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- The nonlinearity of the optical fiber channel imposes a capacity peak on linear
transmission systems
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- The Nonlinear Fourier Transform (NFT) provides a domain in which the noise-free
channel is multiplicative
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- The nonlinearity of the optical fiber channel imposes a capacity peak on linear
transmission systems

8 8| | 5 WDM channels @ 20 GHz
E .| * Guardband: 5 GHz
- Distance: 2000 km
S 4 RRC pulses, multi-ring
T N T, modulation, 64 rings, 128 phases

Transmit power (dBm)

- The Nonlinear Fourier Transform (NFT) provides a domain in which the noise-free
channel is multiplicative

- Challenges: modeling noise, spectral efficiency...
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The optical channel and the NFT

Information transmission using the NFT

Effect of noise
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The Nonlinear Schrodinger Equation (NLSE)
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The Nonlinear Schrodinger Equation (NLSE)
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The Nonlinear Schrodinger Equation (NLSE)
vt RHED  mew e - N

Dispersion Nonlinearity
. Linear term - Causes frequency
. Causes temporal mixing (spectral
broadening broadening, SPM,
XPM, FWM)
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The Nonlinear Schrodinger Equation (NLSE)
not RHED  sew e - e

Dispersion Nonlinearity Noise
- Linear term - Causes frequency - Distributed along the
. Causes temporal mixing (spectral fiber
broadening broadening, SPM, . Mixes nonlinearly with
XPM, FWM) signal!

Q(Z,7)

T (ns)
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Normalized Nonlinear Schrédinger Equation (NLSE)

T="1, 2t
7= 2% -
Q2.1 = /2 ate
E[N(2.T)N'(2.T')] = - 5504 En(z, n (<. 1)

T} is a free parameter. Can be used to jointly set power, duration and bandwidith.
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The Nonlinear Fourier Transform (NFT)

TUTI

« Motivation: find a domain in which the noise-free NLSE channel is multiplicative

(similar to FT in LTIs):

q(0,1)

Qe (0, )
Qa (0, Ax)
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The Nonlinear Fourier Transform (NFT)

- Lax pair: two operators L and M

L:j< 7 q<za,t>> M:< 2jA° = jla(z, ) —2Aq<z,t>—th<z,t>)

such that the condition:
L.=ML—-LM

implies the NLSE.
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The Nonlinear Fourier Transform (NFT)

- Lax pair: two operators L. and M
L ( ioa) ) M — ( 23 = jla(=, OF  —2Ma(z1) = jaiz, ) )

such that the condition:
L.=ML—-LM

implies the NLSE.
- Main idea: the eigenvalues A of L are invariant under propagation along z
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The Nonlinear Fourier Transform (NFT)

- Step 1: solve the Zakharov-Shabat system:

t——00

Lo(t, \) = Aot A); - v(t,A) — (é)e—w
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The Nonlinear Fourier Transform (NFT)
- Step 1: solve the Zakharov-Shabat system:

Lo(t, \) = dv(t, \); o, A) R ((1)) e I
——00

- Step 2: obtain the spectral amplitudes:

a(\) = tlgglo vl

b(A) = tlgglo vge M
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The Nonlinear Fourier Transform (NFT)

- Step 1: solve the Zakharov-Shabat system:

t——00 O

Lo(t, \) = Ao(t, N); o(t,\) — (1)6-3-&

- Step 2: obtain the spectral amplitudes:

a(\) = tlgélo vl

b(A) = tlgélo voe M

« Step 3: obtain the NFT as:
— Continuous spectrum: Q.(\) = b—i)),-

— Discrete spectrum: Qu(\;) =
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The Nonlinear Fourier Transform (NFT)

- Step 1: solve the Zakharov-Shabat system:

Lo(t, A) = do(t, A); o(t,A) — (é) e M

t——00

- Step 2: obtain the spectral amplitudes:

a(A) = tlgglo v/

b(A) = tlgglo voe M

« Step 3: obtain the NFT as:
— Continuous spectrum: (Q.()\) =

— Discrete spectrum: Q;(\;) =
- Equivalent of Parseval’s identity:

Javier Garcia (TUM)
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Example: Rectangular pulse with varying amplitude
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Example: Rectangular pulse with varying amplitude
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Example: Rectangular pulse with varying amplitude
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Information transmission using the NFT
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Information transmission using the NFT

data
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Modulation of the continuous spectrum

ul(’i’) —

Usfr) — u(r) U\ Qe(N)

FDM FFT VelUWP — 1eiargUN) INFT

’U,N(T) —

- From Parseval, the signal
U(A) = log (1+[Q(N)[) e 52
has energy £//2, where FE is the energy of ¢(z, t)
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Modulation of the continuous spectrum

ul(’i’) —

Usfr) — u(r) U\ Qe(N)

FDM FFT VelUWP — 1eiargUN) INFT

’U,N(T) —

- From Parseval, the signal
U = log (1+1Q)) &m0

has energy £//2, where FE is the energy of ¢(z, t)

- User channels are multiplexed in U(\)
1072
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Continuous spectrum: simulation parameters

- 5 FDM channels, Root Raised Cosine pulses with roll-off 5 = 0.25
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Continuous spectrum: simulation parameters

- 5 FDM channels, Root Raised Cosine pulses with roll-off 5 = 0.25
- 1 symbol per block
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Continuous spectrum: simulation parameters

- 5 FDM channels, Root Raised Cosine pulses with roll-off 3 = 0.25
- 1 symbol per block
« Multi-ring modulation, 8 rings with 32 phases.

Javier Garcia (TUM)
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- 5 FDM channels, Root Raised Cosine pulses with roll-off 5 = 0.25
- 1 symbol per block
« Multi-ring modulation, 8 rings with 32 phases.

Parameter Symbol Value
Dispersion coefficient B —21.667 ps?/km
Nonlinearity parameter | 1.2578 W~ tkm ™!
Fiber length L 1000 km
Channel bandwidth B 10 GHz
Guard band Bgyard 2.5 GHz
Noise spectral density | Nasp |6.4893 1071 W s

Javier Garcia (TUM)
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Continuous spectrum: simulation results
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Modulation of the discrete spectrum: solitons
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Modulation of the discrete spectrum: solitons

Q(Z,T)]
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Effect of noise
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Parameters of a 1-soliton
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Parameters of a 1-soliton
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- Energy: E =4y
o Duration: T' = 2.6467 /7
- Bandwidth: B = 1.07261

Javier Garcia (TUM) 15



Institute for Communications Engineering
Department of Electrical and Computer Engineering

Technical University of Munich

Parameters of a 1-soliton
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- Energy: E =4y
o Duration: T' = 2.6467 /7
- Bandwidth: B = 1.07261

Javier Garcia (TUM)
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- Center frequency: fy = —¢/n
- Group velocity: v, = 4¢
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Parameters of a 1-soliton
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- Energy: E =4y - Center frequency: fy = —¢/n
o Duration: T' = 2.6467 /7 - Group velocity: v, = 4¢£
« Bandwidth: B = 1.07267 - Constant phase shift: —5 — ¢
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Parameters of a 1-soliton
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n
- Energy: E =4y - Center frequency: fy = —¢/n
o Duration: T' = 2.6467 /7 - Group velocity: v, = 4¢£
« Bandwidth: B = 1.07267 - Constant phase shift: —5 — ¢
cp 1.0
. PUlse delay. t() = % lﬂ%
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Perturbation analysis of a 1-soliton’

0 0>

—q(z,t) = '@q

- (2,t) + 27 |q(z, )] q(z,t) + en(z, t)

where ¢ < 1.

'J. Yang, “Soliton Perturbation Theories and Applications,” Nonlinear Waves in Integrable and Nonintegrable Systems, ch. 4, pp.

119-162, 2010
Javier Garcia (TUM) 16
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Perturbation analysis of a 1-soliton’

0 9 | )
5-a(2,1) = j550(2, ) + 2 la(z, ) g(2,1) + en(2,1)

where ¢ < 1.

Multi-scale perturbation analysis:
q(z,t) = qo(z, 1) + equ(z,t) + qo(z,t) + - - -

'J. Yang, “Soliton Perturbation Theories and Applications,” Nonlinear Waves in Integrable and Nonintegrable Systems, ch. 4, pp.

119-162, 2010
Javier Garcia (TUM) 16
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0 ok . )
524(2t) = G55a(z. ) + 25 [a(z ) a2, £) + en(z, )

where ¢ < 1.

Multi-scale perturbation analysis:
q(z,t) = qo(z, 1) + equ(z,t) + qo(z,t) + - - -

- Solution of O(1) equation:
qo(z,t) = —je_j¢e_4j<52_"2>26_2j€t2nsech (2n (t — to) + 8Enz)
where the four parameters depend on the slow distance Z = ¢z:

n=n2) §=¢§2) ¢=9¢(Z) to=1t(Z)

'J. Yang, “Soliton Perturbation Theories and Applications,” Nonlinear Waves in Integrable and Nonintegrable Systems, ch. 4, pp.

119-162, 2010
Javier Garcia (TUM)
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Perturbation analysis of a 1-soliton
Substituting qo(z, t) into the O(€) equation yields:

dn

—NNR

dZ
diy

4z

Javier Garcia (TUM)
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Perturbation analysis of a 1-soliton

Substituting qo(z, t) into the O(€) equation yields:
dn dg

diy 7 do 1 o M2
4z NR( 9677) 4z NR( 7277<12+7T)+fn3

Assuming n and & do not change much along propagation:

@NASE»C)

() ~ N (100,

£(0), @NASE£>

(
(L) ~ Na (10(0) g NaseL
(o0

— (12+7%) +

Javier Garcia (TUM)

m£(0)
241(0)3

| )

)
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Perturbation analysis of a 1-soliton (z = 0.9578)

150

— 100

pn(ﬁ

50 |

Javier Garcia (TUM)
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Perturbation of eigenvalues of a multi-soliton

- Joint work with Vahid Aref (Nokia Bell Labs Stuttgart)

[1] T. Kato, Perturbation Theory for Linear Operators, Springer (1995).
Javier Garcia (TUM)
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Perturbation of eigenvalues of a multi-soliton

- Joint work with Vahid Aref (Nokia Bell Labs Stuttgart)

- Take the DFT of the Zakharov-Shabat system (c, is the DFT of the pulse):

[1] T. Kato, Perturbation Theory for Linear Operators, Springer (1995).
Javier Garcia (TUM)

( (C() Ce Oy e ()\
: Cco . . :
—%diag(—N,...,N) —jlen o o e c_n
KO CN CO)
(cf‘) ey O\
: Co :
—jlewy G ey srdiag (=N, N)
\ \ 0 ... & cg/

\

ar = \pay
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- Joint work with Vahid Aref (Nokia Bell Labs Stuttgart)
- Take the DFT of the Zakharov-Shabat system (c, is the DFT of the pulse):

(

\

- Use matrix perturbation theory [1] to obtain the statistics of \;

—2diag (— N, ...

V)

Co

—7 | env

o

C—N o« o e

Co

CN

A

. C_N

o

—J

X x
(Co Cn

: Co

* ) %
CN " CO
Lo ey

2 diag (—N, . . .

[1] T. Kato, Perturbation Theory for Linear Operators, Springer (1995).
Javier Garcia (TUM)
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Perturbation of a 2-soliton

. 2-soliton with parameters (\; = & + jn;)
A =03 Qa(h) =138
Ao = 0.6 Qu(Aa) = 3.6¢77

Variance

Javier Garcia (TUM)
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Phase difference ¢ (x2m)
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Numerical demonstration of information transmission

- Compared 1-soliton and 2-soliton systems in terms of measured specitral
efficiency (= I(X;Y)/TBP)

Javier Garcia (TUM) 21
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Numerical demonstration of information transmission

- Compared 1-soliton and 2-soliton systems in terms of measured specitral
efficiency (= I(X;Y)/TBP)

- Same energy, same TBP (10.5) and same maximum throughput (12 bits/symbol):

System { i} Modulation of {g¢}

1-soliton | A\; =2.57 | qi0: 32 rings, 128 phases

A =1.57 | qio: 4rings, 16 phases
Ao =19 g20: 4 rings, 16 phases

2-soliton

Javier Garcia (TUM) 21
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- Compared 1-soliton and 2-soliton systems in terms of measured specitral
efficiency (= I(X;Y)/TBP)

- Same energy, same TBP (10.5) and same maximum throughput (12 bits/symbol):

Javier Garcia (TUM)

System {1} Modulation of { g}
1-soliton | A\ = 2.55 | qq1p: 32 rings, 128 phases
el A =1.57 | qio: 4rings, 16 phases
2-soliton A =1y ¢20- 4 rings, 16 phases
Parameter Symbol Value
Dispersion coefficient By —21.667 ps?/km
Nonlinear coefficient ~y 1.2578 W~ lkm™*
Fiber length 2z 4000 km
Noise spectral density | N, |6.4893 - 10~2Ws/m

21
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Numerical demonstration of information transmission
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Conclusions

- The Nonlinear Fourier Transform (NFT) provides a domain in which the NLSE
channel is multiplicative
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- The Nonlinear Fourier Transform (NFT) provides a domain in which the NLSE
channel is multiplicative

- Perturbation analysis on solitons can give insight into how to increase spectral
efficiency
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- The Nonlinear Fourier Transform (NFT) provides a domain in which the NLSE
channel is multiplicative

- Perturbation analysis on solitons can give insight into how to increase spectral
efficiency

« The discrete spectrum alone probably cannot provide high enough data rates
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- The Nonlinear Fourier Transform (NFT) provides a domain in which the NLSE
channel is multiplicative

- Perturbation analysis on solitons can give insight into how to increase spectral
efficiency

« The discrete spectrum alone probably cannot provide high enough data rates
- Challenges: spectral efficiency, effect of noise on norming constants

Javier Garcia (TUM) 23
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