
Efficient Distributed Torque Computation for Large Scale Robot Skin

Florian Bergner, Emmanuel Dean-Leon and Gordon Cheng

Abstract— The realization of a kinesthetic robot behavior
using robot skin requires a reactive skin torque controller,
which fuses skin information and robot information to an
appropriate skin joint torque in real-time. This fusion of
information in real-time is challenging when deploying large
scale skin. In this paper, we present a system which efficiently
computes the torque of distributed skin cells locally at the point
of contacts, completely removing this complex computations
from the real-time loop. We demonstrate the feasibility of
realizing the skin joint torque computations on the local micro-
controllers of the skin cells. Conducting experiments with a real
robot, we compare the accuracy of the distributed skin joint
torque computation with the computation on the control PC.
We also show that the novel distributed approach completely
eliminates the computational delay of computing skin joint
torques in the robot’s real-time control loop. As a result, this
approach removes any limits for the maximum number of skin
cells in control.

I. INTRODUCTION

A. Motivation

Envisioning collaborative robots for assisting humans in
industrial, health-care and household application scenarios,
robots have to be safe and realize intuitive, effective and
straight-forward human-robot interaction [1], [2]. Human-
robot-interaction could benefit with the ability to manu-
ally/kinesthetically guide the robot simply by touch. Such
an ability becomes particularly useful in teaching scenarios
where the human teaches the robot a new task [1], [3]. Man-
ual guidance through touch can be realized using different
approaches such as installing force-torque sensors in robot’s
joints. A reactive controller with a dynamic robot model then
discriminates between external and internal torques [4], [5].
A recent and effective approach is to deploy robot skin in
order to realize a reactive skin controller [6]–[9]. Robot skin
can overcome some drawbacks of force-torque sensors [8],
[10]–[14]. Installing force-torque sensors in robot joints is
expensive, and it is often infeasible to modify existing robots
to enable safe human-robot-interaction. Furthermore, force-
torque sensors can only sense the sum of all internal and
external forces/torques and thus can not distinguish contact
points. Whereas, robot skin can be deployed on existing
robots to enhance their safety and their abilities in human-
robot interaction. Robot skin can easily locate, sense, and
discriminate contact points. However, to fully exploit the
advantages of robot skin, robot skin has to cover the whole
robot. This induces new challenges caused by large numbers
of distributed skin sensors in large scale robot skin. The

All authors are with the Institute for Cognitive Systems,
Technische Universität München, Munich, Germany, see
http://www.ics.ei.tum.de

Fig. 1. Instead of computing the skin joint torque τ inside the real-time
loop of the controller, the skin joint torque is distributedly computed by the
skin cells.

main challenges are: 1) transmitting huge amounts of tactile
information from distributed sensors with low-latency to the
reactive skin controller, and 2) processing and evaluating
huge amounts of tactile information to extract necessary in-
formation in real-time. It has been shown that neuromorphic
event-driven sensing, as conducted in the works of [15]–
[19], is a valuable solution to extract novel information at
sensor level. We introduced an event-driven reactive skin
torque controller1 in [20] to reduce computational load at
control level. This paper exploits the distributed computing
capabilities of our robot skin to remove the complex com-
putation of skin joint torques from the real-time loop of the
controller to the skin cells, enabling the robot to be more
responsive.

B. Related Work

The proposed distributed computation of skin joint torques
at the local skin cells for reactive skin torque control is
related to a standard impedance control at torque level
(τ = JTF). To our best knowledge, computing distributed
skin joint torques at skin cell level has not been fully
addressed. The importance of reactive torque control for
kinesthetic robot behaviors using force/torque sensors have
been pointed out [4], [5]. Reactive controllers using robot
skin have been introduced in the works of [6]–[9], [13], [14].
Realizing the heavy computation required in the dealing of
large number of distributed skin cells and/or DOFs (degrees
of freedom), the recent work of [21] introduced an efficient
asynchronous algorithm for computing forward kinematics

1A skin torque controller is a controller that uses tactile information from
the skin to compute joint torques as commands for the robot.

for a large number of skin cells and DOFs. The authors
use an update/query method to compute updates only when
necessary.

C. Contributions

Instead of computing the skin joint torque contribution
of each active skin cell in the real-time control-loop of
the robot, we compute these skin joint torques locally at
the distributed skin cells. We demonstrate the feasibility of
realizing the complex skin joint torque computation on the
micro-controllers of the skin cells. Conducting experiments
with a real robot, we document that computing skin joint
torques on the skin cells results in the same skin joint torque
as when computing skin joint torques in the real-time loop of
the robot. Furthermore, the experiments with the real robot
demonstrate that the distributed computation of the skin joint
torques completely removes the delays in the real-time loop,
which are usually caused by computing the skin joint torque.
The overall cycle time of the real-time control loop decreases
and becomes independent to the number of active cells and
the total number of skin cells, making it highly responsive.

II. SYSTEM DESCRIPTION

A. Robot skin

1.4 cm

Normal ForceProximity

Acceleration

Port 1Port 2

Port 4 Port 3Temperature
(Front Side) (Back Side)

LED

Micro
Controller

Fig. 2. Robot skin.

Our multi-modal, self-organizing, and self-calibrating
robot skin consists of hexagonally shaped skin cells [8]. A
collection of directly connected skin cells froms a skin patch.
The robot skin automatically constructs a self-organized and
redundant communication network. Each skin cell of this
network acquires a bidirectional communication path to the
PC such that the PC can send information to the skin cells
(down-link) and receive information from the skin cells (up-
link). All the skin cells use the same set of sensors to detect
multi-modal tactile stimuli. The skin cells employ a 3D
accelerometer to sense vibrations, two temperature sensors,
three capacitive force sensors to measure contact forces, and
a proximity sensor to detect pre-touch. The micro-controller
firmware of the skin cells supports two different modes: 1)
the continuous mode with a constant sampling rate; and 2)
the event mode with non-constant novelty driven sampling
rate [17], [18]. In this paper, we exploit the ability to update
and change the skin cell firmware in order to realize skin
joint torque computation locally on the skin cells.

B. The Tactile Omnidirectional Mobile Manipulator TOMM

The new approach is tested with our robot TOMM [22],
see Fig. 3. TOMM’s arms and grippers are covered with

Fig. 3. The control framework of the robot TOMM.

robot skin. Furthermore TOMM is fully integrated in the
ROS (Robot OS) middleware. A set of different robot be-
haviors is realized with a control loop as depicted in Fig. 3.
The green box in Fig. 3 addresses the reactive skin torque
controller of in this paper. This skin torque controller enables
a kinesthetic behavior in the joint space but it can also be
used for other robot behaviors.

C. Reactive skin torque control

A reactive skin torque controller, that creates a kinesthetic
behavior, and that avoids contacts, needs to compute an
appropriate skin joint torque τ skin. This skin joint torque
τ skin is the sum of all skin joint torques τ i of skin cells i
that detected external forces Fz.

τ skin =
∑

τ i (1)

1) Active skin cells: Skin cells i detect external normal
forces along their z-axes. These external forces Fz,i are
determined by fusing the sum of the three capacitive contact
forces Fc with the proximity value Fp (see Algo. 1). This
fusion is weighted with positive gains αc and αp and
thresholded by Fc,th, Fp,th, and Fz,th. A skin cell i is active,
e.i contributes a non-zero torque τ i, whenever the external
force Fz is greater than zero. The number of active cells is
Ncell,act.

Algorithm 1 Compute Fz for a given Fc and Fp

1: if Fc < Fc,th then
2: Fc := 0

3: end if
4: if Fp < Fp,th then
5: Fp := 0

6: end if
7: Fz := αc Fc + αp Fp

8: if Fz < Fz,th then
9: Fz := 0

10: else
11: Ncell,act := Ncell,act + 1

12: end if

2) Computing the skin joint torque: The skin joint torque
τ skin of a reactive skin torque controller is computed cell-
wise by computing the skin joint torque contribution τ i of an
active skin cell i. A skin joint torque τ i of a cell is computed
by mapping the skin cell wrench wi ∈ R6 properly to this
skin joint torque τ i [9]. The skin joint torque τ i ∈ RDOFs is
a vector of joint torques τl. A skin cell i located on a robot

Fig. 4. Kinematic chain from a skin cell i on a robot limb actuated by a
joint k to the world reference coordinate frame 0.

limb actuated by a joint k only produces torques τl in robot
joints 1, . . . , k (see Fig. 4). In this case the torques τl in the
robot joints k + 1, . . . ,DOFs are zero.

τ i =
[
τ1 · · · τk 0 · · · 0

]T ∈ RDOFs (2)

The mapping from wrenches wi to torques τ i is resolved
by computing the transposed Jacobians JTi (q) of skin cells
i and applying the principle of virtual work:

τ i = JTi (q) iw0 (3)

The wrench iw0 is the wrench of the cell i with respect to
the robot base frame 0. The external forces Fz,i of active
cells are aligned with the z-axes of these cells. Thus the
wrench vector wi simplifies to:

wi =
[
0 0 Fz,i 0 0 0

]T ∈ R6 (4)

The Jacobian Ji of a skin cell i can be geometrically
determined by applying the laws of physics for mapping
linear and angular velocities ẋ and ω to joint velocities q̇:

Ji =

[
0z0 ×

[
it0 − 0t0

]
. . . l−1z0 ×

[
it0 − l−1t0

]
0z0 . . . l−1z0

]
(5)

In general, the l-th column of Ji corresponds to a joint l:

jl,i(q) =
[
l−1z0 ×

(
it0 − l−1t0

)
l−1z0

]T ∈ R6 (6)

The torque τl in joint l can be computed by

τl,i(q) = jTl,i(q) iw0 ∈ R if l ≤ k (7)

for a skin cell i on a robot limb actuated by a joint k. As
the wrench wi has only one entry Eq. 7 simplifies to

τl,i(q) =
[
l−1z0 ×

(
it0 − l−1t0

)]T kR0
izk Fz,i

= Jl,i(q) Fz,i (8)

The vector l−1z0 ∈ R3 is the z-axis in coordinate frame
l − 1 and it0 is the origin of the coordinate frame of cell
i, both with respect to the base coordinate frame 0. The
transformation from l to 0 is defined by the homogeneous
transformation matrix lT0. This matrix contains the axes x,
y, and z and the origin t of coordinate frame l with respect
to the base coordinate frame 0:

lT0(q) =

[
lx0

ly0
lz0

lt0

0 0 0 1

]
∈ R4×4 (9)

To compute the torque contribution τ i of a cell i on a robot
limb actuated by a joint k, we need to compute the forward

kinematics from the base coordinate frame i to the coordinate
frame of joint k, thus lT0 for l ≤ k, and also the static
transformation iTk from the coordinate frame of cell i to
the coordinate frame of joint k (see Fig. 4).

D. Distributed computation of skin joint torque

The computation of skin joint torques in the real-time
control loop is computationally expensive and the induced
delay increases with the number of active cells. In order
to reduce these delays, we distribute the computation of
skin joint torques τ i from the centralized computation on
the PC to a distributed computation in the skin cells. Each
skin cell exploits its micro-controller to compute its own
skin joint torque. This skin joint torque is then sent to
controller running on the PC (see Fig. 1). The decentralized
computation of skin joint torques τ i on skin cells i requires
the following steps:

1) provide the static transformation iTk

2) receive the most recent joint positions q ∈ RDOFs

3) compute the forward kinematics to the cell, thus lT0(q)
for l ≤ k

4) compute the external force Fz,i

5) compute the components τl,i of τ i, using Eq. 8
6) send the torques τ i from the skin cells to the reactive

skin torque controller

We realize the distributed computation of skin joint torques
for a UR5 robot arm with 6 DOFs. The computational power
of the micro-controllers of the skin cells is very limited thus
we optimize the computation procedure for this specific robot
arm. Nevertheless this does not limit the generality of the
approach as its optimization principles easily apply to other
robots.

1) Fixed point arithmetic: The micro-controllers of the
skin cells use a 16-bit architecture without a floating point
unit (FPU) and process with 16 MIPS (mega instructions
per second). Using floating point arithmetic on this micro-
controller is infeasible because even simple floating point
operations such as sums and products translate to hundreds of
assembly instructions. In order to achieve fast computations
on this micro-controller we realize all arithmetic operations
with fixed point numbers and use 32 bit and 16 bit precision.
Fixed point numbers reserve one bit to realize negative
numbers with the two’s complement and use the remaining
bits for integer and fraction. We use the Q notation for fixed
point numbers. A Q1.14 number uses bit 15 as sign bit, bit 14
for the integer part and bits 13 to 0 for the fractional part and
can represent numbers in [−2, 2[with a constant precision of
2−14 = 6.1035 ·10−5. Additions and multiplications of fixed
point numbers map to integer additions and multiplications.
To add fixed point numbers both numbers must have the
same number of fractional bits. While additions preserve
the number of fractional bits, multiplications change it. The
number of fractional bits can easily be adjusted by using
shift operations. As long as arithmetic operations have a
limited dynamic range, fixed point arithmetic can provide
good accuracy and enable fast operations on architectures

without a FPU. Additions and multiplications only require a
few assembly instructions.

2) Storing skin cell poses into skin cells: The distributed
computation of the skin joint torque τl,i of a cell i requires
the static transformation iTk. The new skin cell firmware
provides an interface to store this transformation using Q1.14
into the non-volatile flash memory. Note that the transforma-
tion iTk is different for each skin cell i. The skin cells also
store the id of the robot joint k, the robot joint which directly
actuates the limb of skin cell i. The transformation iTk, the
static transformation from skin cell i to joint k, has been
determined using our 3D self-calibration algorithm [3], [23].

3) Fast trigonometric functions: Fast and precise sine
and cosine functions are essential for updating the forward
kinematics from l = 1, . . . k sufficiently fast and with
sufficient precision. The homogeneous transformation matrix
lTl−1(ql) from joint l to l − 1 contains a rotation matrix
lRl−1(ql) ∈ R3×3 and a translation vector ltl−1 ∈ R3:

lTl−1(ql) =

[
lRl−1(ql)

ltl−1

0T 1

]
∈ R4×4 (10)

All the transformations lTl−1(ql) between joints of the
kinematic chain use the Denavit-Hartenberg convention, thus
each of these transformations contains sin(ql) = sl and
cos(ql) = cl in lRl−1. In worst case, for a skin cell i
actuated by joint k = 6, the micro-controller has to compute
6 different sines and cosines. Sine/cosine functions can be
approximated by polynomials, look-up-tables (LUTs) with
interpolation, Taylor series, or the CORDIC algorithm [24].
LUTs require memory and are slow since memory access
is slow. Taylor series approximations are inaccurate since
an infinite series is truncated and the special properties of
sine/cosine functions are lost. The CORDIC algorithm uses
only shift and addition operations but is slow in architectures
where shift, addition and multiplication operations have the
same cost since it only converges linearly. To get fast and
precise fixed point results for sine/cosine operations, we
approximate the sin(x) with a 5-th order polynomial in the
interval x ∈ [−π2 ,

π
2 [. In order to simplify the computation

and notation, we transform coordinates and substitute x by
z:

z :=
x

0.5 π
(11)

This normalizes angular input arguments x in rad. The sine
function sin(z) has a period of z = 2 k:

sin(z) = sin(z ± 2 k) ∀k ∈ Z (12)

The sine function is an odd function, thus all parameters of
the 5th order polynomial connected to even powers are zero:

p5(z) = a z − b z3 + c z5 (13)

ṗ5(z) = a− 3 b z2 + 5 c z4 (14)

We determine appropriate parameters with three conditionals
which define the behavior of the polynomial on its bound-
aries and preserve the special properties of a sine function:

p5(z = 1)
!
= 1 ṗ5(z = 1)

!
= 0 ṗ5(z = 0)

!
=
π

2
(15)

Solving this equation system with 3 unknown parameters and
3 conditions results into the following parameters:

a =
π

2
b = π − 5

2
c =

π

2
− 3

2
(16)

The simplified approximation of sin(z) for z ∈ [−1, 1[is
thus:

sin(z) ≈ sin5,p(z) ∀z ∈ [−1, 1[

sin5,p(z) = 0.5z
(
π − z2

[
(2π − 5)− z2 (π − 3)

])
(17)

The sine function is a periodic function thus the approxima-
tion of Eq. 17 can be easily extended for general z ∈ R.
Changing the fixed point precision of z from Qm.f to
Q1.14 or respectively to Q1.30, easily and reliably maps,
in a modulo-4-like operation, all z ∈ R to the interval
z ∈ [−2, 2[. For this interval the sine function can be
approximated in the following way:

sin5(z) =

sin5,p(2− z) if z ∈ [−2,−1[

sin5,p(z) if z ∈ [−1, 1[

sin5,p(2− z) if z ∈ [1, 2[

(18)

This approximation of the sine function is fast and only uses
around 20 assembly instructions. Its realization on the micro-
controller takes fixed point numbers of Q1.14 as argument
and returns fixed point numbers in Q1.14. The approximation
of the cosine is simply:

cos5(z) = sin5(z + 1) (19)

The mean error for y = sin5(z) with z and y in Q3.12 is
6.7 · 10−4.

4) Fast forward kinematics: The forward kinematics for
a skin cell i actuated by joint k can be computed as follows:

kT0 = 1T0
2T1 · · · kTk−1 (20)

Multiplying two 4× 4 matrices AB = C results in:

cij =

4∑
k=1

aikbkj (21)

an operation which has an arithmetic complexity of 64 mul+
48 add. In worst case, for k = 6, the arithmetic complexity
of updating the forward kinematics is 5 times a 4 × 4
matrix multiplication resulting in 320 mul + 240 add.
Only computing the rotation kR0 the arithmetic complexity
reduces to 5 times a 3 × 3 matrix multiplication, which is
135 mul + 90 add. However, only computing kR0 is not
sufficient to compute the skin joint torque τ i. Eq. 8 also
requires the projections pi,l−1,0, the projection of it0 over
l−1t0 with respect to the base coordinate frame 0:

pi,l−1,0 = it0 − l−1t0 (22)

At first glance, this requires the computation of iT0 which
induces one additional 4× 4 matrix multiplication resulting

in 384 mul + 288 add. However the projection pi,l−1,0 can
be computed much more efficiently:

pi,l−1,0 = l−1R0
itl−1

= l−1R0

(
kRl−1

itk + ktl−1

)
= kR0

itk + l−1R0
ktl−1

= pi,k,0 + pk,l−1,0 (23)

The projection pi,k,0 is needed for the computation of all
the components τl,i of τ i and the projection pk,l−1,0 can be
computed easily by:

pk,l−1,0 =

k−1∑
m=l−1

mR0
m+1tm ∀l ≤ k (24)

All the required rotation matrices are determined when
computing kR0. In the worst case for k = 6, the computation
of pk,l−1,0 requires 6 times a matrix-vector multiplication
(9 mul+ 6 add) and 5 times a vector addition (3 add). This
results in 54 mul + 66 add. To sum up, the computation of

kR0 → 135 mul + 90 add

pi,0,0 → 63 mul + 78 add
kR0

izk → 9 mul + 6 add (25)

results in 207 mul + 174 add. In comparison to iT0 which
needs 384 mul + 288 add, the exploitation of the properties
of projections reduce the number of multiplications by 48%
and the number of additions by 40%.
We further reduced the number of multiplications and ad-
ditions in the final realization on the micro-controller by
reusing sums and products in the different processing steps.
The kinematics for k = 6 using the formulas of Eq. 25
results in 66 mul + 26 add, reducing the final number of
multiplications by 80% and the number of additions by 85%.

5) Torque computation and propagation: The skin cells
receive the joint positions of the robot q ∈ R6 as a broadcast
message with a constant update rate fq . q has six components
qi, i = 1, . . . 6 which are trimmed and transformed into the
z representation (see Eq. 11) such that:

q = (qi) ∈ R6 with qi ∈ [−2, 2[(26)

These six joint positions qi are encoded in Q1.14 and fit into
one single skin packet. The ability to use broadcast messages
and to pack q into one packet limits the transmission over-
head in the down-link (PC-to-cell link) enabling high update
rates fq . A skin cell i receiving a new q immediately starts to
update Jl,i(q) using Eq. 8, Eq. 23, and 24. The realization of
these equations on the skin cell is optimized such that only
what is necessary is computed and, if possible, intermediate
results are reused. In the worst case for k = 6, these
computations for six Jl,i(q) have an arithmetic complexity
of:

(Jl,i)→ 103 mul + 57 add + 6 sin + 6 cos (27)

and require around 1096 assembly instructions. Thus updat-
ing (Jl,i) takes in worst case 68.5 µs.

Fig. 5. Propagating the sums of torques.

The skin cells also perform the computation of the external
force Fz,i according to Algorithm 1. The final computation
of τ i = (Jl,i) Fz,i is only performed when the cell is active.
The skin joint torque τ i ∈ R6 of a skin cell i uses a fixed
point precision of Q3.12 and can be packed into one single
skin packet. The skin joint torque τ i is only sent to the PC
(up-link) when the cell is active. This limits the transmission
overhead in the up-link.
The skin joint torques τ i don’t have a frame of reference
and can simply be added up as shown in Eq. 1. We exploit
this nice property such that each skin cell i adds the skin
joint torques τ skin,n of its neighbors to its own skin joint
torque τ i before passing the result τ skin,i to the next skin
cell (see Fig. 5):

τ skin,i = τ i +
∑
n

τ skin,n ∈ R6

n ∈ {neighbors of cell i} (28)

In order to allow for the higher numbers of the sums, we
reduce the fixed point precision to Q7.8 for τ skin,i. Naturally
this reduces the transmission rate in the up-link further at the
cost of a slight decrease of precision of the final skin joint
torque τ skin.

III. EXPERIMENTS
A. Experimental setup

We conduct experiments to validate the accuracy of the
distributed skin joint torque computation, and the reduction
of computational load in the real-time loop of the controller.
The experiments are performed on the left arm of our robot
TOMM (see Fig. 3), employing 253 skin cells on its upper
and lower arm. We use a reactive skin controller to generate
the kinesthetic behavior in the joint space (KIN J). This
controller sends joint positions q to the skin cells with a rate
of fq = 62.5 Hz and receives skin joint torques τ skin,dstb.
The reactive skin controller supports two modes:

1) use τ skin,dstb and compute τ skin in parallel
2) use τ skin,dstb

The first mode is used to compare the distributedly computed
skin joint torques τ skin,dstb with the skin joint torques τ skin,
which are computed in the real-time control loop. We use the
second mode to evaluate the reduction of delay in the real-
time loop when τ skin is not computed. In both modes, we use

Fig. 6. Comparison of the skin joint torques computed on the skin cells
(τdstb) and torques computed in real-time control loop (τ); the torques
are almost identical; the mean absolute error of τdstb with respect to τ is
0.0054 Nm and the error τdstb,add is 0.0356 Nm.

Fig. 7. The joint velocities resulting from the skin joint torque τ skin,dstb

computed on the skin cells and number of active cells Ncell,act.

Fig. 8. The cycle times in ms when using the distributedly computed skin
joint torque τ skin,dstb; Tskin is the delay in the real-time control loop
when computing the skin joint torque τ skin; the cycle time Ttotal of the
controller drops when switching to the distributed computation in the skin
cells; T̄skin,0 is the average time for computing τ skin when the number of
active cells is zero (for a total number of 253 cells).

τ skin,dstb to control the robot. To test this controller during
the experimentations, we kinesthetically move the robot arm
in its workspace.

B. Accuracy of skin joint torque

Figure 6 compares the skin joint torques τ skin = (τl)
computed by the PC with the skin joint torques τ skin,dstb =
(τl,dstb) computed distributedly by the skin cells. The re-
sulting reaction of the skin joint torque controller can be
seen in Figure 7. Up to the time t = 5.7 s the controller
computes τ skin and receives τ skin,dstb. Visually there is no
difference between these two torques. The average error for

Fig. 9. The cycle time Tskin of the reactive skin controller computing
τ skin in the case that the number of active cells is zero (Ncell,act = 0).

Fig. 10. The dependency between number of active cells and cycle time
for skin joint torques computed by the controller for a total of 253 skin
cells; the linear approximation takes the number of samples as weight.

all experiments is 0.0054 Nm for non-summed up τ i in
Q3.12 and 0.0356 Nm for summed up τ i in Q7.8.

C. Computational cost in the real-time control loop

Figure 8 shows the total cycle time Ttotal of the real-time
control loop. The control loop runs at 500 Hz 2, therefore,
if the total cycle time crosses the border of 2 ms, then the
controller breaks its real-time constraint. The cycle time of
the reactive skin controller Tskin is part of the total cycle
time Ttotal and T̄skin,0 is the average of Tskin under the
condition that the number of active cells Ncell,act is zero. The
drop of both, Ttotal and Tskin at t = 5.7s clearly indicates
the switching off of the computation of τ skin in the real-
time control loop. Tskin drops to zero and the total cycle
time reduces to more or less 0.2 ms. Most notably Ttotal is
now independent to the number of activated cells Ncell,act,
which has been not possible if the computing of τ skin is
within the control loop. This is because, whenever the τ skin

is computed within the control loop, Tskin will depend on
the number of cells Ncell and also on the number of active
cells Ncell,act.

D. Relationship between number of cells and cycle time

The cycle time Tskin of a reactive skin controller that
computes τ skin in the real-time loop depends on the total
number of cells Ncell. Even if there are no active cells, Tskin
increases linearly with the total number of cells Ncell (see
Fig. 9). The linear approximation for this relationship is

Tskin(Ncell) = 0.827 · 10−6Ncell + 0.01073 · 10−3 (29)

2The closed loop dynamics use a virtual dynamic model which requires
a fast update frequency, in this case 500 Hz. We noticed that slower
frequencies lead to instabilities.

with a fitting accuracy of 99.95%. The linear approximation
is weighted with the number of samples. The dependency of
Tskin on the number of cells is the result of traversing the
sensor values of skin cells in memory in order to detect active
cells. For a control rate of 500 Hz with a cycle time of 0.2
ms for the rest of the controller (see Fig. 8), the theoretical
limit for the total number of skin cells is 2160 cells. However,
activating even only one of these cells will result in breaking
the real-time constraint for 500 Hz.

E. Relationship between number of active cells and cycle
time

The cycle time Tskin of a reactive skin controller that
computes τ skin in the real-time loop also depends on the
number of active cells Ncell,act (see Fig. 8). The relationship
between Ncell,act and Tskin can be seen in more detail in Fig.
10. The linear approximation, using the number of samples
as weight, is

Tskin(Ncell,act) = 0.798 · 10−6Ncell,act + 0.2 · 10−3 (30)

with a fitting accuracy of 93.9%. This results finally in

Tskin(Ncell,act, Ncell) = 0.798 · 10−6Ncell,act

+ 0.827 · 10−6Ncell

+ 0.01073 · 10−3 (31)

Under the assumption that the maximum number of active
cells is max(Ncell,act) ≤ 100, the limit for the total number
of cells when computing τ skin in the control loop, is Ncell =
2067 cells.

IV. CONCLUSIONS

This paper presented that the distributed computation of
skin joint torques at the skin cells is efficient, feasible,
accurate and applicable on a real robotic system. The error
induced by the fixed-point computation of the skin torques is
negligible. Our new approach is not limited to a specific robot
and the complex skin joint torque computation no longer
needs to take place within the real-time control loop. This
removes the delay of computing skin joint torques in the
control loop such that a controller no longer sets any upper
bounds for the number of skin cells. Our approach enables
large scale skin without the need to relax/break real-time in
the control loop and removes any limits for the maximum
number of skin cells in control.

REFERENCES

[1] R. D. Schraft and C. Meyer, “The need for an intuitive teaching method
for small and medium enterprises,” VDI BERICHTE, vol. 1956, 2006.

[2] T. Lens, J. Kunz, O. Von Stryk, C. Trommer, and A. Karguth, “Biorob-
arm: A quickly deployable and intrinsically safe, light-weight robot
arm for service robotics applications,” in German Conference on
Robotics (ROBOTIK), 2010.

[3] E. Dean-Leon, K. Ramirez-Amaro, F. Bergner, I. Dianov, and
G. Cheng, “Integration of robotic technologies for rapidly deployable
robots,” IEEE Transactions on Industrial Informatics, 2017.

[4] G. Grunwald, G. Schreiber, A. Albu-Schäffer, and G. Hirzinger, “Pro-
gramming by touch: The different way of human-robot interaction,”
IEEE Transactions on Industrial Electronics, vol. 50, no. 4, pp. 659–
666, 2003.

[5] D. Massa, M. Callegari, and C. Cristalli, “Manual guidance for
industrial robot programming,” Industrial Robot, vol. 42, no. 5, pp.
457–465, 2015.

[6] T. Wösch and W. Feiten, “Reactive motion control for human-robot
tactile interaction,” in International Conference on Robotics and
Automation (ICRA), vol. 4, 2002, pp. 3807–3812.

[7] F. Nori, S. Traversaro, J. Eljaik, F. Romano, A. D. Prete, and D. Pucci,
“icub whole-body control through force regulation on rigid non-
coplanar contacts,” Frontiers in Robotics and AI, vol. 2, no. 6, pp.
1–18, 2015.

[8] P. Mittendorfer, E. Yoshida, and G. Cheng, “Realizing whole-body
tactile interactions with a self-organizing, multi-modal artificial skin
on a humanoid robot,” Advanced Robotics, vol. 29, no. 1, pp. 51–67,
2015.

[9] E. Dean-Leon, F. Bergner, K. Ramirez-Amaro, and G. Cheng, “From
multi-modal tactile signals to a compliant control,” in IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids), 2016,
pp. 892–898.

[10] L. D. Harmon, “Automated tactile sensing,” The International Journal
of Robotics Research, vol. 1, no. 2, pp. 3–32, 1982.

[11] G. Cannata, M. Maggiali, G. Metta, and G. Sandini, “An embedded
artificial skin for humanoid robots,” in IEEE International Conference
on Multisensor Fusion and Integration for Intelligent Systems. IEEE,
2008, pp. 434–438.

[12] M. Strohmayr and D. Schneider, “The dlr artificial skin step i: Uniting
sensitivity and collision tolerance,” in IEEE International Conference
on Robotics and Automation (ICRA). IEEE, 2013, pp. 1012–1018.

[13] R. Bosch, APAS Intelligent Systems for Man-Machine Collaboration,
Robert Bosch GmbH, Postfach 30 02 20, 70442 Stuttgart, Germany,
2016.

[14] M. Fritzsche, N. Elkmann, and E. Schulenburg, “Tactile sensing: A key
technology for safe physical human robot interaction,” in Proceedings
of the 6th International Conference on Human-robot Interaction, 2011,
pp. 139–140.

[15] S. Caviglia, L. Pinna, and C. Bartolozzi, “An event-driven posfet taxel
for sustained and transient sensing,” in IEEE International Symposium
on Circuits and Systems (ISCAS), 2016, pp. 349–352.

[16] W. W. Lee, S. L. Kukreja, and N. V. Thakor, “A kilohertz kilotaxel
tactile sensor array for investigating spatiotemporal features in neu-
romorphic touch,” in Biomedical Circuits and Systems Conference
(BioCAS), 2015, pp. 1–4.

[17] F. Bergner, P. Mittendorfer, E. Dean-Leon, and G. Cheng, “Event-
based signaling for reducing required data rates and processing power
in a large-scale artificial robotic skin,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2015,
pp. 2124–2129.

[18] F. Bergner, E. Dean-Leon, and G. Cheng, “Event-based signaling for
large-scale artificial robotic skin - realization and performance eval-
uation,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2016, pp. 4918–4924.

[19] C. Bartolozzi, P. M. Ros, F. Diotalevi, N. Jamali, L. Natale,
M. Crepaldi, and D. Demarchi, “Event-driven encoding of off-the-shelf
tactile sensors for compression and latency optimisation for robotic
skin,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2017, pp. 166–173.

[20] F. Bergner, E. Dean-Leon, and G. Cheng, “Efficient event-driven
reactive control for large scale robot skin,” in IEEE International
Conference on Robotics and Automation (ICRA), 2017, pp. 394–400.

[21] R. Wakatabe, Y. Kuniyoshi, and G. Cheng, “O (logn) algorithm
for forward kinematics under asynchronous sensory input,” in IEEE
International Conference on Robotics and Automation (ICRA), 2017,
pp. 2502–2507.

[22] E. Dean-Leon, B. Pierce, P. Mittendorfer, F. Bergner, K. Ramirez-
Amaro, W. Burger, and G. Cheng, “Tomm: Tactile omnidirectional
mobile manipulator,” in IEEE International Conference on Robotics
and Automation (ICRA), 2017, pp. 2441–2447.

[23] P. Mittendorfer and G. Cheng, “3d surface reconstruction for robotic
body parts with artificial skins,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2012, pp. 4505–
4510.

[24] D. Timmermann, H. Hahn, and B. J. Hosticka, “Low latency time
cordic algorithms,” IEEE Transactions on Computers, vol. 41, no. 8,
pp. 1010–1015, 1992.

	INTRODUCTION
	Motivation
	Related Work
	Contributions

	SYSTEM DESCRIPTION
	Robot skin
	The Tactile Omnidirectional Mobile Manipulator TOMM
	Reactive skin torque control
	Active skin cells
	Computing the skin joint torque

	Distributed computation of skin joint torque
	Fixed point arithmetic
	Storing skin cell poses into skin cells
	Fast trigonometric functions
	Fast forward kinematics
	Torque computation and propagation

	EXPERIMENTS
	Experimental setup
	Accuracy of skin joint torque
	Computational cost in the real-time control loop
	Relationship between number of cells and cycle time
	Relationship between number of active cells and cycle time

	CONCLUSIONS
	References

