GOCE Reprocessing towards Rel. 6 Gravity Field Models – Status and First Results
Th. Gruber, R. Pail, M. Rexer, X. Oikonomidou & the HPF Consortium

Institute of Astronomical & Physical Geodesy (IAPG)
Technische Universität München
GOCE Reprocessing Campaign

ESA project

- Team: High Level Processing Facility (HPF)
- Start: October 2017
- End: May 2019
- Goal: Improving GOCE products
 - Linear and angular accelerations
 - Gravity gradients
 - Orbit and attitude data
 - GOCE Gravity field models
 - Combined gravity field model
 - Ionosphere models
 - Thermosphere models
Why GOCE Reprocessing?

Increased residuals for cross-track gradients (V_{yy}) and others around geomagnetic poles

```
\Delta V_{yy} \sim a^{2}_{d25y}
```

Origin of residuals: missing quadratic terms in the calibration of the gradiometer

Kinematic orbits show systematic effects around the geomagnetic equator because of degraded GPS data

Monthly GOCE hl-SST solution w.r.t. AIUB-GRACE03S

- RMS = 21.4 mm

Corrected monthly GOCE hl-SST solution w.r.t. AIUB-GRACE03S

- RMS = 16.1 mm
Overview and Status

Input data

Upgrade
L1b processor (completed)

L1b & L2 data (completed)

Gravity field and new products (ongoing)

GOCE L1b Products
EGG_NOM_1b
Auxiliary Products

GOCE L2c Products
STR_QUA_2c
STR_QUB_2c
SST_RNX_2c
Auxiliary Products

Calibration Parameters Estimation

Level 0 to Level 1 Processing
Gravity Gradients Processing

GOCE L2c Products
EGG_CCD_2c
EGG_GGT_2c
EGG_IAQ_2c
Auxiliary Products

GOCE L2 Products
SST_PSO_2_

Precise Kinematic Orbits Computation

GOCE Gravity Field Computation

GOCE L2 Products
EGM_GOC_2_

GOCE Ionospheric & Atmospheric Density Products Computation

Swarm Processing System

Combined Gravity Field Computation

Ancillary Data

New GOCE L2 Products

L2 orbits (ongoing)
New Gradiometer Calibration

Two step calibration procedure

1) Shaking-mode

\[
\begin{bmatrix}
\overline{a}_{dij} \\
\overline{a}_{cij}
\end{bmatrix} = \begin{bmatrix}
\hat{a}_{dij} \\
\hat{a}_{cij}
\end{bmatrix}
\]

2) Science-mode

\[
\begin{bmatrix}
\overline{a}_{dij} \\
\overline{a}_{cij}
\end{bmatrix} = \begin{bmatrix}
\overline{b}_{dij} \\
\overline{b}_{cij}
\end{bmatrix} + \begin{bmatrix}
\hat{M}_{ij} \\
\hat{K}_{ij}
\end{bmatrix} \begin{bmatrix}
\overline{a}_{dij} \\
\overline{a}_{cij}
\end{bmatrix} + \begin{bmatrix}
\overline{W}_{ij} \\
\overline{n}_{dij}
\end{bmatrix}
\]

Parameter estimation is based on
1. science and shaking-mode data
2. star-tracker angular rates
3. external gravity field model (band filtered: 1-10mHz)

(Siemes 2018, JoG)
The New L1B Processor - Overview

- Calibration parameters (AUX_ICM_1b)
- Nominal acceleration (existing EGG_NOM_1b)
- Quaternions and flags (STR_VC2_1b, STR_VC3_1b)
- STR temperatures (AUX_NOM_1b)
- Orientation of STR units (AUX_EGG_DB)
- EGG calibration (shaking) -> Taylor point for science calibration
- STR preprocessing -> Resampling to EGG epochs
- Satellite positions (SST_PSO_2)
- GRACE gravity field model (ITSG-Grace2014s)
- STR calibration -> Correct relative STR biases
- STR combination
- Estimation of EGG calibration parameters
 - Update parameters from shaking
 - Correct quadratic factors
- Angular acceleration reconstruction
- Compute model gravity gradients
- Angular rate reconstruction
 - Combine EGG and STR angular rates
- New EGG_NOM_1b
 - Calibrated accelerations
 - Attitude quaternions
 - Angular rates
 - Gravity gradients
- Gravity gradient calculation
- EGG calibration (science)
- Gradiometer arm lengths (AUX_EGG_DB)
- EGG gross outlier removal
- Not changed

Not changed

Legend

- L1b algorithm
- External algorithm
- GOCE data
- External data
Improved GOCE Products – Gravity Gradients

GGT residuals w.r.t ITSG-GRACE2014k along the orbit

→ filtering: **1 -10 mHz**
→ ascending tracks only

Period: 2012/03/16 to 2012/05/22

GRACE / GRACE-FO Science Team Meeting, Potsdam, 10.10.2018
Improved GOCE Products – Gravity Gradients

GGT residuals w.r.t ITSG-GRACE2014k along the orbit
→ filtering: 5 -100 mHz (MBW)
→ ascending tracks only

Period: 2012/03/16 to 2012/05/22
Improved GOCE Products – Gravity Gradients

Performance of gradients (w.r.t. ITSG-GRACE2014k) over entire GOCE mission before re-processing

data segments

20091009T112952 - 20091018T045148
20091026T011542 - 20091028T130428
20091028T130431 - 20091028T232235
20091028T232236 - 20100111T073815
20100112T073810 - 20100212T064840
20100302T022735 - 20100304T081741
20100305T081741 - 20100506T064253
20100507T064253 - 20100708T020748
20100910T71433 - 20101005T010950
20101006T010950 - 20101207T040336
20101208T052859 - 20110101T201131
20110119T082112 - 20110127T061647
20110128T061225 - 20110404T085333
20110405T071928 - 20110607T071408
20110608T070947 - 20110823T073725
20110824T073303 - 20111025T060202
20111026T055741 - 20120117T055355
20120118T055355 - 20120305T035400
20120306T080924 - 20120315T03737
20120316T090332 - 20120522T054026
20120523T053604 - 20120607T132845
20120613T053258 - 20120619T050632
20120620T050208 - 20120911T064523
20120912T063812 - 20121108T071546
20121109T083739 - 20130204T115242
20130205T131252 - 20130212T060346
20130213T055311 - 20130507T083709
20130508T065654 - 20130522T012430
20130528T192632 - 20130731T143819
20130801T142440 - 20131001T055109
20131002T055109 - 20131020T035500
Performance of gradients (w.r.t. ITSG-GRACE2014k) over entire GOCE mission after re-processing

- Stationary noise over entire mission

Except:

- Vzz before satellite anomaly in February 2010
Improved GOCE Products – Gravity Models

- near zonal coefficients excluded
- combination of all patches and components (weights by VCE $0.99 < w_i < 1.01$)
- improvements compared to EGM_TIM_RL05
- consistent formal & empirical errors for degree 2-90 and 220-300
 ⇒ deficits of XGM for degrees 90-220 visible?
 ⇒ GOCO05S based, i.e. EGM_TIM_RL05 error in that range

solid: empirical from difference, dashed: formal from covariance

Courtesy: J.M. Brockmann, Univ. Bonn
Improved GOCE Products – Gravity Models

Combined Geoid (SGG & SST) compared to XGM2016 (d/200)

<table>
<thead>
<tr>
<th>area in South Pacific</th>
<th>RL</th>
<th>RMS cm</th>
<th>VCM cm</th>
<th>RMS mGal</th>
<th>VCM mGal</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIM5</td>
<td>2.45</td>
<td>2.70</td>
<td>0.69</td>
<td>0.76</td>
<td></td>
</tr>
</tbody>
</table>
Improved GOCE Products – Gravity Models

Combined Geoid (SGG & SST) compared to XGM2016 (d/200)

 Courtesy: J.M. Brockmann, Univ. Bonn

area in South Pacific

<table>
<thead>
<tr>
<th>RL</th>
<th>RMS cm</th>
<th>VCM cm</th>
<th>RMS mGal</th>
<th>VCM mGal</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIM5</td>
<td>2.45</td>
<td>2.70</td>
<td>0.69</td>
<td>0.76</td>
</tr>
<tr>
<td>TIM6p1</td>
<td>2.12</td>
<td>2.11</td>
<td>0.60</td>
<td>0.60</td>
</tr>
</tbody>
</table>
Improved GOCE Products – Gravity Models

Combined Solution (SGG & SST) GPS-Levelling Comparisons

Brazil

Canada

RMS Geoid Height Differences [m]

Degree

RMS Geoid Height Differences [m]

Degree

TIM6 Prel V1

EGM2008

DIR5

TIM5
Improved GOCE Products – Gravity Models

Combined Solution (SGG & SST) GPS-Levelling Comparisons

Germany

USA
New Products – Combined Gravity Field

- PolarGap data Antarctica – Fill the polar gap of GOCE and ideally to make any regularization obsolete.
- Optimized high resolution ocean geoid – Combination of reprocessed GOCE model and up-to-date altimetric gravity data – Computation of geodetic MDT (OGMOC project).

Airborne gravity observations taken by the PolarGAP project (10-2015 to 04-2017)

MDT from DTU15MSS and extended XGM2016 [m] and derived geostrophic current velocities [m/s].
New Products – Ionosphere & Thermosphere

- Slant Total Electron Content (TEC) & Rate of TEC index (ROTI) from the GOCE GPS (low near polar orbit & post-sunset local time for high latitude and equatorial irregularities).

Evolution of the orbits of CHAMP, GOCE and Swarm
Courtesy van den Ijssel TU Delft

- For 2009 to 2013 GOCE gradiometry based thermosphere density and wind data sets were produced. Improvements with reprocessed data and from lessons learned are expected.

Density estimates from GOCE for the complete mission duration
Courtesy Doornbos, TU Delft

[10^9 kg/m^3]
Summary & Schedule

Summary

- Higher noise in gradients and GPS observations identified, which is correlated to the magnetic field (magnetic poles and geomagnetic equator).
- Reprocessing of L1B gravity gradients by improved calibration scheme, star tracker combination and angular rate reconstruction. Improved screening of GPS data.
- Improvements: Gravity gradients between 15% and 20%; Elimination of correlations to geomagnetic equator in kinematic positions.
- Improvements in GOCE gravity field models 15% to 25%.

Schedule

- Reprocessed precise science orbits by end of 2018.
- Rel. 6 GOCE and combined gravity field models in May 2019.
- Ionosphere products ready and delivered to ESA.
- Thermosphere products in May 2019