
architecture [TMD09]. Similar as for architectures, there exist many different definitions
of ADPs. In the following, we list some of them:
“An architectural pattern is a named collection of architectural design decisions that are

applicable to a recurring design problem, parametrized to account for different software
development contexts in which that problem appears.” [TMD09]
“An architectural pattern expresses a fundamental structural organization schema for

software systems. It provides a set of predefined subsystems, specifies their responsibil-
ities, and includes rules and guidelines for organizing the relationships between them.”
[BMR+96]

“An architectural pattern is a description of element and relation types together with
a set of constraints on how they may be used. A pattern can be thought of as a set of
constraints on an architecture — on the element types and their patterns of interaction —
and these constraints define a set or family of architectures that satisfy them.” [BCK07]
“An architectural style [. . .] defines a family of [. . .] systems in terms of a pattern of

structural organization. More specifically, an architectural style defines a vocabulary of

3

1 Introduction

components and connector types, and a set of constraints on how they can be combined.”
[SG96]
Although these definitions vary in some aspects, two characteristic properties about

ADPs can be identified:

1. An ADP solves a recurring architectural design problem.

2. An ADP consists of a collection of architectural design constraints which restrict
the design of architectures.

In the following, we demonstrate this observation by means of three prominent examples:
the singleton pattern, the Publisher-Subscriber pattern, and the Blackboard pattern.

Example 1 (The Singleton Pattern). A very basic example of an ADP, used often in
object-oriented systems, is the so-called Singleton pattern [GHJV94]. It aims to address
the problem that a system must have at most one component of a certain type, activated
at each point in time.
If we look at a Singleton’s specification, we usually find a diagram similar to the one

depicted in Fig. 1.1. The diagram is accompanied with a description explaining that
“instance” contains an instance of the singleton which can be accessed through the in-
terface “getInstance()”. Moreover, the description poses a constraint on an architecture,
requiring that a new instance of type singleton is only created if no instance exists yet.

Singleton
instance
getInstance()

Figure 1.1: Specification of the Singleton pattern as it is usually found in literature.

Example 2 (The Publisher-Subscriber Pattern). Another ADP often employed to de-
sign architectures is the so-called Publisher-Subscriber pattern. It aims to address the
problem of obtaining a “flexible way of communication” between certain components of
an architecture. Thereby, flexibility means that a component can register for certain
events at other components and they are notified about the occurrence of such events.
The pattern is usually described with a diagram similar to the one depicted in Fig.1.2.

The description usually requires the existence of two types of components: publishers and
subscribers. Thereby, subscribers need to provide a mechanism to subscribe to certain
events and publishers are able to publish messages associated to an event. Moreover, the
description usually poses a constraint on the connection between publisher and subscriber
components which requires that, whenever a publisher component publishes a message
associated to an event for which a subscriber component was registered, a connection
between the corresponding publisher and subscriber component needs to be established.

4

1.1 Architectural Design Patterns

Subscriber
subscribe(evt)

Publisher
publish(mess,evt)

Figure 1.2: Specification of the Publisher-Subscriber pattern as it is usually found in literature.

Example 3 (The Blackboard Pattern). Another, more complex, pattern found in liter-
ature, is the Blackboard pattern [TMD09, BMR+96, SG96] which is often employed for
the design of systems solving logical equations.
The Blackboard pattern aims to address the design problem known as “collaborative

problem1 solving”. Thereby, it is desired to design an architecture for a system which
can solve a complex problem by breaking it down into simpler subproblems, which can
be solved and assembled to a solution for the original problem. For example, solving
a complex, logical equation (involving multiple operators), can be split into the problem
of solving simpler sub-formulas and combining their solutions according to the involved
logical operators.
Figure 1.3 shows the diagram for the Blackboard pattern as it is usually found in

literature. The pattern requires from an architecture existence of the following types
of components: blackboards, knowledge sources, and an optional controller component.
Thereby, a blackboard keeps the overall state towards solving the original problem and
knowledge sources are able to solve specific subproblems. Amongst others, the pattern
requires that knowledge sources communicate exclusively through the blackboard compo-
nent: they either provide solutions to currently open subproblems (given that solutions for
other subproblems are available), or they communicate their ability to solve open subprob-
lems and require a set of other subproblems to be solved first. The controller component
is optional and can be employed to improve the communication between blackboard and
knowledge sources.

Knowledge
Source

solve(prob)

Blackboard

solutions

solve(problem)

Controller

loop()

Figure 1.3: Specification of the Blackboard pattern as it is usually found in literature.

1Problem in this context is different from architectural design problem.

5

1 Introduction

For the scope of this thesis, we define an ADP as follows:
Definition: Architectural design pattern.

An architectural design pattern consists of a set of architectural constraints, i.e.,
constraints about different aspects of an architecture, such as:

• The types of data exchanged by the components.

• The types of components involved in an architecture (including assumptions
about its syntactic and semantic interface) as well as the existence of com-
ponents of a certain type.

• Activation and deactivation of components of certain types.

• Connections between components of certain types.

An architectural design pattern usually comes with a set of invariants in terms of safe-
ty/liveness properties for an architecture implementing the pattern. In the following, we
call such invariants architectural guarantees and usually they characterize correct solu-
tions for the architectural design problem addressed by an ADP. Figure 1.4 summarizes
the situation: An architecture which follows the constraints imposed by a pattern is
assumed to satisfy the guarantees provided by the pattern.

Architectural
Constraints

Architectural
Guarantees

Architectural Design Pattern

follows sat
isfi
es

Architecture

Figure 1.4: Architectures and ADPs.

In the following, we demonstrate the definition by means of the three example patterns
introduced above2.

Example 4 (The Singleton Pattern). Let us first consider the Singleton pattern in-
troduced in Ex. 1 and reformulate it in terms of our new definition. The constraints
imposed by a Singleton pattern usually concern two aspects of an architecture: the types
of components as well as the activation and deactivation of components. Thus, we may
formulate two corresponding types of architectural constraints:

2We provide only informal specifications here. Corresponding formalizations are provided in Chap. 3
and Chap. 4.

6

1.1 Architectural Design Patterns

• A Singleton pattern usually requires the existence of one type of component: the
singleton. However, it does not pose any constraints on the interface of a singleton
component and as a consequence it does also not constrain its behavior.

• In addition, our version of the Singleton pattern requires that a component of type
singleton is always active and only one component of type singleton is active at each
point in time. Note that other versions of the Singleton pattern may require that
at most one component of type singleton is active at each point in time. Moreover,
in our version of the Singleton pattern, we also require that the active component
of type singleton is unique over time, i.e., the component does not change over
time. Also here, we could think of different versions of the pattern, in which, for
example, the singleton component is allowed to change over time.

If we reformulate the addressed design problem, we get the following architectural
guarantee (in terms of a safety property) for an architecture implementing the singleton
pattern:

A system implementing the Singleton pattern is guaranteed to have a unique
component of type singleton which is active at each point in time.

Example 5 (The Publisher-Subscriber Pattern). Let us now turn to the Publisher-
Subscriber pattern and derive architectural constraints and architectural guarantees from
the pattern’s description provided in Ex. 2. In contrast to a Singleton pattern, a
Publisher-Subscriber pattern usually constrains three aspects of an architecture: data
types, component types, and connections between the ports of certain components. In the
following, we provide corresponding architectural constraints:

• A Publisher-Subscriber pattern usually requires the existence of an abstract data
type to represent subscriptions and un-subscriptions for certain events.

• In addition, a Publisher-Subscriber pattern requires two types of components: pub-
lisher and subscriber components. However, we do not require any assumptions
about the behavior of these components.

• Finally, a Publisher-Subscriber pattern requires that, whenever a publisher compo-
nent sends a message associated to an event for which a subscriber component is
registered, the subscriber must be connected to the publisher, i.e. a channel between
the corresponding ports of the publisher and subscriber component must be active
in such a situation.

The following guarantee may be derived from the pattern’s addressed design problem:

A subscriber receives all the messages associated to an event for which it is
subscribed.

This time, the guarantee is given in terms of a liveness property for architectures imple-
menting the pattern.

7

1 Introduction

Example 6 (The Blackboard Pattern). Finally, let us derive some architectural con-
straints from the description of the Blackboard pattern presented in Ex. 3. Compared
to the other examples, the Blackboard pattern constrains every aspect of an architecture:
data types, component types, component activation, and connections between compo-
nents.

• First of all, a Blackboard pattern requires the existence of data types for the prob-
lems to be solved and the corresponding solutions. It even requires the existence of
a well-founded relation between problems and corresponding subproblems.

• Moreover, a Blackboard pattern requires the existence of two types of components:
blackboards and knowledge sources. Thereby, it requires that blackboard compo-
nents forward the current state towards solving the original problem, i.e., they are
required to forward currently open subproblems as well as solutions for already
solved subproblems. Knowledge source components, on the other hand, are required
to solve a problem, whenever solutions for all the required subproblems are avail-
able. Moreover, they are also required to communicate subproblems for which they
require solutions in order to solve a currently open subproblem.

• In order to guarantee that a Blackboard architecture indeed solves a given problem,
the pattern requires that a blackboard component is unique and always activated.
Moreover, the pattern requires that for every open subproblem, a knowledge source
able to solve this problem is eventually activated.

• Finally, a Blackboard constrains also possible connections between blackboard and
knowledge source components: whenever a knowledge source publishes a solution to
a problem, or subproblems it requires to solve an open problem, the pattern requires
the knowledge source to be connected to the blackboard component.

A guarantee provided by the Blackboard pattern may be stated as follows:

An architecture is guaranteed to collaboratively solve a given problem, even
if no knowledge source can solve the problem on its own.

Again, it is a liveness property formalizing a correct solution to the pattern’s addressed
design problem.

1.2 Problem: Unverified Patterns
The main problem addressed with this thesis is that patterns found in current literature
are usually not verified. Figure 1.5 depicts this situation: usually it is not clear whether
the architectural constraints imposed by a pattern indeed lead to the corresponding
guarantee. There are two possible consequences of this problem:

• The constraints may be too weak for the guarantee.

• The constraints may be unnecessarily strong for the provided guarantee.

8

1.2 Problem: Unverified Patterns

Architectural
Constraints

Architectural
Guarantees

?
=⇒

Architectural Design Pattern

Figure 1.5: Problem: unverified patterns.

1.2.1 Missing Constraints

If the architectural constraints required by an ADP are too weak to ensure the claimed
guarantees, the pattern may not correctly solve the addressed design problem. Important
constraints might be missing and architectures implementing the pattern may not satisfy
the pattern’s guarantees. In order to understand why missing design constraints indeed
constitute a problem, let us first look at how ADPs are usually used for the design of an
architecture. The situation is shown in Fig. 1.6: When designing an architecture based
on some requirements, ADPs are usually selected based on the problem they solve. The
architecture is then designed according to the constraints imposed by the pattern. If the
constraints, however, do not solve the problem, the corresponding architecture does not
correctly solve the problem either, which might lead to a system which does not fulfill
its requirements.

Architecture
Design

Constraints

Architecture
Design
Problem

Architecture Requirements

solves

adressesfulfills

adresses

Figure 1.6: The use of ADPs for the design of architectures.

1.2.2 Unnecessary Constraints

Even if the constraints required by an ADP are strong enough to ensure a pattern’s
guarantee, not all constraints may be needed in order to ensure the pattern’s guarantee.
Thus, a pattern’s specification may contain unnecessary constraints. While this problem
is actually not as severe as the problem of missing constraints mentioned above, it does
also have some undesired consequences: Since architectural design constraints restrict
the design space for an architecture, unnecessary constraints exclude possible designs for
an architecture. This becomes a problem if such an unnecessary constraint excludes an
optimal design and requires an architect to select only a suboptimal architecture for the
given requirements.

9

1 Introduction

1.3 Approach

Over the last decades, several so-called architecture description languages (ADLs)
emerged to support the formal specification and analysis of software architec-
tures [GR91, LKA+95, All97, GMW00, DVdHT01, FLV06, HF10]. Some of those even
support the specification of dynamic aspects [MK96, ADG98, vOvdLKM00]. These
techniques usually specify an architecture using some type of stat machine and the
specification is then analyzed using model-checking techniques.Traditional approaches to
address the problems identified above tried to apply these techniques, developed for the
specification and verification of architectures, to ADPs. Kim and Garlan [KG06], for ex-
ample, apply the Alloy [Jac02] model checker to automatically verify architectural styles
specified in ACME [Gar03]. First approaches in this area come from some early attempts
to formalize design patterns using UML [MCL04, SH04, ZA05]. A similar approach
comes fromWong et al. [WSWS08] which applies Alloy for the verification of architecture
patterns. Zhang et al. [ZLS+12] applied model-checking techniques to verify architectural
styles formulated in Wright#, an extension of Wright [All97]. More recently, Marmsoler
and Degenhardt [MD17] apply the NuSMV model checker [CCGR00] to verify properties
of design patterns and Goethel et al. [GJS17] model patterns for self-adaptive systems
using CSP [Hoa78] and use the FDR3 model checker [GRABR14] to analyze them.
Specifications of ADPs, however, have some peculiarities, which limit the application

of the above techniques for their specification and verification: (i) Pattern specifications
are usually axiomatic, focusing on a minimal set of constraints (about component be-
havior or architecture configurations), in order to ensure its guarantee. For example, in
a Singleton pattern, we do not care about the concrete implementation of component ac-
tivation, as long as it is guaranteed that a component of type singleton is only activated
if no other component of that type is already active. For a Publisher-Subscriber pattern,
on the other hand, we are not interested in the concrete mechanism which implements
communication between components, as long as it is guaranteed that a subscriber com-
ponent is connected to a publisher, whenever latter sends out some message for which the
former is currently subscribed. Or in a Blackboard pattern, we are not concerned with
how a knowledge source solves a certain problem, as long as it is guaranteed that it solves
it somehow. (ii) Moreover, the specification of patterns does not necessarily contain a
fixed number of components. Rather it provides upper or lower bounds and sometimes
the number might be even unbounded. For example, in a Publisher-Subscriber pattern,
we do not know the exact number of subscriber components. Or in a Blackboard pattern,
we do not know the exact number of knowledge source components.
In this thesis, we propose an approach based on axiomatic specification techniques

and interactive theorem proving, to address the problems identified above.

Thereby, to the best of our knowledge, this is the first approach applying
interactive theorem proving for the verification of architectural design patterns.

Interactive theorem proving supports verification at an axiomatic level. This allows
for the verification of the axiomatic specifications inherent in ADPs. The additional ef-

10

1.4 Contributions

fort which comes with interactive theorem proving (compared to automatic verification
techniques, employed in traditional approaches), is justified by the impact of verification
results at pattern level: Each result obtained at the level of an ADP applies to every
architecture which implements that pattern. Thus, if we think about how many architec-
tures implement a Singleton or a Publisher-Subscriber pattern, this should justify the
additional effort induced by manual verification approaches.

1.4 Contributions
Perhaps the major outcome of this thesis is a methodology for the specification and
verification of ADPs. In the following, we briefly introduce the proposed methodology
and summarize the major contributions of this thesis.

1.4.1 FACTum: Focus on Architectural Design Constraints
Figure 1.7 depicts a general overview of the FACTum methodology. Thereby, verifying
a pattern proceeds in three main phases:

• First, the pattern is formally specified. Therefore, one needs to specify the archi-
tectural constraints imposed by the pattern as well as the architectural guarantees
derived from the pattern’s addressed architectural design problem. The stick fig-
ure indicates that these activities are executed manually, by the person analyzing
the ADP. The outcome of this activity is a formal specification of the constraints
imposed by the pattern and the corresponding guarantees.

• In the next phase, an Isabelle/HOL theory is created from the specification of the
pattern and theorems are created from the corresponding guarantees. As indicated
by the gear-wheel, creating the theory as well as the corresponding theorems are
fully automated activities.

• In the last phase, the pattern is finally verified by proving the theorem from the
specification. As indicated by the symbols, this is a semi-automatic activity: a
user writes the proof using Isabelle/HOLs structured proof language Isar. The
soundness of the different steps is then automatically checked by Isabelle.

Note that the activities depicted in Fig. 1.7 are annotated with labeled stars. They in-
dicate where the particular contributions of this thesis are located in the overall method-
ology. In total, the thesis provides 4 major contributions (3 of which contribute to the
activities of the methodology and one additional contribution comes from the evaluation
of the methodology):

C1 We provide an axiomatic specification framework which can be used to formally
specify ADPs as well as its guarantees and implement it in Eclipse/EMF.

C2 We provide an algorithm to map a FACTum specification to a corresponding Is-
abelle/HOL theory, show its soundness, and implement it in Eclipse/EMF.

11

1 Introduction

Architectural
Design
Pattern

Formal
System Model

Isabelle
Implementation

specify

Assumptions

specify

Guarantees

Architectural
Assumptions

Architectural
Guarantees

create

Theory

create

Theorems

Isabelle
Theory

Isabelle
Theorem

verify

pattern

C1

C1

C2

C2

C3

Figure 1.7: The FACTum methodology for interactive pattern verification.

C3 We provide a calculus to reason about pattern specifications, show its soundness
and relative completeness, and implement it in Isabelle/HOL.

C4 We demonstrate our approach in terms of three running examples and evaluate it
in terms of a larger case study.

In the following, we discuss each of these contributions in more detail.

1.4.2 C1: Axiomatic Pattern Specification Framework

To support the specification activity, we developed a framework for the axiomatic spec-
ification of ADPs. The framework consists of several languages to specify the different
types of constraints imposed by a pattern as well as the architectural guarantees given
by the pattern. The framework also comes with a denotational semantics for every lan-
guage, which allows for a formal specification of an ADP. To support the specification,
the basic, textual specification languages are complemented with a graphical extension
which allows to easily express common activation and connection constraints. To sup-
port the hierarchical nature inherent in ADPs, the framework also supports hierarchical
specifications: a pattern specification can instantiate another pattern specification by
interpreting the corresponding component types.
The framework was also implemented as a tool in Eclipse/EMF, which supports the

specification of ADPs by combining graphical and textual elements. Thereby, compre-
hensive type checking supports the user in the specification of architectural constraints
as well as architectural guarantees.

1.4.3 C2: Theory Generation Algorithm

We also provide an algorithm to map a FACTum specification to a corresponding Is-
abelle/HOL theory. Therefore, we first implemented our formal model of architectures
as an Isabelle/HOL theory. Then, we developed an algorithm to map a (hierarchical)

12

1.5 Related Work

FACTum specification to a corresponding Isabelle/HOL theory. Thereby, the generated
theory extends the theory given by the model implementation. The algorithm is shown
to be sound and implemented in Eclipse/EMF. Thus, a user of the specification tool
(presented as an outcome of C2), can automatically generate Isabelle theories and cor-
responding theorems from its specification of an ADP. Thereby, the original meaning of
the specification is guaranteed to be preserved by the generated Isabelle/HOL theory.

1.4.4 C3: Verification Framework

To support the verification of a given pattern specification, we also provide a calculus
which formalizes reasoning about behavior specifications of component types. The cal-
culus comes in a natural deduction style and provides introduction and elimination rules
for all the operators involved in a FACTum specification. The calculus is shown to
be sound and it is implemented in Isabelle/HOL to support the verification of pattern
specifications.

1.4.5 C4: Running Examples and Case Study

Throughout the thesis we shall use three running examples to demonstrate our con-
cepts and ideas: the Singleton, the Publisher-Subscriber, and the Blackboard pattern.
Thereby, we also provide verification results for these patterns. To evaluate our approach
in more depth, however, we provide a larger case study in the area of blockchain architec-
tures. Thereby, we specify a pattern for blockchain architectures based on the proof of
work consensus algorithm and verify an important property for blockchain architectures:
that entries of a blockchain are indeed resistant to modifications from untrusted nodes.

1.5 Related Work

As mentioned in the introduction, architecture description languages (ADLs) have been
an active area of research and many approaches emerged to support the formal spec-
ification of architectures. Famous examples are Weaves [GR91], Rapide [LKA+95],
Wright [All97], AADL [FLV06], ACME [GMW00], xADL [DVdHT01], and Autofo-
cus [HF10]. Over the last years, specification and verification of dynamic aspects were
of particular interest. Table 1.1 provides an overview of some representative examples
in this area. For each of them, we list the underlying formalism as well as its support
for dynamic aspects. To this end, we distinguish between Separate and Combined ap-
proaches: While the former separate the specification of behavior from the specification
of architectural aspects, the latter combine the two.
Similar to most of the approaches shown in Tab. 1.1, we also separate the specification

of behavioral aspects from that of structural aspects. The difference comes, however, in
the verification: While most of these approaches focus on operational specifications and
automatic verification techniques, with our work we aim towards axiomatic specifications
and interactive theorem proving.

13

1 Introduction

approach dynamics specification
Darwin [MK96] S & C Π-Calculus [Mil99]

Wright [All97, ADG98] S CSP[Hoa78]
COMMUNITY [WLF01, WF02] S Unity [Cha89]/SM

Aguirre and Maibaum [AM02b, AM02a] S TL [MP92]
Π-ADL [Oqu04] S Π-Calculus [Mil99]

Reo [Arb04, BSAR06, KMLA11] S circuits
Castro et. al [CAPM10] C Category Theory
Canal et al. [CCS12] S LTS

Archery [SBR12, SMB15] S ACP [BK86]

Table 1.1: Overview of dynamic ADLs and Coordination Languages.

1.5.1 Axiomatic approaches

Even though they were not invented for the purpose of pattern verification, there exist
some approaches which focus on the axiomatic specification of architectures, in gen-
eral. One of the first attempts in this direction is done by Bergner [Ber96]. The author
proposes an approach to specify component networks and verify whether a given (run-
time) component network satisfies its specification. The approach is implemented in
Spectrum [BFGea93], a functional programming language which allows for axiomatic
specifications of functions. Another approach comes from Fensel and Schnogge [FS97],
which apply the KIV interactive theorem prover [Rei95] to verify concrete architec-
tures in the area of knowledge-based systems. Another example is Spichkova [Spi07],
which provides a mapping from a FOCUS [BS01] specification to a corresponding Is-
abelle/HOL [NPW02] theory. More recently, some attempts were made to apply interac-
tive theorem proving to the verification of architectural connectors. Li and Sun [LS13],
for example, apply the Coq proof assistant [BC13] to verify connectors specified in
Reo [Arb04]. These approaches, both, apply interactive theorem proving to verify archi-
tectures.

While also these approaches indeed support axiomatic specifications and verification
of architectures, there are two major differences to our work.

1.5.1.1 Scope of Application

The first difference lies in the scope of the application: The approaches discussed so far
apply axiomatic verification at the level of concrete architectures which might be too
expensive, in general. Thus, we argue, that application of axiomatic verification should
be restricted to architecture patterns, rather than concrete architectures. Thus, the
expenses would pay off since each result at the level of pattern applies for each concrete
architecture implementing the pattern. Just think about how many patterns employ a
Singleton or Publisher-Subscriber pattern.

14

1.5 Related Work

1.5.1.2 Dynamic Aspects

Another difference lies in the expressiveness of the specification languages: The above
approaches mainly focus on the specification of static architectures. However, as shown
at the beginning, some commonly used patterns require also the specification of dynamic
aspects, such as:

Component Activation Some patterns, such as the Singleton pattern or the Blackboard
pattern, require to specify activation and deactivation of components.

Reconfiguration Other patterns, such as the Publisher-Subscriber pattern or the Black-
board pattern, require means to specify architecture reconfiguration, i.e., means
to specify activation and deactivation of connections between component ports.

There are two exceptions to this which support axiomatic specifications of even dy-
namic architectures. They are closely related to our approach and thus deserve a detailed
analysis.

1.5.2 Componentware

One example which uses a model similar to ours to formalize UML models is Component-
ware [Rau01]. Here, the author provides means to specify architectural constraints in an
UML-like notation [RJB04]. There are, however, some differences to our specification
approach which makes the specification of patterns difficult:

• The main restriction is probably the use of OCL for the specification of the be-
havior of components. As our examples later on show, specifying component types
involves the specification of temporal aspects which is not supported by OCL and
consequently not possible in their approach.

• Another restriction is the limited possibility for analysis of specifications. The
approach does not provide any calculus to analyze an axiomatic specification.

Nevertheless, the approach provides many interesting insights into axiomatic specifica-
tion of dynamic architectures and indeed the underlying model of dynamic architectures
is similar to the model used in the approach presented with this paper.

1.5.3 CommUnity

Another, closely related approach is the one of Aguirre and Maibaum [AM02b, AM02a].
The approach builds on top of CommUnity [FM97] and provides many interesting ideas
found in our approach as well:

• It allows for the specification of abstract data types used by the components.

• It allows for the specification of classes which are similar to our notion of component
types.

15

1 Introduction

• Instance of classes as well as reconfigurations can then be specified using so-called
subsystems which are similar to our notion of architecture constraint specification.

There are, however, some subtle differences to our approach which limits its application
for the specification of patterns:

• Instantiation of components as well as architecture reconfiguration must be explic-
itly triggered from outside. However, as shown later on, for some patterns there is
no such well-defined trigger, i.e., the trigger may change in different implementa-
tions of the pattern.

• Their approach does not support the notion of parametric interfaces which turn
out to be useful when it comes to the specification of patterns.

• The approach does not support hierarchical specifications which are very important
when it comes to the specification of patterns since they are usually specified on
top of each other.

• The approach is based on an action-synchronous model of systems. Some patterns
are, however, better described using a time-synchronous model of communication.

Another key constraint of this approach is the lack of analysis methods to reason about
such specifications.

1.6 Outline
This thesis is structured into five main parts: An introductory part, containing this
introduction and our formal model of architectures; a specification part, describing tech-
niques for the specification of ADPs over the model and demonstrating them by means
of our three running examples; a verification part describing our verification framework
and its formalization in Isabelle/HOL and demonstrating it in terms of our running ex-
amples; an evaluation part in which we present the outcome of evaluating the approach
by means of our running examples and a larger case study from the domain of blockchain
architectures; a concluding part containing an outlook and suggestions for future work
as well as several appendices.

16

2 A Model of Dynamic Architectures

Since ADPs often involve the specification of dynamic aspects, our approach relies on a
model for dynamic architectures. The model is based on Broy’s Focus theory [Bro10]
and its dynamic extension [Bro14]. It assumes a set of ports and messages to be given,
together with a corresponding type function which assigns a set of messages to each
port. Then, it defines the notion of an interface, which consists of a set of input and
output ports. It then introduces the central notion of component type, which extends
an interface with a set of so-called component parameters (formally represented as a
set of ports and associated messages) and behavior. Behavior of component types is
modeled in terms of sets of so-called behavior traces, i.e., causal [Bro10] streams of
valuations of the ports of the component’s interface. Besides component types, the
model introduces the concept of an architecture trace: an infinite sequence of so-called
architecture snapshots, which consists of a set of active components (belonging to some
type), connections between their ports, and a valuation of the ports of active components.
An architecture specification is then defined as a set of architecture traces which does
not restrict the behavior of components. Finally, the notion of behavior projection is
introduced to extract the behavior of a certain component out of a given architecture
trace. Behavior projection is then used to define composition of component types under
a given architecture specification: the result of composing a set of component types with
an architecture specification is defined to consist of all the architecture traces from the
architecture specification for which the projection to any component leads to a behavior
trace allowed by the component’s type. The model is formalized in Isabelle/HOL and
available as the entry DynamicArchitectures [Mar17a] in the Archive of Formal Proofs.
In order to deal with infinite streams, the formalization is based on Lochbihler’s theory
of coinductive (lazy) lists [Loc10]. Thereby, architecture traces are formalized in terms
of lazy lists and behavior projection is formalized using the lazy filter operation.
In the following, we first introduce the basic concepts of messages, ports, and inter-

faces. Then, we describe two key concepts of our model: component types and archi-
tecture specifications. Thereby, we describe also the notion of behavior projection and
composition. We conclude with a brief summary of the introduced concepts and their
interrelationships.

2.1 Messages and Ports

In our model, components communicate to each other by exchanging messages over ports.
Thus, we assume the existence of setM, containing all messages, and set P, containing

17

2 A Model of Dynamic Architectures

all ports, respectively. Moreover, we postulate the existence of a type function

T : P → ℘(M) (2.1)

which assigns a set of messages to each port.

2.2 Port Valuations
Ports are means to exchange messages between a component and its environment. This
is achieved through the notion of port valuation. Roughly speaking, a valuation for a
set of ports is an assignment of messages to each port.

Definition 1 (Port valuation). For a set of ports P ⊆ P, we denote with P the set of
all possible, type-compatible port valuations, formally:

P
def=

{
µ ∈

(
P → ℘(M)

)
| ∀p ∈ P : µ(p) ⊆ T (p)

}
Moreover, we denote by [p1, p2, . . . 7→ M1,M2, . . .] the valuation of ports p1, p2, . . . with
sets M1, M2, . . ., respectively. For singleton sets we shall sometimes omit the set paren-
theses and simply write [p1, p2, . . . 7→ m1,m2, . . .].

In our model, ports may be valuated by sets of messages, meaning that a component
can send/receive a set of messages via each of its ports at each point in time. A compo-
nent may also send no message at all, in which case the corresponding port is valuated
by the empty set.

2.3 Interfaces
The ports which a component may use to send and receive messages are grouped into
so-called interfaces.

Definition 2 (Interface). An interface is a pair (CI ,CO), consisting of disjoint sets of
input ports CI ⊆ P and output ports CO ⊆ P. The set of all interfaces is denoted by
IFP . For an interface if = (CI ,CO), we denote by

• in(if) def= CI the set of input ports,

• out(if) def= CO the set of output ports, and

• port(if) def= CI ∪ CO the set of all interface ports.

2.4 Component Types
An important concept of our model are component types, i.e., interfaces with associated
component behavior.

18

2.4 Component Types

2.4.1 Streams
In the following, we shall make use of finite as well as infinite streams [BS01]. Thereby,
we denote with (E)∗ the set of all finite streams over elements of a given set E, by (E)∞
the set of all infinite streams over E, and by (E)ω the set of all finite and infinite streams
over E. The n-th element of a stream s is denoted with s(n) and the first element is
s(0). Moreover, we shall use the following conventions for streams:

• With 〈〉 we denote the empty stream.

• With e&s we denote the stream resulting from appending stream s to element e.

• With ŝ s′ we denote the concatenation of stream s with stream s′.

• With rg(s) we denote the set of all elements of a given stream s.

• With #s ∈ N∞ we denote the length of s.

• We use s↓n to extract the first n (excluding the n-th) elements of a stream. Thereby
s↓0

def= 〈〉.

• With s′ v s, we denote that s′ is a prefix of s.

• We may also lift the restriction operator from functions to streams of functions
and use s|D to denote a stream of length #s, with s|D(n) def= s(n)|D for every
time point n < #(s|D).

2.4.2 Component Type
Essentially, a component type is an interface with associated behavior. The behavior is
given in terms of so-called behavior traces, streams of valuations of the corresponding
interface ports.

Definition 3 (Component type). A component type is a pair (if , bhv), consisting of

• an interface if ∈ IFP ,

• and a non-empty set of so-called behavior traces bhv ⊆ (port(if))∞, such that:
– the behavior of a component is input-complete, i.e., for all t ∈ bhv and all

time points n ∈ N:

∀µ ∈ in(if) ∃t′ ∈ bhv : t′↓n= t↓n ∧ t′(n)|in(if) = µ (2.2)

– the behavior of a component is causal, i.e., for all t, t′ ∈ bhv and all time
points n ∈ N, we have:

(t↓n−1)|in(if) = (t′↓n−1)|in(if) (2.3)
=⇒ ∃t′′ ∈ bhv : (t′′↓n) |in(if) = (t′↓n)|in(if) ∧ t′′↓n= t↓n (2.4)

19

2 A Model of Dynamic Architectures

Actually, we could relax the second condition to require only equality of val-
uations for output ports. However, due to the first condition and Eq. (2.3),
this is equal to requiring equality for the valuations of all the ports and thus
the complete valuation.

We shall use the same notation as introduced in Def. 2 to denote input, output, and all
interface ports for component types. Moreover, for a component type ct = (if , bhv), we
denote by

bhv(ct) def= bhv (2.5)

the behavior of that type.

Example 7 (Component type). Assuming P contains ports i0, i1, o0, o1, Fig. 2.1 shows
a conceptual representation of a component type (if , bhv), consisting of:

• Interface if = (CI ,CO), with
– input ports CI = {i0, i1}, and
– output ports CO = {o0, o1}.

• Behavior bhv = {ε, σ, ν, µ, ω, δ, η} which is assumed to be input complete and causal.

CType
i0

o0

i1

o1

µ = µ0, µ1, µ2, . . .
ν = ν0, ν1, ν2, . . .

ω = ω0, ω1, ω2, . . .

σ = σ0, σ1, σ2, . . .

δ = δ0, δ1, δ2, . . .

ε = ε0, ε1, ε2, . . .

η = η0, η1, η2, . . .

Figure 2.1: Conceptual representation of a component type with behavior bhv =
{ε, σ, ν, µ, ω, δ, η}.

2.4.3 Parametrized Component Types
Sometimes, it is convenient to specify and reason about groups of related components
of a certain type. Consider, for example, the Blackboard pattern in which a set of
knowledge source components work together to collaboratively solve an overall problem.
Thereby, certain knowledge sources are only able to solve certain problems, which is why
they can be classified into different groups, depending on the problem they can solve.
In such cases, it is useful to extend the notion of component type by adding a set of
parameters, used to group related components based on the value of the parameter.

Definition 4 (Parametrized component type). A parametrized component type is a
triple (ct,CP, ν), consisting of

20

2.4 Component Types

• a component type ct,

• so-called component parameters CP ⊆ P which are required to be disjoint from
the component type’s input and output ports,

• a valuation of the component parameters ν ∈ CP,

The set of all possible parametrized component types over a set of interfaces I is denoted
CTI . We shall use the same notation as introduced for component types in Def. 3
to denote the ports and behavior for parametrized component types. Moreover, for a
parametrized component type (ct,CP, ν), we denote by

• par(ct) def= CP its component parameters and

• val(ct) def= ν the valuation of component parameters.

Example 8 (Parametrized component type). Figure 2.2 shows a conceptual represen-
tation of a parametrized component type (ct,CP, ν), extending the component type de-
scribed in Ex. 7 by a component parameter CP = {p} valuated with a set of messages
ν(p) = M .

〈p = M〉
i0

o0

i1

o1

µ = µ0, µ1, µ2, . . .
ν = ν0, ν1, ν2, . . .

ω = ω0, ω1, ω2, . . .

σ = σ0, σ1, σ2, . . .

δ = δ0, δ1, δ2, . . .

ε = ε0, ε1, ε2, . . .

η = η0, η1, η2, . . .

Figure 2.2: Conceptual representation of a parametrized component type with component pa-
rameter p valuated with a set of messages M .

Formally, component parameters are just normal ports, valuated with some messages.
However, they have a special meaning in a specification, which distinguishes them from
input and output ports. First, the valuation of a component parameter is bound to a
component and does not change its value over time (compared to input and output ports
which may change their valuation at each point in time). Second, for each parametrized
component type, we require the existence of at least one component, for each possible
valuation of the parameter (respecting its type). Note that existence does not require
activation of that component, however it is required to ensure soundness of specifica-
tions involving parameterized component variables. Such variables are interpreted only
by components with a corresponding parameter valuation. However, if for a certain
parameter valuation no such component exists, the semantics of the specification is not
well-defined. More on details on parametrized component variables can be found in
Chap. 3.

21

2 A Model of Dynamic Architectures

2.5 Architecture Specifications
Component types specify the interface and the allowed behavior for components. How-
ever, they do not say anything about the activation and deactivation of components or
their interconnections. Thus, in the following, we introduce the concept of an architec-
ture specification to address these aspects. We conclude the section with the definition of
a composition operator which allows to combine component types with an architecture
specification.

2.5.1 Components
Component types can be instantiated to obtain components of that type. We shall use
the same notation as introduced for parametrized component types in Def. 4, to access
ports, valuation of component parameters, and behavior assigned to a component. Note,
however, that instantiating a component leads to the notion of component port, which
is a port combined with the corresponding component identifier. Thus, for a family
of components (Cct)ct∈CT over a set of parametrized component types CT ⊆ CTI , we
denote by:

• in(C) def=
⋃
c∈C ({c} × in(c)), the set of component input ports,

• out(C) def=
⋃
c∈C ({c} × out(c)), the set of component output ports,

• port(C) def= in(C) ∪ out(C), the set of all component ports.

Moreover, we may lift the typing function (introduced for ports at the beginning of
the chapter), to corresponding component ports:

T ((c, p)) def= T (p) .

Finally, we can generalize our notion of port valuation (Def. 1) for component ports
CP ⊆ C × P to so-called component port valuations:

CP def=
{
µ ∈

(
CP → ℘(M)

)
| ∀cp ∈ CP : µ(cp) ⊆ T (cp)

}
To better distinguish between ports and component ports, in the following, we shall use
p, q, pi, po, . . . to denote ports and cp, cq, ci, co, . . . to denote component ports.

2.5.2 Architecture Snapshots
An architecture is modeled as a sequence of snapshots of its state during execution. To
this end, in the following, we introduce the notion of architecture snapshot. Such a
snapshot consists of snapshots of currently active components, i.e., interfaces with its
ports valuated with messages, and connections between the ports of these components.
Message exchange between components requires the valuation of connected ports to be
equal.

22

2.5 Architecture Specifications

Definition 5 (Architecture snapshot). An architecture snapshot is a triple (C ′, N, µ),
consisting of:

• a set of components C ′ ⊆ C,

• a connection N : in(C ′)→ ℘(out(C ′)), such that

∀ci ∈ in(C ′) :
⋃

co∈N(ci)
T (co) ⊆ T (ci) (2.6)

• a component port valuation µ ∈ port(C ′) .

We require connected ports to be consistent in their valuation, i.e., if a component pro-
vides messages at its output port, these messages are transferred to the corresponding,
connected input ports:

∀ci ∈ in(C ′) : N(ci) 6= ∅ =⇒ µ(ci) =
⋃

co∈N(ci)
µ(co) (2.7)

Note that Eq. (2.6) guarantees that Eq. (2.7) does not violate type restrictions. The set
of all possible architecture snapshots is denoted by ASCT .
For an architecture snapshot as = (C ′, N, µ) ∈ ASCT , we denote by

• CMPas
def= C ′ the set of active components and with c as

def⇐⇒ c ∈ C ′, that a
component c ∈ C is active in as,

• CN as
def= N , its connection, and

• valas
def= µ, the port valuation.

Moreover, given a component c ∈ C ′, we denote by

cmpcas ∈ port({c}) def=
(
λcp ∈ port({c}) : µ(cp)

)
(2.8)

the valuation of the component’s ports.

Note that cmpcas is well-defined iff c as.
Moreover, note that connection N is modeled as a set-valued function from component

input ports to component output ports, meaning that:

1. input/output ports can be connected to several output/input ports, respectively1,
and

2. not every input/output port needs to be connected to an output/input port (in
which case the connection returns the empty set).

1As indicated by Eq. 2.7, if multiple output ports are connected to one input port, the corresponding
input port is valuated with the union of messages from all connected output ports.

23

2 A Model of Dynamic Architectures

Thus, ports of an architecture snapshot can be classified as either open or connected,
depending on whether they are connected to any other ports or not. Ports which are
not connected to any other port are called open architecture ports.

Definition 6 (Open architecture port). For an architecture snapshot as = (C ′, N, µ) ∈
ASCT , we denote by:

• oin(as) def=
{

ci ∈ in(C ′) | N(ci) = ∅
}
, the set of open input ports,

• oout(as) def=
{

co ∈ out(C ′) | @ci ∈ in(C ′) : co ∈ N(ci)
}
, the set of open output

ports,

• oport(as) def= oin(as) ∪ oout(as), the set of all open architecture ports.

On the other hand, ports which are connected to other ports are called connected
architecture ports.

Definition 7 (Connected architecture port). For an architecture snapshot as =
(C ′, N, µ) ∈ ASCT , we denote by:

• cin(as) def=
{

ci ∈ in(C ′) | N(ci) 6= ∅
}
, the set of connected input ports,

• cout(as) def=
{

co ∈ out(C ′) | ∃ci ∈ in(C ′) : co ∈ N(ci)
}
, the set of connected

output ports,

• cport(as) def= cin(as) ∪ cout(as), the set of all connected architecture ports.

Note that for an architecture snapshot as = (C ′, N, µ),

oin(as) ∪ cin(as) = in(C ′) and oout(as) ∪ cout(as) = out(C ′) .

Moreover, note that by Eq. (2.7), the valuation of an input port connected to many
output ports is defined to be the union of all the valuations of the corresponding, con-
nected output ports.

Example 9 (Architecture snapshot). Figure 2.3 shows a conceptual representation of
an architecture snapshot (C ′, N, µ), consisting of:

• active components C ′ = {c1, c2, c3} with corresponding component types (c3, for
example, is of a type as described in Ex. 7);

• connection N , defined as follows:
– N((c2, i1)) = {(c1, o1)},
– N((c3, i1)) = {(c1, o2)},
– N((c2, i2)) = {(c3, o1)}, and
– N((c1, i0)) = N((c2, i0)) = N((c3, i0)) = ∅; and

• component port valuation [(c1, o0), (c2, i1), (c3, o1), · · · 7→ M3, M5, M3, · · ·].

24

2.5 Architecture Specifications

c1
o0 = M3

i0 = M4

o1 = M5

o2 = M1

c2 〈q = M2〉
i0 = M1

o0 = M6

i1 = M5

i2 = M3

c3 〈p = M〉
i0 = M2

o0 = M1

i1 = M1

o1 = M3

Figure 2.3: Architecture snapshot consisting of three components c1, c2, and c3; a connection
between ports (c2, i1) and (c1, o1), (c2, i2) and (c3, o1), and (c3, i1) and (c1, o2); and
valuations of the component parameters and ports.

2.5.3 Architecture Traces
An architecture trace consists of a series of snapshots of an architecture during system
execution. Thus, an architecture trace is modeled as a stream of architecture snapshots
at certain points in time.

Definition 8 (Architecture trace). An architecture trace is an infinite stream t ∈
(ASCT)∞. For an architecture trace t ∈ (ASCT)∞ and a component c ∈ C, we denote
with2

• last(c, t), the greatest i ∈ N, such that c t(i),

• c n⇐ t, the last time point less or equal to n at which c was not active in t, i.e., the
least n′ ∈ N, such that n′ = n ∨

(
n′ < n ∧ @n′ ≤

˙
k < n : c t(k)

)
,

• c n← t, the latest activation of component c (strictly) before n, and

• c n→ t, the next point in time (after n) at which c is active in t.

Note that c n⇐ t is always well-defined, while c n← t and c n→ t are only well-defined iff
there exists at least one activation of component c in the past (a point in time strictly less
than n) or in the future (a point in time greater or equal to n), respectively. last(c, t),
on the other hand, is well-defined iff i) component c is activated at least once in t:
∃i ∈ N : c t(i) and ii) component c is not activated infinitely often, i.e., ∃n ∈ N : ∀n′ ≥
n : ¬ c t(n′).

Example 10 (Architecture trace). Figure 2.4 shows an architecture trace t ∈ (ASCT)∞
with corresponding architecture snapshots t(0) = k0, t(1) = k1, and t(2) = k2. Architec-
ture snapshot k0, for example, is described in Ex. 9.

2From now on, we shall sometimes use a dot for variables after a quantifier to highlight the variable
bound by the corresponding quantifier.

25

2 A Model of Dynamic Architectures

c1o0M3

i0M4 o1

M5

o2 M1

c2〈q=M2〉i0M1

o0M6 i1

M5

i2 M3

c3〈p=M〉
i0 M2

o0 M1i1

M1

o1

M3

k0

,

c1o0M4

i0M3 o1

M1

o2 M2

c4i0M2
i1

M1

o0 M3

k1

,

c1o0
M3

i0M2 o1

M4

o2 M1

c4i0M6
i1

M1

o0 M2

c3〈p=M〉
i0 M5

o0 M4i1

M3

o1
M6

k2

,

Figure 2.4: The first three architecture snapshots of an architecture trace.

Figure 2.5 lists some properties derived for the operators introduced for architecture
traces in Def. 8. As indicated by the small Isabelle logo on the top right, these properties
are all mechanically verified in our formalization of the model (App. D.2).

Properties of component activation

c t(last(c,t))
[
if ∃i : c t(i) and ∃n : ∀n′ > n : ¬ c t(n′)

]
@n > last(c, t) : c t(n)

[
if ∃n′ : ∀n′′ > n′ : ¬ c t(n′′)

]
c

0⇐ t = 0
c t(n−1) =⇒ c

n⇐ t = n
[
if n ≥ 1

]
∀c n⇐ t ≤

˙
n′ < n : ¬ c t(n′)

c
n⇐ t ≤ n

c
c

n←t→ t = c
n← t

[
if ∃i < n : c t(i)

]
c
n→ t > c

n← t
[
if ∃i ≥ n : c t(i) and ∃i < n : c t(i)

]
c
n→ t ≥ n

[
if ∃i ≥ n : c t(i)

]
c
t(c n→t)

[
if ∃i ≥ n : c t(i)

]
@n ≤

˙
k < c

n→ t : c t(k)
[
if ∃i ≥ n : c t(i)

]
c t(n) =⇒ c

n→ t = n

c
n→ t ≥ c n⇐ t

[
if ∃i ≥ n : c t(i)

]
Figure 2.5: Properties of component activation.

Behavior projection An important concept for our model is the notion of behavior
projection. It is used to extract the behavior of a certain component out of a given
architecture trace (Figure 2.6).

26

2.5 Architecture Specifications

t ∈
(
AS C

T
)∞

Πc(t)

0 1 2 3 4 5 6

Figure 2.6: Conceptual representation of behavior projection.

In the following, we provide a co-recursive definition for behavior projection. This
allows us to easily specify the operator also for infinite input traces by following a
certain pattern in its specification. Then, we can use co-induction to reason about
behavior projection3.

Definition 9 (Behavior projection). Given an architecture trace t ∈ (ASCT)ω. The
behavior projection to component c ∈ Cct of type ct ∈ CT is denoted by Πc(t) ∈ (port(c))ω
and defined by the following equations:

Πc(〈〉) = 〈〉 (2.9)
c as =⇒ Πc(as & t) = cmpcas & Πc(t) (2.10)
¬ c as =⇒ Πc(as & t) = Πc(t) (2.11)(

∀as ∈ rg(t) : ¬ c as
)

=⇒ Πc(t) = 〈〉 (2.12)

Note that the structure of the equations provided in Def. 9 ensures productivity [JR97]
and hence they form a valid co-recursive definition. Thus, projection is indeed well-
defined by those equations.

Example 11 (Behavior projection). Applying behavior projection of component c3 to
the architecture trace described in Ex. 10 results in a behavior trace starting as follows:

[i0, i1, o0, o1 7→ M2, M1, M1, M3], [i0, i1, o0, o1 7→ M5, M3, M4, M6], · · ·

Figure 2.7 lists some characteristic properties of behavior projection.

2.5.4 Architecture Specifications
Finally, we can define our notion of architecture specification as a set of architecture
traces with certain properties.

Definition 10 (Architecture specification). An architecture specification is a set A ⊆
(ASCT)∞ of architecture traces, such that:

3Alternatively we could have used traditional recursion, show that behavior projection is continuous,
and use fixpoint induction [GH05] to proof properties about it. The reason to choose co-recursion
here is that it simplifies subsequent formalization in Isabelle/HOL.

27

2 A Model of Dynamic Architectures

Properties of behavior projection

#Πc(t) ≤ #t
Πc(t) = Πc(t↓n) [if ∀n ≤

˙
n′ ≤ #t : ¬ c t(n′)]

finite(Πc(t)) ⇐⇒ ∃n ∀n′ > n : ¬ c t(n′)

t v t′ =⇒ Πc(t) v Πc(t′)
Πc(t̂ t′) = Πc(t)̂ Πc(t′) [if finite(t)]

Πc(t↓n+1) = Πc(t↓n) [if n < #t and ¬ c t(n)]
Πc(t↓i+1) = Πc(t↓i)̂ cmpct(i) & 〈〉 [if i < #t and c t(i)]

Figure 2.7: Properties of behavior projection.

• it is input-complete, i.e., that for all t ∈ A and all time points n ∈ N:

∀µ ∈ oin(t(n)) ∃t′ ∈ A : t′↓n= t↓n ∧
CMPt(n) = CMPt′(n) ∧
CN t(n) = CN t′(n) ∧
valt′(n)|oin(t(n)) = µ (2.13)

• it does not restrict the behavior of components, i.e., that for all t ∈ A and all time
points n ∈ N:

∀µ ∈ out(CMPt(n)) ∃t′ ∈ A : t′↓n= t↓n ∧
CMPt(n) = CMPt′(n) ∧
CN t(n) = CN t′(n) ∧
valt′(n)|out(CMPt(n)) = µ (2.14)

Note that an architecture specification does not restrict the behavior of components.
A component’s behavior, on the other hand is restricted in the specification of com-
ponent types. We conclude the section by introducing the notion of composition as a
means to combine a specification of component types with a corresponding architecture
specification.

Definition 11 (Composition). Composition of a family of components (Cct)ct∈CT with
an architecture specification A ⊆ (ASCT)∞, is defined as follows:

⊗A(C) def=
{
t ∈ A |

∀ct ∈ CT , c ∈ Cct ∃t′ ⊆ (port(ct))∞ : Πc(t) ̂ t′ ∈ bhv(ct)
}

(2.15)

28

2.5 Architecture Specifications

Note that the projection to an unfair architecture trace t, i.e., a trace in which a
component is activated only finitely many times, the projection to this component results
in only a finite behavior trace. Thus, we actually search for a valid continuation t′, such
that the concatenation for the projection Πc(t) with t′ is a valid behavior of c. The
situation is depicted in Fig. 2.8: The projection to component c (represented by the
empty rectangle) in architecture trace t, is combined with a possible continuation t′ to
obtain a behavior trace Πc(t) ̂ t′ (shown at the bottom of Fig. 2.8).

t ∈
(
AS C

T
)∞

t′ ∈
(
port(c)

)∞

Πc(t) ̂ t
′

0 1 2 3 4 5 6

Figure 2.8: Continuations for unfair architecture traces.

2.5.5 A Note on Compositionality
We conclude the section with a brief discussion about compositionality, since it is an
important property, which allows to combine specifications of components (usually by
means of logical conjunction) to reason about its composition. In the following, we use Γ
to denote a specification of component activation and port connection, as introduced by
Def. 10. Moreover, we denote with γct a specification of component type ct, as described
in Def. 4.
In the presented approach, the behavior of an architecture is fully determined by

the behavior of the single components and an additional specification of architectural
aspects, such as activation of components and connections (which is in line with our
definition of architecture, presented in Sect. 1).

Theorem 1. Γ holds for an architecture specification A ⊆ (ASCT)∞ and for each com-
ponent type ct ∈ CTI a specification γct holds, iff Γ holds for ⊗A

(
C
)
and γct holds for

the projection to every component c ∈ C of type ct in ⊗A
(
C
)
.

Figure 2.9 summarizes the situation (an informal proof is provided in App. B): When-
ever we have a specification γct for component types ct ∈ CT and a corresponding spec-
ification Γ for architecture specification A, we can simply combine them using logical
conjunction to have a specification for ⊗A

(
C
)
.

Note that this corresponds to a situation in which we have a designated controller
component which, at every point in time, knows the state of an architecture and based
on that determines activation and deactivation of components and connections.

29

2 A Model of Dynamic Architectures

γct

(C)ct

Γ

A

∧

⊗

Π

Figure 2.9: Compositionality.

For a more decentralized approach, however, one could just require the existence
of a separate specification of architecture reconfiguration, for each single component
(or component type). Then, the behavior of an architecture is fully determined by the
specification of components only (without any designated controller component). Again,
there are two possible options for such a design:

• In one version, every component knows the state of the whole architecture, at each
point in time.

• In another version, every component only knows the state of itself.

While the first option is actually equal to the centralized approach, the second option
is more restrictive, i.e., not every set of architecture traces which can be specified with
the first approach, can also be specified with the second approach.

2.6 Summary
Figure 2.10 summarizes the main concepts of our model and their interrelationships:
Messages and ports (typed by sets of messages) form the basic concepts of the model.
A key concept of the model is the notion of component type which consists of an in-
terface and a behavior in terms of behavior traces (streams of port valuations, i.e.,
valuations of ports with messages). In order to deal with related groups of components,
we extended the notion of component type to parametrized component type. Another
important concept is the concept of architecture specification: a special set of archi-
tecture traces (streams of architecture snapshots, i.e., states of an architecture during
execution). Finally, the model provides an operator to combine a given architecture
specification with a set of component types and corresponding components. Therefore,
the operator uses the concept of behavior projection which extracts the behavior of a
certain component out of a given architecture trace.

30

2.6 Summary

Messages (M) Port
Valuation

Component Port
Valuation

Component
Port

Ports (P)

Architecture
Snapshot (AS) Components (C)

Interfaces (IF)

Component
Types (CT)

Behavior
Traces (BHV)

Configuration
Traces (ASω)

Architecture
Specification (A) Composition (⊗) Parametrized

C. Types (CTI)

T

projection (Π)

Figure 2.10: Concept map summarizing major concepts and their interrelationships.

31

Part II

Specification

33

3 Specifying Architectural Design Patterns
In the last section, we described a model for dynamic architectures based on the concept
of component types and architecture specifications. However, we did not yet provide any
techniques to specify ADPs over the model. Figure 3.1 provides an overview of techniques
which can be used to specify ADPs over the model introduced in Chap. 2. First, data
types are specified for the messages exchanged by the components of an architecture us-
ing traditional, algebraic specification techniques [Bro96, Wir90]. Then, component types
are specified on top of these datatypes: Therefore, corresponding interfaces are speci-
fied for each type of component using a graphical notation called architecture diagrams.
Then, component behavior is specified over these interfaces using so-called behavior trace
assertions, i.e., linear temporal logic formulæ with ports as free variables. Finally, an
architectural specification is given by means of so-called architecture trace assertions: lin-
ear temporal logic formulæ with component variables and architectural predicates. The
techniques come with a formal semantics in terms of the model introduced in Chap. 2
and they are implemented in terms of an Eclipse/EMF application [GM18] which sup-
ports the specification of ADPs by rigorous type checking mechanisms. In the following
section, we detail on each of the techniques and demonstrate them by means of our three
running example: the Singleton, the Publisher-Subscriber, and the Blackboard pattern.

Data Types

- Sorts
- Function/Predicate Symbols
- Characteristic Properties

Component Types

- Interfaces
- Component Behavior

Architecture Constraints

- Components
- Activation Constraints
- Connection Constraints

Algebraic Specifications

- Datatype Variables
- Axioms, Generator Clauses

Architecture Diagrams

- Ports
- Interfaces

Behavior Trace Assertions

- Linear Temporal Formulæ
- Port Variables

Architecture Trace Assertions

- Linear Temporal Formulæ
- Component Variables
- Activation/Connection predicates

Figure 3.1: Specifying architectural design patterns.

35

3 Specifying Architectural Design Patterns

3.1 Specifying Data Types

As a first step, a set of data types is specified for a pattern. Data types are specified
in terms of axioms over a signature and corresponding variables. They can be specified
using traditional, algebraic specification techniques [Bro96, Wir90]. Figure 3.2 depicts
a schematic example of an algebraic specification. Each specification has a name and
may be parametrized by several sorts. Moreover, other data type specifications can by
imported by means of their name. Function/predicate symbols are introduced with the
corresponding sorts at the beginning of the specification. Some of the symbols might be
declared as generator clauses, requiring that every element of the corresponding datatype
can be “reached” by a term formulated with these symbols. Finally, a list of variables for
the different sorts is defined and a set of axioms is specified to describe the characteristic
properties of a data type.

DTSpec Name(param) imports OtherDatatype
symbol1 : Sort1
symbol2 : Sort1→ Sort2...
generated by symbol1 , symbol2...
flex var1 , var2 : Sort1

var3 : Sort2...
assertion1 (symbol1 , var1 , var2 , var4)
assertion2 (symbol1 , symbol2 , var1 , var4)...

Figure 3.2: Schematic algebraic specification to for data types.

In the following, we demonstrate datatype specifications using our three running ex-
amples. The specification of the Singleton pattern does not require any special data
types. Data types are required, however, for the specification of the Publisher-Subscriber
pattern as well as the Blackboard pattern.

Example 12 (Datatype specification for the Publisher-Subscriber pattern). In a
Publisher-Subscriber pattern, we usually have two types of messages: subscriptions for,
and unsubscriptions from events. Figure 3.3 depicts the corresponding data type speci-
fication. Subscriptions are modeled as parametric data types over two type parameters:
a type id for component identifiers and some type evt denoting events to subscribe for.
The data type is freely generated by the constructor terms “sub id evt” and “unsub
id evt”, meaning that every element of the type has the form “sub id evt” or “unsub
id evt”.

36

3.2 Specifying Component Types

DTSpec subscription(id, evt)
generated by sub id ℘(evt), unsub id ℘(evt)

Figure 3.3: Data type specification for the Publisher-Subscriber pattern.

Example 13 (Datatype specification for the Blackboard pattern). Blackboard architec-
tures usually work with problems and solutions for them. Figure 3.4 provides a spec-
ification of the corresponding data types. We denote by PROB the set of all problems
and by SOL the set of all solutions. Complex problems consist of subproblems which
can be complex themselves. To solve a problem, its subproblems have to be solved first.
Therefore, we assume the existence of a subproblem relation ≺ ⊆ PROB × PROB which
relates problems with corresponding subproblems. For complex problems, the details of
the relation may not be known in advance. Indeed, one of the benefits of a Blackboard
architecture is that a problem can be solved even without knowing the exact nature of this
relation in advance. However, the subproblem relation has to be well-founded1 (Eq. (3.1))
for a problem to be solvable. In particular, we do not allow for cycles in the transitive
closure of ≺. While there may be different approaches to solve a problem (i.e., several
ways to split a problem into subproblems), we assume that the final solution for a prob-
lem is always unique. Thus, we assume the existence of a function solve : PROB → SOL
which assigns the correct solution to each problem. Note, however, that it is not known
in advance how to compute this function and it is indeed one of the reasons for using
this pattern to calculate this function.

DTSpec ProbSol imports SET
≺ : PROB× PROB
solve : PROB→ SOL
well-founded(≺) (3.1)

Figure 3.4: Data type specification for the Blackboard pattern.

3.2 Specifying Component Types
On top of the specified data types, a set of parametrized component types (as described
in Def. 4) is specified for the pattern. Component types are specified in two steps: First,
an interface is specified for them using a graphical notation called architecture diagrams.
Then, behavior is specified in terms of behavior trace assertions.

3.2.1 Specifying Interfaces
On top of the specified data types, a set of interfaces for the component types (as
introduced in Def. 2) are specified. The specification of interfaces proceeds in two steps:

1A well-founded relation is a partial order which has no infinite decreasing chains.

37

3 Specifying Architectural Design Patterns

First, a set of ports is specified as means to exchange messages of a certain type. Then,
interfaces are specified over the ports.

3.2.1.1 Port Specifications

Ports are specified in terms of templates which declare a set of port identifiers and a
corresponding typing. Figure 3.5 shows such a template which specifies two ports port1
of type Sort1 and port2 of type Sort2, respectively.

PSpec Port Specification imports Datatype
port1 : Sort1
port2 : Sort2...

Figure 3.5: Exemplary port specification.

Again, we demonstrate port specifications by means of our running examples and
again, the specification of the Singleton pattern does not require any ports, at all. How-
ever, Publisher-Subscriber architectures and also Blackboard architectures require ports
to be specified.

Example 14 (Port specification for the Publisher-Subscriber pattern). Two port types
are specified for the Publisher-Subscriber pattern by the specification given in Fig. 3.6: a
type sb which allows to exchange subscriptions for a specific event and a type nt which
allows to exchange messages associated with a certain event. To this end, it uses a
type parameter msg and imports the data type specification for subscriptions described in
Ex. 12.

PSpec PSPorts(msg) imports subscription(id, evt)
sb : subscription(id, evt)
nt : evt× msg

Figure 3.6: Port specification for the Publisher-Subscriber pattern.

Example 15 (Port specification for the Blackboard pattern). For the specification of
the Blackboard pattern we require 4 different ports as specified in Fig. 3.7:

• rp is used to exchange a problem which a knowledge source is able to solve, together
with a set of subproblems the knowledge source requires to be solved first.

• ns is used to exchange a problem solved by a knowledge source, together with the
corresponding solution.

• op is used to exchange problems which still need to be solved.

38

3.2 Specifying Component Types

• cs is used to exchange solutions for problems.

Moreover, a component parameter prob is specified to parametrize knowledge sources
according to the problems they can solve.

PSpec BBPorts imports ProbSol
rp : PROB× ℘(PROB)
ns, cs : PROB× SOL
op, prob : ℘(PROB)

Figure 3.7: Port specification for the Blackboard pattern.

3.2.1.2 Interface Specification

Interfaces consist of a set of input and output ports. Moreover, they consist of a set
of so-called component parameters with a corresponding strictness condition to specify
groups of related components. Formally, component parameters are represented as ports,
however, they have a special meaning in the following sense:

• The valuation of component parameters is bound to a concrete component (as
required by Def. 3), i.e., the valuation does not change over time, compared to
valuations of input and output ports.

• For each possible valuation of the component parameters, at least one component
is guaranteed to exist (as required in Sect. 2.5.1). This is not the case for input
and output port valuations.

• If the interface is declared to be strict, then exactly one component exists for each
valuation of the parameter ports.

Interfaces are specified over a given port specification and they are best expressed
graphically using so-called architecture diagrams. Thereby, an interface is represented
by a rectangle and consists of two parts: i) A name followed by a list of component
parameters (enclosed between ’〈’ and ’〉’ for non-strict interfaces and ’⟪’ and ’⟫’ for strict
ones). ii) A set of input and output ports which are represented by empty and filled
circles, respectively. Figure 3.8 shows a conceptual representation of an architecture
diagram Name, which is based on a port specification “PortSpecification” and which
specifies two interfaces:

• Interface If1 which consists of one input port i, one output port o, and a non-strict
component parameter par .

• Interface If2 which consists of a single output port o, and a strict component
parameter par .

In the following, we provide interface specifications for all of our running examples.

39

3 Specifying Architectural Design Patterns

Diagram Name imports PortSpecification

If1 ⟨par⟩i

o

If2⟪par⟫
o

Figure 3.8: Exemplary architecture diagram specifying two interfaces.

Example 16 (Interface specification for the Singleton pattern). The interface for the
Singleton pattern is specified by the architecture diagram depicted in Fig. 3.9: It consists
of a single interface Singleton and does not require any special ports.

Diagram Singleton

Singleton

Figure 3.9: Architecture diagram for the Singleton pattern.

Example 17 (Interface specification for the Publisher-Subscriber pattern). The archi-
tecture diagram depicted in Fig. 3.10 shows the specification of the interfaces of the two
types of components involved in a Publisher-Subscriber pattern: An interface “Publisher”
is defined with an input port sb to receive subscriptions and an output port nt to send
out notifications. Moreover, an interface “Subscriber” is defined with an input port nt
receiving notifications and an output port sb to send out subscriptions. Note also that
the diagram imports the specification of ports discussed in Ex. 14.

Diagram Publisher-Subscriber imports PSPorts

Subscriber

nt sb

Publisher

nt sb

Figure 3.10: Architecture diagram for the Publisher-Subscriber pattern.

Example 18 (Interface specification for the Blackboard pattern). A Blackboard pat-
tern usually involves two types of components: blackboards and knowledge sources. The
corresponding interfaces are specified by the architecture diagram depicted in Fig. 3.11:
The blackboard interface is denoted “BB” and consists of two input ports rp and ns to

receive subproblems for which solutions are required and new solutions to currently open

40

3.2 Specifying Component Types

problems. Moreover, it specifies two output ports op and cs to communicate currently
open problems and solutions for all currently solved problems.
The interface for knowledge sources is denoted “KS” and its specification actually

mirrors the specification of the blackboard interface: A knowledge source is required to
have two input ports op and cs to receive currently open problems and solutions for
all currently solved problems, and two output ports rp and ns to communicate required
subproblems and new solutions. Note that each knowledge source can only solve certain
problems, which is why a knowledge source is parameterized by a set of problems “prob”
it is able to solve. Since there may be different knowledge sources which are able to solve
the same set of problems, the parameter is not declared to be strict. Again, the diagram
imports the corresponding port specification from Ex. 15.

Diagram Blackboard imports BBPorts

KS 〈prob〉

op cs rp ns

BB

op cs rp ns

Figure 3.11: Architecture diagram for the Blackboard pattern.

3.2.2 Specifying Behavioral Constraints

We conclude the specification of component types by assigning constraints about com-
ponent behavior to each interface. These constraints are expressed in terms of so-called
behavior trace assertions. In the following, we introduce behavior trace assertions in-
formally and demonstrate them by means of our Blackboard example. However, in
App. C, we provide also a formal definition of the syntax and semantics of behavior
trace assertions.

3.2.2.1 Behavior Trace Assertions

Behavior trace assertions are a means to specify a component’s behavior in terms of
behavior traces introduced in Def. 3. They are formulated by means of first-order linear
temporal logic formulæ [MP92] over datatype variables and behavior assertions.

Datatype variables Behavior trace assertions may be specified over variables for mes-
sages. Thereby, variables are typed by the sorts of the pattern’s datatype specification
and we distinguish between two types of variables: rigid and flexible datatype variables.
While rigid variables are only interpreted once, flexible variables are newly interpreted
at each point in time.

41

3 Specifying Architectural Design Patterns

Behavior assertions Roughly speaking, behavior assertions are predicate logic formulæ
specified over a set of datatype variables and a set of ports, with terms consisting of:

• Datatype variables as well as the ports and parameters of a component type’s
interface.

• Function and predicate symbols of the corresponding data type specification.

They specify the state of a component (in terms of valuations of input and output ports)
during execution.

3.2.2.2 Component Type Specification

Component types are specified using templates as shown in Fig. 3.12. The specification
has a name and is associated with an interface of a corresponding interface specification.
Then, a set of flexible and rigid variables for different sorts are declared. A component
type specification concludes with a list of behavior trace assertions, formulated over the
ports of the corresponding interface and the introduced data type variables.

BSpec Name for iface of ispec
flex aDt1: Sort1
rig aDt2: Sort1...
assertion1 (iface, aDt1, aDt2)
assertion2 (iface, aDt1, aDt2)...

Figure 3.12: Schematic component type specification.

In the following, we demonstrate component type specifications in terms of our running
examples. However, since the Singleton pattern and the Publisher-Subscriber pattern
do not pose any constraints on the behavior of components, we only provide behavior
specifications for the two types of components involved in a Blackboard pattern.

Example 19 (Behavioral constraints for blackboard components). A blackboard pro-
vides the current state towards solving the original problem and forwards problems and
solutions from knowledge sources. Figure 3.13 provides a specification of the blackboard’s
behavior in terms of three behavior trace assertions:

• If a solution s′ to a subproblem p′ is received on its input port ns, then it is even-
tually provided at its output port cs (Eq. 3.2).

• If it gets notified that solutions for subproblems P are required in order to solve a
certain problem p on its input port rp, these problems are eventually provided at
its output port op (Eq. (3.3)).

• A problem p′ is provided at its output port op, as long as it is not solved (Eq. (3.4)).

42

3.3 Specifying Architectural Constraints

Note that the last assertion (Eq. (3.4)) is formulated using a weak until operator which
is defined as follows: γ′ W γ

def= �(γ′) ∨ (γ′ U γ).

BSpec Blackboard for BB of Blackboard
flex p : PROB

P : PROB SET
rig p′ : PROB

s′ : SOL

�
(
(p′, s′) ∈ ns −→ ♦

(
(p′, s′) ∈ cs

))
(3.2)

�
(
(p, P) ∈ rp −→

(
∀p′ ∈ P : (♦(p′ ∈ op))

))
(3.3)

�
(
p′ ∈ op −→

(
p′ ∈ op W (p′, solve(p′)) ∈ ns

))
(3.4)

Figure 3.13: Specification of behavior for blackboard components.

Example 20 (Behavioral constraints for knowledge source components). A knowledge
source receives open problems and solutions for already solved problems. It might con-
tribute to the solution of the original problem by solving currently open subproblems.
Figure 3.14 provides a specification of knowledge source behavior in terms of three be-
havior trace assertions:

• If a knowledge source requires some subproblems P to be solved in order to solve
a problem p′ and it gets solutions for all these subproblems q′ on its input port cs,
then it eventually solves the original problem p′ and provides the solution through
its output port ns (Eq. (3.5)).

• To solve a problem p, a knowledge source requires solutions only for smaller prob-
lems q (Eq. (3.6)).

• A knowledge source will eventually communicate its ability to solve an open problem
via its output port rp (Eq. (3.7)).

3.3 Specifying Architectural Constraints
As a last step, an architecture specification (as described in Def. 10) is specified by means
of constraints about the activation and deactivation of components as well as constraints
about connections between component ports. Both types of constraints may be expressed
in terms of architecture trace assertions, i.e, linear temporal logic formulæ [MP92] over
datatype variables (introduced in the description of behavior trace assertions above),
component variables, and architecture assertions. Their semantics is given in terms of
architecture traces (as described in Def. 8). Again, in the following, we introduce archi-
tecture trace assertions informally, by means of our running examples and we provide a
formal definition of the syntax and semantics in App. C.4.

43

3 Specifying Architectural Design Patterns

BSpec Knowledge Source for KS〈prob〉 of Blackboard
flex p, q : PROB

P : ℘(PROB)
rig p′, q′ : PROB

�
(
∀(p′, P)∈rp :

(
(∀q′∈P : ♦(q′, solve(q′))∈cs)−→♦(p′, solve(p′))∈ns

))
(3.5)

�
(
∀(p, P) ∈ rp : ∀q ∈ P : q ≺ p

)
(3.6)

�
(

prob ∈ op −→ ♦(∃P : (prob, P) ∈ rp)
)

(3.7)

Figure 3.14: Specification of behavior for knowledge source components.

3.3.1 Component Variables
Component variables are typed by component types and may be interpreted by cor-
responding components. Similar to datatype variables, component variables can be
classified into “flexible” and “rigid”, depending on whether they are newly interpreted
at each point in time or whether they keep their value. Since component types may
be parametrized, variables are assumed to be available for each possible valuation of
the parameters. For example, a component variable declaration x for component type
X〈bool〉 would actually induce two component variables x〈true〉 and x〈false〉 which can be
interpreted by components where parameter bool is valuated with the interpretations of
true and false, respectively. Note that such parametrized component variables are only
feasible since the semantics of a FACTum specification requires the existence of at least
one component for each different valuation of a component type’s component parameters
(as discussed in Sect. 3.2.1.2).

3.3.2 Architecture Assertions
Architecture assertions are predicates to specify snapshots of an architecture during
execution (as described in Def. 5). Roughly speaking, they are predicate-logic formulæ
specified over datatype and component variables, with terms consisting of:

• Datatype variables as well as component ports and component parameters, i.e.,
ports or parameters combined with corresponding component variables.

• Function and predicate symbols of the corresponding data type specification.

Moreover, several pre-defined, architectural predicates may be used for the formulation
of architecture assertions:

• ĉ.p denotes that a component c is currently sending/receiving a message over port
p,

• c denotes that a component c is currently active, and

• c.p c′.p′ denotes that output port p′ of component c′ is connected to input port
p of component c.

44

3.3 Specifying Architectural Constraints

3.3.3 Architecture Constraint Specification
Architectural constraints can be specified by means of specification templates (Fig. 3.15).
Each template has a name and is based on a corresponding interface specification. Then,
a list of flexible and rigid variables for the data types and components are defined.
Finally, a list of architecture trace assertions is formulated over the variables. Note that
the semantics of architecture constraint specifications is given in terms of architecture
specifications as described in Chap. 2. Thus, they can only be used to specify component
activation and reconfiguration and not to restrict the behavior of components.

ASpec Name for ifSpec
flex aDt1: Sort1

aCmp1: If1
rig aDt2: Sort1

aCmp2: If1...
assertion1 (aDt1, aDt2, aCmp1, aCmp2)
assertion2 (aDt1, aDt2, aCmp1, aCmp2)...

Figure 3.15: Exemplary architecture constraint specification.

In the following, we provide architecture constraint specifications for all three patterns.

Example 21 (Architectural constraints for the Singleton pattern). Architectural con-
straints for the Singleton pattern are formalized by the specification depicted in Fig. 3.16.
The specification requires two constraints for the activation of components: Equation 3.8
requires that at each point in time there exists a singleton component c which is activated.
Equation 3.9 further asserts that there exists a unique component c′, such that every ac-
tive component c of type singleton is equal to c′ at every point in time. In our version
of the singleton, we require that the singleton component is not allowed to change over
time. This is why variable c′ is declared to be rigid in Fig. 3.16. Indeed, other versions
of the singleton are possible in which the singleton may change over time.

ASpec Singleton for Singleton
flex c : Singleton
rig c′ : Singleton
�
(
∃c : c

)
(3.8)

∃c′ :
(
�
(
∀c : (c −→ c = c′)

))
(3.9)

Figure 3.16: Activation constraints for a Singleton pattern.

Example 22 (Architectural constraints for the Publisher-Subscriber pattern). Activa-
tion constraints for the publisher component of a Publisher-Subscriber pattern are similar

45

3 Specifying Architectural Design Patterns

to the ones specified for the Singleton pattern in Fig. 3.16. Moreover, a Publisher-
Subscriber pattern requires two additional constraints, regarding the connections between
publisher and subscriber components, which are specified in Fig. 3.17:

• With Eq. (3.10), we require that a publisher’s sb port is always connected to a
subscriber’s sb port, whenever both of them are active.

• With Eq. (3.11), we require that port nt of a subscriber s′ is always connected to
a publisher’s nt port, whenever the publisher sends out a message associated to an
event e for which s′ was subscribed for.

ASpec Publisher-Subscriber for Publisher-Subscriber
flex s : Subscriber

p : Publisher
m : msg
E : ℘(evt)

rig s′ : Subscriber
e : evt

�
(
p ∧ s ∧ ŝ.sb −→ p.sb s.sb

)
(3.10)

�

(
s′ ∧

(
∃E : sub s′ E ∈ s′.sb ∧ e ∈ E

)
−→

((
p ∧ s′ ∧ (e,m) ∈ p.nt −→ s′.nt p.nt

)
W
(
s′ ∧ (∃E : unsub s′ E ∈ s′.sb ∧ e ∈ E)

)))
(3.11)

Figure 3.17: Architectural constraints for the Publisher-Subscriber pattern (in addition to the
ones specified for the Singleton pattern).

Example 23 (Architectural constraints for the Blackboard pattern). Also for the Black-
board pattern we get similar activation constraints for blackboard components as the ones
specified for the Singleton pattern in Fig. 3.16. Moreover, the Blackboard pattern re-
quires similar connection constraints as required for the Publisher-Subscriber pattern in
Fig. 3.17. Thereby, port rp of the Blackboard pattern corresponds to port sb and port cs
of the Blackboard pattern to port nt.
In addition, Fig. 3.18 provides two connection constraints and three activation con-

straints for Blackboard architectures:

• By Eq. (3.12), we require that a blackboard’s op port is always connected to a
knowledge source’s op port, whenever both of them are active.

• By Eq. (3.13), we require that a blackboard’s ns port is always connected to a
knowledge source’s ns port, whenever both of them are active.

46

3.4 Summary

ASpec Blackboard for Blackboard
flex ks : KS〈prob〉

bb : BB
p : PROB
s : SOL
P : ℘(PROB)

rig ks′ : KS〈prob〉
p′ : PROB

�
(

ks ∧ bb ∧ b̂b.op −→ ks.op bb.op
)

(3.12)

�
(

bb ∧ ks ∧ k̂s.ns −→ bb.ns ks.ns
)

(3.13)

�
(

ks′ −→ �
(
♦ ks′

))
(3.14)

�
(

ks′ ∧ (p, P) ∈ ks′.rp ∧ p′ ∈ P

−→ �
(
(∃bb : bb ∧ (p′, s) ∈ bb.cs) −→ ks′)

))
(3.15)

�
(
∀p′ ∈ bb.op : ♦

(
∃ks〈prob=p′〉 : ks

))
(3.16)

Figure 3.18: Architectural constraints for Blackboard architectures (in addition to the ones
specified for the Singleton and the Publisher-Subscriber pattern).

• By Eq. (3.14), we require a fairness condition for the activation of already activated
knowledge sources.

• By Eq. (3.15), we require that whenever a knowledge source offers to solve some
problem p, given that it receives solutions for corresponding subproblems P , then
the knowledge source is activated, whenever a solution for any of the problems of
P is provided.

• By Eq. (3.16), we require that for each open problem p′, a knowledge source ks
which is able to solve p′ is eventually activated.

Note expression ∃ks〈prob=p′〉 : ks of Eq. (3.16) which demonstrates the use of
parametrized component variables. Indeed, the variable ks〈prob=p′〉 actually represents
a knowledge source component which has its parameter “prob” valuated with the problem
represented by datatype variable p′. Such parametrized variables provide a convenient
way to specify constraints about components of parametrized component types.

3.4 Summary
Table 3.1 summarizes techniques for the specification of ADPs described in this chapter.
For each technique it lists the specified model concept (with reference to the definition
of the concept), the type of technique, and important specification elements.

47

3 Specifying Architectural Design Patterns

concept type elements
Algebraic

Specifications
data types
for messages
(Sect. 2.1)

template function symbols,
datatype variables,
characteristic properties

Architecture
Diagrams

interfaces
(Def. 2),
architecture
specification
(Def. 10)

graphical,
annotations∗

interfaces,
connection annotations∗,
activation annotations∗

Behavior Trace
Assertions

parameterized
component
types
(Def. 4)

template datatype variables,
temporal operators,
ports

Architecture
Trace

Assertions

architecture
specification
(Def. 10)

template datatype variables,
component variables,
temporal operators,
component ports,
architectural predicates

∗ Introduced in the next chapter.

Table 3.1: Techniques used for the specification of architectural design patterns.

48

4 Advanced Specifications

In the previous chapter, we introduced basic techniques to specify ADPs. We also
applied the techniques to specify versions of three, well-known, ADPs: the Singleton,
the Publisher-Subscriber, and the Blackboard pattern.
Specifying these patterns, however, led to two further observations:
1. Some architectural constraints are common to different ADPs. One example is

the constraint that components of a certain type are required to be always activated.
Another example is that components of a certain type are connected via certain ports,
whenever they are activated.
2. Another observation is that, sometimes, pattern specifications reuse specifications

from other patterns. For example, the specification of the Publisher-Subscriber pat-
tern reused the activation specification from the Singleton pattern for the publisher
component. Or the Blackboard pattern reused the whole specification of the Publisher-
Subscriber pattern.
Building on these observations, in the following chapter, we extend our specification

approach with two features which turn out to be useful for the specification of patterns:
1. In order to facilitate the specification of common activation and connection con-

straints, we extend our notion of architecture diagram with so-called activation/con-
nection annotations. These annotations provide a convenient way to express certain
architectural constraints graphically by annotating the given architecture diagram.
2. In order to support hierarchical pattern specifications, we introduce the notion

of pattern instantiations which allow to import a pattern specification within another
pattern specification and instantiate the corresponding component types. Therefore, we
provide additional annotations for architecture diagrams, which allow to easily express
such instantiations in a graphical manner.
Again, the different techniques are demonstrated in terms of the three running examples
introduced in Chap. 1.

4.1 Activation Annotations

Activation annotations enhance an architecture diagram with constraints regarding the
activation and deactivation of components. They are expressed by annotating compo-
nent types with corresponding architecture assertions, determining situations in which
components of the annotated type are required to be active or inactive. Figure 4.1, for
example, depicts an activation annotation for a component type CT , parametrized by a
parameter P. The annotation is enclosed between square brackets and takes a variable
c of a component of type CT , with parameter valuation ω, as input. It then specifies

49

4 Advanced Specifications

two architecture assertions using variable c: γ(c) determines situations in which the
component is required to be activated, while γ′(c) determines a situation in which the
component is required to be deactivated. For the case neither γ(c) nor γ′(c) holds, c may
be either active or not. If omitted, we assume default values true and false, respectively.
In order to specify only the first parameter and leave the default value for the other
one, we write bc〈ω〉 : γ(c)c. Similarly, we write dc〈ω〉 : γ(c)e to only specify the second
parameter and leave the default value for the other one.

CT 〈P 〉
[c〈ω〉: γ(c),γ

′(c)]i0

o1

Figure 4.1: Activation annotation for a component type CT 〈P 〉 with minimal activation con-
dition γ(c) and deactivation condition γ′(c).

Activation annotations as described so far specify the activation/deactivation of com-
ponents of a certain type. However, they do not say anything about the identity of these
components. The annotation in Fig. 4.1, for example, allows c to be a different compo-
nent at different points in time. In order to require that the identity of the components
does not change over time, we need a stronger notion of activation annotation. We call
it rigid activation annotation and it is expressed using double square brackets, instead of
single square brackets. Figure 4.2, for example, depicts an activation annotation, similar
to the one presented in Fig. 4.1. However, since we use double square brackets, it is to
be interpreted as a rigid activation annotation and variable c is not allowed to change
over time. Similar as for activation annotations we take true and false as default values
and write |bc : γ(c)c| and |dc : γ(c)e| to take the default values for the second and first
condition only.

CT 〈P 〉
Jc〈ω〉 : γ(c),γ′(c)Ki0

o1

Figure 4.2: Rigid activation annotation for a component type CT 〈P 〉, with activation condition
γ(c) and deactivation condition γ′(c).

Using activation annotations, we can now specify a Singleton by adapting the archi-
tecture diagram presented in Fig. 3.9.

Example 24 (Annotations for the Singleton pattern). Figure 4.3 depicts the adapted
architecture diagram for Singletons. The first condition requires that a singleton is always
active. The second condition, on the other hand, requires that, whenever a singleton is
active, it is the only component of that type which is active. Since we do not want
singletons to change over time, we enclose the conditions into double squared brackets,

50

4.2 Connection Annotations

making it a rigid activation annotation. Note that the new architecture diagram now
makes the activation specification presented in Fig. 3.16 superfluous.

Diagram Singleton

Singleton
Js : true,∀s′ : s′ −→s′=sK

Figure 4.3: Annotated architecture diagram for the Singleton pattern.

4.2 Connection Annotations
Connection annotations enhance an architecture diagram by constraints regarding the
connection of certain components. Such annotations are added to each type-consistent
pair of input and output ports of component types and specify conditions under which
the corresponding ports of components of these types are required to be connected or
disconnected. Figure 4.4, for example, depicts a connection annotation for ports i and o
of component types CT1 and CT2 , respectively. The annotation takes two component
variables c and c′ as input and specifies two architecture assertions γ(c, c′) and γ′(c, c′)
over these variables: γ(c, c′) determines situations in which the connection is required to
be established, while γ′(c, c′) determines a situation in which a connection is not allowed.
For the case neither γ(c, c′) nor γ′(c, c′) holds, the connection may be established or not.
Again, we assume default values of true and false and may omit one of the conditions
to take its default value. Also for connection annotations we may require components
not to change over time, which is why we also introduce the notion of rigid connection
annotation. Similar as for rigid activation annotations, we mark connection annotations
as rigid by enclosing them into double square brackets, instead of single square brackets.

CT1 〈P 〉 i CT2 〈P ′〉o

[
c〈ω〉, c

′
〈ω′〉 : γ(c,c′),γ′(c,c′)

]

Figure 4.4: Connection annotation for connections between port i of component type CT1 〈P 〉
and port o of component type CT2 〈P ′〉 with connection condition γ(c, c′) and
disconnection condition γ′(c, c′).

In the following, we demonstrate the use of connection annotations in terms of the
examples introduced above.

Example 25 (Annotations for the Publisher-Subscriber pattern). We first adapt the
architecture diagram for the Publisher-Subscriber pattern introduced in Fig. 3.10. The

51

4 Advanced Specifications

resulting architecture diagram is depicted in Fig. 4.5. We require a similar activation
annotation for a publisher component as the one introduced for singletons. To increase
readability, however, the annotation uses abbreviations γ and γ′, which are expanded at
the bottom of the diagram. Moreover, we add a connection annotation which requires port
sb of a publisher component to be connected to port sb of a subscriber component, when-
ever the subscriber sends out some message. The dashed line without any annotation,
denotes a connection constraint using the default values for connections and disconnec-
tions. Indeed the line could have been omitted and the semantics would not change. How-
ever, it is put there to highlight the fact that there is an additional connection constraint
specified as architecture trace assertion in Eq. (3.11). The new architecture diagram
allows us now to get rid of some of the architectural assertions introduced in Ex. 22.
Indeed, the only remaining assertion is Eq. (3.11), which cannot be replaced with any
annotation so far. Note that the connection annotation used in this example is used
frequently which is why, from now one, we shall use a solid connection between ports
to denote that the corresponding ports are required to be connected, whenever the output
port is valuated with some message.

Diagram Publisher-Subscriber

Subscriber

nt sb

Publisher
Jp : γ(p),γ′(p)K

nt sb

bp,s : ŝ.sbc

γ(p) = true
γ′(p) = ∀p′ : p′ −→p′=p

Figure 4.5: Annotated architecture diagram for the Publisher-Subscriber pattern.

Example 26 (Annotations for the Blackboard pattern). Next we adapt the architecture
diagram for the Blackboard pattern as introduced in Fig. 3.11. The resulting architec-
ture diagram is depicted in Fig. 4.6. Again, we add a similar annotation as the one
required for singletons to the blackboard component type. Moreover, we add three con-
nection annotations: the three solid lines between the ports of blackboard and knowledge
source components use the new notation introduced in the last example to denote a re-
quired connection between the corresponding ports, whenever the output port sends out a
message. The architecture diagram now captures all the architectural assertions imposed
to a Blackboard architecture, except the activation assertions Eq. (3.14), Eq. (3.15), and
Eq. (3.16), as well as the connection assertion formulated by Eq. (3.11).

52

4.3 Dependencies

Diagram Blackboard

KS〈prob〉

op cs rp ns

BB
Jbb : γ(bb),γ′(bb)K

op cs rp ns

γ(bb) = true
γ′(bb) = ∀bb′ : bb′ −→bb′=bb

Figure 4.6: Annotated architecture diagram for the Blackboard pattern.

4.3 Dependencies

The annotations introduced so far affect all components of a certain type and they do not
consider a component’s context. Sometimes, however, activation as well as connection
of certain components needs to be expressed relative to other components. Suppose,
for example, we want to specify a Publisher-Subscriber pattern in which we can have
multiple, different publisher components. Thus, we would first remove the activation
constraint for the publisher component type which allows for multiple components of
type publisher. Then, however, the activation and connection constraints for subscriber
components need to be interpreted relatively to one of the publisher components.

To express this kind of constraints, in the following, we introduce so-called component
relationships. They allow one to specify relationships between components of certain
types and modify the semantics of activation and connection annotations accordingly.

4.3.1 Specifying Dependencies

Basically, we distinguish between two types of dependencies: weak and strong depen-
dencies.
Weak dependencies between two components allow them to be shared amongst other

components. A weak dependency specifies an upper and a lower bound of how many
components of one type are dependent on a component of another type. They are spec-
ified graphically by connecting the dependent components with an edge which starts
with an empty diamond and ends with the corresponding cardinality. Specifying a weak
dependency between two component types actually determines a relation between com-
ponents of the corresponding types. The dependency specified in Fig. 4.7, for example,
determines a relation between components of type CT1 and CT2 where each compo-
nent of type CT1 is related with 5 to 10 components of type CT2 . Since it is a weak
dependency, components may be shared, i.e., the relation may contain an entry (c1, c

′)
and also an entry (c2, c

′) in which case c′ is dependent on both c1 and c2.

53

4 Advanced Specifications

CT1 CT2
5..10

Figure 4.7: Weak dependency between components of type CT1 and components of type CT2 .

In order to avoid shared components, we also introduce the notion of strong depen-
dency. Similarly to weak dependent annotations, they are specified graphically by con-
necting dependent component types with an edge which starts with a diamond and ends
with corresponding cardinalities. However, in order to highlight that this is a strong
dependency, we use filled diamonds, instead of empty ones. Similar as the specification
of weak dependencies, also the specification of strong dependencies induces a relation
between components of the corresponding type. Compared to weak dependencies, how-
ever, strong dependencies require the relation to be a function, i.e., that dependent
components are not shared amongst components. The dependency specified in Fig. 4.8,
for example, determines a relation between components of type CT1 and CT2 where
each component of type CT1 is related with 5 to 10 components of type CT2 . Since
it is a strong dependency, however, components must not be shared, i.e., the relation is
not allowed to contain entries (c1, c

′) and (c2, c
′) whenever c1 6= c2.

CT1 CT2
5..10

Figure 4.8: Strong dependency between components of type CT1 and components of type CT2 .

4.3.2 Dependent Connections

As hinted in the introduction of this chapter, adding dependencies refines the semantics
of the corresponding activation and connection annotations. Connection annotations
are now interpreted w.r.t. the relation induced by the dependency specification. Thus,
conditions for required and prohibited connections are combined with a requirement that
the components are indeed related according to the dependency specification. Figure 4.9,
for example, establishes a relation between components of type CT1 and components
of type CT2 and requires that a connection between the corresponding ports of related
components is established, whenever γ(c, c′) holds. The ports must not be connected in
situations described by γ′(c, c′).

CT1 〈P 〉 i CT2 〈P ′〉o

[
c〈ω〉, c

′
〈ω′〉: γ(c,c

′),γ′(c,c′)
]

0..6

Figure 4.9: Dependent connection between components of type CT1 and CT2 .

54

4.3 Dependencies

4.3.3 Dependent Activations
For activation annotations, dependencies change the semantics of activation annotations
in such a way that the activation of one of the components becomes a precondition to the
activation of the other one. Thereby, we distinguish four types of dependent activations.
A required activation annotation specifies that the activation of dependent components

requires the activation of the components they depend on. Such annotations can be
easily expressed with a solid line for dependencies. The specification in Fig. 4.10, for
example, introduces a dependency between components of type CT1 and components
of type CT2 . Activations of components of type CT2 then depend on the activation of
a component of type CT1 , on which the component of type CT2 depends on.

CT1 CT2
5..10

Figure 4.10: Required activation annotation for components of type CT1 and CT2 .

Sometimes, however, we want deactivation of a component to depend on the deactiva-
tion of dependent components. Such required deactivations can be expressed by changing
the dependency line to a double dashed one. Figure 4.11, for example, requires a com-
ponent of type CT1 to be deactivated in order for dependent components of type CT2
to be deactivated.

CT1 CT2
5..10

Figure 4.11: Required deactivation annotation for components of type if1 and if2 .

Finally, we may require that the activation of a component is completely determined
by the activation of a depending component. This can be expressed with a double line
in the dependency specification. Figure 4.12, for example, depicts how to specify that
components of type CT2 are activated whenever depending components of type CT1
are.

CT1 CT2
5..10

Figure 4.12: Dependent activation annotation for components of type if1 and if2 .

Table 4.1 summarizes the different types of dependency annotations which can be used
for architecture diagrams.

4.3.4 Publisher-Subscriber with multiple Publishers
We can now use dependencies to specify an alternative version of the Publisher-
Subscriber pattern.

55

4 Advanced Specifications

no activation requires activation allows activation similar activation

weak
n..m n..m n..m n..m

strong
n..m n..m n..m n..m

Table 4.1: Overview of dependency annotations for architecture diagrams.

Example 27 (Publisher-Subscriber with multiple Publishers). Figure 4.13 depicts the
specification of a Publisher-Subscriber pattern which allows for multiple publisher com-
ponents with subscriber components which can subscribe at different publishers. The
architecture diagram has two major changes compared to the original one: First, we
relaxed the activation annotation by removing the postcondition. The new diagram only
requires each publisher to be always activated, however it does not require anymore that
only one component of type publisher exists. The second difference is that we added a
weak dependency relationship between publishers and subscribers which allows subscribers
to be subscribed at different publishers. Note that without adding the dependency relation,
each subscriber would be required to be subscribed at each available publisher.

Diagram Publisher-Subscriber

Subscriber

nt sb

Publisher
|bp: γ(p)c|

nt sb

γ(p)=true

Figure 4.13: Alternative version of a Publisher-Subscriber pattern with multiple publishers.

In another version of the Publisher-Subscriber pattern we could require that sub-
scribers are only allowed to subscribe at one single publisher. To specify this version we
would only change the dependency to be a strong one (with a filled diamond).

4.4 Specifying Pattern Instantiations
As described above, pattern specifications may be built on top of other pattern specifica-
tions by instantiating their component types. Instantiating a pattern requires to provide
a mapping which relates component types and port types. Such instantiations can be
directly specified in a pattern’s architecture diagram by annotating the corresponding
interfaces.

56

4.4 Specifying Pattern Instantiations

Figure 4.14 depicts a schematic pattern instantiation. The diagram specifies a pattern
PatternB and thereby instantiates another, existing specification PatternA, which is
assumed to specify a component type CT1 with one single input port i and one single
output port o. PatternB specifies one component type CT2 which is declared to be an
instance of component type CT1 of PatternA. Since CT1 has two ports, the instantiation
must provide mappings for these two ports which is done in square brackets right after
the name of the instantiated component type. In our case, port i of component type
CT1 is mapped to input port i1 and o to output port o1 . Note that the interface of CT2
has two additional ports i2 and o2, which do not instantiate any port of interface CT1 .
Indeed, a port mapping is not required to be bijective, which means that a component
type may add more ports to the interface of the component type it instantiates. However,
we do require that the types of the ports refine the types of the port of the instantiated
component type. For our example that means that the type of port i1 must be a refined
version of the type of i and the type of o1 must refine the type of o.

Diagram PatternA

CT1i o

Diagram PatternB
import PatternA

CT2 :
CT1 [i,o 7→i1,o1]

i1 o1

i2

o2

Figure 4.14: Architecture diagram in which component type CT1 of PatternB instantiates
component type CT1 of a pattern PatternA.

In the following, we demonstrate hierarchical specifications in terms of our running
examples.

Example 28 (Publisher-Subscriber instantiating the Singleton pattern). First, we adapt
the specification of the Publisher-Subscriber pattern introduced above such that a publisher
component is considered to be an instance of the singleton type. Figure 4.15 depicts
the adapted architecture diagrams, excluding (Fig. 4.15a) and including (Fig. 4.15b)
annotations inherited from the imported Singleton pattern. The diagram first imports
the specification of the Singleton. Then it declares the publisher component type to be an
instance of a singleton component type from the Singleton pattern.
By instantiating the singleton, the publisher will inherit all its specified properties,

i.e., an adapted version of the activation annotation of the Singleton will be available for
publisher components.

Example 29 (Blackboard pattern instantiating the Publisher-Subscriber pattern). Fi-
nally we model a Blackboard pattern as an instance of the Publisher-Subscriber pattern.
Thereby, the blackboard is specified to be an instance of the publisher type and knowledge
sources instances of subscriber components, respectively. Figure 4.16 depicts the adapted
architecture diagrams, excluding (Fig. 4.16a) and including (Fig. 4.16b) annotations in-
herited from the imported Publisher-Subscriber pattern. Again, the diagram imports the

57

4 Advanced Specifications

Diagram Publisher-Subscriber
import Singleton

Subscriber

nt sb

Publisher :
Singleton

nt sb

(a) Without inherited annotations.

Diagram Publisher-Subscriber
import Singleton

Subscriber

nt sb

Publisher:
Singleton
Jp : γ(p),γ′(p)K

nt sb

γ(p) = true
γ′(p) = ∀p′ : p′ −→p′=p

(b) With inherited annotations.

Figure 4.15: Architecture diagrams for the Publisher-Subscriber pattern instantiating the Sin-
gleton pattern.

specification of the Publisher-Subscriber pattern and declares a blackboard to be an in-
stance of a publisher and a knowledge source to be an instance of a subscriber. However,
since publisher as well as subscriber interfaces have ports, we need to provide an addi-
tional port-mapping which maps every port of a publisher / subscriber to a corresponding
port of a blackboard/knowledge source. Note also that a blackboard / knowledge source
adds two additional ports which do not map to any of the ports of the Publisher-Subscriber
pattern. Again, by instantiating the Publisher-Subscriber pattern, the Blackboard will in-
herit the specification of the Publisher-Subscriber pattern. Thereby, the properties are
adapted as specified by the instantiation, i.e., publisher components will become black-
board components and subscriber components will become knowledge sources in the spec-
ified properties. Note that inherited properties will be propagated as well which means
that the Blackboard will even inherit the properties of the Singleton since the publisher
component instantiates the Singleton.

4.5 Summary
Table 4.2 provides an overview of the advanced specification techniques for architecture
diagrams introduced in this chapter. For each technique it lists the specified model
concept, the type of technique, and important specification elements.

58

4.5 Summary

Diagram Blackboard
import Publisher-Subscriber

KS 〈prob〉:
Subs.[sb,nt7→rp,cs]

op cs rp ns

BB :
Publ.[sb,nt7→rp,cs]

op cs rp ns

(a) Without inherited annotations.

Diagram Blackboard
import Publisher-Subscriber

KS〈prob〉 :
Subs.[sb,nt 7→rp,cs]

op cs rp ns

BB :
Publ.[sb,nt 7→rp,cs]

Jp : γ(p),γ′(p)K

op cs rp ns

γ(p) = true
γ′(p) = ∀p′ : p′ −→p′=p

(b) With inherited annotations.

Figure 4.16: Architecture diagram for the Blackboard pattern instantiating the Publisher-
Subscriber pattern.

concept type elements
Activation

Annotations
component acti-
vation
and deactivation

textual for com-
ponent types

activation conditions
deactivation conditions

Connection
Annotations

textual for con-
nections

architecture as-
sertions for
connection

connection conditions
deconnection conditions

Dependencies relations between
components

graphical weak dependency
strong dependency
cardinalities

Instantiations pattern instantia-
tions

textual for com-
ponent types

port mappings

Table 4.2: Summary of advanced architecture diagrams.

59

Part III

Verification

61

5 A Calculus for Architectural Design
Patterns

In the last chapter, we introduced the notion of behavior trace assertion, as a means
to specify component types (introduced in Sect. 2.4). Moreover, we also introduced the
notion of architecture trace assertion, as a means to formulate architecture specifications
(introduced in Sect. 2.5). Verifying an ADP now requires to show that the composition
of component types with the architectural specification satisfies a certain property. The
process is summarized in Fig. 5.1: First, behavior for component types is specified in
terms of a set of behavior traces. Then, an architectural specification is interpreted over
a set of architecture traces. Finally, the architecture specification is combined with the
component type specification using behavior projection for each involved component c.
The desired property is then verified over the resulting set of architecture traces.
Verifying ADPs using this approach led to the observation that certain proof steps

are common for the verification of different ADPs. In an effort to shorten the verifica-
tion process, we developed a calculus to reason about component behavior in a dynamic
context by combining behavior and architecture specifications. Therefore, we first in-
troduced a means to interpret a behavior specification directly over a set of architecture
traces (dashed arrow in Fig. 5.1). Then, we introduced introduction and elimination
rules for all the temporal operators involved in behavior specifications, to combine them
with corresponding activation specifications and reason at a more abstract level (c̀ in
Fig. 5.1). Finally, we showed soundness of each of the rules w.r.t. the interpretation
function introduced at the beginning.
In the following chapter, we first introduce an operator to interpret behavior specifi-

cations over architecture traces. Thereby, we extend our model introduced in Chap. 2
with some operators to map time points between architecture traces and corresponding
projections. Then, we present our calculus in terms of 35 different rules and conclude
the chapter with a brief summary.

5.1 Evaluating Behavior Trace Assertions over Architecture
Traces

Evaluating behavior specifications over architecture traces requires to first extract the
behavior of a certain component out of the architecture trace and evaluate it against the
behavior specification using the traditional semantics of liner temporal logics [MP92].
In order to define our new evaluation operator, we first need to extend our model intro-

63

5 A Calculus for Architectural Design Patterns

Component
Types

Architecture
Specification

Configuration
Traces

Behavior
Traces

Property
Specification

Configuration
Traces

c̀

|=

Πc(t)

|=c

|=

⊆

Figure 5.1: Interactive verification of ADPs.

duced in Chap. 2 with three more operators to relate the states of a component in an
architecture trace with the corresponding state of the extracted behavior trace.

5.1.1 Component Activations

For the states of a component obtained through behavior projection, we can simply use
the number of activations of a component to obtain the corresponding time point. If we
look, for example, at Fig. 2.8, the state of the component in the resulting trace Πc(t) ̂ t′
at time point 2 corresponds to the state of the empty component at time point 4 in t,
since it is the third activation of that component in t. This, however, corresponds to the
number of activations of the empty component in t, up to time point 6 (exclusive).
In the following, we define component activation using the projection operator intro-

duced in Chap. 2.

Definition 12 (Component activation). With #n
c (t) ∈ N∞, we denote the number of

component activations of a component c in an (possibly finite) architecture trace t up to
(including) point in time n:

#n
c (t) def= #Πc(t↓n) . (5.1)

Note that parameter n as well as the return value of #n
c (t) is an element of the extended

natural numbers N∞, including ∞. Figure 5.2 lists some characteristic properties of ac-
tivations and Fig. 5.3 lists some properties about the relationship of behavior projection
and activations. As indicated by the small Isabelle logo on the top right, these properties
are all mechanically verified in our formalization of the calculus (App. D.2).

5.1.2 Continuations

In chapter 2 we mentioned that for the case in which a component is not activated in-
finitely often in an architecture trace, the corresponding projection yields only a finite
architecture trace. In order to evaluate a temporal specification over such a finite be-
havior trace, we search for a valid continuation, i.e., an arbitrary behavior trace for the
component which is appended to the projection. In order to calculate the time points

64

5.1 Evaluating Behavior Trace Assertions over Architecture Traces

Properties of activations

#0
c(t) = 0

#n
c (〈〉) = 0

#n
c (t) 6= ∞ [if n 6=∞]

c
n⇐ t ≤ n′ =⇒ #n

c (t) ≤ #n′
c (t)

#n
c (t) < #n′

c (t)] =⇒ n < n′

#n
c (t) ≤ #n′

c (t) =⇒ c
n⇐ t ≤ n′

#i+1
c (t) = #i

c(t) [if i < #t and ¬ c t(i)]
#i+1
c (t) = #i

c(t) + 1 [if i < #t and c t(i)]

#n
c (t) < #n′

c (t) =⇒ ∃n ≤
˙
i < n′ : c t(i) [if n′ − 1 < #t]

x < #Πc(t) =⇒ ∃n′ : x = #n′
c (t)

Figure 5.2: Properties of activations.

Relating activation and projection

#n
c (t) ≤ #Πc(t)

#n
c (t) = #Πc(t) [if @i ≥ n : c t(i)]

Πc(t↓n) = Πc(t)↓#n
c (t) [if n < #t]

Πc(t)(#i
c(t)) = cmpct(i) [if i+ 1 < #t and c t(i)]

Figure 5.3: Properties of projection and activations.

65

5 A Calculus for Architectural Design Patterns

of a corresponding continuation, we are going to introduce two operators to map time
points from an architecture trace to a corresponding behavior trace and vice versa.
Definition 13 (Architecture to behavior trace). Given an architecture trace t ∈
(ASCT)∞, a component c ∈ C, and a time point n ∈ N (for architecture trace t). With

c⇓t(n) def= #Πc(t)− 1 + (n− last(c, t)) (5.2)
we denote the corresponding point in time for a corresponding behavior projection.

Figure 5.4 lists some properties of this mapping.

Properties of architecture to behavior trace mapping

n′ ≥ n =⇒ c⇓t(n′) ≥ c⇓t(n)
n ≥ last(c, t) =⇒ c⇓t(n′) > c⇓t(n) [if and n′ > n]

c⇓t(n+ 1) = c⇓t(n) + 1 [if n ≥ last(c, t)]

c⇓t(last(c, t)) = #Πc(t)− 1
Πc(t)&t′(c⇓t(n)) = t′(n− last(c, t)− 1) [if ∃i : c t(i) and @i ≥ n : c t(i)]

Figure 5.4: Properties of architecture to behavior trace mapping.

As mentioned before, the mapping has a corresponding dual which is defined in the
following.
Definition 14 (Behavior to architecture trace). Given an architecture trace t ∈
(ASCT)∞, a component c ∈ C, and a time point n ∈ N (for the corresponding behav-
ior projection of c to t). With

c⇑t(n) def= last(c, t) + (n− (#Πc(t)− 1) , (5.3)
we denote the corresponding point in time for architecture trace t.

Figure 5.5 lists some properties of this mapping and Fig. 5.6 lists some properties of
the relationship between the two mappings.
In the following, we describe how a behavior trace assertion can be interpreted over ar-

chitecture traces. We can define the interpretation using component projection (Def. 9),
component activation (Def. 12), and mappings between time points (Def. 13 and Def. 14).
Definition 15 (Evaluating behavior trace assertions over architecture traces). With

(t, t′, n) |=c γ
def⇐⇒(

∃i ≥ n : c t(i) ∧
(
Πc(t)̂ t′,#n

c (t)
)
|= γ

)
∨ (5.4)(

∃i : c t(i) ∧
(
@i ≥ n : c t(i)

)
∧
(
Πc(t)̂ t′, c⇓t(n)

)
|= γ

)
∨ (5.5)(

@i : c t(i) ∧
(
t′, n

)
|= γ

)
, (5.6)

66

5.1 Evaluating Behavior Trace Assertions over Architecture Traces

Properties of behavior to architecture trace mapping

n′ ≥ n =⇒ c⇑t(n′) ≥ c⇑t(n)
n′ > n =⇒ c⇑t(n′) > c⇑t(n) [if n ≥ #Πc(t)− 1]

c⇑t(#Πc(t)) = last(c, t) + 1 [if ∃i : c t(i) and finite(Πc(t))]

Figure 5.5: Properties of behavior to architecture trace mapping.

Relationship between mappings

c⇑t(c⇓t(n)) = n [if n ≥ last(c, t)]

c⇓t(c⇑t(n)) = n [if n ≥ #Πc(t)− 1]
n′ ≥ c⇓t(n) =⇒ c⇑t(n′) ≥ n [if n ≥ last(c, t)]
n′ ≥ c⇑t(n) =⇒ c⇓t(n′) ≥ n [if n ≥ #Πc(t)− 1]
n < c⇓t(n′) =⇒ c⇑t(n) < n′ [if n ≥ #Πc(t)− 1]

Figure 5.6: Relationship between mappings.

we denote that architecture trace t ∈ (ASCT)∞ satisfies behavior trace assertion γ at
time point n ∈ N for continuation t′ ∈ (port(c))∞. We denote with (t, t′) |=c γ

def⇐⇒
(t, t′, 0) |=c γ that architecture trace t satisfies behavior assertion γ for continuation t′

and with t |=c γ
def⇐⇒ ∃t′ ∈ (port(c))∞ : (t, t′) |=c γ that architecture trace t satisfies

behavior trace assertion γ.

To satisfy a behavior trace assertion γ for a component c at a certain point in time
n under a given continuation t′, an architecture trace t is required to fulfill one of the
following conditions:

• By Eq. (5.4): Component c is activated again (after time point n) and the pro-
jection to c for t fulfills γ at the point in time given by the current number of
activations of c in t.

• By Eq. (5.5): Component c is activated at least once, but not again in the future
and the continuation fulfills γ at the point in time resulting from the difference of
the current point in time and the last activation of c.

• By Eq. (5.6): Component c is never activated and the continuation fulfills γ at
point in time n.

The following proposition relates Def. 15 with our notion of composition (Def. 11).

Proposition 1. Given a behavior specification (γct)ct∈CT for a set of component types
CT , such that ∀ct ∈ CT , bhv(ct) |= γct; a specification Γ, such that A |= Γ; and a set of
components (Cct)ct∈CT for each component type. Then, the composition of components C

67

5 A Calculus for Architectural Design Patterns

under architecture specification A (as defined by Def. 11) can be derived using the newly
introduced evaluation operator:

⊗A(C) =
{
t ∈ A | ∀ct ∈ CT , c ∈ Cct , ∃t′ ∈ (port(ct))∞ : (t, t′) |=c γct

}
.

5.2 Rules of the Calculus
In the following, we present introduction and elimination rules for all the temporal
operators introduced for the specification of component behavior.

5.2.1 Basic Logical Operators

In the following, we provide rules for the common logical operators. Essentially, for
each operator we provide one introduction and one elimination rule. However, since
elimination rules are symmetric to the corresponding introduction rules, in the following
we list only the former type of rules. The elimination rules can be found in D.1.

NegI ¬(t, t′, n)|=c “γ”
(t, t′, n)|=c “¬γ”

ConjI
(t, t′, n)|=c “γ” ∧ (t, t′, n)|=c “γ′”

(t, t′, n)|=c “γ ∧ γ′”

DisjI
(t, t′, n)|=c “γ” ∨ (t, t′, n)|=c “γ′”

(t, t′, n)|=c “γ ∨ γ′”

ImpI
(t, t′, n)|=c “γ” −→ (t, t′, n)|=c “γ′”

(t, t′, n)|=c “γ −→ γ′”

AllI ∀x : (t, t′, n)|=c “γ”
(t, t′, n)|=c “∀x : γ”

ExI ∃x : (t, t′, n)|=c “γ”
(t, t′, n)|=c “∃x : γ”

The rules essentially resemble their logical counterparts. Note, however, that basic logic
operators are evaluated at the current point in time, no matter whether or not the
component under consideration is currently active.

5.2.2 Behavior Assertions

Next, we provide rules for the introduction and elimination of basic behavior assertions.

Introduction The first rules characterize introduction for basic behavior assertions.
Therefore, we distinguish between three cases. First, the case in which a component is
guaranteed to be eventually activated in the future:
BaIa val(c) ∪

(
λp ∈ port(c) : val t(c n→t)(c, p)

)
|= φ

(t, t′, n) |=c φ
∃
˙
i ≥ n : c t(i)

68

5.2 Rules of the Calculus

For this case, in order to show that a BA φ holds at time point n, we have to show that
φ holds at the very next point in time at which component c is active.
For the case in which a component was sometimes active but is not activated again in

the future, we get the following rule:
BaIn1

t′
(
n− last(c, t)− 1

)
|= φ

(t, t′, n) |=c φ
∃i : c t(i) ∧ @

˙
i ≥ n : c t(i)

In order to show that BA φ holds at a certain point in time n, we have to show that
φ holds for the continuation t′. Note that the corresponding time point is calculated as
the difference from n to the last point in time at which component c was active in t.

Finally, we provide another rule for the case in which a component is never activated,
at all:
BaIn2 t′(n) |= φ

(t, t′, n) |=c φ
@i : c t(i)

For such cases, BA φ holds at a certain point in time n when φ holds for t′ at time
point n.

Elimination Elimination for behavior assertions is actually symmetric to the corre-
sponding introduction rules. For the sake of completeness they are provided in D.2.

5.2.3 Next

The next rules characterize introduction and elimination for the next operator.

Introduction We provide two different rules for introducing a next operator. The
first rule describes introduction for the case in which a component is guaranteed to be
eventually activated in the future:
NxtIa [

∃
˙
i > c

n→ t : c t(i)
]

....
∃

˙
n′ ≥ n : (∃!n ≤

˙
i < n′ : c t(i)) ∧ (t, t′, n′)|=c “γ”

[
@
˙
i > c

n→ t : c t(i)
]

....
(t, t′, c n→ t+ 1)|=c “γ”

(t, t′, n)|=c “©γ”
∃
˙
i ≥ n : c t(i)

The rule distinguishes between two cases: For the case in which the component is acti-
vated again after its next activation in t, we have to show that BTA ©γ holds at some
time point n′ with one single activation in between n and n′. For the case in which the
component is activated only once in the future, we have to show that BTA ©γ holds at
the next point in time after its next activation.
A second rule describes introduction of the next operator for the case in which a

component is not activated again in the future:

69

5 A Calculus for Architectural Design Patterns

NxtIn (t, t′, n+ 1)|=c “γ”
(t, t′, n)|=c “©γ”

@i ≥ n : c t(i)

In this case, the dynamic interpretation of the operator resembles its traditional one.
Thus, it suffices to show that BTA γ holds for the next point in time n+ 1, in order to
conclude that ©γ holds at n.

Elimination In contrary to introduction, we provide three rules to eliminate a next
operator: The first rule deals with the case in which a component is guaranteed to be
activated at least twice in the future:
NxtEa1 (t,t′,n)|=c “©γ” n≤n′ ∃!n≤

˙
i<n′ : c t(i)

(t,t′,n′)|=c “γ” ∃
˙
i>c

n→t : c t(i)

Similar to the corresponding introduction rule, this rule allows us to conclude BTA γ
for each point in time n′ where there is one single activation of component c in between
n and n′.

For the case in which a component is activated exactly once in the future, we get the
following rule:

NxtEa2 (t, t′, n)|=c “©γ”
(t, t′, c n→ t+ 1)|=c “γ”

(∃
˙
i ≥ n : c t(i)) ∧ @

˙
i > c

n→ t : c t(i)

The rule allows us to conclude γ right after the next activation of c in t.
If a component is not activated in the future at all, we get the following rule for

eliminating a next operator:

NxtEn (t, t′, n)|=c “©γ”
(t, t′, n+ 1)|=c “γ”

@i ≥ n : c t(i)

Again, the rule resembles the traditional interpretation of next which allows us to con-
clude that BTA γ holds for a certain point in time n+ 1, whenever ©γ holds at n.

5.2.4 Eventually

In the following, we provide introduction and elimination rules for the eventually oper-
ator.

Introduction Two rules characterize introduction for the eventually operator. Again,
the first rule applies for the case in which the corresponding component is guaranteed
to be active in the future.

70

5.2 Rules of the Calculus

EvtIa

c
n⇐t≤n′

[
∃
˙
i≥n′ : c t(i)

]
....

∃c n
′
⇐t≤

˙
n′′≤c n

′
→t : (t,t′,n′′)|=c “γ”

[
@
˙
i≥n′ : c t(i)

]
....

(t,t′,n′)|=c “γ”
(t,t′,n)|=c “♦γ”

∃i≥n : c t(i)

Similar to its traditional interpretation, the rule requires the existence of a future point
in time n′ for which γ holds. There are, however, some peculiarities. First, n′ does not
necessarily have to be in the future. Rather every point in time greater than the last
activation of component c in t is allowed. Moreover, for the case in which the component
is again activated after n′, it suffices to show the existence of a single point in time n′′ in
between the last activation before n′ and the next activation after n′ for which γ holds.
For the case in which there is no activation of the component after n′, we must indeed
show that γ holds for time point n′.
In the case for which there is no future activation of the component, introduction of

elimination again resembles its traditional interpretation:

EvtIn n ≤ n′ (t, t′, n′)|=c “γ”
(t, t′, n)|=c “♦γ”

@i ≥ n : c t(i)

Elimination Similar as for introduction, we provide two rules to eliminate an eventually
operator. Again, the first rule applies for the case in which there is a future activation
of the component:

EvtEa (t, t′,n)|=c “♦γ”
∃n′≥c n→ t :

(∃i≥n′ : c t(i))∧(∀c n
′
⇐ t≤

˙
n′′≤c n

′
→ t : (t, t′,n′′)|=c “γ”∨

(@i≥n′ : c t(i))∧(t, t′,n′)|=c “γ”

∃i≥n : c t(i)

Similar as for its traditional interpretation, the rule allows us to conclude that γ holds
at some time point n′ in the future. However, there are two subtleties with the dynamic
interpretation: First, we can conclude that the corresponding time point n′ is greater
or equal to the component’s next activation. Moreover, if there is an activation of
component c after n′, then, we can conclude that γ holds for all time points in between
the components last activation and next activation.
Again, the case in which there is no future activation of the component just resembles

the operator’s traditional interpretation:

EvtEn (t, t′, n)|=c “♦γ”
∃n′ ≥ n : (t, t′, n′)|=c “γ”

@
˙
i ≥ n : c t(i)

71

5 A Calculus for Architectural Design Patterns

5.2.5 Globally

Next, we discuss introduction and elimination for the globally operator.

Introduction Similar as for the eventually operator, we provide two introduction rules
for the globally operator. As usual, the first rule applies for the case in which c is
activated again in the future:
GlobIa [

∃
˙
i ≥ n′ : c t(i)
∧ c n→ t ≤ n′

]
....

∃c n′
⇐ t ≤

˙
n′′ ≤ c n′

→ t : (t, t′, n′′)|=c “γ”

[
@
˙
i ≥ n′ : c t(i)
∧ c n→ t ≤ n′

]
....

(t, t′, n′)|=c “γ”
(t, t′, n)|=c “�γ”

∃
˙
i ≥ n : c t(i)

While the traditional interpretation requires that γ holds for all time points in the future,
its dynamic interpretation allows us to weaken the corresponding introduction rule in
two ways: First, we only need to consider time points n′ after the next activation of
component c. Moreover, for the case in which there exists an activation of component
c after n′, it suffices to show that γ holds at an arbitrary point in time between the
component’s last activation and its next activation.
Introducing a globally operator for the case in which a component is not activated

again in the future again resembles its traditional interpretation:
GlobIn [

n ≤ n′
]

....
(t, t′, n′)|=c “γ”

(t, t′, n)|=c “�γ”
@
˙
i ≥ n : c t(i)

Elimination Rules for the elimination of a globally operator are indeed very similar to
its traditional interpretation.
There is, however, a small difference for the case in which a component is active again:

GlobEa (t, t′, n)|=c “�γ” n′ ≥ c n⇐ t

(t, t′, n′)|=c “γ”
∃i ≥ n : c t(i)

For that case, we can conclude γ for every time point after the component’s last
activation compared to its traditional interpretation which requires n′ to be in the future.
If a component is not active in the future, the corresponding elimination rule is as

expected:
GlobEn (t, t′, n)|=c “�γ” n′ ≥ n

(t, t′, n′)|=c “γ”
@i ≥ n : c t(i)

72

5.2 Rules of the Calculus

5.2.6 Until

We conclude the presentation with introduction and elimination rules for the until op-
erator.

Introduction We provide two rules to introduce until operators. The first rule applies
for the case in which component c is activated in the future.
UntilIa

c
n⇐ t ≤ n′

[
∃
˙
i ≥ n′ : c t(i)

]
....
1

[
@
˙
i ≥ n′ : c t(i)

]
....
2

(t, t′, n)|=c “γ′ U γ”
∃i ≥ n : c t(i)

In order to introduce an until operator, we have to show the existence of a time point n′
greater than the component’s last activation, such that one of the following conditions
hold.
For the case component c is activated after n′, condition 1 needs to be satisfied:

∃c n′
⇐ t ≤

˙
n′′ ≤ c n′

→ t : (t, t′, n′′)|=c “γ”∧

∀c n→ t ≤
˙
n′′′ < c

n′′
⇐ t :

∃c n
′′′
⇐ t ≤

˙
n′′′′ ≤ c n

′′′
→ t : (t, t′, n′′′′)|=c “γ′”

It requires the existence of some time point n′′ in between the component’s last activation
(before n′) and next activation (after n′), such that γ holds at n′′. Moreover it requires
that for all time points n′′′ after the component’s next activation (after n) and before its
last activation (before n′′), there exists another time point n′′′′ in between the last and
next activation (of n′′′), such that γ′ holds at n′′′.

For the case that there is no activation of component c after n′, condition 2 needs
to be satisfied:

(t, t′, n′)|=c “γ”∧
∀c n→ t ≤

˙
n′′ < n′ :

(∃i ≥ n′′ : c t(i)) ∧ (∃c n
′′
⇐ t ≤

˙
n′′′ ≤ c n

′′
→ t : (t, t′, n′′′)|=c “γ′”)

∨ (@i ≥ n′′ : c t(i)) ∧ (t, t′, n′′)|=c “γ′”

For this case, we need to show that γ holds for n′. In addition, we need to show for n′′
after the next activation of component c (after n) and before n′ that one of the following
two conditions hold: Either component c is activated after n′′ and there exists a time
point n′′′ for which γ′ holds and which is in between the component’s last activation
(before n′′) and its next activation (after n′′). If component c is not activated after n′′,
it must be shown that γ′ holds for n′′ itself.

73

5 A Calculus for Architectural Design Patterns

Introduction for until for the case in which there is no future activation of component
c is similar to its traditional interpretation:
UntilIn

n ≤ n′ (t, t′, n′)|=c “γ”

[n ≤ n′′ ∧ n′′ < n′]....
(t, t′, n′′)|=c “γ′”

(t, t′, n)|=c “γ′ U γ”
@i ≥ n : c t(i)

Elimination Finally, we provide two rules to eliminate until operators. The first one is,
again, the one characterizing elimination for the case in which component c is activated
in the future:
UntilEa (t,t′,n)|=c “γ′ U γ”

∃
˙
n′≥c n→t :

(∃i≥n′ : c t(i))∧(∀c n
′
⇐t≤

˙
n′′≤c n

′
→t : (t,t′,n′′)|=c “γ”)∧

(∀c n⇐t≤
˙
n′′<c

n′
⇐t : (t,t′,n′′)|=c “γ′”)∨

(@i≥n′ : c t(i))∧(t,t′,n′)|=c “γ”∧(∀c n⇐t≤
˙
n′′<n′ : (t,t′,n′′)|=c “γ′”)

∃i≥n : c t(i)

Assuming that γ′ U γ holds at some time point n, the rule allows us to conclude
that there exists an n′ later than the component’s next activation after n for which the
following conditions are satisfied: Either component c is activated after n′ and γ holds
for all n′′ in between the component’s last activation (before n′) and its next activation
(after n′). In addition, γ′ holds for all n′′ after the component’s last activation (before
n) and strictly before the component’s last activation (before n′). If component c is not
activated after n′, we can conclude γ for time point n′ and γ′ for all time points n′′ after
the last activation (before n) and before n′.

The rule for eliminating until for the case in which component c is not activated
anymore is as expected:
UntilEn (t, t′, n)|=c “γ′ U γ”

∃
˙
n′ ≥ n : (t, t′, n′)|=c “γ” ∧
∀n ≤

˙
n′′ < n′ : (t, t′, n′′)|=c “γ′”

@i ≥ n : c t(i)

5.2.7 Soundness and Completeness
In the following, we show soundness and completeness of the calculus. Thereby, we
denote with (t, t′, n) c̀γ that it is possible to derive (t, t′, n)|=c γ with the rules introduced
above.
Theorem 2 (Soundness). The calculus presented in this subsection is sound:

(t, t′, n) c̀ γ =⇒ (t, t′, n) |=c γ .

74

5.3 Summary

The proof consists of soundness proofs for each of the rules and it is fully
mechanized in Isabelle/HOL’s structured proof language Isabelle/Isar [Wen07].
It is available in theory Dynamic_Architecture_Calculus at the AFP-Entry
Dynamic_Architectures [Mar17a] and further discussed in the next section.

Theorem 3 (Relative Completeness). The calculus presented in this subsection is com-
plete w.r.t. Def. 15:

(t, t′, n) |=c γ =⇒ (t, t′, n) c̀ γ .

The proof is done by structural induction over γ: Thus, for each operator, we assume
that γ = OPγ′. Then, we apply Def. 15 to obtain facts about a model which satisfies γ.
Finally, we use these facts to apply one of the introduction rules for OP. The detailed
proof is provided in App. D.21.

5.3 Summary
Table 5.1 depicts an overview of the rules of the calculus grouped by the corresponding
logical operator. For each rule it lists its type (introduction vs. elimination) and the
required condition on a component’s activation state to apply the rule.

75

5 A Calculus for Architectural Design Patterns

rule type condition

Negation NegI intro. –
NegE elim. –

Conjunction ConjI intro. –
ConjE elim. –

Disjunction DisjI intro. –
DisjE elim. –

Implication ImpI intro. –
ImpE elim. –

Existential ExI intro. –
quantification ExE elim. –

All AllI intro. –
quantification AllE elim. –

Behavior BaIa intro. component activated in the future
assertion BaIn1 intro. component activated in the past

BaIn2 intro. component never activated
BaEa elim. component activated in the future
BaEn1 elim. component activated in the past
BaEn2 elim. component never activated

Next NxtIa intro. component activated in the future
NxtIn intro. component not activated in the future
NxtEa1 elim. component activated at least twice in the future
NxtEa2 elim. component activated once in the future
NxtEn elim. component not activated in the future

Eventually EvtIa intro. component activated in the future
EvtIn intro. component not activated in the future
EvtEa elim. component activated in the future
EvtEn elim. component not activated in the future

Globally GlobIa intro. component activated in the future
GlobIn intro. component not activated in the future
GlobEa elim. component activated in the future
GlobEn elim. component not activated in the future

Until UntilIa intro. component activated in the future
UntilIn intro. component not activated in the future
UntilEa elim. component activated in the future
UntilEn elim. component not activated in the future

Table 5.1: Rules to reason about component types.

76

6 Interactive Pattern Verification in
Isabelle/HOL

So far, we presented a model for dynamic architectures and techniques to specify ADPs
over this model. We even implemented these techniques as an Eclipse/EMF modeling
application to support a user in the development of specifications. In the last chapter, we
then presented a calculus to reason about ADPs and thus support the verification of such
specifications. Until now, however, verification needs to be done using plain “pen and
paper”, and the correctness of it is not mechanically verified. To address this problem,
we implemented our calculus in Isabelle/HOL and developed an algorithm to map a
pattern specification to a corresponding Isabelle theory. The algorithm was implemented
in Eclipse/EMF and can be used to automatically generate Isabelle/HOL theories from
a pattern specification. A generated pattern theory is based on the formalization of the
calculus to allow the rules of the calculus to be used in the development of verification
proofs. Moreover, pattern theories may instantiate other pattern theories and all the
verification results of an instantiated pattern are automatically available to support the
verification of the instantiating pattern.
Figure 6.1 provides an overview of our formalization. It is based on Lochbihler’s

formalization of co-inductive lists [Loc10] and consists of two Isabelle/HOL theories
which are available as entry DynamicArchitectures [Mar17a] in the archive of formal
proofs: Configuration_Traces and Dynamic_Architecture_Calculus. To this end
Configuration_Traces formalizes the model presented in Chap. 2. Therefore, it intro-
duces an Isabelle locale dynamic_component which requires two parameters: a function
tCMP to obtain a snapshot of a component from an architecture snapshot, and a func-
tion active to assert whether a certain component is active in an architecture snapshot.
Then, it introduces several definitions for the locale, reflecting the definitions presented
in Chap. 2. Moreover, it provides formalizations for several, characteristic properties
of the defined concepts and provides proofs for them in terms of Isabelle’s structured
proof language Isabelle/Isar [Wen07]. Theory Dynamic_Architecture_Calculus, on
the other hand, formalizes the calculus presented in Chap. 5. To this end, it extends
locale dynamic_component with definitions for each operator used in the specification
of behavior trace assertions, as introduced in Chap. 3. Moreover, it formalizes the eval-
uation operator introduced by Def. 15 in the last chapter as well as all the rules of the
calculus and provides Isabelle/Isar proofs for all of them.
In the following, we first summarize Lochbihler’s formalization of co-inductive lists.

Then, we present the formalization of the model presented in Chap. 2 on top of co-
inductive lists and summarize our formalization of the calculus presented in Chap. 5.

77

6 Interactive Pattern Verification in Isabelle/HOL

Finally, we present an algorithm to map a pattern specification to a corresponding
Isabelle/HOL theory.

Model
• proj : component projection
• nAct : number of activations
• lNAct : least deactivation
• nxtAct : next activation
• lActive: last activation
• latestAct : latest activation
• Mapping time points
– cnf2bhv : from cnf.t. to bhv.t.
– bhv2cnf : from bhv.t. to cnf.t.
• Lemmata for each definition

Configuration Traces.thy

Calculus

• Behavior trace assertions
– ass: behavior assertions
– nxt : next
– evt : eventually
– glob: globally
– until : until
– wuntil : weak until
• evaluation function
• Lemmata for calculus

Dynamic Architecture Calculus.thy

extends

Interface
locale dynamic component (tCMP, active)

Co-inductive Lists
Coinductive List.thy

Figure 6.1: Overview of formalization in Isabelle/HOL.

6.1 Coinductive Lists
In order to deal with possibly infinite architecture traces, our formalization is based
on Lochbihler’s theory of coinductive (lazy) lists [Loc10]. Lazy lists are formalized
using Isabelle/HOL’s notion of coinductive datatypes [BHL+14]. Figure 6.2 depicts the
corresponding Isabelle/HOL fragment: Besides introducing the codatatype itself, the
declaration also introduces some auxiliary constants:

• Destructors LNil and LCons.

• Discriminator lnull, to test whether a list is empty.

• Selectors lhd and ltl, to select the first element of a given list and the remaining
tail, respectively.

• Set function lset, which returns a (possibly infinite) set containing all the elements
of a given list.

• Map function map, to apply a given function to a certain list.

• Relator rel, to compare two lists based on their elements.

The where clause at the end of the command specifies a default value for selectors lhd
and ltl applied to LNil on which they are not a priori specified.

78

6.1 Coinductive Lists

codatatype (lset: ′a) l list =
lnull: LNil
| LCons (lhd: ′a) (ltl: ′a llist)

for
map: lmap
rel: l list-all2

where
lhd LNil = undefined
| ltl LNil = LNil

Figure 6.2: Formalization of lazy lists in Isabelle/HOL (excerpt from [Loc10]).

In addition, Lochbihler’s theory introduces formalizations of different concepts for lazy
lists, of which the following are most relevant for our theory:

inf-llist converts a function with domain of natural numbers to a corresponding infinite
list.

llength returns the (possible infinite) length of a list.

lnth returns the n-th element of a list.

lappend concatenates two lists.

lfilter extracts a sublist which contains only elements characterized by a given predicate.

ltake returns a prefix of a certain length of a given list.

Since lfilter and ltake are of particular importance for our theory, we discuss them in
more detail.

6.1.1 Lazy Filter Function

The lfilter function is important, since it forms the foundation for our formalization of
the behavior projection operator. The function takes a predicate P and a lazy list xs and
returns a sublist, containing only those elements of xs for which P holds. Its definition is
provided in Fig. 6.3: It is formalized as a recursive function based on fixpoints in complete
partial orders. Note that the definition does not require any termination proof. Rather,
in order to guarantee the existence of a fixpoint, the definition must ensure that the
induced functional is monotonic w.r.t. the prefix order for lazy lists.

partial-function (l list) lfilter :: ′a llist ⇒ ′a llist
where lfilter xs = (case xs of LNil ⇒ LNil

| LCons x xs ′⇒ if P x then LCons x (lfilter xs ′) else lfilter xs ′)

Figure 6.3: Formalization of lazy filter function in Isabelle/HOL (excerpt from [Loc10]).

79

6 Interactive Pattern Verification in Isabelle/HOL

6.1.2 Lazy Take Function

Another important function is the ltake function, since it is used to formalize our notion
of number of activations of a component in an architecture trace. The function takes
an extended natural number n (including ∞) and a lazy list xs, and returns a sublist,
containing the first n elements of xs. Figure 6.4 depicts its formalization in Isabelle/HOL:
It is formalized as a primitive corecursive function, in which the syntactic structure of
the definition ensures productivity (and thus well-definedness) of the function.

primcorec ltake :: enat ⇒ ′a llist ⇒ ′a llist
where
n = 0 ∨ lnull xs =⇒ lnull (ltake n xs)
| lhd (ltake n xs) = lhd xs
| ltl (ltake n xs) = ltake (epred n) (ltl xs)

Figure 6.4: Formalization of lazy take function in Isabelle/HOL (excerpt from [Loc10]).

6.2 Formalizing Architecture Traces

In the following, we describe a possible formalization of the model presented in Chap. 2
using co-inductive lists. The following Isabelle/HOL snippet depicts the foundation of
our formalization:
typedecl cnf
type-synonym trace = nat ⇒ cnf
consts arch:: trace set

First, we introduce a type constant cnf, which represents an architecture snapshot, i.e.
the state of an architecture during system execution. An architecture trace is then
formalized as a function which assigns a snapshot cnf to each point in time nat. Finally,
an architecture arch is modeled as a set “trace set” of architecture traces.

As mentioned above, the interface to the model is given in terms of an Isabelle/HOL
locale:
locale dynamic-component =
fixes tCMP :: ′id ⇒ cnf ⇒ ′cmp (σ-(-) [0 ,110]60)
and active :: ′id ⇒ cnf ⇒ bool (- - [0 ,110]60)

The locale introduces two type parameters:
′id a type containing component identifiers.
′cmp a type containing component snapshots.
Moreover, it requires two function parameters:
tCMP is an operator to extract the state of a component with a certain identifier ′id

from an architecture snapshot cnf .
active is a predicate to assert whether a component with a certain identifier ′id is acti-

vated within an architecture snapshot cnf .

80

6.2 Formalizing Architecture Traces

The locale introduces several operators for architecture traces along with some charac-
teristic properties thereof.

6.2.1 Behavior Projection

Perhaps the most important operator is behavior projection. Intuitively, the operator
takes a component identifier c and an architecture trace t and returns a so-called behavior
trace, i.e., a list containing all the states of component c in t. Thereby, all the time points
in which component c is not activated in t are removed. The operator is formalized by
combining the lazy filter function lfilter (described above) with the lazy map function
lmap:
definition proj:: ′id ⇒ (cnf llist) ⇒ (′cmp llist) (π-(-) [0 ,110]60)
where proj c = lmap (λcnf . (σc(cnf))) ◦ (lfilter (active c))

First, lfilter is used to remove all time points in t, where c is not activated. Then,
lmap is used to extract the state of a component out of a given architecture snapshot.

6.2.2 Number of Activations

Another useful operator for architecture traces, introduced in the last section by Def. 12,
returns the number of activations of a certain component within a given architecture
trace. Intuitively, the operator takes a component identifier c, a time point n, and an
architecture trace t and returns the number of activations of c up to (and including)
time point n. The operator is formalized by combining component projection with the
lazy take function ltake (described above) and the lazy length function:
definition nAct :: ′id ⇒ enat ⇒ (cnf llist) ⇒ enat (〈- #--〉) where
〈c #n t〉 ≡ l length (πc(ltake n t))

First, ltake is used to obtain a sublist of length n from the original architecture trace
t. Then, component projection is applied to the remaining architecture trace to remove
all time points in which component c is not active. What is left is a lazy list containing
all the activations of c in t up to time point n and we simply return its length.

6.2.3 Least Deactivation

The following operator takes a component identifier c, an architecture trace t, and a
time point n and returns the time point right after the last activation of c in t prior to n.
It is introduced by Def. 8 in Chap. 2 and it is formalized using Isabelle/HOL’s definite
description operator LEAST :
definition lNAct :: ′id ⇒ (nat ⇒ cnf) ⇒ nat ⇒ nat (〈- ⇐ -〉-)
where 〈c ⇐ t〉n ≡ (LEAST n ′. n=n ′ ∨ (n ′<n ∧ (@ k. k≥n ′ ∧ k<n ∧ c t k)))

Note that LEAST returns the least element which satisfies a certain condition or an
arbitrary element of the corresponding type if no element satisfied the condition.

81

6 Interactive Pattern Verification in Isabelle/HOL

6.2.4 Next Activation
Next activation is also introduced by Def. 8. It takes a component identifier c, an
architecture trace t, and a time point n and returns the next point in time (including n)
at which c is active in t. The formalization of this operator uses Isabelle/HOL’s definite
description operator THE :
definition nxtAct :: ′id ⇒ (nat ⇒ cnf) ⇒ nat ⇒ nat (〈- → -〉-)
where 〈c → t〉n ≡ (THE n ′. n ′≥n ∧ c t n ′ ∧ (@ k. k≥n ∧ k<n ′ ∧ c t k))

Note that THE returns the unique element which satisfies a given condition if such an
element exists or an arbitrary element of the corresponding type if no such element
exists.

6.2.5 Latest Activation
In the following we describe the formalization of an operator to obtain the latest acti-
vation of a component before a certain point in time. Again it is introduced by Def. 8
and its formalization uses one of Isabelle/HOL’s definite description operator:
definition latestAct :: ′id ⇒ (nat ⇒ cnf) ⇒ nat ⇒ nat (〈- ← -〉-)
where latestAct c t n = (GREATEST n ′. n ′<n ∧ c t n ′)

Note that GREATEST in Isabelle/HOL is the dual of LEAST . It returns the greatest
element which satisfies a certain condition or an arbitrary element of the corresponding
type if element satisfied the condition.

6.2.6 Last Activation
Also the last point in time at which a component is active in an architecture trace is
introduced by Def. 8. It can be obtained using operator lActive and it is again formalized
using Isabelle/HOL’s GREATEST operator:
definition lActive :: ′id ⇒ (nat ⇒ cnf) ⇒ nat (〈- ∧ -〉)
where 〈c ∧ t〉 ≡ (GREATEST i. c t i)

6.2.7 Mapping Time Points
As discussed in the last chapter, applying behavior projection for a component c to an
architecture trace t, results in a behavior trace which contains all the states of c whenever
it is active in t. Thereby, the time points at which a certain state of c is available after
applying projection may change (due to the deactivation of c in t). Thus, in order to
map time points in between an architecture trace and the corresponding projection, we
introduced two additional operators with Def. 13 and Def. 14 which are formalized as
follows:
definition cnf2bhv :: ′id ⇒ (nat ⇒ cnf) ⇒ nat ⇒ nat (-↓-(-) [150 ,150 ,150] 110)
where c↓t(n) ≡ the-enat(l length (πc(inf-llist t))) − 1 + (n − 〈c ∧ t〉)
definition bhv2cnf :: ′id ⇒ (nat ⇒ cnf) ⇒ nat ⇒ nat (-↑-(-) [150 ,150 ,150] 110)

82

6.3 Specifying Architecture Traces

where c↑t(n) ≡ 〈c ∧ t〉 + (n − (the-enat(l length (πc(inf-llist t))) − 1))

Note that cnf2bhv is used to map a given time point n for an architecture trace t to the
corresponding projection Πc(t) ̂ t′, while bhv2cnf is used to map a time point n for the
Πc(t) ̂ t′ back to the corresponding architecture trace t.

6.3 Specifying Architecture Traces

In order to specify architecture traces, we formalized our notion of architecture trace
assertion (introduced in Chap. 3). To this end, we first introduced a type synonym for
architecture trace assertions:
type-synonym cta = trace ⇒ nat ⇒ bool

Then, we introduced a mapping to lift an architecture assertion (Sect. 3.3.2) to a corre-
sponding architecture trace assertion:

definition ca :: (cnf ⇒ bool) ⇒ cta
where ca ϕ ≡ λ t n. ϕ (t n)

Finally, we defined each of the operators involved in the specification of architecture trace
assertions in terms of predicate transformers, i.e., functions which take an architecture
trace assertion and modify it accordingly.

6.3.1 Logical Connectives

First, we introduced definitions for the basic logical operators:

definition neg :: cta ⇒ cta (¬c - [19] 19)
where ¬c γ ≡ λ t n. ¬ γ t n

definition conj :: cta ⇒ cta ⇒ cta (infixl ∧c 20)
where γ ∧c γ ′ ≡ λ t n. γ t n ∧ γ ′ t n

definition disj :: cta ⇒ cta ⇒ cta (infixl ∨c 15)
where γ ∨c γ ′ ≡ λ t n. γ t n ∨ γ ′ t n

definition imp :: cta ⇒ cta ⇒ cta (infixl −→c 10)
where γ −→c γ ′ ≡ λ t n. γ t n −→ γ ′ t n

They mainly lift each corresponding HOL operator to architecture traces. In a similar
way, we introduced quantifiers for architecture trace assertions:

definition all :: (′a ⇒ cta)
⇒ cta (binder ∀ c 10)
where all P ≡ λt n. (∀ y. (P y t n))

definition ex :: (′a ⇒ cta)
⇒ cta (binder ∃ c 10)
where ex P ≡ λt n. (∃ y. (P y t n))

83

6 Interactive Pattern Verification in Isabelle/HOL

6.3.2 Temporal Operators
Then, we introduced definitions for each temporal logic operator. Their semantics indeed
resembles the traditional semantics of linear temporal logics [MP92].

Temporal logic next is implemented as a function which takes an architecture trace
assertion γ and returns another architecture trace assertion which evaluates γ at the
next point in time.
definition nxt :: cta ⇒ cta (#c(-) 24)
where #c(γ) ≡ λt n. γ t (Suc n)

Eventually is formalized as a function which takes an architecture trace assertion γ
and returns another architecture trace assertion which evaluates γ somewhere in the
future:
definition evt :: cta ⇒ cta (3c(-) 23)
where 3c(γ) ≡ λt n. ∃n ′≥n. γ t n ′

The globally operator transforms an architecture trace assertion γ to another archi-
tecture trace assertion which evaluates γ at every time in the future:
definition glob :: cta ⇒ cta (2c(-) 22)
where 2c(γ) ≡ λt n. ∀n ′≥n. γ t n ′

Finally, until takes two architecture trace assertions γ and γ′ and evaluates γ′ in the
future as long as γ does not hold:
definition until :: cta ⇒ cta ⇒ cta (infixl Uc 21)
where γ ′ Uc γ ≡ λt n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)

We also introduce a weaker notion of until as a combination of until and globally:
definition wuntil :: cta ⇒ cta ⇒ cta (infixl Wc 20)
where γ ′ Wc γ ≡ γ ′ Uc γ ∨c 2c(γ ′)

6.4 Formalizing the Calculus
In order to formalize the calculus presented in Chap. 5, we first formalized the notion of
behavior trace assertion as described in Sect. 3.2.2.1. Then, we formalized the evaluation
definition presented in Def. 15 of the last chapter. Finally, we formalized all of the rules
of the calculus introduced in Chap. 5 and verified their soundness w.r.t. the introduced
evaluation function.

6.4.1 Specifying Component Behavior
As described in Sect. 2, component behavior is specified using behavior trace assertions.
Just as for architecture trace assertions, we start the formalization by introducing a
corresponding type synonym:
type-synonym ′c bta = (nat ⇒ ′c) ⇒ nat ⇒ bool

84

6.4 Formalizing the Calculus

A behavior trace assertion is formalized in terms of a predicate over a behavior trace
and a natural number. Thereby, the state of a component is modeled in terms of a type
parameter ′c.
Similar as for architecture trace assertions, we then introduced an operator to lift

behavior assertions (Sect. 3.2.2.1) to corresponding behavior trace assertions:
definition ba :: (′cmp ⇒ bool) ⇒ (′cmp bta)
where ba ϕ ≡ λ t n. ϕ (t n)

In addition, we also introduce an operator to lift an arbitrary HOL predicate to a
corresponding behavior trace assertion:
definition pred :: bool ⇒ (′cmp bta)
where pred P ≡ λ t n. P

Note that such a definition was not required for architecture trace assertions since ar-
chitecture assertions can be used to lift arbitrary predicates to the level of architecture
trace assertion. For behavior assertions this is not possible since they are evaluated only
at time points where a component is indeed active.
Finally, we defined each of the operators used in the specification of behavior trace

assertions in terms of predicate transformers, i.e., functions which take a behavior trace
assertion and modify it accordingly.

6.4.1.1 Logical Connectives

Basic logical connectives are defined in a similar way as for architecture trace assertions:
definition imp :: (′cmp bta) ⇒ (′cmp bta) ⇒ (′cmp bta) (infixl −→b 10)
where γ −→b γ ′ ≡ λ t n. γ t n −→ γ ′ t n

definition disj :: (′cmp bta) ⇒ (′cmp bta) ⇒ (′cmp bta) (infixl ∨b 15)
where γ ∨b γ ′ ≡ λ t n. γ t n ∨ γ ′ t n

definition conj :: (′cmp bta) ⇒ (′cmp bta) ⇒ (′cmp bta) (infixl ∧b 20)
where γ ∧b γ ′ ≡ λ t n. γ t n ∧ γ ′ t n

definition neg :: (′cmp bta) ⇒ (′cmp bta) (¬b - [19] 19)
where ¬b γ ≡ λ t n. ¬ γ t n

Behavior assertions also support quantification over variables of a certain type. Again,
Isabelle/HOL quantifiers are used to formalize quantification for behavior assertions:
definition all :: (′a ⇒ (′cmp bta))
⇒ (′cmp bta) (binder ∀ b 10)
where all P ≡ λt n. (∀ y. (P y t n))

definition ex :: (′a ⇒ (′cmp bta))
⇒ (′cmp bta) (binder ∃ b 10)
where ex P ≡ λt n. (∃ y. (P y t n))

6.4.1.2 Temporal Operators

Similar as for architecture trace assertions, we formalize temporal operators for behavior
trace assertions using their traditional semantics [MP92]:

85

6 Interactive Pattern Verification in Isabelle/HOL

definition nxt :: (′cmp bta) ⇒ (′cmp bta) (#b(-) 24)
where #b(γ) ≡ λ t n. γ t (Suc n)

definition evt :: (′cmp bta) ⇒ (′cmp bta) (3b(-) 23)
where 3b(γ) ≡ λ t n. ∃n ′≥n. γ t n ′

definition glob :: (′cmp bta) ⇒ (′cmp bta) (2b(-) 22)
where 2b(γ) ≡ λ t n. ∀n ′≥n. γ t n ′

definition until :: (′cmp bta) ⇒ (′cmp bta) ⇒ (′cmp bta) (infixl Ub 21)
where γ ′ Ub γ ≡ λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)

definition wuntil :: (′cmp bta) ⇒ (′cmp bta) ⇒ (′cmp bta) (infixl Wb 20)
where γ ′ Wb γ ≡ γ ′ Ub γ ∨b 2b(γ ′)

6.4.2 Evaluation
Remember that the specification of component behavior is given in terms of behavior
trace assertions, i.e., temporal logic assertions over sequences of component snapshots.
As already discussed at the beginning of the previous chapter, in order to evaluate such
specifications over architecture traces, we need to define how a behavior trace assertion is
to be interpreted over an architecture trace in which components are subject to activation
and deactivation. Therefore, we presented an alternative evaluation function (Def. 15)
which allows to interpret a given behavior trace assertion over an architecture trace
instead of a behavior trace. The corresponding formalization is provided by function eval
which takes a component identifier ′id and a behavior trace assertion and transforms it
to a corresponding architecture trace assertion:
definition eval:: ′id ⇒ (nat ⇒ cnf) ⇒ (nat ⇒ ′cmp) ⇒ nat
⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) ⇒ bool
where eval cid t t ′ n γ ≡
(∃ i≥n. cid t i) ∧
γ(lnth ((πcid(inf-llist t))@l(inf-llist t ′)))(the-enat(〈cid #n inf-llist t〉)) ∨

(∃ i. cid t i) ∧
(@ i ′. i ′≥n∧ cid t i ′) ∧ γ(lnth ((πcid(inf-llist t))@l(inf-llist t ′)))(cid↓t(n)) ∨

(@ i. cid t i) ∧ γ (lnth ((πcid(inf-llist t))@l(inf-llist t ′))) n

In order to evaluate a behavior trace assertion γ over an architecture trace t at time
point n, eval distinguishes between three cases:
• If component cid is again activated in the future, γ is evaluated at the next point
in time where cid is active in t.

• If component cid is not again activated in the future but it is activated at least
once in t, then γ is evaluated at the point in time given by the corresponding time
mapping.

• If component cid is never active in t, then γ is evaluated at time point n.

6.4.3 Rules of the Calculus
We can now use the evaluation function introduced above, to formalize all the rules of
the calculus presented in the last chapter. Since the calculus was already discussed in the

86

6.5 Creating Pattern Theories

previous chapter, we are not going to discuss all of it again in this chapter. However, we
want to point out that instantiating locale dynamic-component for the different types
of components involved in an ADP results in an instantiation of all the rules of the
calculus for components of that type. This way, each component type comes with its
own version of the calculus which can then be used to reason about the behavior of
components of that type. The following excerpt shows, for example, the formalization of
the introduction rule for the next operator in the case that there exists a future activation
of a component:
lemma nxtIA[intro]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat

assumes ∃ i≥n. c t i
and [[∃ i>〈c → t〉n. c t i]] =⇒ ∃n ′ ≥ n. (∃ !i. n≤i ∧ i<n ′ ∧ c t i) ∧ eval c t t ′ n ′ γ
and [[¬(∃ i>〈c → t〉n. c t i)]] =⇒ eval c t t ′ (Suc 〈c → t〉n) γ

shows eval c t t ′ n (#b(γ))

Mechanized proofs of this and all remaining rules are provided in App. D.2 and available
at the archive of formal proofs [Mar17a].

6.5 Creating Pattern Theories
As mentioned at the beginning, the formalization of the model, as presented in this
section, can be used to support the interactive verification of ADPs. To this end, a pat-
tern specification (in terms of the techniques presented in Sect. 3) can be systematically
transferred to a corresponding Isabelle/HOL theory. Algorithm 1 describes the mapping
in more detail. In general, the transformation is done in four main steps:

1. The specified FACTum datatypes are transferred to corresponding Isabelle/HOL
datatypes.

2. An Isabelle locale is created for the corresponding pattern, which imports other
locales for each instantiated pattern (or locale dynamic_component for each type
of component which does not instantiate any component type from another pat-
tern). Ports for component types are added as locale parameters and typed by the
corresponding Isabelle/HOL datatypes.

3. Specifications of component behavior are added as locale assumptions, formulated
in terms of behavior trace assertions (as formalized in Sect. 6.4.1), and evaluated
using the evaluation function introduced in Sect. 6.4.2.

4. Activation and connection assertions are provided as locale assumptions, formu-
lated in terms of architecture trace assertions, formalized in Sect. 6.3.

The following result guarantees soundness of Alg. 1, i.e., that the algorithm indeed
preserves the semantics of a FACTum specification.

87

6 Interactive Pattern Verification in Isabelle/HOL

Algorithm 1 Mapping a pattern specification to an Isabelle/HOL Theory.
Input: A FACTum specification of ADP

{with Datatype Spec. DS , Component Type Spec. CS , and Architecture Spec. AS}
Output: An Isabelle/HOL theory for the specification
1: for all Datatypes dt in DS do
2: create Isabelle/HOL datatype specification for dt
3: end for
4: create Isabelle/HOL locale for the pattern
5: for all Component Types ct in CS do
6: if ct instantiates a component type of another pattern specification PS then
7: import the corresponding locale for PS

{requires to import the corresponing Isabelle theory}
8: create instance of ports/parameters according to the specified port mapping

{the parameter for every port of ct is passed to the imported locale}
9: else
10: import locale “dynamic_component” of theory “Configuration_Traces”
11: end if
12: create instance of locale parameters tCMP and active
13: for all component parameters p of ct which are not instances do
14: create locale parameter par of the type corresponding to the type of p
15: create locale assumption “∀x. ∃c. par(c) = x”

{since FACTum requires nonempty sets of components for each type}
16: end for

{instantiated parameters are already handled at line 8}
17: for all ports p which are not instances do
18: create locale parameter of the type corresponding to the datatype of p
19: end for

{instantiated ports are already handled at line 8}
20: for all behavior trace assertions b of ct do
21: create locale assumption for b

{use the operators and evaluation function presented in this chapter}
22: end for
23: end for
24: for all architecture trace assertions c of AS do
25: create locale assertion for c

{use the operators presented in this chapter}
26: end for

Theorem 4 (Soundness of Alg. 1). A set of architecture traces satisfies a FACTum
specification iff it satisfies the theory generated from the FACTum specification by algo-
rithm 1.

Although a formal proof for this theorem is out of the scope of this text, we provide an
informal argument for it in App. E. Moreover, note that the generated theory is based on

88

6.6 Summary

Isabelle/HOL’s implementation of architecture traces presented in this chapter. Thus, a
calculus is instantiated for each component type which provides a set of rules to reason
about the specification of the behavior of components of that type.

6.6 Summary
Figure 6.5 provides an overview of the results presented in this chapter. First, we provide
formalizations of the model presented in Chap. 2 as well as the calculus presented in
Chap. 5 in terms of two Isabelle/HOL theories which are available through the archive
of formal proofs [Mar17a]:
Configuration_Traces imports theory Coinductive_List and provides a formaliza-

tion of the model described in Chap. 2 in terms of co-inductive lists.
Dynamic_Architecture_Calculus imports theory Configuration_Traces, provides

operators for the specification of component behavior, and implements a calcu-
lus to reason about component behavior [Mar17c] specified using these operators.

Moreover, we provide an interface to these theories in terms of an Isabelle/HOL
locale [Bal04] dynamic_component. Finally, we provide an algorithm to map a
FACTum specification to a corresponding Isabelle/HOL theory: Thereby, locale
dynamic_component is instantiated for every type of component involved in the pat-
tern. Then, the behavior of each component type is specified using the specification
operators provided by the corresponding instantiation. Moreover, activation and con-
nection constraints are specified for components of the different types.

Model

- Projection Operator

- Activation Operators

- Mapping Operators

Configuration Traces.thy

Calculus

- Evaluation Operator

- Specification Operators

- Rules of Calculus

Dynamic Architecture Calculus.thy

In
te
rf
ac
e

d
y
n
a
m
i
c
c
o
m
p
o
n
e
n
t

Pattern
Theory

- Instantiate locale

for each type
of component

- Specify behavior

for types of
components

- Specify activation

of components
- Verify architecture

using calculus

model definitions

S1

extends

specification operators

S2

verification rules

S3

Figure 6.5: Overview of results presented in this chapter.

89

Part IV

Evaluation

91

7 Singletons, Publisher-Subscribers, and
Blackboards

In the last chapters, we introduced techniques to specify ADPs and verify them by means
of interactive theorem proving. In the following chapter, we demonstrate feasibility of
the approach. To this end, we first specify properties for each of our running examples
and verify them in Isabelle/HOL.
Verification is based on our implementation of the calculus presented in Chap. 5.

Moreover, we leverage the hierarchical nature of the specifications of our running ex-
amples. Thus, results obtained for the Singleton pattern are used for the verification
of the Publisher-Subscriber pattern. In addition, results obtained for both patterns,
the Singleton and the Publisher-Subscriber pattern, are used for the verification of the
Blackboard pattern. In total, verification consists of three theories amounting up to
almost 1000 lines of Isabelle/HOL proof code.
Although the examples presented in this chapter demonstrate feasibility of the ap-

proach, their main purpose is to demonstrate the concepts and ideas of this thesis. To
further evaluate the methodology on a larger scale, the next chapter presents a case
study from the domain of blockchain architectures.

7.1 Singleton

First, we discuss verification of the Singleton pattern. We first present a possible guar-
antee for the pattern. Then, we show the Isabelle/HOL code generated from the spec-
ification of the pattern. Finally, we show how the guarantee is verified by proving the
corresponding theorem.

7.1.1 Architectural Guarantee

One possible guarantee of a Singleton is that there exists indeed a unique component
of type singleton which is always active. It it is formalized in Fig. 7.1 in terms of an
architecture trace assertion (as introduced in Sect. 3.3). First, we specify two component
variables for singletons: a flexible variable s and a rigid variable the-singleton. While
flexible variables may change their value at each point in time, rigid variables are required
to keep their value during the whole execution. Then, we require the existence of such
a rigid singleton, which is always activated and indeed the only component of type
singleton which is active at any point in time.

93

7 Singletons, Publisher-Subscribers, and Blackboards

ASpec Guarantee_Singleton for Singleton
flex s : Singleton
rig the-singleton : Singleton
∃the-singleton : �

(
the-singleton ∧ (s −→ s = the-singleton)

)
Figure 7.1: Architectural guarantee for the Singleton pattern.

7.1.2 Mapping the Pattern Specification

Since the specification of the Singleton did not involve the specification of data types,
no Isabelle datatype specification is created. However, a corresponding Isabelle locale
is created from the specification of a Singleton’s interface (discussed in Ex. 16). The
corresponding Isabelle/HOL excerpt looks as follows:
locale singleton = dynamic-component cmp active
for active :: ′id ⇒ cnf ⇒ bool (- - [0 ,110]60)
and cmp :: ′id ⇒ cnf ⇒ ′cmp (σ-(-) [0 ,110]60) +

In order to use our verification framework later on, locale dynamic-component must be
instantiated for each type of component involved in a pattern’s specification. Since the
Singleton pattern consists of only one component type, a single instantiation of locale
dynamic-component is generated. The locale requires two parameters:

• A mapping cmp to access a singleton component in a given architecture snapshot
based on its identifier.

• A predicate active which checks whether a singleton component with a certain
identifier is activated in an architecture snapshot.

Moreover, the specification of the singleton consists of two architectural assumptions
(as described in Sec. 21), which are transferred to corresponding locale assumptions:

assumes alwaysActive:
∧
k. ∃ id. id k

and unique: ∃ id. ∀ k. ∀ id ′. (id ′
k −→ id = id ′)

Locale assumption alwaysActive is generated from the singleton’s assumption that a
singleton component is always active. Locale assumption unique is created from the
assumption that a singleton component is indeed unique.
The architectural guarantee specified for a singleton (Sec. 7.1.1) is systematically

transferred to the following Isabelle/HOL theorem:

definition the-singleton ≡ THE id. ∀ k. ∀ id ′. id ′
k −→ id ′ = id

theorem ts-prop:
fixes k::cnf
shows

∧
id. id k =⇒ id = the-singleton

and the-singleton k

94

7.1 Singleton

First, Isabelle/HOL’s definite description operator THE is used to define the unique
singleton component. Then, a theorem is created which guarantees that a singleton is
indeed unique and always activated.

7.1.3 Verification
Since the singleton is declared to be an instance of locale dynamic-component, all the
rules of our calculus are available for singleton components and can be used for the
verification of the pattern.

7.1.4 Properties from the Calculus
Figure 7.2 demonstrates the properties which are available for a singleton as part of
the framework. Essentially, we get introduction and elimination rules for each of the
operators used to specify component behavior. Since a singleton does not have any
behavior specification, these rules are actually not used for the verification of the pattern.
However, as we consider more complicated patterns, these rules turn out to be useful for
verification.

baIA: [[∃ i≥n. c t i; ϕ (σct 〈c → t〉n)]] =⇒ eval c t t ′ n (ba ϕ)

baIN1 : [[∃ i. c t i; ¬ (∃ i≥n. c t i); ϕ (t ′ (n − 〈c ∧ t〉 − 1))]]
=⇒ eval c t t ′ n (ba ϕ)

baIN2 : [[@ i. c t i; ϕ (t ′ n)]] =⇒ eval c t t ′ n (ba ϕ)

. . . Similar rules are available for each operator

Figure 7.2: Calculus instantiated for the Singleton pattern.

7.1.5 Proving the Theorem
A possible proof for theorem ts-prop, presented in Sec. 7.1.2, may look as follows:
proof −
{ fix id
assume a1 : id k
have (THE id. ∀ k. ∀ id ′. id ′

k −→ id ′ = id) = id
proof (rule the-equality)
show ∀ k id ′. id ′

k −→ id ′ = id
proof
fix k show ∀ id ′. id ′

k −→ id ′ = id
proof
fix id ′ show id ′

k −→ id ′ = id
proof
assume id ′

k
from unique have ∃ id. ∀ k. ∀ id ′. (id ′

k −→ id = id ′) .

95

7 Singletons, Publisher-Subscribers, and Blackboards

then obtain i ′′ where ∀ k. ∀ id ′. (id ′
k −→ i ′′ = id ′) by auto

with 〈 id ′
k〉 have id=i ′′ and id ′=i ′′ using a1 by auto

thus id ′ = id by simp
qed

qed
qed

next
fix i ′′ show ∀ k id ′. id ′

k −→ id ′ = i ′′ =⇒ i ′′ = id using a1 by auto
qed
hence id k =⇒ id = the-singleton by (simp add: the-singleton-def)

} note g1 = this
thus

∧
id. id k =⇒ id = the-singleton by simp

from alwaysActive obtain id where id k by blast
with g1 have id = the-singleton by simp
with 〈 id k〉 show the-singleton k by simp

qed

The proof is formulated in Isabelle’s structured proof language Isabelle/Isar and resem-
bles a normal, mathematical proof. Note, however, the reference to the two assumptions
unique and alwaysActive generated from the pattern’s imposed assumptions and dis-
cussed in Sec. 7.1.2.

7.2 Publisher-Subscriber

Next, we discuss the verification of the Publisher-Subscriber pattern. Again, we first
present a possible guarantee for such architectures. Then, we discuss the Isabelle/HOL
code generated from its specification. Finally, we discuss the verification of the corre-
sponding theorem in Isabelle/HOL.

7.2.1 Architectural Guarantees

Since the publisher component was specified to be an instance of the Singleton pattern,
the corresponding guarantee of the Singleton pattern is also available for the Publisher-
Subscriber pattern. Moreover, we can use the additional assumptions imposed by the
specification of the Publisher-Subscriber pattern to come up with another guarantee for
the pattern. It is specified in Fig. 7.3 and guarantees that a subscriber component indeed
receives all the messages for which it is subscribed.

7.2.2 Mapping Data Types

Since the specification of the Publisher-Subscriber pattern indeed contains specifica-
tions for data types, we first need to create the corresponding datatype specification in
Isabelle/HOL:
datatype ′evt subscription = sub ′evt | unsub ′evt

96

7.2 Publisher-Subscriber

ASpec Publisher-Subscriber for Publisher-Subscriber
flex the-pb : Publisher

m : msg
E : ℘(evt)

rig s′ : Subscriber
e : evt

�

(
s′ ∧

(
∃E : sub E = s′.sb ∧ e ∈ E

)
−→

((
s′ ∧ (e,m) = the-pb.nt −→ (e,m) = s′.nt

)
W
(
s′ ∧ (∃E : unsub E = s′.sb ∧ e ∈ E)

)))

Figure 7.3: Architectural guarantee for the Publisher-Subscriber pattern.

According to the datatype specification presented in Ex. 12, we create a parametric
datatype subscription, which depends on a type parameter ′evt to denote events for
which subscribers can subscribe. Thereby, the elements of a subscription are defined to
be either a subscription sub to an event ′evt, or an unsubscription unsub for an event
′evt.

7.2.3 Mapping Architectural Assumptions
The specification of the patterns interfaces (Ex. 28) are again mapped to a corresponding
locale specification:
locale publisher-subscriber =
pb: singleton pbactive pbcmp +
sb: dynamic-component sbcmp sbactive
for pbactive :: ′pid ⇒ cnf ⇒ bool
and pbcmp :: ′pid ⇒ cnf ⇒ ′PB
and sbactive :: ′sid ⇒ cnf ⇒ bool
and sbcmp :: ′sid ⇒ cnf ⇒ ′SB +

This time, however, two interfaces are specified which requires two instantiations for
the locale. Since the publisher component type is specified to be a instance of the
Singleton pattern, a corresponding instantiation of the singleton locale is created. The
subscriber component type does not instantiate any other component type which is
why it instantiates the default locale dynamic-component from our framework. Note
that locale instantiations are indeed transitive which means that, implicitly, also the
publisher component type instantiates locale dynamic-component. Thus, the verification
framework can also be used for publisher components, although they do not directly
instantiate dynamic-component.
In contrast to the singleton component type, which has no specified ports, publishers

as well as subscribers have ports specified for their interfaces. The port types specified
in Ex. 14 are mapped to corresponding locale parameters:

97

7 Singletons, Publisher-Subscribers, and Blackboards

fixes pbsb :: ′PB ⇒ (′evt set) subscription set
and pbnt :: ′PB ⇒ (′evt × ′msg)
and sbnt :: ′SB ⇒ (′evt × ′msg) set
and sbsb :: ′SB ⇒ (′evt set) subscription

For each port, we create a locale parameter which takes a component of the corresponding
component type and returns a set of messages of the corresponding port type.

Finally, the two connection assumptions specified for the Publisher-Subscriber pattern
in Ex. 22, are mapped to corresponding locale assumptions:
assumes conn1 :

∧
k pid. pbactive pid k

=⇒ pbsb (pbcmp pid k) = (
⋃
sid∈{sid. sbactive sid k}. {sbsb (sbcmp sid k)})

and conn2 :
∧
t n n ′′ sid pid E e m.

[[t ∈ arch; pbactive pid (t n); sbactive sid (t n); n ′′≥ n; e ∈ E ;
sub E = sbsb (sbcmp sid (t n));
@n ′ E ′. n ′ ≥ n ∧ n ′ ≤ n ′′ ∧ sbactive sid (t n ′) ∧
unsub E ′ = sbsb (sbcmp sid (t n ′)) ∧ e ∈ E ′;

(e, m) = pbnt (pbcmp pid (t n ′′)); sbactive sid (t n ′′)]]
=⇒ pbnt (pbcmp pid (t n ′′)) ∈ sbnt (sbcmp sid (t n ′′))

Thereby, connections between two ports is simply mapped to an equality assumption
for the corresponding locale parameters. conn1, for example, denotes the constraint
that port sb of a publisher component is connected to port sb of every active subscriber
component.

7.2.4 Mapping the Guarantee

Similar as for the Singleton pattern, the architectural guarantee for Publisher-Subscriber
architectures (specified in Sec. 7.2.1), is mapped to a corresponding Isabelle/HOL theo-
rem. First, however, we introduce an abbreviation for the unique publisher component
inherited from the singleton:
abbreviation the-pb :: ′pid where
the-pb ≡ pb.the-singleton

Then, we can finally generate the corresponding theorem:
theorem msgDelivery:
fixes t n n ′′ sid E e m
assumes t ∈ arch
and sbactive sid (t n)
and sub E = sbsb (sbcmp sid (t n))
and n ′′ ≥ n
and @n ′ E ′. n ′ ≥ n ∧ n ′ ≤ n ′′ ∧ sbactive sid (t n ′) ∧ unsub E ′ = sbsb(sbcmp sid (t n ′))

∧ e ∈ E ′

and e ∈ E
and (e,m) = pbnt (pbcmp the-pb (t n ′′))
and sbactive sid (t n ′′)

shows (e,m) ∈ sbnt (sbcmp sid (t n ′′))

98

7.2 Publisher-Subscriber

7.2.5 Publisher-Subscriber

Similar as for the Singleton pattern, our framework provides us with rules to support
reasoning about component behavior. Moreover, since a publisher was declared to be
an instance of a singleton, results from the Singleton pattern propagate to publishers.

7.2.5.1 Properties from the Calculus

In contrast to the Singleton pattern, there are two types of components in a Publisher-
Subscriber pattern and each of these types, publishers as well as subscribers, come with
their own instantiation of the calculus. Figure 7.4 depicts two of the introduction rules
for basic behavior assertions which are available: one for publisher components and one
for subscriber components. Note that the rules are similar, but for publisher components
we use activation and selection parameters pbactive and pbcmp, while for subscribers we
use sbactive and sbcmp, respectively.

pb.baIA: [[∃ i≥n. pbactive c (t i); ϕ (pbcmp c (t (pb.nxtAct c t n)))]]
=⇒ pb.eval c t t ′ n (pb.ba ϕ)

sb.baIA: [[∃ i≥n. sbactive c (t i); ϕ (sbcmp c (t (sb.nxtAct c t n)))]]
=⇒ sb.eval c t t ′ n (sb.ba ϕ)

. . . Similar rules are available for each operator

Figure 7.4: Calculus instantiated for the Publisher-Subscriber pattern.

7.2.5.2 Results from Pattern Instantiations

Since the Publisher-Subscriber pattern instantiates the Singleton pattern, results ob-
tained for the singleton are automatically interpreted in the context of the Publisher-
Subscriber pattern. Thus, declaring the publisher to be an instance of a singleton has
two major consequences.
First, a corresponding definition of the unique publisher component is available:

abbreviation the-pb :: ′pid where
the-pb ≡ pb.the-singleton

Essentially, the-pb abbreviates definition the-singleton introduced in Sec. 7.1.2.
Moreover, the theorem proved for singleton components is available also for compo-

nents of type publisher:

pb.ts-prop (1): pbactive id k =⇒ id = the-pb
pb.ts-prop (2): pbactive the-pb k

99

7 Singletons, Publisher-Subscribers, and Blackboards

7.2.5.3 Proving the Theorem

The proof for theorem msgDelivery, presented in Sec. 7.2.4 is a simple one-liner:
using conn1 [OF pb.ts-prop(2)] .

It follows directly from the assumptions generated for the pattern and the guarantee
inherited from the singleton.

7.3 Blackboard
Finally, we present the verification for the Blackboard pattern. Again, we first specify
a possible guarantee for the pattern. Then, we present the corresponding Isabelle/HOL
code and the proof of the theorem generated from the pattern’s guarantee.

7.3.1 Architectural Guarantees
Again, the architectural guarantee specified for singletons (Fig. 7.1) as well as the guar-
antee specified for Publisher-Subscriber architectures (Fig. 7.3) are inherited for the
blackboard specification. Figure 7.5 provides the specification of an additional guaran-
tee for Blackboard architectures: If for every open subproblem, a knowledge source able
to solve this problem is eventually activated (Eq. (7.1)), then, the architecture will even-
tually solve a given problem (Eq. (7.2)), even if no single knowledge source is able to solve
the problem on its own. Note that the specification uses the concept of parametrized
variables for knowledge sources. Thus, given a problem p, variable ks〈p〉 denotes a vari-
able for a knowledge source component which is indeed able to solve problem p.

ASpec Guarantee_Blackboard for Blackboard
flex the-bb : BB

ks : KS
P : ℘(PROB)

rig p : PROB(
�
(
∀p = the-bb.op : ♦ ks〈p〉

))
−→ (7.1)

�
(
∀P :

(
sub P ∈ the-bb.rp −→ ∀p ∈ P : ♦

(
(p, solve(p)) ∈ the-bb.cs

)))
(7.2)

Figure 7.5: Architectural guarantee for the Blackboard pattern.

7.3.2 Mapping Data Types
In contrast to the Publisher-Subscriber pattern, data types for the Blackboard pattern
are specified axiomatically:
typedecl PROB
consts sb :: (PROB × PROB) set
axiomatization where sbWF : wf sb

100

7.3 Blackboard

typedecl SOL
consts solve:: PROB ⇒ SOL

As required by the corresponding FACTum datatype specification (Ex. 13), the spec-
ification introduces two abstract types: problems and solutions. It then requires the
existence of a well-founded relation sb which relates problems with corresponding sub-
problems. Finally, it requires the existence of a mapping which is assumed to assign the
correct solution to each problem.

7.3.3 Mapping Architectural Assumptions
Again, the pattern specification is mapped to a corresponding Isabelle/HOL locale.
Similar as for the Publisher-Subscriber pattern, the pattern’s interfaces are used to
generate a corresponding locale header:
locale blackboard = publisher-subscriber bbactive bbcmp ksactive kscmp bbrp bbcs kscs ksrp
for bbactive :: ′bid ⇒ cnf ⇒ bool (- - [0 ,110]60)
and bbcmp :: ′bid ⇒ cnf ⇒ ′BB (σ-(-) [0 ,110]60)
and ksactive :: ′kid ⇒ cnf ⇒ bool (- - [0 ,110]60)
and kscmp :: ′kid ⇒ cnf ⇒ ′KS (σ-(-) [0 ,110]60)
and bbrp :: ′BB ⇒ (PROB set) subscription set
and bbcs :: ′BB ⇒ (PROB × SOL)
and kscs :: ′KS ⇒ (PROB × SOL) set
and ksrp :: ′KS ⇒ (PROB set) subscription +

fixes bbns :: ′BB ⇒ (PROB × SOL) set
and ksns :: ′KS ⇒ (PROB × SOL)
and bbop :: ′BB ⇒ PROB
and ksop :: ′KS ⇒ PROB set

Since the Blackboard is specified to be an instance of the Publisher-Subscriber pattern,
the locale created for the Blackboard pattern instantiates the locale of the Publisher-
Subscriber pattern. The instantiation requires 8 parameters: The first 4 parameters are
the usual parameters required by the framework to obtain a component from an architec-
ture snapshot, and to check activation of a component within an architecture snapshot.
In addition, we must provide an additional parameter for each port available in the
specification of the Publisher-Subscriber pattern. These parameters denote ports of the
Blackboard pattern which interpret the corresponding ports of the Publisher-Subscriber
pattern (as specified in Ex. 29). For example, port rp of a blackboard corresponds to
port sb of a publisher, port cs of a blackboard to port nt of the publisher, port cs of a
knowledge source to port nt of a subscriber, and port rp of a knowledge source to port
sb of a subscriber.

As a next step, we generate interface parameters and corresponding assumptions:
and prob :: ′kid ⇒ PROB

assumes
ks1 : ∀ p. ∃ ks. p=prob ks — Component Parameter

Since knowledge sources are parametrized by problems, we must generate a correspond-
ing locale parameter which assigns a problem to each knowledge source. Moreover, we

101

7 Singletons, Publisher-Subscribers, and Blackboards

generate an assumption ks1, which requires the existence of at least one knowledge source
for each problem (as required by the semantics of parametric component types).
Finally, we generate additional locale assumptions according to the activation and

connection assumptions described in Ex. 23:
— Assertions about component activation.
and actks:∧

t n kid p. [[t ∈ arch; ksactive kid (t n); p=prob kid; p∈ksop (kscmp kid (t n))]]
=⇒ (∃n ′≥n. ksactive kid (t n ′) ∧ (p, solve p) = ksns (kscmp kid (t n ′)) ∧
(∀n ′′≥n. n ′′<n ′ −→ ksactive kid (t n ′′)))
∨ (∀n ′≥n. (ksactive kid (t n ′) ∧ (¬(p, solve p) = ksns (kscmp kid (t n ′)))))

— Assertions about connections.
and conn1 :

∧
k bid. bbactive bid k

=⇒ bbns (bbcmp bid k) = (
⋃
kid∈{kid. ksactive kid k}. {ksns (kscmp kid k)})

and conn2 :
∧
k kid. ksactive kid k

=⇒ ksop (kscmp kid k) = (
⋃
bid∈{bid. bbactive bid k}. {bbop (bbcmp bid k)})

In contrast to the patterns discussed so far, a Blackboard involves also the specification
of component types, i.e., assumptions about component behavior. Thus, one additional
locale assumption is generated for every behavior assumption presented in Ex. 19 and
Ex. 20:

— Assertions about component behavior.
and bhvbb1 :

∧
t t ′ bId p s. [[t ∈ arch]] =⇒ pb.eval bId t t ′ 0

(pb.glob (pb.ba (λbb. (p,s)∈bbns bb)
−→p (pb.evt (pb.ba (λbb. (p,s) = bbcs bb)))))

and bhvbb2 :
∧
t t ′ bId P q. [[t∈arch]] =⇒ pb.eval bId t t ′ 0

(pb.glob (pb.ba (λbb. sub P ∈ bbrp bb ∧ q ∈ P) −→p

(pb.evt (pb.ba (λbb. q = bbop bb)))))
and bhvbb3 :

∧
t t ′ bId p . [[t∈arch]] =⇒ pb.eval bId t t ′ 0

(pb.glob (pb.ba (λbb. p = bbop(bb)) −→p

(pb.wuntil (pb.ba (λbb. p=bbop(bb))) (pb.ba (λbb. (p,solve(p)) = bbcs(bb))))))
and bhvks1 :

∧
t t ′ kId p P. [[t∈arch; p = prob kId]] =⇒ sb.eval kId t t ′ 0

(sb.glob ((sb.ba (λks. sub P = ksrp ks)) ∧s

(sb.all (λq. (sb.pred (q∈P)) −→s (sb.evt (sb.ba (λks. (q,solve(q)) ∈ kscs ks)))))
−→s (sb.evt (sb.ba (λks. (p, solve p) = ksns ks)))))

and bhvks2 :
∧
t t ′ kId p P q. [[t ∈ arch;p = prob kId]] =⇒ sb.eval kId t t ′ 0

(sb.glob (sb.ba (λks. sub P = ksrp ks ∧ q ∈ P −→ (q,p) ∈ sb)))
and bhvks3 :

∧
t t ′ kId p. [[t∈arch;p = prob kId]] =⇒ sb.eval kId t t ′ 0

(sb.glob ((sb.ba (λks. p∈ksop ks)) −→s (sb.evt (sb.ba (λks. (∃P. sub P = ksrp ks))))))
and bhvks4 :

∧
t t ′ kId p P. [[t∈arch; p∈P]] =⇒ sb.eval kId t t ′ 0

(sb.glob ((sb.ba (λks. sub P = ksrp ks)) −→s

(sb.wuntil (¬s (∃ s P ′. (sb.pred (p∈P ′) ∧s (sb.ba (λks. unsub P ′ = ksrp ks)))))
(sb.ba (λks. (p,solve p) ∈ kscs ks)))))

In FACTum, assumptions about component behavior are specified without considering
possible activations and deactivations of a component. Thus, they cannot be simply
transferred to assumptions over an architecture trace, as it was done for the mapping
of architectural assumptions. Rather, our framework provides an operation eval which

102

7.3 Blackboard

is instantiated for each component type and which can be used to specify assumptions
about component behavior in a dynamic environment. Later on, our framework can
be used to combine the assumptions about component activation with the assumptions
about component behavior to reason about a pattern specification.

7.3.4 Mapping the Guarantee
As for the other examples, we finally generate a theorem according to the guarantee pre-
sented in Sec. 7.3.1. Again, we first introduce an abbreviation for the unique blackboard
component inherited from the Publisher-Subscriber:
abbreviation the-bb ≡ the-pb

To foster readability, we even use Isabelle/HOL’s indefinite description operator SOME
to introduce an additional definition to denote a knowledge source with a certain prop-
erty:
definition sKs:: PROB ⇒ ′kid where
sKs p ≡ (SOME kid. p = prob kid)

Then, we can generate the corresponding Isabelle/HOL theorem:
theorem pSolved:
fixes t and t ′::nat ⇒ ′BB and t ′′::nat ⇒ ′KS
assumes t∈arch and
∀n. (∃n ′≥n. ksactive (sKs (bbop(bbcmp the-bb (t n)))) (t n ′))

shows
∀n. (∀P. (sub P ∈ bbrp(bbcmp the-bb (t n))
−→ (∀ p ∈ P. (∃m≥n. (p,solve(p)) = bbcs (bbcmp the-bb (t m))))))

7.3.5 Proving the Theorem
Finally, we discuss the verification of the theorem generated for the Blackboard pattern.
Again, we get all the rules of the calculus and all the results for the Singleton pattern
and Publisher-Subscriber pattern, for free.

7.3.5.1 Results from the Calculus

Similar as for the Publisher-Subscriber pattern, we get introduction and elimination
rules for all the operators used in the specification of blackboards as well as knowledge
sources. Figure 7.6 shows an introduction rule for basic behavior assertions instantiated
for both types of components. Again, the rules are similar, except for the activation and
selection parameters.

103

7 Singletons, Publisher-Subscribers, and Blackboards

pb.baIA: [[∃ i≥n. c t i; ϕ (σct 〈c → t〉n)]] =⇒ pb.eval c t t ′ n (pb.ba ϕ)

sb.baIA: [[∃ i≥n. c t i; ϕ (σct (sb.nxtAct c t n))]] =⇒ sb.eval c t t ′ n (sb.ba ϕ)

. . . Similar rules are available for each operator

Figure 7.6: Calculus instantiated for the Blackboard pattern.

7.3.5.2 Results from Pattern Instantiations

Since a Blackboard instantiates the Publisher-Subscriber pattern (and therefore implic-
itly also the Singleton pattern), we get all the properties verified for these patterns also
for the Blackboard pattern, for free. First, we get all the results for the Singleton pattern:
abbreviation the-bb ≡ the-pb

pb.ts-prop (1): id k =⇒ id = the-bb

pb.ts-prop (2): the-bb k

Similar as for the Publisher-Subscriber, we first introduce an abbreviation the-bb to
denote the unique component of type blackboard and then we get a corresponding lemma
about uniqueness of a blackboard component.

In addition, we get results from the Publisher-Subscriber pattern:
msgDelivery:

[[t ∈ arch;
sid t n;
sub E = ksrp (σsidt n);
n ≤ n ′′;
@n ′ E ′. n ≤ n ′ ∧ n ′ ≤ n ′′ ∧ sid t n ′ ∧ unsub E ′ = ksrp (σsidt n ′) ∧ e ∈ E ′;
e ∈ E ;
(e, m) = bbcs (σthe-bbt n ′′);
sid t n ′′]]
=⇒ (e, m) ∈ kscs (σsidt n ′′)

Basically, the results resemble the property verified for Publisher-Subscriber patterns
(discussed in the last section) with activation and selection parameters from knowledge
sources and blackboards, respectively.

7.3.5.3 Proving the Theorem

In order to prove theorem pSolved, presented in Sect. 7.3.4, we first prove a corresponding
lemma:
lemma pSolved-Ind:
fixes t and t ′::nat ⇒ ′BB and p and t ′′::nat ⇒ ′KS
assumes t∈arch and

104

7.4 Summary

∀n. (∃n ′≥n. ksactive (sKs (bbop(bbcmp the-bb (t n)))) (t n ′))
shows
∀n. (∃P. sub P ∈ bbrp(bbcmp the-bb (t n)) ∧ p ∈ P) −→

(∃m≥n. (p,solve(p)) = bbcs (bbcmp the-bb (t m)))

The lemma can be proved by well-founded induction over the subproblem relation sb,
since sb was assumed to be well-founded in Sec. 7.3.2. The final theorem is now a direct
consequence of this lemma and can be proved in a single line:
using assms pSolved-Ind by blast

7.4 Summary
In this chapter, we presented results obtained from the interactive verification of the
Singleton pattern, the Publisher-Subscriber pattern, and the Blackboard pattern. In
the following, we briefly summarize the results obtained for each of the patterns.

7.4.1 Singleton

The leftmost graph in Fig. 7.7 depicts the effort for the verification of the Singleton
pattern. Essentially, we have two classes of verification results for this pattern:

• A key result for the pattern is formalized by property ts_prop, which guarantees
that, in our version of the Singleton, a singleton component is unique and always
active.

• The second class of results leverages property ts_prop to provide rules to reason
about the behavior of singleton components. Remember that, in general, reasoning
about the behavior of components requires to consider activation constraints for
that type of component. However, since a singleton component is always active and
unique, reasoning about its behavior can be done without considering activation
specifications at all.

7.4.1.1 Publisher-Subscriber

In our version of the Publisher-Subscriber pattern, we modeled a publisher component
as an instance of a singleton. Thus, as already mentioned above, all the verification
results for singleton components from the Singleton pattern are available for publisher
components in the Publisher-Subscriber pattern. Hence, we get special rules to reason
about the behavior of publisher components which we use for the verification of two
additional properties for a Publisher-Subscriber architecture:

• Property msgDelivery provides a characteristic property for such architectures
which ensures that a subscriber component indeed receives all the messages asso-
ciated with events for which it is subscribed.

105

7 Singletons, Publisher-Subscribers, and Blackboards

ts
pr
op

lN
ac
t
ac
tiv
e

lN
xt
ac
tiv
e
ba
I
ba
E
ev
tE
gl
ob
E

un
til
I

un
til
E

0

10

20

30
30

1 1 1 1

12
10

18
16

30

Figure 7.7: Propositions for the Singleton pattern.

• Property conn1A provides a more technical result to support the reasoning about
Publisher-Subscriber architectures. It leverages the fact that a publisher is actually
a singleton to provide an alternative version of the basic rule to reason about
connected components.

As can be observed from Fig. 7.8, the proofs for both properties are simple one-liners.
Note, however, that this is only due to the fact that the proofs are based on the results
obtained from the Singleton pattern.

m
sg
D
el
iv
er
y

co
nn
1A

0

2

4

1 11

Figure 7.8: Propositions for the Publisher-Subscriber pattern.

106

7.4 Summary

7.4.1.2 Blackboard

We modeled the Blackboard pattern as a version of the Publisher-Subscriber pattern in
which a blackboard takes the role of a publisher and the knowledge sources correspond to
subscriber components. Thus, again, all the results from the Publisher-Subscriber pat-
tern are available to support the verification of the Blackboard pattern. The additional
constraints added by the Blackboard pattern can then be used to derive some additional
guarantees of which one is of particular interest: Property pSolved guarantees that a
Blackboard architecture is able to solve a given problem, provided that for each open
sub-problem there exists a knowledge source which is able to address it. To prove this
property, we first proved a more general result pSolved_Ind by induction. As shown in
Fig. 7.9, the proof of it consisted of 391 lines of Isabelle/HOL code. The final property
then follows directly from this lemma.

co
nn
2
bb

sk
s
pr
ob

pS
ol
ve
d
In
d

pS
ol
ve
d

0

200

400

6 1

391

11

Figure 7.9: Propositions for the Blackboard pattern.

107

8 Verification of Blockchain Architectures

In the last chapter, we introduced FACTum and demonstrated it in terms of three
running examples: the singleton, the publisher-subscriber, and the blackboard pattern.
Thereby, the verification of these patterns was rather trivial and the main purpose was
to demonstrate the methodology, rather than evaluating it.
In the following chapter, we apply the methodology to a larger case study to specify

and verify a pattern for Blockchain architectures:
• First, we specify blockchains as parametric lists using algebraic specification tech-

niques.
• Then, we specify two types of components: trusted nodes which follow a given
consensus protocol and untrusted nodes which may deviate from the protocol.
• Finally, we specified several architectural assertions which constrain the activation
of nodes and their interconnection.

Then, we systematically transfer the specification of the pattern to a corresponding
Isabelle/HOL [NPW02] theory using the algorithm described in Chap. 6. Finally, we
formalize the notion of “resistance to modification of blockchain entries”, transfer it to
a corresponding Isabelle/HOL theorem, and prove it using the calculus presented in
Chap. 5.
In total, the verification consists of two Isabelle theory files amounting to roughly

3 000 lines of Isabelle proof script. Thereby, we discovered 9 architectural assumptions
required by Blockchain architectures in order to guarantee persistence of blockchain
entries. While some of them are actually concerned with details of an architecture, one
of the assumptions could be considered fundamental for Blockchain architectures: the
requirement that the relative frequency of minings from trusted and untrusted nodes
observed at every time interval is bounded by the number of confirmation blocks.

8.1 Blockchain Architectures

Blockchain architectures were first introduced with the invention of the Bitcoin cryp-
tocurrency [Nak08]. In cryptocurrencies, a digital coin is usually passed from one owner
to the next by digitally signing an electronic transaction. In order to ensure that coins
are only spent once by any owner, a payee has to know whether a received coin is already
spent or not at the time he receives it. This problem is known as the double spend prob-
lem and before the invention of blockchain, it was solved using a central, trusted identity
which knew every transaction of the system and confirmed that a coin was not already
spent. In an attempt to avoid such central authorities, Bitcoin proposed a system called
blockchain to solve the double spend problem in a distributed, peer-to-peer network.

109

8 Verification of Blockchain Architectures

Thereby, the network stores a continuously growing list of persistent entries which con-
tain the actual money transactions. The list is shared amongst all participants of the
network and by inspecting it, a node can independently verify that a coin was not already
spent. In this chapter, we call such a network a Blockchain architecture and in the fol-
lowing we summarize some basic concepts of such architectures as described in [Nak08].

8.1.1 Blockchain Data Structure

The term blockchain usually refers to the major data structure involved in a Blockchain
architecture: a list of records aka. blocks. Blocks, on the other hand, contain the
actual data elements, for example, money transactions in cryptocurrency applications.
Blocks can be added on top of the chain and verified by a process known as mining.
In Bitcoin, for example, mining involves the guessing of a random number (a so-called
nonce), adding it to a candidate block and checking whether the corresponding hash
exhibits a certain form (starting with a certain amount of zeros). This makes mining
of a new block computationally expensive since it usually requires many guesses (and
subsequent hashings) to find a number which produces the right hash. However, ensuring
that a given block was indeed successfully mined remains computationally cheap (it only
requires a single hashing).

8.1.2 Blockchain Architectures

In a Blockchain architecture, every node maintains a local copy of the blockchain which
it exchanges with its peers. Due to the distributed nature, it may happen that two dif-
ferent blocks are added concurrently, resulting in two different versions of the blockchain
available in the network. In order to reach a consensus on which version is the “right”
one, a Blockchain architecture usually comes with a strategy of how to select the right
version from a set of competing blockchains. This rule is applied by every trusted node
of the network and should guarantee that the nodes eventually reach a consensus.

8.1.3 Consensus Rules

There are several different types of strategies used to reach consensus, such as proof
of work [Nak08] or proof of stake [BGM16]. In the proposed pattern, we rely on the
proof of work concept also used by Bitcoin and related applications. It is based on the
observation that the number of blocks in a blockchain usually represents the amount
of computing power involved to build this chain. Thus, the largest chain from a set of
competing blockchains must be the one accepted by the majority of the network. Thus,
if a trusted node is facing two versions of a blockchain, it is required to always choose
the longer one.

8.1.4 Confirmation Blocks

In a proof-of-work network, every CPU gets one vote and majority decisions can usually
only be manipulated if one entity owns more than 50% of the computing power of the

110

8.2 Formalizing Blockchain Architectures

network. This might not be true, however, for blocks added to the blockchain only
recently. A single node may just be lucky and guess the right nonce fast, without
investing a lot of computational power. In order to cope with such lucky guesses, one
usually waits for some blocks to be mined on top of the block containing a certain
transaction, in order to accept this transaction as completed. In Bitcoin, for example,
it is suggested to wait at least 6 blocks in order to accept a transaction as completed.

8.2 Formalizing Blockchain Architectures

In the following, we present our formalization of a possible pattern for Blockchain ar-
chitectures. Therefore, we first describe the involved data types. Then, we present the
types of components and constraints about their behavior. Finally, we discuss additional
architectural constraints about component activation and interconnection.

8.3 Data Types and Ports

As described in Sect. 8.1, a key data type in Blockchain architectures is the blockchain
itself. In the following, we first formalize a blockchain datastructure in terms of algebraic
datatypes. Then, we specify two types of ports to send and receive blockchains.

8.3.1 Blockchains

A blockchain is modeled as a parametric list where the nature of the list entries (the
blocks) depends on the concrete application context of the pattern. In cryptocurrency
applications, for example, a block is actually a set of transactions. In other applications,
however, blocks could be of a different type.
Figure 8.1a provides a specification of blockchains in terms of an abstract data type

specification [Bro96, Wir90]. First, a parametric sort 〈B〉BC is introduced as a synonym
for a corresponding list. Thereby, the type of blocks is denoted with type parameter
B. In addition, we specify a function symbol MAX for blockchains which takes a set
of blockchains and returns a blockchain with maximal length. Thus, we require two
characteristic properties for MAX : Eq. (8.1) requires that a maximal blockchain of a set
of blockchains BC is indeed part of BC itself. In addition, Eq. (8.2) requires that MAX
is indeed maximal, i.e., that the length of every other blockchain of the corresponding
set BC is less or equal to the length of MAX . Note that MAX(BC) is guaranteed to
exist whenever BC 6= ∅ and BC is finite.

8.3.2 Port Types

Figure 8.1b specifies two types of ports which can be used to exchange blockchains: pin
for input ports and pout for output ports. They will be used later on for the specification
of component type interfaces.

111

8 Verification of Blockchain Architectures

DTSpec Blockchain imports 〈B〉LIST as 〈B〉BC
MAX : ℘(〈B〉BC)→ 〈B〉BC
flex BC : ℘(〈B〉BC)

bc : BC
MAX(BC) ∈ BC (8.1)
∀bc ∈ BC : #bc ≤ #MAX(BC) (8.2)

(a) Data type specification.

PSpec BPort
pin : 〈B〉BC
pout : 〈B〉BC

(b) Port specification.

Figure 8.1: Specification of the Blockchain pattern.

Diagram Blockchain〈cb : NAT〉

Node〈trusted : bool〉
bc : 〈B〉BC
mining : bool

pin pout

bndtr ,nd ′tr ′ : tr ∧ tr ′c var tn : Node[trusted]
un : Node[¬trusted]

PoW def= LEAST x : ∀tn : tn −→#tn.bc≤x

tmining def= ∃tn : tn ∧ tn.mining

umining def= ∃un : un ∧ un.mining

Figure 8.2: Architecture diagram for Blockchain architectures.

8.4 Component Types

The components involved in a Blockchain architecture are called nodes. In the following,
we first describe the syntactic interface of such a node component. Then, we introduce
some auxiliary definitions for nodes used later on. Finally, we provide a set of charac-
teristic properties for a node’s behavior.

8.4.1 Interfaces

The architecture diagram depicted in Fig. 8.2 specifies the syntactic interface of
blockchain nodes. Actually, the diagram also contains a graphical representation of
a connection constraint as well as the definition of three auxiliary definitions for nodes.
For now, however, we skip these additional aspects and focus on the description of the
interface. We will come back to the auxiliary definitions in the next section and we will
discuss the connection constraint later on in Sec. 8.5.
First of all, a node in a blockchain may either be trusted or untrusted. Therefore, a

node is parametrized by a boolean value trusted which means that every component of
type node has a constant, boolean value associated to it which determines its trustwor-
thiness. In addition, a node has two state variables: variable bc keeps a local copy of
the node’s blockchain and variable mining signals the mining of a new block. Finally, a
node may exchange blockchains through its input port pin and output port pout.

112

8.4 Component Types

8.4.2 Auxiliary Definitions

To support subsequent development, the right hand side of Fig. 8.2 introduces three
auxiliary definitions for nodes: trusted proof of work and trusted/untrusted mining.

Trusted proof of work. Trusted proof of work is denoted by PoW and represents the
maximal proof of work currently available in the trusted community. Since proof of work
corresponds to the length of a blockchain (Sec. 8.1), trusted proof of work is defined as
the least upper bound for the length of trusted blockchains, i.e., blockchains of active
and trusted nodes. Note the use of the definite description operator LEAST to denote
the least length x which is greater or equal to the length of the blockchain of every
trusted and active node.

Trusted and untrusted mining. Trusted mining is a predicate denoted by tmining
which states that at the current point in time, some trusted node was able to mine a
new block. Similarly, untrusted mining states that currently an untrusted node was
able to mine a new block. It is denoted by umining. Trusted and untrusted mining
play an important role in the formalization of a fundamental property for Blockchain
architectures later on.

8.4.3 Behavior

The behavior of nodes is given in terms of a set of so-called behavior trace assertions,
i.e., linear temporal logic [MP92] formulæ, formulated over a node’s interface1. Fig-
ure 8.3 depicts the corresponding specification. First, we introduce several variables to
denote single blocks (b), blockchains (bc and bc′), trusted nodes (tn), untrusted nodes
un, and nodes in general (nd). Note the distinction between “flexible” and “rigid” vari-
ables: while “flexible” variables may be newly interpreted at every point in time, “rigid”
variables keep their value over time. Then, we require four assertions for a node’s be-
havior: The first two assertions Eq. (8.3) and Eq. (8.4) are general properties required
for trusted as well as untrusted node components. Eq. (8.3) requires that a new node is
initialized by the empty blockchain while Eq. (8.4) requires that every node nd indeed
always forwards a copy of its local blockchain to the network through its output port
pout. Eq. (8.5) and Eq. (8.6), on the other hand, are specific to trusted and untrusted
nodes. They are used to characterize the behavior for trusted and untrusted components
and in the following they are described in more detail.

Trusted nodes. The behavior of trusted nodes is characterized by Eq. (8.5). The
property essentially requires that a trusted node can only add newly mined blocks on
top of a given blockchain. Moreover, it also contains the consensus rule for trusted nodes
which requires that a trusted node always takes the blockchain with maximal proof of
work as the current one, i.e. if a trusted node receives a blockchain on its input with

1Behavior trace assertions are described in detail in Chap. 3

113

8 Verification of Blockchain Architectures

BSpec Blockchain for Node of Blockchain
flex b : B

bc′ : 〈B〉BC
nd : Node〈tr〉

rig bc : 〈B〉BC
tn : Node[trusted]
un : Node[¬trusted]

nd.bc = [] (8.3)
�
(
nd.pout = nd.bc

)
(8.4)

�

(
bc =

{
MAX(tn.pin) if ∃bc′ ∈ tn.pin : #bc′ > #tn.bc,
tn.bc else.

−→©
(
¬tn.mining ∧ tn.bc = bc ∨ tnmining ∧ ∃b : tn.bc = bc@b

))
(8.5)

�

(
bc =

(
εbc′ ∈ (un.pin ∪ {un.bc})

)
−→©

(
¬un.mining ∧ un.bc v bc ∨ un.mining ∧ ∃b : un.bc = bc@b

))
(8.6)

Figure 8.3: Specification of behavior for node components.

more proof of work than its own blockchain, then he will accept that blockchain as the
current one.
The property actually consists of two parts. The precondition formalizes the consensus

rule:

bc =
{

MAX(tn.pin) if ∃bc′ ∈ tn.pin : #bc′ > #tn.bc,
tn.bc else.

Since the proof of work for a blockchain is given by its length, the property fixes a
blockchain bc which is either a maximal blockchain from the input port pin of a trusted
node tn (for the case that it is strictly longer than its own blockchain), or its own
blockchain tn.bc (for the case that no blockchain from its input is longer than its own
blockchain). The implication formalizes the mining process:

©
(
¬tn.mining ∧ tn.bc = bc ∨ tn.mining ∧ ∃b : tn.bc = bc@b

)
.

Thereby, a trusted node tn may either mine a new block (mining), append it to bc and
take the resulting chain as its current blockchain tn.bc, or tn may not mine any new
block (¬mining) and just set bc as its current blockchain tn.bc.

Untrusted nodes. The behavior of untrusted nodes is characterized by Eq. (8.6). Note
that, compared to trusted nodes, untrusted nodes may not follow the consensus rules.
Thus, while trusted nodes always take the blockchain with the most proof of work as
their current blockchain, untrusted nodes may take every blockchain from its input as
the current one. Moreover, in contrast to trusted nodes, untrusted nodes may also drop
elements from a blockchain, thus trying to modify a blockchain’s history.

114

8.5 Architectural Constraints

Similar as for trusted nodes, the specification of the behavior for untrusted nodes
consists of two parts. The precondition again fixes a blockchain bc:

bc =
(
εbc′ : bc′ ∈ (un.pin ∪ {un.bc})

)
Note that we used Hilbert’s ε operator here to denote some element bc′ from input port
pin or state port bc. The implication is similar to the implication for trusted nodes:

©
(
¬un.mining ∧ un.bc v bc ∨ un.mining ∧ ∃b : un.bc = bc@b

)
Note that, due to computing restrictions, even untrusted nodes may at most mine one
single block at a time. Thus, the mining case is indeed the same as for trusted nodes.
The difference, however, comes with the case in which no new block is mined. While, for
such a case, trusted nodes are required to take bc as their current blockchain, untrusted
nodes may take an arbitrary prefix of bc as their current blockchain.

8.5 Architectural Constraints
Architectural constraints restrict activation and deactivation of components and con-
nections between component ports [MG16a, MG16b]. They are mainly formulated in
terms of architecture trace assertions, i.e., linear temporal logic formulæ, formulated over
component ports2. Certain constraints, however, can be expressed more easily graphi-
cally by annotating the pattern’s architecture diagram. In the following, we first discuss
connection constraints for Blockchain architectures. Then, we present some basic acti-
vation constraints for such architectures. Finally, we conclude the section by describing
a fundamental constraint for Blockchain architectures which is essential to guarantee
persistence of blockchain entries.

8.5.1 Connection Constraints
Connection constraints restrict connections between component ports and therefore they
affect the topology of an architecture. For our pattern of Blockchain architectures, we
require a single connection constraint which is expressed graphically by an annotation of
the architecture diagram depicted in Fig. 8.2. The dashed connection between a node’s
input and output ports expresses a conditional connection between ports pout and pin
of two (possible different) components of type node. The minimal condition for the
connection to happen is expressed by the connections annotation:

bndtr ,nd ′tr ′ : tr ∧ tr ′c.

The condition essentially requires the corresponding ports to be connected whenever two
components are trusted. Roughly speaking, the constraint requires that every trusted
node is connected to every other trusted node of the network. While this constraint
is indeed a strong requirement, it is necessary to guarantee persistence of blockchain
entries.

2Architecture trace assertions are described in detail in Chap. 3

115

8 Verification of Blockchain Architectures

ASpec Basic for Blockchain
flex bc : BC〈B〉

nd : Node〈tr〉
nd ′ : Node〈tr ′〉

rig tn : Node[trusted]

�
(

finite
(
{nd | nd }

))
(8.7)

�
(
∃tn : tn ∧© tn

)
(8.8)

�
(

tn ∧ tn.mining −→©– tn
)

(8.9)

�
(

nd ∧ bc ∈ nd.pin −→ ∃nd ′ : nd ′ ∧ nd ′.bc = bc
)

(8.10)

Figure 8.4: Basic activation constraints for Blockchain architectures.

8.5.2 Basic Activation Constraints

Activation constraints affect the activation and deactivation of components of a certain
type. We require four basic activation constraints for Blockchain architectures summa-
rized in Fig. 8.4 and explained in more detail in the following.

Finite amount of active nodes. Our first activation property for Blockchain architec-
tures is more of theoretical nature and restricts the number of active components at each
point in time. By Eq. (8.7), we require that at each point in time, only a finite number
of node components can be activated. The property should be satisfied by every archi-
tecture found in practice. However, it is needed in order to guarantee that at every point
in time, a node component receives only a finite amount of blockchains which, in turn,
is required to guarantee that maximal blockchains are well-defined for a component’s
input port.

Keeping the trusted blockchain. The second activation property we require for
Blockchain architectures is needed in order to guarantee that the trusted blockchain,
i.e., the blockchain accepted by trusted nodes as the “correct” one, is not lost. It is
formalized by Eq. (8.8) and requires that at every point in time, there exists an active
and trusted node which stays active for at least one time step. Thus, it is guaranteed
that the current trusted blockchain is stored by the trusted network and does not get
lost.

Mining on most recent blockchain. Another basic activation property for Blockchain
architectures is needed in order to ensure that the trusted network indeed collaborates in
the mining process. The property is formalized by Eq. (8.9) using the previous operator:
it requires that whenever a trusted node is mining a new block, this node was active at
the time point right before the mining happened. This ensures that the node had indeed

116

8.5 Architectural Constraints

access to the most recent version of the trusted blockchain and works on extending this
version instead of an older version.

Closed architecture. The last basic activation property for Blockchain architectures
requires such an architecture to be closed. Eq. (8.10) formalizes the property and requires
that for every blockchain available at the input of any active node component at any
point in time, there exists a corresponding active node component which provides the
blockchain at its output. In other words, the property guarantees that every blockchain
available in the architecture was built up from the network due to the mining process
and not injected from the outside.

8.5.3 A Fundamental Constraint for Blockchain Architectures

In the following section, we present a fundamental constraint for Blockchain architec-
tures. Since its specification requires to express mining frequencies, we first introduce
an operator to express such frequencies in LTL. Then, we use this operator to specify
the property.

Relative frequencies in LTL. In the following, we introduce an operator for LTL which
can be used to express statements of the form: “for every time span in which at least
x states can be observed which satisfy a certain property ϕ, at least y states can be
observed to satisfy a certain property ϕ′”.

Definition 16 (Weak until for relative frequencies). A trace t satisfies ϕ dxeW byc ϕ
′,

for state predicates ϕ and ϕ′, at time point n, iff

∃n′ ≥ n : cc(t, n, n′, ϕ′) ≥ y ∧ (∀n ≤ i < n′ : cc(t, n, i, ϕ) ≤ x)
∨ (∀n′ ≥ n : cc(t, n, n′, ϕ) ≤ x),

with cc(t, n, n′, p) def= |{i′ | i′ > n ∧ i′ ≤ n′ ∧ p(t(n))}|.

In the following, we provide an overview of some characteristic properties derived
for the operator. The first lemma characterizes the operator for the case that the two
indexes x and y are greater zero.

Lemma 1 (Indexes greater zero). Assuming t, n |= ϕ dxeW byc ϕ
′, x > 0, and y > 0,

then, the following holds:

ϕ(t(n)) ∧ ϕ′(t(n)) =⇒ t, n+ 1 |= ϕ dx−1eW by−1c ϕ
′,

ϕ(t(n)) ∧ ¬ϕ′(t(n)) =⇒ t, n+ 1 |= ϕ dx−1eW byc ϕ
′,

¬ϕ(t(n)) ∧ ϕ′(t(n)) =⇒ t, n+ 1 |= ϕ dxeW by−1c ϕ
′, and

¬ϕ(t(n)) ∧ ¬ϕ′(t(n)) =⇒ t, n+ 1 |= ϕ dxeW byc ϕ
′.

117

8 Verification of Blockchain Architectures

ASpec Blockchain for Blockchain

�
(

umining dcbe W bcb+1ctmining
)

(8.11)

Figure 8.5: Fundamental constraint for Blockchain architectures.

Essentially, the properties state that whenever ϕ dxeW byc ϕ
′ holds for some trace t at

some time point n, then the indexes can be reduced by one for the next state, depending
on whether ϕ or ϕ′ hold at the current state.

A second lemma specifies what happens if at some point in time we reach the point
where the first index reaches zero:

Lemma 2 (First index zero). Assuming t, n |= ϕ dxeW byc ϕ
′, x = 0, and y > 0. Then

we have: ¬ϕ(t(n+ 1)).

The property shows that after reaching zero at the first index, it is guaranteed that
property ϕ does not hold again as long as y remains greater zero.

Relative mining frequencies. Now, we have everything it needs in order to formalize a
fundamental requirement for Blockchain architectures. It is formalized as an architecture
constraint in Fig. 8.5 using the operator introduced above. Essentially, the property
requires that for every time span in which we can observe a number of untrusted minings
which is greater or equal the number of confirmation blocks, then we can also observe
a number of trusted minings which is greater than the number of confirmation blocks.
Note that this is an important requirement needed to guarantee persistence of blockchain
entries. Later on, in Sect. 8.7.1, we discuss the importance of this property in more detail.

8.6 Verifying Blockchain Architectures
In the following, we verify an important property for Blockchain architectures which
ensures persistence of blockchain entries.

8.6.1 Persistence of Blockchain Entries

As described in the introduction, Blockchain architectures were invented to solve the
double spend problem in a distributed peer-to-peer network. In order to do so, blockchain
entries, once accepted by the network, must be resistant to future modifications. This
property is summarized by the following theorem:

Theorem 5 (Persistence of blockchain entries). In a Blockchain architecture, the entries
of trusted blockchains which are confirmed by a number of blocks greater or equal to the
number of confirmation blocks, are resistant to future modifications.

The theorem is formally specified by the architectural assertion depicted in Fig. 8.6.
Thereby, sbc denotes a blockchain which contains the entries supposed to be persistent.

118

8.6 Verifying Blockchain Architectures

ASpec Save for Blockchain
flex tn : Node[trusted]

un : Node[¬trusted]
nd : Node[¬trusted]

rig tn′ : Node
sbc : 〈B〉BC

�

((
∀tn′ :

(
¬ tn′

)
W
(

tn′ ∧ sbc v tn′.bc
))
∧ (8.12)

PoW ≥ #sbc + cb ∧ (8.13)(
∀un : un −→ #un.bc < #sbc

)
∧ (8.14)

©–�–
(
∀nd : nd −→ #nd.bc < #sbc ∨ sbc v nd.bc

)
∧ (8.15)

−→ �
(
∀tn : tn −→ sbc v tn.bc

))
(8.16)

Figure 8.6: Specification of persistence property for Blockchain architectures.

Eq. (8.12) - Eq. (8.15) then characterize a time point ns for which the property actually
holds.

Eq. (8.12) requires that sbc is indeed a prefix of the blockchain of every trusted node
tn′ at tn′’s first activation after ns. It basically ensures that the trusted network
is initialized with blockchains extending sbc.

Eq. (8.13) requires the proof of work at time point ns to be greater or equal to the
length of sbc increased by the number of confirmation blocks cb. This equation is
required to provide the trusted network with some lead over a potential attacker
which might want to change sbc. Note, however, that the assumption is indeed
feasible, since Thm. 5 ensures persistence only of entries which were confirmed by
cb number of blocks.

Eq. (8.14) requires the length of the blockchain of every active and untrusted node un
to be less than the length of sbc. Together with Eq. (8.15), this equation ensures
that a potential attacker did not prepare a “false” blockchain before time point ns
which he could then use later on to cheat the trusted network.

Eq. (8.15) requires for every node’s blockchain nd.bc, at every time point before ns, that
sbc is either a prefix of nd.bc or that the length of nd.bc is smaller than the length
of sbc.

For every time point ns for which the above conditions hold, the property depicted in
Fig. 8.6 guarantees that sbc will always be a prefix of every trusted node’s blockchain
(formalized by Eq. (8.16)).

119

8 Verification of Blockchain Architectures

8.6.2 Verification Approach

The above property was formalized as theorem blockchain-save in the corresponding
Isabelle/HOL theory [Mar18c]. Its proof consists of roughly 11 500 lines of normalized
proof code. In the following, we are going to discuss the proof idea. Therefore, we
first introduce an auxiliary concept: blockchain developments. Then we explain how this
concept was used to prove the above property.

8.6.2.1 Blockchain Development

In a Blockchain architecture, at any point during the execution, the blockchain of every
node has a history describing its development by prior mining activities from other
nodes in the network. This is called a blockchain development and it is modeled as a
sequence of blockchains. Such a development is characterized by an important property:
a blockchain can grow at most by one element at each point in the development. This
property has two important consequences which are discussed in the following.

Blockchain modifications. One important consequence regards the nature of modifica-
tions of blockchain entries in a development: in order to modify an entry of a blockchain,
its development must first shrink the blockchain to the desired entry and then append
the modified block.

Relative growth. Another important consequence regards the relative growth of two
different types of developments: trusted and untrusted developments. In a trusted de-
velopment, minings have to be done only by trusted nodes. Similarly, an untrusted
development contains only minings from untrusted nodes. If we consider the funda-
mental property of blockchains described in Fig. 8.5, we can derive the following useful
property: If at any point in time, the untrusted development is below the trusted one
by at least cb elements, then the length of the untrusted development will never surpass
the one of the trusted development.

8.6.2.2 Overview of the Proof

Basically, the proof is by induction over the time point referred to by the globally opera-
tor provided in Eq. (8.16). For each time point we then show Eq. (8.16) by contradiction:
In order to violate it, there must exist an untrusted node with a blockchain larger than
the blockchain of one of the trusted nodes (since only then the consensus rule would
require the trusted node to take the larger one). Assuming there exists such an un-
trusted node, we can then construct the untrusted development of the corresponding
blockchain. Moreover, we can also construct the trusted development of the trusted
node’s blockchain. The “blockchain modification” property for blockchain developments
discussed above, now requires that at some point, the untrusted development must be
below the trusted development by at least cb elements. Thus, property “relative growth”,
would require that the length of the untrusted development is always less than the length

120

8.7 Discussion

of the trusted one. However, this would be in contradiction with the assumption that
the blockchain of the untrusted node is smaller than the blockchain of the trusted node.

8.7 Discussion
In the following, we discuss some interesting observations about Blockchain architectures.
In particular, we discuss the importance of Eq. (8.11) to guarantee Thm. 5.

8.7.1 Unbounded Untrusted Mining

First, we demonstrate why, in general, it is necessary to bound the number of subsequent
minings of untrusted nodes, to guarantee persistence of blockchain entries. Therefore,
we show how unbounded mining of untrusted nodes may lead to situations in which
already confirmed entries of blockchains of trusted nodes may be modified in the future.

Example 30 (Modification of already confirmed blocks). Let us assume that our
blockchain is storing characters A, B, C, . . . Figure 8.7 depicts the development of
two blockchain copies for a trusted node (solid) and an untrusted node (dashed) start-
ing from a time point n. The blockchain of the trusted node initially (at time point
n) contains four entries: A, B, C, and D. If we consider the number of confirmation
blocks to be two, then we can consider blocks A and B to be persistent, since two other
blocks are already mined on top of them. Since the trusted node broadcasts its copy of the
blockchain to the whole network, at time point n+1, the untrusted node receives the copy
and stores it. By Eq. (8.6), the untrusted node may now perform one of two actions:
either it removes some blocks from the top of its blockchain, or he mines a new block and
appends it to its local copy of the blockchain. Lets assume, that the untrusted node first
removes the top three blocks from the chain and then mines a new block X on top of its
remaining blockchain. Thus, at time point n + 3, the blockchain of the untrusted node
contains two entries: A and X. Assuming that, in the meantime, the copy of the trusted
node’s blockchain did not change, the length of the untrusted blockchain is still less than
the length of the trusted one. Thus, according to Eq. (8.4), the trusted node would cur-
rently not accept the untrusted blockchain. Now assume that the untrusted node is able
to mine three additional blocks Y , Z, and K, on top of its blockchain, while the trusted
node was still not able to mine any single block. Note that this is a feasible assumption,

n

A

B

C

D

n+1

A

B

C

D

A

B

C

D

n+2

A

B

C

D

A

n+3

A

B

C

D

A

X

n+4

A

B

C

D

A

X

Y

n+5

A

B

C

D

A

X

Y

Z

n+6

A

B

C

D

A

X

Y

Z

K

n+7

A

X

Y

Z

K

A

X

Y

Z

K

Figure 8.7: Graphical depiction of a double spend attack.

121

8 Verification of Blockchain Architectures

since we do not have any constraints on the number of untrusted minings. The untrusted
blockchain now consists of five blocks: A, X, Y , Z, and K. If it sends its copy of the
chain to the trusted node, the latter would accept it, since the proof of work (the length)
of the untrusted blockchain is now larger than the proof of work of its own copy. Thus,
the untrusted node was indeed able to modify entry B of the trusted blockchain, although
it was originally supposed to be persistent.

8.7.2 Weakening Eq. (8.11)
Example 30 shows that it is indeed necessary to constrain the number of subsequent
minings of untrusted nodes, in order ensure persistence of blockchain entries. However,
looking at the example, one may ask whether Eq. (8.9) is really necessary. Why not put
a weaker constraint, such as requiring at least one trusted mining every cb untrusted
minings? While this would indeed suffice to cope with situations as described in the
previous example, the next example describes a situation which shows that this weaker
version of Eq. (8.9) is also not sufficient to guarantee persistence of blockchain entries.

Example 31 (Modification of already confirmed blocks). Due to the introduced bound
on untrusted minings, the situation described by Ex. 30 is not feasible anymore: since
at time point n + 3, two consecutive minings of untrusted nodes happened, the newly
introduced bound requires mining of a trusted node to happen next. However, Fig. 8.8
depicts an alternative continuation of the development discussed in Ex. 30 which satisfies
the bound and still leads to a modification of an already confirmed entry of the blockchain
of the trusted node. According to the new constraint, the next block (after time point n+3)
has to be mined by a trusted node. This is what actually happens at time point n+4: the
trusted node mines a new block E on top of its blockchain, while the untrusted node keeps
its current copy of the blockchain. However, since a trusted mining just happened, the
untrusted node may now mine two additional blocks before a trusted mining is required
which may lead to a situation as depicted at time point n + 6. Since the untrusted
blockchain still contains less proof of work than the trusted one, the trusted node keeps
its own copy and mines an additional block F on top of it at time point n + 7. Again,
occurrence of a trusted mining now allows for two additional untrusted minings, which
leads to the situation shown at n+ 9. The last steps can be repeated to finally arrive at

n+4

A

B

C

D

E

A

X

n+5

A

B

C

D

E

A

X

Y

n+6

A

B

C

D

E

A

X

Y

Z

n+7

A

B

C

D

E

F

A

X

Y

Z

n+8

A

B

C

D

E

F

A

X

Y

Z

K

n+9

A

B

C

D

E

F

A

X

Y

Z

K

L

n+10

A

B

C

D

E

F

G

A

X

Y

Z

K

L

n+11

A

B

C

D

E

F

G

A

X

Y

Z

K

L

N

n+12

A

B

C

D

E

F

G

A

X

Y

Z

K

L

N

O

n+13

A

X

Y

Z

K

L

N

O

A

X

Y

Z

K

L

N

O

Figure 8.8: Graphical depiction of a double spend attack.

122

8.8 Summary

a situation where the length of the untrusted blockchain finally overtakes the length of
the trusted node’s blockchain (time point n + 12) which will then accept the untrusted
blockchain as required by the consensus rule (time point n + 13). Thus, the first entry
(block A) was modified although it was already confirmed.

8.7.3 A Note on Practical Feasibility
We admit that the constraint discussed in this section may somehow be idealized and
difficult to verify in a practical environment. To verify it, one would indeed need to
control the mining ability of untrusted entities which is not really feasible. Similar
problems arise for other constraints provided in this chapter, such as the connection
constraint from Fig. 8.2 which requires trusted nodes to be always connected.
This reveals a general characteristic of Blockchain architectures: they usually don’t

provide any strong guarantees. Rather, their guarantees are of probabilistic nature.
Nevertheless, the constraints presented in this chapter formalize key assumptions behind
Blockchain architectures and they may indeed be used by an architect to analyze a given
Blockchain architecture: by guessing (or even measuring) the likelihood of the properties
to be true in a given context, he can make an educated guess about the likelihood that
blockchain entries are indeed persistent.

8.8 Summary
To evaluate the approach on a larger case study, we formalized a pattern for Blockchain
architectures based on the proof-of-work consensus algorithm [Nak08]. We then ver-
ify a characteristic property for such architectures: persistence of blockchain en-
tries [KRDO17]. While a detailed discussion of the blockchain pattern is beyond the
scope of this paper, in the following, we provide an overview of the required effort to
verify the pattern.
The verification is split intro 3 different Isabelle/HOL theories available at [Mar18c]:

• A theory Auxiliary which contains some auxiliary results, such as custom induc-
tion rules.

• A theory RF_LTL which contains a calculus for Blockchain architectures based on
counting LTL [LMP10].

• A theory Blockchain which is the main theory containing the actual formalization
of the pattern.

Figure 8.9 depicts the effort of the corresponding verification in terms of proof code for
each proposition. The key property is formalized as theorem blockchain-save (highlighted
with gray color in the figure). Its proof is by induction and consists of roughly 300 lines
of Isabelle/HOL proof code. It required to introduce two auxiliary concepts:

• a set his containing a blockchain’s history, i.e., its state during certain points in
time and

123

8 Verification of Blockchain Architectures

• a function devBC, representing a blockchain’s development.

The main remaining propositions are then concerned with these two concepts:

• Lemma his_determ_ext shows that the history of a blockchain is deterministic,
i.e., that it has a unique state at each point in time.

• Lemma devExt_devop proves a basic property for blockchain developments, i.a.,
that it can only grow by one through a mining process.

• Lemma devExt shows that the development of a blockchain (which is defined using
its history), is indeed a well-defined function.

124

8.8 Summary

m
ax

ex

m
ax

p
ro

p

m
ax

le
ss

in
it

m
o

d
el

fw
d

b
c

fi
n

it
e

in
p

u
t

n
em

p
ty

in
p

u
t

on
ly

on
e

b
h

v
tr

ex

b
h

v
tr

in

b
h

v
tr

co
n

te
x

t

b
h

v
u

t

b
h

v
u

t
co

n
te

x
t

m
b

c
ex

m
b

c
p

ro
p

p
ow

ex

p
ow

p
ro

p

p
ow

eq

p
ow

m
b

c

p
ow

le
ss

p
ow

le
m

ax

p
ow

ge
lg

th

p
ow

le
lg

th

p
ow

m
on

o

p
ow

eq
u

al
s

p
ow

m
in

in
g

su
c

h
is

ac
t

h
is

P
re

v
p

ro
p

h
is

P
re

v
n

ex
le

ss h
is

le

h
is

d
et

er
m

b
as

e

h
is

P
re

v
sa

m
e

h
is

d
et

er
m

ex
t

h
is

d
et

er
m

ex

h
is

d
et

er
m

h
is

d
et

er
m

th
e

d
ev

B
C

so
m

e

d
ev

B
C

ac
t

h
is

ex

d
ev

E
x

t
n

op
t

le
q

d
ev

E
x

t

d
ev

E
x

t
sa

m
e

d
ev

E
x

t
b

c

d
ev

E
x

t
gr

ea
te

st

d
ev

E
x

t
sh

if
t

d
ev

E
x

t
b

c
ge

q

h
is

b
c

em
p

ty

d
ev

E
x

t
d

ev
op

b
lo

ck
ch

ai
n

sa
ve

cc
ar

d
sa

m
e

cc
ar

d
ze

ro

cc
ar

d
in

c

cc
ar

d
m

on
o

cc
ar

d
u

b

cc
ar

d
su

m

cc
ar

d
ex

cc
ar

d
fr

eq

p
re

fi
x

sa
ve

p
re

fi
x

le
n

gt
h

gr
ow

m
in

in
g

le
n

gt
h

su
c

le
n

gt
h

u
g.

cc
ar

d
d

if
f

lg
th

gr
ow

m
on

o

tg
.c

ca
rd

d
if

f
lg

th

tr
u

p
p

er
b

ou
n

d
d

is
jE

3

ge
in

d
u

ct

m
y

in
d

u
ct

G
re

at
es

t
ex

le
n

at

ca
rd

E
x

ca
rd

sh
if

t

0

5
0

1
0
0

1
5
0

2
0
0

2
5
0

3
0
0

F
ig
ur
e
8.
9:

Pr
op

os
iti
on

s
fo
r
th
e
B
lo
ck
ch
ai
n
pa

tt
er
n.

125

Part V

Conclusion

127

9 Conclusion

This thesis introduced FACTum, a methodology for the axiomatic specification and
verification of architectural design patterns (ADPs). Therefore, we first developed a
model for (potentially dynamic) architectures and techniques to specify ADPs over this
model. Then, we developed a calculus to support the verification of such specifications,
implemented the calculus in Isabelle/HOL, and provided an algorithm to map a given
specification to a corresponding Isabelle/HOL theory. To evaluate it, FACTum was im-
plemented in Eclipse/EMF and applied for the verification of 4 different ADPs: the Sin-
gleton, the Publisher-Subscriber, the Blackboard pattern, and a pattern for Blockchain
architectures. To conclude the thesis, in the following, we first summarize the major
results obtained with this thesis and discuss possible implications thereof. Then, we
describe our overall research agenda and point to future work which is needed to achieve
our vision.

9.1 Summary

Chap. 2 introduces our model for dynamic architectures and Chap. 3 and Chap. 4 present
techniques to specify ADPs over this model. Chap. 5 then presents a calculus to reason
about such specifications and in Chap. 6 we presents the formalization of the model
and the calculus in Isabelle/HOL. Chap. 7 then combines all the results into an overall
methodology for the interactive verification of ADPs. Finally, Chap. 8 presents a case
study in which the approach is used to verify a pattern for blockchain architectures. In
the following, we summarize each chapter in more detail.

9.1.1 A Model of Dynamic Architectures

Since patterns exist for static as well as for dynamic architectures, our approach is based
on a model of dynamic architectures, which is described in detail in Chap. 2. Our model
is a dynamic version of Broy’s FOCUS model [BS01] and consists of the following main
concepts:

• messages and ports (typed with sets of messages),

• interfaces consisting of input and output ports,

• a set of component types which consist of an interface, component parameters
valuated with messages, and associated behavior in terms of a causal set of behavior
traces, i.e., streams of snapshots of a component during execution,

129

9 Conclusion

• an architecture specification consisting of a set of architecture traces, i.e., streams
of snapshots of an architecture during execution,

• a projection operator, which extracts the behavior of a single component out of a
given architecture trace, and

• a composition operator which combines a set of component types with a given
architecture specification.

9.1.2 Basic Specification Techniques
Based on the model presented in Chap. 2, we describe basic techniques for the axiomatic
specification of ADPs in Chap. 3. Such a specification consist of three parts: an inter-
face specification, a component type specification, and a specification of architectural
constraints.

9.1.2.1 Interface Specification

An interface specification consists of a specification of the abstract data types used in
a pattern, a set of port identifiers typed by these data types, and a set of interfaces
over these ports. Data types are specified using traditional, algebraic specification tech-
niques [Bro96], and interfaces can be specified using a graphical specification language
called architecture diagrams.

In order to support the specification of related types of components (which is often
required for the specification of ADPs), we also provide a notion of parametrized compo-
nent types. Therefore, interfaces may contain so-called interface parameters which are
typed by the abstract datatypes introduced for the pattern. Their semantics requires
that at least one component exists for each valuation of interface parameters, which
allows to introduce the notion of parametrized component variables. Such variables are
guaranteed to be interpreted only by components with corresponding parameter values
and thus support the specification of component types and architectural assumptions.

9.1.2.2 Component Type Specification

A component type specification consists of a set of axioms for each interface to specify
assumptions about the behavior of components of a certain type. In order to specify these
axioms, we introduce the notion of behavior trace assertion, a type of linear temporal
logic with component ports as free variables.

9.1.2.3 Specifying Architectural Constraints

Architectural constraints are formulated over all interfaces to specify assumptions about
the activation/deactivation of components and their connections. To specify these ax-
ioms, we introduce the notion of architecture trace assertions, which are again a type of
linear temporal logic with special predicates to denote component activation/deactiva-
tion and connections between the ports of components.

130

9.1 Summary

9.1.3 Advanced Specification Techniques

In order to facilitate the specification of certain activation and connection constraints,
Chap. 4 introduces various types of annotations for architecture diagrams. Moreover, a
pattern specification may reuse other pattern specifications by instantiating the corre-
sponding component types.

9.1.3.1 Annotations for Architecture Diagrams

We provide three types of annotations for architecture diagrams: activation annota-
tions, connection annotations, and dependencies. In general, annotations are graphical
synonyms for corresponding architectural assertions and their semantics is given by map-
ping them to corresponding architecture trace assertions (as introduced in Chap. 3).

Activation annotations Activation annotations allow to annotate a component type
with pre- and postconditions regarding the activation and deactivation of components
of that type.

Connection annotations Connection annotations allow to specify pre- and postcondi-
tions for connections by annotating the corresponding edge in an architecture diagram.

Dependencies Dependencies allow to express relationships between components of cer-
tain types by connecting the corresponding interfaces in an architecture digram. These
relationships can then be used to express relative activation and connection conditions,
i.e., conditions which depend on certain conditions from a related component.

Hierarchical Specifications In order to address the hierarchical nature of patterns,
FACTum specifications allow for hierarchical pattern specifications, i.e., patterns can
be instantiated for the specification of other patterns. Pattern instantiations are ex-
pressed by annotating the interfaces of architecture diagrams by so-called port mappings,
i.e., mappings which relate the ports of instantiated components with the ports of the
corresponding instantiating component.

9.1.4 Reasoning about Pattern Specifications

To support the verification of FACTum specifications, Chap. 5 introduces a calculus
to reason about FACTum specifications. The calculus formalizes reasoning about a
component type specification in the context of a corresponding component activation
specification. It provides introduction and elimination rules for each operator involved
in a FACTum specification and consists of roughly 35 rules. It is shown to be sound and
it is implemented in Isabelle/HOL, where it can be used for the verification of pattern
specifications.

131

9 Conclusion

9.1.5 Evaluation

In order to evaluate our approach, we implemented it in Eclipse/EMF and used it to
verify properties for our running examples as well as a larger case study from the domain
of Blockchain architectures.

9.1.5.1 FACTum Studio

To support an architect in the specification of ADPs, FACTum comes with tool support
in terms of a corresponding Eclipse/EMF application. The tool supports the graphical
modeling of architecture diagrams (as described in Chap. 4), which can then be enriched
by corresponding textual specifications. To support the textual specifications, the tool
also provides rigorous type checking mechanisms for the specification of datatypes, com-
ponent types, and architectural assumptions (as described in Chap. 3). Finally, the tool
implements the algorithm presented in Chap. 6 to generate corresponding Isabelle/HOL
theories on top of the verification framework presented in Chap. 5.

9.1.5.2 Running Examples

We demonstrated our approach by means of three running examples: the singleton,
the publisher subscriber, and the blackboard pattern. For each pattern, we provide a
formal specification of the pattern’s assumptions and corresponding guarantees. Then,
we verify each of them in Isabelle/HOL. To demonstrate hierarchical specification and
verification, the publisher component is modeled as an instance of the singleton and the
blackboard pattern is specified as an instance of the publisher subscriber pattern.

9.1.5.3 Case Study: Verified Blockchain Architectures

For our case study we propose a pattern for blockchain architectures based on the proof
of work consensus algorithm. Therefore, we first apply the specification techniques from
Chap. 3 and Chap. 4 to formalize the patterns assumptions as well as an important
guarantee for blockchain architectures: persistence of blockchain entries. We then map
the specification to a corresponding Isabelle/HOL theory and the guarantee to a corre-
sponding Isabelle/HOL theorem (using the algorithm presented in Chap. 6) and verify
the theorem using the calculus presented in Chap. 5. Thereby, we discover an important
property for blockchain architectures which is essential to ensure its guarantee: relative
mining frequencies need to be bounded by the number of confirmation blocks.

9.2 Implications

The methodology presented in this thesis can be used to formally investigate ADPs.
Thereby, we address both problems with pattern specifications identified in Chap. 1.

132

9.3 Limitations

9.2.1 Problem 1: Missing Constraints

Verifying an ADP may reveal constraints assumed by the pattern which are important
to meet its guarantee, but which are not mentioned in any specification of the pattern so
far. While the major part of such missing constraints is usually concerned with details
of an architecture, some of them can be also of more fundamental nature. For example,
in this thesis, we discover around 16 assumptions for different ADPs. While many of
them are concerned with details about an architecture, two of them may be considered
fundamental: The first one is assumed by blackboard architectures and requires problems
to be ordered by a subproblem relation which is required to be well-founded. This
is a fundamental constraint which needs to be ensured before applying the pattern.
Otherwise, the corresponding architecture will not be able to solve certain problems and
the pattern would not fulfill its purpose. A second fundamental constraint concerns
relative mining frequencies in blockchain architectures. In order to apply the pattern,
one needs to ensure that it will indeed be highly unlikely that the mining frequency
of untrusted nodes exceeds the mining frequency of trusted nodes by the number of
confirmation blocks. Otherwise, entries of a blockchain may be subject to modification
by untrusted entities and the pattern would fail its guarantee.

9.2.2 Problem 2: Unnecessary Constraints

The support for verification also has the potential to uncover unnecessary constraints in
a pattern specification. If certain assumptions a pattern makes about an architecture
are not used for the verification of its guarantee, the corresponding constraints can be
removed and the scope of the pattern is increased. For example, many descriptions
of blockchain architectures require the data entries to be financial transactions with
corresponding private and public keys. However, these assumptions are not required in
order to guarantee persistence of entries and they unnecessarily restrict the application
scope of the pattern.
Note, however, that the problem of too strong assumptions, compared to the problem

of too weak assumptions, cannot be guaranteed to be solved by verifying the corre-
sponding ADP. A proof of an architectural guarantee may indeed contain unnecessary
references to architectural constraints. However, if the proof does not contain any ref-
erence to an architectural constraint, the corresponding architectural design constraint
can be safely removed from a pattern’s specification.

9.3 Limitations

In the following, we take a critical look at the results obtained with this thesis.

9.3.1 Non-functional Aspects

When it comes to ADPs, non-functional aspects play an important role. Many patterns
are actually invented to address certain non-functional aspects, such as maintainability.

133

9 Conclusion

With the approach presented in this thesis it is not possible to investigate whether or
not a certain pattern really satisfies certain non-functional aspects. Rather, with our
approach we focus on the correct implementation of a pattern and we consider them as
lemmata to support the verification of architectures using these patterns. Nevertheless,
we admit that non-functional aspects play an important role and indeed a lot of research
in the architecture community is devoted to this aspect. One line of research uses a
quantitative approach and aims towards the development of pattern-specific cost models
for certain quality attributes [KK99, Mar10]. Another line of research follows a more
qualitative approach and uses so-called quality attribute scenarios to evaluate quality
attributes for patterns [BCK07].

9.3.2 Target Audience

Using interactive theorem proving make the approach presented in this thesis very gen-
eral and thus able to address the abstract nature of patterns. However, it makes the
approach also difficult to apply, since ITP comes with a steep learning curve and is
not yet well-known in the architecture community. The algorithm (and its implemen-
tation in Eclipse/EMF) as well as the calculus to support the interactive verification of
patterns in Isabelle/HOL are first steps towards making the approach accessible to a
broader audience. However, users still need to have some expertise in ITP to efficiently
use the approach and thus it might be difficult to apply for practitioners. Thus, as of
now, the target group of the approach is mainly researchers in software architectures.
In the next section, however, we also provide some ideas for future work to make the
approach usable also for practitioners.

9.4 Outlook

Figure 9.1 depicts our overall research agenda. We basically consider ADPs as lemmata
for the verification of architectures. To this end, which we envision a repository con-
taining a growing collection of verified ADPs. Researchers can connect to the repository
and fill it with verification results for existing or even new ADPs. Thereby, they can
leverage the hierarchical nature of patterns and verify higher-level patterns using avail-
able results from lower level patterns. When verifying an architecture, an architect can
connect to the repository and verify the architecture against the assumptions provided
by the ADPs. The corresponding guarantee is then automatically transferred to the
architecture and can be used to support its verification.

9.5 Future Work

To achieve our vision, future work is required in at least two areas: The development
of an interactive pattern verification language and the integration of our approach in
current architecture verification practice.

134

9.5 Future Work

ADP Repository

verify obtain

Architectural
Assumptions

Architectural
Gurantee

System
Architecture

Architectural
Assumptions

Figure 9.1: Research vision: A repository of verified ADPs.

9.5.1 Interactive Pattern Verification Language
With this thesis, we provide a first step towards interactive pattern verification: An
architect can specify a pattern in Eclipse/EMF and then generate a corresponding Is-
abelle/HOL theory out of it. Then he can verify the pattern in Isabelle/HOL using a
corresponding calculus.
However, as discussed above, architects are usually not trained in interactive theorem

proving and future work should investigate possibilities to further support an architect in
the verification process. A first step could be the development of a more abstract proof
language which allows an architect to sketch a proof using abstractions he is familiar
with, such as sequence diagrams. The abstract proof should then be translated to a
corresponding Isabelle/Isar proof and verified by Isabelle.

9.5.2 Integration into Architecture Verification
Another crucial step to achieve our vision concerns the integration of verification re-
sults obtained for ADPs to support the verification of architectures. Compared to the
verification of ADPs (which can be reused for different architectures), verification of
architectures against ADPs has to be done for each architecture, which is why future
work should investigate possibilities to automate this step.

135

A Conventions

A.1 Sets

Convention 1 (Natural numbers). We denote with N the set of natural numbers, with
N+ the set of positive natural numbers (excluding 0), and with N∞ the set of extended
natural numbers (including ∞).

Convention 2 (Powerset). We denote with ℘(S) the powerset of a set S, i.e., the set
containing all subsets of S.

Convention 3 (Tuples). For an n-tuple c = (c1, . . . , cn) (where n ∈ N+), we denote by
c(i) = ci with 1 ≤ i ≤ n the projection to the i-th component of c.

Convention 4 (Indexed family of sets). Given a non-empty set I, we denote with (Si)i∈I
a family of sets indexed by I, i.e., a mapping associating a set Si with each element i ∈ I.

A.2 Functions

Convention 5 (Functions). Given two sets A and B, we denote with A → B the set
of functions with domain A and range B. For a function f : A → B we denote with
dom (f) def= A the domain of f and with ran (f) def= B its range.
Given four sets A,B,C,D, we denote with (A→ B)−→∪ (C → D) the set of all functions

f : (A ∪ C)→ (B ∪D), such that ∀x ∈ A : f(x) ∈ B and ∀x ∈ C : f(x) ∈ D.
For a function f : D → R and an element r ∈ R, we denote with f−1(r) def= {d ∈

D | f(d) = r} the inverse image of r in f .

Convention 6 (Function merge). For two functions f : A → B and g : C → D with
disjoint domains A ∩ C = ∅, we denote with f ∪ g : A ∪ C → B ∪D their merge:

(f ∪ g)(x) def=
{
f(x) if x ∈ A ,

g(x) else .

Convention 7 (Function update). For a function f : D → R and elements d ∈ D and
r ∈ R, we denote with f [d 7→ r] : D → R a function which is equal to f but maps d to r:

f [d 7→ r](x) def=
{
r if x = d ,

f(x) else .

137

A Conventions

Convention 8 (Indexed family of functions). For two indexed families of functions
F = (Fi)i∈I and F ′ = (Fi)i∈I , with disjoint domains dom (Fi) ∩ dom (F ′i) = ∅ for each
i ∈ I, we denote with F∪F ′ = (F∪F ′i)i∈I a new family of functions with

(
F∪F ′

)
i

def=
Fi ∪ F ′i .
For an indexed family of functions F = (Fi)i∈I , index j ∈ I, function Fj : D → R,

elements d ∈ D and r ∈ R, we denote by F [j : d 7→ r] an indexed family of functions
where function Fj is updated to Fj [d 7→ r].

F [j : d 7→ r]i
def=

{
Fi[d 7→ r] if i = j ,

Fi else .

Convention 9 (Mappings). We denote by [i1, i2, . . . 7→ o1, o2, . . .] a function which maps
input i1 to output o1, input i2 to output o2, etc.

A.3 Sequences

Convention 10 (Sequences). Given any set E, we denote by (E)∗ the set of all finite
sequences over E, by (E)∞ the set of all infinite sequences over E, and by (E)ω the set
of all finite and infinite sequences over E. We use the following notations for sequences:

• With 〈〉 we denote the empty sequence.

• Similar as for restriction of functions, we shall use s|n to extract the first n ele-
ments of a sequence. Thereby s|0

def= 〈〉.

• For a sequence s, we denote by #s the length of s and with s&e the sequence
resulting by appending element e ∈ E to sequence s.

• For two sequences s and s′, we denote by ŝ s′ the concatenation of s and s′.

• With s′ v s we denote that s′ is a prefix of s.

• With rg(s) we denote the set of all elements of a given sequence s.

We assume the following properties for sequences s:

• ∀n ∈ N : s(n) = s|n+1(n). (A.1)

• s&e(#s) = e. (A.2)

Convention 11 (Prefix). With s′ v s we denote that sequence s′ is a prefix of s.
A function m : (E)ω → (E)ω such that s′ v s =⇒ m(s′) v m(s) is called prefix-

monotonic. For a prefix-monotonic function m we assume the following property:

∀n ∈ N : m(s)|#m(s|n+1) = m(s|n+1) . (A.3)

138

A.4 Logics

A.4 Logics
Convention 12 (Boolean values). With true we denote logical truth and with false
logical false. With B = {true, false} we denote the set of boolean values.

139

B Proof for Thm. 1

We show that Γ holds for an architecture specification A ⊆ (ASCT)∞ and for each com-
ponent type ct ∈ CT a property γct holds, iff Γ holds for ⊗A

(
C
)
and γct holds for the

projection to every component c ∈ C of type ct in ⊗A
(
C
)
.

B.1 =⇒
Assume that t ∈⊗A

(
C
)
. We show

1. t fulfills Γ and

2. γct holds for the projection to every component c ∈ C of type ct.

B.1.1 Goal 1
By Def. 11, t ∈ A. Thus, by assumption, t fulfills Γ.

B.1.2 Goal 2
Again, by Def. 11, ∀ct ∈ CT , c ∈ Cct ∃t′ ⊆ (port(ct))∞ : Πc(t) ̂ t′ ∈ bhv(ct). Thus, by
assumption, γct holds for the projection to every component c ∈ C of type ct.

B.2 ⇐=
Assume that t fulfills Γ and γct holds for the projection to every component c ∈ C of
type ct. We show t ∈⊗A

(
C
)
. To this end, we show that

1. t ∈ A and

2. ∀ct ∈ CT , c ∈ Cct ∃t′ ⊆ (port(ct))∞ : Πc(t) ̂ t′ ∈ bhv(ct).

Then, we conclude t ∈⊗A
(
C
)
by Def. 11.

B.2.1 Goal 1
t ∈ A follows directly from the assumption.

B.2.2 Goal 2
Again, by assumption, γct holds for the projection to every component c ∈ C of type ct.

141

C Behavior Trace Assertions

Behavior trace assertions are formulated over data type variables, i.e., variables rep-
resenting messages of a certain type. Thus, given a signature Σ = (S, F,B), we as-
sume the existence of a family of data type variables DV = (DV s)s∈S and rigid data
type variables DV ′. Both types of variables are interpreted over an algebra A =(
(As)s∈S , (fA)f∈F , (pA)p∈B

)
∈ A(Σ) for signature Σ (where Fn and Bn denote all the

function/predicate symbols of arity n, and sf and sp assign a tuple of sorts to each
function/predicate symbol, respectively1). Thereby, data type variable assignments
ι = (ιs)s∈S consist of interpretations ιs : DV s → As, which are newly evaluated at each
point in time. Rigid data type variables, on the other hand, are interpreted only once
for the whole execution by a so-called rigid data type variable assignment ι′ = (ι′s)s∈S .
With IDV

A we denote the set of all data type variable assignments for data type variables
DV in algebra A and with I ′DV ′

A the set of all rigid data type variable assignments for
rigid data type variables DV ′ in algebra A, respectively.

C.1 Behavior terms

C.1.1 Syntax

Definition 17 (Behavior terms: syntax). The set of all behavior terms of sort s ∈ S
over a signature Σ = (S, F,B), datatype variables DV , and port specification ps =
(PID, tp), is the smallest set s

ΣBT DV (ps) satisfying the equations of Fig. C.1. The set
of all behavior terms of all sorts is denoted by ΣBT DV (ps).

1For function symbols, the sort for the return type is assumed to be on position 0 of the tuple.

Behavior terms: syntax

v ∈ DV s =⇒ “v” ∈ s
ΣBT DV (ps) ,

p ∈ PID =⇒ “p” ∈ s
ΣBT DV (ps) [for tp(p) = s] ,

f ∈ F 0 =⇒ “f” ∈ s
ΣBT DV (ps) [for sf(f)(0) = s] ,

f ∈ Fn+1 ∧
“t1” ∈ s1

ΣBT DV (ps), · · · ,
“tn+1” ∈ sn+1

ΣBT DV (ps)

 =⇒


“f(t1, · · · , tn+1)” ∈ s

ΣBT DV (ps)
[for n ∈ N, sf(f)(0) = s, and
sf(f)(1) = s1, · · · , sf(f)(n+1) = sn+1] .

Figure C.1: Inductive definition of behavior terms.

143

C Behavior Trace Assertions

Behavior terms: semantics
ι

A
J“v”Kδµ = ιs(v) [for v ∈ DV s] ,
ι

A
J“p”Kδµ = µ(δ(p)) [for p ∈ PID] ,
ι

A
J“f”Kδµ = Af [for function symbol f ∈ F 0] ,

ι

A
J“f(t1, · · · , tn)”Kδµ =

{
Af
(ι

A
J“t1”Kδµ, · · · ,

ι

A
J“tn”Kδµ

)
[for function symbol f ∈ Fn+1] .

Figure C.2: Recursive definition of semantic function for behavior terms.

C.1.2 Semantics

Definition 18 (Behavior terms: semantics). The semantics of behavior terms
ΣBT DV (ps), formulated over port specification ps = (PID, tp), is defined over an algebra
A ∈ A(Σ) with corresponding data type variable assignments ι ∈ IDV

A and a valuation
µ ∈ P of a set of ports P with corresponding interpretation δ : PID → P for the port
identifiers of ps. It is given by a semantic function ι

A
J_Kδµ :

−→⋃
s∈S(sΣBT DV (ps) → As),

defined recursively by the equations provided in Fig. C.2.

C.2 Behavior assertions

C.2.1 Syntax

Definition 19 (Behavior assertions: syntax). The set of all behavior assertions over a
signature Σ = (S, F,B), datatype variables DV , and port specification ps = (PID, tp), is
the smallest set ΣBADV (ps) satisfying the equations of Fig. C.3.

C.2.2 Semantics

Definition 20 (Behavior assertions: semantics). The semantics of behavior assertions
ΣBADV (ps), formulated over port specification ps = (PID, tp), is defined over an algebra
A ∈ A(Σ) with corresponding data type variable assignments ι ∈ IDV

A and an interpre-
tation δ : PID → P for the port identifiers of ps with concrete ports of a set P. It is
given by a relation |=A,ι

δ ⊆ P × ΣBADV (ps) defined recursively by the equations provided
in Fig. C.4

C.3 Behavior trace assertions

C.3.1 Syntax

Definition 21 (Behavior trace assertions: syntax). The set of all behavior trace as-
sertions over a signature Σ = (S, F,B), disjoint sets of datatype variables DV and

144

C.3 Behavior trace assertions

Behavior assertions: syntax

“true” ∈ ΣBADV (ps) ,

“false” ∈ ΣBADV (ps) ,

b ∈ B0 =⇒ “b” ∈ ΣBADV (ps) ,

b ∈ Bn+1 ∧
“t1” ∈ s1

ΣBT DV (ps), · · · ,
“tn+1” ∈ sn+1

ΣBT DV (ps)

 =⇒


“b(t1, · · · , tn+1)” ∈ ΣBADV (ps)
[for n ∈ N and
sp(b)(1) = s1, · · · , sp(b)(n+1) = sn+1] ,

“t”, “t′” ∈ s
ΣBT DV (ps) =⇒ “t = t′” ∈ ΣBADV (ps) [for some s ∈ S] ,

“φ” ∈ ΣBADV (ps) =⇒ “¬φ” ∈ ΣBADV (ps) ,

“φ”, “φ′” ∈ ΣBADV (ps) =⇒


“φ ∧ φ′” ∈ ΣBADV (ps),
“φ ∨ φ′” ∈ ΣBADV (ps),
“φ −→ φ′” ∈ ΣBADV (ps),
“φ←→ φ′” ∈ ΣBADV (ps). ,

“φ” ∈ ΣBADV (ps) ∧ x ∈ DV s =⇒
{

“∀x : φ” ∈ ΣBADV (ps),
“∃x : φ” ∈ ΣBADV (ps) [for s ∈ S]. .

Figure C.3: Inductive definition of behavior assertions.

rigid datatype variables DV ′, and port specification ps = (PID, tp), is the smallest set
ΣBTADV ′

DV (ps) satisfying the equations of Fig. C.5.

C.3.2 Semantics
Definition 22 (Behavior trace assertions: semantics). The semantics of behavior trace
assertions ΣBTADV ′

DV (ps), formulated over port specification ps = (PID, tp), is defined
over an algebra A ∈ A(Σ) with corresponding rigid data type variable assignments ι′ ∈
I ′DV ′

A and an interpretation δ : PID → P for the port identifiers of ps with concrete ports
of a set P. It is given by a relation |=

A,ι′
δ ⊆

(
(P)∞ ×N

)
× ΣBADV (ps) defined recursively

by the equations provided in Fig. C.6.

145

C Behavior Trace Assertions

Behavior assertions: semantics

µ |=A,ι
δ “true” ,

¬
(
µ |=A,ι

δ “false”
)

,

µ |=A,ι
δ “b” ⇐⇒ Ab [for b ∈ B0] ,

µ |=A,ι
δ “b(t1, · · · , tn)” ⇐⇒ Ab

(ι

A
J“t1”Kδµ, · · · ,

ι

A
J“tn”Kδµ

)
[for b ∈ Bn+1] ,

µ |=A,ι
δ “t = t′” ⇐⇒ ι

A
J“t”Kδµ = ι

A
J“t′”Kδµ ,

µ |=A,ι
δ “φ ∧ φ ⇐⇒ µ |=A,ι

δ “φ” ∧ µ |=A,ι
δ “φ′” ,

µ |=A,ι
δ “φ ∨ φ′” ⇐⇒ µ |=A,ι

δ “φ” ∧ µ |=A,ι
δ “φ′” ,

µ |=A,ι
δ “φ −→ φ′” ⇐⇒ µ |=A,ι

δ “φ” ∧ µ |=A,ι
δ “φ′” ,

µ |=A,ι
δ “φ←→ φ′” ⇐⇒ µ |=A,ι

δ “φ” ∧ µ |=A,ι
δ “φ′” ,

µ |=A,ι
δ “∃x : φ” ⇐⇒

∃x
′ ∈ As : µ |=

A,ι[s : x 7→x′]
δ “φ”

[for s ∈ S and x ∈ DV s] ,

µ |=A,ι
δ “∀x : φ” ⇐⇒

∀x
′ ∈ As : µ |=

A,ι[s : x 7→x′]
δ “φ”

[for s ∈ S and x ∈ DV s] ,

Figure C.4: Recursive definition of satisfaction relation for behavior assertions.

Behavior trace assertions: syntax

“true”, “false” ∈ ΣBTADV ′
DV (ps),

φ ∈ ΣBADV∪DV ′(ps) =⇒ φ ∈ ΣBTADV ′
DV (ps),

“γ” ∈ ΣBTADV ′
DV (ps) =⇒ “¬γ”, “©γ”, “♦γ”, “�γ” ∈ ΣBTADV ′

DV (ps),

“γ”, “γ′” ∈ ΣBTADV ′
DV (ps) =⇒

{
“γ ∧ γ′”, “γ ∨ γ′”,
“γ −→ γ′”, “

(
γ′ U γ

)
” ∈ ΣBTADV ′

DV (ps),
x ∈ DV ′ ∧
“γ” ∈ ΣBTADV ′

DV (ps)

}
=⇒

{
“∀x : γ” ∈ ΣBTADV ′

DV (ps),
“∃x : γ” ∈ ΣBTADV ′

DV (ps).

Figure C.5: Inductive definition of behavior trace assertions.

146

C.3 Behavior trace assertions

Behavior trace assertions: semantics

(t, n) |=
A,ι′
δ “true” ,

¬
(
(t, n) |=

A,ι′
δ “false”

)
,

(t, n) |=
A,ι′
δ φ ⇐⇒ ∀ι ∈ IDV

A : t(n) |=
A,ι∪ι′

φ [for φ ∈ ΣBADV (ps)],

(t, n) |=
A,ι′
δ “©γ” ⇐⇒ (t, n+ 1) |=

A,ι′
δ “γ”,

(t, n) |=
A,ι′
δ “♦γ” ⇐⇒ ∃n′ ≥ n : (t, n′) |=

A,ι′
δ “γ”,

(t, n) |=
A,ι′
δ “�γ” ⇐⇒ ∀n′ ≥ n : (t, n′) |=

A,ι′
δ “γ”,

(t, n) |=
A,ι′
δ “γ′ U γ” ⇐⇒

∃n
′ ≥ n : (t, n′) |=

A,ι′
δ “γ” ∧

∀n ≤
˙
m < n′ : (t,m) |=

A,ι′
δ “γ′”,

(t, n) |=
A,ι′

“∃x : γ” ⇐⇒

∃x
′ ∈ As : (t, n) |=

A,ι′[s : x 7→x′]
δ “γ”

[for s ∈ S and x ∈ DV s] ,

(t, n) |=
A,ι′

“∀x : γ” ⇐⇒

∀x
′ ∈ As : (t, n) |=

A,ι′[s : x 7→x′]
δ “γ”

[for s ∈ S and x ∈ DV s] .

Figure C.6: Recursive definition of satisfaction relation for behavior trace assertions.

147

C Behavior Trace Assertions

Architecture terms: syntax

v ∈ DV s =⇒ “v” ∈ s
ΣCT DV

CV (is) ,

v ∈ (CV i)ω ∧ p ∈ port(if(i)) =⇒
{

“v.p” ∈ s
ΣCT DV

CV (is)
[for i ∈ I and tp(p) = s] ,

f ∈ F 0 =⇒ “f” ∈ s
ΣCT DV

CV (is) [for sf(f)(0) = s] ,
f ∈ Fn+1 ∧
“t1” ∈ s1

ΣCT DV
CV (is), · · · ,

“tn+1” ∈ sn+1
ΣCT DV

CV (is)

 =⇒


“f(t1, · · · , tn+1)” ∈ s

ΣCT DV
CV (is)

[for n ∈ N, sf(f)(0) = s, and
sf(f)(1) = s1, · · · , sf(f)(n+1) = sn+1] .

Figure C.7: Inductive definition of architecture terms.

C.4 Architecture Trace Assertions

In addition to variables for data types (as introduced already for behavior trace asser-
tions), architecture trace assertions are formulated also over component variables, i.e.,
variables representing components of a certain type. Thus, given a signature Σ and
an interface specification is = (I , if) over port specification (PID, tp), we assume the
existence of a family of component variables CV = (CV i)i∈I with component variables
CV i =

(
(CV i)ω

)
ω : p 7→DtT tp(p)(Σ,DV) for each interface i ∈ I and each valuation of com-

ponent parameters ω. In addition, we assume the existence of a corresponding family of
rigid component variables CV ′.

Component variables are interpreted over a family of components C = (Cct)ct∈CTI by a
so-called component variable assignment κ = (κi)i∈I , with κi =

(
(κi)ω

)
ω : p7→DtT tp(p)(Σ,DV)

and κi = (κi)ω : (CV i)ω → Cε(i),λp∈par(if(i)) : AJω(p)K (for a given interface interpretation ε
and port interpretation δ). Again, we denote with κ′ a corresponding rigid component
variable assignment for rigid component variables. The set of all component variable as-
signments is denoted with KCV

C and the set of all rigid component variable assignments
with K′CV ′

C .

C.4.1 Architecture Terms

C.4.1.1 Syntax

Definition 23 (Architecture terms: syntax). The set of all architecture terms of sort
s ∈ S over a signature Σ = (S, F,B), interface specification is = (I , if) over port speci-
fication (PID, tp), datatype variables DV , and component variables CV , is the smallest
set s

ΣCT DV
CV (is), satisfying the equations of Fig. C.7. The set of all architecture terms of

all sorts is denoted by ΣCT DV
CV (is).

148

C.4 Architecture Trace Assertions

Architecture terms: semantics
ι
AJ“v”Kκδ (as) = ιs(v) [for v ∈ DV s] ,

ι
AJ“v.p”Kκδ (as) =

valas
((

(κi)ω(v),
(
δ(p)

)))
[for i ∈ I and v ∈ (CV i)ω] ,

ι
AJ“f”Kκδ (as) = Af [for function symbol f ∈ F 0] ,

ι
AJ“f(t1, · · · , tn)”Kκδ (as) =

{
Af
(ι
AJ“t1”Kκδ (as), · · · , ιAJ“tn”Kκδ (as)

)
[for function symbol f ∈ Fn+1] .

Figure C.8: Recursive definition of semantic function for architecture terms.

C.4.1.2 Semantics

Definition 24 (Architecture terms: semantics). The semantics of architecture terms
ΣCT DV

CV (is), formulated over interface specification is = (I , if) and port specification
(PID, tp), is defined over an algebra A ∈ A(Σ) with corresponding data type variable
assignments ι ∈ IDV

A , an architecture snapshot as ∈ ASCT with corresponding port in-
terpretation δ : PID → P for the port identifiers of ps, and component interpretation
κ ∈ KCV

C . It is given by a semantic function ι
AJ_Kκδ (as) :

−→⋃
s∈S(sΣCT DV

CV (is) → As),
defined recursively by the equations provided in Fig. C.8.

C.4.2 Architecture Assertions

C.4.2.1 Syntax

Definition 25 (Architecture assertions: syntax). The set of all architecture assertions
over a signature Σ, interface specification is = (I , if) over port specification (PID, tp),
data type variables DV , and component variables CV is the smallest set ΣCADV

CV (is)
satisfying the equations in Fig. C.9.

C.4.2.2 Semantics

Definition 26 (Architecture assertion: semantics). The semantics of architecture as-
sertions ΣCADV

CV (is), formulated over interface specification is = (I , if) and port spec-
ification (PID, tp), is defined over an algebra A ∈ A(Σ) with corresponding data type
variable assignments ι ∈ IDV

A , interface interpretation ε : I → CTI , an interpretation
δ : PID → P for the port identifiers of ps, and component interpretation κ ∈ KCV

C . It
is given by a relation |=A,ι

ε,δ,κ ⊆ ASCT × ΣCADV
CV (is) defined recursively by the equations

provided in Fig. C.10

149

C Behavior Trace Assertions

Architecture assertions: syntax

“true” ∈ ΣCADV
CV (is) ,

“false” ∈ ΣCADV
CV (is) ,

b ∈ B0 =⇒ “b” ∈ ΣCADV
CV (is) ,

b ∈ Bn+1 ∧
“t1” ∈ s1

ΣCT DV
CV (is), · · · ,

“tn+1” ∈ sn+1
ΣCT DV

CV (is)

 =⇒


“b(t1, · · · , tn+1)” ∈ ΣCADV

CV (is)
[for n ∈ N and
sp(b)(1) = s1, · · · , sp(b)(n+1) = sn+1] ,

“t”, “t′” ∈ s
ΣCT DV

CV (is) =⇒ “t = t′” ∈ ΣCADV
CV (is) [for some s ∈ S] ,

“φ” ∈ ΣCADV
CV (is) =⇒ “¬φ” ∈ ΣCADV

CV (is) ,

“φ”, “φ′” ∈ ΣCADV
CV (is) =⇒


“φ ∧ φ′” ∈ ΣCADV

CV (is),
“φ ∨ φ′” ∈ ΣCADV

CV (is),
“φ −→ φ′” ∈ ΣCADV

CV (is),
“φ←→ φ′” ∈ ΣCADV

CV (is). ,

“φ” ∈ ΣCADV
CV (is) ∧ x ∈ DV s =⇒

{
“∀x : φ” ∈ ΣCADV

CV (is),
“∃x : φ” ∈ ΣCADV

CV (is) [for s ∈ S]. ,

“φ” ∈ ΣCADV
CV (is) ∧ x ∈ (CV i)ω =⇒

{
“∀x : φ” ∈ ΣCADV

CV (is),
“∃x : φ” ∈ ΣCADV

CV (is) [for i ∈ I]. ,

v ∈ (CV i)ω ∧ p ∈ port(if(i)) =⇒ “v̂.p” ∈ ΣCADV
CV (is) [for i ∈ I] ,

v ∈ (CV i)ω =⇒ “ v ” ∈ ΣCADV
CV (is) [for i ∈ I] ,

v ∈ (CV i)ω ∧ v′ ∈ (CV j)τ∧
p ∈ in(if(i)) ∧ p′ ∈ out(if(j))

}
=⇒

{
“v.p v′.p′” ∈ ΣCADV

CV (is),
[for i, j ∈ I] .

Figure C.9: Inductive definition of architecture assertions.

150

C.4 Architecture Trace Assertions

Architecture assertions: semantics

as |=A,ι
ε,δ,κ “true” ,

¬(as |=A,ι
ε,δ,κ “false”) ,

as |=A,ι
ε,δ,κ “b” ⇐⇒ Ab [for b ∈ B0] ,

as |=A,ι
ε,δ,κ “b(t1, · · · , tn)” ⇐⇒ Ab

(ι
AJ“t1”KκJ(as), · · · , ιAJ“tn”KκJ(as)

)
[for b ∈ Bn+1] ,

as |=A,ι
ε,δ,κ “t = t′ ⇐⇒ ι

AJ“t”KκJ(as) = ι
AJ“t′”KκJ(as) ,

as |=A,ι
ε,δ,κ “φ ∧ φ′” ⇐⇒ as |=A,ι

ε,δ,κ“φ” ∧ as |=A,ι
ε,δ,κ“φ′” ,

as |=A,ι
ε,δ,κ “φ ∨ φ′” ⇐⇒ as |=A,ι

ε,δ,κ“φ” ∨ as |=A,ι
ε,δ,κ“φ′” ,

as |=A,ι
ε,δ,κ “φ −→ φ′” ⇐⇒ as |=A,ι

ε,δ,κ“φ” =⇒ as |=A,ι
ε,δ,κ“φ′” ,

as |=A,ι
ε,δ,κ “φ←→ φ′” ⇐⇒ as |=A,ι

ε,δ,κ“φ” ⇐⇒ as |=A,ι
ε,δ,κ“φ′” ,

as |=A,ι
ε,δ,κ “∃x : φ” ⇐⇒

∃x
′ ∈ As : as |=

A,ι[s : x 7→x′]
ε,δ,κ “φ”

[for s ∈ S and x ∈ DV s] ,

as |=A,ι
ε,δ,κ “∀x : φ” ⇐⇒

∀x
′ ∈ As : as |=

A,ι[s : x 7→x′]
ε,δ,κ “φ”

[for s ∈ S and x ∈ DV s] ,

as |=A,ι
ε,δ,κ“∃x : φ” ⇐⇒

∃x′ ∈ C(ε(i),λp : AJω(p)K) : as |=A,ι
ε,δ,κ[i : ω 7→κi [ω : x 7→x′]]“φ”

[for i ∈ I and x ∈ (CV i)ω] ,

as |=A,ι
ε,δ,κ “∀x : φ” ⇐⇒

∀x′ ∈ C(ε(i),λp : AJω(p)K) : as |=A,ι
ε,δ,κ[i : ω 7→κi [ω : x 7→x′]]“φ”

[for i ∈ I and x ∈ (CV i)ω] ,

as |=A,ι
ε,δ,κ “v̂.p” ⇐⇒

valas
((

(κi)ω(v),
(
δ(p)

)))
6= ∅

[for i ∈ I , v ∈ (CV i)ω, and p ∈ port(if(i))] ,

as |=A,ι
ε,δ,κ “ v ” ⇐⇒

{
(κi)ω(v) as

[for i ∈ I , and v ∈ (CV i)ω] ,

as |=A,ι
ε,δ,κ “v.p v′.p′” ⇐⇒


((

(κi)ω(v′), δ(p′)
))
∈ CN as

((
(κj)τ (v), δ(p)

))
[for i ∈ I , v ∈ (CV i)ω, p ∈ in(if(i)),
j ∈ I , v′ ∈ (CV j)ω, p′ ∈ out(if(j))] .

Figure C.10: Recursive definition of satisfaction relation for architecture assertions.

151

C Behavior Trace Assertions

Architecture trace assertions: syntax

“true” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is) ,

“false” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is) ,

φ ∈ ΣCADV∪DV ′
CV∪CV ′ (is) =⇒ φ ∈ ΣCTA(DV ,CV)

(DV ′,CV ′)(is) ,

“γ” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is) =⇒ “¬γ” ∈ ΣCTA(DV ,CV)

(DV ′,CV ′)(is) ,

“γ”, “γ′” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is) =⇒



“γ ∧ γ′” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is),

“γ ∨ γ′” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is),

“γ −→ γ′” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is),

“γ ←→ γ′” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is). ,

“γ” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is) =⇒ “©γ”, “♦γ”, “�γ” ∈ ΣCTA(DV ,CV)

(DV ′,CV ′)(is) ,

“γ”, “γ′” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is) =⇒

“γ U γ′” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is),

“γ W γ′” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is). ,

x ∈ (DV ′s)ω ∧

“γ” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is)

 =⇒

“∀x : γ” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is),

“∃x : γ” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is) [for s ∈ S]. ,

x ∈ (CV ′i)ω ∧

“γ” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is)

 =⇒

“∀x : γ” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is),

“∃x : γ” ∈ ΣCTA(DV ,CV)
(DV ′,CV ′)(is) [for i ∈ I]. .

Figure C.11: Inductive definition of architecture trace assertions.

C.4.3 Architecture Trace Assertions

C.4.3.1 Syntax

Definition 27 (Architecture trace assertion: syntax). The set of all architecture trace
assertions over signature Σ, interface specification is = (I , if) over (PID, tp), data
type variables DV , rigid data type variables DV ′, component variables CV , and rigid
component variables CV ′ is the smallest set ΣCTA(DV ,CV)

(DV ′,CV ′)(is) satisfying the equations
in Fig. C.11.

C.4.3.2 Semantics

Definition 28 (Architecture trace assertion: semantics). The semantics of architecture
trace assertions ΣCTA(DV ,CV)

(DV ′,CV ′)(is), formulated over interface specification is = (I , if)
and port specification (PID, tp), is defined over an algebra A ∈ A(Σ) with corresponding
rigid data type variable assignments ι′ ∈ I ′DV ′

A , interface interpretation ε : I → CTI , an
interpretation δ : PID → P for the port identifiers of ps, and rigid component interpre-

152

C.4 Architecture Trace Assertions

tation κ′ ∈ K′CV
C . It is given by a relation |=

A,ι′
ε,δ,κ′

⊆
(
(ASCT)∞ × N

)
× ΣCTA(DV ,CV)

(DV ′,CV ′)(is)
defined recursively by the equations provided in Fig. C.12

153

C Behavior Trace Assertions

Architecture trace assertions: semantics

(t, n) |=
A,ι′
ε,δ,κ′

“true” ,

¬
(
(t, n) |=

A,ι′
ε,δ,κ′

“false”
)
,

(t, n) |=
A,ι′
ε,δ,κ′

φ ⇐⇒ ∀ι ∈ IDV
A , κ ∈ KCV

C : t(n) |=
A,ι∪ι′
ε,δ,κ∪κ′

φ ,

(t, n) |=
A,ι′
ε,δ,κ′

“γ ∧ γ′” ⇐⇒ (t, n) |=
A,ι′
ε,δ,κ′

“γ” ∧ (t, n) |=
A,ι′
ε,δ,κ′

“γ′” ,

(t, n) |=
A,ι′
ε,δ,κ′

“γ ∨ γ′” ⇐⇒ (t, n) |=
A,ι′
ε,δ,κ′

“γ” ∨ (t, n) |=
A,ι′
ε,δ,κ′

“γ′” ,

(t, n) |=
A,ι′
ε,δ,κ′

“γ −→ γ′” ⇐⇒ (t, n) |=
A,ι′
ε,δ,κ′

“γ” =⇒ (t, n) |=
A,ι′
ε,δ,κ′

“γ′” ,

(t, n) |=
A,ι′
ε,δ,κ′

“γ ←→ γ′” ⇐⇒ (t, n) |=
A,ι′
ε,δ,κ′

“γ” ⇐⇒ (t, n) |=
A,ι′
ε,δ,κ′

“γ′” ,

(t, n) |=
A,ι′
ε,δ,κ′

“©γ” ⇐⇒ (t, n+ 1) |=
A,ι′
ε,δ,κ′

“γ” ,

(t, n) |=
A,ι′
ε,δ,κ′

“♦γ” ⇐⇒ ∃n′ ≥ n : (t, n′) |=
A,ι′
ε,δ,κ′

“γ” ,

(t, n) |=
A,ι′
ε,δ,κ′

“�γ” ⇐⇒ ∀n′ ≥ n : (t, n′) |=
A,ι′
ε,δ,κ′

“γ” ,

(t, n) |=
A,ι′
ε,δ,κ′

“γ U γ′” ⇐⇒


∃n′ ≥ n : (t, n′) |=

A,ι′
ε,δ,κ′

“γ′” ∧

∀n ≤ m < n′ : (t,m) |=
A,ι′
ε,δ,κ′

“γ” ,

(t, n) |=
A,ι′
ε,δ,κ′

“γ W γ′” ⇐⇒


(t, n) |=

A,ι′
ε,δ,κ′

“γ U γ′” ∨

(t, n) |=
A,ι′
ε,δ,κ′

“�γ” ,

(t, n) |=
A,ι′
ε,δ,κ′

“∃x : γ” ⇐⇒

∃x′ ∈ As : (t, n) |=
A,ι′[s : x 7→x′]

ε,δ,κ′
“γ”

[for s ∈ S and x ∈ DV ′s] ,

(t, n) |=
A,ι′
ε,δ,κ′

“∀x : γ” ⇐⇒

∀x′ ∈ As : (t, n) |=
A,ι′[s : x 7→x′]

ε,δ,κ′
“γ”

[for s ∈ S and x ∈ DV ′s] ,

(t, n) |=
A,ι′
ε,δ,κ′

“∃x : γ” ⇐⇒

∃x′ ∈ C(ε(i),λp : AJω(p)K) : (t, n) |=
A,ι′

ε,δ,κ′[i : ω 7→κ′
i[ω : x 7→x′]]

“γ”

[for i ∈ I and x ∈ (CV ′i)ω] ,

(t, n) |=
A,ι′
ε,δ,κ′

“∀x : γ” ⇐⇒

∀x′ ∈ C(ε(i),λp : AJω(p)K) : (t, n) |=
A,ι′

ε,δ,κ′[i : ω 7→κ′
i[ω : x 7→x′]]

“γ”

[for i ∈ I and x ∈ (CV ′i)ω] .

Figure C.12: Recursive definition of satisfaction relation for architecture trace assertions.

154

D Remaining Rules of the Calculus

D.1 Elimination Rules for Basic Logical Operators

In the following we list elimination rules for the basic logical operators:
ImpE

(t, t′, n) |=c “γ −→ γ′”
(t, t′, n) |=c “γ” −→ (t, t′, n) |=c “γ′”

AndE
(t, t′, n) |=c “γ ∧ γ′”

(t, t′, n) |=c “γ” ∧ (t, t′, n) |=c “γ′”

OrE
(t, t′, n) |=c “γ ∨ γ′”

(t, t′, n) |=c “γ” ∨ (t, t′, n) |=c “γ′”

NotE (t, t′, n) |=c “¬γ”
¬(t, t′, n) |=c “γ”

AllE (t, t′, n) |=c “∀x : γ”
∀x : (t, t′, n) |=c “γ”

ExE (t, t′, n) |=c “∃x : γ”
∃x : (t, t′, n) |=c “γ”

D.2 Elimination of Behavior Assertions

The first case describes elimination for situations in which a component is guaranteed
to be activated sometimes in the future:
AssEa (t, t′,n) |=c φ

val(c) ∪
(
λp∈port(c) : val t(c n→t)(c,p)

)
|= φ

∃
˙
i≥n : c t(i)

The rule for such cases allows us to eliminate a basic BA φ and conclude that φ holds
at the very next point in time where component c is active.
The next rule deals with the case in which a component was sometimes active, but is

not activated again in the future:

AssEn1 (t, t′, n) |=c φ
t′
(
n− last(c, t)− 1

)
|= φ

∃i : c t(i) ∧ @
˙
i ≥ n : c t(i)

The rule for this case allows us to conclude that a BA φ holds at a certain point in time
for continuation t′. Again, the corresponding time point is calculated as the difference
of n and the last time component c was activated.

Finally, we provide a rule for the case in which a component is never activated:

155

D Remaining Rules of the Calculus

AssEn2 (t, t′, n) |=c φ
t′(n) |= φ

@i : c t(i)

For such cases, we may eliminate φ and conclude that φ holds at n for continuation
t′.

156

D.3 Natural Numbers

The following theory formalizes configuration traces [MG16a, MG16b] as a model for
dynamic architectures. Since configuration traces may be finite as well as infinite, the
theory depends on Lochbihler’s theory of co-inductive lists [Loc10].
theory Configuration-Traces
imports Coinductive.Coinductive-List

begin

In the following we first provide some preliminary results for natural numbers, ex-
tended natural numbers, and lazy lists. Then, we introduce a locale @textdynamic_architectures
which introduces basic definitions and corresponding properties for dynamic architec-
tures.

D.3 Natural Numbers
We provide one additional property for natural numbers.
lemma boundedGreatest:
assumes P (i::nat)
and ∀n ′ > n. ¬ P n ′

shows ∃ i ′≤n. P i ′ ∧ (∀n ′. P n ′ −→ n ′≤i ′)
proof −
have P (i::nat) =⇒ n≥i =⇒ ∀n ′ > n. ¬ P n ′ =⇒ (∃ i ′≤n. P i ′ ∧ (∀n ′≤n. P n ′ −→ n ′≤i ′))
proof (induction n)
case 0
then show ?case by auto

next
case (Suc n)
then show ?case
proof cases
assume i = Suc n
then show ?thesis using Suc.prems by auto

next
assume ¬(i = Suc n)
thus ?thesis
proof cases
assume P (Suc n)
thus ?thesis by auto

next
assume ¬ P (Suc n)
with Suc.prems have ∀n ′ > n. ¬ P n ′ using Suc-lessI by blast
moreover from 〈¬(i = Suc n)〉 have i ≤ n and P i using Suc.prems by auto
ultimately obtain i ′ where i ′≤n ∧ P i ′ ∧ (∀n ′≤n. P n ′ −→ n ′ ≤ i ′)
using Suc.IH by blast

hence i ′ ≤ n and P i ′ and (∀n ′≤n. P n ′ −→ n ′ ≤ i ′) by auto
thus ?thesis by (metis le-SucI le-Suc-eq)

qed
qed

qed

157

D Remaining Rules of the Calculus

moreover have n≥i
proof (rule ccontr)
assume ¬ (n ≥ i)
hence n < i by arith
thus False using assms by blast

qed
ultimately obtain i ′ where i ′≤n and P i ′ and ∀n ′≤n. P n ′ −→ n ′ ≤ i ′ using assms by

blast
with assms have ∀n ′. P n ′ −→ n ′ ≤ i ′ using not-le-imp-less by blast
with 〈i ′ ≤ n〉 and 〈P i ′〉 show ?thesis by auto

qed

D.4 Extended Natural Numbers
We provide one simple property for the strict order over extended natural numbers.
lemma enat-min:
assumes m ≥ enat n ′

and enat n < m − enat n ′

shows enat n + enat n ′ < m
using assms by (metis add.commute enat.simps(3) enat-add-mono enat-add-sub-same le-iff-add)

D.5 Lazy Lists
In the following we provide some additional notation and properties for lazy lists.
notation LNil ([]l)
notation LCons (infixl #l 60)
notation lappend (infixl @l 60)

lemma lnth-lappend[simp]:
assumes lfinite xs
and ¬ lnull ys

shows lnth (xs @l ys) (the-enat (l length xs)) = lhd ys
proof −
from assms have ∃ k. l length xs = enat k using lfinite-conv-llength-enat by auto
then obtain k where l length xs = enat k by blast
hence lnth (xs @l ys) (the-enat (l length xs)) = lnth ys 0
using lnth-lappend2 [of xs k k ys] by simp

with assms show ?thesis using lnth-0-conv-lhd by simp
qed

lemma lfilter-ltake:
assumes ∀ (n::nat)≤l length xs. n≥i −→ (¬ P (lnth xs n))
shows lfilter P xs = lfilter P (ltake i xs)

proof −
have lfilter P xs = lfilter P ((ltake i xs) @l (ldrop i xs))
using lappend-ltake-ldrop[of (enat i) xs] by simp

hence lfilter P xs = (lfilter P ((ltake i) xs)) @l (lfilter P (ldrop i xs)) by simp

158

D.5 Lazy Lists

show ?thesis
proof cases
assume enat i ≤ l length xs

have ∀ x<l length (ldrop i xs). ¬ P (lnth (ldrop i xs) x)
proof (rule allI)
fix x show enat x < l length (ldrop (enat i) xs) −→ ¬ P (lnth (ldrop (enat i) xs) x)
proof
assume enat x < l length (ldrop (enat i) xs)
moreover have l length (ldrop (enat i) xs) = l length xs − enat i
using l length-ldrop[of enat i] by simp

ultimately have enat x < l length xs − enat i by simp
with 〈enat i ≤ l length xs〉 have enat x + enat i < l length xs
using enat-min[of i llength xs x] by simp

moreover have enat i + enat x = enat x + enat i by simp
ultimately have enat i + enat x < l length xs by arith
hence i + x < l length xs by simp
hence lnth (ldrop i xs) x = lnth xs (x + the-enat i) using lnth-ldrop by simp
moreover have x + i ≥ i by simp
with assms 〈i + x < l length xs〉 have ¬ P (lnth xs (x + the-enat i))
by (simp add: assms(1) add.commute)

ultimately show ¬ P (lnth (ldrop i xs) x) using assms by simp
qed

qed
hence lfilter P (ldrop i xs) = []l by (metis diverge-lfilter-LNil in-lset-conv-lnth)
with 〈lfilter P xs = (lfilter P ((ltake i) xs)) @l (lfilter P (ldrop i xs))〉

show lfilter P xs = lfilter P (ltake i xs) by simp
next
assume ¬ enat i ≤ l length xs
hence enat i > l length xs by simp
hence ldrop i xs = []l by simp
hence lfilter P (ldrop i xs) = []l using lfilter-LNil[of P] by arith
with 〈lfilter P xs = (lfilter P ((ltake i) xs)) @l (lfilter P (ldrop i xs))〉

show lfilter P xs = lfilter P (ltake i xs) by simp
qed

qed

lemma lfilter-lfinite[simp]:
assumes lfinite (lfilter P t)
and ¬ lfinite t

shows ∃n. ∀n ′>n. ¬ P (lnth t n ′)
proof −
from assms have finite {n. enat n < l length t ∧ P (lnth t n)} using lfinite-lfilter by auto
then obtain k where sset:
{n. enat n < l length t ∧ P (lnth t n)} ⊆ {n. n<k ∧ enat n < l length t ∧ P (lnth t n)}
using finite-nat-bounded[of {n. enat n < l length t ∧ P (lnth t n)}] by auto

show ?thesis
proof (rule ccontr)
assume ¬(∃n. ∀n ′>n. ¬ P (lnth t n ′))

159

D Remaining Rules of the Calculus

hence ∀n. ∃n ′>n. P (lnth t n ′) by simp
then obtain n ′ where n ′>k and P (lnth t n ′) by auto
moreover from 〈¬ lfinite t〉 have n ′ < l length t by (simp add: not-lfinite-llength)
ultimately have n ′ /∈ {n. n<k ∧ enat n < l length t ∧ P (lnth t n)} and
n ′∈{n. enat n < l length t ∧ P (lnth t n)} by auto

with sset show False by auto
qed

qed

D.6 A Model of Dynamic Architectures
In the following we formalize dynamic architectures in terms of configuration traces,
i.e., sequences of architecture configurations. Moreover, we introduce definitions for
operations to support the specification of configuration traces.
typedecl cnf
type-synonym trace = nat ⇒ cnf
consts arch:: trace set

D.6.1 Implication
definition imp :: ((nat ⇒ cnf) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool)
⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool) (infixl −→c 10)
where γ −→c γ ′ ≡ λ t n. γ t n −→ γ ′ t n

declare imp-def [simp]

lemma impI [intro!]:
fixes t n
assumes γ t n =⇒ γ ′ t n
shows (γ −→c γ ′) t n using assms by simp

lemma impE [elim!]:
fixes t n
assumes (γ −→c γ ′) t n and γ t n and γ ′ t n =⇒ γ ′′ t n
shows γ ′′ t n using assms by simp

D.6.2 Disjunction
definition disj :: ((nat ⇒ cnf) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool)
⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool) (infixl ∨c 15)
where γ ∨c γ ′ ≡ λ t n. γ t n ∨ γ ′ t n

declare disj-def [simp]

lemma disjI1 [intro]:
assumes γ t n
shows (γ ∨c γ ′) t n using assms by simp

160

D.6 A Model of Dynamic Architectures

lemma disjI2 [intro]:
assumes γ ′ t n
shows (γ ∨c γ ′) t n using assms by simp

lemma disjE [elim!]:
assumes (γ ∨c γ ′) t n
and γ t n =⇒ γ ′′ t n
and γ ′ t n =⇒ γ ′′ t n

shows γ ′′ t n using assms by auto

D.6.3 Conjunction
definition conj :: ((nat ⇒ cnf) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool)
⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool) (infixl ∧c 20)
where γ ∧c γ ′ ≡ λ t n. γ t n ∧ γ ′ t n

declare conj-def [simp]

lemma conjI [intro!]:
fixes n
assumes γ t n and γ ′ t n
shows (γ ∧c γ ′) t n using assms by simp

lemma conjE [elim!]:
fixes n
assumes (γ ∧c γ ′) t n and γ t n =⇒ γ ′ t n =⇒ γ ′′ t n
shows γ ′′ t n using assms by simp

D.6.4 Negation
definition not :: ((nat ⇒ cnf) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool) (¬c - [19] 19)
where ¬c γ ≡ λ t n. ¬ γ t n

declare not-def [simp]

lemma notI [intro!]:
assumes γ t n =⇒ False
shows (¬c γ) t n using assms by auto

lemma notE [elim!]:
assumes (¬c γ) t n
and γ t n

shows γ ′ t n using assms by simp

D.6.5 Quantifiers
definition all :: (′a ⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool))
⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool) (binder ∀ c 10)
where all P ≡ λt n. (∀ y. (P y t n))

161

D Remaining Rules of the Calculus

declare all-def [simp]

lemma allI [intro!]:
assumes

∧
x. γ x t n

shows (∀ cx. γ x) t n using assms by simp

lemma allE [elim!]:
fixes n
assumes (∀ cx. γ x) t n and γ x t n =⇒ γ ′ t n
shows γ ′ t n using assms by simp

definition ex :: (′a ⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool))
⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool) (binder ∃ c 10)
where ex P ≡ λt n. (∃ y. (P y t n))

declare ex-def [simp]

lemma exI [intro!]:
assumes γ x t n
shows (∃ cx. γ x) t n using assms HOL.exI by simp

lemma exE [elim!]:
assumes (∃ cx. γ x) t n and

∧
x. γ x t n =⇒ γ ′ t n

shows γ ′ t n using assms HOL.exE by auto

D.6.6 Atomic Assertions
First we provide rules for basic behavior assertions.
definition ca :: (cnf ⇒ bool) ⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool)
where ca ϕ ≡ λ t n. ϕ (t n)

lemma caI [intro]:
fixes n
assumes ϕ (t n)
shows (ca ϕ) t n using assms ca-def by simp

lemma caE [elim]:
fixes n
assumes (ca ϕ) t n
shows ϕ (t n) using assms ca-def by simp

D.6.7 Next Operator
definition nxt :: ((nat ⇒ cnf) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool) (#c(-) 24)
where #c(γ) ≡ λ(t::(nat ⇒ cnf)) n. γ t (Suc n)

D.6.8 Eventually Operator
definition evt :: ((nat ⇒ cnf) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool) (3c(-) 23)

162

D.6 A Model of Dynamic Architectures

where 3c(γ) ≡ λ(t::(nat ⇒ cnf)) n. ∃n ′≥n. γ t n ′

D.6.9 Globally Operator
definition glob :: ((nat ⇒ cnf) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool) (2c(-) 22)
where 2c(γ) ≡ λ(t::(nat ⇒ cnf)) n. ∀n ′≥n. γ t n ′

lemma globI [intro!]:
fixes n ′

assumes ∀n≥n ′. γ t n
shows (2c(γ)) t n ′ using assms glob-def by simp

lemma globE [elim!]:
fixes n n ′

assumes (2c(γ)) t n and n ′≥n
shows γ t n ′ using assms glob-def by simp

D.6.10 Until Operator
definition until :: ((nat ⇒ cnf) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool)
⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool) (infixl Uc 21)
where γ ′ Uc γ ≡ λ(t::(nat ⇒ cnf)) n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)

lemma untilI [intro]:
fixes n
assumes ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′<n ′′ −→ γ ′ t n ′)
shows (γ ′ Uc γ) t n using assms until-def by simp

lemma untilE [elim]:
fixes n
assumes (γ ′ Uc γ) t n
shows ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′<n ′′ −→ γ ′ t n ′) using assms until-def by simp

D.6.11 Weak Until
definition wuntil :: ((nat ⇒ cnf) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool)
⇒ ((nat ⇒ cnf) ⇒ nat ⇒ bool) (infixl Wc 20)
where γ ′ Wc γ ≡ γ ′ Uc γ ∨c 2c(γ ′)

lemma wUntilI [intro]:
fixes n
assumes (∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′<n ′′ −→ γ ′ t n ′)) ∨ (∀n ′≥n. γ ′ t n ′)
shows (γ ′ Wc γ) t n using assms wuntil-def by auto

lemma wUntilE [elim]:
fixes n n ′

assumes (γ ′ Wc γ) t n
shows (∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′<n ′′ −→ γ ′ t n ′)) ∨ (∀n ′≥n. γ ′ t n ′)

proof −
from assms have (γ ′ Uc γ ∨c 2c(γ ′)) t n using wuntil-def by simp

163

D Remaining Rules of the Calculus

hence (γ ′ Uc γ) t n ∨ (2c(γ ′)) t n by simp
thus ?thesis
proof
assume (γ ′ Uc γ) t n
hence ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′) by auto
thus ?thesis by auto

next
assume (2cγ

′) t n
hence ∀n ′≥n. γ ′ t n ′ by auto
thus ?thesis by auto

qed
qed

lemma wUntil-Glob:
assumes (γ ′ Wc γ) t n
and (2c(γ ′ −→c γ ′′)) t n

shows (γ ′′ Wc γ) t n
proof
from assms(1) have (∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)) ∨ (∀n ′≥n. γ ′ t n ′)
using wUntilE by simp

thus (∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′′ t n ′)) ∨ (∀n ′≥n. γ ′′ t n ′)
proof
assume ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)
show (∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′′ t n ′)) ∨ (∀n ′≥n. γ ′′ t n ′)
proof −
from 〈∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)〉 obtain n ′′

where n ′′≥n and γ t n ′′ and a1 : ∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′ by auto
moreover have ∀n ′≥n. n ′ < n ′′ −→ γ ′′ t n ′

proof
fix n ′

show n ′≥n −→ n ′< n ′′ −→ γ ′′ t n ′

proof (rule HOL.impI [OF HOL.impI])
assume n ′≥n and n ′<n ′′

with assms(2) have (γ ′ −→c γ ′′) t n ′ using globE by simp
hence γ ′ t n ′ −→ γ ′′ t n ′ using impE by auto
moreover from a1 〈n ′≥n〉 〈n ′<n ′′〉 have γ ′ t n ′ by simp
ultimately show γ ′′ t n ′ by simp

qed
qed
ultimately show ?thesis by auto

qed
next
assume a1 : ∀n ′≥n. γ ′ t n ′

have ∀n ′≥n. γ ′′ t n ′

proof
fix n ′

show n ′≥n −→ γ ′′ t n ′

proof
assume n ′≥n

164

D.7 Dynamic Components

with assms(2) have (γ ′ −→c γ ′′) t n ′ using globE by simp
hence γ ′ t n ′ −→ γ ′′ t n ′ using impE by auto
moreover from a1 〈n ′≥n〉 have γ ′ t n ′ by simp
ultimately show γ ′′ t n ′ by simp

qed
qed
thus (∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′′ t n ′)) ∨ (∀n ′≥n. γ ′′ t n ′) by simp

qed
qed

D.7 Dynamic Components
To support the specification of patterns over dynamic architectures we provide a locale
for dynamic components. It takes the following type parameters:

• id: a type for component identifiers

• cmp: a type for components

• cnf: a type for architecture configurations

locale dynamic-component =
fixes tCMP :: ′id ⇒ cnf ⇒ ′cmp (σ-(-) [0 ,110]60)
and active :: ′id ⇒ cnf ⇒ bool (- - [0 ,110]60)

begin

The locale requires two parameters:

• tCMP is an operator to obtain a component with a certain identifier from an
architecture configuration.

• active is a predicate to assert whether a certain component is activated within an
architecture configuration.

The locale provides some general properties about its parameters and introduces six
important operators over configuration traces:

• An operator to extract the behavior of a certain component out of a given config-
uration trace.

• An operator to obtain the number of activations of a certain component within a
given configuration trace.

• An operator to obtain the least point in time (before a certain point in time) from
which on a certain component is not activated anymore.

• An operator to obtain the latest point in time where a certain component was
activated.

165

D Remaining Rules of the Calculus

• Two operators to map time-points between configuration traces and behavior
traces.

Moreover, the locale provides several properties about the operators and their relation-
ships.
lemma nact-active:
fixes t::nat ⇒ cnf
and n::nat
and n ′′

and id
assumes id t n
and n ′′ ≥ n
and ¬ (∃n ′≥n. n ′ < n ′′ ∧ id t n ′)

shows n=n ′′

using assms le-eq-less-or-eq by auto

lemma nact-exists:
fixes t::nat ⇒ cnf
assumes ∃ i≥n. c t i
shows ∃ i≥n. c t i ∧ (@ k. n≤k ∧ k<i ∧ c t k)

proof −
let ?L = LEAST i. (i≥n ∧ c t i)
from assms have ?L≥n ∧ c t ?L using LeastI [of λx::nat. (x≥n ∧ c t x)] by auto
moreover have @ k. n≤k ∧ k<?L ∧ c t k using not-less-Least by auto
ultimately show ?thesis by blast

qed

lemma lActive-least:
assumes ∃ i≥n. i < l length t ∧ c lnth t i
shows ∃ i≥n. (i < l length t ∧ c lnth t i ∧ (@ k. n≤k ∧ k<i ∧ k<l length t ∧ c lnth t k))

proof −
let ?L = LEAST i. (i≥n ∧ i < l length t ∧ c lnth t i)
from assms have ?L≥n ∧ ?L < l length t ∧ c lnth t ?L
using LeastI [of λx::nat.(x≥n ∧ x<l length t ∧ c lnth t x)] by auto

moreover have @ k. n≤k ∧ k<l length t ∧ k<?L ∧ c lnth t k using not-less-Least by auto
ultimately show ?thesis by blast

qed

D.8 Projection
In the following we introduce an operator which extracts the behavior of a certain com-
ponent out of a given configuration trace.
definition proj:: ′id ⇒ (cnf llist) ⇒ (′cmp llist) (π-(-) [0 ,110]60)
where proj c = lmap (λcnf . (σc(cnf))) ◦ (lfilter (active c))

lemma proj-lnil [simp,intro]:
πc([]l) = []l using proj-def by simp

166

D.8 Projection

lemma proj-lnull [simp]:
πc(t) = []l ←→ (∀ k ∈ lset t. ¬ c k)

proof
assume πc(t) = []l
hence lfilter (active c) t = []l using proj-def lmap-eq-LNil by auto
thus ∀ k ∈ lset t. ¬ c k using lfilter-eq-LNil[of active c] by simp

next
assume ∀ k∈lset t. ¬ c k
hence lfilter (active c) t = []l by simp
thus πc(t) = []l using proj-def by simp

qed

lemma proj-LCons [simp]:
πi(x #l xs) = (if i x then (σi(x)) #l (πi(xs)) else πi(xs))
using proj-def by simp

lemma proj-llength[simp]:
l length (πc(t)) ≤ l length t
using l length-lfilter-ile proj-def by simp

lemma proj-ltake:
assumes ∀ (n ′::nat)≤l length t. n ′≥n −→ (¬ c lnth t n ′)
shows πc(t) = πc(ltake n t) using lfilter-ltake proj-def assms by (metis comp-apply)

lemma proj-finite-bound:
assumes lfinite (πc(inf-llist t))
shows ∃n. ∀n ′>n. ¬ c t n ′

using assms lfilter-lfinite[of active c inf-llist t] proj-def by simp

D.8.1 Monotonicity and Continuity
lemma proj-mcont:
shows mcont lSup lprefix lSup lprefix (proj c)

proof −
have mcont lSup lprefix lSup lprefix (λx. lmap (λcnf . σc(cnf)) (lfilter (active c) x))
by simp

moreover have (λx. lmap (λcnf . σc(cnf)) (lfilter (active c) x)) =
lmap (λcnf . σc(cnf)) ◦ lfilter (active c) by auto

ultimately show ?thesis using proj-def by simp
qed

lemma proj-mcont2mcont:
assumes mcont lub ord lSup lprefix f
shows mcont lub ord lSup lprefix (λx. πc(f x))

proof −
have mcont lSup lprefix lSup lprefix (proj c) using proj-mcont by simp
with assms show ?thesis using l list.mcont2mcont[of lSup lprefix proj c] by simp

qed

167

D Remaining Rules of the Calculus

lemma proj-mono-prefix[simp]:
assumes lprefix t t ′

shows lprefix (πc(t)) (πc(t ′))
proof −
from assms have lprefix (lfilter (active c) t) (lfilter (active c) t ′) using lprefix-lfilterI by simp
hence lprefix (lmap (λcnf . σc(cnf)) (lfilter (active c) t))

(lmap (λcnf . σc(cnf)) (lfilter (active c) t ′)) using lmap-lprefix by simp
thus ?thesis using proj-def by simp

qed

D.8.2 Finiteness
lemma proj-finite[simp]:
assumes lfinite t
shows lfinite (πc(t))
using assms proj-def by simp

lemma proj-finite2 :
assumes ∀ (n ′::nat)≤l length t. n ′≥n −→ (¬ c lnth t n ′)
shows lfinite (πc(t)) using assms proj-ltake proj-finite by simp

lemma proj-append-lfinite[simp]:
fixes t t ′

assumes lfinite t
shows πc(t @l t ′) = (πc(t)) @l (πc(t ′)) (is ?lhs=?rhs)

proof −
have ?lhs = (lmap (λcnf . σc(cnf)) ◦ (lfilter (active c))) (t @l t ′) using proj-def by simp
also have . . . = lmap (λcnf . σc(cnf)) (lfilter (active c) (t @l t ′)) by simp
also from assms have . . . = lmap (λcnf . σc(cnf))

((lfilter (active c) t) @l (lfilter (active c) t ′)) by simp
also have . . . = (@l) (lmap (λcnf . σc(cnf)) (lfilter (active c) t))

(lmap (λcnf . σc(cnf)) (lfilter (active c) t ′)) using lmap-lappend-distrib by simp
also have . . . = ?rhs using proj-def by simp
finally show ?thesis .

qed

lemma proj-one:
assumes ∃ i. i < l length t ∧ c lnth t i
shows l length (πc(t)) ≥ 1

proof −
from assms have ∃ x∈lset t. c x using lset-conv-lnth by force
hence ¬ lfilter (λk. c k) t = []l using lfilter-eq-LNil[of (λk. c k)] by blast
hence ¬ πc(t) = []l using proj-def by fastforce
thus ?thesis by (simp add: ileI1 lnull-def one-eSuc)

qed

D.8.3 Projection not Active
lemma proj-not-active[simp]:
assumes enat n < l length t

168

D.8 Projection

and ¬ c lnth t n
shows πc(ltake (Suc n) t) = πc(ltake n t) (is ?lhs = ?rhs)

proof −
from assms have ltake (enat (Suc n)) t = (ltake (enat n) t) @l ((lnth t n) #l []l)
using ltake-Suc-conv-snoc-lnth by blast

hence ?lhs = πc((ltake (enat n) t) @l ((lnth t n) #l []l)) by simp
moreover have . . . = (πc(ltake (enat n) t)) @l (πc((lnth t n) #l []l)) by simp
moreover from assms have πc((lnth t n) #l []l) = []l by simp
ultimately show ?thesis by simp

qed

lemma proj-not-active-same:
assumes enat n ≤ (n ′::enat)

and ¬ lfinite t ∨ n ′−1 < l length t
and @ k. k≥n ∧ k<n ′ ∧ k < l length t ∧ c lnth t k

shows πc(ltake n ′ t) = πc(ltake n t)
proof −
have πc(ltake (n + (n ′ − n)) t) = πc((ltake n t) @l (ltake (n ′−n) (ldrop n t)))
by (simp add: ltake-plus-conv-lappend)

hence πc(ltake (n + (n ′ − n)) t) =
(πc(ltake n t)) @l (πc(ltake (n ′−n) (ldrop n t))) by simp

moreover have πc(ltake (n ′−n) (ldrop n t)) = []l
proof −
have ∀ k∈{lnth (ltake (n ′ − enat n) (ldrop (enat n) t)) na |
na. enat na < l length (ltake (n ′ − enat n) (ldrop (enat n) t))}. ¬ c k

proof
fix k assume k∈{lnth (ltake (n ′ − enat n) (ldrop (enat n) t)) na |
na. enat na < l length (ltake (n ′ − enat n) (ldrop (enat n) t))}

then obtain k ′ where enat k ′ < l length (ltake (n ′ − enat n) (ldrop (enat n) t))
and k=lnth (ltake (n ′ − enat n) (ldrop (enat n) t)) k ′ by auto

have enat (k ′ + n) < l length t
proof −
from 〈enat k ′ < l length (ltake (n ′ − enat n) (ldrop (enat n) t))〉

have enat k ′ < n ′−n by simp
hence enat k ′ + n < n ′ using assms(1) enat-min by auto
show ?thesis
proof cases
assume lfinite t
with 〈¬ lfinite t ∨ n ′−1 < l length t〉 have n ′−1<l length t by simp
hence n ′< eSuc (l length t) by (metis eSuc-minus-1 enat-minus-mono1 leD leI)
hence n ′≤ l length t using eSuc-ile-mono ileI1 by blast
with 〈enat k ′ + n < n ′〉 show ?thesis by (simp add: add.commute)

next
assume ¬ lfinite t
hence l length t = ∞ using not-lfinite-llength by auto
thus ?thesis by simp

qed
qed
moreover have k = lnth t (k ′ + n)

169

D Remaining Rules of the Calculus

proof −
from 〈enat k ′ < l length (ltake (n ′ − enat n) (ldrop (enat n) t))〉

have enat k ′<n ′ − enat n by auto
hence lnth (ltake (n ′ − enat n) (ldrop (enat n) t)) k ′ = lnth (ldrop (enat n) t) k ′

using lnth-ltake[of k ′ n ′ − enat n] by simp
with 〈enat (k ′ + n) < l length t〉 show ?thesis using lnth-ldrop[of n k ′ t]
using 〈k = lnth (ltake (n ′ − enat n) (ldrop (enat n) t)) k ′〉 by (simp add: add.commute)

qed
moreover from 〈enat n ≤ (n ′::enat)〉 have k ′ + the-enat n≥n by auto
moreover from 〈enat k ′ < l length (ltake (n ′ − enat n) (ldrop (enat n) t))〉

have k ′ + n<n ′ using assms(1) enat-min by auto
ultimately show ¬ c k using 〈@ k. k≥n ∧ k<n ′ ∧ k < l length t ∧ c lnth t k〉 by simp

qed
hence ∀ k∈lset (ltake (n ′−n) (ldrop n t)). ¬ c k
using lset-conv-lnth[of (ltake (n ′ − enat n) (ldrop (enat n) t))] by simp

thus ?thesis using proj-lnull by auto
qed
moreover from assms have n + (n ′ − n) = n ′

by (meson enat.distinct(1) enat-add-sub-same enat-diff-cancel-left enat-le-plus-same(1) less-imp-le)
ultimately show ?thesis by simp

qed

D.8.4 Projection Active
lemma proj-active[simp]:
assumes enat i < l length t c lnth t i
shows πc(ltake (Suc i) t) = (πc(ltake i t)) @l ((σc(lnth t i)) #l []l) (is ?lhs = ?rhs)

proof −
from assms have ltake (enat (Suc i)) t = (ltake (enat i) t) @l ((lnth t i) #l []l)
using ltake-Suc-conv-snoc-lnth by blast

hence ?lhs = πc((ltake (enat i) t) @l ((lnth t i) #l []l)) by simp
moreover have . . . = (πc(ltake (enat i) t)) @l (πc((lnth t i) #l []l)) by simp
moreover from assms have πc((lnth t i) #l []l) = (σc(lnth t i)) #l []l by simp
ultimately show ?thesis by simp

qed

lemma proj-active-append:
assumes a1 : (n::nat) ≤ i

and a2 : enat i < (n ′::enat)
and a3 : ¬ lfinite t ∨ n ′−1 < l length t
and a4 : c lnth t i
and ∀ i ′. (n ≤ i ′ ∧ enat i ′<n ′ ∧ i ′ < l length t ∧ c lnth t i ′) −→ (i ′ = i)

shows πc(ltake n ′ t) = (πc(ltake n t)) @l ((σc(lnth t i)) #l []l) (is ?lhs = ?rhs)
proof −
have ?lhs = πc(ltake (Suc i) t)
proof −
from a2 have Suc i ≤ n ′ by (simp add: Suc-ile-eq)
moreover from a3 have ¬ lfinite t ∨ n ′−1 < l length t by simp
moreover have @ k. enat k≥enat (Suc i) ∧ k<n ′ ∧ k < l length t ∧ c lnth t k

170

D.8 Projection

proof
assume ∃ k. enat k≥enat (Suc i) ∧ k<n ′ ∧ k < l length t ∧ c lnth t k
then obtain k where enat k≥enat (Suc i) and k<n ′ and k < l length t and c lnth t k
by blast

moreover from 〈enat k≥enat (Suc i)〉 have enat k≥n
using assms by (meson dual-order .trans enat-ord-simps(1) le-SucI)

ultimately have enat k=enat i using assms using enat-ord-simps(1) by blast
with 〈enat k≥enat (Suc i)〉 show False by simp

qed
ultimately show ?thesis using proj-not-active-same[of Suc i n ′ t c] by simp

qed
also have . . . = (πc(ltake i t)) @l ((σc(lnth t i)) #l []l)
proof −
have i < l length t
proof cases
assume lfinite t
with a3 have n ′−1 < l length t by simp
hence n ′ ≤ l length t by (metis eSuc-minus-1 enat-minus-mono1 ileI1 not-le)
with a2 show enat i < l length t by simp

next
assume ¬ lfinite t
thus ?thesis by (metis enat-ord-code(4) l length-eq-infty-conv-lfinite)

qed
with a4 show ?thesis by simp

qed
also have . . . = ?rhs
proof −
from a1 have enat n ≤ enat i by simp
moreover from a2 a3 have ¬ lfinite t ∨ enat i−1 < l length t
using enat-minus-mono1 less-imp-le order .strict-trans1 by blast

moreover have @ k. k≥n ∧ enat k<enat i ∧ enat k < l length t ∧ c lnth t k
proof
assume ∃ k. k≥n ∧ enat k<enat i ∧ enat k < l length t ∧ c lnth t k
then obtain k where k≥n and enat k<enat i and enat k < l length t and c lnth t k
by blast

moreover from 〈enat k<enat i〉 have enat k<n ′ using assms dual-order .strict-trans
by blast

ultimately have enat k=enat i using assms by simp
with 〈enat k<enat i〉 show False by simp

qed
ultimately show ?thesis using proj-not-active-same[of n i t c] by simp

qed
finally show ?thesis by simp

qed

D.8.5 Same and not Same
lemma proj-same-not-active:
assumes n ≤ n ′

171

D Remaining Rules of the Calculus

and enat (n ′−1) < l length t
and πc(ltake n ′ t) = πc(ltake n t)

shows @ k. k≥n ∧ k<n ′ ∧ c lnth t k
proof
assume ∃ k. k≥n ∧ k<n ′ ∧ c lnth t k
then obtain i where i≥n and i<n ′ and c lnth t i by blast
moreover from 〈enat (n ′−1)<l length t〉 and 〈i<n ′〉 have i<l length t
by (metis diff-Suc-1 dual-order .strict-trans enat-ord-simps(2) lessE)

ultimately have πc(ltake (Suc i) t) =
(πc(ltake i t)) @l ((σc(lnth t i)) #l []l) by simp

moreover from 〈i<n ′〉 have Suc i ≤ n ′ by simp
hence lprefix(πc(ltake (Suc i) t)) (πc(ltake n ′ t)) by simp
then obtain tl where πc(ltake n ′ t) = (πc(ltake (Suc i) t)) @l tl
using lprefix-conv-lappend by auto

moreover from 〈n≤i〉 have lprefix(πc(ltake n t)) (πc(ltake i t)) by simp
hence lprefix(πc(ltake n t)) (πc(ltake i t)) by simp
then obtain hd where πc(ltake i t) = (πc(ltake n t)) @l hd
using lprefix-conv-lappend by auto

ultimately have πc(ltake n ′ t) =
(((πc(ltake n t)) @l hd) @l ((σc(lnth t i)) #l []l)) @l tl by simp

also have . . . = ((πc(ltake n t)) @l hd) @l ((σc(lnth t i)) #l tl)
using lappend-snocL1-conv-LCons2 [of (πc(ltake n t)) @l hd σc(lnth t i)] by simp

also have . . . = (πc(ltake n t)) @l (hd @l ((σc(lnth t i)) #l tl))
using lappend-assoc by auto

also have πc(ltake n ′ t) = (πc(ltake n ′ t)) @l []l by simp
finally have (πc(ltake n ′ t)) @l []l = (πc(ltake n t)) @l (hd @l ((σc(lnth t i)) #l tl)) .
moreover from assms(3) have l length (πc(ltake n ′ t)) = l length (πc(ltake n t)) by simp
ultimately have lfinite (πc(ltake n ′ t)) −→ []l = hd @l ((σc(lnth t i)) #l tl)
using assms(3) lappend-eq-lappend-conv[of πc(ltake n ′ t) πc(ltake n t) []l] by simp

moreover have lfinite (πc(ltake n ′ t)) by simp
ultimately have []l = hd @l ((σc(lnth t i)) #l tl) by simp
hence (σc(lnth t i)) #l tl = []l using LNil-eq-lappend-iff by auto
thus False by simp

qed

lemma proj-not-same-active:
assumes enat n ≤ (n ′::enat)
and (¬ lfinite t) ∨ n ′−1 < l length t
and ¬(πc(ltake n ′ t) = πc(ltake n t))

shows ∃ k. k≥n ∧ k<n ′ ∧ enat k < l length t ∧ c lnth t k
proof (rule ccontr)
assume ¬(∃ k. k≥n ∧ k<n ′ ∧ enat k < l length t ∧ c lnth t k)
have πc(ltake n ′ t) = πc(ltake (enat n) t)
proof cases
assume lfinite t
hence l length t 6=∞ by (simp add: lfinite-llength-enat)
hence enat (the-enat (l length t)) = l length t by auto
with assms 〈¬ (∃ k≥n. k < n ′ ∧ enat k < l length t ∧ c lnth t k)〉

show ?thesis using proj-not-active-same[of n n ′ t c] by simp

172

D.9 Activations

next
assume ¬ lfinite t
with assms 〈¬ (∃ k≥n. k < n ′ ∧ enat k < l length t ∧ c lnth t k)〉

show ?thesis using proj-not-active-same[of n n ′ t c] by simp
qed
with assms show False by simp

qed

D.9 Activations
We also introduce an operator to obtain the number of activations of a certain component
within a given configuration trace.

definition nAct :: ′id ⇒ enat ⇒ (cnf llist) ⇒ enat (〈- #--〉) where
〈c #n t〉 ≡ l length (πc(ltake n t))

lemma nAct-0 [simp]:
〈c #0 t〉 = 0 by (simp add: nAct-def)

lemma nAct-NIL[simp]:
〈c #n []l〉 = 0 by (simp add: nAct-def)

lemma nAct-Null:
assumes l length t ≥ n

and 〈c #n t〉 = 0
shows ∀ i<n. ¬ c lnth t i

proof −
from assms have lnull (πc(ltake n t)) using nAct-def lnull-def by simp
hence πc(ltake n t) = []l using lnull-def by blast
hence (∀ k∈lset (ltake n t). ¬ c k) by simp
show ?thesis
proof (rule ccontr)
assume ¬ (∀ i<n. ¬ c lnth t i)
then obtain i where i<n and c lnth t i by blast
moreover have enat i < l length (ltake n t) ∧ lnth (ltake n t) i = (lnth t i)
proof
from 〈l length t ≥ n〉 have n = min n (l length t) using min.orderE by auto
hence l length (ltake n t) = n by simp
with 〈i<n〉 show enat i < l length (ltake n t) by auto
from 〈i<n〉 show lnth (ltake n t) i = (lnth t i) using lnth-ltake by auto

qed
hence (lnth t i ∈ lset (ltake n t)) using in-lset-conv-lnth[of lnth t i ltake n t] by blast
ultimately show False using 〈(∀ k∈lset (ltake n t). ¬ c k)〉 by simp

qed
qed

lemma nAct-ge-one[simp]:
assumes l length t ≥ n

and i < n

173

D Remaining Rules of the Calculus

and c lnth t i
shows 〈c #n t〉 ≥ enat 1

proof (rule ccontr)
assume ¬ (〈c #n t〉 ≥ enat 1)
hence 〈c #n t〉 < enat 1 by simp
hence 〈c #n t〉 < 1 using enat-1 by simp
hence 〈c #n t〉 = 0 using Suc-ile-eq 〈¬ enat 1 ≤ 〈c #n t〉〉 zero-enat-def by auto
with 〈l length t ≥ n〉 have ∀ i<n. ¬ c lnth t i using nAct-Null by simp
with assms show False by simp

qed

lemma nAct-finite[simp]:
assumes n 6= ∞
shows ∃n ′. 〈c #n t〉 = enat n ′

proof −
from assms have lfinite (ltake n t) by simp
hence lfinite (πc(ltake n t)) by simp
hence ∃n ′. l length (πc(ltake n t)) = enat n ′

using lfinite-llength-enat[of πc(ltake n t)] by simp
thus ?thesis using nAct-def by simp

qed

lemma nAct-enat-the-nat[simp]:
assumes n 6= ∞
shows enat (the-enat (〈c #n t〉)) = 〈c #n t〉

proof −
from assms have 〈c #n t〉 6= ∞ by simp
thus ?thesis using enat-the-enat by simp

qed

D.9.1 Monotonicity and Continuity
lemma nAct-mcont:
shows mcont lSup lprefix Sup (≤) (nAct c n)

proof −
have mcont lSup lprefix lSup lprefix (ltake n) by simp
hence mcont lSup lprefix lSup lprefix (λt. πc(ltake n t))
using proj-mcont2mcont[of lSup lprefix (ltake n)] by simp

hence mcont lSup lprefix Sup (≤) (λt. l length (πc(ltake n t))) by simp
moreover have nAct c n = (λt. l length (πc(ltake n t))) using nAct-def by auto
ultimately show ?thesis by simp

qed

lemma nAct-mono:
assumes n ≤ n ′

shows 〈c #n t〉 ≤ 〈c #n ′ t〉
proof −
from assms have lprefix (ltake n t) (ltake n ′ t) by simp
hence lprefix (πc(ltake n t)) (πc(ltake n ′ t)) by simp

174

D.9 Activations

hence l length (πc(ltake n t)) ≤ l length (πc(ltake n ′ t))
using lprefix-llength-le[of (πc(ltake n t))] by simp

thus ?thesis using nAct-def by simp
qed

lemma nAct-strict-mono-back:
assumes 〈c #n t〉 < 〈c #n ′ t〉
shows n < n ′

proof (rule ccontr)
assume ¬ n<n ′

hence n≥n ′ by simp
hence 〈c #n t〉 ≥ 〈c #n ′ t〉 using nAct-mono by simp
thus False using assms by simp

qed

D.9.2 Not Active
lemma nAct-not-active[simp]:
fixes n::nat
and n ′::nat
and t::(cnf llist)
and c:: ′id

assumes enat i < l length t
and ¬ c lnth t i

shows 〈c #Suc i t〉 = 〈c #i t〉
proof −
from assms have πc(ltake (Suc i) t) = πc(ltake i t) by simp
hence l length (πc(ltake (enat (Suc i)) t)) = l length (πc(ltake i t)) by simp
moreover have l length (πc(ltake i t)) 6= ∞
using l length-eq-infty-conv-lfinite[of πc(ltake (enat i) t)] by simp

ultimately have l length (πc(ltake (Suc i) t)) = l length (πc(ltake i t))
using the-enat-eSuc by simp

with nAct-def show ?thesis by simp
qed

lemma nAct-not-active-same:
assumes enat n ≤ (n ′::enat)

and n ′−1 < l length t
and @ k. enat k≥n ∧ k<n ′ ∧ c lnth t k

shows 〈c #n ′ t〉 = 〈c #n t〉
using assms proj-not-active-same nAct-def by simp

D.9.3 Active
lemma nAct-active[simp]:
fixes n::nat
and n ′::nat
and t::(cnf llist)
and c:: ′id

assumes enat i < l length t

175

D Remaining Rules of the Calculus

and c lnth t i
shows 〈c #Suc i t〉 = eSuc (〈c #i t〉)

proof −
from assms have πc(ltake (Suc i) t) =

(πc(ltake i t)) @l ((σc(lnth t i)) #l []l) by simp
hence l length (πc(ltake (enat (Suc i)) t)) = eSuc (l length (πc(ltake i t)))
using plus-1-eSuc one-eSuc by simp

moreover have l length (πc(ltake i t)) 6= ∞
using l length-eq-infty-conv-lfinite[of πc(ltake (enat i) t)] by simp

ultimately have l length (πc(ltake (Suc i) t)) = eSuc (l length (πc(ltake i t)))
using the-enat-eSuc by simp

with nAct-def show ?thesis by simp
qed

lemma nAct-active-suc:
fixes n::nat
and n ′::enat
and t::(cnf llist)
and c:: ′id

assumes ¬ lfinite t ∨ n ′−1 < l length t
and n ≤ i
and enat i < n ′

and c lnth t i
and ∀ i ′. (n ≤ i ′ ∧ enat i ′<n ′ ∧ i ′ < l length t ∧ c lnth t i ′) −→ (i ′ = i)

shows 〈c #n ′ t〉 = eSuc (〈c #n t〉)
proof −
from assms have πc(ltake n ′ t) = (πc(ltake (enat n) t)) @l ((σc(lnth t i)) #l []l)
using proj-active-append[of n i n ′ t c] by blast

moreover have l length ((πc(ltake (enat n) t)) @l ((σc(lnth t i)) #l []l)) =
eSuc (l length (πc(ltake (enat n) t))) using one-eSuc eSuc-plus-1 by simp

ultimately show ?thesis using nAct-def by simp
qed

lemma nAct-less:
assumes enat k < l length t
and n ≤ k
and k < (n ′::enat)
and c lnth t k

shows 〈c #n t〉 < 〈c #n ′ t〉
proof −
have 〈c #k t〉 6= ∞ by simp
then obtain en where en-def : 〈c #k t〉 = enat en by blast
moreover have eSuc (enat en) ≤ 〈c #n ′ t〉
proof −
from assms have Suc k ≤ n ′ using Suc-ile-eq by simp
hence 〈c #Suc k t〉 ≤ 〈c #n ′ t〉 using nAct-mono by simp
moreover from assms have 〈c #Suc k t〉 = eSuc (〈c #k t〉) by simp
ultimately have eSuc (〈c #k t〉) ≤ 〈c #n ′ t〉 by simp
thus ?thesis using en-def by simp

176

D.9 Activations

qed
moreover have enat en < eSuc (enat en) by simp
ultimately have enat en < 〈c #n ′ t〉 using less-le-trans[of enat en eSuc (enat en)] by simp
moreover have 〈c #n t〉 ≤ enat en
proof −
from assms have 〈c #n t〉 ≤ 〈c #k t〉 using nAct-mono by simp
thus ?thesis using en-def by simp

qed
ultimately show ?thesis using le-less-trans[of 〈c #n t〉] by simp

qed

lemma nAct-less-active:
assumes n ′ − 1 < l length t

and 〈c #enat n t〉 < 〈c #n ′ t〉
shows ∃ i≥n. i<n ′ ∧ c lnth t i

proof (rule ccontr)
assume ¬ (∃ i≥n. i<n ′ ∧ c lnth t i)
moreover have enat n ≤ n ′ using assms(2) less-imp-le nAct-strict-mono-back by blast
ultimately have 〈c #n t〉 = 〈c #n ′ t〉 using 〈n ′ − 1 < l length t〉 nAct-not-active-same
by simp

thus False using assms by simp
qed

D.9.4 Same and Not Same
lemma nAct-same-not-active:
assumes 〈c #n ′ inf-llist t〉 = 〈c #n inf-llist t〉
shows ∀ k≥n. k<n ′ −→ ¬ c t k

proof (rule ccontr)
assume ¬(∀ k≥n. k<n ′ −→ ¬ c t k)
then obtain k where k≥n and k<n ′ and c t k by blast
hence 〈c #Suc k inf-llist t〉 = eSuc (〈c #k inf-llist t〉) by simp
moreover have 〈c #k inf-llist t〉6=∞ by simp
ultimately have 〈c #k inf-llist t〉 < 〈c #Suc k inf-llist t〉 by fastforce
moreover from 〈n≤k〉 have 〈c #n inf-llist t〉 ≤ 〈c #k inf-llist t〉 using nAct-mono by simp
moreover from 〈k<n ′〉 have Suc k ≤ n ′ by (simp add: Suc-ile-eq)
hence 〈c #Suc k inf-llist t〉 ≤ 〈c #n ′ inf-llist t〉 using nAct-mono by simp
ultimately show False using assms by simp

qed

lemma nAct-not-same-active:
assumes 〈c #enat n t〉 < 〈c #n ′ t〉
and ¬ lfinite t ∨ n ′ − 1 < l length t

shows ∃ (i::nat)≥n. enat i< n ′ ∧ i<l length t ∧ c lnth t i
proof −
from assms have l length(πc(ltake n t)) < l length (πc(ltake n ′ t)) using nAct-def by simp
hence πc(ltake n ′ t) 6= πc(ltake n t) by auto
moreover from assms have enat n < n ′ using nAct-strict-mono-back[of c enat n] by simp
ultimately show ?thesis using proj-not-same-active[of n n ′ t c] assms by simp

177

D Remaining Rules of the Calculus

qed

lemma nAct-less-llength-active:
assumes x < l length (πc(t))
and enat x = 〈c #enat n ′ t〉

shows ∃ (i::nat)≥n ′. i<l length t ∧ c lnth t i
proof −
have l length(πc(ltake n ′ t)) < l length (πc(t)) using assms(1) assms(2) nAct-def by auto
hence l length(πc(ltake n ′ t)) < l length (πc(ltake (l length t) t)) by (simp add: ltake-all)
hence 〈c #enat n ′ t〉 < 〈c #l length t t〉 using nAct-def by simp
moreover have ¬ lfinite t ∨ l length t − 1 < l length t
proof (rule Meson.imp-to-disjD[OF HOL.impI])
assume lfinite t
hence l length t 6= ∞ by (simp add: l length-eq-infty-conv-lfinite)
moreover have l length t>0
proof −
from 〈x < l length (πc(t))〉 have l length (πc(t))>0 by auto
thus ?thesis using proj-llength Orderings.order-class.order .strict-trans2 by blast

qed
ultimately show l length t − 1 < l length t by (metis One-nat-def 〈lfinite t〉 diff-Suc-less
enat-ord-simps(2) idiff-enat-enat lfinite-conv-llength-enat one-enat-def zero-enat-def)

qed
ultimately show ?thesis using nAct-not-same-active[of c n ′ t llength t] by simp

qed

lemma nAct-exists:
assumes x < l length (πc(t))
shows ∃ (n ′::nat). enat x = 〈c #n ′ t〉

proof −
have x < l length (πc(t)) −→ (∃ (n ′::nat). enat x = 〈c #n ′ t〉)
proof (induction x)
case 0
thus ?case by (metis nAct-0 zero-enat-def)

next
case (Suc x)
show ?case
proof
assume Suc x < l length (πc(t))
hence x < l length (πc(t)) using Suc-ile-eq less-imp-le by auto
with Suc.IH obtain n ′ where enat x = 〈c #enat n ′ t〉 by blast
with 〈x < l length (πc(t))〉 have ∃ i≥n ′. i < l length t ∧ c lnth t i
using nAct-less-llength-active[of x c t n ′] by simp

then obtain i where i≥n ′ and i<l length t and c lnth t i
and @ k. n ′≤k ∧ k<i ∧ k<l length t ∧ c lnth t k using lActive-least[of n ′ t c] by auto

moreover from 〈i<l length t〉 have ¬ lfinite t ∨ enat (Suc i) − 1 < l length t
by (simp add: one-enat-def)

moreover have enat i < enat (Suc i) by simp
moreover have ∀ i ′. (n ′ ≤ i ′ ∧ enat i ′<enat (Suc i) ∧ i ′<l length t ∧ c lnth t i ′)
−→ (i ′ = i)

178

D.10 Projection and Activation

proof (rule HOL.impI [THEN HOL.allI])
fix i ′ assume n ′ ≤ i ′ ∧ enat i ′<enat (Suc i) ∧ i ′<l length t ∧ c lnth t i ′

with 〈@ k. n ′≤k ∧ k<i ∧ k<l length t ∧ c lnth t k〉 show i ′=i by fastforce
qed
ultimately have 〈c #Suc i t〉 = eSuc (〈c #n ′ t〉)
using nAct-active-suc[of t Suc i n ′ i c] by simp

with 〈enat x = 〈c #enat n ′ t〉〉 have 〈c #Suc i t〉 = eSuc (enat x) by simp
thus ∃n ′. enat (Suc x) = 〈c #enat n ′ t〉 by (metis eSuc-enat)

qed
qed
with assms show ?thesis by simp

qed

D.10 Projection and Activation
In the following we provide some properties about the relationship between the projection
and activations operator.

lemma nAct-le-proj:
〈c #n t〉 ≤ l length (πc(t))

proof −
from nAct-def have 〈c #n t〉 = l length (πc(ltake n t)) by simp
moreover have l length (πc(ltake n t)) ≤ l length (πc(t))
proof −
have lprefix (ltake n t) t by simp
hence lprefix (πc(ltake n t)) (πc(t)) by simp
hence l length (πc(ltake n t)) ≤ l length (πc(t)) using lprefix-llength-le by blast
thus ?thesis by auto

qed
thus ?thesis using nAct-def by simp

qed

lemma proj-nAct:
assumes (enat n < l length t)
shows πc(ltake n t) = ltake (〈c #n t〉) (πc(t)) (is ?lhs = ?rhs)

proof −
have ?lhs = ltake (l length (πc(ltake n t))) (πc(ltake n t))
using ltake-all[of πc(ltake n t) l length (πc(ltake n t))] by simp

also have . . . = ltake (l length (πc(ltake n t))) ((πc(ltake n t)) @l (πc(ldrop n t)))
using ltake-lappend1 [of llength (πc(ltake (enat n) t)) πc(ltake n t) (πc(ldrop n t))] by simp

also have . . . = ltake (〈c #n t〉) ((πc(ltake n t)) @l (πc(ldrop n t))) using nAct-def by simp

also have . . . = ltake (〈c #n t〉) (πc((ltake (enat n) t) @l (ldrop n t))) by simp
also have . . . = ltake (〈c #n t〉) (πc(t)) using lappend-ltake-ldrop[of n t] by simp
finally show ?thesis by simp

qed

lemma proj-active-nth:
assumes enat (Suc i) < l length t c lnth t i

179

D Remaining Rules of the Calculus

shows lnth (πc(t)) (the-enat (〈c #i t〉)) = σc(lnth t i)
proof −
from assms have enat i < l length t using Suc-ile-eq[of i llength t] by auto
with assms have πc(ltake (Suc i) t) = (πc(ltake i t)) @l ((σc(lnth t i)) #l []l) by simp
moreover have lnth ((πc(ltake i t)) @l ((σc(lnth t i)) #l []l))

(the-enat (l length (πc(ltake i t)))) = σc(lnth t i)
proof −
have ¬ lnull ((σc(lnth t i)) #l []l) by simp
moreover have lfinite (πc(ltake i t)) by simp
ultimately have lnth ((πc(ltake i t)) @l ((σc(lnth t i)) #l []l))

(the-enat (l length (πc(ltake i t)))) = lhd ((σc(lnth t i)) #l []l) by simp
also have . . . = σc(lnth t i) by simp
finally show lnth ((πc(ltake i t)) @l ((σc(lnth t i)) #l []l))

(the-enat (l length (πc(ltake i t)))) = σc(lnth t i) by simp
qed
ultimately have σc(lnth t i) = lnth (πc(ltake (Suc i) t))

(the-enat (l length (πc(ltake i t)))) by simp
also have . . . = lnth (πc(ltake (Suc i) t)) (the-enat (〈c #i t〉)) using nAct-def by simp
also have . . . = lnth (ltake (〈c #Suc i t〉) (πc(t))) (the-enat (〈c #i t〉))
using proj-nAct[of Suc i t c] assms by simp

also have . . . = lnth (πc(t)) (the-enat (〈c #i t〉))
proof −
from assms have 〈c #Suc i t〉 = eSuc (〈c #i t〉) using 〈enat i < l length t〉 by simp
moreover have 〈c #i t〉 < eSuc (〈c #i t〉)
using iless-Suc-eq[of the-enat (〈c #enat i t〉)] by simp

ultimately have 〈c #i t〉 < (〈c #Suc i t〉) by simp
hence enat (the-enat (〈c #Suc i t〉)) > enat (the-enat (〈c #i t〉)) by simp
thus ?thesis using lnth-ltake[of the-enat (〈c #i t〉) the-enat (〈c #enat (Suc i) t〉) πc(t)]
by simp

qed
finally show ?thesis ..

qed

lemma nAct-eq-proj:
assumes ¬(∃ i≥n. c lnth t i)
shows 〈c #n t〉 = l length (πc(t)) (is ?lhs = ?rhs)

proof −
from nAct-def have ?lhs = l length (πc(ltake n t)) by simp
moreover from assms have ∀ (n ′::nat)≤l length t. n ′≥n −→ (¬ c lnth t n ′) by simp
hence πc(t) = πc(ltake n t) using proj-ltake by simp
ultimately show ?thesis by simp

qed

lemma nAct-llength-proj:
assumes ∃ i≥n. c t i
shows l length (πc(inf-llist t)) ≥ eSuc (〈c #n inf-llist t〉)

proof −
from 〈∃ i≥n. c t i〉 obtain i where i≥n and c t i
and ¬ (∃ k≥n. k < i ∧ k < l length (inf-llist t) ∧ c t k)

180

D.11 Least not Active

using lActive-least[of n inf-llist t c] by auto
moreover have l length (πc(inf-llist t)) ≥ 〈c #Suc i inf-llist t〉 using nAct-le-proj by simp
moreover have eSuc (〈c #n inf-llist t〉) = 〈c #Suc i inf-llist t〉
proof −
have enat (Suc i) < l length (inf-llist t) by simp
moreover have i < Suc i by simp
moreover from 〈¬ (∃ k≥n. k < i ∧ k < l length (inf-llist t) ∧ c t k)〉

have ∀ i ′. n ≤ i ′ ∧ i ′ < Suc i ∧ c lnth (inf-llist t) i ′ −→ i ′ = i by fastforce
ultimately show ?thesis using nAct-active-suc 〈i≥n〉 〈 c t i〉 by simp

qed
ultimately show ?thesis by simp

qed

D.11 Least not Active
In the following, we introduce an operator to obtain the least point in time before a
certain point in time where a component was deactivated.
definition lNAct :: ′id ⇒ (nat ⇒ cnf) ⇒ nat ⇒ nat (〈- ⇐ -〉-)
where 〈c ⇐ t〉n ≡ (LEAST n ′. n=n ′ ∨ (n ′<n ∧ (@ k. k≥n ′ ∧ k<n ∧ c t k)))

lemma lNact0 [simp]:
〈c ⇐ t〉0 = 0
by (simp add: lNAct-def)

lemma lNact-least:
assumes n=n ′ ∨ n ′<n ∧ (@ k. k≥n ′ ∧ k<n ∧ c t k)
shows 〈c ⇐ t〉n ≤ n ′

using Least-le[of λn ′. n=n ′ ∨ (n ′<n ∧ (@ k. k≥n ′ ∧ k<n ∧ c t k)) n ′] lNAct-def using assms
by auto

lemma lNAct-ex: 〈c ⇐ t〉n=n ∨ 〈c ⇐ t〉n<n ∧ (@ k. k≥〈c ⇐ t〉n ∧ k<n ∧ c t k)
proof −
let ?P=λn ′. n=n ′ ∨ n ′<n ∧ (@ k. k≥n ′ ∧ k<n ∧ c t k)
from lNAct-def have 〈c ⇐ t〉n = (LEAST n ′. ?P n ′) by simp
moreover have ?P n by simp
with LeastI have ?P (LEAST n ′. ?P n ′) .
ultimately show ?thesis by auto

qed

lemma lNact-notActive:
fixes c t n k
assumes k≥〈c ⇐ t〉n
and k<n

shows ¬ c t k
by (metis assms lNAct-ex leD)

lemma lNactGe:
fixes c t n n ′

181

D Remaining Rules of the Calculus

assumes n ′ ≥ 〈c ⇐ t〉n
and c t n ′

shows n ′ ≥ n
using assms lNact-notActive leI by blast

lemma lNactLe[simp]:
fixes n n ′

shows 〈c ⇐ t〉n ≤ n
using lNAct-ex less-or-eq-imp-le by blast

lemma lNactLe-nact:
fixes n n ′

assumes n ′=n ∨ (n ′<n ∧ (@ k. k≥n ′ ∧ k<n ∧ c t k))
shows 〈c ⇐ t〉n ≤ n ′

using assms lNAct-def Least-le[of λn ′. n=n ′ ∨ (n ′<n ∧ (@ k. k≥n ′ ∧ k<n ∧ c t k))] by auto

lemma lNact-active:
fixes cid t n
assumes ∀ k<n. cid t k
shows 〈cid ⇐ t〉n = n
using assms lNAct-ex by blast

lemma nAct-mono-back:
fixes c t and n and n ′

assumes 〈c #n ′ inf-llist t〉 ≥ 〈c #n inf-llist t〉
shows n ′≥〈c ⇐ t〉n

proof cases
assume 〈c #n ′ inf-llist t〉 = 〈c #n inf-llist t〉
thus ?thesis
proof cases
assume n ′≥n
thus ?thesis using lNactLe by (metis HOL.no-atp(11))

next
assume ¬ n ′≥n
hence n ′<n by simp
with 〈〈c #n ′ inf-llist t〉 = 〈c #n inf-llist t〉〉 have @ k. k≥n ′ ∧ k<n ∧ c t k
by (metis enat-ord-simps(1) enat-ord-simps(2) nAct-same-not-active)

thus ?thesis using lNactLe-nact by (simp add: 〈n ′ < n〉)
qed

next
assume ¬〈c #n ′ inf-llist t〉 = 〈c #n inf-llist t〉
with assms have 〈c #enat n ′ inf-llist t〉 > 〈c #enat n inf-llist t〉 by simp
hence n ′ > n using nAct-strict-mono-back[of c enat n inf-llist t enat n ′] by simp
thus ?thesis by (meson dual-order .strict-implies-order lNactLe le-trans)

qed

lemma nAct-mono-lNact:
assumes 〈c ⇐ t〉n ≤ n ′

shows 〈c #n inf-llist t〉 ≤ 〈c #n ′ inf-llist t〉

182

D.12 Next Active

proof −
have @ k. k≥〈c ⇐ t〉n ∧ k<n ∧ c t k using lNact-notActive by auto
moreover have enat n − 1 < l length (inf-llist t) by (simp add: one-enat-def)
moreover from 〈〈c ⇐ t〉n ≤ n ′〉 have enat 〈c ⇐ t〉n ≤ enat n by simp
ultimately have 〈c #n inf-llist t〉=〈c #〈c ⇐ t〉n inf-llist t〉
using nAct-not-active-same by simp

thus ?thesis using nAct-mono assms by simp
qed

D.12 Next Active
In the following, we introduce an operator to obtain the next point in time when a
component is activated.
definition nxtAct :: ′id ⇒ (nat ⇒ cnf) ⇒ nat ⇒ nat (〈- → -〉-)
where 〈c → t〉n ≡ (THE n ′. n ′≥n ∧ c t n ′ ∧ (@ k. k≥n ∧ k<n ′ ∧ c t k))

lemma nxtActI :
fixes n::nat
and t::nat ⇒ cnf
and c:: ′id

assumes ∃ i≥n. c t i
shows 〈c → t〉n ≥ n ∧ c t 〈c → t〉n ∧ (@ k. k≥n ∧ k<〈c → t〉n ∧ c t k)

proof −
let ?P = THE n ′. n ′≥n ∧ c t n ′ ∧ (@ k. k≥n ∧ k<n ′ ∧ c t k)
from assms obtain i where i≥n ∧ c t i ∧ (@ k. k≥n ∧ k<i ∧ c t k)
using lActive-least[of n inf-llist t c] by auto

moreover have (
∧
x. n ≤ x ∧ c t x ∧ ¬ (∃ k≥n. k < x ∧ c t k) =⇒ x = i)

proof −
fix x assume n ≤ x ∧ c t x ∧ ¬ (∃ k≥n. k < x ∧ c t k)
show x = i
proof (rule ccontr)
assume ¬ (x = i)
thus False using 〈i≥n ∧ c t i ∧ (@ k. k≥n ∧ k<i ∧ c t k)〉

〈n ≤ x ∧ c t x ∧ ¬ (∃ k≥n. k < x ∧ c t k)〉 by fastforce
qed

qed
ultimately have (?P) ≥ n ∧ c t (?P) ∧ (@ k. k≥n ∧ k<?P ∧ c t k)
using theI [of λn ′. n ′≥n ∧ c t n ′ ∧ (@ k. k≥n ∧ k<n ′ ∧ c t k)] by blast

thus ?thesis using nxtAct-def [of c t n] by metis
qed

lemma nxtActLe:
fixes n n ′

assumes ∃ i≥n. c t i
shows n ≤ 〈c → t〉n
by (simp add: assms nxtActI)

lemma nxtAct-eq:

183

D Remaining Rules of the Calculus

assumes n ′≥n
and c t n ′

and ∀n ′′≥n. n ′′<n ′ −→ ¬ c t n ′′

shows n ′ = 〈c → t〉n
by (metis assms(1) assms(2) assms(3) nxtActI linorder-neqE-nat nxtActLe)

lemma nxtAct-active:
fixes i::nat
and t::nat ⇒ cnf
and c:: ′id

assumes c t i
shows 〈c → t〉i = i by (metis assms le-eq-less-or-eq nxtActI)

lemma nxtActive-no-active:
assumes ∃ !i. i≥n ∧ c t i
shows ¬ (∃ i ′≥Suc 〈c → t〉n. c t i ′)

proof
assume ∃ i ′≥Suc 〈c → t〉n. c t i ′

then obtain i ′ where i ′≥Suc 〈c → t〉n and c t i ′ by auto
moreover from assms(1) have 〈c → t〉n≥n using nxtActI by auto
ultimately have i ′≥n and c t i ′ and i ′6=〈c → t〉n by auto
moreover from assms(1) have c t 〈c → t〉n and 〈c → t〉n≥n using nxtActI by auto
ultimately show False using assms(1) by auto

qed

lemma nxt-geq-lNact[simp]:
assumes ∃ i≥n. c t i
shows 〈c → t〉n≥〈c ⇐ t〉n

proof −
from assms have n ≤ 〈c → t〉n using nxtActLe by simp
moreover have 〈c ⇐ t〉n≤n by simp
ultimately show ?thesis by arith

qed

lemma active-geq-nxtAct:
assumes c t i
and the-enat (〈c #i inf-llist t〉)≥the-enat (〈c #n inf-llist t〉)

shows i≥〈c → t〉n
proof cases
assume 〈c #i inf-llist t〉=〈c #n inf-llist t〉
show ?thesis
proof (rule ccontr)
assume ¬ i≥〈c → t〉n
hence i<〈c → t〉n by simp
with 〈〈c #i inf-llist t〉=〈c #n inf-llist t〉〉 have ¬ (∃ k≥i. k < n ∧ c t k)
by (metis enat-ord-simps(1) leD leI nAct-same-not-active)

moreover have ¬ (∃ k≥n. k <〈c → t〉n ∧ c t k) using nxtActI by blast
ultimately have ¬ (∃ k≥i. k <〈c → t〉n ∧ c t k) by auto
with 〈i<〈c → t〉n〉 show False using 〈 c t i〉 by simp

184

D.12 Next Active

qed
next
assume ¬〈c #i inf-llist t〉=〈c #n inf-llist t〉
moreover from 〈the-enat (〈c #i inf-llist t〉)≥the-enat (〈c #n inf-llist t〉)〉

have 〈c #i inf-llist t〉≥〈c #n inf-llist t〉
by (metis enat.distinct(2) enat-ord-simps(1) nAct-enat-the-nat)

ultimately have 〈c #i inf-llist t〉>〈c #n inf-llist t〉 by simp
hence i>n using nAct-strict-mono-back[of c n inf-llist t i] by simp
with 〈 c t i〉 show ?thesis by (meson dual-order .strict-implies-order leI nxtActI)

qed

lemma nAct-same:
assumes 〈c ⇐ t〉n ≤ n ′ and n ′ ≤ 〈c → t〉n
shows the-enat (〈c #enat n ′ inf-llist t〉) = the-enat (〈c #enat n inf-llist t〉)

proof cases
assume n ≤ n ′

moreover have n ′ − 1 < l length (inf-llist t) by simp
moreover have ¬ (∃ i≥n. i <n ′ ∧ c t i) by (meson assms(2) less-le-trans nxtActI)
ultimately show ?thesis using nAct-not-active-same by (simp add: one-enat-def)

next
assume ¬ n ≤ n ′

hence n ′ < n by simp
moreover have n − 1 < l length (inf-llist t) by simp
moreover have ¬ (∃ i≥n ′. i < n ∧ c t i)
by (metis 〈¬ n ≤ n ′〉 assms(1) dual-order .trans lNAct-ex)

ultimately show ?thesis using nAct-not-active-same[of n ′ n] by (simp add: one-enat-def)
qed

lemma nAct-mono-nxtAct:
assumes ∃ i≥n. c t i
and 〈c → t〉n ≤ n ′

shows 〈c #n inf-llist t〉 ≤ 〈c #n ′ inf-llist t〉
proof −
from assms have 〈c #〈c → t〉n inf-llist t〉 ≤ 〈c #n ′ inf-llist t〉
using nAct-mono assms by simp

moreover have 〈c #〈c → t〉n inf-llist t〉=〈c #n inf-llist t〉
proof −
from assms have @ k. k≥n ∧ k<〈c → t〉n ∧ c t k and n ≤ 〈c → t〉n
using nxtActI by auto

moreover have enat 〈c → t〉n − 1 < l length (inf-llist t) by (simp add: one-enat-def)
ultimately show ?thesis using nAct-not-active-same[of n 〈c → t〉n] by auto

qed
ultimately show ?thesis by simp

qed

185

D Remaining Rules of the Calculus

D.13 Latest Activation

In the following, we introduce an operator to obtain the latest point in time when a
component is activated.

abbreviation latestAct-cond:: ′id ⇒ trace ⇒ nat ⇒ nat ⇒ bool
where latestAct-cond c t n n ′ ≡ n ′<n ∧ c t n ′

definition latestAct:: ′id ⇒ trace ⇒ nat ⇒ nat (〈- ← -〉-)
where latestAct c t n = (GREATEST n ′. latestAct-cond c t n n ′)

lemma latestActEx:
assumes ∃n ′<n. nid t n ′

shows ∃n ′. latestAct-cond nid t n n ′ ∧ (∀n ′′. latestAct-cond nid t n n ′′ −→ n ′′ ≤ n ′)
proof −
from assms obtain n ′ where latestAct-cond nid t n n ′ by auto
moreover have ∀n ′′>n. ¬ latestAct-cond nid t n n ′′ by simp
ultimately obtain n ′ where latestAct-cond nid t n n ′ ∧

(∀n ′′. latestAct-cond nid t n n ′′ −→ n ′′ ≤ n ′)
using boundedGreatest[of latestAct-cond nid t n n ′] by blast

thus ?thesis ..
qed

lemma latestAct-prop:
assumes ∃n ′<n. nid t n ′

shows nid t (latestAct nid t n) and latestAct nid t n<n
proof −
from assms latestActEx have
latestAct-cond nid t n (GREATEST x. latestAct-cond nid t n x)
using GreatestI-ex-nat[of latestAct-cond nid t n] by blast

thus nid t 〈nid ← t〉n and latestAct nid t n<n using latestAct-def by auto
qed

lemma latestAct-less:
assumes latestAct-cond nid t n n ′

shows n ′ ≤ 〈nid ← t〉n
proof −
from assms latestActEx have n ′ ≤ (GREATEST x. latestAct-cond nid t n x)
using Greatest-le-nat[of latestAct-cond nid t n] by blast

thus ?thesis using latestAct-def by auto
qed

lemma latestActNxt:
assumes ∃n ′<n. nid t n ′

shows 〈nid → t〉〈nid ← t〉n=〈nid ← t〉n
using assms latestAct-prop(1) nxtAct-active by auto

lemma latestActNxtAct:
assumes ∃n ′≥n. tid t n ′

186

D.14 Last Activation

and ∃n ′<n. tid t n ′

shows 〈tid → t〉n > 〈tid ← t〉n
by (meson assms latestAct-prop(2) less-le-trans nxtActI zero-le)

lemma latestActless:
assumes ∃n ′≥ns. n ′<n ∧ nid t n ′

shows 〈nid ← t〉n≥ns

by (meson assms dual-order .trans latestAct-less)

lemma latestActEq:
fixes nid:: ′id
assumes nid t n ′ and ¬(∃n ′′>n ′. n ′′<n ∧ nid t n ′) and n ′<n
shows 〈nid ← t〉n = n ′

using latestAct-def
proof
have (GREATEST n ′. latestAct-cond nid t n n ′) = n ′

proof (rule Greatest-equality[of latestAct-cond nid t n n ′])
from assms(1) assms (3) show latestAct-cond nid t n n ′ by simp

next
fix y assume latestAct-cond nid t n y
hence nid t y and y<n by auto
thus y ≤ n ′ using assms(1) assms (2) leI by blast

qed
thus n ′ = (GREATEST n ′. latestAct-cond nid t n n ′) by simp

qed

D.14 Last Activation
In the following we introduce an operator to obtain the latest point in time where a
certain component was activated within a certain configuration trace.
definition lActive :: ′id ⇒ (nat ⇒ cnf) ⇒ nat (〈- ∧ -〉)
where 〈c ∧ t〉 ≡ (GREATEST i. c t i)

lemma lActive-active:
assumes c t i
and ∀n ′ > n. ¬ (c t n ′)

shows c t (〈c ∧ t〉)
proof −
from assms obtain i ′ where c t i ′ and (∀ y. c t y −→ y ≤ i ′)
using boundedGreatest[of λi ′. c t i ′ i n] by blast

thus ?thesis using lActive-def Nat.GreatestI-nat[of λi ′. c t i ′] by simp
qed

lemma lActive-less:
assumes c t i
and ∀n ′ > n. ¬ (c t n ′)

shows 〈c ∧ t〉 ≤ n
proof (rule ccontr)

187

D Remaining Rules of the Calculus

assume ¬ 〈c ∧ t〉 ≤ n
hence 〈c ∧ t〉 > n by simp
moreover from assms have c t (〈c ∧ t〉) using lActive-active by simp
ultimately show False using assms by simp

qed

lemma lActive-greatest:
assumes c t i
and ∀n ′ > n. ¬ (c t n ′)

shows i ≤ 〈c ∧ t〉
proof −
from assms obtain i ′ where c t i ′ and (∀ y. c t y −→ y ≤ i ′)
using boundedGreatest[of λi ′. c t i ′ i n] by blast

with assms show ?thesis using lActive-def Nat.Greatest-le-nat[of λi ′. c t i ′ i] by simp
qed

lemma lActive-greater-active:
assumes n > 〈c ∧ t〉
and ∀n ′′ > n ′. ¬ c t n ′′

shows ¬ c t n
proof (rule ccontr)
assume ¬ ¬ c t n
with 〈∀n ′′ > n ′. ¬ c t n ′′〉 have n ≤ 〈c ∧ t〉 using lActive-greatest by simp
thus False using assms by simp

qed

lemma lActive-greater-active-all:
assumes ∀n ′′ > n ′. ¬ c t n ′′

shows ¬(∃n > 〈c ∧ t〉. c t n)
proof (rule ccontr)
assume ¬¬(∃n > 〈c ∧ t〉. c t n)
then obtain n where n>〈c ∧ t〉 and c t n by blast
with 〈∀n ′′ > n ′. ¬ (c t n ′′)〉 have ¬ c t n using lActive-greater-active by simp
with 〈 c t n〉 show False by simp

qed

lemma lActive-equality:
assumes c t i
and (

∧
x. c t x =⇒ x ≤ i)

shows 〈c ∧ t〉 = i unfolding lActive-def
using assms Greatest-equality[of λi ′. c t i ′] by simp

lemma nxtActive-lactive:
assumes ∃ i≥n. c t i
and ¬ (∃ i>〈c → t〉n. c t i)

shows 〈c → t〉n=〈c ∧ t〉
proof −
from assms(1) have c t 〈c → t〉n using nxtActI by auto
moreover from assms have ¬ (∃ i ′≥Suc 〈c → t〉n. c t i ′)

188

D.15 Mapping Time Points

using nxtActive-no-active by simp
hence (

∧
x. c t x =⇒ x ≤ 〈c → t〉n) using not-less-eq-eq by auto

ultimately show ?thesis using 〈¬ (∃ i ′≥Suc 〈c → t〉n. c t i ′)〉 lActive-equality by simp
qed

D.15 Mapping Time Points
In the following we introduce two operators to map time-points between configuration
traces and behavior traces.

D.15.1 Configuration Trace to Behavior Trace
First we provide an operator which maps a point in time of a configuration trace to the
corresponding point in time of a behavior trace.
definition cnf2bhv :: ′id ⇒ (nat ⇒ cnf) ⇒ nat ⇒ nat (-↓-(-) [150 ,150 ,150] 110)
where c↓t(n) ≡ the-enat(l length (πc(inf-llist t))) − 1 + (n − 〈c ∧ t〉)

lemma cnf2bhv-mono:
assumes n ′≥n
shows c↓t(n ′) ≥ c↓t(n)
by (simp add: assms cnf2bhv-def diff-le-mono)

lemma cnf2bhv-mono-strict:
assumes n≥〈c ∧ t〉 and n ′>n
shows c↓t(n ′) > c↓t(n)
using assms cnf2bhv-def by auto

Note that the functions are nat, that means that also in the case the difference is
negative they will return a 0!
lemma cnf2bhv-ge-llength[simp]:
assumes n≥〈c ∧ t〉
shows c↓t(n) ≥ the-enat(l length (πc(inf-llist t))) − 1
using assms cnf2bhv-def by simp

lemma cnf2bhv-greater-llength[simp]:
assumes n>〈c ∧ t〉
shows c↓t(n) > the-enat(l length (πc(inf-llist t))) − 1
using assms cnf2bhv-def by simp

lemma cnf2bhv-suc[simp]:
assumes n≥〈c ∧ t〉
shows c↓t(Suc n) = Suc (c↓t(n))
using assms cnf2bhv-def by simp

lemma cnf2bhv-lActive[simp]:
shows c↓t(〈c ∧ t〉) = the-enat(l length (πc(inf-llist t))) − 1
using cnf2bhv-def by simp

189

D Remaining Rules of the Calculus

lemma cnf2bhv-lnth-lappend:
assumes act: ∃ i. c t i
and nAct: @ i. i≥n ∧ c t i

shows lnth ((πc(inf-llist t)) @l (inf-llist t ′)) (c↓t(n)) = lnth (inf-llist t ′) (n − 〈c ∧ t〉 − 1)
(is ?lhs = ?rhs)

proof −
from nAct have lfinite (πc(inf-llist t)) using proj-finite2 by auto
then obtain k where k-def : l length (πc(inf-llist t)) = enat k
using lfinite-llength-enat by blast

moreover have k ≤ c↓t(n)
proof −
from nAct have @ i. i>n−1 ∧ c t i by simp
with act have 〈c ∧ t〉 ≤ n−1 using lActive-less by auto
moreover have n>0 using act nAct by auto
ultimately have 〈c ∧ t〉 < n by simp
hence the-enat (l length (πcinf-llist t)) − 1 < c↓t(n) using cnf2bhv-greater-llength by simp
with k-def show ?thesis by simp

qed
ultimately have ?lhs = lnth (inf-llist t ′) (c↓t(n) − k) using lnth-lappend2 by blast
moreover have c↓t(n) − k = n − 〈c ∧ t〉 − 1
proof −
from cnf2bhv-def have

c↓t(n) − k = the-enat (l length (πcinf-llist t)) − 1 + (n − 〈c ∧ t〉) − k by simp
also have . . . = the-enat (l length (πcinf-llist t)) − 1 + (n − 〈c ∧ t〉) −
the-enat (l length (πc(inf-llist t))) using k-def by simp

also have . . . = the-enat (l length (πcinf-llist t)) + (n − 〈c ∧ t〉) − 1 −
the-enat (l length (πc(inf-llist t)))

proof −
have ∃ i. enat i < l length (inf-llist t) ∧ c lnth (inf-llist t) i by (simp add: act)
hence l length (πcinf-llist t) ≥ 1 using proj-one by simp
moreover from k-def have l length (πcinf-llist t) 6= ∞ by simp
ultimately have the-enat (l length (πcinf-llist t)) ≥ 1 by (simp add: k-def one-enat-def)
thus ?thesis by simp

qed
also have . . . = the-enat (l length (πcinf-llist t)) + (n − 〈c ∧ t〉) −
the-enat (l length (πc(inf-llist t))) − 1 by simp

also have . . . = n − 〈c ∧ t〉 − 1 by simp
finally show ?thesis .

qed
ultimately show ?thesis by simp

qed

lemma nAct-cnf2proj-Suc-dist:
assumes ∃ i≥n. c t i
and ¬(∃ i>〈c → t〉n. c t i)

shows Suc (the-enat 〈c #enat ninf-llist t〉)=c↓t(Suc 〈c → t〉n)
proof −
have the-enat 〈c #enat ninf-llist t〉 = c↓t(〈c → t〉n) (is ?LHS = ?RHS)

190

D.15 Mapping Time Points

proof −
from assms have ?RHS = the-enat(l length (πc(inf-llist t))) − 1
using nxtActive-lactive[of n c t] by simp

also have l length (πc(inf-llist t)) = eSuc (〈c #〈c → t〉n inf-llist t〉)
proof −
from assms have ¬ (∃ i ′≥ Suc (〈c → t〉n). c t i ′) using nxtActive-no-active by simp
hence 〈c #Suc (〈c → t〉n) inf-llist t〉 = l length (πc(inf-llist t))
using nAct-eq-proj[of Suc (〈c → t〉n) c inf-llist t] by simp

moreover from assms(1) have c t (〈c → t〉n) using nxtActI by blast
hence 〈c #Suc (〈c → t〉n) inf-llist t〉 = eSuc (〈c #〈c → t〉n inf-llist t〉) by simp
ultimately show ?thesis by simp

qed
also have the-enat(eSuc (〈c #〈c → t〉n inf-llist t〉)) − 1 = (〈c #〈c → t〉n inf-llist t〉)
proof −
have 〈c #〈c → t〉n inf-llist t〉 6= ∞ by simp
hence the-enat(eSuc (〈c #〈c → t〉n inf-llist t〉)) = Suc(the-enat(〈c #〈c → t〉n inf-llist t〉))
using the-enat-eSuc by simp

thus ?thesis by simp
qed
also have . . . = ?LHS
proof −
have enat 〈c → t〉n − 1 < l length (inf-llist t) by (simp add: one-enat-def)
moreover from assms(1) have 〈c → t〉n≥n and
@ k. enat n ≤ enat k ∧ enat k < enat 〈c → t〉n ∧ c lnth (inf-llist t) k
using nxtActI by auto

ultimately have 〈c #enat 〈c → t〉n inf-llist t〉 = 〈c #enat ninf-llist t〉
using nAct-not-active-same[of n 〈c → t〉n inf-llist t c] by simp

moreover have 〈c #enat ninf-llist t〉6=∞ by simp
ultimately show ?thesis by auto

qed
finally show ?thesis by fastforce

qed
moreover from assms have 〈c → t〉n=〈c ∧ t〉 using nxtActive-lactive by simp
hence Suc (c↓t(〈c → t〉n)) = c↓t(Suc 〈c → t〉n)
using cnf2bhv-suc[where n=〈c → t〉n] by simp

ultimately show ?thesis by simp
qed

D.15.2 Behavior Trace to Configuration Trace
Next we define an operator to map a point in time of a behavior trace back to a corre-
sponding point in time for a configuration trace.
definition bhv2cnf :: ′id ⇒ (nat ⇒ cnf) ⇒ nat ⇒ nat (-↑-(-) [150 ,150 ,150] 110)
where c↑t(n) ≡ 〈c ∧ t〉 + (n − (the-enat(l length (πc(inf-llist t))) − 1))

lemma bhv2cnf-mono:
assumes n ′≥n
shows c↑t(n ′) ≥ c↑t(n)

191

D Remaining Rules of the Calculus

by (simp add: assms bhv2cnf-def diff-le-mono)

lemma bhv2cnf-mono-strict:
assumes n ′>n
and n ≥ the-enat (l length (πc(inf-llist t))) − 1

shows c↑t(n ′) > c↑t(n)
using assms bhv2cnf-def by auto

Note that the functions are nat, that means that also in the case the difference is
negative they will return a 0!
lemma bhv2cnf-ge-lActive[simp]:
shows c↑t(n) ≥ 〈c ∧ t〉
using bhv2cnf-def by simp

lemma bhv2cnf-greater-lActive[simp]:
assumes n>the-enat(l length (πc(inf-llist t))) − 1
shows c↑t(n) > 〈c ∧ t〉
using assms bhv2cnf-def by simp

lemma bhv2cnf-lActive[simp]:
assumes ∃ i. c t i
and lfinite (πc(inf-llist t))

shows c↑t(the-enat(l length (πc(inf-llist t)))) = Suc (〈c ∧ t〉)
proof −
from assms have πc(inf-llist t)6= []l by simp
hence l length (πc(inf-llist t)) > 0 by (simp add: lnull-def)
moreover from 〈lfinite (πc(inf-llist t))〉 have l length (πc(inf-llist t)) 6= ∞
using l length-eq-infty-conv-lfinite by auto

ultimately have the-enat(l length (πc(inf-llist t))) > 0 using enat-0-iff (1) by fastforce
hence the-enat(l length (πc(inf-llist t))) − (the-enat(l length (πc(inf-llist t))) − 1) = 1
by simp

thus ?thesis using bhv2cnf-def by simp
qed

D.15.3 Relating the Mappings
In the following we provide some properties about the relationship between the two
mapping operators.
lemma bhv2cnf-cnf2bhv:
assumes n ≥ 〈c ∧ t〉
shows c↑t(c↓t(n)) = n (is ?lhs = ?rhs)

proof −
have ?lhs = 〈c ∧ t〉 + ((c↓t(n)) − (the-enat(l length (πc(inf-llist t))) − 1))
using bhv2cnf-def by simp

also have . . . = 〈c ∧ t〉 + (((the-enat (l length (πc(inf-llist t)))) − 1 + (n − 〈c ∧ t〉)) −
(the-enat (l length (πc(inf-llist t))) − 1)) using cnf2bhv-def by simp

also have (the-enat(l length (πc(inf-llist t)))) − 1 + (n − (〈c ∧ t〉)) −
(the-enat (l length (πc(inf-llist t))) − 1) = (the-enat(l length (πc(inf-llist t)))) − 1 −
((the-enat (l length (πc(inf-llist t)))) − 1) + (n − (〈c ∧ t〉)) by simp

192

D.15 Mapping Time Points

also have . . . = n − (〈c ∧ t〉) by simp
also have (〈c ∧ t〉) + (n − (〈c ∧ t〉)) = (〈c ∧ t〉) + n − 〈c ∧ t〉 using assms by simp
also have . . . = ?rhs by simp
finally show ?thesis .

qed

lemma cnf2bhv-bhv2cnf :
assumes n ≥ the-enat (l length (πc(inf-llist t))) − 1
shows c↓t(c↑t(n)) = n (is ?lhs = ?rhs)

proof −
have ?lhs = the-enat(l length (πc(inf-llist t))) − 1 + ((c↑t(n)) − (〈c ∧ t〉))
using cnf2bhv-def by simp

also have . . . = the-enat(l length (πc(inf-llist t))) − 1 + (〈c ∧ t〉 +
(n − (the-enat(l length (πc(inf-llist t))) − 1)) − (〈c ∧ t〉)) using bhv2cnf-def by simp

also have 〈c ∧ t〉 + (n − (the-enat(l length (πc(inf-llist t))) − 1)) − (〈c ∧ t〉) =
〈c ∧ t〉 − (〈c ∧ t〉) + (n − (the-enat(l length (πc(inf-llist t))) − 1)) by simp

also have . . . = n − (the-enat(l length (πc(inf-llist t))) − 1) by simp
also have
the-enat (l length (πc(inf-llist t))) − 1 + (n − (the-enat (l length (πc(inf-llist t))) − 1)) =
n − (the-enat (l length (πc(inf-llist t))) − 1) + (the-enat (l length (πc(inf-llist t))) − 1)
by simp

also have . . . = n + ((the-enat (l length (πc(inf-llist t))) − 1) −
(the-enat (l length (πc(inf-llist t))) − 1)) using assms by simp

also have . . . = ?rhs by simp
finally show ?thesis .

qed

lemma p2c-mono-c2p:
assumes n ≥ 〈c ∧ t〉

and n ′ ≥ c↓t(n)
shows c↑t(n ′) ≥ n

proof −
from 〈n ′ ≥ c↓t(n)〉 have c↑t(n ′) ≥ c↑t(c↓t(n)) using bhv2cnf-mono by simp
thus ?thesis using bhv2cnf-cnf2bhv 〈n ≥ 〈c ∧ t〉〉 by simp

qed

lemma p2c-mono-c2p-strict:
assumes n ≥ 〈c ∧ t〉

and n<c↑t(n ′)
shows c↓t(n) < n ′

proof (rule ccontr)
assume ¬ (c↓t(n) < n ′)
hence c↓t(n) ≥ n ′ by simp
with 〈n ≥ 〈c ∧ t〉〉 have c↑t(nat (c↓t(n))) ≥ c↑t(n ′)
using bhv2cnf-mono by simp

hence ¬(c↑t(nat (c↓t(n))) < c↑t(n ′)) by simp
with 〈n ≥ 〈c ∧ t〉〉 have ¬(n < c↑t(n ′))
using bhv2cnf-cnf2bhv by simp

with assms show False by simp

193

D Remaining Rules of the Calculus

qed

lemma c2p-mono-p2c:
assumes n ≥ the-enat (l length (πc(inf-llist t))) − 1

and n ′ ≥ c↑t(n)
shows c↓t(n ′) ≥ n

proof −
from 〈n ′ ≥ c↑t(n)〉 have c↓t(n ′) ≥ c↓t(c↑t(n)) using cnf2bhv-mono by simp
thus ?thesis using cnf2bhv-bhv2cnf 〈n ≥ the-enat (l length (πc(inf-llist t))) − 1 〉 by simp

qed

lemma c2p-mono-p2c-strict:
assumes n ≥ the-enat (l length (πc(inf-llist t))) − 1

and n<c↓t(n ′)
shows c↑t(n) < n ′

proof (rule ccontr)
assume ¬ (c↑t(n) < n ′)
hence c↑t(n) ≥ n ′ by simp
with 〈n ≥ the-enat (l length (πc(inf-llist t))) − 1 〉 have c↓t(nat (c↑t(n))) ≥ c↓t(n ′)
using cnf2bhv-mono by simp

hence ¬(c↓t(nat (c↑t(n))) < c↓t(n ′)) by simp
with 〈n ≥ the-enat (l length (πc(inf-llist t))) − 1 〉 have ¬(n < c↓t(n ′))
using cnf2bhv-bhv2cnf by simp

with assms show False by simp
qed

end

end

194

D.16 Extended Natural Numbers

The following theory formalizes our calculus for dynamic architectures [Mar17b, Mar17c]
and verifies its soundness. The calculus allows to reason about temporal-logic specifica-
tions of component behavior in a dynamic setting. The theory is based on our theory
of configuration traces and introduces the notion of behavior trace assertion to specify
component behavior in a dynamic setting.
theory Dynamic-Architecture-Calculus
imports Configuration-Traces

begin

D.16 Extended Natural Numbers
We first provide one additional property for extended natural numbers.
lemma the-enat-mono[simp]:
assumes m 6= ∞
and n ≤ m

shows the-enat n ≤ the-enat m
using assms(1) assms(2) enat-ile by fastforce

D.17 Lazy Lists
Finally, we provide an additional property for lazy lists.
lemma l length-geq-enat-lfiniteD: l length xs ≤ enat n =⇒ lfinite xs
using not-lfinite-llength by force

context dynamic-component
begin

D.18 Dynamic Evaluation of Temporal Operators
In the following we introduce a function to evaluate a behavior trace assertion over a
given configuration trace.
definition eval:: ′id ⇒ (nat ⇒ cnf) ⇒ (nat ⇒ ′cmp) ⇒ nat
⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) ⇒ bool
where eval cid t t ′ n γ ≡

(∃ i≥n. cid t i) ∧ γ (lnth ((πcid(inf-llist t)) @l (inf-llist t ′))) (the-enat(〈cid #n inf-llist t〉))
∨

(∃ i. cid t i) ∧ (@ i ′. i ′≥n ∧ cid t i ′) ∧ γ (lnth ((πcid(inf-llist t)) @l (inf-llist t ′))) (cid↓t(n))
∨

(@ i. cid t i) ∧ γ (lnth ((πcid(inf-llist t)) @l (inf-llist t ′))) n

eval takes a component identifier cid, a configuration trace t, a behavior trace t ′, and
point in time n and evaluates behavior trace assertion γ as follows:

• If component cid is again activated in the future, γ is evaluated at the next point
in time where cid is active in t.

195

D Remaining Rules of the Calculus

• If component cid is not again activated in the future but it is activated at least
once in t, then γ is evaluated at the point in time given by cid↓tn.

• If component cid is never active in t, then γ is evaluated at time point n.

The following proposition evaluates definition eval by showing that a behavior trace
assertion γ holds over configuration trace t and continuation t ′ whenever it holds for the
concatenation of the corresponding projection with t ′.
proposition eval-corr :
eval cid t t ′ 0 γ ←→ γ (lnth ((πcid(inf-llist t)) @l (inf-llist t ′))) 0

proof
assume eval cid t t ′ 0 γ
with eval-def have (∃ i≥0 . cid t i) ∧
γ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat 0inf-llist t〉) ∨
(∃ i. cid t i) ∧ ¬ (∃ i ′≥0 . cid t i ′) ∧ γ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓t0) ∨
(@ i. cid t i) ∧ γ (lnth (πcidinf-llist t @l inf-llist t ′)) 0 by simp
thus γ (lnth (πcidinf-llist t @l inf-llist t ′)) 0
proof
assume

(∃ i≥0 . cid t i) ∧ γ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat 0inf-llist t〉)
moreover have the-enat 〈cid #enat 0inf-llist t〉 = 0 using zero-enat-def by auto
ultimately show ?thesis by simp

next
assume (∃ i. cid t i) ∧ ¬ (∃ i ′≥0 . cid t i ′) ∧ γ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓t0)
∨ (@ i. cid t i) ∧ γ (lnth (πcidinf-llist t @l inf-llist t ′)) 0

thus ?thesis by auto
qed

next
assume γ (lnth ((πcid(inf-llist t)) @l (inf-llist t ′))) 0
show eval cid t t ′ 0 γ
proof cases
assume ∃ i. cid t i
hence ∃ i≥0 . cid t i by simp
moreover from 〈γ (lnth ((πcid(inf-llist t)) @l (inf-llist t ′))) 0 〉 have
γ (lnth ((πcid(inf-llist t)) @l (inf-llist t ′))) (the-enat(〈cid #enat 0 inf-llist t〉))
using zero-enat-def by auto

ultimately show ?thesis using eval-def by simp
next
assume @ i. cid t i
with 〈γ (lnth ((πcid(inf-llist t)) @l (inf-llist t ′))) 0 〉 show ?thesis using eval-def by simp

qed
qed

D.18.1 Simplification Rules
lemma validCI-act[simp]:
assumes ∃ i≥n. cid t i
and γ (lnth ((πcid(inf-llist t)) @l (inf-llist t ′))) (the-enat(〈cid #n inf-llist t〉))

shows eval cid t t ′ n γ

196

D.18 Dynamic Evaluation of Temporal Operators

using assms eval-def by simp

lemma validCI-cont[simp]:
assumes ∃ i. cid t i
and @ i ′. i ′≥n ∧ cid t i ′

and γ (lnth ((πcid(inf-llist t)) @l (inf-llist t ′))) (cid↓t(n))
shows eval cid t t ′ n γ
using assms eval-def by simp

lemma validCI-not-act[simp]:
assumes @ i. cid t i
and γ (lnth ((πcid(inf-llist t)) @l (inf-llist t ′))) n

shows eval cid t t ′ n γ
using assms eval-def by simp

lemma validCE-act[simp]:
assumes ∃ i≥n. cid t i
and eval cid t t ′ n γ

shows γ (lnth ((πcid(inf-llist t)) @l (inf-llist t ′))) (the-enat(〈cid #n inf-llist t〉))
using assms eval-def by auto

lemma validCE-cont[simp]:
assumes ∃ i. cid t i
and @ i ′. i ′≥n ∧ cid t i ′

and eval cid t t ′ n γ
shows γ (lnth ((πcid(inf-llist t)) @l (inf-llist t ′))) (cid↓t(n))
using assms eval-def by auto

lemma validCE-not-act[simp]:
assumes @ i. cid t i
and eval cid t t ′ n γ

shows γ (lnth ((πcid(inf-llist t)) @l (inf-llist t ′))) n
using assms eval-def by auto

D.18.2 No Activations
proposition validity1 :
assumes n≤n ′

and ∃ i≥n ′. c t i
and ∀ k≥n. k<n ′ −→ ¬ c t k

shows eval c t t ′ n γ =⇒ eval c t t ′ n ′ γ
proof −
assume eval c t t ′ n γ
moreover from assms have ∃ i≥n. c t i by (meson order .trans)
ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #enat n inf-llist t〉))
using validCE-act by blast

moreover have enat n ′ − 1 < l length (inf-llist t) by (simp add: one-enat-def)
with assms have the-enat (〈c #enat n inf-llist t〉) = the-enat (〈c #enat n ′ inf-llist t〉)
using nAct-not-active-same[of n n ′ inf-llist t c] by simp

197

D Remaining Rules of the Calculus

ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #enat n ′ inf-llist t〉))
by simp

with assms show ?thesis using validCI-act by blast
qed

proposition validity2 :
assumes n≤n ′

and ∃ i≥n ′. c t i
and ∀ k≥n. k<n ′ −→ ¬ c t k

shows eval c t t ′ n ′ γ =⇒ eval c t t ′ n γ
proof −
assume eval c t t ′ n ′ γ
with 〈∃ i≥n ′. c t i〉

have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #enat n ′ inf-llist t〉))
using validCE-act by blast

moreover have enat n ′ − 1 < l length (inf-llist t) by (simp add: one-enat-def)
with assms have the-enat (〈c #enat n inf-llist t〉) = the-enat (〈c #enat n ′ inf-llist t〉)
using nAct-not-active-same by simp

ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #enat n inf-llist t〉))
by simp

moreover from assms have ∃ i≥n. c t i by (meson order .trans)
ultimately show ?thesis using validCI-act by blast

qed

D.19 Basic Operators
In the following we introduce some basic operators for behavior trace assertions.

D.19.1 Predicates
Every predicate can be transformed to a behavior trace assertion.
definition pred :: bool ⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool)
where pred P ≡ λ t n. P

lemma predI [intro]:
fixes cid t t ′ n P
assumes P
shows eval cid t t ′ n (pred P)

proof cases
assume (∃ i. cid t i)
show ?thesis
proof cases
assume ∃ i≥n. cid t i
with assms show ?thesis using eval-def pred-def by auto

next
assume ¬ (∃ i≥n. cid t i)
with assms show ?thesis using eval-def pred-def by auto

qed

198

D.19 Basic Operators

next
assume ¬(∃ i. cid t i)
with assms show ?thesis using eval-def pred-def by auto

qed

lemma predE [elim]:
fixes cid t t ′ n P
assumes eval cid t t ′ n (pred P)
shows P

proof cases
assume (∃ i. cid t i)
show ?thesis
proof cases
assume ∃ i≥n. cid t i
with assms show ?thesis using eval-def pred-def by auto

next
assume ¬ (∃ i≥n. cid t i)
with assms show ?thesis using eval-def pred-def by auto

qed
next
assume ¬(∃ i. cid t i)
with assms show ?thesis using eval-def pred-def by auto

qed

D.19.2 True and False
definition true :: (nat ⇒ ′cmp) ⇒ nat ⇒ bool
where true ≡ λt n. HOL.True

definition false :: (nat ⇒ ′cmp) ⇒ nat ⇒ bool
where false ≡ λt n. HOL.False

D.19.3 Implication
definition imp :: ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool)
⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) (infixl −→b 10)
where γ −→b γ ′ ≡ λ t n. γ t n −→ γ ′ t n

lemma impI [intro!]:
assumes eval cid t t ′ n γ −→ eval cid t t ′ n γ ′

shows eval cid t t ′ n (γ −→b γ ′)
proof cases
assume ∃ i. cid t i
show ?thesis
proof cases
assume ∃ i≥n. cid t i
with 〈eval cid t t ′ n γ −→ eval cid t t ′ n γ ′〉

have γ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
−→ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
using eval-def by blast

199

D Remaining Rules of the Calculus

with 〈∃ i≥n. cid t i〉 have eval cid t t ′ n (λt n. γ t n −→ γ ′ t n)
using validCI-act[where γ=λ t n. γ t n −→ γ ′ t n] by blast

thus ?thesis using imp-def by simp
next
assume ¬ (∃ i≥n. cid t i)
with 〈∃ i. cid t i〉 〈eval cid t t ′ n γ −→ eval cid t t ′ n γ ′〉

have γ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn)
−→ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn) using eval-def by blast

with 〈∃ i. cid t i〉 〈¬ (∃ i≥n. cid t i)〉 have eval cid t t ′ n (λt n. γ t n −→ γ ′ t n)
using validCI-cont[where γ=λ t n. γ t n −→ γ ′ t n] by blast

thus ?thesis using imp-def by simp
qed

next
assume ¬(∃ i. cid t i)
with 〈eval cid t t ′ n γ −→ eval cid t t ′ n γ ′〉

have γ (lnth (πcidinf-llist t @l inf-llist t ′)) n −→ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) n
using eval-def by blast

with 〈¬(∃ i. cid t i)〉 have eval cid t t ′ n (λt n. γ t n −→ γ ′ t n)
using validCI-not-act[where γ=λ t n. γ t n −→ γ ′ t n] by blast

thus ?thesis using imp-def by simp
qed

lemma impE [elim!]:
assumes eval cid t t ′ n (γ −→b γ ′)
shows eval cid t t ′ n γ −→ eval cid t t ′ n γ ′

proof cases
assume (∃ i. cid t i)
show ?thesis
proof cases
assume ∃ i≥n. cid t i
moreover from 〈eval cid t t ′ n (γ −→b γ ′)〉 have eval cid t t ′ n (λt n. γ t n −→ γ ′ t n)
using imp-def by simp

ultimately have γ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
−→ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
using validCE-act[where γ=λ t n. γ t n −→ γ ′ t n] by blast

with 〈∃ i≥n. cid t i〉 show ?thesis using eval-def by blast
next
assume ¬ (∃ i≥n. cid t i)
moreover from 〈eval cid t t ′ n (γ −→b γ ′)〉 have eval cid t t ′ n (λt n. γ t n −→ γ ′ t n)
using imp-def by simp

ultimately have γ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn)
−→ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn)
using validCE-cont[where γ=λ t n. γ t n −→ γ ′ t n] 〈∃ i. cid t i〉 by blast

with 〈¬ (∃ i≥n. cid t i)〉 〈∃ i. cid t i〉 show ?thesis using eval-def by blast
qed

next
assume ¬(∃ i. cid t i)
moreover from 〈eval cid t t ′ n (γ −→b γ ′)〉 have eval cid t t ′ n (λt n. γ t n −→ γ ′ t n)
using imp-def by simp

200

D.19 Basic Operators

ultimately have γ (lnth (πcidinf-llist t @l inf-llist t ′)) n
−→ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) n
using validCE-not-act[where γ=λ t n. γ t n −→ γ ′ t n] by blast

with 〈¬(∃ i. cid t i)〉 show ?thesis using eval-def by blast
qed

D.19.4 Disjunction
definition disj :: ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool)
⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) (infixl ∨b 15)
where γ ∨b γ ′ ≡ λ t n. γ t n ∨ γ ′ t n

lemma disjI [intro!]:
assumes eval cid t t ′ n γ ∨ eval cid t t ′ n γ ′

shows eval cid t t ′ n (γ ∨b γ ′)
proof cases
assume ∃ i. cid t i
show ?thesis
proof cases
assume ∃ i≥n. cid t i
with 〈eval cid t t ′ n γ ∨ eval cid t t ′ n γ ′〉

have γ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
∨ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
using eval-def by blast

with 〈∃ i≥n. cid t i〉 have eval cid t t ′ n (λt n. γ t n ∨ γ ′ t n)
using validCI-act[where γ=λ t n. γ t n ∨ γ ′ t n] by blast

thus ?thesis using disj-def by simp
next
assume ¬ (∃ i≥n. cid t i)
with 〈∃ i. cid t i〉 〈eval cid t t ′ n γ ∨ eval cid t t ′ n γ ′〉

have γ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn)
∨ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn) using eval-def by blast

with 〈∃ i. cid t i〉 〈¬ (∃ i≥n. cid t i)〉 have eval cid t t ′ n (λt n. γ t n ∨ γ ′ t n)
using validCI-cont[where γ=λ t n. γ t n ∨ γ ′ t n] by blast

thus ?thesis using disj-def by simp
qed

next
assume ¬(∃ i. cid t i)
with 〈eval cid t t ′ n γ ∨ eval cid t t ′ n γ ′〉

have γ (lnth (πcidinf-llist t @l inf-llist t ′)) n ∨ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) n
using eval-def by blast

with 〈¬(∃ i. cid t i)〉 have eval cid t t ′ n (λt n. γ t n ∨ γ ′ t n)
using validCI-not-act[where γ=λ t n. γ t n ∨ γ ′ t n] by blast

thus ?thesis using disj-def by simp
qed

lemma disjE [elim!]:
assumes eval cid t t ′ n (γ ∨b γ ′)
shows eval cid t t ′ n γ ∨ eval cid t t ′ n γ ′

201

D Remaining Rules of the Calculus

proof cases
assume (∃ i. cid t i)
show ?thesis
proof cases
assume ∃ i≥n. cid t i
moreover from 〈eval cid t t ′ n (γ ∨b γ ′)〉 have eval cid t t ′ n (λt n. γ t n ∨ γ ′ t n)
using disj-def by simp

ultimately have γ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
∨ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
using validCE-act[where γ=λ t n. γ t n ∨ γ ′ t n] by blast

with 〈∃ i≥n. cid t i〉 show ?thesis
using validCI-act[of n cid t γ t ′] validCI-act[of n cid t γ ′ t ′] by blast

next
assume ¬ (∃ i≥n. cid t i)
moreover from 〈eval cid t t ′ n (γ ∨b γ ′)〉 have eval cid t t ′ n (λt n. γ t n ∨ γ ′ t n)
using disj-def by simp

ultimately have γ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn)
∨ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn)
using validCE-cont[where γ=λ t n. γ t n ∨ γ ′ t n] 〈∃ i. cid t i〉 by blast

with 〈¬ (∃ i≥n. cid t i)〉 〈∃ i. cid t i〉 show ?thesis
using validCI-cont[of cid t n γ t ′] validCI-cont[of cid t n γ ′ t ′] by blast

qed
next
assume ¬(∃ i. cid t i)
moreover from 〈eval cid t t ′ n (γ ∨b γ ′)〉 have eval cid t t ′ n (λt n. γ t n ∨ γ ′ t n)
using disj-def by simp

ultimately have γ (lnth (πcidinf-llist t @l inf-llist t ′)) n
∨ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) n
using validCE-not-act[where γ=λ t n. γ t n ∨ γ ′ t n] by blast

with 〈¬(∃ i. cid t i)〉 show ?thesis
using validCI-not-act[of cid t γ t ′ n] validCI-not-act[of cid t γ ′ t ′ n] by blast

qed

D.19.5 Conjunction
definition conj :: ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool)
⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) (infixl ∧b 20)
where γ ∧b γ ′ ≡ λ t n. γ t n ∧ γ ′ t n

lemma conjI [intro!]:
assumes eval cid t t ′ n γ ∧ eval cid t t ′ n γ ′

shows eval cid t t ′ n (γ ∧b γ ′)
proof cases
assume ∃ i. cid t i
show ?thesis
proof cases
assume ∃ i≥n. cid t i
with 〈eval cid t t ′ n γ ∧ eval cid t t ′ n γ ′〉

have γ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)

202

D.19 Basic Operators

∧ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
using eval-def by blast

with 〈∃ i≥n. cid t i〉 have eval cid t t ′ n (λt n. γ t n ∧ γ ′ t n)
using validCI-act[where γ=λ t n. γ t n ∧ γ ′ t n] by blast

thus ?thesis using conj-def by simp
next
assume ¬ (∃ i≥n. cid t i)
with 〈∃ i. cid t i〉 〈eval cid t t ′ n γ ∧ eval cid t t ′ n γ ′〉

have γ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn)
∧ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn) using eval-def by blast

with 〈∃ i. cid t i〉 〈¬ (∃ i≥n. cid t i)〉 have eval cid t t ′ n (λt n. γ t n ∧ γ ′ t n)
using validCI-cont[where γ=λ t n. γ t n ∧ γ ′ t n] by blast

thus ?thesis using conj-def by simp
qed

next
assume ¬(∃ i. cid t i)
with 〈eval cid t t ′ n γ ∧ eval cid t t ′ n γ ′〉 have γ (lnth (πcidinf-llist t @l inf-llist t ′)) n
∧ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) n using eval-def by blast

with 〈¬(∃ i. cid t i)〉 have eval cid t t ′ n (λt n. γ t n ∧ γ ′ t n)
using validCI-not-act[where γ=λ t n. γ t n ∧ γ ′ t n] by blast

thus ?thesis using conj-def by simp
qed

lemma conjE [elim!]:
assumes eval cid t t ′ n (γ ∧b γ ′)
shows eval cid t t ′ n γ ∧ eval cid t t ′ n γ ′

proof cases
assume (∃ i. cid t i)
show ?thesis
proof cases
assume ∃ i≥n. cid t i
moreover from 〈eval cid t t ′ n (γ ∧b γ ′)〉 have eval cid t t ′ n (λt n. γ t n ∧ γ ′ t n)
using conj-def by simp

ultimately have γ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
∧ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
using validCE-act[where γ=λ t n. γ t n ∧ γ ′ t n] by blast

with 〈∃ i≥n. cid t i〉 show ?thesis using eval-def by blast
next
assume ¬ (∃ i≥n. cid t i)
moreover from 〈eval cid t t ′ n (γ ∧b γ ′)〉 have eval cid t t ′ n (λt n. γ t n ∧ γ ′ t n)
using conj-def by simp

ultimately have γ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn)
∧ γ ′ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn)
using validCE-cont[where γ=λ t n. γ t n ∧ γ ′ t n] 〈∃ i. cid t i〉 by blast

with 〈¬ (∃ i≥n. cid t i)〉 〈∃ i. cid t i〉 show ?thesis using eval-def by blast
qed

next
assume ¬(∃ i. cid t i)
moreover from 〈eval cid t t ′ n (γ ∧b γ ′)〉 have eval cid t t ′ n (λt n. γ t n ∧ γ ′ t n)

203

D Remaining Rules of the Calculus

using conj-def by simp
ultimately have γ (lnth (πcidinf-llist t @l inf-llist t ′)) n ∧ γ ′ (lnth (πcidinf-llist t @l inf-llist

t ′)) n
using validCE-not-act[where γ=λ t n. γ t n ∧ γ ′ t n] by blast

with 〈¬(∃ i. cid t i)〉 show ?thesis using eval-def by blast
qed

D.19.6 Negation
definition not ::

((nat ⇒ ′cmp) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) (¬b - [19] 19)
where ¬b γ ≡ λ t n. ¬ γ t n

lemma notI [intro!]:
assumes ¬ eval cid t t ′ n γ
shows eval cid t t ′ n (¬b γ)

proof cases
assume ∃ i. cid t i
show ?thesis
proof cases
assume ∃ i≥n. cid t i
with 〈¬ eval cid t t ′ n γ〉

have ¬ γ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
using eval-def by blast

with 〈∃ i≥n. cid t i〉 have eval cid t t ′ n (λt n. ¬ γ t n)
using validCI-act[where γ=λ t n. ¬ γ t n] by blast

thus ?thesis using not-def by simp
next
assume ¬ (∃ i≥n. cid t i)
with 〈∃ i. cid t i〉 〈¬ eval cid t t ′ n γ〉

have ¬ γ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn) using eval-def by blast
with 〈∃ i. cid t i〉 〈¬ (∃ i≥n. cid t i)〉 have eval cid t t ′ n (λt n. ¬ γ t n)
using validCI-cont[where γ=λ t n. ¬ γ t n] by blast

thus ?thesis using not-def by simp
qed

next
assume ¬(∃ i. cid t i)
with 〈¬ eval cid t t ′ n γ〉 have ¬ γ (lnth (πcidinf-llist t @l inf-llist t ′)) n
using eval-def by blast

with 〈¬(∃ i. cid t i)〉 have eval cid t t ′ n (λt n. ¬ γ t n)
using validCI-not-act[where γ=λ t n. ¬ γ t n] by blast

thus ?thesis using not-def by simp
qed

lemma notE [elim!]:
assumes eval cid t t ′ n (¬b γ)
shows ¬ eval cid t t ′ n γ

proof cases
assume (∃ i. cid t i)

204

D.19 Basic Operators

show ?thesis
proof cases
assume ∃ i≥n. cid t i
moreover from 〈eval cid t t ′ n (¬b γ)〉 have eval cid t t ′ n (λt n. ¬ γ t n)
using not-def by simp

ultimately have ¬ γ (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
using validCE-act[where γ=λ t n. ¬ γ t n] by blast

with 〈∃ i≥n. cid t i〉 show ?thesis using eval-def by blast
next
assume ¬ (∃ i≥n. cid t i)
moreover from 〈eval cid t t ′ n (¬b γ)〉 have eval cid t t ′ n (λt n. ¬ γ t n)
using not-def by simp

ultimately have ¬ γ (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn)
using validCE-cont[where γ=λ t n. ¬ γ t n] 〈∃ i. cid t i〉 by blast

with 〈¬ (∃ i≥n. cid t i)〉 〈∃ i. cid t i〉 show ?thesis using eval-def by blast
qed

next
assume ¬(∃ i. cid t i)
moreover from 〈eval cid t t ′ n (¬b γ)〉 have eval cid t t ′ n (λt n. ¬ γ t n)
using not-def by simp

ultimately have ¬ γ (lnth (πcidinf-llist t @l inf-llist t ′)) n
using validCE-not-act[where γ=λ t n. ¬ γ t n] by blast

with 〈¬(∃ i. cid t i)〉 show ?thesis using eval-def by blast
qed

D.19.7 Quantifiers
definition all :: (′a ⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool))
⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) (binder ∀ b 10)
where all P ≡ λt n. (∀ y. (P y t n))

lemma allI [intro!]:
assumes ∀ p. eval cid t t ′ n (γ p)
shows eval cid t t ′ n (all (λp. γ p))

proof cases
assume ∃ i. cid t i
show ?thesis
proof cases
assume ∃ i≥n. cid t i
with 〈∀ p. eval cid t t ′ n (γ p)〉

have ∀ p. (γ p) (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
using eval-def by blast

with 〈∃ i≥n. cid t i〉 have eval cid t t ′ n (λt n. (∀ y. (γ y t n)))
using validCI-act[where γ=λt n. (∀ y. (γ y t n))] by blast

thus ?thesis using all-def [of γ] by auto
next
assume ¬ (∃ i≥n. cid t i)
with 〈∃ i. cid t i〉 〈∀ p. eval cid t t ′ n (γ p)〉

have ∀ p. (γ p) (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn)

205

D Remaining Rules of the Calculus

using eval-def by blast
with 〈∃ i. cid t i〉 〈¬ (∃ i≥n. cid t i)〉 have eval cid t t ′ n (λt n. (∀ y. (γ y t n)))
using validCI-cont[where γ=λt n. (∀ y. (γ y t n))] by blast

thus ?thesis using all-def [of γ] by auto
qed

next
assume ¬(∃ i. cid t i)
with 〈∀ p. eval cid t t ′ n (γ p)〉 have ∀ p. (γ p) (lnth (πcidinf-llist t @l inf-llist t ′)) n
using eval-def by blast

with 〈¬(∃ i. cid t i)〉 have eval cid t t ′ n (λt n. (∀ y. (γ y t n)))
using validCI-not-act[where γ=λt n. (∀ y. (γ y t n))] by blast

thus ?thesis using all-def [of γ] by auto
qed

lemma allE [elim!]:
assumes eval cid t t ′ n (all (λp. γ p))
shows ∀ p. eval cid t t ′ n (γ p)

proof cases
assume (∃ i. cid t i)
show ?thesis
proof cases
assume ∃ i≥n. cid t i
moreover from 〈eval cid t t ′ n (all (λp. γ p))〉 have eval cid t t ′ n (λt n. (∀ y. (γ y t n)))
using all-def [of γ] by auto

ultimately have
∀ p. (γ p) (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
using validCE-act[where γ=λt n. (∀ y. (γ y t n))] by blast

with 〈∃ i≥n. cid t i〉 show ?thesis using eval-def by blast
next
assume ¬ (∃ i≥n. cid t i)
moreover from 〈eval cid t t ′ n (all (λp. γ p))〉 have eval cid t t ′ n (λt n. (∀ y. (γ y t n)))
using all-def [of γ] by auto

ultimately have ∀ p. (γ p) (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn)
using validCE-cont[where γ=λt n. (∀ y. (γ y t n))] 〈∃ i. cid t i〉 by blast

with 〈¬ (∃ i≥n. cid t i)〉 〈∃ i. cid t i〉 show ?thesis using eval-def by blast
qed

next
assume ¬(∃ i. cid t i)
moreover from 〈eval cid t t ′ n (all (λp. γ p))〉 have eval cid t t ′ n (λt n. (∀ y. (γ y t n)))
using all-def [of γ] by auto

ultimately have ∀ p. (γ p) (lnth (πcidinf-llist t @l inf-llist t ′)) n
using validCE-not-act[where γ=λt n. (∀ y. (γ y t n))] by blast

with 〈¬(∃ i. cid t i)〉 show ?thesis using eval-def by blast
qed

definition ex :: (′a ⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool))
⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) (binder ∃ b 10)
where ex P ≡ λt n. (∃ y. (P y t n))

206

D.19 Basic Operators

lemma exI [intro!]:
assumes ∃ p. eval cid t t ′ n (γ p)
shows eval cid t t ′ n (∃ bp. γ p)

proof cases
assume ∃ i. cid t i
show ?thesis
proof cases
assume ∃ i≥n. cid t i
with 〈∃ p. eval cid t t ′ n (γ p)〉

have ∃ p. (γ p) (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
using eval-def by blast

with 〈∃ i≥n. cid t i〉 have eval cid t t ′ n (λt n. (∃ y. (γ y t n)))
using validCI-act[where γ=λt n. (∃ y. (γ y t n))] by blast

thus ?thesis using ex-def [of γ] by auto
next
assume ¬ (∃ i≥n. cid t i)
with 〈∃ i. cid t i〉 〈∃ p. eval cid t t ′ n (γ p)〉

have ∃ p. (γ p) (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn) using eval-def by blast
with 〈∃ i. cid t i〉 〈¬ (∃ i≥n. cid t i)〉 have eval cid t t ′ n (λt n. (∃ y. (γ y t n)))
using validCI-cont[where γ=λt n. (∃ y. (γ y t n))] by blast

thus ?thesis using ex-def [of γ] by auto
qed

next
assume ¬(∃ i. cid t i)
with 〈∃ p. eval cid t t ′ n (γ p)〉 have ∃ p. (γ p) (lnth (πcidinf-llist t @l inf-llist t ′)) n
using eval-def by blast

with 〈¬(∃ i. cid t i)〉 have eval cid t t ′ n (λt n. (∃ y. (γ y t n)))
using validCI-not-act[where γ=λt n. (∃ y. (γ y t n))] by blast

thus ?thesis using ex-def [of γ] by auto
qed

lemma exE [elim!]:
assumes eval cid t t ′ n (∃ bp. γ p)
shows ∃ p. eval cid t t ′ n (γ p)

proof cases
assume (∃ i. cid t i)
show ?thesis
proof cases
assume ∃ i≥n. cid t i
moreover from 〈eval cid t t ′ n (ex (λp. γ p))〉 have eval cid t t ′ n (λt n. (∃ y. (γ y t n)))
using ex-def [of γ] by auto

ultimately have
∃ p. (γ p) (lnth (πcidinf-llist t @l inf-llist t ′)) (the-enat 〈cid #enat ninf-llist t〉)
using validCE-act[where γ=λt n. (∃ y. (γ y t n))] by blast

with 〈∃ i≥n. cid t i〉 show ?thesis using eval-def by blast
next
assume ¬ (∃ i≥n. cid t i)
moreover from 〈eval cid t t ′ n (∃ bp. γ p)〉 have eval cid t t ′ n (λt n. (∃ y. (γ y t n)))
using ex-def [of γ] by auto

207

D Remaining Rules of the Calculus

ultimately have ∃ p. (γ p) (lnth (πcidinf-llist t @l inf-llist t ′)) (cid↓tn)
using validCE-cont[where γ=λt n. (∃ y. (γ y t n))] 〈∃ i. cid t i〉 by blast

with 〈¬ (∃ i≥n. cid t i)〉 〈∃ i. cid t i〉 show ?thesis using eval-def by blast
qed

next
assume ¬(∃ i. cid t i)
moreover from 〈eval cid t t ′ n (∃ bp. γ p)〉 have eval cid t t ′ n (λt n. (∃ y. (γ y t n)))
using ex-def [of γ] by auto

ultimately have ∃ p. (γ p) (lnth (πcidinf-llist t @l inf-llist t ′)) n
using validCE-not-act[where γ=λt n. (∃ y. (γ y t n))] by blast

with 〈¬(∃ i. cid t i)〉 show ?thesis using eval-def by blast
qed

D.20 Temporal Operators
We are now able to formalize all the rules of the calculus presented in [Mar17c].

D.20.1 Behavior Assertions
First we provide rules for basic behavior assertions.
definition ba :: (′cmp ⇒ bool) ⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool)
where ba ϕ ≡ λ t n. ϕ (t n)

lemma baIA[intro]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat

assumes ∃ i≥n. c t i
and ϕ (σc(t 〈c → t〉n))

shows eval c t t ′ n (ba ϕ)
proof −
from assms have ϕ (σc(t 〈c → t〉n)) by simp
moreover have σc(t 〈c → t〉n) = lnth (πc(inf-llist t)) (the-enat (〈c #〈c → t〉n inf-llist t〉))
proof −
have enat (Suc 〈c → t〉n) < l length (inf-llist t) using enat-ord-code by simp
moreover from assms have c t (〈c → t〉n) using nxtActI by simp
hence c lnth (inf-llist t) 〈c → t〉n by simp
ultimately show ?thesis using proj-active-nth by simp

qed
ultimately have ϕ (lnth (πc(inf-llist t)) (the-enat(〈c #〈c → t〉n inf-llist t〉))) by simp
moreover have 〈c #n inf-llist t〉 = 〈c #〈c → t〉n inf-llist t〉
proof −
from assms have @ k. n≤k ∧ k<〈c → t〉n ∧ c t k using nxtActI by simp
hence ¬ (∃ k≥n. k < 〈c → t〉n ∧ c lnth (inf-llist t) k) by simp
moreover have enat 〈c → t〉n − 1 < l length (inf-llist t) by (simp add: one-enat-def)
moreover from assms have 〈c → t〉n≥n using nxtActI by simp

208

D.20 Temporal Operators

ultimately show ?thesis using nAct-not-active-same[of n 〈c → t〉n inf-llist t c] by simp
qed
ultimately have ϕ (lnth (πc(inf-llist t)) (the-enat(〈c #n inf-llist t〉))) by simp
moreover have enat (the-enat (〈c #enat n inf-llist t〉)) < l length (πc(inf-llist t))
proof −
have ltake ∞ (inf-llist t) = (inf-llist t) using ltake-all[of inf-llist t] by simp
hence l length (πc(inf-llist t)) = 〈c #∞ inf-llist t〉 using nAct-def by simp
moreover have 〈c #enat n inf-llist t〉 < 〈c #∞ inf-llist t〉
proof −
have enat 〈c → t〉n < l length (inf-llist t) by simp
moreover from assms have 〈c → t〉n≥n and c t (〈c → t〉n) using nxtActI by auto
ultimately show ?thesis using nAct-less[of 〈c → t〉n inf-llist t n ∞] by simp

qed
ultimately show ?thesis by simp

qed
hence lnth (πc(inf-llist t)) (the-enat (〈c #n inf-llist t〉)) =
lnth ((πc(inf-llist t)) @l (inf-llist t ′)) (the-enat (〈c #n inf-llist t〉))
using lnth-lappend1 [of the-enat (〈c #enat n inf-llist t〉) πc(inf-llist t) inf-llist t ′] by simp

ultimately have ϕ (lnth ((πc(inf-llist t)) @l (inf-llist t ′)) (the-enat(〈c #n inf-llist t〉)))
by simp

hence ϕ (lnth ((πc(inf-llist t)) @l (inf-llist t ′)) (the-enat (〈c #n inf-llist t〉))) by simp
moreover from assms have 〈c → t〉n≥n and c t (〈c → t〉n) using nxtActI by auto
ultimately have (∃ i≥snd (t, n). c fst (t, n) i) ∧
ϕ (lnth ((πc(inf-llist (fst (t, n)))) @l (inf-llist t ′))
(the-enat (〈c #the-enat (snd (t,n)) inf-llist (fst (t, n))〉))) by auto

thus ?thesis using ba-def by simp
qed

lemma baIN1 [intro]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat

assumes act: ∃ i. c t i
and nAct: @ i. i≥n ∧ c t i
and al: ϕ (t ′ (n − 〈c ∧ t〉 − 1))

shows eval c t t ′ n (ba ϕ)
proof −
have t ′ (n − 〈c ∧ t〉 − 1) = lnth (inf-llist t ′) (n − 〈c ∧ t〉 − 1) by simp
moreover have . . . = lnth ((πc(inf-llist t)) @l (inf-llist t ′)) (c↓t(n))
using act nAct cnf2bhv-lnth-lappend by simp

ultimately have ϕ (lnth ((πc(inf-llist t)) @l (inf-llist t ′)) (c↓t(n))) using al by simp
with act nAct show ?thesis using ba-def by simp

qed

lemma baIN2 [intro]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp

209

D Remaining Rules of the Calculus

and n::nat
assumes nAct: @ i. c t i
and al: ϕ (t ′ n)

shows eval c t t ′ n (ba ϕ)
proof −
have t ′ n = lnth (inf-llist t ′) n by simp
moreover have . . . = lnth ((πc(inf-llist t)) @l (inf-llist t ′)) n
proof −
from nAct have πc(inf-llist t) = []l by simp
hence (πc(inf-llist t)) @l (inf-llist t ′) = inf-llist t ′ by (simp add: 〈πcinf-llist t = []l〉)
thus ?thesis by simp

qed
ultimately have ϕ (lnth ((πc(inf-llist t)) @l (inf-llist t ′)) n) using al by simp
hence ϕ (lnth ((πc(inf-llist t)) @l (inf-llist t ′)) n) by simp
with nAct show ?thesis using ba-def by simp

qed

lemma baIANow[intro]:
fixes t n c ϕ
assumes ϕ (σc(t n))
and c t n

shows eval c t t ′ n (ba ϕ)
proof −
from assms have ϕ(σc(t 〈c → t〉n)) using nxtAct-active by simp
with assms show ?thesis using baIA by blast

qed

lemma baEA[elim]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat
and i::nat

assumes ∃ i≥n. c t i
and eval c t t ′ n (ba ϕ)

shows ϕ (σc(t 〈c → t〉n))
proof −
from 〈eval c t t ′ n (ba ϕ)〉 have eval c t t ′ n (λ t n. ϕ (t n)) using ba-def by simp
moreover from assms have 〈c → t〉n≥n and c t (〈c → t〉n)
using nxtActI [of n c t] by auto

ultimately have ϕ (lnth ((πc(inf-llist t)) @l (inf-llist t ′)) (the-enat (〈c #n inf-llist t〉)))
using validCE-act by blast

hence ϕ (lnth ((πc(inf-llist t)) @l (inf-llist t ′)) (the-enat (〈c #n inf-llist t〉))) by simp
moreover have enat (the-enat (〈c #enat n inf-llist t〉)) < l length (πc(inf-llist t))
proof −
have ltake ∞ (inf-llist t) = (inf-llist t) using ltake-all[of inf-llist t] by simp
hence l length (πc(inf-llist t)) = 〈c #∞ inf-llist t〉 using nAct-def by simp
moreover have 〈c #enat n inf-llist t〉 < 〈c #∞ inf-llist t〉
proof −

210

D.20 Temporal Operators

have enat 〈c → t〉n < l length (inf-llist t) by simp
with 〈〈c → t〉n≥n〉 〈 c t 〈c → t〉n 〉 show ?thesis using nAct-less by simp

qed
ultimately show ?thesis by simp

qed
hence lnth ((πc(inf-llist t)) @l (inf-llist t ′)) (the-enat (〈c #n inf-llist t〉)) =
lnth (πc(inf-llist t)) (the-enat (〈c #n inf-llist t〉))
using lnth-lappend1 [of the-enat (〈c #enat n inf-llist t〉) πc(inf-llist t) inf-llist t ′] by simp

ultimately have ϕ (lnth (πc(inf-llist t)) (the-enat (〈c #n inf-llist t〉))) by simp
moreover have 〈c #n inf-llist t〉 = 〈c #〈c → t〉n inf-llist t〉
proof −
from assms have @ k. n≤k ∧ k<〈c → t〉n ∧ c t k using nxtActI [of n c t] by auto
hence ¬ (∃ k≥n. k < 〈c → t〉n ∧ c lnth (inf-llist t) k) by simp
moreover have enat 〈c → t〉n − 1 < l length (inf-llist t) by (simp add: one-enat-def)
ultimately show ?thesis using 〈〈c → t〉n≥n〉 nAct-not-active-same by simp

qed
moreover have σc(t 〈c → t〉n) = lnth (πc(inf-llist t)) (the-enat (〈c #〈c → t〉n inf-llist t〉))
proof −
have enat (Suc i) < l length (inf-llist t) using enat-ord-code by simp
moreover from 〈 c t 〈c → t〉n 〉 have c lnth (inf-llist t) 〈c → t〉n by simp
ultimately show ?thesis using proj-active-nth by simp

qed
ultimately show ?thesis by simp

qed

lemma baEN1 [elim]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat

assumes act: ∃ i. c t i
and nAct: @ i. i≥n ∧ c t i
and al: eval c t t ′ n (ba ϕ)

shows ϕ (t ′ (n − 〈c ∧ t〉 − 1))
proof −
from al have ϕ (lnth ((πc(inf-llist t)) @l (inf-llist t ′)) (c↓t(n)))
using act nAct validCE-cont ba-def by metis

hence ϕ (lnth ((πc(inf-llist t)) @l (inf-llist t ′)) (c↓t(n))) by simp
moreover have
lnth ((πc(inf-llist t)) @l (inf-llist t ′)) (c↓t(n)) = lnth (inf-llist t ′) (n − 〈c ∧ t〉 − 1)
using act nAct cnf2bhv-lnth-lappend by simp

moreover have . . . = t ′ (n − 〈c ∧ t〉 − 1) by simp
ultimately show ?thesis by simp

qed

lemma baEN2 [elim]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp

211

D Remaining Rules of the Calculus

and n::nat
assumes nAct: @ i. c t i
and al: eval c t t ′ n (ba ϕ)

shows ϕ (t ′ n)
proof −
from al have ϕ (lnth ((πc(inf-llist t)) @l (inf-llist t ′)) n)
using nAct validCE-not-act ba-def by metis

hence ϕ (lnth ((πc(inf-llist t)) @l (inf-llist t ′)) n) by simp
moreover have lnth ((πc(inf-llist t)) @l (inf-llist t ′)) n = lnth (inf-llist t ′) n
proof −
from nAct have πc(inf-llist t) = []l by simp
hence (πc(inf-llist t)) @l (inf-llist t ′) = inf-llist t ′ by (simp add: 〈πcinf-llist t = []l〉)
thus ?thesis by simp

qed
moreover have . . . = t ′ n by simp
ultimately show ?thesis by simp

qed

lemma baEANow[elim]:
fixes t n c ϕ
assumes eval c t t ′ n (ba ϕ)
and c t n

shows ϕ (σc(t n))
proof −
from assms have ϕ(σc(t 〈c → t〉n)) using baEA by blast
with assms show ?thesis using nxtAct-active by simp

qed

D.20.2 Next Operator
definition nxt :: ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) (#b(-) 24)
where #b(γ) ≡ λ t n. γ t (Suc n)

lemma nxtIA[intro]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat

assumes ∃ i≥n. c t i
and [[∃ i>〈c → t〉n. c t i]] =⇒ ∃n ′ ≥ n. (∃ !i. n≤i ∧ i<n ′ ∧ c t i) ∧ eval c t t ′ n ′ γ
and [[¬(∃ i>〈c → t〉n. c t i)]] =⇒ eval c t t ′ (Suc 〈c → t〉n) γ

shows eval c t t ′ n (#b(γ))
proof (cases)
assume ∃ i>〈c → t〉n. c t i
with assms(2) obtain n ′ where n ′≥n and ∃ !i. n≤i ∧ i<n ′ ∧ c t i and eval c t t ′ n ′ γ
by blast

moreover from assms(1) have c t 〈c → t〉n and 〈c → t〉n≥n using nxtActI by auto
ultimately have ∃ i ′≥n ′. c t i ′

by (metis 〈∃ i>〈c → t〉n. c t i〉 dual-order .strict-trans2 leI nat-less-le)

212

D.20 Temporal Operators

with 〈eval c t t ′ n ′ γ〉

have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #enat n ′ inf-llist t〉))
using validCE-act by blast

moreover have the-enat(〈c #n ′ inf-llist t〉) = Suc (the-enat (〈c #n inf-llist t〉))
proof −
from 〈∃ !i. n≤i ∧ i<n ′ ∧ c t i〉 obtain i where n≤i and i<n ′ and c t i
and ∀ i ′. n≤i ′ ∧ i ′<n ′ ∧ c t i ′ −→ i ′=i by blast

moreover have n ′ − 1 < l length (inf-llist t) by simp
ultimately have the-enat(〈c #n ′ inf-llist t〉) = the-enat(eSuc (〈c #n inf-llist t〉))
using nAct-active-suc[of inf-llist t n ′ n i c] by (simp add: 〈n ≤ i〉)

moreover have 〈c #i inf-llist t〉 6= ∞ by simp
ultimately show ?thesis using the-enat-eSuc by simp

qed
ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (Suc (the-enat (〈c #n inf-llist t〉)))
by simp

with assms have eval c t t ′ n (λt n. γ t (Suc n))
using validCI-act[of n c t λt n. γ t (Suc n) t ′] by blast

thus ?thesis using nxt-def by simp
next
assume ¬ (∃ i>〈c → t〉n. c t i)
with assms(3) have eval c t t ′ (Suc 〈c → t〉n) γ by simp
moreover from 〈¬ (∃ i>〈c → t〉n. c t i)〉 have ¬ (∃ i≥Suc 〈c → t〉n. c t i) by simp
ultimately have γ (lnth (πcinf-llist t @l inf-llist t ′)) (c↓t(Suc 〈c → t〉n))
using assms(1) validCE-cont[of c t Suc 〈c → t〉n t ′ γ] by blast

moreover from assms(1) 〈¬ (∃ i>〈c → t〉n. c t i)〉

have Suc (the-enat 〈c #enat ninf-llist t〉) = c↓t(Suc 〈c → t〉n)
using nAct-cnf2proj-Suc-dist by simp

ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (Suc (the-enat (〈c #n inf-llist t〉)))
by simp

moreover from assms(1) have c t 〈c → t〉n and 〈c → t〉n ≥ n using nxtActI by auto
ultimately have eval c t t ′ n (λt n. γ t (Suc n))
using validCI-act[of n c t λt n. γ t (Suc n) t ′] by blast

with 〈 c t 〈c → t〉n 〉 〈¬ (∃ i ′≥Suc 〈c → t〉n. c t i ′)〉 show ?thesis using nxt-def by simp
qed

lemma nxtIN [intro]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat

assumes ¬(∃ i≥n. c t i)
and eval c t t ′ (Suc n) γ

shows eval c t t ′ n (#b(γ))
proof cases
assume ∃ i. c t i
moreover from 〈¬ (∃ i≥n. c t i)〉 have ¬ (∃ i≥Suc n. c t i) by simp
ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(Suc n))
using validCE-cont 〈eval c t t ′ (Suc n) γ〉 by blast

with 〈∃ i. c t i〉 have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (Suc (c↓t(n)))

213

D Remaining Rules of the Calculus

using 〈¬(∃ i≥n. c t i)〉 lActive-less by auto
with 〈¬(∃ i≥n. c t i)〉 〈∃ i. c t i〉 have eval c t t ′ n (λt n. γ t (Suc n))
using validCI-cont[where γ=(λt n. γ t (Suc n))] by simp

thus ?thesis using nxt-def by simp
next
assume ¬(∃ i. c t i)
with assms have γ (lnth (πcinf-llist t @l inf-llist t ′)) (Suc n) using validCE-not-act by blast
with 〈¬(∃ i. c t i)〉 have eval c t t ′ n (λt n. γ t (Suc n))
using validCI-not-act[where γ=(λt n. γ t (Suc n))] by blast

thus ?thesis using nxt-def by simp
qed

lemma nxtEA1 [elim]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat

assumes ∃ i>〈c → t〉n. c t i
and eval c t t ′ n (#b(γ))
and n ′≥n
and ∃ !i. i≥n ∧ i<n ′ ∧ c t i

shows eval c t t ′ n ′ γ
proof −
from 〈eval c t t ′ n (#b(γ))〉 have eval c t t ′ n (λt n. γ t (Suc n)) using nxt-def by simp
moreover from assms(4) obtain i where i≥n and i<n ′ and c t i
and ∀ i ′. n≤i ′ ∧ i ′<n ′ ∧ c t i ′ −→ i ′=i by blast

ultimately have γ (lnth (πcinf-llist t @l inf-llist t ′)) (Suc (the-enat 〈c #enat ninf-llist t〉))
using validCE-act[of n c t t ′ λt n. γ t (Suc n)] by blast

moreover have the-enat(〈c #n ′ inf-llist t〉) = Suc (the-enat (〈c #n inf-llist t〉))
proof −
have n ′ − 1 < l length (inf-llist t) by simp
with 〈i<n ′〉 and 〈 c t i〉 and 〈∀ i ′. n≤i ′ ∧ i ′<n ′ ∧ c t i ′ −→ i ′=i〉

have the-enat(〈c #n ′ inf-llist t〉) = the-enat(eSuc (〈c #n inf-llist t〉))
using nAct-active-suc[of inf-llist t n ′ n i c] by (simp add: 〈n ≤ i〉)

moreover have 〈c #i inf-llist t〉 6= ∞ by simp
ultimately show ?thesis using the-enat-eSuc by simp

qed
ultimately have γ (lnth ((πcinf-llist t) @l inf-llist t ′)) (the-enat (〈c #n ′ inf-llist t〉)) by simp
moreover have ∃ i ′≥n ′. c t i ′

proof −
from assms(4) have 〈c → t〉n≥n and c t 〈c → t〉n using nxtActI by auto
with 〈∀ i ′. n≤i ′ ∧ i ′<n ′ ∧ c t i ′ −→ i ′=i〉 show ?thesis
using assms(1) by (metis leI le-trans less-le)

qed
ultimately show ?thesis using validCI-act by blast

qed

lemma nxtEA2 [elim]:
fixes c:: ′id

214

D.20 Temporal Operators

and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat
and i

assumes ∃ i≥n. c t i and ¬(∃ i>〈c → t〉n. c t i)
and eval c t t ′ n (#b(γ))

shows eval c t t ′ (Suc 〈c → t〉n) γ
proof −
from 〈eval c t t ′ n (#b(γ))〉 have eval c t t ′ n (λt n. γ t (Suc n)) using nxt-def by simp
with assms(1) have
γ (lnth (πcinf-llist t @l inf-llist t ′)) (Suc (the-enat 〈c #enat ninf-llist t〉))
using validCE-act[of n c t t ′ λt n. γ t (Suc n)] by blast

moreover from assms(1) assms(2) have
Suc (the-enat 〈c #enat ninf-llist t〉)=c↓t(Suc 〈c → t〉n)
using nAct-cnf2proj-Suc-dist by simp

ultimately have γ (lnth (πcinf-llist t @l inf-llist t ′)) (c↓t(Suc 〈c → t〉n)) by simp
moreover from assms(1) assms(2) have ¬(∃ i ′≥Suc 〈c → t〉n. c t i ′)
using nxtActive-no-active by simp

ultimately show ?thesis using validCI-cont[where n=Suc 〈c → t〉n] assms(1) by blast
qed

lemma nxtEN [elim]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat

assumes ¬(∃ i≥n. c t i)
and eval c t t ′ n (#b(γ))

shows eval c t t ′ (Suc n) γ
proof cases
assume ∃ i. c t i
moreover from 〈eval c t t ′ n (#b(γ))〉 have eval c t t ′ n (λt n. γ t (Suc n))
using nxt-def by simp

ultimately have γ (lnth (πcinf-llist t @l inf-llist t ′)) (Suc (c↓tn))
using 〈¬(∃ i≥n. c t i)〉 validCE-cont[where γ=(λt n. γ t (Suc n))] by simp

hence γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(Suc n))
using 〈∃ i. c t i〉 assms(1) lActive-less by auto

moreover from 〈¬ (∃ i≥n. c t i)〉 have ¬ (∃ i≥Suc n. c t i) by simp
ultimately show ?thesis using validCI-cont[where n=Suc n] 〈∃ i. c t i〉 by blast

next
assume ¬(∃ i. c t i)
moreover from 〈eval c t t ′ n (#b(γ))〉 have eval c t t ′ n (λt n. γ t (Suc n))
using nxt-def by simp

ultimately have γ (lnth (πcinf-llist t @l inf-llist t ′)) (Suc n)
using 〈¬(∃ i. c t i)〉 validCE-not-act[where γ=(λt n. γ t (Suc n))] by blast

with 〈¬(∃ i. c t i)〉 show ?thesis using validCI-not-act[of c t γ t ′ Suc n] by blast
qed

215

D Remaining Rules of the Calculus

D.20.3 Eventually Operator
definition evt :: ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) (3b(-) 23)
where 3b(γ) ≡ λ t n. ∃n ′≥n. γ t n ′

lemma evtIA[intro]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat
and n ′::nat

assumes ∃ i≥n. c t i
and n ′≥〈c ⇐ t〉n
and [[∃ i≥n ′. c t i]] =⇒ ∃n ′′≥〈c ⇐ t〉n ′. n ′′≤ 〈c → t〉n ′ ∧ eval c t t ′ n ′′ γ
and [[¬(∃ i≥n ′. c t i)]] =⇒ eval c t t ′ n ′ γ

shows eval c t t ′ n (3b(γ))
proof cases assume ∃ i ′≥n ′. c t i ′

with assms(3) obtain n ′′ where n ′′ ≥〈c ⇐ t〉n ′ and n ′′≤ 〈c → t〉n ′ and eval c t t ′ n ′′ γ
by auto
hence ∃ i ′≥n ′′. c t i ′ using 〈∃ i ′≥n ′. c t i ′〉 nxtActI by blast
with 〈eval c t t ′ n ′′ γ〉 have
γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #n ′′ inf-llist t〉))
using validCE-act by blast

moreover have the-enat (〈c #n inf-llist t〉) ≤ the-enat (〈c #n ′′ inf-llist t〉)
proof −
from 〈〈c ⇐ t〉n ′≤n ′′〉 have 〈c #n ′ inf-llist t〉 ≤ 〈c #n ′′ inf-llist t〉
using nAct-mono-lNact by simp

moreover from 〈n ′≥〈c ⇐ t〉n〉 have 〈c #n inf-llist t〉 ≤ 〈c #n ′ inf-llist t〉
using nAct-mono-lNact by simp

moreover have 〈c #n ′ inf-llist t〉 6= ∞ by simp
ultimately show ?thesis by simp

qed
moreover have ∃ i ′≥n. c t i ′

proof −
from 〈∃ i ′≥n ′. c t i ′〉 obtain i ′ where i ′≥n ′ and c t i ′ by blast
with 〈n ′≥〈c ⇐ t〉n〉 have i ′≥ n using lNactGe le-trans by blast
with 〈 c t i ′〉 show ?thesis by blast

qed
ultimately have eval c t t ′ n (λt n. ∃n ′≥n. γ t n ′)
using validCI-act[where γ=(λt n. ∃n ′≥n. γ t n ′)] by blast

thus ?thesis using evt-def by simp
next
assume ¬(∃ i ′≥n ′. c t i ′)
with 〈(∃ i≥n. c t i)〉 have n ′ ≥ 〈c ∧ t〉 using lActive-less by auto
hence c↓t(n ′) ≥ the-enat (l length (πc(inf-llist t))) − 1 using cnf2bhv-ge-llength by simp
moreover have the-enat(l length (πc(inf-llist t))) − 1 ≥ the-enat(〈c #n inf-llist t〉)
proof −
from 〈∃ i≥n. c t i〉 have l length (πc(inf-llist t)) ≥ eSuc (〈c #n inf-llist t〉)
using nAct-llength-proj by simp

moreover from 〈¬(∃ i ′≥n ′. c t i ′)〉 have lfinite (πc(inf-llist t))

216

D.20 Temporal Operators

using proj-finite2 [of inf-llist t] by simp
hence l length (πc(inf-llist t)) 6=∞ using l length-eq-infty-conv-lfinite by auto
ultimately have the-enat (l length (πc(inf-llist t))) ≥ the-enat(eSuc (〈c #n inf-llist t〉))
by simp

moreover have 〈c #n inf-llist t〉6=∞ by simp
ultimately have the-enat (l length (πc(inf-llist t))) ≥ Suc (the-enat (〈c #n inf-llist t〉))
using the-enat-eSuc by simp

thus ?thesis by simp
qed
ultimately have c↓t(n ′) ≥ the-enat (〈c #n inf-llist t〉) by simp
moreover from 〈¬(∃ i ′≥n ′. c t i ′)〉 have eval c t t ′ n ′ γ using assms(4) by simp
with 〈∃ i≥n. c t i〉 〈¬(∃ i ′≥n ′. c t i ′)〉

have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(n ′)) using validCE-cont by blast
ultimately have eval c t t ′ n (λt n. ∃n ′≥n. γ t n ′)
using 〈∃ i≥n. c t i〉 validCI-act[where γ=(λt n. ∃n ′≥n. γ t n ′)] by blast

thus ?thesis using evt-def by simp
qed

lemma evtIN [intro]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat
and n ′::nat

assumes ¬(∃ i≥n. c t i)
and n ′≥n
and eval c t t ′ n ′ γ

shows eval c t t ′ n (3b(γ))
proof cases
assume ∃ i. c t i
moreover from assms(1) assms(2) have ¬(∃ i ′≥n ′. c t i ′) by simp
ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(n ′))
using validCE-cont[of c t n ′ t ′ γ] 〈eval c t t ′ n ′ γ〉 by blast

moreover from 〈n ′≥n〉 have c↓t(n ′) ≥ c↓t(n) using cnf2bhv-mono by simp
ultimately have eval c t t ′ n (λt n. ∃n ′≥n. γ t n ′)
using validCI-cont[where γ=(λt n. ∃n ′≥n. γ t n ′)] 〈∃ i. c t i〉 〈¬(∃ i≥n. c t i)〉 by blast

thus ?thesis using evt-def by simp
next
assume ¬(∃ i. c t i)
with assms have γ (lnth (πcinf-llist t @l inf-llist t ′)) n ′ using validCE-not-act by blast
with 〈¬(∃ i. c t i)〉 have eval c t t ′ n (λt n. ∃n ′≥n. γ t n ′)
using validCI-not-act[where γ=λt n. ∃n ′≥n. γ t n ′] 〈n ′≥n〉 by blast

thus ?thesis using evt-def by simp
qed

lemma evtEA[elim]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp

217

D Remaining Rules of the Calculus

and n::nat
assumes ∃ i≥n. c t i
and eval c t t ′ n (3b(γ))

shows ∃n ′≥〈c → t〉n.
(∃ i≥n ′. c t i ∧ (∀n ′′≥ 〈c ⇐ t〉n ′. n ′′≤〈c → t〉n ′ −→ eval c t t ′ n ′′ γ)) ∨
(¬(∃ i≥n ′. c t i) ∧ eval c t t ′ n ′ γ)

proof −
from 〈eval c t t ′ n (3b(γ))〉 have eval c t t ′ n (λt n. ∃n ′≥n. γ t n ′) using evt-def by simp
with 〈∃ i≥n. c t i〉

have ∃n ′≥the-enat 〈c #enat ninf-llist t〉. γ (lnth (πcinf-llist t @l inf-llist t ′)) n ′

using validCE-act[where γ=λt n. ∃n ′≥n. γ t n ′] by blast
then obtain x where x≥the-enat (〈c #n inf-llist t〉) and
γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) x by auto

thus ?thesis
proof (cases)
assume x ≥ l length (πc(inf-llist t))
moreover from 〈(x ≥ l length (πc(inf-llist t)))〉 have l length (πc(inf-llist t)) 6=∞
by (metis infinity-ileE)

moreover from 〈∃ i≥n. c t i〉 have l length (πc(inf-llist t))≥1
using proj-one[of inf-llist t] by auto

ultimately have the-enat (l length (πc(inf-llist t))) − 1 < x
by (metis One-nat-def Suc-ile-eq antisym-conv2 diff-Suc-less enat-ord-simps(2)

enat-the-enat less-imp-diff-less one-enat-def)
hence x = c↓t(c↑t(x)) using cnf2bhv-bhv2cnf by simp
with 〈γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) x〉

have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(c↑t(x))) by simp
moreover have ¬(∃ i≥c↑t(x). c t i)
proof −
from 〈x ≥ l length (πc(inf-llist t))〉 have lfinite (πc(inf-llist t))
using l length-geq-enat-lfiniteD[of πc(inf-llist t) x] by simp

then obtain z where ∀n ′′>z. ¬ c t n ′′ using proj-finite-bound by blast
moreover from 〈the-enat (l length (πc(inf-llist t))) − 1 < x〉 have 〈c ∧ t〉 < c↑t(x)
using bhv2cnf-greater-lActive by simp

ultimately show ?thesis using lActive-greater-active-all by simp
qed
ultimately have eval c t t ′ (c↑tx) γ
using 〈∃ i≥n. c t i〉 validCI-cont[of c t c↑t(x)] by blast

moreover have c↑t(x) ≥ 〈c → t〉n
proof −
from 〈x ≥ l length (πc(inf-llist t))〉 have lfinite (πc(inf-llist t))
using l length-geq-enat-lfiniteD[of πc(inf-llist t) x] by simp

then obtain z where ∀n ′′>z. ¬ c t n ′′ using proj-finite-bound by blast
moreover from 〈∃ i≥n. c t i〉 have c t 〈c → t〉n using nxtActI by simp
ultimately have 〈c ∧ t〉≥〈c → t〉n using lActive-greatest by fastforce
moreover have c↑t(x) ≥ 〈c ∧ t〉 by simp
ultimately show c↑t(x) ≥ 〈c → t〉n by arith

qed
ultimately show ?thesis using 〈¬(∃ i≥c↑t(x). c t i)〉 by blast

next

218

D.20 Temporal Operators

assume ¬(x ≥ l length (πc(inf-llist t)))
hence x<l length (πc(inf-llist t)) by simp
then obtain n ′::nat where x=〈c #n ′ inf-llist t〉 using nAct-exists by blast
with 〈enat x < l length (πc(inf-llist t))〉 have ∃ i≥n ′. c t i
using nAct-less-llength-active by force

then obtain i where i≥n ′ and c t i and ¬ (∃ k≥n ′. k < i ∧ c t k)
using nact-exists by blast

moreover have (∀n ′′≥ 〈c ⇐ t〉i. n ′′≤〈c → t〉i −→ eval c t t ′ n ′′ γ)
proof
fix n ′′ show 〈c ⇐ t〉i ≤ n ′′ −→ n ′′ ≤ 〈c → t〉i −→ eval c t t ′ n ′′ γ
proof(rule HOL.impI [OF HOL.impI])
assume 〈c ⇐ t〉i ≤ n ′′ and n ′′ ≤ 〈c → t〉i
hence the-enat (〈c #enat i inf-llist t〉) = the-enat (〈c #enat n ′′ inf-llist t〉)
using nAct-same by simp

moreover from 〈 c t i〉 have c t 〈c → t〉i using nxtActI by auto
with 〈n ′′ ≤ 〈c → t〉i〉 have ∃ i≥n ′′. c t i using dual-order .strict-implies-order by auto
moreover have
γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #enat i inf-llist t〉))

proof −
have enat i − 1 < l length (inf-llist t) by (simp add: one-enat-def)
with 〈x=〈c #n ′ inf-llist t〉〉 〈i≥n ′〉 〈¬ (∃ k≥n ′. k < i ∧ c t k)〉

have x=〈c #i inf-llist t〉
using one-enat-def nAct-not-active-same by simp

moreover have 〈c #i inf-llist t〉6=∞ by simp
ultimately have x=the-enat(〈c #i inf-llist t〉) by fastforce
thus ?thesis using 〈γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) x〉 by blast

qed
with 〈the-enat (〈c #enat i inf-llist t〉) = the-enat (〈c #enat n ′′ inf-llist t〉)〉 have
γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #enat n ′′ inf-llist t〉)) by simp

ultimately show eval c t t ′ n ′′ γ using validCI-act by blast
qed

qed
moreover have i≥〈c → t〉n
proof −
have enat i − 1 < l length (inf-llist t) by (simp add: one-enat-def)
with 〈x=〈c #n ′ inf-llist t〉〉 〈i≥n ′〉 〈¬ (∃ k≥n ′. k < i ∧ c t k)〉 have x=〈c #i inf-llist t〉
using one-enat-def nAct-not-active-same by simp

moreover have 〈c #i inf-llist t〉6=∞ by simp
ultimately have x=the-enat(〈c #i inf-llist t〉) by fastforce
with 〈x≥the-enat (〈c #n inf-llist t〉)〉

have the-enat (〈c #i inf-llist t〉)≥the-enat (〈c #n inf-llist t〉) by simp
with 〈 c t i〉 show ?thesis using active-geq-nxtAct by simp

qed
ultimately show ?thesis using 〈 c t i〉 by auto

qed
qed

lemma evtEN [elim]:
fixes c:: ′id

219

D Remaining Rules of the Calculus

and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat
and n ′::nat

assumes ¬(∃ i≥n. c t i)
and eval c t t ′ n (3b(γ))

shows ∃n ′≥n. eval c t t ′ n ′ γ
proof cases
assume ∃ i. c t i
moreover from 〈eval c t t ′ n (3b(γ))〉 have eval c t t ′ n (λt n. ∃n ′≥n. γ t n ′)
using evt-def by simp

ultimately have ∃n ′≥c↓tn. γ (lnth (πcinf-llist t @l inf-llist t ′)) n ′

using validCE-cont[where γ=(λt n. ∃n ′≥n. γ t n ′)] 〈¬(∃ i≥n. c t i)〉 by blast
then obtain x where x≥c↓t(n) and γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) x by auto
moreover have the-enat (l length (πc(inf-llist t))) − 1 < x
proof −
have 〈c ∧ t〉 < n
proof (rule ccontr)
assume ¬〈c ∧ t〉 < n
hence 〈c ∧ t〉 ≥ n by simp
moreover from 〈∃ i. c t i〉 〈¬ (∃ i≥n. c t i)〉 have c t 〈c ∧ t〉
using lActive-active less-or-eq-imp-le by blast

ultimately show False using 〈¬ (∃ i≥n. c t i)〉 by simp
qed
hence the-enat (l length (πc(inf-llist t))) − 1 < c↓t(n) using cnf2bhv-greater-llength by simp
with 〈x≥c↓t(n)〉 show ?thesis by simp

qed
hence x = c↓t(c↑t(x)) using cnf2bhv-bhv2cnf by simp
ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(c↑t(x))) by simp
moreover from 〈¬(∃ i≥n. c t i)〉 have ¬(∃ i≥c↑t(x). c t i)
proof −
from 〈¬(∃ i≥n. c t i)〉 have lfinite (πc(inf-llist t)) using proj-finite2 by simp
then obtain z where ∀n ′′>z. ¬ c t n ′′ using proj-finite-bound by blast
moreover from 〈the-enat (l length (πc(inf-llist t))) − 1 < x〉 have 〈c ∧ t〉 < c↑t(x)
using bhv2cnf-greater-lActive by simp

ultimately show ?thesis using lActive-greater-active-all by simp
qed
ultimately have eval c t t ′ (c↑tx) γ
using validCI-cont[of c t c↑t(x) γ] 〈∃ i. c t i〉 by blast

moreover from 〈∃ i. c t i〉 〈¬(∃ i≥n. c t i)〉 have 〈c ∧ t〉 ≤ n
using lActive-less[of c t - n] by auto

with 〈x≥c↓t(n)〉 have n ≤ c↑t(x) using p2c-mono-c2p by blast
ultimately show ?thesis by auto

next
assume ¬(∃ i. c t i)
moreover from 〈eval c t t ′ n (3b(γ))〉 have eval c t t ′ n (λt n. ∃n ′≥n. γ t n ′)
using evt-def by simp

ultimately obtain n ′ where n ′≥n and γ (lnth (πcinf-llist t @l inf-llist t ′)) n ′

using 〈¬(∃ i. c t i)〉 validCE-not-act[where γ=λt n. ∃n ′≥n. γ t n ′] by blast

220

D.20 Temporal Operators

with 〈¬(∃ i. c t i)〉 show ?thesis using validCI-not-act[of c t γ t ′ n ′] by blast
qed

D.20.4 Globally Operator
definition glob :: ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) (2b(-) 22)
where 2b(γ) ≡ λ t n. ∀n ′≥n. γ t n ′

lemma globIA[intro]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat

assumes ∃ i≥n. c t i
and

∧
n ′. [[∃ i≥n ′. c t i; n ′≥〈c → t〉n]] =⇒

∃n ′′≥〈c ⇐ t〉n ′. n ′′≤〈c → t〉n ′ ∧ eval c t t ′ n ′′ γ
and

∧
n ′. [[¬(∃ i≥n ′. c t i); n ′≥〈c → t〉n]] =⇒ eval c t t ′ n ′ γ

shows eval c t t ′ n (2b(γ))
proof −
have ∀n ′≥the-enat 〈c #enat ninf-llist t〉. γ (lnth (πcinf-llist t @l inf-llist t ′)) n ′

proof
fix x::nat show
x≥the-enat (〈c #n inf-llist t〉) −→ γ (lnth (πcinf-llist t @l inf-llist t ′)) x

proof
assume x≥the-enat (〈c #n inf-llist t〉)
show γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) x
proof (cases)
assume (x ≥ l length (πc(inf-llist t)))
hence lfinite (πc(inf-llist t))
using l length-geq-enat-lfiniteD[of πc(inf-llist t) x] by simp

then obtain z where ∀n ′′>z. ¬ c t n ′′ using proj-finite-bound by blast
moreover have c t 〈c → t〉n by (simp add: 〈∃ i≥n. c t i〉 nxtActI)
ultimately have 〈c ∧ t〉≥〈c → t〉n using lActive-greatest[of c t 〈c → t〉n] by blast
moreover have c↑t(x) ≥ 〈c ∧ t〉 by simp
ultimately have c↑t(x) ≥ 〈c → t〉n by arith
moreover have ¬ (∃ i ′≥c↑t(x). c t i ′)
proof −
from 〈lfinite (πc(inf-llist t))〉 〈∃ i≥n. c t i〉

have c↑t(the-enat (l length (πc(inf-llist t)))) = Suc (〈c ∧ t〉)
using bhv2cnf-lActive by blast

moreover from 〈(x ≥ l length (πc(inf-llist t)))〉

have x ≥ the-enat(l length (πc(inf-llist t)))
using the-enat-mono by fastforce

hence c↑t(x) ≥ c↑t(the-enat (l length (πc(inf-llist t))))
using bhv2cnf-mono[of the-enat (l length (πc(inf-llist t))) x] by simp

ultimately have c↑t(x) ≥ Suc (〈c ∧ t〉) by simp
hence c↑t(x) > 〈c ∧ t〉 by simp
with 〈∀n ′′>z. ¬ c t n ′′〉 show ?thesis using lActive-greater-active-all by simp

qed

221

D Remaining Rules of the Calculus

ultimately have eval c t t ′ (c↑t(x)) γ using assms(3) by simp
hence γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(c↑t(x)))
using validCE-cont[of c t c↑t(x) t ′ γ] 〈∃ i≥n. c t i〉 〈¬ (∃ i ′≥c↑t(x). c t i ′)〉 by blast

moreover from 〈(x ≥ l length (πc(inf-llist t)))〉

have (enat x ≥ l length (πc(inf-llist t))) by auto
with 〈lfinite (πc(inf-llist t))〉 have l length (πc(inf-llist t)) 6=∞
using l length-eq-infty-conv-lfinite by auto

with 〈(x ≥ l length (πc(inf-llist t)))〉

have the-enat(l length (πc(inf-llist t))) − 1 ≤ x by auto
ultimately show ?thesis using cnf2bhv-bhv2cnf [of c t x] by simp

next
assume ¬(x ≥ l length (πc(inf-llist t)))
hence x<l length (πc(inf-llist t)) by simp
then obtain n ′::nat where x=〈c #n ′ inf-llist t〉 using nAct-exists by blast
moreover from 〈enat x < l length (πc(inf-llist t))〉 〈enat x = 〈c #enat n ′ inf-llist t〉〉
have ∃ i≥n ′. c t i using nAct-less-llength-active by force

then obtain i where i≥n ′ and c t i and ¬ (∃ k≥n ′. k < i ∧ c t k)
using nact-exists by blast

moreover have enat i − 1 < l length (inf-llist t) by (simp add: one-enat-def)
ultimately have x=〈c #i inf-llist t〉 using one-enat-def nAct-not-active-same by simp
moreover have 〈c #i inf-llist t〉6=∞ by simp
ultimately have x=the-enat(〈c #i inf-llist t〉) by fastforce
from 〈x≥the-enat (〈c #n inf-llist t〉)〉 〈x=the-enat(〈c #i inf-llist t〉)〉

have the-enat (〈c #i inf-llist t〉)≥the-enat (〈c #n inf-llist t〉) by simp
with 〈 c t i〉 have i≥〈c → t〉n using active-geq-nxtAct by simp
moreover from 〈x=〈c #i inf-llist t〉〉 〈x < l length (πc(inf-llist t))〉

have ∃ i ′. i ≤ enat i ′ ∧ c t i ′ using nAct-less-llength-active[of x c inf-llist t i] by simp
hence ∃ i ′≥i. c t i ′ by simp
ultimately obtain n ′′ where eval c t t ′ n ′′ γ and n ′′≥〈c ⇐ t〉i and n ′′≤〈c → t〉i
using assms(2) by blast

moreover have ∃ i ′≥n ′′. c t i ′

using 〈 c t i〉 〈n ′′≤〈c → t〉i〉 less-or-eq-imp-le nxtAct-active by auto
ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #n ′′ inf-llist t〉))
using validCE-act[of n ′′ c t t ′ γ] by blast

moreover from 〈n ′′≥〈c ⇐ t〉i〉 and 〈n ′′≤〈c → t〉i〉

have the-enat (〈c #n ′′ inf-llist t〉)=the-enat (〈c #i inf-llist t〉)
using nAct-same by simp

hence the-enat (〈c #n ′′ inf-llist t〉) = x
by (simp add: 〈x = the-enat 〈c #enat iinf-llist t〉〉)

ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat x) by simp
thus ?thesis by simp

qed
qed

qed
with 〈∃ i≥n. c t i〉 have eval c t t ′ n (λt n. ∀n ′≥n. γ t n ′)
using validCI-act[of n c t λ t n. ∀n ′≥n. γ t n ′ t ′] by blast

thus ?thesis using glob-def by simp
qed

222

D.20 Temporal Operators

lemma globIN [intro]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat

assumes ¬(∃ i≥n. c t i)
and

∧
n ′. n ′≥n =⇒ eval c t t ′ n ′ γ

shows eval c t t ′ n (2b(γ))
proof cases
assume ∃ i. c t i
from 〈¬(∃ i≥n. c t i)〉 have lfinite (πc(inf-llist t)) using proj-finite2 by simp
then obtain z where ∀n ′′>z. ¬ c t n ′′ using proj-finite-bound by blast

have ∀ x::nat≥ c↓t(n). γ (lnth (πcinf-llist t @l inf-llist t ′)) x
proof
fix x::nat show (x≥c↓t(n)) −→ γ (lnth (πcinf-llist t @l inf-llist t ′)) x
proof
assume x≥c↓t(n)
moreover from 〈¬(∃ i≥n. c t i)〉 have 〈c ∧ t〉 ≤ n
using 〈∃ i. c t i〉 lActive-less by auto

ultimately have c↑t(x) ≥ n using p2c-mono-c2p by simp
with assms have eval c t t ′ (c↑t(x)) γ by simp
moreover have ¬ (∃ i ′≥c↑t(x). c t i ′)
proof −
from 〈lfinite (πc(inf-llist t))〉 〈∃ i. c t i〉

have c↑t(the-enat (l length (πc(inf-llist t)))) = Suc (〈c ∧ t〉)
using bhv2cnf-lActive by blast

moreover from 〈¬(∃ i≥n. c t i)〉 have n>〈c ∧ t〉
by (meson 〈∃ i. c t i〉 lActive-active leI le-eq-less-or-eq)

hence n≥Suc (〈c ∧ t〉) by simp
with 〈n≥Suc(〈c ∧ t〉)〉 〈c↑t(x) ≥ n〉 have c↑t(x) ≥ Suc (〈c ∧ t〉) by simp
hence c↑t(x) > 〈c ∧ t〉 by simp
with 〈∀n ′′>z. ¬ c t n ′′〉 show ?thesis using lActive-greater-active-all by simp

qed
ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(c↑t(x)))
using validCE-cont[of c t c↑t(x) t ′ γ] 〈∃ i. c t i〉 by blast

moreover have x ≥ the-enat (l length (πc(inf-llist t))) − 1
using 〈c↓t(n) ≤ x〉 cnf2bhv-def by auto

ultimately show γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) x
using cnf2bhv-bhv2cnf by simp

qed
qed
with 〈∃ i. c t i〉 〈¬(∃ i≥n. c t i)〉 have eval c t t ′ n (λt n. ∀n ′≥n. γ t n ′)
using validCI-cont[of c t n λ t n. ∀n ′≥n. γ t n ′ t ′] by simp

thus ?thesis using glob-def by simp
next
assume ¬(∃ i. c t i)
with assms have ∀n ′≥n. γ (lnth (πcinf-llist t @l inf-llist t ′)) n ′

using validCE-not-act by blast

223

D Remaining Rules of the Calculus

with 〈¬(∃ i. c t i)〉 have eval c t t ′ n (λt n. ∀n ′≥n. γ t n ′)
using validCI-not-act[where γ=λ t n. ∀n ′≥n. γ t n ′] by blast

thus ?thesis using glob-def by simp
qed

lemma globEA[elim]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat
and n ′::nat

assumes ∃ i≥n. c t i
and eval c t t ′ n (2b(γ))
and n ′≥〈c ⇐ t〉n

shows eval c t t ′ n ′ γ
proof (cases)
assume ∃ i≥n ′. c t i
with 〈n ′≥〈c ⇐ t〉n〉 have the-enat (〈c #n ′ inf-llist t〉) ≥ the-enat (〈c #n inf-llist t〉)
using nAct-mono-lNact 〈∃ i≥n. c t i〉 by simp

moreover from 〈eval c t t ′ n (2b(γ))〉 have eval c t t ′ n (λt n. ∀n ′≥n. γ t n ′)
using glob-def by simp

hence ∀ x≥the-enat 〈c #enat ninf-llist t〉. γ (lnth (πcinf-llist t @l inf-llist t ′)) x
using validCE-act 〈∃ i≥n. c t i〉 by blast

ultimately have
γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #n ′ inf-llist t〉)) by simp

with 〈∃ i≥n ′. c t i〉 show ?thesis using validCI-act by blast
next
assume ¬(∃ i≥n ′. c t i)
from 〈eval c t t ′ n (2b(γ))〉 have eval c t t ′ n (λt n. ∀n ′≥n. γ t n ′) using glob-def by simp
hence ∀ x≥the-enat 〈c #enat ninf-llist t〉. γ (lnth (πcinf-llist t @l inf-llist t ′)) x
using validCE-act 〈∃ i≥n. c t i〉 by blast

moreover have c↓t(n ′) ≥ the-enat (〈c #n inf-llist t〉)
proof −
have 〈c #n inf-llist t〉≤l length (πc(inf-llist t)) using nAct-le-proj by metis
moreover from 〈¬ (∃ i≥n ′. c t i)〉 have l length (πc(inf-llist t)) 6=∞
by (metis llength-eq-infty-conv-lfinite lnth-inf-llist proj-finite2)

ultimately have the-enat(〈c #n inf-llist t〉)≤the-enat(l length (πc(inf-llist t))) by simp
moreover from 〈∃ i≥n. c t i〉 〈¬ (∃ i≥n ′. c t i)〉 have n ′>〈c ∧ t〉
using lActive-active by (meson leI le-eq-less-or-eq)

hence c↓t(n ′) > the-enat (l length (πc(inf-llist t))) − 1
using cnf2bhv-greater-llength by simp

ultimately show ?thesis by simp
qed
ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(n ′)) by simp
with 〈∃ i≥n. c t i〉 〈¬(∃ i≥n ′. c t i)〉 show ?thesis using validCI-cont by blast

qed

lemma globEANow:
fixes c t t ′ n i γ

224

D.20 Temporal Operators

assumes n ≤ i
and c t i
and eval c t t ′ n (2bγ)

shows eval c t t ′ i γ
proof −
from 〈 c t i〉 〈n ≤ i〉 have ∃ i≥n. c t i by auto
moreover from 〈n ≤ i〉 have 〈c ⇐ t〉n ≤ i using dual-order .trans lNactLe by blast
ultimately show ?thesis using globEA[of n c t t ′ γ i] 〈eval c t t ′ n (2bγ)〉 by simp

qed

lemma globEN [elim]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat
and n ′::nat

assumes ¬(∃ i≥n. c t i)
and eval c t t ′ n (2b(γ))
and n ′≥n

shows eval c t t ′ n ′ γ
proof cases
assume ∃ i. c t i
moreover from 〈eval c t t ′ n (2b(γ))〉 have eval c t t ′ n (λt n. ∀n ′≥n. γ t n ′)
using glob-def by simp

ultimately have ∀ x≥c↓tn. γ (lnth (πcinf-llist t @l inf-llist t ′)) x
using validCE-cont[of c t n t ′ λt n. ∀n ′≥n. γ t n ′] 〈¬(∃ i≥n. c t i)〉 by blast

moreover from 〈n ′≥n〉 have c↓t(n ′) ≥ c↓t(n) using cnf2bhv-mono by simp
ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(n ′)) by simp
moreover from 〈¬(∃ i≥n. c t i)〉 〈n ′≥n〉 have ¬(∃ i≥n ′. c t i) by simp
ultimately show ?thesis using validCI-cont 〈∃ i. c t i〉 by blast

next
assume ¬(∃ i. c t i)
moreover from 〈eval c t t ′ n (2b(γ))〉 have eval c t t ′ n (λt n. ∀n ′≥n. γ t n ′)
using glob-def by simp

ultimately have ∀n ′≥n. γ (lnth (πcinf-llist t @l inf-llist t ′)) n ′

using 〈¬(∃ i. c t i)〉 validCE-not-act[where γ=λt n. ∀n ′≥n. γ t n ′] by blast
with 〈¬(∃ i. c t i)〉 〈n ′≥n〉 show ?thesis using validCI-not-act by blast

qed

D.20.5 Until Operator
definition until :: ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool)
⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) (infixl Ub 21)
where γ ′ Ub γ ≡ λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)

lemma untilIA[intro]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp

225

D Remaining Rules of the Calculus

and n::nat
and n ′::nat

assumes ∃ i≥n. c t i
and n ′≥〈c ⇐ t〉n
and [[∃ i≥n ′. c t i]] =⇒ ∃n ′′≥〈c ⇐ t〉n ′. n ′′≤ 〈c → t〉n ′ ∧ eval c t t ′ n ′′ γ ∧

(∀n ′′′≥〈c → t〉n. n ′′′< 〈c ⇐ t〉n ′′

−→ (∃n ′′′′≥〈c ⇐ t〉n ′′′. n ′′′′≤ 〈c → t〉n ′′′ ∧ eval c t t ′ n ′′′′ γ ′))
and [[¬(∃ i≥n ′. c t i)]] =⇒ eval c t t ′ n ′ γ ∧

(∀n ′′≥〈c → t〉n. n ′′< n ′

−→ ((∃ i≥n ′′. c t i) ∧ (∃n ′′′≥〈c ⇐ t〉n ′′. n ′′′≤ 〈c → t〉n ′′ ∧ eval c t t ′ n ′′′ γ ′)) ∨
(¬(∃ i≥n ′′. c t i) ∧ eval c t t ′ n ′′ γ ′))

shows eval c t t ′ n (γ ′ Ub γ)
proof cases
assume ∃ i ′≥n ′. c t i ′

with assms(3) obtain n ′′ where n ′′≥〈c ⇐ t〉n ′ and n ′′≤ 〈c → t〉n ′ and eval c t t ′ n ′′ γ
and

a1 : ∀n ′′′≥〈c → t〉n. n ′′′< 〈c ⇐ t〉n ′′

−→ (∃n ′′′′≥〈c ⇐ t〉n ′′′. n ′′′′≤ 〈c → t〉n ′′′ ∧ eval c t t ′ n ′′′′ γ ′) by blast
hence ∃ i ′≥n ′′. c t i ′ using 〈∃ i ′≥n ′. c t i ′〉 nxtActI by blast
with 〈eval c t t ′ n ′′ γ〉 have
γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #n ′′ inf-llist t〉))
using validCE-act by blast

moreover have the-enat (〈c #n inf-llist t〉) ≤ the-enat (〈c #n ′′ inf-llist t〉)
proof −
from 〈〈c ⇐ t〉n≤n ′〉 have 〈c #n inf-llist t〉 ≤ 〈c #n ′ inf-llist t〉
using nAct-mono-lNact by simp

moreover from 〈〈c ⇐ t〉n ′≤n ′′〉 have 〈c #n ′ inf-llist t〉 ≤ 〈c #n ′′ inf-llist t〉
using nAct-mono-lNact by simp

ultimately have 〈c #n inf-llist t〉 ≤ 〈c #n ′′ inf-llist t〉 by simp
moreover have 〈c #n ′ inf-llist t〉 6= ∞ by simp
ultimately show ?thesis by simp

qed
moreover have ∃ i ′≥n. c t i ′

proof −
from 〈∃ i ′≥n ′. c t i ′〉 obtain i ′ where i ′≥n ′ and c t i ′ by blast
with 〈n ′≥〈c ⇐ t〉n〉 have i ′≥ n using lNactGe le-trans by blast
with 〈 c t i ′〉 show ?thesis by blast

qed
moreover have ∀n ′≥the-enat 〈c #ninf-llist t〉. n ′ < (the-enat 〈c #enat n ′′inf-llist t〉)
−→ γ ′ (lnth (πcinf-llist t @l inf-llist t ′)) n ′

proof
fix x::nat show x≥the-enat (〈c #n inf-llist t〉)
−→ x < (the-enat 〈c #enat n ′′inf-llist t〉) −→ γ ′ (lnth (πcinf-llist t @l inf-llist t ′)) x

proof (rule HOL.impI [OF HOL.impI])
assume x≥the-enat (〈c #n inf-llist t〉) and x < (the-enat 〈c #enat n ′′inf-llist t〉)
moreover have the-enat (〈c #enat n ′′ inf-llist t〉) = 〈c #enat n ′′ inf-llist t〉 by simp
ultimately have x<l length (πc(inf-llist t)) using nAct-le-proj[of c n ′′ inf-llist t]
by (metis enat-ord-simps(2) less-le-trans)

hence x<l length (πc(inf-llist t)) by simp

226

D.20 Temporal Operators

then obtain n ′::nat where x=〈c #n ′ inf-llist t〉 using nAct-exists by blast
moreover from 〈enat x < l length (πc(inf-llist t))〉 〈enat x = 〈c #enat n ′ inf-llist t〉〉
have ∃ i≥n ′. c t i using nAct-less-llength-active by force
then obtain i where i≥n ′ and c t i and ¬ (∃ k≥n ′. k < i ∧ c t k)
using nact-exists by blast

moreover have enat i − 1 < l length (inf-llist t) by (simp add: one-enat-def)
ultimately have x=〈c #i inf-llist t〉 using one-enat-def nAct-not-active-same by simp
moreover have 〈c #i inf-llist t〉6=∞ by simp
ultimately have x=the-enat(〈c #i inf-llist t〉) by fastforce
from 〈x≥the-enat (〈c #n inf-llist t〉)〉 〈x=the-enat(〈c #i inf-llist t〉)〉

have the-enat (〈c #i inf-llist t〉)≥the-enat (〈c #n inf-llist t〉) by simp
with 〈 c t i〉 have i≥〈c → t〉n using active-geq-nxtAct by simp
moreover have i < 〈c ⇐ t〉n ′′

proof −
have the-enat 〈c #enat n ′′inf-llist t〉 = 〈c #enat n ′′inf-llist t〉 by simp
with 〈x < (the-enat 〈c #enat n ′′inf-llist t〉)〉 and 〈x=〈c #i inf-llist t〉〉 have
〈c #i inf-llist t〉<〈c #n ′′ inf-llist t〉 by (metis enat-ord-simps(2))

hence i<n ′′ using nAct-strict-mono-back[of c i inf-llist t n ′′] by auto
with 〈 c t i〉 show ?thesis using lNact-notActive leI by blast

qed
ultimately obtain n ′′ where eval c t t ′ n ′′ γ ′ and n ′′≥〈c ⇐ t〉i and n ′′≤〈c → t〉i
using a1 by auto

moreover have ∃ i ′≥n ′′. c t i ′

using 〈 c t i〉 〈n ′′≤〈c → t〉i〉 less-or-eq-imp-le nxtAct-active by auto
ultimately have
γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #n ′′ inf-llist t〉))
using validCE-act[of n ′′ c t t ′ γ ′] by blast

moreover from 〈n ′′≥〈c ⇐ t〉i〉 and 〈n ′′≤〈c → t〉i〉

have the-enat (〈c #n ′′ inf-llist t〉)=the-enat (〈c #i inf-llist t〉) using nAct-same by simp
hence the-enat (〈c #n ′′ inf-llist t〉) = x
by (simp add: 〈x = the-enat 〈c #enat iinf-llist t〉〉)

ultimately show γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) x by simp
qed

qed
ultimately have eval c t t ′ n (λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′))
using validCI-act[where γ=λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)] by blast

thus ?thesis using until-def by simp
next
assume ¬(∃ i ′≥n ′. c t i ′)
with assms(4) have eval c t t ′ n ′ γ and a2 : ∀n ′′≥〈c → t〉n. n ′′< n ′

−→ ((∃ i≥n ′′. c t i) ∧ (∃n ′′′≥〈c ⇐ t〉n ′′. n ′′′≤ 〈c → t〉n ′′ ∧ eval c t t ′ n ′′′ γ ′)) ∨
(¬(∃ i≥n ′′. c t i) ∧ eval c t t ′ n ′′ γ ′) by auto

with 〈¬(∃ i ′≥n ′. c t i ′)〉 〈eval c t t ′ n ′ γ〉 〈∃ i≥n. c t i〉 have
γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(n ′)) using validCE-cont by blast

moreover have c↓t(n ′) ≥ the-enat (〈c #n inf-llist t〉)
proof −
from 〈(∃ i≥n. c t i)〉 〈¬(∃ i ′≥n ′. c t i ′)〉 have n ′ ≥ 〈c ∧ t〉 using lActive-less by auto
hence c↓t(n ′) ≥ the-enat (l length (πc(inf-llist t))) − 1 using cnf2bhv-ge-llength by simp
moreover have the-enat(l length (πc(inf-llist t))) − 1 ≥ the-enat(〈c #n inf-llist t〉)

227

D Remaining Rules of the Calculus

proof −
from 〈∃ i≥n. c t i〉 have l length (πc(inf-llist t)) ≥ eSuc (〈c #n inf-llist t〉)
using nAct-llength-proj by simp

moreover from 〈¬(∃ i ′≥n ′. c t i ′)〉 have lfinite (πc(inf-llist t))
using proj-finite2 [of inf-llist t] by simp

hence l length (πc(inf-llist t)) 6=∞ using l length-eq-infty-conv-lfinite by auto
ultimately have the-enat (l length (πc(inf-llist t))) ≥ the-enat(eSuc (〈c #n inf-llist t〉))
by simp

moreover have 〈c #n inf-llist t〉6=∞ by simp
ultimately have the-enat (l length (πc(inf-llist t))) ≥ Suc (the-enat (〈c #n inf-llist t〉))
using the-enat-eSuc by simp

thus ?thesis by simp
qed
ultimately show ?thesis by simp

qed
moreover have ∀ x≥the-enat 〈c #ninf-llist t〉. x < (c↓t(n ′))
−→ γ ′ (lnth (πcinf-llist t @l inf-llist t ′)) x

proof
fix x::nat show
x≥the-enat 〈c #ninf-llist t〉 −→ x < (c↓t(n ′)) −→ γ ′ (lnth (πcinf-llist t @l inf-llist t ′)) x

proof (rule HOL.impI [OF HOL.impI])
assume x≥the-enat 〈c #ninf-llist t〉 and x < (c↓t(n ′))
show γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) x
proof (cases)
assume (x ≥ l length (πc(inf-llist t)))
hence lfinite (πc(inf-llist t))
using l length-geq-enat-lfiniteD[of πc(inf-llist t) x] by simp

then obtain z where ∀n ′′>z. ¬ c t n ′′ using proj-finite-bound by blast
moreover have c t 〈c → t〉n by (simp add: 〈∃ i≥n. c t i〉 nxtActI)
ultimately have 〈c ∧ t〉≥〈c → t〉n using lActive-greatest[of c t 〈c → t〉n] by blast
moreover have c↑t(x) ≥ 〈c ∧ t〉 by simp
ultimately have c↑t(x) ≥ 〈c → t〉n by arith
moreover have ¬ (∃ i ′≥c↑t(x). c t i ′)
proof −
from 〈lfinite (πc(inf-llist t))〉 〈∃ i≥n. c t i〉

have c↑t(the-enat (l length (πc(inf-llist t)))) = Suc (〈c ∧ t〉)
using bhv2cnf-lActive by blast

moreover from 〈(x ≥ l length (πc(inf-llist t)))〉

have x ≥ the-enat(l length (πc(inf-llist t)))
using the-enat-mono by fastforce

hence c↑t(x) ≥ c↑t(the-enat (l length (πc(inf-llist t))))
using bhv2cnf-mono[of the-enat (l length (πc(inf-llist t))) x] by simp

ultimately have c↑t(x) ≥ Suc (〈c ∧ t〉) by simp
hence c↑t(x) > 〈c ∧ t〉 by simp
with 〈∀n ′′>z. ¬ c t n ′′〉 show ?thesis using lActive-greater-active-all by simp

qed
moreover have c↑tx < n ′

proof −
from 〈lfinite (πc(inf-llist t))〉

228

D.20 Temporal Operators

have l length (πcinf-llist t) = the-enat (l length (πcinf-llist t))
by (simp add: enat-the-enat llength-eq-infty-conv-lfinite)

with 〈x ≥ l length (πc(inf-llist t))〉 have x≥the-enat (l length (πcinf-llist t))
using enat-ord-simps(1) by fastforce

moreover from 〈∃ i≥n. c t i〉 have l length (πcinf-llist t)≥1 using proj-one by force
ultimately have the-enat (l length (πcinf-llist t)) − 1 ≤ x by simp
with 〈x < (c↓t(n ′))〉 show ?thesis using c2p-mono-p2c-strict by simp

qed
ultimately have eval c t t ′ (c↑t(x)) γ ′ using a2 by blast
hence γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(c↑t(x)))
using validCE-cont[of c t c↑t(x) t ′ γ ′] 〈∃ i≥n. c t i〉 〈¬ (∃ i ′≥c↑t(x). c t i ′)〉 by blast

moreover from 〈(x ≥ l length (πc(inf-llist t)))〉

have (enat x ≥ l length (πc(inf-llist t))) by auto
with 〈lfinite (πc(inf-llist t))〉 have l length (πc(inf-llist t)) 6=∞
using l length-eq-infty-conv-lfinite by auto

with 〈(x ≥ l length (πc(inf-llist t)))〉

have the-enat(l length (πc(inf-llist t))) − 1 ≤ x by auto
ultimately show ?thesis using cnf2bhv-bhv2cnf [of c t x] by simp

next
assume ¬(x ≥ l length (πc(inf-llist t)))
hence x<l length (πc(inf-llist t)) by simp
then obtain n ′′::nat where x=〈c #n ′′ inf-llist t〉 using nAct-exists by blast
moreover from 〈enat x < l length (πc(inf-llist t))〉 〈enat x = 〈c #enat n ′′ inf-llist t〉〉
have ∃ i≥n ′′. c t i using nAct-less-llength-active by force

then obtain i where i≥n ′′ and c t i and ¬ (∃ k≥n ′′. k < i ∧ c t k)
using nact-exists by blast

moreover have enat i − 1 < l length (inf-llist t) by (simp add: one-enat-def)
ultimately have x=〈c #i inf-llist t〉 using one-enat-def nAct-not-active-same by simp
moreover have 〈c #i inf-llist t〉6=∞ by simp
ultimately have x=the-enat(〈c #i inf-llist t〉) by fastforce
from 〈x≥the-enat (〈c #n inf-llist t〉)〉 〈x=the-enat(〈c #i inf-llist t〉)〉

have the-enat (〈c #i inf-llist t〉)≥the-enat (〈c #n inf-llist t〉) by simp
with 〈 c t i〉 have i≥〈c → t〉n using active-geq-nxtAct by simp
moreover from 〈x=〈c #i inf-llist t〉〉 〈x < l length (πc(inf-llist t))〉

have ∃ i ′. i ≤ enat i ′ ∧ c t i ′ using nAct-less-llength-active[of x c inf-llist t i] by simp
hence ∃ i ′≥i. c t i ′ by simp
moreover have i<n ′

proof −
from 〈∃ i≥n. c t i〉 〈¬(∃ i ′≥n ′. c t i ′)〉 have n ′≥〈c ∧ t〉 using lActive-less by auto
hence c↓t(n ′)≥the-enat(l length (πc(inf-llist t))) − 1 using cnf2bhv-ge-llength by simp
with 〈x<l length (πc(inf-llist t))〉 show ?thesis
using 〈¬ (∃ i ′≥n ′. c t i ′)〉 〈 c t i〉 le-neq-implies-less nat-le-linear by blast

qed
ultimately obtain n ′′′ where eval c t t ′ n ′′′ γ ′ and n ′′′≥〈c ⇐ t〉i and n ′′′≤〈c → t〉i
using a2 by blast

moreover from 〈 c t i〉 have c t 〈c → t〉i using nxtActI by auto
with 〈n ′′′≤〈c → t〉i〉 have ∃ i ′≥n ′′′. c t i ′ using less-or-eq-imp-le by blast
ultimately have
γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #n ′′′ inf-llist t〉))

229

D Remaining Rules of the Calculus

using validCE-act[of n ′′′ c t t ′ γ ′] by blast
moreover from 〈n ′′′≥〈c ⇐ t〉i〉 and 〈n ′′′≤〈c → t〉i〉

have the-enat (〈c #n ′′′ inf-llist t〉)=the-enat (〈c #i inf-llist t〉)
using nAct-same by simp

hence the-enat (〈c #n ′′′ inf-llist t〉) = x
by (simp add: 〈x = the-enat 〈c #enat iinf-llist t〉〉)

ultimately have γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat x) by simp
thus ?thesis by simp

qed
qed

qed
ultimately have eval c t t ′ n (λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′))
using 〈∃ i≥n. c t i〉

validCI-act[of n c t λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′) t ′]
by blast

thus ?thesis using until-def by simp
qed

lemma untilIN [intro]:
fixes c:: ′id
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat
and n ′::nat

assumes ¬(∃ i≥n. c t i)
and n ′≥n
and eval c t t ′ n ′ γ
and a1 :

∧
n ′′. [[n≤n ′′; n ′′<n ′]] =⇒ eval c t t ′ n ′′ γ ′

shows eval c t t ′ n (γ ′ Ub γ)
proof cases
assume ∃ i. c t i
moreover from assms(1) assms(2) have ¬(∃ i ′≥n ′. c t i ′) by simp
ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(n ′))
using validCE-cont[of c t n ′ t ′ γ] 〈eval c t t ′ n ′ γ〉 by blast

moreover from 〈n ′≥n〉 have c↓t(n ′) ≥ c↓t(n) using cnf2bhv-mono by simp
moreover have ∀ x::nat≥ c↓t(n). x<c↓t(n ′) −→ γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) x
proof (rule HOL.allI [OF HOL.impI [OF HOL.impI]])
fix x assume x≥c↓t(n) and x<c↓t(n ′)

from 〈¬(∃ i≥n. c t i)〉 have 〈c ∧ t〉 ≤ n using 〈∃ i. c t i〉 lActive-less by auto
with 〈x≥c↓t(n)〉 have c↑t(x) ≥ n using p2c-mono-c2p by simp
moreover from 〈〈c ∧ t〉 ≤ n〉 〈c↓t(n) ≤ x〉 have x ≥ the-enat (l length (πc(inf-llist t))) − 1
using cnf2bhv-ge-llength dual-order .trans by blast

with 〈x<c↓t(n ′)〉 have c↑t(x) < n ′ using c2p-mono-p2c-strict[of c t x n ′] by simp
moreover from 〈¬ (∃ i≥n. c t i)〉 〈c↑t(x) ≥ n〉 have ¬ (∃ i ′′≥c↑t(x). c t i ′′) by auto
ultimately have eval c t t ′ (c↑t(x)) γ ′ using a1 [of c↑t(x)] by simp
with 〈¬ (∃ i ′′≥c↑tx. c t i ′′)〉

have γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(c↑t(x)))
using validCE-cont[of c t c↑t(x) t ′ γ ′] 〈∃ i. c t i〉 by blast

230

D.20 Temporal Operators

moreover have x ≥ the-enat (l length (πc(inf-llist t))) − 1
using 〈c↓t(n) ≤ x〉 cnf2bhv-def by auto

ultimately show γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (x)
using cnf2bhv-bhv2cnf by simp

qed
ultimately have eval c t t ′ n (λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′))
using validCI-cont[of c t n λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′) t ′]
〈∃ i. c t i〉 〈¬(∃ i ′≥n. c t i ′)〉 by blast

thus ?thesis using until-def by simp
next
assume ¬(∃ i. c t i)
with assms have ∃n ′′≥n. γ (lnth (πcinf-llist t @l inf-llist t ′)) n ′′ ∧

(∀n ′≥n. n ′ < n ′′ −→ γ ′ (lnth (πcinf-llist t @l inf-llist t ′)) n ′)
using validCE-not-act by blast

with 〈¬(∃ i. c t i)〉

have eval c t t ′ n (λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′))
using validCI-not-act[where γ=λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)]
by blast

thus ?thesis using until-def by simp
qed

lemma untilEA[elim]:
fixes n::nat
and n ′::nat
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and c:: ′id

assumes ∃ i≥n. c t i
and eval c t t ′ n (γ ′ Ub γ)

shows ∃n ′≥〈c → t〉n.
((∃ i≥n ′. c t i) ∧ (∀n ′′≥ 〈c ⇐ t〉n ′. n ′′≤〈c → t〉n ′ −→ eval c t t ′ n ′′ γ)
∧ (∀n ′′≥〈c ⇐ t〉n. n ′′ < 〈c ⇐ t〉n ′ −→ eval c t t ′ n ′′ γ ′) ∨

(¬(∃ i≥n ′. c t i)) ∧ eval c t t ′ n ′ γ ∧ (∀n ′′≥〈c ⇐ t〉n. n ′′ < n ′ −→ eval c t t ′ n ′′ γ ′))
proof −
from 〈eval c t t ′ n (γ ′ Ub γ)〉

have eval c t t ′ n (λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)) using until-def
by simp
with 〈∃ i≥n. c t i〉 obtain x
where x≥the-enat 〈c #enat ninf-llist t〉 and γ (lnth (πcinf-llist t @l inf-llist t ′)) x and
a1 : ∀ x ′≥the-enat 〈c #enat ninf-llist t〉. x ′ < x −→ γ ′ (lnth (πcinf-llist t @l inf-llist t ′)) x ′

using validCE-act[where γ=λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)] by blast
thus ?thesis
proof (cases)
assume x ≥ l length (πc(inf-llist t))
moreover from 〈(x ≥ l length (πc(inf-llist t)))〉 have l length (πc(inf-llist t)) 6=∞
by (metis infinity-ileE)

moreover from 〈∃ i≥n. c t i〉 have l length (πc(inf-llist t))≥1
using proj-one[of inf-llist t] by auto

ultimately have the-enat (l length (πc(inf-llist t))) − 1 < x

231

D Remaining Rules of the Calculus

by (metis One-nat-def Suc-ile-eq antisym-conv2 diff-Suc-less enat-ord-simps(2)
enat-the-enat less-imp-diff-less one-enat-def)

hence x = c↓t(c↑t(x)) using cnf2bhv-bhv2cnf by simp
with 〈γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) x〉

have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(c↑t(x))) by simp
moreover have ¬(∃ i≥c↑t(x). c t i)
proof −
from 〈x ≥ l length (πc(inf-llist t))〉 have lfinite (πc(inf-llist t))
using l length-geq-enat-lfiniteD[of πc(inf-llist t) x] by simp

then obtain z where ∀n ′′>z. ¬ c t n ′′ using proj-finite-bound by blast
moreover from 〈the-enat (l length (πc(inf-llist t))) − 1 < x〉 have 〈c ∧ t〉 < c↑t(x)
using bhv2cnf-greater-lActive by simp

ultimately show ?thesis using lActive-greater-active-all by simp
qed
ultimately have eval c t t ′ (c↑tx) γ
using 〈∃ i≥n. c t i〉 validCI-cont[of c t c↑t(x)] by blast

moreover have c↑t(x) ≥ 〈c → t〉n
proof −
from 〈x ≥ l length (πc(inf-llist t))〉 have lfinite (πc(inf-llist t))
using l length-geq-enat-lfiniteD[of πc(inf-llist t) x] by simp

then obtain z where ∀n ′′>z. ¬ c t n ′′ using proj-finite-bound by blast
moreover from 〈∃ i≥n. c t i〉 have c t 〈c → t〉n using nxtActI by simp
ultimately have 〈c ∧ t〉≥〈c → t〉n using lActive-greatest by fastforce
moreover have c↑t(x) ≥ 〈c ∧ t〉 by simp
ultimately show c↑t(x) ≥ 〈c → t〉n by arith

qed
moreover have ∀n ′′≥〈c ⇐ t〉n. n ′′ < (c↑tx) −→ eval c t t ′ n ′′ γ ′

proof
fix n ′′ show 〈c ⇐ t〉n ≤ n ′′ −→ n ′′ < c↑tx −→ eval c t t ′ n ′′ γ ′

proof (rule HOL.impI [OF HOL.impI])
assume 〈c ⇐ t〉n ≤ n ′′ and n ′′ < c↑tx
show eval c t t ′ n ′′ γ ′

proof cases
assume ∃ i≥n ′′. c t i
with 〈n ′′≥〈c ⇐ t〉n〉 have the-enat (〈c #n ′′ inf-llist t〉) ≥ the-enat (〈c #n inf-llist t〉)
using nAct-mono-lNact 〈∃ i≥n. c t i〉 by simp

moreover have the-enat (〈c #n ′′ inf-llist t〉)<x
proof −
from 〈∃ i≥n ′′. c t i〉 have eSuc 〈c #enat n ′′inf-llist t〉 ≤ l length (πcinf-llist t)
using nAct-llength-proj by auto

with 〈x ≥ l length (πc(inf-llist t))〉 have eSuc 〈c #enat n ′′inf-llist t〉 ≤ x by simp
moreover have 〈c #enat n ′′inf-llist t〉6=∞ by simp
ultimately have Suc (the-enat(〈c #enat n ′′inf-llist t〉)) ≤ x
by (metis enat.distinct(2) the-enat.simps the-enat-eSuc the-enat-mono)

thus ?thesis by simp
qed
ultimately have
γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #n ′′ inf-llist t〉))
using a1 by auto

232

D.20 Temporal Operators

with 〈∃ i≥n ′′. c t i〉 show ?thesis using validCI-act by blast
next
assume ¬(∃ i≥n ′′. c t i)
moreover have c↓t(n ′′) ≥ the-enat (〈c #n inf-llist t〉)
proof −
have 〈c #n inf-llist t〉≤l length (πc(inf-llist t)) using nAct-le-proj by metis
moreover from 〈¬ (∃ i≥n ′′. c t i)〉 have l length (πc(inf-llist t)) 6=∞
by (metis llength-eq-infty-conv-lfinite lnth-inf-llist proj-finite2)

ultimately have the-enat(〈c #n inf-llist t〉)≤the-enat(l length (πc(inf-llist t)))
by simp

moreover from 〈∃ i≥n. c t i〉 〈¬ (∃ i≥n ′′. c t i)〉 have n ′′>〈c ∧ t〉
using lActive-active by (meson leI le-eq-less-or-eq)

hence c↓t(n ′′) > the-enat (l length (πc(inf-llist t))) − 1
using cnf2bhv-greater-llength by simp

ultimately show ?thesis by simp
qed
moreover from 〈¬(∃ i≥n ′′. c t i)〉 have 〈c ∧ t〉 ≤ n ′′

using assms(1) lActive-less by auto
with 〈n ′′ < c↑tx〉 have c↓t(n ′′)<x using p2c-mono-c2p-strict by simp

ultimately have γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(n ′′))
using a1 by auto

with 〈∃ i≥n. c t i〉 〈¬(∃ i≥n ′′. c t i)〉 show ?thesis using validCI-cont by blast
qed

qed
qed
ultimately show ?thesis using 〈¬(∃ i≥c↑t(x). c t i)〉 by blast

next
assume ¬(x ≥ l length (πc(inf-llist t)))
hence x<l length (πc(inf-llist t)) by simp
then obtain n ′::nat where x=〈c #n ′ inf-llist t〉 using nAct-exists by blast
with 〈enat x < l length (πc(inf-llist t))〉 have ∃ i≥n ′. c t i
using nAct-less-llength-active by force

then obtain i where i≥n ′ and c t i and ¬ (∃ k≥n ′. k < i ∧ c t k)
using nact-exists by blast

moreover have (∀n ′′≥ 〈c ⇐ t〉i. n ′′≤〈c → t〉i −→ eval c t t ′ n ′′ γ)
proof
fix n ′′ show 〈c ⇐ t〉i ≤ n ′′ −→ n ′′ ≤ 〈c → t〉i −→ eval c t t ′ n ′′ γ
proof(rule HOL.impI [OF HOL.impI])
assume 〈c ⇐ t〉i ≤ n ′′ and n ′′ ≤ 〈c → t〉i
hence the-enat (〈c #enat i inf-llist t〉) = the-enat (〈c #enat n ′′ inf-llist t〉)
using nAct-same by simp

moreover from 〈 c t i〉 have c t 〈c → t〉i using nxtActI by auto
with 〈n ′′ ≤ 〈c → t〉i〉 have ∃ i≥n ′′. c t i using dual-order .strict-implies-order by auto
moreover have
γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #enat i inf-llist t〉))

proof −
have enat i − 1 < l length (inf-llist t) by (simp add: one-enat-def)
with 〈x=〈c #n ′ inf-llist t〉〉 〈i≥n ′〉 〈¬ (∃ k≥n ′. k < i ∧ c t k)〉

have x=〈c #i inf-llist t〉

233

D Remaining Rules of the Calculus

using one-enat-def nAct-not-active-same by simp
moreover have 〈c #i inf-llist t〉6=∞ by simp
ultimately have x=the-enat(〈c #i inf-llist t〉) by fastforce
thus ?thesis using 〈γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) x〉 by blast

qed
with 〈the-enat (〈c #enat i inf-llist t〉) = the-enat (〈c #enat n ′′ inf-llist t〉)〉 have
γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #enat n ′′ inf-llist t〉)) by simp

ultimately show eval c t t ′ n ′′ γ using validCI-act by blast
qed

qed
moreover have i≥〈c → t〉n
proof −
have enat i − 1 < l length (inf-llist t) by (simp add: one-enat-def)
with 〈x=〈c #n ′ inf-llist t〉〉 〈i≥n ′〉 〈¬ (∃ k≥n ′. k < i ∧ c t k)〉 have x=〈c #i inf-llist t〉
using one-enat-def nAct-not-active-same by simp

moreover have 〈c #i inf-llist t〉6=∞ by simp
ultimately have x=the-enat(〈c #i inf-llist t〉) by fastforce
with 〈x≥the-enat (〈c #n inf-llist t〉)〉

have the-enat (〈c #i inf-llist t〉)≥the-enat (〈c #n inf-llist t〉) by simp
with 〈 c t i〉 show ?thesis using active-geq-nxtAct by simp

qed
moreover have ∀n ′′≥〈c ⇐ t〉n. n ′′ < 〈c ⇐ t〉i −→ eval c t t ′ n ′′ γ ′

proof
fix n ′′ show 〈c ⇐ t〉n ≤ n ′′ −→ n ′′ < 〈c ⇐ t〉i −→ eval c t t ′ n ′′ γ ′

proof (rule HOL.impI [OF HOL.impI])
assume 〈c ⇐ t〉n ≤ n ′′ and n ′′ < 〈c ⇐ t〉i
moreover have 〈c ⇐ t〉i≤i by simp
ultimately have ∃ i≥n ′′. c t i using 〈 c t i〉 by (meson less-le less-le-trans)
with 〈n ′′≥〈c ⇐ t〉n〉 have the-enat (〈c #n ′′ inf-llist t〉) ≥ the-enat (〈c #n inf-llist t〉)
using nAct-mono-lNact 〈∃ i≥n. c t i〉 by simp

moreover have the-enat (〈c #n ′′ inf-llist t〉) < x
proof −
from 〈n ′′ < 〈c ⇐ t〉i〉 〈〈c ⇐ t〉i ≤ i〉 have n ′′ < i
using dual-order .strict-trans1 by arith

with 〈n ′′ < 〈c ⇐ t〉i〉 have ∃ i ′≥n ′′. i ′ < i ∧ c t i ′

using lNact-least[of i n ′′] by fastforce
hence 〈c #n ′′ inf-llist t〉 < 〈c #i inf-llist t〉 using nAct-less by auto
moreover have enat i − 1 < l length (inf-llist t) by (simp add: one-enat-def)
with 〈x=〈c #n ′ inf-llist t〉〉 〈i≥n ′〉 〈¬ (∃ k≥n ′. k < i ∧ c t k)〉

have x=〈c #i inf-llist t〉
using one-enat-def nAct-not-active-same by simp

moreover have 〈c #n ′′ inf-llist t〉6=∞ by simp
ultimately show ?thesis by (metis enat-ord-simps(2) enat-the-enat)

qed
ultimately have
γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (the-enat (〈c #n ′′ inf-llist t〉))
using a1 by auto

with 〈∃ i≥n ′′. c t i〉 show eval c t t ′ n ′′ γ ′ using validCI-act by blast
qed

234

D.20 Temporal Operators

qed
ultimately show ?thesis using 〈 c t i〉 by auto

qed
qed

lemma untilEN [elim]:
fixes n::nat
and n ′::nat
and t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and c:: ′id

assumes @ i. i≥n ∧ c t i
and eval c t t ′ n (γ ′ Ub γ)

shows ∃n ′≥n. eval c t t ′ n ′ γ ∧
(∀n ′′≥n. n ′′ < n ′ −→ eval c t t ′ n ′′ γ ′)

proof cases
assume ∃ i. c t i
moreover from 〈eval c t t ′ n (γ ′ Ub γ)〉

have eval c t t ′ n (λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′))
using until-def by simp

ultimately have ∃n ′′≥c↓t(n). γ (lnth (πcinf-llist t @l inf-llist t ′)) n ′′ ∧
(∀n ′≥c↓t(n). n ′ < n ′′ −→ γ ′ (lnth (πcinf-llist t @l inf-llist t ′)) n ′)
using validCE-cont[where γ=λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)]
〈@ i. i≥n ∧ c t i〉 by blast

then obtain x where x≥c↓t(n) and γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) x
and ∀ x ′≥c↓t(n). x ′<x −→ γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) x ′ by auto

moreover from 〈¬(∃ i≥n. c t i)〉 have the-enat (l length (πc(inf-llist t))) − 1 < x
proof −
have 〈c ∧ t〉 < n
proof (rule ccontr)
assume ¬〈c ∧ t〉 < n
hence 〈c ∧ t〉 ≥ n by simp
moreover from 〈∃ i. c t i〉 〈¬ (∃ i≥n. c t i)〉 have c t 〈c ∧ t〉
using lActive-active less-or-eq-imp-le by blast

ultimately show False using 〈¬ (∃ i≥n. c t i)〉 by simp
qed
hence the-enat (l length (πc(inf-llist t))) − 1 < c↓t(n)
using cnf2bhv-greater-llength by simp

with 〈x≥c↓t(n)〉 show ?thesis by simp
qed
hence x = c↓t(c↑t(x)) using cnf2bhv-bhv2cnf by simp
ultimately have γ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(c↑t(x))) by simp
moreover from 〈¬(∃ i≥n. c t i)〉 have ¬(∃ i≥c↑t(x). c t i)
proof −
from 〈¬(∃ i≥n. c t i)〉 have lfinite (πc(inf-llist t)) using proj-finite2 by simp
then obtain z where ∀n ′′>z. ¬ c t n ′′ using proj-finite-bound by blast
moreover from 〈the-enat (l length (πc(inf-llist t))) − 1 < x〉 have 〈c ∧ t〉 < c↑t(x)
using bhv2cnf-greater-lActive by simp

ultimately show ?thesis using lActive-greater-active-all by simp

235

D Remaining Rules of the Calculus

qed
ultimately have eval c t t ′ (c↑t(x)) γ using validCI-cont 〈∃ i. c t i〉 by blast
moreover from 〈∃ i. c t i〉 〈¬(∃ i≥n. c t i)〉 have 〈c ∧ t〉 ≤ n
using lActive-less[of c t - n] by auto

with 〈x≥c↓t(n)〉 have n ≤ c↑t(x) using p2c-mono-c2p by blast
moreover have ∀n ′′≥n. n ′′ < c↑t(x) −→ eval c t t ′ n ′′ γ ′

proof (rule HOL.allI [OF HOL.impI [OF HOL.impI]])
fix n ′′ assume n ≤ n ′′ and n ′′ < c↑t(x)
hence c↓t(n ′′)≥c↓t(n) using cnf2bhv-mono by simp
moreover have n ′′<c↑t(x) by (simp add: 〈n ′′ < c↑tx〉)
with 〈〈c ∧ t〉 ≤ n〉 〈n ≤ n ′′〉 have c↓t(n ′′)<c↓t(c↑t(x))
using cnf2bhv-mono-strict by simp

with 〈x = c↓t(c↑t(x))〉 have c↓t(n ′′)< x by simp
ultimately have γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) (c↓t(n ′′))
using 〈∀ x ′≥c↓t(n). x ′<x −→ γ ′ (lnth ((πc(inf-llist t)) @l (inf-llist t ′))) x ′〉 by simp

moreover from 〈n ≤ n ′′〉 have @ i. i≥n ′′ ∧ c t i using 〈@ i. i≥n ∧ c t i〉 by simp
ultimately show eval c t t ′ n ′′ γ ′ using validCI-cont using 〈∃ i. c t i〉 by blast

qed
ultimately show ?thesis by auto

next
assume ¬(∃ i. c t i)
moreover from 〈eval c t t ′ n (γ ′ Ub γ)〉

have eval c t t ′ n (λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′))
using until-def by simp

ultimately have ∃n ′′≥n. γ (lnth (πcinf-llist t @l inf-llist t ′)) n ′′

∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ (lnth (πcinf-llist t @l inf-llist t ′)) n ′) using 〈¬(∃ i. c t i)〉

validCE-not-act[where γ=λ t n. ∃n ′′≥n. γ t n ′′ ∧ (∀n ′≥n. n ′ < n ′′ −→ γ ′ t n ′)] by blast
with 〈¬(∃ i. c t i)〉 show ?thesis using validCI-not-act by blast

qed

D.20.6 Weak Until
definition wuntil :: ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) ⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool)
⇒ ((nat ⇒ ′cmp) ⇒ nat ⇒ bool) (infixl Wb 20)
where γ ′ Wb γ ≡ γ ′ Ub γ ∨b 2b(γ ′)

end

end

236

D.21 Proof of Completeness

D.21 Proof of Completeness
Assume (t, t′, n)|=c γ. We show by structural induction over γ, that (t, t′, n)|=c γ can be
derived using the rules presented in Sect. 5.
Case γ is a basic behavior assertion “φ”: Since (t, t′, n)|=c γ conclude

(
∃i ≥ n : c t(i) ∧(

Πc(t)̂ t′,#n
c (t)

)
|= “φ”

)
∨
(
∃i : c t(i) ∧

(
@i ≥ n : c t(i)

)
∧
(
Πc(t)̂ t′, c⇓t(n)

)
|= “φ”

)
∨(

@i : c t(i) ∧
(
t′, n

)
|= “φ”

)
by Def. 15.

• Case ∃i ≥ n : c t(i) ∧
(
Πc(t)̂ t′,#n

c (t)
)
|= “φ”: Since ∃i ≥ n : c t(i) conclude

Πc(t)̂ t′(#n
c (t)) = val(c) ∪

(
λp ∈ port(c) : val t(c n→t)(c, p)

)
. Thus, since φ is a

basic behavior assertion and
(
Πc(t)̂ t′,#n

c (t)
)
|= “φ” conclude val(c) ∪

(
λp ∈

port(c) : val t(c n→t)(c, p)
)
|= “φ”. Thus, since ∃i ≥ n : c t(i) we can apply BaIa to

have (t, t′, n)|=c “φ”.

• Case ∃i : c t(i) ∧
(
@i ≥ n : c t(i)

)
∧
(
Πc(t)̂ t′, c⇓t(n)

)
|= “φ”: Since ∃i : c t(i) ∧

(
@i ≥

n : c t(i)
)
conclude Πc(t)̂ t′(c⇓t(n)) = t′(n− last(c, t)− 1)

)
. Thus, since φ is a basic

behavior assertion and
(
Πc(t)̂ t′, c⇓t(n)

)
|= “φ” conclude t′

(
c⇓t(n)

)
|= “φ”. Thus,

since ∃i ≥ n : c t(i) we can apply BaIn1 to have (t, t′, n)|=c “φ”.

• Case @i : c t(i) ∧
(
t′, n

)
|= “φ”: Since φ is a basic behavior assertion and

(
t′, n

)
|=

“φ” conclude t′(n) |= “φ”. Thus, since @i : c t(i) we can apply BaIn2 to have
(t, t′, n)|=c “φ”.

Case γ = “©γ′”: Since (t, t′, n)|=c γ conclude
(
∃i ≥ n : c t(i) ∧

(
Πc(t)̂ t′,#n

c (t)
)
|=

“©γ′”
)
∨
(
∃i : c t(i)∧

(
@i ≥ n : c t(i)

)
∧
(
Πc(t)̂ t′, c⇓t(n)

)
|= “©γ′”

)
∨
(
@i : c t(i)∧

(
t′, n

)
|=

“©γ′”
)
by Def. 15.

• Case ∃i ≥ n : c t(i) ∧
(
Πc(t)̂ t′,#n

c (t)
)
|= “©γ′”: We show ∃

˙
i > c

n→ t : c t(i) =⇒
∃

˙
n′ ≥ n : (∃!n ≤

˙
i < n′ : c t(i)) ∧ (t, t′, n′)|=c “γ′” and @

˙
i > c

n→ t : c t(i) =⇒
(t, t′, c n→ t+ 1)|=c “γ′” to conclude (t, t′, n)|=c γ by rule NxtIa.

– ∃
˙
i > c

n→ t : c t(i) =⇒ ∃
˙
n′ ≥ n : (∃!n ≤

˙
i < n′ : c t(i)) ∧ (t, t′, n′)|=c “γ′”:

Assume ∃
˙
i > c

n→ t : c t(i). Thus, since
(
Πc(t)̂ t′,#n

c (t)
)
|= “©γ′” conclude(

Πc(t)̂ t′,#n
c (t)+1

)
|= “γ′”. Moreover, since ∃

˙
i > c

n→ t have ∃
˙
n′ ≥ n : (∃!n ≤

˙
i < n′ : c t(i))”. Thus, #n′

c (t) = #n
c (t) + 1 and since

(
Πc(t)̂ t′,#n

c (t) + 1
)
|=

“γ′” conclude
(
Πc(t)̂ t′,#n′

c (t)
)
|= “γ′”. Moreover, since ∃

˙
i > c

n→ t and
∃!n ≤

˙
i < n′ : c t(i) conclude ∃i ≥ n′. Thus, since

(
Πc(t)̂ t′,#n′

c (t)
)
|= “γ′”

conclude (t, t′, n′)|=c γ by Def. 15.

– @
˙
i > c

n→ t : c t(i) =⇒ (t, t′, c n→ t + 1)|=c “γ′”: Assume @
˙
i > c

n→
t : c t(i). Thus, since ∃

˙
i ≥ n : c t(i) and

(
Πc(t)̂ t′,#n

c (t)
)
|= “©γ′” conclude(

Πc(t)̂ t′, c⇓t(n) + 1
)
|= “γ′”. Thus,

(
Πc(t)̂ t′, c

n→ t + 1
)
|= “γ′”. Moreover,

237

D Remaining Rules of the Calculus

since @
˙
i > c

n→ t have @i ≥ c
n→ t + 1: c t(i). Thus, since ∃i ≥ n : c t(i) and(

Πc(t)̂ t′, c
n→ t+ 1

)
|= “γ′” conclude (t, t′, c n→ t+ 1)|=c “γ′” by Def. 15.

• Case ∃i : c t(i) ∧
(
@i ≥ n : c t(i)

)
∧
(
Πc(t)̂ t′, c⇓t(n)

)
|= “©γ′”: Thus,(

Πc(t)̂ t′, c⇓t(n) + 1
)
|= “γ′” and hence

(
Πc(t)̂ t′, c⇓t(n + 1)

)
|= “γ′”. Thus, since

∃i : c t(i) ∧
(
@i ≥ n : c t(i)

)
conclude (t, t′, n + 1)|=c “γ′” by Def. 15. Thus, since

@i ≥ n : c t(i) we can apply NxtIn to have (t, t′, n)|=c “γ”.

• Case @i : c t(i) ∧
(
t′, n

)
|= “©γ′”: Thus,

(
t′, n + 1

)
|= “γ′” and since @i : c t(i)

conclude
(
t, t′, n+ 1

)
|= “γ′” by Def. 15. Thus, since @i : c t(i) we can apply NxtIn

to have (t, t′, n)|=c “γ”.

Case γ = “♦γ′”: Since (t, t′, n)|=c γ conclude
(
∃i ≥ n : c t(i) ∧

(
Πc(t)̂ t′,#n

c (t)
)
|=

“♦γ′”
)
∨
(
∃i : c t(i)∧

(
@i ≥ n : c t(i)

)
∧
(
Πc(t)̂ t′, c⇓t(n)

)
|= “♦γ′”

)
∨
(
@i : c t(i)∧

(
t′, n

)
|=

“♦γ′”
)
by Def. 15.

• Case ∃i ≥ n : c t(i) ∧
(
Πc(t)̂ t′,#n

c (t)
)
|= “♦γ′”: From

(
Πc(t)̂ t′,#n

c (t)
)
|= “♦γ′”

have ∃x ≥ #n
c (t) :

(
Πc(t)̂ t′, x

)
|= “γ′”.

– Case ∃n′ : #n′
c (t) = x: Since x ≥ #n

c (t) it follows that #n
c (t) ≤ #n′

c (t) and
thus c n⇐ t ≤ n′. Thus, we show ∃

˙
i ≥ n′ : c t(i) =⇒ ∃c n′

⇐ t ≤
˙
n′′ ≤

c
n′
→ t : (t, t′, n′′)|=c “γ′” and @

˙
i ≥ n′ : c t(i) =⇒ (t, t′, n′)|=c “γ′” to conclude

(t, t′, n)|=c γ by rule EvtIa.

∗ ∃
˙
i ≥ n′ : c t(i) =⇒ ∃c n′

⇐ t ≤
˙
n′′ ≤ c

n′
→ t : (t, t′, n′′)|=c “γ′”: Assume

∃
˙
i ≥ n′ : c t(i). Thus, since

(
Πc(t)̂ t′, x

)
|= “γ′” and #n′

c (t) = x conclude
(t, t′, n′)|=c “γ′” by Def. 15. Moreover, have c n′

⇐ t ≤ n′ and n′ ≤ c
n′
→ t to

conclude ∃c n′
⇐ t ≤

˙
n′′ ≤ c n′

→ t : (t, t′, n′′)|=c “γ′”.
∗ @

˙
i ≥ n′ : c t(i) =⇒ (t, t′, n′)|=c “γ′”: Assume @

˙
i ≥ n′ : c t(i). Hence,

since x = #n′
c (t) conclude x = c⇓t(n′). Thus, since

(
Πc(t)̂ t′, x

)
|= “γ′”

conclude
(
Πc(t)̂ t′, c⇓t(n′)

)
|= “γ′”. Thus, since ∃i ≥ n : c t(i) and @

˙
i ≥

n′ : c t(i) conclude (t, t′, n′)|=c “γ′” by Def. 15.

– Case ¬∃n′ : #n′
c (t) = x: Hence ∃n′ : x = c⇓t(n′). Hence, n′ ≥ last(c, t) and

thus c n⇐ t ≤ n′. Moreover, since ¬∃n′ : #n′
c (t) = x conclude @

˙
i ≥ n′ : c t(i).

Thus, we show (t, t′, n′)|=c “γ′” to conclude (t, t′, n)|=c γ by rule EvtIa: Since(
Πc(t)̂ t′, x

)
|= “γ′” and x = c⇓t(n′) conclude

(
Πc(t)̂ t′, c⇓t(n′)

)
|= “γ′”. Thus,

since ∃i ≥ n : c t(i) and @
˙
i ≥ n′ : c t(i) conclude (t, t′, n′)|=c “γ′” by Def. 15.

• Case ∃i : c t(i) ∧
(
@i ≥ n : c t(i)

)
∧
(
Πc(t)̂ t′, c⇓t(n)

)
|= “♦γ′”: From(

Πc(t)̂ t′, c⇓t(n)
)
|= “♦γ′” have ∃x ≥ c⇓t(n) :

(
Πc(t)̂ t′, x

)
|= “γ′”. Thus, ∃n′ ≥

n : x = c⇓t(n′). Since @i ≥ n : c t(i) and n′ ≥ n, we show (t, t′, n′)|=c “γ′” to conclude
(t, t′, n)|=c “γ” by rule EvtIn: Since

(
Πc(t)̂ t′, x

)
|= “γ′” and x = c⇓t(n′) conclude

238

D.21 Proof of Completeness

(
Πc(t)̂ t′, c⇓t(n′)

)
|= “γ′”. Thus, since ∃i ≥ n : c t(i) and @

˙
i ≥ n′ : c t(i) conclude

(t, t′, n′)|=c “γ′” by Def. 15.

• Case @i : c t(i)∧
(
t′, n

)
|= “♦γ′”: Thus, ∃n′ ≥ n :

(
t′, n′

)
|= “γ′”. Since @i ≥ n : c t(i)

and n′ ≥ n, we show (t, t′, n′)|=c “γ′” to conclude (t, t′, n)|=c “γ” by rule EvtIn: Since
@i : c t(i) and

(
t′, n′

)
|= “γ′” conclude (t, t′, n′)|=c “γ′” by Def. 15.

Case γ = “�γ′”: Since (t, t′, n)|=c γ conclude
(
∃i ≥ n : c t(i) ∧

(
Πc(t)̂ t′,#n

c (t)
)
|=

“�γ′”
)
∨
(
∃i : c t(i)∧

(
@i ≥ n : c t(i)

)
∧
(
Πc(t)̂ t′, c⇓t(n)

)
|= “�γ′”

)
∨
(
@i : c t(i)∧

(
t′, n

)
|=

“�γ′”
)
by Def. 15.

• Case ∃i ≥ n : c t(i) ∧
(
Πc(t)̂ t′,#n

c (t)
)
|= “�γ′”: From

(
Πc(t)̂ t′,#n

c (t)
)
|= “�γ′”

have ∀x ≥ #n
c (t) :

(
Πc(t)̂ t′, x

)
|= “γ′”. We show that for all n′, ∃

˙
i ≥ n′ : c t(i)∧c

n→
t ≤ n′ =⇒ ∃c n′

⇐ t ≤
˙
n′′ ≤ c

n′
→ t : (t, t′, n′′)|=c “γ′” and @

˙
i ≥ n′ : c t(i) ∧ c

n→ t ≤
n′ =⇒ (t, t′, n′)|=c “γ′” to conclude (t, t′, n)|=c “�γ” by rule GlobIa.

– ∃
˙
i ≥ n′ : c t(i) ∧ c

n→ t ≤ n′ =⇒ ∃c n′
⇐ t ≤

˙
n′′ ≤ c

n′
→ t : (t, t′, n′′)|=c “γ′”:

Assume ∃
˙
i ≥ n′ : c t(i)∧c

n→ t ≤ n′. Since c n→ t ≤ n′ conclude #n′
c (t) ≥ #n

c (t)
and since ∀x ≥ #n

c (t) :
(
Πc(t)̂ t′, x

)
|= “γ′” conclude

(
Πc(t)̂ t′,#n′

c (t)
)
|= “γ′”.

Thus, since ∃
˙
i ≥ n′ : c t(i) conclude (t, t′, n′)|=c “γ′” by Def. 15. Moreover, have

c
n′
⇐ t ≤ n′ and since ∃

˙
i ≥ n′ : c t(i) conclude n′ ≤ c n′

→ t.

– @
˙
i ≥ n′ : c t(i) ∧ c

n→ t ≤ n′ =⇒ (t, t′, n′)|=c “γ′” to conclude (t, t′, n)|=c “�γ”:
Assume @

˙
i ≥ n′ : c t(i)∧c

n→ t ≤ n′. Since c n→ t ≤ n′ conclude c⇓t(n′) ≥ #n
c (t)

and since ∀x ≥ #n
c (t) :

(
Πc(t)̂ t′, x

)
|= “γ′” conclude

(
Πc(t)̂ t′, c⇓t(n′)

)
|=

“γ′”. Thus, since ∃
˙
i ≥ n : c t(i) and @

˙
i ≥ n′ : c t(i) conclude (t, t′, n′)|=c “γ′” by

Def. 15.

• Case ∃i : c t(i) ∧
(
@i ≥ n : c t(i)

)
∧
(
Πc(t)̂ t′, c⇓t(n)

)
|= “�γ′”: From(

Πc(t)̂ t′, c⇓t(n)
)
|= “�γ′” have ∀x ≥ c⇓t(n) :

(
Πc(t)̂ t′, x

)
|= “γ′”. Since @i ≥

n : c t(i) we show that for all n′, @
˙
i ≥ n′ : c t(i) ∧ c

n→ t ≤ n′ =⇒ (t, t′, n′)|=c “γ′” to
conclude (t, t′, n)|=c “�γ” by rule GlobIa: Assume @

˙
i ≥ n′ : c t(i) ∧ c

n→ t ≤ n′.
Thus, c⇓t(n′) ≥ c⇓t(n) and since ∀x ≥ c⇓t(n) :

(
Πc(t)̂ t′, x

)
|= “γ′” conclude(

Πc(t)̂ t′, c⇓t(n′)
)
|= “γ′”. Thus, since ∃

˙
i ≥ n : c t(i) and @

˙
i ≥ n′ : c t(i) conclude

(t, t′, n′)|=c “γ′” by Def. 15.

• Case @i : c t(i)∧
(
t′, n

)
|= “�γ′”: From

(
t′, n

)
|= “�γ′” have ∀n′ ≥ n :

(
t′, n′

)
|= “γ′”.

Since @i : c t(i), we show ∀n′ ≥ n : (t, t′, n′)|=c “γ′” to conclude (t, t′, n)|=c “�γ” by
rule GlobIn. Thus, assume n′ ≥ n and since ∀n′ ≥ n :

(
t′, n′

)
|= “γ′” conclude(

t′, n′
)
|= “γ′”. Thus, since @i : c t(i) conclude (t, t′, n′)|=c “γ′” by Def. 15.

The case for γ = “γ′ U γ′′” can be obtained by a combination of the proof of eventually
and globally and is omitted here.

239

E Soundness of Algorithm 1

In the following, we provide an argument of why Alg. 1 preserves the semantics of a
FACTum specification. The following diagram provides an overview of our reasoning:

FACTum
Specification

Isabelle HOL
Theory

Alg. 1

AT

|=

Sect. 3
|=

[W
+ 04]

We need to show that a set of architecture traces AT satisfies a FACTum specification
iff it satisfies the Isabelle/HOL theory generated from the specification by algorithm 1.
To this end, we assume the existence of a FACTum specification PS = (DS ,CS ,AS),

consisting of an algebraic specification of datatypes DS , a specification of component
types CT , and an architecture specification AS .

E.1 Case =⇒
We fix a set of architecture traces AT and assume that it satisfies PS . We show that
AT also satisfies the Isabelle theory generated from PS by algorithm 1. To this end,
we fix an architecture trace t ∈ AT and show that t satisfies the corresponding Isabelle
theory. Again, the idea of the argument is depicted by the following diagram:

CS

DS

AS

CT

MS

AS ′⊗

DS

BAsmp

AAsmp MS

AT
eval

Alg. 1 (22-24)

Alg. 1 (1-3)

Alg. 1 (25-27)

Since AT satisfies PS , the semantics of FACTum (discussed in Sect. 3) requires the
existence of an architecture specification AS ′ which satisfies AS , such that t ∈ AS ′.
Thus, t also satisfies the locale assumptions generated from AS by lines 25 − 27 of
algorithm 1.

241

E Soundness of Algorithm 1

Similarly, since AT satisfies PS , the semantics of FACTum requires the existence
of a behavior CT c, for each component c, which satisfies the corresponding behavior
specification CSc. Moreover, the semantics of FACTum also requires the existence of
a behavior trace t′, such that Πc(t)̂ t′ ∈ CT c. Thus, according to the definition of
eval (discussed in Sect. 6.4.2) we have eval(c, t, t′, γ) for each component c and locale
assumption γ (generated by lines 25− 27 of Alg. 1).
Thus, t′ fulfills all locale assumptions generated by Alg. 1 and thus it satisfies the the

Isabelle theory generated from PS .

E.2 Case ⇐=
We may use a symmetric argument as the one presented in case E.1 for the reverse
direction.

242

F Pattern Hierarchy

F.1 A Theory of Singletons
In the following, we formalize the specification of the singleton pattern as described
in [Mar18b].
theory Singleton
imports Dynamic-Architecture-Calculus
begin

In the following we formalize a variant of the Singleton pattern.
locale singleton = dynamic-component cmp active

for active :: ′id ⇒ cnf ⇒ bool (- - [0 ,110]60)
and cmp :: ′id ⇒ cnf ⇒ ′cmp (σ-(-) [0 ,110]60) +

assumes alwaysActive:
∧
k. ∃ id. id k

and unique: ∃ id. ∀ k. ∀ id ′. (id ′
k −→ id = id ′)

begin

F.1.1 Calculus Interpretation
baIA: [[∃ i≥n. c t i; ϕ (σct 〈c → t〉n)]] =⇒ eval c t t ′ n (ba ϕ)

baIN1 : [[∃ i. c t i; ¬ (∃ i≥n. c t i); ϕ (t ′ (n − 〈c ∧ t〉 − 1))]] =⇒ eval c t t ′ n (ba ϕ)

baIN2 : [[@ i. c t i; ϕ (t ′ n)]] =⇒ eval c t t ′ n (ba ϕ)

F.1.2 Architectural Guarantees
definition the-singleton ≡ THE id. ∀ k. ∀ id ′. id ′

k −→ id ′ = id

theorem ts-prop:
fixes k::cnf
shows

∧
id. id k =⇒ id = the-singleton

and the-singleton k
proof −
{ fix id
assume a1 : id k
have (THE id. ∀ k. ∀ id ′. id ′

k −→ id ′ = id) = id
proof (rule the-equality)
show ∀ k id ′. id ′

k −→ id ′ = id
proof
fix k show ∀ id ′. id ′

k −→ id ′ = id
proof

243

F Pattern Hierarchy

fix id ′ show id ′
k −→ id ′ = id

proof
assume id ′

k
from unique have ∃ id. ∀ k. ∀ id ′. (id ′

k −→ id = id ′) .
then obtain i ′′ where ∀ k. ∀ id ′. (id ′

k −→ i ′′ = id ′) by auto
with 〈 id ′

k〉 have id=i ′′ and id ′=i ′′ using a1 by auto
thus id ′ = id by simp

qed
qed

qed
next
fix i ′′ show ∀ k id ′. id ′

k −→ id ′ = i ′′ =⇒ i ′′ = id using a1 by auto
qed
hence id k =⇒ id = the-singleton by (simp add: the-singleton-def)

} note g1 = this
thus

∧
id. id k =⇒ id = the-singleton by simp

from alwaysActive obtain id where id k by blast
with g1 have id = the-singleton by simp
with 〈 id k〉 show the-singleton k by simp

qed

declare ts-prop(2)[simp]

lemma lNact-active[simp]:
fixes cid t n
shows 〈the-singleton ⇐ t〉n = n
using lNact-active ts-prop(2) by auto

lemma lNxt-active[simp]:
fixes cid t n
shows 〈the-singleton → t〉n = n

by (simp add: nxtAct-active)

lemma baI [intro]:
fixes t n a
assumes ϕ (σthe-singleton(t n))
shows eval the-singleton t t ′ n (ba ϕ) using assms by (simp add: baIANow)

lemma baE [elim]:
fixes t n a
assumes eval the-singleton t t ′ n (ba ϕ)
shows ϕ (σthe-singleton(t n)) using assms by (simp add: baEANow)

lemma evtE [elim]:
fixes t id n a
assumes eval the-singleton t t ′ n (evt γ)
shows ∃n ′≥n. eval the-singleton t t ′ n ′ γ

proof −

244

F.1 A Theory of Singletons

have the-singleton t n by simp
with assms obtain n ′ where n ′≥〈the-singleton → t〉n and (∃ i≥n ′. the-singleton t i ∧

(∀n ′′≥〈the-singleton ⇐ t〉n ′. n ′′ ≤ 〈the-singleton → t〉n ′ −→ eval the-singleton t t ′ n ′′ γ)) ∨
¬ (∃ i≥n ′. the-singleton t i) ∧ eval the-singleton t t ′ n ′ γ using evtEA[of n the-singleton t]
by blast

moreover have the-singleton t n ′ by simp
ultimately have
∀n ′′≥〈the-singleton ⇐ t〉n ′. n ′′ ≤ 〈the-singleton → t〉n ′ −→ eval the-singleton t t ′ n ′′ γ
by auto

hence eval the-singleton t t ′ n ′ γ by simp
moreover from 〈n ′≥〈the-singleton → t〉n〉 have n ′≥n by (simp add: nxtAct-active)
ultimately show ?thesis by auto

qed

lemma globE [elim]:
fixes t id n a
assumes eval the-singleton t t ′ n (glob γ)
shows ∀n ′≥n. eval the-singleton t t ′ n ′ γ

proof
fix n ′ show n ≤ n ′ −→ eval the-singleton t t ′ n ′ γ
proof
assume n≤n ′

hence 〈the-singleton ⇐ t〉n ≤ n ′ by simp
moreover have the-singleton t n by simp
ultimately show eval the-singleton t t ′ n ′ γ
using 〈eval the-singleton t t ′ n (glob γ)〉 globEA by blast

qed
qed

lemma untilI [intro]:
fixes t::nat ⇒ cnf
and t ′::nat ⇒ ′cmp
and n::nat
and n ′::nat

assumes n ′≥n
and eval the-singleton t t ′ n ′ γ
and

∧
n ′′. [[n≤n ′′; n ′′<n ′]] =⇒ eval the-singleton t t ′ n ′′ γ ′

shows eval the-singleton t t ′ n (γ ′ Ub γ)
proof −
have the-singleton t n by simp
moreover from 〈n ′≥n〉 have 〈the-singleton ⇐ t〉n ≤ n ′ by simp
moreover have the-singleton t n ′ by simp
moreover have
∃n ′′≥〈the-singleton ⇐ t〉n ′. n ′′ ≤ 〈the-singleton → t〉n ′ ∧ eval the-singleton t t ′ n ′′ γ ∧
(∀n ′′′≥〈the-singleton → t〉n. n ′′′ < 〈the-singleton ⇐ t〉n ′′ −→

(∃n ′′′′≥〈the-singleton ⇐ t〉n ′′′. n ′′′′ ≤ 〈the-singleton → t〉n ′′′

∧ eval the-singleton t t ′ n ′′′′ γ ′))
proof −
have n ′≥〈the-singleton ⇐ t〉n ′ by simp

245

F Pattern Hierarchy

moreover have n ′ ≤ 〈the-singleton → t〉n ′ by simp
moreover from assms(3) have

(∀n ′′≥〈the-singleton → t〉n. n ′′ < 〈the-singleton ⇐ t〉n ′ −→
(∃n ′′′≥〈the-singleton ⇐ t〉n ′′. n ′′′ ≤ 〈the-singleton → t〉n ′′

∧ eval the-singleton t t ′ n ′′′ γ ′))
by auto

ultimately show ?thesis using 〈eval the-singleton t t ′ n ′ γ〉 by auto
qed
ultimately show ?thesis using untilIA[of n the-singleton t n ′ t ′ γ γ ′] by blast

qed

lemma untilE [elim]:
fixes t id n γ ′ γ
assumes eval the-singleton t t ′ n (until γ ′ γ)
shows
∃n ′≥n. eval the-singleton t t ′ n ′ γ ∧ (∀n ′′≥n. n ′′ < n ′ −→ eval the-singleton t t ′ n ′′ γ ′)

proof −
have the-singleton t n by simp
with 〈eval the-singleton t t ′ n (until γ ′ γ)〉 obtain n ′ where n ′≥〈the-singleton → t〉n and
(∃ i≥n ′. the-singleton t i) ∧
(∀n ′′≥〈the-singleton ⇐ t〉n ′. n ′′ ≤ 〈the-singleton → t〉n ′ −→ eval the-singleton t t ′ n ′′ γ) ∧
(∀n ′′≥〈the-singleton ⇐ t〉n. n ′′ < 〈the-singleton ⇐ t〉n ′ −→ eval the-singleton t t ′ n ′′ γ ′) ∨
¬ (∃ i≥n ′. the-singleton t i) ∧
eval the-singleton t t ′ n ′ γ ∧
(∀n ′′≥〈the-singleton ⇐ t〉n. n ′′ < n ′ −→ eval the-singleton t t ′ n ′′ γ ′)

using untilEA[of n the-singleton t t ′ γ ′ γ] by auto
moreover have the-singleton t n ′ by simp
ultimately have

(∀n ′′≥〈the-singleton ⇐ t〉n ′. n ′′ ≤ 〈the-singleton → t〉n ′ −→ eval the-singleton t t ′ n ′′ γ) ∧
(∀n ′′≥〈the-singleton ⇐ t〉n. n ′′ < 〈the-singleton ⇐ t〉n ′ −→ eval the-singleton t t ′ n ′′ γ ′)
by auto

hence eval the-singleton t t ′ n ′ γ and (∀n ′′≥n. n ′′ < n ′ −→ eval the-singleton t t ′ n ′′ γ ′)
by auto

with 〈eval the-singleton t t ′ n ′ γ〉 〈n ′≥〈the-singleton → t〉n〉 show ?thesis by auto
qed
end

end

F.2 A Theory of Publisher-Subscriber Architectures

In the following, we formalize the specification of the publisher subscriber pattern as
described in [Mar18b].

theory Publisher-Subscriber
imports Singleton
begin

246

F.2 A Theory of Publisher-Subscriber Architectures

F.2.1 Subscriptions
datatype ′evt subscription = sub ′evt | unsub ′evt

F.2.2 Publisher-Subscriber Architectures
locale publisher-subscriber =
pb: singleton pbactive pbcmp +
sb: dynamic-component sbcmp sbactive
for pbactive :: ′pid ⇒ cnf ⇒ bool
and pbcmp :: ′pid ⇒ cnf ⇒ ′PB
and sbactive :: ′sid ⇒ cnf ⇒ bool
and sbcmp :: ′sid ⇒ cnf ⇒ ′SB +

fixes pbsb :: ′PB ⇒ (′evt set) subscription set
and pbnt :: ′PB ⇒ (′evt × ′msg)
and sbnt :: ′SB ⇒ (′evt × ′msg) set
and sbsb :: ′SB ⇒ (′evt set) subscription

assumes conn1 :
∧
k pid. pbactive pid k

=⇒ pbsb (pbcmp pid k) = (
⋃
sid∈{sid. sbactive sid k}. {sbsb (sbcmp sid k)})

and conn2 :
∧
t n n ′′ sid pid E e m.

[[t ∈ arch; pbactive pid (t n); sbactive sid (t n);
sub E = sbsb (sbcmp sid (t n)); n ′′≥ n; e ∈ E ;
@n ′ E ′. n ′ ≥ n ∧ n ′ ≤ n ′′ ∧ sbactive sid (t n ′) ∧
unsub E ′ = sbsb (sbcmp sid (t n ′)) ∧ e ∈ E ′;

(e, m) = pbnt (pbcmp pid (t n ′′)); sbactive sid (t n ′′)]]
=⇒ pbnt (pbcmp pid (t n ′′)) ∈ sbnt (sbcmp sid (t n ′′))

begin

notation pb.imp (infixl −→p 10)
notation pb.disj (infixl ∨p 15)
notation pb.conj (infixl ∧p 20)
notation pb.not (¬p - [19]19)
no-notation pb.all (binder ∀ b 10)
no-notation pb.ex (binder ∃ b 10)
notation pb.all (binder ∀ p 10)
notation pb.ex (binder ∃ p 10)

notation sb.imp (infixl −→s 10)
notation sb.disj (infixl ∨s 15)
notation sb.conj (infixl ∧s 20)
notation sb.not (¬s - [19]19)
no-notation sb.all (binder ∀ b 10)
no-notation sb.ex (binder ∃ b 10)
notation sb.all (binder ∀ s 10)
notation sb.ex (binder ∃ s 10)

F.2.2.1 Calculus Interpretation

pb.nxtEA1 : [[∃ i>pb.nxtAct c t n. pbactive c (t i); pb.eval c t t ′ n (#bγ); n ≤ n ′; ∃ !i. n
≤ i ∧ pb.latestAct-cond c t n ′ i]] =⇒ pb.eval c t t ′ n ′ γ

247

F Pattern Hierarchy

sb.nxtEA1 : [[∃ i>sb.nxtAct c t n. sbactive c (t i); sb.eval c t t ′ n (#bγ); n ≤ n ′; ∃ !i. n
≤ i ∧ sb.latestAct-cond c t n ′ i]] =⇒ sb.eval c t t ′ n ′ γ

F.2.2.2 Results from Singleton
abbreviation the-pb :: ′pid where
the-pb ≡ pb.the-singleton

pb.ts-prop (1): pbactive id k =⇒ id = the-pb

pb.ts-prop (2): pbactive the-pb k

F.2.2.3 Architectural Guarantees

The following theorem ensures that a subscriber indeed receives all messages associated
with an event for which he is subscribed.
theorem msgDelivery:
fixes t n n ′′ sid E e m
assumes t ∈ arch
and sbactive sid (t n)
and sub E = sbsb (sbcmp sid (t n))
and n ′′ ≥ n
and @n ′ E ′. n ′ ≥ n ∧ n ′ ≤ n ′′

∧ sbactive sid (t n ′)
∧ unsub E ′ = sbsb(sbcmp sid (t n ′))
∧ e ∈ E ′

and e ∈ E
and (e,m) = pbnt (pbcmp the-pb (t n ′′))
and sbactive sid (t n ′′)

shows (e,m) ∈ sbnt (sbcmp sid (t n ′′))
using assms conn2 pb.ts-prop(2) by simp

Since a publisher is actually a singleton, we can provide an alternative version of
constraint conn1.
lemma conn1A:
fixes k
shows pbsb (pbcmp the-pb k) = (

⋃
sid∈{sid. sbactive sid k}. {sbsb (sbcmp sid k)})

using conn1 [OF pb.ts-prop(2)] .
end

end

F.3 A Theory of Blackboard Architectures
In the following, we formalize the specification of the blackboard pattern as described
in [Mar18b].
theory Blackboard

248

F.3 A Theory of Blackboard Architectures

imports Publisher-Subscriber
begin

F.3.1 Problems and Solutions
Blackboards work with problems and solutions for them.
typedecl PROB
consts sb :: (PROB × PROB) set
axiomatization where sbWF : wf sb
typedecl SOL
consts solve:: PROB ⇒ SOL

F.3.2 Blackboard Architectures
In the following, we describe the locale for the blackboard pattern.
locale blackboard = publisher-subscriber bbactive bbcmp ksactive kscmp bbrp bbcs kscs ksrp
for bbactive :: ′bid ⇒ cnf ⇒ bool (- - [0 ,110]60)
and bbcmp :: ′bid ⇒ cnf ⇒ ′BB (σ-(-) [0 ,110]60)
and ksactive :: ′kid ⇒ cnf ⇒ bool (- - [0 ,110]60)
and kscmp :: ′kid ⇒ cnf ⇒ ′KS (σ-(-) [0 ,110]60)
and bbrp :: ′BB ⇒ (PROB set) subscription set
and bbcs :: ′BB ⇒ (PROB × SOL)
and kscs :: ′KS ⇒ (PROB × SOL) set
and ksrp :: ′KS ⇒ (PROB set) subscription +

fixes bbns :: ′BB ⇒ (PROB × SOL) set
and ksns :: ′KS ⇒ (PROB × SOL)
and bbop :: ′BB ⇒ PROB
and ksop :: ′KS ⇒ PROB set
and prob :: ′kid ⇒ PROB

assumes
ks1 : ∀ p. ∃ ks. p=prob ks — Component Parameter
— Assertions about component behavior.
and bhvbb1 :

∧
t t ′ bId p s. [[t ∈ arch]] =⇒ pb.eval bId t t ′ 0

(pb.glob (pb.ba (λbb. (p,s)∈bbns bb)
−→p (pb.evt (pb.ba (λbb. (p,s) = bbcs bb)))))

and bhvbb2 :
∧
t t ′ bId P q. [[t∈arch]] =⇒ pb.eval bId t t ′ 0

(pb.glob (pb.ba (λbb. sub P ∈ bbrp bb ∧ q ∈ P) −→p

(pb.evt (pb.ba (λbb. q = bbop bb)))))
and bhvbb3 :

∧
t t ′ bId p . [[t∈arch]] =⇒ pb.eval bId t t ′ 0

(pb.glob (pb.ba (λbb. p = bbop(bb)) −→p

(pb.wuntil (pb.ba (λbb. p=bbop(bb))) (pb.ba (λbb. (p,solve(p)) = bbcs(bb))))))
and bhvks1 :

∧
t t ′ kId p P. [[t∈arch; p = prob kId]] =⇒ sb.eval kId t t ′ 0

(sb.glob ((sb.ba (λks. sub P = ksrp ks)) ∧s

(sb.all (λq. (sb.pred (q∈P)) −→s (sb.evt (sb.ba (λks. (q,solve(q)) ∈ kscs ks)))))
−→s (sb.evt (sb.ba (λks. (p, solve p) = ksns ks)))))

and bhvks2 :
∧
t t ′ kId p P q. [[t ∈ arch;p = prob kId]] =⇒ sb.eval kId t t ′ 0

(sb.glob (sb.ba (λks. sub P = ksrp ks ∧ q ∈ P −→ (q,p) ∈ sb)))
and bhvks3 :

∧
t t ′ kId p. [[t∈arch;p = prob kId]] =⇒ sb.eval kId t t ′ 0

(sb.glob ((sb.ba (λks. p∈ksop ks)) −→s (sb.evt (sb.ba (λks. (∃P. sub P = ksrp ks))))))

249

F Pattern Hierarchy

and bhvks4 :
∧
t t ′ kId p P. [[t∈arch; p∈P]] =⇒ sb.eval kId t t ′ 0

(sb.glob ((sb.ba (λks. sub P = ksrp ks)) −→s

(sb.wuntil (¬s (∃ s P ′. (sb.pred (p∈P ′) ∧s (sb.ba (λks. unsub P ′ = ksrp ks)))))
(sb.ba (λks. (p,solve p) ∈ kscs ks)))))

— Assertions about component activation.
and actks:∧

t n kid p. [[t ∈ arch; ksactive kid (t n); p=prob kid; p∈ksop (kscmp kid (t n))]]
=⇒ (∃n ′≥n. ksactive kid (t n ′) ∧ (p, solve p) = ksns (kscmp kid (t n ′)) ∧
(∀n ′′≥n. n ′′<n ′ −→ ksactive kid (t n ′′)))
∨ (∀n ′≥n. (ksactive kid (t n ′) ∧ (¬(p, solve p) = ksns (kscmp kid (t n ′)))))

— Assertions about connections.
and conn1 :

∧
k bid. bbactive bid k

=⇒ bbns (bbcmp bid k) = (
⋃
kid∈{kid. ksactive kid k}. {ksns (kscmp kid k)})

and conn2 :
∧
k kid. ksactive kid k

=⇒ ksop (kscmp kid k) = (
⋃
bid∈{bid. bbactive bid k}. {bbop (bbcmp bid k)})

begin
notation pb.lNAct (〈- ⇐ -〉-)
notation pb.nxtAct (〈- → -〉-)

F.3.2.1 Calculus Interpretation

pb.baIA: [[∃ i≥n. c t i; ϕ (σct 〈c → t〉n)]] =⇒ pb.eval c t t ′ n (pb.ba ϕ)

sb.baIA: [[∃ i≥n. c t i; ϕ (σct (sb.nxtAct c t n))]] =⇒ sb.eval c t t ′ n (sb.ba ϕ)

F.3.2.2 Results from Singleton
abbreviation the-bb ≡ the-pb

pb.ts-prop (1): id k =⇒ id = the-bb

pb.ts-prop (2): the-bb k

F.3.2.3 Results from Publisher Subscriber

msgDelivery: [[t ∈ arch; sid t n; sub E = ksrp (σsidt n); n ≤ n ′′; @n ′ E ′. n ≤ n ′ ∧ n ′
≤ n ′′ ∧ sid t n ′ ∧ unsub E ′ = ksrp (σsidt n ′) ∧ e ∈ E ′; e ∈ E ; (e, m) = bbcs (σthe-bbt
n ′′); sid t n ′′]] =⇒ (e, m) ∈ kscs (σsidt n ′′)
lemma conn2-bb:
fixes k kid
assumes ksactive kid k
shows bbop (bbcmp the-bb k)∈ksop (kscmp kid k)

proof −
from assms have ksop (kscmp kid k) = (

⋃
bid∈{bid. bbactive bid k}. {bbop (bbcmp bid k)})

using conn2 by simp
moreover have (

⋃
bid.{bid. bbactive bid k})={the-bb} using pb.ts-prop(1) by auto

hence (
⋃
bid∈{bid. bbactive bid k}. {bbop (bbcmp bid k)}) = {bbop (bbcmp the-bb k)}

250

F.3 A Theory of Blackboard Architectures

by auto
ultimately show ?thesis by simp

qed

F.3.2.4 Knowledge Sources

In the following we introduce an abbreviation for knowledge sources which are able to
solve a specific problem.
definition sKs:: PROB ⇒ ′kid where
sKs p ≡ (SOME kid. p = prob kid)

lemma sks-prob:
p = prob (sKs p)

using sKs-def someI-ex[of λkid. p = prob kid] ks1 by auto

F.3.3 Architectural Guarantees
The following theorem verifies that a problem is eventually solved by the pattern even if
no knowledge source exist which can solve the problem on its own. It assumes, however,
that for every open sub problem, a corresponding knowledge source able to solve the
problem will be eventually activated.
lemma pSolved-Ind:
fixes t and t ′::nat ⇒ ′BB and p and t ′′::nat ⇒ ′KS
assumes t∈arch and
∀n. (∃n ′≥n. ksactive (sKs (bbop(bbcmp the-bb (t n)))) (t n ′))

shows
∀n. (∃P. sub P ∈ bbrp(bbcmp the-bb (t n)) ∧ p ∈ P) −→

(∃m≥n. (p,solve(p)) = bbcs (bbcmp the-bb (t m)))
— The proof is by well-founded induction over the subproblem relation sb
proof (rule wf-induct[where r=sb])
— We first show that the subproblem relation is indeed well-founded ...
show wf sb by (simp add: sbWF)

next
— ... then we show that a problem p is indeed solved
— if all its sub-problems p ′ are eventually solved
fix p assume
indH : ∀ p ′. (p ′, p) ∈ sb −→ (∀n. (∃P. sub P ∈ bbrp (bbcmp the-bb (t n)) ∧ p ′∈P)
−→ (∃m≥n. (p ′,solve(p ′)) = bbcs (bbcmp the-bb (t m))))

show ∀n. (∃P. sub P ∈ bbrp (bbcmp the-bb (t n)) ∧ p ∈ P)
−→ (∃m≥n. (p,solve(p)) = bbcs (bbcmp the-bb (t m)))

proof
fix n0 show (∃P. sub P ∈ bbrp (bbcmp the-bb (t n0)) ∧ p ∈ P) −→
(∃m≥n0. (p,solve(p)) = bbcs (bbcmp the-bb (t m)))
proof
assume ∃P. sub P ∈ bbrp (bbcmp the-bb (t n0)) ∧ p ∈ P
moreover have (∃P. sub P ∈ bbrp (bbcmp the-bb (t n0)) ∧ p ∈ P) −→

(∃n ′≥n0. p=bbop(bbcmp the-bb (t n ′)))
proof

251

F Pattern Hierarchy

assume ∃P. sub P ∈ bbrp (bbcmp the-bb (t n0)) ∧ p ∈ P
then obtain P where sub P ∈ bbrp (bbcmp the-bb (t n0)) and p ∈ P by auto
hence pb.eval the-bb t t ′ n0 (pb.ba (λbb. sub P ∈ bbrp bb ∧ p ∈ P))
using pb.baI by simp

moreover from pb.globE [OF bhvbb2] have
pb.eval the-bb t t ′ n0 (pb.ba (λbb. sub P ∈ bbrp bb ∧ p ∈ P) −→p

3bpb.ba (λbb. p = bbop bb))
using 〈t∈arch〉 by simp

ultimately have pb.eval the-bb t t ′ n0 (3bpb.ba (λbb. p = bbop bb))
using pb.impE by blast

then obtain n ′ where n ′≥n0 and pb.eval the-bb t t ′ n ′ (pb.ba (λbb. p = bbop bb))
using pb.evtE by blast

hence p=bbop(bbcmp the-bb (t n ′)) using pb.baE by auto
with 〈n ′≥n0〉 show ∃n ′≥n0. p=bbop(bbcmp the-bb (t n ′)) by auto

qed
ultimately obtain n where n≥n0 and p=bbop(bbcmp the-bb (t n)) by auto

— Problem p is provided at the output of the blackboard until it is solved
— or forever...
from pb.globE [OF bhvbb3] have
pb.eval the-bb t t ′ n (pb.ba (λ bb. p = bbop(bb)) −→p

(pb.wuntil (pb.ba (λ bb. p=bbop(bb)))
(pb.ba (λbb. (p,solve(p)) = bbcs(bb)))))
using 〈t∈arch〉 by auto

moreover from 〈p = bbop (bbcmp the-bb (t n))〉 have
pb.eval the-bb t t ′ n (pb.ba (λ bb. p=bbop bb))
using 〈t∈arch〉 pb.baI by simp

ultimately have pb.eval the-bb t t ′ n
(pb.wuntil (pb.ba (λ bb. p=bbop(bb)))
(pb.ba (λ bb. (p,solve(p)) = bbcs(bb))))
using pb.impE by blast

hence pb.eval the-bb t t ′ n ((pb.until (pb.ba (λ bb. p=bbop bb))
(pb.ba (λ bb. (p,solve(p)) = bbcs bb))) ∨p (pb.glob (pb.ba (λ bb. p=bbop bb))))
using pb.wuntil-def by simp

hence pb.eval the-bb t t ′ n
(pb.until (pb.ba (λbb. p=bbop bb))

(pb.ba (λbb. (p,solve(p)) = bbcs bb))) ∨
(pb.eval the-bb t t ′ n (pb.glob (pb.ba (λ bb. p=bbop bb))))
using pb.disjE by simp

thus ∃m≥n0. (p,solve p) = bbcs(bbcmp the-bb (t m))
— We need to consider both cases, the case in which the problem is eventually
— solved and the case in which the problem is always provided as an output
proof
— First we consider the case in which the problem is eventually solved:
assume pb.eval the-bb t t ′ n

(pb.until (pb.ba (λbb. p=bbop bb))
(pb.ba (λbb. (p,solve(p)) = bbcs bb)))

hence ∃ i≥n. (pb.eval the-bb t t ′ i
(pb.ba (λbb. (p,solve(p)) = bbcs bb)) ∧

252

F.3 A Theory of Blackboard Architectures

(∀ k≥n. k<i −→ pb.eval the-bb t t ′ k (pb.ba (λ bb. p = bbop bb))))
using 〈t∈arch〉 pb.untilE by simp

then obtain i where i≥n and
pb.eval the-bb t t ′ i (pb.ba (λbb. (p,solve(p)) = bbcs bb)) by auto

hence (p,solve(p)) = bbcs(bbcmp the-bb (t i))
using 〈t∈arch〉 pb.baEA by auto

moreover from 〈i≥n〉 〈n≥n0〉 have i≥n0 by simp
ultimately show ?thesis by auto

next
— Now we consider the case in which p is always provided at the output
— of the blackboard:
assume pb.eval the-bb t t ′ n

(pb.glob (pb.ba (λbb. p=bbop bb)))
hence ∀n ′≥n. (pb.eval the-bb t t ′ n ′ (pb.ba (λbb. p = bbop bb)))
using 〈t∈arch〉 pb.globE by auto

hence outp: ∀n ′≥n. (p = bbop (bbcmp the-bb (t n ′)))
using 〈t∈arch〉 pb.baE by blast

— thus, by assumption there exists a KS which is able to solve p and which
— is active at n ′...
with assms(2) have ∃n ′≥n. ksactive (sKs p) (t n ′) by auto
then obtain nk where nk≥n and ksactive (sKs p) (t nk) by auto
— ... and get the problem as its input.
moreover from 〈nk≥n〉 have p = bbop (bbcmp the-bb (t nk))
using outp by simp

ultimately have p∈ksop(kscmp (sKs p) (t nk)) using conn2-bb[of sKs p t nk] by simp

— thus the ks will either solve the problem or not solve it and
— be activated forever
hence (∃n ′≥nk. ksactive (sKs p) (t n ′) ∧

(p, solve p) = ksns (kscmp (sKs p) (t n ′)) ∧
(∀n ′′≥nk. n ′′<n ′ −→ ksactive (sKs p) (t n ′′))) ∨
(∀n ′≥nk. (ksactive (sKs p) (t n ′) ∧
(¬(p, solve p) = ksns (kscmp (sKs p) (t n ′)))))
using 〈ksactive (sKs p) (t nk)〉 actks[of t sKs p] 〈t∈arch〉 sks-prob by simp

thus ?thesis
proof
— if the ks solves it
assume ∃n ′≥nk. sKs p t n ′ ∧ (p, solve p) = ksns (σsKs pt n ′)
∧ (∀n ′′≥nk. n ′′ < n ′ −→ sKs p t n ′′)

— it is forwarded to the blackboard
then obtain ns where ns≥nk and sKs p t ns

and (p, solve p) = ksns (σsKs pt ns) by auto
moreover have sb.nxtAct (sKs p) t ns = ns

by (simp add: 〈 sKs p t ns
〉 sb.nxtAct-active)

ultimately have
(p,solve(p)) ∈ bbns (bbcmp the-bb (t (sb.nxtAct (sKs p) t ns)))
using conn1 [OF pb.ts-prop(2)] 〈 sKs p t ns

〉 by auto

253

F Pattern Hierarchy

— finally, the blackboard will forward the solution which finishes the proof.
with bhvbb1 have pb.eval the-bb t t ′ (sb.nxtAct (sKs p) t ns)

(pb.evt (pb.ba (λbb. (p, solve p) = bbcs bb)))
using 〈t∈arch〉 pb.globE pb.impE [of the-bb t t ′] by blast

then obtain nf where nf≥sb.nxtAct (sKs p) t ns and
pb.eval the-bb t t ′ nf (pb.ba (λbb. (p, solve p) = bbcs bb))
using 〈t∈arch〉 pb.evtE [of t t ′ sb.nxtAct (sKs p) t ns] by auto

hence (p, solve p) = bbcs (bbcmp the-bb (t nf))
using 〈t ∈ arch〉 pb.baEA by auto

moreover have nf≥n0
proof −
from 〈ksactive (sKs p) (t nk)〉 have sb.nxtAct (sKs p) t nk≥nk

using sb.nxtActI by blast
with 〈sb.nxtAct (sKs p) t ns = ns〉 show ?thesis
using 〈nf≥sb.nxtAct (sKs p) t ns〉 〈ns≥nk〉 〈nk≥n〉 〈n≥n0〉 by arith

qed
ultimately show ?thesis by auto

next
— otherwise, we derive a contradiction
assume case-ass: ∀n ′≥nk. sKs p t n ′ ∧ ¬(p, solve p) = ksns (σsKs pt n ′)

— first, the KS will eventually register for the subproblems P it requires to solve p...
from 〈ksactive (sKs p) (t nk)〉 have ∃ i≥0 . ksactive (sKs p) (t i) by auto
moreover have sb.lNAct (sKs p) t 0 ≤ nk by simp
ultimately have sb.eval (sKs p) t t ′′ nk

((sb.ba (λks. p∈ksop ks)) −→s

(sb.evt (sb.ba (λks. ∃P. sub P = ksrp ks))))
using sb.globEA[OF - bhvks3 [of t p sKs p t ′′]] 〈t∈arch〉 sks-prob by simp

moreover have sb.eval (sKs p) t t ′′ nk (sb.ba (λks. p ∈ ksop ks))
proof −
from 〈ksactive (sKs p) (t nk)〉 have ∃n ′≥nk. ksactive (sKs p) (t n ′) by auto
moreover have p ∈ ksop (kscmp (sKs p) (t (sb.nxtAct (sKs p) t nk)))
proof −
from 〈ksactive (sKs p) (t nk)〉 have sb.nxtAct (sKs p) t nk=nk

using sb.nxtAct-active by blast
with 〈p∈ksop(kscmp (sKs p) (t nk))〉 show ?thesis by simp

qed
ultimately show ?thesis using sb.baIA[of nk sKs p t] by blast

qed
ultimately have sb.eval (sKs p) t t ′′ nk (sb.evt (sb.ba (λks. ∃P. sub P = ksrp ks)))
using sb.impE by blast

then obtain nr where nr≥sb.nxtAct (sKs p) t nk and
∃ i≥nr. ksactive (sKs p) (t i) ∧
(∀n ′′≥sb.lNAct (sKs p) t nr. n ′′ ≤ sb.nxtAct (sKs p) t nr

−→ sb.eval (sKs p) t t ′′ n ′′ (sb.ba (λks. ∃P. sub P = ksrp ks))) ∨
¬ (∃ i≥nr. ksactive (sKs p) (t i)) ∧
sb.eval (sKs p) t t ′′ nr (sb.ba (λks. ∃P. sub P = ksrp ks))
using 〈ksactive (sKs p) (t nk)〉 sb.evtEA[of nk sKs p t] by blast

moreover from case-ass have sb.nxtAct (sKs p) t nk≥nk using sb.nxtActI by blast

254

F.3 A Theory of Blackboard Architectures

with 〈nr≥sb.nxtAct (sKs p) t nk〉 have nr≥nk by arith
hence ∃ i≥nr. ksactive (sKs p) (t i) using case-ass by auto
hence nr ≤ sb.nxtAct (sKs p) t nr using sb.nxtActLe by simp
moreover have nr ≥ sb.lNAct (sKs p) t nr by simp
ultimately have
sb.eval (sKs p) t t ′′ nr (sb.ba (λks. ∃P. sub P = ksrp ks)) by blast

with 〈∃ i≥nr. ksactive (sKs p) (t i)〉 obtain P where
sub P = ksrp (kscmp (sKs p) (t (sb.nxtAct (sKs p) t nr)))
using sb.baEA by blast

hence sb.eval (sKs p) t t ′′ nr (sb.ba (λks. sub P = ksrp ks))
using 〈∃ i≥nr. ksactive (sKs p) (t i)〉 sb.baIA sks-prob by blast

— the knowledgesource will eventually get a solution for each required subproblem:
moreover have sb.eval (sKs p) t t ′′ nr (sb.all (λ p ′. sb.pred (p ′∈P) −→s

(sb.evt (sb.ba (λks. (p ′,solve p ′) ∈ kscs ks)))))
proof −
have ∀ p ′. sb.eval (sKs p) t t ′′ nr (sb.pred (p ′∈P) −→s

(sb.evt (sb.ba (λks. (p ′,solve p ′) ∈ kscs ks))))
proof
— by induction hypothesis,
— the blackboard will eventually provide solutions for subproblems
fix p ′

have sb.eval (sKs p) t t ′′ nr (sb.pred (p ′∈P)) −→
(sb.eval (sKs p) t t ′′ nr

(sb.evt (sb.ba (λks. (p ′,solve p ′) ∈ kscs ks))))
proof
assume sb.eval (sKs p) t t ′′ nr (sb.pred (p ′∈P))
hence p ′ ∈ P using sb.predE by blast
thus (sb.eval (sKs p) t t ′′ nr (sb.evt (sb.ba (λks. (p ′,solve p ′) ∈ kscs ks))))
proof −
have sb.lNAct (sKs p) t 0 ≤ nr by simp
moreover from 〈ksactive (sKs p) (t nk)〉 have ∃ i≥0 . ksactive (sKs p) (t i)
by auto

ultimately have sb.eval (sKs p) t t ′′ nr ((sb.ba (λks. sub P = ksrp ks))
−→s (sb.wuntil (¬s (∃ s P ′. (sb.pred (p ′∈P ′) ∧s

(sb.ba (λks. unsub P ′ = ksrp ks)))))
(sb.ba (λks. (p ′,solve p ′) ∈ kscs ks))))
using sb.globEA[OF - bhvks4 [of t p ′ P sKs p t ′′]]
〈t∈arch〉 〈ksactive (sKs p) (t nk)〉 〈p ′∈P〉 by simp

with 〈sb.eval (sKs p) t t ′′ nr (sb.ba (λks. sub P = ksrp ks))〉 have
sb.eval (sKs p) t t ′′ nr (sb.wuntil (¬s (∃ s P ′. (sb.pred (p ′∈P ′) ∧s

(sb.ba (λks. unsub P ′ = ksrp ks))))) (sb.ba (λks. (p ′,solve p ′) ∈ kscs ks)))
using sb.impE [of (sKs p) t t ′′ nr sb.ba (λks. sub P = ksrp ks)] by blast

hence sb.eval (sKs p) t t ′′ nr (sb.until (¬s (∃ s P ′. (sb.pred (p ′∈P ′) ∧s

(sb.ba (λks. unsub P ′ = ksrp ks))))) (sb.ba (λks. (p ′,solve p ′) ∈ kscs ks))) ∨
sb.eval (sKs p) t t ′′ nr (sb.glob (¬s (∃ s P ′. (sb.pred (p ′∈P ′) ∧s

sb.ba (λks. unsub P ′ = ksrp ks))))) using sb.wuntil-def by auto
thus (sb.eval (sKs p) t t ′′ nr (sb.evt (sb.ba (λks. (p ′,solve p ′) ∈ kscs ks))))
proof

255

F Pattern Hierarchy

let ?γ ′=¬s (∃ s P ′. (sb.pred (p ′∈P ′) ∧s (sb.ba (λks. unsub P ′ = ksrp ks))))
let ?γ=sb.ba (λks. (p ′,solve p ′) ∈ kscs ks)
assume sb.eval (sKs p) t t ′′ nr (sb.until ?γ ′ ?γ)
with 〈∃ i≥nr. sKs p t i〉 obtain n ′ where n ′≥sb.nxtAct (sKs p) t nr and
lass: (∃ i≥n ′. sKs p t i) ∧
(∀n ′′≥sb.lNAct (sKs p) t n ′. n ′′ ≤ sb.nxtAct (sKs p) t n ′

−→ sb.eval (sKs p) t t ′′ n ′′ ?γ) ∧
(∀n ′′≥sb.lNAct (sKs p) t nr. n ′′ < sb.lNAct (sKs p) t n ′

−→ sb.eval (sKs p) t t ′′ n ′′ ?γ ′) ∨
¬ (∃ i≥n ′. sKs p t i) ∧ sb.eval (sKs p) t t ′′ n ′ ?γ ∧
(∀n ′′≥sb.lNAct (sKs p) t nr. n ′′ < n ′ −→ sb.eval (sKs p) t t ′′ n ′′ ?γ ′)
using sb.untilEA[of nr sKs p t t ′′] 〈∃ i≥nr. ksactive (sKs p) (t i)〉 by blast

thus ?thesis
proof cases
assume ∃ i≥n ′. sKs p t i
with lass have ∀n ′′≥sb.lNAct (sKs p) t n ′. n ′′ ≤ sb.nxtAct (sKs p) t n ′

−→ sb.eval (sKs p) t t ′′ n ′′ ?γ by auto
moreover have n ′≥sb.lNAct (sKs p) t n ′ by simp
moreover have n ′ ≤ sb.nxtAct (sKs p) t n ′

using 〈∃ i≥n ′. sKs p t i〉 sb.nxtActLe by simp
ultimately have sb.eval (sKs p) t t ′′ n ′ ?γ by simp
moreover have sb.lNAct (sKs p) t nr ≤ n ′

using 〈nr ≤ sb.nxtAct (sKs p) t nr〉

〈sb.lNAct (sKs p) t nr ≤ nr〉 〈sb.nxtAct (sKs p) t nr ≤ n ′〉 by linarith
ultimately show ?thesis using 〈∃ i≥nr. sKs p t i〉 〈∃ i≥n ′. sKs p t i〉

〈n ′≥sb.lNAct (sKs p) t n ′〉 〈n ′ ≤ sb.nxtAct (sKs p) t n ′〉

sb.evtIA[of nr sKs p t n ′ t ′′ ?γ] by blast
next
assume ¬ (∃ i≥n ′. sKs p t i)
with lass have sb.eval (sKs p) t t ′′ n ′ ?γ ∧

(∀n ′′≥sb.lNAct (sKs p) t nr. n ′′ < n ′ −→ sb.eval (sKs p) t t ′′ n ′′ ?γ ′)
by auto

moreover have sb.lNAct (sKs p) t nr ≤ n ′

using 〈nr ≤ sb.nxtAct (sKs p) t nr〉 〈sb.lNAct (sKs p) t nr ≤ nr〉

〈sb.nxtAct (sKs p) t nr ≤ n ′〉 by linarith
ultimately show ?thesis using 〈∃ i≥nr. sKs p t i〉 〈¬ (∃ i≥n ′. sKs p t i)〉

sb.evtIA[of nr sKs p t n ′ t ′′ ?γ] by blast
qed

next
assume cass: sb.eval (sKs p) t t ′′ nr

(sb.glob (¬s (∃ s P ′. (sb.pred (p ′∈P ′) ∧s sb.ba (λks. unsub P ′ = ksrp ks)))))

have sub P = ksrp (kscmp (sKs p) (t (sb.nxtAct (sKs p) t nr))) ∧
p ′ ∈ P −→ (p ′, p) ∈ sb

proof −
have ∃ i≥0 . ksactive (sKs p) (t i) using 〈∃ i≥0 . ksactive (sKs p) (t i)〉

by auto
moreover have sb.lNAct (sKs p) t 0 ≤ (sb.nxtAct (sKs p) t nr) by simp
ultimately have sb.eval (sKs p) t t ′′ (sb.nxtAct (sKs p) t nr)

256

F.3 A Theory of Blackboard Architectures

(sb.ba (λks. sub P = ksrp ks ∧ p ′ ∈ P −→ (p ′, p) ∈ sb))
using sb.globEA[OF - bhvks2 [of t p sKs p t ′′ P]] 〈t ∈ arch〉 sks-prob by blast
moreover from 〈∃ i≥nr. ksactive (sKs p) (t i)〉 have
ksactive (sKs p) (t (sb.nxtAct (sKs p) t nr)) using sb.nxtActI by blast

ultimately show ?thesis
using sb.baEANow[of sKs p t t ′′ sb.nxtAct (sKs p) t nr] by simp

qed
with 〈p ′ ∈ P〉 have (p ′, p) ∈ sb
using 〈sub P = ksrp (kscmp (sKs p) (t (sb.nxtAct (sKs p) t nr)))〉

sks-prob by simp
moreover from 〈∃ i≥nr. ksactive (sKs p) (t i)〉 have
ksactive (sKs p) (t (sb.nxtAct (sKs p) t nr)) using sb.nxtActI by blast

with 〈sub P = ksrp (kscmp (sKs p) (t (sb.nxtAct (sKs p) t nr)))〉

have sub P ∈ bbrp (bbcmp the-bb (t (sb.nxtAct (sKs p) t nr)))
using conn1A by auto

with 〈 p ′ ∈ P〉 have
sub P ∈ bbrp (σthe-bbt (sb.nxtAct (sKs p) t nr)) ∧ p ′ ∈ P by auto

ultimately obtain m where m≥sb.nxtAct (sKs p) t nr and
(p ′, solve p ′) = bbcs (bbcmp the-bb (t m))
using indH by auto

— and due to the publisher subscriber property,
— the knowledge source will receive them
moreover have
@n P. sb.nxtAct (sKs p) t nr ≤ n ∧ n ≤ m ∧ ksactive (sKs p) (t n) ∧
unsub P = ksrp (kscmp (sKs p) (t n)) ∧ p ′ ∈ P

proof
assume ∃n P ′. sb.nxtAct (sKs p) t nr ≤ n ∧ n ≤ m ∧
ksactive (sKs p) (t n) ∧
unsub P ′ = ksrp (kscmp (sKs p) (t n)) ∧ p ′ ∈ P ′

then obtain n P ′ where
ksactive (sKs p) (t n) and sb.nxtAct (sKs p) t nr ≤ n and n ≤ m and
unsub P ′ = ksrp (kscmp (sKs p) (t n)) and p ′ ∈ P ′ by auto

hence sb.eval (sKs p) t t ′′ n (∃ s P ′. sb.pred (p ′∈P ′) ∧s

sb.ba (λks. unsub P ′ = ksrp ks)) by blast
moreover have sb.lNAct (sKs p) t nr ≤ n
using 〈nr ≤ sb.nxtAct (sKs p) t nr〉 〈sb.lNAct (sKs p) t nr ≤ nr〉

〈sb.nxtAct (sKs p) t nr ≤ n〉 by linarith
with cass have sb.eval (sKs p) t t ′′ n (¬s (∃ s P ′. (sb.pred (p ′∈P ′)
∧s sb.ba (λks. unsub P ′ = ksrp ks))))
using sb.globEA[of nr sKs p t t ′′

¬s (∃ sP ′. sb.pred (p ′ ∈ P ′) ∧s sb.ba (λks. unsub P ′ = ksrp ks)) n]
〈∃ i≥nr. ksactive (sKs p) (t i)〉 by auto

ultimately show False using sb.notE by auto
qed
moreover from 〈∃ i≥nr. ksactive (sKs p) (t i)〉 have
ksactive (sKs p) (t (sb.nxtAct (sKs p) t nr)) using sb.nxtActI by blast

moreover have sub P = ksrp (kscmp (sKs p) (t (sb.nxtAct (sKs p) t nr)))
using 〈sub P = ksrp (kscmp (sKs p) (t (sb.nxtAct (sKs p) t nr)))〉 .

257

F Pattern Hierarchy

moreover from 〈m≥sb.nxtAct (sKs p) t nr〉 have sb.nxtAct (sKs p) t nr ≤ m
by simp

moreover from 〈∃ i≥nr. ksactive (sKs p) (t i)〉

have sb.nxtAct (sKs p) t nr≥nr using sb.nxtActI by blast
hence m≥nk using 〈sb.nxtAct (sKs p) t nr ≤ m〉 〈sb.nxtAct (sKs p) t nk ≤ nr〉

〈sb.nxtAct (sKs p) t nk ≥ nk〉 by simp
with case-ass have ksactive (sKs p) (t m) by simp
ultimately have (p ′, solve p ′) ∈ kscs (kscmp (sKs p) (t m))
and ksactive (sKs p) (t m)
using 〈t ∈ arch〉

msgDelivery[of t sKs p sb.nxtAct (sKs p) t nr P m p ′ solve p ′]
〈p ′ ∈ P〉 by auto

hence sb.eval (sKs p) t t ′′ m (sb.ba (λks. (p ′,solve p ′) ∈ kscs ks))
using sb.baIANow by simp

moreover have m ≥ sb.lNAct (sKs p) t m by simp
moreover from 〈ksactive (sKs p) (t m)〉 have m ≤ sb.nxtAct (sKs p) t m
using sb.nxtActLe by auto

moreover from 〈∃ i≥nr. ksactive (sKs p) (t i)〉 have
sb.lNAct (sKs p) t nr ≤ sb.nxtAct (sKs p) t nr by simp

with 〈sb.nxtAct (sKs p) t nr ≤ m〉 have sb.lNAct (sKs p) t nr ≤ m by arith
ultimately show sb.eval (sKs p) t t ′′ nr

(sb.evt (sb.ba (λks. (p ′,solve p ′) ∈ kscs ks)))
using 〈∃ i≥nr. ksactive (sKs p) (t i)〉 sb.evtIA by blast

qed
qed

qed
thus sb.eval (sKs p) t t ′′ nr (sb.pred (p ′∈P) −→s

(sb.evt (sb.ba (λks. (p ′,solve p ′) ∈ kscs ks))))
using sb.impI by auto

qed
thus ?thesis using sb.allI by blast

qed

— Thus, the knowlege source will eventually solve the problem at hand...
ultimately have sb.eval (sKs p) t t ′′ nr

(sb.ba (λks. sub P = ksrp ks) ∧s

(∀ sq. (sb.pred (q ∈ P) −→s sb.evt (sb.ba (λks. (q, solve q) ∈ kscs ks)))))
using sb.conjI by simp

moreover from 〈∃ i≥nr. ksactive (sKs p) (t i)〉 have ∃ i≥0 . ksactive (sKs p) (t i)
by blast

hence sb.eval (sKs p) t t ′′ nr

((sb.ba (λks. sub P = ksrp ks) ∧s

(∀ sq. (sb.pred (q ∈ P) −→s

sb.evt (sb.ba (λks. (q, solve q) ∈ kscs ks))))) −→s

(sb.evt (sb.ba (λks. (p, solve p) = ksns ks)))) using 〈t ∈ arch〉

sb.globEA[OF - bhvks1 [of t p sKs p t ′′ P]] sks-prob by simp
ultimately have sb.eval (sKs p) t t ′′ nr

(sb.evt (sb.ba (λks. (p,solve(p))=ksns(ks))))
using sb.impE [of sKs p t t ′′ nr] by blast

258

F.3 A Theory of Blackboard Architectures

— and forward it to the blackboard
then obtain ns where ns≥sb.nxtAct (sKs p) t nr and

(∃ i≥ns. ksactive (sKs p) (t i) ∧
(∀n ′′≥sb.lNAct (sKs p) t ns. n ′′ ≤ sb.nxtAct (sKs p) t ns −→
sb.eval (sKs p) t t ′′ n ′′ (sb.ba (λks. (p,solve(p))=ksns(ks))))) ∨
¬ (∃ i≥ns. ksactive (sKs p) (t i)) ∧
sb.eval (sKs p) t t ′′ ns (sb.ba (λks. (p,solve(p))=ksns(ks)))
using sb.evtEA[of nr sKs p t] 〈∃ i≥nr. ksactive (sKs p) (t i)〉 by blast

moreover from 〈sb.nxtAct (sKs p) t nr ≥ nr〉 〈nr≥nk〉 〈ns≥sb.nxtAct (sKs p) t nr〉

have ns≥nk by arith
with case-ass have ∃ i≥ns. ksactive (sKs p) (t i) by auto
moreover have ns≥sb.lNAct (sKs p) t ns by simp
moreover from 〈∃ i≥ns. ksactive (sKs p) (t i)〉 have ns ≤ sb.nxtAct (sKs p) t ns

using sb.nxtActLe by simp
ultimately have sb.eval (sKs p) t t ′′ ns (sb.ba (λks. (p,solve(p))=ksns(ks)))
using sb.evtEA[of nr sKs p t] 〈∃ i≥nr. ksactive (sKs p) (t i)〉 by blast

with 〈∃ i≥ns. ksactive (sKs p) (t i)〉 have
(p,solve(p)) = ksns (kscmp (sKs p) (t (sb.nxtAct (sKs p) t ns)))
using sb.baEA[of ns sKs p t t ′′ λks. (p, solve p) = ksns ks] by auto

moreover from 〈∃ i≥ns. ksactive (sKs p) (t i)〉

have ksactive (sKs p) (t (sb.nxtAct (sKs p) t ns)) using sb.nxtActI by simp
ultimately have (p,solve(p)) ∈ bbns (bbcmp the-bb (t (sb.nxtAct (sKs p) t ns)))
using conn1 [OF pb.ts-prop(2)[of t (sb.nxtAct (sKs p) t ns)]] by auto

hence pb.eval the-bb t t ′

(sb.nxtAct (sKs p) t ns) (pb.ba (λbb. (p,solve(p)) ∈ bbns bb))
using 〈t∈arch〉 pb.baI by simp

— finally, the blackboard will forward the solution which finishes the proof.
with bhvbb1 have pb.eval the-bb t t ′ (sb.nxtAct (sKs p) t ns)

(pb.evt (pb.ba (λbb. (p, solve p) = bbcs bb)))
using 〈t∈arch〉 pb.globE pb.impE [of the-bb t t ′] by blast

then obtain nf where nf≥sb.nxtAct (sKs p) t ns and
pb.eval the-bb t t ′ nf (pb.ba (λbb. (p, solve p) = bbcs bb))
using 〈t∈arch〉 pb.evtE [of t t ′ sb.nxtAct (sKs p) t ns] by auto

hence (p, solve p) = bbcs (bbcmp the-bb (t nf))
using 〈t ∈ arch〉 pb.baEA by auto

moreover have nf≥n0
proof −
from 〈∃n ′′′≥ns. ksactive (sKs p) (t n ′′′)〉 have sb.nxtAct (sKs p) t ns≥ns

using sb.nxtActLe by simp
moreover from 〈nk≥n〉 and 〈ksactive (sKs p) (t nk)〉

have sb.nxtAct (sKs p) t nk≥nk

using sb.nxtActI by blast
ultimately show ?thesis
using 〈nf≥sb.nxtAct (sKs p) t ns〉 〈ns≥sb.nxtAct (sKs p) t nr〉

〈sb.nxtAct (sKs p) t nr≥nr〉 〈nr≥sb.nxtAct (sKs p) t nk〉 〈nk≥n〉 〈n≥n0〉 by arith
qed
ultimately show ?thesis by auto

259

F Pattern Hierarchy

qed
qed

qed
qed

qed

theorem pSolved:
fixes t and t ′::nat ⇒ ′BB and t ′′::nat ⇒ ′KS
assumes t∈arch and
∀n. (∃n ′≥n. ksactive (sKs (bbop(bbcmp the-bb (t n)))) (t n ′))

shows
∀n. (∀P. (sub P ∈ bbrp(bbcmp the-bb (t n))
−→ (∀ p ∈ P. (∃m≥n. (p,solve(p)) = bbcs (bbcmp the-bb (t m))))))

using assms pSolved-Ind by blast

end

end

260

G Verification of Blockchain Architectures

G.1 Some Auxiliary Results
theory Auxiliary imports Main
begin

lemma disjE3 : P ∨ Q ∨ R =⇒ (P =⇒ S) =⇒ (Q =⇒ S) =⇒ (R =⇒ S) =⇒ S by auto

lemma ge-induct[consumes 1 , case-names step]:
fixes i::nat and j::nat and P::nat ⇒ bool
shows i ≤ j =⇒ (

∧
n. i ≤ n =⇒ ((∀m ≥ i. m<n −→ P m) =⇒ P n)) =⇒ P j

proof −
assume a0 : i ≤ j and a1 : (

∧
n. i ≤ n =⇒ ((∀m ≥ i. m<n −→ P m) =⇒ P n))

have (
∧
n. ∀m<n. i ≤ m −→ P m =⇒ i ≤ n −→ P n)

proof
fix n
assume a2 : ∀m<n. i ≤ m −→ P m
show i ≤ n =⇒ P n
proof −
assume i ≤ n
with a1 have (∀m ≥ i. m<n −→ P m) =⇒ P n by simp
moreover from a2 have ∀m ≥ i. m<n −→ P m by simp
ultimately show P n by simp

qed
qed
with nat-less-induct[of λj. i ≤ j −→ P j j] have i ≤ j −→ P j .
with a0 show ?thesis by simp

qed

lemma my-induct[consumes 1 , case-names base step]:
fixes P::nat⇒bool

assumes less: i ≤ j
and base: P j
and step:

∧
n. i ≤ n =⇒ n < j =⇒ (∀n ′>n. n ′≤j −→ P n ′) =⇒ P n

shows P i
proof cases
assume j=0
thus ?thesis using less base by simp

next
assume ¬ j=0
have j − (j − i) ≥ i −→ P (j − (j − i))
proof (rule less-induct[of λn::nat. j−n ≥ i −→ P (j−n) j−i])

261

G Verification of Blockchain Architectures

fix x assume asmp:
∧
y. y < x =⇒ i ≤ j − y −→ P (j − y)

show i ≤ j − x −→ P (j − x)
proof cases
assume x=0
with base show ?thesis by simp

next
assume ¬ x=0
with 〈j 6= 0 〉 have j − x < j by simp
show ?thesis
proof
assume i ≤ j − x
moreover have ∀n ′>j−x. n ′≤j −→ P n ′

proof
fix n ′

show n ′>j−x −→ n ′≤j −→ P n ′

proof (rule HOL.impI [OF HOL.impI])
assume j − x < n ′ and n ′ ≤ j
hence j − n ′ < x by simp
moreover from 〈i ≤ j − x〉 〈j − x < n ′〉 have i ≤ n ′

using le-less-trans less-imp-le-nat by blast
with 〈n ′ ≤ j〉 have i ≤ j − (j − n ′) by simp
ultimately have P (j − (j − n ′)) using asmp by simp
moreover from 〈n ′ ≤ j〉 have j − (j − n ′) = n ′ by simp
ultimately show P n ′ by simp

qed
qed
ultimately show P (j − x) using 〈j−x<j〉 step[of j−x] by simp

qed
qed

qed
moreover from less have j − (j − i) = i by simp
ultimately show ?thesis by simp

qed

lemma Greatest-ex-le-nat: assumes ∃ k. P k ∧ (∀ k ′. P k ′ −→ k ′ ≤ k) shows ¬(∃n ′>Greatest
P. P n ′)
by (metis Greatest-equality assms less-le-not-le)

lemma cardEx: assumes finite A and finite B and card A > card B shows ∃ x∈A. ¬ x∈B
proof cases
assume A ⊆ B
with assms have card A≤card B using card-mono by blast
with assms have False by simp
thus ?thesis by simp

next
assume ¬ A ⊆ B
thus ?thesis by auto

qed

262

G.2 Relative Frequency LTL

lemma cardshift:
card {i::nat. i>n ∧ i ≤ n ′ ∧ p (n ′′ + i)} = card {i. i>(n + n ′′) ∧ i ≤ (n ′ + n ′′) ∧ p i}
proof −
let ?f=λi. i+n ′′

have bij-betw ?f {i::nat. i>n ∧ i ≤ n ′ ∧ p (n ′′ + i)} {i. i>(n + n ′′) ∧ i ≤ (n ′ + n ′′) ∧ p i}
proof (rule bij-betwI ′)
fix x y assume x ∈ {i. n < i ∧ i ≤ n ′ ∧ p (n ′′ + i)}
and y ∈ {i. n < i ∧ i ≤ n ′ ∧ p (n ′′ + i)}

show (x + n ′′ = y + n ′′) = (x = y) by simp
next
fix x::nat assume x ∈ {i. n < i ∧ i ≤ n ′ ∧ p (n ′′ + i)}
hence n<x and x ≤ n ′ and p(n ′′+x) by auto
moreover have n ′′+x=x+n ′′ by simp
ultimately have n + n ′′ < x + n ′′ and x + n ′′ ≤ n ′ + n ′′ and p (x + n ′′) by auto
thus x + n ′′ ∈ {i. n + n ′′ < i ∧ i ≤ n ′ + n ′′ ∧ p i} by auto

next
fix y::nat assume y ∈ {i. n + n ′′ < i ∧ i ≤ n ′ + n ′′ ∧ p i}
hence n+n ′′<y and y≤n ′+n ′′ and p y by auto
then obtain x where x=y−n ′′ by simp
with 〈n+n ′′<y〉 have y=x+n ′′ by simp
moreover from 〈x=y−n ′′〉 〈n+n ′′<y〉 have x>n by simp
moreover from 〈x=y−n ′′〉 〈y≤n ′+n ′′〉 have x≤n ′ by simp
moreover from 〈y=x+n ′′〉 have y=n ′′+x by simp
with 〈p y〉 have p (n ′′ + x) by simp
ultimately show ∃ x∈{i. n < i ∧ i ≤ n ′ ∧ p (n ′′ + i)}. y = x + n ′′ by auto

qed
thus ?thesis using bij-betw-same-card by auto

qed

end

G.2 Relative Frequency LTL
theory RF-LTL
imports Main HOL−Library.Sublist Auxiliary Dynamic-Architecture-Calculus

begin

type-synonym ′s seq = nat ⇒ ′s

abbreviation ccard n n ′ p ≡ card {i. i>n ∧ i ≤ n ′ ∧ p i}

lemma ccard-same:
assumes ¬ p (Suc n ′)
shows ccard n n ′ p = ccard n (Suc n ′) p

proof −
have {i. i > n ∧ i ≤ Suc n ′ ∧ p i} = {i. i>n ∧ i ≤ n ′ ∧ p i}
proof
show {i. n < i ∧ i ≤ Suc n ′ ∧ p i} ⊆ {i. n < i ∧ i ≤ n ′ ∧ p i}
proof

263

G Verification of Blockchain Architectures

fix x assume x ∈ {i. n < i ∧ i ≤ Suc n ′ ∧ p i}
hence n<x and x≤Suc n ′ and p x by auto
with assms (1) have x 6=Suc n ′ by auto
with 〈x≤Suc n ′〉 have x ≤ n ′ by simp
with 〈n<x〉 〈p x〉 show x ∈ {i. n < i ∧ i ≤ n ′ ∧ p i} by simp

qed
next
show {i. n < i ∧ i ≤ n ′ ∧ p i} ⊆ {i. n < i ∧ i ≤ Suc n ′ ∧ p i} by auto

qed
thus ?thesis by simp

qed

lemma ccard-zero[simp]:
fixes n::nat
shows ccard n n p = 0
by auto

lemma ccard-inc:
assumes p (Suc n ′)
and n ′ ≥ n

shows ccard n (Suc n ′) p = Suc (ccard n n ′ p)
proof −
let ?A = {i. i > n ∧ i ≤ n ′ ∧ p i}
have finite ?A by simp
moreover have Suc n ′ /∈ ?A by simp
ultimately have card (insert (Suc n ′) ?A) = Suc (card ?A)
using card-insert-disjoint[of ?A] by simp

moreover have insert (Suc n ′) ?A = {i. i>n ∧ i ≤ (Suc n ′) ∧ p i}
proof
show insert (Suc n ′) ?A ⊆ {i. n < i ∧ i ≤ Suc n ′ ∧ p i}
proof
fix x assume x ∈ insert (Suc n ′) {i. n < i ∧ i ≤ n ′ ∧ p i}
hence x=Suc n ′ ∨ n < x ∧ x ≤ n ′ ∧ p x by simp
thus x ∈ {i. n < i ∧ i ≤ Suc n ′ ∧ p i}
proof
assume x = Suc n ′

with assms (1) assms (2) show ?thesis by simp
next
assume n < x ∧ x ≤ n ′ ∧ p x
thus ?thesis by simp

qed
qed

next
show {i. n < i ∧ i ≤ Suc n ′ ∧ p i} ⊆ insert (Suc n ′) ?A by auto

qed
ultimately show ?thesis by simp

qed

lemma ccard-mono:

264

G.2 Relative Frequency LTL

assumes n ′≥n
shows n ′′≥n ′ =⇒ ccard n (n ′′::nat) p ≥ ccard n n ′ p

proof (induction n ′′ rule: dec-induct)
case base
then show ?case ..

next
case (step n ′′)
then show ?case
proof cases
assume p (Suc n ′′)
moreover from step.hyps assms have n≤n ′′ by simp
ultimately have ccard n (Suc n ′′) p = Suc (ccard n n ′′ p)
using ccard-inc[of p n ′′ n] by simp

also have . . . ≥ ccard n n ′ p using step.IH by simp
finally show ?case .

next
assume ¬ p (Suc n ′′)
moreover from step.hyps assms have n≤n ′′ by simp
ultimately have ccard n (Suc n ′′) p = ccard n n ′′ p
using ccard-same[of p n ′′ n] by simp

also have . . . ≥ ccard n n ′ p using step.IH by simp
finally show ?case by simp

qed
qed

lemma ccard-ub[simp]:
ccard n n ′ p ≤ Suc n ′ − n

proof −
have {i. i>n ∧ i ≤ n ′ ∧ p i} ⊆ {i. i≥n ∧ i ≤ n ′} by auto
hence ccard n n ′ p ≤ card {i. i≥n ∧ i ≤ n ′} by (simp add: card-mono)
moreover have {i. i≥n ∧ i ≤ n ′} = {n..n ′} by auto
hence card {i. i≥n ∧ i ≤ n ′} = Suc n ′ − n by simp
ultimately show ?thesis by simp

qed

lemma ccard-sum:
fixes n::nat
assumes n ′≥n ′′

and n ′′≥n
shows ccard n n ′ P = ccard n n ′′ P + ccard n ′′ n ′ P

proof −
have ccard n n ′ P = card {i. i>n ∧ i ≤ n ′ ∧ P i} by simp
moreover have {i. i>n ∧ i ≤ n ′ ∧ P i} =
{i. i>n ∧ i ≤ n ′′ ∧ P i} ∪ {i. i>n ′′ ∧ i ≤ n ′ ∧ P i} (is ?LHS = ?RHS)

proof
show ?LHS ⊆ ?RHS by auto

next
show ?RHS ⊆ ?LHS
proof

265

G Verification of Blockchain Architectures

fix x
assume x∈?RHS
hence x>n ∧ x ≤ n ′′ ∧ P x ∨ x>n ′′ ∧ x ≤ n ′ ∧ P x by auto
thus x∈?LHS
proof
assume n < x ∧ x ≤ n ′′ ∧ P x
with assms show ?thesis by simp

next
assume n ′′ < x ∧ x ≤ n ′ ∧ P x
with assms show ?thesis by simp

qed
qed

qed
hence card ?LHS = card ?RHS by simp
ultimately have ccard n n ′ P = card ?RHS by simp
moreover have
card ?RHS = card {i. i>n ∧ i ≤ n ′′ ∧ P i} + card {i. i>n ′′ ∧ i ≤ n ′ ∧ P i}

proof (rule card-Un-disjoint)
show finite {i. n < i ∧ i ≤ n ′′ ∧ P i} by simp
show finite {i. n ′′ < i ∧ i ≤ n ′ ∧ P i} by simp
show {i. n < i ∧ i ≤ n ′′ ∧ P i} ∩ {i. n ′′ < i ∧ i ≤ n ′ ∧ P i} = {} by auto

qed
moreover have ccard n n ′′ P = card {i. i>n ∧ i ≤ n ′′ ∧ P i} by simp
moreover have ccard n ′′ n ′ P= card {i. i>n ′′ ∧ i ≤ n ′ ∧ P i} by simp
ultimately show ?thesis by simp

qed

lemma ccard-ex:
fixes n::nat
shows c≥1 =⇒ c < ccard n n ′′ P =⇒ ∃n ′<n ′′. n ′>n ∧ ccard n n ′ P = c

proof (induction c rule: dec-induct)
let ?l = LEAST i::nat. n < i ∧ i < n ′′ ∧ P i
case base
moreover have ccard n n ′′ P ≤ Suc (card {i. n < i ∧ i < n ′′ ∧ P i})
proof −
from 〈ccard n n ′′ P > 1 〉 have n ′′>n using less-le-trans by force
then obtain n ′ where Suc n ′ = n ′′ and Suc n ′ ≥ n by (metis lessE less-imp-le-nat)
moreover have {i. n < i ∧ i < Suc n ′ ∧ P i} = {i. n < i ∧ i ≤ n ′ ∧ P i} by auto
hence card {i. n < i ∧ i < Suc n ′ ∧ P i} = card {i. n < i ∧ i ≤ n ′ ∧ P i} by simp
moreover have
card {i. n < i ∧ i ≤ Suc n ′ ∧ P i} ≤ Suc (card {i. n < i ∧ i ≤ n ′ ∧ P i})

proof cases
assume P (Suc n ′)
moreover from 〈n ′′>n〉 〈Suc n ′=n ′′〉 have n ′≥n by simp
ultimately show ?thesis using ccard-inc[of P n ′ n] by simp

next
assume ¬ P (Suc n ′)
moreover from 〈n ′′>n〉 〈Suc n ′=n ′′〉 have n ′≥n by simp
ultimately show ?thesis using ccard-same[of P n ′ n] by simp

266

G.2 Relative Frequency LTL

qed
ultimately show ?thesis by simp

qed
ultimately have card {i. n < i ∧ i < n ′′ ∧ P i} ≥ 1 by simp
hence {i. n < i ∧ i < n ′′ ∧ P i} 6= {} by fastforce
hence ∃ i. n < i ∧ i < n ′′ ∧ P i by auto
hence ?l>n and ?l<n ′′ and P ?l using LeastI-ex[of λi::nat. n < i ∧ i < n ′′ ∧ P i] by auto
moreover have {i. n < i ∧ i ≤ ?l ∧ P i} = {?l}
proof
show {i. n < i ∧ i ≤ ?l ∧ P i} ⊆ {?l}
proof
fix i
assume i∈{i. n < i ∧ i ≤ ?l ∧ P i}
hence n < i and i ≤ ?l and P i by auto
with 〈∃ i. n < i ∧ i < n ′′ ∧ P i〉 have i=?l
using Least-le[of λi. n < i ∧ i < n ′′ ∧ P i] by (meson antisym le-less-trans)

thus i∈{?l} by simp
qed

next
show {?l} ⊆ {i. n < i ∧ i ≤ ?l ∧ P i}
proof
fix i
assume i∈{?l}
hence i=?l by simp
with 〈?l>n〉 〈?l<n ′′〉 〈P ?l〉 show i∈{i. n < i ∧ i ≤ ?l ∧ P i} by simp

qed
qed
hence ccard n ?l P = 1 by simp
ultimately show ?case by auto

next
case (step c)
moreover from step.prems have Suc c<ccard n n ′′ P by simp
ultimately obtain n ′ where n ′<n ′′ and n < n ′ and ccard n n ′ P = c by auto
hence ccard n n ′′ P = ccard n n ′ P + ccard n ′ n ′′ P using ccard-sum[of n ′ n ′′ n] by simp
with 〈Suc c<ccard n n ′′ P〉 〈ccard n n ′ P = c〉 have ccard n ′ n ′′ P>1 by simp
moreover have ccard n ′ n ′′ P ≤ Suc (card {i. n ′ < i ∧ i < n ′′ ∧ P i})
proof −
from 〈ccard n ′ n ′′ P > 1 〉 have n ′′>n ′ using less-le-trans by force
then obtain n ′′′ where Suc n ′′′ = n ′′ and Suc n ′′′ ≥ n ′ by (metis lessE less-imp-le-nat)
moreover have {i. n ′ < i ∧ i < Suc n ′′′ ∧ P i} = {i. n ′ < i ∧ i ≤ n ′′′ ∧ P i} by auto
hence card {i. n ′ < i ∧ i < Suc n ′′′ ∧ P i} = card {i. n ′ < i ∧ i ≤ n ′′′ ∧ P i} by simp
moreover have
card {i. n ′ < i ∧ i ≤ Suc n ′′′ ∧ P i} ≤ Suc (card {i. n ′ < i ∧ i ≤ n ′′′ ∧ P i})

proof cases
assume P (Suc n ′′′)
moreover from 〈n ′′>n ′〉 〈Suc n ′′′=n ′′〉 have n ′′′≥n ′ by simp
ultimately show ?thesis using ccard-inc[of P n ′′′ n ′] by simp

next
assume ¬ P (Suc n ′′′)

267

G Verification of Blockchain Architectures

moreover from 〈n ′′>n ′〉 〈Suc n ′′′=n ′′〉 have n ′′′≥n ′ by simp
ultimately show ?thesis using ccard-same[of P n ′′′ n ′] by simp

qed
ultimately show ?thesis by simp

qed
ultimately have card {i. n ′ < i ∧ i < n ′′ ∧ P i} ≥ 1 by simp
hence {i. n ′ < i ∧ i < n ′′ ∧ P i} 6= {} by fastforce
hence ∃ i. n ′ < i ∧ i < n ′′ ∧ P i by auto
let ?l = LEAST i::nat. n ′ < i ∧ i < n ′′ ∧ P i
from 〈∃ i. n ′ < i ∧ i < n ′′ ∧ P i〉 have n ′ < ?l
using LeastI-ex[of λi::nat. n ′ < i ∧ i < n ′′ ∧ P i] by auto

with 〈n < n ′〉 have ccard n ?l P = ccard n n ′ P + ccard n ′ ?l P using ccard-sum[of n ′ ?l n]
by simp
moreover have {i. n ′ < i ∧ i ≤ ?l ∧ P i} = {?l}
proof
show {i. n ′ < i ∧ i ≤ ?l ∧ P i} ⊆ {?l}
proof
fix i
assume i∈{i. n ′ < i ∧ i ≤ ?l ∧ P i}
hence n ′ < i and i ≤ ?l and P i by auto
with 〈∃ i. n ′ < i ∧ i < n ′′ ∧ P i〉 have i=?l
using Least-le[of λi. n ′ < i ∧ i < n ′′ ∧ P i] by (meson antisym le-less-trans)

thus i∈{?l} by simp
qed

next
show {?l} ⊆ {i. n ′ < i ∧ i ≤ ?l ∧ P i}
proof
fix i
assume i∈{?l}
hence i=?l by simp
moreover from 〈∃ i. n ′ < i ∧ i < n ′′ ∧ P i〉 have ?l<n ′′ and P ?l
using LeastI-ex[of λi. n ′ < i ∧ i < n ′′ ∧ P i] by auto

ultimately show i∈{i. n ′ < i ∧ i ≤ ?l ∧ P i} using 〈?l>n ′〉 by simp
qed

qed
hence ccard n ′ ?l P = 1 by simp
ultimately have card {i. n < i ∧ i ≤ ?l ∧ P i} = Suc c using 〈ccard n n ′ P = c〉 by simp
moreover from 〈∃ i. n ′ < i ∧ i < n ′′ ∧ P i〉 have n ′ < ?l and ?l < n ′′ and P ?l
using LeastI-ex[of λi::nat. n ′ < i ∧ i < n ′′ ∧ P i] by auto

with 〈n < n ′〉 have n<?l and ?l<n ′′ by auto
ultimately show ?case by auto

qed

lemma ccard-freq:
assumes (n ′::nat)≥n
and ccard n n ′ P > ccard n n ′ Q + cnf

shows ∃n ′ n ′′. ccard n ′ n ′′ P > cnf ∧ ccard n ′ n ′′ Q ≤ cnf
proof cases
assume cnf = 0

268

G.2 Relative Frequency LTL

with assms(2) have ccard n n ′ P > ccard n n ′ Q by simp
hence card {i. n < i ∧ i ≤ n ′ ∧ P i}>card {i. n < i ∧ i ≤ n ′ ∧ Q i}

(is card ?LHS>card ?RHS) by simp
then obtain i where i∈?LHS and ¬ i ∈ ?RHS and i>0 using cardEx[of ?LHS ?RHS] by

auto
hence P i and ¬ Q i by auto
with 〈i>0 〉 obtain n ′′ where P (Suc n ′′) and ¬Q (Suc n ′′) using gr0-implies-Suc by auto
hence ccard n ′′ (Suc n ′′) P = 1 using ccard-inc by auto
with 〈cnf = 0 〉 have ccard n ′′ (Suc n ′′) P > cnf by simp
moreover from 〈¬Q (Suc n ′′)〉 have ccard n ′′ (Suc n ′′) Q = 0
using ccard-same[of Q n ′′ n ′′] by auto

with 〈cnf = 0 〉 have ccard n ′′ (Suc n ′′) Q ≤ cnf by simp
ultimately show ?thesis by auto

next
assume ¬ cnf = 0
show ?thesis
proof (rule ccontr)
assume ¬ (∃n ′ n ′′. ccard n ′ n ′′ P > cnf ∧ ccard n ′ n ′′ Q ≤ cnf)
hence hyp: ∀n ′ n ′′. ccard n ′ n ′′ Q ≤ cnf −→ ccard n ′ n ′′ P ≤ cnf
using leI less-imp-le-nat by blast

show False
proof cases
assume ccard n n ′ Q ≤ cnf
with hyp have ccard n n ′ P ≤ cnf by simp
with assms show False by simp

next
let ?gcond=λn ′′. n ′′≥n ∧ n ′′≤n ′ ∧ (∃ x≥1 . ccard n n ′′ Q = x ∗ cnf)
let ?g= GREATEST n ′′. ?gcond n ′′

assume ¬ ccard n n ′ Q ≤ cnf
hence ccard n n ′ Q > cnf by simp
hence ∃n ′′. ?gcond n ′′

proof −
from 〈ccard n n ′ Q > cnf 〉 〈¬cnf=0 〉 obtain n ′′

where n ′′>n and n ′′≤n ′ and ccard n n ′′ Q = cnf
using ccard-ex[of cnf n n ′ Q] by auto

moreover from 〈ccard n n ′′ Q = cnf 〉 have ∃ x≥1 . ccard n n ′′ Q = x ∗ cnf by auto
ultimately show ?thesis using less-imp-le-nat by blast

qed
moreover have ∀n ′′>n ′. ¬ ?gcond n ′′ by simp
ultimately have gex: ∃n ′′. ?gcond n ′′ ∧ (∀n ′′′. ?gcond n ′′′ −→ n ′′′≤n ′′)
using boundedGreatest[of ?gcond - n ′] by blast

hence ∃ x≥1 . ccard n ?g Q = x ∗ cnf and ?g ≥ n
using GreatestI-ex-nat[of ?gcond] by auto

moreover {fix n ′′

have n ′′≥n =⇒ ∃ x≥1 . ccard n n ′′ Q = x ∗ cnf =⇒ ccard n n ′′ P ≤ ccard n n ′′ Q
proof (induction n ′′ rule: ge-induct)
case (step n ′)
from step.prems obtain x where x≥1 and cas: ccard n n ′ Q = x ∗ cnf by auto
then show ?case

269

G Verification of Blockchain Architectures

proof cases
assume x=1
with cas have ccard n n ′ Q = cnf by simp
with hyp have ccard n n ′ P ≤ cnf by simp
with 〈ccard n n ′ Q = cnf 〉 show ?thesis by simp

next
assume ¬x=1
with 〈x≥1 〉 have x>1 by simp
hence x−1 ≥ 1 by simp
moreover from 〈cnf 6=0 〉 〈x−1 ≥ 1 〉

have (x−1) ∗ cnf < x ∗ cnf ∧ (x − 1) ∗ cnf 6= 0 by auto
with 〈x−1 ≥ 1 〉 〈cnf 6=0 〉〈ccard n n ′ Q = x ∗ cnf 〉 obtain n ′′

where n ′′>n and n ′′<n ′ and ccard n n ′′ Q = (x−1) ∗ cnf
using ccard-ex[of (x−1)∗cnf n n ′ Q] by auto

ultimately have ∃ x≥1 . ccard n n ′′ Q = x ∗ cnf and n ′′≥n by auto
with 〈n ′′≥n〉 〈n ′′<n ′〉 have ccard n n ′′ P ≤ ccard n n ′′ Q using step.IH by simp
moreover have ccard n ′′ n ′ Q = cnf
proof −
from 〈x−1 ≥ 1 〉 have x∗cnf = ((x−1) ∗ cnf) + cnf
using semiring-normalization-rules(2)[of (x − 1) cnf] by simp

with 〈ccard n n ′′ Q = (x−1) ∗ cnf 〉 〈ccard n n ′ Q = x ∗ cnf 〉

have ccard n n ′ Q = ccard n n ′′ Q + cnf by simp
moreover from 〈n ′′≥n〉 〈n ′′<n ′〉 have ccard n n ′ Q = ccard n n ′′ Q + ccard n ′′ n ′ Q
using ccard-sum[of n ′′ n ′ n] by simp

ultimately show ?thesis by simp
qed
moreover from 〈ccard n ′′ n ′ Q = cnf 〉 have ccard n ′′ n ′ P ≤ cnf using hyp by simp
ultimately show ?thesis using 〈n ′′≥n〉 〈n ′′<n ′〉 ccard-sum[of n ′′ n ′ n] by simp

qed
qed } note geq = this
ultimately have ccard n ?g P ≤ ccard n ?g Q by simp
moreover have ccard ?g n ′ P ≤ cnf
proof (rule ccontr)
assume ¬ ccard ?g n ′ P ≤ cnf
hence ccard ?g n ′ P > cnf by simp
have ccard ?g n ′ Q > cnf
proof (rule ccontr)
assume ¬ccard ?g n ′ Q > cnf
hence ccard ?g n ′ Q ≤ cnf by simp
with 〈ccard ?g n ′ P > cnf 〉 show False
using 〈¬ (∃n ′ n ′′. ccard n ′ n ′′ P > cnf ∧ ccard n ′ n ′′ Q ≤ cnf)〉 by simp

qed
with 〈¬ cnf=0 〉 obtain n ′′ where n ′′>?g and n ′′<n ′ and ccard ?g n ′′ Q = cnf
using ccard-ex[of cnf ?g n ′ Q] by auto

moreover have ∃ x≥1 . ccard n n ′′ Q = x ∗ cnf
proof −
from 〈∃ x≥1 . ccard n ?g Q = x ∗ cnf 〉 obtain x
where x≥1 and ccard n ?g Q = x ∗ cnf by auto

from 〈n ′′>?g〉 〈?g≥n〉 have ccard n n ′′ Q = ccard n ?g Q + ccard ?g n ′′ Q

270

G.2 Relative Frequency LTL

using ccard-sum[of ?g n ′′ n Q] by simp
with 〈ccard n ?g Q = x ∗ cnf 〉 have ccard n n ′′ Q = x ∗ cnf + ccard ?g n ′′ Q by simp
with 〈ccard ?g n ′′ Q = cnf 〉 have ccard n n ′′ Q = Suc x ∗ cnf by simp
thus ?thesis by auto

qed
moreover from 〈n ′′>?g〉 〈?g≥n〉 have n ′′≥n by simp
ultimately have ∃n ′′>?g. ?gcond n ′′ by auto
moreover from gex have ∀n ′′′. ?gcond n ′′′ −→ n ′′′≤?g
using Greatest-le-nat[of ?gcond] by auto

ultimately show False by auto
qed
moreover from gex have n ′≥?g
using GreatestI-ex-nat[of ?gcond] by auto

ultimately have ccard n n ′ P≤ccard n n ′ Q + cnf
using ccard-sum[of ?g n ′ n] using 〈?g ≥ n〉 by simp

with assms show False by simp
qed

qed
qed

locale trusted =
fixes bc:: (′a list) seq
and n::nat

assumes growth: n ′6=0 =⇒ n ′≤n =⇒ bc n ′ = bc (n ′−1) ∨ (∃ b. bc n ′ = bc (n ′ − 1) @ b)
begin
end

locale untrusted =
fixes bc:: (′a list) seq
and mining::bool seq

assumes growth:∧
n::nat. prefix (bc (Suc n)) (bc n) ∨ (∃ b:: ′a. bc (Suc n) = bc n @ [b]) ∧ mining (Suc n)

begin

lemma prefix-save:
assumes prefix sbc (bc n ′)
and ∀n ′′′>n ′. n ′′′≤n ′′ −→ length (bc n ′′′) ≥ length sbc

shows n ′′≥n ′ =⇒ prefix sbc (bc n ′′)
proof (induction n ′′ rule: dec-induct)
case base
with assms(1) show ?case by simp

next
case (step n)
from growth[of n] show ?case
proof
assume prefix (bc (Suc n)) (bc n)
moreover from step.hyps have length (bc (Suc n)) ≥ length sbc using assms(2) by simp
ultimately show ?thesis using step.IH using prefix-length-prefix by auto

next

271

G Verification of Blockchain Architectures

assume (∃ b. bc (Suc n) = bc n @ [b]) ∧ mining (Suc n)
with step.IH show ?thesis by auto

qed
qed

theorem prefix-length:
assumes prefix sbc (bc n ′) and ¬ prefix sbc (bc n ′′) and n ′≤n ′′

shows ∃n ′′′>n ′. n ′′′≤n ′′ ∧ length (bc n ′′′) < length sbc
proof (rule ccontr)
assume ¬ (∃n ′′′>n ′. n ′′′≤n ′′ ∧ length (bc n ′′′) < length sbc)
hence ∀n ′′′>n ′. n ′′′≤n ′′ −→ length (bc n ′′′) ≥ length sbc by auto
with assms have prefix sbc (bc n ′′) using prefix-save[of sbc n ′ n ′′] by simp
with assms (2) show False by simp

qed

theorem grow-mining:
assumes length (bc n) < length (bc (Suc n))
shows mining (Suc n)
using assms growth leD prefix-length-le by blast

lemma length-suc-length:
length (bc (Suc n)) ≤ Suc (length (bc n))
by (metis eq-iff growth le-SucI length-append-singleton prefix-length-le)

end

locale untrusted-growth =
fixes bc:: nat seq
and mining:: nat ⇒ bool

assumes as1 :
∧
n::nat. bc (Suc n) ≤ Suc (bc n)

and as2 :
∧
n::nat. bc (Suc n) > bc n =⇒ mining (Suc n)

begin

end

sublocale untrusted ⊆ untrusted-growth λn. length (bc n) using grow-mining length-suc-length
by unfold-locales auto

context untrusted-growth
begin
theorem ccard-diff-lgth:
n ′≥n =⇒ ccard n n ′ (λn. mining n) ≥ (bc n ′ − bc n)

proof (induction n ′ rule: dec-induct)
case base
then show ?case by simp
next
case (step n ′)
from as1 have bc (Suc n ′) < Suc (bc n ′) ∨ bc (Suc n ′) = Suc (bc n ′)
using le-neq-implies-less by blast

272

G.2 Relative Frequency LTL

then show ?case
proof
assume bc (Suc n ′) < Suc (bc n ′)
hence bc (Suc n ′) − bc n ≤ bc n ′ − bc n by simp
moreover from step.hyps have
ccard n (Suc n ′) (λn. mining n) ≥ ccard n n ′ (λn. mining n)
using ccard-mono[of n n ′ Suc n ′] by simp

ultimately show ?thesis using step.IH by simp
next
assume bc (Suc n ′) = Suc (bc n ′)
hence bc (Suc n ′) − bc n ≤ Suc (bc n ′ − bc n) by simp
moreover from 〈bc (Suc n ′) = Suc (bc n ′)〉 have mining (Suc n ′) using as2 by simp
with step.hyps have ccard n (Suc n ′) (λn. mining n) ≥ Suc (ccard n n ′ (λn. mining n))
using ccard-inc by simp

ultimately show ?thesis using step.IH by simp
qed

qed
end

locale trusted-growth =
fixes bc:: nat seq
and mining:: nat ⇒ bool
and init:: nat

assumes as1 :
∧
n::nat. bc (Suc n) ≥ bc n

and as2 :
∧
n::nat. mining (Suc n) =⇒ bc (Suc n) > bc n

begin
lemma grow-mono: n ′≥n=⇒bc n ′≥bc n
proof (induction n ′ rule: dec-induct)
case base
then show ?case by simp

next
case (step n ′)
then show ?case using as1 [of n ′] by simp

qed

theorem ccard-diff-lgth:
shows n ′≥n =⇒ bc n ′ − bc n ≥ ccard n n ′ (λn. mining n)

proof (induction n ′ rule: dec-induct)
case base
then show ?case by simp

next
case (step n ′)
then show ?case
proof cases
assume mining (Suc n ′)
with as2 have bc (Suc n ′) > bc n ′ by simp
moreover from step.hyps have bc n ′≥bc n using grow-mono by simp
ultimately have bc (Suc n ′) − bc n > bc n ′ − bc n by simp
moreover from as1 have bc (Suc n ′) − bc n ≥ bc n ′ − bc n by (simp add: diff-le-mono)

273

G Verification of Blockchain Architectures

moreover from 〈mining (Suc n ′)〉 step.hyps
have ccard n (Suc n ′) (λn. mining n) ≤ Suc (ccard n n ′ (λn. mining n))
using ccard-inc by simp

ultimately show ?thesis using step.IH by simp
next
assume ¬ mining (Suc n ′)
hence ccard n (Suc n ′) (λn. mining n) ≤ (ccard n n ′ (λn. mining n))
using ccard-same by simp

moreover from as1 have bc (Suc n ′) − bc n ≥ bc n ′ − bc n by (simp add: diff-le-mono)
ultimately show ?thesis using step.IH by simp

qed
qed

end

locale bounded-growth = tg: trusted-growth tbc tmining + ug: untrusted-growth ubc umining
for tbc:: nat seq
and ubc:: nat seq
and tmining:: nat ⇒ bool
and umining:: nat ⇒ bool
and sbc::nat
and cnf ::nat +

assumes fair :
∧
n n ′. ccard n n ′ (λn. umining n) > cnf =⇒ ccard n n ′ (λn. tmining n) > cnf

and a2 : tbc 0 ≥ sbc+cnf
and a3 : ubc 0 < sbc

begin

theorem tr-upper-bound: shows ubc n < tbc n
proof (rule ccontr)
assume ¬ ubc n < tbc n
hence ubc n ≥ tbc n by simp
moreover from a2 a3 have tbc 0 > ubc 0 + cnf by simp
moreover have tbc n≥tbc 0 using tg.grow-mono by simp
ultimately have ubc n − ubc 0 > tbc n − tbc 0 + cnf by simp
moreover have ccard 0 n (λn. tmining n) ≤ tbc n − tbc 0 using tg.ccard-diff-lgth by simp
moreover have ubc n − ubc 0 ≤ ccard 0 n (λn. umining n) using ug.ccard-diff-lgth by simp
ultimately have ccard 0 n (λn. umining n) > ccard 0 n (λn. tmining n) + cnf by simp
hence ∃n ′ n ′′. ccard n ′ n ′′ (λn. umining n) > cnf ∧ ccard n ′ n ′′ (λn. tmining n) ≤ cnf
using ccard-freq by blast

with fair show False using leD by blast
qed

end

end

G.3 A Theory of Blockchain Architectures
theory Blockchain imports Auxiliary Dynamic-Architecture-Calculus RF-LTL
begin

274

G.3 A Theory of Blockchain Architectures

G.3.1 Blockchains

A blockchain itself is modeled as a simple list.

type-synonym ′a BC = ′a list

abbreviation max-cond:: (′a BC) set ⇒ ′a BC ⇒ bool
where max-cond B b ≡ b ∈ B ∧ (∀ b ′∈B. length b ′ ≤ length b)

no-syntax
-MAX1 :: pttrns ⇒ ′b ⇒ ′b ((3MAX -./ -) [0 , 10] 10)
-MAX :: pttrn ⇒ ′a set ⇒ ′b ⇒ ′b ((3MAX -:-./ -) [0 , 0 , 10] 10)
-MAX1 :: pttrns ⇒ ′b ⇒ ′b ((3MAX -./ -) [0 , 10] 10)
-MAX :: pttrn ⇒ ′a set ⇒ ′b ⇒ ′b ((3MAX -∈-./ -) [0 , 0 , 10] 10)

definition MAX :: (′a BC) set ⇒ ′a BC
where MAX B = (SOME b. max-cond B b)

lemma max-ex:
fixes XS ::(′a BC) set
assumes XS 6= {}
and finite XS

shows ∃ xs∈XS . (∀ ys∈XS . length ys ≤ length xs)
proof (rule Finite-Set.finite-ne-induct)
show finite XS using assms by simp

next
from assms show XS 6= {} by simp

next
fix x:: ′a BC
show ∃ xs∈{x}. ∀ ys∈{x}. length ys ≤ length xs by simp

next
fix zs:: ′a BC and F ::(′a BC) set
assume finite F and F 6= {} and zs /∈ F and ∃ xs∈F . ∀ ys∈F . length ys ≤ length xs
then obtain xs where xs∈F and ∀ ys∈F . length ys ≤ length xs by auto
show ∃ xs∈insert zs F . ∀ ys∈insert zs F . length ys ≤ length xs
proof (cases)
assume length zs ≥ length xs
with 〈∀ ys∈F . length ys ≤ length xs〉 show ?thesis by auto

next
assume ¬ length zs ≥ length xs
hence length zs ≤ length xs by simp
with 〈xs ∈ F 〉 show ?thesis using 〈∀ ys∈F . length ys ≤ length xs〉 by auto

qed
qed

lemma max-prop:
fixes XS ::(′a BC) set
assumes XS 6= {}
and finite XS

shows MAX XS ∈ XS

275

G Verification of Blockchain Architectures

and ∀ b ′∈XS . length b ′ ≤ length (MAX XS)
proof −
from assms have ∃ xs∈XS . ∀ ys∈XS . length ys ≤ length xs using max-ex[of XS] by auto
with MAX-def [of XS] show MAX XS ∈ XS and ∀ b ′∈XS . length b ′ ≤ length (MAX XS)
using someI-ex[of λb. b ∈ XS ∧ (∀ b ′∈XS . length b ′ ≤ length b)] by auto

qed

lemma max-less:
fixes b:: ′a BC and b ′:: ′a BC and B::(′a BC) set
assumes b∈B
and finite B
and length b > length b ′

shows length (MAX B) > length b ′

proof −
from assms have ∃ xs∈B. ∀ ys∈B. length ys ≤ length xs using max-ex[of B] by auto
with MAX-def [of B] have ∀ b ′∈B. length b ′ ≤ length (MAX B)
using someI-ex[of λb. b ∈ B ∧ (∀ b ′∈B. length b ′ ≤ length b)] by auto

with 〈b∈B〉 have length b ≤ length (MAX B) by simp
with 〈length b > length b ′〉 show ?thesis by simp

qed

G.3.2 Blockchain Architectures
In the following we describe the locale for blockchain architectures.
locale Blockchain = dynamic-component cmp active
for active :: ′nid ⇒ cnf ⇒ bool (- - [0 ,110]60)
and cmp :: ′nid ⇒ cnf ⇒ ′ND (σ-(-) [0 ,110]60) +

fixes pin :: ′ND ⇒ (′nid BC) set
and pout :: ′ND ⇒ ′nid BC
and bc :: ′ND ⇒ ′nid BC
and mining :: ′ND ⇒ bool
and trusted :: ′nid ⇒ bool
and actTr :: cnf ⇒ ′nid set
and actUt :: cnf ⇒ ′nid set
and PoW :: trace ⇒ nat ⇒ nat
and tmining:: trace ⇒ nat ⇒ bool
and umining:: trace ⇒ nat ⇒ bool
and cb:: nat

defines actTr k ≡ {nid. nid k ∧ trusted nid}
and actUt k ≡ {nid. nid k ∧ ¬ trusted nid}
and PoW t n ≡ (LEAST x. ∀nid∈actTr (t n). length (bc (σnid(t n))) ≤ x)
and tmining t ≡ (λn. ∃nid∈actTr (t n). mining (σnid(t n)))
and umining t ≡ (λn. ∃nid∈actUt (t n). mining (σnid(t n)))

assumes consensus:
∧
nid t t ′ bc ′::(′nid BC). [[trusted nid]] =⇒ eval nid t t ′ 0

(2b(ba (λnd. bc ′ =
(if (∃ b∈pin nd. length b > length (bc nd)) then (MAX (pin nd)) else (bc nd)))
−→b #b(ba (λnd.(¬ mining nd ∧ bc nd = bc ′ ∨ mining nd ∧ (∃ b. bc nd = bc ′ @ [b]))))))

and attacker :
∧
nid t t ′ bc ′. [[¬ trusted nid]] =⇒ eval nid t t ′ 0

(2b(ba (λnd. bc ′ = (SOME b. b ∈ (pin nd ∪ {bc nd}))) −→b

276

G.3 A Theory of Blockchain Architectures

#b (ba (λnd.(¬ mining nd ∧ prefix (bc nd) bc ′ ∨ mining nd ∧ (∃ b. bc nd = bc ′ @ [b]))))))
and forward:

∧
nid t t ′. eval nid t t ′ 0 (2b(ba (λnd. pout nd = bc nd)))

— At each time point a node will forward its blockchain to the network
and init:

∧
nid t t ′. eval nid t t ′ 0 (ba (λnd. bc nd=[]))

and conn:
∧
k nid. [[active nid k; trusted nid]]

=⇒ pin (cmp nid k) = (
⋃
nid ′∈actTr k. {pout (cmp nid ′ k)})

and act:
∧
t n::nat. finite {nid:: ′nid. nid t n}

and actTr :
∧
t n::nat. ∃nid. trusted nid ∧ nid t n ∧ nid t (Suc n)

and fair :
∧
n n ′. ccard n n ′ (umining t) > cb =⇒ ccard n n ′ (tmining t) > cb

and closed:
∧
t nid b n::nat. [[nid t n; b ∈ pin (σnid(t n))]] =⇒

∃nid ′. nid ′ t n ∧ bc (σnid ′(t n)) = b
and mine:

∧
t nid n::nat. [[trusted nid; nid t (Suc n); mining (σnid(t (Suc n)))]] =⇒ nid t n

begin

lemma init-model:
assumes ¬ (∃n ′. latestAct-cond nid t n n ′)
and nid t n

shows bc (σnidt n) = []
proof −
from assms(2) have ∃ i≥0 . nid t i by auto
with init have bc (σnidt 〈nid → t〉0) = [] using baEA[of 0 nid t] by blast
moreover from assms have n=〈nid → t〉0 using nxtAct-eq by simp
ultimately show ?thesis by simp

qed

lemma fwd-bc:
fixes nid and t::nat ⇒ cnf and t ′::nat ⇒ ′ND
assumes nid t n
shows pout (σnidt n) = bc (σnidt n)
using assms forward globEANow[THEN baEANow[of nid t t ′ n]] by blast

lemma finite-input:
fixes t n nid
assumes nid t n
defines dep nid ′ ≡ pout (σnid ′(t n))
shows finite (pin (cmp nid (t n)))

proof −
have finite {nid ′. nid ′ t n} using act by auto
moreover have pin (cmp nid (t n)) ⊆ dep ‘ {nid ′. nid ′ t n}
proof
fix x assume x ∈ pin (cmp nid (t n))
show x ∈ dep ‘ {nid ′. nid ′ t n}
proof −
from assms obtain nid ′ where nid ′ t n and bc (σnid ′(t n)) = x
using closed 〈x ∈ pin (cmp nid (t n))〉 by blast

hence pout (σnid ′(t n)) = x using fwd-bc by auto
hence x=dep nid ′ using dep-def by simp
moreover from 〈 nid ′ t n〉 have nid ′ ∈ {nid ′. nid ′ t n} by simp
ultimately show ?thesis using image-eqI by simp

277

G Verification of Blockchain Architectures

qed
qed
ultimately show ?thesis using finite-surj by metis

qed

lemma nempty-input:
fixes t n nid
assumes nid t n
and trusted nid

shows pin (cmp nid (t n)) 6={} using conn[of nid t n] act assms actTr-def by auto

lemma onlyone:
assumes ∃n ′≥n. tid t n ′

and ∃n ′<n. tid t n ′

shows ∃ !i. 〈tid ← t〉n ≤ i ∧ i < 〈tid → t〉n ∧ tid t i
proof
show 〈tid ← t〉n ≤ 〈tid ← t〉n ∧ 〈tid ← t〉n < 〈tid → t〉n ∧ tid t 〈tid ← t〉n
by (metis assms dynamic-component.nxtActI latestAct-prop(1) latestAct-prop(2) less-le-trans

order-refl)
next
fix i
show 〈tid ← t〉n ≤ i ∧ i < 〈tid → t〉n ∧ tid t i =⇒ i = 〈tid ← t〉n
by (metis latestActless(1) leI le-less-Suc-eq le-less-trans nxtActI order-refl)

qed

G.3.2.1 Component Behavior

lemma bhv-tr-ex:
fixes t and t ′::nat ⇒ ′ND and tid
assumes trusted tid
and ∃n ′≥n. tid t n ′

and ∃n ′<n. tid t n ′

and ∃ b∈pin (σtidt 〈tid ← t〉n). length b > length (bc (σtidt 〈tid ← t〉n))
shows ¬ mining (σtidt 〈tid → t〉n) ∧ bc (σtidt 〈tid → t〉n) =
Blockchain.MAX (pin (σtidt 〈tid ← t〉n)) ∨ mining (σtidt 〈tid → t〉n) ∧
(∃ b. bc (σtidt 〈tid → t〉n) = Blockchain.MAX (pin (σtidt 〈tid ← t〉n)) @ [b])

proof −
let ?cond = λnd. MAX (pin (σtidt 〈tid ← t〉n)) =

(if (∃ b∈pin nd. length b > length (bc nd)) then (MAX (pin nd)) else (bc nd))
let ?check = λnd. ¬ mining nd ∧ bc nd = MAX (pin (σtidt 〈tid ← t〉n)) ∨ mining nd ∧

(∃ b. bc nd = MAX (pin (σtidt 〈tid ← t〉n)) @ [b])
from 〈trusted tid〉 have eval tid t t ′ 0 ((2b((ba ?cond) −→b #b (ba ?check))))
using consensus[of tid - - MAX (pin (σtidt 〈tid ← t〉n))] by simp

moreover from assms have ∃ i≥0 . tid t i by auto
moreover have 〈tid ⇐ t〉0 ≤ 〈tid ← t〉n by simp
ultimately have eval tid t t ′ 〈tid ← t〉n (ba (?cond) −→b #b (ba ?check))
using globEA[of 0 tid t t ′ ((ba ?cond) −→b #b (ba ?check)) 〈tid ← t〉n] by fastforce

moreover have eval tid t t ′ 〈tid ← t〉n (ba (?cond))
proof (rule baIA)

278

G.3 A Theory of Blockchain Architectures

from 〈∃n ′<n. tid t n ′〉 show ∃ i≥〈tid ← t〉n. tid t i using latestAct-prop(1) by blast
from assms(3) assms(4) show ?cond (σtidt 〈tid → t〉〈tid ← t〉n)
using latestActNxt by simp

qed
ultimately have eval tid t t ′ 〈tid ← t〉n (#b (ba ?check))
using impE [of tid t t ′ - ba (?cond) #b (ba ?check)] by simp

moreover have ∃ i>〈tid → t〉〈tid ← t〉n . tid t i
proof −
from assms have 〈tid → t〉n>〈tid ← t〉n using latestActNxtAct by simp
with assms(3) have 〈tid → t〉n>〈tid → t〉〈tid ← t〉n using latestActNxt by simp
moreover from 〈∃n ′≥n. tid t n ′〉 have tid t 〈tid → t〉n using nxtActI by simp
ultimately show ?thesis by auto

qed
moreover from assms have 〈tid ← t〉n ≤ 〈tid → t〉n
using latestActNxtAct by (simp add: order .strict-implies-order)

moreover from assms have ∃ !i. 〈tid ← t〉n ≤ i ∧ i < 〈tid → t〉n ∧ tid t i
using onlyone by simp

ultimately have eval tid t t ′ 〈tid → t〉n (ba ?check)
using nxtEA1 [of tid t 〈tid ← t〉n t ′ ba ?check 〈tid → t〉n] by simp

moreover from 〈∃n ′≥n. tid t n ′〉 have tid t 〈tid → t〉n using nxtActI by simp
ultimately show ?thesis using baEANow[of tid t t ′ 〈tid → t〉n ?check] by simp

qed

lemma bhv-tr-in:
fixes t and t ′::nat ⇒ ′ND and tid
assumes trusted tid
and ∃n ′≥n. tid t n ′

and ∃n ′<n. tid t n ′

and ¬ (∃ b∈pin (σtidt 〈tid ← t〉n). length b > length (bc (σtidt 〈tid ← t〉n)))
shows ¬ mining (σtidt 〈tid → t〉n) ∧ bc (σtidt 〈tid → t〉n) = bc (σtidt 〈tid ← t〉n) ∨
mining (σtidt 〈tid → t〉n) ∧
(∃ b. bc (σtidt 〈tid → t〉n) = bc (σtidt 〈tid ← t〉n) @ [b])

proof −
let ?cond = λnd. bc (σtidt 〈tid ← t〉n) =

(if (∃ b∈pin nd. length b > length (bc nd)) then (MAX (pin nd)) else (bc nd))
let ?check = λnd. ¬ mining nd ∧ bc nd = bc (σtidt 〈tid ← t〉n) ∨
mining nd ∧ (∃ b. bc nd = bc (σtidt 〈tid ← t〉n) @ [b])

from 〈trusted tid〉 have eval tid t t ′ 0 ((2b((ba ?cond) −→b #b (ba ?check))))
using consensus[of tid - - bc (σtidt 〈tid ← t〉n)] by simp

moreover from assms have ∃ i≥0 . tid t i by auto
moreover have 〈tid ⇐ t〉0 ≤ 〈tid ← t〉n by simp
ultimately have eval tid t t ′ 〈tid ← t〉n (ba (?cond) −→b #b (ba ?check))
using globEA[of 0 tid t t ′ (ba ?cond) −→b #b (ba ?check) 〈tid ← t〉n] by fastforce

moreover have eval tid t t ′ 〈tid ← t〉n (ba (?cond))
proof (rule baIA)
from 〈∃n ′<n. tid t n ′〉 show ∃ i≥〈tid ← t〉n. tid t i using latestAct-prop(1) by blast
from assms(3) assms(4) show ?cond (σtidt 〈tid → t〉〈tid ← t〉n)
using latestActNxt by simp

279

G Verification of Blockchain Architectures

qed
ultimately have eval tid t t ′ 〈tid ← t〉n (#b (ba ?check))
using impE [of tid t t ′ - ba (?cond) #b (ba ?check)] by simp

moreover have ∃ i>〈tid → t〉〈tid ← t〉n . tid t i
proof −
from assms have 〈tid → t〉n>〈tid ← t〉n using latestActNxtAct by simp
with assms(3) have 〈tid → t〉n>〈tid → t〉〈tid ← t〉n using latestActNxt by simp
moreover from 〈∃n ′≥n. tid t n ′〉 have tid t 〈tid → t〉n using nxtActI by simp
ultimately show ?thesis by auto

qed
moreover from assms have 〈tid ← t〉n ≤ 〈tid → t〉n
using latestActNxtAct by (simp add: order .strict-implies-order)

moreover from assms have ∃ !i. 〈tid ← t〉n ≤ i ∧ i < 〈tid → t〉n ∧ tid t i
using onlyone by simp

ultimately have eval tid t t ′ 〈tid → t〉n (ba ?check)
using nxtEA1 [of tid t 〈tid ← t〉n t ′ ba ?check 〈tid → t〉n] by simp

moreover from 〈∃n ′≥n. tid t n ′〉 have tid t 〈tid → t〉n using nxtActI by simp
ultimately show ?thesis using baEANow[of tid t t ′ 〈tid → t〉n ?check] by simp

qed

lemma bhv-tr-context:
assumes trusted tid

and tid t n
and ∃n ′<n. tid t n ′

shows ∃nid ′. nid ′
t 〈tid ← t〉n ∧

(mining (σtidt n) ∧ (∃ b. bc (σtidt n) = bc (σnid ′t 〈tid ← t〉n) @ [b]) ∨
¬ mining (σtidt n) ∧ bc (σtidt n) = bc (σnid ′t 〈tid ← t〉n))

proof cases
assume casmp: ∃ b∈pin (σtidt 〈tid ← t〉n). length b > length (bc (σtidt 〈tid ← t〉n))
moreover from assms(2) have ∃n ′≥n. tid t n ′ by auto
moreover from assms(3) have ∃n ′<n. tid t n ′ by auto
ultimately have ¬ mining (σtidt 〈tid → t〉n) ∧
bc (σtidt 〈tid → t〉n) = Blockchain.MAX (pin (σtidt 〈tid ← t〉n)) ∨
mining (σtidt 〈tid → t〉n) ∧
(∃ b. bc (σtidt 〈tid → t〉n) = Blockchain.MAX (pin (σtidt 〈tid ← t〉n)) @ [b])
using assms(1) bhv-tr-ex by auto

moreover from assms(2) have 〈tid → t〉n = n using nxtAct-active by simp
ultimately have
¬ mining (σtidt 〈tid → t〉n) ∧ bc (σtidt n) =
Blockchain.MAX (pin (σtidt 〈tid ← t〉n)) ∨

mining (σtidt 〈tid → t〉n) ∧ (∃ b. bc (σtidt n) =
Blockchain.MAX (pin (σtidt 〈tid ← t〉n)) @ [b])

by simp
moreover from assms(2) have 〈tid → t〉n = n using nxtAct-active by simp
ultimately have ¬ mining (σtidt n) ∧
bc (σtidt n) = Blockchain.MAX (pin (σtidt 〈tid ← t〉n)) ∨
mining (σtidt n) ∧ (∃ b. bc (σtidt n) = Blockchain.MAX (pin (σtidt 〈tid ← t〉n)) @ [b])
by simp

280

G.3 A Theory of Blockchain Architectures

moreover have Blockchain.MAX (pin (σtidt 〈tid ← t〉n)) ∈ pin (σtidt 〈tid ← t〉n)
proof −
from 〈∃n ′<n. tid t n ′〉 have tid t 〈tid ← t〉n using latestAct-prop(1) by simp
hence finite (pin (σtid(t 〈tid ← t〉n))) using finite-input[of tid t 〈tid ← t〉n] by simp
moreover from casmp obtain b where
b ∈ pin (σtidt 〈tid ← t〉n) and length b > length (bc (σtidt 〈tid ← t〉n)) by auto

ultimately show ?thesis using max-prop(1) by auto
qed
with 〈∃n ′<n. tid t n ′〉 obtain nid where nid t 〈tid ← t〉n
and bc (σnidt 〈tid ← t〉n) = Blockchain.MAX (pin (σtidt 〈tid ← t〉n)) using
closed[of tid t 〈tid ← t〉n MAX (pin (σtidt 〈tid ← t〉n))] latestAct-prop(1) by auto

ultimately show ?thesis by auto
next
assume ¬ (∃ b∈pin (σtidt 〈tid ← t〉n). length b > length (bc (σtidt 〈tid ← t〉n)))
moreover from assms(2) have ∃n ′≥n. tid t n ′ by auto
moreover from assms(3) have ∃n ′<n. tid t n ′ by auto
ultimately have ¬ mining (σtidt 〈tid → t〉n) ∧ bc (σtidt 〈tid → t〉n) = bc (σtidt 〈tid ← t〉n)
∨ mining (σtidt 〈tid → t〉n) ∧ (∃ b. bc (σtidt 〈tid → t〉n) = bc (σtidt 〈tid ← t〉n) @ [b])
using assms(1) bhv-tr-in[of tid n t] by auto

moreover from assms(2) have 〈tid → t〉n = n using nxtAct-active by simp
ultimately have ¬ mining (σtidt n) ∧ bc (σtidt n) = bc (σtidt 〈tid ← t〉n) ∨
mining (σtidt n) ∧ (∃ b. bc (σtidt n) = bc (σtidt 〈tid ← t〉n) @ [b]) by simp

moreover from 〈∃n ′. latestAct-cond tid t n n ′〉 have tid t 〈tid ← t〉n
using latestAct-prop(1) by simp

ultimately show ?thesis by auto
qed

lemma bhv-ut:
fixes t and t ′::nat ⇒ ′ND and uid
assumes ¬ trusted uid
and ∃n ′≥n. uid t n ′

and ∃n ′<n. uid t n ′

shows ¬ mining (σuidt 〈uid → t〉n) ∧
prefix (bc (σuidt 〈uid → t〉n))
(SOME b. b ∈ pin (σuidt 〈uid ← t〉n) ∪ {bc (σuidt 〈uid ← t〉n)})
∨ mining (σuidt 〈uid → t〉n) ∧
(∃ b. bc (σuidt 〈uid → t〉n) =

(SOME b. b ∈ pin (σuidt 〈uid ← t〉n) ∪ {bc (σuidt 〈uid ← t〉n)}) @ [b])
proof −
let ?cond = λnd. (SOME b. b ∈ (pin (σuidt 〈uid ← t〉n) ∪
{bc (σuidt 〈uid ← t〉n)})) = (SOME b. b ∈ pin nd ∪ {bc nd})

let ?check = λnd. ¬ mining nd ∧ prefix (bc nd)
(SOME b. b ∈ pin (σuidt 〈uid ← t〉n) ∪ {bc (σuidt 〈uid ← t〉n)})
∨ mining nd ∧ (∃ b. bc nd = (SOME b. b ∈ pin (σuidt 〈uid ← t〉n) ∪
{bc (σuidt 〈uid ← t〉n)}) @ [b])

from 〈¬ trusted uid〉 have eval uid t t ′ 0 ((2b((ba ?cond) −→b #b (ba ?check))))
using attacker [of uid - - (SOME b. b ∈ pin (σuidt 〈uid ← t〉n) ∪ {bc (σuidt 〈uid ← t〉n)})]
by simp

moreover from assms have ∃ i≥0 . uid t i by auto

281

G Verification of Blockchain Architectures

moreover have 〈uid ⇐ t〉0 ≤ 〈uid ← t〉n by simp
ultimately have eval uid t t ′ 〈uid ← t〉n (ba (?cond) −→b #b(ba ?check))
using globEA[of 0 uid t t ′ ((ba ?cond) −→b #b(ba ?check)) 〈uid ← t〉n] by fastforce

moreover have eval uid t t ′ 〈uid ← t〉n (ba (?cond))
proof (rule baIA)
from 〈∃n ′<n. uid t n ′〉 show ∃ i≥〈uid ← t〉n. uid t i using latestAct-prop(1) by blast
with assms(3) show ?cond (σuidt 〈uid → t〉〈uid ← t〉n) using latestActNxt by simp

qed
ultimately have eval uid t t ′ 〈uid ← t〉n (#b (ba ?check))
using impE [of uid t t ′ - ba (?cond) #b (ba ?check)] by simp

moreover have ∃ i>〈uid → t〉〈uid ← t〉n . uid t i
proof −
from assms have 〈uid → t〉n>〈uid ← t〉n using latestActNxtAct by simp
with assms(3) have 〈uid → t〉n>〈uid → t〉〈uid ← t〉n using latestActNxt by simp
moreover from 〈∃n ′≥n. uid t n ′〉 have uid t 〈uid → t〉n using nxtActI by simp
ultimately show ?thesis by auto

qed
moreover from assms have 〈uid ← t〉n ≤ 〈uid → t〉n
using latestActNxtAct by (simp add: order .strict-implies-order)

moreover from assms have ∃ !i. 〈uid ← t〉n ≤ i ∧ i < 〈uid → t〉n ∧ uid t i
using onlyone by simp

ultimately have eval uid t t ′ 〈uid → t〉n (ba ?check)
using nxtEA1 [of uid t 〈uid ← t〉n t ′ ba ?check 〈uid → t〉n] by simp

moreover from 〈∃n ′≥n. uid t n ′〉 have uid t 〈uid → t〉n using nxtActI by simp
ultimately show ?thesis using baEANow[of uid t t ′ 〈uid → t〉n ?check] by simp

qed

lemma bhv-ut-context:
assumes ¬ trusted uid

and uid t n
and ∃n ′<n. uid t n ′

shows ∃nid ′. nid ′
t 〈uid ← t〉n ∧ (mining (σuidt n) ∧

(∃ b. prefix (bc (σuidt n)) (bc (σnid ′t 〈uid ← t〉n) @ [b]))
∨ ¬ mining (σuidt n) ∧ prefix (bc (σuidt n)) (bc (σnid ′t 〈uid ← t〉n)))

proof −
let ?bc=SOME b. b ∈ pin (σuidt 〈uid ← t〉n) ∪ {bc (σuidt 〈uid ← t〉n)}
have bc-ex: ?bc ∈ pin (σuidt 〈uid ← t〉n) ∨ ?bc ∈ {bc (σuidt 〈uid ← t〉n)}
proof −
have ∃ b. b∈ pin (σuidt 〈uid ← t〉n) ∪ {bc (σuidt 〈uid ← t〉n)} by auto
hence ?bc ∈ pin (σuidt 〈uid ← t〉n) ∪ {bc (σuidt 〈uid ← t〉n)} using someI-ex by simp
thus ?thesis by auto

qed

from assms(2) have ∃n ′≥n. uid t n ′ by auto
moreover from assms(3) have ∃n ′<n. uid t n ′ by auto
ultimately have ¬ mining (σuidt 〈uid → t〉n) ∧ prefix (bc (σuidt 〈uid → t〉n)) ?bc ∨
mining (σuidt 〈uid → t〉n) ∧ (∃ b. bc (σuidt 〈uid → t〉n) = ?bc @ [b])
using bhv-ut[of uid n t] assms(1) by simp

282

G.3 A Theory of Blockchain Architectures

moreover from assms(2) have 〈uid → t〉n = n using nxtAct-active by simp
ultimately have casmp: ¬ mining (σuidt n) ∧ prefix (bc (σuidt n)) ?bc ∨
mining (σuidt n) ∧ (∃ b. bc (σuidt n) = ?bc @ [b]) by simp

from bc-ex have ?bc ∈ pin (σuidt 〈uid ← t〉n) ∨ ?bc ∈ {bc (σuidt 〈uid ← t〉n)} .
thus ?thesis
proof
assume ?bc ∈ pin (σuidt 〈uid ← t〉n)
moreover from 〈∃n ′<n. uid t n ′〉 have uid t 〈uid ← t〉n
using latestAct-prop(1) by simp

ultimately obtain nid where nid t 〈uid ← t〉n and bc (σnidt 〈uid ← t〉n) = ?bc
using closed by blast

with casmp have ¬ mining (σuidt n) ∧ prefix (bc (σuidt n)) (bc (σnidt 〈uid ← t〉n)) ∨
mining (σuidt n) ∧ (∃ b. bc (σuidt n) = (bc (σnidt 〈uid ← t〉n)) @ [b]) by simp

with 〈 nid t 〈uid ← t〉n 〉 show ?thesis by auto
next
assume ?bc ∈ {bc (σuidt 〈uid ← t〉n)}
hence ?bc = bc (σuidt 〈uid ← t〉n) by simp
moreover from 〈∃n ′. latestAct-cond uid t n n ′〉 have uid t 〈uid ← t〉n
using latestAct-prop(1) by simp

ultimately show ?thesis using casmp by auto
qed

qed

G.3.2.2 Maximal Trusted Blockchains

abbreviation mbc-cond:: trace ⇒ nat ⇒ ′nid ⇒ bool
where mbc-cond t n nid ≡ nid∈actTr (t n) ∧ (∀nid ′∈actTr (t n). length (bc (σnid ′(t n))) ≤

length (bc (σnid(t n))))

lemma mbc-ex:
fixes t n
shows ∃ x. mbc-cond t n x

proof −
let ?ALL={b. ∃nid∈actTr (t n). b = bc (σnid(t n))}
have MAX ?ALL ∈ ?ALL
proof (rule max-prop)
from actTr have actTr (t n) 6= {} using actTr-def by blast
thus ?ALL 6={} by auto
from act have finite (actTr (t n)) using actTr-def by simp
thus finite ?ALL by simp

qed
then obtain nid where nid ∈ actTr (t n) ∧ bc (σnid(t n)) = MAX ?ALL by auto
moreover have ∀nid ′∈actTr (t n). length (bc (σnid ′(t n))) ≤ length (MAX ?ALL)
proof
fix nid
assume nid ∈ actTr (t n)
hence bc (σnid(t n)) ∈ ?ALL by auto
moreover have ∀ b ′∈?ALL. length b ′ ≤ length (MAX ?ALL)

283

G Verification of Blockchain Architectures

proof (rule max-prop)
from 〈bc (σnid(t n)) ∈ ?ALL〉 show ?ALL 6={} by auto
from act have finite (actTr (t n)) using actTr-def by simp
thus finite ?ALL by simp

qed
ultimately show
length (bc (σnidt n)) ≤ length (Blockchain.MAX {b. ∃nid∈actTr (t n). b = bc (σnidt n)})

by simp
qed
ultimately show ?thesis by auto

qed

definition MBC :: trace ⇒ nat ⇒ ′nid
where MBC t n = (SOME b. mbc-cond t n b)

lemma mbc-prop[simp]:
shows mbc-cond t n (MBC t n)
using someI-ex[OF mbc-ex] MBC-def by simp

G.3.2.3 Trusted Proof of Work

An important construction is the maximal proof of work available in the trusted com-
munity. The construction was already introduces in the locale itself since it was used to
express some of the locale assumptions.
abbreviation pow-cond:: trace ⇒ nat ⇒ nat ⇒ bool
where pow-cond t n n ′ ≡ ∀nid∈actTr (t n). length (bc (σnid(t n))) ≤ n ′

lemma pow-ex:
fixes t n
shows pow-cond t n (length (bc (σMBC t n(t n))))
and ∀ x ′. pow-cond t n x ′ −→ x ′≥length (bc (σMBC t n(t n)))

using mbc-prop by auto

lemma pow-prop:
pow-cond t n (PoW t n)

proof −
from pow-ex have pow-cond t n (LEAST x. pow-cond t n x)
using LeastI-ex[of pow-cond t n] by blast

thus ?thesis using PoW-def by simp
qed

lemma pow-eq:
fixes n
assumes ∃ tid∈actTr (t n). length (bc (σtid(t n))) = x
and ∀ tid∈actTr (t n). length (bc (σtid(t n))) ≤ x

shows PoW t n = x
proof −
have (LEAST x. pow-cond t n x) = x
proof (rule Least-equality)

284

G.3 A Theory of Blockchain Architectures

from assms(2) show ∀nid∈actTr (t n). length (bc (σnidt n)) ≤ x by simp
next
fix y
assume ∀nid∈actTr (t n). length (bc (σnidt n)) ≤ y
thus x ≤ y using assms(1) by auto

qed
with PoW-def show ?thesis by simp

qed

lemma pow-mbc:
shows length (bc (σMBC t nt n)) = PoW t n
by (metis mbc-prop pow-eq)

lemma pow-less:
fixes t n nid
assumes pow-cond t n x
shows PoW t n ≤ x

proof −
from pow-ex assms have (LEAST x. pow-cond t n x) ≤ x using Least-le[of pow-cond t n] by

blast
thus ?thesis using PoW-def by simp

qed

lemma pow-le-max:
assumes trusted tid
and tid t n

shows PoW t n ≤ length (MAX (pin (σtidt n)))
proof −
from mbc-prop have trusted (MBC t n) and MBC t n t n using actTr-def by auto
hence pout (σMBC t nt n) = bc (σMBC t nt n)
using forward globEANow[THEN baEANow[of MBC t n t t ′ n λnd. pout nd = bc nd]]
by auto

with assms 〈 MBC t n t n〉 〈trusted (MBC t n)〉 have bc (σMBC t nt n) ∈ pin (σtidt n)
using conn actTr-def by auto

moreover from assms (2) have finite (pin (σtidt n)) using finite-input[of tid t n] by simp
ultimately have length (bc (σMBC t nt n)) ≤ length (MAX (pin (σtidt n)))
using max-prop(2) by auto

with pow-mbc show ?thesis by simp
qed

lemma pow-ge-lgth:
assumes trusted tid
and tid t n

shows length (bc (σtidt n)) ≤ PoW t n
proof −
from assms have tid ∈ actTr (t n) using actTr-def by simp
thus ?thesis using pow-prop by simp

qed

285

G Verification of Blockchain Architectures

lemma pow-le-lgth:
assumes trusted tid
and tid t n
and ¬(∃ b∈pin (σtidt n). length b > length (bc (σtidt n)))

shows length (bc (σtidt n)) ≥ PoW t n
proof −
from assms (3) have ∀ b∈pin (σtidt n). length b ≤ length (bc (σtidt n)) by auto
moreover from assms nempty-input[of tid t n] finite-input[of tid t n]
have MAX (pin (σtidt n)) ∈ pin (σtidt n) using max-prop(1)[of pin (σtidt n)] by simp
ultimately have length (MAX (pin (σtidt n))) ≤ length (bc (σtidt n)) by simp
moreover from assms have PoW t n ≤ length (MAX (pin (σtidt n)))
using pow-le-max by simp

ultimately show ?thesis by simp
qed

lemma pow-mono:
shows n ′≥n =⇒ PoW t n ′ ≥ PoW t n

proof (induction n ′ rule: dec-induct)
case base
then show ?case by simp

next
case (step n ′)
hence PoW t n ≤ PoW t n ′ by simp
moreover have PoW t (Suc n ′) ≥ PoW t n ′

proof −
from actTr obtain tid where trusted tid and tid t n ′ and tid t (Suc n ′) by auto
show ?thesis
proof cases
assume ∃ b∈pin (σtidt n ′). length b > length (bc (σtidt n ′))
moreover from 〈 tid t (Suc n ′)〉 have 〈tid → t〉Suc n ′ = Suc n ′

using nxtAct-active by simp
moreover from 〈 tid t n ′〉 have 〈tid ← t〉Suc n ′ = n ′

using latestAct-prop(2) latestActless le-less-Suc-eq by blast
moreover from 〈 tid t n ′〉 have ∃n ′′<Suc n ′. tid t n ′′ by blast
moreover from 〈 tid t (Suc n ′)〉 have ∃n ′′≥Suc n ′. tid t n ′′ by auto
ultimately have bc (σtidt (Suc n ′)) = Blockchain.MAX (pin (σtidt n ′)) ∨

(∃ b. bc (σtidt (Suc n ′)) = Blockchain.MAX (pin (σtidt n ′)) @ b)
using 〈trusted tid〉 bhv-tr-ex[of tid Suc n ′ t] by auto

hence length (bc (σtidt (Suc n ′))) ≥ length (Blockchain.MAX (pin (σtidt n ′))) by auto
moreover from 〈trusted tid〉 〈 tid t n ′〉

have length (Blockchain.MAX (pin (σtidt n ′))) ≥ PoW t n ′ using pow-le-max by simp
ultimately have PoW t n ′ ≤ length (bc (σtidt (Suc n ′))) by simp
moreover from 〈trusted tid〉 〈 tid t (Suc n ′)〉

have length (bc (σtidt (Suc n ′))) ≤ PoW t (Suc n ′) using pow-ge-lgth by simp
ultimately show ?thesis by simp

next
assume asmp: ¬(∃ b∈pin (σtidt n ′). length b > length (bc (σtidt n ′)))
moreover from 〈 tid t (Suc n ′)〉 have 〈tid → t〉Suc n ′ = Suc n ′

286

G.3 A Theory of Blockchain Architectures

using nxtAct-active by simp
moreover from 〈 tid t n ′〉 have 〈tid ← t〉Suc n ′ = n ′

using latestAct-prop(2) latestActless le-less-Suc-eq by blast
moreover from 〈 tid t n ′〉 have ∃n ′′<Suc n ′. tid t n ′′ by blast
moreover from 〈 tid t (Suc n ′)〉 have ∃n ′′≥Suc n ′. tid t n ′′ by auto
ultimately have bc (σtidt (Suc n ′)) = bc (σtidt n ′) ∨

(∃ b. bc (σtidt (Suc n ′)) = bc (σtidt n ′) @ b)
using 〈trusted tid〉 bhv-tr-in[of tid Suc n ′ t] by auto

hence length (bc (σtidt (Suc n ′))) ≥ length (bc (σtidt n ′)) by auto
moreover from 〈trusted tid〉 〈 tid t n ′〉 asmp have length (bc (σtidt n ′)) ≥ PoW t n ′

using pow-le-lgth by simp
moreover from 〈trusted tid〉 〈 tid t (Suc n ′)〉

have length (bc (σtidt (Suc n ′))) ≤ PoW t (Suc n ′) using pow-ge-lgth by simp
ultimately show ?thesis by simp

qed
qed
ultimately show ?case by auto

qed

lemma pow-equals:
assumes PoW t n = PoW t n ′

and n ′≥n
and n ′′≥n
and n ′′≤n ′

shows PoW t n = PoW t n ′′ by (metis pow-mono assms(1) assms(3) assms(4) eq-iff)

lemma pow-mining-suc:
assumes tmining t (Suc n)
shows PoW t n < PoW t (Suc n)

proof −
from assms obtain nid where nid∈actTr (t (Suc n)) and mining (σnid(t (Suc n)))
using tmining-def by auto

show ?thesis
proof cases
assume asmp: (∃ b∈pin (σnidt 〈nid ← t〉Suc n).
length b > length (bc (σnidt 〈nid ← t〉Suc n)))

moreover from 〈nid∈actTr (t (Suc n))〉 have trusted nid and nid t (Suc n)
using actTr-def by auto

moreover from 〈trusted nid〉 〈mining (σnid(t (Suc n)))〉 〈 nid t (Suc n)〉 have nid t n
using mine by simp

hence ∃n ′. latestAct-cond nid t (Suc n) n ′ by auto
ultimately have ¬ mining (σnidt 〈nid → t〉Suc n) ∧
bc (σnidt 〈nid → t〉Suc n) = MAX (pin (σnidt 〈nid ← t〉Suc n)) ∨
mining (σnidt 〈nid → t〉Suc n) ∧
(∃ b. bc (σnidt 〈nid → t〉Suc n) = MAX (pin (σnidt 〈nid ← t〉Suc n)) @ [b])
using bhv-tr-ex[of nid Suc n] by auto

moreover from 〈 nid t (Suc n)〉 have 〈nid → t〉Suc n = Suc n using nxtAct-active by simp
moreover have 〈nid ← t〉Suc n = n

287

G Verification of Blockchain Architectures

proof (rule latestActEq)
from 〈 nid t n〉 show nid t n by simp
show ¬ (∃n ′′>n. n ′′ < Suc n ∧ nid t n) by simp
show n < Suc n by simp

qed
hence 〈nid ← t〉Suc n = n using latestAct-def by simp
ultimately have ¬ mining (σnidt (Suc n)) ∧ bc (σnidt (Suc n)) = MAX (pin (σnidt n)) ∨
mining (σnidt (Suc n)) ∧ (∃ b. bc (σnidt (Suc n)) = MAX (pin (σnidt n)) @ [b]) by simp
with 〈mining (σnid(t (Suc n)))〉

have ∃ b. bc (σnidt (Suc n)) = MAX (pin (σnidt n)) @ [b] by auto
moreover from 〈trusted nid〉 〈 nid t (Suc n)〉

have length (bc (σnidt (Suc n))) ≤ PoW t (Suc n)
using pow-ge-lgth[of nid t Suc n] by simp

ultimately have length (MAX (pin (σnidt n))) < PoW t (Suc n) by auto
moreover from 〈trusted nid〉 〈 nid t n〉 have length (MAX (pin (σnidt n))) ≥ PoW t n
using pow-le-max by simp

ultimately show ?thesis by simp
next
assume asmp:
¬ (∃ b∈pin (σnidt 〈nid ← t〉Suc n). length b > length (bc (σnidt 〈nid ← t〉Suc n)))

moreover from 〈nid∈actTr (t (Suc n))〉 have trusted nid and nid t (Suc n)
using actTr-def by auto

moreover from 〈trusted nid〉 〈mining (σnid(t (Suc n)))〉 〈 nid t (Suc n)〉 have nid t n
using mine by simp

hence ∃n ′. latestAct-cond nid t (Suc n) n ′ by auto
ultimately have ¬ mining (σnidt 〈nid → t〉Suc n) ∧
bc (σnidt 〈nid → t〉Suc n) = bc (σnidt 〈nid ← t〉Suc n) ∨
mining (σnidt 〈nid → t〉Suc n) ∧
(∃ b. bc (σnidt 〈nid → t〉Suc n) = bc (σnidt 〈nid ← t〉Suc n) @ [b])
using bhv-tr-in[of nid Suc n] by auto

moreover from 〈 nid t (Suc n)〉 have 〈nid → t〉Suc n = Suc n using nxtAct-active by simp
moreover have 〈nid ← t〉Suc n = n
proof (rule latestActEq)
from 〈 nid t n〉 show nid t n by simp
show ¬ (∃n ′′>n. n ′′ < Suc n ∧ nid t n) by simp
show n < Suc n by simp

qed
hence 〈nid ← t〉Suc n = n using latestAct-def by simp
ultimately have ¬ mining (σnidt (Suc n)) ∧ bc (σnidt (Suc n)) = bc (σnidt n) ∨
mining (σnidt (Suc n)) ∧ (∃ b. bc (σnidt (Suc n)) = bc (σnidt n) @ [b]) by simp
with 〈mining (σnid(t (Suc n)))〉 have ∃ b. bc (σnidt (Suc n)) = bc (σnidt n) @ [b] by simp
moreover from 〈〈nid ← t〉Suc n = n〉

have ¬ (∃ b∈pin (σnidt n). length (bc (σnidt n)) < length b)
using asmp by simp

with 〈trusted nid〉 〈 nid t n〉 have length (bc (σnidt n)) ≥ PoW t n
using pow-le-lgth[of nid t n] by simp

moreover from 〈trusted nid〉 〈 nid t (Suc n)〉 have
length (bc (σnidt (Suc n))) ≤ PoW t (Suc n)

288

G.3 A Theory of Blockchain Architectures

using pow-ge-lgth[of nid t Suc n] by simp
ultimately show ?thesis by auto

qed
qed

G.3.2.4 History

In the following we introduce an operator which extracts the development of a blockchain
up to a time point n.

abbreviation his-prop t n nid n ′ nid ′ x ≡
(∃n. latestAct-cond nid ′ t n ′ n) ∧ snd x t (fst x) ∧ fst x = 〈nid ′← t〉n ′ ∧
(prefix (bc (σnid ′(t n ′))) (bc (σsnd x(t (fst x)))) ∨

(∃ b. bc (σnid ′(t n ′)) = (bc (σsnd x(t (fst x)))) @ [b] ∧ mining (σnid ′(t n ′))))

inductive-set
his:: trace ⇒ nat ⇒ ′nid ⇒ (nat × ′nid) set
for t::trace and n::nat and nid:: ′nid
where [[nid t n]] =⇒ (n,nid) ∈ his t n nid
| [[(n ′,nid ′) ∈ his t n nid; ∃ x. his-prop t n nid n ′ nid ′ x]] =⇒

(SOME x. his-prop t n nid n ′ nid ′ x) ∈ his t n nid

lemma his-act:
assumes (n ′,nid ′) ∈ his t n nid
shows nid ′

t n ′

using assms
proof (rule his.cases)
assume (n ′, nid ′) = (n, nid) and nid t n
thus nid ′

t n ′ by simp
next
fix n ′′ nid ′′ assume asmp: (n ′, nid ′) = (SOME x. his-prop t n nid n ′′ nid ′′ x)
and (n ′′, nid ′′) ∈ his t n nid and ∃ x. his-prop t n nid n ′′ nid ′′ x
hence his-prop t n nid n ′′ nid ′′ (SOME x. his-prop t n nid n ′′ nid ′′ x)
using someI-ex[of λx. his-prop t n nid n ′′ nid ′′ x] by auto

hence snd (SOME x. his-prop t n nid n ′′ nid ′′ x) t (fst (SOME x. his-prop t n nid n ′′ nid ′′ x))
by blast

moreover from asmp have fst (SOME x. his-prop t n nid n ′′ nid ′′ x) = fst (n ′, nid ′)
by simp

moreover from asmp have snd (SOME x. his-prop t n nid n ′′ nid ′′ x) = snd (n ′, nid ′)
by simp

ultimately show ?thesis by simp
qed

In addition we also introduce an operator to obtain the predecessor of a blockchains
development.

definition hisPred
where hisPred t n nid n ′ ≡ (GREATEST n ′′. ∃nid ′. (n ′′,nid ′)∈ his t n nid ∧ n ′′ < n ′)

lemma hisPrev-prop:

289

G Verification of Blockchain Architectures

assumes ∃n ′′<n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid
shows hisPred t n nid n ′ < n ′ and ∃nid ′. (hisPred t n nid n ′,nid ′)∈ his t n nid

proof −
from assms obtain n ′′ where ∃nid ′. (n ′′,nid ′)∈ his t n nid ∧ n ′′<n ′ by auto
moreover from 〈∃nid ′. (n ′′,nid ′)∈ his t n nid ∧ n ′′<n ′〉

have ∃ i ′≤n ′. (∃nid ′. (i ′, nid ′) ∈ his t n nid ∧ i ′ < n ′) ∧
(∀n ′a. (∃nid ′. (n ′a, nid ′) ∈ his t n nid ∧ n ′a < n ′) −→ n ′a ≤ i ′)
using boundedGreatest[of λn ′′. ∃nid ′. (n ′′,nid ′)∈ his t n nid ∧ n ′′ < n ′ n ′′ n ′] by simp

then obtain i ′ where ∀n ′a. (∃nid ′. (n ′a, nid ′) ∈ his t n nid ∧ n ′a < n ′) −→ n ′a ≤ i ′

by auto
ultimately show hisPred t n nid n ′ < n ′ and ∃nid ′. (hisPred t n nid n ′,nid ′)∈ his t n nid
using GreatestI-nat[of λn ′′. ∃nid ′. (n ′′,nid ′)∈ his t n nid ∧ n ′′ < n ′ n ′′ i ′] hisPred-def
by auto

qed

lemma hisPrev-nex-less:
assumes ∃n ′′<n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid
shows ¬(∃ x∈his t n nid. fst x < n ′ ∧ fst x>hisPred t n nid n ′)

proof (rule ccontr)
assume ¬¬(∃ x∈his t n nid. fst x < n ′ ∧ fst x>hisPred t n nid n ′)
then obtain n ′′ nid ′′ where (n ′′,nid ′′)∈his t n nid and n ′′< n ′

and n ′′>hisPred t n nid n ′ by auto
moreover have n ′′≤hisPred t n nid n ′

proof −
from 〈(n ′′,nid ′′)∈his t n nid〉 〈n ′′< n ′〉 have ∃nid ′. (n ′′,nid ′)∈ his t n nid ∧ n ′′<n ′ by auto
moreover from 〈∃nid ′. (n ′′,nid ′)∈ his t n nid ∧ n ′′<n ′〉 have
∃ i ′≤n ′. (∃nid ′. (i ′, nid ′) ∈ his t n nid ∧ i ′ < n ′) ∧
(∀n ′a. (∃nid ′. (n ′a, nid ′) ∈ his t n nid ∧ n ′a < n ′) −→ n ′a ≤ i ′)
using boundedGreatest[of λn ′′. ∃nid ′. (n ′′,nid ′)∈ his t n nid ∧ n ′′ < n ′ n ′′ n ′] by simp

then obtain i ′ where ∀n ′a. (∃nid ′. (n ′a, nid ′) ∈ his t n nid ∧ n ′a < n ′) −→ n ′a ≤ i ′

by auto
ultimately show ?thesis using
Greatest-le-nat[of λn ′′. ∃nid ′. (n ′′,nid ′)∈ his t n nid ∧ n ′′ < n ′ n ′′ i ′] hisPred-def by simp

qed
ultimately show False by simp

qed

lemma his-le:
assumes x ∈ his t n nid
shows fst x≤n

using assms
proof (induction rule: his.induct)
case 1
then show ?case by simp

next
case (2 n ′ nid ′)
moreover have fst (SOME x. his-prop t n nid n ′ nid ′ x) ≤ n ′

proof −
from 2 .hyps have ∃ x. his-prop t n nid n ′ nid ′ x by simp

290

G.3 A Theory of Blockchain Architectures

hence his-prop t n nid n ′ nid ′ (SOME x. his-prop t n nid n ′ nid ′ x)
using someI-ex[of λx. his-prop t n nid n ′ nid ′ x] by auto

hence fst (SOME x. his-prop t n nid n ′ nid ′ x) = 〈nid ′← t〉n ′ by force
moreover from 〈his-prop t n nid n ′ nid ′ (SOME x. his-prop t n nid n ′ nid ′ x)〉

have ∃n. latestAct-cond nid ′ t n ′ n by simp
ultimately show ?thesis using latestAct-prop(2)[of n ′ nid ′ t] by simp

qed
ultimately show ?case by simp

qed

lemma his-determ-base:
shows (n, nid ′) ∈ his t n nid =⇒ nid ′=nid

proof (rule his.cases)
assume (n, nid ′) = (n, nid)
thus ?thesis by simp

next
fix n ′ nid ′a
assume (n, nid ′) ∈ his t n nid and (n, nid ′) = (SOME x. his-prop t n nid n ′ nid ′a x)
and (n ′, nid ′a) ∈ his t n nid and ∃ x. his-prop t n nid n ′ nid ′a x

hence his-prop t n nid n ′ nid ′a (SOME x. his-prop t n nid n ′ nid ′a x)
using someI-ex[of λx. his-prop t n nid n ′ nid ′a x] by auto

hence fst (SOME x. his-prop t n nid n ′ nid ′a x) = 〈nid ′a ← t〉n ′ by force
moreover from 〈his-prop t n nid n ′ nid ′a (SOME x. his-prop t n nid n ′ nid ′a x)〉

have ∃n. latestAct-cond nid ′a t n ′ n by simp
ultimately have fst (SOME x. his-prop t n nid n ′ nid ′a x) < n ′

using latestAct-prop(2)[of n ′ nid ′a t] by simp
with 〈(n, nid ′) = (SOME x. his-prop t n nid n ′ nid ′a x)〉 have fst (n, nid ′)<n ′ by simp
hence n<n ′ by simp
moreover from 〈(n ′, nid ′a) ∈ his t n nid〉 have n ′≤n using his-le by auto
ultimately show nid ′ = nid by simp

qed

lemma hisPrev-same:
assumes ∃n ′<n ′′. ∃nid ′. (n ′,nid ′)∈ his t n nid
and ∃n ′′<n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid
and (n ′,nid ′)∈ his t n nid
and (n ′′,nid ′′)∈ his t n nid
and hisPred t n nid n ′=hisPred t n nid n ′′

shows n ′=n ′′

proof (rule ccontr)
assume ¬ n ′=n ′′

hence n ′>n ′′ ∨ n ′<n ′′ by auto
thus False
proof
assume n ′<n ′′

hence fst (n ′,nid ′)<n ′′ by simp
moreover from assms(2) have hisPred t n nid n ′<n ′ using hisPrev-prop(1) by simp
with assms have hisPred t n nid n ′′<n ′ by simp
hence hisPred t n nid n ′′<fst (n ′,nid ′) by simp

291

G Verification of Blockchain Architectures

ultimately show False using hisPrev-nex-less[of n ′′ t n nid] assms by auto
next
assume n ′>n ′′

hence fst (n ′′,nid ′)<n ′ by simp
moreover from assms(1) have hisPred t n nid n ′′<n ′′ using hisPrev-prop(1) by simp
with assms have hisPred t n nid n ′<n ′′ by simp
hence hisPred t n nid n ′<fst (n ′′,nid ′) by simp
ultimately show False using hisPrev-nex-less[of n ′ t n nid] assms by auto

qed
qed

lemma his-determ-ext:
shows n ′≤n =⇒ (∃nid ′. (n ′,nid ′)∈his t n nid) =⇒ (∃ !nid ′. (n ′,nid ′)∈his t n nid) ∧

((∃n ′′<n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid) −→
(∃ x. his-prop t n nid n ′ (THE nid ′. (n ′,nid ′)∈his t n nid) x) ∧

(hisPred t n nid n ′, (SOME nid ′. (hisPred t n nid n ′, nid ′) ∈ his t n nid)) =
(SOME x. his-prop t n nid n ′ (THE nid ′. (n ′,nid ′)∈his t n nid) x))

proof (induction n ′ rule: my-induct)
case base
then obtain nid ′ where (n, nid ′) ∈ his t n nid by auto
hence ∃ !nid ′. (n, nid ′) ∈ his t n nid
proof
fix nid ′′ assume (n, nid ′′) ∈ his t n nid
with his-determ-base have nid ′′=nid by simp
moreover from 〈(n, nid ′) ∈ his t n nid〉 have nid ′=nid using his-determ-base by simp
ultimately show nid ′′ = nid ′ by simp

qed
moreover have (∃n ′′<n. ∃nid ′. (n ′′,nid ′)∈ his t n nid) −→

(∃ x. his-prop t n nid n (THE nid ′. (n,nid ′)∈his t n nid) x) ∧
(hisPred t n nid n, (SOME nid ′. (hisPred t n nid n, nid ′) ∈ his t n nid)) =

(SOME x. his-prop t n nid n (THE nid ′. (n,nid ′)∈his t n nid) x)
proof
assume ∃n ′′<n. ∃nid ′. (n ′′,nid ′)∈ his t n nid
hence ∃nid ′. (hisPred t n nid n, nid ′)∈ his t n nid using hisPrev-prop(2) by simp
hence (hisPred t n nid n, (SOME nid ′. (hisPred t n nid n, nid ′) ∈ his t n nid)) ∈ his t n nid
using someI-ex[of λnid ′. (hisPred t n nid n, nid ′) ∈ his t n nid] by simp

thus (∃ x. his-prop t n nid n (THE nid ′. (n,nid ′)∈his t n nid) x) ∧
(hisPred t n nid n, (SOME nid ′. (hisPred t n nid n, nid ′) ∈ his t n nid)) =

(SOME x. his-prop t n nid n (THE nid ′. (n,nid ′)∈his t n nid) x)
proof (rule his.cases)
assume (hisPred t n nid n, SOME nid ′. (hisPred t n nid n, nid ′) ∈ his t n nid) = (n, nid)
hence hisPred t n nid n=n by simp
with 〈∃n ′′<n. ∃nid ′. (n ′′,nid ′)∈ his t n nid〉 show ?thesis
using hisPrev-prop(1)[of n t n nid] by force

next
fix n ′′ nid ′′ assume asmp:

(hisPred t n nid n, SOME nid ′. (hisPred t n nid n, nid ′) ∈ his t n nid) =
(SOME x. his-prop t n nid n ′′ nid ′′ x)

and (n ′′, nid ′′) ∈ his t n nid and ∃ x. his-prop t n nid n ′′ nid ′′ x

292

G.3 A Theory of Blockchain Architectures

moreover have n ′′=n
proof (rule antisym)
show n ′′≥n
proof (rule ccontr)
assume (¬n ′′≥n)
hence n ′′<n by simp
moreover have n ′′>hisPred t n nid n
proof −
let ?x=λx. his-prop t n nid n ′′ nid ′′ x
from 〈∃ x. his-prop t n nid n ′′ nid ′′ x〉 have his-prop t n nid n ′′ nid ′′ (SOME x. ?x x)
using someI-ex[of ?x] by auto

hence n ′′>fst (SOME x. ?x x) using latestAct-prop(2)[of n ′′ nid ′′ t] by force
moreover from asmp have
fst (hisPred t n nid n, SOME nid ′. (hisPred t n nid n, nid ′) ∈ his t n nid) =
fst (SOME x. ?x x) by simp

ultimately show ?thesis by simp
qed
moreover from 〈∃n ′′<n. ∃nid ′. (n ′′,nid ′)∈ his t n nid〉

have ¬(∃ x∈his t n nid. fst x < n ∧ fst x > hisPred t n nid n)
using hisPrev-nex-less by simp

ultimately show False using 〈(n ′′, nid ′′) ∈ his t n nid〉 by auto
qed

next
from 〈(n ′′, nid ′′) ∈ his t n nid〉 show n ′′ ≤ n using his-le by auto

qed
ultimately have (hisPred t n nid n, SOME nid ′. (hisPred t n nid n, nid ′) ∈ his t n nid) =

(SOME x. his-prop t n nid n nid ′′ x) by simp
moreover from 〈n ′′=n〉 〈(n ′′, nid ′′) ∈ his t n nid〉 have (n, nid ′′) ∈ his t n nid by simp
with 〈∃ !nid ′. (n,nid ′) ∈ his t n nid〉 have nid ′′=(THE nid ′. (n,nid ′)∈his t n nid)
using the1-equality[of λnid ′. (n, nid ′) ∈ his t n nid] by simp

moreover from 〈∃ x. his-prop t n nid n ′′ nid ′′ x〉 〈n ′′=n〉

〈nid ′′=(THE nid ′. (n,nid ′)∈his t n nid)〉

have ∃ x. his-prop t n nid n (THE nid ′. (n,nid ′)∈his t n nid) x by simp
ultimately show ?thesis by simp

qed
qed
ultimately show ?case by simp

next
case (step n ′)
then obtain nid ′ where (n ′, nid ′) ∈ his t n nid by auto
hence ∃ !nid ′. (n ′, nid ′) ∈ his t n nid
proof (rule his.cases)
assume (n ′, nid ′) = (n, nid)
hence n ′=n by simp
with step.hyps show ?thesis by simp

next
fix n ′′′′ nid ′′′′

assume (n ′′′′, nid ′′′′) ∈ his t n nid
and n ′nid ′: (n ′, nid ′) = (SOME x. his-prop t n nid n ′′′′ nid ′′′′ x)

293

G Verification of Blockchain Architectures

and (n ′′′′, nid ′′′′) ∈ his t n nid and ∃ x. his-prop t n nid n ′′′′ nid ′′′′ x
from 〈(n ′, nid ′) ∈ his t n nid〉 show ?thesis
proof
fix nid ′′ assume (n ′, nid ′′) ∈ his t n nid
thus nid ′′ = nid ′

proof (rule his.cases)
assume (n ′, nid ′′) = (n, nid)
hence n ′=n by simp
with step.hyps show ?thesis by simp

next
fix n ′′′ nid ′′′

assume (n ′′′, nid ′′′) ∈ his t n nid
and n ′nid ′′: (n ′, nid ′′) = (SOME x. his-prop t n nid n ′′′ nid ′′′ x)
and (n ′′′, nid ′′′) ∈ his t n nid and ∃ x. his-prop t n nid n ′′′ nid ′′′ x

moreover have n ′′′=n ′′′′

proof −
have hisPred t n nid n ′′′ = n ′

proof −
from n ′nid ′′ 〈∃ x. his-prop t n nid n ′′′ nid ′′′ x〉

have his-prop t n nid n ′′′ nid ′′′ (n ′,nid ′′)
using someI-ex[of λx. his-prop t n nid n ′′′ nid ′′′ x] by auto

hence n ′′′>n ′ using latestAct-prop(2) by simp
moreover from 〈(n ′′′, nid ′′′) ∈ his t n nid〉 have n ′′′≤ n using his-le by auto
moreover from 〈(n ′′′, nid ′′′) ∈ his t n nid〉

have ∃nid ′. (n ′′′, nid ′) ∈ his t n nid by auto
ultimately have (∃n ′<n ′′′. ∃nid ′. (n ′,nid ′)∈ his t n nid) −→

(∃ !nid ′. (n ′′′,nid ′) ∈ his t n nid) ∧
(hisPred t n nid n ′′′, (SOME nid ′. (hisPred t n nid n ′′′, nid ′) ∈ his t n nid)) =

(SOME x. his-prop t n nid n ′′′ (THE nid ′. (n ′′′,nid ′)∈his t n nid) x)
using step.IH by auto

with 〈n ′′′>n ′〉 〈(n ′, nid ′) ∈ his t n nid〉 have ∃ !nid ′. (n ′′′,nid ′) ∈ his t n nid and
(hisPred t n nid n ′′′, (SOME nid ′. (hisPred t n nid n ′′′, nid ′) ∈ his t n nid)) =

(SOME x. his-prop t n nid n ′′′ (THE nid ′. (n ′′′,nid ′)∈his t n nid) x) by auto
moreover from 〈∃ !nid ′. (n ′′′,nid ′) ∈ his t n nid〉 〈(n ′′′, nid ′′′) ∈ his t n nid〉 have
nid ′′′=(THE nid ′. (n ′′′,nid ′)∈his t n nid)
using the1-equality[of λnid ′. (n ′′′, nid ′) ∈ his t n nid] by simp

ultimately have
(hisPred t n nid n ′′′, (SOME nid ′. (hisPred t n nid n ′′′, nid ′) ∈ his t n nid)) =

(SOME x. his-prop t n nid n ′′′ nid ′′′ x) by simp
with n ′nid ′′ have (n ′, nid ′′) =
(hisPred t n nid n ′′′, (SOME nid ′. (hisPred t n nid n ′′′, nid ′) ∈ his t n nid)) by simp
thus ?thesis by simp

qed
moreover have hisPred t n nid n ′′′′ = n ′

proof −
from n ′nid ′ 〈∃ x. his-prop t n nid n ′′′′ nid ′′′′ x〉

have his-prop t n nid n ′′′′ nid ′′′′ (n ′,nid ′)
using someI-ex[of λx. his-prop t n nid n ′′′′ nid ′′′′ x] by auto

hence n ′′′′>n ′ using latestAct-prop(2) by simp

294

G.3 A Theory of Blockchain Architectures

moreover from 〈(n ′′′′, nid ′′′′) ∈ his t n nid〉 have n ′′′′≤ n using his-le by auto
moreover from 〈(n ′′′′, nid ′′′′) ∈ his t n nid〉

have ∃nid ′. (n ′′′′, nid ′) ∈ his t n nid by auto
ultimately have (∃n ′<n ′′′′. ∃nid ′. (n ′,nid ′)∈ his t n nid) −→
(∃ !nid ′. (n ′′′′,nid ′) ∈ his t n nid) ∧
(hisPred t n nid n ′′′′, (SOME nid ′. (hisPred t n nid n ′′′′, nid ′) ∈ his t n nid)) =
(SOME x. his-prop t n nid n ′′′′ (THE nid ′. (n ′′′′,nid ′)∈his t n nid) x)
using step.IH by auto

with 〈n ′′′′>n ′〉 〈(n ′, nid ′) ∈ his t n nid〉 have ∃ !nid ′. (n ′′′′,nid ′) ∈ his t n nid and
(hisPred t n nid n ′′′′, (SOME nid ′. (hisPred t n nid n ′′′′, nid ′) ∈ his t n nid)) =
(SOME x. his-prop t n nid n ′′′′ (THE nid ′. (n ′′′′,nid ′)∈his t n nid) x) by auto

moreover from 〈∃ !nid ′. (n ′′′′,nid ′) ∈ his t n nid〉 〈(n ′′′′, nid ′′′′) ∈ his t n nid〉

have nid ′′′′=(THE nid ′. (n ′′′′,nid ′)∈his t n nid)
using the1-equality[of λnid ′. (n ′′′′, nid ′) ∈ his t n nid] by simp

ultimately have
(hisPred t n nid n ′′′′, (SOME nid ′. (hisPred t n nid n ′′′′, nid ′) ∈ his t n nid))
= (SOME x. his-prop t n nid n ′′′′ nid ′′′′ x) by simp

with n ′nid ′ have (n ′, nid ′) =
(hisPred t n nid n ′′′′, (SOME nid ′. (hisPred t n nid n ′′′′, nid ′) ∈ his t n nid))
by simp

thus ?thesis by simp
qed
ultimately have hisPred t n nid n ′′′=hisPred t n nid n ′′′′ ..
moreover have ∃n ′<n ′′′. ∃nid ′. (n ′,nid ′)∈ his t n nid
proof −
from n ′nid ′′ 〈∃ x. his-prop t n nid n ′′′ nid ′′′ x〉

have his-prop t n nid n ′′′ nid ′′′ (n ′,nid ′′)
using someI-ex[of λx. his-prop t n nid n ′′′ nid ′′′ x] by auto

hence n ′′′>n ′ using latestAct-prop(2) by simp
with 〈(n ′, nid ′) ∈ his t n nid〉 show ?thesis by auto

qed
moreover have ∃n ′<n ′′′′. ∃nid ′. (n ′,nid ′)∈ his t n nid
proof −
from n ′nid ′ 〈∃ x. his-prop t n nid n ′′′′ nid ′′′′ x〉

have his-prop t n nid n ′′′′ nid ′′′′ (n ′,nid ′)
using someI-ex[of λx. his-prop t n nid n ′′′′ nid ′′′′ x] by auto

hence n ′′′′>n ′ using latestAct-prop(2) by simp
with 〈(n ′, nid ′) ∈ his t n nid〉 show ?thesis by auto

qed
ultimately show ?thesis
using hisPrev-same 〈(n ′′′, nid ′′′) ∈ his t n nid〉 〈(n ′′′′, nid ′′′′) ∈ his t n nid〉

by blast
qed
moreover have nid ′′′=nid ′′′′

proof −
from n ′nid ′′ 〈∃ x. his-prop t n nid n ′′′ nid ′′′ x〉

have his-prop t n nid n ′′′ nid ′′′ (n ′,nid ′′)
using someI-ex[of λx. his-prop t n nid n ′′′ nid ′′′ x] by auto

hence n ′′′>n ′ using latestAct-prop(2) by simp

295

G Verification of Blockchain Architectures

moreover from 〈(n ′′′, nid ′′′) ∈ his t n nid〉 have n ′′′≤ n using his-le by auto
moreover from 〈(n ′′′, nid ′′′) ∈ his t n nid〉

have ∃nid ′. (n ′′′, nid ′) ∈ his t n nid by auto
ultimately have ∃ !nid ′. (n ′′′, nid ′) ∈ his t n nid using step.IH by auto
with 〈(n ′′′, nid ′′′) ∈ his t n nid〉 〈(n ′′′′, nid ′′′′) ∈ his t n nid〉 〈n ′′′=n ′′′′〉

show ?thesis by auto
qed
ultimately have (n ′, nid ′) = (n ′, nid ′′) using n ′nid ′ by simp
thus nid ′′ = nid ′ by simp

qed
qed

qed
moreover have (∃n ′′<n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid) −→

(∃ x. his-prop t n nid n ′ (THE nid ′. (n ′,nid ′)∈his t n nid) x) ∧
(hisPred t n nid n ′, (SOME nid ′. (hisPred t n nid n ′, nid ′) ∈ his t n nid)) =
(SOME x. his-prop t n nid n ′ (THE nid ′. (n ′,nid ′)∈his t n nid) x)

proof
assume ∃n ′′<n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid
hence ∃nid ′. (hisPred t n nid n ′, nid ′)∈ his t n nid using hisPrev-prop(2) by simp
hence (hisPred t n nid n ′,

(SOME nid ′. (hisPred t n nid n ′, nid ′) ∈ his t n nid)) ∈ his t n nid
using someI-ex[of λnid ′. (hisPred t n nid n ′, nid ′) ∈ his t n nid] by simp

thus (∃ x. his-prop t n nid n ′ (THE nid ′. (n ′,nid ′)∈his t n nid) x) ∧
(hisPred t n nid n ′, (SOME nid ′. (hisPred t n nid n ′, nid ′) ∈ his t n nid)) =
(SOME x. his-prop t n nid n ′ (THE nid ′. (n ′,nid ′)∈his t n nid) x)

proof (rule his.cases)
assume (hisPred t n nid n ′,
SOME nid ′. (hisPred t n nid n ′, nid ′) ∈ his t n nid) = (n, nid)
hence hisPred t n nid n ′=n by simp
moreover from 〈∃n ′′<n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid〉 have hisPred t n nid n ′<n ′

using hisPrev-prop(1)[of n ′] by force
ultimately show ?thesis using step.hyps by simp

next
fix n ′′ nid ′′ assume asmp:

(hisPred t n nid n ′, SOME nid ′. (hisPred t n nid n ′, nid ′) ∈ his t n nid) =
(SOME x. his-prop t n nid n ′′ nid ′′ x)

and (n ′′, nid ′′) ∈ his t n nid and ∃ x. his-prop t n nid n ′′ nid ′′ x
moreover have n ′′=n ′

proof (rule antisym)
show n ′′≥n ′

proof (rule ccontr)
assume (¬n ′′≥n ′)
hence n ′′<n ′ by simp
moreover have n ′′>hisPred t n nid n ′

proof −
let ?x=λx. his-prop t n nid n ′′ nid ′′ x
from 〈∃ x. his-prop t n nid n ′′ nid ′′ x〉 have his-prop t n nid n ′′ nid ′′ (SOME x. ?x x)
using someI-ex[of ?x] by auto

hence n ′′>fst (SOME x. ?x x) using latestAct-prop(2)[of n ′′ nid ′′ t] by force

296

G.3 A Theory of Blockchain Architectures

moreover from asmp have
fst (hisPred t n nid n ′, SOME nid ′. (hisPred t n nid n ′, nid ′) ∈ his t n nid)
= fst (SOME x. ?x x) by simp

ultimately show ?thesis by simp
qed
moreover from 〈∃n ′′<n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid〉

have ¬(∃ x∈his t n nid. fst x < n ′ ∧ fst x > hisPred t n nid n ′)
using hisPrev-nex-less by simp

ultimately show False using 〈(n ′′, nid ′′) ∈ his t n nid〉 by auto
qed

next
show n ′≥n ′′

proof (rule ccontr)
assume (¬n ′≥n ′′)
hence n ′<n ′′ by simp
moreover from 〈(n ′′, nid ′′) ∈ his t n nid〉 have n ′′≤ n using his-le by auto
moreover from 〈(n ′′, nid ′′) ∈ his t n nid〉 have ∃nid ′. (n ′′, nid ′) ∈ his t n nid
by auto

ultimately have (∃n ′<n ′′. ∃nid ′. (n ′,nid ′)∈ his t n nid)
−→ (∃ !nid ′. (n ′′,nid ′) ∈ his t n nid) ∧

(hisPred t n nid n ′′, (SOME nid ′. (hisPred t n nid n ′′, nid ′) ∈ his t n nid)) =
(SOME x. his-prop t n nid n ′′ (THE nid ′. (n ′′,nid ′)∈his t n nid) x)

using step.IH by auto
with 〈n ′<n ′′〉 〈(n ′, nid ′) ∈ his t n nid〉 have ∃ !nid ′. (n ′′,nid ′) ∈ his t n nid and

(hisPred t n nid n ′′, (SOME nid ′. (hisPred t n nid n ′′, nid ′) ∈ his t n nid)) =
(SOME x. his-prop t n nid n ′′ (THE nid ′. (n ′′,nid ′)∈his t n nid) x) by auto

moreover from 〈∃ !nid ′. (n ′′,nid ′) ∈ his t n nid〉 〈(n ′′, nid ′′) ∈ his t n nid〉

have nid ′′ = (THE nid ′. (n ′′,nid ′)∈his t n nid)
using the1-equality[of λnid ′. (n ′′, nid ′) ∈ his t n nid] by simp

ultimately have (hisPred t n nid n ′′,
(SOME nid ′. (hisPred t n nid n ′′, nid ′) ∈ his t n nid))
= (SOME x. his-prop t n nid n ′′ nid ′′ x) by simp

with asmp have (hisPred t n nid n ′,
SOME nid ′. (hisPred t n nid n ′, nid ′) ∈ his t n nid) =
(hisPred t n nid n ′′, SOME nid ′. (hisPred t n nid n ′′, nid ′) ∈ his t n nid) by simp

hence hisPred t n nid n ′ = hisPred t n nid n ′′ by simp
with 〈∃n ′′<n ′. ∃nid ′. (n ′′, nid ′) ∈ his t n nid〉 〈n ′<n ′′〉 〈(n ′, nid ′) ∈ his t n nid〉

〈(n ′′, nid ′′) ∈ his t n nid〉 〈(n ′, nid ′) ∈ his t n nid〉 have n ′=n ′′

using hisPrev-same by blast
with 〈n ′<n ′′〉 show False by simp

qed
qed
ultimately have (hisPred t n nid n ′,
SOME nid ′. (hisPred t n nid n ′, nid ′) ∈ his t n nid) =
(SOME x. his-prop t n nid n ′ nid ′′ x) by simp

moreover from 〈(n ′′, nid ′′) ∈ his t n nid〉 〈n ′′=n ′〉 have (n ′, nid ′′) ∈ his t n nid by simp
with 〈∃ !nid ′. (n ′,nid ′) ∈ his t n nid〉 have nid ′′=(THE nid ′. (n ′,nid ′)∈his t n nid)
using the1-equality[of λnid ′. (n ′, nid ′) ∈ his t n nid] by simp

moreover from 〈∃ x. his-prop t n nid n ′′ nid ′′ x〉 〈n ′′=n ′〉

297

G Verification of Blockchain Architectures

〈nid ′′=(THE nid ′. (n ′,nid ′)∈his t n nid)〉

have ∃ x. his-prop t n nid n ′ (THE nid ′. (n ′,nid ′)∈his t n nid) x by simp
ultimately show ?thesis by simp

qed
qed
ultimately show ?case by simp

qed

corollary his-determ-ex:
assumes (n ′,nid ′)∈his t n nid
shows ∃ !nid ′. (n ′,nid ′)∈his t n nid
using assms his-le his-determ-ext[of n ′ n t nid] by force

corollary his-determ:
assumes (n ′,nid ′)∈his t n nid
and (n ′,nid ′′)∈his t n nid

shows nid ′=nid ′′ using assms his-le his-determ-ext[of n ′ n t nid] by force

corollary his-determ-the:
assumes (n ′,nid ′)∈his t n nid
shows (THE nid ′. (n ′, nid ′)∈his t n nid) = nid ′

using assms his-determ theI ′[of λnid ′. (n ′, nid ′)∈his t n nid] his-determ-ex by simp

G.3.2.5 Blockchain Development

definition devBC ::trace ⇒ nat ⇒ ′nid ⇒ nat ⇒ ′nid option
where devBC t n nid n ′ ≡

(if (∃nid ′. (n ′, nid ′)∈ his t n nid) then (Some (THE nid ′. (n ′, nid ′)∈his t n nid))
else Option.None)

lemma devBC-some[simp]: assumes nid t n shows devBC t n nid n = Some nid
proof −
from assms have (n, nid)∈ his t n nid using his.intros(1) by simp
hence devBC t n nid n = (Some (THE nid ′. (n, nid ′)∈his t n nid)) using devBC-def by auto
moreover have (THE nid ′. (n, nid ′)∈his t n nid) = nid
proof
from 〈(n, nid)∈ his t n nid〉 show (n, nid)∈ his t n nid .

next
fix nid ′ assume (n, nid ′) ∈ his t n nid
thus nid ′ = nid using his-determ-base by simp

qed
ultimately show ?thesis by simp

qed

lemma devBC-act: assumes ¬ Option.is-none (devBC t n nid n ′)
shows the (devBC t n nid n ′) t n ′

proof −
from assms have ¬ devBC t n nid n ′=Option.None by (metis is-none-simps(1))
then obtain nid ′ where (n ′, nid ′)∈ his t n nid and

298

G.3 A Theory of Blockchain Architectures

devBC t n nid n ′ = (Some (THE nid ′. (n ′, nid ′)∈his t n nid))
using devBC-def [of t n nid] by metis

hence nid ′= (THE nid ′. (n ′, nid ′)∈his t n nid) using his-determ-the by simp
with 〈devBC t n nid n ′ = (Some (THE nid ′. (n ′, nid ′)∈his t n nid))〉

have the (devBC t n nid n ′) = nid ′ by simp
with 〈(n ′, nid ′)∈ his t n nid〉 show ?thesis using his-act by simp

qed

lemma his-ex:
assumes ¬Option.is-none (devBC t n nid n ′)
shows ∃nid ′. (n ′,nid ′)∈his t n nid

proof (rule ccontr)
assume ¬(∃nid ′. (n ′,nid ′)∈his t n nid)
with devBC-def have Option.is-none (devBC t n nid n ′) by simp
with assms show False by simp

qed

lemma devExt-nopt-leq:
assumes ¬Option.is-none (devBC t n nid n ′)
shows n ′≤n

proof −
from assms have ∃nid ′. (n ′,nid ′)∈his t n nid using his-ex by simp
then obtain nid ′ where (n ′,nid ′)∈his t n nid by auto
with his-le[of (n ′,nid ′)] show ?thesis by simp

qed

An extended version of the development in which deactivations are filled with the last
value.
function devExt::trace ⇒ nat ⇒ ′nid ⇒ nat ⇒ nat ⇒ ′nid BC
where [[∃n ′<ns. ¬Option.is-none (devBC t n nid n ′); Option.is-none (devBC t n nid ns)]] =⇒
devExt t n nid ns 0 = bc
(σthe (devBC t n nid (GREATEST n ′. n ′<ns ∧ ¬Option.is-none (devBC t n nid n ′)))
(t (GREATEST n ′. n ′<ns ∧ ¬Option.is-none (devBC t n nid n ′))))
| [[¬ (∃n ′<ns. ¬Option.is-none (devBC t n nid n ′)); Option.is-none (devBC t n nid ns)]] =⇒
devExt t n nid ns 0 = []
| ¬ Option.is-none (devBC t n nid ns) =⇒
devExt t n nid ns 0 = bc (σthe (devBC t n nid ns)(t ns))
| ¬ Option.is-none (devBC t n nid (ns + Suc n ′)) =⇒
devExt t n nid ns (Suc n ′) = bc (σthe (devBC t n nid (ns + Suc n ′))(t (ns + Suc n ′)))
| Option.is-none (devBC t n nid (ns + Suc n ′)) =⇒
devExt t n nid ns (Suc n ′) = devExt t n nid ns n ′

proof −
show

∧
ns t n nid ns

′ ta na nida.
∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′) =⇒
Option.is-none (devBC t n nid ns) =⇒
∃n ′<ns

′. ¬ Option.is-none (devBC ta na nida n ′) =⇒
Option.is-none (devBC ta na nida ns

′) =⇒
(t, n, nid, ns, 0) = (ta, na, nida, ns

′, 0) =⇒
bc (σthe (devBC t n nid (GREATEST n ′. n ′ < ns ∧ ¬ Option.is-none (devBC t n nid n ′)))

299

G Verification of Blockchain Architectures

t (GREATEST n ′. n ′ < ns ∧ ¬ Option.is-none (devBC t n nid n ′))) =
bc (σthe (devBC ta na nida (GREATEST n ′. n ′ < ns

′ ∧ ¬ Option.is-none (devBC ta na nida n ′)))
ta (GREATEST n ′. n ′ < ns

′ ∧ ¬ Option.is-none (devBC ta na nida n ′))) by auto
show

∧
ns t n nid ns

′ ta na nida.
∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′) =⇒
Option.is-none (devBC t n nid ns) =⇒
¬ (∃n ′<ns

′. ¬ Option.is-none (devBC ta na nida n ′)) =⇒
Option.is-none (devBC ta na nida ns

′) =⇒
(t, n, nid, ns, 0) = (ta, na, nida, ns

′, 0) =⇒
bc (σthe (devBC t n nid (GREATEST n ′. n ′ < ns ∧ ¬ Option.is-none (devBC t n nid n ′)))t
(GREATEST n ′. n ′ < ns ∧ ¬ Option.is-none (devBC t n nid n ′))) = [] by auto

show
∧
ns t n nid ta na nida ns

′.
∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′) =⇒
Option.is-none (devBC t n nid ns) =⇒
¬ Option.is-none (devBC ta na nida ns

′) =⇒
(t, n, nid, ns, 0) = (ta, na, nida, ns

′, 0) =⇒
bc (σthe (devBC t n nid (GREATEST n ′. n ′ < ns ∧ ¬ Option.is-none (devBC t n nid n ′)))t
(GREATEST n ′. n ′ < ns ∧ ¬ Option.is-none (devBC t n nid n ′))) =
bc (σthe (devBC ta na nida ns

′)ta ns
′) by auto

show
∧
ns t n nid ta na nida ns

′ n ′.
∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′) =⇒
Option.is-none (devBC t n nid ns) =⇒
¬ Option.is-none (devBC ta na nida (ns

′ + Suc n ′)) =⇒
(t, n, nid, ns, 0) = (ta, na, nida, ns

′, Suc n ′) =⇒
bc (σthe (devBC t n nid (GREATEST n ′. n ′ < ns ∧ ¬ Option.is-none (devBC t n nid n ′)))t
(GREATEST n ′. n ′ < ns ∧ ¬ Option.is-none (devBC t n nid n ′))) =
bc (σthe (devBC ta na nida (ns

′ + Suc n ′))ta (ns
′ + Suc n ′)) by auto

show
∧
ns t n nid ta na nida ns

′ n ′.
∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′) =⇒
Option.is-none (devBC t n nid ns) =⇒
Option.is-none (devBC ta na nida (ns

′ + Suc n ′)) =⇒
(t, n, nid, ns, 0) = (ta, na, nida, ns

′, Suc n ′) =⇒
bc (σthe (devBC t n nid (GREATEST n ′. n ′ < ns ∧ ¬ Option.is-none (devBC t n nid n ′)))t
(GREATEST n ′. n ′ < ns ∧ ¬ Option.is-none (devBC t n nid n ′))) =
devExt-sumC (ta, na, nida, ns

′, n ′) by auto
show

∧
ns t n nid ns

′ ta na nida.
¬ (∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′)) =⇒
Option.is-none (devBC t n nid ns) =⇒
¬ (∃n ′<ns

′. ¬ Option.is-none (devBC ta na nida n ′)) =⇒
Option.is-none (devBC ta na nida ns

′) =⇒
(t, n, nid, ns, 0) = (ta, na, nida, ns

′, 0) =⇒ [] = [] by auto
show

∧
ns t n nid ta na nida ns

′.
¬ (∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′)) =⇒
Option.is-none (devBC t n nid ns) =⇒
¬ Option.is-none (devBC ta na nida ns

′) =⇒
(t, n, nid, ns, 0) = (ta, na, nida, ns

′, 0) =⇒
[] = bc (σthe (devBC ta na nida ns

′)ta ns
′) by auto

show
∧
ns t n nid ta na nida ns

′ n ′.

300

G.3 A Theory of Blockchain Architectures

¬ (∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′)) =⇒
Option.is-none (devBC t n nid ns) =⇒
¬ Option.is-none (devBC ta na nida (ns

′ + Suc n ′)) =⇒
(t, n, nid, ns, 0) = (ta, na, nida, ns

′, Suc n ′) =⇒
[] = bc (σthe (devBC ta na nida (ns

′ + Suc n ′))ta (ns
′ + Suc n ′)) by auto

show
∧
ns t n nid ta na nida ns

′ n ′.
¬ (∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′)) =⇒
Option.is-none (devBC t n nid ns) =⇒
Option.is-none (devBC ta na nida (ns

′ + Suc n ′)) =⇒
(t, n, nid, ns, 0) = (ta, na, nida, ns

′, Suc n ′) =⇒
[] = devExt-sumC (ta, na, nida, ns

′, n ′) by auto
show

∧
t n nid ns ta na nida ns

′.
¬ Option.is-none (devBC t n nid ns) =⇒
¬ Option.is-none (devBC ta na nida ns

′) =⇒
(t, n, nid, ns, 0) = (ta, na, nida, ns

′, 0) =⇒
bc (σthe (devBC t n nid ns)t ns) = bc (σthe (devBC ta na nida ns

′)ta ns
′) by auto

show
∧
t n nid ns ta na nida ns

′ n ′.
¬ Option.is-none (devBC t n nid ns) =⇒
¬ Option.is-none (devBC ta na nida (ns

′ + Suc n ′)) =⇒
(t, n, nid, ns, 0) = (ta, na, nida, ns

′, Suc n ′) =⇒
bc (σthe (devBC t n nid ns)t ns) = bc

(σthe (devBC ta na nida (ns
′ + Suc n ′))ta (ns

′ + Suc n ′)) by auto
show

∧
t n nid ns ta na nida ns

′ n ′.
¬ Option.is-none (devBC t n nid ns) =⇒
Option.is-none (devBC ta na nida (ns

′ + Suc n ′)) =⇒
(t, n, nid, ns, 0) = (ta, na, nida, ns

′, Suc n ′) =⇒
bc (σthe (devBC t n nid ns)t ns) = devExt-sumC (ta, na, nida, ns

′, n ′) by auto
show

∧
t n nid ns n ′ ta na nida ns

′ n ′a.
¬ Option.is-none (devBC t n nid (ns + Suc n ′)) =⇒
¬ Option.is-none (devBC ta na nida (ns

′ + Suc n ′a)) =⇒
(t, n, nid, ns, Suc n ′) = (ta, na, nida, ns

′, Suc n ′a) =⇒
bc (σthe (devBC t n nid (ns + Suc n ′))t (ns + Suc n ′)) =
bc (σthe (devBC ta na nida (ns

′ + Suc n ′a))ta (ns
′ + Suc n ′a)) by auto

show
∧
t n nid ns n ′ ta na nida ns

′ n ′a.
¬ Option.is-none (devBC t n nid (ns + Suc n ′)) =⇒
Option.is-none (devBC ta na nida (ns

′ + Suc n ′a)) =⇒
(t, n, nid, ns, Suc n ′) = (ta, na, nida, ns

′, Suc n ′a) =⇒
bc (σthe (devBC t n nid (ns + Suc n ′))
t (ns + Suc n ′)) = devExt-sumC (ta, na, nida, ns

′, n ′a)by auto
show

∧
t n nid ns n ′ ta na nida ns

′ n ′a.
Option.is-none (devBC t n nid (ns + Suc n ′)) =⇒
Option.is-none (devBC ta na nida (ns

′ + Suc n ′a)) =⇒
(t, n, nid, ns, Suc n ′) = (ta, na, nida, ns

′, Suc n ′a) =⇒
devExt-sumC (t, n, nid, ns, n ′) = devExt-sumC (ta, na, nida, ns

′, n ′a) by auto
show

∧
P x. (

∧
ns t n nid. ∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′) =⇒

Option.is-none (devBC t n nid ns) =⇒ x = (t, n, nid, ns, 0) =⇒ P) =⇒
(
∧
ns t n nid. ¬ (∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′)) =⇒

Option.is-none (devBC t n nid ns) =⇒ x = (t, n, nid, ns, 0) =⇒ P) =⇒

301

G Verification of Blockchain Architectures

(
∧
t n nid ns. ¬ Option.is-none (devBC t n nid ns) =⇒

x = (t, n, nid, ns, 0) =⇒ P) =⇒
(
∧
t n nid ns n ′. ¬ Option.is-none (devBC t n nid (ns + Suc n ′)) =⇒

x = (t, n, nid, ns, Suc n ′) =⇒ P) =⇒
(
∧
t n nid ns n ′. Option.is-none (devBC t n nid (ns + Suc n ′)) =⇒

x = (t, n, nid, ns, Suc n ′) =⇒ P) =⇒ P
proof −
fix P::bool and x::trace ×nat× ′nid×nat×nat
assume a1 :(

∧
ns t n nid. ∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′) =⇒

Option.is-none (devBC t n nid ns) =⇒ x = (t, n, nid, ns, 0) =⇒ P) and
a2 :(

∧
ns t n nid. ¬ (∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′)) =⇒

Option.is-none (devBC t n nid ns) =⇒ x = (t, n, nid, ns, 0) =⇒ P) and
a3 :(

∧
t n nid ns. ¬ Option.is-none (devBC t n nid ns) =⇒

x = (t, n, nid, ns, 0) =⇒ P) and
a4 :(

∧
t n nid ns n ′. ¬ Option.is-none (devBC t n nid (ns + Suc n ′)) =⇒

x = (t, n, nid, ns, Suc n ′) =⇒ P) and
a5 :(

∧
t n nid ns n ′. Option.is-none (devBC t n nid (ns + Suc n ′)) =⇒

x = (t, n, nid, ns, Suc n ′) =⇒ P)
show P
proof (cases x)
case (fields t n nid ns n ′)
then show ?thesis
proof (cases n ′)
case 0
then show ?thesis
proof cases
assume Option.is-none (devBC t n nid ns)
thus ?thesis
proof cases
assume ∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′)
with 〈x = (t, n , nid, ns, n ′)〉 〈Option.is-none (devBC t n nid ns)〉 〈n ′=0 〉

show ?thesis using a1 by simp
next
assume ¬ (∃n ′<ns. ¬ Option.is-none (devBC t n nid n ′))
with 〈x = (t, n , nid, ns, n ′)〉 〈Option.is-none (devBC t n nid ns)〉 〈n ′=0 〉

show ?thesis using a2 by simp
qed

next
assume ¬ Option.is-none (devBC t n nid ns)
with 〈x = (t, n , nid, ns, n ′)〉 〈n ′=0 〉 show ?thesis using a3 by simp

qed
next
case (Suc n ′′)
then show ?thesis
proof cases
assume Option.is-none (devBC t n nid (ns + Suc n ′′))
with 〈x = (t, n , nid, ns, n ′)〉 〈n ′=Suc n ′′〉

show ?thesis using a5 [of t n nid ns n ′′] by simp
next

302

G.3 A Theory of Blockchain Architectures

assume ¬ Option.is-none (devBC t n nid (ns + Suc n ′′))
with 〈x = (t, n , nid, ns, n ′)〉 〈n ′=Suc n ′′〉

show ?thesis using a4 [of t n nid ns n ′′] by simp
qed

qed
qed

qed
qed
termination by lexicographic-order

lemma devExt-same:
assumes ∀n ′′′>n ′. n ′′′≤n ′′ −→ Option.is-none (devBC t n nid n ′′′)
and n ′≥ns

and n ′′′≤n ′′

shows n ′′′≥n ′=⇒devExt t n nid ns (n ′′′−ns) = devExt t n nid ns (n ′−ns)
proof (induction n ′′′ rule: dec-induct)
case base
then show ?case by simp

next
case (step n ′′′′)
hence Suc n ′′′′>n ′ by simp
moreover from step.hyps assms(3) have Suc n ′′′′≤n ′′ by simp
ultimately have Option.is-none (devBC t n nid (Suc n ′′′′)) using assms(1) by simp
moreover from assms(2) step.hyps have n ′′′′≥ns by simp
hence Suc n ′′′′ = ns + Suc (n ′′′′−ns) by simp
ultimately have Option.is-none (devBC t n nid (ns + Suc (n ′′′′−ns))) by metis
hence devExt t n nid ns (Suc (n ′′′′−ns)) = devExt t n nid ns (n ′′′′−ns) by simp
moreover from 〈n ′′′′≥ns〉 have Suc (n ′′′′−ns) = Suc n ′′′′−ns by simp
ultimately have devExt t n nid ns (Suc n ′′′′−ns) = devExt t n nid ns (n ′′′′−ns) by simp
with step.IH show ?case by simp

qed

lemma devExt-bc[simp]:
assumes ¬ Option.is-none (devBC t n nid (n ′+n ′′))
shows devExt t n nid n ′ n ′′ = bc (σthe (devBC t n nid (n ′+n ′′))(t (n ′+n ′′)))

proof (cases n ′′)
case 0
with assms show ?thesis by simp

next
case (Suc nat)
with assms show ?thesis by simp

qed

lemma devExt-greatest:
assumes ∃n ′′′<n ′+n ′′. ¬ Option.is-none (devBC t n nid n ′′′)
and Option.is-none (devBC t n nid (n ′+n ′′)) and ¬ n ′′=0

shows devExt t n nid n ′ n ′′ =
bc (σthe (devBC t n nid (GREATEST n ′′′. n ′′′<(n ′+n ′′) ∧ ¬Option.is-none (devBC t n nid n ′′′)))
(t (GREATEST n ′′′. n ′′′<(n ′+n ′′) ∧ ¬Option.is-none (devBC t n nid n ′′′))))

303

G Verification of Blockchain Architectures

proof −
let ?P=λn ′′′. n ′′′<(n ′+n ′′) ∧ ¬Option.is-none (devBC t n nid n ′′′)
let ?G=GREATEST n ′′′. ?P n ′′′

have ∀n ′′′>n ′+n ′′. ¬ ?P n ′′′ by simp
with 〈∃n ′′′<n ′+n ′′. ¬ Option.is-none (devBC t n nid n ′′′)〉 have
∃n ′′′. ?P n ′′′ ∧ (∀n ′′′′. ?P n ′′′′ −→ n ′′′′≤n ′′′) using boundedGreatest[of ?P] by blast

hence ?P ?G using GreatestI-ex-nat[of ?P] by auto
hence ¬Option.is-none (devBC t n nid ?G) by simp
show ?thesis
proof cases
assume ?G>n ′

hence ?G−n ′+n ′ = ?G by simp
with 〈¬Option.is-none (devBC t n nid ?G)〉

have ¬Option.is-none (devBC t n nid (?G−n ′+n ′)) by simp
moreover from 〈?G>n ′〉 have ?G−n ′6=0 by auto
hence ∃nat. Suc nat = ?G − n ′ by presburger
then obtain nat where Suc nat = ?G−n ′ by auto
ultimately have ¬Option.is-none (devBC t n nid (n ′+Suc nat)) by simp
hence devExt t n nid n ′ (Suc nat) = bc (σthe (devBC t n nid (n ′ + Suc nat))t (n ′ + Suc nat))
by simp

with 〈Suc nat = ?G − n ′〉 have
devExt t n nid n ′ (?G − n ′) = bc (σthe (devBC t n nid (?G−n ′+n ′))(t (?G−n ′+n ′)))
by simp

with 〈?G−n ′+n ′ = ?G〉 have
devExt t n nid n ′ (?G − n ′) = bc (σthe (devBC t n nid ?G)(t ?G)) by simp

moreover have devExt t n nid n ′ (n ′ + n ′′ − n ′) = devExt t n nid n ′ (?G − n ′)
proof −
from 〈∃n ′′′. ?P n ′′′ ∧ (∀n ′′′′. ?P n ′′′′ −→ n ′′′′≤n ′′′)〉 have ∀n ′′′. ?P n ′′′ −→ n ′′′≤?G
using Greatest-le-nat[of ?P] by blast

hence ∀n ′′′>?G. n ′′′<n ′+n ′′ −→ Option.is-none (devBC t n nid n ′′′) by auto
with 〈Option.is-none (devBC t n nid (n ′+n ′′))〉

have ∀n ′′′>?G. n ′′′≤n ′+n ′′ −→ Option.is-none (devBC t n nid n ′′′) by auto
moreover from 〈?P ?G〉 have ?G≤n ′+n ′′ by simp
moreover from 〈?G>n ′〉 have ?G≥n ′ by simp
ultimately show ?thesis using 〈?G>n ′〉 devExt-same[of ?G n ′+n ′′ t n nid n ′ n ′+n ′′]
by blast

qed
ultimately show ?thesis by simp

next
assume ¬?G>n ′

thus ?thesis
proof cases
assume ?G=n ′

with 〈¬Option.is-none (devBC t n nid ?G)〉 have ¬ Option.is-none (devBC t n nid n ′)
by simp

with 〈¬Option.is-none (devBC t n nid ?G)〉 have
devExt t n nid n ′ 0 = bc (σthe (devBC t n nid n ′)(t n

′)) by simp
moreover have devExt t n nid n ′ n ′′ = devExt t n nid n ′ 0
proof −

304

G.3 A Theory of Blockchain Architectures

from 〈∃n ′′′. ?P n ′′′ ∧ (∀n ′′′′. ?P n ′′′′ −→ n ′′′′≤n ′′′)〉

have ∀n ′′′>?G. ?P n ′′′ −→ n ′′′≤?G
using Greatest-le-nat[of ?P] by blast

with 〈?G=n ′〉

have ∀n ′′′>n ′. n ′′′ < n ′ + n ′′ −→ Option.is-none (devBC t n nid n ′′′) by simp
with 〈Option.is-none (devBC t n nid (n ′+n ′′))〉

have ∀n ′′′>n ′. n ′′′≤n ′+n ′′ −→ Option.is-none (devBC t n nid n ′′′) by auto
moreover from 〈¬ n ′′=0 〉 have n ′<n ′+n ′′ by simp
ultimately show ?thesis using devExt-same[of n ′ n ′+n ′′ t n nid n ′ n ′+n ′′] by simp

qed
ultimately show ?thesis using 〈?G=n ′〉 by simp

next
assume ¬?G=n ′

with 〈¬?G>n ′〉 have ?G<n ′ by simp
hence devExt t n nid n ′ n ′′ = devExt t n nid n ′ 0
proof −
from 〈∃n ′′′. ?P n ′′′ ∧ (∀n ′′′′. ?P n ′′′′ −→ n ′′′′≤n ′′′)〉

have ∀n ′′′>?G. ?P n ′′′ −→ n ′′′≤?G
using Greatest-le-nat[of ?P] by blast

with 〈¬?G>n ′〉 have ∀n ′′′>n ′. n ′′′<n ′+n ′′ −→ Option.is-none (devBC t n nid n ′′′)
by auto

with 〈Option.is-none (devBC t n nid (n ′+n ′′))〉

have ∀n ′′′>n ′. n ′′′≤n ′+n ′′ −→ Option.is-none (devBC t n nid n ′′′) by auto
moreover from 〈?P ?G〉 have ?G<n ′+n ′′ by simp
moreover from 〈¬ n ′′=0 〉 have n ′<n ′+n ′′ by simp
ultimately show ?thesis using devExt-same[of n ′ n ′+n ′′ t n nid n ′ n ′+n ′′] by simp

qed
moreover have devExt t n nid n ′ 0 =
bc (σthe (devBC t n nid (GREATEST n ′′′. n ′′′<n ′ ∧ ¬Option.is-none (devBC t n nid n ′′′)))
(t (GREATEST n ′′′. n ′′′<n ′ ∧ ¬Option.is-none (devBC t n nid n ′′′))))

proof −
from 〈¬ n ′′=0 〉 have n ′<n ′+n ′′ by simp
moreover from 〈∃n ′′′. ?P n ′′′ ∧ (∀n ′′′′. ?P n ′′′′ −→ n ′′′′≤n ′′′)〉

have ∀n ′′′>?G. ?P n ′′′ −→ n ′′′≤?G using Greatest-le-nat[of ?P] by blast
ultimately have Option.is-none (devBC t n nid n ′) using 〈?G<n ′〉 by simp
moreover from 〈∀n ′′′>?G. ?P n ′′′ −→ n ′′′≤?G〉 〈?G<n ′〉 〈n ′<n ′+n ′′〉

have ∀n ′′′≥n ′. n ′′′<n ′+n ′′ −→ Option.is-none (devBC t n nid n ′′′) by auto
have ∃n ′′′<n ′. ¬ Option.is-none (devBC t n nid n ′′′)
proof −
from 〈∃n ′′′<n ′+n ′′. ¬ Option.is-none (devBC t n nid n ′′′)〉 obtain n ′′′

where n ′′′<n ′+n ′′ and ¬ Option.is-none (devBC t n nid n ′′′) by auto
moreover have n ′′′<n ′

proof (rule ccontr)
assume ¬n ′′′<n ′

hence n ′′′≥n ′ by simp
with 〈∀n ′′′≥n ′. n ′′′<n ′+n ′′ −→ Option.is-none (devBC t n nid n ′′′)〉 〈n ′′′<n ′+n ′′〉

〈¬ Option.is-none (devBC t n nid n ′′′)〉 show False by simp
qed
ultimately show ?thesis by auto

305

G Verification of Blockchain Architectures

qed
ultimately show ?thesis by simp

qed
moreover have (GREATEST n ′′′. n ′′′<n ′ ∧ ¬Option.is-none (devBC t n nid n ′′′)) = ?G
proof(rule Greatest-equality)
from 〈?P ?G〉 have ?G < n ′+n ′′ and ¬Option.is-none (devBC t n nid ?G) by auto
with 〈?G<n ′〉 show ?G < n ′ ∧ ¬ Option.is-none (devBC t n nid ?G) by simp

next
fix y assume y < n ′ ∧ ¬ Option.is-none (devBC t n nid y)
moreover from 〈∃n ′′′. ?P n ′′′ ∧ (∀n ′′′′. ?P n ′′′′ −→ n ′′′′≤n ′′′)〉

have ∀n ′′′. ?P n ′′′ −→ n ′′′≤?G using Greatest-le-nat[of ?P] by blast
ultimately show y ≤ ?G by simp

qed
ultimately show ?thesis by simp

qed
qed

qed

lemma devExt-shift: devExt t n nid (n ′+n ′′) 0 = devExt t n nid n ′ n ′′

proof (cases)
assume n ′′=0
thus ?thesis by simp

next
assume ¬ (n ′′=0)
thus ?thesis
proof (cases)
assume Option.is-none (devBC t n nid (n ′+n ′′))
thus ?thesis
proof cases
assume ∃n ′′′<n ′+n ′′. ¬ Option.is-none (devBC t n nid n ′′′)
with 〈Option.is-none (devBC t n nid (n ′+n ′′))〉 have
devExt t n nid (n ′+n ′′) 0 =

bc (σthe (devBC t n nid (GREATEST n ′′′. n ′′′<(n ′+n ′′) ∧ ¬Option.is-none (devBC t n nid n ′′′)))
(t (GREATEST n ′′′. n ′′′<(n ′+n ′′) ∧ ¬Option.is-none (devBC t n nid n ′′′)))) by simp

moreover from 〈¬ (n ′′=0)〉 〈Option.is-none (devBC t n nid (n ′+n ′′))〉

〈∃n ′′′<n ′+n ′′. ¬ Option.is-none (devBC t n nid n ′′′)〉

have devExt t n nid n ′ n ′′ =
bc (σthe (devBC t n nid (GREATEST n ′′′. n ′′′<(n ′+n ′′) ∧ ¬Option.is-none (devBC t n nid n ′′′)))

(t (GREATEST n ′′′. n ′′′<(n ′+n ′′) ∧ ¬Option.is-none (devBC t n nid n ′′′))))
using devExt-greatest by simp

ultimately show ?thesis by simp
next
assume ¬ (∃n ′′′<n ′+n ′′. ¬ Option.is-none (devBC t n nid n ′′′))
with 〈Option.is-none (devBC t n nid (n ′+n ′′))〉 have devExt t n nid (n ′+n ′′) 0=[] by simp
moreover have devExt t n nid n ′ n ′′=[]
proof −
from 〈¬ (∃n ′′′<n ′+n ′′. ¬ Option.is-none (devBC t n nid n ′′′))〉 〈n ′′6=0 〉

have Option.is-none (devBC t n nid n ′) by simp
moreover from 〈¬ (∃n ′′′<n ′+n ′′. ¬ Option.is-none (devBC t n nid n ′′′))〉

306

G.3 A Theory of Blockchain Architectures

have ¬ (∃n ′′′<n ′. ¬ Option.is-none (devBC t n nid n ′′′)) by simp
ultimately have devExt t n nid n ′ 0=[] by simp
moreover have devExt t n nid n ′ n ′′=devExt t n nid n ′ 0
proof −
from 〈¬ (∃n ′′′<n ′+n ′′. ¬ Option.is-none (devBC t n nid n ′′′))〉

have ∀n ′′′>n ′. n ′′′ < n ′ + n ′′ −→ Option.is-none (devBC t n nid n ′′′) by simp
with 〈Option.is-none (devBC t n nid (n ′+n ′′))〉

have ∀n ′′′>n ′. n ′′′≤n ′+n ′′ −→ Option.is-none (devBC t n nid n ′′′) by auto
moreover from 〈¬ n ′′=0 〉 have n ′<n ′+n ′′ by simp
ultimately show ?thesis using devExt-same[of n ′ n ′+n ′′ t n nid n ′ n ′+n ′′] by simp

qed
ultimately show ?thesis by simp

qed
ultimately show ?thesis by simp

qed
next
assume ¬ Option.is-none (devBC t n nid (n ′+n ′′))
hence devExt t n nid (n ′+n ′′) 0 = bc (σthe (devBC t n nid (n ′+n ′′))(t (n ′+n ′′))) by simp
moreover from 〈¬ Option.is-none (devBC t n nid (n ′+n ′′))〉

have devExt t n nid n ′ n ′′ = bc (σthe (devBC t n nid (n ′+n ′′))(t (n ′+n ′′))) by simp
ultimately show ?thesis by simp

qed
qed

lemma devExt-bc-geq:
assumes ¬ Option.is-none (devBC t n nid n ′) and n ′≥ns

shows devExt t n nid ns (n ′−ns) = bc (σthe (devBC t n nid n ′)(t n
′)) (is ?LHS = ?RHS)

proof −
have devExt t n nid ns (n ′−ns) = devExt t n nid (ns+(n ′−ns)) 0 using devExt-shift by auto
moreover from assms(2) have ns+(n ′−ns) = n ′ by simp
ultimately have devExt t n nid ns (n ′−ns) = devExt t n nid n ′ 0 by simp
with assms(1) show ?thesis by simp

qed

lemma his-bc-empty:
assumes (n ′,nid ′)∈ his t n nid and ¬(∃n ′′<n ′. ∃nid ′′. (n ′′,nid ′′)∈ his t n nid)
shows bc (σnid ′(t n ′)) = []

proof −
have ¬ (∃ x. his-prop t n nid n ′ nid ′ x)
proof (rule ccontr)
assume ¬ ¬ (∃ x. his-prop t n nid n ′ nid ′ x)
hence ∃ x. his-prop t n nid n ′ nid ′ x by simp
with 〈(n ′,nid ′)∈ his t n nid〉 have (SOME x. his-prop t n nid n ′ nid ′ x) ∈ his t n nid
using his.intros by simp

moreover from 〈∃ x. his-prop t n nid n ′ nid ′ x〉

have his-prop t n nid n ′ nid ′ (SOME x. his-prop t n nid n ′ nid ′ x)
using someI-ex[of λx. his-prop t n nid n ′ nid ′ x] by auto

hence (∃n. latestAct-cond nid ′ t n ′ n) ∧
fst (SOME x. his-prop t n nid n ′ nid ′ x) = 〈nid ′← t〉n ′

307

G Verification of Blockchain Architectures

by force
hence fst (SOME x. his-prop t n nid n ′ nid ′ x) < n ′

using latestAct-prop(2)[of n ′ nid ′ t] by force
ultimately have fst (SOME x. his-prop t n nid n ′ nid ′ x)<n ′ ∧

(fst (SOME x. his-prop t n nid n ′ nid ′ x),
snd (SOME x. his-prop t n nid n ′ nid ′ x))∈ his t n nid by simp

thus False using assms(2) by blast
qed
hence ∀ x. ¬ (∃n. latestAct-cond nid ′ t n ′ n) ∨ ¬ snd x t (fst x) ∨
¬ fst x = 〈nid ′← t〉n ′ ∨ ¬ (prefix (bc (σnid ′(t n ′))) (bc (σsnd x(t (fst x)))) ∨
(∃ b. bc (σnid ′(t n ′)) = (bc (σsnd x(t (fst x)))) @ [b] ∧ mining (σnid ′(t n ′))))
by auto

hence ¬ (∃n. latestAct-cond nid ′ t n ′ n) ∨ (∃n. latestAct-cond nid ′ t n ′ n) ∧
(∀ x. ¬ snd x t (fst x) ∨ ¬ fst x = 〈nid ′← t〉n ′ ∨
¬ (prefix (bc (σnid ′(t n ′))) (bc (σsnd x(t (fst x)))) ∨
(∃ b. bc (σnid ′(t n ′)) = (bc (σsnd x(t (fst x)))) @ [b] ∧ mining (σnid ′(t n ′)))))
by auto

thus ?thesis
proof
assume ¬ (∃n. latestAct-cond nid ′ t n ′ n)
moreover from assms(1) have nid ′

t n ′ using his-act by simp
ultimately show ?thesis using init-model by simp

next
assume (∃n. latestAct-cond nid ′ t n ′ n) ∧ (∀ x. ¬ snd x t (fst x) ∨
¬ fst x = 〈nid ′← t〉n ′ ∨ ¬ (prefix (bc (σnid ′(t n ′))) (bc (σsnd x(t (fst x)))) ∨
(∃ b. bc (σnid ′(t n ′)) = (bc (σsnd x(t (fst x)))) @ [b] ∧ mining (σnid ′(t n ′)))))

hence ∃n. latestAct-cond nid ′ t n ′ n and
∀ x. ¬ snd x t (fst x) ∨ ¬ fst x = 〈nid ′← t〉n ′ ∨
¬ (prefix (bc (σnid ′(t n ′))) (bc (σsnd x(t (fst x)))) ∨
(∃ b. bc (σnid ′(t n ′)) = (bc (σsnd x(t (fst x)))) @ [b] ∧ mining (σnid ′(t n ′))))
by auto

hence asmp: ∀ x. snd x t (fst x) −→ fst x = 〈nid ′← t〉n ′ −→
¬ (prefix (bc (σnid ′(t n ′))) (bc (σsnd x(t (fst x)))) ∨
(∃ b. bc (σnid ′(t n ′)) = (bc (σsnd x(t (fst x)))) @ [b] ∧ mining (σnid ′(t n ′))))
by auto

show ?thesis
proof cases
assume trusted nid ′

moreover from assms(1) have nid ′
t n ′ using his-act by simp

ultimately obtain nid ′′ where nid ′′
t 〈nid ′ ← t〉n ′ and mining (σnid ′t n ′) ∧

(∃ b. bc (σnid ′t n ′) = bc (σnid ′′t 〈nid ′← t〉n ′) @ [b]) ∨ ¬ mining (σnid ′t n ′) ∧
bc (σnid ′t n ′) = bc (σnid ′′t 〈nid ′← t〉n ′) using 〈∃n. latestAct-cond nid ′ t n ′ n〉

bhv-tr-context[of nid ′ t n ′] by auto
moreover from 〈 nid ′′

t 〈nid ′ ← t〉n ′
〉 have

¬ (prefix (bc (σnid ′(t n ′))) (bc (σnid ′′(t (〈nid ′← t〉n ′)))) ∨
(∃ b. bc (σnid ′(t n ′)) = (bc (σnid ′′(t (〈nid ′← t〉n ′)))) @ [b] ∧
mining (σnid ′(t n ′)))) using asmp by auto

ultimately have False by auto

308

G.3 A Theory of Blockchain Architectures

thus ?thesis ..
next
assume ¬ trusted nid ′

moreover from assms(1) have nid ′
t n ′ using his-act by simp

ultimately obtain nid ′′ where nid ′′
t 〈nid ′ ← t〉n ′ and (mining (σnid ′t n ′) ∧

(∃ b. prefix (bc (σnid ′t n ′)) (bc (σnid ′′t 〈nid ′← t〉n ′) @ [b])) ∨
¬ mining (σnid ′t n ′) ∧ prefix (bc (σnid ′t n ′)) (bc (σnid ′′t 〈nid ′← t〉n ′)))
using 〈∃n. latestAct-cond nid ′ t n ′ n〉 bhv-ut-context[of nid ′ t n ′] by auto

moreover from 〈 nid ′′
t 〈nid ′ ← t〉n ′

〉 have
¬ (prefix (bc (σnid ′(t n ′))) (bc (σnid ′′(t (〈nid ′← t〉n ′)))) ∨
(∃ b. bc (σnid ′(t n ′)) = (bc (σnid ′′(t (〈nid ′← t〉n ′)))) @ [b] ∧
mining (σnid ′(t n ′)))) using asmp by auto

ultimately have False by auto
thus ?thesis ..

qed
qed

qed

lemma devExt-devop:
prefix (devExt t n nid ns (Suc n ′)) (devExt t n nid ns n ′) ∨
(∃ b. devExt t n nid ns (Suc n ′) = devExt t n nid ns n ′ @ [b]) ∧
¬ Option.is-none (devBC t n nid (ns + Suc n ′)) ∧
the (devBC t n nid (ns + Suc n ′)) t (ns + Suc n ′) ∧
ns + Suc n ′ ≤ n ∧ mining (σthe (devBC t n nid (ns + Suc n ′))(t (ns + Suc n ′)))

proof cases
assume ns + Suc n ′ > n
hence ¬(∃nid ′. (ns + Suc n ′, nid ′) ∈ his t n nid) using his-le by fastforce
hence Option.is-none (devBC t n nid (ns + Suc n ′)) using devBC-def by simp
hence devExt t n nid ns (Suc n ′) = devExt t n nid ns n ′ by simp
thus ?thesis by simp

next
assume ¬ns + Suc n ′ > n
hence ns + Suc n ′ ≤ n by simp
show ?thesis
proof cases
assume Option.is-none (devBC t n nid (ns + Suc n ′))
hence devExt t n nid ns (Suc n ′) = devExt t n nid ns n ′ by simp
thus ?thesis by simp

next
assume ¬ Option.is-none (devBC t n nid (ns + Suc n ′))
hence
devExt t n nid ns (Suc n ′) = bc (σthe (devBC t n nid (ns + Suc n ′))(t (ns + Suc n ′)))
by simp

moreover have prefix (bc (σthe (devBC t n nid (ns + Suc n ′))(t (ns + Suc n ′))))
(devExt t n nid ns n ′) ∨
(∃ b. bc (σthe (devBC t n nid (ns + Suc n ′))(t (ns + Suc n ′))) = devExt t n nid ns n ′ @ [b]
∧ ¬ Option.is-none (devBC t n nid (ns + Suc n ′)) ∧
the (devBC t n nid (ns + Suc n ′)) t (ns + Suc n ′) ∧

309

G Verification of Blockchain Architectures

ns + Suc n ′ ≤ n ∧ mining (σthe (devBC t n nid (ns + Suc n ′))(t (ns + Suc n ′))))
proof cases
assume ∃n ′′<ns + Suc n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid
let ?nid=(THE nid ′. (ns + Suc n ′,nid ′)∈his t n nid)
let ?x=SOME x. his-prop t n nid (ns + Suc n ′) ?nid x
from 〈¬ Option.is-none (devBC t n nid (ns + Suc n ′))〉

have ns + Suc n ′≤n using devExt-nopt-leq by simp
moreover from 〈¬ Option.is-none (devBC t n nid (ns + Suc n ′))〉

have ∃nid ′. (ns + Suc n ′,nid ′)∈his t n nid using his-ex by simp
ultimately have ∃ x. his-prop t n nid (ns + Suc n ′)

(THE nid ′. ((ns + Suc n ′),nid ′)∈his t n nid) x
and (hisPred t n nid (ns + Suc n ′),

(SOME nid ′. (hisPred t n nid (ns + Suc n ′), nid ′) ∈ his t n nid)) = ?x
using 〈∃n ′′<ns + Suc n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid〉

his-determ-ext[of ns + Suc n ′ n t nid] by auto
moreover have bc (σ(SOME nid ′. (hisPred t n nid (ns + Suc n ′), nid ′) ∈ his t n nid)(t

(hisPred t n nid (ns + Suc n ′)))) = devExt t n nid ns n ′

proof cases
assume Option.is-none (devBC t n nid (ns+n ′))
have devExt t n nid ns n ′ =
bc (σthe (devBC t n nid (GREATEST n ′′. n ′′<ns+n ′ ∧ ¬Option.is-none (devBC t n nid n ′′)))

(t (GREATEST n ′′. n ′′<ns+n ′ ∧ ¬Option.is-none (devBC t n nid n ′′))))
proof cases
assume n ′=0
moreover have ∃n ′′<ns+n ′. ¬Option.is-none (devBC t n nid n ′′)
proof −
from 〈∃n ′′<ns + Suc n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid〉 obtain n ′′

where n ′′<Suc ns + n ′ and ∃nid ′. (n ′′,nid ′)∈ his t n nid by auto
hence ¬ Option.is-none (devBC t n nid n ′′) using devBC-def by simp
moreover from 〈¬ Option.is-none (devBC t n nid n ′′)〉

〈Option.is-none (devBC t n nid (ns+n ′))〉 have ¬ n ′′=ns+n ′ by auto
with 〈n ′′<Suc ns+n ′〉 have n ′′<ns+n ′ by simp
ultimately show ?thesis by auto

qed
ultimately show ?thesis using 〈Option.is-none (devBC t n nid (ns+n ′))〉 by simp

next
assume ¬ n ′=0
moreover have ∃n ′′<ns + n ′. ¬ Option.is-none (devBC t n nid n ′′)
proof −
from 〈∃n ′′<ns + Suc n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid〉 obtain n ′′

where n ′′<Suc ns + n ′ and ∃nid ′. (n ′′,nid ′)∈ his t n nid by auto
hence ¬ Option.is-none (devBC t n nid n ′′) using devBC-def by simp
moreover from 〈¬ Option.is-none (devBC t n nid n ′′)〉

〈Option.is-none (devBC t n nid (ns+n ′))〉

have ¬ n ′′=ns+n ′ by auto
with 〈n ′′<Suc ns+n ′〉 have n ′′<ns+n ′ by simp
ultimately show ?thesis by auto

qed
with 〈¬ (n ′=0)〉 〈Option.is-none (devBC t n nid (ns+n ′))〉 show ?thesis

310

G.3 A Theory of Blockchain Architectures

using devExt-greatest[of ns n ′ t n nid] by simp
qed
moreover have (GREATEST n ′′. n ′′<ns+n ′ ∧ ¬Option.is-none (devBC t n nid n ′′))=
hisPred t n nid (ns + Suc n ′)

proof −
have (λn ′′. n ′′<ns+n ′ ∧ ¬Option.is-none (devBC t n nid n ′′)) =

(λn ′′. ∃nid ′. (n ′′,nid ′)∈ his t n nid ∧ n ′′ < ns + Suc n ′)
proof
fix n ′′

show (n ′′ < ns + n ′ ∧ ¬ Option.is-none (devBC t n nid n ′′)) =
(∃nid ′. (n ′′, nid ′) ∈ his t n nid ∧ n ′′ < ns + Suc n ′)

proof
assume n ′′ < ns + n ′ ∧ ¬ Option.is-none (devBC t n nid n ′′)
thus (∃nid ′. (n ′′, nid ′) ∈ his t n nid ∧ n ′′ < ns + Suc n ′)
using his-ex by simp

next
assume (∃nid ′. (n ′′, nid ′) ∈ his t n nid ∧ n ′′ < ns + Suc n ′)
hence ∃nid ′. (n ′′, nid ′) ∈ his t n nid and n ′′ < ns + Suc n ′ by auto
hence ¬ Option.is-none (devBC t n nid n ′′) using devBC-def by simp
moreover from 〈¬ Option.is-none (devBC t n nid n ′′)〉

〈Option.is-none (devBC t n nid (ns+n ′))〉

have n ′′6=ns+n ′ by auto
with 〈n ′′ < ns + Suc n ′〉 have n ′′ < ns + n ′ by simp
ultimately show n ′′ < ns + n ′ ∧ ¬ Option.is-none (devBC t n nid n ′′) by simp

qed
qed
hence (GREATEST n ′′. n ′′<ns+n ′ ∧
¬Option.is-none (devBC t n nid n ′′)) =
(GREATEST n ′′. ∃nid ′. (n ′′,nid ′)∈ his t n nid ∧ n ′′ < ns + Suc n ′)
using arg-cong[of λn ′′. n ′′<ns+n ′ ∧ ¬Option.is-none (devBC t n nid n ′′)
(λn ′′. ∃nid ′. (n ′′,nid ′)∈ his t n nid ∧ n ′′ < ns + Suc n ′)] by simp

with hisPred-def show ?thesis by simp
qed
moreover have the (devBC t n nid (hisPred t n nid (ns + Suc n ′))) =

(SOME nid ′. (hisPred t n nid (ns + Suc n ′), nid ′) ∈ his t n nid)
proof −
from 〈∃n ′′<ns + Suc n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid〉

have ∃nid ′. (hisPred t n nid (ns + Suc n ′), nid ′)∈ his t n nid
using hisPrev-prop(2) by simp

hence the (devBC t n nid (hisPred t n nid (ns + Suc n ′))) =
(THE nid ′. (hisPred t n nid (ns + Suc n ′), nid ′)∈his t n nid)
using devBC-def by simp

moreover from 〈∃nid ′. (hisPred t n nid (ns + Suc n ′), nid ′)∈ his t n nid〉

have (hisPred t n nid (ns + Suc n ′),
SOME nid ′. (hisPred t n nid (ns + Suc n ′), nid ′) ∈ his t n nid) ∈ his t n nid
using someI-ex[of λnid ′. (hisPred t n nid (ns + Suc n ′), nid ′)∈his t n nid] by simp

hence (THE nid ′. (hisPred t n nid (ns + Suc n ′), nid ′)∈his t n nid) =
(SOME nid ′. (hisPred t n nid (ns + Suc n ′), nid ′) ∈ his t n nid)
using his-determ-the by simp

311

G Verification of Blockchain Architectures

ultimately show ?thesis by simp
qed
ultimately show ?thesis by simp

next
assume ¬ Option.is-none (devBC t n nid (ns+n ′))
hence devExt t n nid ns n ′ = bc (σthe (devBC t n nid (ns+n ′))(t (ns+n ′)))
proof cases
assume n ′=0
with 〈¬ Option.is-none (devBC t n nid (ns+n ′))〉 show ?thesis by simp

next
assume ¬ n ′=0
hence ∃nat. n ′ = Suc nat by presburger
then obtain nat where n ′ = Suc nat by auto
with 〈¬ Option.is-none (devBC t n nid (ns+n ′))〉 have
devExt t n nid ns (Suc nat) =
bc (σthe (devBC t n nid (ns + Suc nat))(t (ns + Suc nat))) by simp

with 〈n ′ = Suc nat〉 show ?thesis by simp
qed
moreover have hisPred t n nid (ns + Suc n ′) = ns+n ′

proof −
have (GREATEST n ′′. ∃nid ′. (n ′′,nid ′)∈ his t n nid ∧ n ′′ < (ns + Suc n ′)) = ns+n ′

proof (rule Greatest-equality)
from 〈¬ Option.is-none (devBC t n nid (ns+n ′))〉

have ∃nid ′. (ns + n ′, nid ′) ∈ his t n nid
using his-ex by simp

thus ∃nid ′. (ns + n ′, nid ′) ∈ his t n nid ∧ ns + n ′ < ns + Suc n ′ by simp
next
fix y assume ∃nid ′. (y, nid ′) ∈ his t n nid ∧ y < ns + Suc n ′

thus y ≤ ns + n ′ by simp
qed
thus ?thesis using hisPred-def by simp

qed
moreover have the (devBC t n nid (hisPred t n nid (ns + Suc n ′))) =

(SOME nid ′. (hisPred t n nid (ns + Suc n ′), nid ′) ∈ his t n nid)
proof −
from 〈∃n ′′<ns + Suc n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid〉

have ∃nid ′. (hisPred t n nid (ns + Suc n ′), nid ′)∈ his t n nid
using hisPrev-prop(2) by simp

hence the (devBC t n nid (hisPred t n nid (ns + Suc n ′))) =
(THE nid ′. (hisPred t n nid (ns + Suc n ′), nid ′)∈his t n nid)
using devBC-def by simp

moreover from 〈∃nid ′. (hisPred t n nid (ns + Suc n ′), nid ′)∈ his t n nid〉

have (hisPred t n nid (ns + Suc n ′),
SOME nid ′. (hisPred t n nid (ns + Suc n ′), nid ′) ∈ his t n nid) ∈ his t n nid
using someI-ex[of λnid ′. (hisPred t n nid (ns + Suc n ′), nid ′)∈his t n nid]
by simp

hence (THE nid ′. (hisPred t n nid (ns + Suc n ′), nid ′)∈his t n nid) =
(SOME nid ′. (hisPred t n nid (ns + Suc n ′), nid ′) ∈ his t n nid)
using his-determ-the by simp

312

G.3 A Theory of Blockchain Architectures

ultimately show ?thesis by simp
qed
ultimately show ?thesis by simp

qed
ultimately have bc (σsnd ?x(t (fst ?x))) = devExt t n nid ns n ′

using fst-conv[of hisPred t n nid (ns + Suc n ′)
(SOME nid ′. (hisPred t n nid (ns + Suc n ′), nid ′) ∈ his t n nid)]
snd-conv[of hisPred t n nid (ns + Suc n ′)
(SOME nid ′. (hisPred t n nid (ns + Suc n ′), nid ′) ∈ his t n nid)] by simp

moreover from 〈∃ x. his-prop t n nid (ns + Suc n ′) ?nid x〉

have his-prop t n nid (ns + Suc n ′) ?nid ?x
using someI-ex[of λx. his-prop t n nid (ns + Suc n ′) ?nid x] by blast

hence prefix (bc (σ?nid(t (ns + Suc n ′)))) (bc (σsnd ?x(t (fst ?x)))) ∨
(∃ b. bc (σ?nid(t (ns + Suc n ′))) = (bc (σsnd ?x(t (fst ?x)))) @ [b] ∧
mining (σ?nid(t (ns + Suc n ′)))) by blast

ultimately have prefix (bc (σ?nid(t (ns + Suc n ′)))) (devExt t n nid ns n ′) ∨
(∃ b. bc (σ?nid(t (ns + Suc n ′))) = (devExt t n nid ns n ′) @ [b] ∧
mining (σ?nid(t (ns + Suc n ′)))) by simp

moreover from 〈∃nid ′. (ns + Suc n ′,nid ′)∈ his t n nid〉

have ?nid=the (devBC t n nid (ns + Suc n ′)) using devBC-def by simp
moreover have the (devBC t n nid (ns + Suc n ′)) t (ns + Suc n ′)
proof −
from 〈∃nid ′. (ns + Suc n ′,nid ′)∈his t n nid〉 obtain nid ′

where (ns + Suc n ′,nid ′)∈his t n nid by auto
with his-determ-the have nid ′ = (THE nid ′. (ns + Suc n ′, nid ′) ∈ his t n nid) by simp
with 〈?nid=the (devBC t n nid (ns + Suc n ′))〉

have the (devBC t n nid (ns + Suc n ′)) = nid ′ by simp
with 〈(ns + Suc n ′,nid ′)∈his t n nid〉 show ?thesis using his-act by simp

qed
ultimately show ?thesis
using 〈¬ Option.is-none (devBC t n nid (ns+Suc n ′))〉 〈ns + Suc n ′ ≤ n〉 by simp

next
assume ¬ (∃n ′′<ns + Suc n ′. ∃nid ′. (n ′′,nid ′)∈ his t n nid)
moreover have (ns + Suc n ′, the (devBC t n nid (ns + Suc n ′))) ∈ his t n nid
proof −
from 〈¬ Option.is-none (devBC t n nid (ns + Suc n ′))〉

have ∃nid ′. (ns + Suc n ′,nid ′)∈his t n nid using his-ex by simp
hence the (devBC t n nid (ns + Suc n ′)) =
(THE nid ′. (ns + Suc n ′, nid ′) ∈ his t n nid)
using devBC-def by simp

moreover from 〈∃nid ′. (ns + Suc n ′,nid ′)∈his t n nid〉 obtain nid ′

where (ns + Suc n ′,nid ′)∈his t n nid by auto
with his-determ-the have nid ′ = (THE nid ′. (ns + Suc n ′, nid ′) ∈ his t n nid) by simp
ultimately have the (devBC t n nid (ns + Suc n ′)) = nid ′ by simp
with 〈(ns + Suc n ′,nid ′)∈his t n nid〉 show ?thesis by simp

qed
ultimately have bc (σthe (devBC t n nid (ns + Suc n ′))(t (ns + Suc n ′))) = []
using his-bc-empty by simp

thus ?thesis by simp

313

G Verification of Blockchain Architectures

qed
ultimately show ?thesis by simp

qed
qed

abbreviation devLgthBC where devLgthBC t n nid ns ≡ (λn ′. length (devExt t n nid ns n ′))

theorem blockchain-save:
fixes t::nat⇒cnf and ns and sbc and n
assumes ∀nid. trusted nid −→ prefix sbc (bc (σnid(t (〈nid → t〉ns))))
and ∀nid∈actUt (t ns). length (bc (σnid(t ns))) < length sbc
and PoW t ns≥length sbc + cb
and ∀n ′<ns. ∀nid. nid t n ′ −→ length (bc (σnidt n ′)) < length sbc ∨
prefix sbc (bc (σnid(t n ′)))

and n≥ns

shows ∀nid ∈ actTr (t n). prefix sbc (bc (σnid(t n)))
proof (cases)
assume sbc=[]
thus ?thesis by simp

next
assume ¬ sbc=[]
have n≥ns =⇒ ∀nid ∈ actTr (t n). prefix sbc (bc (σnid(t n)))
proof (induction n rule: ge-induct)
case (step n)
show ?case
proof
fix nid assume nid ∈ actTr (t n)
hence nid t n and trusted nid using actTr-def by auto
show prefix sbc (bc (σnidt n))
proof cases
assume lAct: ∃n ′ < n. n ′ ≥ ns ∧ nid t n ′

show ?thesis
proof cases
assume ∃ b∈pin (σnidt 〈nid ← t〉n). length b > length (bc (σnidt 〈nid ← t〉n))
moreover from 〈 nid t n〉 have ∃n ′≥n. nid t n ′ by auto
moreover from lAct have ∃n ′. latestAct-cond nid t n n ′ by auto
ultimately have
¬ mining (σnidt 〈nid → t〉n) ∧ bc (σnidt 〈nid → t〉n) =
MAX (pin (σnidt 〈nid ← t〉n)) ∨

mining (σnidt 〈nid → t〉n) ∧ (∃ b. bc (σnidt 〈nid → t〉n) =
MAX (pin (σnidt 〈nid ← t〉n)) @ [b])

using 〈trusted nid〉 bhv-tr-ex[of nid n t] by simp
moreover have prefix sbc (MAX (pin (σnidt 〈nid ← t〉n)))
proof −
from 〈∃n ′. latestAct-cond nid t n n ′〉 have nid t 〈nid ← t〉n
using latestAct-prop(1) by simp

hence pin (σnidt 〈nid ← t〉n) 6= {} and finite (pin (σnidt 〈nid ← t〉n))
using nempty-input[of nid t 〈nid ← t〉n] finite-input[of nid t 〈nid ← t〉n]
〈trusted nid〉 by auto

314

G.3 A Theory of Blockchain Architectures

hence MAX (pin (σnidt 〈nid ← t〉n)) ∈ pin (σnidt 〈nid ← t〉n)
using max-prop(1) by auto

with 〈 nid t 〈nid ← t〉n 〉 obtain nid ′ where nid ′
t 〈nid ← t〉n

and bc (σnid ′(t 〈nid ← t〉n)) = MAX (pin (σnidt 〈nid ← t〉n))
using closed[where b=MAX (pin (σnidt 〈nid ← t〉n))] by blast

moreover have prefix sbc (bc (σnid ′(t 〈nid ← t〉n)))
proof cases
assume trusted nid ′

with 〈 nid ′
t 〈nid ← t〉n 〉 have nid ′ ∈ actTr (t 〈nid ← t〉n)

using actTr-def by simp
moreover from 〈∃n ′. latestAct-cond nid t n n ′〉 have 〈nid ← t〉n < n
using latestAct-prop(2) by simp

moreover from lAct have 〈nid ← t〉n ≥ ns using latestActless by blast
ultimately show ?thesis using 〈 nid ′

t 〈nid ← t〉n 〉 step.IH by simp
next
assume ¬ trusted nid ′

show ?thesis
proof (rule ccontr)
assume ¬ prefix sbc (bc (σnid ′(t 〈nid ← t〉n)))
moreover have
∃n ′≤〈nid ← t〉n. n ′≥ns ∧ length (devExt t 〈nid ← t〉n nid ′ n ′ 0) < length sbc ∧
(∀n ′′>n ′. n ′′≤〈nid ← t〉n ∧ ¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′′) −→
¬ trusted (the (devBC t 〈nid ← t〉n nid ′ n ′′)))

proof cases
assume ∃n ′≤〈nid ← t〉n. n ′≥ns ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′) ∧
trusted (the (devBC t 〈nid ← t〉n nid ′ n ′))

hence ∃n ′≤〈nid ← t〉n. n ′≥ns ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′) ∧
trusted (the (devBC t 〈nid ← t〉n nid ′ n ′)) ∧ (∀n ′′>n ′. n ′′≤〈nid ← t〉n ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′′) −→
¬ trusted (the (devBC t 〈nid ← t〉n nid ′ n ′′)))

proof −
let ?P=λn ′. n ′≤〈nid ← t〉n ∧ n ′≥ns ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′) ∧
trusted (the (devBC t 〈nid ← t〉n nid ′ n ′))

from 〈∃n ′≤〈nid ← t〉n. n ′≥ns ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′) ∧
trusted (the (devBC t 〈nid ← t〉n nid ′ n ′))〉 have ∃n ′. ?P n ′ by simp

moreover have ∀n ′>〈nid ← t〉n. ¬ ?P n ′ by simp
ultimately obtain n ′ where ?P n ′ and ∀n ′′. ?P n ′′ −→ n ′′≤n ′

using boundedGreatest[of ?P - 〈nid ← t〉n] by auto
hence ∀n ′′>n ′. n ′′≤〈nid ← t〉n ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′′)
−→ ¬ trusted (the (devBC t 〈nid ← t〉n nid ′ n ′′)) by auto

thus ?thesis using 〈?P n ′〉 by auto
qed
then obtain n ′ where n ′≤〈nid ← t〉n and
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′)

315

G Verification of Blockchain Architectures

and n ′≥ns and trusted (the (devBC t 〈nid ← t〉n nid ′ n ′))
and ∀n ′′>n ′. n ′′≤〈nid ← t〉n ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′′)
−→ ¬ trusted (the (devBC t 〈nid ← t〉n nid ′ n ′′)) by auto

hence n ′≥ns and untrusted: ∀n ′′>n ′. n ′′≤〈nid ← t〉n ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′′) −→
¬ trusted (the (devBC t 〈nid ← t〉n nid ′ n ′′)) by auto

moreover have 〈nid ← t〉n<n
using 〈∃n ′. latestAct-cond nid t n n ′〉 latestAct-prop(2) by blast

with 〈n ′≤〈nid ← t〉n〉 have n ′<n by simp
moreover from 〈¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′)〉

have the (devBC t 〈nid ← t〉n nid ′ n ′) t n ′ using devBC-act by simp
with 〈trusted (the (devBC t 〈nid ← t〉n nid ′ n ′))〉

have the (devBC t 〈nid ← t〉n nid ′ n ′) ∈actTr (t n ′) using actTr-def by simp
ultimately have prefix sbc (bc (σthe (devBC t 〈nid ← t〉n nid ′ n ′)t n

′))
using step.IH by simp

interpret ut: untrusted devExt t 〈nid ← t〉n nid ′ n ′ λn. umining t (n ′ + n)
proof
fix n ′′

from devExt-devop[of t 〈nid ← t〉n nid ′ n ′]
have prefix (devExt t 〈nid ← t〉n nid ′ n ′ (Suc n ′′))
(devExt t 〈nid ← t〉n nid ′ n ′ n ′′) ∨
(∃ b. devExt t 〈nid ← t〉n nid ′ n ′ (Suc n ′′) =
devExt t 〈nid ← t〉n nid ′ n ′ n ′′ @ [b]) ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′)) ∧
the (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′)) t (n ′ + Suc n ′′) ∧
n ′ + Suc n ′′ ≤ 〈nid ← t〉n ∧
mining (σthe (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′))t (n ′ + Suc n ′′)) .
thus prefix (devExt t 〈nid ← t〉n nid ′ n ′ (Suc n ′′))
(devExt t 〈nid ← t〉n nid ′ n ′ n ′′) ∨
(∃ b. devExt t 〈nid ← t〉n nid ′ n ′ (Suc n ′′) =
devExt t 〈nid ← t〉n nid ′ n ′ n ′′ @ [b]) ∧ umining t (n ′ + Suc n ′′)

proof
assume prefix (devExt t 〈nid ← t〉n nid ′ n ′ (Suc n ′′))

(devExt t 〈nid ← t〉n nid ′ n ′ n ′′)
thus ?thesis by simp

next
assume (∃ b. devExt t 〈nid ← t〉n nid ′ n ′ (Suc n ′′) =

devExt t 〈nid ← t〉n nid ′ n ′ n ′′ @ [b]) ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′)) ∧
the (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′)) t (n ′ + Suc n ′′) ∧
n ′ + Suc n ′′ ≤ 〈nid ← t〉n ∧
mining (σthe (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′))t (n ′ + Suc n ′′))

hence ∃ b. devExt t 〈nid ← t〉n nid ′ n ′ (Suc n ′′) =
devExt t 〈nid ← t〉n nid ′ n ′ n ′′ @ [b]

and ¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′))
and the (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′)) t (n ′ + Suc n ′′)

316

G.3 A Theory of Blockchain Architectures

and n ′ + Suc n ′′ ≤ 〈nid ← t〉n and
mining (σthe (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′))t
(n ′ + Suc n ′′)) by auto

moreover from 〈n ′ + Suc n ′′ ≤ 〈nid ← t〉n〉

〈¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′))〉

have ¬ trusted (the (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′)))
using untrusted by simp

with 〈 the (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′)) t (n ′ + Suc n ′′)〉

have the (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′))∈actUt (t (n ′ + Suc n ′′))
using actUt-def by simp

ultimately show ?thesis using umining-def by auto
qed

qed
from 〈¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′)〉 have
bc (σthe (devBC t 〈nid ← t〉n nid ′ n ′)t n

′) = devExt t 〈nid ← t〉n nid ′ n ′ 0
using devExt-bc-geq[of t 〈nid ← t〉n nid ′ n ′] by simp

moreover from 〈n ′≤〈nid ← t〉n〉 〈 nid ′
t 〈nid ← t〉n 〉 have

bc (σnid ′t 〈nid ← t〉n) = devExt t 〈nid ← t〉n nid ′ n ′ (〈nid ← t〉n−n ′)
using devExt-bc-geq by simp

with 〈¬ prefix sbc (bc (σnid ′(t 〈nid ← t〉n)))〉 have
¬ prefix sbc (devExt t 〈nid ← t〉n nid ′ n ′ (〈nid ← t〉n−n ′)) by simp

ultimately have ∃n ′′′. n ′′′ ≤ 〈nid ← t〉n−n ′ ∧
length (devExt t 〈nid ← t〉n nid ′ n ′ n ′′′) < length sbc
using 〈prefix sbc (bc (σthe (devBC t 〈nid ← t〉n nid ′ n ′)(t n

′)))〉

ut.prefix-length[of sbc 0 〈nid ← t〉n−n ′] by auto
then obtain np where np ≤ 〈nid ← t〉n−n ′

and length (devExt t 〈nid ← t〉n nid ′ n ′ np) < length sbc by auto
hence length (devExt t 〈nid ← t〉n nid ′ (n ′ + np) 0) < length sbc
using devExt-shift[of t 〈nid ← t〉n nid ′ n ′ np] by simp

moreover from 〈〈nid ← t〉n≥n ′〉 〈np ≤ 〈nid ← t〉n−n ′〉

have (n ′ + np) ≤ 〈nid ← t〉n by simp
ultimately show ?thesis using 〈n ′≥ns〉 untrusted by auto

next
assume ¬(∃n ′≤〈nid ← t〉n. n ′≥ns ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′) ∧
trusted (the (devBC t 〈nid ← t〉n nid ′ n ′)))

hence cas: ∀n ′≤〈nid ← t〉n. n ′≥ns ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′)
−→ ¬ trusted (the (devBC t 〈nid ← t〉n nid ′ n ′)) by auto

show ?thesis
proof cases
assume Option.is-none (devBC t 〈nid ← t〉n nid ′ ns)
thus ?thesis
proof cases
assume ∀n ′<ns. Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′)
with 〈Option.is-none (devBC t 〈nid ← t〉n nid ′ ns)〉

have devExt t 〈nid ← t〉n nid ′ ns 0 = [] by simp
with 〈¬ sbc=[]〉 have

317

G Verification of Blockchain Architectures

length (devExt t 〈nid ← t〉n nid ′ ns 0) < length sbc by simp
moreover from lAct have 〈nid ← t〉n≥ns using latestActless by blast
moreover from cas have
∀n ′′>ns. n ′′≤〈nid ← t〉n ∧ ¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′′)
−→ ¬ trusted (the (devBC t 〈nid ← t〉n nid ′ n ′′)) by simp

ultimately show ?thesis by auto
next
let ?P=λn ′. n ′<ns ∧ ¬Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′)
let ?n ′=GREATEST n ′. ?P n ′

assume ¬ (∀n ′<ns. Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′))
moreover have ∀n ′>ns. ¬ ?P n ′ by simp
ultimately have exists: ∃n ′. ?P n ′ ∧ (∀n ′′. ?P n ′′−→ n ′′≤n ′)
using boundedGreatest[of ?P] by blast

hence ?P ?n ′ using GreatestI-ex-nat[of ?P] by auto
moreover from 〈?P ?n ′〉 have the (devBC t 〈nid ← t〉n nid ′ ?n ′) t ?n ′

using devBC-act by simp
ultimately have
length (bc (σthe (devBC t 〈nid ← t〉n nid ′ ?n ′)t ?n

′)) < length sbc ∨
prefix sbc (bc (σthe (devBC t 〈nid ← t〉n nid ′ ?n ′)(t ?n

′)))
using assms(4) by simp

thus ?thesis
proof
assume length (bc (σthe (devBC t 〈nid ← t〉n nid ′ ?n ′)t ?n

′)) < length sbc
moreover from exists have ¬(∃n ′>?n ′. ?P n ′)
using Greatest-ex-le-nat[of ?P] by simp

moreover from 〈?P ?n ′〉 have
∃n ′<ns. ¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′) by blast

with 〈Option.is-none (devBC t 〈nid ← t〉n nid ′ ns)〉

have devExt t 〈nid ← t〉n nid ′ ns 0 =
bc (σthe (devBC t 〈nid ← t〉n nid ′ ?n ′)(t ?n

′)) by simp
ultimately have length (devExt t 〈nid ← t〉n nid ′ ns 0) < length sbc
by simp

moreover from lAct have 〈nid ← t〉n≥ns using latestActless by blast
moreover from cas have ∀n ′′>ns. n ′′≤〈nid ← t〉n ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′′) −→
¬ trusted (the (devBC t 〈nid ← t〉n nid ′ n ′′)) by simp

ultimately show ?thesis by auto
next
interpret ut: untrusted devExt t 〈nid ← t〉n nid ′ ns λn. umining t (ns + n)
proof
fix n ′′

from devExt-devop[of t 〈nid ← t〉n nid ′ ns]
have prefix (devExt t 〈nid ← t〉n nid ′ ns (Suc n ′′))
(devExt t 〈nid ← t〉n nid ′ ns n ′′) ∨
(∃ b. devExt t 〈nid ← t〉n nid ′ ns (Suc n ′′) =
devExt t 〈nid ← t〉n nid ′ ns n ′′ @ [b]) ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ (ns + Suc n ′′)) ∧
the (devBC t 〈nid ← t〉n nid ′ (ns + Suc n ′′)) t (ns + Suc n ′′) ∧

318

G.3 A Theory of Blockchain Architectures

ns + Suc n ′′ ≤ 〈nid ← t〉n ∧
mining (σthe (devBC t 〈nid ← t〉n nid ′ (ns + Suc n ′′))t (ns + Suc n ′′)) .

thus prefix (devExt t 〈nid ← t〉n nid ′ ns (Suc n ′′))
(devExt t 〈nid ← t〉n nid ′ ns n ′′) ∨

(∃ b. devExt t 〈nid ← t〉n nid ′ ns (Suc n ′′) =
devExt t 〈nid ← t〉n nid ′ ns n ′′ @ [b]) ∧ umining t (ns + Suc n ′′)

proof
assume prefix (devExt t 〈nid ← t〉n nid ′ ns (Suc n ′′))

(devExt t 〈nid ← t〉n nid ′ ns n ′′)
thus ?thesis by simp

next
assume (∃ b. devExt t 〈nid ← t〉n nid ′ ns (Suc n ′′) =
devExt t 〈nid ← t〉n nid ′ ns n ′′ @ [b]) ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ (ns + Suc n ′′)) ∧
the (devBC t 〈nid ← t〉n nid ′ (ns + Suc n ′′)) t (ns + Suc n ′′) ∧
ns + Suc n ′′ ≤ 〈nid ← t〉n ∧
mining (σthe (devBC t 〈nid ← t〉n nid ′ (ns + Suc n ′′))t (ns + Suc n ′′))

hence ∃ b. devExt t 〈nid ← t〉n nid ′ ns (Suc n ′′) =
devExt t 〈nid ← t〉n nid ′ ns n ′′ @ [b]

and ¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ (ns + Suc n ′′))
and the (devBC t 〈nid ← t〉n nid ′ (ns + Suc n ′′)) t (ns + Suc n ′′)
and ns + Suc n ′′ ≤ 〈nid ← t〉n
and mining (σthe (devBC t 〈nid ← t〉n nid ′ (ns + Suc n ′′))t

(ns + Suc n ′′)) by auto
moreover from 〈ns + Suc n ′′ ≤ 〈nid ← t〉n〉

〈¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ (ns + Suc n ′′))〉

have ¬ trusted (the (devBC t 〈nid ← t〉n nid ′ (ns + Suc n ′′)))
using cas by simp

with 〈 the (devBC t 〈nid ← t〉n nid ′ (ns + Suc n ′′)) t (ns + Suc n ′′)〉

have the (devBC t 〈nid ← t〉n nid ′ (ns + Suc n ′′)) ∈
actUt (t (ns + Suc n ′′))
using actUt-def by simp

ultimately show ?thesis using umining-def by auto
qed

qed

assume prefix sbc (bc (σthe (devBC t 〈nid ← t〉n nid ′ ?n ′)(t ?n
′)))

moreover from exists have ¬(∃n ′>?n ′. ?P n ′)
using Greatest-ex-le-nat[of ?P] by simp

moreover from 〈?P ?n ′〉 have
∃n ′<ns. ¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′) by blast

with 〈Option.is-none (devBC t 〈nid ← t〉n nid ′ ns)〉 have
devExt t 〈nid ← t〉n nid ′ ns 0 =
bc (σthe (devBC t 〈nid ← t〉n nid ′ ?n ′)(t ?n

′))
by simp

ultimately have prefix sbc (devExt t 〈nid ← t〉n nid ′ ns 0) by simp
moreover from lAct have 〈nid ← t〉n≥ns using latestActless by blast
with 〈 nid ′

t 〈nid ← t〉n 〉 have

319

G Verification of Blockchain Architectures

bc (σthe (devBC t 〈nid ← t〉n nid ′ 〈nid ← t〉n)t 〈nid ← t〉n) =
devExt t 〈nid ← t〉n nid ′ ns (〈nid ← t〉n−ns)

using devExt-bc-geq by simp
with 〈¬ prefix sbc (bc (σnid ′(t 〈nid ← t〉n)))〉 〈 nid ′

t 〈nid ← t〉n 〉

have ¬ prefix sbc (devExt t 〈nid ← t〉n nid ′ ns (〈nid ← t〉n−ns))
by simp

ultimately have ∃n ′′′>0 . n ′′′ ≤ 〈nid ← t〉n−ns ∧
length (devExt t 〈nid ← t〉n nid ′ ns n ′′′) < length sbc
using ut.prefix-length[of sbc 0 〈nid ← t〉n−ns] by simp

then obtain np where np>0 and np ≤ 〈nid ← t〉n−ns and
length (devExt t 〈nid ← t〉n nid ′ ns np) < length sbc by auto

hence length (devExt t 〈nid ← t〉n nid ′ (ns + np) 0) < length sbc
using devExt-shift by simp

moreover from lAct have 〈nid ← t〉n≥ns using latestActless by blast
with 〈np ≤ 〈nid ← t〉n−ns〉 have (ns + np) ≤ 〈nid ← t〉n by simp
moreover from 〈np ≤ 〈nid ← t〉n−ns〉 have np ≤ 〈nid ← t〉n by simp
moreover have ∀n ′′>ns + np. n ′′ ≤ 〈nid ← t〉n ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′′) −→
¬ trusted (the (devBC t 〈nid ← t〉n nid ′ n ′′)) using cas by simp

ultimately show ?thesis by auto
qed

qed
next
assume asmp: ¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ ns)
moreover from lAct have ns≤〈nid ← t〉n using latestActless by blast
ultimately have ¬ trusted (the (devBC t 〈nid ← t〉n nid ′ ns))
using cas by simp

moreover from asmp have the (devBC t 〈nid ← t〉n nid ′ ns) t ns

using devBC-act by simp
ultimately have the (devBC t 〈nid ← t〉n nid ′ ns)∈actUt (t ns)
using actUt-def by simp

hence length (bc (σthe (devBC t 〈nid ← t〉n nid ′ ns)(t ns))) < length sbc
using assms(2) by simp

moreover from asmp have
devExt t 〈nid ← t〉n nid ′ ns 0 =
bc (σthe (devBC t 〈nid ← t〉n nid ′ ns)(t ns))

by simp
ultimately have length (devExt t 〈nid ← t〉n nid ′ ns 0) < length sbc by simp
moreover from lAct have 〈nid ← t〉n≥ns using latestActless by blast
moreover from cas have ∀n ′′>ns. n ′′≤〈nid ← t〉n ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′′) −→
¬ trusted (the (devBC t 〈nid ← t〉n nid ′ n ′′)) by simp

ultimately show ?thesis by auto
qed

qed
then obtain n ′ where 〈nid ← t〉n≥n ′ and n ′≥ns

and length (devExt t 〈nid ← t〉n nid ′ n ′ 0) < length sbc
and untrusted: ∀n ′′>n ′. n ′′≤〈nid ← t〉n ∧

320

G.3 A Theory of Blockchain Architectures

¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ n ′′) −→
¬ trusted (the (devBC t 〈nid ← t〉n nid ′ n ′′)) by auto

interpret ut: untrusted devExt t 〈nid ← t〉n nid ′ n ′ λn. umining t (n ′ + n)
proof
fix n ′′

from devExt-devop[of t 〈nid ← t〉n nid ′ n ′]
have prefix (devExt t 〈nid ← t〉n nid ′ n ′ (Suc n ′′))

(devExt t 〈nid ← t〉n nid ′ n ′ n ′′) ∨
(∃ b. devExt t 〈nid ← t〉n nid ′ n ′ (Suc n ′′) =
devExt t 〈nid ← t〉n nid ′ n ′ n ′′ @ [b]) ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′)) ∧
the (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′)) t (n ′ + Suc n ′′) ∧
n ′ + Suc n ′′ ≤ 〈nid ← t〉n ∧
mining (σthe (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′))t (n ′ + Suc n ′′)) .

thus prefix (devExt t 〈nid ← t〉n nid ′ n ′ (Suc n ′′))
(devExt t 〈nid ← t〉n nid ′ n ′ n ′′)
∨ (∃ b. devExt t 〈nid ← t〉n nid ′ n ′ (Suc n ′′) =
devExt t 〈nid ← t〉n nid ′ n ′ n ′′ @ [b]) ∧ umining t (n ′ + Suc n ′′)

proof
assume prefix (devExt t 〈nid ← t〉n nid ′ n ′ (Suc n ′′))

(devExt t 〈nid ← t〉n nid ′ n ′ n ′′)
thus ?thesis by simp

next
assume (∃ b. devExt t 〈nid ← t〉n nid ′ n ′ (Suc n ′′) =
devExt t 〈nid ← t〉n nid ′ n ′ n ′′ @ [b]) ∧
¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′)) ∧
the (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′)) t (n ′ + Suc n ′′) ∧
n ′ + Suc n ′′ ≤ 〈nid ← t〉n ∧
mining (σthe (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′))t (n ′ + Suc n ′′))

hence ∃ b. devExt t 〈nid ← t〉n nid ′ n ′ (Suc n ′′) =
devExt t 〈nid ← t〉n nid ′ n ′ n ′′ @ [b]

and ¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′))
and the (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′)) t (n ′ + Suc n ′′)
and n ′ + Suc n ′′ ≤ 〈nid ← t〉n
and mining (σthe (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′))t (n ′ + Suc n ′′))
by auto

moreover from 〈n ′ + Suc n ′′ ≤ 〈nid ← t〉n〉

〈¬ Option.is-none (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′))〉

have ¬ trusted (the (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′)))
using untrusted by simp

with 〈 the (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′)) t (n ′ + Suc n ′′)〉

have the (devBC t 〈nid ← t〉n nid ′ (n ′ + Suc n ′′))∈actUt (t (n ′ + Suc n ′′))
using actUt-def by simp

ultimately show ?thesis using umining-def by auto
qed

qed
interpret untrusted-growth devLgthBC t 〈nid ← t〉n nid ′ n ′ λn. umining t (n ′ + n)

by unfold-locales

321

G Verification of Blockchain Architectures

interpret trusted-growth λn. PoW t (n ′ + n) λn. tmining t (n ′ + n)
proof
show

∧
n. PoW t (n ′ + n) ≤ PoW t (n ′ + Suc n) using pow-mono by simp

show
∧
n. tmining t (n ′ + Suc n) =⇒ PoW t (n ′ + n) < PoW t (n ′ + Suc n)

using pow-mining-suc by simp
qed
interpret bg: bounded-growth
length sbc
λn. PoW t (n ′ + n)
devLgthBC t 〈nid ← t〉n nid ′ n ′

λn. tmining t (n ′ + n)
λn. umining t (n ′ + n)
length sbc cb

proof
from assms(3) 〈n ′≥ns〉 show length sbc + cb ≤ PoW t (n ′ + 0)
using pow-mono[of ns n ′ t] by simp

next
from 〈length (devExt t 〈nid ← t〉n nid ′ n ′ 0) < length sbc〉

show length (devExt t 〈nid ← t〉n nid ′ n ′ 0) < length sbc .
next
fix n ′′ n ′′′

assume cb < card {i. n ′′ < i ∧ i ≤ n ′′′ ∧ umining t (n ′ + i)}
hence cb < card {i. n ′′ + n ′ < i ∧ i ≤ n ′′′ + n ′ ∧ umining t i}
using cardshift[of n ′′ n ′′′ umining t n ′] by simp

with fair [of n ′′ + n ′ n ′′′ + n ′ t]
have cb < card {i. n ′′ + n ′ < i ∧ i ≤ n ′′′ + n ′ ∧ tmining t i} by simp
thus cb < card {i. n ′′ < i ∧ i ≤ n ′′′ ∧ tmining t (n ′ + i)}
using cardshift[of n ′′ n ′′′ tmining t n ′] by simp

qed
from 〈〈nid ← t〉n≥n ′〉 have
length (devExt t 〈nid ← t〉n nid ′ n ′ (〈nid ← t〉n−n ′)) < PoW t 〈nid ← t〉n
using bg.tr-upper-bound[of 〈nid ← t〉n−n ′] by simp

moreover from 〈 nid ′
t 〈nid ← t〉n 〉 〈〈nid ← t〉n≥n ′〉

have bc (σthe (devBC t 〈nid ← t〉n nid ′ 〈nid ← t〉n)t 〈nid ← t〉n) =
devExt t 〈nid ← t〉n nid ′ n ′ (〈nid ← t〉n−n ′)
using devExt-bc-geq[of t 〈nid ← t〉n nid ′ 〈nid ← t〉n n ′] by simp

ultimately have length (bc (σnid ′(t 〈nid ← t〉n))) < PoW t 〈nid ← t〉n
using 〈 nid ′

t 〈nid ← t〉n 〉 by simp
moreover have
PoW t 〈nid ← t〉n ≤ length (bc (σnid ′(t 〈nid ← t〉n))) (is ?lhs ≤ ?rhs)

proof −
from 〈trusted nid〉 〈 nid t 〈nid ← t〉n 〉

have ?lhs ≤ length (MAX (pin (σnidt 〈nid ← t〉n))) using pow-le-max by simp
also from 〈bc (σnid ′(t 〈nid ← t〉n)) = MAX (pin (σnidt 〈nid ← t〉n))〉

have . . . = length (bc (σnid ′(t 〈nid ← t〉n))) by simp
finally show ?thesis .

qed
ultimately show False by simp

qed

322

G.3 A Theory of Blockchain Architectures

qed
moreover from 〈 nid t n〉 have 〈nid → t〉n=n using nxtAct-active by simp
ultimately show ?thesis by auto

qed
moreover from 〈 nid t n〉 have 〈nid → t〉n=n using nxtAct-active by simp
ultimately show ?thesis by auto

next
assume ¬ (∃ b∈pin (σnidt 〈nid ← t〉n). length b > length (bc (σnidt 〈nid ← t〉n)))
moreover from 〈 nid t n〉 have ∃n ′≥n. nid t n ′ by auto
moreover from lAct have ∃n ′. latestAct-cond nid t n n ′ by auto
ultimately have ¬ mining (σnidt 〈nid → t〉n) ∧
bc (σnidt 〈nid → t〉n) = bc (σnidt 〈nid ← t〉n) ∨
mining (σnidt 〈nid → t〉n) ∧
(∃ b. bc (σnidt 〈nid → t〉n) = bc (σnidt 〈nid ← t〉n) @ [b])
using 〈trusted nid〉 bhv-tr-in[of nid n t] by simp

moreover have prefix sbc (bc (σnidt 〈nid ← t〉n))
proof −
from 〈∃n ′. latestAct-cond nid t n n ′〉 have 〈nid ← t〉n < n
using latestAct-prop(2) by simp

moreover from lAct have 〈nid ← t〉n ≥ ns using latestActless by blast
moreover from 〈∃n ′. latestAct-cond nid t n n ′〉 have nid t 〈nid ← t〉n
using latestAct-prop(1) by simp

with 〈trusted nid〉 have nid ∈ actTr (t 〈nid ← t〉n) using actTr-def by simp
ultimately show ?thesis using step.IH by auto

qed
moreover from 〈 nid t n〉 have 〈nid → t〉n=n using nxtAct-active by simp
ultimately show ?thesis by auto

qed
next
assume nAct: ¬ (∃n ′ < n. n ′ ≥ ns ∧ nid t n ′)
moreover from step.hyps have ns ≤ n by simp
ultimately have 〈nid → t〉ns = n using 〈 nid t n〉 nxtAct-eq[of ns n nid t] by simp
with 〈trusted nid〉 show ?thesis using assms(1) by auto

qed
qed

qed
with assms(5) show ?thesis by simp

qed

end

end

323

Bibliography

[ADG98] Robert Allen, Remi Douence, and David Garlan. Specifying and ana-
lyzing dynamic software architectures. In Egidio Astesiano, editor, Fun-
damental Approaches to Software Engineering, volume 1382 of Lecture
Notes in Computer Science, pages 21–37. Springer Berlin Heidelberg,
1998.

[All97] Robert J Allen. A formal approach to software architecture. Technical
report, DTIC Document, 1997.

[AM02a] Nazareno Aguirre and Tom Maibaum. Reasoning about reconfigurable
object-based systems in a temporal logic setting. In Proceedings of IDPT,
2002.

[AM02b] Nazareno Aguirre and Tom Maibaum. A temporal logic approach to the
specification of reconfigurable component-based systems. In Automated
Software Engineering, pages 271–274. IEEE, 2002.

[Arb04] Farhad Arbab. Reo: a channel-based coordination model for component
composition. Mathematical structures in computer science, 14(03):329–
366, 2004.

[Bal04] Clemens Ballarin. Locales and locale expressions in isabelle/isar. Lecture
notes in computer science, 3085:34–50, 2004.

[BC13] Yves Bertot and Pierre Castéran. Interactive theorem proving and pro-
gram development: Coq’Art: the calculus of inductive constructions.
Springer Science & Business Media, 2013.

[BCK07] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in
Practice. Addison-Wesley Longman Publishing Co., Inc., 2007.

[Ber96] Klaus Bergner. Spezifikation großer Objektgeflechte mit Komponentendi-
agrammen. PhD thesis, Technische Universität München, 1996.

[BFGea93] Manfred Broy, Christian Facchi, Radu Grosu, and et al. The requirement
and design specification language spectrum – an informal introduction.
Technical report, Technische Universität München, 1993.

[BGM16] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies with-
out proof of work. In Jeremy Clark, Sarah Meiklejohn, Peter Y. A. Ryan,

325

Bibliography

Dan S. Wallach, Michael Brenner, and Kurt Rohloff, editors, Financial
Cryptography and Data Security - FC 2016 International Workshops,
BITCOIN, VOTING, and WAHC, Christ Church, Barbados, February
26, 2016, Revised Selected Papers, volume 9604 of Lecture Notes in Com-
puter Science, pages 142–157. Springer, 2016.

[BHL+14] Jasmin Christian Blanchette, Johannes Hölzl, Andreas Lochbihler,
Lorenz Panny, Andrei Popescu, and Dmitriy Traytel. Truly modular
(co) datatypes for isabelle/hol. In International Conference on Interac-
tive Theorem Proving, pages 93–110. Springer, 2014.

[BK86] Jan A Bergstra and Jan Willem Klop. Algebra of communicating pro-
cesses. CWI Monograph series, 3:89–138, 1986.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. Pattern-Oriented Software Architecture: A System of
Patterns. Wiley West Sussex, England, 1996.

[Bro96] Manfred Broy. Algebraic specification of reactive systems. In Algebraic
Methodology and Software Technology, pages 487–503. Springer, Springer
Berlin Heidelberg, 1996.

[Bro10] Manfred Broy. A logical basis for component-oriented software and sys-
tems engineering. The Computer Journal, 53(10):1758–1782, February
2010.

[Bro14] Manfred Broy. A model of dynamic systems. In Saddek Bensalem, Yas-
sine Lakhneck, and Axel Legay, editors, From Programs to Systems.
The Systems Perspective in Computing, volume 8415 of Lecture Notes
in Computer Science, pages 39–53. Springer Berlin Heidelberg, 2014.

[BS01] Manfred Broy and Ketil Stolen. Specification and development of inter-
active systems: focus on streams, interfaces, and refinement. Springer
Science & Business Media, 2001.

[BSAR06] Christel Baier, Marjan Sirjani, Farhad Arbab, and Jan Rutten. Mod-
eling component connectors in reo by constraint automata. Science of
computer programming, 61(2):75–113, 2006.

[CAPM10] Pablo F Castro, Nazareno M Aguirre, Carlos Gustavo López Pombo,
and Thomas SE Maibaum. Towards managing dynamic reconfiguration
of software systems in a categorical setting. In Lecture Notes in Computer
Science, pages 306–321. Springer, 2010.

[CCGR00] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and Marco
Roveri. Nusmv: a new symbolic model checker. International Journal
on Software Tools for Technology Transfer, 2(4):410–425, 2000.

326

Bibliography

[CCS12] Carlos Canal, Javier Cámara, and Gwen Salaün. Structural reconfig-
uration of systems under behavioral adaptation. Science of Computer
Programming, 78(1):46 – 64, 2012. Special Section: Formal Aspects of
Component Software (FACS’09).

[Cha89] K Mani Chandy. Parallel program design. Springer, 1989.

[DVdHT01] Eric M Dashofy, André Van der Hoek, and Richard N Taylor. A highly-
extensible, xml-based architecture description language. In Software Ar-
chitecture, 2001. Proceedings. Working IEEE/IFIP Conference on, pages
103–112. IEEE, 2001.

[FLV06] Peter H Feiler, Bruce A Lewis, and Steve Vestal. The sae architecture
analysis & design language (aadl) a standard for engineering performance
critical systems. In Computer Aided Control System Design, Control
Applications, Intelligent Control, pages 1206–1211. IEEE, 2006.

[FM97] JoséLuiz Fiadeiro and Tom Maibaum. Categorical semantics of parallel
program design. Science of Computer Programming, 28(2-3):111–138,
1997.

[FS97] D. Fensel and A. Schnogge. Using kiv to specify and verify architectures
of knowledge-based systems. In Automated Software Engineering, pages
71–80, November 1997.

[Gar03] David Garlan. Formal modeling and analysis of software architecture:
Components, connectors, and events. In Formal Methods for Software
Architectures, pages 1–24. Springer, 2003.

[GH05] Jeremy Gibbons and Graham Hutton. Proof methods for corecursive
programs. Fundam. Inform., 66:353–366, 2005.

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
patterns: Elements of reusable object-oriented software, 1994.

[GJS17] Thomas Göthel, Nils Jähnig, and Simon Seif. Refinement-based mod-
elling and verification of design patterns for self-adaptive systems. In
International Conference on Formal Engineering Methods, pages 157–
173. Springer, 2017.

[GM18] Habtom Kahsay Gidey and Diego Marmsoler. FACTum Studio. https:
//habtom.github.io/factum/, 2018.

[GMW00] David Garlan, Robert T Monroe, and David Wile. Acme: Architectural
description of component-based systems. Foundations of component-
based systems, 68:47–68, 2000.

327

https://habtom.github.io/factum/
https://habtom.github.io/factum/

Bibliography

[GR91] Michael M. Gorlick and Rami R. Razouk. Using weaves for software
construction and analysis. In Les Belady, David R. Barstow, and Koji
Torii, editors, Proceedings of the 13th International Conference on Soft-
ware Engineering, Austin, TX, USA, May 13-17, 1991., pages 23–34.
IEEE Computer Society / ACM Press, 1991.

[GRABR14] Thomas Gibson-Robinson, Philip Armstrong, Alexandre Boulgakov, and
Andrew W Roscoe. Fdr3—a modern refinement checker for csp. In
International Conference on Tools and Algorithms for the Construction
and Analysis of Systems, pages 187–201. Springer, 2014.

[HF10] Florian Hölzl and Martin Feilkas. Autofocus 3: A scientific tool prototype
for model-based development of component-based, reactive, distributed
systems. In Proceedings of the 2007 International Dagstuhl Conference on
Model-based Engineering of Embedded Real-time Systems, MBEERTS’07,
pages 317–322, Berlin, Heidelberg, 2010. Springer-Verlag.

[Hoa78] Charles Antony Richard Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, 1978.

[Jac02] Daniel Jackson. Alloy: A lightweight object modelling notation.
ACM Transactions on Software Engineering and Methodology (TOSEM),
11(2):256–290, 2002.

[JR97] Bart Jacobs and Jan Rutten. A tutorial on (co)algebras and
(co)induction. EATCS Bulletin, 62:62–222, 1997.

[KG06] Jung Soo Kim and David Garlan. Analyzing architectural styles with
alloy. In Proceedings of the ISSTA 2006 workshop on Role of software
architecture for testing and analysis, pages 70–80. ACM, 2006.

[KK99] Mark Klein and Rick Kazman. Attribute-based architectural styles.
Technical Report CMU/SEI-99-TR-022, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, 1999.

[KMLA11] Christian Krause, Ziyan Maraikar, Alexander Lazovik, and Farhad
Arbab. Modeling dynamic reconfigurations in reo using high-level re-
placement systems. Science of Computer Programming, 76(1):23 – 36,
2011. Selected papers from the 6th International Workshop on the Foun-
dations of Coordination Languages and Software Architectures.

[KRDO17] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman
Oliynykov. Ouroboros: A provably secure proof-of-stake blockchain pro-
tocol. In Annual International Cryptology Conference, pages 357–388.
Springer, 2017.

328

Bibliography

[LKA+95] David C Luckham, John J Kenney, Larry M Augustin, James Vera,
Doug Bryan, and Walter Mann. Specification and analysis of system
architecture using rapide. Software Engineering, IEEE Transactions on,
21(4):336–354, 1995.

[LMP10] Francois Laroussinie, Antoine Meyer, and Eudes Petonnet. Counting
LTL. In 2010 17th International Symposium on Temporal Representation
and Reasoning. IEEE, sep 2010.

[Loc10] Andreas Lochbihler. Coinduction. The Archive of Formal Proof s.
http://afp.sourceforge.net/entries/Coinductive.shtml, 2010.

[LS13] Yi Li and Meng Sun. Modeling and analysis of component connectors
in coq. In José Luiz Fiadeiro, Zhiming Liu, and Jinyun Xue, editors,
Formal Aspects of Component Software - 10th International Symposium,
FACS 2013, Nanchang, China, October 27-29, 2013, Revised Selected
Papers, volume 8348 of Lecture Notes in Computer Science, pages 273–
290. Springer, 2013.

[Mar10] Diego Marmsoler. Applying the scientific method in the definition and
analysis of a new architectural style. Master’s thesis, Free University of
Bolzano-Bozen, 2010.

[Mar14] Diego Marmsoler. Towards a theory of architectural styles. In Proceedings
of the 22nd ACM SIGSOFT International Symposium on Foundations
of Software Engineering - FSE 2014, pages 823–825. ACM, ACM Press,
2014.

[Mar17a] Diego Marmsoler. Dynamic architectures. Archive of Formal Proofs,
July 2017. http://isa-afp.org/entries/DynamicArchitectures.
html, Formal proof development.

[Mar17b] Diego Marmsoler. On the semantics of temporal specifications of
component-behavior for dynamic architectures. In Eleventh International
Symposium on Theoretical Aspects of Software Engineering. Springer,
2017.

[Mar17c] Diego Marmsoler. Towards a calculus for dynamic architectures. In
Dang Van Hung and Deepak Kapur, editors, Theoretical Aspects of Com-
puting - ICTAC 2017 - 14th International Colloquium, Hanoi, Vietnam,
October 23-27, 2017, Proceedings, volume 10580 of Lecture Notes in
Computer Science, pages 79–99. Springer, 2017.

[Mar18a] Diego Marmsoler. A framework for interactive verification of architec-
tural design patterns in Isabelle/HOL. In The 20th International Confer-
ence on Formal Engineering Methods, ICFEM 2018, Proceedings, 2018.

329

http://isa-afp.org/entries/DynamicArchitectures.html
http://isa-afp.org/entries/DynamicArchitectures.html

Bibliography

[Mar18b] Diego Marmsoler. Hierarchical specication and verication of architecture
design patterns. In Fundamental Approaches to Software Engineering -
21th International Conference, FASE 2018, Held as Part of the European
Joint Conferences on Theory and Practice of Software, ETAPS 2018,
Thessaloniki, Greece, April 14-20, 2018, Proceedings, 2018.

[Mar18c] Diego Marmsoler. A theory of architectural design patterns. Archive
of Formal Proofs, March 2018. http://isa-afp.org/entries/
Architectural_Design_Patterns.html, Formal proof development.

[Mar19] Diego Marmsoler. A calculus of component behavior for dynamic archi-
tectures. Science of Computer Programming, 2019. Under review.

[MCL04] Jeffrey KH Mak, Clifford ST Choy, and Daniel PK Lun. Precise modeling
of design patterns in uml. In Software Engineering, pages 252–261. IEEE,
2004.

[MD17] Diego Marmsoler and Silvio Degenhardt. Verifying patterns of dynamic
architectures using model checking. In Proceedings International Work-
shop on Formal Engineering approaches to Software Components and Ar-
chitectures, FESCA@ETAPS 2017, Uppsala, Sweden, 22nd April 2017.,
pages 16–30, 2017.

[MG16a] D. Marmsoler and M. Gleirscher. On activation, connection, and be-
havior in dynamic architectures. Scientific Annals of Computer Science,
26(2):187–248, 2016.

[MG16b] Diego Marmsoler and Mario Gleirscher. Specifying properties of dynamic
architectures using configuration traces. In International Colloquium on
Theoretical Aspects of Computing, pages 235–254. Springer, 2016.

[MG18] Diego Marmsoler and Habtom Kahsay Gidey. FACTum Studio: A tool
for the axiomatic specification and verification of architectural design
patterns. In Formal Aspects of Component Software - FACS 2018 - 15th
International Conference, Proceedings, 2018.

[MG19] Diego Marmsoler and Habtom Kahsay Gidey. Interactive verification of
architectural design patterns in FACTum. Formal Aspects of Computing,
2019. Under review.

[Mil99] Robin Milner. Communicating and Mobile Systems: the π-calculus. Cam-
bridge university press, 1999.

[MK96] Jeff Magee and Jeff Kramer. Dynamic structure in software architec-
tures. In David Garlan, editor, SIGSOFT ’96, Proceedings of the Fourth
ACM SIGSOFT Symposium on Foundations of Software Engineering,
San Francisco, California, USA, October 16-18, 1996, pages 3–14. ACM,
1996.

330

http://isa-afp.org/entries/Architectural_Design_Patterns.html
http://isa-afp.org/entries/Architectural_Design_Patterns.html

Bibliography

[MME15] Diego Marmsoler, Alexander Malkis, and Jonas Eckhardt. A model of
layered architectures. In Bara Buhnova, Lucia Happe, and Jan Kofron,
editors, Proceedings 12th International Workshop on Formal Engineer-
ing approaches to Software Components and Architectures, FESCA 2015,
London, United Kingdom, April 12th, 2015., volume 178 of EPTCS,
pages 47–61, 2015.

[MP92] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and
Concurrent Systems. Springer New York, 1992.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http:
//bitcoin.org/bitcoin.pdf, 2008.

[NPW02] Tobias Nipkow, Lawrence C Paulson, and Markus Wenzel. Isabelle/HOL:
a proof assistant for higher-order logic, volume 2283. Springer Science &
Business Media, 2002.

[Oqu04] Flavio Oquendo. π-adl: An architecture description language based
on the higher-order typed π-calculus for specifying dynamic and mo-
bile software architectures. ACM SIGSOFT Software Engineering Notes,
29(3):1–14, May 2004.

[otSEC+00] Architecture Working Group of the Software Engineering Committee
et al. Recommended practice for architectural description of software
intensive systems. IEEE Standards Department, 2000.

[PW92] Dewayne E Perry and Alexander L Wolf. Foundations for the study
of software architecture. ACM SIGSOFT Software Engineering Notes,
17(4):40–52, 1992.

[Rau01] Andreas Rausch. Componentware. Dissertation, Technische Universität
München, München, 2001.

[Rei95] Wolfgang Reif. The kiv-approach to software verification. KORSO:
Methods, Languages, and Tools for the Construction of Correct Software,
pages 339–368, 1995.

[RJB04] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified modeling
language reference manual, the. Pearson Higher Education, 2004.

[SBR12] Alejandro Sanchez, Luís Soares. Barbosa, and Daniel Riesco. Bigraphical
modelling of architectural patterns. In Farhad Arbab and Peter Csaba
Ölveczky, editors, Formal Aspects of Component Software, pages 313–
330, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[SG96] Mary Shaw and David Garlan. Software Architecture: Perspectives on
an Emerging Discipline, volume 1. Prentice Hall Englewood Cliffs, 1996.

331

http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf

Bibliography

[SH04] Neelam Soundarajan and Jason O Hallstrom. Responsibilities and re-
wards: Specifying design patterns. In Software Engineering, pages 666–
675. IEEE, 2004.

[SMB15] Alejandro Sanchez, Alexandre Madeira, and Luís S Barbosa. On the ver-
ification of architectural reconfigurations. Computer Languages, Systems
& Structures, 44:218–237, 2015.

[Spi07] Maria Spichkova. Specification and seamless verification of embedded
real-time systems: FOCUS on Isabelle. PhD thesis, Technical University
Munich, Germany, 2007.

[TMD09] Richard N Taylor, Nenad Medvidovic, and Eric M Dashofy. Software Ar-
chitecture: Foundations, Theory, and Practice. Wiley Publishing, 2009.

[vOvdLKM00] Rob C. van Ommering, Frank van der Linden, Jeff Kramer, and Jeff
Magee. The koala component model for consumer electronics software.
IEEE Computer, 33(3):78–85, 2000.

[W+04] Makarius Wenzel et al. The isabelle/isar reference manual, 2004.

[Wen07] Makarius Wenzel. Isabelle/isar – a generic framework for human-
readable proof documents. From Insight to Proof – Festschrift in Honour
of Andrzej Trybulec, 10(23):277–298, 2007.

[WF02] Michel Wermelinger and José Luiz Fiadeiro. A graph transformation
approach to software architecture reconfiguration. Science of Computer
Programming, 44(2):133 – 155, 2002. Special Issue on Applications of
Graph Transformations (GRATRA 2000).

[Wir90] Martin Wirsing. Algebraic specification. In Jan van Leeuwen, editor,
Handbook of Theoretical Computer Science (Vol. B), pages 675–788. MIT
Press, Cambridge, MA, USA, 1990.

[WLF01] Michel Wermelinger, Antónia Lopes, and José Luiz Fiadeiro. A graph
based architectural reconfiguration language. Software Engineering
Notes, 26(5):21–32, 2001.

[WSWS08] Stephen Wong, Jing Sun, Ian Warren, and Jun Sun. A scalable approach
to multi-style architectural modeling and verification. In Engineering of
Complex Computer Systems, pages 25–34. IEEE, 2008.

[ZA05] Uwe Zdun and Paris Avgeriou. Modeling architectural patterns using
architectural primitives. In Ralph E. Johnson and Richard P. Gabriel,
editors, Proceedings of the 20th Annual ACM SIGPLAN Conference on
Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2005, October 16-20, 2005, San Diego, CA, USA, pages 133–
146. ACM, 2005.

332

Bibliography

[ZLS+12] Jiexin Zhang, Yang Liu, Jing Sun, Jin Song Dong, and Jun Sun. Model
checking software architecture design. In High-Assurance Systems Engi-
neering, pages 193–200. IEEE, 2012.

333

Glossary

architectural constraint constraints about different aspects of an architecture. 6

architectural design constraint constraints about different aspects of an architecture.
4

architectural design problem an architectural design problem and a set of architectural
design constraints solving the problem. 4

architectural guarantee a property about an architecture. 6

architecture assertion logic formula with interface ports as free variables and predicates
to denote component activation and connections between ports. 44

architecture snapshot a set of active components, connections between their ports, and
valuations of the active component’s ports. 23, 24

architecture specification set of architecture traces which does not restrict behavior.
27

architecture trace stream of architecture snapshots. 25

behavior assertion logic formula with ports as free variables. 41, 335

behavior projection operator to extract the behavior of a certain component c out of a
architecture trace t. 27

behavior trace stream of port valuations over a set of ports P . 19, 41

behavior trace assertion temporal logic formula over behavior assertions to specify be-
havior traces. 41

Blackboard pattern used for collaborative problem solving. 5

component activation number of activations of a component c within a certain archi-
tecture trace t up to time point n. 64

component port a port used by a component. 22

component port valuation port valuation for component ports. 22

component type a component interface with a set of total execution traces for a com-
ponent. 19, 20

335

Glossary

interface set of input and output ports. 18

message primitive entity which can be used and exchanged by components. 17

parametrized component type a component type with a valuated parameter port. 20,
21

port means by which components can exchange messages. 18

port valuation assignment of a set of messages to a set of ports P . 18, 335

Publisher-Subscriber pattern to support flexible communication between components
of an architecture. 4

Singleton pattern used to restrict the number of active components in an architecture.
4

336

	Contents
	I Introduction
	1 Introduction
	1.1 Architectural Design Patterns
	1.2 Problem: Unverified Patterns
	1.3 Approach
	1.4 Contributions
	1.5 Related Work
	1.6 Outline

	2 A Model of Dynamic Architectures
	2.1 Messages and Ports
	2.2 Port Valuations
	2.3 Interfaces
	2.4 Component Types
	2.5 Architecture Specifications
	2.6 Summary

	II Specification
	3 Specifying Architectural Design Patterns
	3.1 Specifying Data Types
	3.2 Specifying Component Types
	3.3 Specifying Architectural Constraints
	3.4 Summary

	4 Advanced Specifications
	4.1 Activation Annotations
	4.2 Connection Annotations
	4.3 Dependencies
	4.4 Specifying Pattern Instantiations
	4.5 Summary

	III Verification
	5 A Calculus for Architectural Design Patterns
	5.1 Evaluating Behavior Trace Assertions over Architecture Traces
	5.2 Rules of the Calculus
	5.3 Summary

	6 Interactive Pattern Verification in Isabelle/HOL
	6.1 Coinductive Lists
	6.2 Formalizing Architecture Traces
	6.3 Specifying Architecture Traces
	6.4 Formalizing the Calculus
	6.5 Creating Pattern Theories
	6.6 Summary

	IV Evaluation
	7 Singletons, Publisher-Subscribers, and Blackboards
	7.1 Singleton
	7.2 Publisher-Subscriber
	7.3 Blackboard
	7.4 Summary

	8 Verification of Blockchain Architectures
	8.1 Blockchain Architectures
	8.2 Formalizing Blockchain Architectures
	8.3 Data Types and Ports
	8.4 Component Types
	8.5 Architectural Constraints
	8.6 Verifying Blockchain Architectures
	8.7 Discussion
	8.8 Summary

	V Conclusion
	9 Conclusion
	9.1 Summary
	9.2 Implications
	9.3 Limitations
	9.4 Outlook
	9.5 Future Work

	A Conventions
	A.1 Sets
	A.2 Functions
	A.3 Sequences
	A.4 Logics

	B Proof for Thm. 1
	B.1 -3mu
	B.2 -3mu

	C Behavior Trace Assertions
	C.1 Behavior terms
	C.2 Behavior assertions
	C.3 Behavior trace assertions
	C.4 Architecture Trace Assertions

	D Remaining Rules of the Calculus
	D.1 Elimination Rules for Basic Logical Operators
	D.2 Elimination of Behavior Assertions
	D.3 Natural Numbers
	D.4 Extended Natural Numbers
	D.5 Lazy Lists
	D.6 A Model of Dynamic Architectures
	D.7 Dynamic Components
	D.8 Projection
	D.9 Activations
	D.10 Projection and Activation
	D.11 Least not Active
	D.12 Next Active
	D.13 Latest Activation
	D.14 Last Activation
	D.15 Mapping Time Points
	D.16 Extended Natural Numbers
	D.17 Lazy Lists
	D.18 Dynamic Evaluation of Temporal Operators
	D.19 Basic Operators
	D.20 Temporal Operators
	D.21 Proof of Completeness

	E Soundness of Algorithm 1
	E.1 Case -3mu
	E.2 Case -3mu

	F Pattern Hierarchy
	F.1 A Theory of Singletons
	F.2 A Theory of Publisher-Subscriber Architectures
	F.3 A Theory of Blackboard Architectures

	G Verification of Blockchain Architectures
	G.1 Some Auxiliary Results
	G.2 Relative Frequency LTL
	G.3 A Theory of Blockchain Architectures

	Bibliography
	Glossary

