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Abstract—This paper presents an approach to generate
the time-optimal trajectory for a robot manipulator under
certain kinematic constraints such as joint position, velocity,
acceleration, and jerk limits. This problem of generating a
trajectory that takes the minimum time to pass through
specified waypoints is formulated as a nonlinear constraint
optimization problem. Unlike prior approaches that model the
motion of consecutive waypoints as a Cubic Spline, we model
this motion with a seven-segment acceleration profile, as this
trajectory results in a shorter overall motion time while staying
within the bounds of the robot manipulator’s constraints. The
optimization bottleneck lies in the complexity that increases
exponentially with the number of waypoints. To make the
optimization scale well with the number of waypoints, we
propose an approach that has linear complexity. This approach
first divides all waypoints to consecutive batches, each with
an overlap of two waypoints. The overlapping waypoints then
act as a bridge to concatenate the optimization results of
two consecutive batches. The whole trajectory is effectively
optimized by successively optimizing every batch. We conduct
experiments on practical scenarios and trajectories generated
by motion planners to evaluate the effectiveness of our proposed
approach over existing state-of-the-art approaches.

I. INTRODUCTION

In industrial applications, it is important to guarantee fast
and accurate motions for robot manipulators to perform a
well-defined task, such as assembly and welding. Limiting
the motion jerk is an essential requirement for avoiding
the manipulator’s mechanical resonances and improving the
trajectory accuracy. Once a task is defined, the robot is
typically optimized for fast cycle times, therefore requiring
a time-optimal trajectory with kinematic constraints. On the
other side, the generated trajectory should also be as smooth
as possible, especially for applications such as spray painting.

The most common motion profiles used during teach-in are
point-to-point motions in configuration space, straight lines
and circular motions in Cartesian space, and in a limited
number of industrial controllers a spline interpolation in
Cartesian space. Controllers typically offer blending options
in configuration or Cartesian space to smoothen the trajectory
and to avoid stops at each waypoint. With these different
motion options, a programmer can impose constraints on the
behavior of the robot and its end effector, e.g., for following
an outline of a specific object. A robot with more degrees of
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freedom than required by this constraint is able to optimize
its motion according to other goals. Given an acceptable
tolerance in following a straight line in Cartesian space, an
optimization algorithm can modify the trajectory even further
to improve the cycle time of the process or the durability of
the mechanical system.

With challenges arising from small lot sizes, where manual
programming is no longer feasible, path planning algorithms
can be used to move from manual programming to an
automatic generation of robot motions. They consider ge-
ometric information from the robot and its environment to
generate collision-free paths between specified start and goal
configurations. This problem is already PSPACE-hard [1]
when considering a state space solely based on positions and
that complexity increases for kinodynamic algorithms that
add velocity information and generate a trajectory instead
of a path. The solution path is however only valid with the
same interpolation used during planning, typically a linear
interpolation in configuration space. Trajectory generation
algorithms based on the solution path have to perform
expensive collision checking in order to prevent this. Any
deviation without an explicit upper bound error model in the
collision checking may result in a collision during execution
of the motion and simply sending a list of waypoints to
an industrial controller without a model of its trajectory
generation can lead to undesired behavior.

This work presents a new approach to trajectory generation
that represents the trajectory between two adjacent waypoints
in a different way and is able to explore the robot manipula-
tor’s full potential in reducing the motion time. In the same
way as Haschke et al. [2] and Kroger et al. [3], the trajec-
tory between two consecutive waypoints are generated with
trapezoidal acceleration profiles, which are also referred to as
seven-segment acceleration profiles [4]. Compared to cubic
splines, seven-segment trajectories offer more optimization
possibilities, while increasing the optimization complexity.

The main problem arises from an optimization complexity
that increases exponentially with the number of waypoints. It
will become impossible to perform the optimization when the
waypoints exceed a certain amount. In this paper we develop
an approach that can efficiently reduce this problem to a
linear complexity, thus making the optimization adaptable
to any number of waypoints. This approach is inspired by
Model Predictive Control [5], that predicts the system future
state based on a formalized model. By decomposing all
waypoints into many consecutive batches, where each one
is bridged by two overlapping waypoints, the motion states
of these waypoints can be predicted and updated by the



optimization of two adjacent batches. In the end, the whole
trajectory is solved by successively optimizing every batch.
On the other hand, the optimization performance is very
sensitive to the initial point. We discuss in detail how to find
an appropriate initial point that enables the optimal results to
be obtained in a short time and with a high success rate. In
addition, the algorithm is extended to also consider trajectory
behavior in Cartesian space.

II. RELATED WORK

The problem of generating time-optimal and smooth tra-
jectories has been studied extensively in previous work. The
proposed trajectory planning techniques can be generally
categorized into two categories: online real-time planning
and offline planning. Online real-time trajectory planning
targets a dynamic and fast modification of the planned trajec-
tories in case of unforeseen events. The online approaches
often rely on the manipulator’s current state and the goal
state to generate the motion trajectory. For example, by
using quintic splines, an online trajectory generation with
jerk bound was shown in [6]. Besides, Haschke et al. [2]
presented an online trajectory planner with an arbitrary
starting state and an end velocity of zero. Kroger et al. [3],
[7] and Lange et al. [8] explored in more depth the online
generation of trajectories for manipulators with arbitrary start
and goal states. However, those online approaches are often
limited to two waypoints. For a complicated path with many
intermediate waypoints, it is often very difficult to apply
these approaches for finding the time-optimal trajectory.

For a well-defined task, the offline trajectory planning
aims at finding an optimal trajectory in space or time. To
represent the trajectory, a polynomial curve is often used.
Generally, the higher the degree of the polynomial curve, the
more precise can the motion trajectory properties be tuned.
A third-degree polynomial curve is necessary to provide
a limit on the jerk of the motion. In order to find the
optimal trajectory with a bounded jerk, cubic splines and B-
splines are often used to represent the trajectory between two
successive waypoints. Thompson and Patel [9] proposed an
approach to approximately construct joint trajectories using
B-splines. Saravanan et al. [10] developed an optimal trajec-
tory planning approach based on the evolutional theory using
uniform cubic B-splines. Gasparetto et al. [11], [12] adopted
cubic splines to optimize an objective function composed of
execution time and squared jerk. Liu et al. [13] took further
steps to optimize the motion time with the combination of
cubic splines in Cartesian space and septuple B-splines in
joint space. Although cubic splines and B-splines simplify
the trajectory planning problem, they are not able to explore
the robot manipulator’s full capacity to minimize its cycle
time.

Dahl et al. [14] address trajectories that are computed to
reach the motor’s torque limits and introduce two methods
for online scaling of calculated trajectories that allow com-
pensating for modeling errors, disturbances, and uncertain-
ties. The algorithm in [15] also considers online scaling with
a focus on torque values for tracking an existing trajectory.
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Fig. 1: The seven-segment motion profiles for two axes,
where the segments of each dimensional motion are syn-
chronized.

Antonelli et al. [16] present an offline algorithm that supports
several constraints on the trajectory, including limits on the
jerk and torque values. They propose blending at waypoints
by overlapping segments and superimposing them with a
clotoid blend that fulfills the specified constraints.

III. PROBLEM FORMULATION

This paper assumes that a geometric path designed for
the robot manipulator to perform a task is available. This
path consists of a sequence of waypoints defined in either
Cartesian or joint space. The studied problem is how to
generate a motion trajectory so that the robot manipulator
can pass through those waypoints with the minimum time
and without violating its kinematic constraints.

A. Trajectory Model

Given the waypoints required for the task, we have to
ensure that the motion of each joint dimension is synchro-
nized at every waypoint. In contrast with prior work [2], [3],
[6] that only synchronize motions at every waypoint, this
paper requires that each dimensional motion is synchronized
in every segment as shown in Fig. 1, leading to two benefits.
Firstly, the trajectory becomes more smooth by sharing the
three motion phases in every dimension. In particular, by
sharing the same constant velocity phase, the robot manip-
ulator is able to perform tasks that demand high-precision
and high-stability in this phase, e.g., gluing and painting.
Secondly, the search space in the optimization is reduced as
each dimensional motion has the same time segments.

The waypoints in the k-th dimension (k < m) are indicated
as (pg, p’l‘, pi‘l_l), where m is the number of degrees of
freedom, n is the total number of waypoints, and pf‘ indicates
the position in the dimension k at the waypoint i. For a path
in configuration space, pl’f presents the joint position. In a
Cartesian space path, this refers to the Cartesian position.
The trajectory between any two consecutive waypoints is
modeled as a trapezoidal acceleration or seven-segment ac-
celeration profile.

We consider a trajectory between pf.‘ and pf.‘+1. A typical
trajectory profile is shown in Fig. 1, where the motion time is



divided into seven segments or three phases. The acceleration
phase from 7, to #;; has increasing velocity. It is followed
by the constant velocity phase from 7, 5 to #; 4. The velocity
is decreasing in the final deceleration phase from ¢;, to
t;7 = t;410- The jerk profile has a fixed value of zero in the
three time segments (¢; 1,7;,), (¢;3.1;4), and (¢; 5,1; ¢) due to
a constant acceleration in these segments.

We denote the acceleration, velocity and position at #;
as a; p, U; p, and p; , respectively. The jerk in the segment
(#;,h—1-1; ) 1s labeled as j; , with h € [0, ..., 6]. Then, for
the time 7 € (¢; ,,#; p11), the time segment can be defined as
At = t—1,; . The acceleration, velocity, and posmon profiles
can be derived from the previous segment (¢; ,_1,1; ) as:

i, h+l(t) l h+1 ’
ai,h+l(t) = ai,h + ji,h+lAt’
k s kK arq Lo Ap2 (D)
Vg1 () = Vp )y +ap AT+ SJin1 A1
k _ ok k 1 v v2, 1. 3
Pipi1 (D =pip + 0, A1+ Eai,hAt + gj,»,hHAt .
B. Kinematic Constraints

In any segment, the motion should not violate the kine-
matic constraints of the robot. Note, that the acceleration
is a monotonous function with time and piecewise smooth.
Hence, to guarantee the kinematic constraints within a seg-
ment, we only need to guarantee the kinematic constraints
at both ends of this segment.

Our aim is to find the time 7;, and jerk j;, such that
the motion time of the robot manipulator passing through
all waypoints can be minimized. Also, we aim to minimize
the overall time of the trajectory, i.e., 1h0- The kinematic
constraints Vi € [0, ...,n — 1] are defined as:

J4 (117) =p (t,+1 0) ,+1
(o) = v (t,0) =

k _ k _ k _
a (to’o) =a (tn’o) =da (ti,3) = 0

L, =0, Vh e [1,3,5] 2)
|a* (t,h)| <d . Yh e [0, ...,6]
[o* (t,h)|<um, Vh € [0,...,6]
IJi,hI <K Yh € [0,2,4,6]

At the initial and final points, i.e., at f5, and ¢, , the
acceleration and velocity are equal to zero. Setting a"(t,-’3) =
0 guarantees that the velocity will remain constant during
the constant velocity phase.

In (2), since Uk(lo,o) and ak(to’o) are equal to zero and p’l‘
is known the whole trajectory can be generated based on ¢; ,
and j e As j is equal to zero Vh € [1, 3, 5], the unknown
Varlables are t,h Viel0,...,n—1] and Vh € [0, ...,6], as
well as j Viel0,...,n—1]and VA € [0, 2,4,6]. Therefore
the total number of unknown variables is 7 (n — 1) for the
time variables and 4 (n — 1) for the jerk variables.

C. Constraints in Cartesian Space

In the previous section, a trapezoidal model is imple-
mented in configuration space. However, in typical robot
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Fig. 2: The error bound for the straight line deviation. The
maximum allowed line variation ¢ is calculated based on the
variable A and the length of the individual path segment.

applications, robot arm motions in Cartesian Space are
important as well. By only optimizing the trajectory in
configuration space, the behavior in Cartesian space might
be unpredictable. Hence, we propose an approach to include
Cartesian space constraints in the optimization process. We
use the forward kinematics function FK to get the Cartesian
position x € SE(3) of the end effector for a given joint con-
figuration ¢ € R™ : x = FK(q), where q = {q°,...,¢"'}.
Here, the straight line interpolation between waypoints in
the Cartesian space will be considered. Since the trapezoidal
model cannot guarantee a strict straight line, an approximated
straight line behavior will be targeted. We introduce an
additional term in the objective function to regulate the
distance of the calculated trajectory to the straight line:

i=n—1 h=6
fi= ) D s
i=0 h=0
dl _ i,h—0 i+1—-i,0 (3)
lAX; 10l
0 ifd, <ey,
g1(x) = ! !

d, otherwise.

where Ax; ;0 = X;p = X;0, AXiy1550 = X410 — X;0, and
x; , is the Cartesian position at the waypoint i and at the
time segment ¢; ,. The variable €, describes the error bound
for a path segment (Fig. 2) and is defined by a scalar A and
the length of a path segment:

€ = [1AAx; o0l - “4)

For n waypoints, the optimization function has to consider 7n
additional scalar terms.

D. Linearity Constraints in Configuration Space

Here, the straight line interpolation /;;,, between way-
points in the configuration space will be considered. Similar
to Section III-C, we introduce an additional term in the
objective function to minimize the distance of the calculated
trajectory to the straight line in configuration space:

i=n—1h=6
ZE DD IFNE)
i=0 h=0
d, = distance(p,i’h, Liiv1) 5)
0 ifd, <e,
g (x) = N

d, otherwise.



where [; ;. is the straight line connecting p; and p;,; and
distance(p;,,,/;;41) is calculated as

= D) (Diy1 — Pi)2
lpis1 — p;ll

@y,

H (Pz,.’h -pi) -

’ : (6)

IV. OPTIMIZATION APPROACHES

The trajectory generation can be formulated as a nonlinear
and non-convex constraint optimization problem, which can
be solved by means of the sequential quadratic programming
algorithm that decomposes the non-convex problem into se-
quential convex problems. We use the the SLSQP [17] solver
from NLOpt [18] for our implementation. With the high
dimensionality of the configuration space and a large number
of waypoints, the complexity of the optimization problem
and the optimization space can increase significantly. A good
initial estimate of the trajectory noticeably affects the con-
vergence of the optimization routine. To handle this problem,
we apply concepts from Model Predictive Control (MPC).

A. Optimization Problem Formulation

The purpose of the constrained optimization problem is
to optimize the time of the whole trajectory by making
use of the trapezoidal acceleration model. The optimization
parameters X for this problem consist of the time and
jerk values at each segment of the trajectory. Using these
values, the acceleration, velocity, and position can be derived
automatically using (1). For the time optimization part of the
objective function, we try to minimize At; , =1, , — 1, ,_ for
every value of /4 and i. The objective function is then defined
as

i=n—1 h=6
fX) =Y D Ay, (7)
i=0 h=0
where
X = ({to, ’ti’ ’tn—l }, {Jo, ’ji’ ’jh})’
ti = {Ati,()’ ceey Ati,6} N

. 0 0 0 0
Ji=WigJig JigJigh - {Jzo iy ’114 ’116 oiF

Besides the object function, the constraints also play
an important role in solving this problem. Roughly, the
constraints comprise nonlinear inequality and equality con-
straints as well as lower and upper bounds.

mini)gnize f(X)

subject to b < X <ub ®)
c(X)<0
ceq(X) =

The multidimensional trapezoid model consists of 7n+4nm
optimization variables, a total of 14mn nonlinear inequality
constraints, and mn + nm nonlinear equality constraints.

Algorithm 1 Trajectory optimization based on Model Pre-
dictive Control

Input: p7 vmax’ amax’ jmax
Output: Q rime and jerk profile

L: T‘lenldtlve -« @

2: Jlemallve « Q0

3: fori=0ton—hdo h:receding horizon

4: if i == 0 then

5: @ {tirs - tn b Jis iers -5 Jin D «

InitialPoint({p;, ..., Piyp })

6: let (_(tﬂ{tH—l"" I+h} J!’{Jl+l""’ji+h})

7: else

8 (tH.h’ Jl+h) « InltlalPOIHt({p1+h l’pl+h})

9: mll ( tentative 1+h’ Jlematlve’ -’z+h)
10: end if
11: X optimized < JointSolver(Xiyii» UVnmaxs Amax> Jmax) £4d- S
12: if optimize Cartesian constraints then
13: Xoplimized - OptlrnlzecartE:Slan()(oplimized7 Uax> @max> jmax)
14: end if
15: (toplimized’ Tlemalive’ joplimized’ Jlenlative) - Xoplimized

16: Q — QU {tpimizeds Joptimizea] Ouiput optimized profile for
the part between p; to p;,,
17: end for

18: return Q

Algorithm 2 OptimizeCartesian() function for optimizing
Cartesian linearity constraints
Il’lpllt: Xop(imized’
Olltpllt:. Xoplimized
1: for j =1 to 7Th do trajectory profile with 7 segments
2: X « CartesianSolver(X, v a
Eq. 9
3: end for
4: return X

optimized

vmax ? amax ’ .’max

optimized optimized> “ max®> “max? -]max)

B. Optimization for Linearity Constraints

In order to include linearity constraints in the Cartesian or
configuration space (Algorithm 2), the optimization problem
from (8) is updated as:

mini;nize S (X)) + w; [1(X) + w, fr(X)

subject to 1b < X <ub )
c(X)<0
ceq(X) =0

The weights w; and w, denote the relative importance of the
Cartesian or configuration space linearity constraints. These
parameters affect the optimization problem and need to be
tuned according to the use case.

C. MPC-based Optimization Approach

With a high number of degrees of freedom and multiple
waypoints, the optimization problem is a highly nonlinear
and non-convex constraint problem. It is not realistic to
optimize all waypoints within one optimization step. How-
ever, the waypoints can be divided into consecutive batches.
The remaining problem is then to connect all the individual
batches. Directly connecting all batches will result in a
zero velocity at all connecting points. In order to avoid
this situation, we adopt the idea behind Model Predictive
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Fig. 3: The waypoints have been decomposed into n — 2
batches. Each batch consists of three waypoints, where the
former and last two waypoints (bold lines) are respectively
overlapped with their former and subsequent batches.

Control approaches [19]. As shown in Fig. 3, we first need
to set a receding horizon. We use a value of two for this,
therefore only the next two waypoints p; and p;,; will be
taken into account at waypoint p;,_; and the batch contains
the waypoint set {p;_q,p;, P;+1}- The batch including these
three waypoints is used as an input for the optimization
solver, but only the result between p;_; and p; will be
used and the result between p; and p;,; will be discarded.
However, we can still use this result as initial guess for
the next optimization step, since the next batch will contain
the waypoints {p;, p;,1,Pi4» ). Hence, every batch shares two
waypoints with its former and subsequent batch. In this way,
the trajectory profile between two overlapping waypoints can
be predicted by optimizing the former batch and updated by
optimizing the subsequent batch.

As shown in Fig. 3, the whole set of waypoints has been
successively decomposed into n — h batches, where 4 is the
receding horizon. The optimization problem for the com-
plete set of waypoints is then posed as multiple (i = n — h)
successive optimization problems, one for each batch. The
overlapping waypoints act as a bridge, connecting the opti-
mization results from one batch to the next one. The detailed
optimization procedure is presented in Algorithm 1. Now we
analyze the optimization of batch i, where the overlapping
part with its former batch is between waypoints p; and p; .
After the optimization of batch i — 1, a tentative acceleration
profile is predicted on the overlapping part. Then, after
the optimization towards the batch i, the tentative profile
will become the optimized profile and the unknown profile
between p;,; and p;,, becomes the tentative acceleration
profile, as illustrated in Fig. 4. Here, the overlapping part
is optimized twice so that the trajectories of two successive
batches can be bridged efficiently.

In order to keep the consistency at p;, the acceleration and
velocity at p; that have been optimized from optimization
step i — 1 will act as initial conditions of optimization
step i. The trajectory of batch i is required to end with zero
velocity and acceleration. There are two benefits out of this
assumption. Firstly, the static state improves the optimizer

tentative profile ~ unknown profile

i
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Fig. 4: The conceptual acceleration profile of batch i before
and after its optimization.

flexibility to predict a good tentative profile. For example, the
trajectory is assumed to be static at p; | after the optimization
on batch i — 1. Then, when optimizing the batch i, the static
point at p,, | leaves the optimizer with the full possibility of
generating a good tentative profile between p,.; and p, ,.
Secondly, the initial point for the unknown profile will be
chosen by means of the solution without blending, which
requires zero velocity and acceleration as initial conditions.
Therefore, the initial point can be consistent—a very impor-
tant property for optimization.

After this optimization on the n — A decomposed batches,
the whole trajectory is generated and optimized. There
are h + 1 waypoints in every batch and the optimization of
each batch has the same computational complexity. There-
fore, the computation of the whole trajectory scales linearly
with n.

D. Initial Point

Although the optimization complexity has been lowered
to a linear scale, the optimization on a specific batch is
still complex. As an example, for a robot manipulator with
six degrees of freedom and a receding horizon of two, the
optimization problem has 62 variables, 48 nonlinear equality
and 168 nonlinear inequality constraints (Section III-A).
Hence, to efficiently find the optimal result, choosing a good
initial point is a very important step.

For the optimization of batch i, the tentative profile is a
very promising starting point for the part between p; and p;;
as this profile has already been optimized tentatively. Regard-
ing the starting point for the other part, i.e., from p; . to p;,,,
a simple way is to derive a profile where the trajectories in all
dimensions are synchronized at the endpoint with the shortest
time, which is also a non-smooth trajectory. This profile can
be derived analytically as follows. First, we independently
compute the profile with the shortest motion time for each
dimension. Suppose

k k k -k)

— k k
ti+l - f(Pi+19Pi+27 UmaX7 amax?.]max (10)

represents the shortest time for the k-th dimension trajectory,
which is a sum of seven time segments. Secondly, the
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Fig. 5: A comparison of three different trajectory profiles for the 7-DOF Kuka LWR example in Fig. 8a—8d. The individual
plots show the respective (a)—(c) position, (d)—(f) velocity, (g)—(i) acceleration, and (j)—(1) jerk profiles.
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Fig. 6: A comparison of the deviations from straight lines in configuration space for the Kuka LWR example of Fig. 8a—8d.
This property is especially important for ensuring collision free paths calculated by a motion planner. In this example, the
error bound e, = 0.1 and optimization weights are w; = 0.1 and w, = 0.1.
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Fig. 7: A comparison of the deviations from straight lines in Cartesian space for the Kuka LWR example of Fig. 8a—8d. This
property is especially important for following paths of a Cartesian task. In this example, the error bound e€; is calculated
based on a value of A =0.1 and optimization weights are set as w; = 0.1 and w, = 0.1.
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Fig. 8: Trajectories for different interpolation models on path planning use cases for (a)-(d) a Kuka LWR next to a table
with a parallel gripper and (e) a Kuka KR60-3 next to a wall and three columns with a vacuum gripper.

maximum time among all dimensions is chosen as

max __ k —

L) = maxt Vkel0,...,m—1]. (11)
Then, in order to scale up the motion time of all dimensions
to t;’flx, the maximum jerk of other dimensions is adjusted so
that kinematic constraints at each dimension are not violated:

JE =k 3k Yk e [0, m=1].  (12)
Lastly, the time profile of the dimension that has the maxi-
mum time and the modified jerk of all dimensions are used
as the initial point for the optimization.

We have to mention that there are two exceptions that
are not optimized twice. In Algorithm 1, the parts {p;, p,}
of the first batch and {p,_;,p,} of the last batch will only
be optimized once as they do not overlap with any other
batch. In addition, even after the initial point is chosen as
described above, this does not guarantee that a solution can
be found. Therefore, after the chosen initial point fails, a
uniform random noise is added to this initial point and the
optimization is restarted to avoid getting stuck in a local
minimum [20].

V. EXPERIMENTAL EVALUATIONS

We evaluate the performance of the proposed optimiza-
tion approaches and two state-of-the-art approaches: Linear
Parabolic interpolation [21] and Cubic Splines [22]. The
Linear Parabolic model divides each interpolation step into
three parts: two parabolic blends with the previous and next
trajectory segments and a linear interpolation with constant
velocity in the middle. We test these approaches on two path
planning examples and present a detailed analysis of their
performance and properties. For both the Cubic Spline and
Linear Parabolic models, we ensured that the acceleration
and velocity limits of each joint are satisfied by scaling
the timescales of the trajectory segments. For the Trapezoid
Acceleration model, this is handled intrinsically by our
optimization routine.

We show how we fulfill two key requirements of path
planning algorithms, i.e., reaching waypoints exactly and
maintaining near-linear trajectories in the configuration space
between successive waypoints. Fig. 8b-8d shows a path
planning example for the Kuka LWR consisting of seven
waypoints indicated by green spheres. The interpolated tra-
jectories are shown by green lines. For the Cubic Spline

and our approach, the calculation will consider all kinematic
constraints, as described in Algorithm 1. For the Linear
Parabolic model, we calculate the time segment for each
dimension by only taking into account the velocity and
acceleration constraints. The time for each segment is chosen
according to the most constrained dimension/joint, ensuring
that all robot joints are within their velocity and acceleration
limits. The collision-free paths in the examples are computed
using the Robotics Library [23], which is also used for
kinematics calculations and simulation. All evaluations were
performed on a laptop with a 2.60 GHz Intel Core 17-6700HQ
and 16 GB of RAM.

The trajectory calculated by the Cubic Spline
model (Fig. 8c) deviates significantly from a straight
line interpolation between successive waypoints. The
trajectory from the Linear Parabolic method (Fig. 8b)
follows a near-linear interpolation but is clearly non-smooth.
Our method (Fig. 8d) satisfies both requirements. We
plot the configuration space positions, velocities, and
accelerations for each of these models in Fig. 5. Cubic
Spline and Trapezoidal Acceleration methods are guaranteed
to pass through all waypoints exactly. Linear Parabolic
interpolation blends around the waypoints and fails to hit
inner waypoint as demonstrated in Fig. 8a. The percentage
of the trajectory segment that is blended influences this
deviation from the waypoints. We set this to 20% for our
experiments, resulting in deviations of 0.0°, 2.3°, 1.3°, 3.0°,
4.5°,2.2°, and 0.0° for the seven waypoints.

Cubic Spline has a movement time of 3.58 s, while the
approach presented in this paper is slightly longer with 4.07 s.
The Linear Parabolic one only takes 3.33 s and is the shortest
one. Note, that Linear Parabolic cannot consider the jerk
limits, which are very important to prevent any damage to
the motors. In contrast to our approach, Cubic Spline does
not start and end with an acceleration value of zero and it
mathematically only allows one point at the maximum value
at each path segment. The trapezoidal acceleration model
can hold the maximum velocity and acceleration for a longer
time. Over 20 runs, the optimization for the Linear Parabolic
each takes 1.45 + 0.03 s, Cubic Spline 0.07 + 0.01 s, and the
more complex trapezoidal acceleration model 9.58 + 2.05s.

The simulation of these three trajectories is shown in
Fig. 8b—8d. A key property from the underlying path plan-



ning algorithm is that collision-free paths are only guaranteed
as long as the interpolation between the waypoints follows
a straight line in configuration space. In practice, the path
planning algorithms usually consider a minimum distance
from obstacles as a safety margin. Hence, the straight line
interpolation requirement can also be relaxed according to
this distance. We evaluate the deviations in configuration
space, as shown in Fig. 6a—6c¢c. Note, that in our approach
we add an additional term to minimize the deviation error.
It can be considered as a soft constraint and the problem
will be optimized to achieve minimum deviation. However,
it cannot be guaranteed to stay within the error bound.

In Fig. 7a—7c, the deviation from the straight line between
waypoints in Cartesian space is illustrated. It can be seen that
the Linear Parabolic shows the smallest error as it consists of
linear movement and a blending around the waypoints. The
trapezoidal model cannot guarantee straight line movement.
However, by adjusting the duration of the constant velocity
phase, the motion can be made closer to a straight line
interpolation. In our approach, we employ an error bound
object function to minimize the deviation from the straight
line. From the results, we can observe that the Cartesian
errors are lowest for Linear Parabolic, and highest for Cubic
Spline while ours lies in the middle. Our approach allows us
to adjust this deviation by tuning 4, w;, and w,.

In Fig. 8e, we evaluate our approach in a more com-
plex example consisting of 31 waypoints. Optimizing the
trajectory using the whole set of waypoints in one optimiza-
tion problem requires several hours, whereas our approach
can find each solution in 222.50 +49.75s over a total of
10 attempts. The robot is guaranteed to pass through all
waypoints while exhibiting a smooth 16.63 s trajectory and
obeying all kinematic constraints. The optimization of the
Linear Parabolic’s 11.61s trajectory requires 6.05 + 0.41s
and the Cubic Spline’s 13.89 s solution takes 0.33 + 0.01 s.

VI. CONCLUSION

In this paper, we have presented an approach to find
a time-optimal trajectory passing through given waypoints
under kinematic constraints. Unlike prior approaches that
model the trajectory between two adjacent waypoints as a
Cubic Spline or Linear Parabolic segments, this approach
adopts a trapezoidal acceleration profile to represent the
trajectory. We require this trajectory to move through all
waypoints while exploiting the manipulator’s capabilities in
order to reduce the motion time and ensuring that the kine-
matic limitations are always satisfied. Our proposed bridged
optimization approach has linear complexity with the number
of waypoints compared to a full trajectory optimization.
Evaluations of two practical examples from path planning
have shown how the three approaches compare to each other.

There are also some limitations that we observed in
our experiments. In cases where there are large rotations
between successive waypoints, our method can take longer
to converge and sometimes not provide an optimal solution.
Additionally, the Cartesian linearity constraint is only in-
cluded as a soft constraint and might not work in applications

with more stringent linearity requirements such as welding
or deburring. In such cases, the Cartesian linearity constraint
should be formulated as an inequality constraint instead.
Future work includes handling more complicated cases and
examples from planners that support Cartesian constraints.
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