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Abstract

High rates of soil loss and high sediment loads in rivers require efficient quantification
methodologies for the design of effective reservoir sediment management strategies. A
cascade modelling of sediment management in reservoirs is a useful approach to address
these issues. Quantifying sediment load using conventional sediment rating curves, how-
ever, poorly accounts for the hysteresis phenomenon and hydrological variations. Wavelet
transform coupled with artificial neural networks (WA-ANNSs) makes it possible to study
large basins and set more precise estimation of sediment load boundary conditions for
reservoir sedimentation models. Following this approach, a cascade modelling algorithm
was developed by the Chair of Hydraulic and Water Resources Engineering, Technical Uni-
versity of Munich, which was applied to the Indus River and the Tarbela dam in northern
Pakistan. The methodological framework consists of five steps: (I) analysis of sediment
management using 1D modelling and reservoir sedimentation techniques (II) analysis of
sediment load estimation using artificial neural networks (ANNs) (III) development of
wavelet-ANN (WA-ANN) model for estimation of suspended sediment load, (IV) based
on WA-ANN estimates, investigation of sediment load trends, and (V) use more accurate
sediment load boundary conditions for modelling of reservoir sedimentation at the Tarbela
dam. The analysis carried out on the Indus River has enabled a better understanding of

reservoir sedimentation in the basin.

The analysis of sediment load techniques in this study indicates that WA-ANN can
precisely estimate the sediment load by accounting for the hysteresis phenomenon and hy-
drological variations using a temporal resolution of approximately one year. It also demon-
strates that, contrary to the conventional model, the sediment load at the Tarbela dam
gauge station is only 160 million tons per year and has been showing a decreasing trend
caused by desynchronization between glacier melt and monsoon rainfall. Investigation
of sediment load trends reveals statistically significant disproportional spatio-temporal
trends between sediment loads and discharges caused primarily by intra-annual shifts in
flows. This disproportional behaviour and the significant trends strongly disconfirm the

hypothesis that future sediment loads are similar to the previous ones.

In modelling reservoir sedimentation, the uncertainty in predicting the river bed-
level changes can be diminished by using a cascading modelling approach, which uses
more precise sediment load boundary conditions estimated by WA-ANN. The morphody-
namic model, which was hydrodynamically calibrated with a coefficient of determination
(R?)=0.97, Nash-Sutcliffe Efficiency (NSE)=0.96 also better predicted (form 1985 to 1990)
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the river bed changes (especially delta) at the Tarbela dam with R?=0.96 and NSE=0.95.
Due to the desynchronization effect primarily caused by projected warmer climate and
subsequent decrease of 17% in the sediment supply to the Tarbela dam, the modelling
showed stabilization in the sediment delta in the future. The presented modelling algo-
rithm can be used to improve and design sediment management strategies for the existing
and planned hydraulic structures in the Upper Indus Basin and similar un-gauged or

poorly gauged catchments around the world.
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Abstract

Hohe Bodenverlustraten und hohe Sedimentfrachten in Fliissen erfordern effiziente Quan-
tifizierungsmethoden, um effektive Sedimentmanagementstrategien zu entwickeln. Um
an diese Probleme herananzugehen ist eine Kaskadenmodellierung des Sedimentman-
agements in Reservoirs ein niitzlicher Ansatz . Die Quantifizierung der Sedimentfracht
unter Verwendung konventioneller Sediment-Bewertungskurven (SRCs) beriicksichtigt je-
doch schlecht das Hysteresephdnomen und die hydrologischen Variationen. Die Wavelet-
Transformation in Verbindung mit kiinstlichen neuronalen Netzen (WA-ANNs) ermdoglicht
die Untersuchung grofer Becken und eine genauere Abschitzung der Sedimentfrachtbe-
dingungen fiir Sedimentationsmodelle. Nach diesem Ansatz wurde am Lehrstuhl fiir
Wasserbau und Wasserwirtschaft der Technischen Universitdt Miinchen ein Kaskaden-
modellierungsalgorithmus entwickelt, der auf den Indus und den Tarbela-Staudamm im
Norden Pakistans angewendet wurde. Der methodische Rahmen besteht aus fiinf Schrit-
ten: (I) Gegenstandsanalyse des Sedimentmanagements mittels 1D-Modellierung und
Reservoirsedimentationstechniken (II) Analyse der Sedimentfracht mit kiinstlichen neu-
ronalen Netzen (ANN) (III) Entwicklung eines Wavelet-ANN (WA-ANN) Modells zur
Abschitzung der Schwebstofffracht, (IV) basierend auf WA-ANN-Schétzungen, Unter-
suchung der Sedimentfrachttrends und (V) Modellierung der Reservoirsedimentation fiir
den Tarbela-Staudamm. Die am Indus durchgefiihrte Analyse ermdoglicht ein besseres

Verstandnis der Reservoirssedimentation im Becken.

Die Analyse der Sedimentfrachttechniken in dieser Studie zeigt, dass das WA-ANN die
Sedimentfracht genau abschétzen kann, indem das Hysteresephdnomen und die hydrolo-
gischen Variationen mit einer zeitlichen Auflésung von ungefahr einem Jahr beriicksichtigt
werden. Es zeigt auch, dass die Sedimentfracht an der Talstation der Tarbela-Talsperre
im Gegensatz zum konventionellen Modell nur 160 Millionen Tonnen pro Jahr betragt und
aufgrund der Desynchronisation zwischen Gletscherschmelze und Monsunregen eine ab-
nehmende Tendenz aufweist. Die Untersuchung der Sedimentfrachttrends zeigt statistisch
signifikante disproportional verhaltende raumzeitliche Trends zwischen Sedimentfrachten
und Abfliissen, die hauptsichlich durch innerjdhrliche Verdnderung der Stromung verur-
sacht werden. Dieses disproportionale Verhalten und die signifikanten Trends widerlegen

stark die Hypothese, dass zukiinftige Sedimentfrachten den vorherigen dhnlich sind.

Bei der Modellierung der Reservoirsedimentation kann die Unsicherheit bei der Vorher-
sage der Hohenverdnderung des Flussbettes durch einen kaskadischen Modellierungsansatz,

der prazisere vom WA-ANN abgeschitzte Sedimentfracht-Randbedingungen verwendet,
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verringert werden. Das morphodynamische Modell, das hydrodynamisch mit einem Bes-
timmtheitsmak von R? = 0,97 und der Nash-Sutcliffe-Efficiency (NSE) = 0,96 kalib-
riert wurde, konnte die Flussbettverinderungen(besonders im Delta) an der Tarbela-
Staumauer mit R*= 0,96 und NSE = 0,95 (von 1985 bis 1990) gut vorhersagen. Aufgrund
des Desynchronisationseffekts, der vor allem durch das projizierte warmere Klima und
die anschliefende Abnahme der Sedimentzufuhr zum Tarbela-Damm von 17% verursacht
wurde, zeigte die Modellierung eine Stabilisierung im Sedimentdelta in der Zukunft. Der
vorgestellte Modellierungsalgorithmus kann verwendet werden, um Sediment-Management-
Strategien fiir die bestehenden und geplanten hydraulischen Strukturen im Oberindus-
Becken und dhnlichen nicht gemessenen oder schlecht ausgestatteten Einzugsgebieten auf

der ganzen Welt zu verbessern.
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Chapter 1

Introduction

1.1 Research background

Sediments are transported in the form of bed and suspended loads to reservoirs. There
are a number of reasons for the velocity deceleration in a reservoir such as sudden inlet
expansion, deep river bed, and reservoir operation rules, which decrease the sediment
load carrying capacity of the river and result in sediment becoming trapped. Predic-
tions/estimation of accurate amount of incoming sediments to the reservoir, sediment
load trends, modelling of sediment deposition and their accumulation with the passage of

time remains a significant challenge due to the following reasons in hydraulic engineering.

1.1.1 Sediment load estimation

The most common conventional method for sediment load estimation is the sediment
rating curve approach, which is based on a relatively simple relationship between flow
discharge and sediment concentration [8]. However, in real-world scenarios, multiple vari-
ables act on the given circumstances of the sampled data, which is why sediment rating
curve mostly results in over or under estimations of the sediment load. This can have dire
consequences. For example, a number of dams in Pakistan have silted up earlier than ex-
pected due to under-estimation or are inefficient due to over-estimation of sediment load
- instances include the Warsak and Mangla dams |9, 10]. The cause of this problem is
the significant variance in suspended sediment load (SSL) estimates on which the design
and operation of these dams are based [3]. The variance in SSL estimates at Besham Qila
gauge station used for the Tarbela dam range from 200 million tons per year (Mt yr—!)
to 675 Mt yr~! (Tab. 1.1). Such variance might not only skew calculations of sediment

load boundary conditions in reservoir sedimentation studies but also negatively influence
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subsequent decisions and diminish associated benefits.

Table 1.1: Estimates published on the suspended sediment load (SSL) of the Upper Indus
River |3, 4].

Suspended sediment yield Estimated by

(Mt yr™*)
480 11
400 12
475 13
200 [14] reported by [15]
675 16
300 17
200 18
197" 19
1382 19
200 6]

SSL estimation has become vastly more challenging, in particular under the influence
of climate change, where disproportional spatio-temporal trends between SSLs and flow
discharges exist primarily due to intra-annual shifts in flows |20, 21, 4|. This highlights the
need for sediment models which operate in real time and are able to provide a better esti-
mates of sediment load for the planning of new hydraulic structures or better management
of existing ones. This particularly applies to the Upper Indus River, where the presence
of complex sediment transport processes related to the hysteresis phenomena and marked
hydrological variations, such as: (a) the fluvial erosion and transport processes which
interact with other sediment producing processes, (b) temporary sediment storage in the
main river channel 22|, (c¢) aggradation and degradation phases of landslides 23], (d) on
average 5-10 high flow waves of an average 10-12 days duration during the monsoon pe-
riod, (e) different transit times of discharge and sediment and their different lag times from
several sources to the gauge stations, and (f) a recently noted Karakoram anomaly where
desynchronization between glacier melt and monsoon rainfall is projected for the future
[24], all pose a challenge for a accurate SSL estimation. In addition, hydro-morphological
processes are highly nonlinear in nature, and in many cases, modelling of these variables
with conceptual models may be limited by a poor understanding of the complex itera-
tions involved. In such cases, artificial neural networks (ANNs) are often viewed as an
appealing alternative, as they have the ability to extract the nonlinear relationship from
the data without requiring an in depth knowledge of the physics occurring within the

system [25]. Similarly, the application of wavelet transforms (WT) has also been found

!Besham Qila
2Partab Bridge
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to be effective in dealing with hysteresis phenomenon issues. WT is a mathematical tool
that can improve the performance of ANN models by simultaneously considering both
the spectral and the temporal information contained in the input data. This information
is revealed by decomposing the main time series data into its sub-components. These

models have been performing well over the last decade of estimating and forecasting of
SL [26, 27].

WA-ANNs can decompose the data time series up to several levels in time, space
and frequency domains and reveal the information from a given data scenario [28|. This
decomposition of data is required where the sediment transport process is subjected to
temporary sediment storage, strong hysteresis phenomena and parallel aggradation and
degradation of landslides. Data decomposition beyond level one can lead to a low efficiency
[29], however, the concept of appropriate decomposition levels of data for rivers with
temporary substantial sediment load storage is still not understood. ANNs sediment load
estimation abilities with semi-monthly sediment loads using simple ANN structures have
only been tested for rivers that have small catchments [30]. Moreover, WA-ANNSs have not
been tested for filling the gaps between intermittent suspended sediment concentration
(SSC) samples; in the state-of-the-art techniques |26, 31|, they have only been applied on
continuous (daily) data time series. In granting the importance to hydraulic structures
as non-renewable resources, therefore, it was necessary to quantitatively and qualitatively
evaluate the performance (and uncertainties originating using) of these (sediment rating

curve, ANN and WA-ANN) methods for rivers with complex sediment transport processes.

1.1.2 Sediment load trends

As with the problems related to more accurate estimation of the suspended sediment
loads (SSL) for better planning of sediment management (yield reduction, routing, and
removal) [32, 6, 33, 34, 35|, the temporal variations and changes in SSLs are also im-
portant not only for setting correct sediment load boundary conditions for predictions of
reservoir sedimentation but also to assess the effectiveness of existing watershed manage-
ment practices or tectonic and land-sliding activities in the catchment area. Although
there are many studies assessing the climate-induced adverse impacts on the Upper Indus
River flow patterns [20, 36, 37, 38, 21, 39, 40|, few have investigated the impact of flow
pattern changes on the sediment yield and reservoirs [41, 42]. This might be due to the
absence of more accurate sediment load estimation methods, while the studies conducted

in this regard using conventional sediment rating curve differ widely in their suggested
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estimates. For instance, the SSL for Tarbela Dam (the country’s largest) or at the im-
mediately upstream Besham Qila discharge gauge is reported to range from 200 Mt yr—!
to 675 Mt yr~! over the past 50 years (Tab. 1.1). Such uncertainty leads to poor design
quality of the operating rules for existing and under-construction dams. Especially, when
the past SL data is used for predictions without modification. For example, variation in
predictions using sediment rating curve were as high as approximately 40% of the mean
difference of the measurements reported for the Tarbela dam over a mere 26 years [3].
Apparently, the assumption that future flows and SLs are similar to past ones is not
appropriate for reservoir sedimentation studies for the existing and planned dams at the
Indus River [43, 44, 45, 37, 21, 46]. This can result in plausible over or under estimates

of the trapped sediment volume for long term sediment modelling.

In assessing the temporal dynamics of SSLs and discharges, non-parametric tests are
assumed to be more robust as compared to their parametric counterparts due to the
fact that the sediment load data are not normally distributed on account of the highly
nonlinear nature of the sediment transport processes. However, several non-parametric
tests may also result in distinct estimates, which requires employing a suite of successful
non-parametric methods and then quantifying their associated uncertainty to build more

confidence in the results.

By analysing discharges and SSCs at two different sites over the past 50 years, this
study for the first time shows how changes in the flow patterns are affecting the sedi-
ment transport capacity of the UIB for the meltwater-dominated zone (up to the Partab
Bridge site) and for the whole UIB (up to Besham Qila), which is additionally influenced
by the summer monsoonal rainfall period. The gaps between intermittently sampled
SSCs are filled using the wavelet transforms coupled with artificial neural networks (WA-
ANNSs). The temporal discharge and SSL dynamics are robustly assessed using a suite of
three widely used non-parametric approaches, including, (1) the innovative trend analy-
sis (ITA), which can analyse the trends in low, medium and high annual SSLs without
requiring any assumptions, such as serial correlation, non-normality, sample numbers and
others [47]; (2) the Mann-Kendall (MK) and the seasonal Kendall (SK) tests together
with the Sen’s slope method; the MK test detects a trend in a time series without re-
quiring normally distributed input data [48, 49]; the Sen’s slope method estimates its
true slope, while SK analyses annual trends by removing the seasonal cycles in a time
series; (3) a change point detection test, which reveals the changing tendency in the SSL
series on monthly and annual scales [50, 51]; (4) mean monthly variations, which detect

monthly changes based on differences from the (a) first and last decades, and (b) monthly
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regression equations of the analysed records.

1.1.3 Reservoir sedimentation

A river basin conveys water, sediments, heat, chemical substances, biological inhabitants,
etc. from the catchment to downstream flat lands, lakes, seas and oceans. The construc-
tion of an impounding structure across the river interrupts these fluxes, causing sediments
to deposit upstream and lacking downstream, resulting in loss of water storage capacity
[52]. The reservoir sedimentation process completes by filling water storing capacity with
sediments. However, the reservoirs are non-renewable resources and their silting up not

only has impacts on the river morphology but also diminishes the associated benefits.

On an average, the annual rate of decrease in the world’s reservoirs’ storage capacity is
approximately 1%. This indicates that water supply is in crisis, largely due to increasing
world population, non-sustainable development, use of water resources and the imminent
threat associated with climate change [53, 54]. In Asia alone, 80% of the useful stor-
age capacity for hydropower production will be lost by 2035, while 70% of the storage
volume used for irrigation will be lost to sedimentation by 2025 [52]. Pakistan, where
no new large storage dam has been constructed since the Tarbela dam in 1974, is facing
a similar situation. Being a water stressed country amongst the top ten most climate-
affected countries |55, 56|, Pakistan has a total water storage capacity of only 30 days
(equal to 10% of the annual available water), which has been depleting due to a heavy
sedimentation transported through the Indus river system from the young Hindukush-
Karakoram-Himalaya (HKH) ranges [45]. The decrease in water supply from reservoirs
such as Tarbela will affect millions of people who depend on the water supply and may
lead to internal migration and severe geopolitical crises [20, 46]. Therefore, it is not only
necessary to operate the existing water storage capacities efficiently but also to construct
reservoirs that trap less sediments - especially in a scenario where reservoirs are the key
infrastructure in mitigating the effects of climate change by their capacity to store and
regulate water supply since the expected increase for the hydrologic variability will de-
mand more water regulation capacity [52]. In addition, optimizing reservoir sedimentation
will require new sediment load (SL) estimation techniques, as conventional methods are

no longer adequate or reliable.

The Tarbela dam is used as a standard for the designing of planned hydraulic structures
in the Upper Indus Basin (UIB). In particular, the development of numerical models for

reservoir sedimentation studies [57] and designing of sediment routing facilities (invert
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level of low level outlets, bypass tunnels or location of power tunnels intakes). In the
previous studies only 1D numerical models (HEC-RAS, HEC6-KC, RESSASS) have been
used for Tarbela and other planned structures in UIB, due to their simplicity and lower
computational time [58, 15, 6, 1, 59]. A 1D model can be used in simple topography to
assess an average sediment deposition or erosion only at cross section and the life of the
reservoirs. The sediment boundary conditions in these models were based on sediment
rating curve estimates. However, the SL boundary conditions based on sediment rating
curve estimates can lead to a false conclusion. On the other hand, designers (in detailed
design stage) also need a more accurate estimate of sediment concentrations with regard to
different outlets, tunnels, etc., (and at different locations), which enables them to optimize
sedimentation related facilities [60]. A 2D model with more accurate boundary conditions
can deliver this information in both simple and complex topographies anywhere in the
domain, which makes them suitable for Tarbela and other similar existing and planned

hydraulic structures.

For SL estimation, WA-ANNs have performed well due to their ability to adjust for the
hysteresis phenomena by decomposing the data time series in the time-frequency domain
and revealing the information from a given data scenario [26]. However, there is a research
gap in the literature with respect to reducing the uncertainty factor (contributing to
accumulation of sediments in reservoirs) using WA-ANN estimated sediment loads (SLs)
as model of boundary conditions. Apart from that the computation time of 2D models
for simulating large systems such as the Tarbela dam, with hundreds of thousands mesh
elements, is also very high. To address these research gaps, a TELEMAC-SISYPHE 2D
open source model [61, 62| was modified and employed for the study. The modification
increased the stability and flexibility of the TELEMAC-SISYPHE system by solving the
fractional distribution of sediment particles equal to 100% [63]. In order to include all
fractions of particular sizes class in the morphodynamic calculation process, the SISYPHE
code was also updated. The wet-dry problem of the mesh was solved by specifying a 1
cm water depth in the whole domain and no morphodynamic calculations for a water
depth below 1 cm. The 2D model is suitable for shallow waters such as in the Tarbela
dam, where, due to high ratio water depth (20 m to 150 m) to river width (500 m to
5.3 km), vertical variations of flow and sediment concentration are very small compared
to that in the horizontal direction. Calibration is the process of setting the parameters
of the model to ensure that the calculated values agree with the measured values. The
validation process demonstrates whether the predictions of the calibrated model agree
with the observed data set that is different from the data used in the calibration process.

Therefore, the model was calibrated using hydrological and morphological data of the
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Besham Qila and Tarbela dam from 1983 (first comprehensive survey after its construction
in 1974) to 1985, while the data from 1990 was used for the validation process. The
calibration period of two years covers both (dry and wet) hydrological variations of the
river. For example, 1984, with a flow volume of 83.8 billion m* (BCM) and SL of 209.6
million tons (Mt) was among highest peak flow/SL year from 1969-2008, whereas 1985
has a lower flow/SL than corresponding averages. Similarly, the validation period of five
years (1986-1990) also covers both dry and wet periods [4]. The computational time
for hydrodynamic calibration was reduced using an automatic calibration method, which
updates roughness for each mesh node using backward error propagation. The boundary
condition of the morphodynamic model (in cascade modelling) was modified based on
[3] studies where (due to the strong hysteresis phenomena) daily SL series was more
accurately reconstructed from non-continuous suspended sediment (SSC) samples using
WA-ANN.

1.1.4 Need for research

The modelling of reservoir sedimentation is widely influenced by a correct representation
of sediment load (SL) boundary conditions, reservoir geometry, and coefficients in the
empirical formulae [64, 5. A correct representation of SL boundary conditions requires
a clear understanding of a wide variety of erosional, depositional and transport processes
over a varying spatio-temporal scale [19]. However, studies in this direction so far have
only been conducted for relatively small catchments ranges from hundred hectares to a few
hundred square kilometres [30]. Sediment load estimations for large river basins require
adjustment of hysteresis phenomenon and hydrological variations in the modelling process
[3]. As per available literature, no study has been done in this direction, which contrast
to many studies on flow trends [43, 44, 45, 37, 21, 46] hinder sediment load trends (due
to lake of accurate load estimation) as well. Consequently, designers and engineers only
have the choice to set SL boundary conditions using conventional sediment rating curves

along-with re-use of the sediment rating curve estimate in predictions [58, 15, 6, 1, 59].

Another aspect in modelling of reservoir sedimentation is related to selection of numer-
ical models, where designers need more accurate estimate of sediment concentration with
regards to different outlets, tunnels, etc., which enables them to optimise sedimentation
related facilities. There was a need to develop a model with more accurate sediment load
boundary conditions, which can deliver this information (in both simple and complex to-
pographies) anywhere in the domain and can be used for reservoir sedimentation studies
for the Indus River.
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1.2 Study area

The Indus River is one of the largest rivers in south Asia, with a total length of 2,880 km
and a drainage area of 912,000 km? extending across portions of the Pakistan, India, China
and Afghanistan. The drainage area of the Indus River is divided into upper and lower
parts, typically at the Besham Qila discharge gauge station or around 65 km downstream
at, so far, it’s only reservoir, Tarbela, which is one of the largest earth-filled dams in the
world (Fig. 1.1). The Upper Indus Basin upstream of the Tarbela dam is 1,125 km long
with a drainage area of 219,830 km?. To help in regulating the seasonal flow both for
irrigation and power generation the dam was constructed in 1974 at the Indus River. The

dam supplies 50% of the total irrigation releases and 40% of the total energy production

in Pakistan.
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Figure 1.1: Location map of the study area. Modified from [6].

The Tarbela reservoir is embanked by three dams, the main embankment has a length

of 2,750 m and height of 143 m. The reservoir had an initial water storage capacity of 11.6
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billion m?® (BCM) with a reservoir length extending to approximately 80 km. The outlet
works consist of four tunnels cut through the right abutment of the main dam plus a
fifth tunnel between the main dam and the spillways on the left bank. The total installed
capacity of the dam is currently at 4,500 MW, 83% more than it was originally envisaged
in the initial design, with several turbines installed on tunnels 1-4 (Fig. 1.2). Recently a
new scheme had been installed on tunnel 4 which increased the power generation capacity
by 1,410 MW.

Sedimentation at Tarbela dam has been a concern for a number of years due to very
high supply of sediments from the Upper Indus River, i.e. approximately 160-200 Mt /yr.
This is largely due to the erosion effect of the glaciers that supply much of the flow.
The Indus basin upstream of the Tarbela dam has an area of 169,650 km? (Fig. 1.1).
Over 90% lies between the great Karakoram and the Himalaya ranges. The snowmelt
waters from this region contributes to the major part of the annual flow reaching into the
reservoir. The remainder of the basin lying immediately upstream of the dam (Fig. 1.1)
is subject to monsoon rainfall primarily during the months of July-September. Peak flows
due to snowmelt can be as high as 5,660 m?/s to 11,300 m?/s with an additional rainfall
contribution typically reaching a maximum of 5,660 m3/s. The average annual inflow to
Tarbela reservoir is 81 BCM [65].

[3] showed that 1969-2008 annual sediment inflows in the dam vary between 92-270
MT, which reduced the water storage capacity by 35% (Fig. 1.2). The decrease in storage
is a concern as it may result in reduction of irrigation releases and power supply. In
addition, the impact of delta created by the sediment deposits approaching towards the
main dam may also block the power intakes. As the storage capacity of the reservoir
reduces, more sediment will pass through the intakes. A major concern is the amount
and representative sizes of the sediment that may pass through the turbines. The problems
may be aggravated by the instability of the downstream sloping face of the delta [14] and

the occurrence of an earthquake [65].

1.3 Research objectives

The overall objective of this study was to develop a set of models for a more accurate
reservoir sedimentation and apply it to the Tarbela dam in the Upper Indus Basin (UIB).
The UIB represents a unique topography with high mountains of the Himalayas, Karako-

ram, Hindukush, with a huge catchment area that still exists in its natural conditions
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Figure 1.2: Sediment delta development in the Tarbela dam |5]

without any major human activities and has not received much attention in the past. In
the view of serious energy and water crises in Pakistan where 14,000 MW hydropower
projects and many water storage reservoirs are planned, more accurate reservoir sedimen-
tation model seems to be timely and desirable. In order to address the relevant research
needs and gaps in reservoir sedimentation for large scale drainage basin raised in sections
1.1.4 and learned in my preliminary studies |1, 2|, the following were the sequential aims
of this study:

e Estimation of more accurate sediment load in the Upper Indus River by filling the

gaps between intermittent suspended sediment load samples.

e Asses spatio-temporal trends between sediment load and discharges using more ac-

curate estimate.

e To develop cascade modelling approach for sediment management in reservoir by
setting more accurate sediment load boundary conditions along-with hydrodynamic

calibration using back error propagation.
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1.4 Research methodology

Modelling reservoir sedimentation requires a clear understanding of the dynamics of sedi-
ment transport processes at the Upper Indus River. To gain this knowledge, the study has
utilized multiple data types and sources includes the hydrological and sediment records,
annual reservoir inspection surveys, literature about the Indus River, and recent published
work on the reservoir sedimentation |1, 2, 3, 4, 5]. It is argued that occasionally collected
suspended sediment load data series can be used in WA-ANN models for reconstruction
of missing data for large rivers such as the Indus. The future sediment loads in absence
of any upstream hydraulic structures can be estimated using projections of corresponding
future discharges. Projections of both sediment loads and discharges can be used for the

prediction of erosion and deposition processes in the reservoirs.

The methodological framework of numerical modelling of sediment transport in the

Upper Indus River presented in this study consists of five distinct steps.

(I) Identification of the research gaps in estimation of reservoir sedimentation using

conventional methods

(IT) Preliminary investigation of the suitability of artificial neural networks (ANNs) for

estimation of sediment yield

(III) Development of wavelet-ANN models for the estimation of sediment loads in the

Upper Indus Basin, particularly at Besham Qila gauge station of the Tarbela dam
(IV) Detection of trends in sediment loads at the upper Indus River

(V) Carrying out 2D reservoir sedimentation calculations based on wavelet-ANN  esti-
mated sediment loads, and trends in the predictions of sediment delta development
in the Tarbela dam
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1.5 Thesis structure and authors contribution

The thesis is based on the series of five documents published in context with numerical
modelling of reservoir sedimentation studies for Pakistani reservoirs conducted in the
Chair of Hydraulic and Water Resources Engineering, Technical University of Munich. A
brief summary of each publication along-with the division of work between the authors is

given below.

1.5.1 1-D numerical modelling of Dasu Hydropower Project

The main findings of the publication “Application of a 1-D numerical model for sediment
management in Dasu Hydropower Project” are discussed briefly. The study was published
in the proceedings of the 14" International Conference on Environmental Science and
Technology in 2015 [1].

Main results: The first study of the PhD project was conducted to evaluate the suit-
ability of flushing types (pressurized or free flow) for 4,320 MW planned Dasu Hydropower
Project on the Indus River using 1D HEC-RAS model. In the modelling process two sedi-
ment rating curves were used to estimate sediment load (SL) for boundary conditions. To
predict the reservoir life for 2027-2066, the past data (estimated SL and flow discharges)
from 1969-2008 was repeated in future, without any modification. The estimated reservoir

life was validated using [66] curves.

The modelling results reveal that free flow flushing is suitable for the project and can
increase the reservoir life from 15 years to a minimum of 40 years. As sediment rating
curve method has high variations in SL estimation due to transport processes related to
hysteresis phenomenon and hydrological variations, the modelling boundary conditions
and subsequent predictions also contain high uncertainties. In addition, the assumption
that the future flow and SLs are similar to the past ones and can be used as boundary
conditions in modelling of reservoir sedimentation |67, 57, 58, 15, 6, 33, 59|, particularly
under climate change [20, 36, 37, 38, 21], needs to be investigated. Although 1D modelling
is sufficient for pre-feasibility studies, to have a reliable design of low level outlets and
flushing tunnels in detailed /construction design, a 2D modelling is recommended for hav-
ing the information of sediment concentrations or accumulation of sediments with regards

to different outlets.
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Authors’ contribution: The model was developed by Sardar Ateeq Ur Rehman under
guidance of Minh Duc Bui and Peter Rutschmann. Idea and concept of the paper were
formulated by Sardar Ateeq Ur Rehman and discussed with Zeeshan Riaz. Sardar Ateeq
Ur Rehman prepared the manuscript with the support of Minh Duc Bui.
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1.5.2 Estimation of sediment yield using artificial neural networks
(ANN)

The main findings of the publication “Estimation of Sediment Yield for Dasu Hydropower
Project Using Artificial Neural Networks” are discussed briefly. The study was published
in the proceedings of the 18" Wasserbau-Symposium in 2016 [2|. The main findings are

summarized below.

Main results: In order to find more accurate sediment load (SL) estimation technique
for reconstruction of missing data for the gauge stations at the Indus River, initially (in
this publication) the output of the 1D sediment model of Dasu Hydropower Project [1]
using artificial neural networks (ANNs) was tested. The inputs of ANNs (2027-2066)
were same as of the 1D HEC-RAS model, i.e. daily inflows to the planned dam (m3/day),
daily outflows from the dam (m?/day). The target of the ANNs was the output of the
HEC-RAS, i.e. volume of sediment retained (m?/day).

Due to the ANNs learning abilities and extraction of the nonlinear relationship from
the data without requiring an in depth knowledge of the physics occurring within the sys-
tem [25], the modelling results showed that the ANNs can accurately model the patterns
of sediment deposits in the reservoir and flushing volume out of the reservoir on a daily
time scale. In addition, ANNs also well captured the dry and wet hydrological cycles in

the modelling process.

The ANN models outputs close to the HEC-RAS estimation motivated us to use
these models (instead of sediment rating curves) to reconstruct occasionally measured
suspended sediment concentration (SSC) samples (collected at gauge stations on the Indus
River) on a daily time scale for trend detection (under sediment load variability scenarios)
and implementation of more accurate sediment load boundary conditions (in predictions)

for numerical modelling of the Tarbela reservoir.

Authors’ contribution: The ANN architectures were created by Sardar Ateeq Ur
Rehman under guidance of Minh Duc Bui, and Peter Rutschmann. Idea and concept of
the paper were formulated by Sardar Ateeq Ur Rehman and discussed with Minh Duc
Bui. Zeeshan Riaz helped for the data collection and raw data interpretation. Sardar

Ateeq Ur Rehman prepared the manuscript with the support of Minh Duc Bui.
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1.5.3 Development of wavelet-ANN for suspended sediment load

The publication “Development of a wavelet-ANN model for estimating suspended sediment
load in the upper Indus River” [3] was submitted in International Journal of River Basin

Management in 2017. The main findings of the publication are discussed below.

Main results: The accurate estimation of sediment load plays a vital role in the sed-
iment management of existing and proposed reservoirs and run-of-the river hydropower
schemes. However, the accurate estimation of sediment load is challenging under the
influence of climate change and hysteresis phenomenon, where disproportional spatio-
temporal trends between the sediment loads and flow discharges exist primary due to
intra-annual shifts in flows at the Indus River. Based on the successful implementation
of the ANN models for the estimation of sediment yield in the Dasu Hydropower Project
[2], ANNs and conventionally used sediment rating curves (SRCs) were applied on occa-
sionally collected suspended sediment concentration (SCC) samples for reconstruction of
missing data of two gauge stations, Besham Qila and Partab Bridge. The Besham Qila
gauge station is used to measure inflow and sediment load for the Tarbela dam, while
Partab Bridge represents the whole glacier and snow melt catchment of the Upper Indus
River. The SSC sampling frequency at both gauge stations were 22% and 17% of daily

sampling, respectively.

The results showed a better performance of ANN models over the conventional sedi-
ment rating curves. However, the ANN was unable to adjust hysteresis phenomenon due
to involved complexity related to the load availability and seasons or months of occur-
rence. As wavelet transform (WA) has the ability to adjust hysteresis phenomenon by
splitting the information into time and frequency domain, more accurately estimate of SL

on a daily time scale by coupling WA with ANNs can be obtained.

The results obtained using WA-ANN for daily SSL were NSE=0.85 compared to ANN
NSE=0.81, and sediment rating curve NSE=0.48, respectively. The mean deviations in
estimation (from 1696-2008) using these models were 13%, 18% and 36%, respectively.
In addition WA-ANN and sediment rating curve results with sediments deposited in the
Tarbela dam were also compared. The WA-ANN estimate for the mean annual mass
deposited in the dam deviates only 12% from the hydrographic survey, compare to 43%
deviation using sediment rating curve. In predicting cumulative deposits using sediment,
rating curve they were as high as 40% for the Tarbela dam over a mere 26 years. However,

the variation over the same period were only at 12% using WA-ANN.
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Based on the findings, the WA-ANN models can be used to more accurately detect
the trends in sediment loads and can also contribute to the development of sediment man-
agement strategies for existing, under construction, and planned water related structures

by setting more accurate boundary conditions.

Authors’ contribution: Artificial neural networks (ANNS) and wavelet transform
coupled with ANNs were developed and evaluated by Sardar Ateeq Ur Rehman under
the guidance of Minh Duc Bui and Peter Rutschmann. Idea and concept of the article
were formulated by Sardar Ateeq Ur Rehman with the help of Minh Duc Bui. Sardar
Ateeq Ur Rehman prepared the manuscript with the support of Minh Duc Bui and Peter

Rutschmann.
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1.5.4 Detection of sediment load trends

In the following, the main findings of the publication “Variability and Trend Detection in
the Sediment Load of the Upper Indus River” [4] are briefly summarized. The article was
published in Water in 2018.

Main results: The fourth study was conducted to evaluate whether the past sediment
load (SL) data without modifications can be used as sediment load boundary conditions for
predictions of sedimentation in reservoirs. To do so, the temporal dynamics of suspended
sediment loads (SSLs) and discharges were analyzed using suit of three non-parametric
trend tests (i.e. Innovative trend test, Mann-Kendall test, and change point detection
test) while the (trend) slope was identified using Sen’s slope estimator. For the study
WA-ANN reconstructed suspended sediment load series [3] and daily measured discharge
flows for the meltwater-dominated zone up to the Partab Bridge and the whole Upper
Indus Basin up to Besham Qila (used as gauge station for the Tarbela dam), which is

additionally influence by monsoonal rainfall, were used.

The current study results show significant disproportional spatio-temporal trends be-
tween SSLs and discharges at both gauge stations caused primarily by intra-annual shifts
in flows. The results also showed a substantial deposition of sediments in the river channel
between Partab Bridge and Besham Qila gauge stations. This deposition process has also
been causing a long-term decrease in suspended sediment loads at the Tarbela dam. In
addition, the trends are also opposite to the flow volumes which have been showing a
long-term increasing trends. Therefore, this disproportional behaviour and the significant
trends strongly disconfirm the hypothesis that future inflows and SSLs are similar to the

previous ones for reservoir sedimentation studies for the Upper Indus River.

Authors’ contribution: Sardar Ateeq-Ur-Rehman designed the study, processed and
analyzed the data, interpreted the results and wrote the paper. Minh Duc Bui and Peter
Rutschmann contributed to the model development stage with theoretical considerations
and practical guidance, assisted in the interpretations and integration of the results and

helped in preparation of this paper with proof reading and corrections.
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1.5.5 An innovative approach for modelling reservoir sedimenta-
tion

In the following, the main findings of the publication “An Innovative Approach to mini-
mizing uncertainty in sediment load boundary conditions for Modelling Sedimentation in

Reservoirs” |5 are briefly summarized. The article was published in Water in 2018.

Main results: The fifth study in this context of numerical modelling of the Tarbela
dam was carried out using the cascade modelling approach, where more accurate WA-
ANN reconstructed suspended sediment loads (SSLs) [3] were used as boundary condition
in TELEMAC 2D model. In presence of statistically significant trends in flow discharges
and SSLs [4], future flow discharges (2016-2030) calculated by [24]| using hydrological
model were used as boundary conditions. The corresponding future SSLs were estimated
using WA-ANN model. The reservoir water levels from 2015-2030 were kept same as
2000-2015. To calibrate the model for hydro-morphodynamic calculations, an automatic
hydrodynamic calibration algorithm was applied. This algorithm specifies bed roughness
for each mesh node and subsequently enhance the performance of morphodynamic cal-
culations by providing better hydrodynamic variables and total bed roughness for the

calculations of sediment erosion, transport and deposit in the flow area.

The modelling results showed that the well calibration of hydrodynamic model us-
ing automatic calibration algorithm (which specified bed roughness for each mesh node)
along-with more accurate sediment load boundary conditions (which better represent hys-
teresis phenomenon and hydrological variations) enabled the successive morphodynamic
model to accurately predict the bed level changes in the Tarbela dam. The well cali-
brated hydrodynamic model has R?=0.969, NSE=0.966, and morphodynamic model has
R?-0.97, and NSE=0.96. The model validated the sediment deposits in the Tarbela with
R? —=0.96 and NSE—0.95. Although the morphodynamic calculations were close to the
measurement, the model also approximately 1% over-predicted sediment deposits due to
omission of low flow months when water level is released form the dam. Interestingly, a
desynchronization between the glacier melts and monsoonal rainfall due to warmer cli-
mate can cause a significant (up to 17%) decrease in sediment supply to the Tarbela
dam, which can stabilize the delta development in the dam. Although the study findings
contradict the previous clams of high reservoir sedimentation under climate change [52],

the silting up rate of the Tarbela reservoir will be slower due to the desynchronization.
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Authors’ contribution: Sardar Ateeq-Ur-Rehman designed the study, processed and
analysed the data, interpreted the results, and wrote the paper. Shabeh ul Hasson pro-
vided the hydrological model for future flow discharge predictions. Minh Duc Bui and
Peter Rutschmann contributed to the model development stage with theoretical consider-
ations and practical guidance, assisted in the interpretations and integration of the results,

and helped in preparation of this paper with proof reading and corrections.
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Chapter 2

Application of a 1D Numerical Model
for Sediment Management in Dasu
Hydropower Project

This chapter is published as:

Ateeq-Ur-Rehman, S.; Riaz, Z.; Bui, M.D.; Rutschmann, P., Application of a 1-D nu-
merical model for sediment management in Dasu Hydropower Project. In Proceedings of

the 14th International Conference on Environmental Science and Technology; Lekkas, D.,

Ed.; Global CEST: Rohdes, Greece, 2015; ISBN. 978-960-7475-52-7

Abstract: A one dimensional numerical model for the sediment study of the Dasu
hydropower project (HPP), before constructing the Bhasha Diamer dam, is presented
in this paper. Several formulae were used for sediment simulations under no flushing
condition, maintaining reservoir water level at a full supply level (FSL) of 950 m asl.
The preliminary assessment for both flushing methods, pressure flow flushing and free
flow flushing was carried out. The validity of the model was checked with the Brune’s
formula. The simulation result showed that without flushing, low level outlets and power
intakes would be filled with the sediments between, 20-25 years. It was also observed
that free low flushing, after minimum 15 years of dam commissioning, is more efficient
compared to pressure flow flushing. It is recommended that without construction on

any upstream reservoir, sedimentation is a severe problem for the Dasu HPP or any
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downstream run-of-river power plant.

2.1 Introduction

Sedimentation is one of the most challenging carry-over problems in hydraulic engineering
[68]. On a worldwide scale, dam reservoirs silt up at a rate of about 1% of their useful
storage volume every year. With the same trend 25% of world reservoirs will be abolished
in the coming 25 to 50 years [69]. Reservoir sedimentation causes various severe problems
such as (1) decrease of active volume leading to both loss of energy production and
water available for water supply and irrigation; (2) decrease of the retention volume in
case of flood events; (3) endangerment of operating safety due to blockage of the outlet
structures; and (4) increased turbine abrasion due to increasing specific suspended load
concentration |70]. Similarly, Tarbela and Mangla reservoirs in Pakistan, are losing their
storage capacities at the rate of 0.132 billion m?®/yr and 0.038 billion m?/yr, respectively
[71]. Same may happen with the Dasu hydroelectric power project (Pakistan) which
has reservoir life of only 30 years, without flushing, due to sedimentation, along with 40%
reduction in power generation due to ingress of sediments into the power inlets [6]. Warsak
dam (Pakistan) also silted up just after thirty years of operation [72]. It is not possible
to completely overcome the sedimentation problem but it can be reduced by flushing the
reservoir regularly [73]. Venting of turbidity currents, efficiency also very much influenced

by timing of gate opening and there arrangement in the dam body [74].

The sedimentation problem is more sever for Pakistan. The country is losing its
existing storage capacities of the reservoirs due to sedimentation. This problem is affecting
not only the water availability for agriculture but also the power generation in which it
already faces crisis. The aim of this paper is to simulate the sedimentation patterns in
the reservoir Dasu (1) without flushing, (2) under pressure flow flushing and free flow
flushing, and (3) impact of sedimentation on downstream (d/s) run-of-river hydropower

projects without any upstream (u/s) reservoir.

2.2 Site description

The Dasu Hydropower Project is located in the Indus River Basin, about 350 km north
from the capital Islamabad, Pakistan. The proposed damsite is also 74 km downstream
of the Diamer Bhasha damsite and 241 km upstream of the Tarbela dam, along the same

river. The elevation at the damsite is 764 m asl. There are several tributaries between
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the Bhasha dam and the Dasu HHP and of these, the prominent ones are the Daral
River, Tangir River and Kandia River. These tributaries generally bring snowmelt flow
to the Indus River with some fine to coarse sand. The catchment of the Indus River at
the damsite is 158,800 km?. The mean annual runoff at the damsite is 2,116 m?/s and
the lowest flow is 291 m3/s. Total annual flows at Dasu is 66.7 billion m® and 90% of
these flows come from melting of snow and glaciers. Hence nearly 80% of flows occur in
summer months of June to September while October to May is known as the low flow
season. Gross storage capacity of reservoir at elevation of 950 m asl is about 1.41 billion

m? and operational storage capacity is 0.82 billion m?.

2.3 Methodology
2.3.1 HEC-RAS program system

The Hydrologic Engineering Centre-River Analysis System (HEC-RAS) is a one-dimensional
software, which is designed to perform steady flow water surface profile computations
through natural rivers and full networks of natural and engineered channels, unsteady
flow simulations, movable boundary sediment transport computations, and water qual-
ity analysis. A key element is that all these components will use a common geometric
data representation and hydraulic computation routines. Sediment transport simulations
are based on the calculations of one-dimensional movable material from the river bed
causing scour or deposition over a certain modeling period of time. Generally, sediment
transport through rivers, streams and channels occurs through two modes which depend
on parameters such as the particle size, water velocity, and bed slope. The two modes
are known as bed load and suspended load. The basic principle of evaluating sediment
transport capacity within HEC-RAS is by computing sediment capacity associated with
each cross section as a control volume and for all grain sizes in that particular case. For
making such calculations, HEC-RAS requires boundary conditions for each type of data.
These boundary conditions are required to obtain the solution to the set of differential
equations describing the problem over the domain of interest. In HEC-RAS, there are sev-
eral boundary conditions available for steady flow and sediments analysis computations.
Boundary conditions can be either external specified at the ends of the network system
(upstream or downstream) or internal used for connections to junctions. The background
to the computational methods and equations used for modeling sediment transport can
be found in [75].
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2.3.2 Model setup

Based on observed data, a rating curve of suspended sediment load per day Qg (tons/day)
was developed (Eq. 2.1 and 2.2), and used as the upper boundary condition of the Dasu
reservoir.

Qs = 4.99 x 1071Q*, for Q < 448m*/s 2.1

Qs = 7.61 x 1073Q*2, for Q > 448m?/s 2.2

Where (), — suspended sediment load with respect to flow discharge QQ. Furthermore,
bed load was also added as 10% of the suspended load. The sampling for the river bed
material within the Dasu reservoir was carried out (Tab. 2.1) and used as initial grain

size distribution in the model.

Table 2.1: Gradation of river bed material in Indus River.

Size 3.5 km d/s of damsite 56 km u/s of damsite at Shatial Bridge

(mm) (Yofine) (Yfiner)
0.075 2.9 2.7
0.16 10.2 10.4
0.30 01.6 02.6
0.60 99.5 100
1.20 100 -

Daily inflow discharge over 47 years from 1962 to 2008 were given as upper boundary
conditions and reservoir water levels (RWL) as downstream boundary conditions on daily
basis. For the sediment simulation and management study in the Tarbela dam in 1998
[65], the Ackers-White transport formula has been intensively adopted in view of much
sand fraction than finer materials. [76] also suggested the use of the Ackers-White formula,
for total load transport capacity of sand-sized fraction is appropriate tool. Hence, in the

present study this formula is used again.

In general pressurized and free flow flushing are used for venting of sediments from
the dam. Hydraulic features of pressure flushing includes (i) less velocity in reservoir and
less tractive force along the river bed due to high water depth (ii) development of scour
cone around inlet of the Low Level Outlet (LLO) due to rapid flow towards LLO inlet
in radial direction and (iii) higher trapped sediment in the reservoir due to less flushing
efficiency. Reversely hydraulic features of free flow flushing includes (i) higher velocity in

the reservoir and higher tractive force along river bed due to shallow water depth and (ii)
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less trapped sediment in the reservoir due to high flushing efficiency. In order to evaluate
applicability of both flushing methods to the Dasu reservoir, the flushing simulation by
using HEC-RAS is carried out.

2.4 Results and discussions

To assess and clarify the accuracy of transport formula selected, the preliminary simulation
sedimentation study was carried out by using the Ackers-White, Laursen-Copeland and
Yang formulas under no flushing conditions, maintaining RWL at a FSL of 950 m asl.
Up-to 17 years, there was not much difference in the results of both formulas, such as
reduction of storage volume, annual sediment inflow and outflow, trapped efficiency and
accumulated sediment volume in the reservoir. However, after 17 years the accumulated
sediment volumes by the Laursen-Copeland formula and the Yang formula showed the
higher amounts than Ackers-White due to change of profile delta. It was also justified
that the Ackers-White formula gives safer results than that of the Laursen-Copeland and
Yang’s formulas. Fig. 2.1 shows the calculated results of annual sediment inflow, outflow
and trapped sediment in the reservoir during no flushing. It was observed that the trapped
sediment volume using the HEC-RAS model (58% of sediment inflow) was well coincided

with the trap efficiency obtained by Brune’s curve (61%).
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Figure 2.1: Sediment profile by maintaining RWL at FWL (no flushing).

In order to grasp sedimentation in the reservoir for certain operation period, the
scour and deposition were analyzed using computer simulation basis that the reservoir
water level was maintained at a FSL of 950 m asl. without flushing operation. The

results suggested the following points (Fig. 2.1): (1) From the longitudinal profiles of
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sedimentation delta in each 5-year interval, it was expected that the inlets for LLOs
and power intake would be filled with the sediment between 20-25 years. (2) At 15
years elapsed period after Commercial Operation Date (COD) of Phase-1, the foot of
sedimentation delta was developed up to 780 m asl. at about 9 km upstream of the dam
and its top was accumulated up to 910 m asl. Satisfying the stable slope of 5.3 m/km
shown in the guideline of the Tarbela reservoir. (3) It was likely that the sedimentation
delta will rapidly approach to the dam exceeding the stable slope. This might bring
the sudden collapse of delta and will result in the blockage of LLO inlet. The inlet
facilities for LLO and power intake might be filled with the sediment within 25 years after

commissioning of Phase-1.

Every year flushing since impounding of reservoir in the month of June at low level
outlets EL. 830 m asl. and LLOs discharge capacity of 6,600 m?*/s under free flow flushing
suggests the following results (Fig. 2.2):

1. In case that the one month flushing is started immediately after the impounding,

the reservoir life is extended to 40 years.

2. Drawdown flushing in the month of June will allow filling of the reservoir imme-
diately, after termination of flushing, in the following months of high flows during
the monsoon season. Rapidly filling the reservoir in the following months will also

provide greater opportunity of power generation in the rest monsoon period.
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Figure 2.2: Sediment profile under free flow flushing.

The preliminary assessment for both flushing methods, pressure flow flushing and free

flow flushing were checked and clarified by the tractive force and critical friction velocity
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based on the backwater calculation. Under the pressure flow flushing having discharges
varying from 1,000 to 6,000 m? /s, maintaining RWL at FSL. 950 m asl., whole wash loads
below 0.0625 mm were mobilized and trapped in the reservoir section over 15 km u/s
of dam. Part of wash loads was expected to be flushed out through LLOs and turbine
under pressure flow. The velocity in the reservoir was ranged from 0.02 to 0.14 m/s near
the damsite. Under the free flow flushing having discharges of 6,000 m?®/s, and RWL at
853.92 m asl., the suspended loads with 0.2 to 0.6 mm were mobilized and trapped in the
reservoir section over 15 km u/s of dam. Particles below 0.2 mm were flushed out through
LLOs during flushing operations under the free flow. The velocity in the reservoir was

ranged from 0.39 to 0.44 m/s near the damsite.

2.5 Conclusions

It is evident that the period of non-flushing operation for the Dasu reservoir should be
limited to 15 years if it is at the status of “Pre-Bhasha”. This operation would contribute
not only for the maximization of annual energy during construction phases of the Dasu
project but also for the mitigation of annual sediment inflow to the Tarbela reservoir and
the extension of the reservoir life for the Tarbela project. If “Post-Bhasha” is achieved,
the flushing operation is not required further than 30 years since the Bhasha dam has
enough storage capacity. From the above initial flushing operation study, it is concluded
that the free flow flushing is more appropriate and expected to show higher efficiency of
sediment evacuation due to shallow water level near the dam. It is further concluded that
an upstream reservoir is necessary for sustainable operation of run-of-river hydropower

project on the Indus River in Pakistan.
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Chapter 3

Estimation of Sediment Yield for Dasu
Hydropower Project Using Artificial
Neural Networks

This chapter is published as:

Ateeq-Ur-Rehman, S.; Bui, M.D.; Riaz, Z.; Rutschmann, P., Estimation of sediment
yield for Dasu Hydropower Project using artificial neural networks. In 18. Wasserbau-
Symposium; Rutschmann, P., Ed.; Freunde des Lehrstuhls fiir Wasserbau und Wasser-
wirtschaft, TU Munich: Wallgau, Germany, 2016; Vol. Nr. 134/2016, pp. 326-337, ISBN.
978-3-943683

Abstract: Reservoir sedimentation of Dasu Hydropower Project (DHP) was anal-
ysed by developing three ANN architectures of data driven method. The inputs of the
ANN model were daily data of the river inflow into the reservoir, river outflow from the
reservoir and change in reservoir storage capacity, while the output of the model was
the daily amount of sediment retention in the reservoir ponding area. For ANN model
inputs, hydrological data of forty years were used in this study (70% for training, 15%
for validation, and remaining 15% for testing). The target of the model was estimated by
using the HEC-RAS 1-D numerical model. The ANN architectures were created with the
multilayer perceptron (MLP) using Marquardt Levenberg training method. In well per-
formed ANN architectures, the transfer function in the hidden layers was ‘logsig’, while
‘purelin’ was used as transfer function in the output layer. Among well performed ANN
architectures, ANN (4-14-1) performed well in the three layers neural network, ANN (4-8-
10-1) performed well in the four layers neural network architecture while ANN (4-5-4-5-1)
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performed well in the five layers neural network architecture. The results showed that the
ANN models selected captured the process of reservoir sedimentation very well in both
ways, daily volume of sediment deposition and daily volume of sediment venting out of
the reservoir during wettest and driest hydrological cycles. The results also showed that
with an increase the length of data set of shorter intervals, the efficiency of the model can
be improved. It was also noticed that the length of artificial neural network did not affect
the statistical performance of the model when employing short-interval observational data
of long period. It was concluded that the artificial neural network is a good tool for the

estimation of reservoir sedimentation in the Dasu Hydropower Project.

3.1 Introduction

The challenge of reservoir sedimentation is depleting per capita availability of water in
Pakistan. That is not only affecting agriculture crop water requirement only but also
power generation, which it’s already facing severe crisis. Per capita water availability
in Pakistan has decreased from 5,000 in 1951 to 1,100 cubic meter per annum in 2006.
The increasing gap between water supply and demand has led to severe water shortage,
in almost all sectors, [77]. The present facts are just above the level of 1,000 mtextsu-
perscript3 per capita per annum [78], the internationally recognized water scarcity rate.
In Pakistan, water shortfall between requirement and availability will be 12% in 2025
[79]. At the moment, the country has only 30 days water storage capacity |80]. Around
92% of the country’s area is classified as semi-arid to arid, facing extreme shortage of
precipitation |[81]. Under this scenario, the construction of mega multi-purpose storage
dams is assuming highest priority to sustain irrigated agriculture which is the backbone

of Pakistan’s economy and to meet the growing power need of the country [82].

Prediction of sedimentation is not an easy task due to its high complexity and non-
linearity. In recent past, the artificial neural network (ANN) technique, is gaining popu-
larity among the hydrologic community due to its ability to identify a relationship from
given patterns to solve large scale complex problems such as pattern recognition, non-
linear modelling and classification |83, 84]. ANN provided many promising results in the
field of hydraulic and civil engineering. For example its working style like human ner-
vous system, to learn from data samples presented, proved it a highly tolerated against
data simple errors [85]. Compared to regression analysis with conventional stochastic
dynamic programming, ANN showed superiority to tackle the nonlinearity problems as

well as superior simulation model in deriving the operating policy for reservoir systems
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[86]. [87] made a comparison between suspended sediment rating curves and artificial
neural network (ANN) for EI Kebir catchment in Algeria. Daily water discharge and
daily suspended sediment data from the gauging station of Ain Assel were used as input
and output parameter. The model was based on the cascade-forward and feed- forward
back propagation using Levenberg-Marquardt and Bayesian regulation algorithms. It was
found that ANN model efficiency to produce the daily sediment load and global annual
sediment yield was the highest. [88] developed an artificial neural network (ANN) for
reservoir sedimentation of Gobindsagar Reservoir at Bhakra Dam on Satluj River in In-
dia which is a tributary of Indus River Basin System. In the model, 32 years data of
annual rainfall, annual inflow and annual capacity were used as input parameters. The
pattern of sediment retained in the reservoir was well captured by the multi-layer per-
ceptron (3-5-1) ANN model using back propagation algorithm with sigmoidal activation
function. It was found that ANN estimated the reservoir sedimentation with better ac-
curacy compared to conventional methods. |89] developed an artificial neural network to
study the relationship between sediment yield and Indus river runoff during high flows for
Tarbela Dam utilizing Besham Qila’s gauge station data. In the three layers neural net-
work with back propagation algorithm, weekly time series data of discharge and sediment
load of 20 years was used as an input and output parameter, respectively. The correlation
of 0.56 was found in observed and computed sediments for the ANN model. ANN model
is also a very efficient tool for water level prediction especially when the duration of quick

response components of individual events is less than 6 hours |90].

In the present study, an ANN model has been developed by using 40 years hydrologi-
cal data for the estimation of sediment load at the under constructed Dasu Hydropower
Project. The input parameters such as river discharge into the reservoir, outflows from
reservoir and reservoir capacity were decided on the basis of their influence in sedimenta-
tion process and sediment load retained in the dam ponding area was considered as the

output parameter.

3.2 Study area and methodology

Dasu dam is a gravity dam currently being constructed on the Indus River near Dasu
town in Khyber Pakhtunkhwa province of Pakistan (Fig. 3.1). Its design discharge is of
2,670 m?/s [6] and one of the series of hydropower development projects included in the
vision programme developed by Water and Power Development Authority of Pakistan.

In feasibility studies of Dasu HPP, it was decided to construct after completion of an
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upstream Diamer Bhasha reservoir to provide regulated flows for energy generation and
also to control downstream proposed projects reservoir sedimentation [57|. Later, a de-
tailed design of the project was conducted without considering any upstream reservoir
which will definitely cause huge sedimentation within Dasu reservoir storage area and
may be a danger for dam components |1]. Catchment area of Indus River at the damsite
is 158,800 km?. Mean annual runoff at dam site is 2,116 m?®/s with lowest river flow of
291 m?/s. Annual flow volume at Dasu dam site is 66.7 billion m?®, 90% of these flows are
generated from melting snow and glaciers. Hence nearly 80% of flows occur in summer
months from June to September while from October to May is known as the low flow
season. Gross storage capacity of reservoir at elevation of 950 masl is about 1.41 billion
m? and operational storage capacity is 0.82 billion m? |7] The project is going to be con-
structed with the help of World Bank funding and will operate under Water and Power
Development Authority (WAPDA) Pakistan [7]. WAPDA is also controlling authority of
Pakistan reservoirs, conduct reservoir thalweg surveys regularly to measure actual sedi-
ment deposited in the reservoirs. The Indus River originates from Tibetan plateau, to
the North of Manasarowar Lake, at an elevation of about 5,500 masl. Operational Mete-
Hydrological data stations along Indus River till Dasu site and nearby downstream are
at Partab Bridge, Dasu Bridge, Kandia Bridge, Pattan, and Besham Qila.

3.2.1 Method

The ANN model developed by using simple mass balance equation for the estimation of

sediment retained within the reservoir area;

AS = qu(in) — Gu(out) + Qs(in) — Is(out) 3.1
AS = Qu(in) = Qu(out) T qs(R) 3.2
qs(r) = A5 + Qu(out) — Gu(in) 3.3

As =58, — ;1 3.4

where, As = change in reservoir capacity (m?®), ¢y @n) = water inflow into reservoir (m?),
Qu(outy — Water outflow from reservoir (m?), gy, — sediment incoming in reservoir (m?),

ds(outy — sediment outgoing from reservoir (m?), ¢y gy — sediment retained in the reservoir
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Figure 3.1: A Location map of the study area, Dasu Hydropower Project on Indus River,
Pakistan [7]

Assuming similar hydro-metrological conditions, daily river inflow at dam site from
1969-2008 was used as input parameter in the model for the period 2027-2066. In the
inflow data, the moderate hydrological season was 1999 with peak daily discharge of
7.07x10® m?/day (Fig. 3.2). Just one year later, 2000 was the driest season with a
peak daily discharge of 5.06x10® m?/day. The year 2006 was the wettest season with
a peak daily discharge of 9.04x10® m?®/day. The difference between peak flows of the
wettest and driest season was 3.97x10® m?/day. River outflow from the reservoir was
calculated based on reservoir operation guidelines of Dasu Hydropower Project. In the
outflow hydrograph, 2057 was the moderate hydrological season (Fig. 3.3). In the outflow
hydrograph the wettest seasons were 2064, 2043, 2040, 2059, 2031, and 2038. The peak
outflow discharge in 2064 was 9.04x10® m3/day. The driest season in outflow hydrograph
was 2058 with a peak outflow discharge of 4.8x10® m?/day. The outflow of 4.8x10%
mtextsuperscript3/day is comparatively lower than the inflow at the same period, i.e.
5.06x10% m3/day. The difference in inflow and outflow hydrograph was due to filling of
the dam to its full supply level after finishing the free flow flushing operation in monsoon

at that period.
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Figure 3.2: ANN input, daily inflow hydrograph of moderate hydrological year (1999)

The reservoir capacity was calculated from the area-capacity and elevation curve of the
reservoir operation (Fig. 3.4). Target for subject ANN model was sediment retained in
the reservoir ponding area during 2027-2066, which was estimated by using HEC-RAS-1D
numerical model. In HEC-RAS model, daily inflow discharges and reservoir water levels
(RWL) were used as upper and lower boundary conditions, respectively. Acker-White
sediment transport formula was used for sediment simulations in this model. Acker-
White sediment transport formula showed better results for Dasu Hydropower Project, in
previous studies conducted by [1]. |91] evaluated total load sediment transport formulas
using ANN technique and it was found that ANN model is a reliable and uncomplicated
method to predict total sediment transport rate of total bed material load transport rate.
It was also found that the accuracy of Ackers and White (1973) sediment transport formula
showed some preference in the study results [91]. In constructed sediment retention graph
(Fig. 3.5), the year 2038 was among the wettest seasons along with longer duration of
high flows. In 2038, the monsoon started from the mid of April and ended in August. In
normal years, the rotation of monsoon starts in the June and ended in August. The effect
of longer duration high predicted more flushing of sediments from the dam (Fig. 3.5). The
year 2066 showed highest peak of outflow but its duration of high flow event was only 20
days in June. Therefore, in 2066 the flushing of sediments out of the dam body was an
average as of the other years. The flushing operation in the starting years of the project

was planned for the shorter time due to less accumulation of sediments in the dam.

The combination of both ANN and HEC-RAS models is shown in Fig. 3.6. The input
and output parameters of both models were correspond to the same period. The HEC-

RAS model output of volume of sediment retained in the reservoir was used as target in
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the ANN model. The aim of using HEC-RAS output as target in ANN model was to

observe the efficiency of ANN model to predict reservoir sedimentation.
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Figure 3.3: ANN input, planned daily outflow hydrograph of moderate hydrological year
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Figure 3.4: Area-elevation-storage curve of Dasu HPP |7]

3.2.2 ANN model development

The most commonly used artificial neural network in hydrological studies is feed forward

neural network with back propagation [92]. There is no fixed rule for the development

of an ANN model, even though a general framework can be followed based on previous

successful applications in engineering [88]. In the present study of Dasu HPP, three types

of multilayers perceptron (MLP) of ANN model architecture were developed to estimate
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reservoir sedimentation using 40 year’s data. Trial and error method was used to select an
appropriate ANN architecture. Input parameters such as river inflow, river outflow, and
change in storage capacity of the reservoir, for the model, were decided on the basis of
available data and possible factors which can affect sediment retention (Eq. 3.4). Number
of hidden layers and size of hidden layers were selected on trial and error basis. The
number and size of hidden layers affect the performance of ANN] significantly. Random,
Levenberg-Marquardt ‘trainlm’, and means squared error functions were used for data
division, training and performance of ANN algorithms. The ‘trainlm’ training function
was used as training function in the developed ANN architectures. Permutations of logsig,
tansig, radbas and purelin transfer functions in hidden and output layers were used to

obtain the best possible solution.
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Figure 3.5: ANN target, daily sediment retained in the reservoir ponding area (2027-2066)
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3.2.2.1 Training and validation of an ANN

In multilayer perceptron, artificial neural network, connections exist between different
nodes of different layers and there is no connection exists within the same layer. The
inputs are fed through the input layer and the output layer produced output after going
through different training, testing functions in the input, hidden and the output layers.
Between different layers there is a connection which is updated during the learning pro-
cess by bias and synaptic weights. At initially, networks use small random values for
training. In gradient decent algorithm, learning process stops when network attained
to a steepest decent approach. Once the training process is satisfactory completed, the
network was saved, the test and validation data set recalled and values predicted by the
model were compared with the targeted data. When a comparison is within the satis-
fied limit, the network than the network is considered to be a well-trained network. For
training purposes Levenberg-Marquardt algorithm was used as it has been widely used
in approximating a complicated non-linear function [93|. In the present study, the model
was used to test the statistical indicators of coefficient of regression (R), root mean-square
error (RMSE) and mean absolute error (MAE). The RMSE of the training period was the
deciding parameter for the selection of corresponding performance parameters and ANN
architecture (Fig. 3.7). Block diagram of 3-D array ANN architecture with three hidden
layers as an example with the input and the output parameters is as shown in Fig. 3.7.
Furthermore, ANN model sediment estimation error, per km? of the catchment area was

estimated by using error to catchment area relationship:

3.2.2.2 Model setup

Multilayer perceptron of artificial neural network architectures were developed by using
MATLAB tool. Three feedforward network architectures of ANN having one, two and
three hidden layers were tested for the current simulations. Input data was allocated to
the model according to default, i.e. in random basis. 70% of the data set (As ,qu(in)
and qu(our)) Was used for training, 15% for testing and the remaining 15% was used for
validation. Trial and error method was used for selection of appropriate ANN architecture
and number of neuron in the hidden layers. The one-hidden-layer ANN architecture was
tested 100 times with 1 to 20 neurons in the hidden layer, the two-hidden-layers ANN
architecture was tested 10 times with 1 to 10 neurons in the hidden layers, and the three-
hidden-layers ANN architecture was tested 5 times with 1 to 5 neurons in the hidden layers,

respectively. The output for each simulation was daily volume of sediment retained in
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the reservoir. After specifying the whole arrangement, the programme was simulated to
find out the best combinations of different performance statistics (R, RMSE & MAE).
Statistical performance of respective ANN architectures output and used functions were
stored after each simulation and best results were sorted out after finishing the whole
simulation process as an example of the four layers ANN algorithm is shown in Fig. 3.7.
To get visualization of the model performance, a comparison was made between the best

performed ANN architecture for predicting the sediment retained.

Error
Sediment estimation error, per km? of cathment area = 3.5
Catchment area
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Store level value of R,
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MAE for which RMSE

of test is minimum.

Figure 3.7: ANN algorithm for correlation, RMSE and MAE.
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3.3 Results and discussions

The results of the three tested architectural cases were categorised on the basis of number
of layers in each architecture. Case-I contains the one-hidden-layer ANN architecture
results, case-1I contains the two-hidden-layers ANN architecture results, and case-III con-

tains the three-hidden-layers ANN architecture results.

3.3.1 Case-1

The one-hidden-layer neural network architecture was tested with four permutations of
‘logsig’, ‘tansig’, ‘radbas’, and ‘purelin’ transfer functions in the hidden and the output
layers. RMSE in the testing period was the deciding factor of selecting the suitable ANN
architecture. For this case, the minimum RMSE was found by using ‘logsig’ and ‘purelin’

transfer functions in the hidden and the output layers, i.e. 1.86x10° m3.

The value of
RMSE 1.86x10° m® was comparatively lower than the value of RMSE by using ‘tansig’
and ‘radbas’ transfer functions in the hidden layers. The ‘tansig’ and ‘logsig’ transfer
functions showed maximum RMSE, i.e. 2.7x10° m®. Similarly ‘logsig’ transfer function
in both, hidden and output layers also showed higher RMSE, i.e. 2.3x10° m?®. Number of
neurons in the hidden layer of the best performed ANN architecture were 14. This ANN

provided correlations of 0.92 and 0.90 for the testing and training data set, respectively.

3.3.2 Case-11

The same procedure was repeated for the two hidden layers neural network and it was
tested with permutation of ‘logsig’, ‘tansig’, ‘radbas’ and ‘purelin’ transfer functions in
the hidden and the output layers. In this case using transfer functions of ‘tansig’, in
both hidden layers and ‘purelin’ in the output layer predicted efficient results for RMSE
of testing, i.e. 1.88x10° m?. In this ANN architecture combination, number of neurons
in two hidden layers were 8 and 10. The correlation coefficients for testing and training

periods were 0.92 and 0.91, respectively.

3.3.3 Case-1I1

The three hidden layers ANN architecture was simulated with 30 different combinations

of transfer functions of ‘logsig’, ‘tansig’, ‘radbas’ and ‘purelin’. The minimum RMSE of
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the testing period for case-III was obtained with ‘logsig’ transfer function in all three
hidden layers and ’purelin’ transfer function in the output layers (1.86x10° m?). The
numbers of neurons in the respective hidden layers were 5, 4, and 5. For the testing and

training period, the correlation coefficients were 0.92 and 0.91, respectively.

In efficiently performed ANN architectures, the most common factor among all the
results was the transfer functions (Tab. 3.1). The ‘purelin’ transfer function in output
layers predicted efficient results of RMSE of testing in the three layers neural architecture
ANN (4-14-1), four layers neural architecture ANN (4-8-10-1), and the five layer neural
network ANN (4-5-4-5-1): i.e. 1.86x10° m?, 1.88x10° m®, and 1.86x10° m*. The ANN
(4-14-1) and the ANN (4-5-4-5-1) architecture used ‘logsig’ transfer functions in all hidden
layers. Thus the RMSE of testing of these architectures is almost similar. The RMSE
of three layers neural network with ‘logsig’ transfer function in both hidden layers and
‘purelin’ transfer function in the output layer was 1.93x10°> m3. That is higher than
RMSE with ‘tansig’ transfer function in the both hidden layers and ‘purelin’ transfer
function in the output layer, i.e. 1.88x10° m?®. Therefore, in four layers neural network,
the best transfer function in hidden layer was ‘tansig’ while the best transfer function in
three and five layers neural network was ‘logsig’. Among the performance parameters of
RMSE for testing and validation periods, ANN (4-14-1) performed better. Again, in MAE
of training, ANN (4-14-1) performed better. ANN (4-5-4-5-1) performed better in MAE
of testing, i.e. 8.17x10* m?. Although, RMSE of training as well as MAE of testing and
validation were not the deciding parameters of selecting the appropriate neural network
structure, these parameters reveal the performance of selected architectures. Among the
best three selected architectures, ANN (4-14-1) performed better and ANN (4-8-10-1) was
at the last in performance statistics. It may be possible that neural network architectures
with one hidden layer and 1 to 20 neurons in the hidden layer were tested and recorded
100 times to get best results. The neural network architectures with two hidden layers
and 1 to 10 neurons in the hidden layers were tested and recorded 10 times to get the best
results. The neural network architectures with three hidden layers and 1 to 5 neurons in
the hidden layers were tested and recorded only 5 times to get the best results. Thus,
the two and the three hidden layers neural network predicted best results by utilizing the
maximum allowed number of neurons, i.e. 8, 10 in the two hidden layers neural network
and 5, 4, 5 in the three hidden layers neural network. Therefore, it could be possible that
by increasing the number of neurons in the hidden layers of three and four layers neural
network may improve the efficiency of these ANN architectures. However, increasing the
number of neurons or size of neural networks utilize more power, time, and memory. In

current simulations of three and four hidden layers neural network, the elapsed time was
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7,322 and 17,238 seconds. Thus, selection of appropriate neural network architectures

always require a compromise between cost and efficiency.

Table 3.1: Summary of performance statistics of efficient ANN architectures

Transfer function Performance parameters
ANN architecture R R RMSE RMSE MAE MAE
HL'-1 HL-2 HL-3 Output layer test val? test val test val
(10% m3) (10° m?) (10* m®) (10* m®)
ANN(4-14-1) logsig - - purelin 0.926 0.905 1.860 2.146 8.224 9.259
ANN(4-8-10-1) tansig tansig - purelin 0.924 0.909 1.884 2.159 8.299 9.347
ANN(4-5-4-5-1) logsig  logsig  logsig purelin 0.923  0.908 1.863 2.229 8.177 10.061

The study on reservoir sedimentation estimation by using the artificial neural network
was conducted [88] for the Gobindsagar Reservoir on the Satluj River in India. The Satluj
River is a tributary of the Indus River Basin System [94]. [88] employed annual rainfall,
inflow, and reservoir capacity of 1971 to 2003, as an input parameters in ANN (3-5-1)
model and determining the volume of sediment retained in the reservoir was the target
and the output of the model. The study results showed that the RMSE and MAE of the
testing periods of ANN (3-5-1) for the Gobindsagar Dam, with a catchment area of 56,876
km?, were 3.51x10% m? and 3.14x10% m3, respectively. Per square kilometre catchment
area RMSE and MAE of testing periods, for the Gobindsagar reservoir were about 61.76
m? and 55.26 m3. In the present study of Dasu HPP, RMSE and MAE of the testing
periods of ANN (4-14-1) were 1.86x10° m3 and 8.22x10* m3. Similarly, catchment area
sedimentation estimation error per km? during the testing period, for RMSE and MAE
were 1.17 m?/km? and 0.51 m?/km?, respectively (Tab. 3.2).

Table 3.2: Comparison of ANN performance statistics of the Dasu HPP with the Gob-
indsagar Dam

Dam RMSE test MAE test CA® RMSE test/CA MAE test/CA
(million m®)  (million m3)  (km?) (m?/km?) (m?/km?)

Dasu 0.186 0.082 158,800 1.17 0.51

Gobindsagar 3.51 3.14 56,876 61.76 55.26

The model predictions of ANN (4-14-1) for Dasu Hydropower Project showed statis-
tical preferences over ANN (3-5-1) model predictions of existing Gobindsagar Dam. It
may possible due to differences in input parameters and time duration of input data sets.
In Gobindsagar Dam [88] annual rainfall, annual inflow and annual capacity was used as

input parameter while in the present study daily data of inflow, outflow and capacity was

'hidden layer
2validation
3catchment area



CHAPTER 3. ESTIMATION OF SEDIMENT YIELD FOR DASU HYDROPOWER
42 PROJECT USING ARTIFICIAL NEURAL NETWORKS
used as input parameter. The length of data sets in Gobindsagar Dam and Dasu HPP
were 32 years and 40 years, respectively. The catchment area of Dasu is almost 2.8 times
more than Gobindsagar Dam’s catchment area. Therefore, it seems that the interval of

data set and catchment area effects the efficiency of ANN.

A comparison of optimal performed ANN architecture predictions with target sediment
volume retained in the reservoir ponding area showed that the model prediction in all
three best ANN architectures, i.e. ANN (4-14-1), ANN (4-8-10-1) and ANN (4-5-4-5-
1), captured well the sediment retention and flushing in the dam ponding. Comparison
of targeted and best performed ANN (4-14-1) network model estimation for the testing
period is shown in Fig. 3.8. At the beginning, ANN model deviated from the target
sediment retention. The possible reason behind deviated trend may be the training of
ANN. The ANN model was trained with input data on randomly basis. Furthermore,
there was no flushing operation planned in the initial five years of the project, the only
sediment flushing was due to high flows in the river during monsoon period. After five
years the flushing operation was repeated every year in the dam. After training well, the
ANN predicted well the sediment retention and flushing operations in the dam as showed
in both testing and all periods of Fig. 3.8a and Fig. 3.8b. To visualize the sediment
retention trend of ANN (4-14-1) model predictions in wettest and moderate hydrological
seasons, a comparison of results is made in Fig. 3.9. It was noticed that ANN (4-14-1)
captured well the overall trend of sediment retention in the reservoir and flushing out
of the reservoir (Fig. 3.9a). The year 2057 was the moderate hydrological year and in
sectional view of Fig. 3.9b, the model predicted well both processes of sediment flushing
and sediment retention during the filling of the reservoir. Similarly, the year 2064 was the
wettest season with highest peak of discharge of 20 days, that high event was also well
captured by the model as shown in Fig. 3.9c. The year 2038 was also wettest season with
longer peaks of high flows due to pre start of monsoon and that trend was also captured
well in the model. During these year more flushing was predicted both in target and ANN
(4-14-1) as shown in Fig. 3.9d.

3.4 Conclusions

The developed artificial neural network could well capture the pattern of the volumes
of sediment deposited in the reservoir and flushed out of the reservoir on a daily basis
for Dasu Hydropower Project (DHP). The best MPL of ANN (4-14-1) was with ‘logsig’

transfer function in the hidden layer and ‘purelin’ transfer function in the output layer.
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This ANN also captured well the events of sedimentation in wettest and driest hydrological
seasons of the Project. It was observed that with longer length of data set of shorter
intervals could improve the efficiency of the ANN model. Furthermore, the catchment
area of the watershed also influenced the performance parameters of the model outcome.
It was also observed that increasing the size of neural network for long duration data
set of shorter intervals did not affect the statistical performance of the model. It was
concluded that the artificial neural network is a good tool for the estimation of sediment
deposition within the reservoir ponding area and estimation of sediment flushing out of

the reservoir for the Dasu Hydropower Project.
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Chapter 4

Development of a Wavelet-ANN Model
for Estimating Suspended Sediment
Load in the Upper Indus River

This chapter is submitted for publishing as:

Ateeq-Ur-Rehman, S.; Bui, M.D.; Rutschmann, P. Development of a wavelet-ANN model
for estimating suspended sediment load in the upper Indus River. Submitted to Interna-

tional Journal of River Basin Management 2017

Abstract: The precise estimate of sediment load plays a vital role in the sediment
management of existing and proposed reservoirs and run-of-the-river hydropower schemes.
In this study, missing suspended sediment load (SSL) at Besham Qila was estimated
using three different modelling approaches. Comparison of the results estimated by these
models and observations showed that a standard artificial neural network (ANN) and
discrete wavelet transform coupled with neural network (WA-ANN) estimated SSL more
accurately than the conventional sediment rating curves (SRC). The results obtained
using WA-ANN for daily SSLs were NSE=0.85 compared to ANN NSE=0.81 and SRC
NSE=0.48, respectively. In addition, the mean deviations during the whole study period
(38 years) were 13%, 18% and 36% using WA-ANN, ANN and SRC models, respectively.
Moreover, the WA-ANN estimate for the mean annual mass deposited in the Tarbela
dam deviates only 12% from the hydrographic survey, compare to a 43% deviation using
SRC. Exceptional events were more accurately estimated using the WA-ANN model.
The results therefore indicate that coupled wavelet-neural network models can be applied

for more precise estimation of suspended sediment load for rivers subjected to strong
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hysteresis phenomena, disproportional spatio-temporal trends between discharges and
SSLs, as well as parallel processes of landslide degradation and aggradation. Our study
shows that the method can be used for setting correct sediment load boundary conditions
of sedimentation models for 14,000 MW planned hydraulic structures and detection of

sediment load trends in the upper Indus River and similar environments.

4.1 Introduction

The deposition of sediment load in reservoirs reduces their life span. Due to sedimentation,
in Asia alone, 80% of the useful storage capacity for hydropower production will be lost
by 2035, and 70% of the storage volumes used for irrigation purposes will be lost by
2025 [53]. Even construction of new storage reservoirs will only replace already lost
storage capacity. The most common conventional method for sediment load estimation is
the sediment rating curve (SRC), which is a relatively simple relationship between flow
discharge and sediment concentration. However, in a real time scenario, multiple variable
act on the given circumstances of the sampled data, which is why SRC mostly results
over or under estimate the sediment load [8]. A number of reservoirs have silted up earlier
than expected due to underestimation or are inefficient due to overestimation of sediment
load. Examples include the Warsak and Mangla dams in Pakistan |9, 10]. The cause
of this problem might be the significant variance in SSL estimates on which the design
and operation of these hydraulic structures were based. For example, the variance in
SSL estimates at Besham Qila gauge station of the upper Indus River ranges from 200
Mt yr~* to 675 Mt yr=' (Tab. 4.1). Such variance can lead to a circular error in the
design and operation of planned and existing infrastructures. The circular error starts
from poor sediment load estimation and subsequently affects the boundary conditions of
the modelling process, which results in the poor quality operation rules that ultimately
contribute to the structure’s life cycle. Thus, the accuracy of an estimate plays a decisive
role in setting the correct boundary conditions for sediment studies and can improve the
quality of hydraulic designs. However, minor consideration has been paid to quantifying
the uncertainty associated with sediment load estimates in the model forecasts. Therefore,
it is necessary to improve the sediment load estimation techniques in order to manage the

rapid decline of the reservoir’s storage capabilities [95].

SSL estimation has become vastly more challenging, in particular under the influence
of climate change, where disproportional spatio-temporal trends between SSLs and dis-

charges exist primarily due to intra-annual shifts in flows [20, 37, 4]. This highlights the
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need for sediment models which operate in real time and are able to provide a better
estimation of sediment load for the planning of new reservoirs or better management of
existing ones. This specifically applies to the upper Indus River, where the presence of
complex sediment transport processes related to the hysteresis phenomena and marked
hydrological variations, such as: (a) the fluvial erosion and transport processes which
interact with other sediment producing processes, (b) temporary sediment storage in the
main river channel [22], (¢) aggradation and degradation phases of landslides [23], (d) on
average 5-10 high flow waves of an average 10-12 days duration during the monsoon pe-
riod, and (e) different transit times of discharge and sediment and their different lag times
from several sources to the gauge stations, all pose a challenge in precise SSL estimation

process.

Table 4.1: Estimates published on the Indus River sediment yield

Suspended sediment yield References

(Mt yr—)
480 1]
400 12]
475 [13]
446 [96]
200 [14]
675 [16]
300 117]
200 97]
197 [19]
200 6]

In addition, hydro-morphological processes are highly nonlinear in nature and, in
many cases, modelling these variables with conceptual models may be limited by a poor
understanding of the complex interactions involved. In such cases, artificial neural net-
works (ANNs) are often viewed as an appealing alternative, as they have the ability to
extract a nonlinear relationship from data without requiring an in depth knowledge of the
physics occurring within the system [25]. Application of wavelet transformation (WT)
has been found to be effective in dealing with the issue of non-stationary data. WT is
a mathematical tool that may improve the performance of ANN models by simultane-
ously considering both the spectral and the temporal information contained in the input
data. WT decomposes the main time series data into its sub-components. ANN models
developed using input data processed by the W'T instead of using data in its raw form
are known as wavelet neural network (WA-ANN) models. These models afford improved

performance by using multi-scale input data and capturing useful information concealed
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in the main time series data in its raw form [98|.

ANN and WA-ANNSs have been performing well over the last decades of estimating and
forecasting of sediment loads |26, 27]. WA-ANNSs can decompose the data time series up to
several levels in time, space and frequency domain and reveal the information from a give
data scenario [28]. This decomposition of data is required where the sediment transport
process is subjected to temporary sediment storage, strong hysteresis phenomena and
parallel aggradation and degradation of landslides. Data decomposition beyond level one
can lead to low efficiency [29], however, the concept of appropriate decomposition levels
of data for rivers with temporary substantial sediment load storage is still not understood
for sediment load estimation. ANNs sediment load estimation abilities with semimonthly
sediment loads, using simple ANN structures have only been tested for that rivers have
small catchments [30]. Moreover, WA-ANNs have not been tested for filling the gaps
between intermittent suspended sediment concentration (SSC) samples; in the state-of-
the-art techniques |26, 31|, they have only been applied on continuous (daily) data time

series.

In granting the importance to hydraulic structures as non-renewable resources, it is
important to quantitatively and qualitatively evaluate the performance (and uncertainties
originating using) of these (SRC, ANN and WA-ANN) methods for the rivers with complex
sediment transport processes. To our knowledge, this is the first study to apply an
ANN and a WA-ANN models using different architectures, incorporating four different
training methods, transfer functions and wavelets (up to 8 level of decompositions) for
suspended sediment load time series in the upper Indus River. In order to evaluate model
performance and to analyse the capabilities of the models in terms of daily, yearly and
cumulative sediment load predictions, we compare our results using these models with
those obtained by measurements. The study also explores the capabilities of these models
to reconstruct the missing daily SSL which plays a vital role in setting correct boundary
conditions for reservoir sedimentation studies and detection of sediment load trends for

rivers which have intermittent SSC samples.

4.2 Study area and data

The Indus River is one of the largest rivers in south Asia with a total length of 2,880 km

2 starting in China, running through India and then

and a drainage area of 912,000 km
across the whole of Pakistan. There are 17 operational climatological and hydrological

gauge stations along the Indus River before the Besham Qila gauge station. Besham Qila
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is located approximately 65 km upstream of the Tarbela dam (Fig. 4.1), which is one of
the largest earth filled dams in the world. Run-off from the upper Indus Basin above
Besham Qila forms the greater part of the flow entering the Tarbela dam. The specific
sediment yield with drainage area along the Indus River at Besham Qila is approximately
1,197 Mt km?yr—!. This high sediment yield is due to the large number of small and
relatively steep catchments discharging straight into the Indus River. 80 to 85% of the
annual sediment load is transported by the Indus River in July and August (monsoon
months). In the monsoon period, the flow discharge can vary significantly over a few days
with an immediate and large increase in the sediment concentration [67]. The contribution
of rainfall, glacier and snow melt to the total flow at Tarbela dam is 33% in July and 55%
in August. This makes the Indus River the most melt water dependent river in the world
|21, 46].
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Figure 4.1: Location map of study area and gauge stations in the study area, developed
by [6]

The data used in this study include daily flow discharges and distinct sediment samples
over 40 years (1969-2008) at Besham Qila. As the suspended sediment concentration
(SSC) data from 1978 and 1979 (along-with some samples in other years e.g. 1981) were

not calendrically documented, these two years were excluded from model construction.
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However, for convenient representation, the data calendar is defined as 1969-2008. The
sediment sampling was carried out twice a week in summer (high flow season) and once
a week in winter (low flow season) as per availability of resources (labour) and sampling
feasibility (weather) following the U.S. Geological Survey (USGS) procedures |99, 100,
101]. Additional SSC sampling was also conducted during high flood and extreme events.
Moreover, the sampling was not conducted on a fixed day in a week, which also covers a
broad range of variations in SSC. The flow discharge at gauge stations on the Indus River
was measured using an AA current meter following the USGS method. The total number
of suspended sediment samples taken at Besham Qila from 1969 to 2008 was 3,213. The
sampling frequency is an average 80 samples per year, which is high (22%) and covers a
broad range of events. The outliers in sediment data samples were excluded by examining
the general behaviour of the river and river catchment. The catchment of the Indus River
at Besham Qila is around 164,867 km? [102]. Given this immense catchment area, the
changes within the discharge and sediment concentration are not as rapid as changes in
small river catchments. This makes excluding the outliers easier owing to the relatively
small variation in the behaviour of the river. Another reason for removing the outliers
through manual examination was the distinct nature of SSC samples, which hindered the
employment of statistical methods. The total size of data samples was reduced by about

4.2% after excluding outliers.

The hydrological and sedimentological data showed great variance in distribution of
sediment load and discharge over the time period concerned (Tab. 4.2). The standard
deviation (SD) of sediment load and discharge indicated a wide spread of hydrological
events for the Indus River. The highest exceptional flow years were 1973, 1988, and 1994
with a total volume of 9.9x10'° m3, 9.5x10'° m?® and 9.4x10'% m3, respectively. The
highest peak flow year was 1984 with a volume of 8.9x10*° m?. By contrast, 1982 was an
extreme low flow year with a volume of 6.1x10' m?. The mean annual volume of flow
at Besham Qila in last 40 years was 7.6x10'° m3. Based on these flow patterns, low flow
and high flow seasons can be traced. For example, 1974-1977 was a low flow season (dry
season) with an average annual volume of 7.0x10 m®. On the other hand, 1988-1992
was a high flow season (wet season) with an average annual flow volume of 8.5x10'% m?.
There was also a lag time in discharge and sediment concentration peaks, which may
have been the result of the immense catchment area before Besham Qila gauge station
(i.e. 164,867 km?). The 10,000 years and 100 years return period floods at Dasu damsite
were 21,218 m3 /s and 15,078 m3 /s, respectively [6]. Dasu damsite is located about 95 km
upstream of Besham Qila gauge station (Fig. 4.1).
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Table 4.2: Hydrological and sedimentological data characteristics at Besham Qila gauge
station

Parameter Discharge Sediment concentration
(m?/s) (ppm)

Duration 1969-08 (daily) 1969-08 (samples)

Max discharge 13,910 3,770 (at Qmax)

Min discharge 325 132 (at Quin)

Max sediment 12,401 8,660

Min sediment 456 1

Mean sediment - 1,071

SD of sediment - 1,456

Mean discharge 3,000 -

SD of discharge 2,923 -

Q-10,000 at Dasu damsite 21,218 -

Q.100 at Dasu damsite 15,078 -

The average grain size distribution of suspended load in the Indus is 45.7% sand, 39.9%
silt and 14.4% clay [57]. More than 90% of the annual sediment load reaches Besham Qila
in the summer months from May to September. This is mainly due to glacial melting in
summer and erosion of rocks and steep slopes in the basin area [103]. More details on

data collection, data quality and period of records for the Indus River can be found in
[19].

4.3 Methodology
4.3.1 Sediment rating curves (SRC)

SRC empirically relates the water discharge with sediment discharge for a given stream
[104, 74]. The SRC method is simple and easily applicable. However, its accuracy is
limited. In some cases, SRC provides relatively poor load estimates [105, 106, 30]. De-
spite the uncertainty of obtaining a useful water-discharge sediment relation, SRC may
nevertheless provide a satisfactory relation in the form of a linear or non-linear correlation

coefficient (Eq. 4.1)
Qs = aQﬁ 4.1

Where Qg is the sediment discharge, @ is the river/stream flow discharge, o and 3 are
the coefficients. For more accurate SRC, the equation can be based on low and high flows.

Additionally the fraction rate of corresponding discharges to inflow discharge are derived
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from the sediment measurement data [107, 6]. Usually, rating curves are developed on

the premise that the relationship between sediment concentration and discharge is stable.
Although estimates are highly variable, SRC is still widely used [19, 108, 15, 6, 33, 1, 2|.

Based on the distinct SSC measurements from 1969-2008 |6] developed two sediment
rating curves using the SSL-discharge relationship. The first curve (Eq. 4.2) is based
on low and high flow seasons in the winter and summer months, respectively, while the
second (Eq. 4.3) is based on the relationship of overall flow with SSL.

0 14774 x 1078 x Q¥%32,  if Q > 17,000 f3/s. e

1.4865 x 1079 x Q6% otherwise.
Qs = 6.835 x 107 x Q*%® | (single equation) 4.3
Where @, is the sediment discharge in short ton/day, Q is the flow discharge in ft3/s.

4.3.2 Artificial neural networks (ANN)

ANN is a computational model inspired by biological neural systems and it can be defined
as a set of simple processing units (called neurons) working as a parallel distributed
processor [109]. These neurons are responsible for acquiring and storing experiential
knowledge and making it available for use. Different types of ANNs that are able to
perform various tasks. Among others, Multi-Layer-Perceptron (MLP) using a training
algorithm of the feed-forward of the input information and the backpropagation of error
is one of the most common ANNs applied to solving various engineering problems. Such an
MLP network consists of an input layer, an output layer and one or more hidden layers
between its input and output layer. Each layer consists of certain number of neurons.
Every neuron in a layer is connected to all neurons in the adjacent layers using synaptic
or connection weights but the information flows only in one direction, i.e. from the input
side to the output side. Further, each neuron applies an activation (or a transfer) function
to its net input (sum of weighted input signals) to determine its output. The behaviour
of the ANN depends on both the weights and the activation function that is specified for
the neuron. More importantly, each layer has its own transfer function. Some examples
of common activation functions are the step function, sign function, sigmoid function
and linear function. Applying a backpropagation algorithm, the network learns a pre-
defined set of input-output training pairs by using a two phase propagate-adapt cycle.
The applied input pattern to the first layer propagates through each upper layer until an
output pattern is generated. An error indicating the difference between the predicted and

observed outputs is computed. This error is back-propagated through the network to each
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neuron, and the connection weights are correspondingly adjusted. This training process
is performed by minimizing the error function representing the square of the errors. A
validation process can be used during training in order to prevent over fitting. Once the
network has been trained to simulate the best response to input data, the configuration
of the network is fixed and a test process is conducted to evaluate the performance of the

ANN as a predictive tool.

A neural network is characterized by: (1) its pattern of connections between the
neurons (called its architecture), (2) its activation or transfer function, and (3) the training
method for determining the weights on the connections. It is worth mentioning here
that the performance of an ANN model is significantly related to the number of hidden
layer nodes. Less neurons in the hidden layer may affect the learning process in terms
of a network under fitting problem while more neurons in the hidden layer restrict the
efficiency in terms of computational time. The increase of neurons may also cause a
network over fit problem. [110] suggested that the neurons for optimal generalization
should be in a range from 2v/N; + Np to the value 2N; + 1, where N; and Np represents
the number of input and output nodes, respectively. More details about ANN approaches
with these methods can be found in [109].

4.3.3 Wayvelet transform (WT)

Wavelet transform (WT) is a mathematical tool that converts time domain signals into
time-frequency domain signals [111]. As there are many good books and articles introduc-
ing the wavelet transform (e.g. [112, 113, 111]), only the main concepts of the transform

are presented in this paper.

In a time series f(t), the two basic parameters used for time-frequency representations
are a frequency and b position in the signal. The continuous wavelet transform (CWT)

of this time series is defined as follows:

17 [t—b
Wa,b:%/f(t)\lf ( - )dt 44

Where U(t) is the transforming function also called the mother wavelet and “ *”
denotes the complex conjugate. CW'T searches for correlations between the signal and
wavelet function. This calculation is done at different scales of a, and locally around the

time of b. The result is a wavelet coefficient W, ; contour map. However, computing the
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wavelet coefficients at every possible scale (resolution level) necessitates a large amount

of data and computation time.

If one chooses the scales and the positions based on the powers of two (dyadic scales
and positions), the analysis will be much more efficient and more accurate. This transform
is refereed to as the discrete wavelet transform (DWT). For a discrete time series f;, the

discrete wavelet transform becomes:

mn_Q_WZfz Z_1> 45

Where i is integer time steps (i = 0,1,2,..., N —1 and N = 2M™); m and n are integers
that control, respectively, the scale and time; W, , is wavelet coefficient for the scale
factor a = 2 and the time factor b = 2™n. The original signal can be reconstructed

using the inverse discrete wavelet transform as follows:
M 2M-m_]

AMZ+Z Z Wen2 W (27 — n) 4.6

or in a simple form as:

M
fi=Am:+ Z Dy, ; 4.7
m=1

Where A);; is referred to as an approximation sub-signal at level M, and D,,; are
detailed sub-signals at levels m = 1,2, ..., M. The approximation coefficient Ay, repre-
sents the high scale low frequency component of the signal, while the detailed coefficients
D, ; represent the low scale high frequency component of the signal. The low frequency
component of the signal is important because it contains the most significant and most
detailed information. Similarly, the high frequency component is important since it con-
tains the information on the edges and abrupt changes in the signal. The detailed signals
can capture trivial attributes of interpretational value in the data while the approxima-
tion shows the background information on the data [114]. There is a variety of mother
wavelets, such as the Haar wavelet, Daubechies wavelet, Coiflet wavelet and Biorthog-
onal wavelet. The selection of an appropriate mother wavelet depends on the type of
application and data characteristics. Normally, Daubechies performs better in sediment
transport processes due to its ability to detect time localization information. Time lo-
calization information is useful in handling the seasonality and hysteresis phenomena in
flow discharge and sediment load processes. The Coiflet wavelet is more symmetrical than
Daubechies. The Biorthogonal wavelet has the property of linear phase, which is needed

for signal reconstruction [29].
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4.3.4 Wavelet neural network (WA-ANN)

Before applying an ANN, the input data time series is decomposed into detailed and ap-
proximated coefficients up to different (desired) levels using wavelet transform functions.
The maximum possible number of levels depends on the temporal length of the data. The
values corresponding in time to the output are extracted from the decomposed data series
(f1). The extracted time series data is used as input for the ANN. The ANN architecture
uses data time series decomposed by the WT is designated by WA-ANN (Fig. 4.2). The
number of input nodes in the WA-ANN model depends on the level of decomposition,
based on which appropriate neurons in the hidden layers are selected. The selection of
hidden layer and hidden neurons in the model are important for maximizing the efficiency

of the model.

Feed forward
Input layer Hidden layer

™ Wavelet transformation —

e
o

e

Output layer

=]
ndur NN

T
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Figure 4.2: Schematic diagram of WA-ANN model

4.3.5 Performance measures for model evaluation

The performance of models is commonly assessed by computing a number of measures of
performance or goodness-of-fit statistics. These measures can be characterised as absolute

(i.e. expressed in the units of the output variable) or relative (i.e. dimensionless).

In the present study, two absolute metrics were chosen: the root mean square error
(RMSE) and the mean absolute error (MAE), which provide an idea of the absolute

differences between observed and modelled values in their original unit measures, and are
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non-negative metrics:

P
RMSE = Z (Qobs — Qsim 2 4.8
MAE — Z |Qobs szm 4.9

szm

Where Q% is observed sediment load, is predicted sediment load and P is the

si
number of observations/predictions. These two non-negative metrics have no upper limit
where 0 indicates a perfect fit between the observed and predicted values. Unlike MAE,
the RMSE is weighted towards higher or lower magnitude events. As the differences
between the observed and predicted values are squared, the RMSE measure penalises
prediction errors in high flow events compared to low flows, as high flows are generally
where the greatest error in model prediction occurs. The RMSE tends to be slightly larger
than the MAE, where the magnitude of this difference can also be used to indicate the

extent of outliers in the data.

Further, two indices of relative differences were also chosen: the coefficient of determi-
nation/Pearson correlation coefficient (R?) and the Nash-Sutcliffe coefficient of efficiency
(NSE), which compare the errors from the selected model with respect to those from a
reference model. Both use different benchmark models for comparison, i.e. the mean and

persistence.
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Where Q% and Q%™ are the mean values of observed and simulated sediment loads.
The values of these relative measures are upper bounded to one. A value of 1 represents a
perfect match between predicted and observed sediment load. The NSE generally ranges

from 0 to 1 although negative values are possible. NSE = 0 indicates that the model is no
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better than simply forecasting the mean value. The closer the NSE value to 1, the better
the model’s performance. The simulated results are normally referred as good when the
NSE is higher than 0.75 and satisfactory when it lies between 0.36 to 0.75 [115].

4.4 Model development

It is known that major factors such as data processing, determination of adequate model
inputs, choice of suitable network architecture, careful selection of some internal param-
eters that control the optimization method, stopping criteria, and model validation may
affect the performance of ANN models. Hence, these factors were considered during de-
sign of the models used in this paper. The ANN and WA-ANN models were developed
using the MATLAB tool.

4.4.1 Design of ANN model

Data processing is usually required before it is applied to the neural network models when
the neurons have a transfer function with bounded range. The original data are processed
through two steps: data normalization and data set partition. In the first step, data are
rescaled to a certain interval. The reasons for scaling of the data can be described to
ensure that each variable is treated equally in a model and to improve the interpretability
of network weights. Following this, the normalised data are usually divided into a training
sub-set, a validation sub-set and a testing sub-set. The representativeness of the data
sets used for training should be considered, because networks trained with a data set that
represents the characteristics of the hydrologic patterns will achieve higher generalizability.

In this study, the following data sub-sets are applied (Tab. 4.3):

1. 60, 70 and 80% of the training data sub-set is randomly selected from the entire
available data for the network. The remaining 40, 30, and 20% of the data is used

for testing and validation.

2. Data from the earlier periods are used for training, and data from later periods for

testing and validation.

Based on preliminary results, it was found that the ANN model could perform well
using (70%, 15%, and 15%) data on a random basis and (1969-1995, 1996-2002, and 2003-

2008) data on a systematic basis for the training, testing and validation, respectively. It
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also shows that the selected training data length covers all hydrological variations for the
study period (1969-2008) at Besham Qila and it is sufficient for training the ANN model.
In the following sections, we present only the calculated results based on the randomly

selected sub-set, referred to above.

Table 4.3: Data used for model design

Data sub-sets Training Testing Validation
60% 20% 20%
Randomly selected from the whole data set 70% 15% 15%
80% 10% 10%

1969-1995 1996-2002  2003-2008

Based on the time series data 1969-1990 1991-2000  2001-2008

1969-2000 2001-2004  2005-2008

Using flow discharge, precipitation, temperature and pan evaporation as input param-
eter, we found that the flow discharge is one of the most important factors influencing
suspended sediment concentration at Besham Qila. It is most likely that at Besham Qila
flow discharge alone implicitly represents these hydrometeorological parameters of the
upper Indus basin in the modelling process. |8 suggest that in sediment load estimation
for the Indus River, a discharge-SSC relationship performs better than a discharge-SSL
relationship. If the model output S presents sediment concentration at time ¢, whose
unit is a day, and water discharge at the same time is (), the five following input com-
binations are evaluated using ANN to identify the best relation between sediment and

water discharge:

(a) Q)
(b) Qquy, Qu—1)
(c) Q) Qr—1), Qri—2)
(d) Q1) Qe—2) Qi—3)
(e) Qs Qu-1), Qu—2), Q-3
The last four input-combinations examine the time lag between the water discharge

and sediment load, which is based on the observed data with a lag time of up to three

days at Besham Qila. This lag time also occurred at other upper gauge stations.
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Many studies have shown that an MLP with one hidden layer is capable of approx-
imating any finite nonlinear function with very high accuracy. The MLP used in the
present study consists of one hidden layer. Following Fletcher and Goss’ (1993), the num-
ber of neurons in the hidden layer varies from 3 to 9. The primary purpose of activation
functions for the hidden units, in contrast to linear transfer functions, is to introduce a
non-linearity into the neural network. In this paper, we test the model architecture with
logsig, tansig, purelin and radbas transfer functions. The networks are trained using four
different algorithms, namely Levenberg-Marquardt (¢rainlm), scaled conjugate gradient
backpropagation (trainscg), gradient decent backpropagation (traingd) and Bayesian

regularization backpropagation (trainbr).

Since there is no special rule for ANN model development, trial and error method is
usually employed to choose an appropriate ANN model. In developing the most accurate
training model architecture, the individual cases are first ranked according to the magni-
tude of two absolute metrics (RMSE, MAE) and two indices of relative differences (R?,
NSE). The best individual model has the minimum (RMSE, MAE) and the maximum
(R%, NSE). Tab. 4.4 shows the best MLP architectures with their performance indices. It
can be seen from the table that the network trained by Levenberg-Marquardt’s approach
performs best with the input combination (Q), Qr—1), Q—-2)) which comprises seven
hidden neurons using a non-linear tansig transfer function and linear activation function
for the output. In Tab. 4.4, the best statistical values for this network are highlighted in
bold.

Table 4.4: Performance parameters of the best ANN architectures using different learning
methods

Training Model Neurons Transfer function R2 RMSE NSE
: (ppm)
method inputs
First Output Train Test Train Test Train Test

a 3 radbas purelin 0.767 0.759 680.8 709.5 0.768 0.759
b 5 tansig purelin 0.770 0.759 668.2 715.4 0.77 0.759

LM c 7 tansig purelin 0.773 0.794 676.6 615.1 0.773 0.793
d 5 tansig purelin 0.767 0.773 675.9 665.4 0.767  0.773
e 6 tansig purelin 0.774 0.740 667.6 729.1 0.775 0.739
a 3 tansig tansig 0.694 0.704 1000.9 960.8 0.516 0.532
b 4 tansig tansig 0.607 0.635 894.8 850.4 0.618 0.608

SCG c 5 tansig tansig 0.721 0.740 786 725.9 0.708 0.727
d 6 logsig purelin 0.721 0.718 832.3 840.3 0.657  0.652
e 6 logsig purelin 0.724 0.728 855.1 914.1 0.638 0.628
a 3 logsig tansig 0.764 0.741 692.9 754 0.763 0.739
b 4 tansig purelin 0.767 0.766 684 713.3 0.767  0.764

GDS c 7 tansig purelin 0.769 0.796 681 613 0.77 0.794
d 6 tansig tansig 0.766 0.720 690.9 712.4 0.765 0.706
e 7 logsig tansig 0.769  0.738  673.4 6723  0.769  0.728
a 3 tansig purelin 0.764 0.730 685.7 795.3 0.764 0.729
b 5 tansig tansig 0.770 0.752 676.5 756.1 0.772 0.749

BR c 6 logsig tansig 0.778 0.764 676.9 683.3 0.778 0.761
d 7 tansig purelin 0.771 0.733 676.8 782.8 0.772 0.73
e 9 tansig tansig 0.785 0.734 661.8 742.7 0.785 0.733
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4.4.2 Design of WA-ANN model

The proposed WA-NN models consist of a three layer feed forward perceptron structure
so that the first layer is the wavelet neurons unit with the inputs of time series sub-
signals obtained via a wavelet transform. This means the flow discharge signals are firstly
decomposed into sub-signals with different scales, i.e. one large-scale sub-signal and N
small-scale sub-signals (depending on the decomposition level) in order to obtain temporal
characteristics of the input time series. The number of neurons in the input layer is then
determined with N + 1. This study deals with some irregular mother wavelets such
as dbl (Daubechies wavelet of order 1), bio3.5 (biorthogonal wavelet of order 3.5) and
coif1 (coiflet wavelet of order 1). These wavelets are used to decompose the five input
combinations up to eight levels (2-4-8-16-32-64-128-256 days). The eight levels are selected
to encounter the effects of sediment deposition post monsoon in the channel of the Indus
River. The excess amount of sediment transported during the rising water discharge is
eroded from the material deposited in the river channel during a preceding flood situation
[22]. These types of effects in SSL not only depend on the water availability and river
transport capacity but also load availability, which is complexly related to the seasons of
occurrence [26]. This means that the sediment transport is not only dependent upon the
momentary discharge but also its history.

Fig. 4.3 shows the variation of the coefficients R? and NSE by applying different input
combinations decomposed into different levels with the three mother wavelets mentioned
above. It can be seen that the overall performance of dbl wavelet is the best compared
to 0103.5 and coifl wavelets. Tab. 4.5 summarizes the performance parameters of the
best WA-ANN architecture using the bdl wavelet mother function. It can also be seen
from this table that the WA-ANN performed best with the input combinations (c): (Q),
Q—1), Qt—2)) decomposed into 7 levels (128 days) using 24 neurons with a tansig trans-
fer function for the hidden layer and a linear activation function for the output layer.
The decomposition of data from approximately half year (7 levels) to extract important
information from the past indicates a complex nonlinear behaviour of sediment transport
process at the upper Indus River.

The three models, SRC, optimum ANN, and optimum WA-ANN models were used to
estimate SSC for the days when SSC sampling was performed. The estimated SSC was
statistically evaluated and compared with the measured mean annual, cumulative and
distinct daily SSC samples. In order to obtain daily SSC time series data, the best
statistically performing model was used to estimate SSC data for the dates when sediment
sampling was not performed, i.e. for the dates when SSC is missing. The newly developed
daily SSC time series data composed of measured and simulated values was used to
obtained annual sediment load for the Besham Qila gauge station. The annual sediment

load for Besham Qila was also compared with Tarbela dam’s annual hydrographic survey.
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Figure 4.3: Variation of coefficient of determination (R?), left, and Nash-Sutcliffe efficiency
(NSE) coefficients, right, using three different wavelet functions
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Table 4.5: Performance indices of the best WA-ANN model using Daubechies (dbl)
wavelets

RMSE

Model Decomposition Neurons Transfer function RZ? (ppm) NSE
inputs level bp
First Output Train Test Train Test Train Test
c 7 24 tansig purelin 0.828 0.792 604.4 615.4 0.83 0.79

4.5 Results and discussion

4.5.1 Time series of suspended sediment concentration and sus-
pended sediment load

To evaluate the performance of the designed models in predicting time series of SSC in
the study domain, we compare the results obtained from these three models with the

measurements.

Tab. 4.6 illustrates the correlation for these prediction methods with the statistical
performance indices between predicted results and observed data in the whole data set.
It is obvious that the two-equation SRC model (Eq. 4.2), which fitted the data by separat-
ing SSC for low and high flows, provided slightly better results than the single-equation
SRC (Eq. 4.3). However, there was no significant difference in the statistical parameters
between these two SRC models. Using the designed ANN model we achieved a bet-
ter agreement between predicted and observed SSC at Besham Qila. More particularly,
among all models the designed WA-ANN produced the best predictions. In the following,

we try to explain the possible reasons for difference in the model performance.

Table 4.6: Statistical performance indices of the SRC, ANN and WA-ANN models for
computing the SSC

Model R? RMSE MAE NSE
(ppm)  (ppm)

SRC-1 0.706  1005.3 4954  0.50

SRC-2 0.706  964.6  509.0 0.54

ANN 0.757 698.4  373.2 0.76
WA-ANN 0.81 625.2  356.3 0.81

As can be seen from Tab. 4.1 and Tab. 4.2, the observed SSC as well as the annual
sediment load estimated by conventional methods vary widely. Comparison of the ob-
served data in the high flow years shows a sudden decrease of SSC during the floods period
(May, June and August) in 1983 at Besham Qila (Fig. 4.4). These enormous variations
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could be explained by the magnitude of complexity in sediment transport processes in
the Indus River. This complexity in transport processes may be caused by hydrological
variations and the hysteresis phenomena, where, for example, the same discharges can
produce different SSC at different times. Different factors can be associated with the hys-
teresis phenomena in the Indus, such as: (1) The fluvial erosion and transport processes
interacting with some other sediment, producing process; (2) Temporary sediment storage
in the main river channel [22]; (3) Aggradation and degradation phases of land slides [23];
(4) An average 5-10 high flow waves of an average 10-12 days during the monsoon pe-
riod; (5) Different transit times of discharge and sediment and their different travel time
from several sources to the gauge stations. In addition to the flow discharge magnitude,
these factors may influence the SSC at Besham Qila. Unfortunately, applying simple rela-
tionships between water flow discharge and sediment concentration, the SRC models are
unable to adjust and model these impact factors. Consequently, in long term sediment
load estimates, SRC models are unable to supply good results for sediment variability

scenarios.

As remarked on by [116], factors that exert influence on sediment transport processes
are highly variable in hydraulic and hydrological conditions of stream flows and patterns
associated with river nature. In contrast to SRC methods, ANNs do not need to make
assumptions about the relationships among inputs and outputs. ANNs learn from data
examples presented to them in order to capture the subtle functional relationships among
the data. ANNs are thus well suited to modelling the complex behaviour of sediment
transports which, by their very nature, exhibit extreme variability. Using a suitable input
combination, the ANN model is able to handle the hydrological variations in sediment
transport load at Besham Qila. These variations consist of alternative cycles of wet and
dry seasons. Normally, in a dry season, SSC is low due to less run-off and size of area as
well as time covered by the run off. In wet seasons, the contrary holds. The hydrological
variation patterns behave in a systematic way and the ANN has the ability to recognise

these systematic patterns.

Although the estimation efficiency of the ANN is better than SRC, it might be that the
ANN alone is still not good enough to model the hysteresis phenomena in the study do-
main, which consists of the upper glacierized sub-basin, lower sub-basin and lower reached
sub-basin [19]. When flows in these three sub-basins are not well synchronized, especially
during monsoon seasons, it causes strong hysteresis with many peaks in discharge. In
this case, using W'T techniques, the decomposed time series of the observed data present

different periodic components. Each of the wavelet components makes a distinct con-
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tribution to the original time series. These series are employed as inputs to constitute
the WA-ANN model for SSC forecasting. Based on the performance of SRC, ANN and
WA-ANN models in terms of R?, RMSE, MAE and NSE, it is clear from Tab. 4.6 that
the statistical performance of WA-ANN is best with R? = 0.81, RMSE = 625 ppm, MAE
= 356 ppm, and NSE = 0.81 for SSC. In addition, a temporal resolution of approximately
half year (7 levels of data decomposition) with a lag time of two days for a gauge station
(Besham Qila) located down stream of these sub-basin can reduce the variations in SSL
reconstruction. The reconstruction variations increase when conventional methods (SRC
and ANN) do not include the temporary sediment storage in the main river channel and
different transit times of discharges and sediment from their sources to the gauge in the
modelling process. Therefore, the quality of hydraulic design based on poor estimation

ultimately can affect the accuracy and subsequent studies along-with associated benefits.

As mentioned above, measurements of SSC were not conducted daily. However, ap-
plying SRC, ANN and WA-ANN models we were able to create the whole data set for the
daily SSL over 38 years (1969-2008). To estimate the accuracy of each model we com-
pared the available daily observed SSL data with the calculated results. It is clear from
Tab. 4.7 that the best statistical indices, R? = 0.85, RMSE = 34,900 ton/day, MAE =
17,500 ton/day, and NSE = 0.85, for the daily SSL were obtained using WA-ANN model.
Further, Fig. 4.4 shows an exemplary comparison between the SSL observations and the
WA-ANN results in the years 1983 (year with the exceptional sediment transport) and
1984 (year with the longest monsoon period). Due to the lack of data after flooding,
although the variation between observation and calculation is still large, values for the
coefficient of determination R? = 0.68 (for the year 1983) and R* = 0.91 (for the year
1984) indicate that the WA-ANN model was able to simulate the hydrological variations

and handle the hysteresis phenomena at Besham Qila quite well.

Table 4.7: Statistical performance indices of the SRC, ANN and WA-ANN models for
computing the daily SSL

Model R? RMSE MAE NSE
(ton/day) (ton/day)

SRC-1 0.760 7.80 x 10° 3.04 x 10° 0.402
SRC-2 0.766 7.38 x 10° 2.92 x 10° 0.480
ANN 0.814 4.45x10° 1.96 x 10° 0.814
WA-ANN 0.852 3.94 x 10° 1.75 x 10° 0.852
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Figure 4.4: Comparison of the daily observed SSL and calculated results of the WA-ANN
model in the years 1983 and 1984. 1984 was a longest monsoon year of the analyzed
record, whereas in 1983 sediment load was blocked by a landslide upstream of the gauge

station.

From the observed data of flow discharge and SSC, we estimated the total mass of
suspended sediment sampled annually. Fig. 4.5 presents a comparison between these

masses and the calculated results in the considered time period. Overall, the ANN and
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WA-ANN models provide better results than the SRC. However, all three models failed to
yield reliable outcomes for several exceptional events. Maximal deviation between samples
and calculations is observed in the year 1983, where the mass calculated by WA-ANN is
overestimated by 90%. The ANN overestimated the mass value by 98% and SRC by up to
155%. It should be emphasized that due to scarce data collected in this year (see Fig. 4.4)
both the ANN and WA-ANN were not trained well for such exceptional events. However,
it would be possible to resolve the issue by using more data to design the whole nets or

developing another net for exceptional events.

Considering the whole time period of 38 years, the mean deviations are 13%, 18% and
36% respectively for WA-ANN, ANN and SRC. Following [117], the typical cumulative
measurement errors associated with discharge and SSC should remain in the range of 10
to 15%. The models with an error in the mentioned range should be considered as reliable
|31]. For this reason, the designed WA-ANN proved to be the best model among those
tested for SSL in the study domain.

4.5.2 Sedimentation in Tarbela reservoir

Sediment load (consisting of SSL and bed load) from the upper Indus basin passes through
Besham Qila before entering in Tarbela dam. In the period from 1980 to 2005, the
hydrographic survey in the reservoir was conducted annually with systematic sounding
method along the range lines [118|. Based on the geometrical change, we were able to
estimate the mass of deposited sediments in the ponding area. Further, the bed load at
Besham Qila is considered equal to 10% of the SSL [57]. Following [19], on average, 90%
of the annual sediment load was trapped in the reservoir, which is approximately equal to
amount of the incoming SSL from Besham Qila. Based on this assumption, the developed
models can also estimate the annual and cumulative masses of the deposited sediment in
the reservoir. The estimated results were also compared with the surveyed data. It is
obvious from Fig. 4.6 that the WA-ANN model provides better agreement with the survey
than the conventional SRC model. Using the SRC model, the mean variations amount to
43% and 40% respectively for the annual and cumulative deposited sediment. Applying
WA-ANN, these variations reduced to 12% and 7%.
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Using WA-ANN, a curve for annual suspended sediment load and a power trendline
were reconstructed for the time period (1969-2008). It can be seen from Fig. 4.7 that the
calculated annual SSLs vary over the time in a range from 90 Mt to 270 Mt depending
on hydromorphological conditions. The mean value of annual SSL at Besham Qila using
the WA-ANN model amounts to approximately 160 Mt, which is much smaller than the
values estimated by other authors (see Tab. 4.1). The reasons for the decreasing trend
in sediment load over time at Besham Qila may be: (1) decrease in sediment erosion in
catchment area; (2) a continuous substantial sediment storage in the relatively flat Tibetan
Plateau and the Indus valley between Partab Bridge and Shatial (Shatial is about 150
km upstream of Besham Qila) [19]: (3) good catchment management practices [119]. In
addition there are neither hydraulic structures at the upper Indus River/basin, nor land
use changes that might have affected the situation. With regard to the planned hydraulic
structures in the study area, the parametrically decreasing trend in sediment load urges
against using unmodified past sediment load data as the boundary condition for future

reservoir sediment studies.
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Figure 4.6: Comparison of the calculated results with hydrographic survey of Tarbela
dam

4.6 Conclusion

We found that WA-ANN can precisely predict the sediment load time series with a tempo-
ral resolution of more than one level for the Indus, which has a complex sediment transport
process due to temporary sediment storage, strong hysteresis phenomena and landslides.

1 at Besham Qila is close to real time. The annual

The new estimate of only 160 Mt yr~
yield of sediment load at Besham Qila is lower than the published estimates, and can

be attributed to the substantial sediment storage in the relatively flat Tibetan Plateau
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and the Indus River Valley between Partab Bridge and Besham Qila. Consequently, it
suggests that the past sediment load series cannot simply (without modification) be reap-
plied to arrive at sedimentation predictions in the upper Indus River. Therefore, our
study may contribute to the development of sediment management strategies for existing,
under construction, and planned water related structures by setting precise sediment load
boundary conditions. This particularly applies in Pakistan, where approximately 14,000
MW hydropower schemes are under construction on the Indus River. The existing reser-

voirs are also endangered due to sedimentation problems, which may need new reservoir

operational rules.
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Chapter 5

Variability and Trend Detection in the
Sediment Load of the Upper Indus
River

This chapter is published as:

Ateeq-Ur-Rehman, S.; Bui, M.D.; Rutschmann, P. Variability and trend detection in
the sediment load of the Upper Indus River. Water (Switzerland) 2018, 10, 1-24,
d0i:10.3390/w10010016

Abstract: Water reservoirs planned or constructed to meet the burgeoning energy
and irrigation demands in Pakistan face a significant loss of storage capacity due to heavy
sediment load from the upper Indus basin (UIB). Given their importance and the huge
investment, assessments of current UIB sediment load and possible future changes are
crucial for informed decisions on planning of optimal dams’ operation and ensuring their
prolonged lifespan. In this regard, the daily suspended sediment loads (SSLs) and their
changes are analyzed for the meltwater-dominated zone up to the Partab Bridge and the
whole UIB up to Besham Qila, which is additionally influenced by monsoonal rainfall.
The gaps between intermittent suspended sediment concentration (SSC) samples are filled
by wavelet neural networks (WA-ANNS) using discharges for each site. The temporal
dynamics of SSLs and discharges are analyzed using a suite of three non-parametric trend
tests while the slope is identified using Sen’s slope estimator. We found disproportional
spatio-temporal trends between SSLs and discharges caused primarily by intra-annual
shifts in flows, which can lead to increased trap efficiency in planned reservoirs, especially

upstream of Besham Qila. Moreover, a discernible increase in SSLs recorded at Partab
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Bridge during summer is being deposited downstream in the river channel. This is due to
a decrease in river transport capacity in the monsoonal zone. These findings will not only
help to identify these morphological problems, but also accurately anticipate the spatio-
temporal changes in the sediment budget of the upper Indus River. Our results will help
improve reservoir operational rules and sediment management strategies for existing and
30,000-MW planned dams in the UIB.

5.1 Introduction

Estimation of the suspended sediment loads (SSLs) is important in the design and oper-
ation of water structures and in the planning of sediment management (yield reduction,
routing and removal) to preserve their live storage capacities |32, 6, 33, 34, 35|. The
temporal variations and changes in SSLs are also an important indicator of the effective-
ness of existing watershed management practices or tectonic and land-sliding activities in
the catchment area. Being a water stressed country amongst the top ten most climate-
affected countries [55, 56|, Pakistan has a total water storage capacity of only 30 days
(equal to 10% of the annual available water), which has been depleting due to heavy
sedimentation transported through the Indus River system from the young Hindukush-
Karakoram-Himalaya (HKH) ranges [45]. For example, amongst three big reservoirs,
the Tarbela dam has lost 35% of its storage capacity since 1974 due to trapping of ap-
proximately 8 km? of sediment in the reservoir ponding area [108]. The Warsak dam
constructed on Kabul River has filled with 60 Mt of SSL annually in the 30 years after
its construction, and no structural or non-structural remedies can reverse its depleting
storage capacity [10]. Mangla dam, the second largest Pakistani water storing facility,
had an initial storage of 7.1 billion m® (BCM), which was reduced to 5.6 BCM in 2005
due to sedimentation. In 2009, an additional 9 m rise of the dam increased the storage to
9.1 BCM, which cost one billion USD over five years. However, the rise created technical
problems such as an increase of seepage through the dam embankment in addition to
the displacement of 45,000 people living in the vicinity of the dam [120]. In view of the
transboundary nature of the source of water, such a decrease in water storage capacity in
Pakistan exacerbates the instability and geopolitical tensions of the region [46]. Hence,
the assessment of prevalent sediment patterns and their projected changes are vital for
the optimization of sediment management processes to ensure the water and food security

in the country and to regulate the transboundary water availability pressures.

Although there are many studies assessing the climate-induced adverse impacts on
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the UIB river flow patterns |20, 36, 37, 38, 21, 39, 40|, few have investigated the impact
of flow pattern changes on the sediment load capacity [41, 42|. Furthermore, the studies
conducted in this regard differ widely in their suggested estimates. For instance, the
SSL to Tarbela Dam (the country’s largest) or at the immediately upstream Besham
Qila discharge gauge is reported to range from 200 Mt y~'1-675 Mt y~! over the past
50 years (Tab. 5.1). Such uncertainty leads to poor design quality of the operating rules
for existing dams and those under construction. Moreover, the studies have generally
estimated the SSL by using empirically-developed sediment rating curves (SRCs), whose
accuracy is limited as they oversimplify the relationship between the suspended sediment

concentration (SSC) samples and the observed discharges [104, 8, 74].

Table 5.1: Estimates published on the suspended sediment load (SSL) of the upper Indus
River.

Suspended Sediment Yield

(Mt yr1) Estimated by
480 11
400 12
475 13
200 [14] reported by [15]
675 16
300 17
200 18
197" 19
1382 19
200 16]

The accuracy of SRCs is also limited since it does not model the complex sediment
transport processes related to hysteresis phenomena and marked hydrological variations
within the UIB, such as: (a) the fluvial erosion and transport processes, which interact
with other sediment-producing processes; (b) temporary sediment storage in the main
river channel [22]; (c¢) aggradation and degradation phases of landslides [23]; (d) on aver-
age, 5-10 high flow waves of an average 10-12-day duration during the monsoon period;
(e) different transit times of discharge and sediment and their different lag times from
several sources to the gauge stations. Given that SRCs are employed in the estimation
process, there may be a marked compromise in the design quality of reservoir sedimenta-
tion prevention measures, as apparent from the current sedimentation rate of the Tarbela
and Mangla dams. Since the assessment of the SSL patterns is important for the man-

agement of water-related structures, watershed management practices and the sediment

!Besham Qila
2Partab Bridge
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budget of the Indus, it is necessary to detect the temporal changes in sediment transport,
which are influenced by the river discharge responses and hysteresis phenomena, requiring

frequent discharge and SSC observations.

As opposed to the discharge time-series typically available on a daily resolution, the
SSCs are intermittently sampled, which can affect the trend outcome needed to recon-
struct the non-observed days. However, to deal with the non-linear nature of the time
series, the wavelet transform coupled artificial neural networks (WA-ANNSs) outperform
SRCs, since they are able to model theoretically any kind of relationship between the
dependent and independent variables without having to know their physical relationship
[105, 117, 30, 29, 121, 122]. The wavelet transform decomposes the data time series up-to
J levels in the time, space and frequency domains and reveals the information from a
given data scenario [28|. The temporal scale of the decomposition provides information
on temporary storage, aggradation and degradation phases, high flow waves and transit
time of the sediment load in the detail coefficients. Given these details, i.e., the detail
coefficients along with the approximation coefficient, ANN precisely models the hysteresis
phenomena. WA-ANNs have been used successfully over the last decade for reconstruct-
ing the missing data by adjusting the hysteresis phenomena in sediment load processes
[123, 124, 88, 125].

In assessing temporal dynamics of SSLs and discharges, non-parametric tests are as-
sumed to be more robust as compared to their parametric counterparts, in view of the fact
that the sediment load data are not normally distributed, owing to the highly nonlinear na-
ture of the sediment transport processes. However, several non-parametric tests may also
result in distinct estimates, which requires employing a suite of successful non-parametric
methods and then quantifying their associated uncertainty to build more confidence in

the results.

Analyzing discharges and SSCs at two different sites over the past 50 years, this
study for the first time shows how changes in the flow patterns are affecting the sediment
transport capacity of the UIB for the meltwater-dominated zone (up to Partab Bridge
site) and for the whole UIB (up to Besham Qila), which is additionally influenced by
the summer monsoonal rainfall regime. The gaps between intermittently sampled SSCs
are filled using the wavelet transforms coupled with the artificial neural networks (WA-
ANNSs). The temporal discharge and SSL dynamics are robustly assessed using a suite of
three widely-used non-parametric approaches, including: (1) the innovative trend analysis

(ITA), which can analyze the trends in low, medium and high annual SSLs without
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requiring any assumptions, such as serial correlation, non-normality, sample numbers and
others [47]; (2) the Mann-Kendall (MK) and the seasonal Kendall (SK) tests together
with Sen’s slope method; the MK test detects a trend in a time series without requiring
normally-distributed input data [48, 49|; Sen’s slope method estimates its true slope,
while SK analyzes annual trends by removing the seasonal cycles in a time series; (3) a
change point detection test, which reveals the changing tendency in the SSL series on
monthly and annual scales [50, 51]; (4) mean monthly variations, which detect monthly
changes based on differences from the (a) first and last decades and (b) monthly regression

equations of the analyzed records.

5.2 Study area and data description

With a total length of 2,880 km and a drainage area of 912,000 km?, the Indus River is
one of the largest in south Asia. It starts from China and then travels through India and
across the whole of Pakistan, finally draining into the Arabian Sea. The drainage of the
Indus River is divided into upper and lower parts, typically at the Besham Qila discharge
gauge or around 65 km downstream at, so far, its only reservoir, Tarbela, which is one of
the largest earth-filled dams in the world (Fig. 5.1). The Besham Qila site located at an
elevation of 580 masl drains the mostly high-altitude area of 165,515 km?, 12% of which
is covered with the Hindukush-Karakoram-Himalaya (HKH) glaciers and permanent ice,
while the seasonal snow cover varies between 3 and 67% [126, 39, 127]. Mean annual
discharge of the UIB at Besham Qila is 2,405 m3/s, which constitutes roughly half of
the annual surface water availability in Pakistan [39, 127]. More than 70-80% of such
discharge is generated from the melting of snow and glaciers, making the Indus River

amongst the most melt-water-dependent rivers in the world [46].

The second study site at Partab Bridge is located at an elevation of 1250 masl about
300 km upstream of Besham Qila, draining around 95% of the cryospheric region and
contributing around 75% of the Besham Qila flows. The rest of the Besham Qila flows
are mostly received from the monsoonal rainfall from July-September. This 300-km river
reach, Partab Bridge to Besham Qila, has gained in importance due to the many planned
hydraulic structures. For example, the tenders for three major hydropower projects, Bunji
7100 MW (190 m high), Bhasha dam 4500 MW (272 m) and Dasu 5400 MW (242 m),
have been completed for construction located downstream of the Partab Bridge gauge
[128]. In addition, the river reach contains huge sediment deposits due to landslides and

tectonic activities.
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Figure 5.1: Locations of study gauges in the study area. Modified from [6].

Since both gauges feature large drainage areas, overall variations in their discharges
and SSCs are not as abrupt as in the small catchments, but such variations are still large
(Tab. 5.2), indicating the occurrence of frequent hydrological events within the UIB. For
instance, 1973, 1988 and 1994 were the exceptional flow years at Besham Qila with a
total volume of 98.95, 95.31 and 94.88 billion m*® (BCM), respectively (Fig. 5.2). The
year with the highest peak flow was 1984 with a volume of 89.33 BCM. In contrast, only
a 61.54 BCM flow volume was observed in 1982, distinguishing it as an extremely low
flow year. For Partab Bridge, the exceptional flow years were 1973, 1994 and 1990 with a
total volume of 76.5, 69.7 and 69.6 BCM, respectively. On the other hand, 1965 and 1982,
with a volume of 42.16 and 46.8 BCM, respectively, were the extremely low flow years.
Based on flow patterns, the UIB can be classified into a low flow cycle of 1974-1977 (dry
period) and a high flow cycle of 1988-1992 (wet period) with their annual average volume
being 71 and 85 BCM, respectively. In drought years, with wet winter and dry summer,
the share of glacier melt increases, maintaining the water supply to the Indus River [46].

The specific suspended sediment load (SSL) from the drainage area of the Indus at
Besham Qila is estimated to be 1,197 Mt km™2 y~!, more than 90% of which reaches the
Partab Bridge and Besham Qila during the high flow period that spans May—-September.
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Such a heavy sediment load is mainly due to glacial bedrock erosion from a large number

of small, but steep catchments that directly discharge into the Indus [103].

Generally,

the peak SSL correlates well with the peak discharge with a short time lag, particularly

for Besham Qila during the monsoon season when discharge varies significantly within a

short span of a few days, accompanied by an immediate and large increase in the sediment
concentration [67]. The SSC average grain size distribution for the UIB is about 45.7%

sand, 39.9% silt and 14.4% clay [6].

Table 5.2: Hydrological and sedimentological characteristics at the Besham Qila and the

Partab Bridge gauges.

Besham Qila

Partab Bridge

P t
arameter Q 350 Q 350
(m®/s) (ppm) (m?/s) (ppm)
Duration 1969-08 (daily) 1969-08 (samples) 1962-08 (daily) 1962-08 (samples)
Max discharge 13,910 3770 (at Qmax) 9599 5780 (at Qmax)
Min discharge 325 132 (at Qmin) 168 221 (at Qmin)
Max sediment 12,401 8660 1101 25,040
Min sediment 456 1 1200 1
Mean sediment - 1071 - 1947
SD of sediment - 1456 - 2847
Mean discharge 3000 - 2231 -
SD of discharge 2923 2191
Q-10,000 at Dasu damsite [6] 21,218 -
Q_100 at Dasu damsite [6] 15,078
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Figure 5.2: Hydrograph showing actual and smoothed flows with 10-year moving average

(dashed lines) in billion m® (BCM).

The daily discharges and the discontinuous suspended sediment concentration (SSC)

samples were collected for Partab Bridge over the period 1962-2008 and for Besham
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Qila over the period 1969-2008. Following the U.S. Geological Survey (USGS) guidelines,
discharges at these gauges are measured using AAcurrent meter, while the SSC samples are
taken once a week in winter and twice a week in summer, depending on the availability of
labor and sampling feasibility |99, 100, 101]. The total SSC samples within the collection
periods on record were 3,213 and 2,117, representing around 22% and 14% of the daily
time series for the Besham Qila and the Partab Bridge sites respectively. Due to low
sampling frequency at Partab Bridge, we decided to use all available data samples. The
long length of these samples improves the learning of the WA-ANN model, which in turn
leads to better reconstruction of missing SSLs. The outliers in sediment data samples
were excluded by examining the general behavior of the river and river catchment. More
details on data collection, data quality and period of records for the Indus River can be
found in [19].

5.3 Methods

We analyze how changes in the flow patterns are affecting the sediment transport capacity
of the UIB specifically for the meltwater-dominated zone (up to the Partab Bridge site)
and for the whole UIB (up to the Besham Qila), which is additionally influenced by
the summer monsoonal rainfall regime. In order to do this, we analyze the observed
discharges and SSCs over the past 50 years. Since the SSCs are intermittently sampled
and thus represent only a fraction of the daily discharge series of the study gauges, we
reconstructed the SSCs for the non-observed days using the wavelet transforms coupled
with the artificial neural networks (WA-ANNs). We then employ three non-parametric
statistical approaches to analyze the monthly-to-annual scale temporal dynamics of the
reconstructed SSLs and observed discharges. These methods include: (1) innovative trend
analysis; (2) Mann—Kendall (and seasonal-Kendall) trend test and Sen’s slope method;
(3) the Pettitt change point test. We also analyzed temporal dynamics by performing

decadal and regressional comparisons.

5.3.1 Wavelet neural network

Artificial neural networks are widely used in hydrology and water resources studies for
data optimization, reconstruction of missing sediment load and prediction of sediment load
trends. The ANN architecture acts as an information processing system containing several

non-linear and interconnected elements in the form of layers connected via weights. The
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multi-layer perceptron (MLP) is a typical ANN, which consists of a number of nodes that
are organized according to a particular arrangement. The layers process the information
from the input layer to the hidden layer and further the hidden layer to the output layer
for the generation of results. Generally, the hidden layers contain non-linear transfer
functions to process the non-linear or linear information in order to build a relation
between input and output variables. The output layer normally contains a linear transfer
function to produce the output outside of the range of —1-1. Moreover, the hidden
layers can also vary from single to multiple layers using different numbers of neurons.
The size of a hidden layer and neurons within the hidden layer also affect the model
performance. Less neurons in the hidden layer may affect the learning process, while
more neurons in the hidden layer or the number of hidden layers restrict the efficiency
in terms of computational time. The increase of neurons may also cause a network over
fitting problem. The work in [110] suggested that the neurons for optimal generalization
should be in the range from v/2n + m to the value 2n + 1, where n and m represent the

number of input and output nodes, respectively.

Wavelet transform (WT) decomposes signals into successive wavelet components cor-
responding to a time-domain signal within a frequency range. The original signal can be
represented in terms of a wavelet expansion that utilizes the coefficients of the wavelet
functions. Several wavelets can be constructed from a function ¢(t) known as a “mother
wavelet”, which is confined in a finite interval. That is, WT decomposes a given signal
into frequency bands and then analyses them in time. W'T are broadly classified into
continuous wavelet transform (CWT) and discrete wavelet transform (DWT). CWT is
defined as the sum over all time of the signal to be analyzed multiplied by the scaled and
shifted versions of the transforming function ). The CWT of a signal f(t) is defined as

follows:
t—>
e o [ ow (52

“* denotes the complex conjugate. CWT'T searches for correlations between the

where
signal and wavelet function. This calculation is done at different scales of a and locally
around the time of b. The result is a wavelet coefficient W,; contour map. However,
computing the wavelet coefficients at every possible scale (resolution level) necessitates a
large amount of data and computation time. DW'T analyzes a given signal with different
resolutions for different frequency ranges. This is done by decomposing the signal into
coarse approximation and detail coefficients. For this, the scaling and wavelet functions

are employed. Choosing the scales a and the positions b based on the powers of two
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(dyadic scales and positions), DWT for a discrete time series f; becomes:
N-1
Wi =277 Y fiU* (27 — n) 5.2
i=0

where 4 is integer time steps (i = 0,1,2,..., N — 1 and N = 2M); m and n are integers
that control, respectively, the scale and time; W, ,, is the wavelet coefficient for the scale
factor a = 2™ and the time factor b = 2™n. The original signal can be reconstructed

using the inverse discrete wavelet transform as follows:

M (YT -1)
=AY > Wna250 (27" —n) 5.3
m=1 n=0
or in a simple form as:
M
fi=Aum+ Z Dy, i 5.4

m=1
where A,;; is called an approximation sub-signal at level M and D,,; are detail sub-

signals at levels m = 1,2,..., M. The approximation coefficient A,;; represents the high
scale low frequency component of the signal, while the detail coefficients D,, ; represent

the low scale high frequency component of the signal.

There is a variety of mother wavelets such as the Haar wavelet, Daubechies wavelet,
Coiflet wavelet and biorthogonal wavelet. Normally, the Daubechies wavelet, which also
belongs to the Haar wavelet, has been performing better in sediment transport processes
due to its ability to detect time localization information. Time localization information
is useful in handling the seasonality and hysteresis phenomenon in flow discharge and
sediment load processes. The Coiflet wavelet is more symmetrical than the Daubechies
wavelet. Similarly, the biorthogonal wavelet has the property of a linear phase, which is
needed for signal reconstruction [129]. The selection of an appropriate mother wavelet

depends on the type of application and data characteristics.

Before applying an ANN, the input discharge time series are decomposed using pre-
selected wavelets. After data decomposition, a portion of the signal associated with
certain frequency bands need to be eliminated if there is a poor correlation between
the decomposed signal and the observation data. Only the decomposed signals that
have significant correlation with the observation signal are used in the forecast model.
Furthermore, on decomposed signals, the permutation of the logsig, tansig, radbas and
purelin transfer functions was tested for the hidden and output layers. The Levenberg-
Marquardt algorithm was used to train the networks due to its simplicity. The neurons
in the hidden layer were selected based on the criteria described by [110]. The stopping
criteria of the models was a maximum of 1,000 epochs. The final networks were saved for

later use to reconstruct the missing SSCs in the daily time series. Due to the different
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data time series at both gauges, we developed two different WA-ANN models. Fig. 5.3
shows the methodology of coupling WT with ANN for forecasting SSC in the study area.

next filter level

low pass filter

lo (n)

Q) = WT

hy (n)
high pass filter

Figure 5.3: Schematic diagram of a wavelet transform coupled to an artificial neural
network (WA-ANN). SSC; suspended sediment concentration.

The performance of the model was assessed employing the correlation coefficient (R),
root mean square error (RMSE), mean absolute error (MAE) and the Nash—Sutcliffe
efficiency (NSE). The correlation coefficient indicates a perfect fit at 1 and otherwise at
0. Similarly, RMSE and MAE indicate the best model performance when close to 0. The
NSE ranges from —oo—1, where 1 represents a perfect match and 0 indicates that the
model is no better than simply representing the mean value. The simulated results are
normally considered ‘good” when the NSE is higher than 0.75 and ‘satisfactory” when it
lies between 0.36 and 0.75 [115].

5.3.2 Trend analyses

5.3.2.1 Innovative trend test

The innovative trend analysis (ITA) [47| divides a time series into two halves, where
the latter half is plotted against the first, after being sorted in ascending order. Given
both halves are identical to each other, the plot shows a scatter of points along a 1:1
(45°) line on the Cartesian plane. The scatter of points falling above (below) the 1:1
line indicates a monotonically-increasing (decreasing) trend. ITA does not require pre-
whitening, a specific sample size, a serial correlation structure of the time series or a

normal probability distribution. I'TA can easily identify the variations and trends in the
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lower, medium or higher hydrological processes [130, 131]

5.3.2.2 Mann—Kendall test

The Mann-Kendall (MK; [132, 133]) test can detect a trend in a time series without being
affected by the outliers. With the use of normal approximation, the MK test statistic S

n—1 n
S = Z Z sgn(X; — X;) 5.5

i=1 j=i+1
where X; and X are the adjacent data values, S is the sum of positive or negative signs,

is calculated as follows:

n is the number of observations and:
+1 (X] — XZ) >0
sgn(X; —Xi) =0 if (X;—X;)=0 5.6
-1 (X, —Xi) <0

The two important parameters of the MK test are the significance level and the slope.
The former indicates the strength, while the latter indicates the magnitude and direction
of a trend. If there are many tied data values, then the method specified for the number
of data values greater than 40 is used (|133|, as reported by |134]). The variance of S
(Eq. 5.7) takes into account these ties, where ¢ is the number of tied groups and ¢, is the

number of data in the p group.

1
VAR(S) = 2 [n(n —1)(2n +5) Zt )(2t, +5)] 5.7

After calculating S and its variance, an MK statistic Z is computed using Eq. 5.8.
A positive value of Z indicates an upward tend, whereas its negative value indicates a
downward trend. If there is no detectable trend, then the MK statistic Z has a standard

normal distribution.

S—1
v/ VAR(S) §>0
Z=30 if S=0 5.8
_ S+1 S <0

/VAR(S)

To detect the season-wise monotonic trends, a slightly modified version of the MK
test, namely seasonal Kendall (SK), is used, which runs the original MK test on each
season (k) separately, where k can refer to any period of time within a year (e.g., months
or four quarters of a year). The overall S statistic is then computed by adding each SK

statistic (Sg) for m number of seasons, and the statistical significance of the trend can be
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assessed using the outcome of Eq. 5.10 and 5.11 in Eq. 5.8.

ng—1 n
S = i Zk: sgn(Xy,j — Xii) 5.9
i=1 j=it+1
S = i Sk 5.10
and: Z:f
VAR(S) =Y VAR(S) 5.11
k=1

Based on sets of Monte Carlo simulations, [135] show that the presence of a positive
serial correlation increases the variance of the distribution of S and thus increases the
possibility of rejecting the null hypothesis of no trend; the same was also found by [136].
By contrast, negative serial correlation diminishes the variance of the distribution and
results in underestimation of the significant trend detection probability. To limit the

influence of serial correlation, we applied a correction factor, described by [137] in Eq. 5.8,

as follows;
7" = Z 5.12
/P
T m—J)
14+ % m— j)p; for j>1
= 2 =i ! 5.13
m 2
142l —mAtlm I for j1

Normally, the population serial correlation coefficient p; is replaced with the sample

serial correlation coefficient 7;
m—j

o (X = X) (X — X)
r; = =l - where j =2,3,..,m — 1. 5.14
(X - X2
=1
_ 1 &
X == X; 5.15
s

The correction factor n* shrinks (expands) the MK statistics in the presence of positive

(negative) serial correlation.

An estimate of trend magnitude, which is closely related to the MK test procedure,
is known as Sen’s slope estimator [138]. The slope estimates of N}, pairs of data of the

k-season are first computed by:

Py = 21k 5.16
—1

forall 1 <¢ < j <ngand 1 <[ < Nj. The median of these P}, values is Sen’s slope
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estimator P:
Py if NV, is odd
b, = 5.17
% Pk(%) +Pk,(%+1) if Ny is even

Finally, P is tested by a two-sided test at the (1 —«) x 100% confidence interval, and
the true slope can be obtained. More details about the Mann-Kendall and Sen’s slope
tests can be found in [134] and [139].

5.3.2.3 Change point detection

We used the Pettitt test [50] to detect the qualitative and quantitative changes in SSL
and discharge series. The Pettitt change point test is non-parametric and based on a
version of the Mann-Whitney statistics Uj,, as follows:

Uin=Uj_1n+ Z sgn(X; — X;)  where j =2,3,..,n 5.18

i=1
whereas X; and X are the adjacent data values, n is the number of observations and sgn

can be quantified using FEq. 5.6. The statistics K; and corresponding significance testing

are given by:

K;, = Max|U;,| where 1< j<n 5.19
and: 6(Ic;)?

If p <0.05, a significant change point exist.

5.3.2.4 Decadal analyses and linear regressions

Similar to the innovative trend method of [47], we divided the suspended sediment load
(SSL) and discharge data into two time series of one decade each. The first time series
consists of the initial decade of the dataset, and the second time series consists of the last
decade of the dataset. To determine the mean annual and mean monthly changes, we

compared the SSL and discharge shares of pre-selected spatial resolution for both gauges.

At the upper Indus River, the effect of high discharge events is influential; they trans-
port a considerable amount of SSL [103|. Therefore, we also explored the mean monthly
changes in most effective discharges during the initial and last decades of the datasets.

The work in [140] defined the most effective discharge as the midpoint of the range of
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flows, which over a certain period can transport a considerable proportion of the SSL. The
effective discharge can be computed using sediment transport formulae and regional flow
duration curves. In the present study, we used the effective discharge (€)/Qavg) of 2.0-
times the average discharge (Qau,) for Besham Qila and 5.0-times the average discharge

(Qavg) for the Partab Bridge gauge as per the classifications formulated by |67].

To obtain the linear changes in each month during past 50 years, we developed linear
regression equations of the reconstructed SSLs and observed discharges. Using these

equations, we also quantitatively and qualitatively analyzed the changes.

5.4 Results

To analyze the trends in suspended sediment loads (SSLs) of the upper Indus River,
we reconstructed the missing SSC data using wavelet neural networks (WA-ANNs) and
then estimated corresponding SSLs using measured discharges, i.e., SSC x Q. The re-
constructed daily data series in the form of monthly and annual SSLs were used in four
different trend analysis techniques, namely: (1) innovative trend test; (2) Mann—Kendall
and Sen slope tests; (3) Pettitt change point test; (4) decadal analyses and linear regres-

sions. The study findings are described below.

5.4.1 Reconstruction of daily sediment load time series

Based on several preliminary simulations for both gauges, we eventually trained both net-
works using 70% of the data for the training, 15% for testing and 15% for validation on
a random basis. In a similar way, we also decomposed @);, @;_1, @;_2, for Besham Qila
and @, @, for Partab Bridge up to seven levels using the Daubechies (dbl) wavelet.
The best performing WA-ANN architectures reconstructed SSLs with a correlation coef-
ficient R — 0.92 for both sites (Tab. 5.3). The RMSE and MAE for Partab Bridge were
approximately two times more than Besham Qila; likewise, the standard deviation (SD)
and mean in the actual SSC samples (Tab. 5.2). This difference shows the complexity in
the transport process in the glacier influence zone of the upper Indus River at the Partab
Bridge gauge. The NSE, which is used to analyze the model performance, was 0.85 for
both stations. Therefore, we consider the WA-ANNs reconstructed suspended sediment
load (SSL) series good as the NSE is higher than 0.75 [115, 29, 141]. In addition, both
WA-ANN models reconstructed SSLs with a cumulative difference of +1% with the mea-

surements. Thus, according to another comparison criterion, the models that led to an
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error between £10% and £15% are considered as accurate models |[117]. A compari-
son between the mass of suspended sediment sampled daily and computed results using

WA-ANN models is also shown in Fig. S1 of the Supplementary material.

The reconstructed results showed a higher mean annual SSL of 171 Mt for Partab
Bridge compared to 160 Mt at the downstream Besham Qila site (Fig. 5.4). Moreover,
the annual SSLs appear to have been rising at Partab Bridge since 1993 and causing the
10-year moving average to increase. In contrast, the annual SSLs have been decreasing at
Besham Qila since 1993 (Fig. 5.4). The similar changes in SSLs are also shown in linear
and quadratic trends for both gauges (Fig. 5.5). The statistical parameters of linear and

quadratic line fittings are shown in Tab. S1 (Supplementary material).

Table 5.3: Statistics of the best performing WA-ANN architectures for the Besham Qila
and the Partab Bridge sites.

Location Neurons Transfer Function R RMSE (ton/day) MAE (ton/day) NSE

First Output

Besham Qila 24 tansig purelin 0.92 3.94 x 10° 1.75 x 105 0.85
Partab Bridge 30 logsig tansig 0.92 6.12 x 10° 2.87 x 10° 0.85
T T T T T T T T T T T T T T T T T T T T T
400 - —-—-Besham —— Partab )
350 - 1993 .
\
\
300 - | A :
72—7\ 160 Mt (mean) 171 Mt (mean) |
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Figure 5.4: WA-ANN reconstructed annual suspended sediment loads (SSLs) for Besham
Qila and Partab Bridge gauge stations showing an increase after 1993 at Partab Bridge
(the dashed lines represent the 10-year moving average).
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Figure 5.5: Linear and quadratic annual trends of reconstructed SSLs and observed dis-
charges (legends for Fig. 5.5b also apply for Fig. 5.5a).

5.4.2 Innovative trend test for annual loads

The innovative trend test (ITA) shows a decreasing trend in low annual SSLs at Besham
Qila against an increasing trend in high annual SSLs at the Partab Bridge site (Fig. 5.6a
and 5.6b). The frequencies have been increasing at both gauge sites. On the other hand,
the overall annual flows at Partab Bridge show an increasing trend, while there are diverse
trends at Besham Qila, where, apart from medium annual flows, the low and high flows
have no discernible trend (Fig. 5.6a and 5.6b). Contrary to Besham Qila, the increase
in flows has also been causing an increase in SSLs at Partab Bridge. However, in the
absence of hydraulic structures, urbanization or industrialization along the upper Indus
River or within the UIB, this increase in annual SSLs noticed at the Partab Bridge did

not appear at the downstream gauge, i.e., Besham Qila (Fig. 5.6).

5.4.3 MK test for annual and monthly loads

The MK trend analyses show that the annual SSLs at Besham Qila have been decreasing
at a rate of 0.634 Mt y~! (Tab. 5.4). Calculating according to the same rate, this indicates
a maximum decrease of 34 Mt from the estimate made by |14] (reported by [15]) for the
Tarbela dam in 1982 (Tab. 5.1). Due to a negative slope of 0.634 Mt y~!, it is possible
that the estimates published in 1970s and 1980s show higher sediment loads compared to
our estimate (160 Mt y~!) at Besham Qila. In contrast to the results of the MK test, the
seasonal Kendall (SK) test showed an annual statistically-significant increasing trend at
the Besham Qila (Z — 3.2) and Partab Bridge (Z — 4.1) gauges. This contrast in both

tests results arises due to the addition of each season’s trend in the SK test (Eq. 5.10
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Figure 5.6: Results of innovative trend test showing a decreasing trend in low and high
annual SSLs and flows at the Besham Q)ila and an increasing trend in high annual SSLs

at Partab Bridge, along with an increase in all flows (legends for Fig. 5.6a also apply for
Fig. 5.6b).

and 5.11). In addition, the results of the SK test are similar either using seasons as
four quarters of a year (December—February, March-May, June-August and September—

November) or each month as a season.

The monthly SSLs show a significant increasing trend in the winter months (November—
February) at Besham Qila with a cumulative magnitude of 0.004 Mt y~!. This is a slight
cumulative magnitude, which is unbalanced by the decreasing trend of —0.24 Mt y~! alone
in August (Tab. 5.4). Surprisingly, sandwiching increasing trends, April at Besham Qila
shows a declining trend only in SSLs. The monthly SSLs at Partab Bridge, in contrast
to Besham Qila, show a declining trend of 0.33 Mt y~! only in August. This trend is
balanced by 0.36 Mt y~! rise in June and September (Tab. 5.4). Despite the diversified
trends at both gauges, May showed a statistically increasing and August a statistically
decreasing trend, whereas in summer, only August at Besham Qila and June, August
and September at Partab Bridge show any trends. However, their contribution (33% and
83%) is still higher than the magnitudes of the trends in the remaining months of the
year. In summer (July-September), the mean SSL recorded at Partab Bridge is 141 Mt
y~ !, while during the same period or even until October, only 125 Mt passed through the
Besham Qila gauge; this apparently indicates a durable deposition of SSLs between both

gauges in summer.
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5.4.4 Change point detection test

The test results show discernible change points in the monthly SSLs after 1982, whereas
no change point was detected in annual SSLs at both gauges (Fig. 5.7). Therefore, it
might be possible that the peaks in annual SSLs recorded after 1993 at Partab Bridge
gauge in Fig. 5.4 in the absence of an increase in corresponding discharges may have been
caused by degradation of landslides, which may have previously blocked the sediments
[23]. On the other hand, the interventions of landslides are marginal for river flow due
to a mean discharge of about 2,600 m3/s. Thus, the change points in monthly discharges
are similar at both gauge stations (Tab. 5.5). As the Besham Qila site is located in a
monsoon rainfall and snowmelt zone, no change in annual flows indicates a decrease in

contribution from these sources (Tab. 5.5).

Table 5.4: Mann—Kendall’s (MK) annual and monthly SSL and discharge trends for the
Besham Qila and the Partab Bridge sites. The minus symbol for the MK statistics
indicates a downward trend, whereas the (-) symbol without numbers means no trend.

SSL Discharge

Period Sen’s Slope Average SSL Sen’s Slope Average Flow

MK Statistic MK Statistic

(Mt y~ 1) (Mt y~1) (BCMy') (BCMy %)

Besham Qila

Annual —1.21 —0.6345 160 - - 76.41
January 2.74 0.0011 0.16 5.60 0.0081 1.25
February 2.76 0.0016 0.12 4.71 0.0068 1.08
March 1.08 0.0020 0.22 2.39 0.0061 1.40
April —1.14 —0.00280 0.48 - - 2.25
May 2.66 0.0769 4.61 2.60 0.0471 5.98
June - - 28.04 - - 13.21
July - - 61.55 - - 19.69
August —1.00 —0.2414 53.80 - - 17.53
September - - 9.90 - - 7.77
October - - 0.74 1.55 0.0067 3.01
November 2.16 0.0013 0.22 3.51 0.0075 1.80
December 1.05 0.0004 0.15 3.71 0.0071 1.44
Partab Bridge

Annual - - 171 1.77 0.1299 56.62
January 3.81 0.0007 0.07 2.11 0.0018 0.94
February - - 0.08 - - 0.77
March - - 0.12 - - 0.83
April 1.01 0.0009 0.25 2.81 0.0045 1.08
May 3.41 0.0476 3.09 4.64 0.0506 3.37
June 1.39 0.2308 25.25 1.55 0.0380 9.32
July - - 64.14 1.00 0.0299 15.08
August —1.26 —0.3333 65.59 —1.02 —0.0274 14.15
September 1.86 0.1304 12.20 0.95 0.0181 6.26
October 2.90 0.0041 0.33 2.85 0.0100 2.33
November 3.33 0.0008 0.09 3.50 0.0060 1.38
December 2.59 0.0003 0.06 2.65 0.0034 1.10

Interestingly, the magnitude of the increasing trend in SSLs over May at Partab Bridge

3Significant trend at 95% significance level (critical value = 1.96)
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was higher than Besham Qjila’s SSLs, which makes their mean loads approximately the

same after 1997 (Fig. 5.7). After 1997, there was no detectable increase in either parame-

ter at either gauge station. Furthermore, September showed a significant increase of 60%

no earlier than 1982, which is the highest magnitude or in the change in SSLs of the an-

alyzed record. Compared to a noticeable increase in SSLs at Partab Bridge, surprisingly,

the increasing loads are not being received at the downstream gauge (Fig. 5.7).
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Figure 5.7: Significant change points in monthly SSLs determined using Pettitt test; black
denotes Partab Bridge, and blue denotes Besham Qila.

Table 5.5: Significant change points in river flows determined using the Pettitt test.

Period

Annual

January February

March

April

May

October

November

December

Besham Qila
Partab Bridge

1987

1987
1986

1987
1987

1986
1987

1987

1
1987

997

1985
1985

1986
1986

1985
1985

5.4.5 Decadal analyses and linear regressions

The decadal analyses only show decreasing trends in SSLs during peak summer (June and
July) at Besham Qila and only over August at Partab Bridge (Fig. 52, S3, 5.8a and 5.8b
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(Supplementary material)). The directions of changes in monthly SSLs are similar to
their corresponding discharges except for July at Partab Bridge and August at Besham
Qila. It might be possible that the high SSLs recorded in July at Partab Bridge have been
causing the SSLs in the following month of August at the downstream gauge to increase,
as shown in Fig. 5.8. Similar deviations can be seen in effective discharges, where the
SSL transport capacity of the river has been decreasing in summer (June, August and

September) at Besham Qila and only over August at Partab Bridge (Fig. 5.9).
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(a) Besham Qila (b) Partab Bridge
Figure 5.8: Monthly share of SSL and flow volume in the first and last decade of the
analyzed record.
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Figure 5.9: Monthly @/Qqu., in first and last decade of the analyzed record following the
monthly decadal trend of SSLs.

The linear regressions also showed identical directions in the changes of the monthly

SSLs and their corresponding discharges, except for April at Besham Qila (Tab. 5.6),



CHAPTER 5. VARIABILITY AND TREND DETECTION IN THE SEDIMENT
92 LOAD OF THE UPPER INDUS RIVER
where SSLs are decreasing against the increase in discharges. Nevertheless, there is a
certain sensitive linear correlation between mean monthly SSLs and their corresponding
discharges for the months in the effective discharges zone, depicted in Fig. 5.10, where
the axes represent the change in mean monthly discharges and SSLs (since 1969 and
1962) determined by linear regression equations (Fig. S2 and S3 in the Supplementary
material). As can be seen from Fig. 5.10, the change in SSLs is sensitive to the change
in discharges, where a 1% change in discharges, on average, can cause a change of 3% in
SSLs in the study area. However, compared to Besham Qila, the transport capacity of
the river is more sensitive to the discharge change at Partab Bridge, where, for example,
an 11% change in mean monthly discharges caused a 65% change in corresponding SSLs
over September (Tab. 5.6). This may be due to the location of the major source of eroded
sediments in the Karakoram parts of the basin that contributes SSLs disproportionate to
its drainage area at Partab Bridge [101]. On the other hand, the river slope is mild from
Partab Bridge to Besham Qila, which causes substantial sediment storage of the incoming

SSLs, particularly in summer.

Table 5.6: Mean monthly linear variations in SSLs and discharges (flows) at both gauges
(each month’s regression plots are presented in Fig. S2 and S3 in the Supplementary
material).

Besham Qila * Partab Bridge °

Period SSL Flow SSL  Flow
(%) (%) (%) (%)
Annual —7.40 3.90 13.50 16.00
January 44.64 29.49  93.56 12.85
February 77.58 29.8 10.27 6.28
March 59.43 20.8 3.36 5.01
April -8.11 7.29  398.18 36.32
May 141.22  38.75 365.07  138.87
June —13.41 3.7 48.72 20.54
July —-9.04 —1.45 17.86 7.37
August —-12.79 -3.12 -8.16 —4.07
September 8.02 6.63 65.73 11.68
October 16.77 11.52  107.15 24.27

November 29.48 16.47  50.99 20.88
December 19.43 15.17 40.68 15.8

To gain an overall qualitative overview of the trends, we compared the results in

4from 1969-2008
Sfrom 1962-2008
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Tab. 5.7. The comparison reveals that SSLs have been increasing in May and decreasing
in August in the study area. Apart from that, they have been monotonically increasing
during winter months from November—February and also March and May. Although the
annual SSLs at both gauge sites showed minor trends, they are statistically insignificant
(Tab. 5.7).
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Figure 5.10: Linear regression of mean monthly changes in SSLs versus changes in dis-
charges.

Table 5.7: Qualitative comparison of the trends in SSLs using different methods (blue
triangles imply an upward trend, whereas red triangles imply a downward trend; a “-”
represents statistically insignificant/no trend). I'TA, innovative trend analysis.

Period Besham Qila Partab Bridge
ITA MK C.P° D.C” Regression ITA MK C.P D.C Regression

Annual v v = v v A - - A A
January A A A A A A A A A
February A A A A A A - - A A
March A A - A A A - - A A
April v v - A v A A - A A
May A A A A A A A A A
June v - - v v A A - A A
July v - - v v A - - A A
August vV Vv - A v v Vv - v v
September A - - A A A A A A A
October A - - A A A A A A A
November A A A A A A A A A A
December A A - A A A A A A A

Schange point detection test
"decadal comparison
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5.5 Discussion

The WA-ANN models with a decomposition level of 7 (256 days) and a lag time of two and
one day for Besham Qila and Partab Bridge, respectively, can precisely find the missing
suspended sediment load for a given circumstance of hydrological data of the study area.
Our findings show that the variation in flow patterns have been causing a significantly
increasing trend in suspended sediment loads (SSLs) in May and a significantly decreasing
trend in August at both Besham Qila and Partab Bridge gauges in the upper Indus River
(Tab. 5.7). Contrary to the increase in high frequencies in low annual SSLs and river flows
at Besham Qila (which is additionally influenced by monsoon rainfall), the frequencies in
high SSLs and river flows are increasing at the Partab Bridge gauge, which is located just
downstream of high elevation glacierized areas of the Karakoram and Himalayas (Fig. 5.1
and 5.6). Even in the absence of hydraulic structures between both gauges, the high SSLs
recorded at Partab Bridge during summer are not being transported to the downstream
gauge. Furthermore, the mean monthly linear variations show that an average 1% change
in monthly flows can cause a 3% change in SSLs (Fig. 5.10). However, the sediment
transport capacity of the river is more sensitive to discharge change from May—August at

Besham Qila and in September at Partab Bridge.

The sediment transport processes at the upper Indus River are influenced by hysteresis
phenomenon and alternative cycles of dray and wet seasons. Applying simple relationship
between water discharge and sediment concentration in the modeling process cannot ad-
just and model these impact factors. Therefore, a temporal resolution of approximately
one year with a lag time of one day in the glacier-influenced zone and two days in the
rainfall-influenced zone can reduce the variations in sediment load reconstruction. The re-
construction variations, in particular, increase when for example in conventional methods
(sediment rating curves and ANN), temporary sediment storage in the main river channel
and different transit times of discharges and sediment from their sources to the gauges
are not included. Therefore, the quality of hydraulic design and sediment load trends
based on poor sediment load estimation ultimately can affect the accuracy of subsequent

studies and the efficiency of the overall hydraulic structure and associated benefits.

Partab Bridge gauge is located just downstream of the snow-fed and glacial melt
zone of the upper Indus River. Therefore, the results indicate two types of patterns at
Partab Bridge: (1) snowmelt- and (2) glacial melt-dependent SSLs. The former (snowmelt
dependent) SSLs have been shifting to the spring months (April, May and June) due to

an increase in early snowmelts at low altitudes [142, 37, 21]. Particularly in May, the
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significant increasing effect of early snowmelt has increased the SSL from 3.3 Mt y~1-5.6
Mt y~!, over the last 50 years (Fig. 5.7). The effect of early snowmelt has also been

3 increasing rate in May's flow

noticed by [127], where they determined a 50 million m
at Partab Bridge. Interestingly, in comparison to Besham Qila (47 million m?), the rate
of increase in flow (50 million m?) is higher at Partab Bridge and vice versa in SSLs
(Tab. 5.4 and 5.6). However, this increasing trend in flows extraordinarily increased SSLs
at Partab Bridge, where after 1993, SSLs are identical to those of Besham Qila. The
identical loads at both gauges point out either no increase in SSLs at Besham Qila’s

catchment or deposition downstream of Partab Bridge.

On the other hand, retrieval of glacial size depreciates the SSLs in August due to less
water availability [67, 36, 143, 40]; the SSLs have decreased to 34% (from 43%) over the
past 50 years. It seems that glacial melt has shifted to July and September (Tab. 5.4).
Although the increasing trend in both months is similar (Tab. 5.6), September’s flow has
remarkably increased the SSL from 9 Mt-15 Mt (similar to regressions where increase is
65%) at Partab Bridge (Fig. 5.7). This significant increasing trend may be caused by the
small increase in most effective discharge. It also shows the degree of sensitivity where
only an 11% change in discharge caused a 66% change in SSL (Tab. 5.6). Furthermore,
the remarkable increase in SSLs in September may reduce the reservoirs’ life by increasing
trap efficiency, where according to existing operation rules, the dams are normally filled

to the maximum conservation level as late as 31 of August, such as at Tarbela dam.

Contrary to monotonically-increasing trends in SSL at Partab Bridge (except August),
the Besham Qila gauge, located in the snow and rain-fed zone, has diversified mean
monthly trends from winter to spring (Tab. 5.7). The rise in spring” SSLs at Besham
Qila might be due to early snowmelt as at Partab Bridge [127]. However, the most
surprising trend outcome is the decrease in SSLs during April in contrast to the increase
in discharges revealed by regressions (Tab. 5.6). In the MK test, April’s SSLs also showed
a decreasing trend, despite an increasing trends in proceeding and immediately succeeding
months (Tab. 5.4). In April, half of the flow volume recorded at Besham Qila comes from
Partab Bridge [144]; however, corresponding to a 36% linear mean monthly increase at
Partab Bridge (Tab. 5.6), the increase in flow at Besham Qila is only 7%. Therefore, the
corresponding increase in SSLs recorded at Partab Bridge during April may be deposited
(due to less SSL transport capacity of the river) between Besham Qila and Partab Bridge,
causing high SSLs during the succeeding month (May) at Besham Qila, when the river
flows show a significant increasing trend at both gauges. Over August, on the contrary,

the declining trend in SSLs at Besham Qila is statistically insignificant and seems to be
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associated with the decrease in the contribution of SSLs (Tab. 5.4) and flow volume (from
which 84% of flow comes) from Partab Bridge.

As can be seen in Fig. 5.2, over the past 40 years, at Besham Qila, the average annual
volume of water was about 76 billion m® (BCMs), while the same average was 56 BCMs
at Partab Bridge. That means the catchment at Partab Bridge (denoted by Zone 1)
contributes 74.2% of the annual flow volume at Besham Qila. The remaining 25.8% in
annual flow volume is contributed from the catchment between Partab Bridge and Besham
Qila (denoted by Zone 2). The flow volume in Zone 2 is mostly generated from rainfall
and snowmelt [21]. The linear trend from 1969-2008 in Fig. 5.5 shows an increase in flow
volume at Besham Qila of around 3.90% (denoted by AQ), while the same increase at
Partab Bridge is around 13.50% (denoted by AQ);). The variation of water availability in
the area between Partab Bridge and Besham Qila (denoted by AQs) can be approximated

using the following mass balance equation:

100 x AQ = 74.2 x AQq + 25.8 x AQ» 5.21

From this equation, we obtain the variation in flow in Zone 2 AQy = —38%. As Zone 2
is influenced by rainfall and snowmelt, it seems that the negative variation is attributable
to trends of these parameter. These parameters (snowmelt and rainfall) have further been
causing a decrease in water availability (between both gauges) required to transport the
increased SSLs coming from Partab Bridge. Thus, the annual SSL trends at Besham Qila
have shown a decreasing tendency since 1969 (Fig. 5.5). Similar results have also been
noted by [46], where the decrease in rainfall in the study area has been buffered by the
increase in glacier melts. Additionally, the rise in glacier melt or precipitation over the
western region of the upper Indus Basin noted by [38| might have been the cause of the
60% increase in SSLs during September at Partab Bridge. However, this increase has
not been received at the downstream gauge, possibly due to a statistically insignificant

increase in discharge downstream of the same gauge till Besham Qila (Tab. 5.4).

In the future at the upper Indus River, the overall increase in flow volume is expected
to reach 7-12% [37]. This increase will mostly increase the flow share for the pre and
post summer months, which will not be enough (it will be less than the most effective
discharges) to transport an additional sediment load. Consequently, the annual SSLs will
remain the same or will decrease slightly at Besham Qila. Therefore, in keeping with
the current trends, the published sediment load estimates indicate an ongoing decline at

Besham Qila (Tab. 5.1), since 1970 to the present. Regardless of the increase or decrease
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in the flow volume, the researchers agree on the shift in flow patterns at the upper In-
dus River [19, 36, 145]. Since there are neither hydraulic structures at the upper Indus
River/basin, nor land use changes that might have affected the situation, in contrast to
[146, 147] studies for the East or Thames River, the temporal changes in SSLs can only
be due to climate change factors. In addition, the statistically-significant monthly SSL
trends contradict the previous reservoir sedimentation studies, which simply used the past
SSCs without modification to the future predictions, particularly for the hydraulic struc-
tures planned upstream of Besham Qila |58, 15, 6, 33]. Thus, using modified boundary
conditions for reservoir sedimentation studies in the presence of trends can improve the

overall quality of hydraulic designs and reservoirs’ lives in the study area.

Nevertheless, the variations in SSLs, overall, may have serious implications for water
storage, as well as the management of peak supply, peak demand and dam safety, which
will require certain changes in the existing reservoirs’ operational rules. These changes
may include the use of additional (increased) water for power generation during low
flows (winter months) and for irrigation or flushing operations in May when more water
is available. Flushing in May when crops are at a mature stage and do not require
irrigation will also provide the opportunity to re-fill the reservoirs in the succeeding high
flow months (June—July). Although the overall flow volume at Besham Qila has been
increasing slightly, the flow contribution of the catchment between Partab Bridge and
Besham Qila (Zone 2) has been decreasing and causing substantial sediment deposition
and an overall decrease in the SSLs received at Besham Qila. Despite the fact that we
did not include the impact of landslides on sediment deposition, the current findings are
of crucial importance for 143 existing or planned dams and other construction projects in
the upper Indus River, especially upstream of the Partab Bridge, which has a glacier-fed

catchment and is sensitive to change in river discharges.

5.6 Conclusions

Reconstructed suspended sediment load (SSL) time series using wavelet neural networks
(WA-ANNSs) along with the innovative trend test, the Mann-Kendall test, Sen’s slope
estimator, the change point detection test and linear regressions have shown a shifting
trend from the summer (June, July and August) to the spring and winter months due to a
change in water availability at the upper Indus River over the past 50 years. The spatio-
temporal trends between discharges and SSLs are disproportionate. This disproportional

behavior and the significant trends strongly disconfirm the hypothesis that future inflows
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and SSLs are similar to the previous ones for reservoir sedimentation studies for the upper
Indus River. In addition, the SSLs recorded at Partab Bridge are depositing in the river
channel between both gauges. This deposition process has led to a long-term decrease
in SSLs, in contrast to a long-term increase in flow volume at the Tarbela dam. For
future water and food security along the Indus River command area, it is necessary to
estimate the impact of long-term SSL variations on the existing and planned water storage
capacities of the reservoirs. Moreover, the impact of planned construction activities along

the upper Indus River, which contains enormous sediment deposits, should be evaluated.
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Chapter 6

An Innovative Approach for Modelling
Sedimentation in Reservoirs

This chapter is published as:

Ateeq-Ur-Rehman, S.; Bui, M.D.; Hasson, S.u.; Rutschmann, P. An innovative approach
to minimizing uncertainty in sediment load boundary conditions for modelling sedimen-
tation in reservoirs. Water (Switzerland) 2018, 10, 1-27, doi:10.3390/w10101411

Abstract: A number of significant investigations have advanced our understanding
of the parameters influencing reservoir sedimentation. However, a reliable modelling of
sediment deposits and delta formation in reservoirs is still a challenging problem due to
many uncertainties in the modelling process. Modelling performance can be improved by
adjusting the uncertainty caused by sediment load boundary conditions. In our study,
we diminished the uncertainty factor by setting more precise sediment load boundary
conditions reconstructed using wavelet artificial neural networks for a morphodynamic
model. The model was calibrated for hydrodynamics using a backward error propagation
method. The proposed approach was applied to the Tarbela Reservoir located on the Indus
River, in northern Pakistan. The results showed that the hydrodynamic calibration with
coefficient of determination (R?) =0.969 and Nash-Sutcliffe Efficiency (NSE) =0.966 also
facilitated good calibration in morphodynamic calculations with R>=0.97 and NSE—0.96.
The model was validated for the sediment deposits in the reservoir with R?=0.96 and
NSE=0.95. Due to desynchronization between the glacier melts and monsoon rain caused
by warmer climate and subsequent decrease of 17% in sediment supply to the Tarbela dam,
our modelling results showed a slight decrease in the sediment delta for the near future

(until 2030). Based on the results, we conclude that our overall state-of-the-art modelling
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offers a significant improvement in computational time and accuracy, and could be used
to estimate hydrodynamic and morphodynamic parameters more precisely for different
events and poorly gauged rivers elsewhere in the world. The modelling concept could
also be used for predicting sedimentation in the reservoirs under sediment load variability

scenarios.

6.1 Introduction

Reservoir sedimentation is a serious issue in many parts of the world. On average, the
annual rate of decrease in the world’s reservoirs’ storage capacity is approximately 1%.
Together with the increase in world population, non-sustainable development and use of
water resources, and the imminent threat associated with climate change, it may cause
a crisis in water supply [53, 54|. In Asia alone, 80% of the useful storage capacity for
hydropower production will be lost by 2035, while 70% of the storage volume used for
irrigation will be lost to sedimentation by 2025 [52]. Pakistan, where no new large water
storage has been constructed since the Tarbela dam in 1974, is facing a similar situation.
The Tarbela dam has also lost 40.58% of its storage capacity due to high sediment trap
efficiency [148]. Consequently, the country’s reservoirs’ water holding capacity is sufficient
only to supply 30 days’ requirements, and has been decreasing [45]. The decrease in water
supply from reservoirs (such as the Tarbela) will affect millions of people who depend on
the water supply and could lead to internal migration and severe geopolitical crises [20, 46].
Hence, it is necessary not only to operate the existing water storage capacities efficiently
but also to construct reservoirs so as to trap less sediment. Especially in a scenario
where reservoirs are the key infrastructure in mitigating the effects of climate change by
their capacity to store and regulate water supply, the expected increase in hydrologic
variability will demand more water regulatory capacity [52]. In addition, optimizing
reservoir sedimentation will require new techniques for sediment load (SL) estimation, as

conventional methods are no longer adequate or reliable.

The conventional method used to estimate SL, i.e. sediment rating curve (SRC),
has limited accuracy due to complex sediment transport processes such as the hysteresis
phenomenon |26, 3, 149|. For example, the mean deviation between the predicted SL using
SRC and the measurements conducted for the Tarbela dam over a period of 26 years was
approximately 40% [3]. A poor SL estimation affects the boundary conditions of the
modelling process and may cause a circular error in reservoir sedimentation modelling,

which subsequently results in the poor quality operation rules that ultimately contribute
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to the structure’s life cycle. Additionally, applying past data without modification for
future modelling can also increase the circular error. 4] found a significant trend for the
flow and SL in the Indus River, where summer flows have been decreasing, while pre-
summer, post summer and winter flows have been increasing. Therefore, assuming that
future flows and SLs are similar to past ones is not appropriate for reservoir sedimentation
studies for the existing and planned dams on the Indus River [37, 43, 21, 44, 4]. Even the
trap efficiency calculated using [66] curves may result in plausible over-or-underestimates
of the trapped sediment volume. The same can also happen by calibrating a numerical
model of a planned hydraulic structure with an (upstream or downstream) existing nearby

dam.

The Tarbela dam is used as a standard for the design of planned (30,000 MW) hy-
draulic structures in the Upper Indus Basin (UIB). For studying reservoir sedimentation
and designing of sediment routing facilities (invert level of low level outlets, bypass tunnels
or location of power tunnels intakes), some numerical models have been developed [6]. In
previous studies only 1D numerical models (HEC-RAS, HEC6-KC, RESSASS) have been
used for Tarbela and other planned structures in UIB, due to their simplicity and lower
computational time [57, 58, 15, 6, 1, 59]. The sediment boundary conditions in these
models were based on SRC estimates. A 1D model can be used in simple topography to
assess the cross-section averaged sediment deposition/erosion and the life of reservoirs.
However, the SL boundary conditions based on SRC estimates may lead to false predic-
tions. On the other hand, designers (in the detailed design stage) also need a more precise
estimate of sediment concentrations with regard to different outlets, tunnels, etc., (and at
different locations), to enable them to optimize sedimentation related facilities [60]. Since
a 2D depth averaged model with more precise boundary conditions can provide more
detailed information (in both simple and complex topographies) anywhere in the domain
for shallow waters (when the 3D nature of the processes exists near the main dam body is
of minor importance [150, 151]), its application is suitable for the Tarbela and other sim-
ilar existing/planned hydraulic structures, where due to high width-depth ratio, vertical

velocities are smaller than horizontal ones and pressure distribution is nearly hydrostatic.

For SL estimation, wavelet artificial neural networks (WA-ANNs) have performed well
due to their ability to adjust for the hysteresis phenomena by decomposing the data
time series in the time-frequency domain and revealing the information from a given
data scenario |26]. However, there is a research gap in the literature with respect to
reducing the uncertainty factor (contributing to accumulation of sediments in reservoirs)

using WA-ANN estimated sediment loads (SLs) as a model of boundary conditions. In
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addition, the computation time of 2D and 3D models for long term simulation of large
systems such as the Tarbela dam is also very high. To address these research gaps,
we employed a TELEMAC 2D open source model developed by Laboratoire National
d’Hydraulique et Environnement (LNHE) France, which has also been modified by the
Chair of Hydraulic and Water Resources Engineering, at the Technical University of
Munich for graded sediment transport [63]. Since the modified code can run on computers

with vector and parallel processing, the CPU time can be very significantly reduced.

Calibration is the process of setting the parameters of the model to ensure that the
calculated values agree with observations. The validation process demonstrates whether
the predictions of the calibrated model agree with the observed data set that is different
from the data used in the calibration process. In this study, we calibrated our model using
hydrological, and morphological data from the Besham Qila and Tarbela dam from 1983
(first comprehensive survey after its construction in 1974) to 1985, while the data from
1990 was used for the validation process. The calibration period of two years covers both,
dry and wet, hydrological variations for the river. For example, 1984, with a flow volume
of 83.8 billion m® (BCM) and SL of 209.6 million tons (Mt) was among the highest peak
flow /SL years from 1969-2008, whereas 1985 had a lower flow/SL than corresponding
averages. Similarly, the validation period of five years (1986-1990) also covers both dry
and wet periods [4]. The computational time for hydrodynamic calibration was reduced
using an automatic calibration method, which updated roughness for each mesh node us-
ing backward error propagation. The boundary condition of the morphodynamic model
(in cascade modelling) was modified based on [3] studies where (due to the strong hys-
teresis phenomena) daily SL series was more precisely reconstructed from non-continuous
suspended sediment (SSC) samples using WA-ANN. The overall performance of the mod-
elling results was assessed using statistical performance parameters. To confine the length

of this paper, detail of daily SL series reconstruction is not repeated here.

6.2 Methods

6.2.1 Study area

The Tarbela dam was constructed in 1974 on the Indus River to help in regulating the
seasonal flows both for irrigation and power generation (Fig. 6.1). The dam supplies 50%
of the total irrigation and 40% of the total energy production in Pakistan. The Tarbela

Reservoir is embanked by three dams; the main embankment is 2,750 m long and 143
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m high. The reservoir had an initial water storage capacity of 11.6 billion m3® (BCM)
with reservoir length extending approximately 80 km. The outlet works consist of four
tunnels cut through the right abutment of the main dam plus a fifth tunnel between the
main dam and the spillways on the left bank. The total installed capacity of the dam is
currently 4,888 MW, 83% more than was originally envisaged in the initial design, with
several turbines installed on tunnels 1-4 (Fig. 6.2). This also includes a recently installed

scheme on tunnels 4 under Tarbela IV extension project, which has a power generation

capacity of 1,410 MW [152].
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Figure 6.1: Location map of the study area, modified from |[6]

Since commissioning, sedimentation in the Tarbela Reservoir has been a concern due
to very high inflow of the sediments from the Upper Indus River, i.e. approximately
160-200 Mt/yr. This is largely due to the erosion effect of the glaciers that supply much
of the flow. The Indus Basin upstream of the Tarbela dam has an area of about 169,650
km? (Fig. 6.1), of which over 90% lies between the great Karakoram and the Himalaya,
ranges. The snowmelt waters from this region contribute a major part of the annual flows
regulated by the reservoir. The remainder of the Basin lying immediately upstream of the
dam (Fig. 6.1) is subject to the monsoon rainfall primarily during the months of July to

September. The peak flow due to snowmelt can be as high as 5,660 m?/s to 11,300 m?/s
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Figure 6.2: Sediment delta development in the Tarbela dam

with an additional rainfall contribution typically reaching a maximum of 5,660 m?/s. The

average annual inflow to the Tarbela Reservoir is 81 BCM [65].

Study of |3] noted that from 1969-2008 the annual sediment inflows into the reservoir
varied between 92-270 Mt, which reduced the water storage capacity by 35% (Fig. 6.2) by
2011. The decrease in the storage capacity is a concern as it could result in reduction of
irrigation supplies/allocations as per the Historic Apportionment Accord singed between
the provinces in 1991 [153] and power supply. In addition, the impact of a delta created
by the sediment deposits approaching the main dam is likely to block the power intakes.
A recent alarming event at the Tarbela occurred in summer season of 2018 when reservoir
levels dropped considerably, resulting in temporary blockage of power intakes. As the
storage capacity of the reservoir reduces, more sediment will pass through the power
intakes and likely to damage the turbine blades/runners. The problems may also be
aggravated by the instability of the downstream sloping face of the delta [14] coupled

with an occurrence of a earthquake [65].

6.2.2 Data description

The available sediment transport data for the dam consists of a long term hydrologi-

cal database of published annual suspended sediment records and hydrographic surveys
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conducted each year since 1983 (first comprehensive survey after the dam’s construction
in 1974). The hydrographic surveys are conducted using a systematic sounding method
along the 73 cross sectional range lines, which covers the whole dam area, i.e. 161 km?.
Approximately 3,500-4,000 measurements of the bed level changes, water depths, and
water surface elevations along these range lines are available, which were mostly collected
during each survey conducted from September to November. The distance between the
cross sections (range lines) and the (measured) data points along these cross sections is
not uniform. An average distance between each cross section along the river thalweg is
approximately 1.16 km. However, compared to the upstream (upper periphery of the
reservoir), the distances between the cross sections are smaller near the dam. The dis-
tance between the measured data points along the cross sections (lateral distance in y
direction) also varies with a mean of 39 m. The mean cross sectional width near the
dam axis is approximately 4-5 km, which reduces to only 300-500 m at the upper periph-
ery. Therefore, the major ponding area is near the dam axis and contains huge sediment
deposits (Fig. 6.2).

Long-term continuous discharge and discontinuous suspended sediment concentration
(SSC) sampling data is available at Besham Qila, which functions as an inflow gauge
station for the Tarbela dam. On average, the SSC sampling frequency at the Besham
Qila gauge station is 22% of annual daily sampling, therefore a daily time scale can be
established using a sediment rating curve or an ANN and WA-ANN techniques [3]. In
the present study, we used a WA-ANN technique from [4| study, which reconstructed the
SSLs with Nash-Sutcliffe Efficiency (NSE)—0.837 for the calibration and NSE—0.871 for
the validation period (Tab. 6.1). The Indus River transports more silt (47%) compared to
sand and clay (Tab. 6.2); and 90% of it is trapped in the dam [19]. The density of sand,
silt and clay is 1,535, 1,330, and 1,170 kg/m?. Although, observations show that there is
no clear boundary of sizes between cohesive and non-cohesive sediments, the definition of
cohesive sediment is usually site specific. Normally, cohesion plays a significant role for
sediment sizes smaller than 2 1 m in reservoirs (including the Tarbela). We, therefore,
used cohesionless modelling [154, 19, 155]). Most of the transport processes occur in the
summer months; 84% of the total annual discharge and 99% of the SSL transport occur
from May to September (Tab. 6.3 and Fig. 6.3).

Water depth in the reservoir varies from a maximum 150 m near the main dam to
mostly 20 m upstream. To secure the stability of the dam and the slopes on the both
banks along the reservoir, the maximum lowering and rising rate for the reservoir during

operation, is 4 m/day and 3 m/day respectively between reservoir levels 396-460 m and
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only 1 m/day up to the maximum conservation level (472.5 masl). The average slope

1m
892m?

erage slope of 1é%m. More detail on data availability, data quality, re-construction and

distribution can be found in |67, 3, 4].

upstream of the river bed in 1979 was which became flatter in 2010, with an av-

Table 6.1: Statistical performance of WA-ANN for reconstructing SSL in study period
(only high flows from May to September). Sediment load was calculated in |4]

Process Duration R? RSR NSE

Calibration 1984-1985 0.842 0.019 0.837
Validation ~ 1986-1990 0.888 0.019 0.871

Table 6.2: Mean representative size classes of SSC

Sand
Grain size (mm) 1.0 0.5 0.25  0.125 0.0625 Pan
Fraction (%) 100 99.87 9698 85.85 71.98 71.97
Silt
Grain size (mm) 0.0442 0.0312 0.0221 0.0156 0.011 0.0078
Fraction (%) 64.51 57.12 4959 41.07 32.70  25.29
Clay
Grain size (mm) 0.0055 0.0039
Fraction (%) 17.43  10.32

Table 6.3: Suspended sediment load and flow volume distribution in million tons (MT) and
billion cubic meters (BCM) from 1984-1990. Outflow also includes the minor contribution
(0.04% and 0.16%) of the Siran and Brandu tributaries

Months Average SSL Average inflow Average outflow

(Mt) (BCM) (BCM)
Jan-Apr 0.98 5.67 11.85
May-Sep 157.9 65.54 55.18
Oct-Dec 1.11 5.50 11.25

6.2.3 Model system

TELEMAC is an open source finite element flow model on an unstructured, triangu-
lar mesh [61]. Whereas SISYPHE is a sediment transport model, which is capable of
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Figure 6.3: Sediment inflow, reservoir water level and discharges in 1984 (dash line rep-

resents outflow from the dam).

modelling sedimentary systems containing very fine to medium sand in suspension or as
bedload [62]. Both models provide the opportunity to the users to adapt and modify the
codes to facilitate a better simulation performance. In addition, the software package
programmed for the parallel processing option, which significantly reduces the simulation
time of study domains, have enormous mesh nodes. The opportunity to modify the source
code also allows to implement an automatic calibration concept using Matlab or other
programming languages. Different numerical schemes are available which can be selected
according to study requirements, available computational power, time availability and de-
sired accuracy. However, an edge based N-scheme based on a positive depth algorithm is
a good compromise between accuracy and computational time [62]. The scheme is stable
for the Courant number during each time step where it remains less than 1. Calculating a
fixed time step over which the Courant number always stay below 1 is, nevertheless, chal-
lenging. Therefore, a variable time step option can be used where the model automatically
executes intermediate time steps and the Courant number stays below a given value. The
variable time step option is useful for simulations over several years or decadal, during
which a river catchment undergoes several dry and wet hydrological cycles of run-off and

subsequent sediment load.

The main factors controlling the sand transport are: advection by currents, settlement
under gravity, turbulent diffusion in all directions, and exchange of sand between the
flow and the bed. Two methods, chaining or internal coupling, are used to link the
hydrodynamic and morphodynamic models|62]. In chaining, both hydrodynamic and
morphodynamic models perform independently. For morphodynamic calculations the
flow field is obtained from a previous hydrodynamic simulation where the bed is assumed

to be non-moveable. Due to the difference in time scales of hydrodynamics and bed
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evolution, this coupling method is normally used to model simple flows and small bed
changes. The chaining coupling method does not conserve the mass due to change in
the flow field while the bed evolves, which can lead to numerical instability. In internal
coupling, the models communicate through a quasi-steady morphodynamic time stepping
approach and both models (TELEMAC and SISYPHE) can be run fully coupled in such
a way that after TELEMAC has computed the flow, the flow field can be used at each
time step by the SISYPHE to calculate the sediment transport and resulting changes in
the bed. The new bathymetry is passed back to the TELEMAC to calculate the new flow
field on the next time step. If the flow is stationary and the bed changes in a time step
are small compared to the water depth, a morphological speed up is used to reduce the
computational time [156, 157, 158, 62, 159].

6.2.3.1 TELEMAC-2D for hydrodynamics

The TELEMAC 2D solves the following 2D shallow water equation for hydrodynamics.
The equations were derived from the Navier-Strokes equations by taking the vertical

average:

Oh  J(hu)  O(hv)

ot * Ox - oy =0 o
d(hu)  9(hu*)  O(huv) 0Zy  Tuw
o T Tor oy "9 p o2
(hv)  O(hv?*)  O(huv) 0Zs Ty
o TTay e T Myt 03

Where h = depth of water (m); u,v = depth-averaged flow velocity components in
x and y direction, respectively (m/s); g — gravitational acceleration (m/s?); Z, = free
surface elevation (m); ¢ = time (s); z, y = horizontal Cartesian coordinates (m); p =
density of water (kg/m?); 7, and 7, = depth-averaged turbulent stresses. The bed shear

stress is represented as a quadratic function of velocity:

_ pC(u )l

6.4
2

To(z,y)

ml/s)7

Where C; is roughness coeflicient which can be calculated using Manning (n: ™

Chezy (C: @), or Nikuradse (N: mm) equations.
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6.2.3.2 SISYPHE for morphodynamics

The sediment transport model, SISYPHE, simulates river bed morphodynamics by cal-

culating temporal changes in bed elevation Z, using the Exner equation:

8Zb a((Sbe) a(Qt,x) 8(qt7y)
o "ot o dy

(1—pr) +nle—nlg =0 6.5

Where Z), — bed elevation (m); 6, — bed load layer thickness (m); p/ — bed porosity (-
); ¢ = sediment concentration in bed load layer (m*/m?); ¢, ., = total sediment transport
in z-direction (m?/s); ¢, = total sediment transport in y-direction (m?/s); nt., n/y are

erosion and deposition rates, respectively (m/s).

The SISYPHE model assumes the Rouse concentration profile, from which the equi-

librium depth-averaged concentration is calculated.

6.2.4 Model setup

6.2.4.1 Grid mesh

The geometry of the Tarbela dam reservoir area was drawn from the Tarbela Reservoir
Sedimentation Survey conducted in 1983. The survey along the Indus River was conducted
from dam axis (0 km) to 88.10 km upstream. The reservoir bathymetric survey conducted
by the Water and Power Development Authority Pakistan (WAPDA) proceeded from the
left river bank to the right river bank, while looking downstream. The y distance (m)
along each cross section starts from left river bank (with an absolute value of zero) to
a maximum at the right river bank. The z distance (m) along the river starts from
the main dam axis (central line) to a maximum at upstream (upper periphery of the
reservoir (88.10 km)). The z is the river reservoir bed elevation in meters above sea level
(masl) at each x and y distance. At each cross section, there was information of the
distance along the left river bank, the distance along the main river channel (centre line),
and the distance along the right river bank, i.e. at each cross section three values of
x-distance. All measurements of z at each cross section were between the left and right
river bank. On average 47 measurements were taken on each of the 73 cross sections,
which resembles a total of 3,455, excluding the cross section (R/line) 62, where no data
is available for 1983 (see Fig. 6.4). We excluded the Siran and Brandu tributaries (due

to their minor contribution in the Tarbela dam) from the reservoir geometric model. To
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create the geometry, SMS 12.2.9 developed by the Aquaveo and the open source software
BlueKenue was used. In order to convert the local coordinates of the data points on
each cross section to global coordinates (Cartesian coordinate system), the y distance was
transformed with AutoCAD Civil 3D 2018 (Fig. S4). The final geometry applied in the

numerical model is shown in Fig. 6.4.

An unstructured mesh of various sizes, particularly a finer one for the areas where the
river meanders, was generated. The final mesh contains 138,000 mesh elements repre-
senting 171 km?. In selecting cell resolution, we tried to achieve a reasonable compromise

between accuracy and computational time.

To confirm the geometry approximation, we compared elevation-storage volume curve
with the observation (which does not include the volumes of the Siran and the Brandu
tributaries) as shown in Fig. 6.5. We obtained the statistical performance parameters
NSE—=0.99, R?=0.99, and a relative difference between the measured and the computed
volume—1%. Furthermore, the longitudinal profile of the mean measured and calculated
river bed is also shown in Fig. 6.6. The results confirmed a correct representation of the

grid mesh used in the numerical model.
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Figure 6.4: Measured data points (grey) along cross sections/range lines and TELEMAC
simulated water depth at 30 September 1983

6.2.4.2 Initial and boundary conditions

As an initial condition, we filled the reservoir up to the maximum conservation level, i.e.
472.5 m, so that the model can attain a stable condition at the beginning. In addition,
we also set the SSC in equilibrium. In the numerical model, the vertical variations in the

SSCs and river flow were considered small compared to their horizontal counter parts.

The daily measured discharges and the WA-ANN reconstructed suspended sediment

loads (SSLs) were applied as upstream boundary conditions while the reservoir water
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levels (RWL) were kept as the downstream boundary condition. We used the data from
1983 for hydrodynamic calibration while the data from 1984 to 1985 was used for the
morphodynamic calibration and from 1985 to 1990 for the validation. We also omitted
the low flow periods (from November to March (Tab. 6.3)) from the modelling due to
their small contribution in the annual SSLs [4]. We also excluded small tributaries, i.e.

the Siran and the Brandu, due to their minor (0.04% and 0.16%) contribution to the total

sediment load entering the Tarbela Reservoir [19].
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Figure 6.6: Mean observed and approximated river bed
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6.2.5 Model performance

To evaluate the performance of the TELEMAC/SISYPHE model in terms of accuracy
and consistency in predicting reservoir water depths and bed levels, the three following
statistical measures were employed: (a) Coefficient of determination (R?), which is an
index of the degree of relationship between the observed and simulated data, ranging

from 0 to 1, as follows:

P _ . —
Z(Xiobs _ Xobs)(Xiszm _ stm)
R* = = 6.6

P _ P ) =
\/Z (Xiobs _ Xobs)2 Z(Xlszm _ stm)2
=1 =1

Where X2, XM represent i’ value of observed and simulated parameters, respec-

tively, where X denotes their mean values.

(b) Observations standard deviation ratio (RSR), which is the ratio of root mean
square error (RMSE) and standard deviation (STDEV) of the observed data, as follows:

RMSE /3 (X — Xy

STDEVy,  [r -
33X — 2
i=1

RSR varies from 0 to any positive value. A lower RSR value indicates a better per-

RSR = 6.7

formance of the model simulation.

(c) Nash-Sutcliffe Efficiency (NSE), which is a statistical measure to determine the
relative magnitude of the residual variance compared to the measured data variance [160],

as follows:

(Xiobs _ Xzszm)2
NSE=1-=! 6.8
(XiObS _ Xobs)2

=1

S| M

-
Il

Although negative values are possible, the NSE generally ranges from 0 to 1. NSE

= 0 indicates that the model is no better than simply forecasting the mean value. The
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closer the value of NSE to 1, the better the model performance. The simulated results
are normally referred as good when the NSE is higher than 0.75 and satisfactory when it
lies between 0.36 to 0.75 [115]. To define a stopping criteria (Eq. 6.17) for hydrodynamic
calibration, we assigned equal weight to all three statistical parameters in the form of a

statistical mix (S) as follows:

_ R*+(1—-RSR)+ NSE

5 3

6.9

S can vary from 1 to a negative value, where 1 indicates a best performance of the

model.

6.2.6 Model parameters and automatic calibration

The information about the Tarbela dam other than daily inflows, reservoir water levels,
and WA-ANN reconstructed SSLs are: (a) volume of sediments deposited each year after
the flood season (between October-November), (b) 72 longitudinal profiles along the reser-
voir over the period 1983 to the present, (c) composition of the sediment deposits in some
areas, (d) flow velocities measured with an ADCP at several cross sections, (e) outflow
discharge and sediment concentration. This information were used for hydrodynamic and
morphodynaic calibrations. The automatic calibration algorithm was developed to save
computational time. We edited and controlled the TELEMAC and SISYPHE models
with a single Matlab code (Fig. 6.7). The TELEMAC and SISYPHE models required
specifying several parameters such as method for parametrising fraction coefficients, ini-
tial particle size distribution, sediment transport (suspended and bed load) formulae,
critical Shield parameter, and settling velocity. For the suspended sediment calculations
we tested different transport formulae. The critical Shield parameter was set to 0.047 for
the simulations. We provided settling velocities (m/s) to the model using the following
equation [161, 162]:

7(8_1256@07 if dso <1074
W, = %(\/1 +0.018=00%0 1), if 1074 < dsp < 107° 6.10
L.1y/(s — 1)gdso, otherwise

To deal with limitation of the numerical scheme, which can arise due to a numerical

error and can create negative water depths, we specified a minimum water depth of 1
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Figure 6.7: Algorithm for model calibration. The algorithm for TELEMAC and SISYPHE
works in an uncoupled way where morphodynamic calibration only start after hydrody-
namic calibration finished.

cm in the whole study domain. As the Indus River has an alluvial bed, we specified an
erodible layer thickness of 100 m. The Manning roughness (n) was calculated using a

back propagation error method (discussed below).

Based on preliminary results for the morphodynamic calibrations, we eventually used

the [161] suspended sediment transport formula (Eq. 6.11) with different reference eleva-
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tions (Z,.s) by changing total bed roughness (k). We also tested different friction angles

and bedform correction factors for the sediment transport in the calibration process.

(r_’ —1)066
Ceq = 0015d50 X m 6.11

Where 7., is critical shear stress (N/m?), D, is dimensionless grain diameter, Z,.;
is reference elevation which can be calculated after [161] using maz(%;0.01m), while k,
is total bed roughness (m) and is obtained from hydrodynamic calculations (Eq. 6.16:
friction coefficients from hydrodynamic results) and type of bed-forms (flat, smooth or
ripples bed). The 7 is total shear stress (N/m?) includes skin friction which can be

calculated using Eq. 6.12:

=X 6.12

Where 7, is total bed shear stress and p is bed form coefficient calculated as follows:

¢y

=1 6.13
H C;

Where Cf is the combined friction of both drag forms and skin friction, and can be
obtained from hydrodynamic results. C’} is a friction coefficient due to skin friction and

can be calculated as follows:

log( lzkzh

Where k is von Karman coefficient(—0.40), and k. is roughness height and can be com-

, k 2
€ =2 (i) 6.14
)
puted as:

]{Z; = Qs X d50 6.15

Where ay; is a calibration coefficient and dsy mean particle diameter (m). Although
the shallowness assumption is compromised due to non hydrostatic pressure distribution
near the main dam, to model the bed level changes in the dam ponding area on a large
scale we assumed that pressure distribution is virtually hydrostatic |150]. More details

on morphodynamic calculations of the SISYPHE model can be found [62].
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The Manning roughness (n) is used as one of the key parameters for flow calibration.
The hydrodynamics was calibrated using the observed water levels at different locations
along the 72 cross sections from 1983. The morphodynamics were calibrated using the
river bed level changes along these cross sections from 1985. To compare the measurements
(3,455) in the calibration process we created a 2D surface, to obtain interpolated values
at the measured locations, by interpolating the simulated results using a 2D interpolation
method. Based on the comparisons between the simulated and measured values, the
relevant hydrodynamic and morphodynamic parameters were updated (Fig. 6.7). For
interpolation we used: (a) linear, (b) nearest point, (¢) natural, and (d) cubic interpolation

methods.

Initially, for hydrodynamic calibration a constant hydraulic roughness n=0.04 from
the literature [59, 76, 57| was used for the whole domain. In successive simulations, the

model calculated n for each node using a backward propagation error method stated in
Eq. 6.16:

M node = Mi—1,node — Mi—1,node X Pi—l,node x K
2

: = - 1< P<
Pz—l,node 1+ 6(_2><77i71,node) 1 where —1 < P < +1 6.16
; 1,node d; 1,nod
Ni—1,node = ne 06 T omoe where 7 = 2, 3, .., m
i—1,node

Where m represents numbers of simulations, d° represents observed and d® simulated
water depths (m), and 7 is a dimensionless gradient used to arrive an optimal n. P is
used to avoid over or undershoots of n. K is used to curtail significant changes in n due
to continuous large gradients n at certain nodes. In subsequent iterations, the roughness
to unmeasured nodes/points was assigned using a 2D linear interpolation method. The
model stops when the difference between successive statistical mix (S) is a minimum,

given here:

S; — Si—1 <0.0001 6.17

Where S is given in equation Eq. 6.9. The convergence depends on the selection of an

initial value of n.
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6.3 Results

For the computational grid mesh we used 1983’s comprehensive dam bathymetric sur-
vey. To calibrate the TELEMAC 2D model (with an automatic calibration algorithm)
we use the hydrological data from 1985. To calibrate the SISYPHE model, we used the
bathymetric survey from 1985. To validate the morphodynamic calculations, we use the
bathymetric survey from 1990. The simulation results were evaluated using the coefficient
of determinations (R?), observed standard deviation ratio (RSR), and Nash-Sutcliffe Ef-
ficiency (NSE). The results are discussed in detail below.

6.3.1 Model calibration

Since a better representation of the study domain in the form of a numerical mesh plays a
significant role in subsequent calculations, we tested different types of mesh sizes to obtain
realistic results. Based on difference between measured and simulated water depths, we
calibrated the hydrodynamic model by updating Manning roughness (n) for the whole
domain using an automatic calibration approach mentioned above (Fig. 6.7). The cal-
ibrated flow model was used further for calibrating and validating morphodynamics as
well as applying to predict (upto 2030) the bed level changes in the reservoir using more
precise sediment load boundary conditions reconstructed with a WA-ANN (for WA-ANN
model development please see [4]). The overall performance of the modelling concept
was assessed using three statistical performance parameters, i.e. R, RSR, and NSE. The

hydro-morphodynamic results of the study are described below.

To obtain the simulated water depths at the measured points, we applied a 2D scatter
data interpolation method. The method interpolates the surface and returns the inter-
polated values at the desired points (z,y). The surface always passes through the mesh
data points. In our study, we tested four different interpolation methods, namely, (a) lin-
ear, (b) nearest point, (¢) natural, and (d) cubic. Due to the smooth river bed along
the cross sections in the Tarbela Reservoir, a linear interpolation performed better than
the other mentioned methods. Therefore, by using linear interpolation, we compared the
interpolated and measured depths and updated n in the whole study domain using a back
propagation method (Eq. 6.16). The final roughness (n) ranged from 0.035 to 0.045 with
a mean of value of 0.0395. The roughness was lower downstream near the dam and in the

middle of the channel, and vice versa (Fig. 6.8).
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Figure 6.8: Interpolated Manning roughness (n). Grey lines represent the measurements
along the cross sections/range lines (R/line).

Initially, using a uniform value of n=0.04, we obtained an absolute average difference
of 1.6 m between the simulated and measured water depths. However, the difference
decreased to only +1 m after 5 iterations. The mean relative difference between the
simulated and measured data points was only 0.072%. At some cross sections we only
have measurements near the river banks, that is why their mean appears lower than
neighbouring cross sections (Fig. 6.9). Comparison of water depths at some selected cross

sections is shown in Fig. 6.10.

Water depth convergence depends upon an initial estimate of n. Using a single rough-
ness (n=0.04) from the literature |59, 76, 57| for the whole domain of 171 km?, initially
we obtained a statistical mix (S)=0.933, R?=0.90, and NSE=0.898 (Fig. 6.11). The per-
formance of the model increased to a statistical mix—0.978, R?=0.969, and NSE—0.966
by iterating n for each node point as per Eq. 6.16 and the process stated in Fig. 6.7. The
approximated computational time in each simulation was 12-15 hours using a server with
20 physical cores (dual Intel XEON E5-2687W v3 @ 3.1 GHz) and 128 GB of RAM. Due
to the large standard deviation (33.9 m) and small RMSE (0.0988) in the water depths,
the observation standard deviation ratio (Eq. 6.7) remained in the range of 103 in all five

simulations.

Further, we used the calibrated flow model for morphodynamic calibration and vali-
dation. As 90% of the sediment load (SL) entering the dam consists of suspended load
[67, 4], we omitted bed load from the modelling process. For SL concentration, we used
[161] formula (Eq. 6.11). The bed roughness was updated using a skin correction factor
in the formula. The calibrated coefficient axs=3 (Eq. 6.15) provided the best results.

By varying different parameters (such as reference elevation, total roughness, etc.),

we conducted a number of different simulations until a good agreement between the
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Figure 6.10: Comparison between measured (circles) and simulated water depths at se-
lected cross sections (R/line) for 1983’ event. Measurements starts from orographically
left side of the reservoir.

measured and simulated result was found as presented in Tab. 6.4. We also updated the
TELEMAC/SISYPHE 2D code for all fractions of suspended SL boundary conditions. In

addition, the negative depth which arose due to numerical error was solved by specifying a

minimum water depth of 1 cm in the whole study domain. However, this overall minimum

water depth caused an excessive clay deposition due to its very low settling velocity—=

2x10 m/s at some nodes on high river banks. We solved this issue by specifying no SL
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Figure 6.11: Statistical convergence of water depths for 1983’ event

transport at equal or less than 1 cm water depth. Our final simulated results from May
1984 to October 1985 showed R?=0.97, RSR=0.36%, and NSE=0.96 (Fig. 6.12). There
was only 0.76% difference between the simulated and measured deposits in the reservoir.
However, the mean differences between the simulated and observed river bed was in the

range of —5 to 7 m.

Fig. 6.12 compared the mean computed and observed river bed along the river reach.
The disagreement between measured and simulated results at some cross sections located
in the upstream part of the river may be caused by large distance between the mea-
sured cross sections in this part of the river, distorting the in-between initial geometric

information (see Fig. 6.4).

There was also a good agreement between each measurement along the cross sections in
the ponding area (Fig. 6.13), where the Tarbela Reservoir has a sediment delta (Fig. 6.2).
The approximated computational time in each simulation from 1983-1985 for only high
flows (March to September - Tab. 6.3) was one week. After calibrating the model, we

used the 1985 simulated river bed for the validation process.

6.3.2 Model validation

We validated the model using the sedimentation survey conducted in 1990, which (includ-
ing cross section (R/line) 62) has 3,600 measured points of the river bed elevation along

73 cross sections. For validation, we ran the model for the five years (1986-1990) and
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Table 6.4: Formulae and value of different hydro-morphodynamic parameters (stated in
Eq. 6.10 to 6.16) used in the calibration process.

Parameter Value/methods
Hydrodynamics

Numerical scheme Centred semi implicit scheme plus SUPG
Solver for hydrodynamic propagation step Generalized minimum residual method
Equations Saint-Venant finite element
Hydrodynamic calibration factor (K) 1.0

Manning roughness (n) 0.035-0.045

Mean Manning roughness (n) 0.0395
TELEMAC and SISYPHE model coupling Internal
Morphodynamics

Bed porosity (p/) 0.375

Fluids viscosity (v) 1x 1076
Suspended sediment transport formula [161]
Calibration coefficient (ovs) 3

von Karman coefficient (k) 0.40

Shields parameter 0.047

Friction angle of sediment (¢s) 32

Minimum depth required for sediment transport 1 cm

Formula for deviation [163]

Parameter for deviation (52) [163] 0.85

Stream wise slope effect (/) 1.3

Solver for suspension Conjugate gradient
Critical evolution ratio 0.5

Numerical treatment of the advection term Edge-based N-scheme

compared the measured and simulated river bed elevations. The statistical comparison
showed R?=0.96, RSR=0.37%, and NSE=0.95, whereas the difference between the mea-
sured and simulated deposits was only 0.54%. Similar to the morphodynamic calibration,
the mean differences between the simulated and observed river bed were in the range of
—5to 7m (Fig. 6.14).

As with the longitudinal profile in the calibration process, we obtained good results
for the ponding area (Fig. 6.14). However, there were also disagreements between the
measured and simulated results at some cross sections located upstream of the ponding
area. In conformity with the calibration results, the model provided the results closed
to river bed elevations measured along the cross sections in the ponding area (Fig. 6.15).
The approximated computational time in each simulation from 1983-1990 for only high
flows (March to September - Tab. 6.3) was three weeks.
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Figure 6.12: Longitudinal profile of mean measured and computed river bed at the end
of calibration process
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Figure 6.13: Comparison between measured and simulated river bed at four selected
cross sections/range lines (R/line) at the end of calibration process. Measurements start
orographically from left side of the reservoir.
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of validation process
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Figure 6.15: Comparison between measured and simulated river bed at four selected cross
sections (R/line) at the end of validation process. Measurements start orographically from
left side of the reservoir.

6.3.3 Model application

Since the people, economy and agriculture of the Pakistan rely heavily on the water supply

from the Tarbela Reservoir, the current and future state of river discharges and corre-
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sponding water storages are a matter of high political sensitivity due to climate change
[164]. The political tensions over water availability are further exacerbated by existing
dwindling and planned storages. Hence, to evaluate the effect of sediment transport vari-
ability on the reservoir sedimentation and water storage, we applied a future discharge
series for (2016-2030) calculated by [24] and corresponding SSLs estimated using WA-
ANN [3, 4] (Fig. 6.16). The reservoir water levels from 2016-2030 were kept same as
2000-2015. The near future scenarios of WA-ANN estimated sediment load suggest a
substantial decrease (20 million tons (Mt)) caused by drop in the glacier melt and one
month delay in peak of flows and overall reduction in water availability. The mean an-
nual sediment load (SL) from 1969-2008 was 160 Mt with a mean annual discharge of 76
billion m® |4]. However, the mean SL from 2000-2008 was decrease to 146 Mt/yr with a
mean discharge of 75 billion m®/yr. Near future projections from 2010-2030 also suggests
a further decrease to 120 Mt/yr with a mean discharge of 75 billion m?®/yr. These dis-
proportional spatio-temporal trends between SL and discharges are primarily caused by
intra-annual shifts in flow discharges from summer to the winter under the influence of
warmer climates [24, 4]. Our modelling results also showed a stability in sediment delta
development due to an average 17% decrease in sediment supply in near future (Fig. 6.17).
Although, the overall water availability is expected to slightly decrease in the future, the
significant decrease in sediment load can help to store more water for multi-purpose use

(irrigation, hydropower, etc.) and was likely to increase the life span of the reservoirs.
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Figure 6.16: Predicted flow discharge and sediment load at the Tarbela dam



6.4. DISCUSSION 125

4:80vvv|vvvvv
I ] I J£
’ Pondiog. . AW
450 F : .
B
= I
o i
[<P)
=2 |~ Initial river bed 1983
2 400 | — Predicted river bed 2000
ao i TR ik be : — Predicted river bed 2010 )
/line- y  — Predicted river bed 2020
] Predicted river bed 2030
R/line-13 !
A I
1
350 + T -
"R/‘lipe‘_(‘s"A““A“:‘A““A““A““A““A
0 10 20 30 40 50 60 70 &0

Main channel distance (km)

Figure 6.17: Longitudinal profile of predicted river bed using WA-ANN predicted sediment
boundary conditions

6.4 Discussion

The automatic hydrodynamic calibration algorithm for the Tarbela dam improved the
model performance from R*=0.90 and NSE=0.898 to R?=0.969, and NSE=0.966 (Fig. 6.11).
In addition, more precise sediment load (SL) boundary conditions obtained using the
wavelet artificial neural network (WA-ANN) calibrated the model with R?=0.97 and
NSE=0.96 (Fig. 6.12). The model validated the results by predicting the reservoir bed
for five years (1986-1990) with R?=0.96 and NSE=0.95 (Fig. 6.14). Although the over-
all statistical performance of the model was good, it also over-predicted the river bed
(0.76%) in the calibration process, particularly upstream of the ponding area (Fig. 6.12).
However, the over-predictions were reduced to an average 0.54% in the validation process
(Fig. 6.14). The calculations for bed level changes in the ponding area, particularly for
the sediment delta, were close to the measurements in both the calibration and validation
processes (Fig. 6.13 and 6.15). In addition, our modelling also shows a stability in the
sediment delta development due to significant decrease (17%) in near future sediment

load entering the reservoir (Fig. 6.16 and 6.17).

The back propagation method has been successfully used in the training of artificial
neural networks for hydro-sedimentological studies [165, 105]. Using the same method
along with a 2D linear interpolation during calibration process, we were able to update

and interpolate the Manning roughness (n) for each node of the mesh. To achieve this,
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the TELEMAC model passed the hydrodynamic information (water depths) to Matlab,
which was compared with the observations in the form of matrices (Fig. 6.7). The differ-
ence was used to update n for the whole mesh using the linear interpolation method. The
overall set-up not only reduced the computational effort but also saved computational
time by using calculations in a more systematic way. Therefore, we were able to reduce
the difference between predictions and measurements in only five iterations (Fig. 6.11)
by employing the stopping criteria defined in Eq. 6.17, i.e. the difference between succes-
sive statistical mix (S) should be equal or less than 0.0001. The fast convergence with
the minimum possible number of iterations not only saved computational effort but also
provided us with an opportunity to curtail circular error in subsequent morphodynamic
calculations. Fast convergence within minimum possible iterations is always required
where large water bodies such as the Tarbela Reservoir (having hundreds of thousands
of mesh nodes) are being simulated, which requires huge computational effort. Although
the bed roughness has comparatively less influence in high water depths such as in the
Tarbela (water depth approx. 100 m), the automatic calibration algorithm can also be
used effectively in low water depth channels/rivers, where the influence of roughness on

hydrodynamic parameters is high.

The more precise SL boundary conditions also improved the subsequent performance
of SISYPHE calculations for bed level changes. In particular, the bed level changes in
the ponding area, which contained the sediment delta. As the sediment delta progresses
downstream towards the main dam, a precise representation of the delta in the modelling
process can provide a better understanding of the impact of different management options
necessary to preserve the functionality of the dam. In addition, the calibration period
(1984-1985), which represents both dry and wet hydro-sedimentological events, favoured
good calibration. Consequently, during the testing/validation period (1986-1990), which
also contains the second highest flow and SL year (from 1969-2008), the model performed
well. Therefore, the representativeness of the data sets used for calibration and validation
should be considered, because when the model is calibrated with a data set that represents

the characteristics of the hydro-sedimentological patterns will achieve good matching.

Although in terms of calculating total roughness using the [161] formula (Eq. 6.11)
the automatic hydrodynamic calibration has improved the morphodynamic calculations
by specifying the roughness for each mesh node, the main factors that influence reser-
voir sedimentation are: (a) inflow of both discharges and SLs, (b) particle size distribu-
tion of sediments, (c) specific weight of sediment deposits, (d) geometry of the reservoir,

and (e) reservoir operation rules [64]. The influence of these factors may vary prior to
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river and locational characteristics. Despite the fact that all these factors are to some
extent uncertain, and also cause uncertainty in the model outcome, the inflow discharges
and SLs are the most important factors contributing to the variation of accumulating
sediments in the reservoirs [166]. Measurements taken twice daily successfully reduced
the uncertainties in inflow discharge at Besham Qila. However, occasional /non-daily SSC
sampling still contributed to variation in accumulating sediments in the Tarbela Reser-
voir, particularly when the occasional measurements were transferred on a daily time
scale using conventional sediment rating curves. In a recent study, |59] modelled the
Tarbela’s delta using a 1D HEC-6 model. There was an average variation of 20 m (just
in one year) between the observed and simulated river bed at some cross sections (dur-
ing validation) in the dam ponding area. This variation could relate to uncertainty in
sediment load (SL) boundary conditions, which were estimated using a sediment rating
curve (SRC). The SRC has limited accuracy since it does not adjust complex sediment
transport processes related to hysteresis phenomena and temporary sediment storage in
the Upper Indus River [4]. For example, the mean deviation between the predicted SL
using SRC and the measurements conducted for the Tarbela over a period of 26 years
was as high as approximately 40%. However, using SL boundary conditions, estimated
using the WA-ANN model, the variation was reduced to a range of —5 to 7 m (using
TELEMAC/SISYPHE 2D model for 7 years) in the same domain (Fig. 6.12 and 6.14). In
another study [151] used a TELEMAC 2D model to assess the impact of sediment distri-
bution on the life of the Hirakud reservoir in India. The model slightly overestimated the
deposits at the inlet due to sudden expansion of inlets, which reduced the water velocities,
turbulences and shear stresses, and caused a delta there. However, with NSE=0.51-0.77,
the model reasonably represented the overall changes in the bathymetry of the reservoir
using daily measured sediment concentrations as SL boundary conditions. Therefore, the
more precise modelling of reservoir sedimentation significantly depends on the quality of
the input parameters and representation of geometry in the form of a numerical mesh.
The use of a 2D model not only helps to design correct reservoir operation rules for the
flushing of sediments but also contributes to diminishing circular error, particularly in the
presence of complex topography, where 2D models can provide more accurate predictions

in detail.

Interestingly a slight decrease in near future discharges caused by delaying glacier melt
[24] are stabilizing the sediment delta by decreasing sediment supply to the Indus River
at Tarbela dam (Fig. 6.16 and 6.17). Compared to an initial estimates by |[11] of 480
million tons/year (Mt/yr) or by [12] of 400 Mt/yr at the time of Tarbela’s construction,
the sediment load in 2020 to 2030 will remain only at 120 Mt/yr. This is mainly caused
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by a desynchronization between the glacier melt (major source of the flow discharges)
and monsoon rain, which will result in a subsequent decrease in peaks flows and cause
to reduced sediment transport due to decrease in effective discharges - the most effective
discharge is defined as a midpoint of the range of flows, which over a certain period
can transport a considerable proportion of the SSL [140|. Although, current findings
contradict the previous claims of high reservoir sedimentation due to climate change
[52, 167], the desynchronization has a positive effect on the life span and higher storage
capacities of planned hydraulic structures on the Indus River. Additionally, the drop
in short future sediment loads also negates the previous reservoir sedimentation studies,
which simply used the past hydro-meteorological data without modification to the future
predictions, particularly for the hydropower projects planned in the Indus River/Basin
|6, 58, 15, 1, 59].

Despite the fact that the SISYPHE predictions for bed level changes in the Tarbela
Reservoir are close to our measurements, omission of low flow/SL months from October
to April (Tab. 6.3), when reservoir water levels are reduced to minimum level (Fig. 6.3),
might have affected trap efficiency calculations and caused a 0.5-0.8% over-prediction.
However, to compute seven years (1983-1990, only high flows and SLs) of reservoir sed-
imentation required a three week simulation time using a server with 20 physical cores
(dual Intel XEON E5-2687W v3 @ 3.1 GHz) and 128 GB of RAM. To save computational
time and assess the effects of only significant SL contributing periods, we decided to omit

the low flow months from the modelling process.

The overall modelling approach can be used for better design of planned hydraulic
structures and existing ones in the Indus Basin, particularly in the Upper Indus Basin,
where the Tarbela dam is used as a standard /reference point for reservoir sedimentation
studies of 30,000 MW planned hydraulic structures. In the absence of any hydraulic struc-
ture or land use changes in the Upper Indus River/Basin, there are statistically significant
trends in discharges and SLs. Our cascade modelling approach using future SL can also be
used to improve sediment management strategies and update reservoir operation rules for
hydraulic structures. The SL boundary conditions for predictions can be estimated using
WA-ANN models and future discharges. A coupling of the TELEMAC/SISYPHE model
with a 1D model can reduce computation time, which could be useful for longer-range

predictions.
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6.5 Conclusions

In this paper the uncertainty factor related to sediment load (SL) boundary conditions
were diminished using WA-ANN and TELEMAC-SISYPHE models, respectively. The
flow model was calibrated using an automatic calibration algorithm along with more
precise suspended SL boundary conditions. To predict the sediment delta movement in
the ponding area, a hydrological and WA-ANN models were used to obtain the future
discharge and corresponding sediment load boundary conditions. Based on the study

results, we can draw the following main conclusions:

e More accurate WA-ANN estimated sediment load boundary conditions which better
represent the hysteresis phenomenon and hydrological variations for the Indus River
enabled the successive morphodynamic model to accurately predict the bed level

changes in the Tarbela dam.

e Automatically calibrating hydrodynamics improved the overall statistical perfor-
mance and reduced the calculation time for long-term simulations. In addition,
specifying the bed roughness for each mesh node using the back propagation error
method subsequently enhanced the performance of morphodynamic calculations by
providing better hydrodynamic variables and total bed roughness for the calculation

of sediment erosion, transport and deposit in the flow area.

e The desynchronization between glacier melt and monsoon rainfall due to warmer
climate will also cause a significant decrease in future sediment loads and subsequent
delta development. Therefore, past hydro-meteorological data (showing higher sed-
iment loads) cannot be used without modification when making future predictions,

particularly for the hydropower projects planned at the Indus River/Basin.
On the basis of these conclusions we would make the following recommendations:

e The presented modelling concept can be used to improve/design sediment manage-
ment strategies for the existing and planned hydraulic structures in other un-gauged

or poorly-gauged rivers.

e Although the effect of the bed roughness on the water depths in large dams is not
always dominant, the concept of an automatic hydrodynamic calibration can also
be used for other water bodies where roughness has a significant influence on water
depths.
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e In order to reduce computational time for long term morphodynamic predictions,
coupling of the TELEMAC 2D model with a 1D model/ANN is recommended.

Notation

The following symbols are used in this paper:

ADCP Acoustic Doppler Current Profiler

BCM billion cubic meter

Cp sediment concentration in bed load layer
Ceq equilibrium near-bed concentration

Cy roughness coefficient

Cf combined friction of both drag forms and skin friction
dso mean diameter

D, dimensionless grain diameter

d° observed water depth

d® simulated water depth

g gravitational acceleration

h water depth

HEC-RAS Hydrologic Engineering Center-River Analysis System
k von Karman coefficient

km kilometre

ks bed roughness

k. roughness height

masl mean above sea level

Mt million ton

MW megawatt

n Manning roughness
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Chapter 7

Conclusion and Recommendations

7.1 Conclusions

The present study was designed in the context of numerical modelling of sediment man-
agement studies in Pakistani reservoirs. The study used more accurate sediment load
boundary conditions with an automatic calibration algorithm which specify bed rough-
ness for each mesh node and subsequently enhance the performance of morphodynamic
calculations by providing better hydrodynamic variables and total bed roughness for the
calculations of sediment erosion, transport and deposit in the flow area. Five different
cases were documented with different types of sediment load estimation methods and
boundary conditions. The conclusions drawn from this study are summarized in the

following points.
e Estimation of sediment load deposits of Dasu Hydropower Project

To obtain a sediment deposition profile with pressure or free flow flushing in the reservoir,

a 1D numerical model can be used in pre-feasibility studies.
e Reconstruction of missing sediment load

WA-ANN can accurately predict the sediment load time series with a temporal variation
of more than one level for the Indus River. The new estimate of only 160 million tons
per year for the Tarbela dam is close to the real time field measurements. In addition,
the new estimate is lower than the published estimates, which can be attributed to the
substantial sediment storage in the relatively flat Tibetan Plateau and the Indus River

Valley between the Partab Bridge and Besham QQila gauge stations.



134 CHAPTER 7. CONCLUSION AND RECOMMENDATIONS

e Sediment load trends

The WA-ANN sediment load along with the innovative trend test, the Mann-Kendall test,
Sen’s slope estimator, the change point detection test and linear regressions have shown a
shifting trend from the summer to the spring and winter months due to a change in water
availability at the Upper Indus River over the past 50 years. The spatio-temporal trends
between flow discharges and SSLs are disproportionate. This disproportional behaviour
and the significant trends strongly disconfirm the hypothesis that future inflows and SSLs
are similar to the previous ones for reservoir sedimentation studies for the Upper Indus

River.

e TELEMAC 2D model

The well calibrated TELEMAC 2D model using more accurate sediment load boundary
conditions (obtained using WA-ANN) enabled the successive morphodynamic model to
accurately predict the bed level changes under a climate changing scenario in the Tarbela
dam. The Climate change has been affecting existing reservoirs on the Indus River due to
changes in boundary conditions, such as modified flow regimes, changed sediment loads,
and natural hazards. Therefore, a projected desynchronization between glacier melt and
monsoon rainfall can cause a significant decrease in future sediment loads due to change

in most effective discharges.

7.2 Recommendation for further research

Modelling of sediment transport using TELEMAC 2D model is highly challenging and

the following issues need further work:

e Reduction in computational time

Although the bed level predictions using TELEMAC model were close to the real time
measurements, to compute seven year (1983-1990, only high flows and SLs) reservoir
sedimentation required three weeks simulation time using a server with 20 physical cores
(dual Intel XEON E5-2687W v3 @ 3.1 GHz) and 128 GB of RAM. Therefore, to reduce
computational time for morphodynamic predictions, coupling of TELEMAC 2D model
with a 1D model/ANN is recommended.
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e Prediction of reservoir sedimentation and sediment delta

Since there are neither hydraulic structures at the Upper Indus River/Basin, nor land use
changes that will change the situation, future sediment loads can be estimated with WA-
ANN based on future long term discharge of hydrological models. Using these modified
sediment load boundary conditions for reservoir sedimentation can improve the overall
quality of hydraulic designs and the lifespan of reservoirs in the study area - in particular,

the modelling of the movement of the sediment delta in the Tarbela dam.

e Data availability

2D modelling requires additional data of different parameters compared to 1D for cali-
bration and validation processes. The data of these parameters is normally assumed or
obtained using laboratory experiments. Therefore, the 2D modelling is still restricted to
research institutions. Therefore, it is challenging to rely only on the outcome of WA-
ANN reconstructed boundary conditions with 2D modelling. However, to implement
the changeover to increase hydropower share in total energy mix and encounter climate
changes, using state-of-the-art modelling (2D or 3D) will encourage data collection agen-
cies to install new instruments for collecting more detailed data. This will not only provide
an opportunity to the researcher to use actual field data in future but also bridge the gap

between research and practice.
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.1 Supplementary material

Table S1: Statistical parameters of annual linear and quadratic trends of reconstructed
SSLs and observed discharges for the Besham Qila and the Partab Bridge sites. Note: Qg
is annual SSL in Mt, Q is annual flow volume in BCM for Besham Qila (1969 < y < 2008)
and Partab Bridge (1962 < y < 2008).

Trend Besham Qila Partab Bridge
Equation R? Equation R?
SSL linear Qs = —0.315097y + 786 0.0087 Qs = 0.555835y — 932 0.0148
SSL quadratic ~ Qs = —0.029615y2 +-117.465y — 116,312 0.0169 Q. = 0.131748y> — 522.485y + 518,161  0.1368
Flow linear Q = 0.075016y — 72 0.0082 Q= 0.155112y — 251 0.0863
Flow quadratic Q= —0.006747y2 + 26.908y — 26, 750 0.0153 Q= 0.002850:1/2 — 11.158y + 10,976 0.0906
3 12
1 — Measured
OF | WA-ANN
6l
—~ 8 [
o4 e
2 &
@ 4
2
J 2 J J k
0 { ‘ ,h y. J L L 0
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000
Samples (1969-2008) Samples (1962-2008)
(a) Besham Qila (b) Partab Bridge

Figure S1: Comparison between the mass of suspended sediment sampled daily and com-
puted results using WA-ANN models., (legends for Fig. S1b also apply for Fig. Sla).
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Figure S4: Transformation of Tarbela Reservoir Sedimentation Survey’s local coordinates
to global coordinates (Cartesian coordinates system) using AutoCAD Civil 3D 2018
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