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Abstract

Civil aircraft record data in their daily operation. Considering the entire operation of an

airline, a huge amount of data is generated. It is required by law that this data is analyzed

as part of the so-called Flight Data Monitoring (FDM) program which belongs to the Safety

Management System (SMS) of an airline. Furthermore, airlines are required to define their

Acceptable Level Of Safety (ALOS) and in addition to that, international initiatives such as

the Advisory Council for Aviation Research and Innovation in Europe (ACARE) publish target

safety levels. Once a target safety level is set, the quantification of the current safety level of

an airline is central and sophisticated FDM algorithms can support this.

The main goal of this thesis is to connect physical models of the aircraft dynamics with

modern statistical tools for dependence characterization to foster the development of advanced

FDM algorithms. The analyses often focus on specific accident categories, such as Runway

Overrun or Loss of Control in Flight, for which it is important to understand the interdepen-

dencies between the underlying data. Specifically, characterized dependence structures of the

data are interpreted from an engineering perspective to gain more insight into safety relevant

processes, which are encapsulated in the recorded data. The obtained results shall be used as

a basis for profound actions of the airline safety management.

One application presented within this thesis is the revision of the physical models using

statistical dependence analyses. The physical model outputs are compared with the opera-

tional recordings and the deviations and their interrelations are statistically described. This is

beneficial for a revision of the physical model such that the considered deviations are minimized.

At the Institute of Flight System Dynamics (FSD), a framework for the quantification of

airline accident probabilities has been developed. This thesis contributes to that framework by

integration of high dimensional dependence structures in the associated sampling processes to

obtain more realistic results.

To reduce errors and uncertainties inside FDM data as much as possible, physically moti-

vated smoothing techniques can be utilized as a preprocessing step. This thesis describes how

an uncertainty quantification using statistical dependence analysis can be integrated into the

smoothing process to increase the quality of the smoothed data.





Zusammenfassung

Zivile Verkehrsflugzeuge zeichnen während des Fluges Daten auf. Betrachtet man die Gesamt-

heit der Flüge einer Fluggesellschaft, so werden auf diese Weise riesige Mengen an Daten

generiert. Fluggesellschaften sind per Gesetz dazu verpflichtet, die aufgezeichneten Daten im

Zuge eines sogenannten Flight Data Monitoring (FDM) Programmes als Teil des Safety Man-

agement System (SMS) zu analysieren und zur Erhöhung des Sicherheitsniveaus zu nutzen.

Per Gesetz müssen Fluggesellschaften ein akzeptables Sicherheitsniveau definieren und in-

ternationale Organisationen wie das Advisory Council for Aviation Research and Innovation

in Europe (ACARE) veröffentlichen Zielsetzungen dafür. Sobald ein Sicherheitsziel für eine

Fluggesellschaft definiert ist, wird die Bestimmung des aktuellen Sicherheitsniveaus von zen-

traler Bedeutung und hierbei können ausgereifte FDM Algorithmen unterstützen.

Das primäre Ziel dieser Arbeit ist die Kombination von physikalischen Modellen der Flug-

dynamik mit statistischen Methoden zur Charakterisierung von Abhängigkeiten zur Weiteren-

twicklung von Algorithmen für die Auswertung von FDM Daten. Häufig werden die Analysen im

Hinblick auf bestimmte Flugunfallkategorien wie dem Überschießen der Landebahn oder dem

Kontrollverlust des Flugzeuges während des Fluges durchgeführt. Die berechneten Strukturen

der Abhängigkeiten in den Daten werden in dieser Arbeit mit einem ingenieurwissenschaftlichen

Hintergrund interpretiert. Wichtige Erkenntnisse zur Erhöhung der Sicherheit in der Luftfahrt

sind so zu gewinnen.

Eine Anwendung, die in dieser Arbeit beschrieben wird, ist die Revision der physikalischen

Modelle auf Basis von statistischen Abhängigkeitsanalysen. Dabei werden die Ergebnisse der

physikalischen Modelle mit den Aufzeichnungen verglichen und eine statistische Analyse der

Unterschiede und deren Abhängikeiten durchgeführt. Diese Analyse ist die Grundlage für eine

Überarbeitung der physikalischen Modelle um die betrachteten Diskrepanzen zu minimieren.

Am Lehrstuhl für Flugsystemdynamik wurde eine Methode zur Quantifizierung von Un-

fallwahrscheinlichkeiten entwickelt. Die vorliegende Arbeit erweitert diese Methode durch die

Berücksichtigung von hochdimensionalen Abhängigkeitsstrukturen in den Berechnungen, um

letztlich realistischere Ergebnisse zu erzielen.

Um Fehler und Unsicherheiten in den Daten so gering wie möglich zu halten, können

physikalische Modelle für eine Vorverarbeitung der Daten genutzt werden. Eine weitere

Methodik dieser Arbeit beschreibt einen Algorithmus zur Quantifizierung von Unsicherheiten

in den Daten und deren Abhängigkeiten um damit die Qualität der prozessierten Daten zu

erhöhen.
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Chapter 1

Introduction

“The goal is to turn data into information, and information into insight”. This sentence is

attributed to Carly Fiorina, Former Chief Executive Officer of HP, and the statement gets

more and more relevant in many different areas of our society. The number of occasions

and variations of data recording nowadays seems unlimited. In addition to the availability of

data, the evolution of computing power allows to analyze the data on the big scale. Thinking

about the possibilities what this data can be used for, be it for positive or negative purposes,

is exciting and frightening at the same time. In addition, efforts in data analytics will be

expanded in the future, “most companies are capturing only a fraction of the potential value

from data and analytics”, [McK16, p. vi].

One of the branches that is collecting massive amounts of data is civil aviation. During

flight, aircraft record a huge amount of technical data that are subsequently collected and

analyzed by the airline personnel. This data contains a lot of valuable information and typically,

this data is analyzed from a safety or efficiency point of view. These analyses can contribute to

achieve defined safety goals such as the vision published by the European Commission for the

year 2050 of having less than one accident per ten million commercial aircraft flights [Eur11,

p. 17]. Also for civil aviation, data mining activities are expected to be extended, “more

data and more sophistication in the analytics methods will lead to a new level of meaningful

predictive alerts”, [Mag18].

Data analysis belongs to the scientific field of mathematical statistics and therefore, a

connection between Flight Data Monitoring (FDM) and mathematical statistics is beneficial

to conduct statistically valid FDM data analyses. Due to the high confidentiality level of the

utilized data, it is rarely shared outside of the particular airline and the analysis is mostly

conducted by airline personnel. Therefore, scientific research based on FDM data is rare.

On the other side, due to the high competition commercial airlines face, only a very limited

amount of internal resources can be used to conduct research in the area of flight data analysis

and to apply recent achievements from mathematics and statistics.

The main motive of this thesis is the improvement of aviation safety by the combination

of physical models and statistical dependence analyses and to use this for the development of

advanced FDM algorithms. According to the International Civil Aviation Organization (ICAO),
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safety is the state in which the possibility of harm to persons or of property damage is reduced

to, and maintained at or below, an acceptable level through a continuing process of hazard

identification and safety risk management [Int13, pp. 2-1].

The Flight Safety working group at the Institute of Flight System Dynamics (FSD) of the

Technische Universität München (TUM) has been working in cooperation with many airlines

throughout the last ten years gaining a lot of experience and expertise in the area of FDM data

analysis. Along with these cooperations, the institute employees have the chance to develop,

test, and refine FDM algorithms based on sufficient amount of recorded flight data.

Many flight data analysis techniques follow a scenario-based approach, as suggested for

example in [EF12, p. 2]. Thereby, the entire aviation system is differentiated into single

scenarios for which a safety assessment is conducted. Typical FDM analyses are often carried

out with respect to individual accident categories, e.g. as defined in [Com13]. The definition

of the term “accident” for the aviation community is given by the ICAO and can be found in

[Int16].

The analysis of statistical dependence structures is of high interest in statistics and applied

mathematics. The algorithms developed by statisticians are most commonly applied to the

areas of finance and insurance. However, applications of recent statistical achievements in

engineering, particularly in FDM has been rare. It is one of the main goals of this thesis to

further connect mathematical statistics and FDM.

1.1 Motivation

The main motivation for this thesis is the development of algorithms to reveal valuable infor-

mation that is hidden in the recorded flight data and to use them for improving aviation safety.

In particular, modern concepts provided by mathematical theory shall be applied in FDM to

discover unknown relations relevant for the safety management of an airline.

In reactive safety management, which was the standard methodology in the first decades

of aviation, past accidents and incidents are analyzed and the associated hazards identified

[Int13, pp. 2-26]. Many occurred events revealed new hazards and regulations and procedures

were often adapted to prevent similar occurrences in the future. Nowadays, proactive and

predictive safety management methodologies are additionally used that aim to detect hazards

before accidents occur [Int13, pp. 2-26]. Nevertheless, there are examples of aircraft accidents

in the last years which show that unknown hazards are hidden in the recorded data.

One example is the accident of a British Airways Boeing 777 in London Heathrow [Air10].

On January 17th, 2008 flight BA 38 was in final approach for London Heathrow runway 27L

arriving from Beijing. Due to a sudden lack of thrust, the pilots could not manage to land the

aircraft on the runway but landed short of it, see Figure 1.1. Luckily, there was no fatality,

however, the aircraft was beyond economical repair and that was the first hull loss of a Boeing

777 [Air10, p. 7].

During the accident investigation carried out by the Air Accidents Investigation Branch
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Figure 1.1: G-YMMM landing short of London Heathrow Runway 27L

(AAIB) it was revealed that a specific device called Fuel Oil Heat Exchanger (FOHE) and

a special phenomena regarding the generation of ice crystals in fuel lines contributed to the

accident.

The following paragraph is taken from the official accident report [Air10, pp. 2-3]: “The

investigation identified the following probable causal factors that led to the fuel flow restric-

tions:

. . .

3) The FOHE, although compliant with the applicable certification requirements, was

shown to be susceptible to restriction when presented with soft ice in a high concentra-

tion, with a fuel temperature that is below -10°C and a fuel flow above flight idle.

4) Certification requirements, with which the aircraft and engine fuel systems had to

comply, did not take account of this phenomenon as the risk was unrecognised at that

time.”

This scenario is an example of an accident where information of the root cause that was

unknown at that time but could be identified in the data after the accident occurred. Fur-

thermore, during the accident investigation, the same contributing factors could be identified

in other flights, see [Air10, pp. 122-123] and [Air10, F-1-F-10]. This particular scenario, the

detailed engine characteristics and details about the FOHE, will not be referred to again in

the remaining of this thesis.

The motivation of this thesis is that the presented statistical methods integrated into

FDM algorithms contribute to the discovery of safety critical events in the future before the
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associated accident is actually taking place.

1.2 State of the Art

The work presented in the given thesis is carried out at the interface between aeronautical

engineering, in particular FDM, and applied statistics. As already pointed out, the scientific

activities at that interface have been limited due to confidentiality restrictions of the utilized

data. Within this chapter, an overview of the state of the art of the related fields is given.

Air operators and aircraft maintenance organizations are required to establish a Safety

Management System (SMS) that as a minimum identifies safety hazards; ensures that re-

medial action necessary to maintain an acceptable level of safety is implemented; provides

for continuous monitoring and regular assessment of the safety level achieved; and aims to

make continuous improvement to the overall level of safety, see [Eur07, p. 2] published by the

European Aviation Safety Agency (EASA) and [Int10a, pp. 3-3]. Furthermore, according to

[Eur07, p. 6], an operator of an aeroplane with a Maximum Certified Take-Off Mass (MC-

TOM) in excess of 27,000 kg shall establish and maintain a flight data analysis program as

part of its SMS. Given that, there is a legal requirement for the airline to collect and analyze

the generated flight data.

For the on-board recording, various different devices and possibilities to transfer the data

to the ground stations exist. Furthermore, several commercial FDM software packages are

available. As an alternative to setting up an own FDM environment at airline premises,

the EASA position paper [Eur07, p. 6] gives the permission to the operators to contract the

operation of a flight data analysis program to another party while retaining overall responsibility

for the maintenance of such a program. Due to this, several service companies, which offer

the service of handling and analyzing flight data have been installed. To support the airlines in

the development of an FDM system, EASA established the European Operators Flight Data

Monitoring (EOFDM) framework, see also appendix E. The goal is to share best practices

and lessons learned among the FDM community. Besides airline personnel, also employees

from Original Equipment Manufacturer (OEM), flight crew associations, and research and

educational institutions are permitted in the EOFDM groups.

In addition to the analyses of FDM data carried out by airline personnel, several inter-

national programs with the goal to share and jointly analyze FDM data exist. An European

example is the Data4Safety program initiated by EASA [Eur16]. Its goal is to “provide a

European-wide safety network and information sharing forum” [Eur16, p. 12]. Besides EASA,

several stakeholders of the aviation industry such as airlines, airports, pilots, maintenance,

National Aviation Authorities (NAA), aircraft manufacturers, and the European Commission

(EC) are planned to be part of the Data4Safety consortium [Eur16, p. 6]. A further initiative

of a flight data sharing and analysis initiative is the Aviation Safety Information Analysis and

Sharing (ASIAS) initiated by the Federal Aviation Administration (FAA). Its goal is to “proac-

tively identify and analyze safety issues” [CMS15, p. 6]. The third prominent example is the
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Flight Data eXchange (FDX) program initiated by the International Air Transport Association

(IATA). Also for this initiative, the aggregation of FDM data, joint analysis and identification

of safety risks, and global benchmarking are within the scope. To store and handle the enor-

mous amount of data in the scope of these international programs, dedicated institutions are

responsible. For ASIAS, the associated entity is MITRE (see e.g. [CMS15, p. 12]) and for

FDX it is flight data services, see [JQ17].

According to [KB57, p. 279], the definition of statistics is as follows: “Numerical data

relating to an aggregate of individuals; the science of collecting, analyzing and interpreting

such data.” Furthermore, [JB97, p. 51] states: “Statistics seems to be a group of sciences.

It embraces statistical theory as well as the measurement, the structural investigation, the

study of relations of the moments characterizing the factors, and the operations of stochastic

processes, cybernetical systems, and so on, which exist in the frame of real (concrete) popu-

lations.” The given thesis considers the analysis of recorded flight data as one instance of the

mentioned group of sciences.

One important aspect of this thesis is the characterization of dependence structures in

flight data. In order to examine these dependence structures, one prominent tool that is used

among others is the concept of copulas. The main theorem regarding the copula theory was

stated by Prof. Abe Sklar in 1959 [Skl59]. With the rapid increase of available computing

power in the last decades, the number and quality of algorithms to fit copula structures for the

characterization of dependence structures grew rapidly. Prof. Claudia Czado and her group

contributed to the copula community with a high number of papers and algorithms.

The Flight Safety working group at Institute of Flight System Dynamics (FSD) has been

working at the interface of Flight Data Monitoring (FDM) and statistics for more than a

decade. The group members had the chance to describe their ideas in the IATA Safety

Report 2013 [Int14a] which is a renowned reference in the aviation community and helped to

increase international attention. Besides various publications of the individual Flight Safety

team members, to which the author of the given thesis belongs, the dissertation of Ludwig

Drees [Dre17] summarizes the entire concept. The main goal of [Dre17] is to estimate accident

probabilities for airline operations based on recorded operational flight data, i.e. representing

the regular, almost accident free, operation. Thereby, accident categories that are mainly

driven by physical factors (e.g. Runway Overrun) are analyzed using physical models of the

aircraft motion. The described framework is a seven step process that is further described

in chapter 2.5. Thereby, components and tools from aeronautical engineering, physics, and

mathematics are collected to finally estimate accident probabilities. The presented thesis can

be considered as part of this process. In particular, the proposed methods described in this

thesis extend the entire process further with a special focus on mathematical statistics and

dependence analyses. Throughout this thesis, references to [Dre17] are given to clarify how

the concepts can be merged.

Besides the work carried out at the Flight Safety working group at TUM, the Dutch Na-

tionaal Lucht- en Ruimtevaartlaboratorium (NLR) as part of a wider consortium carried out
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research in the area of flight safety. In that consortium, the Causal Model for Air Transport

Safety (CATS) model was developed [Ale+09]. “Its purpose is to establish in quantitative

terms the risks of air transport.” [Ale+09, p. 19]. To achieve this, various data sources have

been utilized. Compared to the work of the Flight Safety working group at TUM, the analysis

was more focused on information about occurred accidents. The main accident data sources

where Aviation Data Reporting Program (ADREP) and Airclaims [Ale+09, p. 35]. ADREP is a

taxonomy developed by ICAO which compiles attributes and related values utilized for example

in the European Coordination Centre for Accident and Incident Reporting Systems (ECCA-

IRS) databases [Int10b]. According to [Ale+09, p. 121], Airclaims is an accident database

of insurance companies that was accessible to the CATS project. While various people were

contributing to the CATS model, two of them are Prof. Roger Cooke and Prof. Dorota Kurow-

icka from TU Delft. They are explicitly mentioned because they are renowned researchers in

the area of statistical dependence analyses and especially in the vine copula theory which is a

central part of this thesis. The difference of the CATS project to the contribution of the given

thesis is that in the latter, operational FDM data is accessible which can be used to develop,

test, and calibrate the algorithms.

The doctoral thesis of Oswaldo Morales Nápoles [Mor10] is also carried out on the interface

between aviation safety and mathematical statistics. Furthermore, it is related to the CATS

model presented above. Besides important theoretical statements about the number of vine

copulas on n nodes, he applies Bayesian Belief Networks (BBN) to aviation safety and to other

engineering scenarios such as the safety of water dams. As for the CATS model, FDM data

that is in the centre of this thesis was not used in that reference.

A further doctoral thesis carried out at TU Delft and is again related to the CATS model is

from Pei-Hui Lin [Lin11]. The topic is “Safety Management and Risk Modelling in Aviation”

and besides the ADREP data that was already mentioned for the CATS model, data from Line

Operation Safety Audits (LOSA) and IATA Operational Safety Audits (IOSA) was used. In

particular, the thesis reflected the challenge of quantifying management influences and puts

a special focus on human performance. Finally, the thesis proposes three major changes of

the management model part of the CATS model, including a clarification of the hierarchical

relations between the SMS and operations, see [Lin11, p. 230].

In the United States of America, a project carried out at the Massachusetts Institute of

Technology (MIT), which was supported by the FAA and the National Aeronautics and Space

Administration (NASA), considered similar topics compared with the given thesis. A detailed

summary is given by [Li13]. Therein, an anomaly detection algorithm is developed, which

applies a cluster analysis of available flights. Subsequently, the opinion of domain experts

are collected to verify the operational significance of the discovered anomalies [Li13, p. 3].

The proposed algorithms are tested based on a significant number of flights and the studies

revealed that operationally relevant anomalies can be detected and that the proposed method

goes beyond the capacities of current methods.
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1.3 Objective

The objectives of this thesis are:

• To extend the predictive analysis framework proposed in [Dre17] and developed at the

Institute of Flight System Dynamics (FSD) with the application of modern statistical

methods.

• To identify unknown relations hidden in recorded FDM data and to derive useful infor-

mation for the safety management of an airline.

• To use advanced statistical methods for the characterization of dependence structures

not visible for common methods and to revise physical models for specific aviation

accident categories based on the aircraft motion.

• To represent high-dimensional relations between factors contributing to accidents not

accessible by classical methods in the sampling processes that is used for the estimation

of accident probabilities to obtain more realistic results.

• To identify noise characteristics of FDM data that are used to minimize errors and

uncertainties in a data cleaning action.

1.4 Contribution

The goal of this doctoral thesis is to develop and enhance algorithms in Flight Data Monitoring

(FDM) using advanced statistical tools, in particular for the characterization of dependencies.

The following items described in this thesis go beyond the state of the art in FDM and are

the main contributions of this thesis:

• Identification of unknown dependence structures in flight data measurements by appli-

cation of nonlinear copula dependence structures and considering tail dependencies

• Copula based statistical analyses of discrepancies between physical model outputs and

recordings

• Augmentation of physical models by functional relations identified from measurements

based on copula models allowing for nonlinear dependencies

• Consideration of high-dimensional dependencies in flight data measurements on safety

critical metrics using vine copula structures

• Consideration of nonlinear and high-dimensional dependencies in sampling methods for

incident probability estimations based on physical models

• Identification of safety critical scenarios by applying machine learning algorithms on filter

trees

7



1.5 Structure of the Thesis

• Dependence analyses of time series smoothing residuals to increase the smoothing quality

Besides these key contributions, the following aspects are essential components of this thesis

and the author’s employment at the Institute of Flight System Dynamics (FSD).

• New tools for routine application of dependence analysis in practical applications

• Utilization of quality assurance techniques for automated statistical distribution fitting

• Contribution to the establishment of a computer cluster to store and analyze the obtained

operational flight data taking modern big data concepts and confidentiality aspects into

account and provide parallelization capabilities

• Assure industry visibility and relevance of the developed algorithms by dissemination

and participation in events and working groups associated to the FDM community such

as the European Operators Flight Data Monitoring (EOFDM) forum initiated by the

European Aviation Safety Agency (EASA)

• Analyze options for a product development and integration of the proposed FDM al-

gorithms into existing FDM software packages taking the current market situation into

account

1.5 Structure of the Thesis

The structure of the given thesis is described in the following. Chapter 2 gives an introduction

to Flight Data Monitoring (FDM). It is summarized how flight data is recorded on-board the

aircraft, how the data is transmitted to ground stations, and how it is stored and analyzed.

Furthermore, the ideas of the predictive analysis framework that is described in [Dre17] and

developed at the Institute of Flight System Dynamics (FSD) is summarized. In chapter 3,

flight data measurements, also called snapshots, are described. Based on the recorded time

series, these values can be calculated to further describe operational aspects of the flights.

Mathematical preliminaries required in the remaining of this thesis are outlined in chapter 4.

Chapter 5 describes the concepts proposed in this thesis for the characterization of dependence

structures of flight data measurements and how they can be beneficially integrated into FDM

algorithms. The concepts are applied to illustrative examples in chapter 6. Chapter 7 describes

the proposed techniques for the dependence analysis of the most relevant time series recorded

on-board the aircraft. Finally, chapter 8 summarizes the thesis and gives an outlook of future

steps.

The thesis is developed at the interface between aeronautical engineering and mathematical

statistics. The author endeavored to be as conform with the standards and nomenclatures of

both disciplines. Nevertheless, attention of the reader in terms of nomenclature is required.

For example, the term “parameter” is used differently by a FDM engineer and a statistician.
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Chapter 2

Flight Data Monitoring

2.1 Overview

The level of safety for commercial aviation compared to the last decades is remarkable high.

Figure 2.1 shows that, while the yearly number of fatal accidents1 after the year 1960 decreased

slightly, the tremendous increase of safety gets obvious by considering the number of yearly

fatal accidents together with the number of yearly flights, especially after 1990.

201620122008200420001996199219881984198019761972196819641960

Figure 2.1: Yearly number of fatal accidents, source: [Air17b, p. 12]

One of the reasons for this increase of the safety level is the extension of the safety

perception within the airlines, see Figure 2.2. While around the 1950s, safety was considered

a purely technical factor, it was changed around the 1970s and human factors were taken

into account from that time on. Around the 1980s, it was recognized that also organizational

factors, i.e. the management of procedures conducted inside and outside of airlines to reduce

1A precise definition of the terms accident, fatal, incident, serious incident and and how they are used in

civil aviation can be found in [Int16, 1-1 to 1-3]. For this thesis it is not necessary to differentiate accident,

from incident or serious incident and so these terms are often used as synonyms.
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2.1 Overview

accident risks, need to be taken into account. This idea led to laws that require airlines to

establish a Safety Management System (SMS). The foundations of the development of an SMS

are given by [Int13] published by the International Civil Aviation Organization (ICAO). One of

the statements of [Int13] is that states shall define a Acceptable Level Of Safety (ALOS) in a

so-called State Safety Programme (SSP).
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Figure 2.2: Evolution of safety, source: [Int13, pp. 2-2]

One of the pillars of SMS is the collection and analysis of safety data, often referred to as

Flight Data Monitoring (FDM) [Int13, pp. 2-18]. Within the document Acceptable Means of

Compliance (AMC) and Guidance Material (GM) to Part-Organisation Requirements for Air

Operations (ORO) published by European Aviation Safety Agency (EASA), the fundamental

principles of FDM are given, see [Eur14, pp. 52-53].

“An FDM programme should allow an operator to:

1. identify areas of operational risk and quantify current safety margins;

2. identify and quantify operational risks by highlighting occurrences of nonstandard, un-

usual or unsafe circumstances;

3. use the FDM information on the frequency of such occurrences, combined with an

estimation of the level of severity, to assess the safety risks and to determine which may

become unacceptable if the discovered trend continues;

4. put in place appropriate procedures for remedial action once an unacceptable risk, either

actually present or predicted by trending, has been identified; and

5. confirm the effectiveness of any remedial action by continued monitoring.”

A good overview of the analysis of flight data is provided by the ICAO document Manual

on Flight Data Analysis Programme (FDAP) [Int14b]. In addition, this document reflects the

prerequisites of an effective FDAP such as the required protection of the involved data. Its

final chapter gives practical recommendations for the successful establishment of an FDAP.
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Chapter 2: Flight Data Monitoring

Based on ICAO Annex 6 [Int10a, pp. 3-3] and [Eur07, p. 3], for every aircraft with MCTOM

exceeding 27,000 kg the analysis of routinely collected digital flight data shall be installed.

Considering the predicted increase of aviation traffic in the near future, extensive actions

to even further increase aviation safety will be necessary to reduce the numbers of accidents.

In Figure 2.3, the evolution of Revenue Passenger Kilometers (RPK) in the past and a forecast

based on Airbus’ Global Market Forecast (GMF) [Air17b] can be seen. It is illustrated that

the RPK is estimated to be doubled between the years 2015 and 2030.
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Figure 2.3: World annual traffic forecast, source: [Air17b, p. 8]

2.2 On-board Time Series Recording and Decoding

A widely known recording device in a civil aircraft is the Flight Data Recorder (FDR), commonly

referred to as black box, see Figure 2.4. The FDR is used during aircraft accident investigations

[Avi16, p. 16] and therefore constructed to withstand the potentially immense decelerations

and temperatures during an aircraft accident.

Figure 2.4: Flight Data Recorder (FDR), source: https://www.atsb.gov.au/publications/

2014/black-box-flight-recorders/, Image downloaded on 09.11.2017
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Besides the FDR, there are various types of recording devices with different methods of

data transmission. Commonly, the devices are referred to as Quick Access Recorder (QAR),

see Figure 2.5. Sometimes the QAR is also combined with the so-called Aircraft Condition

Monitoring System (ACMS) that is used for maintenance aspects [Saf17]. Alternative devices

are the Digital AIDS Recorder (DAR) as part of the Aircraft Integrated Data System (AIDS).

Furthermore, different aircraft manufacturers and providers of recording devices use varying

terms. Within the last years, the wireless transmission of the recorded flight data gets more

and more popular, see e.g. [Wod15]. Thereby, the mobile phone network is commonly used.

Before that, memory cards had to be removed from the recording device and read out with

suitable devices. A good graphical overview of the on-board recording is given in Figure 2.6.

Figure 2.5: Quick Access Recorder (QAR), source: https://www.safran-electronics-

defense.com/aerospace/commercial-aircraft/information-system/aircraft-condition-

monitoring-system-acms, Image downloaded on 10.11.2017

Depending on the particular recording device, the selection of parameters and their char-

acteristics can be modified. For example, the sampling rate of the recording resolution can

be increased to meet the accuracy requirements of the subsequent analyses [Int14b, pp. 2-2].

Typically, the sampling rate of a parameter in the QAR data is between 1⁄4 Hertz and 16 Hertz.

The data generated by the aircraft is recorded consecutively throughout the flight. There-

fore, it is recorded as a time series, see Figure 2.7 for the variable barometric altitude.

The logic of how the data is recorded is given by Aeronautical Radio Incorporated (ARINC)

standards. For QAR data, the two standards ARINC 717 [Aer11] and ARINC 767 [Aer09] are

relevant. The 717 standard is older and used for the majority of the aircraft types. The 767

standard is rather new and used for modern aircraft types such as the Boeing 787.

For the read out of the QAR and FDR a so-called Data Frame Layout (DFL) is required

[Bur05]. In the DFL precise information about the location of the individual parameters are

12



Chapter 2: Flight Data Monitoring

Figure 2.6: On-board recording overview, source: [Saf17]

given, refer to Figure 2.8. It is not within the scope of this thesis to go into the details of

decoding QAR data based on the ARINC 717 standard [Aer11] but only an overview is given.

Decoding means to transfer the binary stream, i.e. a sequence of 0 and 1 that is received

from the aircraft recorder into a readable format of the flight data, e.g. in a table. In a nutshell,

the DFL contains the position of a parameter in the bit stream. Based on the ARINC 717

standard [Aer11] the data stream consists of frames and every frame consists of four subframes.

With the recording time, the frame counter increases. For any parameter, the location in one

or more subframes has to be given by the DFL. Depending on the DFL, a subframe consists

of a certain number of words, e.g. 256 or 512. The DFL also described the precise word a

specific parameter is located in. According to the ARINC 717 standard, every word consists

of 12 bits, however, in practice the number of bits per word is occasionally increased to 16.

Once the location of the considered parameter in the bit stream is known, information about

the conversion from the binary unit to the engineering unit is required. Due to a potential high

accuracy of the parameter, this conversion is not just a basic mathematical transformation

13



2.3 Flight Data Monitoring Software

time [s]

ba
ro

m
et

ri
c

al
ti

tu
de

[m
]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
×104

-2000

0

2000

4000

6000

8000

10000

12000

Figure 2.7: Timeseries recording barometric altitude

of a binary into a decimal number. In Figure 2.8, a binary value that can be found in the

bit stream is first represented in the decimal system and denoted by X. Subsequently, the

conversion rule given by the DFL, or in this case Figure 2.8, given by the affine linear equation

Y = A0 + A1 · X is applied. Thereby, Y is the airspeed value given in engineering units, in

this case knots. The variables A0 and A1 are constants given by the DFL.

In practical decoding, not only simple affine linear equations like Y = A0 + A1 · X are

used. At the Flight Safety working group at FSD, a decoding algorithm for data given in the

ARINC 717 [Aer11] standard was developed in [Moh16].

2.3 Flight Data Monitoring Software

To manage, store, decode, and analyze the incoming flight data, dedicated software packages

are required and several commercial products are available.

The first main task of the FDM software is to handle the incoming data stream and to

systematically store the files. Depending on the characteristics of the transmission, one file

might contain data of several flights and the individual flight has to be identified within the

file as a first step. Especially with the rising wireless transmission technology in combination

with the QAR, see e.g. [Wod15], data can be transfered after every single flight and so no file

cutting is necessary.

The second important task of an FDM software is to decode the data, i.e. to transfer it

into readable format in engineering values, see chapter 2.2. Information about the logic of

how the data is recorded is provided by the DFL.
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Figure 2.8: Exemplary data frame layout for the airspeed, source: [Bur05, p. 10]

After decoding the analysis phase can start. Considering the potentially very high number

of flights of an airline, it is obvious that no manual analysis of all flights can be conducted.

Therefore, FDM analyses can be categorized into two groups, automatic analyses for all flight

and manual analyses for flights identified as extraordinary during the automatic analysis.

One basic analysis technique that can be used automatically for any flight is to compare a

flight parameter or a combination of specific conditions with predefined thresholds to discover

exceedances, see e.g. [Int14b, pp. 2-2] and [Aus, p. 1]. Often, several thresholds for different

severity classes Low, Medium, and High are given. This easy analysis framework allows to

rapidly process incoming flights, however is obviously very prone to data errors.

Once a flight was detected as extraordinary during the automatic analyses and safety

concerns about that particular flight arise, a manual analyses from the flight data engineer

can be conducted and feedback from the flight crew can be requested. Within the manual

analysis of a flight, a more detailed investigation of the characteristics can be carried out.

A common first step to get an overview of the flight is visualization. Most of the common
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FDM software packages provide several means of visualization, see Figure 2.9. One tool is

the cockpit view that is visualizing all settings of buttons and handles for which information

is available in the FDM data. This can give a good impression of the flight crew actions.

A three-dimensional outside view of the aircraft provides an illustrative impression about the

position and attitude. In addition, the FDM software might provide the option to superimpose

the geographical map with aeronautical charts. In particular, this can be useful to verify

deviations of the actual flight path to a cleared departure or arrival route.

Figure 2.9: Visualization in Safran AGS 2

In case severe deviations from an airline Standard Operating Procedure (SOP) occurred

during a flight resulting in a significant compromise of safety, further actions of the airline

safety department can be taken. One possibility is that the safety department requests the

flight deck crew for a joint review of the flight. This review can be conducted based on the

collected FDM data, an Air Safety Report (ASR) of the flight crew, and potential further

sources of information. Especially the visualization tools of the FDM software including the

cockpit view can help the pilots to reconstruct the situation and to discuss the performed

actions. Nevertheless, it has to be highlighted, that FDM is intended to be a non-punitive

system, e.g. [Int14b, pp. 1-1] with the main goal of increasing safety.

It is common practice that airline safety departments regularly compile a summary of the

FDM analyses after defined time intervals. These reports and trend analyses are used to

observe the long term behavior of the safety levels within an airline. The available FDM

software packages often have the capability to automatically generate these reports taking the

specific user requirements of the airline into account [Aer14, p. 8].

2Image © Sagem, source: https://www.safran-electronics-defense.com/aerospace/commercial-

aircraft/information-system/analysis-ground-station-ags, Image downloaded on 28.11.2017
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Current FDM software packages also have the possibility to access additional data sources

such as weather information. This topic is currently an active field of development and research.

For example, to usage of additional data sources in FDM analyses is one of the main ideas of

the research project SafeClouds.eu in which TUM is part of the consortium. An overview of

this research project is given in appendix F.3. Furthermore, one of the EOFDM working groups

started to work on the access of further aviation data sources from inside FDM software in

2017. An overview of the EOFDM initiative is given in appendix E.

For the Flight Safety working group of FSD at TUM, it is of utmost importance that

the developed functionalities and algorithms can be applied to real operations. Therefore, a

cooperation with an FDM software provider has been set up. A short overview of the ideas

for this framework is given in appendix C.

Besides, the FDM software that can be purchased and used by airline personnel, also the

possibility to contract another party while retaining overall responsibility for the maintenance

of such a programme, see [Int10a, pp. 3-3].

2.4 Confidentiality of Recorded Flight Data

Due to the amount of data that is recorded in an airline’s daily operation, the informational

content is immense. Almost any important action performed by the flight crew is directly or

indirectly represented in the QAR data. Analyzing FDM data is therefore always a balance be-

tween increasing safety and protect the privacy of flight deck crews and other parties involved.

Another confidentiality aspect reflects the competition among different airlines. Competitors

could discover classified operational details that are recorded for internal purposes only and

these violations have to be prevented.

Confidentiality aspects of this data type is also covered by the ICAO Safety Management

Manual document in chapter 2.11.19 [Int13, pp. 2-23]:

“Given the potential for misuse of safety data that have been compiled strictly for the purpose

of advancing aviation safety, database management must include the protection of that data.

Database managers must balance the need for data protection with that of making data

accessible to those who can advance aviation safety. Protection considerations include:

a) adequacy of “access to information” regulations vis-à-vis safety management require-

ments;

b) organizational policies and procedures on the protection of safety data that limit access

to those with a “need to know”;

c) de-identification, by removing all details that might lead a third party to infer the identity

of individuals (for example, flight numbers, dates/times, locations and aircraft type);

d) security of information systems, data storage and communication networks;

e) prohibitions on unauthorized use of data.”
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2.5 Predictive Analysis in Aviation

According to [Int13, pp. 2-26], the ”three methodologies for identifying hazards are:

• Reactive This methodology involves analysis of past outcomes or events. Hazards are

identified through investigation of safety occurrences. Incidents and accidents are clear

indicators of system deficiencies and therefore can be used to determine the hazards

that either contributed to the event or are latent.

• Proactive This methodology involves analysis of existing or real-time situations, which

is the primary job of the safety assurance function with its audits, evaluations, employee

reporting, and associated analysis and assessment processes. This involves actively

seeking hazards in the existing processes.

• Predictive This methodology involves data gathering in order to identify possible negative

future outcomes or events, analyzing system processes and the environment to identify

potential future hazards and initiating mitigating actions.”

The development of predictive algorithms which aims to make statements about the future

situation of an airline operation continues gaining attention.

To introduce ideas of predictive analysis into FDM is also one of the main motives of the

Flight Safety working group at the Institute of Flight System Dynamics (FSD). The group

was established in 2009 along with the begin of the research project Safety Management

Systems (SaMSys), that was lead by Lufthansa [Luf15]. In addition to an ALOS defined by

the German SSP3 (see chapter 2.1), Lufthansa has defined an internal safety goal with an

accident probability of not more than 10−8 per flight, [Rap09].

The goal of the research project SaMSys was twofold. First, to determine the current level

of safety of the Lufthansa flight operation (e.g. based on FDM data and ASR reports) and

second, to improve it as much as possible. Several research institutions including TUM were

part of the consortium and the project was carried out until 2015.

To be able to reach the goal of SaMSys and to estimate accident probabilities, the TUM

Flight Safety working group was responsible for the analysis of recorded FDM data with a

physical and mathematical background. Each group member has a special focus and the main

concepts and ideas were outlined in [Dre17]. This framework consists of the seven steps define,

model, identify, cumulate, calibrate, revise, and predict.

These steps are carried out with respect to specific accident categories in aviation, in

particular the ones that can be described by physical relations such as the Runway Overrun.

In the define step, a so-called incident metric is developed that has two tasks, see chapter

3.4. First, it should allow to separate the accident flights from the flights without accidents.

Second, the proximity of a regular flight to the accident should be represented. In the model

step, a physical model is developed that links every considered contributing factor with the

3A German State Safety Programme (SSP) is not yet established.
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Chapter 2: Flight Data Monitoring

incident metric developed in the define step using physical equations of the aircraft motion.

The inputs of the physical model are the contributing factors of a specific flight and the output

is the incident metric. The twelve contributing factors of the Runway Overrun model utilized

within this thesis are:

• Atmospheric Temperature at Touchdown

• Atmospheric Pressure at Touchdown

• Headwind at Touchdown

• Aircraft Landing Mass at Touchdown

• Duration from Touchdown to Spoiler Deployment

• Duration from Touchdown to Start Braking

• Duration from Touchdown to Reverser Deployment

• Duration from Touchdown to End of Braking

• Distance from Threshold to Touchdown Point

• Approach Speed Deviation in a Specified Time Window

• Mean N1 During Deployed Reverser

• Commanded Aircraft Deceleration

see also [WDH14]. The physical Runway Overrun model describes the deceleration perfor-

mance of the aircraft on the runway during landing. The sum of all forces acting on the

aircraft are split up into gravitation, aerodynamics, propulsion, and landing gear forces. Each

of these components are described by further physical models. Within chapter 6.2, the propul-

sion model is described and analyzed in more detail. Identify means to characterize and

calculate all contributing factors, the incident metric, and further physical model parameters

based on the available data for the considered flights. The calculated values are so-called flight

data measurements that are further described in chapter 3. Based on the characteristics of

the specific measurement calculation, the correct concept can be selected. Since the entire

flight operation of an airline shall be taken into account and not just individual flights, the

contributing factors are described by statistical distributions that are fitted in the cumulate

step. Thereby, various concepts from mathematical statistics including available distributions

and the fitting process are utilized. The physical model and the fitted distributions need to

be calibrated and in case major problems are detected, the physical model is modified in the

revise step. For this modification of the physical model, advanced statistical tools for the char-

acterization of dependencies are utilized. In the final step predict, specific sampling algorithms
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2.5 Predictive Analysis in Aviation

are used to estimate the accident probabilities. Since they are specifically low and the phys-

ical model needs to be applied for any generated sample which is time-consuming, standard

algorithms such as the Monte Carlo sampling are not suitable. Alternative sampling methods

such as subset simulation (see chapter 4.8) are dedicated to low occurrence probabilities and

proposed for the predictive analysis framework.

Figure 2.10 gives an overview of the incident model for the Runway Overrun example,

its inputs which are the distributions of the contributing factors and the output, which is a

distribution of the incident metric. An introduction to incident metrics is given in chapter 3.4.

For the Runway Overrun scenario illustrated in Figure 2.10, an incident metric is given by the

stop margin, which is the remaining distance between the (virtual) stop of the aircraft and the

runway end.

Figure 2.10: Predictive analysis concept, source: Figure 3 of [Int14a, p. 82]

Considering this seven steps framework, this thesis is mainly focused on the revise step

(see chapters 5.3.3 and 6.2). In addition, it reflects new concepts regarding the estimation

of the goodness of distribution fitting in the cumulate step (see chapter 5.2) and proposes

the integration of statistical tools to characterize dependencies within data in the predict step

(see chapters 5.4.3 and 6.4).

Starting with the SaMSys project, the Flight Safety working group was continuously grow-

ing and several research projects in the area of predictive analysis and FDM were carried out.

The projects the author of this thesis was mainly associated with are summarized in appendix

F.

Besides FSD, also other research institutions are working on predictive analytics for the

Runway Overrun, which contributing factors can be well described by physical laws, see e.g.

[BB17].
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In 2006 Airbus launched the Runway Overrun Prevention System (ROPS) program [Jon15].

This system, which now belongs to the standard equipment on the A350 [Jon15, p. 85] is

embedded in the aircraft avionics and observes the risk of a Runway Overrun in real time.

Thereby, ROPS takes aircraft specific characteristics such as flaps setting, weight, and speed,

but also runway characteristics such as runway length and runway states (dry or wet) into

account. In case the system detects an increase risk, visual and audio alerts such as Runway

Too Short or Brake, Max Braking are triggered.

2.6 Physically Motivated Smoothing

Recorded data always contain errors and uncertainties. In the case of recorded flight data

this can have several reasons. Besides corrupted values from aircraft sensors, also errors in

the on-board data acquisition, during data transfer to ground station or the decoding process

can occur. For example, considering recordings of the aircraft position can reveal major

uncertainties, see e.g. [Riv14]. The deviations of the recording to the real values can be so

severe, that an analysis of the touchdown points, which is considered as important and highly

safety relevant by most of the airlines, is impossible.

The most important parameters recorded by the QAR such as position, altitude, speed,

and attitude are linked to each other with the aircraft equations of motion. This knowledge of

the underlying physics can be used to combine the available information from the recordings of

the associated parameters and to minimize the errors and uncertainties in all of them. Another

side effect of this method is that the sampling rate of the recordings can be increased and

unified for all parameters.

At FSD, a framework using the Rauch-Tung-Striebel (RTS) Smoother is available for this

purpose. This framework was mainly developed in [Sie15] and [Sie17]. This thesis contributes

to that smoothing framework with an uncertainty analysis of the QAR data using statistical

tools. The goal is to retrieve statistical information about the incorporated uncertainty and

integrate this into the RTS Smoother. Details about this technique are given in chapter 7.
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Chapter 3

Flight Data Measurements

Based on the time series data recorded by the QAR on-board the aircraft, so called flight data

measurements or snapshots can be derived [Civ13, p. 27]. Measurements are given as one

value per flight and further describe operational factors.

3.1 Time Points

Many measurements are defined as the value of a recorded time series at a specific time point.

One example is the Ground Speed at Touchdown. Therefore, a required initial step for the

calculation of many measurements is the calculation of the related time point.

One of the most important time points in FDM analysis is the touchdown of the aircraft.

Considering the high speed of the aircraft during landing and the errors and uncertainties

incorporated in the data, it is challenging to precisely determine the touchdown point. Even

a small uncertainty of one second can lead to a potential range of the detected touchdown

point of more than 100 m, see chapter 3.5. A physically motivated technique to detect the

touchdown time point was suggested in [Sie15] and [Sie17]. The method has been further

developed, compared with other techniques and integrated into the IT environment of the

Flight Safety working group at the FSD in [Kop+18].

3.2 Measurement Categories

Based on the complexity of the required calculation, three different categories of flight data

measurements are considered [Dre17, p. 115].

3.2.1 Direct Measurements

This is the most simple type of measurement. It implies considering a recorded time series at a

specific time point, e.g. Indicated Airspeed at Touchdown. Assuming that a parameter for the

indicated airspeed is available in the given QAR data, it can be directly used. The additional

information required is the considered time point, in this case the touchdown. Obviously, the
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3.2 Measurement Categories

calculation of measurements is closely related to the calculations of time points, see chapter

3.1. Once the time point is calculated, the considered time series of the QAR data can be

read out. Depending on the characteristics of the time series, an interpolation of adjacent

recordings can be necessary in case no recording at the specific time point was taken. Thereby,

it needs to be assured that the chosen interpolation technique is realistic and represents the

(physical) behavior of the parameter.

3.2.2 Algebraic Measurements

The computation of algebraic measurements is slightly more complex. The time series associ-

ated to the measurement is not directly recorded as it was the case for the direct measurement,

but has to be calculated based on the existing ones. This calculation can be conducted based

on a simple algebraic equation for a specific individual time point. The central role of the

considered time point or time period is similar to case of the direct measurement.

As an example for an algebraic measurement, the ideal gas law

p · V = n · R · T, (3.1)

is considered. Thereby, p is the pressure, V the volume, n the number of moles, R the gas

constant and T the temperature [Jac13, p. 6]. A specific gas constant Rspecific is introduced

as

Rspecific =
n ·R
m

(3.2)

where m denotes the mass. Rspecific is known and constant for dry air and equation (3.1)

transforms into

p = ρ · Rspecific · T, (3.3)

with density ρ = m
V

. Thereby, the pressure p and the temperature T are mostly recorded in the

aircraft and part of the QAR data. In this situation, equation (3.3) can be used to calculate

the time series for the density ρ. Together with a specific time point, the measurement can

be calculated, e.g. Density at Lift Off.

3.2.3 Parameter Estimation Measurements

The third category are the measurements that require the application of parameter estimation

methods, see e.g. [Sem14] and [SHH14]. One example for such a parameter is the runway

friction coefficient. To obtain a good estimation for this coefficient, it is not sufficient to

indicate a simple algebraic equation that can be evaluated at one time point. Instead, a so-

phisticated mathematical theory together with an advanced physical model have to be applied.

The observability of this kind of measurement is not given for one specific time point only,

but for a suitable period of time.

These estimation methods are associated to flight testing, where special on-board instru-

mentation and dedicated flight maneuvers are used to identify parameters of the aircraft models
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used during an early stage of the aircraft development, see e.g. [Jat15]. The challenge of ap-

plying advanced parameter estimation techniques in FDM is to handle the QAR data with a

significantly lower quality compared to flight testing data for which dedicated instrumentation

was used during recording. Therefore, standard FDM software usually do not provide this

capability.

3.3 Event Generation

Flight data measurements and the threshold analyses mentioned in chapter 2.3 are closely

related to the generation of events, see [Int14b, pp. 2-3].

Not only the recorded time series, but also the calculated measurements can be compared

to threshold values representing Standard Operating Procedures (SOPs) or optimal operating

ranges of certain devices. Analogously to the threshold analyses of recorded time series, several

thresholds for different severity categories such as low, medium, and high can be defined. As

an example, thresholds suggested by ATR in [Avi16, p. 30] are given in Table 3.1.

One of the suggested events of Table 3.1 is Low height during go-around. The underlying

monitoring window for this event is given by 5 seconds before until 5 seconds after the detected

go-around. The observed QAR variable is the radio altitude RALT. For the severity categories

low and medium, two different thresholds are indicated. In case the minimal radio altitude in

the considered monitoring window is greater or equal 200 ft, the event with severity low is

triggered. For a minimal radio altitude less than 200 ft, a medium severe event is triggered.

3.4 Incident Metrics

Incident metrics are a special type of measurements and the term is based on [Int14a, p. 82]

and [Dre17, p. 104]. An incident metric is continuous and has two important further properties.

First, it allows to differentiate accident flights from non-accident flights. This is achieved by

the requirement that the accident region can be described by an inequality condition of the

incident metric. The second property requires that for non-accident flights (which are the

majority), the value of the incident metric describes the proximity to the associated accident

category and so the risk. The closer the incident metric is to the value that is describing the

accident region, the more severe the flight performed.

Within [Dre17], physical models are used to estimate accident probabilities, see chapter

2.5. The developed models are associated to accident categories, in particular those for which

the underlying relations and contributing factors can be represented by mathematical equations

in a physical model. A suitable accident category for this method is the Runway Overrun, for

which these physical relations can be stated. One exemplary incident metric for this accident

category is the stop margin, which is the remaining distance between the (virtual) stop of the

aircraft on the runway and the runway end.
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MONITORING WINDOW THRESHOLDS / CONFIRMATION TIME

 EVENT START END CRITERIA LOW MEDIUM HIGH

GO-AROUND

Low height during go-around GA detected 
– 5 s

GA detected 
+ 5 s

RALT ≥200 ft <200 ft –

Late LDG retraction Go around phase AND 
SLDG 
= UP

time(SLDG=UP)-
time(VZ>0) ≥

10 s 15 s 20 s

LANDING

High speed at touchdown Touchdown 
– 2 s

Touchdown 
+ 2 s

IAS ≥ VAPP VmHB+15 kt VmHB+20 kt

Low speed at TD Touchdown 
– 2 s

Touchdown 
+ 2 s

IAS ≤ VmHB-5 kt VmHB–10 kt VmHB–15 kt

Low Pitch at touchdown Touchdown 
– 2 s

Touchdown 
+ 1 s

PTCH ≤ 0° –0.5° –1°

High Pitch at touchdown 
(ATR 42)

Touchdown 
– 2 s

Touchdown 
+ 1 s

PTCH ≥ 8° 9° 10°

High Pitch at touchdown (ATR 72) Touchdown 
– 2 s

Touchdown 
+ 1 s

PTCH ≥ 6° 7° 8°

Reduced flap landing Start of landing phase FLAP ≤ 22° 12°

Late PLA to GI Landing phase AND PLA1+2 
at GI

time since 
touchdown

4 s 7 s 10 s

Remaining power at touchdown Touchdown 
– 1 s

Touchdown 
+ 1 s

(TQ1+TQ2)/2 ≥ 5% 10% 20%

Change of heading during landing Landing phase |dMHDG| ≥ 3°/s 4°/s 5°/s

High LATG Landing phase |LATG| ≥  0.15 g 0.25 g 0.35 g

PLA below GI without low pitch Landing phase  LOP1(2) not 
LOW PITCH and 
PLA1(2) ≤

15°

High acceleration at touchdown Touchdown 
– 2 s

Touchdown 
+ 10 s

VRTG 1.4 g 1.6 g 1.8 g

T
a
b
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3
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:
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M
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,

source:
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Chapter 3: Flight Data Measurements

Figure 3.1: Stop margin of the Runway Overrun model, source: Figure 2, Section 9 of

[Int14a]

Other accident categories such as Mid Air Collisions are less suitable for the investigation

using physical models of the aircraft motion since the influencing factors are mainly not driven

by physics.

The incident metric is the outcome of the physical models presented in [Int14a] and [Dre17],

see chapter 2.10. To estimate accident probabilities based on an (almost) accident free airline

operation, specific statistical methods are applied using the concept of incident metrics, see

chapters 4.8 and 5.4.3. In the following chapters of this thesis, the symbol I is used to refer

to incident metrics.

3.5 Errors and Uncertainties in Measurements

Every recorded data contains errors and uncertainties. According to [Joi12, p. 22], the term

measurement error is defined as a “measured quantity value minus a reference quantity value”.

The reference value is in many cases the unknown true value of a measurement. The defini-

tion of measurement uncertainty is given in [Joi12, p. 25]. It is a “non-negative parameter

characterizing the dispersion of the quantity values being attributed to a measurand, based on

the information used”. Examples for errors and uncertainties in QAR data are biases, scaling

factors, measurement noise, latencies, and the ones originating from discretization of measured

values and time.

The potential occurrence of errors starts with the measuring process of the sensors on-board

the aircraft and these errors are passed on through data recording, transmission, decoding, and

analysis. In every intermediate step the data is passing through, new errors due to technical,

organizational or other problems might be added.

FDM algorithms have to be able to cope with these errors and uncertainties as much as

possible. In chapter 7, a tool to use dependence concepts to reduce the uncertainty on the

time series level is discussed. The goal of chapter 7 is to conduct an uncertainty analysis

of the time series and to integrate the obtained information into a smoothing algorithm.

Due to the mentioned sequence of FDM data processing steps, the handling of errors on the

time series level is highly beneficial to minimize the errors and uncertainties in the calculated

measurements.

Within this chapter, the situation for the measurement level is considered. For the mea-

surement Distance between Landing Runway Threshold and Touchdown Point, an aircraft with
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a ground speed of 140 kt, which approximately corresponds to 72 m/s is considered. The

target touchdown point is, depending on the runway characteristics, approximately 1000 ft

corresponding to 305 m after the runway threshold [UF16, p. 3] and the calculated measure-

ment is expected to be in that region. As already discussed in chapter 3.1, an algorithm that

is capable of detecting the touchdown point around one second next to the (unknown) real

touchdown point in a robust manner can be already considered as accurate. Due to the high

speed of the aircraft, an uncertainty of one second in the calculated touchdown time point

leads to an uncertainty of 72 m in the considered measurement, which is already 24 % of the

expected value. Assuming that the uncertainty could be one second ahead or after the real

touchdown point results in an expected region of the detected touchdown point of 144 m.

This example shows that actions to handle errors and uncertainties also on the measurement

level have to be developed. One possibility is to set up technical or logical outlier barriers for

the measurements. This was developed at the IT environment of the Flight Safety working

group within the scope of this thesis. If a measurement for a specific flights exceeds this

outlier barrier associated to the considered measurement, the value of that flight is neglected

in the subsequent analysis. In chapter 5.2.1, this idea is resumed for the fitting of statistical

distributions based on flight data measurements.

However, this outlier barrier method has to be handled with care. The main interest of

FDM is to ensure an adequate safety level of an airline operation and therefore many analyses

are related to accident categories. Since in these safety critical scenarios, specific factors that

might be represented in measurements can get extraordinary high or low, valid and paramount

values of measurements must not be neglected by the outlier barrier method.

3.6 Flare Altitude as an Example Measurement

In the following chapters of this thesis, several measurements are used for examples illustrating

the concepts developed in the scope of this thesis. Thereby, the IT environment of the

Flight Safety working group at FSD and the measurements existing therein are used. The

available measurement functions have been implemented by several Flight Safety working group

employees and students. The development of measurement functions is not a contribution of

this thesis, see chapter 1.4.

Within this chapter, the concept of a measurement function exemplary for the Flare Altitude

is illustrated. The flare is the phase of flight between the final approach and the touchdown

in which the descent rate is reduced. This particular measurement is used in chapter 6.1 of

this thesis and was developed in [Ker17, p. 39].

In Figure 3.2, the Flare Altitude measurement proposed in [Ker17, p. 39] is explained

based on an example flight. The smoothed time series for Vertical Speed denoted by V S [s] is

depicted in blue. The smoothing process has been conducted according to the developments

of [Sie15] and [Sie17]. It corresponds to the smoothing process that is enhanced in chapter 7

of this thesis with an uncertainty quantification of the noise characteristics.
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Chapter 3: Flight Data Measurements

Figure 3.2 shows the last 30 seconds of the flight prior to touchdown. In the interval

starting from 30 seconds before touchdown until 10 seconds before touchdown, the mean and

standard deviation of V S [s] are calculated and denoted by V S [s] and σ respectively. The mean

vertical speed V S [s] is illustrated by the solid horizontal line.

The proposed algorithm detects the last local minimum of V S [s] that is at least 2 seconds

prior to touchdown and below V S [s] +0.8 ·σ, which is denoted by the dashed-dotted horizontal

line. The detected local minimum V S
[s]
loc,min is visualized as a black dot. Finally, the first

smoothed value of V S [s] that is above V S
[s]
loc,min and V S [s] + 0.3 · σ, which is illustrated by

the dotted horizontal line, is detected as the time point of the flare begin. The resulting time

point is illustrated by the vertical gray line. The observed time intervals and the utilized factors

0.3 and 0.8 are based on experimental testing conducted in [Ker17] to identify appropriate

time points of the flare begin based on the reducing descent rate of the aircraft. There is no

statistical reasoning in these parameters and they can be adjusted to values more suitable for

the given flights.

Finally, the measurement Flare Altitude is a direct measurement, see chapter 3.2.1, and

can be obtained by reading out the (smoothed) time series of the radio altitude.
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Figure 3.2: Explanation of the Flare Altitude measurement

In Figure 3.3, smoothed time series of Vertical Speed of 200 flights beginning 30 seconds

prior to touchdown are illustrated.

It can be identified how the negative values of V S [s] are increased to values around 0

during the flare. The detected time points and the associated Flare Altitude measurements

are again illustrated in Figure 3.3 as dots.
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Figure 3.3: Overview Flare altitude measurement, source: Figure 4.3 of [Ker17, p. 39]

Further information regarding the measurement Flare Altitude can be also found in [WDH16].
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Chapter 4

Mathematical Preliminaries

In the following chapters of this thesis, various mathematical and statistical concepts are

applied to operational flight data. Within this chapter, an overview of the underlying mathe-

matical theory is provided. The general structure of many parts of this chapter follows [CS11].

4.1 Basic Principles of Statistics and Probability Theory

4.1.1 Mathematical Terms

In this chapter, basic mathematical terms and nomenclature that are used throughout this

thesis are briefly summarized.

For a function f : A → C between two sets A and C and a further subset B ⊆ A, the

image of B is defined as

f(B) = {f(b)|b ∈ B} ⊆ C. (4.1)

Furthermore, for a subset D ⊆ C, the preimage of D is defined as

f−1(D) = {a ∈ A|f(a) ∈ D} ⊆ A. (4.2)

Occasionally, the set f−1(D) is also briefly denoted by f = D.

f is called injective if for all a1, a2 ∈ A with f(a1) = f(a2) it follows that a1 = a2. f is

called surjective if for all c ∈ C there exists a ∈ A with c = f(a). f is called bijective if it is

injective and surjective.

The natural numbers N are defined as N = {0, 1, 2, 3, . . .}. A set A is called countable if

there exists an injective function f : A → N. The power set of a given set A is the set of all

subsets of A and is denoted by P(A). The empty set ∅ and A itself are part of P(A).

A matrix M ∈ Rn×n is called positive definite if for all x ∈ Rn with x 6= (0, . . . , 0)

there holds xT · M · x > 0. M is called positive semi-definite if for all x ∈ Rn there holds

xT ·M ·x ≥ 0. The eigenvalues of a positive definite matrix are positive [HJ10, p. 402] and the

eigenvalues of a positive semi-definite matrix are non-negative [HJ10, p. 402]. Furthermore,

for all M ∈ Rn×n, the determinant of M is the product of its eigenvalues [HJ10, p. 42].
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4.1.2 Probability Space

The general structure of this chapter follows [CS11]. A probability space is defined as a triple

denoted by (Ω,A,P). Thereby, Ω is a set called sample space and its elements are called

outcomes [Mee08, pp. 1-2]. A ⊆ P(Ω) is a so-called σ-algebra on Ω, i.e. the following

properties are fulfilled:

Ω ∈ A, (4.3)

for all A ∈ A also A := Ω \ A ∈ A, (4.4)

for all A1, A2, . . . ∈ A also
∞⋃

n=1

An ∈ A, (4.5)

see [CS11, p. 2].

The elements of A are called events. The simultaneous occurrence of two events A and

B (which is again an event) is given by the intersection A ∩ B. Analogously, the event that

either event A or B occurred is denoted by A ∪B. As A ∩B and A ∪B are also referred to

as events, both sets should also be elements of A. This is assured by equations (4.3) - (4.5)

and one reason for the introduction of σ-algebras and its properties. Events, i.e. elements of

A, are also called measurable. This means that specific values can be associated to events

which leads to the concept of measures. Within this thesis, only a special type of measures

are of interest, the probability measures.

A probability measure P is the third attribute of a probability space. It is a function

P : A → [0, 1] with the following properties. All pairwise disjoint events, i.e. A1, A2, . . . ∈ A
with Ai ∩ Aj = ∅ for all i 6= j satisfy

P(Ω) = 1 (4.6)

P(
∞⋃

n=1

An) =
∞∑

n=1

P(An). (4.7)

One example for a probability space is related to the fair dice. The outcomes of a throw

of the dice are given by Ω = {1, 2, 3, 4, 5, 6}. Assuming that the probability shall be described

that the dice shows an even number, the following σ-algebra A fulfills the required properties

A = {∅, {2, 4, 6}, {1, 3, 5},Ω}. As the dice is assumed to be fair, the probability measure P

is given as P(∅) = 0, P({2, 4, 6}) = 1/2, P({1, 3, 5}) = 1/2, and P(Ω) = 1.

In the subsequent chapters of this thesis, the probability space (Ω,A,P) for Ω = Rd is

mainly considered. In this situation, there is a σ-algebra that is mostly used and that is worth

to be briefly mentioned here. The Borel-σ-algebra in Rd, denoted by B(Rd) is the smallest

σ-algebra in Rd (in terms of set inclusion) that is containing all open rectangles of the form

(a1, b1) × . . .× (ad, bd) where ai ∈ R and bi ∈ R for all i ∈ {1, . . . , d}. For any further details

the reader is referred to [Kle14] or any other reference for basic probability theory.
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4.2 Conditional Probabilities and Independent Events

An important concept in probability theory are conditional probabilities. Thereby, statements

about the probability of an event A are made given that another event B occurs. For two

events A,B ∈ A with P(B) > 0 the conditional probability of A given B is defined by

P(A|B) =
P(A ∩ B)

P(B)
. (4.8)

It can be shown that P(·|B) : A → [0, 1] is again a probability measure [CS11, p. 31]

Two events A,B ∈ A are called independent under P, or shortly independent, if

P(A ∩B) = P(A) · P(B). (4.9)

It can be easily seen that for two independent events A,B ∈ A the following relations hold:

P(A|B) =
P(A ∩B)

P(B)
=

P(A) · P(B)

P(B)
= P(A) (4.10)

This corresponds to the following intuitive understanding of independent events. If A and B

are independent, knowledge about the occurrence of B does not influence the probability of

an occurrence of A.

The concept of independence can be generalized to random variables which is described

in chapter 4.4. As a first step towards that, independence is defined for finitely many events

(instead of two). Events A1, . . . , An are called independent, if for all {i1, . . . , ik} ⊆ {1, . . . , n}

P(Ai1 ∩ . . . ∩Aik
) =

k∏

j=1

P(Aij
) (4.11)

is satisfied.

4.3 Random Variables

A random experiment such as taking a measurement can be mathematically described by a

random variable.

Let Ω and Ω′ be two sets with σ-algebras A and A′ respectively. A function X : Ω → Ω′

is called A-A′ measurable if the preimage of all A′-measurable sets are A-measurable. In

mathematical terms, for all A′ ∈ A′

X−1(A′) = {ω ∈ Ω : X(ω) ∈ A′} ∈ A. (4.12)

A random variable X is a A-A′ measurable function X : Ω → Ω′ where (Ω,A,P) is

a probability space and A′ is a σ-algebra on Ω′. To highlight the associated σ-algebras

and probability measure, sometimes X is (in fact incorrectly) indicated by X : (Ω,A,P) →
(Ω′,A′).
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In the special case of Ω = Rd with d > 1, a random variable X is called random vector

X.

Considering the definition of a random variable X, it is seen that a probability measure is

only given on the domain of X but not on its range. In fact, the random variable can be used

to lift the probability measure P to its range.

Let X : (Ω,A,P) → (Ω′,A′) be a random variable. Then the function X(P) : A′ → [0, 1]

defined as

A′ 7→ P(X−1(A′)) (4.13)

is a probability measure in (Ω′,A′).

Lifting the probability measure to the range space is a very important concept in statistics.

The probability measure X(P) in (Ω′,A′) is called probability distribution of X under P, or

shortly distribution of X.

4.4 Independence of Random Variables

In equation (4.11), the concept of independence has been introduced for a finite number of

events. In this chapter, the concept is generalized to independent random variables. For this,

independence has to be first generalized to sets of events and furthermore, the concept of

σ-algebras generated by random variables introduced.

Let (Ω,A,P) be a probability space. Furthermore, let A1, . . . ,An be subsets of A, i.e.

sets of events or in mathematical terms Ai ⊆ A for all i ∈ {1, . . . , n}. Then A1, . . . ,An

are called independent under P if every A1, . . . , An with Ai ∈ Ai for all i ∈ {1, . . . , n} is

independent under P.

For the introduction of σ-algebras generated by random variables let X : (Ω,A,P) →
(Ω′,A′) be a random variable. The σ-algebra σ(X) generated by X is the smallest σ-algebra

on Ω according to which X is measurable. In mathematical terms,

σ(X) =
⋂

C
(C|C is a σ-algebra on Ω such that X is C - A′ measurable). (4.14)

All necessary concepts to define independence of random variables are now available. Let

(Ω,A,P) be a probability space and X1, . . . , Xn random variables with Xi : (Ω,A,P) →
(Ωi,Ai) for all i ∈ {1, . . . , n}. The random variables are called independent under P if the

σ-algebras σ(X1), . . . , σ(Xn) are independent under P.

The given definition of independent random variable is theoretical and not intuitive. In the

later chapters of this thesis, continuous R-valued random variables are mostly considered. In

chapter 4.5.2, an important characteristic of independence for these kind of random variables is

indicated. It implies that the multiplicative property is transfered from the probability measure

P to the Probability Density Function (PDF).

The concept of independent random variables has been introduced for a finite number

of random variables. In probability theory it is also possible to generalize the concept of
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independence to infinitely many random variables. Since this is not used within this thesis it

is left out. Once more, for any further details the reader is referred to [Kle14].

4.5 Probability Measures in the Real Numbers

Throughout this thesis, random variables X : (Ω,A,P) → (Ω′,A′) are considered. For exam-

ple, if the speed of an aircraft during touchdown is measured by sensors, it is mathematically

described by a random variable. The observed value of one measurement might be 140.4 kt,

i.e. a value in the real numbers R. The main focus of this thesis is to analyze dependence

structures and so more than one measurement is considered. For instance, in addition to

the speed of the aircraft, also its mass at touchdown can be measured. In this case, the

measurement might be (140.4 kt, 61, 243 kg) and the underlying Ω′ = R2.

For this simple example with speed and mass of a landing aircraft and the associated ran-

dom vector X, the natural question arises, what is the domain (Ω,A,P) of X? In fact, this

question is not answered in many statistical scenarios, since it is not the point of interest. Ac-

tually interesting is the distribution of X, i.e. the probability measure X(P). For this, not just

one landing aircraft is considered, but several. The goal is to describe the behavior, statistical

properties, and especially the dependence structures of these recorded values representing the

landings. Therefore, not all the information about domain and region of a random variable X

is given in practice. From now on it is often simple stated that X is a random vector on Rd

instead of X : (Ω,A,P) → (Rd,B(Rd)).

Let X be a random vector on Rd. Then the Cumulative Distribution Function (CDF) of

X is defined by F = FX : Rd → [0, 1] with

F (x1, . . . , xd) = P(X1 ≤ x1, . . . , Xd ≤ xd). (4.15)

For the special case d = 1, three properties of the CDF are directly inherited from the

probability measure as indicated in [CS11, p.4]

F is non-decreasing, i.e. for x1 ≤ x2 it follows F (x1) ≤ F (x2), (4.16)

lim
x→−∞

F (x) = 0, (4.17)

lim
x→∞

F (x) = 1. (4.18)

For any further information the reader is referred to [CS11, p.4].

In the following, two fundamental categories of random variables in the real numbers R

are introduced.

4.5.1 Discrete Probability Distributions

A probability distribution of a random variable X : (Ω,A,P) → (Ω′,A′) is called discrete if

the image X(Ω) ⊆ Ω′ is countable. In addition, also the random variable X itself is called
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discrete. In this case, the image X(Ω) can be denoted as X(Ω) = {x1, x2, x2, . . . } ⊆ Ω′ and

it fulfills ∞∑

i=1

(X(P))(xi) =
∞∑

i=1

P(X−1(xi)) =
∞∑

i=1

P(X = xi) = 1. (4.19)

Furthermore, the function pX : Ω′ → [0, 1], xi 7→ P(X = xi) is called probability mass function

and uniquely defines the distribution [CS11, p.4]. In practice, this function is often used to

construct a discrete distribution. It is important to note that for all y ∈ Ω′ \X(Ω) it satisfies

pX(y) = 0 and so it is sufficient to define pX on X(Ω).

An important characteristic of distributions is the expected value. Since the definition is

different for discrete and continuous distributions (assumed that the general notion of the

Lebesgue integral is not used as in this thesis), it is given here for discrete distributions.

For a discrete random variable with countable image X(Ω) = {x1, x2, . . . }, the expected

value is defined as

E(X) =
∞∑

i=1

xi · P(X = xi). (4.20)

In the remaining part of this section, two important discrete probability measures are

considered.

Bernoulli Distribution

In this example, X(Ω) = {0, 1} ⊆ R, i.e. the random variable X is either taking the value

0 or 1. The Bernoulli distribution can be characterized by 0 < p < 1 which represents the

probability that X obtains 1. In mathematical terms:

pX(1) = P(X = 1) = p (4.21)

pX(0) = P(X = 0) = 1 − p. (4.22)

This distribution can be used to statistically describe an yes-or-no question or success-

failure outcomes.

Binomial Distribution

The Binomial distribution is a generalization of the Bernoulli distribution. Thereby, the under-

lying experiment, i.e. yes-or-no question or success-failure outcomes, are not only considered

once, but several times without influencing each other.

Let n ∈ N be the number a specific experiment is conducted. The outcome of one single

experiment is again 0 or 1 with associated probabilities 1 − p and p as it was for the Bernoulli

distribution. Since the experiment is repeated n times, maximal n and minimal 0 successes

are possible. In mathematical terms this means X(Ω) = {0, 1, 2, . . . , n} if X is distributed

according to a binomial distribution.

The probability mass function pX for the Binomial distribution is defined for any k ∈
{0, 1, 2, . . . , n} and describes how many successes (i.e. occurrences of 1) are given in the n
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individual experiments. Since it is not differentiated at which repetition of the experiment the

success occurs, the binomial coefficient
(

n
k

)
which is the number that k objects can be chosen

from n objects, has to be used.

To summarize, for any k ∈ {0, 1, 2, . . . , n} the probability mass function of X being

binomial distributed is given as

pX(k) =

(
n

k

)
· pk · (1 − p)n−k =

n!

k! · (n− k)!
· pk · (1 − p)n−k. (4.23)

4.5.2 Continuous Probability Distributions

In this chapter, distributions in Rd are considered that can be characterized by a so-called

density. In probability theory, the concept of the Lebesgue integral is often introduced at this

point to properly provide the underlying mathematics. This is out of the scope of this thesis

and for the associated theory the reader is referred to [Kle14, pp.85-99].

Within this thesis, the definition of [CS11, p.4] is followed. Let X be a random vector on

Rd that is not discrete. If there exists a function f : Rd → [0,∞) such that for all events

B ⊆ Rd

P(X ∈ B) =
∫

B
f(x) dx (4.24)

then f is called Probability Density Function (PDF) of X and X is called continuous.

A direct consequence of the properties of probability measures is that for any density f

∫

Rd
f(x) dx = 1. (4.25)

Furthermore, for any vector b ∈ Rd the probability P(X = b) is given by

P(X = b) =
∫

{b}
f(x) dx = 0. (4.26)

In addition, a given density function uniquely describes the distribution.

Using the density of a random vector, a more tangible characteristic of independence of

random variables compared to chapter 4.4 can be given.

For a random vector X = (X1, ..., Xd) on Rd with CDF F = (F1, ..., Fd) and density

f = (f1, ..., fd), the following statements are equivalent:

X1, . . . , Xd are independent. (4.27)

F (x1, . . . , xd) = F1(x1) · . . . · Fk(xd) =
d∏

i=1

Fi(xi). (4.28)

f(x1, . . . , xd) = f1(x1) · . . . · fk(xd) =
d∏

i=1

fi(xi). (4.29)

For a continuous random vector on Rd with density f , the expected value is defined as

E(X) =
∫

Rd
x · f(x) dx. (4.30)
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Intuitively, the expected value represents the average value of multiple repetitions of the

experiment characterized by the random vector.

Using the expected value, a further important characteristic of a distribution can be defined.

The variance of a random variable X is defined as

V ar(X) = E
(
(X − E(X))2

)
. (4.31)

This value represents how far samples of the random variable spread around the expected value.

Observe that the same definition of the variance can be used for discrete random variables

taking the expected value defined in equation (4.20) into account.

In the remaining of this chapter, important examples of continuous distributions are illus-

trated.

Uniform Distribution

The uniform distribution equally assigns probability to the values in a certain region. The PDF

of the one-dimensional uniform distribution is given as follows. For a, b ∈ R with a < b,

x ∈ R 7→





1
b−a

if x ∈ [a, b]

0 if x 6∈ [a, b].
(4.32)

As mentioned in chapter 4.5.2, a PDF is uniquely describing a real valued continuous

distribution.

In Figure 4.1 the PDFs and in Figure 4.2 the CDFs of one-dimensional uniform distributions

are illustrated.
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Figure 4.1: Uniform distribution - probability density function

For the same a, b ∈ R with a < b the CDF of the uniform distribution is given by

38



Chapter 4: Mathematical Preliminaries

x ∈ R 7→





0 if x < a

x−a
b−a

if x ∈ [a, b]

1 if x > a.

(4.33)
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Figure 4.2: Uniform Distribution - cumulative distribution function

The uniform distribution plays an essential role in the theory of copulas which will be

described in chapter 4.7.

Normal Distribution

The normal distribution is very common and is naturally occurring in many real world examples.

Among all distributions, the normal distribution has a special role due to the so-called central

limit theorem, see [Kle14, pp. 320-328].

The normal distribution is parametrized by the mean µ ∈ R and the variance σ2 > 0. The

density is given by

x ∈ R 7→ 1√
2 · πσ2

· e
(x−µ)2

2·σ2 . (4.34)

The PDF of one-dimensional normal distributions are illustrated in Figure 4.3 and the CDF

in Figure 4.4.

The normal distribution with the parameters µ = 0 and σ2 = 1 is commonly referred to

as standard normal distribution.

Student’s t-Distribution

The normal distribution is commonly used and plays a special role in nature, however, it is also

known to underestimate boundary regions [LLT89]. The main focus of this thesis is to make
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Figure 4.3: Normal distribution - probability density function
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Figure 4.4: Normal distribution - cumulative distribution function

statements about airline safety and safety critical events using statistical concepts including

distributions. Therefore the boundary areas of a distribution are of special interest.

A distribution that has a shape similar to the normal distribution but putting more prob-

ability in the tails of a distribution, in statistical phraseology having “heavier tails”, is the

Student’s t-distribution. Its density is given by

x ∈ R 7→ Γ(ν+1
2

)√
ν · π · Γ(ν

2
)

·
(

1 +
x2

ν

)− ν+1
2

. (4.35)
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Thereby, ν is the number of degrees of freedom and Γ is the gamma function given by

Γ(x) =
∫ ∞

0
tx−1 · e−t dt. (4.36)

In Figure 4.5 the PDFs and in Figure 4.6 the CDFs of Student’s t-distributions are illus-

trated.

degree of freedom = 2
degree of freedom = 5
degree of freedom = 30

-4 -3 -2 -1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

Figure 4.5: Student’s t-distribution - probability density function
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Figure 4.6: Student’s t-distribution - cumulative distribution function
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Multivariate Normal Distribution

The distributions mentioned so far are one-dimensional. The main interest of this thesis

are dependencies and so various random variables, i.e. distributions in higher dimensions are

considered. In chapter 4.7, the theoretical foundations of how to estimate high-dimensional

distributions using the statistical concept of copula are introduced that will be applied to

operational flight data in the later chapters of this thesis.

Besides these advanced statistical concepts, basic high-dimensional distributions exist. In

this chapter, the high-dimensional normal distribution is summarized.

For d ∈ N, the d-dimensional normal distribution is parameterized by the mean vector

µ ∈ Rd and by the positive semi-definite matrix Σ ∈ Rd×d. The density of the d-dimensional

normal distribution is then given by

x ∈ Rd 7→ 1√
det (2 · π · Σ)

· exp
[
−1

2
· (x − µ)T · Σ−1 · (x − µ)

]
. (4.37)

To be precise, the existence of the density function is assured for a positive definite matrix

Σ so that Σ−1 exists, see chapter 4.1.1.

The density of the two-dimensional normal distribution with parameters

µ =


0

0


 ,Σ =


0.25 0.3

0.3 1


 (4.38)

is indicated in Figure 4.7 and the distribution function in Figure 4.8.
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Figure 4.7: Two-dimensional normal distribution - probability density function
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Figure 4.8: Two-dimensional normal distribution - cumulative distribution function

4.6 Common Dependence Coefficients

One of the goals of this thesis is to obtain safety relevant information especially about depen-

dencies and unknown relations by an application of modern statistical tools in the area of FDM.

In mathematical theory, several metrics to characterize dependence structures incorporated in

data exist.

Within this chapter, three basic dependence coefficients commonly used in applied statistics

are summarized. All three describe the prevailing dependence between two random variables in

one scalar value only. Obviously, a description with one value is not as flexible as characterizing

the dependence structure with functions varying in the variable domains. This leads to the

concept of copulas which are presented in the next chapter 4.7.

4.6.1 Pearson Correlation

The Pearson correlation coefficient for two random variables X and Y is defined as

ρ(X, Y ) =
E(X · Y ) − E(X) · E(Y )√

V ar(X) · V ar(Y )
. (4.39)

To ensure that ρ is well-defined, the variances V ar(X) and V ar(Y ) have to be finite and not

equal to 0, see Equation 4.31.

In the following, characteristics about the Pearson correlation coefficient are collected from

[KC06, pp. 26-27]. Some of them give the motivation why this correlation coefficient is also

referred to as linear correlation coefficient.

• For random variables X and Y with finite expected values and finite variances there

holds

−1 ≤ ρ(X, Y ) ≤ 1
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• If X and Y are independent, then

ρ(X, Y ) = 0.

• For a, b ∈ R there holds

1. For a > 0: ρ(X, Y ) = ρ(a ·X + b, Y )

2. For a < 0: ρ(X, Y ) = −ρ(a ·X + b, Y )

• If ρ(X, Y ) = 1 then there exist a > 0 and b ∈ R such that:

X = a · Y + b

While the Pearson correlation coefficient is defined for two random variables, a considera-

tion of all pairs of random variables X1, . . . , Xd leads to the concept of correlation matrices.

However, the simplicity of the Pearson correlation coefficient and the fact that only various pair

dependencies and no high-dimensional effects are analyzed, a correlation matrix has various

shortcomings, see [EMS02]. For this thesis, the description of high-dimensional dependence

structures is carried out using copulas, which are more advanced compared to correlation

matrices. The concept of copulas is summarized in chapter 4.7 of this thesis.

4.6.2 Spearman Rank Correlation

Before considering the definition of the Spearman rank correlation coefficient, an observation

important for the definition and the following chapters is given.

For a random variable X : (Ω,A,P) → (R,B(R)) with continuous and invertible CDF

FX : R → [0, 1], the random variable defined by the composition of functions FX(X) =

FX ◦ X : (Ω,A,P) → ([0, 1],B([0, 1])) with ω ∈ Ω is mapped to ω 7→ FX(X(ω)) ∈ [0, 1] is

considered. According to chapter 4.1.2, B([0, 1]) is the Borel-σ-algebra on the interval [0, 1].

In this setting, the distribution of FX(X) always follows a uniform distribution on the interval

[0, 1] and does not depend on the distribution of X, see [KC06, p. 31]. This is commonly

referred to as Probability Integral Transformation (PIT).

It is not the goal of this thesis to give proofs of the utilized mathematical theorems,

however, this statement is central for this thesis and its proof is very easy and so it is given.

The CDF of the random variable FX(X) is denoted by FFX (X) : [0, 1] → [0, 1]. For u ∈ (0, 1)

FFX (X)(u) = P (FX(X) ≤ u) = P
(
X ≤ F−1

X (u)
)

= FX

(
F−1

X (u)
)

= u. (4.40)

Observe that for the second equality, the existence of the inverse function F−1
X is required.

Another requirement for that equality is that FX is non-decreasing which is given by equation

(4.16).
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This CDF coincides with the CDF of the uniform distribution given in chapter 4.5.2, see

equation (4.33) for the special cases a = 0 and b = 1. Therefore, the distribution of FX(X)

is the uniform distribution on [0, 1], denoted by U(0, 1).

In Figure 4.9, the concept of the PIT is visualized.
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Figure 4.9: Probability integral transformation

On the left hand side of Figure 4.9, the histogram of 1,000 samples drawn from a normal

distribution N(0, 1) with mean 0 and variance 1 is given. The histogram of the transformed

1,000 samples using the PIT and the distribution function of N(0, 1) denoted by FN is given

on the right. This second histogram resembles the density of a uniform distribution given in

Figure 4.1. Equation (4.40) shows that this is true not only for N(0, 1) but for an arbitrary

continuous distribution with invertible distribution function.

The Spearman rank correlation coefficient does not consider the random variables directly

but their PIT transformations. For random variables X and Y and associated random variables

FX(X) and FY (Y ) the Spearman rank correlation coefficient ρS is defined as

ρS(X, Y ) = ρ(FX(X), FY (Y )). (4.41)

The idea of the PIT transformation is used in chapter 4.7 summarizing the copula theory.

An important characteristic that is implied by this construction is that the description of the

dependence is independent of the marginal distribution, i.e. the distributions of X and Y .

Further information about the Spearman rank correlation coefficient can be found in [KC06,

pp. 30-32] and [Joe15, pp. 56-57]. The reader needs to be aware of varying nomenclature

used by different authors.
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4.6.3 Kendall’s Tau

The third common correlation coefficient mentioned here is often used in statistics even though

the definition is not intuitive. The Kendall’s tau τ [Ken38], [KC06, pp. 32] is defined for two

independent pairs of random variables (X1, Y1) and (X2, Y2) by

τ = P[(X1 −X2) · (Y1 − Y2) > 0] − P[(X1 −X2) · (Y1 − Y2) < 0]. (4.42)

To estimate the Kendall’s tau τ from data, there is a further property using concordant

and discordant pairs, see [KC06, pp. 32]. At the same source, further important statements

about the Kendall’s tau τ can be found. One of them shows that for two independent random

variables with continuous distributions X and Y it holds τ(X, Y ) = 0.

4.7 Copulas

The main focus of this thesis is to develop FDM algorithms for the increase of aviation safety

by application of advanced statistical dependence concepts such as the theory of copula. To

achieve this, the main theoretical aspects are summarized and various references to mathe-

matical literature are given. In the following chapters of this thesis, the FDM algorithms are

developed based on the summarized concepts.

Even though the main mathematical theorem of the copula theory was already developed

in 1959, this concept has gained more attention only in the recent years. One reason is the

increased availability of computing power and the development of associated algorithms to

fit copula dependence structures to given data. In particular for the high-dimensional case,

many achievements could be made. The concept of vine copulas is one way how to construct

high-dimensional copulas based on the combination of several two-dimensional copulas using

the concept of conditioning. They are discussed in chapter 4.7.5.

4.7.1 Copula Definition

The main theorem of the copula theory is attributed to Abe Sklar [Skl59] and was stated

in 1959. A d-dimensional random variable is denoted by X = (X1, ..., Xd) on Rd with the

joint distribution function F = (F1, ..., Fd) and density f = (f1, ..., fd). Thereby, Fi are the

univariate marginal distribution functions and the fi the densities respectively. The copula

associated to X is a distribution function C : [0, 1]d → [0, 1] with uniform margins in [0, 1]

that satisfies for all x = (x1, . . . , xd) ∈ Rd

F (x) = C (F1(x1), . . . , Fd(xd)) . (4.43)

According to [Mai12, p. 16], if F1, . . . , Fd are continuous, then C is unique. Conversely, if C is

a d-dimensional copula and F1, . . . , Fd are univariate distribution functions, then the function

F defined via equation (4.43) is a d-dimensional distribution function.
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With respect to the densities, the copula is denoted by c : [0, 1]d → [0,∞) and the

following relation is given

f(x) = c (F1(x1), . . . , Fd(xd)) ·
d∏

i=1

fi(xi). (4.44)

Observe that the transformation of the marginals from xi to Fi(xi) for the arguments

of the copula distribution function C and copula density function c corresponds to the PIT

transformation that is described in chapter 4.6.2.

Before a first copula is constructed, an intuitive description of equation (4.43) is given.

On the left side of equation (4.43), the joint, i.e. high-dimensional, distribution function F

is given. On the right hand side, all one-dimensional marginal distribution functions Fi are

evaluated and arguments of the copula C that is describing the dependence structure. By doing

this, the information of the high-dimensional distribution F is split up into two subparts. The

behavior of all variables considered individually is given by Fi. Obviously, this does not carry

any information about how two different variables Xi and Xj for i 6= j influence each other.

Subsequently, the copula C is applied. Due to the characteristics of the PIT transformation

and equation (4.40), the margins of Fi(Xi) are all uniform on [0, 1] and therefore do not carry

any information about the distribution of Xi. Finally, equation (4.43) shows that the entire

information about the dependence structure is then incorporated in the copula distribution

function C. This separation of the information content of the joint distribution into marginals

and dependence structure is the central idea aspect of the copula theory.

Equation (4.43) can be used to construct the copula C in case all inverse marginal CDFs

F−1
i and the joint CDF F exist and are known. For u = (u1, . . . , ud) ∈ [0, 1]d, the following

relation is then true

C(u) = F (F−1
1 (u1), . . . , F

−1
d (ud)). (4.45)

Equation (4.45) allows to easily construct copulas from joint and marginal distributions.

As a first example for a copula given within this thesis, the normal or Gaussian copula in

two dimensions can be constructed based on the multivariate normal distribution of equation

(4.37) by

C(u) = C(u1, u2) = Φ0.5(Φ−1(u1),Φ
−1(u2)). (4.46)

Thereby, the two-dimensional normal CDF with (Pearson) correlation ρ = 0.5 and mean

vector (0, 0) is denoted by Φ0.5 and the marginal standard normal CDFs are denoted by Φ.

Taking equation (4.46), equation (4.44), and equation (4.37) together, the density of the

bivariate Gaussian copula can be given as

c(u1, u2) =
1√

1 − ρ2
· exp

(
2 · ρ · Φ−1(u1) · Φ−1(u2) − ρ2 · (Φ−1(u1)

2 + Φ−1(u2)
2)

2 · (1 − ρ2)

)
,

(4.47)

see [Mey13, p. 2405].
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The resulting CDF of the Gaussian copula can be seen in Figure 4.10 and the resulting

PDF in Figure 4.11.
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Figure 4.10: Two-dimensional Gaussian copula with correlation 0.5 - cumulative distribution

function
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Figure 4.11: Two-dimensional Gaussian copula with correlation 0.5 - probability density

function

The introduced Gaussian copula can be used for a further intuitive explanation of the

copula theory. In Figure 4.12, the theorem of Sklar for densities stated in equation (4.44) is

given for the two-dimensional case d = 2. In this example, a multivariate normal distribution

with mean µ and covariance matrix Σ, see chapter 4.5.2, are given as follows
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µ =


0

0


 ,Σ =


0.25 0.3

0.3 1


 . (4.48)

It is well known in statistics that also the two marginal distributions follow a normal

distribution, more precisely, X1 ∼ N(0, 0.25) and X2 ∼ N(0, 1), see [Fah+06, pp. 357-360].

By definition, the prevailing copula in this example is a Gaussian copula with correlation

ρ =
0.3√

0.25 · 1
= 0.6. (4.49)

In Figure 4.12 it is illustrated that the density of the joint distribution f(x1, x2) can be

calculated as the product of marginal distribution densities f1(x1) and f2(x2) and the value of

the copula density c(F1(x2), F1(x2)) after transforming x1 and x2 using the PIT, see chapter

4.6.2. The data point x highlighted in Figure 4.12 is given by

x =


x1

x2


 =


−0.1

−0.6


 . (4.50)

The higher to value of the joint density f(x1, x2), the more likely it is to observe a value in

a small area around (x1, x2) (observe however that P(X = (x1, x2)) = 0, see equation (4.26)).

The same value c(F1(x1), F2(x2)) · f1(x1) · f2(x2) represents how likely it is to observe x1 and

x2 individually, weighted by how likely it is to observe them as a pair.
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Figure 4.12: Interpretation of Sklar’s theorem
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Taking this together with equations (4.27) and (4.29), directly results in a further copula

type. In these equations it is stated that X1 and X2 are independent if and only if f(x1, x2) =

f1(x1) · f2(x2) is true, i.e. c(F1(x2), F1(x2)) = 1 for all x1, x2 ∈ R, which is the independence

copula.

Various two- and high-dimensional copulas exist. These different copulas are often referred

to as copula families. In appendix D.2, the bivariate copula families available in the software

utilized within this thesis are given.

Within this thesis, only the main information about the copula theory is summarized. For

any further mathematical details it is referred to [KJ11, Joe15, KC06] and references therein.

4.7.2 Rotating Bivariate Copulas

A bivariate copula is given by its density c : [0, 1]2 → [0,∞). Due to the symmetries of the

cube [0, 1]2, three further copulas are naturally induced by rotation. This leads to the concept

of rotated copulas, see e.g. [Mai12, p. 207] 1.

The definitions for the anticlockwise rotations c90, c180, c270 : [0, 1]2 → [0,∞) are given as

follows

c90(u1, u2) = c(u2, 1 − u1), (4.51)

c180(u1, u2) = c(1 − u1, 1 − u2), (4.52)

c270(u1, u2) = c(1 − u2, u1). (4.53)

In Figure 4.11, a Gaussian copula was given and the same copula is rotated anticlockwise

by 90 degrees and illustrated in Figure 4.13.

4.7.3 Copula Contour Plots

In the mathematical theory of copula it is very important to differentiate three variable domains.

The on-board recording of QAR data and the calculation of measurements, see chapter 3,

are performed in the so-called X space. Here, the variables have their specific units, e.g.

knots for speeds. Using the PIT transformation, see equation (4.40), it follows that applying

the associated one-dimensional distribution function F to the data in the X space leads to

uniformly distributed data on [0, 1]. This motivates to call this space the U space, see chapter

4.7.

Furthermore, the one-dimensional CDF of the standard normal distribution is denoted by

Φ. Applying Φ−1 to a distribution in the U space transforms this distribution into the so-called

Z space. A summary of this chain of domains and the associated transformations is given by

X
F

⇄
F −1

U
Φ−1

⇄
Φ
Z. (4.54)

1Observe that this reference requires a further condition called exchangeability. The definition given in this

thesis is more general.
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Figure 4.13: Two-dimensional Gaussian copula rotated 90 degrees with correlation 0.5 -

probability density function

Within the statistical community, a graphical visualization of copulas in the Z space has

become standard, the copula contour plot. Thereby, the contour lines of the copula density

transformed to the Z space are plotted. More precisely, the contour lines of

g(z1, z2) = c(Φ(z1),Φ(z2)) · φ(z1) · φ(z2) (4.55)

where φ is the density of the standard normal distribution are considered.

In the Z space, the interpretation of the dependence structure is easier because it can be

directly compared to the two-dimensional normal distribution. Observe the important aspect of

the copula theory, which is the invariance of copulas with respect to marginal transformations,

see e.g. [Joe01, p. 13].

For the particular case of the two-dimensional Gaussian copula, ellipses occur in the contour

plot and for the case of independent random variables, concentric circles are shown. Any

deviations from concentric circles indicates a prevailing dependence. In particular, the copula

can describe dependence structures limited to specific variable domains which can also be

illustrated in the copula contour plot.

In Figure 4.14, an exemplary copula contour plot for the Gaussian copula with correlation

0.5 is illustrated. Therein, the contour lines of the function given in equation (4.55) with the

copula density c being the density of the Gaussian copula are illustrated, see equation (4.47).

Observe the different scales on both axes of Figure 4.14 that occur due to the transformation

to the Z space. In this scenario, a so-called negative dependence is present, i.e. small values

of z1 lead to high values of z2. Due to the characteristics of the utilized transformations, see

equation (4.54), this also results in the same behavior in the X space, i.e. small values of x1

lead to high values of x2. Analogously, it can be seen that high values of x1 lead to small

values of x2.
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Figure 4.14: Copula contour plot example

4.7.4 Tail Dependence Coefficients

A copula is capable of describing the prevailing dependence characteristics more flexible than

basic measures of dependence such as the correlation coefficients, which average over the

domain. In safety analyses of FDM, a special focus is on the observation of incidents and

accidents, which are rare events. In these scenarios, specific variables are often very high or

low, in other words close to the boundary of the copula.

The copula theory provides dedicated measures to investigate the dependence behavior

close to the boundaries, see [Joe15, p. 62] and [KJ11, p. 92]. These are called lower and

upper tail dependence coefficients.

For a random vector X = (X1, X2) with marginal distribution functions F1 and F2, the

lower tail dependence is defined as

λL = lim
uց0

P
(
X2 ≤ F−1

2 (u)|X1 ≤ F−1
1 (u)

)
(4.56)

and the upper tail dependence as

λU = lim
uր1

P
(
X2 > F−1

2 (u)|X1 > F−1
1 (u)

)
. (4.57)

Due to the characteristics of the probability measure P, see chapter 4.1.2, the tail depen-

dence coefficients attain values in the interval [0, 1]. Considering the copula contour plot of

Figure 4.14, the lower tail dependence coefficient describes the dependence behavior in the

lower left corner of the figure. Furthermore, the upper tail dependence coefficient contains
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information about the upper right corner. In general, these values are not easy to calculate.

However, if the copula C is given, the calculations are simplified to

λL = lim
uց0

C(u, u)

u
(4.58)

and

λU = lim
uր1

1 − 2 · u+ C(u, u)

1 − u
. (4.59)

In the following, the relation for λU given in equation (4.59) is proven.

λU = lim
uր1

P
(
X2 > F−1

2 (u)|X1 > F−1
1 (u)

)

= lim
uր1

P
(
X2 > F−1

2 (u) ∩X1 > F−1
1 (u)

)

P(X1 > F−1
1 (u))

= lim
uր1

1 −
[
P
(
X1 ≤ F−1

1 (u)
)

+ P
(
X2 ≤ F−1

2 (u)
)

− P
(
X2 ≤ F−1

2 (u) ∩X1 ≤ F−1
1 (u)

)]

1 − P
(
X1 ≤ F−1

1 (u)
)

= lim
uր1

1 −
[
P (U1 ≤ u) + P (U2 ≤ u) − F

(
F−1

1 (u), F−1
2 (u)

)]

1 − P (U1 ≤ u)

= lim
uր1

1 − [u+ u− C(u, u)]

1 − u

= lim
uր1

1 − 2 · u+ C(u, u)

1 − u
(4.60)

The values λL and λU can be calculated using the function BiCopPar2TailDep of the R package

VineCopula [Sch+18].

Within theoretical statistics, the two remaining corners, i.e. the upper left and lower right

corners, are mostly not described by dedicated correlation coefficients. However, in the FDM

analyses conducted in the following chapters, this is also required. To obtain the two remaining

coefficients, the concept of copula rotation by 90 degrees and a subsequent application of the

same function BiCopPar2TailDep is used within this thesis.

4.7.5 Vine Copulas

A vine copula is a specific high-dimensional copula that is constructed from several two-

dimensional copulas. The name “vine” copula originates from visualizations of the pairwise

combinations, see [KJ11, p. 1]. Connecting two variables represented as nodes in a graph and

continuing this for several hierarchical levels gives illustrations that resemble grape vines, see

Figures 4.15 and 4.16.

As a first step, the fundamental idea of vine copula constructions is given. In equation (4.8),

the concept of conditional probabilities was introduced for two events. The same concept can

also be defined for density functions. For a random vector X = (X1, X2), the joint density
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is denoted by f and the marginal density functions by f1 and f2 respectively. For all x2 ∈ R

with f2(x2) > 0, the conditional density f1|2 : R → [0,∞) is defined by

f1|2(x1|x2) =
f(x1, x2)

f2(x2)
(4.61)

and describes the distribution of X1 given that X2 = x2. A multiplication of the equation

with the denominator gives

f(x1, x2) = f1|2(x1|x2) · f2(x2). (4.62)

Figure 4.15: Early vine copula visualization,

source: [BC02, Figure 2, p. 1041]

Figure 4.16: Vine 2

On the left side of equation (4.62), the two-dimensional density f is indicated. On its

right side, there is the product of two one-dimensional densities given. In other words, the

concept of conditioning provides the capability to construct higher-dimensional distributions

based on the product of several lower-dimensional ones. This idea applied for copulas leads to

the concept of vine copulas.

In the following, the pair copula decomposition in three dimensions is given, see also

[Mai12, pp. 186-191]. For random variables X1, X2, and X3, a recursive factorization of their

joint density f is given by

f(x1, x2, x3) = f3|12(x3|x1, x2) · f2|1(x2|x1) · f1(x1). (4.63)

Using the theorem of Sklar given in equation (4.44), it can be shown that

f3|12(x3|x1, x2) = c13;2(F1|2(x1|x2), F3|2(x3|x2); x2) · f3|2(x3|x2). (4.64)

2Created by Mrsiraphol - Freepik.com
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Furthermore,

f2|1(x2|x1) =
f12(x1, x2)

f1(x1)

=
c12(F1(x1), F2(x2)) · f1(x1) · f2(x2)

f1(x1)

= c12(F1(x1), F2(x2)) · f2(x2),

(4.65)

and analogously for f3|2(x3|x2) = c23(F2(x2), F3(x3)) · f3(x3).

This results in the pair copula decomposition in three dimensions given by

f(x1, x2, x3) =c13;2(F1|2(x1|x2), F3|2(x3|x2); x2)

· c23(F2(x2), F3(x3)) · c12(F1(x1), F2(x2))

· f1(x1) · f2(x2) · f3(x3).

(4.66)

Observe that the decomposition in equation (4.66) is not unique as the partitioning in equation

(4.63) is not unique.

For the following formal introduction of vine copulas, the mathematical notion of trees is

required. The given introduction is based on [KC06, p. 86]. A tree T = (N,E) with nodes

N = {1, 2, . . . , n} and edges E, where E is a subset of unordered pairs of N without a cycle

allowing for a unique path between any pair of nodes. A cycle is a sequence a1, . . . , ak of

k > 2 elements of N such that

{a1, a2}, {a2, a3}, . . . , {ak−1, ak}, {ak, a1} ∈ E.

The graphical representation of Figure 4.15 is further developed into the notion of regular

vines, see [KC06, p. 93] from where the following definition is taken. V is called regular vine

in d dimensions if the following conditions are satisfied:

1. V = (T1, . . . , Td−1)

2. T1 is a connected tree with nodes N1 = {1, . . . , d} and edges E1. For i = 2, . . . , d− 1,

Ti is a connected tree with nodes Ni = Ei−1

3. For i = 2, . . . , d − 1, if {a, b} ∈ Ei, i.e. a = {a1, a2} and b = {b1, b2} are nodes of Ti

connected by an edge of Ti, then exactly one of the ai equals one of the bi.

Condition 3 is referred to as proximity condition and ensures that if there is an edge e

connecting a and b in Tj , j ≥ 2, then a and b must share a common node in Tj−1, see [Mai12,

p. 192].

The following description of the assignment of copulas to edges is based on [Mai12, pp. 192-

195] and requires some further notation. For e ∈ Ei define

Ae =
{
j ∈ N1

∣∣∣∣ ∃ e1 ∈ E1, . . . , ei−1 ∈ Ei−1 : j ∈ e1 ∈ . . . ∈ ei−1 ∈ e
}
. (4.67)

56



Chapter 4: Mathematical Preliminaries

Ae is called the complete union of e. The conditioning set of an edge e = {a, b} is

De = Aa ∩ Ab (4.68)

and the conditioned sets are given by

Ce,a = Aa \De, Ce,b = Ab \De, Ce = Ce,a ∪ Ce,b. (4.69)

As an exemplary edge of Figure 4.15, e = {{1, 2}, {2, 3}} is chosen. Its complete union

is given by Ae = {1, 2, 3}. Furthermore, De = {2} and subsequently Ce = {1, 3}. The

connection between tree sequence and bivariate (conditional) distributions can now be given

according to Definition 5.2, Part (4) of [Mai12, p. 194]. For each e = {a, b} ∈ Ei with

i ∈ {1, . . . , d− 1}, the associated bivariate copula Be is given with respect to the conditional

distribution of XCe,a and XCe,b
given XDe = xDe. Furthermore, Be does not depend on xDe.

With this notation, the edge e = {{1, 2}, {2, 3}} of Figure 4.15 is associated to the bivariate

copula describing the random variable (X1, X3)|X2, which can be shortened to 1, 3|2 how it

is illustrated in Figure 4.15.

The number of required two-dimensional copulas to describe a d-dimensional vine copula

is
(d− 1) · d

2
.

The regular vine V describes how the two-dimensional copulas need to be combined to

obtain a valid d-dimensional vine copula. According to Figure 4.15, the nomenclature of the

edges is based on the structure x, y|z with z being none, one or more values. Observe that

the level of conditioning, i.e. the number of values in z, is rising with the tree level. For any

further details, the reader is referred to [KC06, p. 94] and references given therein.

Every edge e in V is associated with a bivariate copula Be. The set of all these chosen

two-dimensional copulas is often denoted by B(V). Furthermore, the chosen parameters for

all bivariate copulas is are referred to as θ(B(V)).

Within mathematical statistics, research in the area of vine copulas is of high interest and

various current activities are ongoing. The focus of this thesis is not the enlarge the theory

of copulas or vine copulas but to apply the provided concepts for the development of FDM

algorithms to generate benefit for the safety management of an airline. Therefore, only the

main concepts of the theory have been summarized. For any further details, the reader is

referred to [KJ11, Joe01, Joe15, KC06] and references therein.

4.7.6 Copula Estimation

For an advanced modeling of dependence structures inside FDM data, copula models are

estimated for given data. Thereby, bivariate copula models and high-dimensional vine copula

models described in chapter 4.7.5 are utilized. Within this chapter, theoretical aspects for this

estimation are briefly described and references to associated statistical references are given.

In chapter 4.7.8, the software for the estimation of copula models utilized within this thesis
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and developed by the group around Prof. Claudia Czado is described. The following two

fundamental tasks for the estimation of copula models based on given data in the U space,

see chapter 4.7.3, exist:

1. Estimation of bivariate copula models including the copula family and associated pa-

rameters.

2. Estimation of the regular vine V for vine copula models, which is a sequence of linked

trees, see chapter 4.7.5.

The first step of the estimation of bivariate copulas based on given two-dimensional data

in the U space is the selection of the copula family and its parameter(s). In statistics, various

copula families are proposed, see e.g. [Joe01, pp. 139-168], and also the capabilities of the

utilized software need to be taken into account, see chapter 4.7.8.

For the estimation of the parameter in a chosen copula family, maximum likelihood es-

timation is used. For the selection of the pair copula family, standard model comparison

criteria such as Akaike Information Criterion (AIC) and Bayesian Information Criterion (BIC)

are utilized, see e.g. [Joe01, p. 297] and [Mai12, p. 225].

For the maximum likelihood estimation, a statistical model P given by densities {f(·, θ), θ ∈
Θ} with Θ ⊆ Rk is considered, see [CS11, pp. 83-84]. All available bivariate copula models

provided by the software utilized within this thesis, see chapter 4.7.8, are summarized in ap-

pendix D.2 and describe the statistical model P. The function L : Θ × Rd → [0,∞) given

as

L(θ,x) = f(x, θ) (4.70)

is called likelihood function of the parameter θ ∈ Θ for the observation x ∈ Rd. If the function

θ̂ : Rd → Θ such that

L(θ̂(x),x) = max{L(θ,x) : θ ∈ Θ} (4.71)

exists for all x ∈ Rd, θ̂(X) is called the maximum likelihood estimator of θ.

The estimation of the tree sequence of the regular vine V = (T1, . . . , Td−1) is a current

topic of statistical research and several model selection strategies exist. One of them is

the maximization of the sum of absolute empirical Kendall’s taus, see [Diß+13, p. 17] and

chapter 4.6.3. Thereby, the trees (T1, . . . , Td−1), see chapter 4.7.5, are sequentially defined

as maximum spanning trees between the nodes with respect to the empirical Kendall’s taus.

An alternative model selection of the vine copula is the sequential Bayesian model selection

of V, see [GC15] for any further details.
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4.7.7 Sampling from Copulas

For the subsequent chapters of this thesis, the ability to sample from bivariate copulas and

multivariate vine copulas is essential. A simplified structure of some of the proposed algorithms

can be given as

1. Gather the flight data measurements of interest, see chapter 3

2. Capture their dependence structures by a (vine) copula estimation

3. Analyze the (vine) copula directly or generate samples (e.g. virtual flights) of it to

conduct further analyses

In [Mai12], sampling algorithms for the different classes of copulas are given. The task is

that the generated two- or higher-dimensional samples follow the same dependence structures

compared to the original data that is represented in the copula.

For the development of FDM algorithms, functions to estimate and handle copulas and

vine copulas as well as to sample from them are required. In the following chapter, an overview

of the utilized software packages and their main functions relevant for this thesis is given.

4.7.8 Utilized Copula Software

The standard programming language at the Institute of Flight System Dynamics (FSD) is

MATLAB 3. All tools implemented by the Flight Safety working group to manage and analyze

recorded FDM data has been developed as MATLAB apps, classes or functions. For the copula

analyses carried out in this thesis, the programming language R [Tea17] has been used. In

particular, the R package VineCopula [Sch+18] developed by the team around Prof. Claudia

Czado, Associate Professor of Applied Mathematical Statistics at TUM is utilized.

To use the VineCopula R package [Sch+18] inside the Flight Safety MATLAB environment,

an integration of the required R functions is necessary. Since no direct application of R

functions in MATLAB was available, a workaround using the programming language Python

has been chosen and developed.

Python, which is like R open source, provides an excellent interface to R via the open

source rpy2 package. In addition, an interface between Python and MATLAB is available so

that Python functions can be called from MATLAB. These two interfaces have been used so

that finally, the R functions of VineCopula can be directly called within MATLAB.

The function of the R package VineCopula [Sch+18] to estimate bivariate copulas based

on given data is called BiCopSelect. The input of this function is the data given in the U space,

see chapter 4.7.3. Additionally, various optional input parameters, for example a selection of

considered copula families can be added, see the manual of [Sch+18]. The output is an object

of the R class BiCop and consists of the selected bivariate copula and its estimated parameters.

3MATLAB, R2017b, MathWorks
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Estimation strategies of copulas are described in chapter 4.7.6. An overview of the available

bivariate copula families is given in appendix D.

To fit a d-dimensional vine copula, the function RVineStructureSelect of the same R

package is chosen. The input is again the available data in the U space, see chapter 4.7.3 and

also for this function various optional input parameters are possible, see [Sch+18]. The output

is the fitted regular vine copula, see chapter 4.7.5 and it belongs to the R class RVineMatrix

consisting of several components. The regular vine V is represented by a d × d matrix as

presented in [Diß+13]. The two-dimensional copulas characterizing the vine copula are also

directly fitted and denoted by B(V). Every non-trivial two-dimensional copula is characterized

by its copula family (number) and by one or two copula parameters θ(B(V)). In total, the

bivariate copulas are represented by a d× d integer matrix indicating the selected family, the

first parameters of any bivariate copula are summarized in a d × d matrix and all second

parameters characterized by another d× d matrix.

For the analyses conducted in this thesis sampling algorithms are required, see chapter

4.7.7. Generating samples from a bivariate copula is performed by the command BiCopSim

of [Sch+18]. For the sampling from multivariate vine copula models the function RVineSim

of [Sch+18] is utilized. In both cases, the input is given by the required number of samples

and the information about the bivariate copula given by the R class BiCop or the information

about the vine copula given by the R class RVineMatrix. Also for these functions, various

optional input parameters are possible, see [Sch+18]. The output of both functions BiCopSim

and RVineSim are the generated random samples.

4.8 Subset Simulation

One of the main goals of the Flight Safety working group at the Institute of Flight System

Dynamics (FSD) is to estimate accident probabilities of an airline operation, see chapter 2.5.

Thereby, the concept of subset simulation is used and the details have been described by Ludwig

Drees in [Dre17] and [WDH14] The subset simulation algorithm itself was initially developed

in [AB01] and the algorithm is commonly used in engineering risk assessment [AW14].

The goal of this chapter is to summarize the subset simulation methodology, which consists

of two fundamental parts. The description is based on [AW14, pp. 157-165], [AP16] and

[Höh+18b]. In chapter 5.4.3 of this thesis, vine copula dependence structures are integrated

into the subset simulation to generate more realistic results.

Consider a random vector X = (X1, . . . , Xd) that uniquely describes a response Y =

h(X) ∈ R. Without loss of generality, the components of X are assumed to be Independent

and Identically Distributed (I.I.D.) standard normal. The resulting joint density of X is denoted

by φ and yields

φ(x) =
d∏

i=1

1√
2 · π · exp

(
−1

2
· x2

i

)
. (4.72)

Dependent non-Gaussian random vectors can be constructed from Gaussian ones by proper
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transformation, see [AP16, p. 67] and [Dev86]. More information regarding the I.I.D. property

of recorded flight data can be found in [Höh+17a].

A critical region, that is representing an accident or incident region in terms of Flight

Safety, is denoted by CR ⊆ Rd 4. In this setting, the accident probability can be calculated

as

P(CR) =
∫

x∈CR
φ(x) dx, (4.73)

see equation (1) of [AP16].

“Subset Simulation is based on the idea that a small failure probability can be expressed as

the product of larger conditional probabilities of intermediate failure events, thereby potentially

converting a rare event simulation problem into a sequence of more frequent ones. A general

failure event is represented as CRb = {Y > b} = {x ∈ Rd : h(x) > b}, where Y is a suitably

defined ‘driving response’ characterizing failure and b ∈ R.”, see [AP16, p. 68] 4. It is assumed

that the computational effort of determining h(x) for a sample x of X is high such that no

direct Monte Carlo simulation with estimation of P(CR) is feasible.

The underlying idea of subset simulation is that not a direct estimation of P(CR) is

conducted, but the critical region CR is artificially increased to CRb for which the estimation

of P(CRb) is simpler. In an iterative process using the concept of conditioning, the subset

simulation algorithm decreases the size of CRb until the critical region CR is reached. It is

assumed that for a sufficiently large bf ∈ R it is given that CR = CRbf
.

To conduct a subset simulation, two further values have to be defined. The number of

samples to estimate P(CRb) for subset CRb is denoted by N ∈ N \ {0}. The level probability

p0 ∈ (0, 1) describes the percentage of the most severe samples of every subset CRb that

are considered as seeds for the next subset CRb′. Based on these seeds, the samples of the

subsequent subsets are generated. The details of this process are given in chapter 4.8.2. N

and p0 have to fulfill the relations

Nc = p0 ·N ∈ N and (4.74)

Ns =
1

p0

∈ N. (4.75)

As p0 describes the percentage of samples for the next subset, Nc is the number of samples

considered as seeds. Also in the next subset, N samples shall be generated in total and so Ns

samples are created for one individual seed. Combining all this, the relation

N = Nc ·Ns (4.76)

is satisfied.

In Algorithm 1, a summary of the subset simulation methodology is given. With slight

modifications of the nomenclature, this summary is taken from [Höh+18b].

4Observe that in [AP16] the symbol F is used for the critical region. To avoid unnecessary synonyms, the

symbols CR and CRb are used within this thesis and [Höh+18b].
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Step 1: Monte Carlo simulation to obtain x0
1, . . . ,x

0
N

Step 2: Calculate h (x0
1) , . . . , h (x0

N), select p0 ·N seeds X1
seeds, and define

intermediate failure event CRb

Step 3: Iterative conditional sampling

while not sufficient flights in CR available for i = 1, 2, . . . do
Step 3.1: Conditional sampling of xi

1, . . . ,x
i
N according to seeds X i

seeds and

Algorithm 2 or Algorithm 3

Step 3.2: Calculate h (xi
1) , . . . , h (xi

N) and define intermediate failure event CRb

Step 3.3: Select p0 ·N seeds X i+1
seeds associated to CRb

end

Step 4: Calculate accident probability based on all subset samples
Algorithm 1: Subset simulation, source: [AP16], [Höh+18b]

The two fundamental parts of the subset simulation, the initial Monte Carlo step and the

subsequent Markov Chain Monte Carlo iterations are described in the following chapter 4.8.1

and chapter 4.8.2.

4.8.1 Monte Carlo Step

The first step of the subset simulation algorithm is a basic Monte Carlo (MC) simulation,

see e.g. [RK17]. Since the density f of X is known (according to the previous chapter, X

is multivariate normally distributed with zero means and the identity matrix as covariance

matrix), it is possible to generate N samples x0
1, . . . ,x

0
N distributed according to X. The

consideration of more general dependence structures represented in vine copula models in

subset simulation is a contribution of this thesis and is described in chapter 5.4.3.

The function h is applied to x0
1, . . . ,x

0
N to obtain the associated y values y0

i = h(x0
i ) ∈ R.

These values yi can be sorted in ascending order and renamed such that b0
1 ≤ b0

2 ≤ . . . ≤ b0
N .

To define the seeds for the next subset, a threshold b1 = b0
N−Nc

is defined. All values above

that border b0
N−Nc+1 ≤ . . . ≤ b0

N are considered as seeds for the next step. The original values

of X that correspond to b0
N−Nc+1 ≤ . . . ≤ b0

N are denoted by X1
seeds.

In Figure 4.17 (a) and (b), this first step of the subset simulation is illustrated. The

right side figures describe the set {(P(h > b0
k), b0

k) , k = 1, . . . , N}. In Figure 4.17 (b), the

procedure to define the threshold b1 from N and Nc is visualized. In Figure 4.17 (c) and

(d), the iterative generation of the samples of the following subsets is visualized, see chapter

4.8.2. A color coding is used to highlight the samples of interest of the specific sub-figure

of Figure 4.17. The samples generated in the Monte Carlo step are given in green and its

associated response values b are given in red. Seeds for the next subset iteration, see chapter

4.8.2, are given in magenta and light-blue respectively. Samples generated by the iterative

sampling process of the following subsets are highlighted in orange and dark-blue respectively.

The samples considered in previous steps are indicated in gray color.
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Figure 4.17: Subset simulation overview, source: modified version of Figure 3 of [SW16,

p. 6290] and Figure 5.1 of [AW14, p. 160]

4.8.2 Iterative Markov Chain Monte Carlo Steps

Every iteration i = 1, 2, . . . of this step of the subset simulation starts with a set of given

seeds X i
seeds. According to the introduced notation, the number of seeds is |X i

seeds| = Nc.

Based on these seeds, a Markov Chain Monte Carlo (MCMC) sampling process to generate the

samples of the next subset is started [AW14, p. 152]. In chapter 5.4.3, vine copula dependence

structures are integrated in this step as a contribution of this thesis.

In the implementation of the subset simulation that is jointly developed and used at the

Institute of Flight System Dynamics (FSD), two sampling methods for these MCMC steps are

utilized and described in the following. Both algorithms for the conditional sampling assume

that a single seed xseed = (xi
seed,1, . . . , x

i
seed,d) ∈ X i

seeds is given which is distributed according

to the target conditional distribution, i.e.

φ(x|CRb) = P(CRb)
−1 · I(x ∈ CRb) · φ(x), (4.77)

see equation (3) of [AP16] and equation (4.61) of chapter 4.7.5. The indicator function

I(x ∈ CRb) returns 1 for x ∈ CRb and 0 otherwise.
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Both conditional sampling algorithms are designed to generate the next samples xi
1, . . . ,x

i
N

which are again distributed according to φ(x|CRb). Due to the indicator function I in equation

(4.77), for k = 1, . . . , N also xi
k ∈ CRb is given. This property of the conditional sampling is

important to achieve the iterative process towards the critical region CR described in chapter

4.8.

Metropolis Algorithm

The first possibility for the MCMC sampling is the Metropolis algorithm [Met+53], to be

precise the independent component Metropolis algorithm. This essentially means that the

acceptance decision based on the associated ratio is conducted for any dimension individu-

ally (see [AW14, p. 152]). In the existing implementation at FSD, the considered proposal

distribution is symmetric. A further developed version of the Metropolis algorithm also for

non-symmetric proposal distributions is the Metropolis Hastings (MH) algorithm [Has70] that

is not further discussed within this thesis.

The summary of the Metropolis algorithm given in Algorithm 2 is again taken from

[Höh+18b] with slight modifications of the nomenclature.

Step 1: Generate z
′

= (z
′

1, . . . , z
′

d)

for j = 1, . . . , d do

·) Generate sample ξj from the proposal distribution given by its density p∗
i (·; Xi

seeds)

and Uj uniformly on [0, 1]

·) Calculate rj =
φ(ξj)

φ(xi
seed,j

)

·) if Uj ≤ rj then

z
′

j = ξj

else

z
′

j = xi
seed,j

end

end

Step 2: Check failure

if z
′ ∈ CRb then

xi
k = z

′

(Accept)

else

xi
k = xseed (Reject)

end

Algorithm 2: Independent-component MCMC, source: [AP16], [Höh+18b]

Limiting Algorithm

The second option for the MCMC process is the Limiting algorithm proposed in [AP16, p. 68].

Therein it is mentioned that first applications of the algorithm without a theoretical reasoning

were given in [Pap+15].
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The above mentioned Metropolis Algorithm 2 uses acceptance ratios evaluated indepen-

dently for each component and rejects a significant number of samples in high dimensions

[AP16, p. 68]. Eventually, this leads to an efficiency decrease. On the other side, the Limiting

algorithm is more efficient and requires a smaller amount of generated samples. Due to this,

the Limiting algorithm is also referred to as infinity sampling or Subset-∞, see [PA15, p. 2].

Furthermore, the Metropolis algorithm requires a proposal distribution p∗
i (·; ·). It reveals

that the results of the subset simulation is insensitive of the type of the proposal distribution

[AB01, AW14]. This was the starting point in [AP16, p. 68] to develop a new algorithm for

which no choice of proposal distribution is necessary anymore. In [AP16] the correctness and

benefits of this new algorithm are described and optimal parameters of the considered Gaussian

distribution are chosen.

The Limiting algorithm based on [AP16] is summarized in Algorithm 3. This description

is taken from [Höh+18b] with slight modifications of the nomenclature.

Step 1: Generate z
′

= (z
′

1, . . . , z
′

d) as a Gaussian vector with independent components,

with mean vector (a1 · xi
seed,1, . . . , ad · xi

seed,d) and variances (s2
1, . . . , s2

d)

Step 2: Check failure

if z
′ ∈ CRb then

xi
k = z

′

(Accept)

else

xi
k = xseed (Reject)

end

Algorithm 3: Limiting algorithm, source: [AP16], [Höh+18b]

The value aj for j = 1, . . . , d is a factor for the jth component of the seed xi
seed,j. The

product aj · xi
seed,j is the mean of the normal distribution relevant for the sampling of z

′

j. The

associated variance is s2
j . Furthermore, information and suggestions for the choice of aj and

s2
j are given in [AP16] and [PA15] that are followed within this thesis and [Höh+18b]. In

particular, [AP16, pp. 68-70] requires aj =
√

1 − s2
j and states a lower limit for aj near 0.6

and an upper limit for sj near 0.8 in specific conditions. For any further details, the reader is

referred to [AP16].

Based on the requirement aj =
√

1 − s2
j and the considerations within [AP16, pp. 68-70],

sj was chosen to be sj =
√

0.4 ∼ 0.63 for the joint infrastructure developed at the institute

FSD. This eventually results in aj =
√

0.6 ∼ 0.77.

4.9 Outlier Detection in Machine Learning

Outlier detection is an active field of research in statistics and machine learning. Starting with

the available regression analysis at the beginning of the 19th century, data points far away from

the regression model could be identified [RL03]. Nowadays, outlier detection can be considered

as part of Machine Learning gaining more and more attention in data analytics. “Another use
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of machine learning is outlier detection, which is finding instances that do not obey the general

rule and are exceptions. The idea is that typical instances share characteristics that can be

simply stated and instances that do not have those characteristics are atypical. In such a case,

we are interested in finding a rule that is as simple as possible and covers as large a proportion

of our typical instances as possible”, [Alp14, p. 9].

The outlier detection method that is used within this thesis is Fuzzy clustering by Local

Approximation of MEmberships (FLAME) [FM07]. At the Flight Safety working group at FSD,

this method was first implemented in [Sch13] 5. In chapter 5.5, the summarized concepts are

applied to detect safety critical scenarios in FDM. This chapter and chapter 5.5 are based on

[HH18], where the author of this thesis is the lead author.

Machine learning techniques can be categorized in supervised, unsupervised and reinforced

learning techniques, [Sch13, p. 2], see also Figure 4.18.

Figure 4.18: Machine learning overview, based on Figure 1.2 of [Sch13, p. 3]

Unsupervised learning does not require external knowledge but the algorithm itself detects

patterns [Alp14, p. 11]. Thereby, the aim is to discover regularities in the data. In particular,

the obtained information can be used to detect data points deviating from the regularity show-

ing an extraordinary behavior potentially interesting from a safety management perspective.

An alternative to this is supervised learning, which requires external knowledge in terms of

labeled data. Based on this categorization, a model is trained to map the data to the different

labels. This model can subsequently be used for predictions of the label of a new data point

[Alp14, pp. 21-47].

Reinforced learning is a combination and extension of unsupervised and supervised learning

[Sch13, p. 3]. According to [Alp14, p. 13], reinforced learning considers not only a single

action that is often not important, but a sequence of actions. In particular, the policy of the

sequential actions, i.e. the underlying strategy decides their suitability. “In such a case, the

machine learning program should be able to assess the goodness of policies and learn from

past good action sequences to be able to generate a policy” [Alp14, p. 13]. One example

of reinforced learning mentioned in [Alp14, p. 13] is a robot navigating in an environment

5Within [Sch13], an illustrative video has been created by Max Schwenzer and uploaded to vimeo:

https://vimeo.com/78348227. Availability of the link verified by the author of this doctoral thesis on

15.05.2018.
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searching for a goal location. Thereby, the robot can move in one of various directions. After

a number of trial runs, the robot should learn the correct sequence of actions to reach the

goal state from an initial state, considering potential time and further constraints.

The FLAME algorithm that is used within this thesis belongs to the class of unsupervised

learning algorithms [Sch13, p. 19]. It consists of three main steps [FM07, p. 3]:

1. Extraction of local information and identification of Cluster Support Objects (CSO)

2. Assignment of fuzzy membership by local approximation

3. Construction of clusters from the fuzzy memberships

4.9.1 Identification of Cluster Support Objects

Suppose that a set of data points x1, . . . ,xn ∈ Rd is given. First, the k-Nearest Neighbors

(KNN) [SJ89] algorithm is used to identify the neighbors of every data point. For any data

point xi and i = 1, . . . , n, the k-nearest neighbors are denoted by xi
knn1

, . . . ,xi
knnk

. Fur-

thermore, the Euclidean distance of xi to its neighbors is denoted by di
knn1

, . . . , di
knnk

. These

distances can be averaged for any data point

d̄i =
1

k
·

k∑

j=1

di
knnj

(4.78)

and furthermore transfered into a density

ρi =
max

j=1,...,n
d̄j

d̄i

≥ 1, (4.79)

see [Sch13, p. 19].

A CSO is a data point which has a higher density than all of its k-nearest neighbors. These

CSOs can be considered as root of clusters that are defined by the FLAME algorithm. Besides

the clusters that are represented by the CSOs, there is one further category which are the

outliers. If the density of a specific point is less than a specific value, the data point can be

considered as outlier. In [FM07, p. 11], this threshold is given by the mean of all densities

minus two times standard deviation of all densities. However, this is not unique and alternative

thresholds can be chosen.

Obviously, the number of clusters c (including the category of outliers) depends on k. The

higher k, the less clusters are generated, see [FM07, p. 11]. For the calculations performed

within this thesis, the value of k is set to k = 3.

4.9.2 Assignment of Fuzzy Membership

The term fuzzy describes that any data point does not necessarily need to be assigned only to

one cluster (defined by a particular CSO) but can be assigned to multiple clusters with certain
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ratios. As described in chapter 4.9.1, the number of clusters c corresponds to the number of

CSOs plus one for the category of outliers. The fuzzy membership for a data point xi with

i = 1, . . . , n is denoted by mi,j ≥ 0 for j = 1, . . . , c. It is assumed that for all i = 1, . . . , n

c∑

j=1

mi,j = 1. (4.80)

Initially, every data point is assigned with the equal fuzzy membership to any cluster

mi,j =
1

c
. (4.81)

Subsequently, the fuzzy memberships mi,j are iteratively updated until a specific convergence

criteria is satisfied. This update for data point xi consists of a linear combination of the fuzzy

membership of the k-nearest neighbors

mi,j,iteratively =
k∑

l=1

(wl ·mi
knnl

,j). (4.82)

The weights wl essentially describe the distance between data point xi to its considered

neighbor xi
knnl

. The nearer a point, the higher its influence on the membership. According

to [Sch13, p. 21], the weights of point xi specifically to cluster j are defined by

wl =

1

di
knnl

∑k
o=1

1

di
knno

. (4.83)

The denominator of equation (4.83) simply assures the condition

k∑

l=1

wl = 1. (4.84)

This iterative update is conducted until a certain convergence criteria is fulfilled. In the current

implementation, this is met if the maximum difference between the old and the updated values

mi,j,iteratively is smaller than 0.1% [Sch13, p. 22]. In addition to that a maximum of 10,000

iterations is defined.

4.9.3 Construction of Clusters

At this step, every data point x1, . . . ,xn ∈ Rd is assigned to the available c clusters with

certain membership ratios. According to [FM07, p. 3], there are two possibilities for the final

step of the FLAME algorithm. The first one is to simply assign the data point xi to the cluster

with the highest fuzzy membership

arg max
j=1,...,c

mi,j. (4.85)

Alternatively, a membership threshold is chosen and xi assigned to any cluster for which

the fuzzy membership value exceeds the threshold [FM07, p. 12]. The first option has been

chosen for the current implementation at the FSD institute, see [Sch13, p. 21].
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4.9.4 Outliers and Interpretation of the Density

In chapter 5.5, the FLAME algorithm is applied for FDM to detect scenarios outstanding

from a safety perspective. Thereby, the densities ρi that are assigned to a data point xi,

see equation (4.79), are considered. In general, data points with a low density show a more

unusual behavior with respect to the other data points. As mentioned in chapter 4.9.1, once

the density is lower than a specific threshold, the data point is referred to as outlier.
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Chapter 5

Dependence Analysis of Flight Data

Measurements

The goal of this chapter is to present algorithms that beneficially utilize statistical dependence

structures in the area of FDM, in particular applied to flight data measurements, see chapter

3. In the following chapter 6, the developed concepts are applied and the results presented.

5.1 Verification of Basic Statistical Properties in Flight

Data Monitoring

For statistical operations, it is crucial that specific mathematical requirements are fulfilled

to obtain reasonable results. In cases where these requirements are not satisfied, wrong

conclusions can be drawn. A selection of amusing examples for this is given by [Vig15] and

one of them is illustrated in Figure 5.1. The (Pearson) correlation coefficient, see chapter

4.6.1, for the data Nicolas Cage film appearances and number of people who drowned by

falling into a swimming pool is given by 67%, [Vig15, p. 174]. Even though the utilized

data carries this information and the two graphs of Figure 5.1 coincide remarkably well, the

statement itself is obviously absurd.

A trivial requirement for any statistical analyses is the number of data points available. In

the example of Figure 5.1, the number of data samples is simply too small so that the obvious

incorrect correlation is a matter of coincidence. Unfortunately, in statistics there is no clearly

defined limit of a lowest required number of data points for a specific operation. In some

statistical references, a rule of thumb for the minimal number of data points for a specific

operation is indicated (e.g. a minimum of 30 data samples is suggested for the estimation of

the (1 − α) - confidence interval for arbitrary distributions, see [Fah+06, p. 390]).

Besides a required minimal number of samples, the property Independent and Identically

Distributed (I.I.D.) is central in statistics. Within the mathematical theory, this property

is carefully checked and verified. In applications of statistical tools, these requirements are

often not verified, but (consciously or not) assumed to be fulfilled. Within this section, the
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Figure 5.1: Spurious correlation [Vig15, p. 174]
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Aircraft Type Maximum Landing Weight (MLW)

A319neo 63.9 tons

A320neo 67.4 tons

A321neo 79.2 tons

Table 5.1: Maximum Landing Weight (MLW) of Airbus A320neo family aircraft [Air17a]

I.I.D. property is examined from a FDM perspective. The content was initially published in

[Höh+17a] and related to [Bia16] and [Kne15].

The concept of independent random variables was introduced in chapter 4.4. In [Höh+17a],

the independence property was considered for operational FDM data. The QAR data directly

recorded in the aircraft is given as time series. Therefore, this data contains a time dependence

in almost any case. Consider the recording of Barometric Altitude, see Figure 2.7, at a specific

time point t seconds. In case no data error exists at or close to t, the altitude at t− 1 seconds

and t+ 1 seconds will be very close to the altitude at t. This illustrates that the altitude data

recorded in the aircraft is (time) dependent.

For flight data measurements, two different perspectives have to be carefully distinguished.

First, the dependence characteristics between the measurements at several time points can

be considered, which is one of the main topics of this thesis. In general, dependence struc-

tures between measurements exist. The second perspective reflects the dependence between

different flights. According to [Höh+17a, p. 5], it can be assumed that measurement data for

different flights can be considered as independent.

The second property of the I.I.D. characteristic is being identically distributed, which is

in the following described for flight measurements. The property requires that all the obser-

vations, i.e. flight measurements, are associated to the same probability measure. This is a

strict requirement and not always fulfilled. Consider the example of a given Maximum Landing

Weight (MLW) for aircraft of the A320 family (compare [Höh+17a, p. 5], for this thesis the

MLW values have been updated). In Table 5.1, the MLW for different aircraft of the Airbus

A320neo family are given, see [Air17a].

It is assumed that during an FDM analysis, the measurement Landing Weight at Touch-

down of Airbus A320neo family aircraft is analyzed. In case the investigation involves data

from all aircraft types of Table 5.1, the considered landing weight data can obviously not be

identically distributed. Landing weights of A319neo aircraft are considerably lower compared

to A321neo and the induced probability measures do not coincide.

This problem can be solved by conducting the analysis individually for any aircraft type.

The hierarchical structures resulting from further classifications and the associated hierarchical

analyses are further reflected in chapter 5.5. The required categorization level to achieve the

property of being identically distributed strongly depends on the measurement itself. For

example, the measurement Remaining Available Flight Time at Touchdown Considering the
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Fuel Quantity given in Minutes of Flight Time can be seen as independent of the aircraft type

while the measurement Remaining Fuel On-Board at Touchdown is significantly different for

a Boeing 737 and a Boeing 747.

Alternative to a further categorization, (linear) models can be applied to transfer the given

data into data that is distributed identically, see chapter V of [Höh+17a, p. 6]. Furthermore,

these transformations are also described in detail in [Bia16] and [Kne15] and are not further

discussed within this thesis.

One possibility to test whether the given data fulfills the property of being identically

distributed is the Kolmogorov Smirnov test, see chapter IV of [Höh+17a]. Within this thesis,

the test and its application is explained in chapter 5.2.2.

5.2 One-dimensional Distribution Fitting

The ability to fit one-dimensional distributions to measurement flight data is important for the

Flight Safety working group for two main applications. First, the predictive analysis framework

developed at the Institute of Flight System Dynamics (FSD) requires descriptions of the

statistical behavior of contributing factors as distributions, see chapter 2.5. Second, according

to the theorem of Sklar, see equation (4.43), the one-dimensional marginal distributions are

necessary for the transfer of the data to the uniform space U , compare equation (4.54).

Concepts allowing distribution fitting are summarized within this section and subsequently

tools that help to assure a sufficient quality of the fits are discussed.

5.2.1 Fitting Strategies

For the scope of this thesis it is sufficient to handle continuous distributions. The fitting

algorithms have been added to the IT system of the Flight Safety working group in the scope

of [Dre17]. A detailed description of the fitting process is given in the same reference [Dre17,

pp. 128-136].

Continuous Distributions

Intuitively, the distribution that is the closest to the given data can be considered as the best

fit and this distribution is to be identified. Therefore, a type of distance measure between the

data and the distribution candidates is necessary. Very common in statistics are the criteria

AIC and BIC. In [Dre17, pp. 131-134] a good overview of the available measures is given.

The chosen measure for the fitting algorithm is the Integrated Quadratic Distance (IQD)

dIQD, see [TGG13, pp. 526-527] and [Dre17, p. 134]. For two distributions given by their

distribution functions F1 and F2, the IQD is given by

dIQD(F1, F2) =
∫ ∞

−∞
(F1(t) − F2(t))

2 · w(t) dt. (5.1)
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Thereby, the function w is a weighting function that allows to increase the influence of the

distances between data and distributions in specific domains, e.g. the boundary area of the

considered variable. In the utilized algorithm at the Flight Safety working group, this function

is set to 1, i.e. w(t) = 1 for all t ∈ R.

Kernel Density Estimation

Kernel Density Estimation (KDE) is a method to fit one-dimensional distributions to data and

is historically based on [Ros56] and [Par62]. The description of this section is mainly based

on [Fah+06, pp. 100-101]. KDE is a generalization of the idea of histograms. Instead of

simply counting the occurrences of data in an interval, a kernel function surrounds every data

point. For applications of the KDE method, various options of kernel functions are common,

see Figure 5.2.

Normal Kernel
Epanechnikov Kernel
Box Kernel
Triangle Kernel

-3 -2 -1 0 1 2 3
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Figure 5.2: Different kernels for Kernel Density Estimation (KDE)

For given data x1, . . . , xn ∈ R and for a non-negative kernel function K that integrates

to 1, the kernel density estimate KDE of a density f at x given with observations x1, . . . , xn

is defined as

fKDE(x) =
1

n · h ·
n∑

i=1

K
(
x− xi

h

)
, x ∈ R. (5.2)

The value h > 0 is called bandwidth and also strongly influences fKDE, see [Fah+06,

p. 101]. For the implementation at the Flight Safety working group at FSD, the MATLAB
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5.2 One-dimensional Distribution Fitting

function fitdist and normal kernels are used. By default, fitdist chooses an optimal bandwidth

h for the given data.

Continuous Distributions covered by the Fitting Algorithm

The distribution fitting algorithm developed in the scope of [Dre17] and implemented at the

Flight Safety working group utilizes a set of continuous parametric distribution families that

are available in MATLAB 1. An overview of these distribution families is given in appendix D.

Truncation Based on Technical and Logical Barriers

In chapter 3.5, the concept of technical and logical barriers for flight data measurements was

described. Within this chapter, the same idea is considered for the truncation of distributions.

The integration of this concept into the Flight Safety IT environment at FSD was performed

in the scope of this thesis.

Many distributions assign a probability to values in the entire observation domain. One

example is the normal distribution, see equation (4.34) and Figure 4.3. Since the normal

density is getting arbitrarily small but never attains 0, there is a minor risk that a sampling

process based on this distribution generates data that is exceeding technical or logical barriers

of the considered measurement.

To avoid unrealistic samples, these barriers are collected in a database part of the Flight

Safety IT infrastructure and the fitted distributions are truncated based on them, i.e. the

distribution is set to 0 beyond the barriers. To fulfill the condition that the area below a

density is 1, see equation (4.25), the truncated distribution needs to be normalized.

An additional advantage of this truncation is that erroneous measurement data are handled

and their negative effect limited.

As an example, the measurement Duration of the First Braking of the Landing Aircraft is

chosen. As a duration, the time should be positive, on the other hand side it can occur that

the pilots initialize a short first braking to check whether the prevailing runway friction allows

sufficient deceleration and then release the brakes again. Taking both together, the fitted

distribution assigns a considerable probability to negative duration values, see Figure 5.3.

After introducing a suitable lower limit of 0 s for this particular measurement, the distri-

bution does not further consider negative values, see Figure 5.4.

In both Figures 5.3 and 5.4, further information about the fitted distributions are given.

In both cases, a kernel distribution was selected by the fitting algorithm. With respect to the

quality assurance, two indications are given in the figures. One is the result of the Kolmogorov

Smirnov test and the other is the fitting quality measure. These are discussed in detail within

the next section 5.2.2. At the end of this chapter it is just mentioned that due to the truncation,

the result of the Kolmogorov Smirnov test changes from Fail to Pass and the fitting quality

measure is slightly increased.

1MATLAB, R2017b, MathWorks
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Fitted Distribution: Kernel

Result of Kolmogorov Smirnov Test: Fail

Fitting Quality Measure: 32.2
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Figure 5.3: Continuous distribution fitting without truncation

5.2.2 Fitting Quality Assurance

The goal of the Flight Safety working group is to set up an IT environment to handle and

analyze big amounts of recorded flight data in an academic environment. To achieve this,

the proportion of automated analyses needs to be maximized and required manual user input

limited as much as possible. These characteristics are similar for programs to analyze aviation

data on a big scale such as the ASIAS program by the FAA in the US, the Data4Safety project

of EASA and the Horizon2020 research project SafeClouds.eu, where TUM is a consortium

member.

As described in chapters 2.5 and 4.7, fitting one-dimensional distributions is essential for

the concept developed by the Flight Safety working group in general and for an application of

the copula dependence concepts in particular.

While the process of fitting one-dimensional distributions is described in chapter 5.2.1, the

verification of a suitable quality of the fitting is considered in this chapter. The overall goal is

to assure that the selected fit of a probability distribution represents the data characteristics

sufficiently.

Kolmogorov Smirnov Test

This statistical test verifies whether a given set of data x1, . . . , xn ∈ R is following an assumed

distribution F , see e.g. [CS11, p. 96]. Historically, the Kolmogorov Smirnov test is based on
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Figure 5.4: Continuous distribution fitting with truncation

[Kol33] and the reference [Mas51] is used as the main source for the description within this

thesis. For the implementation in MATLAB 2, the function kstest has been used with the

significance level α = 0.05. The distribution F utilized for this test is the one generated by

the fitting algorithm introduced in chapter 5.2.

The Kolmogorov Smirnov test is a so-called non-parametric goodness of fit test [Mas51,

p. 68]. The Empirical Cumulative Distribution Function (ECDF) that is directly induced by

the data is essential and compared to an assumed distribution. The ECDF Fn for n I.I.D.

ordered observations x1, . . . , xn ∈ R is given by

Fn(x) =
1

n

n∑

i=1

I[−∞,x](xi) (5.3)

for x ∈ R. Thereby, I is the indicator function and returns 1 if the argument is within the

associated domain and 0 otherwise.

For the Kolmogorov Smirnov test, the distances between the two distributions are con-

sidered. Depending on the level of significance of the test and the number of data samples,

special thresholds for the maximal distances are chosen. The test is passed if the ECDF is

everywhere within specific thresholds, see Figure 5.5.

In statistical terms, this means that the test statistics Dn for a considered distribution

2MATLAB, R2017b, MathWorks
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function is given by

Dn = sup
x∈R

|Fn(x) − F (x)|. (5.4)

The Kolmogorov Smirnov test is passed if Dn is smaller than a threshold dα(n) that

depends on the significance level α and the number of samples n

Dn < dα(n). (5.5)

Empirical Cumulative Distribution Function (ECDF)

Upper threshold

Lower threshold

Assumed distribution

dα(n)

Figure 5.5: Kolmogorov Smirnov test principle, source: Figure reproduced based on Figure

1 of [Mas51]

According to statistical theory, Dn converges to 0 if n → ∞. Assuming the null hypothesis

of the Kolmogorov Smirnov test that the data x1, . . . , xn ∈ R origins from the assumed

distribution F , further considerations of the convergence for
√
n·Dn (using advanced statistical

concepts such as the Brownian bridge) reveal convergence to the Kolmogorov distribution

which is independent of F , see [MTW03]. The thresholds dα(n) can be defined as quantiles

of the Kolmogorov distribution.

In [SH06, p. 338], the thresholds dα(n) for the case of n > 35 are summarized. Within

this thesis, these thresholds are summarized in Table 5.2.

For any further details of the test, it is referred to [Mas51, pp. 68-72] and [SH06, pp. 337-

339].

The result of the Kolmogorov Smirnov test is integrated into the IT environment of the

Flight Safety working group and illustrated in Figures 5.6 and 5.7.
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5.2 One-dimensional Distribution Fitting

Thresholds dα(n) Significance level α

1.037/
√
n 0,20

1.138/
√
n 0,15

1.224/
√
n 0,10

1.358/
√
n 0,05

1.517/
√
n 0,02

1.628/
√
n 0,01

1.731/
√
n 0,005

1.949/
√
n 0,001

Table 5.2: Thresholds of the Kolmogorov Smirnov test for n > 35, source: [SH06, p. 338]

Fitted Distribution: Generalized Extreme Value

Result of Kolmogorov Smirnov Test: Pass

Fitting Quality Measure: 73.4
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Figure 5.6: Kolmogorov Smirnov test result - first case

The two figures contain several information. The measurement considered in Figure 5.6 is

Ground Speed at Touchdown for approximately 1,700 flights and the values are illustrated as

a histogram. The continuous distribution that was fitted to the data based on the concepts

introduced in chapter 5.2.1 is indicated in red. In the upper right corner, further information

about the distribution fitting process is summarized.

First, the type of the fitted distribution is indicated. In Figure 5.6, a Generalized Extreme

Value (GEV) distribution is chosen for the ground speed measurements according to the
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concepts described in chapter 5.2.1. In the next line, the outcome of the Kolmogorov Smirnov

test is displayed. In Figure 5.6, the test was passed. Intuitively, this corresponds to the visual

impression that the fitted distribution describes the data well. Finally, information about a so

called Fitting Quality Measure (FQM) is indicated, which is 73.4 in this case. The details of

that measure are given in the subsequent chapter.
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Figure 5.7: Kolmogorov Smirnov test result - second case

At the end of this chapter, another dataset with a fitted distribution representing a lower

quality fit and a failed Kolmogorov Smirnov test is given in Figure 5.7. The considered mea-

surement is QNH Setting at Touchdown and the histogram does not show a steady behavior.

The distribution fitting process revealed a KDE described in chapter 5.2.1 as most suitable,

however, the Kolmogorov Smirnov test fails. In Figure 5.7, the reason for this failure of the

Kolmogorov Smirnov test is illustrated by the significant differences of the histogram bars

to the estimated Kernel density in specific domains. In this example, the number of data

points n is given by n = 1, 605. For the chosen α = 0.05, Table 5.2 indicates a threshold

dα(n) = 1.358/
√

1, 605 = 0.03. Evaluating Dn for this example based on equation (5.4) results

in Dn = 0.08. Since Dn = 0.08 > 0.03 = dα(n), the Kolmogorov Smirnov test fails due to

the condition given in equation (5.5).

This indicates that the characteristics of the measurement data are not sufficiently captured

by the chosen distribution. One reason for this undesired situation is that the underlying data

do not fulfill the statistical requirements presented in chapter 5.1. The bi-modality illustrated

in Figure 5.7 is an indication that the underlying data might not be identically distributed.
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5.2 One-dimensional Distribution Fitting

To avoid this problem, the data can be partitioned into sub-quantities that are individually

analyzed, see chapter 5.1.

Fitting Quality Measure

The goal of this chapter is to characterize the quality of the performed fitting of distributions.

Within the context of this thesis, distributions are fitted in various occasions. Fitting one-

dimensional distributions is important to consider characteristics of the contributing factors

of a specific incident model, see chapter 2.5. In addition, it is also a required first step for

the characterization of the dependence structure using copulas, see equation (4.43). The

estimation of the copula itself is again nothing else than a fitting of a distribution, in two or

potentially higher dimensions. The theorem of Sklar given in equation (4.43) then combines

the marginal distributions together with the copula to the joint distribution. Due to these

different dimensions, the fitting quality measure presented in this chapter shall be applicable

to any of the considered distributions in an arbitrary dimension.

Mathematical theory provides tools to estimate the suitability of statistical distributions,

however, these mostly offer relative statements. This means that these values can be helpful

to find the best suitable distribution for a specific case, however, do not carry an overall

information about how well the distribution fits to the considered data. Two examples for such

a metric are the Akaike Information Criterion (AIC) and the Bayesian Information Criterion

(BIC). The AIC is widely used in statistics and the original papers of the development and

applications are summarized in [Aka+98].

In the setting of this thesis, a global Fitting Quality Measure (FQM) is desired. This mea-

sure shall take values between 0 and 100, 0 meaning a completely inappropriate fit and 100

indicating an excellent fit. One possible implementation that has been developed and inte-

grated into the Flight Safety IT environment within this thesis utilizes the k-Nearest Neighbors

(KNN) algorithm, [Alt92]. A similar method using the KNN algorithm for goodness-of-fit tests

has been proposed in [EHY18] for manifolds, i.e. more general mathematical objects. Further-

more, the methodology is related to the concept of scan statistics, which is dealing with the

clustering of randomly positioned points, see e.g. [GPW10].

Within this thesis, the idea for the two-dimensional case is illustrated in Figures 5.8 and

5.9. It is supposed that two categories of data are given, symbolized by circles and stars and

it is important that the number of data in both categories coincide. In the following, the

homogeneity of the mixture of those two categories is investigated.

This is realized by an analysis of the k neighbors of a certain number of stars. Both Figures

5.8 and 5.9 illustrate the investigation of the k = 4 nearest neighbors of a data point assigned

to the star category. In Figure 5.8, the numbers of stars and circles among the k = 4 nearest

neighbors coincide. This corresponds to the intuitive impression that the data points of stars

and circles are homogeneously mixed.

The opposite situation is given in Figure 5.9. Here the characteristics of the two data

categories stars and circles are obviously significantly different. While in Figure 5.8 two of
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Figure 5.8: Fitting quality measure - high quality

the four neighbors of the highlighted star were stars and the remaining two were circles, in

Figure 5.9 all of the four neighbors are stars. This outweighing of the amount the stars in the

neighborhood corresponds to the intuitive impression that the data points of stars and circles

are not homogeneously mixed.

To make a statement about the global homogeneity of the mixture it is obviously not

sufficient to consider the neighborhood of one data point only but the neighbors of several

data points are considered. Based on the collected ratios of neighbors of the two categories,

an overall ratio describing the homogeneity can be derived.

Figures 5.8 and 5.9 describe the idea of the fitting quality measure intuitively. In the

following, the details of the developed function are described. In this context, a certain

number of measurement data together with a fitted distribution are given. The distribution

fitting for the one-dimensional case is described in chapter 5.2 and the fitting of the copula

which together with the marginal distribution leads to the joint distribution is described in

chapter 4.7. The first category of data, i.e. the stars, is given by the measurement data in the

following denoted by C1. The other category C2, i.e. the circles, are generated based on the

chosen distribution. This generation of samples is conducted such that the number of data

points in both categories is the same.

The number of given measurement data, i.e. belonging to category C1, is denoted by n.

The data points of C1 for which their neighbors are considered are referred to as seeds. Their

number is denoted by nSeeds and chosen to be

nSeeds = min(⌈n/5⌉, 100). (5.6)
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Figure 5.9: Fitting quality measure - low quality

In the implementation, the number k for the k-Nearest Neighbors (KNN) algorithm is set to

k = min(2 · ⌊n − 1/2⌋, 10). (5.7)

To avoid problems with the consideration of neighbors for excellent fits, where the numbers

of neighbors from both categories C1 and C2 are approximately similar, k should be even. To

carry out the KNN method in the current implementation, the MATLAB algorithm knnsearch

is used.

Both chosen values of equations (5.6) and (5.7) are not unique and can be modified to

the needs of the specific situation.

The number of neighbors of seed i belonging to C1 is denoted by ni,C1 . For an excellent

fit, ni,C1 is approximately k/2, see Figure 5.8. For poor distribution fits, ni,C1 is significantly

larger than k/2, see Figure 5.9. Therefore, the differences to k/2 are summed for any neighbor

which leads to

dSum =
nSeeds∑

i=1

∣∣∣ni,C1 − k

2

∣∣∣. (5.8)

dSum is a value in the interval [0, nSeeds · k/2]. For a good fit, the value is close to 0, for a poor

fit, it is close to nSeeds · k/2. This can be simply translated into a value between 0 and 100,

see equation (5.9), which is the Fitting Quality Measure (FQM) proposed within this thesis.

FQM =
nSeeds ·

k

2
− dSum

nSeeds ·
k

2

· 100 (5.9)
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Figure 5.10: Boxplot of fitting quality measures

In the example for a low quality fit of Figure 5.7, this measure takes the value 8, which is

significantly lower than 73.4 as in the example of Figure 5.6.

It is important to mention that this fitting quality measure is solely based on the observation

of neighbors of specific data points. Therefore, it can be used in arbitrary dimensions. For

the special case of one-dimensional distributions, it can be used to observe the quality of

marginal distribution fits, as well as for two-dimensional copulas and in higher dimensions for

vine copulas or general joint distributions.

Since the generation of samples contains a random component, the proposed FQM is

probabilistic and can attain different values for a given set of data and the fitted distribution.

In Figure 5.10, a boxplot based on 50 iterations of the fitting quality measure is indicated.

The underlying measurement data and the fitted distribution was the same for every iteration.

The plot consists of a rectangular box, which upper end describes the 75% quantile and the

lower end the 25% quantile. The height of the box is often referred to as Interquartile Range

(IQR). The horizontal line inside the box is the median. The dashed lines contain the FQM

values inside 1.5 · IQR above and below the box. The ends of the dashed lines are referred to

as whiskers. In Figure 5.10, the IQR of the FQM values is approximately 5.

In Figure 5.11 and Figure 5.12, further properties of the FQM are examined. Thereby,

1,000 samples of a normal distribution (with mean equals to 10 and standard deviation equals

to 1), see chapter 4.5.2, are generated and plotted as a histogram in Figure 5.11. Subsequently,

three distributions are fitted to the data and visualized in the same figure. First, a normal
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Figure 5.11: Comparison of fitting quality measures - histogram

distribution is fitted, i.e. the true distribution type that was used for the sample generation.

Second, a Weibull distribution is utilized, see [JM11], and lastly a normal distribution with an

offset is fitted to represent a poor fit. For the distribution fitting of this generic example, the

MATLAB function fitdist has been utilized. In the following, the FQM values of these three

fits are examined.

Due to the probabilistic nature of the introduced FQM, their values have been calculated

twenty times and their values are plotted as boxplots in Figure 5.12.

According to the visual impression given by Figure 5.11, the FQM values for the fitted

normal distribution are in general the highest (see the values of the medians represented by

horizontal lines inside the boxes of Figure 5.12). The fit of the Weibull distribution is also

reasonable which results in high FQM values. However, they are slightly lower compared to the

normal distribution fit, which is the true distribution type. Lastly, the poor fit of the shifted

normal distribution results in considerable lower FQM values, see Figure 5.12.

In equation (5.6) and equation (5.7), values for nSeeds and k are defined. However, this

choice is not unique and alternative options are also possible. In Figure 5.13, different combi-

nations of the parameters nSeeds and k are considered. Again, due to the probabilistic nature of

the proposed FQM, its calculation is repeated 20 times and the results visualized as boxplots.

It can be identified, that the lower the parameters nSeeds and k, the higher the variation of

the FQM values. The reason is that for lower nSeeds and k, less data points are involved in

the calculation of FQM and therefore more variation is possible. Even so the differences of
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Figure 5.12: Comparison of fitting quality measures - boxplots

the FQM values are minor, see Figure 5.13, it is suggested to keep the values for nSeeds and

k fixed. Within this thesis, the values are set as shown in equation (5.6) and equation (5.7).

Together with the outcome of the Kolmogorov Smirnov test, the fitting quality measure

FQM provides various possible formulations of a minimal fitting quality that is suitable for

the specific situation. In the scope of this thesis, a fitted distribution is considered suitable if

either the Kolmogorov Smirnov test is passed, or the FQM attains a value greater than 60.

However, the probabilistic nature of the proposed FQM must not be forgotten.

5.3 Bivariate Dependencies

The goal of this chapter is to analyze dependence structures of pairs of random variables

available in flight data and to enhance FDM algorithms based on the discovered information.

Within this chapter, the theoretical background of the proposed methods are described and

applications are given in chapters 6.1, 6.2.1, and 6.2.

5.3.1 Identification of Unknown Relations

The identification of unknown patterns and relations is a modern topic of research in several

scientific areas, see e.g. [AKC14] and [Sha+12]. Within the scope of this thesis, three methods

to detect unknown relations in FDM data are proposed and described in the following. All
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Figure 5.13: Parameter specification of fitting quality measure

of them use bivariate dependence characteristics, i.e. the investigation of the influence of one

random variable onto another one. As described in chapter 1.4, the identification of unknown

dependence structures in FDM data is one of the main contributions of this thesis.

Comparing Common Correlation Coefficients with Tail Dependence Coefficients

As described in chapter 4.6, various common dependence coefficients exist, which represent

the overall dependence behavior between two random variables, i.e. in the entire parameter

domain. Furthermore, chapter 4.7.4 summarized tail dependence coefficients that describe the

dependence behavior particularly in the boundary areas where the variables get specifically high

or low. Considering all combinations of two variables becoming high and low results in four tail

dependence coefficients. In statistics and especially in the copula theory, often only the two

tail dependence coefficients where both variables are specifically low or high are considered.

However, since the two remaining coefficients are important for the concepts of this thesis,

the IT environment of the Flight Safety working group also considers the two remaining tail

dependence coefficients (for one variable getting particularly low and the other one high). This

is achieved by a consideration of the data [u2, 1 − u1] in the U space (see chapter 4.7.3 for

the terminology) instead of [u1, u2], i.e. using a rotation of the copula which was introduced

in chapter 4.7.2.

The assumption of the first method described in this chapter is that the overall strength of
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the dependence between the variables is known and represented in the common dependence

coefficients. However, there might be unknown dependencies that do not effect the entire

variable domain but only specific areas. In particular, boundary areas are of high interest in

the airline safety management since many accidents can be characterized by specific values

getting extraordinary low or high, see the concept of incident metrics given in chapter 3.4.

In this setting, the identification of unknown relations can be conducted by comparing

the common dependence coefficients, which are values in the interval [−1, 1] and the tail

dependence coefficients, which attain values in the interval [0, 1]. For independent random

variables, the dependence coefficients as well as the tail dependence coefficients attain 0. For

this method, a relation is considered as unknown, if the tail dependence coefficients reveal a

different behavior than represented by the dependence coefficients. One example is that the

dependence coefficients attain values very close to 0 but a tail dependence coefficient value

e.g. greater than 0.2.

This method is integrated in the Flight Safety working group IT environment and can be

automated considering any pair of given variables. The user can define thresholds for the

involved coefficients and subsequently all pairs fulfilling the conditions are presented. The

correlation coefficients are calculated with the MATLAB command corr and for the tail de-

pendence coefficients, copulas are fitted to the data using the R package VineCopula [Sch+17]

and the function BiCopSelect. The fitted lower and upper tail dependence coefficients can

then be calculated by the function BiCopPar2TailDep. As already mentioned above, the two

remaining tail dependence coefficients are calculated by a rotation of the data, and there-

fore also of the copula by 90 degrees, see chapter 4.7.2. Subsequently, the same function

BiCopPar2TailDep can be used for the two remaining tail dependence coefficients.

Maximal Density Ratio of the Prevailing Copula and the Gaussian Copula and Heat

plots

The second method aims to detect situations where the prevailing dependence structure de-

viates from the one of a two-dimensional normal distribution (see chapter 4.5.2) anywhere in

the parameter domain. Again, it is the goal to represent the known and the unknown into

objects with a subsequent comparison of them. For the known, the assumption is taken that

the dependence structure follows a two-dimensional Gaussian copula, see equation (4.46).

This corresponds to the common method for marginal distributions, where without further

verifications, a normal distribution is fitted to the given data. The unknown is represented by

the copula that is again fitted using the function BiCopSelect of the R package VineCopula

[Sch+17]. Observe the similarity to the first method presented above. Also here, any local

anomaly is represented in the flexible design of the prevailing copula, but not in the rigid

modeling of the Gaussian copula that describes the overall behavior of the dependence. These

two copula densities can be compared.

First, the maximal ratio of all their density values in the measurement domain (see equation

(5.12)) can be considered. This value represents how much the prevailing dependence structure
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differs from the Gaussian copula. Maximal ratios close to 1 indicate a close proximity of the

prevailing dependence structures to the Gaussian copula. Values significantly larger than 1

represent a dependence structure different from the Gaussian copula and potentially indicating

effects in specific variable domains relevant for safety management.

Besides the calculation of the maximal ratio in the domain, all ratios can be visualized in a

heat plot for values in the domain. In the IT environment at the Flight Safety working group,

the implementation is designed such that ratios in the proximity of 1 are illustrated in dark

color, while values deviating from 1 are highlighted in bright colors such as red and yellow.

For more intuitive illustrations, the marginal distributions are used for a transformation into

the X space, see equation (4.54) and equation (5.12).

The proposed heat plot is based on the copula contour plot that is discussed in chapter

4.7.3. In the copula contour plot, the contour lines of the function g given in equation (4.55)

are plotted. For the description of the proposed heat plot, g is again stated here.

g(z1, z2) = c(Φ(z1),Φ(z2)) · φ(z1) · φ(z2) (5.10)

In equation (5.10), c describes the copula density function of the prevailing dependence struc-

ture selected by the concepts described in chapter 4.7.6.

The (Pearson) correlation coefficient (see chapter 4.6.1) of the available data transformed

into the Z space (see chapter 4.7.3) is denoted by ρZ . As for the definition of the bivariate

Gaussian copula in chapter 4.7.1, the two-dimensional normal distribution function with mean

vector (0, 0) and (Pearson) correlation ρZ is denoted by ΦρZ
. According to the theorem of

Sklar given in equation (4.44) and the characteristics of the Z space given in chapter 4.7.3,

ΦρZ
(z1, z2) = cGaussCop(Φ(z1),Φ(z2)) · φ(z1) · φ(z2). (5.11)

The ratio observed in the proposed heat plot and its transfer to the X space is given in

equation (5.12).

g(z1, z2)

ΦρZ
(z1, z2)

=
c(Φ(z1),Φ(z2)) · φ(z1) · φ(z2)

cGaussCop(Φ(z1),Φ(z2)) · φ(z1) · φ(z2)

=
c(Φ(z1),Φ(z2))

cGaussCop(Φ(z1),Φ(z2))

=
c(u1, u2)

cGaussCop(u1, u2)

=
c(F1(x1), F2(x2))

cGaussCop(F1(x1), F2(x2))

=
c(F1(x1), F2(x2)) · f1(x1) · f2(x2)

cGaussCop(F1(x1), F2(x2)) · f1(x1) · f2(x2)

=
f(x1, x2)

fGaussCop(x1, x2)

(5.12)

Thereby, x1, x2 ∈ R satisfy Φ(z1) = F1(x1) and Φ(z2) = F2(x2). Due to equation (5.12),

the ratios of the contour lines in the Z space correspond to the ratios of the densities in the X
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space. This allows the interpretation of the ratios in the X space. A ratio for (x1, x2) higher

than 1 indicates that during a sample generation process, the consideration of the selected

copula leads to more samples in the area of (x1, x2) compared to the Gaussian copula. On the

other hand, a ratio smaller 1 leads to less samples close to (x1, x2) for the selected copula.

Illustrating the available measurements in the heat plot allows to compare the different

dependence characterizations represented in the heat plot and their properties in different

domains directly with the data.

Examples for heat plots together with detailed interpretations are given in chapter 6. As

an illustrative example, one heat plot discussed in detail in chapter 6.1 as Figure 6.10, is also

given here as Figure 5.14.
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Figure 5.14: Copula heat plot example

Based on Figure 5.14, the area with f(x1, x2) ≥ fGaussCop(x1, x2), i.e. with a ratio given

in equation (5.12) higher than 1, can be highlighted. As described above, the selected copula

leads to more samples in this marked area compared to the Gaussian copula. This modified

version of the heat plot is given in Figure 5.15.
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Figure 5.15: Copula heat plot example, area with f(x1, x2) ≥ fGaussCop(x1, x2) highlighted

in gray

Relation Plot

Based on the estimated dependence structure and marginal distributions, a functional relation-

ship between two measurements can be given. In this chapter, the mathematical reasoning of

this formula is given.

Considering equation (4.44) for the special case d = 2 gives

f(x) = f(x1, x2) = c(F1(x1), F2(x2)) · f1(x1) · f2(x2). (5.13)

Within this chapter, the behavior of one measurement is observed in case the other measure-

ment is given. In mathematical terms, the concept of conditional distributions f2|1(x2|x1) is

used, see equation (4.61). Using equations (4.61) and (5.13) together gives

f2|1(x2|x1) =
f(x1, x2)

f1(x1)
= c(F1(x1), F2(x2)) · f2(x2). (5.14)

The object of equation (5.14) is a one-dimensional distribution for the variable x2 with a

given and fixed value of x1. To describe this distribution, the mean value and the standard

deviation are calculated and illustrated in the relation plot.

The expected value can be calculated based on equation (4.30) as follows

µ2|1(x1) = E(X2|X1 = x1)

=
∫

R
x2 · f2|1(x2|x1) dx2

=
∫

R
x2 · c(F1(x1), F2(x2)) · f2(x2) dx2.

(5.15)
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In the statistical community, a graphical representation of µ2|1(x1) can be referred to as mean

regression plot. For the standard deviation σ2|1, the following formula is used

σ2
2|1(x1) =

∫

R
(x2 − E(X2|X1 = x1))2 · f2|1(x2|x1) dx2, (5.16)

see [CS11, p. 8].

Once again, examples for the utilization of the proposed relation plots are given in chapter

6. Here, an illustrative and generic example based on Figure 6.5 of chapter 6.1 is given as

Figure 5.16. In this case, a clear negative dependence is illustrated, i.e. a high Variable 1 leads

to a low Variable 2.
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Figure 5.16: Relation plot example

In the relation plots given in the following chapters, the three functions µ2|1(x1) and

µ2|1(x1) ±σ2
2|1(x1) are plotted between the minimum and maximum of the available measure-

ments of Variable 1. If suitable (e.g. if technical and logical barriers allow, see chapter 5.2.1),

the plot of the function µ2|1(x1) is extended beyond the range of the Variable 1 measurements

in gray color.

5.3.2 Discrepancies between Physical Model Outputs and Recordings

As described in chapter 2.5, one of the central motives of the Flight Safety working group at

FSD is to develop physical models of the aircraft motion and to use them for the quantification
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5.3 Bivariate Dependencies

of accident probabilities for airlines. The severity of a particular flight, i.e. the proximity to a

certain accident category, is given by a so-called incident metric, see chapter 3.4, and denoted

by I. The physical incident model calculates the incident metric for a particular flight given

by its so-called contributing factors, see chapter 2.5. This version of the incident metric

calculated by the physical model is referred to as Ĩ. Furthermore, the incident metric can be

calculated using standard FDM algorithms without the application of the physical model and

this version is denoted by Î.

Taking the physical model output Ĩ and the incident metric calculated with standard FDM

algorithms Î together, their discrepancy Ĩ−Î can be calculated. In this setting, the assumption

is reasonable that there is more uncertainty in the physical model and its application compared

to the calculation with standard FDM algorithms for the real conducted flights. According

to chapter 2.5, the physical model is applied to virtual flights represented by its sampled

contributing factors and not only for real flights. To do this, the physical model is revised

based on the discrepancies for the real flights in the following chapter 5.3.3, so that the model

accuracy is increased for its application to the sampled flights which determines the estimated

accident probability.

In case the incident metric I can not be calculated for the real flights due to operational

aspects, the discrepancy can also be considered for attributes slightly modified from the original

incident metric I. This is relevant for the application of the Runway Overrun model with the

incident metric stop margin in chapter 6.2.1. However, it is essential that the values Ĩ and Î
are representing the same characteristic.

5.3.3 Physical Model Revision

The discrepancy Ĩ − Î introduced in the previous chapter 5.3.2 can be calculated for any real

flight available in FDM. Furthermore, due to the assumption made in chapter 5.3.2, a high

absolute discrepancy |Ĩ − Î| indicates a low physical model performance.

In this setting, an analysis of the dependence structures of available flight data measure-

ments, see chapter 3, onto the incident metric discrepancy Ĩ−Î is performed. This is achieved

by estimations of bivariate copula dependence structures and an investigation of them. For this

investigation, the tools described in the previous chapters of this thesis are used and include

the common dependence coefficients, chapter 4.6, the copula contour plots, chapter 4.7.3,

the tail dependence coefficients, chapter 4.7.4, and in particular all tools proposed in chapter

5.3.1. For this dependence analysis, the developed infrastructure at the Flight Safety working

group considers the entire set of measurements available in the IT system.

The proposed analysis can be differentiated into two categories. First, the dependence

analysis of measurements that are already considered as contributing factors by the physical

model onto the discrepancy Ĩ − Î can be conducted. Outstanding dependencies (e.g. tail de-

pendencies and conditions leading to extraordinary high or low Ĩ − Î) can identify weaknesses

of the physical model that can be eliminated by the subsequent physical model revision. An

example for this is given in chapter 6.2.2. Furthermore, the dependence analysis of measure-
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ments not yet represented as part of the physical model can propose potential extensions of

it.

Once outstanding dependencies of a measurement onto the discrepancy Ĩ −Î are detected,

a revision of the physical model is developed that is taking the specific characteristics of the

identified dependence into account. For this physical model revision, no automated process

is possible since the proposed actions of model adaptation are based on the dependence

characteristic. Every revision of the physical model should be followed by a verification that

the discrepancies |Ĩ − Î| could be lowered.

To ensure low discrepancies |Ĩ − Î| and high model accuracies, an iterative process of

calculating discrepancies Ĩ − Î, detecting outstanding dependencies onto the discrepancies,

and physical model revisions is recommended, see Figure 5.17.

Calculating model
discrepancies

Detecting dependencies
from measurements

in- or outside the model
onto discrepancies

Model revision

Figure 5.17: Iterative physical model revision

5.4 High-Dimensional Dependence Structures

Considering pairwise dependencies only is not always sufficient. Aviation accidents can be often

characterized as a chain of events, see. e.g. [Wei+01], and interrelations of these events might

exist among more than two contributing factors represented as measurements. Therefore, a

thorough safety investigation in FDM requires a description of high-dimensional and potential

nonlinear dependence structures of measurements.
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5.4 High-Dimensional Dependence Structures

5.4.1 Safety Critical Conditions

Aircraft accident investigations often reveal that a combination of various factors led to the

accident, e.g. [Wei+01]. The data available in FDM for a particular airline, luckily, (almost)

never contains accidents. However, using the incident metric I, a criticality can be assigned to

any flight even though no incident or accident was present, see chapter 3.4. Within this chap-

ter, high-dimensional dependence structures are used to identify combinations of contributing

factors that lead to critical conditions.

The goal is to analyze the behavior of chosen measurements denoted by X1, . . . , Xd in

case a considered incident metric I gets particularly high or low. Like in chapter 4.8, this

condition is represented by the critical region CR. Once the problem setting is defined and

the data is available, a (d + 1)-dimensional vine copula model, see chapter 4.7.5, is fitted to

all variables, i.e. the chosen measurements X1, . . . , Xd and the incident metric I. For the

analysis phase, statements about the behavior of X1, . . . , Xd in the critical region are desired,

i.e. information about the conditional density

f1,...,d|I(X1, . . . , Xd|I ∈ CR), (5.17)

see equation (4.61).

Since a direct computation of f1,...,d|I can become numerically complex, a sampling process

was chosen in the implementation. Thereby, the user selects one of the following options:

1. Generation of a specific number of samples, i.e. flights

2. Generation of a specific number of samples in the critical region CR

Subsequently, an overview of the means of all samples and samples in CR is given. An

illustrative example of this method is described in chapter 6.3.

The proposed method is implemented in the IT environment of the Flight Safety working

group and the user can select any involved measurement and CR. Thereby, the user can choose

the incident metric I and indicate conditions to define the critical region CR. Alternatively,

the user could define CR using the quantiles of the marginal distribution for the incident

metric FI . For example, CR could be given by the 0.99-quantile (or in case small values of I
are critical, the 0.01-quantile), i.e. that according to the distribution FI , the most critical one

percent of the data is located in the critical region CR.

5.4.2 Visualization of High-Dimensional Dependencies

In addition to the statistical summary of the generated samples discussed in the previous

chapter 5.4.1, two visualization concepts for high-dimensional dependence structures common

in statistics are described in the following. The main reference for this description is [KC06].

Examples of these visualization concepts are given in chapter 6.3.
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Chapter 5: Dependence Analysis of Flight Data Measurements

Spider Plots

In the setting of chapter 5.4.1, a spider plot, also called radar graph, is a visualization of the

Spearman correlation coefficients, see chapter 4.6.2, between the d considered measurements

and the chosen incident metric I. Each measurement corresponds to a ray in the graph and

the center of the plot is chosen to be 0. Onto each ray, the Spearman correlation coefficient

of that specific measurement and I is marked [KC06, p. 187]

This results in a polar plot with d rays where the marked correlation coefficients can be

connected. Since a negative correlation coefficient can lead to undesired overlays of rays, the

absolute values of the Spearman correlation coefficients are used. In case of negative values,

the term “Minus” is added to the description of the ray. If the lines connecting the correlation

coefficients are far from the center, a high correlation is present. Considering the entire plot

gives an intuitive feeling of the dependence structure.

Within this chapter, an exemplary spider plot is given in Figure 5.18. In chapter 6.3, a

spider plot for an application in FDM is given as Figure 6.40 and interpreted.
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Figure 5.18: Spider plot example

97



5.4 High-Dimensional Dependence Structures

CobWeb Plots

A further tool “that enables interactive visualization of a moderately high-dimensional distri-

bution” is the CobWeb plot, see [KC06, p. 191]. In the setting of chapter 5.4.1, the d + 1

variables are represented by d+ 1 vertical lines next to each other. The first line on the left is

associated to the incident metric I and the lines of the d measurements follow on the right.

Each vertical line is scaled from 0 at the bottom to 100 at the top. One flight (a real or

a sampled flight) is represented by its d + 1 values of the measurements and I. After the

PIT transformation which is described chapter 4.6.2, the values are in the interval [0, 1]. This

corresponds to the U space of the copula theory, see chapter 4.7.3.

The d + 1 values of a flight are marked on the corresponding vertical line. The flight

itself is visualized by d lines that are connecting two adjacent points on the vertical lines

associated to the specific flight. Doing this for all available flights gives an impression of the

high-dimensional dependence structure among any of the involved variables.

An exemplary CobWeb plot for variables axa, axb, ca, b, ce, and aint taken from Plate 1

of [KC06] is given in Figure 5.19. Therein, a color coding is introduced in the CobWeb plot,

see [KC06, p. 8]. The data of the first vertical line representing the variable axa is categorized

into four groups and associated to a color (data between 0 and 0.25 is assigned to red, data

between 0.26 and 0.5 is assigned to yellow and so on). Thereby, the negative correlation

between the variables axa and ca is visible, see also [KC06, p. 8].
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Figure 5.19: CobWeb plot example, source Plate 1 of [KC06]
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5.4.3 Integration of Vine Copula Models into Subset Simulation

One of the main goals of the Flight Safety working group is to estimate accident probabilities

of an airline based on recorded FDM data, see chapter 2.5. Thereby, subset simulations are

used and within this thesis, the concept was summarized in chapter 4.8.

The idea and the majority of the content of this chapter were initially published in

[Höh+18b], for which the author of this thesis was the lead author. First considerations

of this idea were conducted in the student theses [Wei15] and [Olm15] that were supervised

by the author of this thesis. A subset simulation implementation that was mainly developed

in [Wan13] and [Dre17] is the basis for the integration of vine copula structures.

In general FDM analyses, not all involved variables are independent and normally dis-

tributed. Therefore, to use subset simulation as given in Algorithm 1 of chapter 4.8, normal

and independent random variables need to be constructed from dependent non-normal ones

by proper transformation and vice versa, see [AP16, p. 67] and [Dev86].

The first required transformation is to remove the dependence structure of a given seed,

see chapter 4.8.2. Subsequently, the proposed sample generation of either Algorithm 2 or

Algorithm 3 of chapter 4.8 is conducted. After that, the dependence structure is again inte-

grated using the second transformation. Finally, the physical model mentioned in chapter 2.5

can be run on the generated samples taking the dependence structures into account and the

seeds for the next subset can be chosen. An overview of the suggested procedure is given in

Figure 5.20.

The first transformation to remove the dependence information from the sample is given

by the Rosenblatt transformation [Ros52]. The definition of the Rosenblatt transformation

is presented here according to [LD09, p. 579]. For a random vector X in Rd, the marginal

distribution functions for i = 1, . . . , d are denoted by Fi. The Rosenblatt transformation TR

of X is given by

TR(X) = (TR
2 ◦ TR

1 )(X) = TR
2 (TR

1 (X)), (5.18)

with transformations TR
1 : Rd → Rd and TR

2 : Rd → Rd given by

TR
1 (X) = U =




F1(X1)
...

Fi|1,...,i−1(Xi|X1, . . . , Xi−1)
...

Fd|1,...,d−1(Xd|X1, . . . , Xd−1)




(5.19)

and

TR
2 (U) = Z =




Φ−1(U1)
...

Φ−1(Ud)


 , (5.20)

where Φ again denotes the distribution function of the standard normal distribution. Observe

that the nomenclature of equation (5.19) and equation (5.20) was slightly modified from
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Definition 7 of [LD09, p. 579] to correspond to the nomenclature used within this thesis,

compare equation (4.54). According to [LD09, p. 579], the transformation TR
1 maps X into

a uniformly distributed random vector over [0, 1]d U with independent copula. This means

that the dependence structure is removed by TR
1 as it is requested for the integration of vine

copula structures into the subset simulation algorithm.

According to [Tor+, p. 1], the Rosenblatt transformation is in general unknown or difficult

to compute in most cases and therefore hardly known for practical applications. Furthermore,

it is a generalization of the well known Nataf transformation [Nat62]. Precisely, when the

considered dependence structure is Gaussian, the Rosenblatt transformation is equivalent to

the Nataf transform, see [LD09] and [Tor+, p. 3]. For vine copula models, the Rosenblatt

transformation can be calculated also for the general, i.e. non-Gaussian case. This is introduced

in [Sch15] and the algorithm is provided in [Sch+18] by the function RVinePIT.

The second transformation is also given in [Sch+18] by the function RVineSim. The

main purpose of this function is to generate samples in the U space, see chapter 4.7.3, that

are taking the dependence structure which is given by the vine copula model into account.

However, the function was designed with an optional argument. This can be an existing

high-dimensional sample with independent components. In this case, RVineSim integrates the

prevailing dependence structure and exactly this is required from the second transformation,

see [Sch+18].

An example regarding the integration of vine copula models in subset simulation and a

comparison with the original subset simulation without this integration is given in chapter 6.4

of this thesis.
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Figure 5.20: Overview of the proposed vine copula integration into subset simulation, source:

Fig. 4 of [Höh+18b]
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5.5 Identification of Safety Critical Scenarios in Filter

Trees

The central goal of this chapter is to detect scenarios with an outstanding safety performance

using outlier detection algorithms that were summarized in chapter 4.9. The underlying flights

of these scenarios show a different behavior compared to flights of other scenarios. This could

be relevant for the safety management of an airline.

The ideas of this chapter have been developed by the author and published in [HH18].

Parts of this chapter and the following sub-chapters are repetitions of paragraphs of [HH18].

Examples of the presented concepts are given in chapter 6.5 of this thesis.

5.5.1 Filter Trees

The characteristics of an airline operation in terms of route network, airports, runways, aircraft

types and more gets very complex and generates many different scenarios. In Figure 5.21 3,

an overview of the global route network is illustrated and gives an impression of its complexity.

Figure 5.21: Global aviation routes, source: https://openflights.org/demo/openflights-

routedb-2048.png 3 and Figure 2 of [HH18]

Using characteristics available in FDM data, the flights of a specific scenario can be easily

filtered from the entire flight list. One selected scenario, for example all flights with a specific

aircraft type to a specific airport, is called a filter. When several filters are considered simulta-

neously, they can be often organized based on their hierarchical structure in a filter tree. For

3Downloaded from https://openflights.org/demo/openflights-routedb-2048.png on Febru-

ary 21st 2018 made available here under the Open Database License (ODbL)

https://opendatacommons.org/licenses/odbl/1.0/.
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example, a certain filter describes all flights to Munich airport EDDM. On the next filter level,

the flights can be further categorized by the arrival runway in EDDM, i.e. 08L, 08R, 26L or

26R. Filter trees are useful for the application of machine learning algorithms such as FLAME,

see chapter 4.9, which is used in this chapter to detect scenarios outstanding from a safety

perspective.

The software developed at the Flight Safety working group is capable of generating filters

and filter trees flexibly. Furthermore, full filter trees can be developed automatically. For

example, any available arrival airport and arrival runway can be considered in a filter tree

and arbitrary many filter levels can be added. Referring to Figure 5.21, filter trees obviously

can get large and highly complex. This justifies the application of powerful machine learning

algorithms to detect outstanding filters that are discussed in chapter 4.9.

5.5.2 Data Assignment and Normalization

The goal of this chapter is to define the data vectors that are the basis for the identification

of safety critical scenarios. One data vector is assigned to any filter in the filter tree.

In chapter 3, the calculation of measurements for individual flights is described. The next

step is to jointly analyze several flights for example characterized by a filter. Depending on

the properties of the specific FDM algorithm, a certain level of filtering of flights is required.

For example, an analysis of the remaining fuel in the aircraft tanks at touchdown given in

minutes of flight time can be considered as independent of any filter and can be combined for

any aircraft type. On the other hand, an analyses of the runway overrun probability depends

on the aircraft type and further characteristics, see Section 9 of [Int14a] as well as [Dre17,

Wan13].

Taking one further step leads to the consideration of filter trees. Thereby, not only a

single filter is considered but a set of several filters organized in the hierarchical structure of a

filter tree, see chapter 5.5.1. Based on these filter trees, calculations can be conducted that

compare different filters with each other.

Due to the hierarchical structure of filter trees, the numbers of flights fulfilling a particular

filter vary significantly for the different tree nodes. It is important that these different numbers

of flights do not falsify the calculations and this needs to be taken into account for the design

of the data vectors. For example, the sum of differences from the Maximal Landing Mass and

the Actual Landing Mass is not suitable since it heavily depends on the number of considered

flights. Alternatively, the average of all these differences can be considered without problems.

To design the data vectors that are associated to any filter, measurements representing the

safety performance are chosen as a first step. Subsequently, the measurements are calculated

for any flight occurring at least once in the filter tree. After that, the distribution of a mea-

surement for a particular filter is statistically described. Within this thesis, the characteristics

mean value and standard deviation of measurements are chosen as well as tail dependence

coefficients between two measurements, see chapter 4.7.4. The collection of all these values

for all measurements gives the data vector.
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Equation (4.78) of chapter 4.9.1 shows that distances between data points are essential

for the identification of outliers. Since the ranges of different measurements are in general

different, a normalization step has to be performed. For example, the Landing Mass of an

Airbus A320 might be 60,000 kg and the approach speed 70 m/s. Furthermore, considering

several flights, the value of the standard deviation is much higher for the Landing Mass such

that eventually this variable will outweigh the approach speed in terms of distances between

data points. Therefore, it is chosen that any component of the data vector considered for the

outlier detection is linearly mapped to the interval [−1, 1]. This mapping is designed such that

the minimal value of a component is mapped to -1 and the maximal value to 1.

5.5.3 Detecting Outstanding Scenarios

The data vectors designed in chapter 5.5.2 are calculated for any filter of the filter tree.

Flights fulfilling a particular filter carry the specific characteristics of that filter in their data

vectors. Subsequently, the FLAME algorithm summarized in chapter 4.9 is applied to detect

the outstanding scenarios.

As described in chapter 4.9.4, the FLAME algorithm assigns a density to any filter in the

filter tree and detects filters considered as outliers. In the example given in chapter 6.5, filters

with the lowest density are further investigated.
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Chapter 6

Applications of Dependence Modeling

for Flight Data Measurements

The goal of this chapter is to apply the concepts developed in chapter 5. The application

with respect to bivariate relationships is in the following applied twofold. On the one side,

dependencies of non-physical nature are investigated. An example for this are dependencies

involving human factors represented in FDM measurements and this is considered in chapter

6.1.

In addition, physical relationships of two measurements are investigated with the goal

to revise the underlying physical incident model, see chapter 2.5. The difference between

the model output and the FDM recordings play an essential role and their dependencies are

considered in chapter 6.2.1. Subsequently, information about these dependencies are used for

the revision of the physical model in chapter 6.2.

In chapter 6.3, high-dimensional dependence models are used to detect safety critical

conditions. Furthermore, these models are integrated into subset simulation in chapter 6.4.

Examples of filter trees and identifications of safety critical scenarios are given in chapter

6.5.

6.1 Identification of Unknown Non-Physical Relations

Within this chapter, the accident category Runway Overrun is considered, for which the Flight

Safety working group has gained broad experience within the last years, see chapter 2.5. The

Landing Buffer δ describes the criticality of an aircraft landing and is determined on-board

before the landing. It is given by a ratio of the Landing Distance Available (LDA) and the

Landing Distance Required (LDR), see Equation (6.1). Detailed information about LDA and

LDR are given in [Dre17, pp. 202-204].

δ =
LDA − LDR

LDA
(6.1)

Equation (6.1) implies that the Landing Buffer δ attains values in the interval [0, 1].
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6.1 Identification of Unknown Non-Physical Relations

Furthermore, the closer the buffer is to 0, the more critical the flight performed, while the

closer to 1, the less critical. Furthermore, it was identified in [Dre17, p. 205], that the criticality

of the specific approach and landing influences the pilot’s landing behavior. Further details

can be found in [Dre17, p. 205].

For the application considered in this chapter, the IT environment of the Flight Safety

working group was used to analyze the dependencies of all available measurements with the

Landing Buffer measurement. Chapter 5.3 outlined that the software is capable to go through

all pairs of variables. In addition, the capability is offered to fix one variable, in this case

the Landing Buffer, and to link only that measurement with any available measurements. By

doing so, a considerable runtime reduction can be achieved.

Before the identified example of an unknown dependence is presented, an illustrative ex-

ample with an obvious dependence is given. Based on the definition of the LDR, see [Dre17,

p. 202], it is clear that it and therefore also the Landing Buffer δ depend on the Landing

Mass. Observe that this example shows a negative example, i.e. the higher the Landing Mass,

the more critical the landing, i.e. the smaller the Landing Buffer. The proposed steps of the

analysis and the visualization are illustrated with this example of a negative dependence.

In Figure 6.1, the histogram and fitting information for the measurement Landing Buffer is

indicated. In Figure 6.2, the same information is given for the measurement Landing Mass. In

both cases, kernel densities are fitted to the data, the Kolmogorov Smirnov tests passed, and

the Fitting Quality Measure (FQM) sufficiently high. Information about distribution fitting

and fitting quality assurance are described in chapter 5.2.

For the interpretation of the dependence structure, the common dependence coefficients,

see chapter 4.6, are indicated in Table 6.1 as a first step. According to their definitions, the

dependence coefficients attain value in the interval [−1, 1]. Table 6.1 shows low negative

numbers. This corresponds to the idea of this example to show a pair with a very clear

dependence.

Table 6.1: Dependence coefficients for Landing Buffer and Landing Mass

Dependence Coefficient Value

Pearson -0.78

Kendall -0.59

Spearman -0.79
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Figure 6.1: Histogram and distribution fitting Landing Buffer
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Figure 6.2: Histogram and distribution fitting Landing Mass

107



6.1 Identification of Unknown Non-Physical Relations

For the copula estimation, the measurement data need to be transfered into the U space,

see chapter 4.7.6. In Figure 6.3, the pair plot of the Landing Buffer and Landing Mass

measurements on the u-scale is given.
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Figure 6.3: Pair plot of measurements Landing Buffer and Landing Mass on the u-scale

Furthermore, the copula contour plot is given in Figure 6.4, see chapter 4.7.3. The fitted

copula is a t copula 1. The t copula is constructed based on the multivariate t distribution in

the same way as the Gaussian copula is defined based on equation (4.45) in chapter 4.7.1, see

also [DM05b, p. 112]. Furthermore, the one-dimensional t distribution is given as an example

in chapter 4.5.2. The precise equation of the t copula density can be found in [DM05b, p. 113].

Observe that the copula contour plot is given for the data in the Z space, so the values

have been transformed into the standard normal space and they are not given in their common

units, see chapter 4.7.3.

As mentioned in chapter 4.7.3, the copula contour plot for independent random variables

show concentric circles. Figure 6.4 show ellipses intensively stretched which do not resemble

circles at all. This again indicates the clear dependence. The negative dependence can be

observed since the contour lines stretch from the upper left to the lower right corner. The tail

dependence coefficients, see chapter 4.7.4, are summarized in Table 6.2.

1With estimated parameters -0.8 and 16.73. The second parameter describes the degree of freedom of the

t copula and it is comparable high. For this high degree of freedom, the t copula gets close to the Gaussian

copula with ρ = −0.78, see Table 6.1. In the remaining of this thesis, the fitted copula and its parameters are

not always indicated.
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Figure 6.4: Copula contour plot of measurements Landing Buffer and Landing Mass

Table 6.2: Tail dependence coefficients for Landing Buffer and Landing Mass

Tail Dependence Coefficient Corner Value

Upper Left 0.18

Upper Right 0

Lower Left 0

Lower Right 0.18

As described in chapter 4.7.4, the tail dependence coefficients attain values in the interval

[0, 1]. The strong negative dependence is represented in the upper left and lower right tail

dependence coefficients attaining 0.18.

The last plot is the relation plot that was introduced in chapter 5.3.1 and for this example

it is given in Figure 6.5. The clear negative dependence between the two measurements can

also be identified in this plot.
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Figure 6.5: Relation plot of measurements Landing Buffer and Landing Mass

With the example of the Landing Buffer and Landing Mass, the dependence characteristics

are explained for a pair with obvious dependence. In the following, a dependence that is not

that obvious shall be identified automatically. Thereby, the method of chapter 5.3 with the

comparison of the common correlation coefficients with the tail dependence coefficients is

used. The chosen conditions are:

• All three common dependence coefficients described in chapter 4.6 are in the interval

[−0.1, 0.1]

• Any of the four tail dependence coefficients summarized in chapter 4.7.4 are in the

interval [0.01, 1]

The identified example is the relation between the Flare Altitude measurement and the

Landing Buffer. The description of the Flare Altitude measurement is given in chapter 3.6.

Following the sequence of the previous example, the histogram of the Flare Altitude is

given in Figure 6.6. The histogram and the distribution fit of the Landing Buffer measurement

corresponds to the previous example and is given in Figure 6.1.
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Figure 6.6: Histogram and distribution fitting Flare Altitude

Although the Fitting Quality Measure (FQM) indicated in Figure 6.6 is 8 and quite low, the

Kolmogorov Smirnov test is passed. The reason for the low FQM is given by the considerable

distance between the fitted density and some of the histogram bars in Figure 6.6. However,

according to the fitting quality assurance strategy described in chapter 5.2.2, sufficient quality

of the distribution fitting is present. In addition to that automated procedure, also the visual

impression of the fit given in Figure 6.6 is sufficiently good.

The common dependence coefficients of the pair Landing Buffer and Flare Altitude are

indicated in the Table 6.3. All three coefficients follow the stated condition of being in the

interval [−0.1, 0.1]. According to these dependence coefficient, almost no dependence is

present.

Table 6.3: Dependence coefficients for Landing Buffer and Flare Altitude

Dependence Coefficient Value

Pearson 0.04

Kendall 0.02

Spearman 0.03

The copula contour plot is given in Figure 6.7. In the lower left corner, a considerable

deviation from circular shapes can be identified. This indicates that for a lower Landing Buffer,

i.e. a more critical landing, the pilots tend to lower Flare Altitudes, which is reasonable.
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Figure 6.7: Copula contour plot of measurements Landing Buffer and Flare Altitude
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Figure 6.8: Empirical contour plot of measurements Landing Buffer and Flare Altitude

In addition to the copula contour plot given in Figure 6.7, the so-called empirical contour
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plot is indicated in Figure 6.8. In the empirical contour plot, not the contour lines associated

to the estimated copula are plotted, see equation (4.55), but contour lines directly induced

by the data in the Z space. These contour lines are obtained by a bivariate kernel density

estimation, see [Nag18], [Sch+18], and chapter 5.2.1 for the univariate case.

The tail dependence coefficients are indicated in Table 6.4 and also fulfill the required

condition that was defined in the automatic search of this pair.

Table 6.4: Tail dependence coefficients for Landing Buffer and Flare Altitude

Tail Dependence Coefficient Corner Value

Upper Left 0

Upper Right 0

Lower Left 0.047

Lower Right 0
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Figure 6.9: Copula heat plot of measurements Landing Buffer and Flare Altitude (given in

meters)

For this pair of variables with a significant dependence in a specific parameter domain, the

copula heat plot introduced in chapter 5.3.1 is presented in Figure 6.9, Figure 6.10, and Figure

6.11. The deviation from circular shapes identified in the copula contour plot in Figure 6.7

can also be identified in the heat plot in Figure 6.9. Furthermore, the heat plot with a colorbar

together with the available measurements is given in Figure 6.10. Various data points get

close to the lower left corner of Figure 6.10, where the exceptional dependence characteristic

captured by the selected copula is present. The gray area highlighted in Figure 6.11, where
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6.1 Identification of Unknown Non-Physical Relations

approximately half of the data points are located, indicates the domain where the selected

copula puts more probability compared to the Gaussian copula, see chapter 5.3.1 and Figure

5.15. This means that in a sampling process, the selected copula leads to more samples in

that region compared to the Gaussian copula.
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Figure 6.10: Copula heat plot of measurements Landing Buffer and Flare Altitude (given in

meters) with interpretations
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Figure 6.11: Copula heat plot of measurements Landing Buffer and Flare Altitude (given in

meters), area with f(x1, x2) ≥ fGaussCop(x1, x2) highlighted in gray
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Finally, the relation plot is given in Figure 6.12. It shows that the expected value for the

Flare Altitude is slightly curved upwards which indicates an increased Flare Altitude for Landing

Buffers higher than 0.5, i.e. for uncritical flights. This property complements the identified

characteristics of Figure 6.7, Figure 6.9, and Figure 6.10 regarding lower Flare Altitude for

more critical Landing Buffers. The reason the information of Figure 6.12 is different compared

to Figures 6.7, 6.9, and 6.10, is that the marginal distributions effect the relation plot, see

chapter 5.3.1. On the other side, Figure 6.7 and Figure 6.9 solely represent dependence

structures without any information about the marginal distributions, see also chapter 4.7.3

and equation (5.12).

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65
0

5

10

15

20

25

30

35

40

45

Landing Buffer [-]

F
la

re
A

lt
it

ud
e

[m
]

µF |B(xB)
µF |B(xB) ± σ2

F |B(xB)
Measurements

Figure 6.12: Relation plot of measurements Landing Buffer and Flare Altitude

6.2 Physical Model Revision Using Bivariate Dependence

Analysis

The goal of this chapter is to use dependence analyses of pairs of measurements described in

chapter 5.3 to revise the physical models mentioned in chapter 2.5.

The idea of the physical model revision can be split up into the following steps:

1. Calculate discrepancies between the physical model outputs and the direct results ob-

tained from standard FDM calculations and detect outstanding dependencies of available

measurements onto them.
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2. Depending on the involved measurements, revise the associated parts and equations of

the physical model.

3. Investigate the influence of the modifications onto the discrepancies.

4. If necessary, iterate this process, see Figure 5.17.

6.2.1 Discrepancies and their Relations

The theoretical concepts of this chapter are presented in chapter 5.3.2. For the application

described here, the physical model and the predictive analyses framework developed in [Dre17]

and summarized within this thesis in chapter 2.5 are used as a basis. The details of the model

necessary to understand the actions performed in the proposed model revision are described.

For any further details of the physical model, the reader is referred to [Dre17] and references

therein.

The considered accident type is Runway Overrun with its incident metric I being the Stop

Margin, see chapter 3.4. The idea of this chapter is to compare the model output Ĩ with the

value that is directly measured in the real operation Î (that is either directly recorded or can

be derived from the recordings with standard FDM algorithms).

To reduce runway occupancy times, aircraft usually do not stop on the runway but vacate

via an exit as early as possible. That is the reason why the Stop Margin cannot be directly

observed in reality. To circumvent this problem, an additional physical model output is used

as an alternative incident metric for this and the following chapters (these alternative incident

metrics are mentioned at the end of chapter 5.3.2). In this case, the alternative incident

metric is the Distance from Touchdown to 80 knots dT D,80kts which can be calculated from

the recorded data (once a proper touchdown time point is detected, see chapter 3.1 and

[Kop+18]).

According to the procedure described in chapter 5.3.2, the physical model output of the

alternative incident metric is denoted by ˜dT D,80kts and the value directly derived from the FDM

data by ̂dT D,80kts. The Model Error e is defined by

e = ˜dT D,80kts − ̂dT D,80kts. (6.2)

The characteristics of the Model Error e are given in the following Table 6.5 and are

the starting point for the physical model revision in the following chapter. Thereby, the

Mean Absolute Error describes the mean of the absolute values |e| of the Model Error e.

Furthermore, the histogram and the distribution fit of the Model Error e are given in Figure

6.13. The requirements of the quality assurance described in chapter 5.2.2 are fulfilled.
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Table 6.5: Model Error e characteristics before the physical model revision

Model Error e Characteristic Value [m]

Mean Error 15.6

Mean Absolute Error 104.9

Median 32.9

Standard Deviation 93.4

To detect outstanding dependencies of a specific measurement onto the Model Error e,

an automated dependence analysis as described in chapter 5.3.2 is conducted. The following

requirement for the tail dependence coefficients is used:

• At least one tail dependence coefficient is in the interval [0.01, 1].
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Figure 6.13: Histogram and distribution fitting for Model Error e before physical model

revision

The discovered variable that fulfills this requirement and is also one of the twelve contribut-

ing factors of the physical incident model is Mean N1 During Deployed Reverser, see chapter

2.5. The correlation coefficients and the tail dependence coefficients (see chapter 4.7.4) are

summarized in Table 6.6 and Table 6.7. For the correlation coefficients, the Kendall’s Tau

and the Spearman correlation coefficient are zero. Only the Pearson correlation coefficient is
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non-zero, however, with 0.08 very small. Comparing this with the tail dependence coefficients

given in Table 6.7 shows that the lower right coefficient is with 0.083 almost equal to the

Pearson correlation coefficient. The remaining tail dependence coefficients are zero. Even so

the values of the Pearson correlation coefficient and the lower right tail dependence coefficient

are similar, the existence of a non-zero tail dependence coefficient is more remarkable com-

pared to the Pearson correlation coefficient of 0.08. For example, the Gaussian copula can

be associated to any Pearson correlation coefficient in [−1, 1], however, the tail dependence

coefficients are always zero, see Example 5.32 of [MFE05, p. 211].

Table 6.6: Dependence coefficients for Model Error e and Mean N1 During Deployed Reverser

Dependence Coefficient Value

Pearson 0.08

Kendall -0.01

Spearman -0.01
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Figure 6.14: Histogram and distribution fitting for Mean N1 During Deployed Reverser before

physical model revision
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Table 6.7: Tail dependence coefficients for Model Error e and Mean N1 During Deployed

Reverser

Tail Dependence Coefficient Corner Value

Upper Left 0

Upper Right 0

Lower Left 0

Lower Right 0.083

The histogram and the distribution fit of the measurement Mean N1 During Deployed

Reverser is given in Figure 6.14. In this case, the Kolmogorov Smirnov test fails, however,

the Fitting Quality Measure (FQM) is high and also the visual impression of the fit is good.

Therefore, the fitting quality assurance requirements developed in chapter 5.2.2 are fulfilled.
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Figure 6.15: Empirical contour plot for Model Error e and Mean N1 During Deployed

Reverser
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Figure 6.16: Copula contour plot for Model Error e and Mean N1 During Deployed Reverser
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Figure 6.17: Copula heat plot for Model Error e and Mean N1 During Deployed Reverser

with measurements

The empirical contour plot (see chapter 6.1), copula contour plot and the heat plot are

given in Figure 6.15, Figure 6.16 and Figure 6.17. Furthermore, the highlighted area where

f(x1, x2) ≥ fGaussCop(x1, x2) is given in Figure 6.18, see chapter 5.3.1 and equation (5.12).
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Figure 6.16 shows the contour lines of the fitted copula according to the methodology described

in chapter 4.7.6. To capture the characteristics of the data illustrated in the empirical contour

plot in Figure 6.15 better, non-parametric estimation methods of the dependence structure are

an alternative option, see [Nag18]. In Figure 6.16 and Figure 6.17, a tail dependence on the

lower right corner can be identified. This also corresponds to the tail dependence coefficients

indicated in Table 6.7. The highest ratio of the heat plot (see chapter 5.3.1) illustrated in

Figure 6.17 is close to 350 which shows a significant difference to the Gaussian copula. Due

to this high ratio and the color coding, the majority of Figure 6.17 is dark.
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Figure 6.18: Copula heat plot for Model Error e and Mean N1 During Deployed Reverser

with measurements, area with f(x1, x2) ≥ fGaussCop(x1, x2) highlighted in gray

The last plot for the dependence analysis is the relation plot, it is given in Figure 6.19 and

Figure 6.20.

Since in Figure 6.19 the measurements hide the main statement of this chapter, the same

relation plot without measurements is given again in Figure 6.20.

In addition to the dependence for large Mean N1 During Deployed Reverser that the copula

contour plot and the heat plot revealed in Figures 6.16 and 6.17, the relation plot 6.20 also

reveals a clear dependence for low Mean N1 During Deployed Reverser. It can be identified

that for Mean N1 During Deployed Reverser lower than approximately 0.3, a rapid increase

of the expected Model Error exists. The desired situation for the behavior of this plot is that

the blue line for the expected value of the Model Error e is constantly zero. Any deviation

from that, such as for Mean N1 During Deployed Reverser lower than 0.3, can be considered

as abnormal and a weakness of the physical model.
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Figure 6.19: Relation plot for Model Error e and Mean N1 During Deployed Reverser
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Figure 6.20: Relation plot for Model Error e and Mean N1 During Deployed Reverser without

measurements
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This situation of different informational contents between the copula contour plot and the

heat plot on the one side and the relation plot on the other side is already discussed at the end

of chapter 6.1. The main difference is that the copula contour plot and the heat plot solely

consider information about the dependence structure given by the copula, see chapter 4.7.3

and equation (5.12), while the relation plot also takes the marginal distributions into account,

see chapter 5.3.1.

In the following chapter, a revision of the physical model based on the findings of the

dependence analysis conducted within this chapter is performed.

6.2.2 Physical Model Revision

The physical model revision conducted in this chapter is performed on the basis of the depen-

dence analysis of the discrepancies described in the last chapter 6.2.1.

The essential equation of the physical model involving the measurement Mean N1 During

Deployed Reverser N1rev,mean is presented in the following equation (6.3).

Trev =
neng · Trev,full ·N1rev,mean

0.7
(6.3)

Thereby, the number of engines is denoted by neng and the full available reverse thrust is

denoted by Trev,full.

At this stage, the following three physical model revisions are suggested:

1. Decrease the denominator of equation (6.3) from 0.7 to 0.6.

2. Perform a weighting of N1rev,mean in the interval [0, 0.3] to minimize the adverse effect

illustrated in Figure 6.20.

3. Combination of the physical model revision suggestions 1 and 2.

The first suggestion is solely based on expert judgment and not referred to the dependence

analysis conducted in this chapter.

The second suggestion originates from Figure 6.20 and the dependence analysis of the

discrepancies conducted in chapter 6.2.1. The proposed revision is an integration of a weighting

function w for the measurement Mean N1 During Deployed Reverser N1rev,mean into equation

(6.3). This results in equation (6.4). Observe that equation (6.4) and equation (6.3) coincide

for the weighting function w being the identity function.

Tw,rev =
neng · Trev,full · w(N1rev,mean)

0.7
(6.4)

Figure 6.20 shows that the Model Error e tends to get positive in case Mean N1 During

Deployed Reverser is lower than 0.3. According to equation (6.2), a positive Model Error

e indicates that the physical model output for the Distance from Touchdown to 80 knots
˜dT D,80kts is too high. Therefore, the braking action of the reverse thrust Trev for Mean N1
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6.2 Physical Model Revision Using Bivariate Dependence Analysis

During Deployed Reverser lower than 0.3 is underestimated by the physical model. This means

that the proposed weighting function w needs to be greater than the identity function in the

interval [0, 0.3].

In the interval [0, 0.3], the proposed weighting function w is defined by a parabola with

properties w(0) = 0.2, w(0.3) = 0.3 and w′(0.3) = 0.5. The parabola is motivated by the

parabolic shape of the expected Model Error in Figure 6.20. To assure a smooth transition to

the identity function at 0.3, w′
smo(0.3) = 1 would be necessary. However, this would lead to a

local minimum of w in (0, 0.3) which is not intended, see Figure 6.21. Therefore, w′(0.3) = 0.5

is chosen (to be mathematically precise, the derivative from the left is meant here). With the

conditions as given above, the equation for w
[0,0.3]

: [0, 0.3] → R is given by

w
[0,0.3]

(N1rev,mean) =
1

5
+

1

6
·N1rev,mean +

5

9
·N12

rev,mean. (6.5)

In the interval [0.3, 1], w is defined as the identity function w
[0.3,1]

(N1rev,mean) = N1rev,mean.

The proposed weighting function w is illustrated in Figure 6.22.
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Figure 6.21: Local minimum generated by weighting function wsmo with smooth transition

given by w′
smo(0.3) = 1 instead of w′(0.3) = 0.5
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The three proposed physical model revisions are implemented and the Model Errors e

according to equation (6.2) are recalculated. Subsequently, the dependence analyses of chapter

6.2.1 are performed again. The results are presented and discussed in the following chapter

6.2.3.
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Figure 6.22: Proposed weighting function w for the physical model revision

6.2.3 Analysis of the Physical Model Revision Effect

Within this chapter, the influence of the physical model revisions proposed in the last chapter

6.2.2 is investigated.

First, the statistics of the Model Error e for the three proposed physical model revisions

are given in Table 6.8, Table 6.9, and Table 6.10.
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Table 6.8: Model Error e characteristics for the denominator decrease

Model Error e Characteristic Value [m]

Mean Error 4.4

Mean Absolute Error 103.4

Median 20.1

Standard Deviation 92.7

Table 6.9: Model Error e characteristics for the proposed weighting function w

Model Error e Characteristic Value [m]

Mean Error 11.3

Mean Absolute Error 104.0

Median 25.9

Standard Deviation 93.3

Table 6.10: Model Error e characteristics for the denominator decrease and the proposed

weighting function w combined

Model Error e Characteristic Value [m]

Mean Error -0.6

Mean Absolute Error 102.9

Median 13.2

Standard Deviation 92.6

The three tables are compared to the characteristics of the Model Error e before the

physical model revisions summarized in Table 6.5. The first physical model revision results in

a significant quality increase as all involved Model Error e characteristics are decreased, see

Table 6.8. Also the proposed weighting function w increases the quality, see Table 6.9, however,

not as much as the denominator decrease. The reason for this is that the proposed weighting

function w only affects a subset of flights, while the denominator modification influences all

flights. The positive impact of the weighting function w gets obvious in the dependence

analysis later on. The best result of the Model Error e is given by the combination of the first

two physical model revision proposals summarized in Table 6.10.

The histograms and the distribution fits of the model revisions are indicated in Figure 6.23,

Figure 6.24, and Figure 6.25.
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Figure 6.23: Histogram and distribution fitting for Model Error e for the denominator de-

crease
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Figure 6.24: Histogram and distribution fitting for Model Error e for the proposed weighting

function w
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Figure 6.25: Histogram and distribution fitting for Model Error e for the denominator de-

crease and the proposed weighting function w combined

Furthermore, the copula contour plot is given in Figure 6.26 and the two relation plots in

Figure 6.27 and Figure 6.28.
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Figure 6.26: Copula contour plot for Model Error e for the denominator decrease
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Figure 6.27: Relation plot for Model Error e and Mean N1 During Deployed Reverser for

the denominator decrease
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Figure 6.28: Relation plot for Model Error e and Mean N1 During Deployed Reverser without

measurements for the denominator decrease
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Even so the error characteristics for this physical model revision could be significantly

improved, see Table 6.8, the dependence characteristics do not show an improved behavior,

compare Figure 6.26 with Figure 6.16, and Figure 6.28 with Figure 6.20. The reason is that the

denominator decrease affects all flights equivalently and therefore the significant dependence

identifiable in Figure 6.28 for Mean N1 During Deployed Reverser lower than 0.3 still exists.

The next step is to investigate the dependence structures influenced by the proposed

weighting function w that particularly affects Mean N1 During Deployed Reverser lower than

0.3. The copula contour plot is given in Figure 6.29 and the relation plots in Figure 6.30 and

Figure 6.31.
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Figure 6.29: Copula contour plot for Model Error e for the proposed weighting function w
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Figure 6.30: Relation plot for Model Error e and Mean N1 During Deployed Reverser for

the proposed weighting function w
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Figure 6.31: Relation plot for Model Error e and Mean N1 During Deployed Reverser without

measurements for the proposed weighting function w
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Figure 6.31 shows that the dependence in the interval [0, 0.3] of Mean N1 During Deployed

Reverser could be removed, which was the goal of this proposed physical model revision.

Nevertheless, another adverse effect in the interval [0.5, 1] of Mean N1 During Deployed

Reverser occurs. However, in that domain there are less data points as it can be identified in

Figure 6.30 compared to the interval [0, 0.3].

Even so the proposed weighting function w only effects the Mean N1 During Deployed

Reverser measurements in the interval [0, 0.3], see Figure 6.22, modifications there directly

effect the Model Error measurement associated to Mean N1 During Deployed Reverser in

[0, 0.3]. These adapted Model Error measurements effect the marginal distribution fitting,

which is associated to the entire domain of the Model Error measurement. A modification

of the marginal distribution is carried on to the dependence modeling using the copula, see

equation (4.43). Eventually, the marginal distributions and the copula effect the relation plot,

see chapter 5.3.1. Therefore, modifications in the interval [0, 0.3] of the the Mean N1 During

Deployed Reverser measurement can also effect the relation plot in its interval [0.5, 1] as it

can be identified in Figure 6.30 and Figure 6.31.

In the remaining of this chapter, the results of the combined two physical model revisions

are presented, see chapter 6.2.2. The copula contour plot is given in Figure 6.32 and the

relation plots in Figure 6.33 and Figure 6.34.
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Figure 6.32: Copula contour plot for the denominator decrease and the proposed weighting

function w combined
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Figure 6.33: Relation plot for the denominator decrease and the proposed weighting function

w combined
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Figure 6.34: Relation plot for Model Error e and Mean N1 During Deployed Reverser without

measurements for the denominator decrease and the proposed weighting function w combined

The dependence in the interval [0.5, 1] of Mean N1 During Deployed Reverser identified in

Figure 6.31 again exists for this combined physical model revision, see Figure 6.34. Therefore,

a reiteration of the physical model revision is proposed in the following chapter 6.2.4.
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6.2.4 Iterative Physical Model Revision

In the previous chapters, initial physical model revisions are proposed and their effects analyzed.

Table 6.10, Figure 6.32, and Figure 6.34 summarize the results and show that the dependence

in the interval [0, 0.3] of Mean N1 During Deployed Reverser, see Figure 6.20, could be

removed. However, the occurred dependence in the interval [0.5, 1] of Mean N1 During

Deployed Reverser that can be identified in Figure 6.34 is not desirable and is aimed to be

removed within a further iteration of the physical model revision, see Figure 5.17.

The proposed revision is again related to the weighting function w introduced in equation

(6.4), which is further adapted in the interval [0.5, 1]. In Figure 6.34, the blue line illustrating

the expected value of the conditional distribution is again bended towards positive Model

Errors e. Therefore, with the same reasoning as in chapter 6.2.2, also for this modification

of w, the revised witer needs to be shifted above the identity function. The proposed revised

weighting function witer is illustrated in Figure 6.35.
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Figure 6.35: Proposed iterated weighting function witer
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The proposed modification in the interval [0.5, 1] is a linear function with witer(0.5) = 0.5

and witer(1) = 1.5. The modification is inspired by the behavior of the expected value of the

conditional distribution illustrated as the blue line in Figure 6.34.

Based on the proposed iterative physical model revision, compare Figure 5.17, the Model

Errors e are re-calculated and the dependence analyses is conducted for the new data. All

results are summarized in the following.

Table 6.11: Model Error e characteristics for the iterative model revision

Model Error e Characteristic Value [m]

Mean Error -1.0

Mean Absolute Error 102.7

Median 12.7

Standard Deviation 92.6

Table 6.11 shows that due to the iterated weighting function witer, the Model Error char-

acteristics changed only slightly compared to Table 6.10. The histogram and the distribution

fitting of the Model Error measurement are illustrated in Figure 6.36.
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Figure 6.36: Histogram and distribution fitting for the iterated revision

The tail dependence coefficients between the Model Error e and the Mean N1 During

Deployed Reverser measurements are all 0, as indicated in Table 6.12. This is the desired

scenario.
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Table 6.12: Tail dependence coefficients for Model Error e and Mean N1 During Deployed

Reverser for the iterated revision

Tail Dependence Coefficient Corner Value

Upper Left 0

Upper Right 0

Lower Left 0

Lower Right 0

The copula contour plot is given in Figure 6.37 and the relation plots are given in Figure

6.38 and Figure 6.39.
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Figure 6.37: Copula contour plot for the iterated revision
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Figure 6.38: Relation plot for the iterated revision
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Figure 6.39: Relation plot without measurements for the iterated revision
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The copula contour plot in Figure 6.37 shows almost circular contour lines which indicates

no significant dependence, see chapter 4.7.3. This corresponds to the information of Table

6.12 and the fact that all four tail dependence coefficients are 0.

The two relation plots in Figure 6.38 and Figure 6.39 illustrate that the dependence in the

boundary areas could approximately be halved. Further adaptations of the weighting function

witer or of the entire reverse thrust model given in equation (6.4) could be proposed but this

is not further described within this thesis.

6.3 Identification of Safety Critical Conditions Using High-

Dimensional Dependence Models

As outlined in chapter 5.4, aviation accident investigations often reveal that a chain of events

lead to an accident, see. e.g. [Wei+01]. As these events could be represented in several mea-

surements, the consideration of dependence structures among more than two measurements

can be beneficial. In this chapter, an example following the concepts developed in chapter

5.4.1 and chapter 5.4.2 is given.

The considered scenario is the Long Landing, which is described by the incident metric

I that is in this case the Distance from Runway Threshold to Touchdown. In general, the

runway aiming point is located approximately 1.000 ft from the landing threshold, see [UF16,

p. 3] and [US , pp. 2-3-2]. This corresponds to approximately 300 m.

As outlined in chapter 5.4.1, the behavior of certain parameters in safety critical conditions

is to be analyzed. The critical region CR is described by the incident metric Distance from

Runway Threshold to Touchdown being higher than 800 m, i.e. at least 500 m behind the

common aiming point for the touchdown.

For this analysis, landings at one particular runway are chosen. In total, 892 flights are

available and 16 of them fulfill the condition for a Long Landing, i.e. had a Distance from

Runway Threshold to Touchdown more than 800 m. This corresponds to approximately 2 %

of all flights.

In addition to the incident metric I, the following measurements are considered for the

dependence analysis:

• Headwind at Touchdown

• Groundspeed at Touchdown

• Standard Deviation of the Indicated Airspeed (IAS) during Approach 2

• Flare Altitude 3

• Gear Extension Altitude
2The observed time period is between 1000 ft above ground and touchdown.
3This measurement is described in chapter 3.6.
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• Last Flap Setting Change Altitude

For the calculation of the measurements utilized in this chapter, the physically motivated

smoothing based on the Rauch-Tung-Striebel (RTS) Smoother that was briefly described in

chapter 2.6 and is further investigated in chapter 7 is used.

According to the procedure proposed in chapter 5.4.1, the marginal distributions and a vine

copula model are fitted to the chosen six variables and the incident metric I. The associated

histograms and distribution fittings are given in appendix A. All marginal fittings fulfill the

quality assurance techniques proposed in chapter 5.2.2.

Subsequently, a set of 2,000 samples are drawn from these statistical models carrying

the dependence structure represented in the vine copula model and the characteristics of the

samples are analyzed. Among the 2,000 samples, 39 samples with a Distance from Runway

Threshold to Touchdown of more than 800 meters are generated, which corresponds again to

2 %.

In Table 6.13, the mean characteristics of the measurements from the simulation of 2,000

samples are given in both situations, considering the entire samples and the incident samples

only.

Table 6.13: Measurement mean characteristics of the safety critical conditions based on

2,000 samples

Measurement Samples Mean Incident Samples Mean

Distance Threshold to Touchdown [m] 518 862

Headwind at Touchdown [m/s] 1.5 0.7

Groundspeed at Touchdown [m/s] 65 68

Standard Deviation IAS in Approach [m/s] 1.7 2.1

Flare Altitude [m] 10.4 11.9

Gear Extension Altitude [m] 575 528

Last Flap Setting Change Altitude [m] 382 358

Table 6.13 shows that all measurements change their mean for the two situations repre-

sented as two columns. All modifications from left to right are towards the unsafe side (with

respect to this incident category Long Landings). For example, the mean of Groundspeed at

Touchdown changed from 65 m/s to 68 m/s. This corresponds to the intuitive understanding

that a landing with a higher groundspeed tends to become a Long Landing.

In chapter 5.4.2, visualization concepts of high-dimensional dependence structures are

summarized. The spider plot for this particular application is given in Figure 6.40.

139



6.4 Subset Simulation Results with Integrated Vine Copula Models
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Figure 6.40: Spider plot of Spearman correlation coefficient for safety critical condition

analysis

As described in chapter 5.4.2, the Spearman correlation coefficients (see chapter 4.6.2)

of the specific measurement onto the incident metric I, in this case the Distance Threshold

to Touchdown, are illustrated in the spider plot given in Figure 6.40. The figure thereby

provides a sensitivity analysis and shows which measurements have a high absolute correlation

with the incident metric I. In the presented example, the highest correlation is given by

the measurement Flare Altitude. It reveals that the higher the Flare Altitude, the longer the

landing. This also coincides with the observation that can be made based on Table 6.13.

Observe that in case of a negative Spearman correlation coefficient, the absolute value of the

coefficient is marked in the spider plot and the term Negative is added to the ray description.

6.4 Subset Simulation Results with Integrated Vine Copula

Models

The content of this chapter has been initially published in [Höh+18b]. Within this thesis, the

utilized concepts are described in chapter 5.4.3 and chapter 4.8.

In the following, probabilities for the accident category Runway Overrun are quantified.
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The basis for these estimations is the predictive analysis framework together with a physical

Runway Overrun model that were described in chapter 2.5. The critical region CR of the

subset simulation described in chapter 4.8 for the Runway Overrun accident category is given

by a negative Stop Margin, see chapter 3.4. For any of the following results, the numbers of

samples per subset N was chosen to be N = 10.000 and the level probability p0 was set to

be p0 = 0.1.
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Figure 6.41: Evolution of the measurement Commanded Deceleration of the Aircraft -

excluding vine copula models, source: Fig. 5 of [Höh+18b]

In Figure 6.41 and Figure 6.42, the evolution of the measurement Commanded Decelera-

tion of the Aircraft is given as an example. In both cases, the Limiting Algorithm 3 (described

in chapter 4.8.2) was utilized based on data of flights with full flaps and full slats configuration

and a wet runway condition at landing. Figure 6.41 illustrates the situation without the inte-

gration of the 12-dimensional vine copula dependence structures and Figure 6.42 describes the

subsets that were generated with the utilized vine copula dependence models. In both figures,

the measurement Commanded Deceleration of the Aircraft is indicated on the horizontal axis.

On the vertical axis, the Stop Margin is illustrated. Due to this selection, the different subsets
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can be well identified. In both cases, a color coding is used to highlight the different subsets.

The values of b (see chapter 4.8) in the second to last subset (which can be roughly identified

in Figure 6.41 and Figure 6.42) is, in the case before the vine copula integration 123 m and

in the case after the integration of vine copula structures 88 m.
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Figure 6.42: Evolution of the measurement Commanded Deceleration of the Aircraft -

including vine copula models, source: Fig. 6 of [Höh+18b]

Considering these two plots for other contributing factors can show a different behavior.

Sometimes, the differences before and after the vine copula integration are smaller. These

conditions are strongly influenced by the underlying dependence structures captured in the

vine copula model.

Figure 6.42 shows one subset less compared to Figure 6.41 to obtain samples in the critical

region CR, i.e. samples with negative Stop Margin. This fact also leads to higher accident

probabilities that is discussed in the following. In addition, a different dependence behavior

can be observed particularly in the lower subsets (since the marginal distributions are the same

for both figures, the only difference is the dependence structure, compare theorem of Sklar in

equation (4.43)).
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Figure 6.43 gives an overview of the Runway Overrun probabilities for flap setting 25

(second highest setting), full slats setting and a dry runway condition. As sample generation is

(pseudo-) random, the results of two individual runs for the same data are in general different.

The estimated Runway Overrun probabilities for this scenario are in the range of 10−6. Figure

6.43 shows the results of eight simulations of the same settings using boxplots. The properties

of this type of plots are described in chapter 5.2.2. For the cases with Metropolis sampling, a

normal distribution with mean 0 and standard deviation 0.7 is used. Some abbreviations are

necessary, “Met” stands for the Metropolis Algorithm 2, “Lim” for the Limiting Algorithm 3,

“S” for single, i.e. with the contributing factors considered as independent from each other,

and finally “C” for the results after the integration of vine copula structures, see chapter 5.4.3

and chapter 4.8.
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Figure 6.43: Subset simulation results, source: Fig. 7 of [Höh+18b]
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In Figure 6.43, it can be observed that the integration of the vine copula dependence

structures influences the accident probability estimations and both, the accident probabilities

and their standard deviation are higher with the vine copula integration. Since the true value

of the accident probability is unknown, it can not be clarified whether the results are improved

or impaired.

One reason for this probability increase could be the fact that in aviation, accidents can

typically be considered as chain of events, see. e.g. [Wei+01]. The underlying dependencies

between the considered measurements are described by the vine copula models more sophisti-

catedly. This means that if one measurement is already extraordinary, there is a good chance

that also another measurement is particularly high or low. This situation is represented in

the vine copula and might contribute to these higher accident probabilities and therefore, the

estimation after the vine copula integration can be considered as more realistic.

Furthermore, slightly higher accident probabilities that are caused by the vine copula inte-

gration into subset simulation lead to an overestimation of the accident probabilities compared

to the results without the integration and therefore towards the safe side.

For now, no final explanation for the higher standard deviation can be identified, however,

it might be related to a similar situation described on page 53 of [Wei15].

As stated in [AP16], the efficiency of the Limiting Algorithm 3 is higher than for the

Metropolis Algorithm 2 and should therefore be preferred. For the calculations conducted

within the scope of [Höh+18b] and this thesis, this property resulted in a slightly shorter

runtime of Algorithm 3 compared to Algorithm 2.

The combination of vine copula models and subset simulation is one of the main con-

tributions of this thesis and [Höh+18b], see chapter 1.4. The proposed algorithm described

in chapter 5.4.3 and applied in this chapter is promising and allows to consider the flexible

dependence characterization of a vine copula for the estimation of small occurrence probabil-

ities using subset simulations. It is expected that this methodology is in the focus of further

research activities and applications in the future.

6.5 Identified Safety Critical Scenarios in Filter Trees

Within this chapter, examples for the identification of safety critical scenarios in filter trees

described in chapter 5.5 are given. Thereby, the outlier detection algorithm described in

chapter 4.9 is applied to detect the most outstanding filters in the tree. For these outstanding

filters, the underlying flights show a different behavior than the ones for the remaining filters

which might be relevant in terms of safety management. Major parts of the content of this

chapter have been initially published in [HH18].

Figure 6.44 shows a filter tree with four different levels and the hierarchical structure of the

filters. For the first level, no filtering is conducted and all available flights, in this case of Airbus

A320 aircraft, are considered. On the second level, the flights are filtered according to their

arrival airport. In particular, the four airports Munich EDDM, Bilbao LEBB, Frankfurt EDDF,
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and Zurich LSZH are considered. On the next level, the flights are further filtered according to

their arrival runways. The last level consists of additional filter criteria, in this case according

to the Landing Mass of the aircraft. The maximal landing mass of the considered A320 is 66

t [Air16], so the filter is reasonable. In Figure 6.45, the numbers of flights fulfilling each filter

of Figure 6.44 are given.

Figure 6.44: Filter tree, source: Figure 3 of [HH18]

Considering the hierarchical structure of filter trees, the numbers of flights fulfilling a

particular filter vary significantly for the different tree nodes, see Figure 6.45.

It is pointed out that the characteristics of the specific FDM software used for the analysis

influence the decision whether or not these filter trees can be generated and which kind of

properties can be used for filtering. The calculations presented within this thesis are conducted

with the IT System developed by the Flight Safety working group, see appendix B. This software

allows very flexible filtering with respect to any available flight characteristic or measurement.

Note that the first three filter levels of Figure 6.44 use general information about the flight.

The fourth filter level uses the Landing Mass, which is a measurement, see chapter 3, and is

a more detailed description of the flight.

The chosen example describes the braking behavior of pilots based on the filter tree of

Figure 6.44. The considered variables are:

• Mean value of Time Touchdown to Start Manual Braking

• Standard deviation of Time Touchdown to Start Manual Braking

• Mean value of Landing Mass

• Standard deviation of Landing Mass
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Figure 6.45: Number of flights fulfilling the filters, source: Figure 4 of [HH18]

• Lower tail dependence between Landing Buffer and Distance Threshold to Touchdown

• Upper tail dependence between Landing Buffer and Distance Threshold to Touchdown

For the last two variables, the Landing Buffer measurement described in chapter 6.1 is used.

The combination of these components shall characterize the braking behavior. The central

component is the Time Touchdown to Start Manual Braking. Furthermore, the Landing

Mass also plays a role in the pilot’s braking behavior. The last two components describe

the dependence between the Landing Buffer and the Distance Threshold to Touchdown with

the upper and lower tail dependence coefficients. As it was identified in [Dre17, p. 205], the

criticality of the specific approach and landing influences the pilot’s landing behavior. This

shall be represented by the two tail dependence coefficients to take filter specific properties

into account.

Figure 6.46 shows the histograms for the variables Time Touchdown to Start Manual

Braking (Figure 6.46a) and Landing Mass (Figure 6.46b) exemplary for the filter described by

the arrival airport LSZH with arrival runway 14. The empirical contour plot (see chapter 6.1) is

given in Figure 6.47. In addition, the copula contour plot for the variables Landing Buffer and

Distance Threshold to Touchdown for the arrival airport LEBB and arrival runway 30 is given

in Figure 6.48a. Since the contour lines of Figure 6.48a do not resemble concentric circles,

considerable dependence structures exist. Furthermore, Figure 6.48b highlights the areas with

outstanding dependence using the heat plot. As described in chapter 5.3.1, it compares the

dependence structure of the chosen copula (180 degree rotated Tawn copula, see chapter 4.7.2

and [Taw88]) with the dependence structure of a bivariate normal distribution. The lighter

an area in Figure 6.48b, the more the prevailing dependence differs from the bivariate normal

distribution. It can be seen that especially for small landing buffers, there are remarkable light
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areas that eventually lead to the lower tail dependence coefficient of 0.10, see Table 6.14 and

equation (4.56).

0 10 20 30 40 FG
Time Touchdown to Start Manual Braking [s]

0

20

40

60

80

100

120

140

N
u

m
b

e
r 

o
f 

M
e

a
s
u

re
m

e
n

ts
 [

-]

(a) Time Touchdown to Start Manual Braking

4.5 5 5.5 6 6.5

Landing Mass [kg] 104

0

20

40

60

80

100

120

140

N
u

m
b

e
r 

o
f 

M
e

a
s
u

re
m

e
n

ts
 [

-]

(b) Landing Mass

Figure 6.46: Histograms for LSZH, runway 14, source: Figure 5 of [HH18]
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Figure 6.47: Empirical contour plot for Landing Buffer and Distance Threshold to Touch-

down

Furthermore, Figure 6.49 shows the same heat plot of Figure 6.48b together with the

available measurements and a colorbar. The highest ratio of the heat plot (see chapter 5.3.1)

is around 10 which also shows a considerable difference to the Gaussian copula. In addition,

Figure 6.50 illustrates that various data points have a heat plot ratio greater 1 (area given by

the gray color), i.e. are better represented by the selected copula compared to the Gaussian

copula.
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Figure 6.48: Dependence between Landing Buffer and Distance Threshold to Touchdown

for LEBB, runway 30, source: Figure 6 of [HH18]
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Figure 6.49: Copula heat plot for Landing Buffer and Distance Threshold to Touchdown for

LEBB, runway 30 with interpretations
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Figure 6.50: Copula heat plot for Landing Buffer and Distance Threshold to Touchdown for

LEBB, runway 30, area with f(x1, x2) ≥ fGaussCop(x1, x2) highlighted in gray

Table 6.14: Data utilized by the FLAME algorithm, source: Table 1 of [HH18]

Filter M Ma [kg] S Ma [kg] M Time [s] S Time [s] L Tail [-] U Tail [-]

All 58,013 3,492 11.6 9.9 0 0

EDDM 57,925 3,369 9.0 8.3 0 0

LEBB 60,137 2,630 9.8 4.7 0 0

EDDF 58,557 3,296 13.2 10.2 0 0

LSZH 55,748 3,205 16.4 9.2 0.08 0

EDDM, 26L 58,665 3,186 8.0 5.4 0 0

EDDM, 08R 58,271 3,258 17.4 15.7 2 · 10−6 0

LEBB, 12 60,699 2,325 8.8 5.3 0 0

LEBB, 30 60,042 2,672 9.9 4.6 0.10 0

EDDF, 07L 58,520 3,237 18.6 9.9 0 0

EDDF, 07R 58,356 3,366 20.0 14.8 8 · 10−9 0

EDDF, 25R 58,621 3,258 9.4 5.4 1 · 10−4 0

EDDF, 25C 58,708 3,361 8.6 5.7 0 0

EDDF, 25L 58,541 3,360 12.1 9.8 2 · 10−5 0

EDDF, 07C 58,844 3,110 15.2 14.5 0 0

LSZH, 14 55,756 3,153 16.9 9.2 0.005 0.005

EDDF, 25L, ≥ 60 t 61,745 1,066 11.6 9.1 0 0

The utilized data for this example is illustrated in Table 6.14. Thereby,“M” corresponds to

mean, “S” to standard deviation, “Ma” to mass, “L” to lower, and “U” to upper. Based on
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this data, the FLAME algorithm described in chapter 4.9 is applied and identifies the filters

with outstanding characteristics, in this example with respect to the braking behavior.

In the following, the three filters with the lowest density, see equation (4.79), are presented

starting with the lowest. Thereby, scenarios that were filtered at least until the runway level

are considered. The overall result can be seen in Figure 6.51.

1. LSZH, Zurich Airport, Runway 14

2. LEBB, Bilbao Airport, Runway 30

3. EDDF, Frankfurt Airport, Runway 25L, Landing Mass ≥ 60 t

Figure 6.51: Densities calculated by the FLAME algorithm, source: Figure 7 of [HH18]

For runway 14 of LSZH in Zurich, the reason of the low density is given by the airport

layout, see Figure 6.52. Runway 14 is highlighted by the blue arrow and the relevant terminal

by a blue circle. The runway exits are constructed at the runway end which leads to a

special and late braking behavior and eventually contributes to a low density calculated by the

FLAME algorithm. In addition, according to Table 6.14, it is the only filter with an upper

tail dependence coefficient not equal to 0 and the average Landing Mass is lower than for the

other filters.

The filter with the second lowest density is runway 30 of LEBB in Bilbao. Landings in

Bilbao are famous to be challenging due to common significant wind situations [The12]. In

addition, the runway length is 2600 m which is together with a displaced threshold of 460 m

rather short [aen11]. Table 6.14 indicates a high average Landing Mass, a low average Time

Touchdown to Start Manual Braking as well as the highest tail dependence of all filters.

150



Chapter 6: Applications of Dependence Modeling for Flight Data Measurements

The filter with the third lowest FLAME density is Frankfurt EDDF, runway 25L with the

additional filter Landing Mass greater or equal 60 t. The outstanding behavior of the mean

value and standard deviation of the Landing Mass can be also seen in Table 6.14 and are

directly influencing the FLAME algorithm. Therefore, this additional criteria directly leads to

this low density.

Figure 6.52: LSZH runway 14 layout, source: Google Earth, Image Landsat / Copernicus

and Figure 8 of [HH18]

At the end of this chapter, a second example of a filter tree with an identification of

scenarios outstanding from a safety perspective is given. As described in chapter 5.5.1, the

developed software is capable of generating full filter trees. In this example, a filter tree is

automatically generated for all available flights of Airbus A319 aircraft filtered according to

arrival airport and runway. As the amount of data is immense, the direct visualization of the

filter tree is hardly possible, see Figure 6.53. In total, 611 scenarios in three filter levels are

generated.

The chosen example is similar to the previous one and investigates the landing behavior.

The selected variables are:

• Mean value of Time Touchdown to Start Manual Braking

• Standard deviation of Time Touchdown to Start Manual Braking

• Mean value of Landing Buffer
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Figure 6.53: Full filter tree

• Standard deviation of Landing Buffer

Among the observed scenarios on the runway level, the three with the lowest density

assigned by the FLAME algorithm starting with the lowest are:

1. LTAI, Antalya Airport, Runway 36C

2. EDDG, Munster Airport, Runway 07

3. EHAM, Amsterdam Airport, Runway 22.

These three runways can be considered as having outlying Times Touchdown to Start

Manual Braking and Landing Buffers among the available runways. In the following, potential

reasons for this detection are given.

For Antalya airport LTAI, the reason could be the airport and runway layout which is

illustrated in Figure 6.54. Runway 36C is 3,400 m which is rather long. In addition, the

terminal assigned to the specific airline is close to the end of the runway and highlighted by a

circle in Figure 6.54. Therefore, late and slight braking actions of the aircraft are probable.
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Figure 6.54: LTAI runway 36C layout, source: Google Earth, Image 2018 DigitalGlobe

The second identified scenario is runway 07 at Munster airport EDDG, see Figure 6.55.

This runway is only 2,170 m long which is rather short and furthermore, there are only three

runway exits. An early touchdown and heavy braking might allow to take the intermediate

taxiway. If this is not achieved, either a long taxiing until the runway end or backtracking on

the runway is necessary.

The last identified runway is Amsterdam Schiphol airport EHAM runway 22. Again, the

most probable reason is given by the airport and runway layout, see Figure 6.56. The observed

runway 22 is highlighted by the blue array and the taxiway layout again motivates the flight

crew to taxi on the runway until the end. The terminal associated to the specific airline is

highlighted in Figure 6.56 by a circle. Any runway exit before the last one leads to significant

longer taxi distances and eventually longer taxiing time and costs for additional fuel burn.
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ImaOe P 2018 QiOiUWlXloYe

Figure 6.55: EDDG runway 07 layout, source: Google Earth, Image 2018 DigitalGlobe

Figure 6.56: EHAM runway 22 layout, source: Google Earth
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Chapter 7

Dependence Analysis of Recorded

Flight Data Time Series

As described in chapter 2.2, the data collected on-board the aircraft is recorded consecutively

during the flight as time series. Compared to flight data measurements described in chapter

3, the mathematical characteristics of time series are more complex.

Every recorded data contains errors and uncertainties. The recorded time series most

relevant for describing the motion of the aircraft such as position, speed, altitude, and attitude

are linked to each other and can be described by physical and mathematical models. These

models can be used to reconstruct the most relevant time series, i.e. minimizing the embedded

uncertainties and errors. To achieve this, one of the possible methods is the Rauch-Tung-

Striebel (RTS) Smoother that was implemented at the FSD Flight Safety working group

mainly within [Sie17] and [Sie15].

In the following chapters, the concept of the RTS smoother is summarized. In particular,

information about the measurement noise covariance statistics is required, which is a descrip-

tion of the dependence between the noise characteristics of the involved variables. Within

[Sie17] and [Sie15], a fixed and diagonal measurement noise covariance matrix was chosen.

This is reasonable as detailed information about these noise characteristics are not available

within FDM analyses. However, after a first application of the smoothing algorithm, the

residuals, i.e. the differences between the reconstructed and the recorded values can be ex-

amined and information about the measurement noise covariance retrieved. This is described

in chapter 7.6. Subsequently, this new characterization of the measurement noise covariance

can be integrated in the RTS smoother for a second computation of the same flight which

is described in chapter 7.8. Chapter 7.9 investigates the influence of the integrated noise

covariance information.

The work presented in chapter 7 has been carried out in the DFG project CopFly that

is described in appendix F.2. Major contents of chapter 7 have been initially published in

[Höh+18a].
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7.1 Dynamic Systems

According to [Jat15, p. 2], the following three quantities mainly describe a dynamic system:

inputs u, outputs y, and model functions f and g. In addition, the system state variables are

denoted by x and the model functions f and g might contain unknown parameters θ.

el
.
x(t) = f(x(t),u(t), θ)

y(t) = g(x(t),u(t), θ)

u y

Figure 7.1: Dynamic system overview, source: reproduced Figure 1.1 of [Jat15, p. 3]

The model function f is called state equation and describes the dynamics of the system

.
x(t) = f(x(t),u(t), θ). (7.1)

The function g is called output equation and links the system states and the inputs with

the outputs

y(t) = g(x(t),u(t), θ). (7.2)

There are various sources of errors and uncertainties in this model. According to [Sie17,

pp. 8-10], these influences are handled twofold in the current implementation at the Flight

Safety working group. First, systematic and predictable errors, e.g. bias and scale factors, are

modeled as specific parameters in θ. Second, a random part of the errors and uncertainties are

separately modeled as v and w, see Figure 7.2. Their statistical properties can be described

and taken into account. These influences are referred to as noise and are considered for inputs

and outputs.

el
.
x(t) = f(x(t),u(t), θ)

y(t) = g(x(t),u(t), θ)

Measured Inputs um Measured Outputs ym

Input Measurement Noise w Output Measurement Noise v

Figure 7.2: Dynamic system with noise terms, source: reproduced Figure 4-2 of [Sie15],

Figure 3 of [Höh+16b, p. 4], Figure 2 of [Höh+18a]

Considering the noise terms v and w, equations (7.1) and (7.2) transform into

.
x(t) = f(x(t),um(t) − w(t), θ) (7.3)

ym(t) = g(x(t),um(t), θ) + v(t). (7.4)
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In the literature, the symbol z is sometimes used for the measured outputs instead of ym.

It is important to highlight that the measured outputs ym do not coincide with the real values

of the flight that are considered as (true) outputs y in the model.

The goal of the following chapters is to obtain the best possible estimation of the (true)

outputs y. This situation leads to the estimation problem of the states x. Based on the

estimate of x, equation (7.2) can be used to get the estimation of y. The notations xk and

x(k) are often used to highlight that no continuous recording of x is available that justifies

x(t), but a recording with a specific frequency instead, see chapter 2.2.

7.2 Extended Kalman Filter

The goal of this chapter is to summarize the main concepts of the Extended Kalman Filter

(EKF). The historic origin of this theory is given by Rudolf Emil Kálmán in [Kal60] for the

linear case and has been extended to the nonlinear case in [Sch76]. Both, the Kalman filter

and the EKF are derived in [Jat15, pp. 597-607]. The reader is referred to that reference for

the detailed derivation of the formulas. In this thesis, only the main and final equations are

given.

The Kalman filter and the EKF, its generalized version for the nonlinear case, consist

of prediction steps and correction steps, see Figure 7.3. As it is common in the associated

literature, values related to the prediction step are denoted by the superscript ~ and the

corrected states are denoted by ˆ. Based on the corrected state x̂(k) at time step k, the

state x̃(k + 1) at time step k + 1 is predicted based on the physical model. Subsequently,

the measured output ym(k+ 1) at time step k+ 1 is used to correct x̃(k+ 1) which leads to

x̂(k + 1). The true output y(k + 1) at time step k + 1 is unknown. This process is repeated

iteratively until the end of the considered time period.

k k + 1 k + 2

x̂(k)

x̃(k + 1)

y(k + 1)

x̂(k + 1)

ym(k + 1)

Correction
(Measurement Update)

x̃(k + 2)

Prediction (Time Update)

Figure 7.3: Kalman filter principle, source: reproduced Figure F1 of [Jat15, p. 598], Fig. 5

of [Höh+18a, p. 7]

Both noise terms, the input measurement noise w and the output measurement noise v
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are modeled as zero mean Gaussian white noise. In addition, the noise terms are supposed to

satisfy the following relationships

E(wk) = 0 (7.5)

E(vk) = 0 (7.6)

E(wk · wT
l ) =




Qk for k = l

0 for k 6= l
(7.7)

E(vk · vT
l ) =




Rk for k = l

0 for k 6= l
(7.8)

E(wk · vT
l ) = 0 for all k, l ∈ N. (7.9)

The difference between the EKF and the Kalman filter is that the EKF allows nonlinearities

in the model functions while the Kalman filter assumes linear model functions. The functions

used within this thesis are nonlinear. The EKF linearizes the model functions using the following

notation [Jat15, p. 605]

A =
∂f(x,u, θ)

∂x
, (7.10)

B =
∂f(x,u, θ)

∂u
, (7.11)

C =
∂g(x,u, θ)

∂x
, (7.12)

D =
∂g(x,u, θ)

∂u
. (7.13)

The formulas resulting from the derivation of the EKF are given in [Sie17, p. 15] and

summarized in this thesis. Thereby, the matrices Pk are the state error covariance matrices,

see [Jat15, p. 599]. The initial values are

E(x0) = x̂0, (7.14)

E((x0 − x̂0) · (x0 − x̂0)T ) = P̂0. (7.15)

The formulas of the prediction step are

x̃k+1 = x̂k +
∫ tk+1

tk

f(x(t),um(t), θ) dt (7.16)

P̃k+1 = Φk · P̂k · ΦT
k + Ψk · Bk ·Qk · BT

k · ΨT
k (7.17)

with used matrix notations

Ak =
∂f(x,u, θ)

∂x

∣∣∣∣∣
x=x̂k,u=umk

(7.18)

Φk+1 = eAk · ∆t ≈ I + Ak · ∆t+ A2
k · ∆t2

2!
+ . . . (7.19)

Ψk+1 =
∫ ∆t

0
eAk · τ dτ ≈ I · ∆t+ Ak · ∆t2

2!
+ A2

k · ∆t3

3!
+ . . . (7.20)
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The formulas of the correction step are

Kk+1 = P̃k+1 · CT
k+1 · (Ck+1 · P̃k+1 · CT

k+1 +Rk+1)
−1 (7.21)

ỹk+1 = g(x̃k+1, θ) (7.22)

x̂k+1 = x̃k+1 +Kk+1 · ((ym)k+1 − ỹk+1) (7.23)

P̂k+1 = (I −Kk+1 · Ck+1) · P̃k+1

= (I −Kk+1 · Ck+1)·P̃k+1 · (I −Kk+1 · Ck+1)
T +Kk+1 · Rk+1 ·KT

k+1

(7.24)

with used matrix notations

Ck+1 =
∂g(x,u, θ)

∂x

∣∣∣∣∣
x=x̃k+1,u=umk

. (7.25)

The matrices Kk are called the Kalman gain and represent the weighting of the predicted

values and the recorded values. The formulas for K are derived in such a way that the

variance estimates of the states P̂k are minimized [Sie17, p. 15].

7.3 Rauch-Tung-Striebel Smoother

The structure of the EKF algorithm summarized in Section 7.2 is iterative. This means, that

the algorithm passes through the data once from the beginning to the end of the considered

time interval. This is especially suitable for online applications such as navigation systems in

aircraft cockpits, where Kalman filters and EKF are used [Gro08, p. 55]. A mathematical tool

for the processing of data that is taking into account data until the considered time step t are

called filters. This means that in general, filters allow online applications. Furthermore, tools

that do not provide online applications since they are also using data points in the future of t

are called smoothers, see [Sed94, p. 431].

The characteristics of offline data analysis, as it is the case in FDM, allow to take data of

the past and the future of a certain time step t into account. Adding additional possibilities

of offline analysis to the EKF led to the concept of the Rauch-Tung-Striebel (RTS) Smoother

that was introduced in [RTS65]. This algorithm is a so-called fixed interval smoothing method,

i.e. recordings of the complete time interval are used to determine the state estimate of each

time step [Sie17, p. 17].

In order to obtain a good estimation of the true output y, the RTS smoother was chosen,

which is based on the EKF but including a further pass. A thorough introduction to the

underlying theory that is often referred to within this thesis is given by [Jat15]. The goal of

this chapter is to give an overview of the RTS smoother.

The iterative process of the EKF is also referred to as the forward pass of the RTS smoother.

Once the end of the time interval is reached, the RTS smoother adds a further backward pass

in which the time interval is passed through from the end to the begin of the interval taking

the reversed system dynamics into account. This leads to a three step approach, a forward
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pass, a backward pass, and a final pass to weigh and combine the results from the two passes.

However, [RTS65] proposes to combine the second and third pass.

Within this thesis, the final results that are taken from [Sie17, p. 18] are summarized. The

initial values of the backward pass are

x
[s]
end = x̂end, (7.26)

P
[s]
end = P̂end. (7.27)

The equations of the backward pass of the RTS smoother are given by

K
[s]
k = P̂k · ΦT

k+1 · P̃−1
k+1, (7.28)

x
[s]
k = x̂k +K

[s]
k · (x

[s]
k+1 − x̃k+1), (7.29)

P
[s]
k = P̂k +K

[s]
k · (P

[s]
k+1 − P̃k+1) ·K [s]

k

T
. (7.30)

Thereby, the smoothed values are indicated with the superscript [s].

7.4 Gauss-Markov Processes to Model Unknown State

Dynamics

It can occur that model states xi exist for which equation (7.1) can not be stated since no

physical formula can be derived. This gets relevant for the model summarized in chapter 7.5

for rotational rates p, q, and r and wind components uW , vW , and wW given in the North-

East-Down (NED) frame O, see e.g. [KM06, p. 28]. Obtaining reconstructed outputs of these

variables can be very beneficial.

As the rotational rates have been of particular interest within [Sie17], a technique has been

utilized to cope with this situation. The method is called Estimation-Before-Modelling (EBM)

and has been introduced in [SS88]. The idea is to add further states
.
xi and

..
xi following

equation (7.31).




.
xi
..
xi
...
xi


 =




0 1 0

0 0 1

0 0 0


 ·




xi
.
xi
..
xi


+




wi1

wi2

wi3


 (7.31)

The components wi1, wi2, and wi3 are assumed to be modeled as zero mean, Gaussian

white noise according to the requirements of chapter 7.2. To be able to integrate them into the

input measurement noise vector w, also the input vector um needs to consider them so that

the dimensions of the vectors match, see equation (7.3). Consequently, equation (7.31) needs

to be slightly updated to ensure conformity. Introducing artificial inputs ui1 = 0, ui2 = 0, and

ui3 = 0 gives




.
xi
..
xi
...
xi


 =




0 1 0

0 0 1

0 0 0


 ·




xi
.
xi
..
xi


+




ui1 − wi1

ui2 − wi2

ui3 − wi3


 (7.32)
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and results in conformity with equation (7.3).

7.5 Physical Aircraft Model for the Landing Reconstruc-

tion

The physical model that is the basis for the ideas and methods considered within this chapter

was mainly developed within [Sie17] and [Sie15]. It is specifically designed for an application

during the landing phase of the aircraft. We focus on the time period from 1,000 ft above

ground until the aircraft enters the gate area.

Within this thesis, the inputs u, states x, and outputs y are given and one exemplary

component of the output equation g is presented, see chapter 7.1. Further details can be

found [Sie17], [Sie15], and other references given within this chapter.

The measured input vector um is given by

um = (axm, aym, azm,

up1, up2, up3, uq1, uq2, uq3, ur1, ur2, ur3,

uu1, uu2, uu3, uv1, uv2, uv3, uw1, uw2, uw3).

The main components are the measured accelerations am in the three respective axis of the

body-fixed B frame, see [KM06, p. 28]. All other components of the input vector um are

artificial inputs that are constantly set to 0. The reason for this is that for the rotational rates

p, q, and r and wind components uW , vW , and wW , no physical formulas in a manner required

for equation (7.1) can be derived. This procedure is based on the EBM method, see chapter

7.4, and proposed to be utilized here within [Sie17]. Due to the relevance of these variables,

reconstructed versions of them are very beneficial. Therefore, these variables are added to the

output vector y. To be able to develop an output equation g for these variables, p, q, r, uW ,

vW , and wW , they also have to be added to the system states x and consequently components

in the state equation f have to be developed for them.

Applying the EBM concept summarized in chapter 7.4 to the roll rate p gives




.
p
..
p
...
p


 =




0 1 0

0 0 1

0 0 0


 ·




p
.
p
..
p


+




up1 − wp1

up2 − wp2

up3 − wp3


 . (7.33)

The variable wW was chosen to be not part of the output vector, however, as a state

influences several other components of the output vector y.
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7.5 Physical Aircraft Model for the Landing Reconstruction

The state vector x comprises

x = ((uK)B, (vK)B, (wK)B,

φ, θ, ψ,

xN , yN , zN ,

p,
.
p,
..
p, q,

.
q,
..
q, r,

.
r,
..
r,

(uW )O, (
.
uW )O, (

..
uW )O,

(vW )O, (
.
vW )O, (

..
vW )O,

(wW )O, (
.
wW )O, (

..
wW )O).

(7.34)

The first three components of x describe the kinematic speed of the aircraft given in the three

axes of the body fixed B frame. The attitude is described by the Euler angles φ, θ, and ψ

that are used to transfer the North-East-Down (NED) frame O into the body-fixed B frame,

see [Zip14]. xN , yN , and zN describe the position of the aircraft in a local navigation frame

N , see Figure 7.4. Its origin is defined to be the intersection of the runway threshold and

the runway center line. Its x axis points along the runway centerline and its z axis vertically

upwards. The y axis points to the right and complements an orthogonal frame. p, q, and r

are the rotational rates of the aircraft and their first and second order derivatives are added

again based on the EBM method of chapter 7.4 and [SS88]. The same holds for the three

components of the wind speed given in the NED frame O.

 

Figure 7.4: Local navigation frame, source: Figure 3-2 of [Sie15], Fig. 3 of [Höh+18a]
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The output vector y and the associated measured output vector ym are given by

ym = (VGNDm,
.
hm, χKm,

φm, θm, ψm,

xN m, yN m,

hBAROm, hRALT m,

δLLZ,DDM m, δGS,DDM m,

pm, qm, rm,

VAm, αAm,

(uW )Om, (vW )Om).

(7.35)

The components of y consist of the ground speed VGND, the vertical speed
.
h, and kinematic

track angle χK . Furthermore, the Euler angles φ, θ, and ψ describe the aircraft attitude and

the positions xN and yN are based on recordings of the Global Positioning System (GPS).

The altitude is given twofold, the barometric altitude hBARO, and the height above ground

hRALT recorded by the radio altimeter. Within this thesis and [Höh+18a], it is assumed that

the aircraft was flying an Instrument Landing System (ILS) approach and the related deviation

signals are available in the FDM data. The deviations of the aircraft with respect to the ILS

are given by δLLZ,DDM in the horizontal plane and δGS,DDM in the vertical plane. Their unit

is Difference in Depth of Modulation (DDM). In addition to the rotational rates p, q, and r

and the horizontal wind components (uW )O and (vW )O, also the aerodynamic speed VA and

the aerodynamic angle of attack αA are given.

The bias and scale factor vector θ comprises

θ = (bx, by, bz,

bp, bq, br,

bhBARO
, shBARO

,

bχ).

(7.36)

The biases for the accelerations ax, ay, and az are denoted by bx, by, and bz and are

subtracted from the measured values, e.g. ax = axm − bx. The biases for the rotational rates

p, q, and r are denoted by bp, bq, and br and again subtracted from the measured values, e.g.

p = pm − bp. The barometric altitude hBARO is modeled with both, bias and scale factor

corrections hBAROm = shBARO
· hBARO + bhBARO

. Finally, there is a bias bχ for the kinematic

track angle χK which is again subtracted from the recorded value.

The model contains various equations and since its development was not conducted within

this thesis, the reader is referred to [Sie17] for any details of the model. The two components

of the output vector y with respect to the ILS deviations δLLZ,DDM and δGS,DDM are non-

standard for this implementation and bring a lot of benefit due to a high data accuracy of

these recordings compared to other FDM variables. As an example for a component of the

output equation g, the component δLLZ,DDM is summarized here.
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The goal of the output equation g for the output component δLLZ,DDM is to link the

system states x with δLLZ,DDM , see equation (7.2). For this equation component, the system

inputs u and the constant model parameters θ are not relevant. The relevant system states x

are the aircraft position given by xN and yN . According to [Int06], the nominal displacement

at the ILS reference datum (the runway threshold) shall be adjusted to 0.00145 DDM/m.

The output equation can be derived using basic geometric considerations, see Figure 7.5. It

is given by

δLLZ,DDM = gδLLZ,DDM
(xN , yN) = −0.00145 · xLLZ

xLLZ − xN
· yN .

The parameter xLLZ is a characteristic of the specific runway and its ILS and describes the

longitudinal distance between the runway threshold and the localizer antenna, see Figure 7.5.

 

RUNWAY
Localizer Course Line

Displacement sensitivity:

Runway Threshold

= ILS Reference Datum

Localizer

Antenna

Displacement sensitivity:

Aircraft Position

Figure 7.5: Output equation for the localizer deviation signal, source: Figure 2-14 of [Sie17],

Fig. 4 of [Höh+18a]

In addition to the application of the RTS smoother framework that is discussed in chapter

7.3, a shifting of the trajectory of the landing aircraft based on the taxiway coordinates and

specific assumptions that are well fulfilled in practice is conducted. For any further details the

reader is again referred to [Sie17].

7.6 Characterization of the Measurement Noise Covariance

Matrices Rk

For the next steps of this thesis, the measurement noise covariance matrices Rk occurring in

equations (7.21) and (7.24) are essential.
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According to the theory of state estimation, required information about the measurement

noise covariance matrices Rk can be obtained a priori from the characteristics of the used

instrumentation, see [Jat15, p. 271]. In case data from flight testing is available, it can also

be used to estimate the noise characteristics, see e.g. [Mor95].

However, within FDM, this detailed information is usually not available. A rough estimation

of the noise variances (i.e. the diagonal entries of Rk) based on expert judgment can be

conducted and this was carried out in [Sie17] and [Sie15]. Detailed information about the

noise characteristics of the instrumentation (that might also depend on the specific registered

aircraft) or flight test data of the specific aircraft are not available for FDM analyses.

In [Sie17] and [Sie15], two assumptions have been made. First, the measurement noise

covariance matrices are not time depending, i.e. R = Rk for all considered time steps. Second,

the R matrix was chosen to be a diagonal matrix, i.e. the measurement noise variances are

considered while every covariance is set to zero. The chosen variance values can be found in

[Sie17, p. 28]. In the following, the goal is to detect more suitable matrices Rk that also take

time varying effects into account.

The idea presented in this chapter is straight forward and mentioned on pages 105, 163,

171, and 349 of [Jat15]. In particular, for a time varying measurement noise covariance matrix

the principle is mentioned in [Jat15, p. 181]. Taking equations (7.4) and (7.8) together with

the noise vk = ym(k) − g(x(k),um(k), θ) gives

Rk = E
(
vk · v⊤

k

)
,

which is a n×n matrix where the (i, j) entry corresponds to the covariance between the ith and

jth component of vk. For the unknown values g(x(k),um(k), θ) the outputs reconstructed

in an initial smoother iteration

ŷk = g(x̂(k),um(k), θ̂)

with constant covariance matrix Rk = R are used. Furthermore, the estimated residuals vector

is given by

v̂k = ym(k) − ŷk. (7.37)

To estimate Rk, the output noise covariance matrix at time step k, we use a moving average

method as proposed in [Yin+10]. To use this method for the RTS smoother enhancement in

FDM was suggested by Thomas Nagler and Claudia Czado in discussions with the author of

this thesis and Phillip Koppitz. All members of this team were co-authors of [Höh+18a].

More specifically, the estimate R̂k is defined as

R̂k =
N∑

t=1

[v̂t − m̂t] · [v̂t − m̂t]
⊤ · wb(t, k), (7.38)

where

m̂k =
N∑

t=1

v̂t · wb(t, k), wb(t, k) =
e− (t−k)2

2b

∑N
s=1 e

− (s−k)2

2b

.
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7.7 Smoothing Quality Measure

The function wb assigns weights to all time steps such that time points closer to k have a

larger influence and time points further away from k have only a small influence. The value

b controls the degree of smoothing and is set to 50. Note that m̂k is an estimate of E(vk).

Although this expectation is assumed to be zero for the RTS smoother, see equation (7.6),

we often observe significant deviations from zero in practice. Thus, m̂t is used as a correction

term in equation (7.38).

An exemplary estimate of the time varying variance of xN is shown in Figure 7.6, where

one clearly observes periods of higher and smaller variability.
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Figure 7.6: Time varying measurement noise variance for xN , source: Fig. 6 of [Höh+18a]

7.7 Smoothing Quality Measure

Due to the immense amount of flights of major airlines, FDM analyses need to be automated as

much as possible. A manual investigation of each individual flight is not feasible. Consequently,

this principle is also relevant for the reconstruction of landings using the RTS smoother.

In [Sie17], a high number of flights was analyzed and a Smoothing Quality Measure (SQM)

was introduced. The goal was to automatically detect flights where the RTS smoothing could
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not generate reasonable results, i.e. the smoothing quality is low. This might happen for

instance due to severely corrupted flight data.

The SQM that was developed in chapter 2.1.9 of [Sie17] has been modified within [Höh+18a]

to take the characteristics of time varying measurement noise covariance matrices into account,

see chapter 7.6. This modified version of the SQM is presented within this thesis.

For each time step k = 1, . . . , N with N being the number of total time steps of the

considered time interval,

εk = ym,k − ỹk ∈ Rn

is the difference between the measured and the predicted output. The theoretical values of

the residual covariance matrix Sk for each time step k can be computed as

Sk = Cov(εk) = Ck · P̃k · CT
k +Rk,

see [Sie17, p. 19].

Furthermore, for any component i = 1, . . . , n of the output vector y, the residual ratio

ri =
1

N
·

N∑

k=1

(εk,i −ε·,i)
2

Sk,ii

is defined, whereε·,i denotes the mean of the vector ε·,i. Thereby, the numerator corresponds to

the empirical variance of the prediction error ε considering all time steps N . The denominator

describes its theoretical value based on the RTS smoother theory. In the optimal case, the

empirical variance and the expected variance coincide and so resulting in ri around 1. Abnormal

situations may lead to ri severely deviating from 1.

Finally, the values ri for all n output vector components are aggregated to the SQM using

the geometrical mean

SQM =

[
n∏

i=1

ri

] 1
n

.

The interpretation for ri also holds for SQM. Flights with a regular smoothing will generate

a SQM close to 1. If the prediction errors outweigh the expected prediction errors, the SQM

gets bigger. An SQM greater 10 can be considered as abnormal.

In [Höh+18a] and this thesis the SQM is used for verification whether the integration of

time varying measurement noise covariance matrices Rk, see chapter 7.6 and chapter 7.8, is

beneficial or not.

7.8 Proposed Enhancement of the Rauch-Tung-Striebel

Smoother Application in Flight Data Monitoring

For an initial smoother iteration, a constant measurement noise covariance matrix R = Rk

is chosen based on expert judgment. This matrix R is assumed to be a diagonal matrix and

the associated values can be found in [Sie17]. The reconstructed outputs of this smoother

167



7.8 Proposed Enhancement of the Rauch-Tung-Striebel Smoother Application in Flight Data
Monitoring

iteration can be used to obtain an estimation of the true measurement noise characteristic

that is more accurate than the assumed matrix R. In addition, potential time varying noise

characteristics can be taken into account using time varying noise covariance matrices. The

details are given in chapter 7.6.

Figure 7.7: Reconstructed position - correlation limit c of the measurement noise covariance

matrices Rk is 0.1, source: Google Earth, CNES/Airbus, 2018, Fig. 7 of [Höh+18a]

It turns out that taking the sequence of full matrices R̂k of chapter 7.6 for the application

of the RTS smoother is not stable enough. Therefore, a limit for the off-diagonal entries based

on the correlation of the associated variables has been introduced. This means that the (i, j)
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entry of R̂k with i 6= j is set to 0 unless the (Pearson) correlation coefficient ρij of the ith

and jth component of v̂k is equal or higher than a specific limit c. See chapter 4.6.1 for the

definition of the (Pearson) correlation coefficient. In mathematical terms, if ρij < c, then

R̂k,ij = R̂k,ji = 0 (7.39)

is set. The diagonal entries R̂k,ii are directly taken as calculated in chapter 7.6. This provides

numerically more stable calculations while the main covariances are still taken into account.

Reconstructed time series for all states x and output variables y are retrieved. Within

[Höh+18a] and this chapter, the reconstructed position is used for visualization. In Figure

7.7, the yellow curve shows the raw position data and the red curve shows the reconstructed

trajectory after the second smoother iteration with a limit c of the Rk off-diagonal entries

based on a correlation of 0.1.

To investigate the influence of the proposed second smoother iteration with incorporated

time varying measurement noise covariance matrices Rk, the SQM described in chapter 7.7

is used. Within [Höh+18a] and this chapter, 24 flights are considered and the results of the

SQM values are summarized in Table 7.1.

As described in chapter 7.7, the value of the SQM considered as optimal is 1. Within Table

7.1, the value closest to 1 has been highlighted for any flight in green color. In addition, SQM

values for which not the entire considered parameters were constructed are highlighted in gray

color. The implemented smoother can handle these situations and therefore valid SQM values

are returned. However, for the purpose of this chapter, it was chosen that always the entire

parameters are considered.

For the observed 24 flights, the optimal SQM value can be found in a second iteration

with a specific covariance limit in 20 cases (see cells highlighted in green). This corresponds

to a percentage of 83 % which shows the justification of this method. However, values far

away from 1 or missing values show that the second iteration and the related computations are

also prone to further errors. The best reconstruction strategy therefore might be, to conduct

second iterations with several correlation limits c and subsequently choose the version among

the first iteration and all second iterations with the SQM value closest to 1.

7.9 Validity of Assumptions in the Enhanced Rauch-Tung-

Striebel Smoother for Flight Data Monitoring

The results described in this chapter are taken from [Höh+18a] and were a contribution

of Thomas Nagler and Claudia Czado. Within this chapter, the validity of some of the

assumptions on vk discussed in chapter 7.2 are assessed. On that account, we visually illustrate

statistical properties of the estimated residual process v̂k and discuss possibilities for further

improvement.
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Flight ID 1st Iter. 2nd Iter., Limit 0.1 2nd Iter., Limit 0.4 2nd Iter., Limit 0.6 2nd Iter., Limit 0.8

1 0.24 0.45 20.3 0.52 0.53

2 0.18 - 0.49 0.44 0.45

3 0.36 - 15.4 0.61 0.62

4 0.46 0.58 0.81 0.76 0.76

5 0.44 0.86 - 0.65 0.65

6 0.39 0.90 - 109 5 · 107

7 0.79 - - 0.65 0.65

8 0.41 - 0.82 0.64 0.64

9 0.42 0.59 0.44 0.74 0.74

10 0.51 - - 9.1 0.69

11 0.51 - - - 0.70

12 0.35 - 1900 0.71 0.61

13 0.21 0.43 - 0.51 0.51

14 0.79 0.60 1.83 1.64 1.64

15 0.31 11.1 0.59 0.53 0.53

16 0.67 - 0.80 0.65 0.59

17 0.20 0.61 - 0.48 0.48

18 0.37 - 0.67 0.65 0.65

19 0.93 0.50 - 1.85 1.85

20 0.23 0.47 0.53 0.51 0.49

21 0.24 0.67 0.63 0.55 0.55

22 0.37 0.98 - 0.62 0.62

23 0.31 60.0 0.88 0.61 0.61

24 0.38 0.62 0.76 0.67 0.67

Table 7.1: SQM values for different iterations and correlation limits of the measurement

noise covariances, source: Table 1 of [Höh+18a]
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7.9.1 Constant mean
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Figure 7.8: Time series of estimated residuals (see equation (7.37)) for variables VGND and

xN , source: Fig. 8 of [Höh+18a]

Recall from equations (7.6) and (7.8) that vk is assumed to be a white noise process. As

an illustration, Figure 7.8 shows the residuals for the variables VGND and xN . The estimated

v̂k process from the initial smoother run with constant covariance matrix (blue lines) strongly

deviates from this assumption: the mean is far from constant and the series is highly autocorre-

lated. In contrast, the estimates process from the second smoother iteration with time varying

covariance matrix (red lines) is visibly more truthful to these assumptions, although there is

still room for improvement. But in contrast to dynamic covariances, these two assumptions

are only indirectly influenced by the parametrization of the smoother.

7.9.2 Gaussianity

Another assumption made in chapter 7.2 is that the distribution of vk is (multivariate) Gaus-

sian. This assumption can be split into two parts: i) the components of vk are marginally

Gaussian; ii) the dependence between components follows a Gaussian copula, see e.g. [Nel10].

Marginal distributions

We shall first consider the marginal distributions. For each component i of v̂k and every time

step k, we construct standardized residuals ŝk,i = v̂k,i/(R̂ii)
1/2, where R̂ii is the estimated

standard deviation at time k. If the assumptions are valid, ŝk,i should follow a standard normal

distribution.

Fig. 7.9 shows kernel density plots for two exemplary variables along with the density of a

standard normal distribution (blue line). Results after the first smoother iteration are shown
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Figure 7.9: Kernel density plots for the standardized residual process ŝk (aggregated over all

24 flights) which should follow a standard normal distribution, source: Fig. 9 of [Höh+18a].

in green, results after the second iteration in red. For hRALT (left panel), the distribution for

the first iteration is far off the standard normal, while the distribution for the second iteration

almost perfectly matches it. For ψ (right panel), the second iteration improves upon the

first, but is still visibly off the assumed distribution. It has a sharper spike in the center and

fatter tails, features that commonly arise in scale mixture of normal distributions (such as the

Student t distribution, see chapter 4.5.2). It suggests that our time varying variance estimate

may not have been adaptive enough and a smaller smoothing window N of chapter 7.6 could

improve the results further.

Dependence analysis

A useful diagnostic tool for the dependence between variables is the bivariate normalized

contour plot, see [Nag18] and chapter 4.7.3. In a first step, the variables are transformed

to follow a standard normal distribution. If the dependence is Gaussian, the density contours

of the transformed variables should resemble perfect ellipses. Any deviation from an ellipse

indicates a deviation from normality. Most residual dependencies are rather weak and we will

only focus on the strong relationships in what follows. Also, the second smoother iteration

was not able to improve upon the first regarding the validity of Gaussian dependence, so only

results from the second iteration will be shown.
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Figure 7.10: Copula dependence structures - attitude and rotational rates, source: Fig. 10

of [Höh+18a]
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Figure 7.11: Copula dependence structures - ground speed and wind speeds, source: Fig. 11

of [Höh+18a]

The notable residual dependencies can be grouped into two categories. In Figure 7.10,

attitude angles and associated rotational rates are given for the particular cases pitch angle

θ and pitch rate q as well as roll angle φ and roll rate p. Obviously, the attitude angle and

the associated rotational rate are closely related, so the dependence among the residuals,

i.e. measurement errors is reasonable. For the considered flights, no direct recordings of the

rotational rates were given. Therefore, they were calculated based on the attitude angles

in a preprocessing step. In Figure 7.11, the ground speed VGND is paired with the wind
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speeds (vW )O and (uW )O given in the NED frame O. Again an obvious relation between

these variables is given. Since the uncertainty of the on-board recordings of the wind speeds

is significant, it is not possible to completely eliminate it by the physical model, the RTS

smoother framework or the methods proposed in [Höh+18a] and this chapter.

Both figures show kernel density contours along with contours of a reference Gaussian

distribution (dashed blue). We observe two phenomena in all plots: First, the spikes in

the lower left and lower right corners are slightly sharper than the Gaussian reference. This

means that dependence is stronger then Gaussian when both variables show large positive or

negative measurement errors simultaneously. Second, we see bumps towards the upper left

and lower right corners, indicating additional dependence when there are large positive and

large negative measurement errors and vice versa. This dependence is not reflected by the

Gaussian distribution at all. Again, the observed shapes are characteristic for scale mixtures

of Gaussians (which correspond to the t copula, see [DM05a, p. 111]) and may be captured

by a more adaptive parametrization of the dynamic covariance matrix.
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Chapter 8

Summary and Outlook

Within this thesis, the application of advanced statistical dependence algorithms to Flight

Data Monitoring (FDM) is described. Thereby, the thesis utilizes concepts of both disciplines,

mathematical statistics and aeronautical engineering.

At the beginning of the thesis, basic concepts of FDM are introduced. First, a description

of historic developments and the legal situation with respect to the recording and the analysis

of aviation data is given. Subsequently, the data available in FDM analyses is described in

detail. In particular, the different characteristics of the data recorded directly in the aircraft

as time series and the processed values commonly referred to as measurements are outlined.

These data characteristics strongly influence the application of the mathematical tools in the

later chapters. Furthermore, an overview of the current status of the developments at the

Flight Safety working group at the Institute of Flight System Dynamics is given. This is

crucial as this thesis utilizes parts of the existing concepts as basis for further developments.

In addition, the methodologies developed within this thesis contribute to the overall mission

of the Flight Safety working group.

The mathematical concepts used in subsequent chapters of this thesis are collected in

chapter 4. First, basic notions of statistics and probability theory are given. Subsequently,

more advanced utilized tools such as the concept of copulas are described. The description

of the copula theory starts with basic definitions and continues to the advanced vine copula

models which are also in the focus of current research in statistics. Furthermore, the strategy

of subset simulations to estimate occurrence probabilities of extraordinary small magnitudes

is outlined. This method is used at the Flight Safety working group to estimate accident

probabilities for airlines based on FDM data. Finally, the machine learning algorithm FLAME

for the detection of outliers in data is described. Within this thesis, the concept is used to

identify scenarios of airlines outstanding from a safety performance perspective, e.g. landings

at a particular airport.

Subsequently, the proposed FDM algorithms are described and applied. Besides the verifi-

cation of statistical properties required by the utilized algorithms, a preparatory step for many

of the proposed methodologies is the fitting of marginal distributions to the given FDM mea-

surements. The algorithms existing at the Flight Safety working group have been extended by
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the functionality to verify a suitable fitting quality. Thereby, a special focus is on the enabling

of automated statistical distribution fitting with a suitable quality.

Once the marginal distribution fits of the FDM measurement data are available, the depen-

dence analysis using the concept of copulas can be conducted. The investigation of bivariate

dependence structures is used to identify unknown relationships among the flight data mea-

surements as well as to revise physical aircraft models. For this revision of the physical model,

the discrepancies are essential, i.e. the differences between the output of the physical model

and the values directly calculated from the FDM data. The proposed methodology can be

applied to all available recorded flights to calibrate and revise the model. The identified func-

tional relationships based on copula models allowing for nonlinear dependencies support the

physical model revision. Eventually, once a suitable accuracy is achieved, the physical model

is applied to sampled flights for the estimation of occurrence probabilities. The example for

the physical model revision is based on an existing model for the aviation accident category

Runway Overrun that was developed by other Flight Safety team members prior to this thesis.

Furthermore, high-dimensional dependence structures of FDM data are considered within

this thesis. Utilizing them supports the identification of safety critical conditions. Thereby,

certain values describing the criticality of a flight are artificially set to extraordinary values and

the behavior of associated measurements is observed. In addition to this, high-dimensional

dependence structures allowing for nonlinear relations can be integrated into sampling algo-

rithms such as subset simulation. This enables the generation of more realistic samples and

eventually the estimation of more precise occurrence probabilities based on physical models.

Another methodology described and applied within this thesis is the identification of safety

critical scenarios in filter trees. Thereby, the hierarchical structure of a filter tree is used to

describe different scenarios of an airline operation. For example, one filter level can describe

different aircraft types. The next lower level might correspond to the different destination

airports followed by a level characterizing the arrival runways. Every node of this filter tree

is representing a certain set of flights available in the FDM data. Specific properties of these

flights can be associated to the scenario. Subsequently, the FLAME algorithm is utilized to

identify scenarios that are outstanding from a safety perspective in this filter tree.

Besides the dependence characterizations of measurement data, a methodology to use de-

pendence concepts for time series is described. Thereby, a data reconstruction tool based on

the RTS smoother is enhanced. The RTS smoother requires information about the measure-

ment noise covariance that is in general not available for FDM analyses. However, after an

initial run of the RTS smoother framework, the results can be used for a dependence analysis

of the residuals to obtain more accurate results of the measurement noise covariances. This

information can be used in a further RTS smoother iteration to obtain more accurate results.

A special focus of this thesis is the development of routine applications of dependence

analysis in practical applications. The author of this thesis contributed to the establishment

of a computer cluster to store and analyze the obtained operational flight data taking modern

big data concepts and confidentiality aspects into account and to provide parallelization capa-
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Chapter 8: Summary and Outlook

bilities. Furthermore, the entire Flight Safety working group aims to assure industry visibility

and relevance of the developed algorithms by dissemination and participation in events and

working groups associated to the FDM community such as the European Operators Flight

Data Monitoring (EOFDM) forum initiated by the European Aviation Safety Agency (EASA).

For future activities, the revision of physical models using statistical tools proposed within

this thesis together with the developed framework is useful for the Flight Safety working group

at the Institute of Flight System Dynamics. In particular, as physical models of further accident

categories are currently developed. Within this thesis, the application was the Runway Overrun

incident model. Current topics of research are physical models for the Runway Veer Off and

Loss of Control in Flight.

The integration of vine copula dependence structures into subset simulation to obtain

more realistic probability estimations is promising and connects these two concepts for the

first time. Further research and application in this area is expected in the near future to make

this concept accessible to a wider community. One particular subject of future research will

be the increase of occurrence probabilities and their standard deviations, which were identified

by the applications of this thesis, however, no final explanation could be found.

Potential future work also exists with respect to the application of the FLAME algorithm

and the filter trees. Within this thesis, the FLAME algorithm is utilized to identify scenarios

in filter trees outstanding from a safety performance. Thereby, the density assigned by the

FLAME algorithm is interpreted. As future work, also the different clusters determined by

FLAME shall be investigated. It is to be verified whether information about the generated

clusters can be used to draw safety relevant information.

The maturity level of the reconstruction algorithm of FDM data based on the RTS smoother

is high. Therefore, the reconstruction algorithm shall be integrated into an FDM software

package existing on the market, see appendix C. Thereby, the algorithms presented within this

thesis contribute to an easy adaptation of the methodology from one aircraft type to another

and thus support the application of the functionality to entire fleets.

The presented enhancement of the RTS smoother application in FDM describes an iden-

tification of the output measurement noise covariance matrices Rk. For the characterization

of the input measurement noise covariance matrices Qk, [Fen+14] proposes recursive updates

of the associated matrices. Further research shall be conducted to evaluate the suitability of

this and similar estimations of Qk particularly for reconstructing FDM data.

One aim of this thesis is to beneficially utilize modern statistical algorithms recently devel-

oped at research institutions and to discover new real-world applications for them, in particular

for analyses of FDM data. With the algorithms proposed within this thesis, the connec-

tion from mathematical statistics to aeronautical engineering and especially FDM has been

strengthened.
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Appendix A

Histograms and Distribution Fits for the

Detection of Safety Critical Conditions
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Figure A.1: Histogram and distribution fitting for Distance from Runway Threshold to Touch-

down
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Figure A.2: Histogram and distribution fitting for Headwind at Touchdown
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Figure A.3: Histogram and distribution fitting for Groundspeed at Touchdown
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Standard Deviation of the Indicated Air Speed (IAS) during Approach [kt]
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Figure A.4: Histogram and distribution fitting for Standard Deviation of the Indicated Air

Speed during Approach

Fitted Distribution: Generalized Extreme Value

Result of Kolmogorov Smirnov Test: Pass

Fitting Quality Measure: 72.8
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Figure A.5: Histogram and distribution fitting for Flare Altitude
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Fitted Distribution: Kernel

Result of Kolmogorov Smirnov Test: Pass

Fitting Quality Measure: 79.2
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Figure A.6: Histogram and distribution fitting for Gear Extension Altitude
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Figure A.7: Histogram and distribution fitting for Last Flap Setting Change Altitude
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Appendix B

Overview of the Flight Safety IT

System providing Parallel Computing

The Flight Safety working group of the Institute of Flight System Dynamics (FSD) at Tech-

nische Universität München (TUM) participates in several research projects and cooperates

with multiple airlines to develop and enhance algorithms for Flight Data Monitoring (FDM).

Due to these initiatives, a big amount of confidential Quick Access Recorder (QAR) data is

available for the working group members, see chapter 2.

To manage this data and provide analysis capabilities, an IT system taking into account all

technical and confidentiality aspects has been developed, see Figure B.1. To be able to process

the flight data efficiently and to provide scalability for potential future growth, a special focus

lies on parallel computing. The author of this thesis was one of Flight Safety working group

members being responsible for the development and the maintenance of the IT environment.

The Flight Safety IT environment consists of the client computers which are the stan-

dard office computers of the Flight Safety working group members. Every client computer

is connected via the institute network and the internet on the one side and to the Flight

Safety Protected Network on the other side. Every client computer uses a local MATLAB 2

installation for local computations.

The Flight Safety Protected Network consists of three computers where all flight data is

stored. To be precise, the data is stored in a Hadoop Distributed File System (HDFS), which

is one part of the big data framework Hadoop [Apa08]. Hadoop is an open source big data

software framework developed by the Apache Software Foundation. The central idea is that

large data files are split up into several chunks, which are stored individually. The generation

and the organization of the chunks is automatically performed by the Hadoop system. It is

installed on all three computers (in the Hadoop language referred to as nodes) of the Flight

Safety Protected Network. The communication between the nodes is performed by Secure

Shell (SSH), [Tut14, p. 10]. To increase robustness of the Hadoop system and to tolerate

hard drive failures, a data redundancy level can be set in the Hadoop system. This means that

1Oracle and MySQL are registered trademarks of Oracle and/or its affiliates. Used with Permission.
2MATLAB, R2017b, MathWorks
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Figure B.1: Flight Safety IT system overview 1

the data chunks are not only stored on a single hard drive but on several.

To be precise, only the time series recorded by the QAR, see chapter 2.2, and the recon-

structed time series, see chapter 7.5, are stored in the HDFS. The calculated general informa-

tion, measurements, and time points, see chapter 3, are stored in a MySQL database on one

of the computers in the Flight Safety Protected Network. Additional information stored in the

MySQL database are weather information, as well as characteristics about airports, runways,

navigational aids, and aircraft.

To allow extensive calculations being performed in parallel and outside of the client comput-

ers, a MATLAB Distributed Computing Server (MDCS) has been installed on the computers of

the Flight Safety Protected Network. One required part of this server is the MATLAB License

Manager (MLM). The task of the MLM is to ensure that the server runs with a correct and up

to date license. The computation tasks referred to as jobs are sent from the client computers

and are organized by the so-called MATLAB Job Scheduler (MJS).

One partner airline requires further confidentiality levels that are not covered by the IT
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environment presented in this chapter and Figure B.1. For the flight data of this particular

airline, an individual system was developed that is not further described here.
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Appendix C

Interfaces to Existing Flight Data

Monitoring Software

Within the last years, the Flight Safety working group members have developed several algo-

rithms that are going beyond the state of the art in Flight Data Monitoring (FDM). To be

able to use these developments in real operation and to generate benefit for airlines, the Flight

Safety working group has been aiming for cooperation with FDM software vendors.

An ongoing partnership could be established between the FSD Flight Safety working group

and the FDM software provider Safran Analysis Ground Station (AGS).

Figure C.1: Safran logo

The main goal is to discover possibilities for the integration of algorithms developed by

the Flight Safety working group in MATLAB into the AGS software. At the beginning of this

cooperation, a functionality of AGS to include C code into the AGS programming environment

was used [Saf12, p. 190]. With the years and the further development of the AGS IT infras-

tructure, more advanced options for the integration could be discovered in close cooperation

with the AGS technical team.

In addition, the MATLAB Coder provides various capabilities to export code out of MAT-

LAB into other environments such as C. The basics of the concepts for exporting from MAT-

LAB and importing into the FDM software AGS have been developed in the student theses

[Ker15], [Kin15], and [Kir16]. These theses have been supervised by the author of this doctoral

thesis.

The developed interface between MATLAB and Safran AGS was tested using smoother

algorithms very similar to the one described in chapter 7.3.

To foster the cooperation to Safran AGS and to raise attention in the community for the

algorithms developed by the Flight Safety working group, the author of this thesis was invited
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as a speaker for two conference related to the Safran AGS software. In 2017, the 10th Flight

Data Monitoring Users Conference of Safran Electronic & Defense was held between May 15th

2017 and May 18th 2017 in Lisboa, Portugal. In 2015, the Sagem 9th Flight Data Monitoring

Conference was held between January 26th 2015 and January 30th 2015 in Barcelona, Spain.

The presented methods developed by the Flight Safety working group raised interest at both

occasions and the cooperation with Safran AGS is planned to be extended in the future.
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Appendix D

Distribution Families

In this chapter, the one-dimensional continuous distributions available in MATLAB and the

two-dimensional copula families provided by the R package VineCopula [Sch+18] are summa-

rized.

D.1 Continuous Distributions

The fitting algorithm for one-dimensional continuous distributions available at the Flight Safety

working group was developed in MATLAB within [Dre17]. Within this thesis, tools for the

assurance of a suitable fitting quality have been presented in chapter 5.2. Table D.1 summarizes

the families that are available in MATLAB together with their support, i.e. the range with

positive value of the associated density function. It is highlighted that different distributions

have a different support and therefore not every family can be directly fitted to any data.

Distribution Family Distribution Support

Beta distribution (0, 1)

Birnbaum-Saunders distribution (0,∞)

Burr type XII distribution (0,∞)

Chi-square distribution [0,∞)

Exponential distribution (0,∞)

Extreme value distribution R

F distribution [0,∞)

Gamma distribution (0,∞)

Gaussian mixture distribution R

Generalized extreme value distribution Different cases

Generalized Pareto distribution Different cases

Half-normal distribution Different cases

Inverse Gaussian distribution (0,∞)

Kernel distribution R
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D.2 Bivariate Copula Distributions

Logistic distribution R

Loglogistic distribution [0,∞)

Lognormal distribution (0,∞)

Nakagami distribution (0,∞)

Noncentral Chi-square distribution [0,∞)

Noncentral F distribution [0,∞)

Noncentral t distribution R

Normal distribution R

Piecewise linear distribution Different cases

Rayleigh distribution [0,∞)

Rician distribution (0,∞)

Stable distribution Different cases

Student’s t distribution R

t Location-scale distribution R

Triangular distribution Different cases

Uniform distribution (continuous) Different cases

Weibull distribution [0,∞)

Table D.1: One-dimensional continuous distributions available in MATLAB, source: 1

D.2 Bivariate Copula Distributions

To fit two-dimensional copula families to data, the R package VineCopula is used within this

thesis, see [Sch+18]. In chapter 4.7 of this thesis, the copula theory is summarized. In

particular, the concept of rotating bivariate copulas is described in chapter 4.7.2.

Table D.2 summarizes the available families together with the number used for identification

of the copula family within the R package VineCopula. Due to the copula theory, the domain

of any two-dimensional copula is [0, 1] × [0, 1].

Copula Family Family Number

Independence copula 0

Gaussian copula 1

Student t copula (t-copula) 2

Clayton copula 3

Gumbel copula 4

Frank copula 5

Joe copula 6

1Obtained from https://de.mathworks.com/help/stats/continuous-distributions.html on 08.12.2017
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BB1 copula 7

BB6 copula 8

BB7 copula 9

BB8 copula 10

Rotated Clayton copula (180 degrees; survival Clayton) 13

Rotated Gumbel copula (180 degrees; survival Gumbel) 14

Rotated Joe copula (180 degrees; survival Joe) 16

Rotated BB1 copula (180 degrees; survival BB1) 17

Rotated BB6 copula (180 degrees; survival BB6) 18

Rotated BB7 copula (180 degrees; survival BB7) 19

Rotated BB8 copula (180 degrees; survival BB8) 20

Rotated Clayton copula (90 degrees) 23

Rotated Gumbel copula (90 degrees) 24

Rotated Joe copula (90 degrees) 26

Rotated BB1 copula (90 degrees) 27

Rotated BB6 copula (90 degrees) 28

Rotated BB7 copula (90 degrees) 29

Rotated BB8 copula (90 degrees) 30

Rotated Clayton copula (270 degrees) 33

Rotated Gumbel copula (270 degrees) 34

Rotated Joe copula (270 degrees) 36

Rotated BB1 copula (270 degrees) 37

Rotated BB6 copula (270 degrees) 38

Rotated BB7 copula (270 degrees) 39

Rotated BB8 copula (270 degrees) 40

Tawn type 1 copula 104

Rotated Tawn type 1 copula (180 degrees) 114

Rotated Tawn type 1 copula (90 degrees) 124

Rotated Tawn type 1 copula (270 degrees) 134

Tawn type 2 copula 204

Rotated Tawn type 2 copula (180 degrees) 214

Rotated Tawn type 2 copula (90 degrees) 224

Rotated Tawn type 2 copula (270 degrees) 234

Table D.2: Bivariate copula families available in VineCopula R package [Sch+18, Sch+17]
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Appendix E

European Operators Flight Data

Monitoring (EOFDM) Forum 1

The European Operators Flight Data Monitoring (EOFDM) forum was established by the Eu-

ropean Aviation Safety Agency (EASA) as a voluntary partnership between European operators

and EASA in order to:

• Facilitate the implementation of Flight Data Monitoring (FDM) by operators

• Help operators draw the maximum safety benefits from an FDM program

Figure E.1: EASA logo, source: 1

In general, members of the following European or non-European institutions are permitted

to become member of EOFDM:

• Operators

• Operator associations

• Flight-crew associations

• Aircraft manufacturers

• FDM software vendors

• Research and educational institutions

1Information retrieved from https://www.easa.europa.eu/easa-and-you/safety-management/safety-

promotion/european-operators-flight-data-monitoring-eofdm-forum on 29.11.2017
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• Regulators (national aviation authorities and international aviation regulators)

• EASA

The EOFDM is structured as one Steering Group and three Working Groups, see Figure

E.2.

Figure E.2: EOFDM structure, source: 1

Steering Group: Strategic decisions and coordination of the work produced. Composed

by the leaders of the working groups (industry) and the secretaries of the working groups

(EASA).

Working Group A - “Monitoring operational safety issues”:

• Define relevant common risks, safety defences and related operational issues to be mon-

itored by FDM programs (eg. inappropriate reactions to TCAS RA, unstabilised ap-

proaches, hard landings, etc.) in order to support operators’ Safety Management System

(SMS) programs. The selected operational safety issues will refer whenever possible to

ICAO/CAST aviation occurrence categories.

• Develop the basis for detailed FDM related implementations to be performed by Working

Group B.

Working Group B - “Programming and equipment related aspects”:

• Define and test FDM events needed for monitoring operational issues as defined by

EOFDM WGA.

• Identify useful techniques to investigate flight data, either for automatic analysis (man-

aging bad recordings, defining flight phase, etc) or for manual analysis (data mining,

data presentation, correlation with other data sources).

• Define parameters and their characteristics (e.g. sampling rate, recording resolution,

accuracy, etc.) needed to: define FDM events, conduct data analysis and make flight

measurements.
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• Investigate aircraft DAR/QAR related issues (data format, parameter sampling rate,

data frame layout documentation, aircraft related hardware and software issues).

• Look for ways to improve the interoperability between equipment available on the market,

including ground FDM replay and airborne equipment.

• Provide and update the overview of technical solutions (hardware and software) and of

their comparative performance.

Working Group C - “Integration of the FDM programme into operator’s pro-

cesses”:

• Compile best practice intelligence and develop guidance material for the integration of

FDM into an operator’s SMS.

• Provide guidance that will help an operator to best manage:

Limited resources;

The relationships with top-management and unions;

The application of just culture or safety culture with reference to the use of FDM

data;

The use of FDM to its fullest extent to support risk management and safety-

monitoring activities within operators;

The balance between ensuring confidentiality and the use of data for adequate anal-

ysis and follow-up of safety issues.

• Identify best practice with regards to data handling:

During day-to-day operations (transfer from the aircraft to the ground, handling of

memory media, etc.);

Long-term: storage of data in a secure way and de-identification of data.

During his employment at the Institute of Flight System Dynamics (FSD) of Technische

Universität München (TUM), the author of this thesis was leader of EOFDM Working Group

A, member of the EOFDM Steering Group, and member of EOFDM Working Group B. During

the period of leadership of EOFDM Working Group A, the documents Review of Controlled

Flight into Terrain (CFIT) - Precursors from an FDM Perspective and Review of Mid Air

Collision (MAC) - Precursors from an FDM Perspective have been developed by the entire

working group.

Usually once per year, the EOFDM conference takes place (starting in 2017 the conference

was renamed to EASA FDM Conference). The scope of the conferences is to gather experts in

the area of FDM and to discuss recent achievements and occurring problems. At the EOFDM
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conference 2016, the author gave a presentation together with Joachim Siegel about Landing

trajectory and touchdown point reconstruction. At the EASA FDM Conference 2017, the

author as leader of EOFDM Working Group A gave an overview of the current activities of

the working group.
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Appendix F

Project Overview

Within this chapter, the research projects the author was primarily associated with during his

employment at the Institute of Flight System Dynamics (FSD) are briefly summarized.

F.1 Zentrales Innovationsprogramm Mittelstand (ZIM)

Project “Entwicklung einer Software zur robusten

Erkennung risikobehafteter Ereignisse im Flugbetrieb

auf Basis von Flugdaten”

Project number: KF2099814KM2

Project duration: 01.02.2013 - 30.11.2015

The goal of this project was to develop an extension of existing FDM software packages.

A common problem in FDM is the low data quality and the generation of nuisance events,

see chapter 3. One goal of this project was the reduction of false positive events that are

triggered by the FDM software. This was realized by a more robust detection of events using

several FDM parameters instead of over-relying on single parameters. A further aspect of this

project was the application of advanced statistical tools such as dependence characterizations

with copulas.

The project consortium consisted of TUM and Cognidata GmbH.
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F.2 Deutsche Forschungsgemeinschaft (DFG) Project “Copula based dependence analysis of
functional data for validation and calibration of dynamic aircraft models”

Figure F.1: ZIM logo Figure F.2: BMWi logo

F.2 Deutsche Forschungsgemeinschaft (DFG) Project

“Copula based dependence analysis of functional data

for validation and calibration of dynamic aircraft mod-

els”

Project number: HO 4190/10-1

Project duration: 01.09.2016 - 30.06.2020

The goal of CopFly is to use statistical tools for dependence characterizations of operational

flight data to validate and calibrate dynamic aircraft models. A special focus lies on the

handling of recorded time series flight data, see chapter 2.2, which is mathematically more

complex than the handling of flight data measurements, see chapter 3. As described in chapter

7, the enhancement of the landing reconstruction based on the recorded time series of the

QAR was carried out within CopFly.

Part of the project consortium are the Chair of Mathematical Statistics and the Institute

of Flight System Dynamics, both from Technische Universität München (TUM).

Figure F.3: DFG logo
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F.3 European Union Horizon2020 Project “SafeClouds.eu”

Project number: 724100

Project duration: 01.10.2016 - 30.09.2019

The goal of SafeClouds.eu is to improve aviation safety by developing big data tools

considering the characteristics of aviation data. Data sources that are taken into account

during the project comprise FDM data, radar data, weather data, and flight plan data. In

particular, a cloud environment for the involved datasets is developed that is taking the high

level of confidentiality of the FDM data and other data into account, see chapter 2.4.

To have access to the required data and to be able to develop suitable algorithms, the

project consortium consists of five airlines, three Air Navigation Service Provider (ANSP) and

several research institutions.

Figure F.4: SafeClouds.eu logo

Figure F.5: European Union logo
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Appendix G

Scientific Publications

During the employment and doctoral study at the Institute of Flight System Dynamics, the

author of the given thesis published the following publications. The list includes journal and

conference papers as well as conference and workshop presentations.

• P. Koppitz, C. Wang, L. Höhndorf, J. Sembiring, X. Wang, and F. Holzapfel. "From Raw

Operational Flight Data to Incident Probabilities using Subset Simulation and a Complex

Thrust Model." In: Non-Deterministic Approaches: Probabilistic Risk Assessment and

System Safety, 2019 AIAA SciTech Forum, San Diego, CA, USA, 2019.
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