Implementation and Evaluation of
IEC 61499 Basic Function Blocks in Erlang

Laurin Prenzel
Safe Embedded Systems
Technical University Munich
Email: laurin.prenzel @tum.de

Abstract—Despite several architectural advantages for the
challenges of future manufacturing systems, the IEC 61499
standard is currently not widely accepted by industry. One
advantage of the IEC 61499 is the concept of downtimeless system
evolution. An extension of this, dynamic software updating,
which allows switching out running processes and deal with
unplanned changes, is readily available in the programming lan-
guage Erlang. This paper investigates the real-time performance
of an asynchronous, parallel IEC 61499 basic function block
implementation in Erlang, a functional programming language
with a soft real-time, concurrent runtime environment. As a
result, although hard real-time performance is not guaranteed
and the runtime environment is executed on top of a regular
operating system, the performance is consistent and promising
for future implementations and extensions.

I. INTRODUCTION

The IEC 61499 standard was introduced as a possible
successor of the IEC 61131-3 standard for industrial control
systems. Despite several architectural advantages, the standard
is yet to be widely accepted by the industry. The distributed
and event-driven concept allows for more flexible systems to
tackle the upcoming challenges of the next decades such as
the internet of things or industry 4.0.

Flexibility, reconfigurability and distribution are some key-
words associated with this standard [1]. The main advantage
is the encapsulation of independent functionality in function
blocks without global states. This feature facilitates the reuse
of function blocks as modules for many different applications
on different platforms. It allows the modification of the func-
tion block network without causing unexpected issues with
seemingly unrelated subsystems [2] and it enables the dissem-
ination of function blocks over large networks and resources,
thus permitting real, physical distribution. In addition, the
model-based approach lends itself to formal verification [3, 4].
On the other hand, there are a number of design and execution
ambiguities preventing the IEC 61499 standard to be fully
applied [5].

Erlang, as a functional programming language, first ap-
peared in 1986 as a proprietary language for the use in
telecommunication systems [6, 7]. Nowadays, Erlang serves
as an open-source language for distributed, fault-tolerant and
highly available systems with many large scale applications,
mostly in the telecommunication sector.

Julien Provost
Safe Embedded Systems
Technical University Munich
Email: provost@tum.de

These features alone promote Erlang for an IEC 61499
implementation. Nonetheless, Erlang exceeds in the execution
of highly concurrent systems, as it is capable of sustaining
thousands of synchronous processes with low memory require-
ments. The main benefits of using Erlang are the ability to
load new code versions during runtime and the framework
for safe dynamic software updates. While the IEC 61499 also
allows online reconfiguration or, as it is commonly referred
to, downtimeless system evolution, Erlang takes this concept
further [2, 8].

This paper describes an asynchronous, parallel implemen-
tation of the IEC 61499 basic function block in Erlang
and investigates the soft real-time performance in the Erlang
Runtime System (ERTS). The point here is not to prove hard
real-time behavior that the ERTS, as a soft real-time system,
does not guarantee. The goal is to highlight a readily-available
architecture for the implementation of distributed, flexible and
reconfigurable systems and to analyze what performance a
soft real-time system without sophisticated optimization can
deliver out of the box. This would allow further research on
dynamic software updating and automatic update generation
and verification without the need to implement a new runtime
environment.

Section II introduces basic concepts of the IEC 61499
standard and presents the main features of Erlang and the
Erlang Runtime System. The function block execution model
and the subsequent implementation in Erlang is described in
Section III. Section IV introduces the performance evaluation
procedure and Section V follows with the results that are
discussed in Section VI.

II. BACKGROUND

This section introduces the IEC 61499 standard and its basic
function block. Afterwards, the programming language Erlang
and its most important characteristics are described.

A. IEC 61499

Apart from the standard itself, Zoitl and Lewis [9] offer an
extensive overview of the concepts of the IEC 61499 standard.
The main element of the standard is the function block. It
can be composed in large networks by linking the event and
data connections. The set of function blocks describing the
solution to a control problem is bundled in an application. The

Events Events
[F+—
Execution Control Chart
L] [1
Data Data
] [1
——[] Algorithms [+—
———1] [H—

Fig. 1. IEC 61499 Basic Function Block

individual function blocks may be distributed over multiple
resources and devices with the corresponding models.

The basic function block allows the manual implementation
of custom algorithms. The execution of the algorithms is
conducted by the Execution Control Chart (ECC). Triggered
by incoming events, the ECC requests the execution of an
algorithm and issues outgoing events. A schematic view of
the basic function block is presented in Figure 1.

Besides the basic function block there are three other main
types of function blocks: Subapplication blocks, composite
function blocks, and service interface function blocks. The
first and second help structuring the application, whereas the
latter serves as an interface to external resources.

There exist multiple possible implementations of the func-
tion block network. An overview is given by [10] and more
recent developments are summarized by Vyatkin [11]. Com-
mon execution modes are sequential, cyclic, and parallel.

B. Erlang

Erlang is a functional programming language with roots in
the telecom industry. It shines in the application of distributed,
highly-available, concurrent systems. As such, a parallel im-
plementation of the IEC 61499 fits quite naturally.

The basics of the programming language and environment
can be found in many different books and online resources
[7, 12]. The most important elements are:

o The functional programming language
o The Erlang Runtime System (ERTS)
o The Open Telecom Platform (OTP)

The language itself is already sufficiently described by the
literature. It is a functional language with immutable data
and a strong focus on recursion. The compiled BEAM code is
then executed in a virtual machine, described in the following
section.

1) Erlang Runtime System: The Erlang Runtime System
(ERTY) is the environment in which the compiled Erlang code
is executed. It is optimized for highly concurrent (thousands of
processes) and highly available systems. As such, it distributes
the computation time fairly over the currently executable
processes. Every executable process receives a “time slice”
measured by a reduction count (number of function calls)

Scheduler

Normal & Low

Max Priority Priority

High Priority

1

Fig. 2. Erlang process execution and run queues

of 4000 before it is preempted. This number may change
in different versions, in the past the default value was 2000
reductions.

For every available CPU thread one scheduler is spawned at
startup. This scheduler has three run queues for four priority
levels. Max and high priority have their own run queue.
Normal and low priority processes share the same run queue,
but a 1ow priority process is only executed after it reached the
top of the run queue 8 times. Figure 2 displays the different
run queues and the process cycle.

The max priority is reserved for system processes. High
may be used, although it is discouraged and may lead to issues
such as priority inversion or process starvation. In general,
focusing too much on optimization is discouraged.

Between the schedulers there are two contrasting paradigms:
load balancing and load compaction. Load balancing tries
to balance the load over all available schedulers. Load com-
paction (default) tries to fully employ the smallest number of
schedulers to allow hibernation of the rest.

The preemption of a processes can only occur after the
reduction count or if the process finishes early. Thus, a higher
priority process is only executed after the currently running
process has yielded, in the worst case after 4000 reductions.

Also, natively-implemented functions (NIFs) that are coded
in C and called from an Erlang function do not yield by
default, and can thus lead to blocking of the scheduler.

2) Garbage Collection: The ERTS requires garbage collec-
tion. Every Erlang process has its own heap and stack growing
towards each other. When there is not enough space available
between them, garbage collection has to be performed. If
enough space can be reclaimed, the process will resume
normally, otherwise the heap size is increased. The initial heap
size of a process can be set manually. If less heap size is
necessary, it will eventually be resized [13].

In many other virtual environments, garbage collection is
performed for the entire system, thus blocking for a long time.
In Erlang, it is confined to individual processes. Thus, garbage
collection can delay the execution of a process, but it will not

directly affect other processes or block the whole system.

Besides the major garbage collection, a minor, generational
garbage collection can be performed. The heap is split into
young and old elements. A minor garbage collection only
collects the young heap and ignores the old heap. This reduces
the overhead of collecting long-lived elements repeatedly. The
major garbage collection will be performed after a specified
number of minor runs, or if the minor garbage collection can
not reclaim sufficient memory.

The garbage collector can also be triggered manually by
invoking the corresponding functions. Garbage collection is
one of the reasons why Erlang can not be considered hard
real-time. By triggering the garbage collector manually the
probability of it occurring in undesirable situations, i.e. in
critical states, can be reduced.

3) Open Telecom Platform: The Open Telecom Platform
(OTP) is a set of applications and behaviours that facilitate the
implementation of common systems. For example, instead of
manually implementing a process resembling a state machine,
the OTP contains a formalized behaviour for this purpose
(gen_statem). The behaviours supply the necessary functions
to build large, interconnected systems by reusing similar
patterns. Common behaviors exist for: State machines, servers,
event handlers, and supervisors. Supervisors allow the starting,
monitoring and graceful termination of a network of processes.
In the event of a failure, supervisors may restart parts of the
application to recover the functionality. It is also possible to
create custom behaviours.

The OTP offers the concepts of applications and releases.
Applications are sets of modules that implement a partly inde-
pendent or encapsulated functionality. The set of applications
to solve a particular problem can be bundled into a release. A
release is a fully functional system containing its own copy of
the ERTS. It can thus be executed on any target system.

III. METHODS

After introducing the concepts of the IEC 61499 and Erlang,
the semantics and execution of the IEC 61499 basic function
block can be analyzed further. This analysis is the foundation
for the implementation of the basic function block in Erlang.
Ferrarini and Veber [10] describe different possible implemen-
tations of the IEC 61499 standard. The implementation in this
paper corresponds to a multitasking implementation with time
slices without a fixed function block scan order. Regarding
the semantics defined by Vyatkin [11], the implementation
follows an asynchronous, parallel execution. Wherever further
choices about the execution semantics were necessary, the
choice facilitating an implementation in Erlang was made. This
section describes one possible IEC 61499 implementation in
Erlang, not all possible IEC 61499 implementations.

Further, the implementation is limited to the basic function
block. Possible implementations of other types are described
by Prenzel and Provost [8].

A. IEC 61499 Basic Function Block Analysis

Before using a basic function block (FB), its type has to
be defined. Its instance can then be used in a function block

Next Queue

Algorithm

g2
ISl
S o
o=

Internal
Variables

Fig. 3. IEC 61499 Function Block Layout

network in an application. In the application, this function
block instance is defined by the following properties:

« A type and instance name
« Event inputs and outputs, possibly connected to other FBs
« Data inputs and outputs, possibly connected to other FBs

These properties are commonly stored in the application
file. The basic function block type, on the other hand, is
characterized by:

e The Execution Control Chart (ECC)

e A set of algorithms

o A set of internal, input, and output variables
o A set of with qualifiers for inputs and outputs

The ECC describes the relation between input events,
algorithms and output events in the form of a Moore-type
finite state machine. At the occurrence of an input event,
the available transitions are evaluated. When a new state
is entered, the corresponding algorithms are executed and
outgoing events are sent. The transitions may have guards
using all available variables.

The algorithms have access to the variables and can calcu-
late new output and internal variables. The IEC 61499 standard
does not strictly specify the language for the algorithms.

The set of variables holds the input-, output-, and internal
variables. On the occurrence of an input event, input variables
connected to this event by the with-qualifier are updated. When
output events are sent, the corresponding data outputs are
propagated to the connected function blocks. Internal variables
are only updated by the algorithms.

In this implementation, due to the separate channels for
events and data, the data has to be buffered and sampled.
When a data message arrives, its content is stored in a buffer.
This buffer contains one set of values of all data inputs. If a
new data message arrives, it overwrites the currently buffered
value. On the occurrence of the correct input event message,
this input is sampled from the buffer, thus writing it into the
input memory. The full layout of the basic function block is
depicted in Figure 3. The calculated output value is stored in
the output memory until the corresponding output event is sent
and the output value is propagated to the connected function
blocks.

B. IEC 61499 Basic Function Block Implementation

An approach to automatically generate an Erlang system
from an IEC 61499 application is described by Prenzel and
Provost [8]. Their approach served as a proof of concept for
updating an automatically-generated IEC 61499 application,
but not all features of the basic function block were yet
supported. This paper focuses on the full implementation and
evaluation of a basic function block with data connections and
functional algorithms.

Kruger and Basson [14] showed an implementation of a
resource holon in Erlang/OTP, although unrelated to the IEC
61499, and concluded that Erlang is well suited due to its
modularity, scalability, customisability, maintainability, and
robustness characteristics.

Since Erlang is a functional programming language, the
function block is implemented as a set of functions. To
simplify this, the OTP behavior gen_statem for finite state
machines is used.

The implementation makes heavy use of records (a key-
value construct) and is fully specified, allowing the use of
the dialyzer for checking of type safety [15]. Displaying full
functions would be out of the scope of this paper, but Listing 1
shows the exemplary specification for the handle_event/4
function. The number behind the function name (/4) resem-
bles the number of arguments for this function.

There are two types of functions to be implemented: Generic
functions that are the same for all possible basic function
blocks (such as handle_event/4), and functions that are
specific to a certain function block type. To initialize the
instance of a function block type, a set of variables is passed
to it during startup.

handle_event(event_type (), message(),
state (), {internalData (), connections()}) —>

{next_state , state (),
{internalData (), connections()}}.

handle_event/4

data
event

sample_inputs/3

update_buffer/3

NewState T

no_transition

g return
A 4
g return

garbage_collect/0

Fig. 4. IEC 61499 Function Block Timing

will run until no transition can be fired anymore. Consequently,
by design, the ECC should not contain live locks and must
terminate eventually.

2) Function Block Specific Functions: While the
handle_event/4 and ecc/4 functions are the same
for every basic function block type, sample_inputs/3,
update_buffer/3, statemachine/3,
algorithm/2, distribute_data/2, and
send_events/2 are function block specific functions. That
means they have to be generated from the function block type
specification. Their implementation in Erlang is very straight
forward, as can be seen in the specification in Listing 2.

Listing 1. handle_event/4 callback function

1) Generic Functions: The generic functions are mostly
the functions expected by the gen_statem behavior, i.e.
functions for initialization, startup, termination, update and
event handling. Termination and update functions can be used
for possible fault tolerance mechanisms or dynamic software
updating.

Figure 4 displays the structure of the handle_event/4
function that is called whenever a new message is picked from
the mailbox. Depending on the type of message, different
sequences are followed. For data messages, the buffer is
updated and the function returns. For event messages, the ECC
is called after the inputs are sampled. The ECC itself first
calls the state machine to find executable transitions. If no
transition can be triggered, the ECC returns. If a new state is
entered, the corresponding action for this state is performed,
i.e. algorithms are executed and data and events are distributed
to other function blocks. Finally, the ECC is called again to
find available transitions without events. This recursive call

statemachine (event_in() | no_event,
state (), internalData()) —>

state () | no_transition.

Listing 2. statemachine/3 function

Every transition can be defined by the event, the
current state and a guard on the internal data. This
statemachine/3 function then returns the corresponding
state or no_transition.

3) Initialization: The Erlang process is part of a supervision
tree and started by the responsible supervisor. The supervisor
spawns the process from the Erlang module defining the
function block type with an additional set of arguments. Those
arguments are used to initialize the process and later, the
function block. The first argument is the instance name, which
is used to register the process. This is more efficient than using
process identifiers, as the function block instance, by design,
must have an unambiguous name. In addition, there is a set
of initialization values, in case the function block instance has
constant inputs, and a connection table. The connection table
describes for every outgoing event and data connection the
name of the receiver and what name is expected.

4) Language of the algorithm: The IEC 61499 standard
does not strictly define the language of the algorithm. For an
implementation in Erlang, multiple options are available. The
most forward approach, and the one used for the evaluation in
this paper, is to implement the algorithm directly in Erlang.

The most convenient approach would be to convert the
algorithms to C code and call them as natively implemented
functions in Erlang. The performance is generally even better
than Erlang code, but long algorithms may lead to blocking,
as they can not be interrupted by the scheduler.

The third approach is the automatic conversion from one
language (IEC 61131-3, C, Ladder Logic, ...) to a language
more compatible with Erlang, i.e. Erlang itself or Elixir. This
is currently investigated.

IV. PERFORMANCE EVALUATION

The previous section described the implementation of the
IEC 61499 basic function block in Erlang. As initially stated
in the introduction, this paper aims to evaluate the real-time
performance of the Erlang Runtime System (ERTS) for this
purpose. Since it is not possible to put a deterministic upper
bound on the worst case execution time in Erlang, only an
empirical analysis of the distribution of the reaction time can
be produced.

A. Methods

Real-time performance is a topic intensively studied in
literature. Wilhelm et al. [16] created an important overview
of how to estimate the worst case execution time (WCET) of
a system. More related to the IEC 61499, Zoitl [17] presents
a method for the real-time execution of this standard.

The result of interest in this paper is the reaction time
of a function block and what parameters it depends on. In
combination with a control flow analysis, this result may
be used to determine the reaction time of a function block
event chain, similar to the description by Zoitl [17], although
empirical.

To measure the reaction time, a basic function block is
implemented and equipped with time measuring capabilities.
In this case, the function block will return a set of timestamps
to the requesting process. The full evaluation setup is described
in the next section.

In total, 8 values are collected per measurement. Those are
a counter, the current system time, the monotonic process re-
duction count, and 5 durations of the function block execution:

1) T1: Event send time to the FB

2) T2: Data sampling time

3) T3: Execution control chart execution time
4) T4: Garbage collection time

5) T5: Event send time from the FB

T1 is the time it takes to send a message from a high priority
process to a normal priority process. T2 is the time to update
the input memory from the buffer according to the event. T3
is the time to execute the ECC. T4 is the time to perform
the garbage collection. TS is the corresponding counterpart to

Load Application

Data Logging
& Execution

Load Supervisor

| | |

o)

Fig. 5. IEC 61499 Function Block Timing

T1, i.e. sending a message from a normal priority process to
a high priority process.

B. Evaluation Setup

To make realistic measurements, the function block has to
be embedded in an environment, as depicted in Figure 5.

There is a high priority process in charge of orchestrating
the tests (Data Logging & Execution). It starts the load,
requests the function block execution, and stores the data.
The outputs from the function block are sent to a process
serving as a trash can. Additionally, there is an application to
apply additional load to the ERTS. This application allows the
spawning of processes that repeatedly perform an expensive
computation, thus filling the run queue.

The implemented function block, implemented as a
normal priority process, performs the action of a PID-
controller, calculating an algorithm when requested and dis-
tributing its results to other processes. Its interface is shown
in Figure 5 and the ECC is depicted in Figure 6. The dashed
connection from the top of the function block interface stands
for the additional time-measuring output.

To achieve realistic and consistent execution, the function
block is triggered every 25 ms. This value was chosen as a
compromise between the highest possible resolution (frequent
measurement), economical generation of data, and avoidance
of feedback from the measurement. This execution is achieved
by measuring the total execution time and waiting for the
remaining time. In case the execution takes longer than 25
ms the next cycle is started immediately after the previous
cycle.

The additional load fills the run queue of the scheduler,
thus causing the function block process to compete with other,
normal priority processes. The load processes are always
executed for the full amount of reductions, in this case 4000,
before they are interrupted.

preinit

ei_INIT

postinit init_PID CNF_INIT

request-
ing

CNF_CLEAR

waiting clear_PID

ei_CLEAR

ei_REQ

update_PID

clearing

Fig. 6. IEC 61499 PID ECC

C. Tests

In a realistic setup, the function block would be part of a
larger network. This concurrent execution causes the run queue
of the scheduler to fill with processes. In normal systems, this
additional load for an event-based system depends on the input
events and their frequency and is highly fluctuating.

In this benchmark, in order to achieve the most deterministic
result, the load processes are executed for the full amount
of reductions and are continuously requested. Five test cases
are executed with varying numbers of concurrent processes,
starting with two and moving up to 32 in discrete steps. Lower
numbers of processes show large fluctuations, whereas more
processes would exceed the cycle time. This number resembles
the number of processes waiting in the run queue before the
function block.

The test platform for this test is a Raspberry Pi 3 Model B
with Raspian Jessie and Erlang 20. The only modification of
the Raspberry Pi is to manually disable CPU throttling. Only
one scheduler is spawned to prevent work stealing between
the schedulers. The ERTS is started with a nice value of -20
to prevent interruptions as much as possible.

Each test is performed for 7.200.000 executions, which is
equivalent to 50 hours, or 250 hours in total, for all 5 test
cases.

V. RESULTS

The performance evaluation yielded 2 main results:

o Table I comparing the maxima, minima, mean values and
standard deviations of the individual test cases for every
measured variable.

o A scatter plot (Figure 7), visualizing the temporal distri-
bution of the total time data. The tests were performed
consecutively, but they are overlayed in the scatter plot
to allow an easier comparison.

The table (Table I) shows the relevance of the contributing
durations. The Send Time 1, which represents the time it
takes for the process to receive a time slice, is dominating
in all test cases. Second is the Execution Control Chart Time.
The manually enforced garbage collection takes a considerable
chunk of the execution time of the function block. Sampling
of the buffer values is nearly negligible. The Send Time 2 can
serve as a reference value for the reactivity of the scheduler,
as in this case, the recipient of the message runs with a higher
priority and will be scheduled immediately.

The scatter plot (Figure 7) reveals periodic interruptions
every hour and once every 24 hours (around 6:25 AM). For 32
processes, a faint sinusoidal shape of the disturbances can be
perceived. The more remarkable outliers for 2 and 4 additional
processes all resemble the distribution of the next higher test
case.

In addition, the process consistently required 91 reductions
for the execution in every cycle. This includes the algorithm
itself and all overhead introduced by the function block
implementation.

VI. DISCUSSION

The results present the performance of an asyn-
chronous, parallel function block implementation on a simple,
commonly-available hardware platform with a fair round-robin
scheduler.

It is important to note the limitations of the evaluation.
Only one scheduler was used, thus the Raspberry Pi platform
was only able to use one core for Erlang. This also implies
that the operating system can run other tasks in parallel on
other cores. If four schedulers were spawned, parts of the
performance would potentially improve by 300%, although
more interruptions by the OS could be expected. The current
operating system does not guarantee real-time constraints.
Further optimizations may be applied by using more advanced
operating system tools or real-time operating systems. This
was not within the scope of this paper.

The Send Time I and consequently the Total Time scale
linearly with the number of additional processes in the queue.
This is very distinct for the mean and minimum. For 2 and 4
processes, the maximum is distorted due to the outliers visible
in the scatter plot. This result follows the characteristics of
the scheduler. A longer run queue causes a longer wait time
to be executed. Send Time 2 is independent of the number
of additional processes, because the high priority process will
get executed immediately. Intuitively, setting many processes
to a higher priority will diminish the advantage. Both the
garbage collection and ECC show notable outliers worth
further investigation. The cyclic interruptions visible in the
scatter plot are most likely due to the operating system. The
main disadvantage of the current framework is the dependency
on a non-real-time operating system.

Reaction Time
T I

30 - -
20k oyttt NPT R Gt i
g 10 - . 4 . . TR . .] . Dttt \ .
o I]
E r]
'_ - -
& 5+ : |
© L N
©
]
x|]
32
- 16 -
8
: 3 , 4
- 1. | . 2
1 \ | \ | \ \ \ \ \ !
15:00 21:00 3:00 9:00 15:00 21:00 3:00 9:00 15:00 21:00 3:00 9:00
Time [h]
Fig. 7. IEC 61499 Function Block Timing
TABLE I The results allow two separate interpretations of the max-
TABULAR PERFORMANCE ANALYSIS RESULTS imum number of processes executable within the 25 ms
| Max [ms] | Min [ms] | Mean [ms] | StdDev deadline. The current framework uses 32 concurr.ent processes
) 29252 1452 11653 | 00131 as a maximum load. In.a worst case scenario, Where 32
L
g 4 46620 22497 20844 | 0.0181 processes are busy blocl.qn.g the schedgler, a real-time task
= 8 6.3932 4.4769 45339 | 0.0195 may still be executed within 25ms. This corres.ponds to the
g 16 11.0155 89183 00264 | 00225 fa}rness property of the scheduler, as long running processes
3 213346 | 17.8875 18.0100 | 0.0340 will éventually .be preempte‘d. On tl}e other hand, the cur'rent
_ > > 8168 RIE 1358 | 00116 iunctlonE lélgck 1mpl?men;2111tlon requlreq unQer 101? redulciolns
?5’ 4 46028 22222 22554 0.0168 Ior an o executlonh us, Ert;emppon blls rlit er unh epﬁ
& g 6.3147 4.4491 45045 | 0.0181 na reatllstllc seElp, ::E)Oege e(ailc . unction (;101 process le;l
ERRT: 109293 2.8804 89968 | 0.0209 use much less than 000 re uctions, a much larger number
2| g 21,2492 17.8592 179803 | 00323 of processes can fit 1ns1fie the 25 ms window. Assuming
3 2 0.0762 0.0011 0.0013 | 0.0001 500 ?eductlons.per function block and 4 schedulerg, 1024
E 4 0.0766 0.0011 00013 | 0.0002 1nd1v.1dual function block§ may be executed while consistently
2| 8| 01092 o001 0.0013 | 0.0002 keeping the 25 ms deadline.
g 16 0.0071 0.0011 0.0013 0.0001
“ 132 | 00065 | 00011 0.0013 | 0.0001 VIL. CONCLUSION
. 2 0.1241 0.0182 0.0206 | 0.0032 The aim of this paper was the demonstration of an asyn-
5 4 0.1940 0.0180 0.0204 | 0.0033 chronous, multi-tasking IEC 61499 Basic Function Block
o | 8 02212 | 00182 0.0206 | 0.0035 implementation in Erlang and its real-time performance evalu-
8 |16 O.I11L 00183 0.0208 1 0.0037 ation. Erlang and the IEC 61499 share many similarities, since
32 0.1072 0.0185 0.0209 | 0.0040 they are both intended for distributed, concurrent, and event-
2 0.1031 0.0067 0.0076 | 0.0006 triggered applications. This simplifies the implementation of
é’ 4 0.1081 0.0065 0.0074 0.0008 the IEC 61499.
=
O 8 0.1269 0.0065 0.0074 1 0.0008 Using Erlang as an implementation language comes with
16 0.0192 0.0066 0.0075 0.0006 . st
© many benefits, e.g. the native support for distribution, concur-
32 0.0590 0.0066 0.0075 | 0.0006 rency, and event-based execution, as well as the functional
a 2 01204 0.0127 0.0180 1 0.0049 paradigm which is well-suited for safety and traceability.
Q 4 1.2427 0.0127 0.0182 0.0050
£ Erlang also allows dynamic software updating, i.e. updating
= 8 0.1294 0.0127 0.0164 0.0037 . o
o running applications, which will be investigated in further
5 16 0.1048 0.0128 0.0183 0.0037 .
& projects.
32 0.1927 0.0128 0.0186 0.0054

On the other hand, Erlangs concurrency introduces overhead
into the system and it can not guarantee hard real-time
constraints due to the fair scheduling and garbage collection.

Erlang’s flexibility and scalability is not necessarily beneficial
to an IEC 61499 implementation.

This paper presented a feasible IEC 61499 basic function
block implementation in Erlang. On a simple single-board
computer with a soft real-time operating system, the real-time
performance was consistent. Minor cyclic interruptions, most
likely due to the operating system, were observed. The garbage
collection was triggered manually to prevent unanticipated de-
lays. The implementation of the function block is slim enough
to not be interrupted by the scheduler, although this means the
scheduler of the ERTS behaves more like a cooperative round-
robin scheduler. The reaction time of the function block thus
depends largely on the number of concurrent processes in the
run queue. The upper bound, when every process uses as many
reductions as possible until it is interrupted, was shown in this
paper. In this scenario, 32 additional load processes could be
executed while still keeping a 25 ms deadline.

In the future, three parallel paths should be taken to improve
the real-time performance.

« The operating system is a major cause of interruptions in
this framework. In principle, the operating system may
induce unbounded delays. A hard real-time operating
system or at least a highly optimized regular operating
system may remedy this issue.

o The Erlang scheduler is optimized for a specific set of
applications, i.e. telecommunication systems. The priority
framework is discouraged and inflexible. In addition, the
IEC 61499 is lacking in recommendations to specify real-
time constraints.

o Tasks with particularly strict real-time constraints with
catastrophic consequences may be outsources to dedi-
cated hard real-time controllers. The interfacing with the
ERTS is straightforward.

In addition, the performance evaluation should be performed
on a realistic use case with real-time constraints. The
IEC 61499 implementation described in this paper should be
extended with more features. Especially dynamic software
updating is worth investigating. Even if Erlang as an imple-
mentation language for the IEC 61499 may not prevail, the
future of the IEC 61499 standard may benefit from different
perspectives.

REFERENCES

[1] V. Vyatkin, “IEC 61499 as enabler of distributed and
intelligent automation: State-of-the-Art review,” IEEE
Transactions on Industrial Informatics, vol. 7, no. 4, pp.
768-781, Nov. 2011.

[2] M. N. Rooker, C. Siinder, T. Strasser, A. Zoitl, O. Hum-
mer, and G. Ebenhofer, “Zero downtime reconfigura-
tion of distributed automation systems: The ¢CEDAC
approach,” in Holonic and Multi-Agent Systems for Man-
ufacturing, V. Matik, V. Vyatkin, and A. W. Colombo,
Eds. Springer, Berlin, Heidelberg, 2007, pp. 326-337.

[3] V. Vyatkin and H. M. Hanisch, “Formal modeling and
verification in the software engineering framework of
IEC 61499: a way to self-verifying systems,” in ETFA

2001. 8th International Conference on Emerging Tech-
nologies and Factory Automation. Proceedings, vol. 2.
IEEE, Oct. 2001, pp. 113-118 vol.2.

[4] C. Schnakenbourg, J. M. Faure, and J. J. Lesage, “To-
wards IEC 61499 function blocks diagrams verification,”
in Systems, Man and Cybernetics, 2002 IEEE Interna-
tional Conference on, vol. 3. 1EEE, Oct. 2002, p. 6 pp.
vol.3.

[5] T. Strasser, A. Zoitl, J. H. Christensen, and C. Siinder,
“Design and execution issues in IEC 61499 distributed
automation and control systems,” IEEE transactions on
systems, man and cybernetics. Part C, Applications and
reviews., vol. 41, no. 1, pp. 41-51, Jan. 2011.

[6] J. Armstrong, “A history of erlang,” in Proceedings
of the third ACM SIGPLAN conference on History of
programming languages. ACM, Jun. 2007.

[7] J. Armstrong, R. Virding, C. Wikstrom, and M. Williams,
Concurrent Programming in ERLANG. Prentice Hall,
1996.

[8] L. Prenzel and J. Provost, “Dynamic software updating of
IEC 61499 implementation using erlang runtime system,”
in Proceeding of IFAC World Congress 2017, 2017, pp.
12416-12421.

[9] A. Zoitl and R. Lewis, Lewis, Robert. Modelling control
systems using IEC 61499: Applying function blocks to
distributed systems. 1ET, 2014, vol. 95.

[10] L. Ferrarini and C. Veber, “Implementation approaches
for the execution model of IEC 61499 applications,” in
Industrial Informatics, 2004. INDIN ’04. 2004 2nd IEEE
International Conference on, Jun. 2004, pp. 612-617.
V. Vyatkin, “The IEC 61499 standard and its semantics,”
IEEE Industrial Electronics Magazine, vol. 3, no. 4, pp.
40-48, Dec. 2009.
[12] F. Hebert, Learn You Some Erlang for Great Good!: A
Beginner’s Guide. No Starch Press, Jan. 2013.
[13] E. Stenman, “The BEAM
https://github.com/happi/theBeamBook, Dec.
accessed: 2017-8-14.
K. Kruger and A. Basson, “Erlang-based control im-
plementation for a holonic manufacturing cell,” Interna-
tional Journal of Computer Integrated Manufacturing,
vol. 30, no. 6, pp. 641-652, Jun. 2017.
[15] T. Lindahl and K. Sagonas, ‘“Detecting software de-
fects in telecom applications through lightweight static
analysis: A war story,” in Programming Languages and
Systems. Springer Berlin Heidelberg, 2004, pp. 91-106.
R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti,
S. Thesing, D. Whalley, G. Bernat, C. Ferdinand,
R. Heckmann, T. Mitra, and Others, “The worst-case
execution-time problem—overview of methods and sur-
vey of tools,” ACM Transactions on Embedded Comput-
ing Systems, vol. 7, no. 3, p. 36, 2008.
A. Zoitl, Real-time Execution for IEC 61499. Instru-
mentation, Systems, and Automation Society, 2009.

book,”
2017,

[14]

