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Abstract
We present an X10 software package for the solution of the shallow
water equations, a set of equations commonly used to simulate
tsunami and flooding events. The software uses an actor-oriented
approach to obtain a communication scheme that does not rely on
central coordination. Instead, each actor only communicates with
its neighbors. We evaluated the package via scaling tests on single-
place shared memory as well as multi-place distributed memory
system configurations, and found it to perform comparably to prior
implementations based on C++, OpenMP and MPI.

Categories and Subject Descriptors G.1.0 [Numerical Analysis]:
Parallel Algorithms; G.1.10 [Numerical Analysis]: Applications

Keywords Actor Model, Parallel Algorithms, Shallow Water Equa-
tions, APGAS

1. Introduction
The shallow water equations are commonly used in the simulation of
tsunami events, e.g. the GeoClaw package by LeVeque et al. (2011).
They belong to the class of two-dimensional simulation problems.
Hence, it is possible to solve realistic scenarios with a moderate
amount of resources. However, the parallelization of the solution
process is non-trivial as communication between different patches
with neighboring cells is required between each time step. This
makes the shallow water equations an interesting subject for research
in the field of parallel algorithms. The Asynchronous Partitioned
Global Address Space (APGAS) paradigm allows us to view the
whole computation as one program instead of a set of processes
running in parallel. This paradigm is also used in conjunction with
resource-aware computing (Bungartz et al. 2013). In contrast to
a prior approach based on work by Breuer and Bader (2012), our
code features an actor-based, local coordination scheme without
centralized control of the simulation. The current state may be
viewed as a step towards a fully asynchronous local time stepping
scheme. Compared to traditional approaches, we may view the parts
running in parallel on a higher level, and may hence quickly explore
different software configurations such as variations in the granularity
of places or the distribution of simulation data, both of which are
not as easily achievable with applications based on OpenMP and
MPI.
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Figure 1. Actors advancing each other. Each actor has a left and
a right neighbor, and in order to compute the next time step, they
need to receive data from these first.

2. Numerical Model and System Design
The shallow water equations are a set of hyperbolic partial differen-
tial equations. They are derived from the Navier-Stokes equations by
averaging over the unknowns in the third dimension, i.e. the depth
of the water. Let h denote the water height, u and v the velocities
in the remaining two spacial dimensions. S(t, x, y) stands for an
optional source term that enables the modelling of additional effects
such as Coriolis forces and friction or bathymetry of the ocean floor.
The notation [f ]a is short for partial derivative of f in regards to a. h
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The numerical approach implemented by the SWE-X10 package is
based on the original SWE package presented in (Breuer and Bader
2012). To progress the simulation, a Riemann problem has to be
solved for each of the cell borders. This complicates parallelization,
as data at the boundaries of each patch needs to be exchanged before
the computation of each time step.

We use the actor model and the ActorX10 library described in
Roloff et al. (2016). We subdivide the simulation domain, repre-
sented by a two-dimensional array of unknowns for h, hu, hv and
b, into equally sized, rectangular patches and assign one actor to
every patch. Each of these has an incoming and one outgoing chan-
nel for each of its direct top, bottom, left and right neighbor. The
channels are used to exchange cell information at the boundary of
each patch between each step. Before an actor can compute a new
time step, the results from the neighbors’ previous step need to be
received. Thereafter, new fluxes are computed, the unknowns are
updated according to a precomputed time delta and the new values
at the boundary are sent to the actor’s neighbors. This behavior is
illustrated in Figure 1 for four actors arranged in a linear fashion.
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Figure 2. Single node performance test with 10242 simulated cells
per CPU core. Our code is able to reach about 75 GFlop/s, which
translates to about 23% of the peak performance of the node. The
gray line depicts the single-node performance of SWE.

3. Results
We performed two benchmark tests to demonstrate the performance
characteristics of the SWE-X10 application. Initially, we evaluated
the performance on a single place by varying the number of CPU
cores contributing to the execution of the simulation. Furthermore,
we performed a weak-scaling test where we executed the simulation
on configurations spanning multiple places on several nodes in a
cluster. The target system for the performance evaluation is a cluster
of 28 dual-socket Xeon E5-2670 (Sandy Bridge EP) nodes. Each
node has a peak single precision floating point performance of
332.8 GFlop/s and a STREAM Triad performance of 60.8 GB/s.
Both tests utilize the HLLE solver (Harten et al. 1997; Einfeldt
1988), an autovectorizing C++ Riemann solver. The scenario for the
tests is a Radial Dam Break Scenario. As a comparison, we provide
alternate performance results from SWE (Breuer and Bader 2012),
a package that utilizes OpenMP and MPI for parallelization.

In the single-place test, we ran a simulation on n physical proces-
sor cores, with 10242n cells in the simulation domain, distributed
onto 4n actors, each with 5122 cells. We observed the best perfor-
mance with four actors per core, presumably due to the effects of
SMT. The results of the test are given in Figure 2. They show the
floating point performance to be at 25 GFlop/s for a single core sim-
ulation run and indicate a saturation at 10 cores with a performance
of 75 GFlop/s. This corresponds to 23% of the theoretical peak
performance of a single Xeon E5-2670 node. A single execution
of the HLLE-Solver entails 135 floating point operations, and a
memory transfer volume of 44 Bytes. From these numbers, and the
performance characteristics of th CPU, we deduce that execution of
the code is memory-bound.

In the multi-place performance evaluation, we assigned a single
place with 32 actors, each with a patch of 512× 512 cells, to one
socket. The test was executed in configurations ranging from one
socket with 8 cores up to 16 nodes with a total of 256 cores. Its
results are illustrated in Figure 3. For simulation runs up to 8 nodes,
we observe ideal scaling behavior, afterwards the performance gains
are slightly sub-linear for both implementations. This might be due
to performance fluctuations inherent to the cluster we performed the
measurements on.

4. Conclusion and Future Work
We presented a software package for the simulation of the shallow
water equations based on an actor-based and locally coordinated
control scheme. We showed that the code scales to at least 256 cores
on 16 nodes of a cluster based on dual socket 8-core Sandy Bridge
nodes. Using native SIMD-based Riemann solvers, we managed to
reach a peak performance of 1.2 TFlop/s, which indicates a good
scaling behavior relative to a single-node configuration with 16
physical CPU cores. Our implementation compares favorably to
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Figure 3. Weak scaling test encompassing a work load of four
patches with 5122 cells per physical CPU core. Scaling was per-
formed from 8 cores on a single socket up to 256 cores on 16 nodes.
The green line denotes linear scaling behavior relative to a single
node, while the black line displays our actual measurements. The
gray line denotes the performance of SWE.

SWE, a prior implementation based on MPI and OpenMP, which
reached a peak performance of 464 GFlop/s under equal conditions.

In future work, we aim to extend the code to run in heterogeneous
environments containing accelerators such as CUDA-capable GPUs
or Xeon Phi coprocessors. This that will necessitate actors with
non-uniform patch sizes in order to accommodate the different
performance characteristics. Furthermore, we plan to allow actors to
dynamically choose from different multiples of the base time step.
This results in an asynchronous, local time stepping scheme without
the need for central communication. Finally, we are exploring
delayed activation. There, the actors gradually start computing
updates as the wave propagates across the simulation domain.
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