
Deep Learning For Visual Scene
Understanding in Autonomous

Driving
Ibrahim Halfaoui

Technische Universität München
Lehrstuhl für Datenverarbeitung

Deep Learning For Visual Scene
Understanding in Autonomous Driving

Ibrahim Halfaoui

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzende(r): Prof. Dr. Sebastian Steinhorst

Prüfer der Dissertation:

1. Prof. Dr. Klaus Diepold

2. Prof. Dr. Björn Menze

Die Dissertation wurde am 20.11.2018 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
25.09.2019 angenommen.

Dieses Werk ist unter einem Creative Commons Namensnennung 3.0 Deutschland
Lizenzvertrag lizenziert. Um die Lizenz anzusehen, gehen Sie bitte zu http://

creativecommons.org/licenses/by/3.0/de/ oder schicken Sie einen Brief an Cre-
ative Commons, 171 Second Street, Suite 300, San Francisco, California 94105, USA.

http://creativecommons.org/licenses/by/3.0/de/
http://creativecommons.org/licenses/by/3.0/de/

Acknowledgments

Firstly, I would like to thank my direct supervisor Dr. Onay Urfalioglu for his support,
guidance and valuable feedback.
Furthermore, I extend my deepest gratitude to my thesis advisor Prof. Klaus Diepold for
his extremely valuable counseling, support and understanding of the different challenges I
faced during this work. His unique affinity for innovation and efficient problem-solving are
true lessons to appreciate and embrace for my future life and career.
Thanks as well to my fellow colleagues at HUAWEI, with special mention to Dr. Fahd
Bouzaraa for his considerable contribution.
I would like to finish by dearly thanking my family for their love, dedication and support all
along my journey.

3

Abstract

Over the past few years, the emerging concept of Artificial Intelligence (AI) has become a
prominent buzzword and gained looming popularity as it proved promising in solving com-
plicated tasks. With the start of the AI global age, sensitive human expertise in certain
domains might in short no longer be required as machines started to successfully repli-
cate human reasoning patterns and acquired decision-making faculties. Deep learning
(DL), one of the most trending AI technologies, achieves this by harnessing sophisticated
neural networks with complex architectures. Although DL has many application areas, the
vehicle industry seems to pay special tribute to this AI tool. To keep up with the rapid evo-
lution, established car constructors as well as ambitious start-up companies have engaged
in a fierce competition to fully exhaust the untapped potential of DL. The ultimate goal is to
conceive an autonomous system able to make reasonable decisions in challenging driving
situations. For this, solid understanding of the environment and proper sensory data inter-
pretation from cameras in particular are key aspects.
In this context, we provide a solution for optimizing scene understanding for autonomous
agents by leveraging in-house designed Convolutional Neural Network (CNN) architec-
tures and customized training procedures. We propose a robust CNN model for class-level
semantic segmentation with instance-level distinction of important traffic components such
as cars. Additionally, we explore the advantage of combining segmentation information
with further computer vision tasks necessary to improve visual scene understanding, no-
tably depth/disparity estimation. The conducted exploration revolves around the exami-
nation of multi-tasking models that use cooperative optimization to jointly learn different
tasks simultaneously. Aside from the analysis of the performance improvement induced by
incorporating segmentation information, this work also proposes an alternative way to per-
ceive and design training procedures for such models. In fact, we present a new method
for training multi-tasking CNNs conceived as a competitive game that boosts performance,
guarantees design flexibility and overcomes data-related limitations.

5

Contents

Contents 9

1 Introduction 13
1.1 Autonomous Driving . 13
1.2 Scene Understanding In Autonomous Driving Scenarios 16

1.2.1 Motivation & Background . 16
1.2.2 Visual Scene Understanding . 17

1.3 Project Specifications . 18
1.4 Goals and Structure of the Thesis . 19

2 Segmentation for Autonomous Driving 21
2.1 Introduction . 21
2.2 State-of-the-Art Survey . 22

2.2.1 Non-Semantic Segmentation . 22
2.2.2 Semantic Segmentation . 22

2.3 The Proposed Approach: MokaNet . 27
2.3.1 Implementation Details . 27
2.3.2 Experiments & Results . 34

3 Multi-tasking With Supervised Applications: The Segmentation Effect 59
3.1 Motivation & Related Works . 59
3.2 Multi-objective Optimization: Theory and Background 60
3.3 Cooperative Optimization For Disparity Planes Estimation And Semantic

Segmentation . 63
3.3.1 Disparity Planes Estimation . 63
3.3.2 Disparity Planes Estimation & Semantic Segmentation 68

3.4 Cooperative Optimization For Supervised Depth Estimation And Semantic
Segmentation . 73
3.4.1 Supervised Depth Estimation: DispNet 73
3.4.2 Supervised Depth Estimation & Semantic Segmentation 76

4 Multi-tasking With Unsupervised Applications: The Segmentation Effect 81
4.1 Motivation & Related Works . 81
4.2 Unsupervised Depth Estimation: UMDELR 82

4.2.1 Introduction . 82
4.2.2 Implementation Details . 82

7

Contents

4.2.3 Results . 87
4.3 Cooperative Optimization For Unsupervised Depth Estimation And Seman-

tic Segmentation . 89
4.3.1 Introduction . 89
4.3.2 Proposed Approach . 89
4.3.3 Results & Discussion . 90

4.4 Competitive Optimization For Unsupervised Depth Estimation And Semantic
Segmentation . 93
4.4.1 Motivation & Background . 93
4.4.2 The Proposed Approach . 94
4.4.3 Results & Discussion . 97

5 Conclusions 107

8

List of Figures

1.1 The levels of autonomous driving. 14
1.2 The flowchart of the full autonomous driving process (Level 5). 15

2.1 Semantic segmentation of a scene from the Cityscapes dataset by Cordts
et al. (2016) [1] recorded in Zurich (courtesy of Janai et al. [2]) 22

2.2 The encoder-decoder network layout. 24
2.3 The MokaNet cascaded architecture. 28
2.4 Sample architecture of a single sub-network with depth 5 (5 different reso-

lution levels). 30
2.5 The random color-mapping image augmentation to generate images with

different color ranges. 33
2.6 Sample outputs of the color-mapping augmentation. 34
2.7 Visual Evaluation on Cityscapes Validation Set: (a) Example frame selected

from the validation set of Cityscapes [1] (b) The estimated semantic seg-
mentation (c) Ground-truth semantic segmentation. 37

2.8 Visual Evaluation on Cityscapes Test Set: (a) Example frame selected from
the test set of Cityscapes [1] (b) The estimated semantic segmentation . . . 39

2.9 Visual Evaluation on China Images: (a) Example frames recorded in China
(b) The estimated semantic segmentation 40

2.10 Visual comparison of state-of-the art CNN models for semantic segmenta-
tion (Implementation as courtesy of [3]) . From top row to bottom: 1. input
frames 2. FCN8s’ output 3. FCN16s’ output 4. ICNet’ output 5. FCN32s’
output 6. Unet’ output 7. LinkNet’ output 8. FrrnA’ output 9. FrrnB’ output
10. PspNet’ output 11. ResNet’ output 12. Ours’ output 43

2.11 The Generation of ground-truth labels for car instance separation based on
Mahalanobis heat maps. 45

2.12 Visual Evaluation on Cityscapes Test Set: (a) Example frames from test set
(b) The estimated output mask with the cars presented as heat maps based
on the Mahalanobis distance . 46

2.13 The Generation of ground-truth labels for car instance separation based on
angular heat maps . 47

2.14 Visual Evaluation on Cityscapes Test Set: Car instance segmentation based
on both distance and angular heat maps 48

2.15 The generation of ground-truth labels for car instance separation based on
concentric contours. 49

9

List of Figures

2.16 Visual Evaluation on Cityscapes Test Set: (a) Example frames from test set
(b) The estimated output mask with the cars presented as concentric contours. 50

2.17 Visual Evaluation on Cityscapes Test Set: Car instance segmentation based
concentric contours differently labeled. Model-1 inner range is background
and Model-2 the outer range is background. 52

2.18 Visual Evaluation on Cityscapes Test Set: (a) Example frames from test set
(b) The estimated output mask with the car instances separately isolated (c)
estimated transparent car instances blended onto the input frame. 54

2.19 Visual Evaluation on Germany Images: (a) Example frames from the
"Trainextra" Cityscapes set (b) The estimated output mask with the car in-
stances separately isolated (c) estimated transparent car instances blended
onto the input frame. 56

2.20 Visual Evaluation on USA Images: (a) Example frames from the BDD
dataset [4] (b) The estimated output mask with the car instances separately
isolated (c) estimated transparent car instances blended onto the input frame. 57

2.21 Visual Evaluation on China Images: (a) Example frames from China
recorded frames (b) The estimated output mask with the car instances sep-
arately isolated (c) estimated transparent car instances blended onto the
input frame. 58

3.1 The gradient descent optimization strategy. 61
3.2 The ground-truth generation process for disparity planes estimation (left view) 64
3.3 Visual Evaluation on Cityscapes Test Set: (a)&(b) Example stereo frames

from test set (c) The estimated output mask for disparity planes 67
3.4 The proposed architecture for cooperative optimization (multi-tasking CNN):

Joint disparity planes estimation and semantic segmentation 69
3.5 Visual Evaluation on Cityscapes Validation Set. From top: Left image, right

image, ground-truth disparity planes for left view, disparity planes estimated
output for left view (single model), disparity planes estimated output for left
view (multi-tasking model). 71

3.6 Visual Evaluation on Cityscapes Test Set: The visual comparison of models
outputs in case of cooperative optimization (multi-tasking model) and single
objective optimization (single model). 72

3.7 Visual Evaluation on Cityscapes Test Set: (a) & (b) Sample input stereo
pairs from test set (c) The estimated output left depth map 75

3.8 Visual Evaluation on Cityscapes Test Set: (a) & (b) Sample input frames
from the test set and (c) & (d) are the estimated output depth maps using
single and multi-tasking models respectively. 78

10

List of Figures

3.9 Visual Evaluation on KITTI Eigen-split Test Set: Comparison of visual results
using single and multi-tasking models for supervised depth estimation. From
top: Left image, right image, ground-truth depth map for left view, estimated
left depth map using single DispNet, estimated left depth map using our
multi-tasking model. 80

4.1 The spatial transformer module (courtesy of [5]) 83
4.2 The sampling grid is the result of warping the regular grid G with an affine

transformation Tθ (G) (courtesy of [5]) . 84
4.3 The visual performance of the UMDLR model trained on different training

sets ((a) 1.Experiment (b) 2.Experiment (c) 3.Experiment) on test images of
Cityscapes. 88

4.4 The multi-tasking model architecture for joint unsupervised depth estimation
and semantic segmentation . 90

4.5 The visual comparison between the cooperative multi-tasking and the origi-
nal UMDLR models deployed on test images of Cityscapes. 91

4.6 Conditional training procedure for CNN-model to solve non-cooperative op-
timization of unsupervised depth estimation and semantic segmentation
problems . 95

4.7 The visual comparison between the competitive, the cooperative and the
original model depth estimation on test set images of Cityscapes. 99

4.8 The comparison of depth loss evolution for the competitive model with the
three different experimental setups . 100

4.9 The visual comparison between the competitive and the original model
depth estimation on test set images of Cityscapes (2.Experiment). 103

4.10 The visual comparison between the competitive and the original model
depth estimation on test set images of Cityscapes (3.Experiment). 104

4.11 The visual comparison of state-of-the art methods on images from the KITTI
test Eigen split (courtesy of [6]). The ground truth velodyne depth interpo-
lated because of sparsity. From top to bottom: Input frame, interpolated
ground truth, Eigen et al. result, Liu et al. result, Garg et al. result, UMDELR
ResNet pp result, Ours (competitive). 106

11

1 Introduction

1.1 Autonomous Driving

The safety of users has always been the driving force guiding the automotive industry since
its inception towards more advancement and innovation. However, the average statistics of
yearly deaths and injuries in car accidents worldwide keeps going upwards with 1.3 million
deaths and between 20 and 50 million injuries [7]. Since human errors are statistically the
major cause of these accidents (more than 90% of the accidents are caused by human
failure [8]), the notion of autonomous and aware vehicles started to rapidly gain interest
over the past few years. The community sets big hopes on the fact that this technology
can contribute to lowering these numbers by eliminating the main causing factor: human
failure.
Although this concept has been around for a while (e.g. the "American Wonder" project
[9] of the Chandler Motor Car Company in the 1920s), developing fully safe and reliable
self-driving vehicles was, up to recently, considered as a science-fiction fantasy. It has
been doubtfully questioned until the emerging AI revolution turned the tables and pushed
it back to the surface as a serious scientific research topic.
Big Tech companies (Huawei, Google, Waymo, Apple, Tesla, Nvidia, Uber, Lyft, etc...), as
pioneers of the AI era, are paying special attention to the topic of driverless cars. They
intend through their disruptive products, e.g. the Autonomous Google Car, to guarantee
safer (fewer accidents) and more convenient (less traffic jams) driving experience for the
users. Forecasting the emerging market change, established car manufacturers started as
well to race rashly in this direction despite the numerous uncertainties and challenges in
the way towards full autonomy for future vehicles.
Regarding the new market trends, a normalized lexicon shared among field actors was
needed to bring more clarity and structure to the topic. Hence, the Society of Automotive
Engineers (SAE) released in 2014 the international standard J3016 defining in details
the various autonomy levels for vehicles. The updated version from 2016 is summarized
in Fig. 1.1. Based on these standards, autonomous systems can be classified into six
different levels regarding their sophistication.

• Level 0 - No Automation: The human driver is fully controlling the vehicle at all times.

• Level 1 - Driver Assistance: The driver is still in control and bares full responsibility
in monitoring the environment and performing the driving functions. However, few
functions are undertaken by the vehicle such as adaptive cruise control.

13

1 Introduction

• Level 2 - Partial Automation: Although the driver remains engaged with the driving,
multiple primary functions could be undertaken by the vehicle.

• Level 3 - Conditional Automation: All aspects of driving can be fully undertaken by
the vehicle under certain conditions. The driver is still required and expected to be
ready to intervene upon notice.

• Level 4 - High Automation: The vehicle is able to perform all driving functions without
human intervention but only in certain use cases. The driver can take control any
time he wants.

• Level 5 - Full Automation: The vehicle is able to perform all driving functions under
any conditions without human intervention.

Level 0

• No Automation.

• Driver operates
the driving
without system
intervention.

Level 1

• Drive Assistance.

• Driver operates
with the help of
some integrated
intelligent
features.

Level 2

• Partial
Automation

• Driver remains
engaged with
the driving all
the time despite
the combination
of different
automated
aspects.

Level 3

• Conditional
Automation

• Driver is still
required and
expected to take
over on notice.

• Vehicle operates
independently
in known
environments.

Level 4

• High
Automation

• Driver might
have control
whenever he
wants.

• Vehicle
performs all
driving functions
in defined use
cases.

Level 5

• Full
Automation

• Vehicle
performs all
safety-critical
driving
functions under
all conditions

Automated Driving Systems Human Driver

The Levels of Autonomous Driving

Figure 1.1: The levels of autonomous driving.

Starting from Level 3, the vehicle autonomy becomes very important as the complexity of
its expected functions increase significantly compared to previous levels where the human
driver undertakes most driving functions. However, the biggest leap happens between
levels 3 and 4 where the responsibility for monitoring the environment completely shifts
to the system. To our knowledge, there are no Level 4 production vehicles available to
consumers yet. Finally, the ultimate goal aimed by the community is level 5 as it is the level
where no provisions for human control are expected under any conditions. In theory, the
user is able to enjoy the ride without concern about the act of driving.
To reach this level, a complex chain of tasks should be reliably performed by the system in

14

1.1 Autonomous Driving

order to negotiate any driving situation. The process can be divided into three important
steps as shown in Fig. 1.2. Each step encompasses various tasks expected to be perfectly
realized by the system. Any small failure could have huge effects on the final behavior of
the vehicle in traffic. Sensing and decision steps could be considered as classical topics
that have been examined for a while. However, the perception part is the one part where
classical methods proved limited and the emerging AI methods are likely to deliver the
most. This is the step where more "intelligence" for current systems is required. The
concept of perception encompasses the faculty of properly analyzing the incoming sensory
information, using it to generate understanding of the environment and perceiving the traffic
as a human does.

The Full Autonomous Driving Process

• Sensory Input (GPS,
IMU, LIDAR, Camera…).

Sensing

• Environment Analysis
& Understanding
(Segmentation,
Detection, Recognition,
Tracking…).

Perception
• Behavior Generation

(Prediction, Trajectory
Planning, Obstacle
Avoidance…).

Decision

Figure 1.2: The flowchart of the full autonomous driving process (Level 5).

In reality, the enthusiasm about improving perception started high following the emersion
of robust DL-based technology but suffered unexpectedly a huge blow after the tragic death
of Joshua Brown in a car accident in May 2016. Accusations were promptly addressed to
his Tesla’s autopilot upon its failure to identify the trailer of a white truck that was blocking
the path. In other words, the perception has failed. Obviously, pessimist voices started
immediately claiming that the community is deliberately over-pledging and under-delivering
on the advantages of the maturity-lacking methods. The most optimists, however, continue
to believe that a long transition process needs proper time and enough experimentation in
order to fully optimize the underlying technology.

15

1 Introduction

1.2 Scene Understanding In Autonomous Driving Scenarios

1.2.1 Motivation & Background

After the tragic accident of Joshua Brown in 2016, not only Tesla (the manufacturer of the
car involved in the accident) but also authorities and other field actors working on the sub-
ject of driverless vehicles started to reconsider certain aspects of the perception problem
and seek alternative ways to approach it. Thereupon, focus has been shifted towards ac-
quiring more data on the topic and gathering as much reliable content as possible from
different autonomous driving experiences. Along with gaining an insightful overview on
user-vehicle interaction in critical situations, this data pool is essential for analyzing the
human perception faculty and trying to learn from it as much as possible. In fact, DL ap-
plications require reliable knowledge sources and large data pools like this to guarantee
proper learning. The concept behind this technology boils down to the fact of using large
artificial neural networks to solve high complexity tasks. A network that is built as a layered
architecture of different blocks simulating computational entities is indeed a mathematical
abstraction of inter-connected brain neurons. Through training, this ensemble is taught to
approximate mapping functions between pre-disposed input data and ground-truth labels.
In reality, this procedure used to be quite challenging. However, it is fortunately no longer
the case thanks to the significant culmination reached on hardware (computational power
capacities) and software levels (robust, effective and multi-usable neural network architec-
tures).
In the context of autonomous driving, the ultimate goal is to properly teach machines to
equal or/and surpass humans in the decision making process using DL. However, a worthy
replacement let alone surpassing of humans requires that the autonomous vehicle must
have a fully reliable perception of its navigation environment. If not, it will not manage to
take proper driving decisions and might cause accidents.
In the mentioned example, investigations of the 2016 Tesla accident proved indeed that
a wrong perception of the traffic scene might be the main cause of the crash. It was
asserted that the autopilot failed to identify the white side of a driving truck against the
brightly lit sky, otherwise it would have released the brakes before hitting its trailer and
passing underneath it. Surprisingly, the same autopilot did not have any issues perceiving
the environment all along the thirty-seven-minute journey before the crash. It even man-
aged to avoid a second crash after hitting the truck. After the car slid off the way due to
the collision, brakes were deployed to avoid hitting a tree on the sidewalk. According to
the recorded car data and the human testimonies of few witnesses on the spot, it was very
unlikely that Mr Brown released the brakes since he should have already passed away dur-
ing that time. The conclusion is that the autopilot recognized the tree, applied the brakes
and even released the airbags before hitting it. Obviously, the system was able to properly
understand the presence of a tree in the second situation but not the track in the first one,
that is why the decision came late at a high cost.
As a synthesis, Mr. brown’s unfortunate death comes as a closing statement to rest the

16

1.2 Scene Understanding In Autonomous Driving Scenarios

case in favor of enforcing environment understanding for autonomous systems under all
possible conditions. Even the finest details in the scene shall be well perceived for such
systems in order to avoid further mis-happenings in the future. Although several sen-
sory inputs such as (GPS, IMU, LIDAR, etc..) could be made available to an autonomous
system, visual recorded data (image/video) comes at the pinnacle of the directions to in-
vestigate especially after analyzing the causes of the aforementioned accident. Relying
on proper visual information helps depict/recognize objects, estimate their real-world dis-
tances and produce real-time 3D maps. Having this, the system can properly decide when
to stop, start and react. Therefore, in-depth consideration to the visual data, as the major
incoming information carrier, becomes necessary in the goal to offer the system better un-
derstanding of its environment.
What kind of cues shall be leveraged and how to get best understanding of real traffic
scenes from visual data?

1.2.2 Visual Scene Understanding

Many species are blessed with remarkable visual systems that perform astonishingly fast
and good in understanding the complex 3D real-world. Humans as an example [10] are
able to understand a complex world scene just from its projection on the retina by locat-
ing, characterizing and recognizing objects and features at a single glance. This under-
standing process consists of successive tasks (high level scene classification, annotation,
segmentation...) performed sequentially to form a coherent framework called "visual un-
derstanding process". Once applied, this process delivers an output where the hierarchy
of the semantic information inherent in the projected image is encoded. By decoding the
resulting information, a proper comprehension of the scene content can be acquired.
In the context of computer vision, we can simulate this "visual understanding process". Its
final output is generally a compact representation of the information carried by an image
represented under a simplified form. In general, this representation is easier to interpret
and consists of a set of well-separated components that share common properties. These
properties could be defined at different levels of abstraction. The way they are defined is
determinant to how the scene is perceived. In fact, parsing the image into coherent parts
without taking into consideration the semantic meaning might turn out a confusing factor
for interpretation. Hence, the segmentation strategy required should necessarily deliver
semantically meaningful partitions. That is why, it is referred to as "semantic segmenta-
tion".
Regardless the required level of abstraction, the task of semantically segmenting an image
is still a complex task. It is also an important step of the simulated understanding process.
This step is responsible for moving from inferring the coarse layout (high-level features)
of a scene to retaining its fine details (intermediate and low-level features). Although "un-
derstanding" a scene might seem a vague concept conditioned by subjectivity, it is tightly
related to the quantity (level of details depicted) and quality (accuracy) of the semantic
segmentation’s outcome.

17

1 Introduction

The importance of semantic segmentation for the understanding process explains the fact
that it is still one of the most addressed problems in computer vision. It has, however,
reached a kind of saturation level before DL emerged. Despite their popularity, traditional
algorithmic techniques for semantic segmentation are leaving the lights gradually in favor
of DL-based methods. The latter indeed have already gained a considerable lead against
the former ones in various computer vision related tasks, semantic segmentation in partic-
ular.
Nevertheless, the previously mentioned accident proves that maturity stage is far from
reached for the new technology. For proof, the on-board autopilot failed to differentiate be-
tween the brightly lit sky and the white side of the truck in a critical situation. As rare as it
might be, this error resulted in a "mis-understanding" and a confusion in the analysis of the
scene components that caused consequently the "mis-judgment/wrong decision" taken by
the system at that instant. Regrettably, this error came at a very high cost to prove that
state-of-the art performance of DL-based semantic segmentation still needs optimization.
Our presented research work tries to bring a small contribution in the goal to tackle the
issue from a specific point of view and under well-defined requirements. The suggested
approach could not in any way be an ultimate solution to the semantic segmentation prob-
lem but rather an alternative to cope with specific aspects of the issue. It is the author’s
suggestion as an answer to the question within a specific business context and with clear
pre-defined project requirements.

1.3 Project Specifications

The final business goal behind the project, within which this research work has been con-
ducted, is to produce a software solution for driverless vehicles to realize safe navigation in
different traffic scenarios without potential human interference. To achieve this, improving
the understanding of traffic scenes for autonomous driving systems is required.
For this project, cameras are supposed to be the primary controller. That is why, the scope
of the presented work will not cover further sensory information like (GPS, IMU, Radar/L-
IDAR, etc...). We will restrict ourselves to visual scene understanding and the potential
ways to improve it through semantic segmentation as well as other available cues.
During the project planning, several pre-defined requirements were set up to guarantee
a fair evaluation in the final phase and to help restrict the scope of the explored terrain.
Requirements considering the hardware dictate that the used visual system has to be
multi-view at least stereo. On Software level, the required solution has to be based on DL
and convolutional neural networks (CNNs). All available visual information offered by the
hardware can be considered and processed accordingly without restrictions. This includes
many processing possibilities e.g. image segmentation, edge detection, disparity/depth...
Among all traffic participants, cars present in the environment of the self-driving vehicle are
of much importance. They are the main traffic agent to mind during the navigation together
with pedestrians. They also generally occupy a considerable part of images depicting driv-

18

1.4 Goals and Structure of the Thesis

ing scenes especially within cities. They are frequently present in the camera field of view
and have a huge impact on the inherent visual information (e.g. occlusions). In fact, they
are statistically the most present traffic participant in the majority of self-driving datasets.
As an example, the statistical analysis of the most popular ones such as KITTI [11] and
Cityscapes [1] shows that the car class among all others has the biggest absolute average
number of labeled instances with 41× 10e3 instances in Cityscapes and 30.03× 10e3 in
KITTI. Cars present in an urban scene could be stationary or moving at the time of image
capture. This state is an important aspect to consider for the autonomous system during
the perception stage and the decision making step that follows. For this, it needs a proper
distinction between dynamic and static vehicles. The anticipation of the traffic behavior
varies a lot depending on the state of other present vehicles in the scene. As an exam-
ple, considering only filtered feature points lying over segments of stationary cars, could
hugely lower the error rate during the matching step of the simultaneous localization and
mapping procedure such as ORB-SLAM2 [12]. This consequently gives the vehicle a bet-
ter understanding of its dynamic surrounding environment. In general, most of the object
classes potentially present in an urban scene are easy to categorize into dynamic or static
elements. For example, a building, a road, a tree are obviously static objects. However,
it is hard to extrapolate this over cars since they could be in motion, parked or just not
moving with the engine on at the time of capture. Therefore, separating instances (seg-
ments corresponding to independent single cars) within the car class might be of higher
importance for the current project phase in comparison to the other classes. For the sake
of simplicity, we focus in this work on the instance semantic segmentation of just cars as
a specific example. Further extension over other classes might be considered for later
project stages.

1.4 Goals and Structure of the Thesis

Considering the project specifications detailed in the previous section, the main goals of
this work could be defined as follows:

• Develop a CNN-based solution for urban scene understanding suitable for au-
tonomous driving applications. This implies that we seek to provide an autonomous
vehicle navigating an unfamiliar environment with the faculty to perceive the traffic,
analyze it and interpret it in a proper way (as close as possible to humans). The goal
is to use this knowledge to optimize the driving decisions taken by the system during
the journey.

• As the concept of scene understanding is quite vague. We restrict ourselves to focus
on the pre-defined project specifications. The proposed solution shall be limited by
the available software and hardware setup previously discussed.

• Considering our pre-fixed working range, we need to start by defining the different
levels of understanding required by the autonomous system. As a first step, a robust

19

1 Introduction

model for class-level image semantic segmentation should be proposed. This solu-
tion is then to be extended with an instance-level distinction between the car entities.
The resulting model should be able to segment a captured traffic scene into different
object classes and to distinguish independent instances within the car object class
at the same time.

• As a next step, we seek to enrich our visual scene understanding solution by incor-
porating distance information about the different components of the scene at hand.
Disparity estimation must be examined separately as well as in cooperation with se-
mantic segmentation. A thorough performance examination shall be realized and a
comparison between single and multi-tasking frameworks is to be done.

• Certain real-case challenges need as well to be tackled. For instance, we need
to take into consideration the difficulty to have real ground-truth data available to
train supervised models to perform semantic segmentation and disparity estima-
tion. Moreover, we need to guarantee consistent robustness (generalization perfor-
mance) and high accuracy of the solution under different conditions such as getting
maximum profit of the data at hand and overcoming the inflexible implementation
constraints likely to affect the performance of multi-tasking neural networks.

Considering our previous goals, we start first by proposing a CNN-based approach for
image semantic segmentation in Chapter 2. The solution is then extended from class to
instance level segmentation for cars in particular. A final combined model is then presented
and examined upon its ability to perform robust classification of different components in a
traffic scene, to generalize well to various conditions and to distinguish between indepen-
dent car instances. In Chapter 3, we further enrich the understanding capability of our pro-
posed model by extending it with additional tracks. Different applications are considered
such as disparity plane estimation (learning disparity on segment level) and supervised
disparity estimation (learning disparity on pixel level). Both applications are combined with
semantic segmentation within classical multi-tasking frameworks and their performance is
examined to verify the advantage of simultaneously learning related tasks. In Chapter 4,
we first propose an alternative solution to perform pixel-wise disparity estimation in a self-
supervised way. Then, we study the effect of learning semantic segmentation in parallel
to tasks of such unsupervised nature. Besides, a new strategy for training multi-tasking
models is presented to overcome the limiting constraints of data availability and to improve
upon classical state-of-the-art performance. In Chapter 5, we summarize our conclusions
and discuss the deliveries of the realized research work as well as its limitations.

20

2 Segmentation for Autonomous Driving

2.1 Introduction

Segmentation is a broad concept and a critical task in image processing. We can define
it as the partitioning of an image into distinct homogeneous set of pixels having the same
attributes and sharing the same properties/characteristics such as colour, texture or inten-
sity, etc...
The expected result is always a simplified representation of pixel-level encoded information
under the form of independent uniform segments that can be separately manipulated.
The importance of image segmentation, one of the most explored problems in the com-
puter vision field, derives from the need for simplified data representations that carry as
much global information as possible. The representation of visual information as pixel
matrices (texture images) is of high complexity and does not generally allow for holistic
understanding of the depicted scenes. Therefore, extensive effort has been allocated to
simplify it under the form of segmented sets.
Depending on the pre-defined criteria, the strategy for partitioning an image into differ-
ent pixel sets might vary. At the end, the outcome always relates tightly to the properties
considered for grouping the pixels. This could result in segments that are not semantically
meaningful but present certain homogeneity. The segmentation is then called semantically
non-aware. However, if the segments correspond to objects, parts or groups of objects
then the outcome is semantically-aware.
For semantically-aware methods, the output also depends on the level of granularity re-
quired/needed. Once the required detail-level is reached (class, object, part of object), no
further partitioning of the image will be necessary. For example, distinguishing different
object-classes (trees, cars, pedestrians, sky ,road, etc...) and identifying instances corre-
sponding to different objects belonging to the same object-class (separate each car entity,
distinguish every single tree, etc...) are both semantic segmentation tasks that rather need
different levels of object abstractions. In the first case, pixels belonging to any affiliated ob-
jects of the same object-class are similarly labeled without need of further detailing. This
is called class-level semantic segmentation. In the second, obvious distinction between
objects within the same class is additionally required. The task is referred to as instance-
level semantic segmentation.
Regardless its awareness standard, semantic segmentation remains always a useful task
that has many standard application areas such as security, military, medicine, astronomy,
physics, industry, etc... It could be particularly important for autonomous driving scenarios
where a high segmentation quality will help the system better perceive the world.

21

2 Segmentation for Autonomous Driving

2.2 State-of-the-Art Survey

2.2.1 Non-Semantic Segmentation

Partitioning an image without taking into consideration the semantic meaning is a basic
task. It only depends on the pre-defined separation criteria. Considering these, we can dis-
tinguish different families. First, we note the simple non-contextual thresholding segmen-
tation where pixels are classified into different categories considering their carried intensi-
ties. Separation is done with respect to a threshold that might be dynamically, statically,
intensity-based, color-based or entropy-based [13] set. Second, there are the contextual
segmentation methods. For these, pixels are grouped considering certain image features
such as similarity or spatial closeness [14]. Moreover, various further non-semantic meth-
ods can be mentioned: Super-pixel segmentation [15], graph-based segmentation [16],
quick-shift segmentation [17] and watershed segmentation [18].

2.2.2 Semantic Segmentation

Unlike non-semantic segmentation, the semantic one is a hard-shell classification of pixels
into a set of segments with pre-defined labels. These correspond always to pre-known
fixed classes (see Fig. 2.1). Depending on the required detail-level, semantic segmenta-
tion can be either class or instance-aware. Considering the abundant number of methods
dealing with the problem, we restrict ourselves to just exploring DL-based methods target-
ing autonomous driving applications. That is why, particular focus on datasets for such
applications (e.g. Cityscapes, KITTI, etc...) will be given.

Figure 2.1: Semantic segmentation of a scene from the Cityscapes dataset by Cordts et al. (2016)
[1] recorded in Zurich (courtesy of Janai et al. [2])

22

2.2 State-of-the-Art Survey

Class-level Semantic Segmentation

For Semantic segmentation, Convolutional Neural Networks (CNNs) encountered a con-
siderable incremental success over the past few years. In [19], a review of the current
most performing approaches was realized. One of the earliest CNN approaches aiming
to perform semantic segmentation is the patch-based classification model introduced by
Ciresan et al. in [20]. The used architecture was based on fully-connected layers as output
classifiers (vector of likelihoods with a value of each class) for each pixel with the additional
consideration of its surrounding neighborhood (squared region centered on it). The disad-
vantage of this architecture is that it requires a fixed-size input image. It processes it into
a succession of extracted patches that are independently handled in every step. Conse-
quently, much of the inherent pixel correlation get lost.
In 2014, Long et al. introduced a new type of end-to-end segmentation models in [21]. The
new architecture called Fully Convolutional Networks for Semantic Segmentation (FCN)
represented a turning point that marked the impact of CNNs. They become able to solve
many high-complexity tasks, not only segmentation, in a much efficient end-to-end way.
With FCN started the trend of encoder-decoder architectures for pixel-to-pixel learning.
Unlike sliding window architectures, this new type has an encoder part with convolutional
layers where different cues from the input image are learned and encoded into feature
maps, and a decoder part with transposed convolutional layers (layers where a backward/-
transposed 2D convolution is applied to up-sample the input into more dense output using
learned kernels, this operation is widely known as deconvolution) where the outcoming
feature maps are back projected into the pixel-space. With this layout, pixel-to-pixel esti-
mates for the incoming input images could be recovered in much shorter runtimes.
Adopting the same archetype, various encoding-decoding architectures have been sug-
gested. They all share the same core but slightly differ on the design-level such as UNet
by Ronneberger et al. [22], SegNet by Badrinarayanan et al. [23], DenseNet by Gao et
al. [24], Enet by Pazke et al. [25], LinkNet by Chaurasia et al. [26], PspNet by Zhao et al.
[27], RefineNet by Lin et al. [28], G-FRNet by Islam et al. [29], Decoupled-Net by Hong et
al. [30], Deeplab with by Chen [31] [32] [33], ResNet by he et al. [34].

All these architectures share the two-stage design with encoding and decoding parts
shown in Fig. 2.2. Nevertheless, each single model comes with specific features that char-
acterize its performance. UNet [22] for example replaces the pooling layers by transposed
convolution operators with large channel numbers in the target to optimize localization for
high resolution. After eliminating the fully connected layers, the resulting ladder struc-
ture embraces a "U" shape. It also has few skip-connection between the encoding and
decoding parts used to minimize the detail loss after the extensive dimension shrinkage.
SegNet [23] proposes a quite similar design with an additional transfer of max-pooling in-
dices from encoder to decoder. This new property aims to particularly improve non-linear
up-sampling. Since the up-sampled feature maps are usually sparse, a convolution with
trainable filters is performed to end up with more dense outputs.
The naming DenseNet [24] by Gao et al. does not refer to the output’s density but rather

23

2 Segmentation for Autonomous Driving

Figure 2.2: The encoder-decoder network layout.

to the concept of "feature reuse". This consists of using consolidated inter-links between
different layers to enforce replication of feature maps. Applying this on different levels of
the deep architecture improves the learning and guarantees the reduction of processing
time and computation load during the training phase. Hence, the resulting architecture is
simpler and more efficient in comparison to heavy models such as ResNet [34]. The latter
is a deep architecture introduced in 2016. It is not designed as a pile of stacked layers
connected to each other to form an acyclic graph but uses additional extra connections to
surmount the problem of vanishing gradients. In fact, the problem of saturation caused by
weak gradients at the top of the architecture is a main issue for training deep networks.
That is why, ResNet leveraged identity shortcut connections based on skipping layers to
avoid it. The underlying assumption that residual loss functions are easier to optimize
was inspired by Highway networks where the information flow into shortcut connections is
controlled by entering gates. This idea proved efficient in reducing saturation problems,
making ResNet an important milestone in the development of CNN-based solutions.
Moreover, the recently released PspNet [27] proposes a design inspired by the ResNet. It
uses dilated convolutions and pyramid spatial pooling modules (a set of large kernel pool-
ing layers) to improve the aggregation of global context information necessary to approxi-
mate the distribution of segmentation classes over large image regions. Unlike ResNet, it
applies "intermediate supervision" that revolves around interposing auxiliary loss functions
at intermediate layers to improve back-propagation.
Just like PspNet, the different Deeplab versions [31] [32] [33], make use of dilated convo-
lutions implemented in cascade or in parallel to form an efficient Atrous Spatial Pyramid
Pooling (ASPP) module. This module is able to capture background context-based infor-
mation at different scales/resolutions. The authors suggested various improvements for
each released version. In the last one, they eliminated Conditional Random Field (CRF)

24

2.2 State-of-the-Art Survey

modules and replaced them with highly optimized ASPPs combined with batch normaliza-
tion.
ENet [25] and LinkNet [26] are parameter effective versions of the popular ResNet. They
are more suitable to real-time implementations, mobile applications and embedded plat-
forms. They propose similar ladder architectures with limited number of parameters and
reasonable performance compared to state-of-the-art. Both models focus on offering the
required tradeoff between fast inference and high accuracy. In fact, they deploy a well-
studied channel reduction scheme that decreases considerably the cardinality without af-
fecting the performance.
Other models were introduced for optimizing the refinement of the segmentation output
such as RefineNet [28] and G-FRNet [29]. Both are able to produce densely labeled seg-
mentation for high-resolution input by effectively integrating contextual information. For
this, RefineNet uses a multi-path structure with long-range residual connections. It pro-
cesses data in multiple resolutions for each stage and then forwards the results to the next
one without loosing background context-based features. Unlike PspNet, RefineNet is much
less memory consuming and does not require dilated convolutions thanks to the residual
blocks fused by identity mapping. Similarly, G-FRNet is also effective in end-to-end label-
ing tasks for high-resolution inputs. It specifically addresses the problem of poor quality
caused by missing forward(-passed) information. It achieves this by interposing gated
feedback units in order to intercept this information and modulate its flow from encoder
to decoder. By only allowing the information necessary for segmentation, ambiguities be-
come easier to filter out which consequently improves the refinement quality. In [30], a
semi-supervised network for segmentation was introduced for the first time. The model
called Decoupled-Net does not approach the problem as a single task but decouples the
classification from the segmentation track. Each network branch is independently respon-
sible of its own task. They just communicate through a bridging layer where information is
passed. This flexible design makes it easier to employ separate pre-trained classification
networks for all available class regions previously estimated by the segmentation track and
communicated over the bridging layer.

Instance-level Semantic Segmentation

Instance-level semantic segmentation is a challenging classification problem, especially in
the context of autonomous driving. Unlike object detection that addresses the problem of
estimating bounding boxes encapsulating the objects of interest, instance segmentation
tends to exactly isolate independent objects. It consists of applying pixelwise labeling for
each independent entity (local segmentation) also within the same class to allow for proper
differentiation between objects (even if they belong to this same class).
Obviously, various methods tried to approach the problem as a two-stage task. First, a
region of interest (RoI) for every object is estimated to limit the processing area. Then,
a local segmentation procedure is applied within the RoI to extract and segment the ob-
ject of interest. Most of these methods such as [35] and [36] are based on the popular

25

2 Segmentation for Autonomous Driving

Region-based Convolutional Neural Network (R-CNN) [37] proposed by Girshick et al. for
estimating object RoIs as a first step. For the second stage, He et al. presented in [35] a
designed layer for properly aligning RoIs with extracted features. This layer produces no
misalignment artifacts since it does not rely on spatial quantization. In [36] a subcategory-
aware version of R-CNN is presented. Although the output is not exactly a segmented
object region, this approach incorporates subcategory information to improve region pro-
posals. It independently isolates objects, even if they belong to the same class, which
totally answers to the main requirement of instance segmentation.
Hayder et al. proposed in [38] a new approach to estimate object masks exceeding the
scope of RoIs estimated in advance by processing the data in the distance transform do-
main. The model called Object Mask Network (OMN) embraces a ResNet similar architec-
ture trained to perform boundary-aware instance segmentation.
In [39], Van den Brand et al. proposed a method for separating vehicles in the context of
autonomous driving scenarios. The approach is based on combining contour and object
detection. Likewise, [40] showed that combining instance-agnostic semantic segmenta-
tion and instance-aware boundaries (produced by separate subnetworks using a MultiCut
framework) allows for an effective instance separation. The Sequential Grouping Network
(SGN) presented in [41] by Liu et al. is a combination of subnetworks. One of these
predicts object breakpoints in vertical and horizontal directions, the second joins them to
produce connected components and the third fuses the resulting components into seman-
tically meaningful object instances. Moreover, Arnab et al. introduced in [42] a complex
architecture with two communicating modules. The first is responsible for producing initial
class-level semantic segmentation. The second uses these to perform instance separa-
tion based on CRF predictions combined with other available detection cues. Ren et al.
proposed in [43] a slightly different architecture consisting of four major modules (external
memory, box proposal network, segmentation network and the scoring network). It uses
LSTM units to simulate the recurrent human attentive process allowing for distinguishing
object instances. This recurrent neural network (RNN) does not holistically consider the
input. It performs segmentation in an iterative way considering inherent instances one after
the other like a temporal chain.
The model introduced by Uhrig et al. in [44] combines semantic with depth information
to segment instances. The scope around object centers is quantized into a set of angle
classes to define directions. Each pixel is then assigned to its corresponding instance de-
pending on its direction against the relevant center. Similarly, [45] proved that multi-tasking
training could benefit tasks jointly solved. In fact, Kendall et al. showed that weighting
the loss terms of jointly trained tasks based on the homoscedastic likelihood considerably
improves scene understanding e.g. depth estimation, class-level segmentation, instance-
level segmentation...
A simple approach inspired by standard watershed algorithm was proposed by Bai et al.
in [46]. It employs an end-to-end deep architecture to represent instances as separable
energy basins. The last energy level is generally cut away to enforce the separation be-
tween independent objects. In [47], Zhang et al. solve the task with a model that contains

26

2.3 The Proposed Approach: MokaNet

a densely connected Markov random Field (MRF). It performs instance segmentation by
exploiting joint information coming from previous CNN patch-based predictions, contrast-
sensitive smoothness cues as well as significant long-range connections from instances.

2.3 The Proposed Approach: MokaNet

The interesting potential of Convolutional Neural Networks (CNNs) in terms of perfor-
mance, robustness and low complexity in the context of scene understanding related to
autonomous driving scenarios is undeniable. For instance, standard classical approaches
are completely absent among to the top-level performing methods of semantic segmenta-
tion benchmarks such as Cityscapes [1]. Obviously, the margin between DL and classical
approaches is now so important that comparison is no longer fair. That is why, we propose
here a pure CNN-based solution for alleviating this problem.

2.3.1 Implementation Details

Architecture

The architecture of the convolutional network is the backbone of any supervised CNN-
based technique as the accuracy of the learned mapping between data and labels strongly
relies on it. To this end, we developed a multi-modular architecture which best suits our
application. The main used building modules are sub-networks inspired from the work we
introduced in [48] as a solution to the task of initial background estimation.

Before discussing the layout of the elementary building blocks, we first take a look at
the overall design of the introduced architecture. The main innovation we offer here in
terms of design is the concept of "cascade". This revolves around piling a set of similar
encoder-decoder networks in series in order to form a chain of successively connected
sub-networks. The recurrence of sub-networks proposed by our scheme is different from
the recurrence of RNN-models. The former is vertical seeking more depth of the pipeline
and the latter is horizontal seeking the replication of the network in temporal dimension
to parallelize the processing by using gated Long-Short Term Memory (LSTM) units. The
motivation behind our suggestion is the fact that applying changes and modifications
on deep architecture is a hard task. In fact, a small change in any layer can have an
important effect. In order to make it easy for the designer to control this, our architecture
allows him to target always a specific sub-network instead of considering the whole ar-
chitecture. From the implementation point of view, this is a huge advantage considering
that CNN training is a pure trial-error task. Obviously, our model offers more flexibility for
hand-engineering since the different building blocks could be independently accessed.
Moreover, this flexibility alleviates many further common problems faced during the training
of deep architectures such as escaping local minima. Clearly, the deeper the architecture
is, the higher is the probability to land in a local minimum. In fact, the optimization of
highly non-convex objective functions using complex parametric models can be seen as

27

2 Segmentation for Autonomous Driving

Figure 2.3: The MokaNet cascaded architecture.

an optimization problem in a very large parameter space fraught with "bad" local optima.
Modifying the design is one of many possible measures that can be taken to avoid this.
Moreover, the issue of gradient diffusion in deep networks could be also better tackled
through the cascading scheme. In fact, the back-propagation step is based on the deriva-
tive of the cost function calculated with respect to all network’s parameters. The update
of these parameters is then realized according to the resulting gradient values in every
iteration. If the structure is very deep, the back-propagated gradients will start to vanish

28

2.3 The Proposed Approach: MokaNet

gradually at a certain level till they reach the very early layers as almost zero. Conse-
quently, the affected layers will have their parameters hardly changed and end up not
learning properly. Our model offering intermediate loss layers for each independent block
is less eligible to the problem thanks to the reactivation effect realized at each of these
intermediate stations. Every time the gradients start to fade during back-propagation, the
loss of the next sub-network accordingly redresses them.
Taking these aspects into consideration, the final network we propose is designed like
"Matryoshka dolls" (the Russian nesting dolls). It is built as a set of stacked sub-networks
to form larger blocks that are themselves stacked over each other. After exhaustive ex-
perimentation and parameter tuning, the final structure looks as shown in Fig. 2.3. The
different blocks are exactly similar. Each one is formed by three stacked sub-networks.
The two first have 5 layers for convolution with spatial shrinking (using stride s > 1) in the
encoder part and the same number of symmetrical transposed convolutional layers (also
with stride s > 1) in the decoding stage. Each of the shrinking convolutions is followed by
two layers of flat convolutions with stride s = 1 except for the final one that is followed by
four ones.
Unlike the two first sub-networks, the third one is just a 3-depth paradigm. It comes
with 3 layers of spatial shrinking convolutions and 3 transposed convolutional ones in
encoder and decoder parts respectively. Similarly, two flat convolutions follow each spatial
shrinking one except for the last layer that is followed by four.
After the overview of the whole structure, let us move on to discuss the details (5-conv
sub-network as example). The design of all sub-networks was initially inspired by the
FlownNetSimple architecture proposed by Dosovitskiy et al. in [49]. It is indeed a two-
stage architecture as shown in Fig. 2.2. The encoder is composed of a succession of
convolutional layers. This generic stage extracts high level abstractions of the stacked
input images. It forwards the gained feature maps to the decoder stage in order to enhance
the coarse-to-fine transformations. This enhancement aims at recovering the details and
information lost through the different spatially shrinking convolutions. To achieve this,
the low resolution feature maps are successively up-sampled to finer representations,
achieving a dense per-pixel representation at the output which subsequently benefits the
nature of the segmentation task. However, To fully adapt the design to the specificity of our
applications, few modifications are additionally suggested. The main motivation behind
the introduced changes is to improve the quality of the feature maps during both encoding
and decoding stages. As shown in the final design in Fig. 2.4, this is achieved by taking
advantage of the redundancy gained from other layers by using additional concatenations
at each layer. This way, we combine multiple feature maps representing different high level
abstractions from previous stages and containing more information. Therefore, a wider
range of features is obtained which in turn enables a more efficient and faster optimization.
Likewise, the enforced redundancy improves the accuracy of the coarse-to-fine step dur-
ing each transposed convolution thanks to additional information. This strategy enables
a better recovery of fine details lost in low-resolution feature maps. In fact, importing
features from early stages where just few details were lost on processing, and adding

29

2 Segmentation for Autonomous Driving

d
ec

o
n

v6
_s
2

d
ec

o
n

v7
_s
2

d
ec

o
n

v5
_s
8

d
ec

o
n

v6
_s
4

d
ec

o
n

v6
_s
8

d
ec

o
n

v8
_s
2

d
ec

o
n

v7
_s
4

d
ec

o
n

v5
_s
8

d
ec

o
n

v4
_s
2

d
ec

o
n

v9
_s
2

d
ec

o
n

v8
_s
4

d
ec

o
n

v7
_s
8

d
ec

o
n

v6
_s
1
6

d
ec

o
n

v5
_s
8

d
ec

o
n

v4
_s
4

d
ec

o
n

v3
_s
2

co
n

v1
_s
2

co
n

v1
_s
4

co
n

v2
_s
2

co
n

v3
_s

8

co
n

v2
_s
4

co
n

v1
_s
8

co
n

v4
_s
2

co
n

v3
_s
4

co
n

v2
_s
8

co
n

v1
_s
1
6

o
n

v5
_c

s2

co
n

v4
_s
4

co
n

v3
_s
8

co
n

v2
_s
1
6

co
n

v1
_s
3
2

co
n

v4
_s
2

co
n

v3
_s
4

co
n

v2
_s
8

co
n

v1
_s
1
6

co
n

v3
_s
2

co
n

v2
_s
4

co
n

v1
_s
8

co
n

v2
_s
2

co
n

v1
_s
4

co
n

v1
_s
2

Encoder

1

2

3

4
5

6

7

8

9
10

11

Input Output

* (de)convK_sJ: (De)Covolution number K using
stride value J.

Decoder

Figure 2.4: Sample architecture of a single sub-network with depth 5 (5 different resolution levels).

them to later layers has the advantage of guiding the learning process to keep track of the
very fine details that are easily lost along such deep architectures. Such details are indeed
crucial for high quality refinement of the segmentation. To this end, we perform multiple
convolutions on each level of the encoder with varying settings (different strides). The
considered strides should be power of the fixed stride value ŝ = s(i; i+ 1) used between
any two consecutive convolution layers i and i+ 1. For instance, we consider m ≥ n as
the ranks of two non-successive convolutional layers in the architecture. To guarantee
that m-layer output has the same dimensions as the n-layer input, the used stride is set to
s(m,n) = ŝ(m−n). We concatenate the resulting feature maps to the inputs of the next layers
accordingly based on the respective dimensions. Similarly, we apply several transposed
convolutions on coarse feature maps from encoder and decoder and finally concatenate
them accordingly to the inputs of the corresponding transposed convolutional layers.
We introduce a loss after each scale level in both parts by always bringing the ground-truth
label to the same resolution of the layer’s output. The final loss is a weighted sum of the
different loss terms present in the architecture. The choice of the weighting factors was
empirically examined. In fact, a linear correlation between the weight allocated to the
intermediate loss and the number of the output feature maps given by the corresponding
layer is noticed. The more features are present, the higher should be the contribution of
the corresponding loss term to the final loss. The choice of the feature maps cardinality
was itself empirically set up. It obeys an exponentially ascending order for the encoder
part staring by 32 for the first level, 64, 256, 512 and 1024 to the other levels respectively.
The same numbers are used in the opposite order for the decoder part so that symmet-
rical levels in terms of dimensions equally contribute to the final loss function. In fact,
the deeper we go in the network the more details are eligible to be lost because of the
interpolation. That is why more feature maps are needed at each scale level to improve
the information encoding. However, if extremely large numbers are chosen, the size of

30

2.3 The Proposed Approach: MokaNet

the network (the number of parameters to optimize) increases drastically which requires
more resources for the training. Besides, a decrease in the generalization performance
is expected in this case due to potential over-fitting of the large model against the used
training data. Therefore, a reasonable choice of these numbers should be always made
based on a trial and error strategy with respect to the available resources at hand.
Ultimately, if we compare the same architecture with and without our proposed extra-links,
the former will present more parameters to learn while keeping the same number of filters
for each original scale level. Although this requires more resources, it clearly increases
the computational efficiency of the model and guarantees faster convergence during the
training phase.
At the time of joining the different sub-networks to form the overall architecture, we
interpose, as previously discussed, the layers performing the flat convolution between
the intermediate layers. The goal is to encode neighboring information into each pixel
without loosing further details because of striding. Together with the dense extra-links,
the flat convolution results in a strongly smoothed version of the information inherent
in the incoming feature maps. We have first tested these layers with low-level image
processing tasks such as de-noising, super-resolution and high dynamic range imaging.
They enhanced significantly the smoothing quality and the noise reduction. As we noticed
that refinement is needed in the context of segmentation as well, we applied the same
strategy there in order to enforce better aggregation especially during the decoding stage
where information recovery is performed.

Data Augmentation

For DL applications, data is a crucial pillar of the training procedure. Quantity as well as
quality are important aspects to take into consideration. In case of data shortage, it is
possible to generate processed augmented data from the available set synthetically. This
can be an efficient way to not only enlarge the training set but also to vary its content at
the same time.
Depending on the application, various operations could be applied on the training data in
order to augment it. Mainly, two types of data transformations were used to augment the
original training set for semantic segmentation (in total 3475 images = train + validation sets
of Cityscapes). The first category corresponds to the geometrical transformations. First,
image resizing is performed to bring down the resolution to 512× 256 due to memory
restrictions. For rotation, translation, scaling and horizontal/vertical flipping, we use the
spatial transformer network module [5] fed by the random generated affine matrix from
equation. 2.1 (Max and Min values for each transformation are pre-set by the user and the
values are randomly generated within the given interval during the training) to apply the
transformations on the fly during the training without need to create and store data locally.

31

2 Segmentation for Autonomous Driving

The random affine matrix generator produces a transform matrix

M =

[
a b c
d e f

]
(2.1)

this is applied on points of the input image grid to transform them correspondingly. As

an example, the transform of the point P =

 x
y
1

 of an input image with normalized

coordinates is the new point P′ in the augmented image defined by

P′ =
(

x′

y′

)
=

[
a b c
d e f

]
·

 x
y
1

 (2.2)

where c and f translation coefficients,

P′ =
(

x′

y′

)
=

[
1 0 c
0 1 f

]
·

 x
y
1

=

(
x+ c
y+ f

)
(2.3)

a and e are responsible for the scaling ratio

P′ =
(

x′

y′

)
=

[
a 0 0
0 e 0

]
·

 x
y
1

=

(
a · x
e · y

)
(2.4)

and a,b,c and d are used for counter-clockwise rotation by angle θ if

P′ =
(

x′

y′

)
=

[
a b 0
d e 0

]
·

 x
y
1

=

[
cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

]
·

 x
y
1

=

(
x · cos(θ)− y · sin(θ)
x · sin(θ)+ y · cos(θ)

) (2.5)

The discussed first category of transformations is expected to be applied on input and
ground-truth images simultaneously in order to keep the alignment. (For further details
on the STN module please refer to section 4.2.1 where implementation details are elabo-
rated).
For the second type of data augmentation called photometric, only input images are
considered. In fact, just low-level characteristics of the input images are modified without
content change that is why ground-truth labels are not updated. For this, we opt also
for online application. The considered transformations were, Gaussian noise addition
with a randomly generated variance in [0.01,0.05] , contrast modification with a factor in

32

2.3 The Proposed Approach: MokaNet

Intensity

P
ro
b
a
b
ility

0 255

1.0

I_in I_out

F_out()

F_in()
Randomly chosen points

Randomly Shifted points

0

Random Colour Mapping Augmentation

Figure 2.5: The random color-mapping image augmentation to generate images with different color
ranges.

[−0.6,0.3] , gamma value correction using values in [0.5,1] and brightness change with
variance in [0.1,0.3].
Moreover, we use additionally an offline color-mapping augmentation in the goal to
simulate different camera response functions. This varies the nature of the available
images and the characteristics of the treated signals. It enhances the generalization
capabilities of the model and guarantees more robustness in the case of tests images
recorded by different capturing systems. For each image, we calculate its histogram and
the resulting cumulative distribution function (cdf) Fin(). The expected output after the
augmentation step is an output image with a different cdf Fout() showing significant color
variations. After calculating Fin(), we randomly select four intensities Ik,k ∈ 1,2,3,4 on
the x-axis with their corresponding cdf values Fin(Ik),k ∈ 1,2,3,4 lying on the curve of
Fin(). Then, we randomly shift the resulting points along the y-axis within a specified
range [Fin(Ik)−0.5,Fin(Ik)+0.5]. Based on the resulting new points Fout(Ik),k ∈ 1,2,3,4,
we create the new cdf curve Fout() belonging to the expected transformed image using
the Bezier interpolation. After getting the cdf of the target image, we map every single
intensity based on the difference between the two curves. Let us assume we have input
intensity Iin, we calculate its image Fin(Iin), we project this value on the output cdf curve
and we project back the resulting value on the x-axis in order to get the mapped intensity
Iout as shown in Fig. 2.5. For each image in the training set, we randomly generate color
mapped versions following the previous procedure in order to enlarge the original training
dataset (example as in Fig. 2.6).
All discussed data transformations (geometric and photometric) are combined together
and moderately applied on available images to enlarge the original set and enrich its

33

2 Segmentation for Autonomous Driving

(a) Original sample input image (courtesy of [50]) (b) color-mapped image 1

(c) color-mapped image 2 (d) color-mapped image 3

(e) color-mapped image 4 (f) color-mapped image 5

Figure 2.6: Sample outputs of the color-mapping augmentation.

entropy without corrupting the content by causing extreme changes.

2.3.2 Experiments & Results

Training details

For all our experiments, we use the "cascaded" architecture, previously detailed, to per-
form the training. After a thorough experimentation phase, we decided to employ a cus-
tom version of Caffe [51] and make use of the Adam optimizer [52] with β1 = 0.9 and
β2 = 0.999. This optimizer, as defined by the authors, "is a gradient-based first-order opti-
mization approach that proved to be well performing and efficient for solving non-stationary
cost functions with noisy and/or sparse gradients. Besides, it is well suited for problems
that are large in terms of data and parameters and its hyper-parameters have intuitive in-

34

2.3 The Proposed Approach: MokaNet

terpretations and typically require little tuning".
The training is realized with batches of size 2 till the convergence, generally around 3.5M
iterations. The starting learning rate λ = 10−4 is progressively multiplied by a factor of 0.5
every 150K iterations. The used decay factor for the weights is δ = 10−4 and the gamma
value is γ = 0.5.

Class-level Semantic Results

As a starting point, we focus on performing class-level semantic segmentation in au-
tonomous driving scenarios using the previously discussed setup. For evaluation, we
consider the semantic segmentation benchmark of Cityscapes [1] as it offers the most
detailed ranking of the best performing DL models for urban scenes semantic segmenta-
tion.
Cityscapes presents a large scale stereo-vision dataset for semantic understanding of ur-
ban scenes recorded under different conditions in various cities around Germany. It offers
20000 weakly annotated images with coarse semantic segmentation labeling and 5000
images with high quality fine-annotated ground-truth. We focus rather on the fine-labeled
set of images that consists of 2975 frame for training, 500 frame for validation and 1525
frame for test. Up to 30 different classes categorized into 6 large object categories are con-
sidered for labeling Cityscapes’ segmentation ground-truth images (For detailed overview
please refer to the dataset labeling policy [1]). For the sake of simplicity, only the most
relevant and reasonably frequent traffic object classes (19 classes), from the application
point of view, are considered for evaluation and benchmarking.
Considering the available resources, training on images in their native resolution W ×H =
2048× 1024 is not possible. Therefore, we opt for resizing images and ground-truth la-
bels down to Wcrop×Hcrop = 512× 256 by keeping the same aspect ratio. We apply the
previously discussed data augmentations by adding 4 additional color-mapped images for
each frame to enlarge the set to 11900 images. Together with the online augmentations,
previously discussed, we train our model up to 3.5M iterations.
Once converged, the final model is used to generate results on images from the validation
set shown in Fig. 2.7 together with their given ground-truth labels and on images from the
test set as shown in Fig. 2.8 where no given ground-truth is available. The images shown in
Fig. 2.9 depict scenes recorded in China with a totally new landscape, weather conditions,
road signs to our model and the corresponding estimated output segmentation masks.
Aside from the visual assessment, we evaluate our results numerically on the validation
set of Cityscapes that consists of 500 resized to 512× 256 with their corresponding se-
mantic segmentation ground-truth labels. Results in Tab. 2.1, present a detailed numerical
evaluation of our model in terms of Intersection over Union (IoU) for each class separately
and the inter-class intersection over union (iIoU) averaged over the whole validation set.
The PASCAL VOC intersection over Union "IoU" measure [53] is an evaluation metric for
measuring the semantic segmentation accuracy against a pre-given ground-truth mask. It
is a ratio between two terms: The first term in the numerator corresponds to the area of

35

2 Segmentation for Autonomous Driving

overlap between the predicted class region and the region depicting the same class in the
ground-truth mask. The second term is the denominator and describes the union area of
the two same regions. The division of the two terms quantifies the similarity between the
estimate and ground-truth. It is written as:

IoU =
area(Best ∩Bgt)

area(Best ∪Bgt)
=

T P
T P+FP+FN

(2.6)

where, TP, FP, and FN denote the true positive, false positive and false negative counts
respectively. Best is the estimated area depicting a certain class and Bgt is the class area
in ground-truth label.
However as addressed in [54], it is known that the IoU measure is biased toward classes
with instances that occupy large image areas. In the case of strong scale variations, this
problem could corrupt the evaluation reliability for key classes such as for cars in our case.
An additional metric called instance-level Intersection over Union "iIoU" [54] is proposed to
evaluate the robustness of the segmentation accuracy against scale variations. Similarly,

iIoU =
iT P

iT P+FP+ iFN
(2.7)

where FP is again the number of false positives and iTP and iFN are numbers of true
positive and false negative pixels respectively. iIoU computes the weighted contribu-
tion of a every single pixel multiplied by the ratio of the class’ average instance with
respect to the size of the ground truth instance. Obviously, this measure is not computable
for all classes. Only classes with instance-level labeling in the ground-truth are considered.

In Fig. 2.7, visual quality of the output estimated semantic segmentation mask of our
designed model could be compared to the given ground-truth semantic segmentation la-
bels. Exclusively, only validation set images are considered. The model proves highly
performant on scenes recorded in different cities under various conditions despite being
trained on different images captured around other cities in Germany. This proves the gen-
eralization capability of the network on German traffic scenes and its ability to depict the
finest details including small, far and dark traffic signs (e.g. rows 3, 7 and 8) that are barely
visible with human eye and fine poles (e.g. row 1, 7 and 5) hard to detect. Moreover,
we denote the high quality segments of the important traffic component classes, namely
cars that represent our first targeted class-object for this project. In fact, results show that
cars are properly segmented (considering the given ground-truth) regardless differences
in colors, forms, models, distance and covered area in the image.
Previous observations can be confirmed by results displayed in Fig. 2.8 where a set of
images recorded in a third different set of German cities is considered. These images se-
lected from the test set of Cityscapes come indeed without publicly available ground-truth
to avoid potential parameter fine-tuning. As noticed, MokaNet performs well on the test
images. Car objects are equally well segmented and the segmentation quality of small far
objects is just as high as in the previous set. This gives a further proof about the model’s

36

2.3 The Proposed Approach: MokaNet

(a) Input frame (b) Estimated semantic segmentation mask (c) Ground-truth semantic segmentation la-
bel

Figure 2.7: Visual Evaluation on Cityscapes Validation Set: (a) Example frame selected from the
validation set of Cityscapes [1] (b) The estimated semantic segmentation (c) Ground-truth semantic
segmentation.

37

2 Segmentation for Autonomous Driving

robustness and the transparency of the used training procedure.
In the same regard, MokaNet has been challenged to perform on further images recorded
in total different environments. These present traffic conditions and characteristics that
are significantly different from German traffic. In fact, estimated results on exclusive im-
ages recorded by our colleagues in China are shown in Fig. 2.9. The results prove that
our model delivers high quality semantic segmentation despite the challenging scenario
of a totally different semantic context. This observation highlights the fact that the used
data augmentation strategy is considerably enriching and diversifying the training set. It
significantly improved the model robustness against new agents and unexpected seman-
tic contexts. Consequently, MokaNet is able to properly segment Chinese traffic scenes
despite the undeniable differences (the kind of vegetation, building style, the traffic signs’
language and shape, the vehicles’ models, shapes and forms).

In order to properly assess the MokaNet performance, we present in follows a quan-
titative evaluation of the Model’s performance on the 500 images of the validation set of
Cityscapes with resolution 512×256 using the pre-discussed IoU (Equation. 2.6) and iIoU
(Equation. 2.7) measures. Tab. 2.1 presents a detailed survey of the quantitative results
for each single object class (19 class). IoU is computed for all classes whereas iIoU is only
relevant for dynamic ones. Obviously, the most important traffic components especially
cars show high accuracy values using both measures. This can be related to the high fre-
quent occurrence of objects belonging to this class in the dataset and also to the important
number of pixels belonging to such objects relatively to the whole image. Under these con-
ditions, the learning process profits and the network is able to learn more features of this
specific class during training. This also explains the difference in terms of values between
the different classes. The more the network sees a certain class (in terms of frequency
and region size), the better is the learning output for this one.

If we consider the performance on the level of object categories (as proposed by the
Cityscapes labeling policy), then we get even better numerical evaluation since high fre-
quent classes make the balance with less frequent ones within the same category. Results
are reported in in Tab. 2.2. The vehicle category still has high accuracy using both IoU and
iIoU just behind the flat (road, sidewalk, parking, etc...) category which offers obviously
more learnable material (it is frequent in terms of occurrence and mostly occupy an impor-
tant region of each traffic scene).

Since vehicles and cars are highly prioritized in the context of the project, we specifically
examine the models’ performance for their accuracy. Tab. 2.3 shows the numerical results.
In fact, MokaNet outperforms all remaining models in terms of car segmentation accuracy
across the whole validation set. Resulting output images displayed in Fig. 2.10 prove
the same observation in terms of visual quality. Clearly, MokaNet is the best alternative
for autonomous driving semantic segmentation in comparison to other state-of-the-art DL
models with publicly available code.

In both tables Tab. 2.3 and Tab. 2.4, we extend our performance analysis by a quantita-
tive survey of best performing state-of-the-art CNN models for semantic segmentation that
has been trained and tested under the same configuration setup. This includes the training

38

2.3 The Proposed Approach: MokaNet

(a) Input frame (b) Estimated semantic segmentation mask

Figure 2.8: Visual Evaluation on Cityscapes Test Set: (a) Example frame selected from the test set
of Cityscapes [1] (b) The estimated semantic segmentation

39

2 Segmentation for Autonomous Driving

(a) Input frame (b) Estimated semantic segmentation mask

Figure 2.9: Visual Evaluation on China Images: (a) Example frames recorded in China (b) The
estimated semantic segmentation

40

2.3 The Proposed Approach: MokaNet

Class-object IoU iIoU

Road 0.975 —
Sidewalk 0.813 —
Building 0.887 —

Wall 0.502 —
Fence 0.479 —
Pole 0.484 —

Traffic light 0.403 —
Traffic sign 0.549 —
Vegetation 0.899 —

Terrain 0.706 —
Sky 0.904 —

Person 0.641 0.471
Rider 0.427 0.277
Car 0.897 0.856

Truck 0.748 0.397
Bus 0.779 0.507
Train 0.663 0.341

Motorcycle 0.362 0.119
Bicycle 0.542 0.484

Average 0.666 0.431

Table 2.1: Performance assessment for class-based semantic segmentation on the validation set
(500 image) of Cityscapes [1] with resolution (512×256) using MokaNet.

Categories IoU iIoU

Flat 0.979 —
Nature 0.900 —
Object 0.524 —
Vehicle 0.869 0.837

Sky 0.904 —
Construction 0.888 —

Human 0.658 0.493

Average 0.817 0.665

Table 2.2: Performance assessment for category-based semantic segmentation on the validation
set (500 image) of Cityscapes [1] with resolution (512×256) using MokaNet.

41

2 Segmentation for Autonomous Driving

Method IoUclass iIoUclass IoUcategory iIoUcategory Runtime[s]

Ours 0.666 0.431 0.817 0.665 0.06
SegNet 0.292 0.135 0.648 0.500 0.06
FrrnA 0.410 0.255 0.699 0.509 0.07
IceNet 0.114 0.049 0.312 0.190 0.04
FrrnB 0.419 0.284 0.733 0.561 0.07

FCN32s 0.405 0.205 0.633 0.420 0.08
FCN16s 0.324 0.231 0.589 0.357 0.06
FCN8s 0.358 0.161 0.604 0.369 0.08
LinkNet 0.270 0.124 0.596 0.453 0.07

UNet 0.247 0.231 0.507 0.488 0.07
PspNet 0.642 0.417 0.803 0.641 0.07
ResNet 0.623 0.408 0.765 0.628 0.06

Table 2.3: State-of-the-art comparison of semantic segmentation (averaged metrics across all
classes) CNN-based methods on the validation set (500 image) of Cityscapes [1] with resolution
512×256 (Implementation as courtesy of [3]).

Method IoUcar iIoUcar IoUvehicle iIoUvehicle Runtime[s]

Ours 0.897 0.856 0.869 0.837 0.06
SegNet 0.800 0.736 0.724 0.647 0.06
FrrnA 0.808 0.737 0.757 0.758 0.07
IceNet 0.198 0.392 0.216 0.379 0.04
FrrnB 0.788 0.739 0.777 0.836 0.07

FCN32s 0.761 0.662 0.735 0.650 0.08
FCN16s 0.704 0.603 0.688 0.566 0.06
FCN8s 0.738 0.616 0.712 0.601 0.08
LinkNet 0.674 0.650 0.642 0.584 0.07

UNet 0.370 0.564 0.596 0.553 0.07
PspNet 0.871 0.812 0.858 0.805 0.07
ResNet 0.852 0.813 0.812 0.793 0.06

Table 2.4: State-of-the-art comparison of semantic segmentation (Only car class and vehicle cat-
egory) CNN-based methods on the validation set (500 image) of Cityscapes [1] with resolution
512×256 (Implementation as courtesy of [3]).

42

2.3 The Proposed Approach: MokaNet

(a) 1.Scene (b) 2.Scene (c) 3.Scene (d) 4.Scene (e) 5.Scene (f) 6.Scene

Figure 2.10: Visual comparison of state-of-the art CNN models for semantic segmentation (Im-
plementation as courtesy of [3]) . From top row to bottom: 1. input frames 2. FCN8s’ output 3.
FCN16s’ output 4. ICNet’ output 5. FCN32s’ output 6. Unet’ output 7. LinkNet’ output 8. FrrnA’
output 9. FrrnB’ output 10. PspNet’ output 11. ResNet’ output 12. Ours’ output

43

2 Segmentation for Autonomous Driving

conditions such as the used set and the introduced data augmentations, and the testing
conditions such as the considered validation set, image resolution and framework.
Although, most models show more or less a comparable runtime performance of the order
of few milliseconds (50..70ms) for a single image in resolution 512×256, we note that ioU
and iIoU results averaged across all classes and over the whole validation set (500 im-
ages) show important differences. MokaNet indeed presents the best ioU and iIoU values
in comparison to other models in both the 19-class and the 6-category setups.

Instance-level Semantic Results

Like the class-level semantic segmentation, we consider the benchmark of Cityscapes [1]
for evaluation of the different models we propose for instance-level segmentation. In this
part, we restrict our focus on the car class as it represents the most significant class within
the scope of the project. The goal is to have proper separation between car entities. The
same proposed solution for cars can be extended over the remaining classes. However for
the sake of simplicity, we don’t cover this in our results discussion.
In the following, we list the different methods we tested for this goal, namely segmenting
different cars belonging to the same semantic class into independent instances. For evalu-
ation, the AP and AP50% measures introduced and well detailed in [55] and [56] have been
considered as main evaluation measures. AP is defined as the average precision for a
class divided across a pre-fixed range of overlap thresholds (50%,..., 90%) with a step of
5% (used in the goal to minimize bias effect towards a specific value). In other words, it is
the IoU value corresponding to a single instance. AP50% is the specific value for an overlap
threshold of 50%.

Mahalanobis-Distance Heat Maps Inspired by the watershed-based solution proposed
in [46] that consists of dividing objects belonging to the same semantic class into en-
ergy basins in order to separate the instances, we propose hereby a model able to divide
each object into different levels based on the corresponding Mahalanobis distance of pix-
els against their corresponding centroid. The labels generation procedure for this idea
starts with getting the mask of every car separately based on the instance ground-truth
information given by Cityscapes as polygon coordinates. The corresponding centroid of
each vehicle is defined at location

−→
Vc = (xc,yc). The Mahalanobis distance of each pixel

belonging to that vehicle is computed against the centroid. The first step is to select all N
pixel locations

−→
Vi = (xi,yi), i = 1..N belonging to a single object mask. The centroid

−→
Vc

calculated as a mean of all pixel locations is computed as:

−→
Vc = (xc,yc) with xc =

1
N−1

N

∑
i=1

xi, yc =
N

∑
i=1

yi ∀i = 1..N, (2.8)

44

2.3 The Proposed Approach: MokaNet

The corresponding covariance matrix for this set of pixel locations of the same car is given
by:

S =
1

N−1

N

∑
i=1

(
−→
Vi −
−→
Vc)

T (
−→
Vi −
−→
Vc) ∀i = 1..N, (2.9)

and the final Mahalanobis distance measure could be computed as:

DM(
−→
Vi ,
−→
Vc) =

√
(
−→
Vi −
−→
Vc)S−1(

−→
Vi −
−→
Vc)T ∀i = 1..N, (2.10)

We iterate over all cars present in each image of the training set. The minimum and
maximum distances across all the dataset are computed and the range between both is
divided into 20 equal intervals labeled correspondingly with specific ID-labels. We iterate
again over all vehicles, we check the distance of each pixel and we label it according to
its nearest interval. As shown in Fig. 2.11, the produced ground-truth label depicts only
vehicles present in the image as layered heatmaps of the Mahalanobis distance range
against the centroids.

(a) Input image (b) Generated ground-truth image

Figure 2.11: The Generation of ground-truth labels for car instance separation based on Maha-
lanobis heat maps.

After generating the ground-truth labels with distance heat maps for all 2975 input im-
ages of the Cityscapes training set, we apply resizing to Wcrop×Hcrop = 512× 256 reso-
lution. The same data augmentations previously discussed are applied in order to enlarge
the training set by adding 4 additional color-mapped images for each frame together with
the transformations applied on the fly during the training. A model with the same architec-
ture discussed previously is then trained up to 3.5M iterations.

Class AP AP50%

Cars 8.0 21.0

Table 2.5: Numerical evaluation of car instance separation using Mahalanobis heat maps on the
validation set (500 image) of Cityscapes [1] with resolution (512×256).

Numerical and Visual results are detailed in Tab. 2.5 and displayed in Fig. 2.12. Results
can be significantly improved that is why a new idea based on angular heat maps has been
used to extend the current model in the target to enhance the accuracy.

45

2 Segmentation for Autonomous Driving

(a) Input frame (b) Estimated output mask

Figure 2.12: Visual Evaluation on Cityscapes Test Set: (a) Example frames from test set (b) The
estimated output mask with the cars presented as heat maps based on the Mahalanobis distance

46

2.3 The Proposed Approach: MokaNet

Angular Heat Maps Representing the car instances as distance heat maps can encom-
pass meaningful information about the orientation of the vector between the pixel and the
centroid thanks to the covariance matrix inherent in the Mahalanobis equation. 2.10. How-
ever, a precise orientation can be more helpful for applying instance separation between
the cars.
Therefore, we decide to produce similar angular heat maps representing exclusively the
orientation range instead of the Mahalanobis distance. Likewise, we segment the angular
range around the center into independent intervals after setting up the clockwise direction
as our conventional processing direction. We consider the angle formed by each vector
relating a pixel belonging to a car with its corresponding centroid against the horizontal
plane (starting from degree 0). We label it according to its nearest interval (see example
in Fig. 2.13).
In association with the Mahalanobis distance, this information about the angular orienta-
tion can help better decide to which car a certain pixel belongs especially if it lies in the
area between two different centroids. We also considered the assumption that a model
getting both information types simultaneously can learn much more effectively to assign
each pixel to the corresponding car instance based on distance and orientation.
The exact same training set up is used (architecture, data augmentations, training param-
eters, etc...). The only difference is that each input image to the network is now given a
pair of ground-truth labels instead of one. The expected output is a pair of images with
heat maps for distance and orientation. A Euclidean L2-norm Loss function is minimized
for both outputs. The estimated results on test set images are shown in Fig. 2.14

(a) Input image (b) Generated ground-truth image

Figure 2.13: The Generation of ground-truth labels for car instance separation based on angular
heat maps

As shown by the results in Tab. 2.6 and Fig. 2.14, the double output delivered by the
new model requires an additional processing step. Information extracted from both outputs
needs to be combined together in order to properly assign a given pixel to the correspond-
ing car instance. Since an end-to-end car instance segmentation is required, alternative
methods harnessing the car shapes and forms are to be explored.

47

2 Segmentation for Autonomous Driving

(a) Input frame (b) Estimated output mask for angular heat
maps

(c) Estimated output mask for distance heat
maps

Figure 2.14: Visual Evaluation on Cityscapes Test Set: Car instance segmentation based on both
distance and angular heat maps

48

2.3 The Proposed Approach: MokaNet

Class AP AP50%

Cars 9.0 26.0

Table 2.6: Numerical evaluation of car instance separation using distance and angular heat maps
on the validation set (500 image) of Cityscapes [1] with resolution (512×256).

Concentric Contours In order to assure an end-to-end car instance segmentation, ad-
ditional processing steps after the model application are to be avoided. That is why, the
previous solution seems not relevant to the project requirements. As an alternative, we opt
for a different direction based on defining the independent car instances as a concentric
representation of the contours around their according centroids. In other words, we repre-
sent each car as a layered structure of concentric scaled versions of itself. Contours of all
these versions are centered around the same original car centroid. However, we decide
to divide the range into just two intervals and use only two levels of contours in order to
simplify the problem to binary classification. The first level is the car scaled around the
original centroid at a factor of f = 0.95. This is labeled as the first class. The second class
consists of all pixels belonging to the range between the contour of the first class and the
original contour at level f = 1.
For generating the new ground-truth labels of the Cityscapes training set, we proceed as
before. We start with computing the centroids of all car instances through the complete
training set based on the given polygon points (see Equation. 2.8). Then, each car in-
stance is scaled around its centroid with a factor of f = 0.95. All pixels belonging to the
scaled version are labeled as first class whereas all remaining pixels of the original object
mask are labeled as second. An example of the produced output ground-truth labels is
shown in Fig. 2.15

(a) Input image (b) Generated ground-truth image

Figure 2.15: The generation of ground-truth labels for car instance separation based on concentric
contours.

Similarly, the training procedure is absolved following the same setup as in the previous
experiments. Results on the Cityscapes test images are shown in Fig. 2.16.

As an exploration step, we reproduce the training of two different models where one of
the classes is each time considered as background. The motivation is to examine if this dif-
ference affects the car instance segmentation accuracy. Visual results from Fig. 2.17 show

49

2 Segmentation for Autonomous Driving

(a) Input frame (b) Estimated output mask

Figure 2.16: Visual Evaluation on Cityscapes Test Set: (a) Example frames from test set (b) The
estimated output mask with the cars presented as concentric contours.

50

2.3 The Proposed Approach: MokaNet

the estimated outputs for each model respectively, while Tab. 2.7 details the numerical ac-
curacy comparison between both models. For the first one, the inner class is considered as
background, and in the second the outer range is labeled as such. Obviously, performance
comparison reveals that learning the outer range as foreground is slightly more efficient for
instance separation. In this case the outer range of the cars includes the edges. Gradient
changes are then more important and subsequently easier to identify, learn and encode
as high features through the encoding part of the used architecture.

Model Class AP AP50%

Model 1 Cars 12.0 31.0
Model 2 Cars 11.0 30.0

Table 2.7: Numerical evaluation of car instance separation using concentric contours on the vali-
dation set (500 image) of Cityscapes [1] with resolution (512×256).

51

2 Segmentation for Autonomous Driving

(a) Input frame (b) Estimated output model-1 (c) Estimated output mask model-2

Figure 2.17: Visual Evaluation on Cityscapes Test Set: Car instance segmentation based concen-
tric contours differently labeled. Model-1 inner range is background and Model-2 the outer range is
background.

52

2.3 The Proposed Approach: MokaNet

Semantic Segmentation With Blended Car Edges Referring to the observations
gained through the previous experiment, we focus specifically on harnessing the car se-
mantic edges in order to separate the car instances. Edges, where gradient changes
are more important, prove to be better learnable features to our architecture. We rely as
well on the fact that this same architecture proved efficient in terms of class-level seman-
tic segmentation. Therefore, we propose to combine both aspects to solve the instance
segmentation problem by considering the fullest potential of the architecture at both exper-
iments.
Although this new idea about blending car edges into semantic segmentation labels seems
straight forward, the challenge resides in the generation of ground-truth labels. We first
consider the semantic segmentation ground-truth already available. Then, we process car
instance polygons provided by the dataset to create labels containing semantic edges for
all cars. Both images are correspondingly blended into each other. An additional new
class for car edges with an independent ID is added to the semantic segmentation ground-
truth. In other words, all semantic classes are well preserved except for the car class that
is segmented into disconnected instances separated by an additional new class called
"car edges". The training procedure using the newly generated ground-truth remains a
classification task where just the number of classes has incremented in comparison to
the experiment about semantic segmentation. This way, we manage to have a proper se-
mantic segmentation of the input image depicting a urban scene and additionally a proper
separation of the inherent car instances at the same time.
After generating the ground-truth labels, we apply the same data augmentation used in
the previous experiments for training. Once converged, the model is again tested on ran-
dom test images of Cityscapes (results are shown in Fig. 2.18). The estimated outputs
show semantically segmented images with additional separation between the different car
instances. This car instance segmentation is an important initial step towards potential
filtering of moving cars needed in later project stages. Despite the abundant number of
cars in the considered test scenes, the model is able to realize an efficient distinction.
Additionally, our model is be able to segment cars having similar colors and shapes from
each other despite occlusion and superposition (see Fig. 2.18). It is as well obvious that
the model is particularly aware of the aimed scenario. In fact, it is able to semantically
segment all objects into semantic classes while performing instance-level segmentation
just for cars.

Always in the goal to challenge the model robustness, we test it on random images
selected from other datasets that it has never been acquainted with. The new datasets
present the extreme scenarios with new environments and landscapes captured in other
countries under different conditions with various cameras. Fig. 2.19 displays results on
sample images from the extra data made available by Cityscapes. Although recorded in
Germany, these images depict new cities that are not available in none of the training, test-
ing and validation sets of the original setup. MokaNet indeed is just as performant on these
images as with the original test set (Fig. 2.18). Similarly, it shows comparable visual qual-
ity with images recorded in USA from the BDD100K dataset [4] (see Fig. 2.20) and from

53

2 Segmentation for Autonomous Driving

(a) Input frame (b) Estimated output mask (c) Input frame with blended car instances

Figure 2.18: Visual Evaluation on Cityscapes Test Set: (a) Example frames from test set (b) The
estimated output mask with the car instances separately isolated (c) estimated transparent car
instances blended onto the input frame.

54

2.3 The Proposed Approach: MokaNet

our own recorded images in China (see Fig. 2.21) despite the significant environment and
landscape differences. This highlights the robustness of the model trained only on German
traffic images and gives a further confirmation about the efficient training procedure pro-
posed including the heavy data augmentation. The comparison against best performing
state-of-the-art methods from the Cityscapes benchmark with available public code shown
in Tab. 2.8 confirms that MokaNet lands in second position after PolygonRNN++ introduced
in [57] despite our much simpler structure.

Method Class AP AP50%

MokaNet Cars 16.0 40.0
Multitask Learning Cars 15.8 25.0

SIS with a Discriminative Loss Function Cars 13.0 31.1
PolygonRNN++ Cars 25.4 45.0

Table 2.8: Car Instance Segmentation: The evaluation of our approach MokaNet against state-of-
the-art on the validation set (500 image) of Cityscapes [1] with resolution (512×256).

55

2 Segmentation for Autonomous Driving

(a) Input frame (b) Estimated output mask (c) Input frame with blended car instances

Figure 2.19: Visual Evaluation on Germany Images: (a) Example frames from the "Trainextra"
Cityscapes set (b) The estimated output mask with the car instances separately isolated (c) esti-
mated transparent car instances blended onto the input frame.

56

2.3 The Proposed Approach: MokaNet

(a) Input frame (b) Estimated output mask (c) Input frame with blended car instances

Figure 2.20: Visual Evaluation on USA Images: (a) Example frames from the BDD dataset [4] (b)
The estimated output mask with the car instances separately isolated (c) estimated transparent car
instances blended onto the input frame.

57

2 Segmentation for Autonomous Driving

(a) Input frame (b) Estimated output mask (c) Input frame with blended car instances

Figure 2.21: Visual Evaluation on China Images: (a) Example frames from China recorded frames
(b) The estimated output mask with the car instances separately isolated (c) estimated transparent
car instances blended onto the input frame.

58

3 Multi-tasking With Supervised
Applications: The Segmentation Effect

3.1 Motivation & Related Works

Focusing on optimizing a particular metric is generally enough to achieve reasonable per-
formance, it is however likely that additional information could significantly improve the
outcome. Extra information about related tasks to the one at hand can be of high con-
tribution to accelerate and enhance the convergence. Shared representations between
tightly related applications are likely to allow for better generalization of CNN models. The
transfer of shared features between tasks introduces a kind of inductive bias that enlarges
the hypothesis space. In fact, a model that performs well for a sufficiently large number
of training tasks, is likely to perform well in learning novel ones coming from the same
environment and drawn from the same distribution [58]. In DL, we refer to this concept as
"multi-Task learning" or "multi-tasking". It revolves around the fact that a certain model is
trained to perform a multitude of related tasks simultaneously such that they benefit from
each other during training.
In the context of scene understanding, depth/disparity estimation and semantic segmen-
tation seem to be perfect candidates for such approaches. More specifically, the growing
interest in autonomous driving technologies made both tasks core research topics. Both
are crucial for understanding and analyzing the actual environment surrounding the au-
tonomous vehicle. The idea is then to explore the effect of combining the learning of
semantic segmentation and depth estimation features. How beneficial could it be to jointly
learn both tasks simultaneously? In particular, how does high quality segmentation affect
depth estimation in such cases?
In reality, various research works tried to address similar questions. The recent work by Ja-
fari et al. [59] proposes a modular network architecture that jointly solves depth estimation
and semantic segmentation given a single image input. Their solution put a specific focus
on the analysis of the the cross-modality’s influence on the joint refinement of both tasks
rather than quantifying the accuracy improvement. The proposed architecture fuses state-
of-the art results for depth estimation [60] and semantic labeling [21] by properly balancing
the cross-modality influences between both outputs. Wang et al. presented in [61] a unified
model to jointly predict depth and segmentation. It produces fine-level detailed estimations
by decomposing the input into local segments for region-level prediction od depth and seg-
mentation under the guidance of a global layout. The final inference problem is formulated
as a two-layer Hierarchical Conditional Random Field (HCRF) to produce the final depth

59

3 Multi-tasking With Supervised Applications: The Segmentation Effect

and semantic maps. The approach introduced in [62], addresses the task of joint infer-
ence of 3D scene structures and the semantic labeling of monocular videos by deriving a
Conditional Random Field (CRF) model defined in the 3D space. The model is expected
to jointly convey the semantic category and occupancy of voxels. More informed priors
and constraints are then acquired, which is otherwise not the case if solved separately.
Similarly, Mousavian et al. [63] show that combining depth and semantic segmentation
cues can improve depth estimation and/or semantic segmentation performance in indoor
scenarios. They propose an approach where semantic segmentation and depth estimation
are jointly estimated from a single RGB input. Their architecture has two separate main
modules. Each one is responsible for solving a single task corresponding to a pre-defined
proper loss function. Moreover, Hazirbas et al. in [64] achieved interesting performance
improvement by combining depth and segmentation processing in the encoder part de-
spite the average depth quality produced by the Kinect. The FuseNet model, extracts
features from RGB and depth and fuses them into RGB feature maps as the network goes
deeper. This fusing proved indeed beneficial for the refinement quality of the segmentation
task in particular. In the other hand, Zhang et al. tackled the problem of instance-level
segmentation coupled with depth ordering from single image inputs. Using an end-to-end
model, they produce instance-level image segments where the ID of each object encodes
the depth ordering. Kendall et al. in [45] use a multi-tasking network able to solve seman-
tic segmentation, depth estimation and instance level segmentation at once. Their model
harness uncertainty-based weighting between loss terms corresponding to different tasks
in the target of improving the understanding of autonomous driving scenes. In fact, they
prove that combining these tasks ensures better agreement between the separate outputs
while reducing computation at the same time. Following the same path, Uhrig et al. [44]
presented an approach that leverages a classification model to predict semantic labels,
depth and instance-based encoding using each pixel’s direction towards the correspond-
ing object center. Moreover, the solution in [60] addressed successfully three tasks with a
unified model architecture. They are able to predict depth, surface normals, and semantic
labeling. Yamagushi et al. combined even the solving of four tasks with their slanted plane
model [65] for jointly recovering segmentation masks, dense depth estimates, flow predic-
tions as well as boundary labels (such as occlusion boundaries) from a static scene given
a stereo pair captured from a moving vehicle. The solution is an optimization algorithm
for a SLIC-like objective which preserves connectedness of image segments and exploits
shape regularization in the form of boundary length.

3.2 Multi-objective Optimization: Theory and Background

In order to evaluate the advantage of multi-tasking models in comparison to standard single
ones, we need to take a look at the core design idea shared by most of the aforementioned
works. Obviously, a CNN is an optimization tool. The set of parameters to optimize are the
layer weights and biases and the target function is the pre-defined objective (cost, residual)

60

3.2 Multi-objective Optimization: Theory and Background

0 ϴ

Gradient Descent Optimization

J(ϴ)
J(ϴ)

Δ

(Local)
minimum

ϴ_opt

J(ϴ)

ϴ0 ϴ_opt

2D-View 3D-View

Figure 3.1: The gradient descent optimization strategy.

of the model.
For solving tasks using CNNs, we define the objective function J(θ) as the mapping we
want to estimate from the training data. θ is the vector of learnable network parameters.
The goal is to find the optimal θ (set of parameters) that minimizes the function J(θ) and
generalizes the best over the available training set. In order to reach this, different gradient
descent strategies can be adopted to keep updating the initial randomly initialized θ until
the minimum of cost function J(θ) is found. If convexity is assumed, such procedure can
be imagined as an iterative descent walk down a hill (simulating the function). The learning
rate η defining the relative intensity of the weights update after each iteration is the step
size we take each time on the way down towards the end (minimum). For each iteration,
different directions stand open for taking a step. Hence, a proper direction choice must
be taken to optimize the journey. The straight forward pick in our case is to keep always
targeting the bottom of the hill. This is the role of the term −∇θ J(θ+) that describes
the steepest descent direction at a certain point θ+. To sum up, we can formulate the
minimization problem as:

θ+ = argmin
θ

J(θ) s.t θ ∈ Rn (3.1)

A new point θ
k+1
+ is computed after every step k until the optimum is reached using the

update formula:
θ

k+1
+ = θ

k
+−η ·∇θ J(θ+) (3.2)

Typically, the objective function J(θ) defines the average loss L over a given training
set TrD. The mathematical description of a certain task can be written as f (x,θ) that is

61

3 Multi-tasking With Supervised Applications: The Segmentation Effect

dependent on the given input x and network parameters θ at a specific iteration. Addi-
tional terms independent from θ are potentially inherent in L as well. These can be the
ground-truth value y in the case of supervised learning or an other θ -free term in case of
unsupervised applications. For instance, if we consider the optimization of our semantic
segmentation problem, the corresponding objective function could be written as:

J(θ) = ETrD
{

L(f (x,θ),y)
}
= L1(θ) (3.3)

where L1 is the loss term corresponding to the optimization of the semantic segmentation.
However, optimization problems involving more than one single task could be differently

formulated. In reality, there are different alternative ways to approach this.
Such type of problems is generally referred to as multi-objective optimization also known
as multi-criteria, Pareto, multi-attribute, multi-performance or simply vector optimization.
It is a mathematical problem addressing the simultaneous optimization of more than one
objective function. In other words, it is a tool for treating complex systems by concurrently
optimizing several criteria at once. The basic formulation is:

argmin
θ

J(θ)T = argmin
θ

(L1(θ), L2(θ), ..., Ln(θ)) (3.4)

In fact, the objective function to be minimized is not a scalar anymore but of vector form
and can be written as:

J(θ) =

L1(θ)
L2(θ)
· · ·

Ln(θ)

 (3.5)

Understandably, there is not necessarily a single solution that simultaneously optimizes
each objective but rather a set of different possible trade-offs. In the case of functions with
different minima, a solution is reached when no objective function can be optimized with-
out degrading the others. The solution establishes then an trade-off between the different
objectives and it is called efficient or pareto-optimal. Finding the pareto optimal set with
all possible efficient solutions depends tightly on the formulation and the initial set up of
the optimization problem. Several methods have been suggested to solve such complex
optimizations.
According to multi-objective optimization literature e.g. [66] [67]..., the most intuitive ap-
proach to address such problems is the classical method based on function scalarization.
For this, a vector function is transformed into a scalar one involving the weighted single
objectives combined as a global criterion.
let us assume we have n tasks with their corresponding loss terms L1,L2 · · ·Ln respectively.
In order to optimize all functions simultaneously using the scalarization method without pri-
oritizing any of the tasks, we can reformulate the global objective function J(θ) describing
the new problem as a weighted summation of all loss terms:

J(θ) =
n

∑
i=1

αi Li(θ) = α1 L1(θ) + · · · + αn Ln(θ) (3.6)

62

3.3 Cooperative Optimization For Disparity Planes Estimation And Semantic Segmentation

The resulting joint function is the substitute model for the vector optimization problem
described by equation. 3.5. It consists of agglomerating the different independent criteria
Li(θ) into a single convex one. Appropriate weights αi ≥ 0,∀i = 1, ...,n are assigned to
each single term in order to combine them in a weighted sum. If all tasks are equally
prioritized, then the weighting factors shall be equal α1 = α2 = ... = αn. In the case of
a higher prioritized task, a higher factor is assigned to this particular one. Ultimately, the
reformulated problem can be approached as a single scalar objective function. To solve it,
standard optimization can be performed. The reformulated problem is defined as:

argmin
θ

n

∑
i=1

αi Li(θ) (3.7)

As we restrict ourselves to the case of equally prioritized tasks, the corresponding loss
terms of the different tasks are always equally weighted all along this research work. In
other words, no preference is accorded to semantic segmentation in respect with other
applications when performing multi-tasking.

3.3 Cooperative Optimization For Disparity Planes Estimation
And Semantic Segmentation

3.3.1 Disparity Planes Estimation

Method Description

The required project specifications previously discussed offer the possibility to consider
many important additional image cues for improving urban scene understanding applied
on autonomous driving applications. In the previous chapter, we discussed the seman-
tic segmentation on class and instance-levels. With the stereo-recording setup that the
project requirements specified, interesting perspectives can be additionally considered.
Obviously, the most important aspect about stereo-vision is the triangulation concept. This
revolves around determining points in 3D space given their projections onto two or more
images. The absolute three-dimensional location of a point is also called depth. Once
projected under different perspectives, this information can be estimated considering the
difference between the locations of the projections. This relative difference called dis-
parity is proportional to the 3D real world information (depth). Therefore in the context
of stereo-vision, referring to one of the concepts is necessarily referring to the other as
they are inversely proportional. However, the question that persists in our regard is, how
is it possible to incorporate this additional source of information together with semantic
segmentation in order to improve scene understanding? More specifically, how can the
estimation of depth/disparity benefit from high quality semantic segmentation?
In stereo vision, the perception of depth arises from the disparity of a given 3D point which

63

3 Multi-tasking With Supervised Applications: The Segmentation Effect

(a) Left input image (b) Right input image

(c) Input segmentation mask for left image (d) Output: disparity planes ground-truth label

Figure 3.2: The ground-truth generation process for disparity planes estimation (left view)

is again the distance between the point projections onto the two images when superim-
posed. In general, the disparity Z and depth D relates to each other as:

Z =
f B
D

(3.8)

with f focal-length and B the baseline are two pre-fixed constants.
Underpinned by this proportionality, we can rely on the disparity information that we gain
from the stereo-vision setup to have an idea about the 3D world. After exploring the seman-
tic segmentation aspect, the first step to combine this with the disparity cue is to consider
the relative distance between segments corresponding to the same object in two stereo
images. This task we call it disparity planes estimation as it considers each object to have
a constant average disparity value and therefore lying in a single independent depth plane.

In order to estimate disparity planes, a stereo image pair is required along with the
segmentation mask for one of them. Each single segment in the given mask is expected
to be found in the opposite image. Once this is done, the displacement can be directly
estimated which subsequently means that the corresponding disparity plane is defined.
Let us assume we have a left image Il and a right one Ir that are given. We assume
also that the semantic segmentation mask Sl for the left image is given with N segments
si, i = 1..N depicting differently labeled semantic classes. We can define si as the set
of coordinate pairs for pixels belonging to the same class i. Assuming that the range
of disparity values is pre-known D = {0, ...,dM−1} with M possible disparity levels, we
consider a segment si = {(xk

i ,y
k
i) | Sl(xk

i ,y
k
i) = i, k ∈ {1..K}} with K pixels belonging

to the same class and having corresponding coordinate pairs (xk
i ,y

k
i). We calculate the

corresponding mapped set:

sd
i = {(xk

i +d,yk
i) | k ∈ {1..K}, d ∈ D}

64

3.3 Cooperative Optimization For Disparity Planes Estimation And Semantic Segmentation

This corresponds to the sliding of the segment points along the x-axis using a single dis-
parity value d ∈ D. We calculate the resulting photometric error between pixels with coor-
dinates (xk

i ,y
k
i) belonging to the region defined by si in the left image Il and pixels defined

by sd
i in the right image Ir as:

ek
i (d) = ||Il(xk

i ,y
k
i)− Ir(xk

i +d,yk
i)|| | d ∈ D,k ∈ {1..K}, i ∈ {1..N} (3.9)

The averaged photometric error over the whole segment si is defined as:

eaver
i (d) =

1
K

K

∑
k=1

ek
i | d ∈ D, i ∈ {1..N} (3.10)

The best disparity value d producing the minimal average error eaver
i (d) is considered as

the relative constant disparity for this segment (see example in Fig. 3.2).
Going through all the segments within the image, the produced output should be a kind
of disparity map where each segment has a single constant disparity value defining its
relative displacement between the two images. That is why, we can consider the approach
as a sort of disparity ordering/layering algorithm. The advantage of the generated output
is that it first sustains semantic separation between the objects. Second, the information
encoded by the ID-labels (single disparity value) for each segment gives an approximate
estimate of the real-world distance of the scene objects.

Training Setup

Referring to the described procedure, we generate the set of ground-truth labels of all
Cityscapes training images for the task of disparity planes estimation. We harness the
instance-level ground-truth available for each stereo pair. We apply the previous proce-
dure to generate the new labels for all left views. The final resulting dataset consists of
2975 input pairs for training and 500 pair for validation. All pairs get their correspond-
ing disparity planes ground-truth labels for left views generated. For testing, no instance
ground-truth information is available. That is why, disparity planes ground-truth cannot be
generated.
Similarly to experiments in chapter 2, we opt for the same data augmentation strategy in
order to enrich our training set by adding 4 additional color-mapped stereo pairs for each
original one. For training, the final set contains 11900 pairs and the same online augmen-
tations previously used are applied. The only difference is that consistency between image
pairs should be maintained. In fact, the same set of transformations is applied each time
on both input images without difference.
After creating the dataset, we design the CNN for the new application. Obviously, we opt
for the same cascaded MokaNet architecture (Fig. 2.3). In this case, the input is a stereo
pair and the output is the estimated disparity planes mask. We consider the same setup
for training, namely Caffe [51] with Adam optimizer [52] where β1 = 0.9 and β2 = 0.999.

65

3 Multi-tasking With Supervised Applications: The Segmentation Effect

Batch size is 2 and maximum iteration is 3.5M. The starting learning rate λ = 10−4 is
progressively updated by a factor of 0.5 every 150K iterations. The used decay factor and
the gamma value are again δ = 10−4 and γ = 0.5 respectively.

Results

After training, the final model is deployed on test images of Cityscapes. Visual results are
shown in Fig. 3.3 with the input stereo pairs and their estimated disparity planes outputs.
Numerical results on the validation set are depicted in Tab. 3.1. We consider several
metrics from prior works in the context of depth/disparity estimation in order to evaluate
the model performance.
let us assume the evaluation of a certain image I against its ground-truth Ī (with N total
number of pixels, xi and yi are coordinates along x and y-axis respectively). The used
metrics could be summarized as:

• Abs Relative difference:
1
N ∑

xi,yi

|I(xi,yi)− Ī(xi,yi)|
Ī(xi,yi)

• Squared Relative difference:

1
N ∑

xi,yi

||I(xi,yi)− Ī(xi,yi)||2

Ī(xi,yi)

• RMSE: √
1
N ∑

xi,yi

||I(xi,yi)− Ī(xi,yi)||2

• RMSE (log variant): √
1
N ∑

xi,yi

||log(I(xi,yi))− log(Ī(xi,yi))||2

• Mean Log10:
1
N ∑

xi,yi

|log10(I(xi,yi))− log10(Ī(xi,yi))|

• Threshold: % of pixels s.t max(I(xi,yi)
Ī(xi,yi)

, Ī(xi,yi)
I(xi,yi)

) = δ ≤ thr

Visual and numerical results confirm that our final model is able to approximate the
mapping between input (left and right images) and ground-truth (disparity planes labels)
despite its complexity. However, results show that estimating disparity planes is more
challenging than learning semantic segmentation. Despite using the same training setup,

66

3.3 Cooperative Optimization For Disparity Planes Estimation And Semantic Segmentation

(a) Left input frame (b) Right input frame (c) Estimated output disparity planes mask
for left view

Figure 3.3: Visual Evaluation on Cityscapes Test Set: (a)&(b) Example stereo frames from test set
(c) The estimated output mask for disparity planes

67

3 Multi-tasking With Supervised Applications: The Segmentation Effect

visual comparison of output quality shows that the same architecture performs better in
semantic segmentation than disparity planes estimation. The quality difference and the
relative poor performance proven visually and numerically for this experiment can be ex-
plained by the complexity of the mapping at hand compared to the previous experiment.
In fact, this does not only consists of segmenting objects but also requires a geometrical
approximation for estimating their displacements between left and right views.
Moreover, the quality of the used ground-truth labels can be a weak point for this exper-
iment. The nature of the ground-truth generated is indeed approximate. The previously
detailed procedure for generating disparity planes masks has been conceived as an exper-
imental trial to examine the behavior of CNN models with such highly complex tasks. More
specifically, the motivation behind the experiment was initially to combine segmentation
and stereo-related cues without focusing on the ground-truth accuracy. We mainly aimed
to prepare an experimental setup to test the effect of combining the semantic segmenta-
tion with stereo-related tasks and explore the full potential of multi-tasking when proper
semantic segmentation is available. For this, the current results of our experiment should
obviously fulfill this role regardless the quality.

Method Abs Rel Sq Rel RMSE RMSE log Log10 δ < 1.25 δ < 1.252 δ < 1.253

Disparity Planes (DP) 0.0314 0.6350 9.3132 00.5377 0.1056 0.6386 0.8450 0.8891

Lower is better

Higher is better

Table 3.1: Numerical evaluation of disparity planes estimation on Cityscapes validation set with
resolution (512×256)

3.3.2 Disparity Planes Estimation & Semantic Segmentation

Introduction

In order to examine the effect of segmentation on the disparity planes estimation, we de-
sign a complex multi-tasking architecture for learning both tasks simultaneously. First, this
model contribute to the improvement of scene understanding as it delivers not only se-
mantic segmentation outputs but also an estimate of the disparity ordering of the scene.
Besides, it allows for an evaluation of cooperative multi-objective optimization against stan-
dard single methods. Finally, it gives us insight on the effect of associating semantic seg-
mentation to a supervised stereo-related application within a multi-tasking framework. In
this experiment, the assumption that high quality semantic features are likely to boost
learning stereo cues is to be examined and verified based on quantitative and qualitative
evaluation.

68

3.3 Cooperative Optimization For Disparity Planes Estimation And Semantic Segmentation

Proposed Approach

In order to examine the merits of joint disparity planes estimation and semantic segmen-
tation, we design a customized architecture inspired by the model previously used in our
experiments (MokaNet). However, the new model we propose in Fig. 3.4 has a bifurca-
tion at the end of the encoder where two decoders instead of a single one are connected.
Each one is responsible for decoding features corresponding to a single application. The
estimated output of the first track is the disparity planes estimate while the second track
is for the semantic segmentation. The model fuses information coming from both tasks all
along the encoding part but separates these during the recovery phase so that every loss
term is optimized independently.
The motivation behind the described design is that shared encoder features carry more

Figure 3.4: The proposed architecture for cooperative optimization (multi-tasking CNN): Joint dis-
parity planes estimation and semantic segmentation

information and details in comparison to features learned for a single application. By con-
sidering two tasks, the learning process has access to a larger pool of information. Math-
ematically, the back-propagation step responsible for the update of the network’s weights
propagates gradients from both tracks in the reverse way. Hence, the encoder shared
weights undergo the effect of both optimization problems at the same time during every
back-propagation step. If both tasks are tightly related, richer feature maps with better
encoded information at the end of the constructive part are gained. If this is the case, the
decoding part will experience as well a quality improvement in terms of recovered details.
For training, we choose the same configuration including the data augmentation strategy

69

3 Multi-tasking With Supervised Applications: The Segmentation Effect

(4 additional color-mapped stereo pairs for each original input pair resulting in set of 11900
pairs additionally to the data augmentation applied online), and the same setup with Caffe
[51] as framework and Adam as optimizer [52] with β1 = 0.9 and β2 = 0.999, batch size
of 2, maximum iterations up to 3.5M, λ = 10−4 multiplied by a factor of 0.5 every 150K
iterations, δ = 10−4 and γ = 0.5.

Results & Discussion

A visual assessment of the network’s performance for estimating the disparity planes on
the validation images of the Cityscapes dataset is presented in Fig. 3.5. The visual com-
parison against the results of the single optimization problem from the previous experiment
and the available ground-truth labels proves that the multi-tasking model delivers slight im-
proved results in terms of quality. This observation buttresses the assumption that the
disparity planes estimation profited from semantic segmentation features learned simul-
taneously. Numerical results presented in Tab. 3.2 confirm the fact that segmentation
features helped decrease the noise and refine the shapes of different scene objects. They
also enforced better separation between the segments with a noticeable improvement of
car instance distinction. Obviously, the semantic segmentation track that has this informa-
tion encoded in its ground-truth has helped highlighting these aspects. Numerical values
show a low but consistent improvement of the multi-tasking model upon the basic model
considering all measures. This can be as well verified in Fig. 3.6 where visual comparison
between results of both models are examined on the test set of Cityscapes.
Understandably, previous observations concerning the performance of the single model
are still applicable on this experiment as well (Mapping complexity and the ground-truth
reliability issues). However, the comparison delivers an undeniable confirmation about the
assumption made concerning an improved learning of segment displacements when se-
mantic segmentation features are considered at the same time during the training. The
depicted object shapes, edges and details along the contours experienced a significant
improvement with less inherent noise.
After verifying the positive effect of semantic segmentation on disparity planes estima-
tion. we extend the exploration from the segment level to the pixel level. The challenging
case of pixel-wise displacement estimation (in other words standard disparity estimation)
is targeted. The goal is to examine if the improvement gained thanks to additional seg-
mentation learning can be also valid with more complex geometrical tasks than disparity
planes estimation. How does semantic segmentation affect the task of supervised stereo
disparity/depth estimation when they are jointly learned?

70

3.3 Cooperative Optimization For Disparity Planes Estimation And Semantic Segmentation

(a) 1.Scene (b) 2.Scene (c) 3.Scene (d) 4.Scene

Figure 3.5: Visual Evaluation on Cityscapes Validation Set. From top: Left image, right image,
ground-truth disparity planes for left view, disparity planes estimated output for left view (single
model), disparity planes estimated output for left view (multi-tasking model).

Method Abs Rel Sq Rel RMSE RMSE log Log10 δ < 1.25 δ < 1.252 δ < 1.253

Single model 0.0314 0.6350 9.3132 0.5377 0.1056 0.6386 0.8450 0.8891
Multi-tasking model 0.0244 0.5350 9.1349 0.4683 0.0870 0.7182 0.8847 0.9122

Lower is better

Higher is better

Table 3.2: Numerical performance comparison on Cityscapes Validation set with resolution (512×
256) for single and multi-tasking models

71

3 Multi-tasking With Supervised Applications: The Segmentation Effect

(a) Left input image (b) Right input image (c) disparity planes esti-
mated output for left view
(single model)

(d) disparity planes esti-
mated output for left view
(multi-tasking model)

Figure 3.6: Visual Evaluation on Cityscapes Test Set: The visual comparison of models outputs
in case of cooperative optimization (multi-tasking model) and single objective optimization (single
model).

72

3.4 Cooperative Optimization For Supervised Depth Estimation And Semantic Segmentation

3.4 Cooperative Optimization For Supervised Depth Estimation
And Semantic Segmentation

3.4.1 Supervised Depth Estimation: DispNet

Introduction

Although depth estimation is most commonly related to stereo vision (stereopsis), many
methods try also to address the problem of monocular depth estimation. For instance,
Saxena et al. [68] apply a Markov Random Field (MRF) learning algorithm to capture cer-
tain monocular cues and incorporate them into a stereo system. They show that by adding
these cues to stereo (triangulation), performance got improved. Liu et al. [69] explored
the combined capacity of CNN models and continuous Conditional Random Fields (CRF).
Specifically, they propose a structure that learns the unary and pairwise potentials of con-
tinuous CRF in a unified deep CNN framework.
Nevertheless, stereo methods have always enjoyed more attention and proved indeed
more effective in the context of supervised learning in particular. For instance, works from
Zbontar et al. [70] as well as Luo et al. [71] used rectified image pairs to extract depth
information either by learning a similarity measure on small patches using CNNs or by
treating the problem as multi-class classification using a Siamese network. The state-of-
the art supervised approach is still the model called DispNet introduced by Mayer et al.
in [72]. DispNet is inspired by FlowNet [49]. It is indeed a modified FlowNet version with
additional new features for performing disparity estimation. The model is trained first on a
large synthetic stereo dataset then fine-tuned on real-world images from KITTI [11].

Implementation Details

As detailed in [72], DispNet is a CNN for disparity estimation given stereo images. It is
trained on a synthetically generated dataset with considerable realism, variation and num-
ber of frames. Currently, it provides the best state-of-the-art performance for supervised
disparity estimation. Therefore, we present in the following a brief description of the model.
From the design point of view, DispNet embraces the original FlowNet architecture intro-
duced in [49]. It has an encoder-decoder layout with few extra-links between the two
parts. Unlike our proposed model, these are exclusively joining layers from both parts that
output features with the same dimensions. Obviously, the linking strategy of DispNet is
considerably lighter and less sophisticated in comparison to ours. The encoder contains a
succession of five convolution layers with stride 2 resulting in a total down-sampling factor
of 64 at the end of the encoding part. The decoder is symmetrically designed to up-sample
the feature maps by taking into consideration only same-scale features linked from the en-
coder. For more details about the different DispNet versions, we refer to Dosovitskiy et al.
[49].
Since getting a reliable depth/disparity ground-truth for real stereo images is a very te-

73

3 Multi-tasking With Supervised Applications: The Segmentation Effect

dious task, DispNet is first trained on a synthetically produced data collection consisting of
the three sets: "Monkaa", "Driving" and "FlyingThings3D". The contained stereo frames
depict various scenes that were rendered using "Blender" [73], an open source frame-
work for creating, animating and rendering 3D objects with complex motions. These input
images come with high quality synthetic disparity maps for each view. These maps ren-
dered also using Blender are considered as ground-truth labels when training the original
DispNet model (For further details concerning the dataset generation procedure refer to
[72]). Different data augmentations are applied on the rendered dataset in order to bring
more robustness to the model: Spatial transformations such as rotation, translation, crop-
ping, scaling are performed along with photometric transformations on color, contrast and
brightness in order to enforce more diversity within the synthetic training set. Regarding
the training, it is realized using a custom version of Caffe [51]. Adam [52] is chosen as
optimizer with β1 = 0.9 and β2 = 0.999. The initial learning rate is λ = 0.0001 and divided
by 2 every 200K starting from 400K.

Results

A visual evaluation of the DispNet performance on test images of the Cityscapes dataset
is shown in Fig. 3.7. Although trained on synthetic data only, the model proves effective in
estimating depth for real stereo images depicting traffic urban scenes. It is indeed able to
generalize properly thanks to the abundant set of data used for training and the different
data augmentation operations applied on it. DispNet is able to robustly estimate the dis-
placement on pixel level without being strongly affected by the real environment in the test
scenes or the content variation in comparison to the training images.

74

3.4 Cooperative Optimization For Supervised Depth Estimation And Semantic Segmentation

(a) Left input frame (b) Right input frame (c) Estimated output: Left depth map

Figure 3.7: Visual Evaluation on Cityscapes Test Set: (a) & (b) Sample input stereo pairs from test
set (c) The estimated output left depth map

75

3 Multi-tasking With Supervised Applications: The Segmentation Effect

3.4.2 Supervised Depth Estimation & Semantic Segmentation

Introduction

Proving the improvement gained by jointly optimized applications requires a complex archi-
tecture where features learned through separate tracks are fused or brought together in a
way that boosts the training process. Like the experiments for disparity planes estimation,
we want to verify that associating segmentation learning to supervised depth estimation in
the context of autonomous driving helps improve the quality of the gained depth maps. In
the previous experiments, disparity planes ground-truth labels were generated based on
already available segmentation ground-truth made public by Cityscapes. Obviously, both
ground-truth labels were accessible at the same time for each input pair. That is why no
problem performing multi-tasking training was faced. Unfortunately, this cannot be repli-
cated for the current experiment.
To our knowledge, there is no available dataset with real images for autonomous driving
offering reliable ground-truth labels for depth estimation and semantic segmentation at the
same time. Therefore, we restrict ourselves to train on the synthetically generated dataset
(used for original DispNet training) since it has also ground-truth labels for object segmen-
tation. These are rendered by Blender as classification masks. For deployment, the most
known autonomous driving datasets previously used will be regarded for evaluation and
assessment, namely the Cityscapes and KITTI datasets.
To sum up, a cooperative multi-tasking model is designed. It was trained on synthetic
data then tested and evaluated on real images in the target to prove that the simultaneous
learning of segmentation features along with supervised depth cues can result in signifi-
cant improvement in terms of quality for the estimated stereo depth maps. For this, our
proposed model is a combined architecture consisting of two tracks. The first is the state-
of-the-art architecture for supervised stereo depth estimation (DispNet) and the second
is our cascaded architecture previously introduced for semantic segmentation (MokaNet).
The new model designed for the current experiment combines the learning of two tasks
by enforcing feature exchange between these tracks during the training. It is evaluated
against the original DispNet model to discuss the advantage of multi-tasking upon stan-
dard supervised depth estimation.

Implementation Details

As mentioned above, the proposed architecture for our new model that jointly performs
semantic segmentation and supervised stereo depth estimation consists of a combination
of the original DispNet architecture and our MokaNet proposed for semantic segmentation.
Both tracks share a single encoder with five convolution layers as in the original DispNet
architecture. At the level of the last encoding layer, the model presents a split into two
independent decoders. The first one that is exactly the original DispNet decoder delivers
the estimated disparity map as output. This output is post-processed onto depth based on
the focal-length and baseline given by the test dataset. The second decoder that is our

76

3.4 Cooperative Optimization For Supervised Depth Estimation And Semantic Segmentation

intensively connected one is responsible for semantically segmenting the image. It has
dense connections between layers and is borrowed from the architecture used previously
for semantic segmentation. Like in the case of disparity planes estimation, the encoded
information is shared between both tracks whereas the details recovery is independently
done for each task thanks to a separate decoder.
As in the previous experiment, the fact that both objective functions simultaneously con-
tribute to the updating of the encoder parameters (weights and biases) is expected to
enhance the learnable features at the output of each track, the one for depth estimation
in particular. With details coming from the segmentation learning process, edges, object
shapes and forms are expected to be better depicted in the final depth maps compared
to original DispNet. Although this assumption proved valid in the case of disparity planes
estimation (the quality of the produced estimates by the multi-tasking model showed sig-
nificant improvement in comparison to the single one), this needs to be properly examined
for the case of supervised depth estimation as many differences are noted. The train-
ing data is indeed not only the same but it presents totally different signal nature. In the
previous experiment for disparity planes estimation, we trained on real images from the
training set of Cityscapes and tested on validation images of the same dataset. In the
current experiment, we train on synthetic images and evaluate on real images from other
different datasets which represents a significant difference against the previous experi-
ment. Used architectures for the multi-tasking models are as well slightly different in terms
of linking density which represents a further difference to be minded. For training, the ex-
act same parameter setup used for the original DispNet is considered for training our new
multi-tasking model in the goal to guarantee fairness and consistency of the final depth
evaluation.
As detailed in [72], the original training set consists of the synthetically produced data
collection including three parts "Monkaa", "Driving" and "FlyingThings3D" rendered with
Blender. The considered frames have disparity maps and object segmentation masks for
both views rendered also by Blender. They are used as ground-truth labels for training the
multi-tasking model. (For further details on the training data and its generation procedure
please refer to [72]).
We adopt as well the same training environment suggested by the authors. We employ
a custom version of Caffe [51] with Adam optimizer [52] where β1 = 0.9, β2 = 0.999 and
λ = 0.0001 divided by 2 every 200K starting from 400K. We add the same set of aug-
mentations applied by them: Geometric operations such as rotation, translation, cropping,
scaling together with photometric transformations on color, contrast and brightness.

Results

In Fig. 3.8, a visual comparison on the test set of Cityscapes between the original Disp-
Net and our cooperative multi-tasking model is shown. The estimated output depth maps
produced by both models are displayed. As a result, the original DispNet model seems
better performing than ours trained for depth estimation and segmentation simultaneously.

77

3 Multi-tasking With Supervised Applications: The Segmentation Effect

(a) Left input frame (b) Right input frame (c) Estimated output left
depth map (single Disp-
Net)

(d) Estimated output left
depth map (multi-tasking
model)

Figure 3.8: Visual Evaluation on Cityscapes Test Set: (a) & (b) Sample input frames from the
test set and (c) & (d) are the estimated output depth maps using single and multi-tasking models
respectively.

78

3.4 Cooperative Optimization For Supervised Depth Estimation And Semantic Segmentation

The depth quality of the former is better refined, sharper with less noise and more inherent
details especially along the separation lines between objects.
The current observations contradict indeed the assumption that depth estimation gets profit
from learned segmentation features. It also contradicts the previous results with the multi-
tasking model for disparity planes estimation. In fact, the joint training in this experiment
negatively affects the quality of the estimated output. Important details in comparison to
the original results are lost. Depth Maps produced by our model are slightly noisier and
depict less details which affects the perceived objects shapes.
This performance can be explained by different causes. To our understanding, the main
aspect to consider for analyzing this is the fact that only synthetic data has been used
during the training process whereas the testing is performed on real images. The signal
characteristics and the properties of the images are obviously way different for the model
between test and training phases. Pixel inter-correlation in real images is indeed signif-
icantly higher for real images, whereas artificial images usually present higher contrast
along the edges since they can be considered as discrete samples from a probabilistic
generative model. Moreover, the nature of the noise is as well different. This is a further
important aspect discussed in [74] and personally experienced when we dealt with real
image denoising methods [75]. In reality, this difference in terms of statistical pixel proper-
ties between artificially generated images and real-world captured ones is still a wide open
research topic. This became more relevant after the breakout of DL techniques requiring
abundant amount of data and ground-truth that might not be always available for real-world
scenarios.
All these discussed issues seemed to have minor effects on the performance of the origi-
nal DispNet. However, our multi-tasking model delivered decent results in terms of depth
quality but unexpectedly didn’t improve upon the original model. This means that the addi-
tion of the segmentation track under the previous conditions does not benefit the learning
process. The conclusion is then that semantic segmentation unlike depth estimation is
less suitable to such passage from synthetic data to real one between training and testing
phases. Consequently, the combination of loss terms into a single one results in the con-
vergence towards a worse minimum compared to the original case of the single DispNet.
A numerical comparison presented in Tab. 3.3 and further visual results in Fig. 3.8 ab-
solved on KITTI images with available ground-truth labels support the previous claim and
confirm the same observation that DispNet does not outperform the multi-tasking model
just in terms of visual quality but also numerically (almost all measures).
In order to avoid using synthetic training data, we decide to focus on using only real im-
ages for training CNNs in the future. However, getting reliable depth ground-truth for such
data is difficult. That is why we decide to look into other alternative ways to perform depth
estimation without opting for training on artificial images. Once this is achieved, the exam-
ination of adding semantic segmentation tracks within multi-tasking models can be again
fairly evaluated. What alternative methods for CNN-based depth estimation could be con-
sidered to realize this?

79

3 Multi-tasking With Supervised Applications: The Segmentation Effect

Method Abs Rel Sq Rel RMSE RMSE log Log10 δ < 1.25 δ < 1.252 δ < 1.253

Single DispNet model 0.4014 11.4844 23.6715 0.7496 0.2672 0.2592 0.3764 0.5214
Our Multi-tasking model 0.4213 12.1394 24.3305 0.7784 0.2823 0.2323 0.3724 0.5088

Lower is better

Higher is better

Table 3.3: Numerical evaluation on the test Eigen-split set (697 image) of KITTI [11] with resolution
(572×160) of both single and multi-tasking models for supervised depth estimation

(a) 1.Scene (b) 2.Scene (c) 3.Scene (d) 4.Scene

Figure 3.9: Visual Evaluation on KITTI Eigen-split Test Set: Comparison of visual results using
single and multi-tasking models for supervised depth estimation. From top: Left image, right image,
ground-truth depth map for left view, estimated left depth map using single DispNet, estimated left
depth map using our multi-tasking model.

80

4 Multi-tasking With Unsupervised
Applications: The Segmentation Effect

4.1 Motivation & Related Works

Although DispNet [72] is the state-of-the-art CNN-based method for supervised stereo
depth estimation, its main disadvantage is that it needs to be trained on artificial data. In
fact, the real issue is that such supervised learning approaches require large datasets with
high quality ground-truth labels for training. Unfortunately, this requirement is difficult to
fulfill since acquiring reliable depth ground-truth for real images is a very tedious task.
To circumvent the problem, certain works suggest to opt for an unsupervised training strat-
egy where no ground-truth is required. For instance, Xie et al. present the Deep3D network
[76] that uses a customized reconstruction loss for each pixel based on the distribution over
potential disparity candidates. In fact, the combination of the weighted sum of the disparity
candidates’ probabilities on the same line boils down to the estimated right image pixel.
The main drawback of this approach is that complexity is tightly related to the increasing
number of disparity candidates. Moreover, Zhou et al. introduced in [77] an unsupervised
learning framework for the task of monocular depth and camera motion estimation from
unstructured video sequences. The approach synthesizes single-view depth and camera
pose estimation using two separate networks that are coupled by a common loss based
on warping nearby views to the target. Besides, Ravi Garg et al. [78] trained a CNN archi-
tecture where the loss function describes the photometric reconstruction error between a
rectified stereo pair of images. The disparity is replaced by its first order Taylor expansion
in order to simplify the gradient computation during the back-propagation step. Godard et
al. [6] use a fully derivable spatial transform network module to circumvent the problem
of gradient computation during back-propagation. Their final loss function is indeed more
complex than the simple alignment loss used in [78]. It has additional terms for smoothing
and enforcing left-right consistency to improve the convergence. Moreover, Kuznietsov et
al. [79] propose a hybrid approach for tackling the issue of real data shortage for monocular
depth estimation. This semi-supervised approach combines training using an appearance
matching loss similar to the one suggested in [6] and a supervised objective function using
sparse ground-truth labels acquired from LIDAR sensors. In [80], the depth ground-truth
is automatically derived from simple videos recorded by moving cars. They deploy classic
depth from motion techniques to avoid human intervention in the training process of the
agent learning raw ego-motion. They claim that the proposed model induces features in
the network that results in large improvements over a network trained from scratch in many

81

4 Multi-tasking With Unsupervised Applications: The Segmentation Effect

downstream tasks such as semantic segmentation, joint road segmentation, car detection
and monocular (absolute) depth estimation.

4.2 Unsupervised Depth Estimation: UMDELR

4.2.1 Introduction

In order to circumvent the problem of lacking reliable ground-truth data, an alternative way
of training is necessary to replace the supervised learning. Hence, unsupervised CNN-
based methods for depth/disparity estimation are gaining now more attention. Obviously,
the acquisition of accurate depth/disparity ground-truth is much more difficult in compar-
ison to acquiring a pair of stereo rectified images. The idea shared by most approaches
mentioned above is the fact to bypass the supervised loss calculation by replacing it with a
new loss term. This new loss function needs to depend only on the a rectified stereo pair
given as input. As it is currently the best performing state-of-the-art model in the context
of unsupervised depth estimation, we consider the model proposed by Godart et al. in [6]
for further examination.

4.2.2 Implementation Details

As a start, Let us take a closer look at the main differences between state-of-the-art su-
pervised disparity/depth estimation e.g. DispNet [72] and unsupervised methods such as
the one by Godart [6]. We focus on the aspect of loss definition and calculation.
In the case of supervised disparity estimation, the training of the model requires a pair of
rectified stereo images Il and Ir as input with their corresponding ground-truth disparity
maps Dl and Dr. We are just interested in the learning of left disparity map Dl .
For the sake of simplicity, we restrict ourselves to the example of basic L1 loss calculation
at a pixel location (x,y). For the supervised case, it can be written as:

L1(x,y) = ||Dl(x,y)− D̂l(x,y)|| (4.1)

with D̂l(x,y) is the ground-truth disparity value and Dl(x,y) is the estimated value by the
network at pixel location (x,y). L1(x,y) is the error value at the same pixel location. The
goal of the supervised training is to minimize this error between estimated and ground-
truth disparity values over all pixels in the different images available in the training set.
However, the mathematical description of the optimization problem in the case of unsu-
pervised depth-disparity estimation is different. The rest of the used framework is almost
unchanged since training the network requires a given stereo pair as input, while output
is the estimated disparity map. Obviously, the difference revolves only around the defini-
tion of the loss function used during the training. As mentioned, the residual is no longer
dependent on a ground-truth data but involves only the input images and the estimated

82

4.2 Unsupervised Depth Estimation: UMDELR

Figure 4.1: The spatial transformer module (courtesy of [5])

output disparity of the network relating both. In other words, if the network gives as output
an estimated Dl relative to left image view, this estimated disparity is then used to wrap the
right view into the left one. Ultimately, the error function to optimize is calculated between
the resulting wrapped image Îl and the already available original left image Il . It can be
written as:

L1
′(x,y) = ||Il(x,y)− Îl(x,y)||= ||Il(x,y)− Ir(x+Dl(x,y),y)|| (4.2)

Nevertheless, it is obvious that Îl(x,y) = Ir(x+Dl(x,y),y) is not derivable in respect with
Dl(x,y), which makes it consequently unsuitable to CNN training. In fact, the back-bone
step for training using gradient descent approaches is the back-propagation step that re-
quires gradient computation for propagating the error through the network layers up to the
early ones.
In order to tackle this obstacle, Godart et al. proposed in [6] a model inspired from DispNet.
Their model comes additionally with a locally differentiable loss module for unsupervised
learning. The module samples the left image from pixels of the opposite stereo image us-
ing an image sampler introduced in [5] as a part of the spatial transformer network (STN).
Jaderberg et al. proposed the STN, a learnable module that allows the spatial manipula-
tion of data within neural networks. It performs explicit spatial transformations of features
in an end-to-end way without modifying the loss function. It can be inserted into existing
architectures as a complete module involving three main blocks: A localization network, a
grid generator and an image sampler. An overview of the STN details from [5] can be seen
in Fig. 4.1.

The shown architecture of the spatial transformer module consists of three separable
building blocks. First, the localization network receiving the feature map U as an input
before the spatial modification. It regresses the applied transformation Tθ and describes
it using θ . This variable varies depending on the parametrized transformation type, e.g.
for an affine transformation θ should be 6-dimensional as in equation. 2.1. Second, the
parametrized sampling block is responsible for transforming the regular spatial grid G over
wrapped output feature map V to the sampling grid Tθ (G) applied on incoming feature
map U (see Fig. 4.2). Each target pixel (xt

i,y
t
i) lying on the regular grid G of feature map

83

4 Multi-tasking With Unsupervised Applications: The Segmentation Effect

Figure 4.2: The sampling grid is the result of warping the regular grid G with an affine transforma-
tion Tθ (G) (courtesy of [5])

V is computed by applying a sampling kernel centered at a particular location (xs
i ,y

s
i) in

the input feature map U. If the applied transformation Tθ is a 2D affine transformation
described by matrix Aθ ∈ R2×3, the pixelwise transformation can be written as:

(
xs

i
ys

i

)
= Tθ (G) = Aθ ·

 xt
i

yt
i

1

=

[
θ11 θ12 θ13
θ21 θ22 θ23

]
·

 xt
i

yt
i

1

 (4.3)

The final building block of the STN module is the differentiable image sampler. The
sampler takes as input the set of sampling points Tθ (G) along with the input feature map
U and generates as output the sampled map V. Every single pixel location (xs

i ,y
s
i) on the

sampling grid Tθ (G) is considered as the application location of an operation realized by
a kernel centered on this same location. The output of this operation defines the resulting
value at the particular pixel (xt

i,y
t
i) in the feature map V. In the case of a bilinear sampling

operation, we can write:

V c
i =

H

∑
n

W

∑
m

Uc
nmmax(0,1−|xs

i −m|)max(0,1−|ys
i −n|) (4.4)

where Uc
nm is the value at location (n,m) in channel c of the input feature map U and V c

i is
the output value for pixel i at location (xt

i,y
t
i) in channel c of feature map V. H and W are

respectively height and width of input map U.
The advantage of this term is that it is locally fully differentiable and integrates seamlessly
into our fully convolutional architecture without simplification or approximation of the cost
function. (Sub)-gradients with respect to source coordinates (xs

i ,y
s
i) in input grid G and

values of feature map U passed to the sampler can be written as:

∂V c
i

∂Uc
nm

=
H

∑
n

W

∑
m

max(0,1−|xs
i −m|)max(0,1−|ys

i −n|)

84

4.2 Unsupervised Depth Estimation: UMDELR

∂V c
i

∂xs
i
=

H

∑
n

W

∑
m

Uc
nmmax(0,1−|ys

i −n|)

0 if |m− xs

i | ≥ 1
1 if m≥ xs

i
−1 if m < xs

i

∂V c
i

∂ys
i
=

H

∑
n

W

∑
m

Uc
nmmax(0,1−|xs

i −n|)

0 if |m− ys

i | ≥ 1
1 if m≥ ys

i
−1 if m < ys

i

Unlike DispNet, the main specificity of the UMDLR model is the fact that it poses the
depth estimation problem as a ground-truth-free reconstruction problem. It does not only
consider the minimization of a basic photometric loss, as discussed previously (see equa-
tion. 4.2), but proposes additional left-right consistency terms and smoothing constraints
in order to refine the quality of the estimated output depth.
The architecture of the network has an encoder-decoder layout. Two architecture versions
are indeed proposed. The first one uses a VggNet-based [81] encoder and the second
uses a ResNet-based encoder [34]. Both versions use the same customized depth es-
timation loss based on STN. During the training phase, ground-truth depth is no longer
required. Only a pair of calibrated binocular images is needed to perform the loss com-
putation. The encoding parts of both versions have successive spatial convolutions. The
decoders are always symmetrical with the same number of transposed convolutional lay-
ers. Both parts are connected through long range links. At four different scales, disparity
outputs (left-to-right Dl and right-to-left Dr) of the given input stereo images are estimated
simultaneously. The dimensions double in a subsequent order from a scale level to the
next.
Using the image sampler of the previously discussed spatial transformer module, the net-
work learns at each scale to generate the estimated wrapped images Îl and Îr by sampling
pixels from the respective opposite images Il and Ir based on the estimated disparities.
The resulting fully differentiable loss function of the model can be summarized as:

C =
4

∑
s=1

Cs =
4

∑
s=1

αap(Cl
ap +Cr

ap)+αds(Cl
ds +Cr

ds)+αlr(Cl
lr +Cr

lr) (4.5)

with αap = αds = αlr = 1 are weighting factors to the different terms and s = 1..4 is the
corresponding scale. The different terms combine left and right contributions to the cal-
culation of the final loss that can be introduced as follows. For the sake of simplicity we
restrict the description to the left image. For the right image, it is calculated similarly except
for corresponding index changes:

• Appearance matching Loss:

Cl
ap =

1
N ∑

i, j
δ

1−SSIM(Il
i j, Î

l
i j)

2
+(1−δ)||Il

i j− Îl
i j||

85

4 Multi-tasking With Unsupervised Applications: The Segmentation Effect

for photometric similarity with N number of image pixels. δ = 0.85 a weighting factor
and SSIM is a single scale distance measure introduced in [82] with a 3× 3 block
filter instead of the Gaussian filter originally used.

• Disparity Smoothness Loss:

Cl
ds =

1
N ∑

i, j
|∂xDl

i j| · e−||∂xIl
i j||+ |∂yDl

i j| · e−||∂yIl
i j||

for smoothing and refinement by weighting depth discontinuities ∂D with an edge
aware term using image gradient ∂ I

• Disparity Consistency Loss

Cl
lr =

1
N ∑

i, j
||Dl

i j−Dr
i j+Dl

i j
||

for left-right consistency penalty and enforcing both disparities to be similar to their
projected versions.

For training the network, the Tensorflow framework [83] a flexible DL library released
by Google is used. It offers much more flexibility for gradient computation thanks to its
auto-gradient computation feature in comparison to many other frameworks e.g. Caffe.
This advantage can alleviate the enormous load of manually programming the gradient
calculation of the proposed new loss function necessary to the back-propagation during
the training. Considering the reported results by the authors in [6], we opt for training the
Resnet50 version of the model with post-processing step. Obviously, this version deliv-
ers the best visual and numerical performance on the different test sets considered for
evaluation in paper [6] and by us for all discussed experiments that will follow:

• 1. set: The 200 images of KITTI 2015.

• 2. set: The "testing Eigen-split" of KITTI with 697 images.

As for the training sets, we consider for our experiments three different setups. First, the
"Trainvaltest" set of Cityscapes consisting of the 3475 merged train and validation images.
Second, the "Trainextra" set of Cityscapes consisting of 19998 images combined with the
previous set which results in 23473 images in total. Finally, the third set consists of only
the KITTI Eigen-split for training with 22600 selected images. To summarize the three
experimental training setups we will be using all along this chapter, we can write:

• 1. set: The "Trainavaltest" set of Cityscapes with 3475 images.

• 2. set: The "Trainavaltest" set of Cityscapes with 3475 images + the "Trainextra" set
of Cityscapes with 19998 images equals in total 23473 images.

86

4.2 Unsupervised Depth Estimation: UMDELR

• 3. set: The "training Eigen-split" of KITTI with 22600 images.

For both first cases, all models discussed in the current chapter are trained from scratch
using random weight initialization (Gaussian). For the third scenario, we always consider
the weights of the final model from case 2 as initial values. In other words, we fine-tune the
second case’s model on the KITTI training set. In fact, we follow here the recommendation
of the authors that assert that fine-tuning on KITTI images gives better convergence than
normal training with mixed KITTI and Cityscapes images from the beginning.
As for data augmentation, horizontal flipping of the input images was performed on the fly
following a 50% probability. Random gamma, brightness, and color changes sampled from
uniform distributions from the ranges: [0.8,1.2] for gamma, [0.5,2.0] for brightness, and
[0.8,1.2] for each color channel separately are as well considered. As optimizer, Adam
[52] was adopted. The model is trained for 50 epochs with batch size equals 8, β1 = 0.9,
β2 = 0.999 and ε = 10−8 and λ = 10−4 = divided by 2 after every 10 epochs starting from
30 epochs.

4.2.3 Results

Method Abs Rel Sq Rel RMSE RMSE log Log10 δ < 1.25 δ < 1.252 δ < 1.253

1.Experiment 0.299 4.095 9.648 0.329 70.987 0.577 0.848 0.951
2.Experiment 0.206 2.962 8.632 0.303 48.918 0.736 0.881 0.944
3.Experiment 0.0853 1.034 4.890 0.160 16.274 0.918 0.972 0.987

(a) Numerical Evaluation on the KITTI 2015 test set (200images)

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

1.Experiment 0.275 3.463 8.916 0.331 0.610 0.845 0.941
2.Experiment 0.236 2.848 8.467 0.358 0.660 0.840 0.920
3.Experiment 0.1217 1.011 5.221 0.218 0.852 0.943 0.973

(b) Numerical Evaluation on the Eigen-split test set (697images)

Lower is better

Higher is better

Table 4.1: Numerical performance comparison of the UMDLR original architecture trained in three
different experimental setups with different training sets

Three different experiments has been conducted including the training of the same net-
work architecture with a different set each time as detailed above. The weight initialization
is random for the first and second experiments while the third experiment is fine-tuned ver-
sion of the second model on the KITTI set. The numerical performance evaluation of the
three models is detailed in Tab. 4.1.
Obviously, the extension of the training set improves significantly the performance by each
experiment. The more data is given the better is the learning outcome. However, this
improvement is less noticeable in the third experiment since the used data for fine-tuning

87

4 Multi-tasking With Unsupervised Applications: The Segmentation Effect

(a) Input frame (b) 1.Exp Model’s result (c) 2.Exp Model’s result (d) 3.Exp Model’s result

Figure 4.3: The visual performance of the UMDLR model trained on different training sets ((a)
1.Experiment (b) 2.Experiment (c) 3.Experiment) on test images of Cityscapes.

88

4.3 Cooperative Optimization For Unsupervised Depth Estimation And Semantic Segmentation

present different semantic content and other characteristics than the used test set (Fine-
tuned on KITTI and tested on Cityscapes). Nevertheless, the improvement of the estimated
depth masks in terms of refined details and inherent noise of the third model proves that
enriching the training set with rich reliable data can only boost the performance for DL
applications including the unsupervised depth estimation. This is clearly shown in Fig. 4.3
where output results of the three models are displayed together with input images from the
Cityscapes test set. The gradual improvement by each experiment is noticeable in terms
of estimated depth quality.

4.3 Cooperative Optimization For Unsupervised Depth
Estimation And Semantic Segmentation

4.3.1 Introduction

After discussing the model used for unsupervised depth estimation, we propose a multi-
tasking model to jointly learn unsupervised depth estimation and semantic segmentation
within a cooperative multi-objective optimization framework as we did with experiments
discussed in the previous chapter with supervised applications (supervised depth and
disparity planes estimation).

4.3.2 Proposed Approach

As with the supervised case, the multi-tasking model we propose for this experiment is
based on the scalarization of multiple objective functions. Its architecture has two tracks
sharing a common encoder of Resnet50 style. The decoders are however different. Each
one is responsible for recovering the details for a specific task. The first one is of Resnet50
style and it ends with the unsupervised depth loss detailed in the previous section. The
second decoder is borrowed from the MokaNet architecture used for semantic segmenta-
tion. An overview of the whole architecture is shown in Fig. 4.4.
The proposed model requires a stereo pair as input. The output is also a pair consisting of
the semantic segmentation mask and the disparity map of the left input view. Training the
network requires the simultaneous availability of the right view necessary to the estimation
of pixel-wise displacements between images and a semantic segmentation ground-truth
label used for learning proper classification.
Unfortunately, the considered training sets, detailed previously, do not always offer right
image views and segmentation ground-truth labels at the same time except for the first
case (1.Experiment). Therefore for our current model, we restrict our experimentation
on the first training setup. We just consider the merged 3475 images of the Cityscapes
"Trainvaltest" set in order to train the multi-tasking cooperative model. Consequently, a fair
comparison between the performance of single UMDLR and our multi-tasking model (the

89

4 Multi-tasking With Unsupervised Applications: The Segmentation Effect

UMDLR combined with segmentation) could be guaranteed.
For training, we replicate the original environment used by the authors in [6] together
with the exact same data augmentation applied online. We apply horizontal flipping to
the input images with 50% probability. Photometric transformations including random
gamma, brightness, and color variations by sampling from uniform distributions within pre-
set ranges: [0.8,1.2] for gamma, [0.5,2.0] for brightness, and [0.8,1.2] for each color
channel separately are employed. Additionally, Adam optimizer [52] was again used for
training the model for 50 epochs from scratch with a batch size of 8, β1 = 0.9, β2 = 0.999
and ε = 10−8. The starting learning rate λ = 10−4 is kept constant for the first 30 epochs
before halving it every 10 remaining epochs.

Joint Model For Unsupervised Depth Estimation And Semantic segmentation

Figure 4.4: The multi-tasking model architecture for joint unsupervised depth estimation and se-
mantic segmentation

4.3.3 Results & Discussion

In Fig. 4.5 and Tab. 4.3, we summarize the numerical and visual aspects of the perfor-
mance comparison between the original UMDLR and the multi-tasking UMDLR model that
additionally profited from the simultaneous learning of semantic segmentation features.
Considering the exact same training conditions (including data augmentation, training set

90

4.3 Cooperative Optimization For Unsupervised Depth Estimation And Semantic Segmentation

(a) Input frame (b) Estimated depth map of the UMDLR
model (1. Experimental setup)

(c) Estimated depth map of the cooperative
multi-tasking model (1. Experimental setup)

Figure 4.5: The visual comparison between the cooperative multi-tasking and the original UMDLR
models deployed on test images of Cityscapes.

91

4 Multi-tasking With Unsupervised Applications: The Segmentation Effect

Method Abs Rel Sq Rel RMSE RMSE log Log10 δ < 1.25 δ < 1.252 δ < 1.253

Original 0.299 4.095 9.648 0.329 70.987 0.577 0.848 0.951
Cooperative 0.239 2.950 8.647 0.313 60.918 0.747 0.873 0.942

(a) Numerical Evaluation on the KITTI 2015 test set (200images)

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Original 0.275 3.463 8.916 0.331 0.610 0.845 0.941
Cooperative 0.231 3.219 8.441 0.307 0.688 0.884 0.957

(b) Numerical Evaluation on the Eigen-split test set (697images)

Lower is better

Higher is better

Table 4.3: The numerical comparison between the cooperative multi-tasking model and the original
UMDLR model. (Experimental setup 1)

and optimizer parameters, etc...), the multi-tasking UMDLR model outperforms the original
one in terms of produced depth quality. Visually, results on the test images of Cityscapes
show a significant improvement between both models. The effect can be noticed on the re-
fined object shapes and the clear contours as well as in the additional far details. Moreover,
a clear attenuation of the undesired blurriness (extreme smoothness) due to the used bi-
linear filtering from the STN module is noticed. The estimated depth output seems indeed
sharper with better visible details and more accurate approximated distance information.
Numerically, the same observation can be drawn from Tab. 4.3a and Tab. 4.3b. The joint
UMDLR model outperforms the single one in all considered metrics when evaluated on
the 200 images of KITTI 2015 as well as on the 697 images of the testing KITTI Eigen-
split. Ultimately, this experiment proves again the assumption previously made concerning
the positive effect of transfer learning between different simultaneously trained applica-
tions within a multi-tasking cooperative CNN. This mutual inductive exchange of features
learned simultaneously helps reduce the scope of possible bias in a beneficial way by forc-
ing the model to fit different but related tasks. In our case, unsupervised depth estimation
and semantic segmentation seem to be enough related applications. In reality, this limit
defining, how different versus how related two tasks should be, is a very unexplored ter-
rain. It is still a wide discussion topic within the community. From our experiment however,
we can deduce that the relation between unsupervised depth estimation and semantic
segmentation lies within the range of the spectrum necessary to guarantee the profitabil-
ity between these two tasks. More precisely, we focus here on the positive effect of high
quality segmentation on unsupervised estimated depth.
A weak aspect of the current experience can not be neglected. This is the necessity to
have right views and segmentation ground-truth labels available at the same time. This
case seems less challenging than requiring segmentation and depth ground-truth simul-
taneously. The problem however here is the size of the available data pool. In general,
requiring a single homogenous dataset offering the possibility to learn all wanted tasks
(available ground-truth labels for all tasks) at once is always a restriction. Either there will

92

4.4 Competitive Optimization For Unsupervised Depth Estimation And Semantic Segmentation

be no data available at all or the size won’t be enough for training robust CNNs.
Despite the abundant amount of data available out there for both our current applications,
it was not possible at the time of implementation to find a dataset that offers us the needed
setup. As an example, we mention the illustrative case of the most popular KITTI and
Cityscapes datasets. The former is generally used for depth estimation purposes and the
latter is considered for learning semantic segmentation. Learning both at the same time
using a single dataset is not possible. So how can we get simultaneous profit of such
heterogeneous datasets using the same model?

4.4 Competitive Optimization For Unsupervised Depth
Estimation And Semantic Segmentation

4.4.1 Motivation & Background

Facing the necessity of providing right view images and semantic segmentation ground-
truth labels simultaneously during training, we were restricted to train our multi-tasking co-
operative UMDLR model only using the training set of the first experimental setup. Among
the three detailed scenarios, such experiment is only possible using the "Trainvaltest" of
Cityscapes.
This restricting issue drove us to consider the optimization problem at hand from an other
perspective. If we don’t have enough simultaneous ground-truth available for both tasks,
why not modify the training procedure and make it more flexible by accepting inputs from
different datasets not necessarily having the same label? In other words, why not focusing
on flexible ways to train the network as introduced in [84] instead of focusing on requiring
proper data at all costs?
In fact after opting for a scalarizing technique to jointly solve the multi-objective optimiza-
tion problem of simultaneous unsupervised depth estimation and semantic segmentation,
we decide to address the problem from a different point of view by performing optimiza-
tion of the same set of parameters using different input datasets [84]. In reality, few other
arguments presented in [85] concerning the objective scalarizing method added up to the
motivation behind changing our strategy: First, the non-trivial choice of weighting factors
αi,∀i = 1, ..,n in equation. 3.7, that have an important effect on the optimization behav-
ior and the resulting potential optimum towards which the problem converges. Second,
the optimization of a saclarized objective function delivers a single solution for all tasks.
If these tasks are conflicting, which is very likely if the nature of the applications are dif-
ferent, this single solution optimizing all the tasks can not be simultaneously optimal for
all of them. Taking into consideration these points, we look for an alternative approach to
perform multi-objective optimization with CNN models.
As a starting point, we borrow few concepts known from the game theory and the strategy
field, namely the concept of Nash non-cooperative games [86] in order to better analyze
the optimization problem at hand. For this, let us consider the multi-objective optimization

93

4 Multi-tasking With Unsupervised Applications: The Segmentation Effect

task described by equation. 3.5 as a game played by two players having each a corre-
sponding cost function to optimize independently. Both players should have access to the
same parameter space and their motivation is to minimize separately their cost functions
(elements of the vectorized loss function) while partially taking into consideration the other
player’s decision.
Instead of summing up the separate objectives in a single loss term, the first element
of the vectorized loss function in our experiment is assigned to the unsupervised depth
estimation agent/track (player 1), and the second element to the semantic segmentation
agent/track (player 2). The game (the optimization procedure) is designed as a competi-
tion between players that do not cooperate to minimize a common objective but alternate
to minimize separate ones. For each iteration, a single player is allowed to play (update the
weights of the shared parameter space) in order to win (minimize its corresponding loss
term). In other words, the players are no longer cooperating together to win the game, as
it is the case with the scalarizing method, but they are competing against each other while
still willing to win the same game.
To summarize, our designed game is an optimization approach simulating the interaction
of two agents (players). Both have the goal to optimize their own gain by following their
own strategies taken into consideration partial knowledge about the strategy of the op-
posing player. This is called a competitive (non-cooperative) game. It starts with the first
player making a decision. Subsequently, the second player takes his own decision based
on the status of the game after his opponent’s previous move. Then the game goes on as
a recurrent repetition of this alternating pattern.

4.4.2 The Proposed Approach

For our optimization problem, the two objective functions L1(θ) and L2(θ) correspond to
semantic segmentation and unsupervised depth estimation respectively. The goal is to
find the optimal set of parameters θ that minimizes both functions. Unlike our previous
strategy of combining both losses into a single objective function, the new approach we
propose requires that each player updates a part of the parameters’ vector θ . Each one
separately follows his own minimization strategy while taking into consideration the other
player’s decision. As shown in Fig. 4.6, if we formulate the problem mathematically, we
can write the learnable parameters’ vector θ as a combination of three sub-vectors:

θ = (θ1,θ2,θ3)

θ1 is the sub-vector containing the weights of the layers in the shared encoder part, θ2
is the sub-vector with weights for layers forming the decoder part responsible for semantic
segmentation and θ3 for the decoder part responsible for unsupervised depth estimation.
Since two separate tracks are considered, agents cannot update the weights of the part
responsible for the other task. This means that only the relevant decoder and the shared
encoder weights can be updated by a single player on each iteration (each player cannot

94

4.4 Competitive Optimization For Unsupervised Depth Estimation And Semantic Segmentation

ϴ1

ϴ3

ϴ2

Segmentation Input

Depth Input

OR

(a) Overall Architecture for the used model

ϴ1

ϴ2

Back-propagation Step

(b) Activated track1 for semantic segmentation (player1)

ϴ1

ϴ3

Back-propagation Step

(c) Activated track for unsupervised depth estimation (player2)

Figure 4.6: Conditional training procedure for CNN-model to solve non-cooperative optimization of
unsupervised depth estimation and semantic segmentation problems

95

4 Multi-tasking With Unsupervised Applications: The Segmentation Effect

see the weights of the decoder in the track of his opponent). Vectors A = (θ1,θ2) and
B = (θ1,θ3) could be considered as the strategies in a symmetrical Nash game with the
final goal to optimize L1(θ) and L2(θ) respectively. Each player uses a subset of θ to
minimize its cost function: A for player 1 and B for player 2.
The point at which the game is expected to end (the optimization is done) is called the
Nash equilibrium [86]. this state is characterized by the vector θ̄ = (θ̄1, θ̄2, θ̄3) responsible
for this equilibrium between both criteria and defined as:
Nash Equilibrium: θ̄ = (θ̄1, θ̄2, θ̄3) is called to realize a Nash equilibrium between criteria
L1(θ) and L2(θ) if and only if (iff)

(θ̄1, θ̄2) = argmin
θ1,θ2

L1(θ1,θ2, θ̄3)

(θ̄1, θ̄3) = argmin
θ1,θ3

L2(θ1, θ̄2,θ3)
(4.6)

According [86], the equilibrium solution is only influenced by the split of the parameters
vector. This is commonly referred to by using the concept of "split of territory". As detailed
in [87], this important aspect of the game describes the way the parameter space is divided
between players. In other words, which region of the parameter space is allocated to which
player in order to apply its moves (please refer to [86], [87], [88] for more details).
In our game, the design of the architecture defines this aspect. Obviously, it affects the
solution at which the Nash equilibrium is reached. It is the most crucial aspect of the
reformed optimization problem. Moreover, the training procedure needs to be revised for
the new problem. It can be summarized as follows:

1. Design network with learnable parameters’ vector θ and initialize its sub-vectors as
θ (0) = (θ

(0)
1 ,θ

(0)
2 ,θ

(0)
3)

2. Activate semantic segmentation track: Freeze θ3 = θ
(0)
3 and optimize L1(θ1,θ2,θ

(0)
3)

by applying a back-propagation step for the semantic segmentation track. Just
weights of the sub-vector (θ1,θ2) are updated. The learnable parameters vector
becomes θ (1) = (θ

(1)
1 ,θ

(1)
2 ,θ

(0)
3)).

3. Activate unsupervised depth estimation track: Keep θ2 = θ
(1)
2 and optimize

L2(θ1,θ
(1)
2 ,θ3), by applying a back-propagation step for the unsupervised depth es-

timation track. Just weights of the sub-vector (θ1,θ3) are updated. The learnable
parameters vector becomes θ (2) = (θ

(2)
1 ,θ

(1)
2 ,θ

(2)
3)).

4. Keep alternating between step 1. and 2. and updating sub-vectors correspondingly
until Nash equilibrium is reached. If track 1 is making the best possible decision
(track 1 converged) taking into account track 2’s decision while track 2’s decision
remains unchanged (track 2 converged), and track 2 is making the best possible
decision (track 2 converged) taking into account track 1’s decision while track 1’s
decision remains unchanged (track 1 converged)), then the competitive optimization
is done.

96

4.4 Competitive Optimization For Unsupervised Depth Estimation And Semantic Segmentation

For the training, a similar training setup to what has been used during the previous ex-
periment is adopted (framework, data augmentation, optimizer parameters, etc...). Unlike
the case of cooperative optimization, the new proposed conditional training strategy allows
us to approach all three experimental setups previously detailed. The data for both tracks
is not needed simultaneously anymore. To train the second track (unsupervised depth),
all three training sets discussed above can be considered. For training the first track, we
use every time the available segmentation training set of Cityscapes with 3475 image with
corresponding ground-truth labels. For the three experiments, we use the same data aug-
mentation discussed previously with the joint UMDLR model for track 2. For track 1, the
semantic segmentation training set undergoes the exact same augmentation operations
we suggested in chapter 2 (see section 2.3.1).
To summarize the current experimental setup without considering data augmentation per-
formed on the fly, we can write:

• Experiment 1: Player 1: The "Trainavaltest" set of Cityscapes with 3475 images
(semantic segmentation).
Player 2: The "Trainavaltest" set of Cityscapes with 3475 images (unsupervised
depth using right view).

• Experiment 2: Player 1: The "Trainavaltest" set of Cityscapes with 3475 images
(semantic segmentation).
Player 2: The "Trainavaltest" set of Cityscapes with 3475 images + the "Trainextra"
set of Cityscapes with 19998 images (unsupervised depth using right view).

• Experiment 3: Player 1: The "Trainavaltest" set of Cityscapes with 3475 images
(semantic segmentation).
Player 2: The training Eigen-split set of KITTI with 22600 images (unsupervised
depth using right view).

4.4.3 Results & Discussion

In order to evaluate the effect of the new proposed training strategy, we perform a compar-
ison of the estimated depth outputs of the original UMDLR models (trained under the three
different training setups previously detailed) against the new models trained in a competi-
tive way using the new strategy (trained in alternation with a semantic segmentation track).
For the first experiment we distinguish three cases. First, we were able to perform a joint
training using scalarization as the "Trainvaltest" set of Cityscapes comes with available
segmentation ground-truth labels and right view frames necessary for unsupervised depth
estimation. Moreover, we managed to train the original UMDLR without obstacles. Finally,
we trained it using the new conditional strategy. Consequently, the resulting three models
can be compared for the setup of experiment 1:

97

4 Multi-tasking With Unsupervised Applications: The Segmentation Effect

* The original UMDLR model trained independently on the given training set ("Train-
valtest" set of Cityscapes for just depth).

* The cooperative UMDLR model trained jointly/simultaneously with a segmentation
track ("Trainvaltest" set of Cityscapes for depth and segmentation).

* The competitive UMDLR model trained in alternation with the semantic segmenta-
tion track ("Trainvaltest" set of Cityscapes for depth and segmentation).

A visual survey showing the results of all models is summarized in Fig. 4.7. Output depth
maps of images randomly selected from the Cityscapes test set are displayed in parallel
for all three scenarios. Obviously, competitive and cooperative models produce better
visual depth quality compared to the original model confirming that semantic segmenta-
tion features learned simultaneously as well as in alternation can help improve the depth
estimation. However, it is very hard to distinguish a clear winner between these two
models from visual results.
Therefore, we conduct a numerical comparison between the three models on two different
test sets (KITTI 2015 and the testing Eigen-split of KITTI). We present the numbers in
Tab. 4.5 that show a significant improvement of all metric values when semantic seg-
mentation is considered during the training. In fact, competitive and cooperative models
produce very proximate numbers. Both considerably outperform the original model with a
slight advantage to the competitive model especially for the first test set (KITTI 2015). For
the second set (testing Eigen-split set), this observation does not totally hold. In fact, the
cooperative model overtakes the competitive one in almost all metrics except for squared
relative difference and RMSE. This advantage is to be taken with some reservation as
the Eigen-split set considered, unlike the first one (KITTI 2015), is generated using a
complex process with many interpolation sub-steps due to the sparse quality of the raw
given LIDAR ground-truth information. In other words, the ground-truth quality of the first
set seems slightly more reliable.
To sum up, we can conclude that both training methods where segmentation is additionally
considered result in better quality and more accurate unsupervised depth estimation in
respect with the original single UMDLR. Although it is hard to distinguish a clear winner
among both, the competitive training strategy appears to be a better alternative for improv-
ing unsupervised depth estimation. For a comparable performance, it offers more training
flexibility. This could save the user a lot of effort compared to the classical cooperative
method, especially if the necessary data is not available for both tasks at once. This is
indeed the case of the coming second and third experiments.

For the second and third experiments, the datasets used for depth and segmentation
are different which means that using the cooperative strategy to train the model is no
longer possible. That is why, only a comparison between the original UMDLR models and
the competitively trained ones is realized for both experimental setups. Results of exper-
iment 2 showing a significant improvement of the latter upon the former are displayed in

98

4.4 Competitive Optimization For Unsupervised Depth Estimation And Semantic Segmentation

(a) Input frame (b) 1.Exp mono Model’s re-
sult

(c) 1.Exp cooperative
Model’s result

(d) 1.Exp competitive
Model’s result

Figure 4.7: The visual comparison between the competitive, the cooperative and the original model
depth estimation on test set images of Cityscapes.

99

4 Multi-tasking With Unsupervised Applications: The Segmentation Effect

Method Abs Rel Sq Rel RMSE RMSE log Log10 δ < 1.25 δ < 1.252 δ < 1.253

Original 0.299 4.095 9.648 0.329 70.987 0.577 0.848 0.951
Cooperative 0.239 2.950 8.647 0.313 60.918 0.747 0.873 0.942
Competitive 0.238 3.208 8.584 0.298 59.898 0.771 0.888 0.957

(a) Numerical Evaluation on the KITTI 2015 test set (200images)

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Original 0.275 3.463 8.916 0.331 0.610 0.845 0.941
Cooperative 0.231 3.219 8.441 0.307 0.688 0.884 0.957
Competitive 0.239 3.032 8.373 0.335 0.670 0.863 0.941

(b) Numerical Evaluation on the Eigen-split test set (697images)

Lower is better

Higher is better

Table 4.5: Experiment 1: Numerical Evaluation

Fig. 4.9 with a clearly enhanced depth quality. Values quantifying the performance on both
numerical test sets summarized in Tab. 4.7 show a consistent significant improvement
in all metric values when we use the conditional training approach. This improvement is
however less significant when compared to the one noticed in experiment 1.
Surprisingly, visual comparison shown in Fig. 4.10 between both models using the third
setup (3. Experiment) contradicts this observation as no visible enhancement in the depth
quality can be noticed with bare eye. From numbers in Tab. 4.9, we conclude indeed that
the original UMDLR model slightly outperforms the competitive one.

L
o

s
s
 V

a
lu

e

Iterations

L
o

s
s
 V

a
lu

e

Iterations

L
o

s
s
 V

a
lu

e

Iterations

(a) Depth loss evolution of
competitive model: 1.Experi-
ment

(b) Depth loss evolution of
competitive model: 2.Experi-
ment

(c) Depth loss evolution of
competitive model: 3.Experi-
ment

Figure 4.8: The comparison of depth loss evolution for the competitive model with the three different
experimental setups

In order better analyze these observations, we decide to take a look at the evolu-

100

4.4 Competitive Optimization For Unsupervised Depth Estimation And Semantic Segmentation

Method Abs Rel Sq Rel RMSE RMSE log Log10 δ < 1.25 δ < 1.252 δ < 1.253

Original 0.206 2.962 8.632 0.303 48.918 0.736 0.881 0.944
Competitive 0.193 2.745 8.139 0.278 46.653 0.761 0.899 0.956

(a) Numerical Evaluation on the KITTI 2015 test set (200images)

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Original 0.236 2.848 8.467 0.358 0.660 0.840 0.920
Competitive 0.223 2.365 7.845 0.360 0.669 0.845 0.923

(b) Numerical Evaluation on the Eigen-split test set (697images)

Lower is better

Higher is better

Table 4.7: Experiment 2: Numerical Evaluation

tion of the depth loss function of our competitive models in all three experiments. The
corresponding results are shown in Fig. 4.8 where the same training interval is always
considered for the sake of consistency. We note that all models have a loss curve with de-
scending nature. However, they present differences in terms of smoothness and depicted
fluctuations along the complete iterations range. This behavior is noticeable in the second
experiment but much more obvious for the third one. A potential cause of this disturbance
is related to the significant difference in terms of used training sets. In fact, three different
setups are used in each experiment for training the depth track whereas the segmentation
keeps the same. To our understanding, the difference between used training sets is not
only semantic but also in terms of image characteristics and signal nature. However, the
more important aspect is that the difference between datasets used by the two tracks is
intensifying from an experiment to the next. In the first one, images for segmentation and
depth learning were picked up from the same pool of data ("Trainvaltest" set). This induces
better combined feature learning thanks to the enforced redundancy. The inductive trans-
fer between both applications is boosted and significantly enhanced during the training
process of experiment one. That is why, we don’t see too much disturbance in the depth
loss evolution as the passage from an activated track to an other is generally smooth.
Ultimately, this smoothly alternating pattern contributes to the improvement of the training
procedure in general and the depth estimation in particular compared to the original case.
For the second experiment, data from two different sets was picked by each track in every
iteration. However, the used training set by the depth ("Trainvaltest" set + "Trainextra" set)
and segmentation ("Trainvaltest" set) tracks show strong context similarities and shared
properties. Despite consequent content differences, all data comes from the same source
(Cityscapes). It was recorded by the same team with the same equipment in very sim-
ilar conditions and within resembling environments. Therefore, we still notice the effect
of the inductive transfer between both applications. This is confirmed by the improved
performance in comparison to the original UMDLR trained on the same data. However,
the resulting improvement is obviously less considerable than the one noted for the first
experiment as the alternation between tracks is less smooth in this case. The slight

101

4 Multi-tasking With Unsupervised Applications: The Segmentation Effect

fluctuations characterizing the loss evolution compared to the first experiment prove this
effect.
In the third experiment, images from Cityscapes were used for learning segmentation
whereas the depth track learned from KITTI data. Although both datasets depict traffic
scenes from German cities, they still present quite different characteristics. This mean-
ingful difference affected the inductive transfer between both tasks which appears clearly
in the sharper fluctuations of the depth loss evolution compared to both previous ex-
periments. As a result, the depth estimation didn’t profit from additional segmentation
information as much as in previous cases and no considerable improvement upon the
original UMDLR model could be noticed when considering this experimental setup.

Method Abs Rel Sq Rel RMSE RMSE log Log10 δ < 1.25 δ < 1.252 δ < 1.253

Original 0.0853 1.034 4.890 0.160 16.274 0.918 0.972 0.987
Competitive 0.0894 1.008 5.097 0.166 17.535 0.912 0.967 0.985

(a) Numerical Evaluation on the KITTI 2015 test set (200images)

Method Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Original 0.1217 1.011 5.221 0.218 0.852 0.943 0.973
Competitive 0.1241 1.037 5.308 0.220 0.847 0.943 0.973

(b) Numerical Evaluation on the Eigen-split test set (697images)

Lower is better

Higher is better

Table 4.9: Experiment 3: Numerical Evaluation

In the wake of the thorough evaluation of the proposed competitive training strategy, we
take a further look at the performance of the resulting model and how it ranks among the
best-performing state-of-the-art CNN-based methods for unsupervised depth estimation.
We rely here on the reported results of the original best performing UMDLR method de-
tailed in [6] and we compare the numbers produced by our competitive model against the
available reported numbers.
The considered numerical test sets for evaluation are still the KITTI 2015 (200 images) and
the testing Eigen-split set (697 test images). However for training, we choose to replicate
the same training setup for the best-performing UMDLR from the paper. We use same data
augmentation, the optimizer parameters and the training scheme that has been detailed in
[6] for the sake of consistency.
A detailed summary of the numerical comparison of our competitive model’s performance
against state-of-the-art models is shown in Tab. 4.11. The first Tab. 4.11a contains the
averaged results on the KITTI 2015 set where our model ranks first among all the selected
models reported in [6]. It slightly improves upon the original best-performing UMDLR
model trained with the same setup. This confirms the observation that considering se-
mantic segmentation features during the training process using our competitive strategy
boosts the quality of the produced unsupervised depth estimates. For the second test set

102

4.4 Competitive Optimization For Unsupervised Depth Estimation And Semantic Segmentation

(a) Input frame (b) 2.Exp mono Model’s result (c) 2.Exp competitive Model’s result

Figure 4.9: The visual comparison between the competitive and the original model depth estimation
on test set images of Cityscapes (2.Experiment).

103

4 Multi-tasking With Unsupervised Applications: The Segmentation Effect

(a) Input frame (b) 3.Exp mono Model’s result (c) 3.Exp competitive Model’s result

Figure 4.10: The visual comparison between the competitive and the original model depth estima-
tion on test set images of Cityscapes (3.Experiment).

104

4.4 Competitive Optimization For Unsupervised Depth Estimation And Semantic Segmentation

(Tab. 4.11b), the competitive model lands in second position among the other methods
with a negligible advantage for the original UMDLR model in the case of 80m restricted
depth range evaluation as well as for the 50m setup. Visual output samples of the best-
performing models for the 80m case are presented in Fig. 4.11 which is courtesy of [6]
except for our competitive model’s results. The visual observation align with the numeri-
cal conclusions. Both original UMDLR and competitive UMDLR produce the best visually
refined depth estimates against other methods with respect to the available ground-truth.
That the competitive one has an advantage is not really clear to the bare eye compari-
son. However numerically, the averaging of all metrics over the whole test set (KITTI 2015)
confirms this observation.

Method dataset Abs Rel Sq Rel RMSE RMSE log Log10 δ < 1.25 δ < 1.252 δ < 1.253

UMDELR with Deep3D K 0.412 16.37 13.693 0.512 66.85 0.690 0.833 0.891
UMDELR with Deep3Ds K 0.151 1.312 6.344 0.239 59.64 0.781 0.931 0.976

UMDELR No LR K 0.123 1.417 6.315 0.220 30.318 0.841 0.937 0.973
UMDELR K 0.124 1.388 6.125 0.217 30.272 0.841 0.936 0.975
UMDELR CS 0.699 10.060 14.445 0.542 94.757 0.053 0.326 0.862
UMDELR K+CS 0.104 1.070 5.417 0.188 25.523 0.875 0.956 0.983

UMDELR pp K+CS 0.100 0.934 5.141 0.178 25.077 0.878 0.961 0.986
UMDELR ResNet pp K+CS 0.097 0.896 5.093 0.176 23.811 0.879 0.962 0.986

Ours K+CS 0.095 0.889 5.007 0.165 23.737 0.883 0.8971 0.987

(a) Numerical Evaluation on the KITTI 2015 test set (200images) trained on Cityscapes and fine-tuned using
the whole KITTI split

Method dataset Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Train set mean K 0.361 4.826 8.102 0.377 0.638 0.804 0.894
Eigen et al. Coarse K 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen et al. Fine K 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Liu et al. DCNF-FCSP FT K 0.201 1.584 6.471 0.273 0.68 0.898 0.967

UMDELR No LR K 0.152 1.528 6.098 0.252 0.801 0.922 0.963
UMDELR K 0.148 1.344 5.927 0.247 0.803 0.922 0.964
UMDELR K+CS 0.124 1.076 5.311 0.219 0.847 0.942 0.973

UMDELR pp K+CS 0.118 0.923 5.015 0.210 0.854 0.947 0.976
UMDELR ResNet pp K+CS 0.114 0.898 4.935 0.206 0.861 0.949 0.976

Ours K+CS 0.116 0.895 4.937 0.207 0.861 0.950 0.975
Garg et al. cap 50m K 0.169 1.080 5.104 0.273 0.740 0.904 0.962
UMDELR cap 50m K 0.140 0.976 4.471 0.232 0.818 0.931 0.969
UMDELR cap 50m K+CS 0.117 0.762 3.972 0.206 0.860 0.948 0.976

UMDELR pp cap 50m K+CS 0.112 0.680 3.810 0.198 0.866 0.953 0.979
UMDELR ResNet pp cap 50m K+CS 0.108 0.657 3.729 0.194 0.873 0.954 0.978

Ours cap 50m K+CS 0.112 0.659 3.721 0.195 0.873 0.950 0.979

(b) Numerical Evaluation on the Eigen-split test set (697images) training on Cityscapes ("Trainextra" + "Train-
valtest") and fine-tuned on the whole KITTI split

Lower is better

Higher is better

Table 4.11: State of the art Comparison

105

4 Multi-tasking With Unsupervised Applications: The Segmentation Effect

(a) Scene 1 (b) Scene 2 (c) Scene 3

Figure 4.11: The visual comparison of state-of-the art methods on images from the KITTI test
Eigen split (courtesy of [6]). The ground truth velodyne depth interpolated because of sparsity.
From top to bottom: Input frame, interpolated ground truth, Eigen et al. result, Liu et al. result,
Garg et al. result, UMDELR ResNet pp result, Ours (competitive).

106

5 Conclusions

In the proposed work, a generic enhancement of urban scene understanding for au-
tonomous driving scenarios was targeted. Under precise requirements pre-defined within
the Audio and Video Advanced Driving Assistance Systems (AVADAS) project of HUAWEI,
exclusive priority to emerging DL technologies was accorded. Surfing on the current wave,
this research work presents an alternative to tackle the problem of improving scene un-
derstanding using CNNs. From the visual nature of the understanding emanates the high
priority given to the camera sensors. As defined by the mentioned project requirements,
cameras were considered as the only source of information to the autonomous vehicle
within this work. Therefore, the motivation was not to present an umpteenth algorithmic
solution to classical computer vision problems but rather proposing a new DL-based tech-
nology to tackle these issues from a different point of view. The final goal is to improve
upon state-of-the-art CNN-based methods that already overshadowed the classical land-
scape.
In this context, we start by solving the problem of semantic segmentation using CNNs. We
see this as the starting point for improving scene understanding faculties of autonomous
systems. Semantic segmentation gives the vehicle a proper perception of the incoming
visual information as independent semantically meaningful classes. This guarantees an
improved analysis and perception of the navigation environment leading subsequently
to better driving decisions. For this, a class-level CNN-based semantic segmentation
solution was proposed under the name of MokaNet. The model is characterized by a
high-complexity structure with densely connected sequential blocks. Each of which is de-
signed as a concatenation of different sub-blocks embracing an encoder-decoder layout
with long-range links joining the two parts. The newly proposed connection strategy, the
cascaded redundant architecture and the incorporation of additional specific layers (Batch-
normalization, flat convolution layers, etc...) are the principal highlights of the MokaNet
architecture adapted to learning semantic segmentation. Moreover, the application of the
model on complex tasks related to the segmentation context such as car instance sepa-
ration proved the efficiency and robustness of not only the model itself but also the used
training scheme including data augmentation, model design and parameter choice. The
extended semantic segmentation solution with instance-level car separation was delivered
to meet the project requirements by giving the highest priority to the car object-class. The
motivation behind this is indeed to anticipate processing steps in later stages of the project
where filtering out dynamic cars is needed for optimizing the localization step of the SLAM
approach.
A detailed evaluation of the different aspects of the proposed approach including robust-

107

5 Conclusions

ness, generalization capacities, visual performance and numerical accuracy has been
conducted. Additionally, a thorough state-of-the-art comparison against publicly available
CNN-models of the Cityscapes benchmark was performed. Exclusively, models trained
to solve the semantic segmentation task within autonomous driving context were consid-
ered. MokaNet delivered excellent visual and numerical results. Despite limited training
data size, it proved to be robust enough against extreme challenging content variations of
the test samples (e.g. datasets depicting traffic scenes from various countries) and signif-
icantly improved upon state-of-the-art methods.
After tackling the semantic segmentation problem, an extensive study of its effect upon
other simultaneously learned tasks was realized. As a main example, supervised disparity
estimation within a multi-tasking CNN-model trained with semantic segmentation was con-
sidered. First, a personally developed approach based on available segmentation labels
was used to generate ground-truth masks for disparity planes estimation. These masks
encode uniform displacement information of semantic segments between left and right im-
age views. The resulting ground-truth combining segmentation and disparity information
was harnessed to challenge the ability of the proposed model to decipher high-complexity
mappings. This has been examined in the case of basic and cooperative bi-decoder archi-
tectures (consisting of two decoding parts one for segmentation and the other for disparity
planes estimation). Subsequently, we evaluated the effect of jointly optimizing tightly re-
lated tasks within multi-objective optimization frameworks with a specific focus on the effect
of high-quality segmentation upon enhancing the estimation of disparity planes.
An extension of the same experiment to pixel-wise depth estimation was later realized.
Unlike the previous case, results didn’t show any significant improvement of the jointly
trained model (Multi-tasking model with supervised depth and segmentation simultane-
ously learned) upon the basic DispNet (only supervised depth estimation) in terms of
estimating pixel-wise supervised depth from stereo images. In fact, the lack of reliable
real-world depth ground-truth appeared to be a determinant failure factor. The training
procedure was clearly disturbed by the use of artificially rendered images instead of real
data.
In order to overcome the limited data issue, we shifted the focus towards the unsupervised
depth estimation approach that only requires stereo pairs without need of available ground-
truth for training. The best-performing unsupervised model for depth estimation called
UMDLR was considered. Although experiments confirmed the fact that learning semantic
segmentation following the standard cooperative multi-tasking strategy could significantly
improve the unsupervised learning of depth, the restricted size of the available datasets
necessary to perform such training procedures posed again a big challenge. For this, we
proposed a new conditional strategy for training multi-tasking CNNs inspired by game the-
ory. With our new strategy, training such models becomes possible using independent
heterogeneous datasets relevant for different tasks instead of requiring a single dataset
with all ground-truth labels available at once. It is based on performing the optimization
of these tasks in an alternating competitive way instead of linearizing their objective func-
tions. Our solution outperforms state-of-the-art approaches and competes on high levels

108

with the standard cooperative multi-tasking training. By picking up data from heteroge-
neous datasets in every iteration, our training method gives much more flexibility to the
CNN designer. At the same time, it totally profits from the transfer learning between se-
mantic segmentation and other applications as confirmed by the experiments conducted in
Chapter 4 for unsupervised depth estimation. In fact, our approach delivers a comparable
performance to the one achieved through cooperative multi-tasking without being limited
by data availability.

109

Bibliography

[1] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U. Franke,
S. Roth, and B. Schiele, “The cityscapes dataset for semantic urban scene under-
standing,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 3213–3223.

[2] J. Janai, F. Güney, A. Behl, and A. Geiger, “Computer vision for autonomous vehicles:
Problems, datasets and state-of-the-art,” arXiv preprint arXiv:1704.05519, 2017.

[3] M. P. Shah. (2017, Jan.) Semantic segmentation architectures implemented in
pytorch. [Online]. Available: https://github.com/meetshah1995/pytorch-semseg

[4] F. Yu, W. Xian, Y. Chen, F. Liu, M. Liao, V. Madhavan, and T. Darrell, “Bdd100k:
A diverse driving video database with scalable annotation tooling,” arXiv preprint
arXiv:1805.04687, 2018.

[5] M. Jaderberg, K. Simonyan, A. Zisserman, and K. Kavukcuoglu, “Spatial transformer
networks,” Advances in Neural Information Processing Systems 28 (NIPS 2015), 06
2015.

[6] C. Godard, O. Mac Aodha, and G. J. Brostow, “Unsupervised monocular depth esti-
mation with left-right consistency,” in CVPR, vol. 2, no. 6, 2017, p. 7.

[7] Association For Safe International Road Travel. (2020, Jan.) Annual global road crash
statistics. [Online]. Available: https://www.asirt.org/safe-travel/road-safety-facts/

[8] S. Singh, “Critical reasons for crashes investigated in the national motor vehicle crash
causation survey. dot hs 812 115,” National Highway Traffic Safety Administration, US
Department of Transportation, 2015.

[9] M. Maurer, J. C. Gerdes, B. Lenz, and H. Winner, Autonomous Driving: Technical,
Legal and Social Aspects. Springer, 2016.

[10] L. Fei-Fei, A. Iyer, C. Koch, and P. Perona, “What do we perceive in a glance of a
real-world scene?” Journal of vision, vol. 7, no. 1, pp. 10–10, 2007.

[11] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun, “Vision meets robotics: The kitti dataset,”
The International Journal of Robotics Research, vol. 32, no. 11, pp. 1231–1237, 2013.

111

https://github.com/meetshah1995/pytorch-semseg
https://www.asirt.org/safe-travel/road-safety-facts/

Bibliography

[12] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam system for monoc-
ular, stereo, and rgb-d cameras,” IEEE Transactions on Robotics, vol. 33, no. 5, pp.
1255–1262, 2017.

[13] M. Sezgin and B. Sankur, “Survey over image thresholding techniques and quantita-
tive performance evaluation,” Journal of Electronic imaging, vol. 13, no. 1, pp. 146–
168, 2004.

[14] N. R. Pal and S. K. Pal, “A review on image segmentation techniques,” Pattern recog-
nition, vol. 26, no. 9, pp. 1277–1294, 1993.

[15] D. Stutz, A. Hermans, and B. Leibe, “Superpixels: An evaluation of the state-of-the-
art,” Computer Vision and Image Understanding, vol. 166, pp. 1–27, 2018.

[16] G. Mihai, L. Stanescu, D. Burdescu, A. Doringa, M. Brezovan, and E. Ganea, “A
comparison of three graph-based image segmentation algorithms.” pp. 480–485, 01
2010.

[17] B. Fulkerson and S. Soatto, “Really quick shift: Image segmentation on a gpu,” in
European Conference on Computer Vision. Springer, 2010, pp. 350–358.

[18] L. Vincent and P. Soille, “Watersheds in digital spaces: an efficient algorithm based
on immersion simulations,” IEEE Transactions on Pattern Analysis & Machine Intelli-
gence, no. 6, pp. 583–598, 1991.

[19] Qure.ai. (2020, Jan.) semantic-segmentation-deep-learning-review. [Online]. Avail-
able: http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review

[20] D. Ciresan, A. Giusti, L. M. Gambardella, and J. Schmidhuber, “Deep neural networks
segment neuronal membranes in electron microscopy images,” in Advances in neural
information processing systems, 2012, pp. 2843–2851.

[21] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic seg-
mentation,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2015, pp. 3431–3440.

[22] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomed-
ical image segmentation,” in International Conference on Medical image computing
and computer-assisted intervention. Springer, 2015, pp. 234–241.

[23] V. Badrinarayanan, A. Kendall, and R. Cipolla, “Segnet: A deep convolutional
encoder-decoder architecture for image segmentation,” IEEE transactions on pattern
analysis and machine intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.

[24] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected
convolutional networks,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, vol. 1, no. 2, 2017, p. 3.

112

http://blog.qure.ai/notes/semantic-segmentation-deep-learning-review

Bibliography

[25] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “Enet: A deep neural network
architecture for real-time semantic segmentation,” arXiv preprint arXiv:1606.02147,
2016.

[26] A. Chaurasia and E. Culurciello, “Linknet: Exploiting encoder representations for effi-
cient semantic segmentation,” in 2017 IEEE Visual Communications and Image Pro-
cessing (VCIP). IEEE, 2017, pp. 1–4.

[27] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing network,” in IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2881–2890.

[28] G. Lin, A. Milan, C. Shen, and I. Reid, “Refinenet: Multi-path refinement networks for
high-resolution semantic segmentation,” in IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017.

[29] M. A. Islam, M. Rochan, N. D. Bruce, and Y. Wang, “Gated feedback refinement
network for dense image labeling,” in 2017 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). IEEE, 2017, pp. 4877–4885.

[30] S. Hong, H. Noh, and B. Han, “Decoupled deep neural network for semi-supervised
semantic segmentation,” in Advances in neural information processing systems,
2015, pp. 1495–1503.

[31] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Semantic image
segmentation with deep convolutional nets and fully connected crfs,” CoRR, vol.
abs/1412.7062, 2014. [Online]. Available: http://arxiv.org/abs/1412.7062

[32] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “Deeplab:
Semantic image segmentation with deep convolutional nets, atrous convolution, and
fully connected crfs,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp.
834–848, 2018. [Online]. Available: https://doi.org/10.1109/TPAMI.2017.2699184

[33] L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking atrous
convolution for semantic image segmentation,” arXiv preprint arXiv:1706.05587, vol.
abs/1706.05587, 2017. [Online]. Available: http://arxiv.org/abs/1706.05587

[34] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in Proceedings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[35] K. He, G. Gkioxari, P. Dollár, and R. Girshick, “Mask r-cnn,” in Proceedings of the IEEE
international conference on computer vision (ICCV). IEEE, 2017, pp. 2961–2969.

[36] Y. Xiang, W. Choi, Y. Lin, and S. Savarese, “Subcategory-aware convolutional neu-
ral networks for object proposals and detection,” in 2017 IEEE winter conference on
applications of computer vision (WACV). IEEE, 2017, pp. 924–933.

113

http://arxiv.org/abs/1412.7062
https://doi.org/10.1109/TPAMI.2017.2699184
http://arxiv.org/abs/1706.05587

Bibliography

[37] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate
object detection and semantic segmentation,” in Proceedings of the IEEE conference
on computer vision and pattern recognition (CVPR), 2014, pp. 580–587.

[38] Z. Hayder, X. He, and M. Salzmann, “Boundary-aware instance segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2017, pp. 5696–5704.

[39] J. van den Brand, M. Ochs, and R. Mester, “Instance-level segmentation of vehicles
by deep contours,” in Asian Conference on Computer Vision (ACCV). Springer, 2016,
pp. 477–492.

[40] A. Kirillov, E. Levinkov, B. Andres, B. Savchynskyy, and C. Rother, “Instancecut: from
edges to instances with multicut,” in 30th IEEE Conference on Computer Vision and
Pattern Recognition. IEEE Computer Society, 2017, pp. 7322–7331.

[41] S. Liu, J. Jia, S. Fidler, and R. Urtasun, “Sgn: Sequential grouping networks for in-
stance segmentation,” in Proceedings of the IEEE International Conference on Com-
puter Vision (ICCV), 2017, pp. 3496–3504.

[42] A. Arnab and P. H. Torr, “Pixelwise instance segmentation with a dynamically instan-
tiated network,” in Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2017, pp. 441–450.

[43] M. Ren and R. S. Zemel, “End-to-end instance segmentation with recurrent atten-
tion,” in 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
IEEE, 2017, pp. 293–301.

[44] J. Uhrig, M. Cordts, U. Franke, and T. Brox, “Pixel-level encoding and depth layering
for instance-level semantic labeling,” in German Conference on Pattern Recognition.
Springer, 2016, pp. 14–25.

[45] A. Kendall, Y. Gal, and R. Cipolla, “Multi-task learning using uncertainty to weigh
losses for scene geometry and semantics,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 7482–7491.

[46] M. Bai and R. Urtasun, “Deep watershed transform for instance segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2017, pp. 2858–2866.

[47] Z. Zhang, S. Fidler, and R. Urtasun, “Instance-level segmentation for autonomous
driving with deep densely connected mrfs,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2016, pp. 669–677.

[48] I. Halfaoui, F. Bouzaraa, and O. Urfalioglu, “Cnn-based initial background estimation,”
in 2016 23rd International Conference on Pattern Recognition (ICPR). IEEE, 2016,
pp. 101–106.

114

Bibliography

[49] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas, V. Golkov, P. van der Smagt,
D. Cremers, and T. Brox, “Flownet: Learning optical flow with convolutional networks,”
in Proceedings of the IEEE International Conference on Computer Vision, 2015, pp.
2758–2766.

[50] G. Neuhold, T. Ollmann, S. R. Bulo, and P. Kontschieder, “The mapillary vistas
dataset for semantic understanding of street scenes,” in 2017 IEEE International
Conference on Computer Vision (ICCV), vol. 00, Oct. 2018, pp. 5000–5009. [Online].
Available: doi.ieeecomputersociety.org/10.1109/ICCV.2017.534

[51] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Pro-
ceedings of the 22nd ACM international conference on Multimedia. ACM, 2014, pp.
675–678.

[52] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[53] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn, and A. Zisserman,
“The pascal visual object classes challenge: A retrospective,” International journal of
computer vision, vol. 111, no. 1, pp. 98–136, 2015.

[54] Cityscapes Team. (2020, Jan.) Cityscapes benchmark suite. [Online]. Available:
https://www.cityscapes-dataset.com/benchmarks/#scene-labeling-task

[55] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft coco: Common objects in context,” in Proceedings of the european
conference on computer vision. Springer, 2014, pp. 740–755.

[56] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik, “Simultaneous detection and
segmentation,” in European Conference on Computer Vision. Springer, 2014, pp.
297–312.

[57] D. Acuna, H. Ling, A. Kar, and S. Fidler, “Efficient interactive annotation of segmenta-
tion datasets with polygon-rnn++,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018, pp. 859–868.

[58] J. Baxter, “A model of inductive bias learning,” Journal of artificial intelligence re-
search, vol. 12, pp. 149–198, 2000.

[59] O. H. Jafari, O. Groth, A. Kirillov, M. Y. Yang, and C. Rother, “Analyzing modular cnn
architectures for joint depth prediction and semantic segmentation,” in 2017 IEEE In-
ternational Conference on Robotics and Automation (ICRA). IEEE, 2017, pp. 4620–
4627.

115

doi.ieeecomputersociety.org/10.1109/ICCV.2017.534
https://www.cityscapes-dataset.com/benchmarks/#scene-labeling-task

Bibliography

[60] D. Eigen and R. Fergus, “Predicting depth, surface normals and semantic labels with
a common multi-scale convolutional architecture,” in Proceedings of the IEEE Inter-
national Conference on Computer Vision, 2015, pp. 2650–2658.

[61] P. Wang, X. Shen, Z. Lin, S. Cohen, B. Price, and A. L. Yuille, “Towards unified depth
and semantic prediction from a single image,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp. 2800–2809.

[62] A. Kundu, Y. Li, F. Dellaert, F. Li, and J. M. Rehg, “Joint semantic segmentation and 3d
reconstruction from monocular video,” in European Conference on Computer Vision.
Springer, 2014, pp. 703–718.

[63] A. Mousavian, H. Pirsiavash, and J. Košecká, “Joint semantic segmentation and
depth estimation with deep convolutional networks,” in 2016 Fourth International Con-
ference on 3D Vision (3DV). IEEE, 2016, pp. 611–619.

[64] C. Hazirbas, L. Ma, C. Domokos, and D. Cremers, “Fusenet: Incorporating depth into
semantic segmentation via fusion-based cnn architecture,” in Asian Conference on
Computer Vision. Springer, 2016, pp. 213–228.

[65] K. Yamaguchi, D. McAllester, and R. Urtasun, “Efficient joint segmentation, occlusion
labeling, stereo and flow estimation,” in European Conference on Computer Vision.
Springer, 2014, pp. 756–771.

[66] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press,
2004.

[67] K. Deb, Multi-objective optimization using evolutionary algorithms. John Wiley &
Sons, 2001, vol. 16.

[68] A. Saxena, J. Schulte, A. Y. Ng et al., “Depth estimation using monocular and stereo
cues.” in Proceedings of the international Joint Conference on Artificial Intelligence
(IJCAI), vol. 7, 2007, pp. 162–170.

[69] F. Liu, C. Shen, and G. Lin, “Deep convolutional neural fields for depth estimation
from a single image,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2015, pp. 5162–5170.

[70] J. Zbontar and Y. LeCun, “Stereo matching by training a convolutional neural network
to compare image patches,” Journal of Machine Learning Research, vol. 17, no. 1-32,
p. 2, 2016.

[71] W. Luo, A. G. Schwing, and R. Urtasun, “Efficient deep learning for stereo matching,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 5695–5703.

116

Bibliography

[72] N. Mayer, E. Ilg, P. Hausser, P. Fischer, D. Cremers, A. Dosovitskiy, and T. Brox, “A
large dataset to train convolutional networks for disparity, optical flow, and scene flow
estimation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 4040–4048.

[73] Blender Online Community, Blender - a 3D modelling and rendering package,
Blender Foundation, Blender Institute, Amsterdam, Jan. 2020. [Online]. Available:
http://www.blender.org

[74] R. Stoop, J. Buchli, G. Keller, and W.-H. Steeb, “Stochastic resonance in pattern
recognition by a holographic neuron model,” Physical Review E, vol. 67, no. 6, p.
061918, 2003.

[75] I. Halfaoui and O. Urfalioglu, “Improving bm3d on non-stationary gaussian models for
real image noise,” in Proceedings of the international Conference on Image Process-
ing Theory, Tools and Applications (IPTA). IEEE, 2015, pp. 467–472.

[76] J. Xie, R. Girshick, and A. Farhadi, “Deep3d: Fully automatic 2d-to-3d video conver-
sion with deep convolutional neural networks,” in European Conference on Computer
Vision. Springer, 2016, pp. 842–857.

[77] T. Zhou, M. Brown, N. Snavely, and D. G. Lowe, “Unsupervised learning of depth and
ego-motion from video,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, vol. 2, no. 6, 2017, pp. 1851–1858.

[78] R. Garg, V. K. BG, G. Carneiro, and I. Reid, “Unsupervised cnn for single view depth
estimation: Geometry to the rescue,” in European Conference on Computer Vision.
Springer, 2016, pp. 740–756.

[79] Y. Kuznietsov, J. Stückler, and B. Leibe, “Semi-supervised deep learning for monocu-
lar depth map prediction,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2017, pp. 6647–6655.

[80] H. Jiang, G. Larsson, M. Maire Greg Shakhnarovich, and E. Learned-Miller, “Self-
supervised relative depth learning for urban scene understanding,” in Proceedings of
the European Conference on Computer Vision (ECCV), 2018, pp. 19–35.

[81] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[82] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image quality assessment:
from error visibility to structural similarity,” IEEE transactions on image processing,
vol. 13, no. 4, pp. 600–612, 2004.

[83] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale machine learning on
heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467, 2016.

117

http://www.blender.org

Bibliography

[84] A. Gurram, O. Urfalioglu, I. Halfaoui, F. Bouzaraa, and A. M. López, “Monocular depth
estimation by learning from heterogeneous datasets,” in Proceedings of the IEEE
Intelligent Vehicles Symposium (IV). IEEE, 2018, pp. 2176–2181.

[85] Y. Jin and B. Sendhoff, “Pareto-based multiobjective machine learning: An overview
and case studies,” IEEE Transactions on Systems, Man, and Cybernetics, Part C
(Applications and Reviews), vol. 38, no. 3, pp. 397–415, 2008.

[86] J. Nash, “Non-cooperative games,” Annals of mathematics, pp. 286–295, 1951.

[87] J.-A. Désidéri, “Split of Territories in Concurrent Optimization,” INRIA, Research
Report RR-6108, 2007. [Online]. Available: https://hal.inria.fr/inria-00127194

[88] A. Minelli, I. Salah El Din, G. Carrier, A. Zerbinati, and J.-A. Désidéri, “Cooperation
and Competition Strategies in Multi-objective Shape Optimization - Application
to Low-boom/Low-drag Supersonic Business Jet,” in 43rd AIAA Fluid Dynamics
Conference and Exhibit. San Diego, California, United States: The American
Institute of Aeronautics and Astronautics (AIAA), Jun. 2013. [Online]. Available:
https://hal.inria.fr/hal-00935320

118

https://hal.inria.fr/inria-00127194
https://hal.inria.fr/hal-00935320

	Contents
	Introduction
	Autonomous Driving
	Scene Understanding In Autonomous Driving Scenarios
	Motivation & Background
	Visual Scene Understanding

	Project Specifications
	Goals and Structure of the Thesis

	Segmentation for Autonomous Driving
	Introduction
	State-of-the-Art Survey
	Non-Semantic Segmentation
	Semantic Segmentation

	The Proposed Approach: MokaNet
	Implementation Details
	Experiments & Results

	Multi-tasking With Supervised Applications: The Segmentation Effect
	Motivation & Related Works
	Multi-objective Optimization: Theory and Background
	Cooperative Optimization For Disparity Planes Estimation And Semantic Segmentation
	Disparity Planes Estimation
	Disparity Planes Estimation & Semantic Segmentation

	Cooperative Optimization For Supervised Depth Estimation And Semantic Segmentation
	Supervised Depth Estimation: DispNet
	Supervised Depth Estimation & Semantic Segmentation

	Multi-tasking With Unsupervised Applications: The Segmentation Effect
	Motivation & Related Works
	Unsupervised Depth Estimation: UMDELR
	Introduction
	Implementation Details
	Results

	Cooperative Optimization For Unsupervised Depth Estimation And Semantic Segmentation
	Introduction
	Proposed Approach
	Results & Discussion

	Competitive Optimization For Unsupervised Depth Estimation And Semantic Segmentation
	Motivation & Background
	The Proposed Approach
	Results & Discussion

	Conclusions

