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ABSTRACT
The current trend of network programmability stimulates
the endeavor to program the data plane with domain spe-
cific languages such as P4. In face of constant changes in
user demands and traffic fluctuations, the programmability, if
revealed within a short time frame, can lead to runtime recon-
figurations and potentially herald network adaptations. Such
ability of runtime reconfiguration should be explored and
evaluated to fully leverage the capability of programmable
networks. In this work, we present two approaches to assist
P4’s data plane runtime reconfiguration. We also design a
management entity to facilitate the coordination of reconfig-
uration and the necessary state synchronization. Evaluation
results show the migration of a stateful firewall between
two forwarding nodes at runtime without an interruption of
network operation.
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1 INTRODUCTION
As one of the advantages that P4 promises, data plane pro-
grammability allows the deployment of network functions
and protocols with ease and efficiency [4, 10, 11]. Such pro-
grammability also contributes to reconfigurability, which
implies the renewal of network functionality at runtime, giv-
ing rise to higher adaptability of the data plane in the face
of constant flux in traffic volume, as well as in requirements
and policies on the traffic [2, 9, 12]. For example, when a
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single network function instance is no longer sufficient to
satisfy the current load, dynamic scaling can create new in-
stances and split the load over the replicas [9]. Despite its
merit, the runtime reconfiguration of the P4 data plane has
not yet perceived much attention.
In this work, we verify the reconfigurability of P4 and

evaluate the impact of reconfiguration on packet processing.
The challenge is to design a mechanism that guarantees no
service interruption during reconfiguration. We propose two
approaches, namely pipeline manipulation (PM) and program
reload (PR), for updating the packet processing pipeline at
runtime. The first approach leverages the binary register,
which is a stateful variable defined in P4 specification, to
represent if a network function is implemented in a certain
node. The registers can be accessed and changed through
the control/management API of the P4 target. The second ap-
proach directly reconfigures the data plane with new packet
processing pipeline, which is suitable to more drastic re-
configuration of the data plane, e.g., protocol upgrade. Be-
sides, a management entity (ME) is introduced to issue the
reconfiguration-related control/management messages.
With the idea of stateful data plane, many stateful net-

work functions, such as load balancer and web proxy, can be
extracted from the SDN controller and implemented directly
in the data plane, with the target of line rate processing [10].
Such trend renders a more challenging reconfiguration task.
One part of the states, e.g. liveness of a flow, can be syn-
chronized by piggybacking state update on live traffic within
the data plane [5]. The other part, e.g., multipath routing
decisions [7], need further split or merge before they can be
synchronized, which calls for a delicate state management
mechanism. To this regard, the ME we propose can assist
the coordination of the state synchronization. As a proof-
of-concept, we implement the two approaches on BMv2 tar-
get [8] and evaluate the performance in terms of the packet
forwarding latency during reconfiguration. To the best of our
knowledge, there has been no previous work in this regard.

2 RECONFIGURATION DESIGN
Data plane functions, e.g., L2 forwarding and firewall, can
be written as P4 program snippets, and thereafter compiled
and mapped into the Match+Action resources of the target,
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Figure 1: Two data plane reconfiguration approaches:
(a) pipeline manipulation and (b) program reload.

e.g., a software [8] or a hardware switch with programmable
switching ASIC [1].
Figure 1 demonstrates the Match+Action resource as the

blue and pink blocks. L2 switching and firewall are logically
represented as embedded resource, and the green arrows
represent the packet processing path. We show the two ap-
proaches that remove the firewall from the forwarding node.
PM uses the register: each function is guarded with a bi-
nary flag in registry. By updating the register values, the
ME can control the path that packet processing traverses.
After reconfiguration, the firewall block will be bypassed.
PR addresses the reconfiguration from another perspective:
compile new P4 code consisting of L2 switching only, send
the configuration file via the control/management API, and
force Match+Action resource remapping of the node. No-
tably, the remapping may cause data plane interruption for
some targets, because unlike the former approach, the whole
packet processing pipeline needs to be overwritten.
The ME also coordinates the state migration, by possess-

ing a global view of the network state that resides in each
node. Specifically, it decides what state to migrate and in
which order the migration should proceed. Figure 2 shows
the message exchange between the forwarding nodes and
the ME when migrating a network function with PR. The
load_new_config_file pushes the new compiled P4 program
to the target forwarding node, followed by a series of ta-
ble_adds which populate Match+Action tables. Message reg-
ister_reads and register_writes transfer necessary network
states from the source to the destination. The swap_configs
message finally enables the new data plane. Such message
exchange should be carefully designed to avoid inconsistent
forwarding behavior.
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Figure 2: Message exchange during stateful data plane
reconfiguration.
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Figure 3: Experimental setup.

3 RESULTS AND FUTUREWORK
We assess the underlying data plane behavior for both ap-
proaches. As shown in Figure 3, we set up two forwarding
nodes and migrate a stateful firewall from one node to the
other node. The migration is coordinated by the ME written
in Python. We generate two traffic flows FA at 3k pps and FB
at 1k pps in parallel, and the firewall blocks FB . Mininet [3]
is applied to emulate the experiment network.

During the firewall migration, all packets of FB are blocked.
The state indicating if a flow should be blocked is properly
migrated from source to target node. We variate the payload
size of the competitive flow FA and measure the forwarding
latency repeatedly. Figure 4 shows that PM does not incur
significant delay, whereas PR results in higher latency (up
to 2x) for around 0.2 second. The better performance of PM
comes at the cost of designing all desired functionalities in
the beginning, which is not possible when NFs are gradually
implemented and deployed. Because in P4 most computation
effort is assigned to header processing, we observe similar
curves of latency for different payload sizes.
We also implement the firewall as a software running

inside a VM and deploy the VM in an OpenStack cloud envi-
ronment. In this case, migrating the firewall, together with its
state, is to live-migrate the VM between two physical servers.
During migration, all packets of FB are blocked; however, FA
experiences packet loss, which corresponds to a service in-
terruption of around 200 ms. Different approaches have been
proposed to eliminate such interruption, e.g., Split/Merge [9],
OpenNF [6] and Dysco [12]. However, they assume general
software NFs, which can be hard to customize. With P4 and
the proposed approaches, we can create, deploy and recon-
figure customized NFs in a more efficient manner without
any data plane interruption.
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Figure 4: Data plane performance during reconfigura-
tion for PM and PR.
For future work, we believe it would be interesting to

evaluate the reconfiguration performance in large scale net-
works composed of P4 targets. Automating the process of
sophisticated network state management during runtime
reconfiguration can also be interesting to work on.
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