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Abstract

This thesis investigates possible deep learning-based solutions for three challenging com-
puter vision problems. We first tackle reconstructing depth from focus cue and devise
a suitable network architecture for the problem of depth from focus. To this end, we
generate a large dataset composed of light-field images and co-registered depth maps
to train a deep network on real-world scenarios. Our approach outperforms classical
methods by a large margin and is generalizable for other datasets and cameras with a
minimal effort.

Following, we present a fusion-based CNN architecture to incorporate depth into se-
mantic segmentation. Our network simultaneously extract features on color and depth
images independently which are then fused into color features as the network goes deeper.
Our comprehensive experiments show that the proposed method is the most effective
way of fusing different input modalities into one network.

Furthermore, we propose a multimodal CNN architecture that exploits pixelwise se-
mantic labels in addition to color information and thus improves image restoration tasks.
Our method processes semantically homogeneous image regions independently and learns
to combine them for a refined output. This novel architecture requires semantic anno-
tations only during the training phase and therefore, can perform image restoration on
images without the necessity of semantic labeling.

Consequently, we discuss the limitations of the proposed approaches and provide po-
tential directions for future research.
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Zusammenfassung

Diese Dissertation untersucht mogliche Deep Learning basierte Losungen fiir drei an-
spruchsvolle Bilverarbeitungsprobleme. Wir beschéftigen uns zunéchst mit der Rekon-
struktion von Tiefe aus dem Fokus und entwickeln eine geeignete Netzwerkarchitektur
fiir das Problem der Tiefenschérfe. Zu diesem Zweck erzeugen wir einen grofien Daten-
satz aus Lichtfeldbildern und co-registrierten Tiefenkarten, um ein tiefes Netzwerk in
realen Szenarien zu trainieren. Unser Ansatz iibertrifft die klassischen Methoden um
ein Vielfaches und ist fiir andere Datensdtze und Kameras mit minimalem Aufwand
verallgemeinerbar.

Im Folgenden prisentieren wir eine fusions-basierte CNN-Architektur, um Tiefe in
die semantische Segmentierung einzubauen. Unser Netzwerk extrahiert gleichzeitig und
unabhéingig voneinander Funktionen fiir Farb- und Tiefenbilder, die dann zu Farbmerk-
malen verschmolzen werden, wenn das Netzwerk tiefer geht. Unsere umfassenden Fx-
perimente zeigen, dass die vorgeschlagene Methode der effektivste Weg ist verschiedene
Fingangsmodalititen in einem Netzwerk zu verschmelzen.

Dariiber hinaus schlagen wir eine multimodale CNN-Architektur vor, die neben far-
blichen Informationen auch pixelweise semantische Label ausnutzt und somit Bildwieder-
herstellung verbessert. Unsere Methode verarbeitet semantisch homogene Bildregionen
unabhéingig voneinander und lernt diese zu einer verfeinerten Ausgabe zu kombinieren.
Diese neuartige Architektur erfordert semantische Annotationen nur wéahrend der Train-
ingsphase und kann daher eine Bildwiederherstellung auf Bildern ohne die Notwendigkeit
einer semantischen Markierung durchfiihren.

Folglich diskutieren wir die Grenzen der vorgeschlagenen Ansétze und bieten mégliche
Richtungen fiir zukinftige Forschung.
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Part I: Introduction

Chapter

Overview

A man provided with paper, pencil, and rubber, and
subject to strict discipline, is in effect a universal
machine.

— Alan Turing, Intelligent Machinery: A Report by
A. M. Turing (Summer 1948)

Visual understanding aims to imitate the human vision and therefore it has been the
core element of artificial intelligence for autonomous devices. Despite the fact that it is a
very challenging and complex task, the recent developments in computer vision and deep
learning push the limit of ongoing research rapidly towards reaching the capabilities of
a human brain.

For decades we have investigated how to extract relevant information from visual
content on the images. While the major challenge is to determine the relevant encoding,
so-called features, a very large variety of objects and conditions on the images such as
brightness or noise raise very serious difficulties on how to define or learn these features
that are relevant for the intended task.

Feature extraction methods are usually focused on computing low-level features such
as edges and corners. Although these basic structural elements are distinctive for sim-
pler tasks, e.g., background-foreground image/object classification, with the increasing
amount of complexity on the task, for example pixel-wise image segmentation, it is not
always possible to rely only on these low-level information. Beside the local responses,
more generic globally important attributes of an image have become more important.
As a result feature descriptors based on basic object features, e.g., SIFT [8], SURF [9],
ORB [10] have been more attractive for researchers to solve more complex imaging
tasks. Nonetheless, these hand-crafted features and descriptors are lacking of generality
for real-world problems and thus left their place to learning based approaches.

Biologically inspired deep convolutional networks [11] have started a new era in large-
scale object detection and scene understanding in the last decade. Their powerful mech-
anism and robust performance on real-world challenges have drastically advanced the
research in computer vision and robotics.

Deep networks are composed of series of non-linear functions. Each of these functions
has a large amount of parameters and therefore they heavily require a very large data
to be trained on. Moreover most of the time these data should be category-labeled.

1. Overview 3



Part I: Introduction

ImageNet [12] was the very first large dataset that enabled training such deep networks
for the task of image classification [13]. Following years brought the necessity of preparing
huge datasets for many other tasks, for example, COCO dataset [14] for large-scale object
detection, segmentation, and image captioning.

Interestingly, networks trained for a specific task on a synthetic dataset had also
capability to generalize to real-world scenarios. Very first deep network for optical
flow, i.e. FlowNet [15] was able to tackle real-world challenges on images although
it was essentially trained on a synthetic dataset, i.e. Flying Chairs, which was only
generated based on 2D motion in the image plane. Later, FlyingThings3D [16] synthetic
dataset enabled networks to generalize the motion estimation for scene flow.

On the other hand, this greediness allows deep networks to extract low and higher-
order representations of an input image, which are more generic and robust for large
scale problems. In addition, these learned features are proven to be re-usable for multiple
challenges which allowed researchers to apply transfer learning from object classification
to many other imaging tasks, e.g., segmentation [17, 18], image-based camera localiza-
tion [19, 20], depth from focus [21]. Following this paradigm I exploit deep networks for
a set of problems I tackled in this thesis.

I first investigate how to recover/learn geometry from a focal stack in which the focus
gradually changes from close to far objects. By having the so-called depth map of the
scene, I present a novel approach to incorporate scene depth into segmentation networks
that boosts the image labeling performance. Finally, I reach the goal of highly accurate
image restoration technique that learns the semantics implicitly to improve the results.

1.1 Contributions of this Thesis

Main contributions of this thesis are summarized in the following:

e Depth reconstruction from focus cue. We tackle the classical ill-posed depth
from focus (DFF) using convolutional neural networks. We propose a deep network
architecture to process an input focal stack where the focus gradually changes
from close to far objects and produce a depth map of the scene. To this end, we
introduce a new large dataset, generated for the problem of DFF, to the best of
our knowledge. This approach is described in Part II, Chapter 3 and presented
in [21].

e An efficient method to fuse depth into semantic segmentation. We present
a novel way of incorporating depth and RGB input modalities in neural networks.
We employ our novel fusion architecture on the RGB-Depth input data for seman-
tic image segmentation. This novel approach is described in Part II, Chapter 4
and published in [18].

e Semantic image restoration. We have formalized deblurring image restoration
task in a noval multimodal convolutional neural network architecture which pro-
cesses semantically homogeneous regions of an image independently and learns to

4 1. Overview



Part I: Introduction

combine their output into the final result. To the best of our knowledge, our ap-
proach is the very first one that employs semantic labels during the training phase
and processes the test images without the need of any semantic annotation. This
method is described in Part II, Chapter 5.

1.2 Thesis QOutline

This thesis is structured in 7 chapters which are grouped into three parts as following;:
o Part I: Introduction (Chapters 1-2)

o Part II: Depth Prediction and Learning Semantics for Image Restoration (Chap-
ters 3-5)

o Part III: Conclusions & Outlook (Chapters 6-7)

Part I: Introduction provides the motivation and overview of this thesis in Chap-
ter 1. Chapter 2 provides a brief introduction to the theoretical fundamentals of the
feed-forward and recursive networks, optimization schemes and different network com-
ponents.

Part II: Depth Prediction and Learning Semantics for Image Restoration
outlines the three major contributions of this thesis. In Chapter 3, we propose a deep
network to reconstruct the depth information from focal stacks and to this end we in-
troduce the largest dataset generated for the problem of depth from focus, to the best
of our knowledge. Chapter 4 addresses how to incorporate different input modalities in
the same network and introduces a novel deep network architecture for semantic image
segmentation for RGB-Depth input data. This leads us to semantic image restoration,
a novel class-aware image restoration method proposed in Chapter 5.

Part III: Conclusions & Outlook is the last part of this thesis which provides a
summary and discussion on the results. Furthermore we point out the open questions
for future research.
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Part I: Introduction

Chapter
Theoretical Fundamentals

Science is a differential equation. Religion is a
boundary condition.

— Alan Turing, Epigram to Robin Gandy (1954);
reprinted in Andrew Hodges, Alan Turing: the
Enigma (Vintage edition 1992), p. 513

Amount of data is increasing every other day and it is now very important to have a
mechanism to process these data to extract some useful information. Many machine
learning algorithms are intended to process big data to retrieve the relevant information
in order to develop a machine intelligence. The every-day growth on the vast amount
of data bring the requirement of learning methods to be faster, more robust, scalable,
reliable and more generalized for the real-world problems. Amongst many proposed
learning approaches, deep neural networks are one suited algorithm to tackle challenging
real-world problems.

Neural networks are constructed as a composition of non-linear functions and there-
fore are capable of learning complex functions. However they are highly non-convex and
do not guarantee a globally optimum solution. On the other hand, although the com-
plexity of training increases proportional to the network and data size, available large
datasets make it possible to train such deep networks for many tasks to achieve state-
of-the-art performance. In computer vision, neural networks showed an extraordinary
performance in many tasks, e.g., image classification, object recognition, scene under-
standing, etc. This achievement led researchers to dig into these non-convex, complex
models to generalize them to many other tasks as well as disciplines. On the other hand,
neural networks are data-dependent algorithms and their performance rely on the size
and distribution of data.

A network might represent the data that it was trained on very well and this may
result in diverging from the expected true model. In neural networks, this is known as
over-fitting, refers to that every single datum in training data is perfectly represented
by the model whereas it does not generalize to new unseen test data. Since this violates
the principle of generalization, recent developments and approaches focus on resolving
over-fitting in training,.

Over-fitting can occur also due to the network architecture and it is not always
straight-forward to construct a network for a specific task. Networks have many small
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components that can drive them into a very bad local minimum or even cause over-
fitting. While a naive solution is to manipulate the training data (data augmentation),
more sophisticated approaches such as better algorithmic training schemes were also
presented.

I dedicate this chapter to introduce the fundamentals of neural networks and give a
review on the basic mathematical background and major concepts of deep networks,
including different loss functions, training schemes, variant architectures and network
components. Moreover, I will also discuss variant weight initialization techniques and
regularization methods designed to avoid over-fitting.

2.1 Neural Networks

Let x € R™ an input vector, y € R output and # € R" the parameters, a neural network
is a mapping f : R™ x R® — R. Last layer in a network is an output non-linearity which
is chosen such a way that the output of network aligns with the loss. For example, in
multi-class object classification, it is defined as the softmaz function:

iy | x.0) = PR (2.)
| exp(f(x,0)]],
which scales the output vector of network to a probability distribution.

Parameters (weights) of the network are determined by optimizing a loss function
L : R — R, given a dataset D composed of input data and their expected output.
However, most of the time loss itself is not enough to generalize the model to test samples
and therefore to avoid over-fitting, a regularization term R(6) that is a constraint on
the weights is added to the final cost:

L(x,y,0)=L(f(x,0),y) + A\R(0) , (2.2)

where A is a weighting factor, that determines the amount of penalization on the loss.
Network f is constructed as a composition of functions. To achieve this each block of
network is designed with affine transformation

Wx +b, (2.3)

where x € R" is input, W € R™*" is the weight matriz and b € R™ is the bias term,
thereby § = {W,b}. In order to construct a highly non-linear network, after each affine
transformation, a non-linear function g : R™ — R™ (see Section 2.1.1) is applied to the
output. Network f is then constructed as a concatenation of arbitrarily many non-linear
functions as follow:

f=gogp_1---0g1, (2.4)
f(x,0) = g(Wi - (gh—1(Wp—1- (- (1(W1-xz+b1))---)+by_1)) + b)),  (2.5)

8 2. Theoretical Fundamentals
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where each hy, = fi,(Wyg - xi + by) is then considered as one layer in the neural network,
and called as a hidden layer.

This simple architecture of a neural network is known as feed-forward network as the
output of one layer is the input of following layer. A neural network is called “deep”
when k > 2.

2.1.1 Non-linear activation functions

What makes neural networks so robust and powerful tools to approximate complex func-
tions is how the network architecture is chosen, i.e. number of layers and weights in each
layer and non-linearity. Non-linear functions are small decision mechanisms in the net-
works which decide when the neuron fires (the neuron is active). An activation function
should be free of vanishing gradient problem which is an important factor to be able to
train very deep networks (see Section 2.3). Amongst many non-linear activation func-
tions most commonly used ones are discussed below.

Logistic Sigmoid function

_exp(x)
o(x) = op(x) + 1 (2.6)

o'(x) = o(x)(1 - o(x)) . (2.7)

transforms the input to interval of [0, 1]. This activation function is not zero-centered
and it tends to vanish the gradient for very small and big inputs. Moreover, it is com-
putationally expensive due to the exponential function.

Hyperbolic Tangent function

exp(x) — exp(—x)

Tanh = exp(x) £ exp(—x) ’ (2.8)
Tanh’ = 1 — Tanh?(x) , (2.9)
also suffers from vanishing gradients.
Rectified Linear Unit function [22]
ReLU(x) = max(0,x) , (2.10)

has been recently used in many deep networks. This simple piecewise liner function is
fast to compute and unbounded. Although it is not differentiable at x = 0, one can ar-
bitrarily choose 0 or 1 to fill the point. ReLLUs are also non-zero centered and they have
the problem of vanishing gradient for x < 0. In order to fix this dying ReLU problem,
leaky ReLUs [23] and exponential linear units [24] are introduced.

Leaky-ReLU [23]
LReLU(x) = max(0,x) + amin(0,x) , (2.11)
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where a € [0,1) is a constant factor, ensures the gradient flow for the negative values
of x, i.e. when the neuron is inactive. Preferably, « is set to a small value. One alter-
native to LReLU is the parametric ReLU (PReLU) [25] that allows « to be a learnable
parameter for each neuron or for each layer in the network.

Exponential linear unit [24] is defined as

ELU — a(exp(x) —1) forx <0 (2.12)
Cx for x >0 '

ELU — ELU(x) + € for x <0 (2.13)
B for x >0 '

€ is a positive constant controls the saturation value for the negative inputs. ELUs lead
to faster convergence and produce more accurate results. The function has natural gra-
dient close to 0 and therefore enables faster learning compared to ReLLUs or LReLUs.

Maxout unit [26] computes the function

where x € R™, z;; = Wx +b and W ¢ R™*"xd and b € R™ 4. For d = 2, a mazout
unit is then a generalized version of ReLU and LReLU:

max(Wlx + by, Wox + bg) (215)

Note that number of learnable parameters are increased by a factor of 2. As stated in [26],
a maxout unit can be considered as a piecewise linear approximation of an arbitrary
convex function and maxout networks are able to learn the activation functions of each
hidden units.

2.1.2 Weight initialization

Saturation, when the neuron becomes inactive, can still be an issue for many of the func-
tions discussed in Section 2.1.1 depend on the initialization of parameters, i.e. weights
W and biases b.

To ensure the gradient flow during back-propagation (see Section 2.3.3), different
weight initialization techniques have been proposed to prevent networks from the van-
ishing or exploding gradient problem. In this section, I give a brief summary of different
initializations proposed for variant activation functions.

A simple and intuitive way is to initialize the weights with zero. This will cause the
network to be a linear model as the neurons will compute the same output, hence the
same gradient during the training. This is not a desired behavior. In order to guarantee
of learning complex functions, we must ensure that the weights might have an arbitrarily
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different value so that preferably half of the neurons becomes inactive while the other
half stays active.

Therefore, weights are usually randomly sampled from a defined distribution. Very
first choice is the standard normal distribution A (y, 02) where mean p = 0 and vari-
ance 02 = 1. In order to break the symmetry, one can sample the weights from this
distribution with a small . Nevertheless, a layer that has small weights will compute
very small gradients during training and therefore gradients will vanish. With big values
of o the network will compute big gradients, hence the exploding gradient problem will
occur.

In order to avoid gradient issues, Xavier and Bengio [27] proposed to choose the
variance of the distribution depend on the number of inputs and outputs of each neuron,

Var = ———— (2.16)

so that forward and backward propagated information stay in a reasonable range. Xaiver
initialization initially designed for Tanh and sigmoid activation functions to prevent
gradients become 0, i.e. where the function gets linear.

On the other hand, for most of the recent activation functions, He et al. [25] proposed
a minor modification as the half of the ReLLU activation is zero and the size of weight
variance should be doubled to keep the input/output signal’s variance constant,

Var =

~ (2.17)

Neural networks are non-convex functions and therefore weight initialization of a neu-
ral network has a major impact on its performance. However, no matter how the weights
are initialized, due to backpropogation, there is no guarantee to keep the input/output
distribution same through the layers. Input/output distribution of each layer change as
the weights are updated. In order to reduce this internal covariance shift, Goodfellow
and Szegedy [28] proposed a network layer, called batch normalization.

Batch normalization [28] normalizes the input to have zero mean and variance of 1.
For a layer with an input x € R®*?, each d dimension of this input is normalized as

b
E[x{?] = %ijd} (2.18)
1 b
Var[x(¥] = S (x - E[x{)? (2.19)
b
o _ XU —ExY (2.20)
X = . .
Var[x{d}]

Nevertheless, normalizing input may change what network can represent and therefore
in order to allow networks learn identity transformation, normalized output is scaled ~{%}
and shifted 1% with learnable parameters
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yldh = gl | gl (2.21)

At each iteration of training input x is normalized with its mean and variance. v and
B are parameters of the network that are learned during training. At inference, running
mean and variance computed over all training samples are used to normalize the test
inputs.

Instance normalization [29] is a variant of batch normalization and samples in a batch
are normalized independently as

x Uit — glx{id}]
Var|x{id}] .

Llid} _

(2.22)

As stated in [29] instance normalization prevents instance-specific mean and covariance
shift and thus simplifies the learning process. At inference time instance normalization
is also applied for each test sample.

Bias initialization. In most cases, initialization of biases is depend on the weights,
however, with the aforementioned advanced methods, that are symmetry breaking tech-
niques, biases are initialized with zero. In some cases, to allow neurons to fire in the
beginning of training, biases are set to a small value wherever ReLLU activation is used.

2.2 Regularization

A network is trained with a defined loss function on the expected and predicted output,
by minimizing the cost function in the form of Equation (2.2). Regularization, R(0),
is necessary to enforce a prior on the parameters as well to avoid over-fitting on the
training data and thereby almost all network trainings involve a regularization term in
the loss function. This form of regularization is the most common in the literature and
in neural networks ¢ and /» regularizations, a.k.a weight decay, are the most practiced
ones. They are both convex functions, although, they lead to different results.

f1-norm on the weights,
R(0) =D _lli]1 . (2.23)

ensures the sparsity in the weight vector by enforcing most of the weights to be zero or
very small values. This has a certain impact on avoiding over-fitting. Moreover, due to
sparsity, £1-norm has built-in feature selection property, which favors only some of the
weights to have a large value. On the other hand, this function is not differentiable at
zero and one of the sub-gradients (mostly zero) is chosen during the weight update.
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fo-norm, in contrast,

R(O)=> 67, (2.24)

is differentiable at every point. But, it does not produce sparse outputs, thus, has no
implicit feature selection. Nevertheless in most cases weights are penalized with ¢ reg-
ularization so that the output will not only depend on a few nodes.

Data augmentation. In practice, careful weight initialization and a well-chosen reg-
ularizer are not enough to train a very deep network due to over-fitting and vanishing
gradients. One simple solution to this is to alter the input data -augmented input-
so that the seen examples by the network represents a better distribution. Increasing
variety in data decreases over-fitting, hence improves the overall performance.

Data augmentation may involve random transformations on the input signal such
as rotation, scale, translation, or projective transformations, random noise, contrast or
brightness change in case of images.

Dropout [30] is an interesting choice of regularization that is implemented as a layer in
neural networks and it is based on dropping randomly chosen weights. With dropout,
feed-forward operation at layer k with input x;, weights Wj and bias by, is performed as

), ~ Bernouille(p) (2.25)
)A(k =Tk * XL (226)
yr = 9(WiXi +bg) , (2.27)

where 7, is sampled from a Bernoulli distribution with a probability of p. As the input
is scaled with a factor of p during training, at test time input should be scaled with 1/p.

Dropout is essentially useful to learn an ensemble of many different functions since at
each iteration of training, a randomly chosen set of weights are updated. It is a strong
regularization on weights and many recent approaches still benefit from it. Dropout can
be placed after any layers of the network f. Another application of dropout is to use it
also in the output non-linearity. DropMax [31] applied dropout to the softmaz classifier
in Equation (2.1) for multi-class training and drops the activations of non-target classes,

By | x,0) = —SPrT,0) + ¢

 Jlexp(rf(x,0)], +ce’ (2.28)

where c is the total number of target classes.

In practice, dropout is only applied during training to preserve the deterministic results
at inference. However, recent approaches [32-34] exploit dropout during test time to
estimate uncertainty on the result. Input is feed-forwarded through the network a couple
of times. As the output slightly changes due to dropout, mean of the predicted outputs
is the final result and variance over these predictions gives the uncertainty on the result.
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2.3 Training networks: minimizing a non-convex cost function

As the distribution of the data P(x,y) is unknown, optimizing cost functions as in Equa-
tion (2.2) is solved using the principle of empirical risk minimization and it is performed
by averaging the loss over training samples. Minimization guarantees a set of optimal
parameters where the loss £ in Equation (2.2) is minimum:

f= arg;ninz,/l(f(xi,e),yi,e). (2.29)

Neural networks are highly non-convex functions and therefore the optimal solution is
not unique. This is also the main reason why the weight initialization is very important
to reach a better local minimum.

In neural networks, training has been performed using the variants of gradient descent
optimization scheme.

2.3.1 Gradient descent

Gradient descent is a first-order iterative optimization algorithm to find the global mini-
mum of a convex function. But, it can also be used in neural networks with no guarantee
of a global minimum. Gradient descent iteratively updates the parameters in the neg-
ative direction of the loss function with respect to the parameters. An update step in
gradient descent is performed as

0« 0 —yVoLl(0) . (2.30)

~ is called step size or learning rate and it determines the speed of convergence. Con-
sidering a convex function, very small values of gamma leads to very slow convergence
while bigger values of gamma might cause oscillation and moreover, in case of non-
convex functions, current local minimum might be left to a plateau or even to a worse
local minimum. How to set the learning rate is still an open question, however, current
methods usually use a learning rate scheduler as explained in Section 2.3.5.

2.3.2 Stochastic Gradient Descent

The major challenge of using gradient descent is to calculate the derivatives on the entire
dataset. As this is not practical, neither possible due to hardware limitations, instead,
stochastic gradient descent (SGD) [35] is used in which the loss computed on a small
proportion of the data (batch) and at each iteration this batch is randomly chosen from
the dataset. Then parameters are updated over this batch as

B
00— ;Z VoL(0) . (2.31)
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2.3.3 Backpropagation

Another concept using gradient descent to minimize a function composition is backprop-
agation, applying chain-rule in the gradient calculation. In neural networks, parameters
at each layer must be updated with a gradient, propagated back from their following
layer. For any weight in layer k — 1 of f, derivative of the loss function is then computed
as follow:

OL 9L Ogi Ogk—
00,1 Ogr Ogr—1 0841

(2.32)

This update rule follows as same for all other parameters in all layers, too. Considering
this formula, one can easily conclude that in case of small gradients, due to the series of
multiplication, final gradient for a specific weight might vanish and therefore, gradient
descent would stop updating that parameter. This is known as vanishing gradient.
Conversely, gradients might have very big magnitude so does the final gradient, and this
is referred as exploding gradient. Hence, weight initialization and regularization have
important role to prevent networks from having vanishing or exploding gradients.

2.3.4 SGD-based Optimization Schemes

Stochastic gradient descent is a common optimization method in neural networks, how-
ever, due to strong dependency on the learning rate and initial state, it can be intractable
to optimize a highly non-convex cost function. A set of optimization schemes based
on SGD have been proposed to overcome the issues SGD faced. SGD with momen-
tum, Adadelta [36], Adagrad [37], ASGD [38], L-BFGS [39], Rprop [40], ADAM [41],
ADAMAX [41] and RMSProp [42] are commonly used optimization schemes.

In the following, I briefly explain the momentum, ADAM and RMSProp optimization
schemes as they are the most practiced ones.

Momentum accumulates the gradients over time in order to update the parameters
with a smoother estimate of their accumulated gradients. This also reduces the chance
of a sudden decrease or increase on the parameters. A momentum step is defined as

v m-v_1+y-VoLl(0) (2.33)
QT < 91‘,71 — ¢, (234)

where v is the accumulated momentum and m € (0, 1] is a decay factor to determine how
much of the previously accumulated gradients are incorporated into the current update.
Momentum can also be used within SGD, ADAM as well as RMSProp as it is a simple
way of preventing networks from weight explosion.

Adam [41] is a first-order gradient-based optimization similar to SGD. However, it is
based on the adaptive estimates of lower-order moments which is an internal mechanism
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to adapt the learning rate at each iteration of training and therefore it is less dependent
on the initial learning rate.

Let m and v first and second order moment estimates and /31, 52 € [0,1) are the expo-
nential decay rates for the moment estimates, respectively, one step of ADAM optimizer
at a step t is computed as

my < B1-mi—1+ (1= B1) - VaLy (2.35)
vp 4 Bo -1 + (1 — B2) - v} (2.36)
1y < my /(1 — L) (2.37)
by v/ (1= 3) (2.38)
9t<_0t—1_7mt/(\/5t+6), ( )

where power of 31 and S2 to t is denoted as 8¢, 8. ADAM is efficient for the problems
having large amount of data or parameters, and invariant to diagonal rescale of the
gradients. It is an appropriate scheme for problems with noisy or sparse gradients. At
the same time, hyper-parameters of the ADAM optimizer is more intuitive and hence
requires little tuning.

RMSProp [42] is another optimizer which has also internal mechanism to adapt the
learning rate over time. At each iteration ¢, gradients are divided by a running average
of their recent magnitude. Let VyL be the gradient of parameter 8, RMSProp step is
formulated as

E[V2L]; < 0.9E[VZL]; 1 +0.1V3L, (2.40)
9,5 < 9,571 7 Voﬁt . (241)
E[V3L]; + €

Although ADAM and RMSProp are both adapting the learning rate, it is expected that
the network converges to a minimum over time and therefore a learning rate scheduler
is also used to decrease the learning rate in order to make sure that network stays in the
same local minimum towards the end of training.

2.3.5 Learning rate scheduler

In neural networks, learning rate, step size in Gradient Descent, is a crucial hyper-
parameter which must be carefully chosen. However, there is no existing method de-
termining the learning rate and one must hand-tune this parameter for each training.
On the other hand, considering the stochastic gradient descent, a large learning rate is
necessary to start the training so that network is driven into a local minimum. But, in
the very last steps of the training, network parameters should not be updated as much
they are in the beginning. For this reason, usually a learning rate scheduler is used to
reduce the rate. There are a couple of standard algorithms and I present here the most
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significant ones.

Constant learning rate is rarely used as it brings the difficulty to find the most ap-
propriate learning rate which is well-suited for the entire period of training.

Time-based decay drops the initial learning rate vy with a decay factor p as

o

— 2.42
T p-t’ (242)
at each iteration ¢ during training.
Step decay decreases the learning rate after each epoch e with a step size of s
e
LR b I (2.43)

Exponential decay drops the initial learning rate exponentially to zero towards the
end of training

Ve < Y0 - exp(—p-1) . (2.44)

2.4 Regression and Classification with Neural Networks

Neural networks are capable of solving both regression and classification problems. As
networks’ output can have arbitrary shape, regression and classification problems are
formulated with a defined loss function for each task.

Regression loss can be defined as ¢1-norm (¢; distance in Equation (5.1)) between the
network’s prediction and the groundtruth. Another choices are ¢3-norm (Equation (3.7))
and Huber loss [43], which is less sensitive to the outliers than squared error loss

3(f(x,0) —y)? for [|f(x,0) =yl <¢

Clf(x,0) =yl — %(? otherwise . (2.45)

L(f(x,0),y) = {

Classification loss, on the other hand, needs to be defined on a category-labeled out-
put. Background-foreground labeling (two class classification) loss can be defined as
sigmoid function (Equation (2.6)) where the output f(x,6) (thresholded with 0.5) and
the groundtruth label y are in the set of {0, 1} or as hinge loss [44] where the groundtruth
label y € {—1,+1}

L(f(x,0),y) =max(0,1 —y- f(x,0)) . (2.46)

In case of multi-label segmentation, common practice is to use multinomial logistic
regression, a.k.a cross-entropy loss, which minimizes the Kullback—Leibler divergence [45]
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L(f(x.0),y) =~ log(ply = c|x,0)), (2.47)

where c is the class label and p is the probability estimated with softmazx function (Equa-
tion (2.1)).

Class-balancing. In most of the cases, training set does not have uniform distribution
over the classes and therefore aforementioned loss functions cannot cope with the unbal-
anced data. While augmenting more samples for less frequent classes will improve the
performance, another solution is to adjust the loss function depend on the class-frequency
by weighting the loss for each class.

C

L(f(x,0),y) =D wi-log(ply =1]x,6)), (2.48)
l

where w; € R defined for each class. Class weights are usually determined from training
data by computing the frequency of each class.

2.5 Convolutional Neural Networks

Neural networks are powerful learning methods that learn the feature representations
directly from data, hence require no handcrafted features. They build the hierarchical
construction of features which yield better distinction among different categories and
thereby improve the performance. However, they are not invariant to different sized
inputs and with the increased input size and many hidden layers, networks require a
longer time and larger data to converge as the number of parameters also increases
drastically. Considering a very large input x in Equation (2.3), weight vector W also
grows and therefore network’s efficiency decays fast. Moreover, computational expense
becomes intractable because of limited resources (data and memory).

Neural networks became more popular in computer vision because of two important
factors, i.e. 1) recent developments in the graphical computational units (GPUs) to train
deep networks with billions of parameters on very large datasets, and 2) introduction of
convolutional networks [46].

Biologically inspired convolutional networks have been proposed for visual pattern
recognition. They are capable of recognizing patterns based on their shapes regardless
of their position on the input. Very first application of a convolutional networks was
proposed for hand-written digit recognition [47]. However, AlexNet [13] was the break-
through in the field. This very deep convolutional network, trained on ImageNet [12]
opened a new era in computer vision.

Convolutional networks are based on simple convolution operations in which the ker-
nels are composed of learnable weights. Main idea of a convolution operation is to learn
a set of feature kernels at each layer of the network instead of a large transformation
matrix, W. Herewith, a fixed kernel size drastically reduce the number of weights in
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a network and bring the flexibility of learning different convolution kernels for various
visual patterns.

Convolution operation for an input x € R™*™*? at any layer, is performed as convolv-
ing the input for each convolution kernel Wy and then adding the corresponding bias
by,

Vi = gs(Wgxz +by) , (2.49)

where W), € RI*X4 ig a convolution kernel has size of j x [ and by, is the corresponding
bias. Output of a convolutional layer yy is called “feature map”. It is still necessary
to use a “fully connected” layer which transforms the feature map into one dimensional
hidden representation or to final output vector by applying a matrix multiplication as
in Equation (2.3).

Convolution layers have a couple of parameters must be predefined. For example,
convolution kernel size or stride, which determines how sparse a convolution should be
applied on the input. Although, a convolution operation is performed at each pixel on
an input image, this is computationally very expensive and moreover it is intuitively
expected that information which the pixels in a close vicinity provide is redundant. This
also holds for the intermediate layers in a network. Hence, stride parameter is used to
reduce noise on the computed feature maps.

Padding is a necessary operation applied before convolution to keep the size of an input
same after convolution. Padding is defined as extending the input by half size of a kernel
on both sides on an image. It can be zero padding, adding zeros on the image boundaries
or more sophisticated approach, e.g., mirroring -replicating the borders on the image-.
Mirroring the borders avoid artifacts on the feature maps.

2.5.1 Pooling

Pooling is a commonly used layer in convolutional networks to reduce the variance among
features and computational cost. Pooling is a key operation to make the network trans-
lation invariant. It downsamples the feature map, either by taking the average or max-
imum of features in a neighborhood. While average pooling smooths out features, maz
pooling keeps the most dominant ones, such as strong edges. Feature map is downsam-
pled by the size of pooling kernel since there is no padding and stride of a pooling set to
kernel size. In order not to loose information, generally 2 x 2 max-pooling is performed
after a set of convolution layer.

2.5.2 Transposed convolution

Convolutional network architectures composed of only convolution and pooling lay-
ers, e.g., AlexNet [13] downsample the input to a lower spatial dimension so that the
final embedding of an input has 1 x 1 resolution. This is reasonable for image or ob-
ject classification tasks. However, for pixel-wise outputs, e.g., dense depth estimation or
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semantic image labeling, network’s output is expected to have the same size with the in-
put. Upsampling methods such as nearest neighbor, bilinear or bicubic interpolation are
possible choices to resolve this. But these methods tend to over-smooth the activation
(feature) maps and hence the object boundaries in the final result.

Therefore an upsampling layer is implemented to reconstruct the full image resolution.
These layers keep strong activations as the feature maps are upsampled. To achieve this,
in convolutional networks, a deconvolution layer -inverse of convolution- is implemented.
This layer is also called transposed convolution and it has learnable kernels same as
convolution. Different upsampling layers are introduced in the following section.

2.6 Convolutional Auto-Encoders

Auto-encoders are unsupervised neural networks that aim to reconstruct the input from
an embedding. They are composed of encoder which is a set of layers downsample
the input and decoder that is a mirrored encoder. Decoder layers share the weights of
encoder and therefore allow to reconstruct the input from an embedding feature vector.
These networks do not require a hand-annotated dataset and hence can be trained on
any sort of inputs.

A convolution auto-encoder network (see Figure 3.6) can also be implemented to
reconstruct the input as well with convolution layers in encoder and deconvoloution
layers in decoder. Advantage of this is that one can use these networks for any sort
of supervised tasks which require pixel-wise labeling such as image restoration, normal
or depth estimation, semantic labeling, etc. On the other hand, compared to an auto-
encoder, in convolutional auto-encoders decoder does not necessarily share the weights
with encoder.

Decoders usually mirror the encoder part of the network and there are different up-
sampling strategies. For example, unpooling [48] inverts the max-pooling operation. For
a 2 X 2 unpooling, each activation from the input map is replaced to top-left of the out-
put 2 x 2 patch in the output feature map where the rest of the map is filled with zero.
More sophisticated solution is to keep the maximum indices while applying pooling in
the encoder and then using these indices in the corresponding unpooling in the decoder
to replace the activation in the output feature map [17, 49]. Advantage of unpooling is
that there are not learnable parameters, but it may require extra memory to store the
indices.

2.7 Recurrent Neural Networks

Both fully connected and convolutional networks are feed-forward networks and therefore
cannot exploit the information in sequential data. On the other hand, recurrent neural
networks (RNNs) are a type of neural networks that process time-series data to find
the similar patterns in time via so-called memory blocks. This is necessary to process
sequential data, for example text, audio or video. Each unit (cell) in an RNN stores the
memory in its hidden state and this intermediate feature vector is passed to unit itself
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X Xt—1

Figure 2.1: Basic RNN-cell. History, s , and internal output, o, are collected over a time
series.

again with the next input. This recursion ensures that the memory is propagated to the
next inputs.

A recurrent unit (RNN-cell) and its unfolded version are demonstrated in Figure 2.1.
A basic RNN-cell computes an output o; and a hidden state s; at a step t as

st = Tanh(U-s;-1 + W-x4_1 + b) (2.50)
Ot = V. St (251)
v+ = softmax(o;) , (2.52)

where x € R?", W € R™" U € R™™ s R™ b € R”, V € R**™ and y € RF.
Hidden state s is a history or a summary collected over a series of inputs. These param-
eters are learned during training from the data with a special type of back-propagation
method.

Backpropagation through time (BPTT) [50-52] is derived for recurrent neural
networks. Given a sequence of inputs, BPTT is performed by inputting the sequence
and computing the input-output pairs at each time step and then unrolling the network
and updating the parameters based on the time step. This process is repeated until
the network converges (loss is minimum) same as in gradient descent. It is a quite fast
approach and allow mixture of different network architectures to be trained end-to-end.
However BPTT may cause network to stuck in poor local minima and hence drastically
drop the network performance.

Besides difficulty of training RNNs with BPTT, they also suffer from the vanishing
gradient problem due to the Tanh function in the hidden state update in Equation (2.50).
Although, an RNN-cell can easily capture the patterns repeated for a small period
of time on the input sequence because of the vanishing gradient RNNs are not easily
trainable for longer sequences. In order to improve the memory capacity of RNN-cells to
longer sequences and to tackle vanishing gradient during training, new type of memory
mechanisms, 7.e. Long Short-term Memory (LSTM) unit and Gated Recurrent Unit
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(GRU) are proposed. In the following sections, I discuss the differences between these
units and give an overview based on http://colah.github.io/posts/2015-08-Understanding-LSTMs/,

https://isaacchanghau.github.io/post/lstm-gru-formula/.

2.7.1 Long Short-term Memory (LSTM)

LSTM units [53] are variants of RNN-cells and compose of input, output and forget
gates. Let 7,0, f denote the input, output and forget gate, respectively, and ® denote
the Hadamard product (element-wise multiplication), forward-pass in an LSTM cell is
computed as

it:U(Ui-xt+Wi-8t71+bi) (2.53)
fi=o(U - x, + W/ .5, + b)) (2.54)
or =0(U° %+ W 5, +Db?) (2.55)
Cy = Tanh(UY - x; + WY - 5, + b) (2.56)
Cr=0(fy ®Cio1 +1i1 © Cy) (2.57)
st = Tanh(Cy) © oy . (2.58)

Input gate controls how much of the input should pass into LSTM memory and output
gate controls how much of the current output should be incorporated in the hidden state.
LSTMs differ from RNNs in terms of memory implementation. Hidden state of an LSTM
cell is computed based on the previous and current internal memories, C;, C; as well as
the output o;. LSTM units learn to adapt the memory to the input sequence, which
allows network to forget the history completely or remember partially. They are more
robust to the length of the sequence compared to RNNs and easier to train with BPTT.

2.7.2 Gated Recurrent Unit (GRU)

GRUs [54] are also a variant of RNNs and in comparison to LSTMs they are simpli-
fied and have only reset and update gates, denoted respectively as r and z in Equa-
tions (2.59, 2.60). GRUs merge the input and forget gates to a reset gate and merge
also cell states with hidden states to make changes. An update on the hidden state is
formalized as

2z =0(U” %+ W?- 5,1+ b?) (2.59)
re=0(U" -x+W"-5_1+Db") (2.60)
5= Tanh(U" - x; + (r; © 84-1) - W' +b") (2.61)
ht:(l—zt)(bst_1+zt®l~zt. ( )
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Chapter
Depth Reconstruction from Focus Cue

Estimating depth from a single image is an ill-posed problem and therefore, it is usually
hard and intractable to recover the geometry. Although modeling 3D objects to minimize
a complex cost function or training a deep network on stereo pairs as in [55] might im-
prove the performance, more observations, e.g., multiple views of the scene from different
view points, are required to reconstruct the absolute depth of objects from the camera.
One other interesting choice is to recover depth from a focal stack. Depth from focus
(DFF) is a classical ill-posed inverse problem in computer vision. DFF methods intends
to recover depth at each pixel based on the focal setting which exhibits maximal sharp-
ness. However it is not obvious how to reliably estimate the sharpness level, particularly
in low-textured areas. In this chapter, we propose an end-to-end learning method, which
we name ‘Deep Depth From Focus’ and a large DFF dataset to train a deep network. In
order to obtain a significant amount of focal stacks with groundtruth depth, we propose
to leverage a light-field camera with a co-calibrated RGB-D sensor. This allows us to
digitally create focal stacks of arbitrary sizes. We generate a dataset 25 times larger
than other existing benchmarks and it enables the use of machine learning for the DFF
problem. In our extensive experiments we exhibit the efficiency and high performance of
our proposed method ‘DDFFNet’ compared to state-of-the-art approaches and provide
an insight how a network can be used as a sharpness level in DFF. Moreover, we present
the results of our best model on a focal stack, captured by a smartphone, showing the
promising usage of our approach on mobile devices. This work has been published in [21].

3.1 Introduction

The goal of depth from focus (DFF) is to reconstruct a pixel-accurate depth map given
a stack of images with gradually changing optical focus. The key observation is that
a pixel’s sharpness is maximal when the object it belongs to is in focus. Hence, most
methods determine the depth at each pixel by finding the focal distance at which the
contrast measure is maximal. Nonetheless, DFF is an ill-posed problem, since this
assumption does not hold for all cases, especially for textureless surfaces where sharpness
cannot be determined. This is why most methods rely on strong regularization to obtain
meaningful depth maps which in turn leads to an often oversmoothed output.

While spatial smoothness is a rather primitive prior for depth reconstruction, with the
advent of convolutional neural networks (CNNs) we now have an alternative technique
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Figure 3.1: Qualitative results of the DDFFNet versus state-of-the-art methods. Re-
sults are normalized by the maximum disparity, which the focal stacks are generated
on (0.28 pixel). Warmer colors represent closer distances. Best viewed in color.

to resolve classical ill-posed problems such as semantic segmentation [18, 49, 56-58] or
optical flow estimation [15, 16]. The underlying expectation is that the rather naive
and generic spatial smoothness assumption used in variational inference techniques is
replaced with a more object-specific prior knowledge absorbed through huge amounts of
training data.

A big strength of CNNs is their ability to extract meaningful image features, and
correlate pixel information via convolutions. Our intuition is that a network will be
able to find the image in the focal stack at which a pixel is maximally sharp, thereby
correlating focus and depth. We therefore, propose to tackle the task of depth from focus
using end-to-end-learning. To that end, we create the first DFF dataset with real-world
scenes and groundtruth measured depth. In order to obtain focal stacks in a reliable
and fast way, we propose to use a light-field camera. Also called plenoptic camera, it
allows us to obtain multi-view images of a scene with a single photographic exposure.
All-in-focus images as well as focal stacks can be recovered digitally from a light-field
image. Using this new dataset, we perform end-to-end learning of the disparity given a
focal stack.

3.1.1 Contributions

We present Deep Depth From Focus Network (DDFFNet), an auto-encoder-style con-
volutional neural network that outputs a disparity map from a focal stack. To train
such a net, we create a dataset with 720 light-field images captured using a plenoptic
camera, i.e. Lytro ILLUM, covering 12 indoor scenes. Given a light-field image, we can
digitally generate a focal stack. Groundtruth depth is obtained from an RGB-D sensor
which is calibrated to the light-field camera.

To the best of our knowledge, this is the largest dataset with groundtruth for the
problem of DFF. We experimentally show that this amount of data is enough to success-
fully fine-tune a network. We compare our results with state-of-the-art DFF methods
and provide a comprehensive study on the impact of different variations of the encoder-
decoder type of network.

Our main contributions in this chapter are:
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e DDFFNet, the first end-to-end learning method to compute depth maps from focal
stacks.

e DDFF 12-Scene dataset, composed of 720 light-field images and co-registered
groundtruth depth maps recorded with an RGB-D sensor.

o extensive evaluation of DDFFNet and its comparison to several state-of-the-art
methods for DFF, as well as several variations of the encoder-decoder architecture.

o fast depth reconstruction: we can compute depth maps in 0.6 seconds on an NVidia
Pascal Titan X GPU.

3.1.2 Related work

Depth from focus or Shape from focus. Conventional methods aim at determining
the depth of a pixel by measuring its sharpness or focus at different images of the focal
stack [59]. Developing a discriminative measure for sharpness is non trivial, we refer
the reader to [59] for an overview. Other works aim at filtering the contrast coefficients
before determining depth values by windowed averaging [60] or non-linear filtering [61].
Another popular approach to obtain consistent results is to use total variation regular-
ization. [62] proposed the first variational approach to tackle DFF while [63] defines an
objective function composed of a smooth but non-convex data term with a non-smooth
but convex regularizer to obtain a robust (noise-free) depth map. Suwajanakorn et al.
[64] computes DFF on mobile devices, focusing on compensating the motion between
images of the focal stack. This results in a very involved model, that depends on optical
flow results, and takes 20 minutes to obtain a depth map. Aforementioned methods
heavily rely on priors/regularizers to increase the robustness of the algorithm, meaning
their models may not generalize to all scenes. Interestingly, shape from focus was al-
ready tackled using neural networks in 1999 [65, 66|, showing their potential on synthetic
experiments. The increasing power of deep architectures makes it now possible to move
towards estimating depth of real-world scenarios.

Plenoptic or light-field cameras. A light-field or plenoptic camera capture angular
and spatial information on the distribution of light rays in space. In a single photographic
exposure, these cameras are able to obtain multi-view images of a scene. The concept
was first proposed in [67], and has recently gained interest from the computer vision
community. These cameras have evolved from bulky devices [68] to hand-held cameras
based on micro-lens arrays [69]. Several works focus on the calibration of these devices,
either by using raw images and line features [3] or by decoding 2D lenslet images into
4D light-fields [70]. An analysis of the calibration pipeline is detailed in [71]. Light-
field cameras are particularly interesting since depth and all-in-focus images can be
computed directly from the 4D light-field [72-74]. Furthermore, focal stacks, 7.e. images
taken at different optical focuses, can be obtained from plenoptic cameras with a single
photographic exposure. For this reason, we choose to capture our training dataset using
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these cameras, though any normal camera that captures images at different optical
focuses can be used at test time.

To the best of our knowledge, there are only two light-field datasets with groundtruth
depth maps [1, 75]. While [75] provides 7 synthetic and only 6 real-scene light-fields, [1]
generates a hand-crafted synthetic light-field benchmark composed of only 24 samples
with groundtruth disparity maps. Our dataset is 25 times larger, composed of 12 indoor
scenes, in total of 720 light-field samples with co-registered groundtruth depth obtained
from an RGB-D sensor, ranging from 0.5 to 7m. In this work, we show that our data is
enough to fine-tune a network for the specific task of predicting depth from focus. Note
that the Standford Light-field dataset (nttp://lightfields.stanford.edu/) has more samples
than our dataset, but does not provide groundtruth depth maps, instead lambda-scaled
depth maps generated by the standard Lytro toolbox. Therefore, the maps are not in
real distance metrics and there is no camera calibration provided. Furthermore, Lytro
depth maps can be inaccurate as we show in Section 3.4, and cannot be considered as
groundtruth.

Deep learning. Deep learning has had a large impact in computer vision since showing
its excellent performance in the task of image classification [76-78]. A big part of its
success has been the creation of very large annotated datasets such as ImageNet [79].
Of course, this can also be seen as a disadvantage, since creating such datasets with
millions of annotations for each task would be impractical. Numerous recent works
have shown that networks pre-trained on large datasets for seemingly unrelated tasks
like image classification, can easily be fine-tuned to a new task for which there exists
only a fairly small training dataset. This paradigm has been successfully applied to
object detection [80], pixel-wise semantic segmentation [18, 33, 49, 56, 57, 81|, depth and
normal estimation [55, 82, 83] or single image-based 3D localization [19, 20], to name a
few. Another alternative is to generate synthetic data to train very large networks, e.g.,
for optical flow estimation [15, 16]. Using synthetic data for training is not guaranteed
to work, since the training data often does not capture the real challenge and noise
distribution of real data. Several works use external sources of information to produce
groundtruth. [84] uses sparse multi-view reconstruction results to train a CNN to predict
surface normals, which are in turn used to improve the reconstruction. In [55, 85], the
authors aim at predicting depth from a single image, but create groundtruth depth data
from matching stereo images. We propose to use an RGB-D sensor that can be registered
to our light-field camera to obtain the groundtruth depth map. Even though an RGB-D
sensor is not noise-free, we show that the network can properly learn to predict depth
from focus even from imperfect data. We use the paradigm of fine-tuning a pre-trained
network and show that this works even if the tasks of image classification and DFF seem
relatively unrelated.
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Figure 3.2: (a) Experimental setup. We place an RGB-D sensor on top of a plenoptic camera
in order to capture calibrated groundtruth depth maps and light-field images from
which we then create focal stacks. These two inputs are used to train the DDFF Net.
(b) Whisker diagram of the disparity distribution for each scene. Circle and red
lines are the mean and median, respectively. Minimum disparity is 0.015 pixels
(bottom orange lines), maximum disparity is 0.43 pixels (top orange lines).

3.2 DDFF 12-Scene benchmark

In this section we present our indoor DDFF 12-Scene dataset for depth from focus. This
dataset is used for the training and evaluation of the proposed and several state-of-the-
art methods. We first give the details on how we generate our data, namely the focal
stack and groundtruth depth maps.

Why a 4D-lightfield dataset for depth from focus? To determine the depth of a
scene from focus, we first need to generate a focal stack obtainable by using any camera
and changing the focal step manually to retrieve the refocused images. Nonetheless, this
is a time-consuming task that would not allow us to collect a significant amount of data
as it is required to train deep models. Given the time that it takes to change the focus
on a camera, the illumination of the scene could have easily changed or several objects
could have moved. We therefore propose to leverage a lightfield camera as it has the
following advantages: (i) only one image per scene needs to be taken, meaning all images
will have the same photographic exposure and the capturing process will be efficient,
(ii) refocusing can be performed digitally, which allows us to easily generate stacks with
different focal steps, (iii) the dataset can be a benchmark not only for DFF, but also
for other tasks such as depth from light-field or 3d reconstruction from lightfield. Even
though we do not intend to tackle these tasks in this work, we do show some comparative
results on depth from light-field in (DDLF) Section 3.4.

Light-field imaging. With light-field imaging technology, the original focus of the
camera can be altered after the image is taken. Following this, we use a commercially
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available light-field camera, i.e. Lytro ILLUM [86], to collect data and then generate
focal stacks. Plenoptic cameras capture a 4D light-field L(u,v,z,y) which stores the
light rays that intersect the image plane Q at (x,y) and the focus or camera plane II at
(u,v). The pixel intensity I(x,y) is then:

I(z,y) :/u/vL(u,v,a:,y) Ou v . (3.1)

Refocusing on an image corresponds to shifting and summing all sub-apertures, I, .,y (%, ).
Given the amount of shift, pixel intensities of a refocused image are computed as fol-
lows [87]:

I'(z,y) :/U/UL(U,U,J:—|—Ax(u),y—|—Ay(v))8u8U. (3.2)

The shift (A,, A,) of each sub-aperture uv can be physically determined given an
arbitrary depth Z in m, at which the camera is in-focus:

Ag(u) _ baseline - [ Ucenter — U (3.3)
Ay ('U) 7 Veenter — V) ’
disparity

where the baseline is the distance between adjacent sub-apertures in meter/pixel, f is
the focal length of the microlenses in pixels and (u, v)? indicates the spatial position
of the sub-aperture in the II plane in pixels. Although shifting can be performed using
bilinear or bicubic interpolation, to be able to perform subpixel accurate focusing on the
images, following [72] we use the phase shift algorithm to observe the impact of subpixel
shifts on the images:

F{I'(x+ Arp(u)} = F{I(2)} - exp(2miA,(u)) , (3.4)

where F{-} is the 2D discrete Fourier transform. We generate the focal stacks within
a given disparity range, for which the focus shift on the images is clearly observable
from close objects to far ones present in our dataset. Disparity values used in refocusing
in Equation (3.3) are sampled linearly in the given interval for a stack size of S, meaning
that the focus plane equally shifts in-between the refocused images. Example refocused
images for disparity € {0.28,0.17,0.02} are shown in Figure 3.4. Note that we chose to
use a light-field camera since it is easy to obtain a focal stack from it. Nonetheless, at
test time, any imaging device could be used to take images at different optical focus.

Light-field camera calibration. For consistent capturing over all scenes, we fix the
focal length of the main lens to 9.5mm and lock the zoom. To increase the re-focusable
range of the camera, we use the hyperfocal mode (see [86] for details). Theoretically,
we can then refocus from 27c¢m distance to infinity. We set the white-balancing, ISO
and shutter speed settings to auto mode. In order to estimate the intrinsic parameters
of the light-field camera, we use the calibration toolbox by Bok et al.  [3] with a
chessboard pattern composed of 26.25mm length squares. This toolbox generates sub-
apertures based on a radius r, of a microlens image, which is set to 7 pixels for the
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Figure 3.3: (a) Disparity distribution of the training and test sets. Dashed blue lines rep-
resent the sampled disparity values used to generate the focal stacks.
(b) Depth to disparity conversion for DDFF 12-Scene dataset. Sampled dis-
parities used for refocusing and their corresponding depths are denoted with green
boxes.

Parameters of the Lytro ILLUM

T 7 F, 7299.7
K,  -2768 F, 7317.0
Ky 19820 G, 3991.6
k1 0388 C 2629.6

Y
ko -0.0361 K, /F' 27e—5

Table 3.1: Estimated intrinsic parameters of the Lytro ILLUM. F, and C, are re-
spectively the focal length and optical center of the main lens in pixels. Baseline
(K1 /F') is the distance between two adjacent sub-apertures in meter/pixel, where
F’' = max(Fy, F,). Refer to [3] for details.

Lytro ILLUM camera. Although the toolbox generates 13x13 sub-apertures, we follow
the authors’ recommendation [3] to only use the ones within the displacement of 2+ 52 <
(radius—1)2. This results in 9x9 undistorted sub-apertures, each of which has 383 x 552
image resolution. Estimated intrinsic parameters of the Lytro ILLUM and microlenses
are given in Table 3.1 and in Table 3.2. Intrinsics of the microlenses are computed as

F./(2rm) 0 Ce/(2rm)
Int = 0 Fo/(2rm) Cy/(2rm)| , (3.5)
0 0 1

where F, and C, are respectively the focal length and optical center of the main lens in
pixels.
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Figure 3.4: Example refocused images. First column: Center sub-aperture image. Last
column: groundtruth disparity maps from the RGB-D sensor. Middle columns:
Refocused images for varying disparity values in pixels, regions in focus are high-
lighted. Best viewed in color.

f Cy cy baseline
521.4 285.11 187.83 27e—5

Table 3.2: Estimated intrinsic parameters of the microlenses. f, and c, are the focal
length (f = f, = f,) and optical center of the microlenses in pixels. Baseline is the
distance between two adjacent sub-apertures in meter /pixel.

Groundtruth depth maps from an RGB-D sensor. Along with the light-field im-
ages, we also provide groundtruth depth maps. To this end, we use an RGB-D structure
sensor, 7.e. ASUS Xtion PRO LIVE, and mount it on the hot shoe of the light-field cam-
era (see Figure 3.2a). Since we only need the infrared camera of the RGB-D sensor, we
align the main lens of Lytro ILLUM to the infrared image sensor as close as possible for
a larger overlap on the field of views of both cameras. We save the 480 x 640 resolution
depth maps in millimeters. RGB-D sensors are not accurate on glossy surfaces and might
even produce a large amount of invalid/missing measurements. In order to reduce the
number of missing values, we take nine consecutive frames and save the median depth
of each pixel during recording/capturing.

Stereo camera calibration. We perform mono and stereo camera calibration to
estimate the relative pose of the depth sensor with respect to the light-field camera.
To this end, we use Camera Calibration Toolbox for Matlab the publicly available on
www.vision.caltech.edu/bouguetj/calib_doc/. We use the same calibration pattern as for the
light-field calibration. Stereo calibration is performed between the center sub-aperture
(u, v)T = (5, 5)T and the infrared camera image. While we fix the intrinsics of the
light-field camera as given in Table 3.1, depth sensor is calibrated only for intrinsic pa-
rameters (no distortion). After the calibration procedure, we register the depth maps
onto the center sub-aperture images. As one can observe in the examples in Figure 3.4,
due to the RGB-D sensor noise and the calibration procedure, some pixels around object
boundaries do not contain depth measurements (represented in dark blue). Recorded
depth maps can be improved further for a better domain adaptation [88-91]. We leave
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the possible improvements for future work. We convert depth to disparity to generalize
the method to different cameras as follows:

baseline - f

disparity = ~ ,

(3.6)

where Z > 0.

DDFF 12-Scene benchmark. We collect the dataset in twelve different indoor envi-
ronments: glassroom, kitchen, office{1, seminar room, social corner, student laboratory,
cafeteria, library, locker room, magistrale, office44 and spencer laboratory. First six
scenes are composed of 100 light-field images and depth pairs and the latter six scenes
are composed of 20 pairs. Our scenes have at most 0.5 pixel disparity while the amount
of measured disparity gradually decreases towards far distances. Figure 3.2b plots the
Whisker diagrams for each scene. In Figure 3.3a, we plot the normalized disparity
histogram of the training and test sets. We generate the focal stacks for 10 sampled
disparities in the interval of [0.28,0.02] pixels (equivalent to [0.5,7] meters), indicated
with blue dashed lines in Figure 3.3a. We also plot the depth to disparity conversion for
the given baseline and focal length of the microlenses in Figure 3.3b. Refocused disparity
values and their corresponding depths are denoted with a green box. Note that disparity
is inversely proportional to depth and therefore, linear sampling in disparity corresponds
to non-linear sampling in depth. We choose to sample disparities to have a linear fo-
cus change between stack images. Example center sub-aperture images for office41 and
locker room scenes and their corresponding disparity maps are shown in Figure 3.4. In
Figure 3.5, disparity distributions of the twelve scenes are shown.

Since the dataset consists mainly of indoor scenes, flat surfaces (wall, desk), textureless
objects (monitor, door, cabinet) and glossy materials (screen, windows) are often present.
Our dataset is therefore more challenging and 25 times larger than previous synthetic
datasets [1, 75]. DDFF 12-Scene dataset consisting of the light-field images, generated
focal stacks and registered depth maps are publicly available on https://vision.cs.tum.edu/
data/datasets/ddff12scene.

3.3 Depth Reconstruction from Focal Stack with Deep
Convolutional Networks

In this section, we detail our proposed approach to estimate a depth map given a focal
stack. In order to achieve this, we formalize our problem as a minimization of a regression
function, which is an end-to-end trained convolutional neural network.

Let S be a focal stack consisting of S refocused images I € REXWXC and the corre-
sponding target disparity map D € R?*W  we minimize the least square error between
the estimated disparity f(S) and the target D:

HW
L= M) |f(Sm),W) - D)+ WI|3. (3.7)
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Figure 3.5: Disparity distribution of the DDFF 12-Scene dataset. Each of the first six scenes
is composed of 100 light-field samples and used for training. Each of the latter six
scenes is composed of 20 light-field samples and used for testing.

Loss function £ is summed over all valid pixels p where D(p) > 0, indicated by the mask
M and N : RS¥HXWxC _, RHXW jg a convolutional neural network. Weights (W)
are penalized with ¢o-norm (Equation (2.24)). Depth/disparity maps captured by RGB-
D sensors often have missing values, indicated with a value of 0. Therefore, we ignore
the missing values during training in order to prevent networks from outputting artifacts.
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'Reshape ‘Conv+BN+ReLU ‘Pooling ﬁUpsample ‘Concat ‘Score

Figure 3.6: DDFFNet. Proposed auto-encoder-style architecture that takes in a focal stack
and produces a disparity map. We present several architectural modifications,
namely CC connections, Upsample, i.e. Unpool, BL and UpConv (check the text
for details).

Network architecture. We propose an end-to-end trainable auto-encoder style convo-
lutional neural network. CNNs designed for image classification are mostly encoder type
networks which reduce the dimension of the input to a 1D vector [76-78]. This type of
networks are very powerful at constructing descriptive hierarchical features later used for
image classification. This is why for tasks which require a pixel-wise output, the encoder
part is usually taken from these pre-trained networks [76-78] and a mirrored decoder
part is created to upsample the output to image size. We follow this same paradigm of
hierarchical feature learning for pixel-wise regression tasks [15, 16, 33, 49, 56] and de-
sign a convolutional auto-encoder network to generate a dense disparity map as shown
in Figure 3.6.

As a baseline for the encoder network, we use the VGG-16 net [77]. It consists of 13
convolutional layers, 5 poolings and 3 fully-connected layers. In order to reconstruct the
input size, we remove the fully-connected layers and reconstruct the decoder part of the
network by mirroring the encoder layers. We invert the 2 x 2 pooling operation with
4 x 4 upconvolution (deconvolution) [56] with a stride of 2 and initialize the weights of
the upconvolution layers with bilinear interpolation, depicted as upsample in Figure 3.6.

Similar to the encoder part, we use convolutions after upconvolution layers to further
sharpen the activations. To accelerate the convergence, we add batch normalization [28]
after each convolution and learn the scale and shift parameters during training. Batch
normalization layers are followed by rectified linear unit (ReLLU) activations. Moreover,
after the 3rd, 4th and 5th poolings and before the corresponding upconvolutions, we ap-
ply dropout with a probability of 0.5 during training similar to [33]. In order to preserve
the sharp object boundaries, we concatenate the feature maps of early convolutions
convi_2, conv2_2, conv3_3 with the decoder feature maps: outputs of the convolu-
tions are concatenated with the outputs of corresponding upconvolutions. Figure 3.6
demonstrates a sketch of our network.

We refer to this architecture as DDFFNet. There are several architectural choices
that one can make that can significantly increase or decrease the performance of auto-
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encoder networks. Some of these changes are the way upsampling is done in the decoder
part or the skip connections. For the problem of DFF, we study the performance of the
followings variants:

e DDFFNet-Upconv: In the decoder part, we keep the upconvolutions.
o DDFFNet-Unpool: Upconvolutions are replaced by 2 x 2 unpooling operation [48].

o DDFFNet-BL: Upconvolutions are replaced by 2 x 2 bilinear interpolation (upsam-
pling).

e DDFFNet-CCxz: Here we study the effect of several concatenation connections,
designed to obtain sharper edges in the depth maps.

Network input. VGG-16 net takes the input size of H x W x C, precisely 224 x 224 x 3.
In contrast, we need to input the whole focal stack & into the network. Computing
features per stack image [ is a general way of incorporating sharpness into DFF ap-
proaches [63] and we make use of this intuition within our end-to-end trained CNN.
Since the depth of a pixel is correlated with the sharpness level of that pixel and the
convolutions are applied through input channels C, we consider the network as a feature
extractor and therefore, we reshape our input to (B -S x C x H x W) with a batch
size of B. Hence, the network generates one feature map per image in the stack with a
size of (B-S x 1 x H x W). In order to train the network end-to-end, we reshape the
output feature maps to (B x S x H x W) and apply 1 x 1 convolution as a regression
layer through the stack, depicted as Score layer in Figure 3.6.

3.4 Experimental Evaluation

We evaluate our method on the DDFF 12-Scene dataset proposed in Section 3.2. We
also present results on the 4D light-field dataset [1] in Section 3.7. We first split the
twelve scenes into training and test sets. We use the six scenes, i.e. cafeteria, library,
locker room, magistrale, office/4, spencer laboratory for testing as these scenes have in
total 120 focal stacks and are also a good representation of the whole benchmark, as
shown in Figure 3.2a. The other six scenes are then used for training with a total of 600
focal stacks.

Evaluation metrics. Following [1, 55, 83, 92] we evaluate the resulting depth maps
with eight different error metrics:

o MSE: iy Spen [£S®) — D)2

. RMS : Wl S pert [1/(8(®) — D)2

+ log RMS &y [y Spe e 108 £(S(0) — log D),
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Figure 3.7: Qualitative results of the variants of DDFFNet. While BL oversmooths the
edges, CC1 and CC2 introduce artificial edges on the disparity map. Unpooling is
not suitable well to recover fine edges. Best viewed in color.
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where A = f(S(p)) — D(p) and H is the Hessian matrix. The first five measures are
standard error measures, therefore lower is better while for the Accuracy measure higher
is better. BadPix(7) quantifies the number of wrong pixels with a given threshold 7
while Bumpiness metric focuses on the smoothness of the predicted depth maps [1].

Experimental setup. For our experiments, we generate the focal stacks for S = 10
with disparities linearly sampled in [0.28,0.02] pixel (equivalent to [0.5,7] meters). We
found this to be a good compromise between obtaining pixel sharpness at all depths
and memory consumption and runtime, which heavily increases for larger focal stacks
without bringing improved depth accuracy (see Figure 3.9).

DDFF 12-Scene consists of 383 x 552 images, thus training on full resolution stacks
is inefficient. One solution would be to downsample the images, however, interpolation
could change the blur kernels, eventually affecting network performance. The solution
we adapt is to train the network on 10 x 224 x 224 x 3 stack patches. To do so, we
crop the training stacks and corresponding disparity maps with a patch size of 224 and
a stride of 56, ensuring that cropped patches cover the whole image. Patches with more
than 20% missing disparity values are removed from the training set. 20% of the training
data is used as validation for model selection. At test time, results are computed on the
full resolution 383 x 552 images.

We run all experiments on an NVidia Pascal Titan X GPU. Encoder part of the net-
work is initialized from the pre-trained VGG-16 net, decoder part is initialized with
variance scaling [25]. We use the SGD optimizer with momentum decay of 0.9 (see Sec-
tion 2.3.4). Batch size B is set to 2 and learning rate to 0.001. Every fourth epoch
we exponentially reduce the learning rate by a factor of 0.9. Training set is shuffled in
the beginning of each epoch and we set the weight decay A for convolution layers to 5 e 4.
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Accuracy (6 = 1.25)
Method MSE | RMS| log RMS | Abs. rel. | Sqr. rel.l 61 21 631 Bump. |

Unpool  2.9¢73 0.050 0.50 0.64 0.05 39.95 63.46 78.26 0.62
BL 2.1e73 0.041 0.43 0.46 0.03 51.29 74.81 85.28 0.54
S UpConv 1l.de3 0.034 0.33 0.30 0.02 5241 83.09 93.78 0.54
E CC1 1.4e™3 0.033 0.33 0.37 0.02 60.38 82.11 90.63 0.75
E cC2 1.8¢73 0.039 0.39 0.39 0.02 44.80 76.27 89.15 0.75
A CC3 9.7¢4 0.029 0.32 0.29 0.01 61.95 85.14 92.99 0.59
PSPNet 9.4e4 0.030 0.29 0.27 0.01 62.66 85.90 94.42 0.55
Lytro 2.1e73 0.040 0.31 0.26 0.01 55.65 82.00 93.09 1.02
PSP-LF  2.7¢73 0.046 0.45 0.46 0.03 39.70 65.56 82.46 0.54
DFLF 4.8e¢73 0.063 0.59 0.72 0.07 28.64 53.55 71.61 0.65
VDFF 7.3e73 0.080 1.39 0.62 0.05 8.42 19.95 32.68 0.79

Table 3.3: Quantitative results of the proposed method. DDFFNet-CC3 is the best
depth from focus method and provides also better results compared to Lytro, i.e.
depth from light-field. Metrics are computed on the predicted and the groundtruth
disparity maps.

3.4.1 Ablation studies

We first evaluate our architecture variations such as the three upsampling layers: un-
pooling, upconvolution and bilinear interpolation. We can see from Figure 3.7, Unpool
does not preserve the fine object edges while BL oversmooths them due to naive linear
interpolation. These observations are also supported by the quantitative experiments
in Table 3.3. Hence, we choose to use UpConv for the rest of the experiments.

Within the tested concatenation schemes, DDFFNet-CC1 and DDFFNet-CC2 pre-
serve too many edges as they benefit from larger feature maps. However, this pro-
duces incorrect depth and therefore achieving overall worse MSE compared to that of
DDFFNet-CC3, see Table 3.3. On the other hand, DDFFNet-CC3 preserves only the
most important edges corresponding to object boundaries. Going deeper in the concat
connections would not provide sufficiently fine structures, hence, we do not test connec-
tions after C'CS.

We further plot the BadPix measure when changing the threshold 7 in Figure 3.9. In
this plot, we compare our best architecture DDFFNet-CC3 with focal stacks of varying
sizes, S € {5,8,10,15}. Having light-field images allows us to digitally generate focal
stacks of varying sizes, enabling us to find an optimal size. Even though increasing the
stack size S should theoretically decrease the depth error, S-15 quickly overfits due to
the fact that it was trained with a batch size of 1 to fit into the memory of a single GPU.
We find that a focal stack of 10 images is the best memory-performance compromise,
which is why all further experiments are done with S = 10.

3.5 Comparison to state-of-the-art

We have implemented several baselines to compare our method with:
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Variational DFF. We compare our results with the state-of-the-art variational method,
VDFF [63], using their GPU code (https://github.com/adrelino/variational—depth—from—focus)
and the same focal stacks as in our method. We run a grid search on several VDFF
parameters and the results reported are for the best set of parameters. VDFF outputs
a real valued index map. Each pixel is assigned to one of the stack images, where the
pixel is in focus. Therefore, we directly interpolate these indices to their corresponding
disparity values and compute our metrics on the mapped disparity output.

PSPNet for DFF. Pyramid Scene Parsing Network [81] is based on a deeper en-
coder (ResNet) and also capable of capturing global context information by aggregating
different-region-based context through the pyramid pooling module. It is originally de-
signed for semantic segmentation, however, we modified the network for depth from
focus problem (input and output) and trained it end-to-end on our dataset. We also
compare to PSPNet in order to observe the effects of significant architectural changes
in terms of a deeper encoder (ResNet) with a recent decoder module for the problem of
depth from focus.

Lytro depth. For completion, we also compare with the depth computed from the light-
field directly by the Lytro [86]. Although this method technically does not compute DFF,
we still think it is a valuable baseline to show the accuracy that depth from light-field
methods can achieve. Lytro toolbox predicts depth in lambda unit, thus the output is
not directly comparable to our results. For this reason, we formulate the rescaling from
Lytro depth to our groundtruth as an optimization problem that finds a unique scaling
factor k*. To do so, we minimize the least squares error between the resulting depth

Z(p) and the groundtruth depth Z(p) to find the best scaling factor k*:

k* ZargkminZIIk'Z(p)—Z(p)llg, (3.8)

where k € R. Note that this is the best possible mapping in terms of MSE to our
groundtruth depth maps provided that the focal stack has uniform focal change, there-
fore, we are not penalizing [86] during the conversion process. Evaluation metrics are
then computed on k* - D(p) and D(p).

Depth from light-field. Even though we focus on the task of DFF, we want to provide
a comparison to depth from light-field. For this purpose, we follow [93, 94] and train our
network (DDFFNet-CC3) as well as PSPNet with 11 sub-apertures from the light-field
camera as input. Sampling pattern is shown in Figure 3.8. We denote these models
as DFLF and PSP-LF, respectively. To the best of our knowledge, there is no code
for [93, 94] to test their full pipeline on our dataset.
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Figure 3.8: Sampled sub-apertures used as an input for the depth from light field networks.
We use 11 sub-apertures (denoted by red) sampled from 9x9 light-fields.

Method  Runtime (s.) Depth (m.)

Unpool 0.55 1.40 = o

BL 0.43 1.10 o8 pepnet
+ UpConv 0.50 0.58 el — DbFetUpConY (5-10)
Z CCl 0.60 0.79 F — Bormuetcs (5-o
= CC2 0.60 0.86 % o4 T Dormeccs (oo
A CC3 0.58 0.86

DFLF 0.59 1.50 >

VDFF 2.83 8.90 00

0.00 0.05 0.10 0.15 0.20 0.25 0.30
Lytro  25.26 (CPU) 0.99 reen

Figure 3.9: Badpix(%) for DDFFNet-
CC3 for S € {5,8,10,15},
DDFFNet-UpConv for S=10,
for Lytro, DFLF and VDFF.
While 7 increases BadPix er-
ror decreases. DDFFNet with
stack size of 10 is better than
VDFF and Lytro by a large
margin.

Table 3.4: Runtime and Depth error.
DDFFNet is faster and more
accurate than other state-of-
the-art methods. For complete-
ness, we also report the run-
time of Lytro toolbox on CPU.
VDFF performs worse as it re-
quires many iterations of opti-
mization during test.

As we can see from Table 3.3, DDFFEFNet-CC8 outperforms the other depth from focus
method, i.e. VDFF [63], in all evaluation metrics, reducing depth error by more than
75%. The major reason for this is that VDFF proposes an optimization scheme that
relies on precomputed hand-crafted features, which can handle the synthetic or clean
high resolution images but fail in the realistic, challenging scenes of our dataset.

PSPNet performs on-par to DDFFNet-CC3, nevertheless, as shown in Figure 3.1, pyra-
mid pooling leads to oversmooth depth maps due to its upsampling strategy. Although
this network is very efficient for semantic segmentation, we found that our decoder choice
with skip connection CC3 yields more accurate, non-smooth depth maps.
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Lytro, on the other hand, computes very inaccurate depth maps on flat surfaces (Fig-
ure 3.1) while our DDFFNet estimates a smoother and also more accurate disparity
maps. Note that Lytro depth is what is provided as groundtruth depth maps in the
Stanford Light-field dataset, but this depth computation is relying on an algorithm that
is not always accurate as we have shown. This is another advantage of the proposed
dataset which provides groundtruth maps from an external RGB-D sensor.

As we can see in Table 3.3, our approach DDFFNet-CC8 still performs better than
depth from light-field (DFLF) with a similar number of images. Note that it would not
be possible to fit all sub-aperture images provided by the light-field camera into GPU
memory. In contrast to DFLF, our method is usable with any camera.

Moreover, we present the mean squared errors of computed depth maps and runtime
in Table 3.4. DDFFNet-CC8 achieves a much lower error when compared to VDFF or
DFLF. DDFFNet-UpConv has a better depth error than DDFFNet-CCS8, but, its badpix
error is significantly larger than DDFFNet-CC3, demonstrated in Figure 3.9.

We demonstrate further qualitative results in Figure 3.10. Note the poor performance
of classic methods like VDFF, and even the wrong disparity maps produced by Lytro in
the first row. In Figure 3.11 we present two failure cases where the network output is
not sharp or not consistent.

Overall, experiments show that our method is more accurate by a large margin when
compared to the classical variatonal DFF method [63] while also being orders of mag-
nitude faster on a GPU. It is also more accurate than the Lytro predicted depth or a
network trained for depth from light-field. Several network architectures were explored,
and finally CC8 was deemed the best with overall lowest disparity error while keeping
object boundaries in the disparity map.

3.6 What is the network learning?

Following the convention in depth from focus, one can see DDFFNet as a sharpness
measure. Our network takes an input of B xS and reshapes it before the first convolution.
This design allows the network to learn in which image of the stack the pixel is sharpest.
From this sharpness level, our regression layer, denoted as Score, regresses the depth from
sharpness (focus). Without the Score layer, DDFFNet can be considered as a function
which measures the sharpness of each pixel through the stack. In order to visually prove
the concept, we demonstrate the activation maps in Figure 3.12, where one can clearly
see how the activations move towards the closest object (the chair) as we advance in
the focal stack, hinting at the fact that network is indeed exploiting the focus cue to
estimate the depth.

3.7 Results on the 4D light-field dataset

To show the generality of our method, we also present the results of DDFFNet-CC3 on
the 4D light-field dataset [1]. Note that this dataset is not designed for depth from focus
but rather depth from light-field and therefore, we generate a focal stack of refocused
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Figure 3.10: Qualitative results of the DDFFNet versus state-of-the-art methods.
Results are normalized by the maximum disparity. Warmer colors represent closer
distances. Best viewed in color.
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Figure 3.11: Failure cases. Results are normalized by the maximum disparity. Warmer colors
represent closer distances. Best viewed in color.
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Figure 3.12: Activation heat maps for the refocused images in a focal stack. First column:
top: center subaperture image, bottom: groundtruth disparity map. The rest of
the columns show from left to right, top to bottom, how the activations on the
focal stack images evolve. Note how the activations slowly shift to the closest
object (the chair) as we advance in the focal stack.
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Figure 3.13: Results on 4D light-field dataset [1]. DDFFNet can keep the finer structures
in the disparity maps. On the other hand, VDFF and PSPNet produces incorrect
and over-smoothed results.

images per scene in the disparity interval of [—2.5,2.5]. from the light-field images. The
number of images in this benchmark is limited and training a network from scratch
with the provided data does not work. We propose to do transfer learning from our
DDFF 12-Scene dataset by fine-tuning DDFFNet-CC8 and PSPNet. As training set
for fine-tuning we use the 16 light-field images marked as “additional” and 4 marked as
“stratified”. As test set we use the 4 scenes marked as “train” set.

In Figure 3.13 we show the qualitative results and in Table 3.5 we present the quan-
titative results. DDFFNet-CC8 outperforms other methods in terms of MSE and RMS
error, showing that by using only 20 images from a completely different setting, we can
fine-tune our network to achieve accurate results.
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Method MSE | RMS | Bump. |
VDFF 1.30 1.15 1.58
PSPNet 0.37 0.53 1.21
DDFFNet-CC3 0.19 0.42 1.92

Table 3.5: Quantitative results of the proposed method. DDFFNet-CC8 outperforms
VDFF also on the 4D light-field benchmark. Metrics are computed on the predicted
and groundtruth disparity maps.

Closest Far Furthest VDFF PSPNet DDFF

Figure 3.14: Qualitative results of DDFFNet-CC3, VDFF and PSPNet on the focal
stacks captured with an Android smartphone.

3.8 Is DDFFNet generalizable to other cameras?

In order to present the generality of our method, we captured two focal stacks with an
Android smartphone where we change the focus, gradually and linearly from 0.1 to 4 me-
ters and compute the disparities with DDFFNet-CC3, VDFF and PSPNet. Qualitative
results are illustrated in Figure 3.14. VDFF can perform well in the first image, however,
cannot compute a reasonable depth on the second image. PSPNet suffers estimating a
finer depth for far distances. On the other hand, our method preserves finer edges on
both images for close and far objects.
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3.9 Conclusions

Depth from focus (DFF) is a highly ill-posed inverse problem because the optimal focal
distance is inferred from sharpness measures which fail in untextured areas. Existing
variational solutions revert to spatial regularization to fill in the missing depth, which are
not generalized to more complex geometric environments. In this chapter, we introduced
a novel approach to recover depth from a focal stack, where the focus is gradually
changing from close to far objects. To this end, we first generated a large dataset
composed of focal stacks and their co-registered depth pairs and trained a deep network
to solve the DFF problem. Moreover, we devised a suitable network architecture and
demonstrated that our network, i.e. DDFFNet outperforms state-of-the-art methods,
reducing the depth error by more than 75% and predicting a disparity map in only 0.6
seconds. Furthermore, we also show that our method can be easily generalized for other
datasets and cameras with minimal effort.
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Chapter

Incorporating Depth into Semantic
Segmentation

In Chapter 3, we discussed depth from focus, reconstructing depth from focus cue. Depth
is an essential complementary information to color and texture and therefore is necessary
in many computer vision tasks, e.g., image-based localization, scene reconstruction, 3D
object/scene modeling, object/scene recognition/classification and more interestingly
semantic scene understanding, to name few.

This chapter addresses the problem of semantic labeling of indoor scenes on RGB-D
data. With the availability of RGB-D cameras, it is expected that additional depth
measurement will improve the accuracy. Here we investigate a solution how to incor-
porate complementary depth information into a semantic segmentation framework by
making use of convolutional neural networks (CNNs). We propose an auto-encoder-style
network, where the encoder part is composed of two branches of networks that simulta-
neously extract features from RGB and depth images and fuse depth features into the
RGB branch as the network goes deeper. We provide a comprehensive experimental
evaluation to demonstrate that the proposed fusion-based architecture achieves compet-
itive results with the state-of-the-art methods on the challenging SUN RGB-D [4] and
NYUv2 [6] benchmarks. This work has been published in [18].

Figure 4.1: An exemplar input and output of FuseNet. From left to right: input RGB
and depth images, the predicted semantic labeling and the probability of the cor-
responding labels, where white and blue denote high and low probabilities, respec-
tively.
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4.1 Introduction

Visual scene understanding in a glance is one of the most amazing capability of the
human brain. In order to model this ability, semantic segmentation aims at giving a
class label for each pixel on the image according to its semantic meaning. This problem
is one of the most challenging tasks in computer vision, and has received a lot of attention
from the computer vision community [5, 49, 56, 95-98].

Convolutional neural networks (CNNs) have recently attained a breakthrough in var-
ious classification tasks such as semantic segmentation. CNNs have been shown to be
powerful visual models that yields hierarchies of features. The key success of this model
mainly lies in its general modeling ability for complex visual scenes. Currently CNN-
based approaches [56, 97, 99] provide the state-of-the-art performance in several semantic
segmentation benchmarks. In contrast to CNN models, by applying hand-crafted fea-
tures one can generally achieve rather limited accuracy.

Utilizing depth additional to the appearance information (i.e. RGB) could potentially
improve the performance of semantic segmentation, since the depth channel has comple-
mentary information to RGB channels, and encodes structural information of the scene.
The depth channel can be easily captured with low cost RGB-D sensors. In general
object classes can be recognized based on their color and texture attributes. However,
the auxiliary depth may reduce the uncertainty of the segmentation of objects having
similar appearance information. Couprie et al. [100] observed that the segmentation of
classes having similar depth, appearance and location is improved by making use of the
depth information too, but it is better to use only RGB information to recognize object
classes containing high variability of their depth values. Therefore, the optimal way to
fuse RGB and depth information has been left an open question.

In this chapter we address the problem of indoor scene understanding assuming that
both RGB and depth information simultaneously available (see Figure 4.1). This prob-
lem is rather crucial in many perceptual applications including robotics. We remark
that although indoor scenes have rich semantic information, they are generally more
challenging than outdoor scenes due to more severe occlusions of objects and cluttered
background. For example, indoor object classes, such as chair, dining table and curtain
are much harder to recognize than outdoor classes, such as car, road, building and sky.

Contributions can be summarized as follows:

o We investigate a solution how to incorporate complementary depth information
into a semantic segmentation framework. To this end we propose an auto-encoder-
style network, referred to as FuseNet, where the encoder part is composed of two
branches of networks that simultaneously extract features from RGB and depth
images and fuse depth features into the RGB branches as the network goes deeper
(see Figure 4.2).

e We propose and examine two different ways of fusing RGB and depth features. We
also analyze the proposed network architectures, referred to as dense and sparse
fusion (see Figure 4.3), in terms of the level of fusion.
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o We experimentally show that our proposed method is successfully able to fuse RGB
and depth information for semantic segmentation also on cluttered indoor scenes.
Moreover, our method achieves competitive results with state-of-the-art methods
in terms of segmentation accuracy evaluated on the challenging SUN RGB-D [4]
and NYUv2 [6] datasets.

4.2 Related Work

A fully convolutional network (FCN) architecture has been introduced in [56] that com-
bines semantic information from a deep, coarse layer with appearance information from
a shallow, fine layer to produce accurate and detailed segmentations by applying end-to-
end training. Noh et al. [49] have proposed a novel network architecture for semantic
segmentation, referred to as DeconvNet, which alleviates the limitations of fully con-
volutional models (e.g., very limited resolution of labeling). DeconvNet is composed of
deconvolution and unpooling layers on top of the VGG 16-net [77]. To retrieve semantic
labeling on the full image size, Zeiler et al. [101] have introduced a network composed of
deconvolution and unpooling layers. Concurrently, a very similar network architecture
has been presented [17] based on the VGG 16-net [77], referred to as SegNet. In contrast
to DeconvNet, SegNet consists of smoothed unpooled feature maps with convolution in-
stead of deconvolution. Kendall et al. [33] further improved the segmentation accuracy
of SegNet by applying dropout [30] during test time [102].

Some recent semantic segmentation algorithms combine the strengths of CNN and
conditional random field (CRF) models. It has been shown that the poor pixel classi-
fication accuracy, due to the invariance properties that make CNNs good for high level
tasks, can be overcome by combining the responses of the CNN at the final layer with
a fully connected CRF model [99]. CNN and CRF models have also been combined
in [97]. More precisely, the method proposed in [97] applies mean field approximation
as the inference for a CRF model with Gaussian pairwise potentials, where the mean
field approximation is modeled as a recurrent neural network, and the defined network is
trained end-to-end refining the weights of the CNN model. Recently, Lin et al. [5] have
also combined CNN and CRF models for learning patch-patch context between image
regions, and have achieved the current state-of-the-art performance in semantic segmen-
tation. One of the main ideas in [5] is to define CNN-based pairwise potential functions
to capture semantic correlations between neighboring patches. Moreover, efficient piece-
wise training is applied for the CRF model in order to avoid repeated expensive CRF
inference during the course of back-propagation.

In [96] a feed-forward neural network has been proposed for scene labeling. The long
range (pixel) label dependencies can be taken into account by capturing sufficiently
large input context patch, around each pixel to be labeled. The method [96] relies on
a recurrent convolutional neural networks (RCNN), i.e. a sequential series of networks
sharing the same set of parameters. Each instance takes as input both an RGB image
and the predictions of the previous instance of the network. RCNN-based approaches are
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known to be difficult to train, in particular, with large data, since long-term dependencies
are vanished while the information is accumulated by the recurrence [98].

Byeon et al. [98] have presented long short term memory (LSTM) recurrent neural
networks for natural scene images taking into account the complex spatial dependencies
of labels. LSTM networks have been commonly used for sequence classification. These
networks include recurrently connected layers to learn the dependencies between two
frames, and then transfer the probabilistic inference to the next frame. This allows to
easily memorize the context information for long periods of time in sequence data. It has
been shown [98] that LSTM networks can be generalized well to any vision-based task
and efficiently capture local and global contextual information with a low computational
complexity.

State-of-the-art CNNs have the ability to perform segmentation on different kinds of
input sources such as RGB or even RGB-D. Therefore a trivial way to incorporate depth
information would be to stack it to the RGB channels and train the network on RGB-D
data assuming a four-channel input. However, it would not fully exploit the structure
of the scene encoded by the depth channel. This will be also shown experimentally in
Section 4.4. By making use of deeper and wider network architecture one can expect
the increase of the robustness and the accuracy. Hence, one may define a network ar-
chitecture with more layers. Nevertheless, this approach would require huge dataset in
order to learn all the parameter making the training infeasible even in the case when the
parameters are initialized with a pre-trained network.

The State of the Arts on RGB-D Data. A new representation of the depth in-
formation has been presented by Gupta et al. [95]. This representation, referred to as
HHA, consists of three channels: disparity, height of the pixels and the angle between
of normals and the gravity vector based on the estimated ground floor, respectively. By
making use of the HHA representation, a superficial improvement was achieved in terms
of segmentation accuracy [95]. On the other hand, the information retrieved only from
the RGB channels still dominates the HHA representation. As we shall see in Section 4.4,
the HHA representation does not hold more information than the depth itself. Further-
more, computing HHA representation requires high computational cost. In this paper we
investigate a better way of exploiting depth information with less computational burden.

Li et al. [103] have introduced a novel LSTM Fusion (LSTM-F) model that captures
and fuses contextual information from photometric and depth channels by stacking sev-
eral convolutional layers and an LSTM layer. The memory layer encodes both short- and
long-range spatial dependencies in an image along vertical direction. Moreover, another
LSTM-F layer integrates the contexts from different channels and performs bi-directional
propagation of the fused vertical contexts. In general, these kinds of architectures are
rather complicated and hence more difficult to train. In contrast to recurrent networks,
we propose a simpler network architecture.
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Figure 4.2: FuseNet architecture. Colors indicate the layer type. The network contains two
branches to extract features from RGB and depth images, and the feature maps
from depth is constantly fused into the RGB branch, denoted with the red arrows.
In our architecture, the fusion layer is implemented as an element-wise summation,
demonstrated in the dashed box.

4.3 A CNN-based Framework for Incorporating Depth into
Semantic Networks

In this section, we detail the problem we tackled, provide details of FuseNet architecture
in Section 4.3.1 and reason the fusion of two different input modalities, i.e. RGB and
Depth in Section 4.3.2.

We aim to solve the semantic segmentation problem on RGB-D images. Let us de-
fine the label set as L. = {1,2,...,¢}. We assume that we are given a training set
D = {(x(i),y("))}fil where x; € RE>XWx4 v c THXW congisting of N four-channel
RGB-D images (x;), having the same size H x W, along with the groundtruth labeling
(yi). Moreover, we assume that the pixels are drawn as i.i.d. samples following a cate-
gorical distribution. Based on this assumption, we may define a CNN model to perform
multinomial logistic regression.

The network extracts features from the input layer and through filtering provides
classification score for each label as an output at each pixel. We model the network
as a composition of functions corresponding to k layers with parameters denoted by
W = [wi, wa,..., W], as in Equation (2.4)

f(x, W) = gr(gr-1(- - g2(g1(x, W1), Wa) -+, Wg—1), wg) . (4.1)

The classification score of a pixel x for a given class ¢ is obtained from the function
fe(x, W), which is the cth component of f(x, W). Using the softmax function in Equa-
tion (2.1), we can map this score to a probability distribution
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Figure 4.3: Illustration of different fusion strategies at the second (CBR2) and third (CBR3)
convolution blocks of VGG 16-net. (a) Fusion layer is only inserted before each
pooling layer. (b) Fusion layer is inserted after each CBR block.
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(4.2)

For the training of the network, 7.e. learning the optimal parameters W*, the cross-
entropy loss is used, which minimizes the KL-divergence between the predicted and the
true class distribution:

N HW

W* = argmin — > > logplyis | xi, W) + AW, (4-3)
i=1 j=1

where x;; € R* stands for the jth pixel of the ith training image and yi; € L is its
groundtruth label. The hyper-parameter A > 0 is chosen to apply weighting for the
regularization of the parameters (i.e. 3-norm (Equation (2.24)) of W).

At inference, a probability distribution is predicted for each pixel via softmax normal-
ization, defined in (Equation (4.2)), and the labeling is calculated based on the highest
class probability.

4.3.1 FuseNet Architecture

We propose an auto-encoder-style network architecture as shown in Figure 4.2. The
proposed network has two major parts: 1) the encoder part extracts features and 2) the
decoder part upsamples the feature maps back to the original input resolution. This
auto-encoder-style network has been already introduced in several previous works such
as DeconvNet [49] and SegNet [57] and has achieved good segmentation performance.
Although our proposed network is based on this type of architecture, we further consider
to have two encoder branches. These two branches extract features from RGB and depth
images. We note that the depth image is normalized to have the same value range as
color images, i.e. into the interval of [0, 255]. In order to combine information from both
input modules, we fuse the feature maps from the depth branch into the feature maps
of the RGB branch. We refer to this architecture as FuseNet (see Figure 4.2).
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The encoder part of FuseNet resembles the 16-layer VGG net [77], except of the
fully connected layers fc6, £c7 and £c8, since the fully connected layers reduce the
resolution with a factor of 49, which increases the difficulty of the upsampling part. In
our network, we always use batch normalization (BN) after convolution (Conv) and before
rectified linear unit (ReLU) to reduce the internal covariate shift [28]. We refer to the
combination of convolution, batch normalization and ReLU as CBR block, respectively.
The BN layer first normalizes the feature maps to have zero-mean and unit-variance,
and then scales and shifts them afterwards. Scale and shift parameters are learned
during training, mean and variance are computed on the training set before testing. As
a result, network learns how to combine color and depth features, which may have a
different scale, in an optimal way.

The decoder part of the network is a counterpart of the encoder, where memorized
unpooling is applied to upsample the feature maps. In the decoder part, we again use
the CBR blocks. We also did experiments with deconvolution instead of convolution,
and observed very similar performance. As proposed in [33], we also apply dropout
both in the encoder and decoder to further boost the performance. However, dropout is
deactivated during test time.

The key ingredient of the FuseNet architecture is the fusion block, which combines
the feature maps of the depth and RGB branches. The fusion layer is implemented as
element-wise summation. In FuseNet, we always insert the fusion layer after the CBR
block. By making use of fusion the discontinuities of feature maps computed on the depth
image are added into the RGB branch in order to enhance the RGB features. As it can
be observed in many cases, the features in the color domain and in the geometric domain
complement each other. Based on this observation, we propose two fusion strategies:
a) dense fusion (DF), where the fusion layer is added after each CBR block of the RGB
branch. b) sparse fusion (SF), where the fusion layer is only inserted before each pooling.
These two strategies are illustrated in Figure 4.3.

4.3.2 Fusion of Feature Maps

In this section, we reason the fusion of the feature maps between the RGB and depth
branches. To utilize depth information a simple way would be just stacking the RGB
and depth images into a four-channel input. However, we argue that by fusing RGB and
depth information the features are usually more discriminant than the ones obtained
from the stacked input.

As we introduced before in (Equation (4.1)), each layer is modeled as a function g
that maps a set of input = to a set of output a with parameter w. We denote the Ith
feature map in the kth layer by g,gl). Suppose that the given layer operation consists of
convolution and ReLU, therefore

xi =g (<, wi) = Reru((w x) + bl (44)

If the input is a four-channel RGB-D image, then the feature maps can be decomposed
as x = [a’ b"]T, where @ € R%, b € R? with d; + dy = d := dim(x) are features learned
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Figure 4.4: Comparison of two out of 64 feature maps produced at the CBR1_1 layer.
The features from RGB and depth mostly compensate each other, where the tex-
tureless region usually have rich structure features and structureless regions usually
present texture features. This visually illustrates that the proposed fusion strat-
egy better preserves the informative features from color and depth than applying
element-wise summation followed by ReLU.

from the color channels and from the depth channel, respectively. According to this
observation, we may write that

X = ReLu((w”, 20y + 5y = ReLU((ul, a®) + ! + (v BO) + 4!y

= max (0, <u,(€l), al)y + C;il) + <V;(€l)a b)) + dl(cl)))

< max(0, <u,(€l), al)) + c,(ﬁl)) + max(0, <V](€l), b®)y + d,(cl)) (4.5)
=o((wa®) + ) + o (v b0) + d)
where we applied the decomposition of wg) = [ul,(gl)T v,(f)T]T and bg) = cg) + d,(gl).

Based on the inequality in Equation (4.5), we show that the fusion of activations of the
color and the depth branches (i.e. their element-wise summation) produces a stronger
signal than the activation on the fused features. Nevertheless, the stronger activation
does not necessarily lead to a better accuracy. However, with fusion, we do not only
increase the neuron-wise activation values, but also preserve activations at different
neuron locations. The intuition behind this can be seen by considering low-level features
(e.g., edges). Namely, due to the fact that the edges extracted in RGB and depth images
are usually complementary to each other. One may combine the edges from both inputs
to obtain more information. Consequently, these low-level features help the network to
extract better high-level features, and thus enhance the ultimate accuracy.

To demonstrate the advantage of the proposed fusion, we visualize the feature maps
produced by CBR1_1 in Figure 4.4, which corresponds to low-level feature extraction
(e.g., edges). As it can be seen the low-level features in RGB and depth are usually
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complementary to each other. For example, the textureless region can be distinguished
by its structure, such as the lap against the wall, whereas the structureless region can
be distinguished by the color, such as the painting on the wall. While combining the
feature maps before the ReLU layer fail to preserve activations, the proposed fusion
strategy applied after the ReLU layer preserves well all the useful information from both
branches. Since low-level features help the network to extract better high-level ones, the
proposed fusion thus enhances the ultimate accuracy.

4.4 Experimental Evaluation

In this section, we evaluate the proposed network through extensive experiments. For
this purpose, we use the publicly available SUN RGB-D scene understanding bench-
mark [4]. This dataset contains 10335 synchronized RGB-D pairs, where pixel-wise
annotation is available. The standard trainval-test split consists of 5050 images for test-
ing and 5285 images for training/validation. This benchmark is a collection of images
captured with different types of RGB-D cameras. The dataset also contains in-painted
depth images, obtained by making use of multi-view fusion technique. In the experiments
we used the standard training and test split with in-painted depth images. However,
we excluded 587 training images that are originally obtained with RealSense RGB-D
camera. This is due to the fact that raw depth images from the aforementioned cam-
era consist of many invalid measurements, therefore in-painted depth images have many
false values. We remark that the SUN RGB-D dataset is highly unbalanced in terms of
class instances, where 16 out of 37 classes rarely present. To prevent the network from
over-fitting towards unbalanced class distribution, we weighted the loss for each class
with the median frequency class balancing according to [104]. In particular, the class
floormat and shower-curtain have the least frequencies and they are the most challenging
ones in the segmentation task. Moreover, approximately 0.25% pixels are not annotated
and do not belong to any of the 37 target classes. Source code of our method is available
OIl https://github.com/tum-vision/fusenet.

Training. We trained the all networks end-to-end. Therefore images were resized to the
resolution of 224 x 224. To this end we applied bilinear interpolation on the RGB images
and nearest-neighbor interpolation on the depth images and the groundtruth labeling.
The networks were implemented with the CAFFE framework [105] and were trained with
SGD optimizer (see Section 2.3.4) using a batch size of 4. The input data was randomly
shuffled after each epoch. The learning rate was initialized to 0.001 and was multiplied
by 0.9 in every 50,000 iterations. We used a momentum of 0.9 and set weight decay to
0.0005. We trained the networks until convergence, when no further decrease in the loss
was observed. The parameters in the encoder part of the network were fine-tuned from
the VGG 16-layer model [77] pre-trained on the ImageNet dataset [79]. The original
VGG net requires a three-channel color image. Therefore, for different input dimensions
we processed the weights of first layer (i.e. convi_1) as follows:

1) averaged the weights along the channel for a single-channel depth input;
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Method Global Mean IoU
FCN-16s [56] 67.51 38.65 27.15
FCN-32s [56] 68.35 41.13 29.00
Bayesian SegNet [33] (RGB) 71.20 45.90 30.70
LSTM [103] - 48.10 -

Context-CRF [5] (RGB) 78.40 53.40 42.30
FuseNet-SF5 76.27 48.30 37.29
FuseNet-DF1 73.37 50.07 34.02

Table 4.1: Segmentation results on the SUN RGB-D benchmark [4] in comparison to
the state of the art. Our methods DF1 and SF5 outperforms most of the approaches,
except of the Context-CRF [5].

2) stacked the weights with their average for a four-channel RGB-D input;
3) duplicated the weights for a six-channel RGB-HHA input.

Testing. We evaluated the results on the original 5050 test images. For quantitative
evaluation, we used three criteria. Let TP, FP, FN denote the total number of true
positive, false positive, false negative, respectively, and N denotes the total number of
annotated pixels. We define the following three criteria:

1) Global accuracy, referred to as global, is the percentage of the correctly classified
pixels, defined as

1
Global = ﬁzc:TPC , ce{l..K}.

2) Mean accuracy, referred to as mean, is the average of classwise accuracy, defined
as

1 TP,
Mean = — S ——¢
can= e > TP, + FP,

C

3) Intersection-over-union (IoU) is average value of the intersection of the prediction
and groundtruth regions over the union of them, defined as

1 TP
ToU = — ¢ .
© KZTPC+FPC+FNC

[

Among these three measures, the global accuracy is relatively less informative due to the
unbalanced class distribution. In general, the frequent classes receive a high score and
hence dominate the less frequent ones. Therefore we also measured the average class
accuracy and IoU score to provide a better evaluation of our method.
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Method Global Mean IoU
FCN-16s [56] 65.40 46.10 34.0
FCN-32s [56] 64.30 44.90 32.80
Bayesian SegNet [33] (RGB) 68.00 45.80 32.40
LSTM [103] - 49.40 -

Context-CRF [5] (RGB) 70.00 53.60 40.60
FuseNet-SF5 66.00 43.40 32.70

Table 4.2: Segmentation results on the NYUv2 dataset [6] in comparison to the state
of the art. Our method SF5 outperforms most of the methods in terms of global
accuracy (except of the Context-CRF [5]) and have on-par IoU scores.

4.4.1 Quantitative Results

In the first experiment, we compared our FuseNet to the state-of-the-art methods. The
results are presented in Table 4.1. We denote the SparseFusion and DenseFusion by
SF, DF, respectively, following by the number of fusion layers used in the network (e.g.,
SF5). The results shows that FuseNet outperforms most of the methods with a significant
margin. On the other hand, FuseNet is not as competitive in comparison to the Context-
CRF [5]. However, it is also worth noting that the Context-CRF trains the network with
a different loss function that corresponds to piecewise CRF training. It also requires
mean-field approximation at the inference stage, followed by a dense fully connected
CRF refinement to produce the final prediction. Applying the similar loss function and
post-processing, FuseNet is likely to produce on-par or better results.

In the second experiment, we compare the FuseNet to network trained with different
representation of depth, in order to further evaluate the effectiveness of depth and variant
fusion variations. The results are presented in Table 4.3. It can be seen that stacking
depth and HHA into color gives slight improvements over network trained with only
color, depth or HHA. In contrast, with the depth fusion of FuseNet, we improve over a
significant margin, in particular with respect to the IoU scores. We remark that the depth
fusion is in particular useful as a replacement for HHA. Instead of preprocessing a single
channel depth images to obtain hand crafted three-channel HHA representation, FuseNet
learns high dimensional features from depth end-to-end, which is more informative as
shown by experiments.

In Table 4.3, we also analyzed the performance of different variations of FuseNet.
Since the original VGG 16-net has 5 levels of pooling, we increase the number of fusion
layers as the network gets deeper. The experiments show that segmentation accuracy
improves from SF1 to SF5, however the increase appears saturated up to the fusion
after the 4th pooling, i.e. SF4. The possible reason behind the accuracy saturation
is that depth already provides very distinguished features at low-level to compensate
textureless regions in RGB, and we consistently fuse features extracted from depth into
the RGB-branch. Same trend can be observed with DF.
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Input Global Mean  IoU
Depth 69.06 42.80 28.49
HHA 69.21 43.23 28.88
RGB 72.14 47.14 3247
RGB-D 71.39 49.00 31.95
RGB-HHA 73.90 45.57 33.64

FusetNet-SF1 75.48 46.15 35.99
FusetNet-SF2 75.82 46.44 36.11
FusetNet-SF3 76.18 47.10 36.63
FusetNet-SF4 76.56 48.46 37.76
FusetNet-SF5  76.27 48.30 37.29

FusetNet-DF1 73.37 50.07 34.02
FusetNet-DF2 73.31 49.39 33.97
FusetNet-DF3 73.37 49.46 33.52
FusetNet-DF4 72.83 49.53 33.46
FusetNet-DF5 72.56 49.86 33.04
FusetNet-DF13  70.54 45.83 30.03

Table 4.3: Segmentation results of FuseNet in comparison to the networks trained with
RGB, depth, HHA and their combinations. The second part of the table provides
the results of variations of FuseNet. We show that FuseNet obtained significant
improvements by extracting more informative features from depth.

In the third experiment, we further compare FuseNet-SF5, FuseNet-DF1 to the network
trained with RGB-D input. In Table 4.4 and 4.5, we report the classwise accuracy
and IoU scores of 37 classes, respectively. For class accuracy, all the three network
architectures give very comparable results. However, for IoU scores, SF5 outperforms
in 30 out of 37 classes in comparison to other two networks. Since the classwise IoU
is a better measurement over global and mean accuracy, FuseNet obtains significant
improvements over the network trained with stacked RGB-D, showing that depth fusion
is a better approach to extract informative features from depth and to combine them
with color features.

Note that, due to the very low label frequency of the floor mat (denoted as mat) class,
all models fail to segment the pixels of this class. Main reason is that floor mat neither
has any flat depth information on the input depth map nor any textural cue on the RGB
image.

In Figure 4.5, we demonstrate some visual comparison of FuseNet-SF5 to different
input and fusion strategies. Our method has shaper boundaries and more accurate seg-
mentation results. In Figure 4.6, we provide visual results of DFs. SF5 produces on-par
segmentations compared to DF1. Nevertheless, deeper dense fusion models produce in-
consistent noisy segmentation labels.
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Qualitative segmentation results for different architectures. The first three
rows contain RGB and depth images along with the groundtruth, respectively,
followed by the segmentation results. Last row shows the results obtained by our
SF5 model.
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Figure 4.6: Qualitative segmentation results of FuseNet models. SF5 is more accurate
than DFs in terms of correct semantic labels for the segmented regions.
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wall floor cabin bed chair sofa table door wdw bslf

freq. 27.09 2340 2.89 419 1166 332 746 2.68 3.17 0.62
RGB-D 77.19 93.90 62.51 74.62 71.22 59.09 66.76 42.27 62.73 29.51
SF5 90.20 94.91 61.81 77.10 78.62 66.49 65.44 46.51 62.44 34.94
DF1 82.39 93.88 56.97 73.76 78.02 62.85 60.60 45.43 67.22 28.79
pic cnter blinds desk shelf ctn drssr pillow mirror mat

freq. 0.68 092 040 237 037 103 056 068 0.66 0.04
RGB-D 64.66 48.19 48.80 12.12 9.27 63.26 40.44 52.02 52.99 0.00
SF5 67.39 40.37 43.48 25.63 20.28 65.94 44.03 54.28 5247  0.00
DF1 67.50 39.89 44.73 20.98 14.46 61.43 48.63 58.59 55.96 0.00
clthes ceil books fridge tv paper towel shwr box board

freq. 0.32 1.07 038 032 021 034 0.18 003 0.61 0.65
RGB-D 38.38 84.06 57.05 34.90 45.77 41.54 27.92 499 31.24 69.08
SF5 25.89 84.77 4523 34.52 34.83 24.08 21.05 8.82 21.94 57.45
DF1 30.52 86.23 53.86 32.31 53.13 36.67 27.14 1.96 26.61 66.36

person stand toilet  sink lamp btub bag mean

freq. 0.12 0.12 031 045 0.29 0.21 0.22

RGB-D 16.97 42,70 76.80 69.41 50.28 65.41 24.90 49.00
SFb5 19.06 37.15 76.77 68.11 49.31 73.23 12.62 48.30
DF1 30.91 43.89 81.38 66.47 52.64 74.73 25.80 50.07

Table 4.4: Classwise segmentation accuracy of 37 classes. We compare FuseNet-SF5,
FuseNet-DF1 to the network trained with stacked RGB-D input. DF1 has the best
classwise performance and outperforms other methods on 14 out of 37 classes. On
the other hand, SF5 is compatative to DF1 and outperforms on 11 out of 37 classes.
We also report the frequency of each class in per ten thousand (%oo).

Segmentation results on the NYUv2 dataset. NYU Depth Dataset v2 [6] is com-
posed of 1449 labeled benchmark and divided into 795 training and 654 test images.
Although it is already involved in 37-class SUN RGB-D benchmark, we also test our
best model, i.e. FuseNet-SF5, with the 40-class annotation provided in [106]. We train
our models on 320 x 240 resolution. To obtain the original resolution of 640 x 480, one
may use bilinear upsampling or a CRF-based refinement on the segmentation results
similar to Context-CRF [5]. However, this may alter the final segmentation results and
accuracy scores may differ. We compare the FuseNet-SF5 model with state-of-the-art
methods in Table 4.2. FuseNet-SF5 outperforms most of them in terms of global accuracy
(except Context-CRF [5]) and have on-par IoU scores.
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wall floor cabin bed chair sofa table door wdw bslf

RGB-D 69.46 86.10 35.56 58.29 60.02 43.09 46.37 27.76 43.30 19.70

SF5 74.94 87.41 41.70 66.53 64.45 50.36 49.01 33.35 44.77 28.12
DF1 69.48 86.09 35.57 58.27 60.03 43.09 46.38 27.78 43.31 19.75

pic cnter blinds desk shelf ctn  drssr pillow mirror mat
RGB-D 36.24 2548 29.11 10.19 5.34 43.02 23.93 30.70 31.00 0.00
SF5 46.84 27.73 31.47 18.31 9.20 52.68 34.61 37.77 38.87 0.00
DF1 36.30 25.44 29.12 15.61 744 4224 28.74 31.99 34.73 0.00

clths ceil books fridge tv paper towel shwr box board

RGB-D 17.67 63.10 21.79 22.69 31.31 12.05 13.21 4.13 14.21 40.43
SF5 16.67 67.34 27.29 31.31 31.64 16.01 16.55 6.06 15.77 49.23
DF1 15.82 60.09 24.28 23.63 37.67 16.45 13.60 154 15.47 45.21

person stand toilet sink lamp btub bag mean

RGB-D 10.00 11.79 59.17 45.85 26.06 51.75 12.38 31.95
SF5 14.59 19.55 67.06 54.99 35.07 63.06 9.52 37.29
DF1 15.49 1746 63.38 48.09 27.06 56.85 12.92 34.02

Table 4.5: Classwise IoU scores of 37 classes. We compare FuseNet-SF5, FuseNet-DF1 to
the network trained with stacked RGB-D input. SF5 has the best IoU performance
and outperforms other methods on 30 out of 37 classes, showing that deeper fusion in
the network yields better segmentation accuracy in terms of intersection-over-union.

4.5 Conclusions

This chapter presents a new fusion-based CNN network for semantic labeling on RGB-D
data. More precisely, we have proposed a solution to fuse depth information with RGB
data by making use of a convolutional network. The proposed network has an auto-
encoder-style architecture, where the encoder part is composed of two branches that
simultaneously extract features from RGB and depth channels, that are then fused into
the RGB feature maps as the network goes deeper. We have investigated two possible
fusion approaches, i.e. dense fusion and sparse fusion. By applying the latter one with
a single fusion operation we have obtained a slightly better performance. Nevertheless
we may conclude that both fusion approaches provide similar results.

By conducting a comprehensive evaluation, we conclude that the our approach is a
competitive solution for semantic segmentation on RGB-D data. The proposed FuseNet
outperforms the current CNN-based networks on the challenging SUN RGB-D [4] and
NYUv2 [6] benchmarks. Interestingly, we can also claim that HHA representation itself
provides a superficial improvement to the depth information.
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We also remark that a straight-forward extension of the proposed approach can be
applied for other classification tasks such as image or scene classification. Furthermore,
our fusion network architecture is quite general and suitable for many other applications
to fuse different input modalities efficiently.
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Chapter
Deep Semantic Image Restoration

e N w

Semantic Map Degraded Input  Restoration Groundtruth

Figure 5.1: Given a corrupted image, proposed technique employs semantic knowledge
learned during the training phase to restore the degraded input.

In the previous chapters, we first introduced a CNN-based depth reconstruction method
from focal stacks in Chapter 3 and then a fusion-based CNN architecture for semantic
image labeling on RGB-Depth data in Chapter 4. Semantics are important content cue
on images that can be very informative in many vision algorithms, e.g., SLAM, 3D scene
reconstruction and also in image restoration.

In this chapter, we explore the complementarity of object categories to improve im-
age restoration tasks, specifically single image deblurring (Figure 4.1). To this end,
we propose a novel multimodal CNN architecture and training methodology that ex-
ploits pixelwise semantic labels in addition to color (RGB) information. Our technique
processes semantically homogeneous regions of an image independently and learns to
combine their output into the final result. Unlike other multimodal fusion strategies,
a crucial aspect of our technique is that it confines the usage of annotations to the
training phase. Semantic maps are notoriously tedious to obtain and therefore, their
requirement beyond training would limit the usability of the technique in practical ap-
plications. Comprehensive evaluation demonstrates the effectiveness of the proposed
architecture on three different semantic segmentation datasets, achieving substantially
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. Feature Composition
Semantic Stream (S) omp

Fusion Network (F)

Stack of partially restored Images

Figure 5.2: Multi-stream semantic network (MSN) architecture. A degraded input
image is processed through each semantic stream Sy, yielding a set of partially
restored images y, and features f;'. The output images y, are stacked together
and given as input to the fusion network F', while feature maps f;' are summed-up
element-wise and concatenated with the output of first convolutional block of F'.

better performance compared to class-agnostic models and well established multimodal
fusion techniques. This work has been done in a collaboration with Federico Perazzi',
Christopher Schroers? and Daniel Cremers®. A research paper involving this chapter will
be submitted to IEEE International Conference on Computer Vision (ICCV) 2019* in

March, 22 2019.

5.1 Introduction

Image restoration refers to the recovery of an unknown true image from its degraded
measurement. In the form of deblurring, denoising or super-resolution, image restoration
is experiencing a renaissance as a result of convolutional neural networks (CNNs) estab-
lishing themselves as powerful generative models. These one-to-many inverse problems
are inherently underdetermined and therefore it is crucial to leverage additional proper-
ties of the data to successfully recover the lost details. Exemplar based approaches, such
as sparse dictionary learning, have defined the state-of-the art of image restoration for
the past decade but were recently superseded by convolutional neural networks.

Recent techniques [107-109] directed their attention towards deeper convolutional ar-
chitectures and improved loss functions. Despite promising results in similar fields,
most of them neglected the availability of complementary information from other do-
mains. Multimodal cues enabled significant improvements on several computer vision

! Adobe Research, email: fperazzi®adobe.com

?Disney Research, Zurich, email: christopher.schroers@disneyresearch.com
3Technical University of Munich, email: cremers@tum.de

4ICCV 2019, http://iccv2019.thecvs . com/
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tasks. For example, segmentation strongly benefits from depth information [4], while
motion measurements are fundamental to the task of recognizing actions [110].

Motivated by this observation, we conjecture that semantic information potentially
plays an equally important role for image restoration tasks. But incorporating multi-
modal data in neural networks is not trivial. Although this problem is an active research
topic, there is not yet a common consensus on the optimal solution. Instead, the current
state of research indicates that the optimal multimodal fusion strategy might depend on
the application. Furthermore, semantic maps are expensive to obtain and common fusion
techniques require them to be available at test-time, which limits their deployment in
real-life scenarios.

To this end, we propose a novel architecture which is specifically designed to guide
image restoration with pixelwise semantic annotations. Our model combines advantages
of recently proposed multimodal feature integration strategies [18, 110, 111]. Most im-
portantly, it enables us to confine the usage of semantic information within the training
stage. This aspect renders our technique suitable to a wide range of practical appli-
cations. Our model consists of a multi-stream structure cascaded with a fusion net-
work. Individual streams are responsible for processing a single semantic class while the
fusion network combines the output of the streams into the resulting image (Figure 5.2).

Extensive evaluation on three different semantic segmentation datasets consistently
demonstrates the effectiveness of our approach compared to a number of well established
fusion strategies and to other competitive approaches for the tasks of deblurring images.

5.2 Related Works

Class-agnostic Image Restoration. Classical image restoration problems such as de-
noising, deblurring and super-resolution are inherently underdetermined since multiple
solutions exist for a given corrupted image. This class of problems requires suitable pri-
ors to mitigate their rank deficiency and to recover a satisfactory solution. Common
priors are based on edge statistics [112-114], sparse representation [115-117], gradients
[118-120], self-similarities [117, 121, 122] or a combination thereof [123]. The search
for stronger priors recently ceased in lieu of the remarkable success of neural networks
at recovering degraded images [124-131]. Currently, the dominant trend is that of in-
vestigating deeper network architectures with larger receptive fields and higher learning
capacity [132].Unlike the aforementioned approaches, we confront the problem from a
different perspective. In this work we aim to incorporate semantic information as an
additional form of guidance to the problem of restoring corrupted images.

Semantic Image Restoration. The usage of semantic information to guide image
restoration techniques is relatively unexplored. While different object classes have been
addressed [133-136], a substantial body of literature focused their attention on human
faces [137-143]. Despite producing good results, most of these methods tailored their
solution around a specific object class, e.g., human face, or application [144]. Hence,
in contrast to our approach they do not generalize to complex natural images contain-
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RGB Stream

Semantic
Map

Decoder

Early fusion

Mid-level fusion

‘Late fusion

Semantic |

Map

Auxiliarvy Stream

Figure 5.3: Multimodal fusion strategies for CNNs. Early fusion is implemented extend-
ing the input data layer of the RGB stream. Late fusion processes the modalities
in separate streams and combines the features only in the latent space, whereas,
mid-level fusion combines the features from the two streams progressively.

ing multiple object classes. Our idea of exploiting semantic information to help image
restoration was inspired by Isola et al. [7]. They define the problem of image-to-image
translation as the task of finding a mapping between two images from different types of
representations. Given a semantic label map their model is able to synthesize a photo-
realistic image that conforms to the input layout. The ability of convolutional networks
to synthesize photographic images from semantic labels lead us to investigate them as
an additional guidance for image restoration applications. Recently Chen and Koltun
[145], proposed an alternative approach that synthesizes multiple diverse images from
the same semantic layout. Similarly to our technique, they score the quality of results
based on a virtual image that is assembled selecting the best result for each semantic
class. Differently from us, however, the assembled image is only a proxy used during
training to encourage diversity and not the end goal of their application. While their
approach is different and therefore not directly comparable to our work, it is interesting
to note that they generate multiple images from a single stream while we generate a
single image combining the output of multiple streams.

5.3 Semantic Image Restoration

Let x € RFXWXC denote a degraded image and y € RF*WXC the corresponding true
image. Given a training dataset D = {(x(¥,y(®) N |, solving a class-agnostic image
restoration problem entails learning a function f : RFXWxC _y REXWXC that generates
an image y = f(x), as similar as possible to the true image y. Without loss of generality,
let us define an arbitrary degradation process ¢ : REXWxC _ REXWXC WWe define the
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objective as the function f that minimizes the reconstruction error between the true
image y and the network output y:

f= argj{nin Eyl|f(x) —ylh (5.1)

The function f is learned from the data as an approximation to the inverse of the de-
grading operator §. This formulation enable the treatment of different image restoration
problems such as deblurring and denoising within the same unified framework. In prac-
tice, a parametric model, such as a convolutional network, can be trained to approximate
f for an arbitrary restoration task simply selecting an appropriate degrading operator
d.

There exists several adaptations of the class-agnostic image restoration process de-
scribed above that enables us to incorporate multimodal information, such as pixelwise
semantic annotations into a convolutional network (Figure 5.3). Different data modal-
ities can be fused together early in the network by extending the depth dimension of
its first layer. Alternatively the fusion can be performed at later stages combining the
output of two independent networks and progressively fusing the intermediate features.
A visualization of the most common strategies is provided in Figure 5.3. Although these
techniques have been found to work well in related field such as segmentation [111, 146],
they are subject to the same shortcoming: they tightly couple the restoration process to
the availability of the semantic annotation limiting their practical usability in real-life
scenarios. A seemingly plausible workaround is to replace the human-annotated pixel-
wise labels with the output classification of a semantic segmentation network such as
DeepLab [147]. However, the prediction is likely to be highly unreliable in case of severe
degradation of the input image.

In summary, our analysis of the aforementioned techniques (further details in Sec-
tion 5.5.1) indicates that semantic annotations are helpful to the task of reconstruct-
ing degraded images. Nevertheless, their usage should be confined to the training
phase. Therefore, fusion strategies such as early, mid and late fusion, that extend the
network architecture to explicitly incorporate the additional data cannot be employed.
Instead, the auxiliary information should be passed through the loss function. In the
following, we propose an approach that uses semantic information only during training
and is more accurate than other fusion strategies.

5.4 Multi-stream Semantic Network

In order to establish high-level dependencies among image regions corresponding to dif-
ferent semantic classes and modalities while restricting the usage of semantic information
to the training phase, we propose a novel architecture, the multi-stream semantic net-
work (MSN). The architecture of MSN is illustrated in Figure 5.2. Given ¢ semantic
classes, the model is composed of a multi-stream architecture S = {S;}§_, cascaded
with a fusion network F' that receives the output of the semantic streams {So, ..., S.}
as input and generates the restored ¥ as output. The detailed structure is illustrated in
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Figure 5.2. Each stream Sy is given the same copy of the degraded image x and produces
as output a partially restored image,

Yo = Se(xc). (5:2)

The resulting image ¥y, is only restored in regions of x that are annotated with the label
¢ as illustrated in Figure 5.4. We denote these regions with €y. Therefore, the output
of the semantic streams in Sy is a set of partially reconstructed images {y¢};_,, each
restored in different semantic regions such that their union covers the entire image, i.e.
Ui—o Q¢ — Q. A simple, but suboptimal solution for assembling the set of partially
recovered images {§¢}7_, is to copy and paste the restored regions from different images
into the final result. The shortcoming of this approach is that since streams Sy process
x independently, their outputs ¥, do not take into account the complex inter-class de-
pendencies that are necessary to generate satisfactory results. Instead we adopt a more
principled approach and train a network F' to combine the outputs of Sj.

Let f)' € RZ*2*% denote the last feature layer of Sp. The fusion network F receives
6 = {0¢}7_, as input and produces the restored image y as output; 6, = (y¢, f;) contains
the last feature layer and the partially restored RGB image obtained from .S.

Given 6 as input, the fusion network F' generates the restored image,

y = (F 9] 7‘[)(90,(91, ceey 9171). (53)

H(-) is a composite function that concatenates the set of partially restored images {y;}7_,
along their depth channel, and combines the features f;* with the element-wise sum, such
that

!
H(0) = [§o1, >_T7]. (5.4)
i=0

As illustrated in Figure 5.2 the stack of RGB images is given to F' as input data layer
while the features are concatenated to the output of its first convolution.

5.4.1 Training

Let ¢ denote the total number of classes in a semantically annotated dataset Dy, =
{(x®, y®@ 10N where 1 € {0, c}™ ™! indicates the pixelwise annotated semantic
map as shown in Figure 5.4. MSN is trained over D, in two supervised stages. In the
first stage, the semantic streams Sy are independently trained to minimize the objective,

fo = argmin Ey[|fi(x) — yel[1, (5.5)

fe

where y,; denotes the groundtruth image y degraded only in regions assigned to a label
different from ¢, i.e. Q; = OQ\Qy. In the second phase we train the fusion network F' to
assemble the final result y. F' is trained to minimize the reconstruction error defined in
Equation (5.1). Initially we fix the parameters of S and only train F'. Upon convergence,
we jointly fine-tune the entire network MSN={S, F'} to minimize the same objective. In
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¢ — construction ¢ — vehicle

{ — nature ¢ — human ¢ — flat Output

Figure 5.4: Semantic deblurring of individual classes from the Cityscapes
dataset [2]. Each semantic network Sy—. is trained to recognize and restore image
regions corresponding to class ¢. Class boundaries are highlighted in yellow. Se-
mantic annotations are shown for completeness but have not been used to produced
the output.

our experiments we employ the £1-norm to minimize the reconstruction error since it was
found to produce sharper results than the fo-norm [109]. Given a triplet (x,y,1) € Dy,
the overall training objective is defined as,

L(F,S) = (1—1t)> ||Se(x) — yil|,
=0

+ | F(H(So-0(x)) =y,

(5.6)

The hyperparameter t balances the contribution of the two terms and is set to 0 during
the first training phase and to 1 in the second.

5.4.2 Implementation Details

Architecture. Our architecture is inherently modular. The semantic streams Sy and
the fusion network F' are structurally similar to the state-of-the-art auto-encoder of [7].
We only change the width of the network and adapt I’ to incorporate the features f;* from
S as illustrated in Figure 5.2. We have chosen [7] because their publicly available code
provided us with a solid framework and demonstrated good performance in generative
tasks. Other approaches [131, 148] have chosen a similar encoder-decoder architecture,
while the state-of-the-art deblurring network of [129] proposes a multi-scale network that
processes the Gaussian pyramid of the degraded input.

The encoder branch is a contracting path. It transforms the input data into a low-
dimensional latent representation, known as a context-vector, through the repeated ap-
plication of 8 convolutional blocks (Conv-InstanceNorm-ReLU, 4 x 4 kernels and stride
2). The decoder is symmetric to the encoder and reconstructs the output, expanding
the context-vector through a series of transposed convolutions. The network is aug-
mented with skip-connections [149] that circumvent the bottleneck layer, enabling the
propagation of localized context information into higher-resolution layers.
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Conveniently, the width of the architecture is parameterized with a constant k that
controls the number of filters at each layer. In our experiments, we ensure comparable
learning capacity of the different networks by adjusting this parameter. Let P denote
the target number of parameters—the learning capacity of Sy—and F'is set to P/(c+1)
where c is the total number of semantic classes. In our experiments P is set to 3.97 x 108
for MSN models, which allows for training on a single GPU with 12 GB of memory.

Training. We use the training parameters provided in [7]. We employ Adam (see Sec-
tion 2.3.4) as optimizer. The initial learning rate is set to 2-10~* and has a step decay.
The batch size is 1. Each training phase consists of 200 epochs. Input images are down-
sampled to 286 x286 resolution through bicubic interpolation and randomly cropped to
size 256x256. The RGB space is normalized to zero mean and unit standard deviation.
The semantic labels are resized accordingly but downsampled with nearest-neighbor
interpolation.

5.5 Experiments

In the following, we describe the experiments conducted to determine the effectiveness of
our technique. We provide an ablation study (Section 5.5.1) to analyze alternative fusion
strategies compared to our multi-stream architecture MSN (Table 5.1). In Section 5.5.2
we compare the results of MSN with a number of state-of-the-art approaches that only
employ the color information. We quantify the performance using the peak signal-to-
noise ratio (PSNR). The experiments are conducted on images artificially blurred with
a Gaussian kernel of size={17,33,49} and o = {2,4,6}. Exemplar degraded inputs are
shown in Figure 5.5.

Datasets. To ensure the coverage of sufficiently diverse semantic classes comprising in-
door and outdoor scenes, we evaluate our model on three different semantic segmentation
datasets.

Facades [2] is a small dataset depicting rectified images of buildings from the frontal
view. It consists of 400 training, 100 validation and 106 test images. The 13 anno-
tated classes define various elements of the building facades such as “window”,“door”,
“balcony”. Our results are reported on the test set.

NYUv2 [6] includes a variety of indoor scenes recorded by an RGB-Depth sensor. In
our experiments we do not exploit the depth data and instead only use the semantic
maps provided for a subset of the dataset. We evaluate our technique on the 13-class
partition with 795 images for training and 694 for testing provided in [104].

Cityscapes [150] is a recent large-scale dataset containing video sequences of street
scenes recorded in 50 different cities. It is composed of 5000 accurately annotated images.
Pixel-accurate semantic labels depict 8 different categories such as “human”, “nature”
and “vehicle”. In our experiments, we train on 2975 images and evaluate the results on

the 500 images of the validation set.
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Facades NYUv2 Cityscapes
Variants Method 0=2 0=4 0=6 0=2 0=4 0=6 0=2 o0=4 0=6
— - 23.00 20.23 18.97 22.64 19.43 17.92 25.57 22.89 21.66
Baseline SSN 31.35 26.18 23.58 33.48 28.08 25.59 36.14 29.98 27.61

Early fusion SSNy 31.60 26.19 23.59 33.62 28.26 25.51 36.40 30.30 27.61
Mid-level fusion TSN,,;4 32.17 26.40 23.74 34.13 28.37 25.56 36.44 30.28 27.33
Late fusion TSNjate 31.91 26.31 23.76 34.11 28.23 25.70 36.56 30.33 27.55

without ¢ MSN 32.15 26.55 23.92 34.31 28.65 26.06 36.59 31.46 28.29

Table 5.1: Analysis of multimodal fusion techniques at different degradation lev-
els. Independently from the strategy, additional semantic information improves the
results. Our approach MSN is performing best on all three semantic segmentation
datasets despite it confines the use of semantic maps to the training phase. The
improvement is substantial at higher degradation levels (o = {2,4}). For such cases,
TSN, ;4 and TSNy,¢e are unable to learn meaningful features from the degraded in-
put (visualized in Figure 5.5) and only perform comparably to SSNy,. Mean PSNR
score of the input images is given in the first row.

5.5.1 Multimodal fusion of semantic annotations

Although our final goal is to restore the original image without having semantic knowl-
edge of its content, as an ablation study we first analyze different strategies of incorporat-
ing the semantic labels and compare the results with our multi-stream semantic network
MSN. We categorize these approaches based on the depth at which the auxiliary data
(semantic labels in our case) are combined together, i.e. early fusion (stacked image-label
input), mid-level fusion [18] (also introduced in Chapter 4) and late fusion [56, 151]. As
depicted in Figure 5.3, they all extend the class-agnostic baseline network described next.

RGB baseline. Our baseline (SSN) is a single-stream network similar to [7]. It is
an encoder-decoder equipped with U-net [149] style skip-connections. It is structurally
similar to the semantic streams Sy of MSN. Given a degraded image x, this model is
trained to minimize Equation (5.1) using solely the color information.

Early fusion. A simple transformation of the baseline network SSN to incorporate
semantic information is to augment the RGB input with the corresponding pixelwise se-
mantic map 1. Channel augmentation is achieved by extending the input tensor x along
its depth, i.e. x. = [x,1] € RT*W>4  Combining multiple sources of information at the
level of the input layer is often referred to as early fusion [152]. Integrating different
data modalities at such an early stage establishes precise pixel-level connectivity, which
is beneficial for accurately localizing edges, but it is suboptimal for capturing higher
contextual information.

Late fusion. We extend the baseline network SSN with an independent stream dedi-
cated to semantic data. In practice, we augment SSN with a separate encoder branch
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that processes the semantic information independently and combines its output in the
context vector (Figure 5.3). Although late fusion techniques capture large receptive fields,
they are limited to model interdependencies of different modalities at coarser spatial res-
olutions, therefore omitting local cues.

Mid-level fusion. This modality is an extension of early and late fusion along with
connections that progressively combine features of intermediate layers. It has been shown
that intermediate fusion is important for capturing the complementary information at
each level from the auxiliary stream [18, 146].

To adequately compare the results of different architectures, we set their learning
capacity to have a similar number of trainable parameters (~ 3.97 x 10%). Therefore
the size of the two-stream networks is reduced to accommodate the additional encoder.
The size of the MSN modules Sy and F' is reduced accordingly based on the number of
semantic classes (Section 5.4.2).

Results and Discussion. Table 5.1 shows that semantic information is beneficial to
all fusion variants when compared to the class-agnostic baseline SSN, but with differ-
ent degrees of improvement. While in our experiments we found that augmenting the
input layer with semantic information (SSNy) consistently produces better results than
SSN, the performance increase is marginal when compared with the effort required to
obtain semantic labels. Substantial gains can be achieved by fusing heterogeneous data
at later stages. The two-stream models implementing mid-level (TSN,,;4) and late fu-
sion (TSNy44e) largely improve results compared to SSN but still require the availability
of semantic segmentation at test time, which limits their usability in real-life scenar-
ios. On the other hand, while having access to only color information, the proposed
architecture MSN raises the PSNR substantially compared to SSN and in two datasets
outperforms even the two-stream architectures that employ semantic annotations at test
time.

5.5.2 Comparison to other approaches

In Table 5.2 we compare our technique with four recent approaches focusing on deblur-
ring problems. Meinhardt et al. [153] (learned priors) propose to replace the proximal
operator employed to regularize convex energy minimization algorithms with a denois-
ing CNN. Their method generalizes well to different blurring kernels without the need
of retraining the network. The performance however is inferior to pure CNN methods
and considerably lower than MSN. We conducted the experiments of learned priors [153]
with their publicly available implementation (https://github.com/tum—vision/learn_prox_ops).
This method only requires the blurring kernel as an input and we did a small grid search
on the hyperparameters on the small subset of training set of Facades dataset and used
0=1, agata=41 and ag,1»=0 for all experiments.

The recent work of Pan et al. [115] (dark channel) estimates deblurring kernels by
enforcing sparsity on the dark channel of blurred images. In our experiments, we set the
kernel size to be identical to the size of the known blurring kernel and run all experiments
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Labels SSN SSNy TSNid

Figure 5.5: Visual comparison of different fusion strategies at different levels of
degradation. Input images are degraded with a Gaussian filter of size={17, 33,49}
and o = {2,4, 6} respectively. The numerical results in terms of PSNR are reported

in Table 5.1.
Facades NYUv2 Cityscapes
Method c0=2 o0=4 0=6 0=2 0=4 0=6 0=2 o0=4 0=6
Input 23.00 20.23 18.97 22.64 19.43 17.92 25.57 22.89 21.66

Dark channel [115] 24.53 21.50 19.62 24.16 17.84 15.58 27.40 24.29 22.51
Learned priors [153] 25.59 21.89 20.30 28.62 22.09 18.68 26.77 24.70 23.17

FFT [130] 26.39 20.74 20.52 29.39 20.50 18.98 29.32 23.41 23.89
VDSR [107] 27.35 2332 2141 3091 2542 2295 31.62 26.67 24.60
DRRN [108] 27.68 - - 31.39 - 31.53 -

DeepDeblur [129]  27.27 23.54 21.80 33.74 27.82 25.55 33.10 27.53 25.49
Pix2Pix [7] (SSN)  31.35 26.18 23.58 33.48 28.08 25.59 36.14 29.98 27.61

Proposed (MSN) 32.15 26.55 23.92 34.31 28.65 26.06 36.59 31.46 28.29

Table 5.2: Comparison to recent state-of-the-art approaches. The class-agnostic baseline
adapted from Pix2Pix [7] outperforms all other methods. Nevertheless our technique
MSN without the requirement of semantic annotations at test time further improves
the baseline by an average of 4+0.66dB. Visual comparisons for each datasets are
shown in Figures 5.8, 5.9, 5.10.

with their Matlab implementation (nttp://vilabi.ucmerced.edu/~jinshan/projects/dark-channel-
deblur/). Analogously to learned priors [153] performance trail behind CNN techniques
and are considerably below MSN.

Kruse et al. [130] (FFT) improves traditional fast Fourier transform techniques
using a regularization based on CNNs. We tested the performance of FFT using the
publicly available models. In FFT [130] implementation (nttps://github.com/uschnidt83/
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fourier-deconvolution-network), there are two publicly available models trained for different
range of o, and this method requires the blurring kernel to process the images. For
o € {2,4}, we used the model trained for o € [1,3] and for 0=6, we used the model
trained for a larger range of o € [0.1,12.75].

Finally, we evaluated the recent motion deblurring approach of Nah et al. [129] (Deep-
Deblur). DeepDeblur implements a coarse-to-fine approach using a multi-scale content
loss computed on a three levels Gaussian pyramid of the input. We use their official and
publicly available implementation (nttps://github.com/SeungjunNah/DeepDeblur_release). We
use the same set of parameters and train until convergence (50 epochs for Facades, and
~ 120 epochs for NYUv2 and Cityscapes). We report mixed results for DeepDeblur.
On Facades the performance are substantially lower compared to the other datasets due
to over-fitting after 40 epochs. While on Cityscapes and NYUv2 the performance of
DeepDeblur are considerably better. In particular, DeepDeblur on NYUv2 have similar
PSNR to our baseline Pix2Pix.

VDSR [107] and DRRN [108] were originally designed for super-resolution, but in prac-
tice, due to the nature of their upsampling routine, they operate as deblurrers. We trained
a separate model of these methods on each dataset for 200 epochs. Both approaches were
fine-tuned from their pre-trained models. For VDSR [107], we use the publicly avail-
able PyTOI‘Ch (https://github.com/twtygqyy/pytorch—vdsr) implementation, which has identi-
cal performance for image resolution on Set5 with the original CAFFE implementation.
We note that, for fine-tuning we used the available pretrained model for image super-
resolution task, which we observed a relative improvement by means of approximately
1.5dB compared to training this method from scratch. We also note that this method is
trained to restore the Y channel of YCbCr representation of an input RGB image. Dur-
ing evaluation we perform the method on the Y channel, however, compute the PSNR
score on RGB images to have a fair comparison to our method. We test DRRN [108]
using their publicly available code (nttps://github.com/tyshiwo/DRRN_CVPR17/tree/master/data).
We retrain their network on our datasets using the given parameters and, similarly to
what we did for VDSR, we generate the training data through the publicly available
script. ' VDSR does not perform as good as our baseline SSN due to architectural differ-
ences of the networks. DRRN [108] proposes recursive learning of residual units to keep
their very deep model compact and simple to train. It achieves performance similar to
VDSR and substantially lower than our baseline SSN adapted from Pix2Pix [7]. From
these experiments we conclude that we chose a competitive baseline and thus the higher
PSNR of MSN over SSN is of significant importance.

Per-class evaluation. We evaluated the PSNR scores on each class and all the three
segmentation datasets. We compared the performance with other fusion strategies. The
results shown in Table 5.3, demonstrate that our multi-stream semantic network MSN
delivers the best performance, compared to other fusion strategies, without the need
of semantic maps at runtime. Analyzing per-class results on Facades and Cityscapes
we note that our method achieves slightly worse performance in classes such as “back-
ground”, “facade“ and “sky”. At first sight, it is plausible to think that more learning
capacity should be assigned to streams dealing with most frequent classes, however we
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{ — Facades lireq. SSN SSNy  TSNpq  TSNjgee  MSN

background 19.47  32.79 33.07 33.53 33.26 33.34
balcony 4.01  29.06 29.27 29.78 29.59 29.82
blind 1.99 32.04 3224 32.96 32.69 32.98
cornice 3.06 30.36 30.61 31.22 30.93 31.34
deco 1.88 30.52 30.75 31.29 31.14 31.28
door 1.26  33.04 33.22 33.87 33.54 33.73
facade 38.87 3256 32.79  33.39 33.12 33.35
molding 9.23 3141 31.62 32.13 31.91 32.29
pillar 211 32.64 32.85 33.53 33.29 33.58
shop 3.22 2945 29.62 30.34 30.12 30.32
sill 2.37  30.40 30.69 31.22 31.00 31.38
window 12.54 29.76  30.05 30.69 30.43 30.72
mean - 31.17 314 32.00 31.75 32.01
overall - 31.35  31.60 32.17 31.91 32.15

¢ — NYUv2 lireq.  SSN  SSNy TSN,,;q TSNige MSN

bed 3.51  34.72 34.81 35.49 35.30 35.71
books 0.54 29.21 29.47 30.20 29.98 30.32
ceiling 145 3732 37.94 38.45 37.93 38.19
chair 3.38 3444 34.52 35.19 35.05 35.49
floor 9.79  36.37 36.45 36.91 36.52 37.19
furniture 14.59 35.16 35.32 35.94 35.75 36.18
objects 12.87 32.04 32.25 32.98 32.76 33.17
picture 1.99 30.82 31.07 31.81 31.59 31.95
sofa 2.35 36.03 36.24 36.76 36.58 36.97
table 3.01  34.62 34.71 35.37 35.21 35.64
tv 0.55 36.79 36.96 37.43 37.35 37.81
wall 23.55 38.76 38.99 39.49 39.31 39.73
window 4.75  34.26 34.43 35.05 34.87 35.30
mean - 34.66 34.86 35.47 35.24 35.67
overall - 33.48 33.62 34.13 34.11 34.31

{ — Cityscapes  Llyoq. SSN  SSNy TSN, TSNyge MSN
construction 21.86 34.37 34.62 34.59 34.81 34.76

flat 38.77 4249 42.74 42.73 42.86 42.89
human 1.19 3234 32.65 32.84 32.82 32.91
nature 15.11  34.20 34.44 34.59 34.63 34.74
object 1.76 3270 32.95 32.91 33.14 33.01
sky 3.57  38.63 38.93 38.69 39.10 38.95
vehicle 733  33.07 33.35 33.44 33.52 33.59
mean - 35.40 35.67 35.68 35.84 35.84
overall - 36.14  36.40 36.44 36.56 36.59

Table 5.3: PSNR scores per-class. Pixel frequencies of class £ are given in the second column.
Facades: MSN outperforms the other fusion strategies on 9 out of 12 semantic
classes. Interestingly, MSN performs slightly worse for frequent classes with low
appearance variations such as “background” and “facades” and for rare classes with
high internal variance such as “shop”. NYUv2: our method performs best on all
classes in this dataset. On Cityscapes: MSN outperforms the other fusion strategies
in most cases. Similar to “shop” in Facades, MSN performs slightly worse on classes
with limited amount of samples and high variance, in this case for “object”. More
details on these findings in Section 5.5.2.
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Figure 5.6: Performance of single semantic stream networks on the Cityscape
dataset. Each row reports the PSNR of the respective network on each class.
Cell colors are row-wise normalized. A brighter diagonal element indicates that the
semantic stream obtain a higher PSNR for the class it was trained on.

note that these classes mostly cover homogeneous color regions with low variance. We
conclude that the task assigned to these semantic streams is too easy and therefore
they quickly converge to a suboptimal local minima. On the other hand, we note that
MSN did not excel on infrequent classes with high internal variance such as “object”
in Cityscapes and “shop” in Facades. While more samples from that classes will likely
improve the results, we point out that our architecture enables the usage of additional
datasets that only share a subset of the classes since semantic streams Sy of MSN are
first trained independently.

Per-class PSNR of intermediate results. We present the performance of single
semantic stream networks on the Cityscape dataset in Figure 5.6. Each row reports the
PSNR of the respective network on each class in the dataset. For example, cell R5/C4
correspond to the result of the semantic stream ‘sky’ on the class ‘object’. It can be
clearly seen that single semantic streams obtain a higher PSNR for the class they are
trained on.

5.56.3 Comparison on motion deblurring

In Tab. 5.4, we provide additional experiments using the publicly available, motion-blur
kernels of FFT. All approaches have been retrained for this two specific kernels. Fig-
ure 5.7 demonstrates groundtruth and degraded images. Our proposed method MSN out-
performs all other methods on both motion kernels.
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Facades NYUv2
Method k=1 k=2 k=1 K=2
Input 23.00 20.23 18.97 22.64
FFT 26.39 20.74 20.52  29.39
VDSR 27.35 23.32 21.41 3091
DeepDeblur 27.27 23.54 21.80 33.74

Pix2Pix (SSN) 31.35  26.18 23.58 33.48
Proposed (MSN) 32.15 26.55 23.92 34.31

Table 5.4: PSNR evaluation on motion
blurred images. We employ the ] 1 d ded usi
kernels x = {1, 2} provided by FFT Figure 5.7: Input degraded using

FFT kernels k = {1, 2}.

to degrade input images.

5.6 Conclusions

In this chapter, we investigated the complementarity of object categories to improve im-
age restoration tasks. Our main contribution is a novel architecture, we termed as multi-
stream semantic network (MSN), that employs previously learned semantic knowledge
to recover both structure and fine details lost in the degraded image. An extensive set
of experiments on three different semantic segmentation datasets demonstrate the effec-
tiveness of our method compared to other state-of-the-art techniques and multimodal
fusion strategies.

An interesting future work might address the scalability of the proposed approach
to a higher number of classes. Scaling to higher number of classes linearly increases
the computational resources necessary to train the semantic streams. Although trivially
parallelizable, we believe that future works could improve the efficiency e.g., investigating
parameters sharing among different semantic streams.
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Figure 5.8: Qualitative results on the Facades dataset. We denote the results of SSN as
Pix2Pix. MSN restores the details on the image while other methods do not recover
the oversmooth regions.
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Figure 5.9: Qualitative results on the NYUv2 dataset. We denote the results of SSN as
Pix2Pix. MSN restores the details on the image while other methods do not recover
the oversmooth regions.
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Figure 5.10: Qualitative results on the Cityscapes dataset. We denote the results of SSN
as Pix2Pix. MSN restores the details on the image while other methods do not
recover the oversmooth regions.
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Chapter
Concluding Remarks

Machines take me by surprise with great frequency.

— Alan Turing, Computing Machinery and
Intelligence (1950)

This thesis investigated possible deep learning-based solutions for three challenging com-
puter vision problems: reconstructing depth from focus cue (depth from focus), devel-
opment of fusion strategies for RGB-Depth input modalities in semantic scene under-
standing and class-aware image restoration by exploiting hand-labeled annotations in a
deep convolutional network. Each of these imaging problems were introduced in Part 11
and their concluding remarks are presented in the following.

Depth Reconstruction from Focus Cue. In Chapter 3 we first presented our large
dataset which can be used not only for depth from focus problem but also many other
computer vision tasks as the dataset consists of light-field images and co-registered
groundtruth depth measurements. Further, we presented a novel convolutional net-
work architecture for predicting the depth from focal stacks. We demonstrated that
our depth from focus network is capable of processing focal stacks accurately and effi-
ciently in terms of runtime compared to the state-of-the-art depth from focus and depth
from light-field methods. Moreover, we show that our method is generalizable to other
datasets and cameras.

Incorporating Depth into Semantic Segmentation. In Chapter 4 we discussed
how to improve the performance of semantic segmentation by incorporating depth into
the networks. We presented two novel fusion architectures to fuse the information re-
trieved from the complementary depth input with RGB features. We showed that our
method can exploit the complementary information in an efficient way such that one
would not need to preprocess inputs. Further, we experimentally showed that our ap-
proach is a competitive solution for semantic segmentation on RGB-D data.

Deep Semantic Image Restoration. In Chapter 5 we proposed a novel CNN archi-
tecture to exploit semantic annotations in the image restoration tasks. We demonstrated
that complementarity of object categories significantly improves the results. To this end,
we first discussed variant data fusion strategies, including early, mid and late fusion ap-
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proaches and discussed the pros and cons of these strategies. Further, we presented a
novel CNN architecture that requires the semantic annotations only during training and
therefore it is generic to perform image restoration without the necessity of their semantic
annotation at test time. We showed that our network can achieve outstanding perfor-
mance on the image deblurring task compared to the state-of-the-art image restoration
methods. Further, we conducted experiments in motion deblurring and hence showed
that our method is generic to other image restoration tasks such as image denoising,
super-resolution and demosaicking.
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Chapter
Limitations and Future Work

We can only see a short distance ahead, but we can
see plenty there that needs to be done.

— Alan Turing, Computing Machinery and
Intelligence (1950)

7.1 Depth Reconstruction from Focus Cue

DDFF 12-Scene benchmark is not only generated for the depth from focus problem and
it contains real-world light-field recordings along with co-registered groundtruth depth
measurements and therefore this benchmark has new challenges can be tackled in many
research areas. It is a convenient dataset for 3D reconstruction, depth from light-field,
refocusing. On the other hand, as we generated this benchmark with a consumer light-
field camera and therefore had to calibrate it with a public calibration toolbox. It
has some drawbacks such as the baseline between sub-apertures is subpixel accurate.
Another drawback was that we had to sacrifice the original recording image resolution
due to the calibration procedure. However, despite these facts, our benchmark is still
useful to evaluate different approaches.

DDFFNet is designed for a specific problem, however, its architecture is based on
commonly used auto-encoder style convolutional networks. We visually demonstrated
how network learns the focus cue, nevertheless the measure of sharpness learned by the
network should be investigated deeper to improve the architecture for the problem of
depth from focus.

DDFF is a deep learning based approach and can be easily integrated to mobile de-
vices. However considering the fact that every device has different camera and therefore
depth of field may vary, one should investigate to make the approach more sustainable
and easily adaptable towards these factors. Our method has the necessity of a fine-
tuning stage before it is deployed to a device and this could be changed by reformulating
the problem: replacing the direct absolute depth estimation by index prediction (where
each pixel is sharp in the focal stack).

DDFFNet can be also trained using stereo matching as in [55] or together with ¢o-loss
in order to estimate more accurate depth maps. This way may reduce the artifacts in the
results that have been caused by the wrong measurements in the recorded groundtruth
depth maps.
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7.2 Incorporating Depth into Semantic Segmentation

FuseNet is an efficient convolutional architecture proposed to fuse different input modal-
ities in the same network. We evaluated two variant of fusion methods, 7.e. Dense- and
SparseFusion. Nonetheless these strategies were determined based on the VGG-16 net
architecture and it could be generalized to different architectures as well by considering
in which level of hierarchy fusion is necessary. To give an example, in the early layers of
a network, features relating to fine structures of the objects present more frequent and
therefore one could argue that fusing the features from these layers is essential to retrieve
the complementary information. On the other hand, one may argue whether fusion is
necessary in the decoder part of the network while recovering the finer structures from
the coarser ones.

Moreover, although FuseNet is designed to tackle semantic image segmentation, the
idea of fusion is beyond the application and can be exploited in different scenarios such
as in image/scene classification, object detection, etc.

7.3 Deep Semantic Image Restoration

Our method is a unique way of exploiting semantics in image restoration tasks, how-
ever it has the limitation in terms of the annotated number of classes as the network
grows linearly with the amount of predefined categories. Nonetheless, having a set of
generic categories each of which consists variant object classes (such as ‘vehicle’ category
would involve car, truck and etc.) allows our method cope with larger set of semantic
annotations.

However, performance of the network may still decay if the objects present on the
image are not observed during training. One way of solving this issue would be to train
the semantic streams Sy for a set of predefined classes and another semantic stream
Sy¢. for the pixels whose categories are not defined or unknown. Although the fusion
network F' is capable of restoring the entire image, training a network for the unobserved
objects/regions would yield improved results.

We presented results on two applications, 7.e. Gaussian image deblurring and motion
deblurring, although our method can be easily applied to other imaging tasks as well.
Considering the similarity between deblurring and super-resolution, it is straight-forward
to evaluate our network on super-resolution task as well.
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Appendix
Open-source Code & Datasets

Deep Depth From Focus

e https://hazirbas.com/projects/ddff/ Deep Depth From Focus source code
and toolbox introduced in [21].

DDFF 12-Scene Dataset

e https://vision.cs.tum.edu/data/datasets/ddff12scene DDFF 12-Scene Bench-
mark introduced in [21].

FuseNet: Incorporating Depth into Semantic Segmentation

o https://github.com/tum-vision/fusenet CAFFE implementation of FuseNet
introduced in [18].
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