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Abstra
t

High rates of soil loss and high sediment loads in rivers require e�
ient quanti�
ation

methodologies for the design of e�e
tive reservoir sediment management strategies. A


as
ade modelling of sediment management in reservoirs is a useful approa
h to address

these issues. Quantifying sediment load using 
onventional sediment rating 
urves, how-

ever, poorly a

ounts for the hysteresis phenomenon and hydrologi
al variations. Wavelet

transform 
oupled with arti�
ial neural networks (WA-ANNs) makes it possible to study

large basins and set more pre
ise estimation of sediment load boundary 
onditions for

reservoir sedimentation models. Following this approa
h, a 
as
ade modelling algorithm

was developed by the Chair of Hydrauli
 and Water Resour
es Engineering, Te
hni
al Uni-

versity of Muni
h, whi
h was applied to the Indus River and the Tarbela dam in northern

Pakistan. The methodologi
al framework 
onsists of �ve steps: (I) analysis of sediment

management using 1D modelling and reservoir sedimentation te
hniques (II) analysis of

sediment load estimation using arti�
ial neural networks (ANNs) (III) development of

wavelet-ANN (WA-ANN) model for estimation of suspended sediment load, (IV) based

on WA-ANN estimates, investigation of sediment load trends, and (V) use more a

urate

sediment load boundary 
onditions for modelling of reservoir sedimentation at the Tarbela

dam. The analysis 
arried out on the Indus River has enabled a better understanding of

reservoir sedimentation in the basin.

The analysis of sediment load te
hniques in this study indi
ates that WA-ANN 
an

pre
isely estimate the sediment load by a

ounting for the hysteresis phenomenon and hy-

drologi
al variations using a temporal resolution of approximately one year. It also demon-

strates that, 
ontrary to the 
onventional model, the sediment load at the Tarbela dam

gauge station is only 160 million tons per year and has been showing a de
reasing trend


aused by desyn
hronization between gla
ier melt and monsoon rainfall. Investigation

of sediment load trends reveals statisti
ally signi�
ant disproportional spatio-temporal

trends between sediment loads and dis
harges 
aused primarily by intra-annual shifts in

�ows. This disproportional behaviour and the signi�
ant trends strongly dis
on�rm the

hypothesis that future sediment loads are similar to the previous ones.

In modelling reservoir sedimentation, the un
ertainty in predi
ting the river bed-

level 
hanges 
an be diminished by using a 
as
ading modelling approa
h, whi
h uses

more pre
ise sediment load boundary 
onditions estimated by WA-ANN. The morphody-

nami
 model, whi
h was hydrodynami
ally 
alibrated with a 
oe�
ient of determination

(R

2

)=0.97, Nash-Sut
li�e E�
ien
y (NSE)=0.96 also better predi
ted (form 1985 to 1990)
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the river bed 
hanges (espe
ially delta) at the Tarbela dam with R

2

=0.96 and NSE=0.95.

Due to the desyn
hronization e�e
t primarily 
aused by proje
ted warmer 
limate and

subsequent de
rease of 17% in the sediment supply to the Tarbela dam, the modelling

showed stabilization in the sediment delta in the future. The presented modelling algo-

rithm 
an be used to improve and design sediment management strategies for the existing

and planned hydrauli
 stru
tures in the Upper Indus Basin and similar un-gauged or

poorly gauged 
at
hments around the world.
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Abstra
t

Hohe Bodenverlustraten und hohe Sedimentfra
hten in Flüssen erfordern e�ziente Quan-

ti�zierungsmethoden, um e�ektive Sedimentmanagementstrategien zu entwi
keln. Um

an diese Probleme herananzugehen ist eine Kaskadenmodellierung des Sedimentman-

agements in Reservoirs ein nützli
her Ansatz . Die Quanti�zierung der Sedimentfra
ht

unter Verwendung konventioneller Sediment-Bewertungskurven (SRCs) berü
ksi
htigt je-

do
h s
hle
ht das Hysteresephänomen und die hydrologis
hen Variationen. Die Wavelet-

Transformation in Verbindung mit künstli
hen neuronalen Netzen (WA-ANNs) ermögli
ht

die Untersu
hung groÿer Be
ken und eine genauere Abs
hätzung der Sedimentfra
htbe-

dingungen für Sedimentationsmodelle. Na
h diesem Ansatz wurde am Lehrstuhl für

Wasserbau und Wasserwirts
haft der Te
hnis
hen Universität Mün
hen ein Kaskaden-

modellierungsalgorithmus entwi
kelt, der auf den Indus und den Tarbela-Staudamm im

Norden Pakistans angewendet wurde. Der methodis
he Rahmen besteht aus fünf S
hrit-

ten: (I) Gegenstandsanalyse des Sedimentmanagements mittels 1D-Modellierung und

Reservoirsedimentationste
hniken (II) Analyse der Sedimentfra
ht mit künstli
hen neu-

ronalen Netzen (ANN) (III) Entwi
klung eines Wavelet-ANN (WA-ANN) Modells zur

Abs
hätzung der S
hwebsto�fra
ht, (IV) basierend auf WA-ANN-S
hätzungen, Unter-

su
hung der Sedimentfra
httrends und (V) Modellierung der Reservoirsedimentation für

den Tarbela-Staudamm. Die am Indus dur
hgeführte Analyse ermögli
ht ein besseres

Verständnis der Reservoirssedimentation im Be
ken.

Die Analyse der Sedimentfra
htte
hniken in dieser Studie zeigt, dass das WA-ANN die

Sedimentfra
ht genau abs
hätzen kann, indem das Hysteresephänomen und die hydrolo-

gis
hen Variationen mit einer zeitli
hen Au�ösung von ungefähr einem Jahr berü
ksi
htigt

werden. Es zeigt au
h, dass die Sedimentfra
ht an der Talstation der Tarbela-Talsperre

im Gegensatz zum konventionellen Modell nur 160 Millionen Tonnen pro Jahr beträgt und

aufgrund der Desyn
hronisation zwis
hen Glets
hers
hmelze und Monsunregen eine ab-

nehmende Tendenz aufweist. Die Untersu
hung der Sedimentfra
httrends zeigt statistis
h

signi�kante disproportional verhaltende raumzeitli
he Trends zwis
hen Sedimentfra
hten

und Ab�üssen, die hauptsä
hli
h dur
h innerjährli
he Veränderung der Strömung verur-

sa
ht werden. Dieses disproportionale Verhalten und die signi�kanten Trends widerlegen

stark die Hypothese, dass zukünftige Sedimentfra
hten den vorherigen ähnli
h sind.

Bei der Modellierung der Reservoirsedimentation kann die Unsi
herheit bei der Vorher-

sage der Höhenveränderung des Flussbettes dur
h einen kaskadis
hen Modellierungsansatz,

der präzisere vom WA-ANN abges
hätzte Sedimentfra
ht-Randbedingungen verwendet,
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verringert werden. Das morphodynamis
he Modell, das hydrodynamis
h mit einem Bes-

timmtheitsmaÿ von R

2

= 0,97 und der Nash-Sut
li�e-E�
ien
y (NSE) = 0,96 kalib-

riert wurde, konnte die Flussbettveränderungen(besonders im Delta) an der Tarbela-

Staumauer mit R

2

= 0,96 und NSE = 0,95 (von 1985 bis 1990) gut vorhersagen. Aufgrund

des Desyn
hronisationse�ekts, der vor allem dur
h das projizierte wärmere Klima und

die ans
hlieÿende Abnahme der Sedimentzufuhr zum Tarbela-Damm von 17% verursa
ht

wurde, zeigte die Modellierung eine Stabilisierung im Sedimentdelta in der Zukunft. Der

vorgestellte Modellierungsalgorithmus kann verwendet werden, um Sediment-Management-

Strategien für die bestehenden und geplanten hydraulis
hen Strukturen im Oberindus-

Be
ken und ähnli
hen ni
ht gemessenen oder s
hle
ht ausgestatteten Einzugsgebieten auf

der ganzen Welt zu verbessern.
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1

Chapter 1

Introdu
tion

1.1 Resear
h ba
kground

Sediments are transported in the form of bed and suspended loads to reservoirs. There

are a number of reasons for the velo
ity de
eleration in a reservoir su
h as sudden inlet

expansion, deep river bed, and reservoir operation rules, whi
h de
rease the sediment

load 
arrying 
apa
ity of the river and result in sediment be
oming trapped. Predi
-

tions/estimation of a

urate amount of in
oming sediments to the reservoir, sediment

load trends, modelling of sediment deposition and their a

umulation with the passage of

time remains a signi�
ant 
hallenge due to the following reasons in hydrauli
 engineering.

1.1.1 Sediment load estimation

The most 
ommon 
onventional method for sediment load estimation is the sediment

rating 
urve approa
h, whi
h is based on a relatively simple relationship between �ow

dis
harge and sediment 
on
entration [8℄. However, in real-world s
enarios, multiple vari-

ables a
t on the given 
ir
umstan
es of the sampled data, whi
h is why sediment rating


urve mostly results in over or under estimations of the sediment load. This 
an have dire


onsequen
es. For example, a number of dams in Pakistan have silted up earlier than ex-

pe
ted due to under-estimation or are ine�
ient due to over-estimation of sediment load

- instan
es in
lude the Warsak and Mangla dams [9, 10℄. The 
ause of this problem is

the signi�
ant varian
e in suspended sediment load (SSL) estimates on whi
h the design

and operation of these dams are based [3℄. The varian
e in SSL estimates at Besham Qila

gauge station used for the Tarbela dam range from 200 million tons per year (Mt yr

−1
)

to 675 Mt yr

−1
(Tab. 1.1). Su
h varian
e might not only skew 
al
ulations of sediment

load boundary 
onditions in reservoir sedimentation studies but also negatively in�uen
e
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subsequent de
isions and diminish asso
iated bene�ts.

Table 1.1: Estimates published on the suspended sediment load (SSL) of the Upper Indus

River [3, 4℄.

Suspended sediment yield Estimated by

(Mt yr

−1
)

480 [11℄

400 [12℄

475 [13℄

200 [14℄ reported by [15℄

675 [16℄

300 [17℄

200 [18℄

197

1

[19℄

138

2

[19℄

200 [6℄

SSL estimation has be
ome vastly more 
hallenging, in parti
ular under the in�uen
e

of 
limate 
hange, where disproportional spatio-temporal trends between SSLs and �ow

dis
harges exist primarily due to intra-annual shifts in �ows [20, 21, 4℄. This highlights the

need for sediment models whi
h operate in real time and are able to provide a better esti-

mates of sediment load for the planning of new hydrauli
 stru
tures or better management

of existing ones. This parti
ularly applies to the Upper Indus River, where the presen
e

of 
omplex sediment transport pro
esses related to the hysteresis phenomena and marked

hydrologi
al variations, su
h as: (a) the �uvial erosion and transport pro
esses whi
h

intera
t with other sediment produ
ing pro
esses, (b) temporary sediment storage in the

main river 
hannel [22℄, (
) aggradation and degradation phases of landslides [23℄, (d) on

average 5-10 high �ow waves of an average 10-12 days duration during the monsoon pe-

riod, (e) di�erent transit times of dis
harge and sediment and their di�erent lag times from

several sour
es to the gauge stations, and (f) a re
ently noted Karakoram anomaly where

desyn
hronization between gla
ier melt and monsoon rainfall is proje
ted for the future

[24℄, all pose a 
hallenge for a a

urate SSL estimation. In addition, hydro-morphologi
al

pro
esses are highly nonlinear in nature, and in many 
ases, modelling of these variables

with 
on
eptual models may be limited by a poor understanding of the 
omplex itera-

tions involved. In su
h 
ases, arti�
ial neural networks (ANNs) are often viewed as an

appealing alternative, as they have the ability to extra
t the nonlinear relationship from

the data without requiring an in depth knowledge of the physi
s o

urring within the

system [25℄. Similarly, the appli
ation of wavelet transforms (WT) has also been found

1

Besham Qila

2

Partab Bridge
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to be e�e
tive in dealing with hysteresis phenomenon issues. WT is a mathemati
al tool

that 
an improve the performan
e of ANN models by simultaneously 
onsidering both

the spe
tral and the temporal information 
ontained in the input data. This information

is revealed by de
omposing the main time series data into its sub-
omponents. These

models have been performing well over the last de
ade of estimating and fore
asting of

SL [26, 27℄.

WA-ANNs 
an de
ompose the data time series up to several levels in time, spa
e

and frequen
y domains and reveal the information from a given data s
enario [28℄. This

de
omposition of data is required where the sediment transport pro
ess is subje
ted to

temporary sediment storage, strong hysteresis phenomena and parallel aggradation and

degradation of landslides. Data de
omposition beyond level one 
an lead to a low e�
ien
y

[29℄, however, the 
on
ept of appropriate de
omposition levels of data for rivers with

temporary substantial sediment load storage is still not understood. ANNs sediment load

estimation abilities with semi-monthly sediment loads using simple ANN stru
tures have

only been tested for rivers that have small 
at
hments [30℄. Moreover, WA-ANNs have not

been tested for �lling the gaps between intermittent suspended sediment 
on
entration

(SSC) samples; in the state-of-the-art te
hniques [26, 31℄, they have only been applied on


ontinuous (daily) data time series. In granting the importan
e to hydrauli
 stru
tures

as non-renewable resour
es, therefore, it was ne
essary to quantitatively and qualitatively

evaluate the performan
e (and un
ertainties originating using) of these (sediment rating


urve, ANN andWA-ANN) methods for rivers with 
omplex sediment transport pro
esses.

1.1.2 Sediment load trends

As with the problems related to more a

urate estimation of the suspended sediment

loads (SSL) for better planning of sediment management (yield redu
tion, routing, and

removal) [32, 6, 33, 34, 35℄, the temporal variations and 
hanges in SSLs are also im-

portant not only for setting 
orre
t sediment load boundary 
onditions for predi
tions of

reservoir sedimentation but also to assess the e�e
tiveness of existing watershed manage-

ment pra
ti
es or te
toni
 and land-sliding a
tivities in the 
at
hment area. Although

there are many studies assessing the 
limate-indu
ed adverse impa
ts on the Upper Indus

River �ow patterns [20, 36, 37, 38, 21, 39, 40℄, few have investigated the impa
t of �ow

pattern 
hanges on the sediment yield and reservoirs [41, 42℄. This might be due to the

absen
e of more a

urate sediment load estimation methods, while the studies 
ondu
ted

in this regard using 
onventional sediment rating 
urve di�er widely in their suggested
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estimates. For instan
e, the SSL for Tarbela Dam (the 
ountry's largest) or at the im-

mediately upstream Besham Qila dis
harge gauge is reported to range from 200 Mt yr

−1

to 675 Mt yr

−1
over the past 50 years (Tab. 1.1). Su
h un
ertainty leads to poor design

quality of the operating rules for existing and under-
onstru
tion dams. Espe
ially, when

the past SL data is used for predi
tions without modi�
ation. For example, variation in

predi
tions using sediment rating 
urve were as high as approximately 40% of the mean

di�eren
e of the measurements reported for the Tarbela dam over a mere 26 years [3℄.

Apparently, the assumption that future �ows and SLs are similar to past ones is not

appropriate for reservoir sedimentation studies for the existing and planned dams at the

Indus River [43, 44, 45, 37, 21, 46℄. This 
an result in plausible over or under estimates

of the trapped sediment volume for long term sediment modelling.

In assessing the temporal dynami
s of SSLs and dis
harges, non-parametri
 tests are

assumed to be more robust as 
ompared to their parametri
 
ounterparts due to the

fa
t that the sediment load data are not normally distributed on a

ount of the highly

nonlinear nature of the sediment transport pro
esses. However, several non-parametri


tests may also result in distin
t estimates, whi
h requires employing a suite of su

essful

non-parametri
 methods and then quantifying their asso
iated un
ertainty to build more


on�den
e in the results.

By analysing dis
harges and SSCs at two di�erent sites over the past 50 years, this

study for the �rst time shows how 
hanges in the �ow patterns are a�e
ting the sedi-

ment transport 
apa
ity of the UIB for the meltwater-dominated zone (up to the Partab

Bridge site) and for the whole UIB (up to Besham Qila), whi
h is additionally in�uen
ed

by the summer monsoonal rainfall period. The gaps between intermittently sampled

SSCs are �lled using the wavelet transforms 
oupled with arti�
ial neural networks (WA-

ANNs). The temporal dis
harge and SSL dynami
s are robustly assessed using a suite of

three widely used non-parametri
 approa
hes, in
luding, (1) the innovative trend analy-

sis (ITA), whi
h 
an analyse the trends in low, medium and high annual SSLs without

requiring any assumptions, su
h as serial 
orrelation, non-normality, sample numbers and

others [47℄; (2) the Mann-Kendall (MK) and the seasonal Kendall (SK) tests together

with the Sen's slope method; the MK test dete
ts a trend in a time series without re-

quiring normally distributed input data [48, 49℄; the Sen's slope method estimates its

true slope, while SK analyses annual trends by removing the seasonal 
y
les in a time

series; (3) a 
hange point dete
tion test, whi
h reveals the 
hanging tenden
y in the SSL

series on monthly and annual s
ales [50, 51℄; (4) mean monthly variations, whi
h dete
t

monthly 
hanges based on di�eren
es from the (a) �rst and last de
ades, and (b) monthly
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regression equations of the analysed re
ords.

1.1.3 Reservoir sedimentation

A river basin 
onveys water, sediments, heat, 
hemi
al substan
es, biologi
al inhabitants,

et
. from the 
at
hment to downstream �at lands, lakes, seas and o
eans. The 
onstru
-

tion of an impounding stru
ture a
ross the river interrupts these �uxes, 
ausing sediments

to deposit upstream and la
king downstream, resulting in loss of water storage 
apa
ity

[52℄. The reservoir sedimentation pro
ess 
ompletes by �lling water storing 
apa
ity with

sediments. However, the reservoirs are non-renewable resour
es and their silting up not

only has impa
ts on the river morphology but also diminishes the asso
iated bene�ts.

On an average, the annual rate of de
rease in the world's reservoirs' storage 
apa
ity is

approximately 1%. This indi
ates that water supply is in 
risis, largely due to in
reasing

world population, non-sustainable development, use of water resour
es and the imminent

threat asso
iated with 
limate 
hange [53, 54℄. In Asia alone, 80% of the useful stor-

age 
apa
ity for hydropower produ
tion will be lost by 2035, while 70% of the storage

volume used for irrigation will be lost to sedimentation by 2025 [52℄. Pakistan, where

no new large storage dam has been 
onstru
ted sin
e the Tarbela dam in 1974, is fa
ing

a similar situation. Being a water stressed 
ountry amongst the top ten most 
limate-

a�e
ted 
ountries [55, 56℄, Pakistan has a total water storage 
apa
ity of only 30 days

(equal to 10% of the annual available water), whi
h has been depleting due to a heavy

sedimentation transported through the Indus river system from the young Hindukush-

Karakoram-Himalaya (HKH) ranges [45℄. The de
rease in water supply from reservoirs

su
h as Tarbela will a�e
t millions of people who depend on the water supply and may

lead to internal migration and severe geopoliti
al 
rises [20, 46℄. Therefore, it is not only

ne
essary to operate the existing water storage 
apa
ities e�
iently but also to 
onstru
t

reservoirs that trap less sediments - espe
ially in a s
enario where reservoirs are the key

infrastru
ture in mitigating the e�e
ts of 
limate 
hange by their 
apa
ity to store and

regulate water supply sin
e the expe
ted in
rease for the hydrologi
 variability will de-

mand more water regulation 
apa
ity [52℄. In addition, optimizing reservoir sedimentation

will require new sediment load (SL) estimation te
hniques, as 
onventional methods are

no longer adequate or reliable.

The Tarbela dam is used as a standard for the designing of planned hydrauli
 stru
tures

in the Upper Indus Basin (UIB). In parti
ular, the development of numeri
al models for

reservoir sedimentation studies [57℄ and designing of sediment routing fa
ilities (invert
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level of low level outlets, bypass tunnels or lo
ation of power tunnels intakes). In the

previous studies only 1D numeri
al models (HEC-RAS, HEC6-KC, RESSASS) have been

used for Tarbela and other planned stru
tures in UIB, due to their simpli
ity and lower


omputational time [58, 15, 6, 1, 59℄. A 1D model 
an be used in simple topography to

assess an average sediment deposition or erosion only at 
ross se
tion and the life of the

reservoirs. The sediment boundary 
onditions in these models were based on sediment

rating 
urve estimates. However, the SL boundary 
onditions based on sediment rating


urve estimates 
an lead to a false 
on
lusion. On the other hand, designers (in detailed

design stage) also need a more a

urate estimate of sediment 
on
entrations with regard to

di�erent outlets, tunnels, et
., (and at di�erent lo
ations), whi
h enables them to optimize

sedimentation related fa
ilities [60℄. A 2D model with more a

urate boundary 
onditions


an deliver this information in both simple and 
omplex topographies anywhere in the

domain, whi
h makes them suitable for Tarbela and other similar existing and planned

hydrauli
 stru
tures.

For SL estimation, WA-ANNs have performed well due to their ability to adjust for the

hysteresis phenomena by de
omposing the data time series in the time-frequen
y domain

and revealing the information from a given data s
enario [26℄. However, there is a resear
h

gap in the literature with respe
t to redu
ing the un
ertainty fa
tor (
ontributing to

a

umulation of sediments in reservoirs) using WA-ANN estimated sediment loads (SLs)

as model of boundary 
onditions. Apart from that the 
omputation time of 2D models

for simulating large systems su
h as the Tarbela dam, with hundreds of thousands mesh

elements, is also very high. To address these resear
h gaps, a TELEMAC-SISYPHE 2D

open sour
e model [61, 62℄ was modi�ed and employed for the study. The modi�
ation

in
reased the stability and �exibility of the TELEMAC-SISYPHE system by solving the

fra
tional distribution of sediment parti
les equal to 100% [63℄. In order to in
lude all

fra
tions of parti
ular sizes 
lass in the morphodynami
 
al
ulation pro
ess, the SISYPHE


ode was also updated. The wet-dry problem of the mesh was solved by spe
ifying a 1


m water depth in the whole domain and no morphodynami
 
al
ulations for a water

depth below 1 
m. The 2D model is suitable for shallow waters su
h as in the Tarbela

dam, where, due to high ratio water depth (20 m to 150 m) to river width (500 m to

5.3 km), verti
al variations of �ow and sediment 
on
entration are very small 
ompared

to that in the horizontal dire
tion. Calibration is the pro
ess of setting the parameters

of the model to ensure that the 
al
ulated values agree with the measured values. The

validation pro
ess demonstrates whether the predi
tions of the 
alibrated model agree

with the observed data set that is di�erent from the data used in the 
alibration pro
ess.

Therefore, the model was 
alibrated using hydrologi
al and morphologi
al data of the
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Besham Qila and Tarbela dam from 1983 (�rst 
omprehensive survey after its 
onstru
tion

in 1974) to 1985, while the data from 1990 was used for the validation pro
ess. The


alibration period of two years 
overs both (dry and wet) hydrologi
al variations of the

river. For example, 1984, with a �ow volume of 83.8 billion m

3

(BCM) and SL of 209.6

million tons (Mt) was among highest peak �ow/SL year from 1969-2008, whereas 1985

has a lower �ow/SL than 
orresponding averages. Similarly, the validation period of �ve

years (1986-1990) also 
overs both dry and wet periods [4℄. The 
omputational time

for hydrodynami
 
alibration was redu
ed using an automati
 
alibration method, whi
h

updates roughness for ea
h mesh node using ba
kward error propagation. The boundary


ondition of the morphodynami
 model (in 
as
ade modelling) was modi�ed based on

[3℄ studies where (due to the strong hysteresis phenomena) daily SL series was more

a

urately re
onstru
ted from non-
ontinuous suspended sediment (SSC) samples using

WA-ANN.

1.1.4 Need for resear
h

The modelling of reservoir sedimentation is widely in�uen
ed by a 
orre
t representation

of sediment load (SL) boundary 
onditions, reservoir geometry, and 
oe�
ients in the

empiri
al formulae [64, 5℄. A 
orre
t representation of SL boundary 
onditions requires

a 
lear understanding of a wide variety of erosional, depositional and transport pro
esses

over a varying spatio-temporal s
ale [19℄. However, studies in this dire
tion so far have

only been 
ondu
ted for relatively small 
at
hments ranges from hundred he
tares to a few

hundred square kilometres [30℄. Sediment load estimations for large river basins require

adjustment of hysteresis phenomenon and hydrologi
al variations in the modelling pro
ess

[3℄. As per available literature, no study has been done in this dire
tion, whi
h 
ontrast

to many studies on �ow trends [43, 44, 45, 37, 21, 46℄ hinder sediment load trends (due

to lake of a

urate load estimation) as well. Consequently, designers and engineers only

have the 
hoi
e to set SL boundary 
onditions using 
onventional sediment rating 
urves

along-with re-use of the sediment rating 
urve estimate in predi
tions [58, 15, 6, 1, 59℄.

Another aspe
t in modelling of reservoir sedimentation is related to sele
tion of numer-

i
al models, where designers need more a

urate estimate of sediment 
on
entration with

regards to di�erent outlets, tunnels, et
., whi
h enables them to optimise sedimentation

related fa
ilities. There was a need to develop a model with more a

urate sediment load

boundary 
onditions, whi
h 
an deliver this information (in both simple and 
omplex to-

pographies) anywhere in the domain and 
an be used for reservoir sedimentation studies

for the Indus River.
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1.2 Study area

The Indus River is one of the largest rivers in south Asia, with a total length of 2,880 km

and a drainage area of 912,000 km

2

extending a
ross portions of the Pakistan, India, China

and Afghanistan. The drainage area of the Indus River is divided into upper and lower

parts, typi
ally at the Besham Qila dis
harge gauge station or around 65 km downstream

at, so far, it's only reservoir, Tarbela, whi
h is one of the largest earth-�lled dams in the

world (Fig. 1.1). The Upper Indus Basin upstream of the Tarbela dam is 1,125 km long

with a drainage area of 219,830 km

2

. To help in regulating the seasonal �ow both for

irrigation and power generation the dam was 
onstru
ted in 1974 at the Indus River. The

dam supplies 50% of the total irrigation releases and 40% of the total energy produ
tion

in Pakistan.
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Figure 1.1: Lo
ation map of the study area. Modi�ed from [6℄.

The Tarbela reservoir is embanked by three dams, the main embankment has a length

of 2,750 m and height of 143 m. The reservoir had an initial water storage 
apa
ity of 11.6
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billion m

3

(BCM) with a reservoir length extending to approximately 80 km. The outlet

works 
onsist of four tunnels 
ut through the right abutment of the main dam plus a

�fth tunnel between the main dam and the spillways on the left bank. The total installed


apa
ity of the dam is 
urrently at 4,500 MW, 83% more than it was originally envisaged

in the initial design, with several turbines installed on tunnels 1-4 (Fig. 1.2). Re
ently a

new s
heme had been installed on tunnel 4 whi
h in
reased the power generation 
apa
ity

by 1,410 MW.

Sedimentation at Tarbela dam has been a 
on
ern for a number of years due to very

high supply of sediments from the Upper Indus River, i.e. approximately 160-200 Mt/yr.

This is largely due to the erosion e�e
t of the gla
iers that supply mu
h of the �ow.

The Indus basin upstream of the Tarbela dam has an area of 169,650 km

2

(Fig. 1.1).

Over 90% lies between the great Karakoram and the Himalaya ranges. The snowmelt

waters from this region 
ontributes to the major part of the annual �ow rea
hing into the

reservoir. The remainder of the basin lying immediately upstream of the dam (Fig. 1.1)

is subje
t to monsoon rainfall primarily during the months of July-September. Peak �ows

due to snowmelt 
an be as high as 5,660 m

3

/s to 11,300 m

3

/s with an additional rainfall


ontribution typi
ally rea
hing a maximum of 5,660 m

3

/s. The average annual in�ow to

Tarbela reservoir is 81 BCM [65℄.

[3℄ showed that 1969-2008 annual sediment in�ows in the dam vary between 92-270

MT, whi
h redu
ed the water storage 
apa
ity by 35% (Fig. 1.2). The de
rease in storage

is a 
on
ern as it may result in redu
tion of irrigation releases and power supply. In

addition, the impa
t of delta 
reated by the sediment deposits approa
hing towards the

main dam may also blo
k the power intakes. As the storage 
apa
ity of the reservoir

redu
es, more sediment will pass through the intakes. A major 
on
ern is the amount

and representative sizes of the sediment that may pass through the turbines. The problems

may be aggravated by the instability of the downstream sloping fa
e of the delta [14℄ and

the o

urren
e of an earthquake [65℄.

1.3 Resear
h obje
tives

The overall obje
tive of this study was to develop a set of models for a more a

urate

reservoir sedimentation and apply it to the Tarbela dam in the Upper Indus Basin (UIB).

The UIB represents a unique topography with high mountains of the Himalayas, Karako-

ram, Hindukush, with a huge 
at
hment area that still exists in its natural 
onditions
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Figure 1.2: Sediment delta development in the Tarbela dam [5℄

without any major human a
tivities and has not re
eived mu
h attention in the past. In

the view of serious energy and water 
rises in Pakistan where 14,000 MW hydropower

proje
ts and many water storage reservoirs are planned, more a

urate reservoir sedimen-

tation model seems to be timely and desirable. In order to address the relevant resear
h

needs and gaps in reservoir sedimentation for large s
ale drainage basin raised in se
tions

1.1.4 and learned in my preliminary studies [1, 2℄, the following were the sequential aims

of this study:

� Estimation of more a

urate sediment load in the Upper Indus River by �lling the

gaps between intermittent suspended sediment load samples.

� Asses spatio-temporal trends between sediment load and dis
harges using more a
-


urate estimate.

� To develop 
as
ade modelling approa
h for sediment management in reservoir by

setting more a

urate sediment load boundary 
onditions along-with hydrodynami



alibration using ba
k error propagation.
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1.4 Resear
h methodology

Modelling reservoir sedimentation requires a 
lear understanding of the dynami
s of sedi-

ment transport pro
esses at the Upper Indus River. To gain this knowledge, the study has

utilized multiple data types and sour
es in
ludes the hydrologi
al and sediment re
ords,

annual reservoir inspe
tion surveys, literature about the Indus River, and re
ent published

work on the reservoir sedimentation [1, 2, 3, 4, 5℄. It is argued that o

asionally 
olle
ted

suspended sediment load data series 
an be used in WA-ANN models for re
onstru
tion

of missing data for large rivers su
h as the Indus. The future sediment loads in absen
e

of any upstream hydrauli
 stru
tures 
an be estimated using proje
tions of 
orresponding

future dis
harges. Proje
tions of both sediment loads and dis
harges 
an be used for the

predi
tion of erosion and deposition pro
esses in the reservoirs.

The methodologi
al framework of numeri
al modelling of sediment transport in the

Upper Indus River presented in this study 
onsists of �ve distin
t steps.

(I) Identi�
ation of the resear
h gaps in estimation of reservoir sedimentation using


onventional methods

(II) Preliminary investigation of the suitability of arti�
ial neural networks (ANNs) for

estimation of sediment yield

(III) Development of wavelet-ANN models for the estimation of sediment loads in the

Upper Indus Basin, parti
ularly at Besham Qila gauge station of the Tarbela dam

(IV) Dete
tion of trends in sediment loads at the upper Indus River

(V) Carrying out 2D reservoir sedimentation 
al
ulations based on wavelet-ANN esti-

mated sediment loads, and trends in the predi
tions of sediment delta development

in the Tarbela dam
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1.5 Thesis stru
ture and authors 
ontribution

The thesis is based on the series of �ve do
uments published in 
ontext with numeri
al

modelling of reservoir sedimentation studies for Pakistani reservoirs 
ondu
ted in the

Chair of Hydrauli
 and Water Resour
es Engineering, Te
hni
al University of Muni
h. A

brief summary of ea
h publi
ation along-with the division of work between the authors is

given below.

1.5.1 1-D numeri
al modelling of Dasu Hydropower Proje
t

The main �ndings of the publi
ation �Appli
ation of a 1-D numeri
al model for sediment

management in Dasu Hydropower Proje
t� are dis
ussed brie�y. The study was published

in the pro
eedings of the 14

th

International Conferen
e on Environmental S
ien
e and

Te
hnology in 2015 [1℄.

Main results: The �rst study of the PhD proje
t was 
ondu
ted to evaluate the suit-

ability of �ushing types (pressurized or free �ow) for 4,320 MW planned Dasu Hydropower

Proje
t on the Indus River using 1D HEC-RAS model. In the modelling pro
ess two sedi-

ment rating 
urves were used to estimate sediment load (SL) for boundary 
onditions. To

predi
t the reservoir life for 2027-2066, the past data (estimated SL and �ow dis
harges)

from 1969-2008 was repeated in future, without any modi�
ation. The estimated reservoir

life was validated using [66℄ 
urves.

The modelling results reveal that free �ow �ushing is suitable for the proje
t and 
an

in
rease the reservoir life from 15 years to a minimum of 40 years. As sediment rating


urve method has high variations in SL estimation due to transport pro
esses related to

hysteresis phenomenon and hydrologi
al variations, the modelling boundary 
onditions

and subsequent predi
tions also 
ontain high un
ertainties. In addition, the assumption

that the future �ow and SLs are similar to the past ones and 
an be used as boundary


onditions in modelling of reservoir sedimentation [67, 57, 58, 15, 6, 33, 59℄, parti
ularly

under 
limate 
hange [20, 36, 37, 38, 21℄, needs to be investigated. Although 1D modelling

is su�
ient for pre-feasibility studies, to have a reliable design of low level outlets and

�ushing tunnels in detailed/
onstru
tion design, a 2D modelling is re
ommended for hav-

ing the information of sediment 
on
entrations or a

umulation of sediments with regards

to di�erent outlets.
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Authors' 
ontribution: The model was developed by Sardar Ateeq Ur Rehman under

guidan
e of Minh Du
 Bui and Peter Ruts
hmann. Idea and 
on
ept of the paper were

formulated by Sardar Ateeq Ur Rehman and dis
ussed with Zeeshan Riaz. Sardar Ateeq

Ur Rehman prepared the manus
ript with the support of Minh Du
 Bui.
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1.5.2 Estimation of sediment yield using arti�
ial neural networks

(ANN)

The main �ndings of the publi
ation �Estimation of Sediment Yield for Dasu Hydropower

Proje
t Using Arti�
ial Neural Networks� are dis
ussed brie�y. The study was published

in the pro
eedings of the 18

th

Wasserbau-Symposium in 2016 [2℄. The main �ndings are

summarized below.

Main results: In order to �nd more a

urate sediment load (SL) estimation te
hnique

for re
onstru
tion of missing data for the gauge stations at the Indus River, initially (in

this publi
ation) the output of the 1D sediment model of Dasu Hydropower Proje
t [1℄

using arti�
ial neural networks (ANNs) was tested. The inputs of ANNs (2027-2066)

were same as of the 1D HEC-RAS model, i.e. daily in�ows to the planned dam (m

3

/day),

daily out�ows from the dam (m

3

/day). The target of the ANNs was the output of the

HEC-RAS, i.e. volume of sediment retained (m

3

/day).

Due to the ANNs learning abilities and extra
tion of the nonlinear relationship from

the data without requiring an in depth knowledge of the physi
s o

urring within the sys-

tem [25℄, the modelling results showed that the ANNs 
an a

urately model the patterns

of sediment deposits in the reservoir and �ushing volume out of the reservoir on a daily

time s
ale. In addition, ANNs also well 
aptured the dry and wet hydrologi
al 
y
les in

the modelling pro
ess.

The ANN models outputs 
lose to the HEC-RAS estimation motivated us to use

these models (instead of sediment rating 
urves) to re
onstru
t o

asionally measured

suspended sediment 
on
entration (SSC) samples (
olle
ted at gauge stations on the Indus

River) on a daily time s
ale for trend dete
tion (under sediment load variability s
enarios)

and implementation of more a

urate sediment load boundary 
onditions (in predi
tions)

for numeri
al modelling of the Tarbela reservoir.

Authors' 
ontribution: The ANN ar
hite
tures were 
reated by Sardar Ateeq Ur

Rehman under guidan
e of Minh Du
 Bui, and Peter Ruts
hmann. Idea and 
on
ept of

the paper were formulated by Sardar Ateeq Ur Rehman and dis
ussed with Minh Du


Bui. Zeeshan Riaz helped for the data 
olle
tion and raw data interpretation. Sardar

Ateeq Ur Rehman prepared the manus
ript with the support of Minh Du
 Bui.
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1.5.3 Development of wavelet-ANN for suspended sediment load

The publi
ation �Development of a wavelet-ANN model for estimating suspended sediment

load in the upper Indus River� [3℄ was submitted in International Journal of River Basin

Management in 2017. The main �ndings of the publi
ation are dis
ussed below.

Main results: The a

urate estimation of sediment load plays a vital role in the sed-

iment management of existing and proposed reservoirs and run-of-the river hydropower

s
hemes. However, the a

urate estimation of sediment load is 
hallenging under the

in�uen
e of 
limate 
hange and hysteresis phenomenon, where disproportional spatio-

temporal trends between the sediment loads and �ow dis
harges exist primary due to

intra-annual shifts in �ows at the Indus River. Based on the su

essful implementation

of the ANN models for the estimation of sediment yield in the Dasu Hydropower Proje
t

[2℄, ANNs and 
onventionally used sediment rating 
urves (SRCs) were applied on o

a-

sionally 
olle
ted suspended sediment 
on
entration (SCC) samples for re
onstru
tion of

missing data of two gauge stations, Besham Qila and Partab Bridge. The Besham Qila

gauge station is used to measure in�ow and sediment load for the Tarbela dam, while

Partab Bridge represents the whole gla
ier and snow melt 
at
hment of the Upper Indus

River. The SSC sampling frequen
y at both gauge stations were 22% and 17% of daily

sampling, respe
tively.

The results showed a better performan
e of ANN models over the 
onventional sedi-

ment rating 
urves. However, the ANN was unable to adjust hysteresis phenomenon due

to involved 
omplexity related to the load availability and seasons or months of o

ur-

ren
e. As wavelet transform (WA) has the ability to adjust hysteresis phenomenon by

splitting the information into time and frequen
y domain, more a

urately estimate of SL

on a daily time s
ale by 
oupling WA with ANNs 
an be obtained.

The results obtained using WA-ANN for daily SSL were NSE=0.85 
ompared to ANN

NSE=0.81, and sediment rating 
urve NSE=0.48, respe
tively. The mean deviations in

estimation (from 1696-2008) using these models were 13%, 18% and 36%, respe
tively.

In addition WA-ANN and sediment rating 
urve results with sediments deposited in the

Tarbela dam were also 
ompared. The WA-ANN estimate for the mean annual mass

deposited in the dam deviates only 12% from the hydrographi
 survey, 
ompare to 43%

deviation using sediment rating 
urve. In predi
ting 
umulative deposits using sediment

rating 
urve they were as high as 40% for the Tarbela dam over a mere 26 years. However,

the variation over the same period were only at 12% using WA-ANN.
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Based on the �ndings, the WA-ANN models 
an be used to more a

urately dete
t

the trends in sediment loads and 
an also 
ontribute to the development of sediment man-

agement strategies for existing, under 
onstru
tion, and planned water related stru
tures

by setting more a

urate boundary 
onditions.

Authors' 
ontribution: Arti�
ial neural networks (ANNS) and wavelet transform


oupled with ANNs were developed and evaluated by Sardar Ateeq Ur Rehman under

the guidan
e of Minh Du
 Bui and Peter Ruts
hmann. Idea and 
on
ept of the arti
le

were formulated by Sardar Ateeq Ur Rehman with the help of Minh Du
 Bui. Sardar

Ateeq Ur Rehman prepared the manus
ript with the support of Minh Du
 Bui and Peter

Ruts
hmann.
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1.5.4 Dete
tion of sediment load trends

In the following, the main �ndings of the publi
ation �Variability and Trend Dete
tion in

the Sediment Load of the Upper Indus River� [4℄ are brie�y summarized. The arti
le was

published in Water in 2018.

Main results: The fourth study was 
ondu
ted to evaluate whether the past sediment

load (SL) data without modi�
ations 
an be used as sediment load boundary 
onditions for

predi
tions of sedimentation in reservoirs. To do so, the temporal dynami
s of suspended

sediment loads (SSLs) and dis
harges were analyzed using suit of three non-parametri


trend tests (i.e. Innovative trend test, Mann-Kendall test, and 
hange point dete
tion

test) while the (trend) slope was identi�ed using Sen's slope estimator. For the study

WA-ANN re
onstru
ted suspended sediment load series [3℄ and daily measured dis
harge

�ows for the meltwater-dominated zone up to the Partab Bridge and the whole Upper

Indus Basin up to Besham Qila (used as gauge station for the Tarbela dam), whi
h is

additionally in�uen
e by monsoonal rainfall, were used.

The 
urrent study results show signi�
ant disproportional spatio-temporal trends be-

tween SSLs and dis
harges at both gauge stations 
aused primarily by intra-annual shifts

in �ows. The results also showed a substantial deposition of sediments in the river 
hannel

between Partab Bridge and Besham Qila gauge stations. This deposition pro
ess has also

been 
ausing a long-term de
rease in suspended sediment loads at the Tarbela dam. In

addition, the trends are also opposite to the �ow volumes whi
h have been showing a

long-term in
reasing trends. Therefore, this disproportional behaviour and the signi�
ant

trends strongly dis
on�rm the hypothesis that future in�ows and SSLs are similar to the

previous ones for reservoir sedimentation studies for the Upper Indus River.

Authors' 
ontribution: Sardar Ateeq-Ur-Rehman designed the study, pro
essed and

analyzed the data, interpreted the results and wrote the paper. Minh Du
 Bui and Peter

Ruts
hmann 
ontributed to the model development stage with theoreti
al 
onsiderations

and pra
ti
al guidan
e, assisted in the interpretations and integration of the results and

helped in preparation of this paper with proof reading and 
orre
tions.
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1.5.5 An innovative approa
h for modelling reservoir sedimenta-

tion

In the following, the main �ndings of the publi
ation �An Innovative Approa
h to mini-

mizing un
ertainty in sediment load boundary 
onditions for Modelling Sedimentation in

Reservoirs� [5℄ are brie�y summarized. The arti
le was published in Water in 2018.

Main results: The �fth study in this 
ontext of numeri
al modelling of the Tarbela

dam was 
arried out using the 
as
ade modelling approa
h, where more a

urate WA-

ANN re
onstru
ted suspended sediment loads (SSLs) [3℄ were used as boundary 
ondition

in TELEMAC 2D model. In presen
e of statisti
ally signi�
ant trends in �ow dis
harges

and SSLs [4℄, future �ow dis
harges (2016-2030) 
al
ulated by [24℄ using hydrologi
al

model were used as boundary 
onditions. The 
orresponding future SSLs were estimated

using WA-ANN model. The reservoir water levels from 2015-2030 were kept same as

2000-2015. To 
alibrate the model for hydro-morphodynami
 
al
ulations, an automati


hydrodynami
 
alibration algorithm was applied. This algorithm spe
i�es bed roughness

for ea
h mesh node and subsequently enhan
e the performan
e of morphodynami
 
al-


ulations by providing better hydrodynami
 variables and total bed roughness for the


al
ulations of sediment erosion, transport and deposit in the �ow area.

The modelling results showed that the well 
alibration of hydrodynami
 model us-

ing automati
 
alibration algorithm (whi
h spe
i�ed bed roughness for ea
h mesh node)

along-with more a

urate sediment load boundary 
onditions (whi
h better represent hys-

teresis phenomenon and hydrologi
al variations) enabled the su

essive morphodynami


model to a

urately predi
t the bed level 
hanges in the Tarbela dam. The well 
ali-

brated hydrodynami
 model has R

2

=0.969, NSE=0.966, and morphodynami
 model has

R

2

=0.97, and NSE=0.96. The model validated the sediment deposits in the Tarbela with

R

2

=0.96 and NSE=0.95. Although the morphodynami
 
al
ulations were 
lose to the

measurement, the model also approximately 1% over-predi
ted sediment deposits due to

omission of low �ow months when water level is released form the dam. Interestingly, a

desyn
hronization between the gla
ier melts and monsoonal rainfall due to warmer 
li-

mate 
an 
ause a signi�
ant (up to 17%) de
rease in sediment supply to the Tarbela

dam, whi
h 
an stabilize the delta development in the dam. Although the study �ndings


ontradi
t the previous 
lams of high reservoir sedimentation under 
limate 
hange [52℄,

the silting up rate of the Tarbela reservoir will be slower due to the desyn
hronization.
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Chapter 2

Appli
ation of a 1D Numeri
al Model

for Sediment Management in Dasu

Hydropower Proje
t

This 
hapter is published as:

Ateeq-Ur-Rehman, S.; Riaz, Z.; Bui, M.D.; Ruts
hmann, P., Appli
ation of a 1-D nu-

meri
al model for sediment management in Dasu Hydropower Proje
t. In Pro
eedings of

the 14th International Conferen
e on Environmental S
ien
e and Te
hnology; Lekkas, D.,

Ed.; Global CEST: Rohdes, Gree
e, 2015; ISBN. 978-960-7475-52-7

Abstra
t: A one dimensional numeri
al model for the sediment study of the Dasu

hydropower proje
t (HPP), before 
onstru
ting the Bhasha Diamer dam, is presented

in this paper. Several formulae were used for sediment simulations under no �ushing


ondition, maintaining reservoir water level at a full supply level (FSL) of 950 m asl.

The preliminary assessment for both �ushing methods, pressure �ow �ushing and free

�ow �ushing was 
arried out. The validity of the model was 
he
ked with the Brune´s

formula. The simulation result showed that without �ushing, low level outlets and power

intakes would be �lled with the sediments between, 20-25 years. It was also observed

that free low �ushing, after minimum 15 years of dam 
ommissioning, is more e�
ient


ompared to pressure �ow �ushing. It is re
ommended that without 
onstru
tion on

any upstream reservoir, sedimentation is a severe problem for the Dasu HPP or any
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downstream run-of-river power plant.

2.1 Introdu
tion

Sedimentation is one of the most 
hallenging 
arry-over problems in hydrauli
 engineering

[68℄. On a worldwide s
ale, dam reservoirs silt up at a rate of about 1% of their useful

storage volume every year. With the same trend 25% of world reservoirs will be abolished

in the 
oming 25 to 50 years [69℄. Reservoir sedimentation 
auses various severe problems

su
h as (1) de
rease of a
tive volume leading to both loss of energy produ
tion and

water available for water supply and irrigation; (2) de
rease of the retention volume in


ase of �ood events; (3) endangerment of operating safety due to blo
kage of the outlet

stru
tures; and (4) in
reased turbine abrasion due to in
reasing spe
i�
 suspended load


on
entration [70℄. Similarly, Tarbela and Mangla reservoirs in Pakistan, are losing their

storage 
apa
ities at the rate of 0.132 billion m

3

/yr and 0.038 billion m

3

/yr, respe
tively

[71℄. Same may happen with the Dasu hydroele
tri
 power proje
t (Pakistan) whi
h

has reservoir life of only 30 years, without �ushing, due to sedimentation, along with 40%

redu
tion in power generation due to ingress of sediments into the power inlets [6℄. Warsak

dam (Pakistan) also silted up just after thirty years of operation [72℄. It is not possible

to 
ompletely over
ome the sedimentation problem but it 
an be redu
ed by �ushing the

reservoir regularly [73℄. Venting of turbidity 
urrents, e�
ien
y also very mu
h in�uen
ed

by timing of gate opening and there arrangement in the dam body [74℄.

The sedimentation problem is more sever for Pakistan. The 
ountry is losing its

existing storage 
apa
ities of the reservoirs due to sedimentation. This problem is a�e
ting

not only the water availability for agri
ulture but also the power generation in whi
h it

already fa
es 
risis. The aim of this paper is to simulate the sedimentation patterns in

the reservoir Dasu (1) without �ushing, (2) under pressure �ow �ushing and free �ow

�ushing, and (3) impa
t of sedimentation on downstream (d/s) run-of-river hydropower

proje
ts without any upstream (u/s) reservoir.

2.2 Site des
ription

The Dasu Hydropower Proje
t is lo
ated in the Indus River Basin, about 350 km north

from the 
apital Islamabad, Pakistan. The proposed damsite is also 74 km downstream

of the Diamer Bhasha damsite and 241 km upstream of the Tarbela dam, along the same

river. The elevation at the damsite is 764 m asl. There are several tributaries between
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the Bhasha dam and the Dasu HHP and of these, the prominent ones are the Daral

River, Tangir River and Kandia River. These tributaries generally bring snowmelt �ow

to the Indus River with some �ne to 
oarse sand. The 
at
hment of the Indus River at

the damsite is 158,800 km

2

. The mean annual runo� at the damsite is 2,116 m

3

/s and

the lowest �ow is 291 m

3

/s. Total annual �ows at Dasu is 66.7 billion m

3

and 90% of

these �ows 
ome from melting of snow and gla
iers. Hen
e nearly 80% of �ows o

ur in

summer months of June to September while O
tober to May is known as the low �ow

season. Gross storage 
apa
ity of reservoir at elevation of 950 m asl is about 1.41 billion

m

3

and operational storage 
apa
ity is 0.82 billion m

3

.

2.3 Methodology

2.3.1 HEC-RAS program system

The Hydrologi
 Engineering Centre-River Analysis System (HEC-RAS) is a one-dimensional

software, whi
h is designed to perform steady �ow water surfa
e pro�le 
omputations

through natural rivers and full networks of natural and engineered 
hannels, unsteady

�ow simulations, movable boundary sediment transport 
omputations, and water qual-

ity analysis. A key element is that all these 
omponents will use a 
ommon geometri


data representation and hydrauli
 
omputation routines. Sediment transport simulations

are based on the 
al
ulations of one-dimensional movable material from the river bed


ausing s
our or deposition over a 
ertain modeling period of time. Generally, sediment

transport through rivers, streams and 
hannels o

urs through two modes whi
h depend

on parameters su
h as the parti
le size, water velo
ity, and bed slope. The two modes

are known as bed load and suspended load. The basi
 prin
iple of evaluating sediment

transport 
apa
ity within HEC-RAS is by 
omputing sediment 
apa
ity asso
iated with

ea
h 
ross se
tion as a 
ontrol volume and for all grain sizes in that parti
ular 
ase. For

making su
h 
al
ulations, HEC-RAS requires boundary 
onditions for ea
h type of data.

These boundary 
onditions are required to obtain the solution to the set of di�erential

equations des
ribing the problem over the domain of interest. In HEC-RAS, there are sev-

eral boundary 
onditions available for steady �ow and sediments analysis 
omputations.

Boundary 
onditions 
an be either external spe
i�ed at the ends of the network system

(upstream or downstream) or internal used for 
onne
tions to jun
tions. The ba
kground

to the 
omputational methods and equations used for modeling sediment transport 
an

be found in [75℄.
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2.3.2 Model setup

Based on observed data, a rating 
urve of suspended sediment load per day Q

s

(tons/day)

was developed (Eq. 2.1 and 2.2), and used as the upper boundary 
ondition of the Dasu

reservoir.

Qs = 4.99× 10−14Q4, for Q < 448m3/s 2.1

Qs = 7.61× 10−8Q2.52, for Q > 448m3/s 2.2

Where Qs = suspended sediment load with respe
t to �ow dis
harge Q. Furthermore,

bed load was also added as 10% of the suspended load. The sampling for the river bed

material within the Dasu reservoir was 
arried out (Tab. 2.1) and used as initial grain

size distribution in the model.

Table 2.1: Gradation of river bed material in Indus River.

Size 3.5 km d/s of damsite 56 km u/s of damsite at Shatial Bridge

(mm) (%�ne) (%�ner)

0.075 2.9 2.7

0.16 10.2 10.4

0.30 51.6 52.6

0.60 99.5 100

1.20 100 -

Daily in�ow dis
harge over 47 years from 1962 to 2008 were given as upper boundary


onditions and reservoir water levels (RWL) as downstream boundary 
onditions on daily

basis. For the sediment simulation and management study in the Tarbela dam in 1998

[65℄, the A
kers-White transport formula has been intensively adopted in view of mu
h

sand fra
tion than �ner materials. [76℄ also suggested the use of the A
kers-White formula,

for total load transport 
apa
ity of sand-sized fra
tion is appropriate tool. Hen
e, in the

present study this formula is used again.

In general pressurized and free �ow �ushing are used for venting of sediments from

the dam. Hydrauli
 features of pressure �ushing in
ludes (i) less velo
ity in reservoir and

less tra
tive for
e along the river bed due to high water depth (ii) development of s
our


one around inlet of the Low Level Outlet (LLO) due to rapid �ow towards LLO inlet

in radial dire
tion and (iii) higher trapped sediment in the reservoir due to less �ushing

e�
ien
y. Reversely hydrauli
 features of free �ow �ushing in
ludes (i) higher velo
ity in

the reservoir and higher tra
tive for
e along river bed due to shallow water depth and (ii)
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less trapped sediment in the reservoir due to high �ushing e�
ien
y. In order to evaluate

appli
ability of both �ushing methods to the Dasu reservoir, the �ushing simulation by

using HEC-RAS is 
arried out.

2.4 Results and dis
ussions

To assess and 
larify the a

ura
y of transport formula sele
ted, the preliminary simulation

sedimentation study was 
arried out by using the A
kers-White, Laursen-Copeland and

Yang formulas under no �ushing 
onditions, maintaining RWL at a FSL of 950 m asl.

Up-to 17 years, there was not mu
h di�eren
e in the results of both formulas, su
h as

redu
tion of storage volume, annual sediment in�ow and out�ow, trapped e�
ien
y and

a

umulated sediment volume in the reservoir. However, after 17 years the a

umulated

sediment volumes by the Laursen-Copeland formula and the Yang formula showed the

higher amounts than A
kers-White due to 
hange of pro�le delta. It was also justi�ed

that the A
kers-White formula gives safer results than that of the Laursen-Copeland and

Yang's formulas. Fig. 2.1 shows the 
al
ulated results of annual sediment in�ow, out�ow

and trapped sediment in the reservoir during no �ushing. It was observed that the trapped

sediment volume using the HEC-RAS model (58% of sediment in�ow) was well 
oin
ided

with the trap e�
ien
y obtained by Brune's 
urve (61%).

Figure 2.1: Sediment pro�le by maintaining RWL at FWL (no �ushing).

In order to grasp sedimentation in the reservoir for 
ertain operation period, the

s
our and deposition were analyzed using 
omputer simulation basis that the reservoir

water level was maintained at a FSL of 950 m asl. without �ushing operation. The

results suggested the following points (Fig. 2.1): (1) From the longitudinal pro�les of
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sedimentation delta in ea
h 5-year interval, it was expe
ted that the inlets for LLOs

and power intake would be �lled with the sediment between 20-25 years. (2) At 15

years elapsed period after Commer
ial Operation Date (COD) of Phase-1, the foot of

sedimentation delta was developed up to 780 m asl. at about 9 km upstream of the dam

and its top was a

umulated up to 910 m asl. Satisfying the stable slope of 5.3 m/km

shown in the guideline of the Tarbela reservoir. (3) It was likely that the sedimentation

delta will rapidly approa
h to the dam ex
eeding the stable slope. This might bring

the sudden 
ollapse of delta and will result in the blo
kage of LLO inlet. The inlet

fa
ilities for LLO and power intake might be �lled with the sediment within 25 years after


ommissioning of Phase-1.

Every year �ushing sin
e impounding of reservoir in the month of June at low level

outlets EL. 830 m asl. and LLOs dis
harge 
apa
ity of 6,600 m

3

/s under free �ow �ushing

suggests the following results (Fig. 2.2):

1. In 
ase that the one month �ushing is started immediately after the impounding,

the reservoir life is extended to 40 years.

2. Drawdown �ushing in the month of June will allow �lling of the reservoir imme-

diately, after termination of �ushing, in the following months of high �ows during

the monsoon season. Rapidly �lling the reservoir in the following months will also

provide greater opportunity of power generation in the rest monsoon period.

Figure 2.2: Sediment pro�le under free �ow �ushing.

The preliminary assessment for both �ushing methods, pressure �ow �ushing and free

�ow �ushing were 
he
ked and 
lari�ed by the tra
tive for
e and 
riti
al fri
tion velo
ity
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based on the ba
kwater 
al
ulation. Under the pressure �ow �ushing having dis
harges

varying from 1,000 to 6,000 m

3

/s, maintaining RWL at FSL. 950 m asl., whole wash loads

below 0.0625 mm were mobilized and trapped in the reservoir se
tion over 15 km u/s

of dam. Part of wash loads was expe
ted to be �ushed out through LLOs and turbine

under pressure �ow. The velo
ity in the reservoir was ranged from 0.02 to 0.14 m/s near

the damsite. Under the free �ow �ushing having dis
harges of 6,000 m

3

/s, and RWL at

853.92 m asl., the suspended loads with 0.2 to 0.6 mm were mobilized and trapped in the

reservoir se
tion over 15 km u/s of dam. Parti
les below 0.2 mm were �ushed out through

LLOs during �ushing operations under the free �ow. The velo
ity in the reservoir was

ranged from 0.39 to 0.44 m/s near the damsite.

2.5 Con
lusions

It is evident that the period of non-�ushing operation for the Dasu reservoir should be

limited to 15 years if it is at the status of �Pre-Bhasha�. This operation would 
ontribute

not only for the maximization of annual energy during 
onstru
tion phases of the Dasu

proje
t but also for the mitigation of annual sediment in�ow to the Tarbela reservoir and

the extension of the reservoir life for the Tarbela proje
t. If �Post-Bhasha� is a
hieved,

the �ushing operation is not required further than 30 years sin
e the Bhasha dam has

enough storage 
apa
ity. From the above initial �ushing operation study, it is 
on
luded

that the free �ow �ushing is more appropriate and expe
ted to show higher e�
ien
y of

sediment eva
uation due to shallow water level near the dam. It is further 
on
luded that

an upstream reservoir is ne
essary for sustainable operation of run-of-river hydropower

proje
t on the Indus River in Pakistan.
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Chapter 3

Estimation of Sediment Yield for Dasu

Hydropower Proje
t Using Arti�
ial

Neural Networks

This 
hapter is published as:

Ateeq-Ur-Rehman, S.; Bui, M.D.; Riaz, Z.; Ruts
hmann, P., Estimation of sediment

yield for Dasu Hydropower Proje
t using arti�
ial neural networks. In 18. Wasserbau-

Symposium; Ruts
hmann, P., Ed.; Freunde des Lehrstuhls für Wasserbau und Wasser-

wirts
haft, TU Muni
h: Wallgau, Germany, 2016; Vol. Nr. 134/2016, pp. 326�337, ISBN.

978-3-943683

Abstra
t: Reservoir sedimentation of Dasu Hydropower Proje
t (DHP) was anal-

ysed by developing three ANN ar
hite
tures of data driven method. The inputs of the

ANN model were daily data of the river in�ow into the reservoir, river out�ow from the

reservoir and 
hange in reservoir storage 
apa
ity, while the output of the model was

the daily amount of sediment retention in the reservoir ponding area. For ANN model

inputs, hydrologi
al data of forty years were used in this study (70% for training, 15%

for validation, and remaining 15% for testing). The target of the model was estimated by

using the HEC-RAS 1-D numeri
al model. The ANN ar
hite
tures were 
reated with the

multilayer per
eptron (MLP) using Marquardt Levenberg training method. In well per-

formed ANN ar
hite
tures, the transfer fun
tion in the hidden layers was `logsig', while

`purelin' was used as transfer fun
tion in the output layer. Among well performed ANN

ar
hite
tures, ANN (4-14-1) performed well in the three layers neural network, ANN (4-8-

10-1) performed well in the four layers neural network ar
hite
ture while ANN (4-5-4-5-1)
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performed well in the �ve layers neural network ar
hite
ture. The results showed that the

ANN models sele
ted 
aptured the pro
ess of reservoir sedimentation very well in both

ways, daily volume of sediment deposition and daily volume of sediment venting out of

the reservoir during wettest and driest hydrologi
al 
y
les. The results also showed that

with an in
rease the length of data set of shorter intervals, the e�
ien
y of the model 
an

be improved. It was also noti
ed that the length of arti�
ial neural network did not a�e
t

the statisti
al performan
e of the model when employing short-interval observational data

of long period. It was 
on
luded that the arti�
ial neural network is a good tool for the

estimation of reservoir sedimentation in the Dasu Hydropower Proje
t.

3.1 Introdu
tion

The 
hallenge of reservoir sedimentation is depleting per 
apita availability of water in

Pakistan. That is not only a�e
ting agri
ulture 
rop water requirement only but also

power generation, whi
h it's already fa
ing severe 
risis. Per 
apita water availability

in Pakistan has de
reased from 5,000 in 1951 to 1,100 
ubi
 meter per annum in 2006.

The in
reasing gap between water supply and demand has led to severe water shortage,

in almost all se
tors, [77℄. The present fa
ts are just above the level of 1,000 mtextsu-

pers
ript3 per 
apita per annum [78℄, the internationally re
ognized water s
ar
ity rate.

In Pakistan, water shortfall between requirement and availability will be 12% in 2025

[79℄. At the moment, the 
ountry has only 30 days water storage 
apa
ity [80℄. Around

92% of the 
ountry's area is 
lassi�ed as semi-arid to arid, fa
ing extreme shortage of

pre
ipitation [81℄. Under this s
enario, the 
onstru
tion of mega multi-purpose storage

dams is assuming highest priority to sustain irrigated agri
ulture whi
h is the ba
kbone

of Pakistan's e
onomy and to meet the growing power need of the 
ountry [82℄.

Predi
tion of sedimentation is not an easy task due to its high 
omplexity and non-

linearity. In re
ent past, the arti�
ial neural network (ANN) te
hnique, is gaining popu-

larity among the hydrologi
 
ommunity due to its ability to identify a relationship from

given patterns to solve large s
ale 
omplex problems su
h as pattern re
ognition, non-

linear modelling and 
lassi�
ation [83, 84℄. ANN provided many promising results in the

�eld of hydrauli
 and 
ivil engineering. For example its working style like human ner-

vous system, to learn from data samples presented, proved it a highly tolerated against

data simple errors [85℄. Compared to regression analysis with 
onventional sto
hasti


dynami
 programming, ANN showed superiority to ta
kle the nonlinearity problems as

well as superior simulation model in deriving the operating poli
y for reservoir systems
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[86℄. [87℄ made a 
omparison between suspended sediment rating 
urves and arti�
ial

neural network (ANN) for EI Kebir 
at
hment in Algeria. Daily water dis
harge and

daily suspended sediment data from the gauging station of Ain Assel were used as input

and output parameter. The model was based on the 
as
ade-forward and feed- forward

ba
k propagation using Levenberg-Marquardt and Bayesian regulation algorithms. It was

found that ANN model e�
ien
y to produ
e the daily sediment load and global annual

sediment yield was the highest. [88℄ developed an arti�
ial neural network (ANN) for

reservoir sedimentation of Gobindsagar Reservoir at Bhakra Dam on Satluj River in In-

dia whi
h is a tributary of Indus River Basin System. In the model, 32 years data of

annual rainfall, annual in�ow and annual 
apa
ity were used as input parameters. The

pattern of sediment retained in the reservoir was well 
aptured by the multi-layer per-


eptron (3-5-1) ANN model using ba
k propagation algorithm with sigmoidal a
tivation

fun
tion. It was found that ANN estimated the reservoir sedimentation with better a
-


ura
y 
ompared to 
onventional methods. [89℄ developed an arti�
ial neural network to

study the relationship between sediment yield and Indus river runo� during high �ows for

Tarbela Dam utilizing Besham Qila's gauge station data. In the three layers neural net-

work with ba
k propagation algorithm, weekly time series data of dis
harge and sediment

load of 20 years was used as an input and output parameter, respe
tively. The 
orrelation

of 0.56 was found in observed and 
omputed sediments for the ANN model. ANN model

is also a very e�
ient tool for water level predi
tion espe
ially when the duration of qui
k

response 
omponents of individual events is less than 6 hours [90℄.

In the present study, an ANN model has been developed by using 40 years hydrologi-


al data for the estimation of sediment load at the under 
onstru
ted Dasu Hydropower

Proje
t. The input parameters su
h as river dis
harge into the reservoir, out�ows from

reservoir and reservoir 
apa
ity were de
ided on the basis of their in�uen
e in sedimenta-

tion pro
ess and sediment load retained in the dam ponding area was 
onsidered as the

output parameter.

3.2 Study area and methodology

Dasu dam is a gravity dam 
urrently being 
onstru
ted on the Indus River near Dasu

town in Khyber Pakhtunkhwa provin
e of Pakistan (Fig. 3.1). Its design dis
harge is of

2,670 m

3

/s [6℄ and one of the series of hydropower development proje
ts in
luded in the

vision programme developed by Water and Power Development Authority of Pakistan.

In feasibility studies of Dasu HPP, it was de
ided to 
onstru
t after 
ompletion of an
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upstream Diamer Bhasha reservoir to provide regulated �ows for energy generation and

also to 
ontrol downstream proposed proje
ts reservoir sedimentation [57℄. Later, a de-

tailed design of the proje
t was 
ondu
ted without 
onsidering any upstream reservoir

whi
h will de�nitely 
ause huge sedimentation within Dasu reservoir storage area and

may be a danger for dam 
omponents [1℄. Cat
hment area of Indus River at the damsite

is 158,800 km

2

. Mean annual runo� at dam site is 2,116 m

3

/s with lowest river �ow of

291 m

3

/s. Annual �ow volume at Dasu dam site is 66.7 billion m

3

, 90% of these �ows are

generated from melting snow and gla
iers. Hen
e nearly 80% of �ows o

ur in summer

months from June to September while from O
tober to May is known as the low �ow

season. Gross storage 
apa
ity of reservoir at elevation of 950 masl is about 1.41 billion

m

3

and operational storage 
apa
ity is 0.82 billion m

3

[7℄ The proje
t is going to be 
on-

stru
ted with the help of World Bank funding and will operate under Water and Power

Development Authority (WAPDA) Pakistan [7℄. WAPDA is also 
ontrolling authority of

Pakistan reservoirs, 
ondu
t reservoir thalweg surveys regularly to measure a
tual sedi-

ment deposited in the reservoirs. The Indus River originates from Tibetan plateau, to

the North of Manasarowar Lake, at an elevation of about 5,500 masl. Operational Mete-

Hydrologi
al data stations along Indus River till Dasu site and nearby downstream are

at Partab Bridge, Dasu Bridge, Kandia Bridge, Pattan, and Besham Qila.

3.2.1 Method

The ANN model developed by using simple mass balan
e equation for the estimation of

sediment retained within the reservoir area;

∆s = qw(in) − qw(out) + qs(in) − qs(out) 3.1

∆s = qw(in) − qw(out) + qs(R) 3.2

qs(R) = ∆s+ qw(out) − qw(in) 3.3

∆s = st − st−1 3.4

where, ∆s = 
hange in reservoir 
apa
ity (m

3

), qw(in) = water in�ow into reservoir (m

3

),

qw(out) = water out�ow from reservoir (m

3

), qs(in) = sediment in
oming in reservoir (m

3

),

qs(out) = sediment outgoing from reservoir (m

3

), qs(R) = sediment retained in the reservoir
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Figure 3.1: A Lo
ation map of the study area, Dasu Hydropower Proje
t on Indus River,

Pakistan [7℄

Assuming similar hydro-metrologi
al 
onditions, daily river in�ow at dam site from

1969-2008 was used as input parameter in the model for the period 2027-2066. In the

in�ow data, the moderate hydrologi
al season was 1999 with peak daily dis
harge of

7.07×108 m

3

/day (Fig. 3.2). Just one year later, 2000 was the driest season with a

peak daily dis
harge of 5.06×108 m

3

/day. The year 2006 was the wettest season with

a peak daily dis
harge of 9.04×108 m

3

/day. The di�eren
e between peak �ows of the

wettest and driest season was 3.97×108 m

3

/day. River out�ow from the reservoir was


al
ulated based on reservoir operation guidelines of Dasu Hydropower Proje
t. In the

out�ow hydrograph, 2057 was the moderate hydrologi
al season (Fig. 3.3). In the out�ow

hydrograph the wettest seasons were 2064, 2043, 2040, 2059, 2031, and 2038. The peak

out�ow dis
harge in 2064 was 9.04×108 m3

/day. The driest season in out�ow hydrograph

was 2058 with a peak out�ow dis
harge of 4.8×108 m

3

/day. The out�ow of 4.8×108
mtextsupers
ript3/day is 
omparatively lower than the in�ow at the same period, i.e.

5.06×108 m3

/day. The di�eren
e in in�ow and out�ow hydrograph was due to �lling of

the dam to its full supply level after �nishing the free �ow �ushing operation in monsoon

at that period.
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Figure 3.2: ANN input, daily in�ow hydrograph of moderate hydrologi
al year (1999)

The reservoir 
apa
ity was 
al
ulated from the area-
apa
ity and elevation 
urve of the

reservoir operation (Fig. 3.4). Target for subje
t ANN model was sediment retained in

the reservoir ponding area during 2027-2066, whi
h was estimated by using HEC-RAS-1D

numeri
al model. In HEC-RAS model, daily in�ow dis
harges and reservoir water levels

(RWL) were used as upper and lower boundary 
onditions, respe
tively. A
ker-White

sediment transport formula was used for sediment simulations in this model. A
ker-

White sediment transport formula showed better results for Dasu Hydropower Proje
t, in

previous studies 
ondu
ted by [1℄. [91℄ evaluated total load sediment transport formulas

using ANN te
hnique and it was found that ANN model is a reliable and un
ompli
ated

method to predi
t total sediment transport rate of total bed material load transport rate.

It was also found that the a

ura
y of A
kers andWhite (1973) sediment transport formula

showed some preferen
e in the study results [91℄. In 
onstru
ted sediment retention graph

(Fig. 3.5), the year 2038 was among the wettest seasons along with longer duration of

high �ows. In 2038, the monsoon started from the mid of April and ended in August. In

normal years, the rotation of monsoon starts in the June and ended in August. The e�e
t

of longer duration high predi
ted more �ushing of sediments from the dam (Fig. 3.5). The

year 2066 showed highest peak of out�ow but its duration of high �ow event was only 20

days in June. Therefore, in 2066 the �ushing of sediments out of the dam body was an

average as of the other years. The �ushing operation in the starting years of the proje
t

was planned for the shorter time due to less a

umulation of sediments in the dam.

The 
ombination of both ANN and HEC-RAS models is shown in Fig. 3.6. The input

and output parameters of both models were 
orrespond to the same period. The HEC-

RAS model output of volume of sediment retained in the reservoir was used as target in
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the ANN model. The aim of using HEC-RAS output as target in ANN model was to

observe the e�
ien
y of ANN model to predi
t reservoir sedimentation.
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Figure 3.3: ANN input, planned daily out�ow hydrograph of moderate hydrologi
al year
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3.2.2 ANN model development

The most 
ommonly used arti�
ial neural network in hydrologi
al studies is feed forward

neural network with ba
k propagation [92℄. There is no �xed rule for the development

of an ANN model, even though a general framework 
an be followed based on previous

su

essful appli
ations in engineering [88℄. In the present study of Dasu HPP, three types

of multilayers per
eptron (MLP) of ANN model ar
hite
ture were developed to estimate
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reservoir sedimentation using 40 year's data. Trial and error method was used to sele
t an

appropriate ANN ar
hite
ture. Input parameters su
h as river in�ow, river out�ow, and


hange in storage 
apa
ity of the reservoir, for the model, were de
ided on the basis of

available data and possible fa
tors whi
h 
an a�e
t sediment retention (Eq. 3.4). Number

of hidden layers and size of hidden layers were sele
ted on trial and error basis. The

number and size of hidden layers a�e
t the performan
e of ANN, signi�
antly. Random,

Levenberg-Marquardt `trainlm', and means squared error fun
tions were used for data

division, training and performan
e of ANN algorithms. The `trainlm' training fun
tion

was used as training fun
tion in the developed ANN ar
hite
tures. Permutations of logsig,

tansig, radbas and purelin transfer fun
tions in hidden and output layers were used to

obtain the best possible solution.
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3.2.2.1 Training and validation of an ANN

In multilayer per
eptron, arti�
ial neural network, 
onne
tions exist between di�erent

nodes of di�erent layers and there is no 
onne
tion exists within the same layer. The

inputs are fed through the input layer and the output layer produ
ed output after going

through di�erent training, testing fun
tions in the input, hidden and the output layers.

Between di�erent layers there is a 
onne
tion whi
h is updated during the learning pro-


ess by bias and synapti
 weights. At initially, networks use small random values for

training. In gradient de
ent algorithm, learning pro
ess stops when network attained

to a steepest de
ent approa
h. On
e the training pro
ess is satisfa
tory 
ompleted, the

network was saved, the test and validation data set re
alled and values predi
ted by the

model were 
ompared with the targeted data. When a 
omparison is within the satis-

�ed limit, the network than the network is 
onsidered to be a well-trained network. For

training purposes Levenberg-Marquardt algorithm was used as it has been widely used

in approximating a 
ompli
ated non-linear fun
tion [93℄. In the present study, the model

was used to test the statisti
al indi
ators of 
oe�
ient of regression (R), root mean-square

error (RMSE) and mean absolute error (MAE). The RMSE of the training period was the

de
iding parameter for the sele
tion of 
orresponding performan
e parameters and ANN

ar
hite
ture (Fig. 3.7). Blo
k diagram of 3-D array ANN ar
hite
ture with three hidden

layers as an example with the input and the output parameters is as shown in Fig. 3.7.

Furthermore, ANN model sediment estimation error, per km

2

of the 
at
hment area was

estimated by using error to 
at
hment area relationship:

3.2.2.2 Model setup

Multilayer per
eptron of arti�
ial neural network ar
hite
tures were developed by using

MATLAB tool. Three feedforward network ar
hite
tures of ANN having one, two and

three hidden layers were tested for the 
urrent simulations. Input data was allo
ated to

the model a

ording to default, i.e. in random basis. 70% of the data set (∆s ,qw(in)

and qw(out)) was used for training, 15% for testing and the remaining 15% was used for

validation. Trial and error method was used for sele
tion of appropriate ANN ar
hite
ture

and number of neuron in the hidden layers. The one-hidden-layer ANN ar
hite
ture was

tested 100 times with 1 to 20 neurons in the hidden layer, the two-hidden-layers ANN

ar
hite
ture was tested 10 times with 1 to 10 neurons in the hidden layers, and the three-

hidden-layers ANN ar
hite
ture was tested 5 times with 1 to 5 neurons in the hidden layers,

respe
tively. The output for ea
h simulation was daily volume of sediment retained in
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the reservoir. After spe
ifying the whole arrangement, the programme was simulated to

�nd out the best 
ombinations of di�erent performan
e statisti
s (R, RMSE & MAE).

Statisti
al performan
e of respe
tive ANN ar
hite
tures output and used fun
tions were

stored after ea
h simulation and best results were sorted out after �nishing the whole

simulation pro
ess as an example of the four layers ANN algorithm is shown in Fig. 3.7.

To get visualization of the model performan
e, a 
omparison was made between the best

performed ANN ar
hite
ture for predi
ting the sediment retained.

Sediment estimation error, per km2
of 
athment area =

Error

Cat
hment area

3.5

Hidden layer-1 [0:5℄

Hidden layer-2 [0:5℄

Hidden layer-3 [0:5℄

I/P [0:4℄

Output

ANN

Testing

RMSE

RMSE=Min

No

Yes

Target

Store level value of R,

neurons, RMSE and

MAE for whi
h RMSE

of test is minimum.

Figure 3.7: ANN algorithm for 
orrelation, RMSE and MAE.
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3.3 Results and dis
ussions

The results of the three tested ar
hite
tural 
ases were 
ategorised on the basis of number

of layers in ea
h ar
hite
ture. Case-I 
ontains the one-hidden-layer ANN ar
hite
ture

results, 
ase-II 
ontains the two-hidden-layers ANN ar
hite
ture results, and 
ase-III 
on-

tains the three-hidden-layers ANN ar
hite
ture results.

3.3.1 Case-I

The one-hidden-layer neural network ar
hite
ture was tested with four permutations of

`logsig', `tansig', `radbas', and `purelin' transfer fun
tions in the hidden and the output

layers. RMSE in the testing period was the de
iding fa
tor of sele
ting the suitable ANN

ar
hite
ture. For this 
ase, the minimum RMSE was found by using `logsig' and `purelin'

transfer fun
tions in the hidden and the output layers, i.e. 1.86×105 m3

. The value of

RMSE 1.86×105 m3

was 
omparatively lower than the value of RMSE by using `tansig'

and `radbas' transfer fun
tions in the hidden layers. The `tansig' and `logsig' transfer

fun
tions showed maximum RMSE, i.e. 2.7×105 m3

. Similarly `logsig' transfer fun
tion

in both, hidden and output layers also showed higher RMSE, i.e. 2.3×105 m3

. Number of

neurons in the hidden layer of the best performed ANN ar
hite
ture were 14. This ANN

provided 
orrelations of 0.92 and 0.90 for the testing and training data set, respe
tively.

3.3.2 Case-II

The same pro
edure was repeated for the two hidden layers neural network and it was

tested with permutation of `logsig', `tansig', `radbas' and `purelin' transfer fun
tions in

the hidden and the output layers. In this 
ase using transfer fun
tions of `tansig', in

both hidden layers and `purelin' in the output layer predi
ted e�
ient results for RMSE

of testing, i.e. 1.88×105 m3

. In this ANN ar
hite
ture 
ombination, number of neurons

in two hidden layers were 8 and 10. The 
orrelation 
oe�
ients for testing and training

periods were 0.92 and 0.91, respe
tively.

3.3.3 Case-III

The three hidden layers ANN ar
hite
ture was simulated with 30 di�erent 
ombinations

of transfer fun
tions of `logsig', `tansig', `radbas' and `purelin'. The minimum RMSE of
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the testing period for 
ase-III was obtained with `logsig' transfer fun
tion in all three

hidden layers and 'purelin' transfer fun
tion in the output layers (1.86×105 m

3

). The

numbers of neurons in the respe
tive hidden layers were 5, 4, and 5. For the testing and

training period, the 
orrelation 
oe�
ients were 0.92 and 0.91, respe
tively.

In e�
iently performed ANN ar
hite
tures, the most 
ommon fa
tor among all the

results was the transfer fun
tions (Tab. 3.1). The `purelin' transfer fun
tion in output

layers predi
ted e�
ient results of RMSE of testing in the three layers neural ar
hite
ture

ANN (4-14-1), four layers neural ar
hite
ture ANN (4-8-10-1), and the �ve layer neural

network ANN (4-5-4-5-1): i.e. 1.86×105 m3

, 1.88×105 m3

, and 1.86×105 m3

. The ANN

(4-14-1) and the ANN (4-5-4-5-1) ar
hite
ture used `logsig' transfer fun
tions in all hidden

layers. Thus the RMSE of testing of these ar
hite
tures is almost similar. The RMSE

of three layers neural network with `logsig' transfer fun
tion in both hidden layers and

`purelin' transfer fun
tion in the output layer was 1.93×105 m

3

. That is higher than

RMSE with `tansig' transfer fun
tion in the both hidden layers and `purelin' transfer

fun
tion in the output layer, i.e. 1.88×105 m3

. Therefore, in four layers neural network,

the best transfer fun
tion in hidden layer was `tansig' while the best transfer fun
tion in

three and �ve layers neural network was `logsig'. Among the performan
e parameters of

RMSE for testing and validation periods, ANN (4-14-1) performed better. Again, in MAE

of training, ANN (4-14-1) performed better. ANN (4-5-4-5-1) performed better in MAE

of testing, i.e. 8.17×104 m3

. Although, RMSE of training as well as MAE of testing and

validation were not the de
iding parameters of sele
ting the appropriate neural network

stru
ture, these parameters reveal the performan
e of sele
ted ar
hite
tures. Among the

best three sele
ted ar
hite
tures, ANN (4-14-1) performed better and ANN (4-8-10-1) was

at the last in performan
e statisti
s. It may be possible that neural network ar
hite
tures

with one hidden layer and 1 to 20 neurons in the hidden layer were tested and re
orded

100 times to get best results. The neural network ar
hite
tures with two hidden layers

and 1 to 10 neurons in the hidden layers were tested and re
orded 10 times to get the best

results. The neural network ar
hite
tures with three hidden layers and 1 to 5 neurons in

the hidden layers were tested and re
orded only 5 times to get the best results. Thus,

the two and the three hidden layers neural network predi
ted best results by utilizing the

maximum allowed number of neurons, i.e. 8, 10 in the two hidden layers neural network

and 5, 4, 5 in the three hidden layers neural network. Therefore, it 
ould be possible that

by in
reasing the number of neurons in the hidden layers of three and four layers neural

network may improve the e�
ien
y of these ANN ar
hite
tures. However, in
reasing the

number of neurons or size of neural networks utilize more power, time, and memory. In


urrent simulations of three and four hidden layers neural network, the elapsed time was
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7,322 and 17,238 se
onds. Thus, sele
tion of appropriate neural network ar
hite
tures

always require a 
ompromise between 
ost and e�
ien
y.

Table 3.1: Summary of performan
e statisti
s of e�
ient ANN ar
hite
tures

ANN ar
hite
ture

Transfer fun
tion Performan
e parameters

HL

1

-1

HL-2 HL-3 Output layer

R R RMSE RMSE MAE MAE

test val

2

test val test val

(10

5

m

3

) (10

5

m

3

) (10

4

m

3

) (10

4

m

3

)

ANN(4-14-1) logsig - - purelin 0.926 0.905 1.860 2.146 8.224 9.259

ANN(4-8-10-1) tansig tansig - purelin 0.924 0.909 1.884 2.159 8.299 9.347

ANN(4-5-4-5-1) logsig logsig logsig purelin 0.923 0.908 1.863 2.229 8.177 10.061

The study on reservoir sedimentation estimation by using the arti�
ial neural network

was 
ondu
ted [88℄ for the Gobindsagar Reservoir on the Satluj River in India. The Satluj

River is a tributary of the Indus River Basin System [94℄. [88℄ employed annual rainfall,

in�ow, and reservoir 
apa
ity of 1971 to 2003, as an input parameters in ANN (3-5-1)

model and determining the volume of sediment retained in the reservoir was the target

and the output of the model. The study results showed that the RMSE and MAE of the

testing periods of ANN (3-5-1) for the Gobindsagar Dam, with a 
at
hment area of 56,876

km

2

, were 3.51×106 m3

and 3.14×106 m3

, respe
tively. Per square kilometre 
at
hment

area RMSE and MAE of testing periods, for the Gobindsagar reservoir were about 61.76

m

3

and 55.26 m

3

. In the present study of Dasu HPP, RMSE and MAE of the testing

periods of ANN (4-14-1) were 1.86x10

5

m3 and 8.22×104 m3

. Similarly, 
at
hment area

sedimentation estimation error per km

2

during the testing period, for RMSE and MAE

were 1.17 m

3

/km

2

and 0.51 m

3

/km

2

, respe
tively (Tab. 3.2).

Table 3.2: Comparison of ANN performan
e statisti
s of the Dasu HPP with the Gob-

indsagar Dam

Dam RMSE test MAE test CA

3

RMSE test/CA MAE test/CA

(million m

3

) (million m

3

) (km

2

) (m

3

/km

2

) (m

3

/km

2

)

Dasu 0.186 0.082 158,800 1.17 0.51

Gobindsagar 3.51 3.14 56,876 61.76 55.26

The model predi
tions of ANN (4-14-1) for Dasu Hydropower Proje
t showed statis-

ti
al preferen
es over ANN (3-5-1) model predi
tions of existing Gobindsagar Dam. It

may possible due to di�eren
es in input parameters and time duration of input data sets.

In Gobindsagar Dam [88℄ annual rainfall, annual in�ow and annual 
apa
ity was used as

input parameter while in the present study daily data of in�ow, out�ow and 
apa
ity was

1

hidden layer

2

validation

3


at
hment area
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used as input parameter. The length of data sets in Gobindsagar Dam and Dasu HPP

were 32 years and 40 years, respe
tively. The 
at
hment area of Dasu is almost 2.8 times

more than Gobindsagar Dam's 
at
hment area. Therefore, it seems that the interval of

data set and 
at
hment area e�e
ts the e�
ien
y of ANN.

A 
omparison of optimal performed ANN ar
hite
ture predi
tions with target sediment

volume retained in the reservoir ponding area showed that the model predi
tion in all

three best ANN ar
hite
tures, i.e. ANN (4-14-1), ANN (4-8-10-1) and ANN (4-5-4-5-

1), 
aptured well the sediment retention and �ushing in the dam ponding. Comparison

of targeted and best performed ANN (4-14-1) network model estimation for the testing

period is shown in Fig. 3.8. At the beginning, ANN model deviated from the target

sediment retention. The possible reason behind deviated trend may be the training of

ANN. The ANN model was trained with input data on randomly basis. Furthermore,

there was no �ushing operation planned in the initial �ve years of the proje
t, the only

sediment �ushing was due to high �ows in the river during monsoon period. After �ve

years the �ushing operation was repeated every year in the dam. After training well, the

ANN predi
ted well the sediment retention and �ushing operations in the dam as showed

in both testing and all periods of Fig. 3.8a and Fig. 3.8b. To visualize the sediment

retention trend of ANN (4-14-1) model predi
tions in wettest and moderate hydrologi
al

seasons, a 
omparison of results is made in Fig. 3.9. It was noti
ed that ANN (4-14-1)


aptured well the overall trend of sediment retention in the reservoir and �ushing out

of the reservoir (Fig. 3.9a). The year 2057 was the moderate hydrologi
al year and in

se
tional view of Fig. 3.9b, the model predi
ted well both pro
esses of sediment �ushing

and sediment retention during the �lling of the reservoir. Similarly, the year 2064 was the

wettest season with highest peak of dis
harge of 20 days, that high event was also well


aptured by the model as shown in Fig. 3.9
. The year 2038 was also wettest season with

longer peaks of high �ows due to pre start of monsoon and that trend was also 
aptured

well in the model. During these year more �ushing was predi
ted both in target and ANN

(4-14-1) as shown in Fig. 3.9d.

3.4 Con
lusions

The developed arti�
ial neural network 
ould well 
apture the pattern of the volumes

of sediment deposited in the reservoir and �ushed out of the reservoir on a daily basis

for Dasu Hydropower Proje
t (DHP). The best MPL of ANN (4-14-1) was with `logsig'

transfer fun
tion in the hidden layer and `purelin' transfer fun
tion in the output layer.
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This ANN also 
aptured well the events of sedimentation in wettest and driest hydrologi
al

seasons of the Proje
t. It was observed that with longer length of data set of shorter

intervals 
ould improve the e�
ien
y of the ANN model. Furthermore, the 
at
hment

area of the watershed also in�uen
ed the performan
e parameters of the model out
ome.

It was also observed that in
reasing the size of neural network for long duration data

set of shorter intervals did not a�e
t the statisti
al performan
e of the model. It was


on
luded that the arti�
ial neural network is a good tool for the estimation of sediment

deposition within the reservoir ponding area and estimation of sediment �ushing out of

the reservoir for the Dasu Hydropower Proje
t.
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data
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Chapter 4

Development of a Wavelet-ANN Model

for Estimating Suspended Sediment

Load in the Upper Indus River

This 
hapter is submitted for publishing as:

Ateeq-Ur-Rehman, S.; Bui, M.D.; Ruts
hmann, P. Development of a wavelet-ANN model

for estimating suspended sediment load in the upper Indus River. Submitted to Interna-

tional Journal of River Basin Management 2017

Abstra
t: The pre
ise estimate of sediment load plays a vital role in the sediment

management of existing and proposed reservoirs and run-of-the-river hydropower s
hemes.

In this study, missing suspended sediment load (SSL) at Besham Qila was estimated

using three di�erent modelling approa
hes. Comparison of the results estimated by these

models and observations showed that a standard arti�
ial neural network (ANN) and

dis
rete wavelet transform 
oupled with neural network (WA-ANN) estimated SSL more

a

urately than the 
onventional sediment rating 
urves (SRC). The results obtained

using WA-ANN for daily SSLs were NSE=0.85 
ompared to ANN NSE=0.81 and SRC

NSE=0.48, respe
tively. In addition, the mean deviations during the whole study period

(38 years) were 13%, 18% and 36% using WA-ANN, ANN and SRC models, respe
tively.

Moreover, the WA-ANN estimate for the mean annual mass deposited in the Tarbela

dam deviates only 12% from the hydrographi
 survey, 
ompare to a 43% deviation using

SRC. Ex
eptional events were more a

urately estimated using the WA-ANN model.

The results therefore indi
ate that 
oupled wavelet-neural network models 
an be applied

for more pre
ise estimation of suspended sediment load for rivers subje
ted to strong
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hysteresis phenomena, disproportional spatio-temporal trends between dis
harges and

SSLs, as well as parallel pro
esses of landslide degradation and aggradation. Our study

shows that the method 
an be used for setting 
orre
t sediment load boundary 
onditions

of sedimentation models for 14,000 MW planned hydrauli
 stru
tures and dete
tion of

sediment load trends in the upper Indus River and similar environments.

4.1 Introdu
tion

The deposition of sediment load in reservoirs redu
es their life span. Due to sedimentation,

in Asia alone, 80% of the useful storage 
apa
ity for hydropower produ
tion will be lost

by 2035, and 70% of the storage volumes used for irrigation purposes will be lost by

2025 [53℄. Even 
onstru
tion of new storage reservoirs will only repla
e already lost

storage 
apa
ity. The most 
ommon 
onventional method for sediment load estimation is

the sediment rating 
urve (SRC), whi
h is a relatively simple relationship between �ow

dis
harge and sediment 
on
entration. However, in a real time s
enario, multiple variable

a
t on the given 
ir
umstan
es of the sampled data, whi
h is why SRC mostly results

over or under estimate the sediment load [8℄. A number of reservoirs have silted up earlier

than expe
ted due to underestimation or are ine�
ient due to overestimation of sediment

load. Examples in
lude the Warsak and Mangla dams in Pakistan [9, 10℄. The 
ause

of this problem might be the signi�
ant varian
e in SSL estimates on whi
h the design

and operation of these hydrauli
 stru
tures were based. For example, the varian
e in

SSL estimates at Besham Qila gauge station of the upper Indus River ranges from 200

Mt yr

−1
to 675 Mt yr

−1
(Tab. 4.1). Su
h varian
e 
an lead to a 
ir
ular error in the

design and operation of planned and existing infrastru
tures. The 
ir
ular error starts

from poor sediment load estimation and subsequently a�e
ts the boundary 
onditions of

the modelling pro
ess, whi
h results in the poor quality operation rules that ultimately


ontribute to the stru
ture's life 
y
le. Thus, the a

ura
y of an estimate plays a de
isive

role in setting the 
orre
t boundary 
onditions for sediment studies and 
an improve the

quality of hydrauli
 designs. However, minor 
onsideration has been paid to quantifying

the un
ertainty asso
iated with sediment load estimates in the model fore
asts. Therefore,

it is ne
essary to improve the sediment load estimation te
hniques in order to manage the

rapid de
line of the reservoir's storage 
apabilities [95℄.

SSL estimation has be
ome vastly more 
hallenging, in parti
ular under the in�uen
e

of 
limate 
hange, where disproportional spatio-temporal trends between SSLs and dis-


harges exist primarily due to intra-annual shifts in �ows [20, 37, 4℄. This highlights the
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need for sediment models whi
h operate in real time and are able to provide a better

estimation of sediment load for the planning of new reservoirs or better management of

existing ones. This spe
i�
ally applies to the upper Indus River, where the presen
e of


omplex sediment transport pro
esses related to the hysteresis phenomena and marked

hydrologi
al variations, su
h as: (a) the �uvial erosion and transport pro
esses whi
h

intera
t with other sediment produ
ing pro
esses, (b) temporary sediment storage in the

main river 
hannel [22℄, (
) aggradation and degradation phases of landslides [23℄, (d) on

average 5-10 high �ow waves of an average 10-12 days duration during the monsoon pe-

riod, and (e) di�erent transit times of dis
harge and sediment and their di�erent lag times

from several sour
es to the gauge stations, all pose a 
hallenge in pre
ise SSL estimation

pro
ess.

Table 4.1: Estimates published on the Indus River sediment yield

Suspended sediment yield Referen
es

(Mt yr

−1
)

480 [11℄

400 [12℄

475 [13℄

446 [96℄

200 [14℄

675 [16℄

300 [17℄

200 [97℄

197 [19℄

200 [6℄

In addition, hydro-morphologi
al pro
esses are highly nonlinear in nature and, in

many 
ases, modelling these variables with 
on
eptual models may be limited by a poor

understanding of the 
omplex intera
tions involved. In su
h 
ases, arti�
ial neural net-

works (ANNs) are often viewed as an appealing alternative, as they have the ability to

extra
t a nonlinear relationship from data without requiring an in depth knowledge of the

physi
s o

urring within the system [25℄. Appli
ation of wavelet transformation (WT)

has been found to be e�e
tive in dealing with the issue of non-stationary data. WT is

a mathemati
al tool that may improve the performan
e of ANN models by simultane-

ously 
onsidering both the spe
tral and the temporal information 
ontained in the input

data. WT de
omposes the main time series data into its sub-
omponents. ANN models

developed using input data pro
essed by the WT instead of using data in its raw form

are known as wavelet neural network (WA-ANN) models. These models a�ord improved

performan
e by using multi-s
ale input data and 
apturing useful information 
on
ealed
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in the main time series data in its raw form [98℄.

ANN and WA-ANNs have been performing well over the last de
ades of estimating and

fore
asting of sediment loads [26, 27℄. WA-ANNs 
an de
ompose the data time series up to

several levels in time, spa
e and frequen
y domain and reveal the information from a give

data s
enario [28℄. This de
omposition of data is required where the sediment transport

pro
ess is subje
ted to temporary sediment storage, strong hysteresis phenomena and

parallel aggradation and degradation of landslides. Data de
omposition beyond level one


an lead to low e�
ien
y [29℄, however, the 
on
ept of appropriate de
omposition levels

of data for rivers with temporary substantial sediment load storage is still not understood

for sediment load estimation. ANNs sediment load estimation abilities with semimonthly

sediment loads, using simple ANN stru
tures have only been tested for that rivers have

small 
at
hments [30℄. Moreover, WA-ANNs have not been tested for �lling the gaps

between intermittent suspended sediment 
on
entration (SSC) samples; in the state-of-

the-art te
hniques [26, 31℄, they have only been applied on 
ontinuous (daily) data time

series.

In granting the importan
e to hydrauli
 stru
tures as non-renewable resour
es, it is

important to quantitatively and qualitatively evaluate the performan
e (and un
ertainties

originating using) of these (SRC, ANN andWA-ANN) methods for the rivers with 
omplex

sediment transport pro
esses. To our knowledge, this is the �rst study to apply an

ANN and a WA-ANN models using di�erent ar
hite
tures, in
orporating four di�erent

training methods, transfer fun
tions and wavelets (up to 8 level of de
ompositions) for

suspended sediment load time series in the upper Indus River. In order to evaluate model

performan
e and to analyse the 
apabilities of the models in terms of daily, yearly and


umulative sediment load predi
tions, we 
ompare our results using these models with

those obtained by measurements. The study also explores the 
apabilities of these models

to re
onstru
t the missing daily SSL whi
h plays a vital role in setting 
orre
t boundary


onditions for reservoir sedimentation studies and dete
tion of sediment load trends for

rivers whi
h have intermittent SSC samples.

4.2 Study area and data

The Indus River is one of the largest rivers in south Asia with a total length of 2,880 km

and a drainage area of 912,000 km

2

starting in China, running through India and then

a
ross the whole of Pakistan. There are 17 operational 
limatologi
al and hydrologi
al

gauge stations along the Indus River before the Besham Qila gauge station. Besham Qila
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is lo
ated approximately 65 km upstream of the Tarbela dam (Fig. 4.1), whi
h is one of

the largest earth �lled dams in the world. Run-o� from the upper Indus Basin above

Besham Qila forms the greater part of the �ow entering the Tarbela dam. The spe
i�


sediment yield with drainage area along the Indus River at Besham Qila is approximately

1,197 Mt km

2

yr

−1
. This high sediment yield is due to the large number of small and

relatively steep 
at
hments dis
harging straight into the Indus River. 80 to 85% of the

annual sediment load is transported by the Indus River in July and August (monsoon

months). In the monsoon period, the �ow dis
harge 
an vary signi�
antly over a few days

with an immediate and large in
rease in the sediment 
on
entration [67℄. The 
ontribution

of rainfall, gla
ier and snow melt to the total �ow at Tarbela dam is 33% in July and 55%

in August. This makes the Indus River the most melt water dependent river in the world

[21, 46℄.

PSfrag repla
ements

China

Be
sh
am

Q
ila

da
ta

st
at
io
n

Pa
rt
ab

da
ta

st
at
io
n

China

A

f

g

h

a

n

i

s

t

a

n

Basha

Dasu

Iran

Arabian sea

Kara
hi

Legend

International boundary

Provin
ial boundary

Capital 
ity

City

Dam/barrage

Proposed dam

River

India

Lahore

N

Islamabad

Tarbela dam

Mangla dam

I

n

d

u

s

R

i

v

e

r

I

n

d

u

s

R

i

v

e

r

Figure 4.1: Lo
ation map of study area and gauge stations in the study area, developed

by [6℄

The data used in this study in
lude daily �ow dis
harges and distin
t sediment samples

over 40 years (1969-2008) at Besham Qila. As the suspended sediment 
on
entration

(SSC) data from 1978 and 1979 (along-with some samples in other years e.g. 1981) were

not 
alendri
ally do
umented, these two years were ex
luded from model 
onstru
tion.
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However, for 
onvenient representation, the data 
alendar is de�ned as 1969-2008. The

sediment sampling was 
arried out twi
e a week in summer (high �ow season) and on
e

a week in winter (low �ow season) as per availability of resour
es (labour) and sampling

feasibility (weather) following the U.S. Geologi
al Survey (USGS) pro
edures [99, 100,

101℄. Additional SSC sampling was also 
ondu
ted during high �ood and extreme events.

Moreover, the sampling was not 
ondu
ted on a �xed day in a week, whi
h also 
overs a

broad range of variations in SSC. The �ow dis
harge at gauge stations on the Indus River

was measured using an AA 
urrent meter following the USGS method. The total number

of suspended sediment samples taken at Besham Qila from 1969 to 2008 was 3,213. The

sampling frequen
y is an average 80 samples per year, whi
h is high (22%) and 
overs a

broad range of events. The outliers in sediment data samples were ex
luded by examining

the general behaviour of the river and river 
at
hment. The 
at
hment of the Indus River

at Besham Qila is around 164,867 km

2

[102℄. Given this immense 
at
hment area, the


hanges within the dis
harge and sediment 
on
entration are not as rapid as 
hanges in

small river 
at
hments. This makes ex
luding the outliers easier owing to the relatively

small variation in the behaviour of the river. Another reason for removing the outliers

through manual examination was the distin
t nature of SSC samples, whi
h hindered the

employment of statisti
al methods. The total size of data samples was redu
ed by about

4.2% after ex
luding outliers.

The hydrologi
al and sedimentologi
al data showed great varian
e in distribution of

sediment load and dis
harge over the time period 
on
erned (Tab. 4.2). The standard

deviation (SD) of sediment load and dis
harge indi
ated a wide spread of hydrologi
al

events for the Indus River. The highest ex
eptional �ow years were 1973, 1988, and 1994

with a total volume of 9.9×1010 m

3

, 9.5×1010 m

3

and 9.4×1010 m

3

, respe
tively. The

highest peak �ow year was 1984 with a volume of 8.9×1010 m3

. By 
ontrast, 1982 was an

extreme low �ow year with a volume of 6.1×1010 m3

. The mean annual volume of �ow

at Besham Qila in last 40 years was 7.6×1010 m3

. Based on these �ow patterns, low �ow

and high �ow seasons 
an be tra
ed. For example, 1974-1977 was a low �ow season (dry

season) with an average annual volume of 7.0×1010 m3

. On the other hand, 1988-1992

was a high �ow season (wet season) with an average annual �ow volume of 8.5×1010 m3

.

There was also a lag time in dis
harge and sediment 
on
entration peaks, whi
h may

have been the result of the immense 
at
hment area before Besham Qila gauge station

(i.e. 164,867 km

2

). The 10,000 years and 100 years return period �oods at Dasu damsite

were 21,218 m

3

/s and 15,078 m

3

/s, respe
tively [6℄. Dasu damsite is lo
ated about 95 km

upstream of Besham Qila gauge station (Fig. 4.1).
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Table 4.2: Hydrologi
al and sedimentologi
al data 
hara
teristi
s at Besham Qila gauge

station

Parameter Dis
harge Sediment 
on
entration

(m

3

/s) (ppm)

Duration 1969-08 (daily) 1969-08 (samples)

Max dis
harge 13,910 3,770 (at Q

max

)

Min dis
harge 325 132 (at Q

min

)

Max sediment 12,401 8,660

Min sediment 456 1

Mean sediment - 1,071

SD of sediment - 1,456

Mean dis
harge 3,000 -

SD of dis
harge 2,923 -

Q

-10,000

at Dasu damsite 21,218 -

Q

-100

at Dasu damsite 15,078 -

The average grain size distribution of suspended load in the Indus is 45.7% sand, 39.9%

silt and 14.4% 
lay [57℄. More than 90% of the annual sediment load rea
hes Besham Qila

in the summer months from May to September. This is mainly due to gla
ial melting in

summer and erosion of ro
ks and steep slopes in the basin area [103℄. More details on

data 
olle
tion, data quality and period of re
ords for the Indus River 
an be found in

[19℄.

4.3 Methodology

4.3.1 Sediment rating 
urves (SRC)

SRC empiri
ally relates the water dis
harge with sediment dis
harge for a given stream

[104, 74℄. The SRC method is simple and easily appli
able. However, its a

ura
y is

limited. In some 
ases, SRC provides relatively poor load estimates [105, 106, 30℄. De-

spite the un
ertainty of obtaining a useful water-dis
harge sediment relation, SRC may

nevertheless provide a satisfa
tory relation in the form of a linear or non-linear 
orrelation


oe�
ient (Eq. 4.1)

Qs = αQβ
4.1

Where Q

s

is the sediment dis
harge, Q is the river/stream �ow dis
harge, α and β are

the 
oe�
ients. For more a

urate SRC, the equation 
an be based on low and high �ows.

Additionally the fra
tion rate of 
orresponding dis
harges to in�ow dis
harge are derived
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from the sediment measurement data [107, 6℄. Usually, rating 
urves are developed on

the premise that the relationship between sediment 
on
entration and dis
harge is stable.

Although estimates are highly variable, SRC is still widely used [19, 108, 15, 6, 33, 1, 2℄.

Based on the distin
t SSC measurements from 1969-2008 [6℄ developed two sediment

rating 
urves using the SSL-dis
harge relationship. The �rst 
urve (Eq. 4.2) is based

on low and high �ow seasons in the winter and summer months, respe
tively, while the

se
ond (Eq. 4.3) is based on the relationship of overall �ow with SSL.

Qs =







1.4774× 10−8 ×Q2.632, if Q > 17, 000 ft3/s.

1.4865× 10−63 ×Q15.625, otherwise.
4.2

Qs = 6.835× 10−09 ×Q2.695 , (single equation) 4.3

Where Qs is the sediment dis
harge in short ton/day, Q is the �ow dis
harge in ft

3

/s.

4.3.2 Arti�
ial neural networks (ANN)

ANN is a 
omputational model inspired by biologi
al neural systems and it 
an be de�ned

as a set of simple pro
essing units (
alled neurons) working as a parallel distributed

pro
essor [109℄. These neurons are responsible for a
quiring and storing experiential

knowledge and making it available for use. Di�erent types of ANNs that are able to

perform various tasks. Among others, Multi-Layer-Per
eptron (MLP) using a training

algorithm of the feed-forward of the input information and the ba
kpropagation of error

is one of the most 
ommon ANNs applied to solving various engineering problems. Su
h an

MLP network 
onsists of an input layer, an output layer and one or more hidden layers

between its input and output layer. Ea
h layer 
onsists of 
ertain number of neurons.

Every neuron in a layer is 
onne
ted to all neurons in the adja
ent layers using synapti


or 
onne
tion weights but the information �ows only in one dire
tion, i.e. from the input

side to the output side. Further, ea
h neuron applies an a
tivation (or a transfer) fun
tion

to its net input (sum of weighted input signals) to determine its output. The behaviour

of the ANN depends on both the weights and the a
tivation fun
tion that is spe
i�ed for

the neuron. More importantly, ea
h layer has its own transfer fun
tion. Some examples

of 
ommon a
tivation fun
tions are the step fun
tion, sign fun
tion, sigmoid fun
tion

and linear fun
tion. Applying a ba
kpropagation algorithm, the network learns a pre-

de�ned set of input-output training pairs by using a two phase propagate-adapt 
y
le.

The applied input pattern to the �rst layer propagates through ea
h upper layer until an

output pattern is generated. An error indi
ating the di�eren
e between the predi
ted and

observed outputs is 
omputed. This error is ba
k-propagated through the network to ea
h
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neuron, and the 
onne
tion weights are 
orrespondingly adjusted. This training pro
ess

is performed by minimizing the error fun
tion representing the square of the errors. A

validation pro
ess 
an be used during training in order to prevent over �tting. On
e the

network has been trained to simulate the best response to input data, the 
on�guration

of the network is �xed and a test pro
ess is 
ondu
ted to evaluate the performan
e of the

ANN as a predi
tive tool.

A neural network is 
hara
terized by: (1) its pattern of 
onne
tions between the

neurons (
alled its ar
hite
ture), (2) its a
tivation or transfer fun
tion, and (3) the training

method for determining the weights on the 
onne
tions. It is worth mentioning here

that the performan
e of an ANN model is signi�
antly related to the number of hidden

layer nodes. Less neurons in the hidden layer may a�e
t the learning pro
ess in terms

of a network under �tting problem while more neurons in the hidden layer restri
t the

e�
ien
y in terms of 
omputational time. The in
rease of neurons may also 
ause a

network over �t problem. [110℄ suggested that the neurons for optimal generalization

should be in a range from 2
√
NI +NO to the value 2NI +1, where NI and NO represents

the number of input and output nodes, respe
tively. More details about ANN approa
hes

with these methods 
an be found in [109℄.

4.3.3 Wavelet transform (WT)

Wavelet transform (WT) is a mathemati
al tool that 
onverts time domain signals into

time-frequen
y domain signals [111℄. As there are many good books and arti
les introdu
-

ing the wavelet transform (e.g. [112, 113, 111℄), only the main 
on
epts of the transform

are presented in this paper.

In a time series f(t), the two basi
 parameters used for time-frequen
y representations

are a frequen
y and b position in the signal. The 
ontinuous wavelet transform (CWT)

of this time series is de�ned as follows:

Wa,b =
1√
a

∞
∫

−∞

f(t)Ψ∗

(

t− b

a

)

dt 4.4

Where Ψ(t) is the transforming fun
tion also 
alled the mother wavelet and “ ∗ ”

denotes the 
omplex 
onjugate. CWT sear
hes for 
orrelations between the signal and

wavelet fun
tion. This 
al
ulation is done at di�erent s
ales of a, and lo
ally around the

time of b. The result is a wavelet 
oe�
ient Wa,b 
ontour map. However, 
omputing the



54

CHAPTER 4. DEVELOPMENT OF A WAVELET-ANN MODEL FOR

ESTIMATING SUSPENDED SEDIMENT LOAD IN THE UPPER INDUS RIVER

wavelet 
oe�
ients at every possible s
ale (resolution level) ne
essitates a large amount

of data and 
omputation time.

If one 
hooses the s
ales and the positions based on the powers of two (dyadi
 s
ales

and positions), the analysis will be mu
h more e�
ient and more a

urate. This transform

is refereed to as the dis
rete wavelet transform (DWT). For a dis
rete time series fi, the

dis
rete wavelet transform be
omes:

Wm,n = 2−
m
n

N−1
∑

i=0

fiψ
∗
(

2−mi− 1
)

4.5

Where i is integer time steps (i = 0, 1, 2, ..., N −1 and N = 2M); m and n are integers

that 
ontrol, respe
tively, the s
ale and time; Wm,n is wavelet 
oe�
ient for the s
ale

fa
tor a = 2m and the time fa
tor b = 2mn. The original signal 
an be re
onstru
ted

using the inverse dis
rete wavelet transform as follows:

fi = AM,i +
M
∑

m=1

2M−m−1
∑

n=0

Wm,n2
−m
n Ψ

(

2−mi− n
)

4.6

or in a simple form as:

fi = AM,i +
M
∑

m=1

Dm,i 4.7

Where AM,i is referred to as an approximation sub-signal at level M , and Dm,i are

detailed sub-signals at levels m = 1, 2, ...,M . The approximation 
oe�
ient AM,i repre-

sents the high s
ale low frequen
y 
omponent of the signal, while the detailed 
oe�
ients

Dm,i represent the low s
ale high frequen
y 
omponent of the signal. The low frequen
y


omponent of the signal is important be
ause it 
ontains the most signi�
ant and most

detailed information. Similarly, the high frequen
y 
omponent is important sin
e it 
on-

tains the information on the edges and abrupt 
hanges in the signal. The detailed signals


an 
apture trivial attributes of interpretational value in the data while the approxima-

tion shows the ba
kground information on the data [114℄. There is a variety of mother

wavelets, su
h as the Haar wavelet, Daube
hies wavelet, Coi�et wavelet and Biorthog-

onal wavelet. The sele
tion of an appropriate mother wavelet depends on the type of

appli
ation and data 
hara
teristi
s. Normally, Daube
hies performs better in sediment

transport pro
esses due to its ability to dete
t time lo
alization information. Time lo-


alization information is useful in handling the seasonality and hysteresis phenomena in

�ow dis
harge and sediment load pro
esses. The Coi�et wavelet is more symmetri
al than

Daube
hies. The Biorthogonal wavelet has the property of linear phase, whi
h is needed

for signal re
onstru
tion [29℄.
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4.3.4 Wavelet neural network (WA-ANN)

Before applying an ANN, the input data time series is de
omposed into detailed and ap-

proximated 
oe�
ients up to di�erent (desired) levels using wavelet transform fun
tions.

The maximum possible number of levels depends on the temporal length of the data. The

values 
orresponding in time to the output are extra
ted from the de
omposed data series

(fi). The extra
ted time series data is used as input for the ANN. The ANN ar
hite
ture

uses data time series de
omposed by the WT is designated by WA-ANN (Fig. 4.2). The

number of input nodes in the WA-ANN model depends on the level of de
omposition,

based on whi
h appropriate neurons in the hidden layers are sele
ted. The sele
tion of

hidden layer and hidden neurons in the model are important for maximizing the e�
ien
y

of the model.

PSfrag repla
ements

Wavelet transformation

WT ANN

A

N

N

i

n

p

u

t

Output layer

Feed forward

Input layer Hidden layer

Bias

fi

AM,i

D1,i

D2,i

DM,i

m1

m2

mI

m1

m2

mH

Oj

Figure 4.2: S
hemati
 diagram of WA-ANN model

4.3.5 Performan
e measures for model evaluation

The performan
e of models is 
ommonly assessed by 
omputing a number of measures of

performan
e or goodness-of-�t statisti
s. These measures 
an be 
hara
terised as absolute

(i.e. expressed in the units of the output variable) or relative (i.e. dimensionless).

In the present study, two absolute metri
s were 
hosen: the root mean square error

(RMSE) and the mean absolute error (MAE), whi
h provide an idea of the absolute

di�eren
es between observed and modelled values in their original unit measures, and are



56

CHAPTER 4. DEVELOPMENT OF A WAVELET-ANN MODEL FOR

ESTIMATING SUSPENDED SEDIMENT LOAD IN THE UPPER INDUS RIVER

non-negative metri
s:

RMSE =

√

√

√

√

1

P

P
∑

i=1

(Qobs
si −Qsim

si )2 4.8

MAE =
1

P

P
∑

i=1

|Qobs
si −Qsim

si | 4.9

Where Qobs
si is observed sediment load, Qsim

si is predi
ted sediment load and P is the

number of observations/predi
tions. These two non-negative metri
s have no upper limit

where 0 indi
ates a perfe
t �t between the observed and predi
ted values. Unlike MAE,

the RMSE is weighted towards higher or lower magnitude events. As the di�eren
es

between the observed and predi
ted values are squared, the RMSE measure penalises

predi
tion errors in high �ow events 
ompared to low �ows, as high �ows are generally

where the greatest error in model predi
tion o

urs. The RMSE tends to be slightly larger

than the MAE, where the magnitude of this di�eren
e 
an also be used to indi
ate the

extent of outliers in the data.

Further, two indi
es of relative di�eren
es were also 
hosen: the 
oe�
ient of determi-

nation/Pearson 
orrelation 
oe�
ient (R

2

) and the Nash-Sut
li�e 
oe�
ient of e�
ien
y

(NSE), whi
h 
ompare the errors from the sele
ted model with respe
t to those from a

referen
e model. Both use di�erent ben
hmark models for 
omparison, i.e. the mean and

persisten
e.

R2 =













P
∑

i=1

(Qobs
si − Q̄obs

si )(Q
sim
si − Q̄sim

si )

√

P
∑

i=1

(Qobs
si − Q̄obs

si )
2

P
∑

i=1

(Qsim
si − Q̄sim

si )2













2

4.10

NSE = 1−

P
∑

i=1

(Qobs
si −Qsim

si )2

P
∑

i=1

(Qobs
si − Q̄obs

si )
2

4.11

Where Q̄obs
si and Q̄sim

si are the mean values of observed and simulated sediment loads.

The values of these relative measures are upper bounded to one. A value of 1 represents a

perfe
t mat
h between predi
ted and observed sediment load. The NSE generally ranges

from 0 to 1 although negative values are possible. NSE = 0 indi
ates that the model is no
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better than simply fore
asting the mean value. The 
loser the NSE value to 1, the better

the model's performan
e. The simulated results are normally referred as good when the

NSE is higher than 0.75 and satisfa
tory when it lies between 0.36 to 0.75 [115℄.

4.4 Model development

It is known that major fa
tors su
h as data pro
essing, determination of adequate model

inputs, 
hoi
e of suitable network ar
hite
ture, 
areful sele
tion of some internal param-

eters that 
ontrol the optimization method, stopping 
riteria, and model validation may

a�e
t the performan
e of ANN models. Hen
e, these fa
tors were 
onsidered during de-

sign of the models used in this paper. The ANN and WA-ANN models were developed

using the MATLAB tool.

4.4.1 Design of ANN model

Data pro
essing is usually required before it is applied to the neural network models when

the neurons have a transfer fun
tion with bounded range. The original data are pro
essed

through two steps: data normalization and data set partition. In the �rst step, data are

res
aled to a 
ertain interval. The reasons for s
aling of the data 
an be des
ribed to

ensure that ea
h variable is treated equally in a model and to improve the interpretability

of network weights. Following this, the normalised data are usually divided into a training

sub-set, a validation sub-set and a testing sub-set. The representativeness of the data

sets used for training should be 
onsidered, be
ause networks trained with a data set that

represents the 
hara
teristi
s of the hydrologi
 patterns will a
hieve higher generalizability.

In this study, the following data sub-sets are applied (Tab. 4.3):

1. 60, 70 and 80% of the training data sub-set is randomly sele
ted from the entire

available data for the network. The remaining 40, 30, and 20% of the data is used

for testing and validation.

2. Data from the earlier periods are used for training, and data from later periods for

testing and validation.

Based on preliminary results, it was found that the ANN model 
ould perform well

using (70%, 15%, and 15%) data on a random basis and (1969-1995, 1996-2002, and 2003-

2008) data on a systemati
 basis for the training, testing and validation, respe
tively. It
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also shows that the sele
ted training data length 
overs all hydrologi
al variations for the

study period (1969-2008) at Besham Qila and it is su�
ient for training the ANN model.

In the following se
tions, we present only the 
al
ulated results based on the randomly

sele
ted sub-set, referred to above.

Table 4.3: Data used for model design

Data sub-sets Training Testing Validation

60% 20% 20%

Randomly sele
ted from the whole data set 70% 15% 15%

80% 10% 10%

1969-1995 1996-2002 2003-2008

Based on the time series data 1969-1990 1991-2000 2001-2008

1969-2000 2001-2004 2005-2008

Using �ow dis
harge, pre
ipitation, temperature and pan evaporation as input param-

eter, we found that the �ow dis
harge is one of the most important fa
tors in�uen
ing

suspended sediment 
on
entration at Besham Qila. It is most likely that at Besham Qila

�ow dis
harge alone impli
itly represents these hydrometeorologi
al parameters of the

upper Indus basin in the modelling pro
ess. [8℄ suggest that in sediment load estimation

for the Indus River, a dis
harge-SSC relationship performs better than a dis
harge-SSL

relationship. If the model output S(t) presents sediment 
on
entration at time t, whose

unit is a day, and water dis
harge at the same time is Q(t), the �ve following input 
om-

binations are evaluated using ANN to identify the best relation between sediment and

water dis
harge:

(a) Q

(t)

(b) Q

(t)

, Q

(t−1)

(
) Q

(t)

, Q

(t−1), Q(t−2)

(d) Q

(t−1) Q(t−2) Q(t−3)

(e) Q

(t)

, Q

(t−1), Q(t−2), Q(t−3)

The last four input-
ombinations examine the time lag between the water dis
harge

and sediment load, whi
h is based on the observed data with a lag time of up to three

days at Besham Qila. This lag time also o

urred at other upper gauge stations.
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Many studies have shown that an MLP with one hidden layer is 
apable of approx-

imating any �nite nonlinear fun
tion with very high a

ura
y. The MLP used in the

present study 
onsists of one hidden layer. Following Flet
her and Goss' (1993), the num-

ber of neurons in the hidden layer varies from 3 to 9. The primary purpose of a
tivation

fun
tions for the hidden units, in 
ontrast to linear transfer fun
tions, is to introdu
e a

non-linearity into the neural network. In this paper, we test the model ar
hite
ture with

logsig, tansig, purelin and radbas transfer fun
tions. The networks are trained using four

di�erent algorithms, namely Levenberg-Marquardt (trainlm), s
aled 
onjugate gradient

ba
kpropagation (trainscg), gradient de
ent ba
kpropagation (traingd) and Bayesian

regularization ba
kpropagation (trainbr).

Sin
e there is no spe
ial rule for ANN model development, trial and error method is

usually employed to 
hoose an appropriate ANN model. In developing the most a

urate

training model ar
hite
ture, the individual 
ases are �rst ranked a

ording to the magni-

tude of two absolute metri
s (RMSE, MAE) and two indi
es of relative di�eren
es (R

2

,

NSE). The best individual model has the minimum (RMSE, MAE) and the maximum

(R

2

, NSE). Tab. 4.4 shows the best MLP ar
hite
tures with their performan
e indi
es. It


an be seen from the table that the network trained by Levenberg-Marquardt's approa
h

performs best with the input 
ombination (Q

(t)

, Q

(t−1), Q(t−2)) whi
h 
omprises seven

hidden neurons using a non-linear tansig transfer fun
tion and linear a
tivation fun
tion

for the output. In Tab. 4.4, the best statisti
al values for this network are highlighted in

bold.

Table 4.4: Performan
e parameters of the best ANN ar
hite
tures using di�erent learning

methods

Training Model Neurons Transfer fun
tion

R

2

RMSE

NSE

method inputs

(ppm)

First Output Train Test Train Test Train Test

a 3 radbas purelin 0.767 0.759 680.8 709.5 0.768 0.759

b 5 tansig purelin 0.770 0.759 668.2 715.4 0.77 0.759

LM 
 7 tansig purelin 0.773 0.794 676.6 615.1 0.773 0.793

d 5 tansig purelin 0.767 0.773 675.9 665.4 0.767 0.773

e 6 tansig purelin 0.774 0.740 667.6 729.1 0.775 0.739

a 3 tansig tansig 0.694 0.704 1000.9 960.8 0.516 0.532

b 4 tansig tansig 0.607 0.635 894.8 850.4 0.618 0.608

SCG 
 5 tansig tansig 0.721 0.740 786 725.9 0.708 0.727

d 6 logsig purelin 0.721 0.718 832.3 840.3 0.657 0.652

e 6 logsig purelin 0.724 0.728 855.1 914.1 0.638 0.628

a 3 logsig tansig 0.764 0.741 692.9 754 0.763 0.739

b 4 tansig purelin 0.767 0.766 684 713.3 0.767 0.764

GDS 
 7 tansig purelin 0.769 0.796 681 613 0.77 0.794

d 6 tansig tansig 0.766 0.720 690.9 712.4 0.765 0.706

e 7 logsig tansig 0.769 0.738 673.4 672.3 0.769 0.728

a 3 tansig purelin 0.764 0.730 685.7 795.3 0.764 0.729

b 5 tansig tansig 0.770 0.752 676.5 756.1 0.772 0.749

BR 
 6 logsig tansig 0.778 0.764 676.9 683.3 0.778 0.761

d 7 tansig purelin 0.771 0.733 676.8 782.8 0.772 0.73

e 9 tansig tansig 0.785 0.734 661.8 742.7 0.785 0.733
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4.4.2 Design of WA-ANN model

The proposed WA-NN models 
onsist of a three layer feed forward per
eptron stru
ture

so that the �rst layer is the wavelet neurons unit with the inputs of time series sub-

signals obtained via a wavelet transform. This means the �ow dis
harge signals are �rstly

de
omposed into sub-signals with di�erent s
ales, i.e. one large-s
ale sub-signal and N

small-s
ale sub-signals (depending on the de
omposition level) in order to obtain temporal


hara
teristi
s of the input time series. The number of neurons in the input layer is then

determined with N + 1. This study deals with some irregular mother wavelets su
h

as db1 (Daube
hies wavelet of order 1), bio3.5 (biorthogonal wavelet of order 3.5) and

coif1 (
oi�et wavelet of order 1). These wavelets are used to de
ompose the �ve input


ombinations up to eight levels (2-4-8-16-32-64-128-256 days). The eight levels are sele
ted

to en
ounter the e�e
ts of sediment deposition post monsoon in the 
hannel of the Indus

River. The ex
ess amount of sediment transported during the rising water dis
harge is

eroded from the material deposited in the river 
hannel during a pre
eding �ood situation

[22℄. These types of e�e
ts in SSL not only depend on the water availability and river

transport 
apa
ity but also load availability, whi
h is 
omplexly related to the seasons of

o

urren
e [26℄. This means that the sediment transport is not only dependent upon the

momentary dis
harge but also its history.

Fig. 4.3 shows the variation of the 
oe�
ients R

2

and NSE by applying di�erent input


ombinations de
omposed into di�erent levels with the three mother wavelets mentioned

above. It 
an be seen that the overall performan
e of db1 wavelet is the best 
ompared

to bio3.5 and coif1 wavelets. Tab. 4.5 summarizes the performan
e parameters of the

best WA-ANN ar
hite
ture using the bd1 wavelet mother fun
tion. It 
an also be seen

from this table that the WA-ANN performed best with the input 
ombinations (
): (Q

(t)

,

Q

(t−1), Q(t−2)) de
omposed into 7 levels (128 days) using 24 neurons with a tansig trans-

fer fun
tion for the hidden layer and a linear a
tivation fun
tion for the output layer.

The de
omposition of data from approximately half year (7 levels) to extra
t important

information from the past indi
ates a 
omplex nonlinear behaviour of sediment transport

pro
ess at the upper Indus River.

The three models, SRC, optimum ANN, and optimum WA-ANN models were used to

estimate SSC for the days when SSC sampling was performed. The estimated SSC was

statisti
ally evaluated and 
ompared with the measured mean annual, 
umulative and

distin
t daily SSC samples. In order to obtain daily SSC time series data, the best

statisti
ally performing model was used to estimate SSC data for the dates when sediment

sampling was not performed, i.e. for the dates when SSC is missing. The newly developed

daily SSC time series data 
omposed of measured and simulated values was used to

obtained annual sediment load for the Besham Qila gauge station. The annual sediment

load for Besham Qila was also 
ompared with Tarbela dam's annual hydrographi
 survey.
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Table 4.5: Performan
e indi
es of the best WA-ANN model using Daube
hies (db1)
wavelets

Model De
omposition Neurons Transfer fun
tion

R

2

RMSE

NSE

inputs level

(ppm)

First Output Train Test Train Test Train Test


 7 24 tansig purelin 0.828 0.792 604.4 615.4 0.83 0.79

4.5 Results and dis
ussion

4.5.1 Time series of suspended sediment 
on
entration and sus-

pended sediment load

To evaluate the performan
e of the designed models in predi
ting time series of SSC in

the study domain, we 
ompare the results obtained from these three models with the

measurements.

Tab. 4.6 illustrates the 
orrelation for these predi
tion methods with the statisti
al

performan
e indi
es between predi
ted results and observed data in the whole data set.

It is obvious that the two-equation SRC model (Eq. 4.2), whi
h �tted the data by separat-

ing SSC for low and high �ows, provided slightly better results than the single-equation

SRC (Eq. 4.3). However, there was no signi�
ant di�eren
e in the statisti
al parameters

between these two SRC models. Using the designed ANN model we a
hieved a bet-

ter agreement between predi
ted and observed SSC at Besham Qila. More parti
ularly,

among all models the designed WA-ANN produ
ed the best predi
tions. In the following,

we try to explain the possible reasons for di�eren
e in the model performan
e.

Table 4.6: Statisti
al performan
e indi
es of the SRC, ANN and WA-ANN models for


omputing the SSC

Model R

2

RMSE MAE NSE

(ppm) (ppm)

SRC-1 0.706 1005.3 495.4 0.50

SRC-2 0.706 964.6 509.0 0.54

ANN 0.757 698.4 373.2 0.76

WA-ANN 0.81 625.2 356.3 0.81

As 
an be seen from Tab. 4.1 and Tab. 4.2, the observed SSC as well as the annual

sediment load estimated by 
onventional methods vary widely. Comparison of the ob-

served data in the high �ow years shows a sudden de
rease of SSC during the �oods period

(May, June and August) in 1983 at Besham Qila (Fig. 4.4). These enormous variations
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ould be explained by the magnitude of 
omplexity in sediment transport pro
esses in

the Indus River. This 
omplexity in transport pro
esses may be 
aused by hydrologi
al

variations and the hysteresis phenomena, where, for example, the same dis
harges 
an

produ
e di�erent SSC at di�erent times. Di�erent fa
tors 
an be asso
iated with the hys-

teresis phenomena in the Indus, su
h as: (1) The �uvial erosion and transport pro
esses

intera
ting with some other sediment produ
ing pro
ess; (2) Temporary sediment storage

in the main river 
hannel [22℄; (3) Aggradation and degradation phases of land slides [23℄;

(4) An average 5-10 high �ow waves of an average 10-12 days during the monsoon pe-

riod; (5) Di�erent transit times of dis
harge and sediment and their di�erent travel time

from several sour
es to the gauge stations. In addition to the �ow dis
harge magnitude,

these fa
tors may in�uen
e the SSC at Besham Qila. Unfortunately, applying simple rela-

tionships between water �ow dis
harge and sediment 
on
entration, the SRC models are

unable to adjust and model these impa
t fa
tors. Consequently, in long term sediment

load estimates, SRC models are unable to supply good results for sediment variability

s
enarios.

As remarked on by [116℄, fa
tors that exert in�uen
e on sediment transport pro
esses

are highly variable in hydrauli
 and hydrologi
al 
onditions of stream �ows and patterns

asso
iated with river nature. In 
ontrast to SRC methods, ANNs do not need to make

assumptions about the relationships among inputs and outputs. ANNs learn from data

examples presented to them in order to 
apture the subtle fun
tional relationships among

the data. ANNs are thus well suited to modelling the 
omplex behaviour of sediment

transports whi
h, by their very nature, exhibit extreme variability. Using a suitable input


ombination, the ANN model is able to handle the hydrologi
al variations in sediment

transport load at Besham Qila. These variations 
onsist of alternative 
y
les of wet and

dry seasons. Normally, in a dry season, SSC is low due to less run-o� and size of area as

well as time 
overed by the run o�. In wet seasons, the 
ontrary holds. The hydrologi
al

variation patterns behave in a systemati
 way and the ANN has the ability to re
ognise

these systemati
 patterns.

Although the estimation e�
ien
y of the ANN is better than SRC, it might be that the

ANN alone is still not good enough to model the hysteresis phenomena in the study do-

main, whi
h 
onsists of the upper gla
ierized sub-basin, lower sub-basin and lower rea
hed

sub-basin [19℄. When �ows in these three sub-basins are not well syn
hronized, espe
ially

during monsoon seasons, it 
auses strong hysteresis with many peaks in dis
harge. In

this 
ase, using WT te
hniques, the de
omposed time series of the observed data present

di�erent periodi
 
omponents. Ea
h of the wavelet 
omponents makes a distin
t 
on-
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tribution to the original time series. These series are employed as inputs to 
onstitute

the WA-ANN model for SSC fore
asting. Based on the performan
e of SRC, ANN and

WA-ANN models in terms of R

2

, RMSE, MAE and NSE, it is 
lear from Tab. 4.6 that

the statisti
al performan
e of WA-ANN is best with R

2

= 0.81, RMSE = 625 ppm, MAE

= 356 ppm, and NSE = 0.81 for SSC. In addition, a temporal resolution of approximately

half year (7 levels of data de
omposition) with a lag time of two days for a gauge station

(Besham Qila) lo
ated down stream of these sub-basin 
an redu
e the variations in SSL

re
onstru
tion. The re
onstru
tion variations in
rease when 
onventional methods (SRC

and ANN) do not in
lude the temporary sediment storage in the main river 
hannel and

di�erent transit times of dis
harges and sediment from their sour
es to the gauge in the

modelling pro
ess. Therefore, the quality of hydrauli
 design based on poor estimation

ultimately 
an a�e
t the a

ura
y and subsequent studies along-with asso
iated bene�ts.

As mentioned above, measurements of SSC were not 
ondu
ted daily. However, ap-

plying SRC, ANN and WA-ANN models we were able to 
reate the whole data set for the

daily SSL over 38 years (1969-2008). To estimate the a

ura
y of ea
h model we 
om-

pared the available daily observed SSL data with the 
al
ulated results. It is 
lear from

Tab. 4.7 that the best statisti
al indi
es, R

2

= 0.85, RMSE = 34,900 ton/day, MAE =

17,500 ton/day, and NSE = 0.85, for the daily SSL were obtained using WA-ANN model.

Further, Fig. 4.4 shows an exemplary 
omparison between the SSL observations and the

WA-ANN results in the years 1983 (year with the ex
eptional sediment transport) and

1984 (year with the longest monsoon period). Due to the la
k of data after �ooding,

although the variation between observation and 
al
ulation is still large, values for the


oe�
ient of determination R

2

= 0.68 (for the year 1983) and R

2

= 0.91 (for the year

1984) indi
ate that the WA-ANN model was able to simulate the hydrologi
al variations

and handle the hysteresis phenomena at Besham Qila quite well.

Table 4.7: Statisti
al performan
e indi
es of the SRC, ANN and WA-ANN models for


omputing the daily SSL

Model R

2

RMSE MAE NSE

(ton/day) (ton/day)

SRC-1 0.760 7.80× 105 3.04× 105 0.402

SRC-2 0.766 7.38× 105 2.92× 105 0.480

ANN 0.814 4.45× 105 1.96× 105 0.814

WA-ANN 0.852 3.94× 105 1.75× 105 0.852
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Figure 4.4: Comparison of the daily observed SSL and 
al
ulated results of the WA-ANN

model in the years 1983 and 1984. 1984 was a longest monsoon year of the analyzed

re
ord, whereas in 1983 sediment load was blo
ked by a landslide upstream of the gauge

station.

From the observed data of �ow dis
harge and SSC, we estimated the total mass of

suspended sediment sampled annually. Fig. 4.5 presents a 
omparison between these

masses and the 
al
ulated results in the 
onsidered time period. Overall, the ANN and
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WA-ANN models provide better results than the SRC. However, all three models failed to

yield reliable out
omes for several ex
eptional events. Maximal deviation between samples

and 
al
ulations is observed in the year 1983, where the mass 
al
ulated by WA-ANN is

overestimated by 90%. The ANN overestimated the mass value by 98% and SRC by up to

155%. It should be emphasized that due to s
ar
e data 
olle
ted in this year (see Fig. 4.4)

both the ANN and WA-ANN were not trained well for su
h ex
eptional events. However,

it would be possible to resolve the issue by using more data to design the whole nets or

developing another net for ex
eptional events.

Considering the whole time period of 38 years, the mean deviations are 13%, 18% and

36% respe
tively for WA-ANN, ANN and SRC. Following [117℄, the typi
al 
umulative

measurement errors asso
iated with dis
harge and SSC should remain in the range of 10

to 15%. The models with an error in the mentioned range should be 
onsidered as reliable

[31℄. For this reason, the designed WA-ANN proved to be the best model among those

tested for SSL in the study domain.

4.5.2 Sedimentation in Tarbela reservoir

Sediment load (
onsisting of SSL and bed load) from the upper Indus basin passes through

Besham Qila before entering in Tarbela dam. In the period from 1980 to 2005, the

hydrographi
 survey in the reservoir was 
ondu
ted annually with systemati
 sounding

method along the range lines [118℄. Based on the geometri
al 
hange, we were able to

estimate the mass of deposited sediments in the ponding area. Further, the bed load at

Besham Qila is 
onsidered equal to 10% of the SSL [57℄. Following [19℄, on average, 90%

of the annual sediment load was trapped in the reservoir, whi
h is approximately equal to

amount of the in
oming SSL from Besham Qila. Based on this assumption, the developed

models 
an also estimate the annual and 
umulative masses of the deposited sediment in

the reservoir. The estimated results were also 
ompared with the surveyed data. It is

obvious from Fig. 4.6 that the WA-ANN model provides better agreement with the survey

than the 
onventional SRC model. Using the SRC model, the mean variations amount to

43% and 40% respe
tively for the annual and 
umulative deposited sediment. Applying

WA-ANN, these variations redu
ed to 12% and 7%.
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Figure 4.5: Comparison between the mass of suspended sediment sampled annually and


omputed results using the SRC, ANN, and WA-ANN models
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Using WA-ANN, a 
urve for annual suspended sediment load and a power trendline

were re
onstru
ted for the time period (1969-2008). It 
an be seen from Fig. 4.7 that the


al
ulated annual SSLs vary over the time in a range from 90 Mt to 270 Mt depending

on hydromorphologi
al 
onditions. The mean value of annual SSL at Besham Qila using

the WA-ANN model amounts to approximately 160 Mt, whi
h is mu
h smaller than the

values estimated by other authors (see Tab. 4.1). The reasons for the de
reasing trend

in sediment load over time at Besham Qila may be: (1) de
rease in sediment erosion in


at
hment area; (2) a 
ontinuous substantial sediment storage in the relatively �at Tibetan

Plateau and the Indus valley between Partab Bridge and Shatial (Shatial is about 150

km upstream of Besham Qila) [19℄: (3) good 
at
hment management pra
ti
es [119℄. In

addition there are neither hydrauli
 stru
tures at the upper Indus River/basin, nor land

use 
hanges that might have a�e
ted the situation. With regard to the planned hydrauli


stru
tures in the study area, the parametri
ally de
reasing trend in sediment load urges

against using unmodi�ed past sediment load data as the boundary 
ondition for future

reservoir sediment studies.
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Figure 4.6: Comparison of the 
al
ulated results with hydrographi
 survey of Tarbela

dam

4.6 Con
lusion

We found that WA-ANN 
an pre
isely predi
t the sediment load time series with a tempo-

ral resolution of more than one level for the Indus, whi
h has a 
omplex sediment transport

pro
ess due to temporary sediment storage, strong hysteresis phenomena and landslides.

The new estimate of only 160 Mt yr

−1
at Besham Qila is 
lose to real time. The annual

yield of sediment load at Besham Qila is lower than the published estimates, and 
an

be attributed to the substantial sediment storage in the relatively �at Tibetan Plateau
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and the Indus River Valley between Partab Bridge and Besham Qila. Consequently, it

suggests that the past sediment load series 
annot simply (without modi�
ation) be reap-

plied to arrive at sedimentation predi
tions in the upper Indus River. Therefore, our

study may 
ontribute to the development of sediment management strategies for existing,

under 
onstru
tion, and planned water related stru
tures by setting pre
ise sediment load

boundary 
onditions. This parti
ularly applies in Pakistan, where approximately 14,000

MW hydropower s
hemes are under 
onstru
tion on the Indus River. The existing reser-

voirs are also endangered due to sedimentation problems, whi
h may need new reservoir

operational rules.
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Figure 4.7: Annual suspended sediment load 
al
ulated by the WA-ANN model for Be-

sham Qila and its power trendline
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Chapter 5

Variability and Trend Dete
tion in the

Sediment Load of the Upper Indus

River

This 
hapter is published as:

Ateeq-Ur-Rehman, S.; Bui, M.D.; Ruts
hmann, P. Variability and trend dete
tion in

the sediment load of the Upper Indus River. Water (Switzerland) 2018, 10, 1�24,

doi:10.3390/w10010016

Abstra
t: Water reservoirs planned or 
onstru
ted to meet the burgeoning energy

and irrigation demands in Pakistan fa
e a signi�
ant loss of storage 
apa
ity due to heavy

sediment load from the upper Indus basin (UIB). Given their importan
e and the huge

investment, assessments of 
urrent UIB sediment load and possible future 
hanges are


ru
ial for informed de
isions on planning of optimal dams' operation and ensuring their

prolonged lifespan. In this regard, the daily suspended sediment loads (SSLs) and their


hanges are analyzed for the meltwater-dominated zone up to the Partab Bridge and the

whole UIB up to Besham Qila, whi
h is additionally in�uen
ed by monsoonal rainfall.

The gaps between intermittent suspended sediment 
on
entration (SSC) samples are �lled

by wavelet neural networks (WA-ANNs) using dis
harges for ea
h site. The temporal

dynami
s of SSLs and dis
harges are analyzed using a suite of three non-parametri
 trend

tests while the slope is identi�ed using Sen's slope estimator. We found disproportional

spatio-temporal trends between SSLs and dis
harges 
aused primarily by intra-annual

shifts in �ows, whi
h 
an lead to in
reased trap e�
ien
y in planned reservoirs, espe
ially

upstream of Besham Qila. Moreover, a dis
ernible in
rease in SSLs re
orded at Partab

http://dx.doi.org/10.3390/w10010016
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Bridge during summer is being deposited downstream in the river 
hannel. This is due to

a de
rease in river transport 
apa
ity in the monsoonal zone. These �ndings will not only

help to identify these morphologi
al problems, but also a

urately anti
ipate the spatio-

temporal 
hanges in the sediment budget of the upper Indus River. Our results will help

improve reservoir operational rules and sediment management strategies for existing and

30,000-MW planned dams in the UIB.

5.1 Introdu
tion

Estimation of the suspended sediment loads (SSLs) is important in the design and oper-

ation of water stru
tures and in the planning of sediment management (yield redu
tion,

routing and removal) to preserve their live storage 
apa
ities [32, 6, 33, 34, 35℄. The

temporal variations and 
hanges in SSLs are also an important indi
ator of the e�e
tive-

ness of existing watershed management pra
ti
es or te
toni
 and land-sliding a
tivities in

the 
at
hment area. Being a water stressed 
ountry amongst the top ten most 
limate-

a�e
ted 
ountries [55, 56℄, Pakistan has a total water storage 
apa
ity of only 30 days

(equal to 10% of the annual available water), whi
h has been depleting due to heavy

sedimentation transported through the Indus River system from the young Hindukush-

Karakoram-Himalaya (HKH) ranges [45℄. For example, amongst three big reservoirs,

the Tarbela dam has lost 35% of its storage 
apa
ity sin
e 1974 due to trapping of ap-

proximately 8 km

3

of sediment in the reservoir ponding area [108℄. The Warsak dam


onstru
ted on Kabul River has �lled with 60 Mt of SSL annually in the 30 years after

its 
onstru
tion, and no stru
tural or non-stru
tural remedies 
an reverse its depleting

storage 
apa
ity [10℄. Mangla dam, the se
ond largest Pakistani water storing fa
ility,

had an initial storage of 7.1 billion m

3

(BCM), whi
h was redu
ed to 5.6 BCM in 2005

due to sedimentation. In 2009, an additional 9 m rise of the dam in
reased the storage to

9.1 BCM, whi
h 
ost one billion USD over �ve years. However, the rise 
reated te
hni
al

problems su
h as an in
rease of seepage through the dam embankment in addition to

the displa
ement of 45,000 people living in the vi
inity of the dam [120℄. In view of the

transboundary nature of the sour
e of water, su
h a de
rease in water storage 
apa
ity in

Pakistan exa
erbates the instability and geopoliti
al tensions of the region [46℄. Hen
e,

the assessment of prevalent sediment patterns and their proje
ted 
hanges are vital for

the optimization of sediment management pro
esses to ensure the water and food se
urity

in the 
ountry and to regulate the transboundary water availability pressures.

Although there are many studies assessing the 
limate-indu
ed adverse impa
ts on
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the UIB river �ow patterns [20, 36, 37, 38, 21, 39, 40℄, few have investigated the impa
t

of �ow pattern 
hanges on the sediment load 
apa
ity [41, 42℄. Furthermore, the studies


ondu
ted in this regard di�er widely in their suggested estimates. For instan
e, the

SSL to Tarbela Dam (the 
ountry's largest) or at the immediately upstream Besham

Qila dis
harge gauge is reported to range from 200 Mt y

−1
�675 Mt y

−1
over the past

50 years (Tab. 5.1). Su
h un
ertainty leads to poor design quality of the operating rules

for existing dams and those under 
onstru
tion. Moreover, the studies have generally

estimated the SSL by using empiri
ally-developed sediment rating 
urves (SRCs), whose

a

ura
y is limited as they oversimplify the relationship between the suspended sediment


on
entration (SSC) samples and the observed dis
harges [104, 8, 74℄.

Table 5.1: Estimates published on the suspended sediment load (SSL) of the upper Indus

River.

Suspended Sediment Yield

Estimated by

(Mt yr

−1
)

480 [11℄

400 [12℄

475 [13℄

200 [14℄ reported by [15℄

675 [16℄

300 [17℄

200 [18℄

197

1

[19℄

138

2

[19℄

200 [6℄

The a

ura
y of SRCs is also limited sin
e it does not model the 
omplex sediment

transport pro
esses related to hysteresis phenomena and marked hydrologi
al variations

within the UIB, su
h as: (a) the �uvial erosion and transport pro
esses, whi
h intera
t

with other sediment-produ
ing pro
esses; (b) temporary sediment storage in the main

river 
hannel [22℄; (
) aggradation and degradation phases of landslides [23℄; (d) on aver-

age, 5�10 high �ow waves of an average 10�12-day duration during the monsoon period;

(e) di�erent transit times of dis
harge and sediment and their di�erent lag times from

several sour
es to the gauge stations. Given that SRCs are employed in the estimation

pro
ess, there may be a marked 
ompromise in the design quality of reservoir sedimenta-

tion prevention measures, as apparent from the 
urrent sedimentation rate of the Tarbela

and Mangla dams. Sin
e the assessment of the SSL patterns is important for the man-

agement of water-related stru
tures, watershed management pra
ti
es and the sediment

1

Besham Qila

2

Partab Bridge
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budget of the Indus, it is ne
essary to dete
t the temporal 
hanges in sediment transport,

whi
h are in�uen
ed by the river dis
harge responses and hysteresis phenomena, requiring

frequent dis
harge and SSC observations.

As opposed to the dis
harge time-series typi
ally available on a daily resolution, the

SSCs are intermittently sampled, whi
h 
an a�e
t the trend out
ome needed to re
on-

stru
t the non-observed days. However, to deal with the non-linear nature of the time

series, the wavelet transform 
oupled arti�
ial neural networks (WA-ANNs) outperform

SRCs, sin
e they are able to model theoreti
ally any kind of relationship between the

dependent and independent variables without having to know their physi
al relationship

[105, 117, 30, 29, 121, 122℄. The wavelet transform de
omposes the data time series up-to

J levels in the time, spa
e and frequen
y domains and reveals the information from a

given data s
enario [28℄. The temporal s
ale of the de
omposition provides information

on temporary storage, aggradation and degradation phases, high �ow waves and transit

time of the sediment load in the detail 
oe�
ients. Given these details, i.e., the detail


oe�
ients along with the approximation 
oe�
ient, ANN pre
isely models the hysteresis

phenomena. WA-ANNs have been used su

essfully over the last de
ade for re
onstru
t-

ing the missing data by adjusting the hysteresis phenomena in sediment load pro
esses

[123, 124, 88, 125℄.

In assessing temporal dynami
s of SSLs and dis
harges, non-parametri
 tests are as-

sumed to be more robust as 
ompared to their parametri
 
ounterparts, in view of the fa
t

that the sediment load data are not normally distributed, owing to the highly nonlinear na-

ture of the sediment transport pro
esses. However, several non-parametri
 tests may also

result in distin
t estimates, whi
h requires employing a suite of su

essful non-parametri


methods and then quantifying their asso
iated un
ertainty to build more 
on�den
e in

the results.

Analyzing dis
harges and SSCs at two di�erent sites over the past 50 years, this

study for the �rst time shows how 
hanges in the �ow patterns are a�e
ting the sediment

transport 
apa
ity of the UIB for the meltwater-dominated zone (up to Partab Bridge

site) and for the whole UIB (up to Besham Qila), whi
h is additionally in�uen
ed by

the summer monsoonal rainfall regime. The gaps between intermittently sampled SSCs

are �lled using the wavelet transforms 
oupled with the arti�
ial neural networks (WA-

ANNs). The temporal dis
harge and SSL dynami
s are robustly assessed using a suite of

three widely-used non-parametri
 approa
hes, in
luding: (1) the innovative trend analysis

(ITA), whi
h 
an analyze the trends in low, medium and high annual SSLs without
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requiring any assumptions, su
h as serial 
orrelation, non-normality, sample numbers and

others [47℄; (2) the Mann�Kendall (MK) and the seasonal Kendall (SK) tests together

with Sen's slope method; the MK test dete
ts a trend in a time series without requiring

normally-distributed input data [48, 49℄; Sen's slope method estimates its true slope,

while SK analyzes annual trends by removing the seasonal 
y
les in a time series; (3) a


hange point dete
tion test, whi
h reveals the 
hanging tenden
y in the SSL series on

monthly and annual s
ales [50, 51℄; (4) mean monthly variations, whi
h dete
t monthly


hanges based on di�eren
es from the (a) �rst and last de
ades and (b) monthly regression

equations of the analyzed re
ords.

5.2 Study area and data des
ription

With a total length of 2,880 km and a drainage area of 912,000 km

2

, the Indus River is

one of the largest in south Asia. It starts from China and then travels through India and

a
ross the whole of Pakistan, �nally draining into the Arabian Sea. The drainage of the

Indus River is divided into upper and lower parts, typi
ally at the Besham Qila dis
harge

gauge or around 65 km downstream at, so far, its only reservoir, Tarbela, whi
h is one of

the largest earth-�lled dams in the world (Fig. 5.1). The Besham Qila site lo
ated at an

elevation of 580 masl drains the mostly high-altitude area of 165,515 km

2

, 12% of whi
h

is 
overed with the Hindukush-Karakoram-Himalaya (HKH) gla
iers and permanent i
e,

while the seasonal snow 
over varies between 3 and 67% [126, 39, 127℄. Mean annual

dis
harge of the UIB at Besham Qila is 2,405 m

3

/s, whi
h 
onstitutes roughly half of

the annual surfa
e water availability in Pakistan [39, 127℄. More than 70�80% of su
h

dis
harge is generated from the melting of snow and gla
iers, making the Indus River

amongst the most melt-water-dependent rivers in the world [46℄.

The se
ond study site at Partab Bridge is lo
ated at an elevation of 1250 masl about

300 km upstream of Besham Qila, draining around 95% of the 
ryospheri
 region and


ontributing around 75% of the Besham Qila �ows. The rest of the Besham Qila �ows

are mostly re
eived from the monsoonal rainfall from July�September. This 300-km river

rea
h, Partab Bridge to Besham Qila, has gained in importan
e due to the many planned

hydrauli
 stru
tures. For example, the tenders for three major hydropower proje
ts, Bunji

7100 MW (190 m high), Bhasha dam 4500 MW (272 m) and Dasu 5400 MW (242 m),

have been 
ompleted for 
onstru
tion lo
ated downstream of the Partab Bridge gauge

[128℄. In addition, the river rea
h 
ontains huge sediment deposits due to landslides and

te
toni
 a
tivities.
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Figure 5.1: Lo
ations of study gauges in the study area. Modi�ed from [6℄.

Sin
e both gauges feature large drainage areas, overall variations in their dis
harges

and SSCs are not as abrupt as in the small 
at
hments, but su
h variations are still large

(Tab. 5.2), indi
ating the o

urren
e of frequent hydrologi
al events within the UIB. For

instan
e, 1973, 1988 and 1994 were the ex
eptional �ow years at Besham Qila with a

total volume of 98.95, 95.31 and 94.88 billion m

3

(BCM), respe
tively (Fig. 5.2). The

year with the highest peak �ow was 1984 with a volume of 89.33 BCM. In 
ontrast, only

a 61.54 BCM �ow volume was observed in 1982, distinguishing it as an extremely low

�ow year. For Partab Bridge, the ex
eptional �ow years were 1973, 1994 and 1990 with a

total volume of 76.5, 69.7 and 69.6 BCM, respe
tively. On the other hand, 1965 and 1982,

with a volume of 42.16 and 46.8 BCM, respe
tively, were the extremely low �ow years.

Based on �ow patterns, the UIB 
an be 
lassi�ed into a low �ow 
y
le of 1974�1977 (dry

period) and a high �ow 
y
le of 1988�1992 (wet period) with their annual average volume

being 71 and 85 BCM, respe
tively. In drought years, with wet winter and dry summer,

the share of gla
ier melt in
reases, maintaining the water supply to the Indus River [46℄.

The spe
i�
 suspended sediment load (SSL) from the drainage area of the Indus at

Besham Qila is estimated to be 1,197 Mt km

−2
y

−1
, more than 90% of whi
h rea
hes the

Partab Bridge and Besham Qila during the high �ow period that spans May�September.
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Su
h a heavy sediment load is mainly due to gla
ial bedro
k erosion from a large number

of small, but steep 
at
hments that dire
tly dis
harge into the Indus [103℄. Generally,

the peak SSL 
orrelates well with the peak dis
harge with a short time lag, parti
ularly

for Besham Qila during the monsoon season when dis
harge varies signi�
antly within a

short span of a few days, a

ompanied by an immediate and large in
rease in the sediment


on
entration [67℄. The SSC average grain size distribution for the UIB is about 45.7%

sand, 39.9% silt and 14.4% 
lay [6℄.

Table 5.2: Hydrologi
al and sedimentologi
al 
hara
teristi
s at the Besham Qila and the

Partab Bridge gauges.

Parameter

Besham Qila Partab Bridge

Q SSC Q SSC

(m

3

/s) (ppm) (m

3

/s) (ppm)

Duration 1969�08 (daily) 1969�08 (samples) 1962�08 (daily) 1962�08 (samples)

Max dis
harge 13,910 3770 (at Q

max

) 9599 5780 (at Q

max

)

Min dis
harge 325 132 (at Q

min

) 168 221 (at Q

min

)

Max sediment 12,401 8660 1101 25,040

Min sediment 456 1 1200 1

Mean sediment - 1071 - 1947

SD of sediment - 1456 - 2847

Mean dis
harge 3000 - 2231 -

SD of dis
harge 2923 - 2191 -

Q

-10,000

at Dasu damsite [6℄ 21,218 - - -

Q

-100

at Dasu damsite [6℄ 15,078 - - -
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Figure 5.2: Hydrograph showing a
tual and smoothed �ows with 10-year moving average

(dashed lines) in billion m

3

(BCM).

The daily dis
harges and the dis
ontinuous suspended sediment 
on
entration (SSC)

samples were 
olle
ted for Partab Bridge over the period 1962�2008 and for Besham
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Qila over the period 1969�2008. Following the U.S. Geologi
al Survey (USGS) guidelines,

dis
harges at these gauges are measured using AA
urrent meter, while the SSC samples are

taken on
e a week in winter and twi
e a week in summer, depending on the availability of

labor and sampling feasibility [99, 100, 101℄. The total SSC samples within the 
olle
tion

periods on re
ord were 3,213 and 2,117, representing around 22% and 14% of the daily

time series for the Besham Qila and the Partab Bridge sites respe
tively. Due to low

sampling frequen
y at Partab Bridge, we de
ided to use all available data samples. The

long length of these samples improves the learning of the WA-ANN model, whi
h in turn

leads to better re
onstru
tion of missing SSLs. The outliers in sediment data samples

were ex
luded by examining the general behavior of the river and river 
at
hment. More

details on data 
olle
tion, data quality and period of re
ords for the Indus River 
an be

found in [19℄.

5.3 Methods

We analyze how 
hanges in the �ow patterns are a�e
ting the sediment transport 
apa
ity

of the UIB spe
i�
ally for the meltwater-dominated zone (up to the Partab Bridge site)

and for the whole UIB (up to the Besham Qila), whi
h is additionally in�uen
ed by

the summer monsoonal rainfall regime. In order to do this, we analyze the observed

dis
harges and SSCs over the past 50 years. Sin
e the SSCs are intermittently sampled

and thus represent only a fra
tion of the daily dis
harge series of the study gauges, we

re
onstru
ted the SSCs for the non-observed days using the wavelet transforms 
oupled

with the arti�
ial neural networks (WA-ANNs). We then employ three non-parametri


statisti
al approa
hes to analyze the monthly-to-annual s
ale temporal dynami
s of the

re
onstru
ted SSLs and observed dis
harges. These methods in
lude: (1) innovative trend

analysis; (2) Mann�Kendall (and seasonal-Kendall) trend test and Sen's slope method;

(3) the Pettitt 
hange point test. We also analyzed temporal dynami
s by performing

de
adal and regressional 
omparisons.

5.3.1 Wavelet neural network

Arti�
ial neural networks are widely used in hydrology and water resour
es studies for

data optimization, re
onstru
tion of missing sediment load and predi
tion of sediment load

trends. The ANN ar
hite
ture a
ts as an information pro
essing system 
ontaining several

non-linear and inter
onne
ted elements in the form of layers 
onne
ted via weights. The
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multi-layer per
eptron (MLP) is a typi
al ANN, whi
h 
onsists of a number of nodes that

are organized a

ording to a parti
ular arrangement. The layers pro
ess the information

from the input layer to the hidden layer and further the hidden layer to the output layer

for the generation of results. Generally, the hidden layers 
ontain non-linear transfer

fun
tions to pro
ess the non-linear or linear information in order to build a relation

between input and output variables. The output layer normally 
ontains a linear transfer

fun
tion to produ
e the output outside of the range of −1�1. Moreover, the hidden

layers 
an also vary from single to multiple layers using di�erent numbers of neurons.

The size of a hidden layer and neurons within the hidden layer also a�e
t the model

performan
e. Less neurons in the hidden layer may a�e
t the learning pro
ess, while

more neurons in the hidden layer or the number of hidden layers restri
t the e�
ien
y

in terms of 
omputational time. The in
rease of neurons may also 
ause a network over

�tting problem. The work in [110℄ suggested that the neurons for optimal generalization

should be in the range from

√
2n +m to the value 2n+ 1, where n and m represent the

number of input and output nodes, respe
tively.

Wavelet transform (WT) de
omposes signals into su

essive wavelet 
omponents 
or-

responding to a time-domain signal within a frequen
y range. The original signal 
an be

represented in terms of a wavelet expansion that utilizes the 
oe�
ients of the wavelet

fun
tions. Several wavelets 
an be 
onstru
ted from a fun
tion ψ(t) known as a �mother

wavelet�, whi
h is 
on�ned in a �nite interval. That is, WT de
omposes a given signal

into frequen
y bands and then analyses them in time. WT are broadly 
lassi�ed into


ontinuous wavelet transform (CWT) and dis
rete wavelet transform (DWT). CWT is

de�ned as the sum over all time of the signal to be analyzed multiplied by the s
aled and

shifted versions of the transforming fun
tion ψ. The CWT of a signal f(t) is de�ned as

follows:

Wa,b =
1√
a

∞
∫

−∞

f(t)Ψ∗

(

t− b

a

)

dt 5.1

where `*' denotes the 
omplex 
onjugate. CWT sear
hes for 
orrelations between the

signal and wavelet fun
tion. This 
al
ulation is done at di�erent s
ales of a and lo
ally

around the time of b. The result is a wavelet 
oe�
ient Wa,b 
ontour map. However,


omputing the wavelet 
oe�
ients at every possible s
ale (resolution level) ne
essitates a

large amount of data and 
omputation time. DWT analyzes a given signal with di�erent

resolutions for di�erent frequen
y ranges. This is done by de
omposing the signal into


oarse approximation and detail 
oe�
ients. For this, the s
aling and wavelet fun
tions

are employed. Choosing the s
ales a and the positions b based on the powers of two
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(dyadi
 s
ales and positions), DWT for a dis
rete time series fi be
omes:

Wm,n = 2−
m
2

N−1
∑

i=0

fiΨ
∗
(

2−mi− n
)

5.2

where i is integer time steps (i = 0, 1, 2, ..., N − 1 and N = 2M); m and n are integers

that 
ontrol, respe
tively, the s
ale and time; Wm,n is the wavelet 
oe�
ient for the s
ale

fa
tor a = 2m and the time fa
tor b = 2mn. The original signal 
an be re
onstru
ted

using the inverse dis
rete wavelet transform as follows:

fi = AM,i +

M
∑

m=1

(2M−m−1)
∑

n=0

Wm,n2
m
2 Ψ

(

2−mi− n
)

5.3

or in a simple form as:

fi = AM,i +

M
∑

m=1

Dm,i 5.4

where AM,i is 
alled an approximation sub-signal at level M and Dm,i are detail sub-

signals at levels m = 1, 2, ...,M . The approximation 
oe�
ient AM,i represents the high

s
ale low frequen
y 
omponent of the signal, while the detail 
oe�
ients Dm,i represent

the low s
ale high frequen
y 
omponent of the signal.

There is a variety of mother wavelets su
h as the Haar wavelet, Daube
hies wavelet,

Coi�et wavelet and biorthogonal wavelet. Normally, the Daube
hies wavelet, whi
h also

belongs to the Haar wavelet, has been performing better in sediment transport pro
esses

due to its ability to dete
t time lo
alization information. Time lo
alization information

is useful in handling the seasonality and hysteresis phenomenon in �ow dis
harge and

sediment load pro
esses. The Coi�et wavelet is more symmetri
al than the Daube
hies

wavelet. Similarly, the biorthogonal wavelet has the property of a linear phase, whi
h is

needed for signal re
onstru
tion [129℄. The sele
tion of an appropriate mother wavelet

depends on the type of appli
ation and data 
hara
teristi
s.

Before applying an ANN, the input dis
harge time series are de
omposed using pre-

sele
ted wavelets. After data de
omposition, a portion of the signal asso
iated with


ertain frequen
y bands need to be eliminated if there is a poor 
orrelation between

the de
omposed signal and the observation data. Only the de
omposed signals that

have signi�
ant 
orrelation with the observation signal are used in the fore
ast model.

Furthermore, on de
omposed signals, the permutation of the logsig, tansig, radbas and

purelin transfer fun
tions was tested for the hidden and output layers. The Levenberg�

Marquardt algorithm was used to train the networks due to its simpli
ity. The neurons

in the hidden layer were sele
ted based on the 
riteria des
ribed by [110℄. The stopping


riteria of the models was a maximum of 1,000 epo
hs. The �nal networks were saved for

later use to re
onstru
t the missing SSCs in the daily time series. Due to the di�erent
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data time series at both gauges, we developed two di�erent WA-ANN models. Fig. 5.3

shows the methodology of 
oupling WT with ANN for fore
asting SSC in the study area.

l 

h 

PSfrag repla
ements
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Q(t)

low pass �lter

high pass �lter

AM,i

(n)

(n) D1,i

D2,i

DM,i

1

2

Bias

H1

H2

Hm

SSC(t)

next �lter level

Figure 5.3: S
hemati
 diagram of a wavelet transform 
oupled to an arti�
ial neural

network (WA-ANN). SSC; suspended sediment 
on
entration.

The performan
e of the model was assessed employing the 
orrelation 
oe�
ient (R),

root mean square error (RMSE), mean absolute error (MAE) and the Nash�Sut
li�e

e�
ien
y (NSE). The 
orrelation 
oe�
ient indi
ates a perfe
t �t at 1 and otherwise at

0. Similarly, RMSE and MAE indi
ate the best model performan
e when 
lose to 0. The

NSE ranges from −∞�1, where 1 represents a perfe
t mat
h and 0 indi
ates that the

model is no better than simply representing the mean value. The simulated results are

normally 
onsidered `good' when the NSE is higher than 0.75 and `satisfa
tory' when it

lies between 0.36 and 0.75 [115℄.

5.3.2 Trend analyses

5.3.2.1 Innovative trend test

The innovative trend analysis (ITA) [47℄ divides a time series into two halves, where

the latter half is plotted against the �rst, after being sorted in as
ending order. Given

both halves are identi
al to ea
h other, the plot shows a s
atter of points along a 1:1

(45°) line on the Cartesian plane. The s
atter of points falling above (below) the 1:1

line indi
ates a monotoni
ally-in
reasing (de
reasing) trend. ITA does not require pre-

whitening, a spe
i�
 sample size, a serial 
orrelation stru
ture of the time series or a

normal probability distribution. ITA 
an easily identify the variations and trends in the
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lower, medium or higher hydrologi
al pro
esses [130, 131℄

5.3.2.2 Mann�Kendall test

The Mann�Kendall (MK; [132, 133℄) test 
an dete
t a trend in a time series without being

a�e
ted by the outliers. With the use of normal approximation, the MK test statisti
 S

is 
al
ulated as follows:

S =

n−1
∑

i=1

n
∑

j=i+1

sgn(Xj −Xi) 5.5

where Xi and Xj are the adja
ent data values, S is the sum of positive or negative signs,

n is the number of observations and:

sgn(Xj −Xi) =



















+1 (Xj −Xi) > 0

0 if (Xj −Xi) = 0

−1 (Xj −Xi) < 0

5.6

The two important parameters of the MK test are the signi�
an
e level and the slope.

The former indi
ates the strength, while the latter indi
ates the magnitude and dire
tion

of a trend. If there are many tied data values, then the method spe
i�ed for the number

of data values greater than 40 is used ([133℄, as reported by [134℄). The varian
e of S

(Eq. 5.7) takes into a

ount these ties, where q is the number of tied groups and tp is the

number of data in the p group.

V AR(S) =
1

18

[

n(n− 1)(2n+ 5)−
q

∑

p=1

tp(tp − 1)(2tp + 5)
]

5.7

After 
al
ulating S and its varian
e, an MK statisti
 Z is 
omputed using Eq. 5.8.

A positive value of Z indi
ates an upward tend, whereas its negative value indi
ates a

downward trend. If there is no dete
table trend, then the MK statisti
 Z has a standard

normal distribution.

Z =























S−1√
V AR(S)

S > 0

0 if S = 0

S+1√
V AR(S)

S < 0

5.8

To dete
t the season-wise monotoni
 trends, a slightly modi�ed version of the MK

test, namely seasonal Kendall (SK), is used, whi
h runs the original MK test on ea
h

season (k) separately, where k 
an refer to any period of time within a year (e.g., months

or four quarters of a year). The overall S statisti
 is then 
omputed by adding ea
h SK

statisti
 (Sk) for m number of seasons, and the statisti
al signi�
an
e of the trend 
an be
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assessed using the out
ome of Eq. 5.10 and 5.11 in Eq. 5.8.

Sk =

nk−1
∑

i=1

nk
∑

j=i+1

sgn(Xk,j −Xk,i) 5.9

S =

m
∑

i=k

Sk 5.10

and:

V AR(S) =

m
∑

k=1

V AR(Sk) 5.11

Based on sets of Monte Carlo simulations, [135℄ show that the presen
e of a positive

serial 
orrelation in
reases the varian
e of the distribution of S and thus in
reases the

possibility of reje
ting the null hypothesis of no trend; the same was also found by [136℄.

By 
ontrast, negative serial 
orrelation diminishes the varian
e of the distribution and

results in underestimation of the signi�
ant trend dete
tion probability. To limit the

in�uen
e of serial 
orrelation, we applied a 
orre
tion fa
tor, des
ribed by [137℄ in Eq. 5.8,

as follows;

Z∗ =
Z

√

ηk
5.12

ηk =











1 + m
2

m−1
∑

i=1

(m− j)ρj for j>1

1 + 2
ρm+1

1
−mρ2

1
+(m−1)ρ1

m(ρ1−1)2
for j=1

5.13

Normally, the population serial 
orrelation 
oe�
ient ρj is repla
ed with the sample

serial 
orrelation 
oe�
ient rj ;

rj =

1
m−j

m−j
∑

i=1

(Xi − X̄)(Xi+j − X̄)

1
m

m
∑

i=1

(Xi − X̄)2
where j = 2, 3, .., m− 1. 5.14

X̄ =
1

m

m
∑

i=1

Xi 5.15

The 
orre
tion fa
tor ηk shrinks (expands) the MK statisti
s in the presen
e of positive

(negative) serial 
orrelation.

An estimate of trend magnitude, whi
h is 
losely related to the MK test pro
edure,

is known as Sen's slope estimator [138℄. The slope estimates of Nk pairs of data of the

k-season are �rst 
omputed by:

Pk,l =
Xk,j −Xk,i

j − i
5.16

for all 1 ≤ i ≤ j ≤ nk and 1 ≤ l ≤ Nk. The median of these Pk,l values is Sen's slope
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estimator Pk:

Pk =















P
k,

(

Nk+1

2

)

if Nk is odd

1
2

[

P
k,

(

Nk
2

) + P
k,

(

Nk
2

+1
)

]

if Nk is even

5.17

Finally, Pk is tested by a two-sided test at the (1−α)×100% 
on�den
e interval, and

the true slope 
an be obtained. More details about the Mann�Kendall and Sen's slope

tests 
an be found in [134℄ and [139℄.

5.3.2.3 Change point dete
tion

We used the Pettitt test [50℄ to dete
t the qualitative and quantitative 
hanges in SSL

and dis
harge series. The Pettitt 
hange point test is non-parametri
 and based on a

version of the Mann-Whitney statisti
s Uj,n as follows:

Uj,n = Uj−1,n +

n
∑

i=1

sgn(Xj −Xi) where j = 2, 3, .., n 5.18

whereas Xi and Xj are the adja
ent data values, n is the number of observations and sgn


an be quanti�ed using Eq. 5.6. The statisti
s Kj and 
orresponding signi�
an
e testing

are given by:

Kj,n =Max|Uj,n| where 1≤ j≤ n 5.19

and:

p ∼= 2exp

[−6(Kj,n)
2

(n3 + n2)

]

5.20

If p ≤ 0.05, a signi�
ant 
hange point exist.

5.3.2.4 De
adal analyses and linear regressions

Similar to the innovative trend method of [47℄, we divided the suspended sediment load

(SSL) and dis
harge data into two time series of one de
ade ea
h. The �rst time series


onsists of the initial de
ade of the dataset, and the se
ond time series 
onsists of the last

de
ade of the dataset. To determine the mean annual and mean monthly 
hanges, we


ompared the SSL and dis
harge shares of pre-sele
ted spatial resolution for both gauges.

At the upper Indus River, the e�e
t of high dis
harge events is in�uential; they trans-

port a 
onsiderable amount of SSL [103℄. Therefore, we also explored the mean monthly


hanges in most e�e
tive dis
harges during the initial and last de
ades of the datasets.

The work in [140℄ de�ned the most e�e
tive dis
harge as the midpoint of the range of
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�ows, whi
h over a 
ertain period 
an transport a 
onsiderable proportion of the SSL. The

e�e
tive dis
harge 
an be 
omputed using sediment transport formulae and regional �ow

duration 
urves. In the present study, we used the e�e
tive dis
harge (Q/Qavg) of 2.0-

times the average dis
harge (Qavg) for Besham Qila and 5.0-times the average dis
harge

(Qavg) for the Partab Bridge gauge as per the 
lassi�
ations formulated by [67℄.

To obtain the linear 
hanges in ea
h month during past 50 years, we developed linear

regression equations of the re
onstru
ted SSLs and observed dis
harges. Using these

equations, we also quantitatively and qualitatively analyzed the 
hanges.

5.4 Results

To analyze the trends in suspended sediment loads (SSLs) of the upper Indus River,

we re
onstru
ted the missing SSC data using wavelet neural networks (WA-ANNs) and

then estimated 
orresponding SSLs using measured dis
harges, i.e., SSC × Q. The re-


onstru
ted daily data series in the form of monthly and annual SSLs were used in four

di�erent trend analysis te
hniques, namely: (1) innovative trend test; (2) Mann�Kendall

and Sen slope tests; (3) Pettitt 
hange point test; (4) de
adal analyses and linear regres-

sions. The study �ndings are des
ribed below.

5.4.1 Re
onstru
tion of daily sediment load time series

Based on several preliminary simulations for both gauges, we eventually trained both net-

works using 70% of the data for the training, 15% for testing and 15% for validation on

a random basis. In a similar way, we also de
omposed Q

t

, Q

t−1

, Q

t−2

, for Besham Qila

and Q

t

, Q

t−1

for Partab Bridge up to seven levels using the Daube
hies (db1) wavelet.

The best performing WA-ANN ar
hite
tures re
onstru
ted SSLs with a 
orrelation 
oef-

�
ient R = 0.92 for both sites (Tab. 5.3). The RMSE and MAE for Partab Bridge were

approximately two times more than Besham Qila; likewise, the standard deviation (SD)

and mean in the a
tual SSC samples (Tab. 5.2). This di�eren
e shows the 
omplexity in

the transport pro
ess in the gla
ier in�uen
e zone of the upper Indus River at the Partab

Bridge gauge. The NSE, whi
h is used to analyze the model performan
e, was 0.85 for

both stations. Therefore, we 
onsider the WA-ANNs re
onstru
ted suspended sediment

load (SSL) series good as the NSE is higher than 0.75 [115, 29, 141℄. In addition, both

WA-ANN models re
onstru
ted SSLs with a 
umulative di�eren
e of ±1% with the mea-

surements. Thus, a

ording to another 
omparison 
riterion, the models that led to an
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error between ±10% and ±15% are 
onsidered as a

urate models [117℄. A 
ompari-

son between the mass of suspended sediment sampled daily and 
omputed results using

WA-ANN models is also shown in Fig. S1 of the Supplementary material.

The re
onstru
ted results showed a higher mean annual SSL of 171 Mt for Partab

Bridge 
ompared to 160 Mt at the downstream Besham Qila site (Fig. 5.4). Moreover,

the annual SSLs appear to have been rising at Partab Bridge sin
e 1993 and 
ausing the

10-year moving average to in
rease. In 
ontrast, the annual SSLs have been de
reasing at

Besham Qila sin
e 1993 (Fig. 5.4). The similar 
hanges in SSLs are also shown in linear

and quadrati
 trends for both gauges (Fig. 5.5). The statisti
al parameters of linear and

quadrati
 line �ttings are shown in Tab. S1 (Supplementary material).

Table 5.3: Statisti
s of the best performing WA-ANN ar
hite
tures for the Besham Qila

and the Partab Bridge sites.

Lo
ation Neurons

Transfer Fun
tion

R RMSE (ton/day) MAE (ton/day) NSE

First Output

Besham Qila 24 tansig purelin 0.92 3.94× 105 1.75 × 105 0.85

Partab Bridge 30 logsig tansig 0.92 6.12× 105 2.87 × 105 0.85
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5.4.2 Innovative trend test for annual loads

The innovative trend test (ITA) shows a de
reasing trend in low annual SSLs at Besham

Qila against an in
reasing trend in high annual SSLs at the Partab Bridge site (Fig. 5.6a

and 5.6b). The frequen
ies have been in
reasing at both gauge sites. On the other hand,

the overall annual �ows at Partab Bridge show an in
reasing trend, while there are diverse

trends at Besham Qila, where, apart from medium annual �ows, the low and high �ows

have no dis
ernible trend (Fig. 5.6a and 5.6b). Contrary to Besham Qila, the in
rease

in �ows has also been 
ausing an in
rease in SSLs at Partab Bridge. However, in the

absen
e of hydrauli
 stru
tures, urbanization or industrialization along the upper Indus

River or within the UIB, this in
rease in annual SSLs noti
ed at the Partab Bridge did

not appear at the downstream gauge, i.e., Besham Qila (Fig. 5.6).

5.4.3 MK test for annual and monthly loads

The MK trend analyses show that the annual SSLs at Besham Qila have been de
reasing

at a rate of 0.634 Mt y

−1
(Tab. 5.4). Cal
ulating a

ording to the same rate, this indi
ates

a maximum de
rease of 34 Mt from the estimate made by [14℄ (reported by [15℄) for the

Tarbela dam in 1982 (Tab. 5.1). Due to a negative slope of 0.634 Mt y

−1
, it is possible

that the estimates published in 1970s and 1980s show higher sediment loads 
ompared to

our estimate (160 Mt y

−1
) at Besham Qila. In 
ontrast to the results of the MK test, the

seasonal Kendall (SK) test showed an annual statisti
ally-signi�
ant in
reasing trend at

the Besham Qila (Z = 3.2) and Partab Bridge (Z = 4.1) gauges. This 
ontrast in both

tests results arises due to the addition of ea
h season's trend in the SK test (Eq. 5.10
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Figure 5.6: Results of innovative trend test showing a de
reasing trend in low and high
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at Partab Bridge, along with an in
rease in all �ows (legends for Fig. 5.6a also apply for

Fig. 5.6b).

and 5.11). In addition, the results of the SK test are similar either using seasons as

four quarters of a year (De
ember�February, Mar
h�May, June�August and September�

November) or ea
h month as a season.

The monthly SSLs show a signi�
ant in
reasing trend in the winter months (November�

February) at Besham Qila with a 
umulative magnitude of 0.004 Mt y

−1
. This is a slight


umulative magnitude, whi
h is unbalan
ed by the de
reasing trend of −0.24 Mt y

−1
alone

in August (Tab. 5.4). Surprisingly, sandwi
hing in
reasing trends, April at Besham Qila

shows a de
lining trend only in SSLs. The monthly SSLs at Partab Bridge, in 
ontrast

to Besham Qila, show a de
lining trend of 0.33 Mt y

−1
only in August. This trend is

balan
ed by 0.36 Mt y

−1
rise in June and September (Tab. 5.4). Despite the diversi�ed

trends at both gauges, May showed a statisti
ally in
reasing and August a statisti
ally

de
reasing trend, whereas in summer, only August at Besham Qila and June, August

and September at Partab Bridge show any trends. However, their 
ontribution (33% and

83%) is still higher than the magnitudes of the trends in the remaining months of the

year. In summer (July�September), the mean SSL re
orded at Partab Bridge is 141 Mt

y

−1
, while during the same period or even until O
tober, only 125 Mt passed through the

Besham Qila gauge; this apparently indi
ates a durable deposition of SSLs between both

gauges in summer.
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5.4.4 Change point dete
tion test

The test results show dis
ernible 
hange points in the monthly SSLs after 1982, whereas

no 
hange point was dete
ted in annual SSLs at both gauges (Fig. 5.7). Therefore, it

might be possible that the peaks in annual SSLs re
orded after 1993 at Partab Bridge

gauge in Fig. 5.4 in the absen
e of an in
rease in 
orresponding dis
harges may have been


aused by degradation of landslides, whi
h may have previously blo
ked the sediments

[23℄. On the other hand, the interventions of landslides are marginal for river �ow due

to a mean dis
harge of about 2,600 m

3

/s. Thus, the 
hange points in monthly dis
harges

are similar at both gauge stations (Tab. 5.5). As the Besham Qila site is lo
ated in a

monsoon rainfall and snowmelt zone, no 
hange in annual �ows indi
ates a de
rease in


ontribution from these sour
es (Tab. 5.5).

Table 5.4: Mann�Kendall's (MK) annual and monthly SSL and dis
harge trends for the

Besham Qila and the Partab Bridge sites. The minus symbol for the MK statisti
s

indi
ates a downward trend, whereas the (-) symbol without numbers means no trend.

SSL Dis
harge

Period

MK Statisti


3

Sen's Slope Average SSL

MK Statisti


Sen's Slope Average Flow

(Mt y

−1
) (Mt y

−1
) (BCM y

−1
) (BCM y

−1
)

Besham Qila

Annual −1.21 −0.6345 160 - - 76.41

January 2.74 0.0011 0.16 5.60 0.0081 1.25

February 2.76 0.0016 0.12 4.71 0.0068 1.08

Mar
h 1.08 0.0020 0.22 2.39 0.0061 1.40

April −1.14 −0.00280 0.48 - - 2.25

May 2.66 0.0769 4.61 2.60 0.0471 5.98

June - - 28.04 - - 13.21

July - - 61.55 - - 19.69

August −1.00 −0.2414 53.80 - - 17.53

September - - 9.90 - - 7.77

O
tober - - 0.74 1.55 0.0067 3.01

November 2.16 0.0013 0.22 3.51 0.0075 1.80

De
ember 1.05 0.0004 0.15 3.71 0.0071 1.44

Partab Bridge

Annual - - 171 1.77 0.1299 56.62

January 3.81 0.0007 0.07 2.11 0.0018 0.94

February - - 0.08 - - 0.77

Mar
h - - 0.12 - - 0.83

April 1.01 0.0009 0.25 2.81 0.0045 1.08

May 3.41 0.0476 3.09 4.64 0.0506 3.37

June 1.39 0.2308 25.25 1.55 0.0380 9.32

July - - 64.14 1.00 0.0299 15.08

August −1.26 −0.3333 65.59 −1.02 −0.0274 14.15

September 1.86 0.1304 12.20 0.95 0.0181 6.26

O
tober 2.90 0.0041 0.33 2.85 0.0100 2.33

November 3.33 0.0008 0.09 3.50 0.0060 1.38

De
ember 2.59 0.0003 0.06 2.65 0.0034 1.10

Interestingly, the magnitude of the in
reasing trend in SSLs over May at Partab Bridge

3

Signi�
ant trend at 95% signi�
an
e level (
riti
al value = 1.96)
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was higher than Besham Qila's SSLs, whi
h makes their mean loads approximately the

same after 1997 (Fig. 5.7). After 1997, there was no dete
table in
rease in either parame-

ter at either gauge station. Furthermore, September showed a signi�
ant in
rease of 60%

no earlier than 1982, whi
h is the highest magnitude or in the 
hange in SSLs of the an-

alyzed re
ord. Compared to a noti
eable in
rease in SSLs at Partab Bridge, surprisingly,

the in
reasing loads are not being re
eived at the downstream gauge (Fig. 5.7).
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Figure 5.7: Signi�
ant 
hange points in monthly SSLs determined using Pettitt test; bla
k

denotes Partab Bridge, and blue denotes Besham Qila.

Table 5.5: Signi�
ant 
hange points in river �ows determined using the Pettitt test.

Period Annual January February Mar
h April May O
tober November De
ember

Besham Qila - 1987 1987 1986 - 1997 1985 1986 1985

Partab Bridge 1987 1986 1987 1987 1987 1987 1985 1986 1985

5.4.5 De
adal analyses and linear regressions

The de
adal analyses only show de
reasing trends in SSLs during peak summer (June and

July) at Besham Qila and only over August at Partab Bridge (Fig. S2, S3, 5.8a and 5.8b
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(Supplementary material)). The dire
tions of 
hanges in monthly SSLs are similar to

their 
orresponding dis
harges ex
ept for July at Partab Bridge and August at Besham

Qila. It might be possible that the high SSLs re
orded in July at Partab Bridge have been


ausing the SSLs in the following month of August at the downstream gauge to in
rease,

as shown in Fig. 5.8. Similar deviations 
an be seen in e�e
tive dis
harges, where the

SSL transport 
apa
ity of the river has been de
reasing in summer (June, August and

September) at Besham Qila and only over August at Partab Bridge (Fig. 5.9).
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Figure 5.8: Monthly share of SSL and �ow volume in the �rst and last de
ade of the

analyzed re
ord.
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Figure 5.9: Monthly Q/Qavg in �rst and last de
ade of the analyzed re
ord following the

monthly de
adal trend of SSLs.

The linear regressions also showed identi
al dire
tions in the 
hanges of the monthly

SSLs and their 
orresponding dis
harges, ex
ept for April at Besham Qila (Tab. 5.6),
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where SSLs are de
reasing against the in
rease in dis
harges. Nevertheless, there is a


ertain sensitive linear 
orrelation between mean monthly SSLs and their 
orresponding

dis
harges for the months in the e�e
tive dis
harges zone, depi
ted in Fig. 5.10, where

the axes represent the 
hange in mean monthly dis
harges and SSLs (sin
e 1969 and

1962) determined by linear regression equations (Fig. S2 and S3 in the Supplementary

material). As 
an be seen from Fig. 5.10, the 
hange in SSLs is sensitive to the 
hange

in dis
harges, where a 1% 
hange in dis
harges, on average, 
an 
ause a 
hange of 3% in

SSLs in the study area. However, 
ompared to Besham Qila, the transport 
apa
ity of

the river is more sensitive to the dis
harge 
hange at Partab Bridge, where, for example,

an 11% 
hange in mean monthly dis
harges 
aused a 65% 
hange in 
orresponding SSLs

over September (Tab. 5.6). This may be due to the lo
ation of the major sour
e of eroded

sediments in the Karakoram parts of the basin that 
ontributes SSLs disproportionate to

its drainage area at Partab Bridge [101℄. On the other hand, the river slope is mild from

Partab Bridge to Besham Qila, whi
h 
auses substantial sediment storage of the in
oming

SSLs, parti
ularly in summer.

Table 5.6: Mean monthly linear variations in SSLs and dis
harges (�ows) at both gauges

(ea
h month's regression plots are presented in Fig. S2 and S3 in the Supplementary

material).

Period

Besham Qila

4

Partab Bridge

5

SSL Flow SSL Flow

(%) (%) (%) (%)

Annual −7.40 3.90 13.50 16.00

January 44.64 29.49 93.56 12.85

February 77.58 29.8 10.27 6.28

Mar
h 59.43 20.8 3.36 5.01

April -8.11 7.29 398.18 36.32

May 141.22 38.75 365.07 138.87

June −13.41 −3.7 48.72 20.54

July −9.04 −1.45 17.86 7.37

August −12.79 −3.12 −8.16 −4.07
September 8.02 6.63 65.73 11.68

O
tober 16.77 11.52 107.15 24.27

November 29.48 16.47 50.99 20.88

De
ember 19.43 15.17 40.68 15.8

To gain an overall qualitative overview of the trends, we 
ompared the results in

4

from 1969�2008

5

from 1962�2008
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Tab. 5.7. The 
omparison reveals that SSLs have been in
reasing in May and de
reasing

in August in the study area. Apart from that, they have been monotoni
ally in
reasing

during winter months from November�February and also Mar
h and May. Although the

annual SSLs at both gauge sites showed minor trends, they are statisti
ally insigni�
ant

(Tab. 5.7).
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Figure 5.10: Linear regression of mean monthly 
hanges in SSLs versus 
hanges in dis-


harges.

Table 5.7: Qualitative 
omparison of the trends in SSLs using di�erent methods (blue

triangles imply an upward trend, whereas red triangles imply a downward trend; a �-�

represents statisti
ally insigni�
ant/no trend). ITA, innovative trend analysis.

Period

Besham Qila Partab Bridge

ITA MK C.P

6

D.C

7

Regression ITA MK C.P D.C Regression

Annual H H - H H N - - N N

January N N N N N N N N N N

February N N N N N N - - N N

Mar
h N N - N N N - - N N

April H H - N H N N - N N

May N N N N N N N N N N

June H - - H H N N - N N

July H - - H H N - - N N

August H H - N H H H - H H

September N - - N N N N N N N

O
tober N - - N N N N N N N

November N N N N N N N N N N

De
ember N N - N N N N N N N

6


hange point dete
tion test

7

de
adal 
omparison
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5.5 Dis
ussion

The WA-ANN models with a de
omposition level of 7 (256 days) and a lag time of two and

one day for Besham Qila and Partab Bridge, respe
tively, 
an pre
isely �nd the missing

suspended sediment load for a given 
ir
umstan
e of hydrologi
al data of the study area.

Our �ndings show that the variation in �ow patterns have been 
ausing a signi�
antly

in
reasing trend in suspended sediment loads (SSLs) in May and a signi�
antly de
reasing

trend in August at both Besham Qila and Partab Bridge gauges in the upper Indus River

(Tab. 5.7). Contrary to the in
rease in high frequen
ies in low annual SSLs and river �ows

at Besham Qila (whi
h is additionally in�uen
ed by monsoon rainfall), the frequen
ies in

high SSLs and river �ows are in
reasing at the Partab Bridge gauge, whi
h is lo
ated just

downstream of high elevation gla
ierized areas of the Karakoram and Himalayas (Fig. 5.1

and 5.6). Even in the absen
e of hydrauli
 stru
tures between both gauges, the high SSLs

re
orded at Partab Bridge during summer are not being transported to the downstream

gauge. Furthermore, the mean monthly linear variations show that an average 1% 
hange

in monthly �ows 
an 
ause a 3% 
hange in SSLs (Fig. 5.10). However, the sediment

transport 
apa
ity of the river is more sensitive to dis
harge 
hange from May�August at

Besham Qila and in September at Partab Bridge.

The sediment transport pro
esses at the upper Indus River are in�uen
ed by hysteresis

phenomenon and alternative 
y
les of dray and wet seasons. Applying simple relationship

between water dis
harge and sediment 
on
entration in the modeling pro
ess 
annot ad-

just and model these impa
t fa
tors. Therefore, a temporal resolution of approximately

one year with a lag time of one day in the gla
ier-in�uen
ed zone and two days in the

rainfall-in�uen
ed zone 
an redu
e the variations in sediment load re
onstru
tion. The re-


onstru
tion variations, in parti
ular, in
rease when for example in 
onventional methods

(sediment rating 
urves and ANN), temporary sediment storage in the main river 
hannel

and di�erent transit times of dis
harges and sediment from their sour
es to the gauges

are not in
luded. Therefore, the quality of hydrauli
 design and sediment load trends

based on poor sediment load estimation ultimately 
an a�e
t the a

ura
y of subsequent

studies and the e�
ien
y of the overall hydrauli
 stru
ture and asso
iated bene�ts.

Partab Bridge gauge is lo
ated just downstream of the snow-fed and gla
ial melt

zone of the upper Indus River. Therefore, the results indi
ate two types of patterns at

Partab Bridge: (1) snowmelt- and (2) gla
ial melt-dependent SSLs. The former (snowmelt

dependent) SSLs have been shifting to the spring months (April, May and June) due to

an in
rease in early snowmelts at low altitudes [142, 37, 21℄. Parti
ularly in May, the
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signi�
ant in
reasing e�e
t of early snowmelt has in
reased the SSL from 3.3 Mt y

−1
�5.6

Mt y

−1
, over the last 50 years (Fig. 5.7). The e�e
t of early snowmelt has also been

noti
ed by [127℄, where they determined a 50 million m

3

in
reasing rate in May's �ow

at Partab Bridge. Interestingly, in 
omparison to Besham Qila (47 million m

3

), the rate

of in
rease in �ow (50 million m

3

) is higher at Partab Bridge and vi
e versa in SSLs

(Tab. 5.4 and 5.6). However, this in
reasing trend in �ows extraordinarily in
reased SSLs

at Partab Bridge, where after 1993, SSLs are identi
al to those of Besham Qila. The

identi
al loads at both gauges point out either no in
rease in SSLs at Besham Qila's


at
hment or deposition downstream of Partab Bridge.

On the other hand, retrieval of gla
ial size depre
iates the SSLs in August due to less

water availability [67, 36, 143, 40℄; the SSLs have de
reased to 34% (from 43%) over the

past 50 years. It seems that gla
ial melt has shifted to July and September (Tab. 5.4).

Although the in
reasing trend in both months is similar (Tab. 5.6), September's �ow has

remarkably in
reased the SSL from 9 Mt�15 Mt (similar to regressions where in
rease is

65%) at Partab Bridge (Fig. 5.7). This signi�
ant in
reasing trend may be 
aused by the

small in
rease in most e�e
tive dis
harge. It also shows the degree of sensitivity where

only an 11% 
hange in dis
harge 
aused a 66% 
hange in SSL (Tab. 5.6). Furthermore,

the remarkable in
rease in SSLs in September may redu
e the reservoirs' life by in
reasing

trap e�
ien
y, where a

ording to existing operation rules, the dams are normally �lled

to the maximum 
onservation level as late as 31 of August, su
h as at Tarbela dam.

Contrary to monotoni
ally-in
reasing trends in SSL at Partab Bridge (ex
ept August),

the Besham Qila gauge, lo
ated in the snow and rain-fed zone, has diversi�ed mean

monthly trends from winter to spring (Tab. 5.7). The rise in spring' SSLs at Besham

Qila might be due to early snowmelt as at Partab Bridge [127℄. However, the most

surprising trend out
ome is the de
rease in SSLs during April in 
ontrast to the in
rease

in dis
harges revealed by regressions (Tab. 5.6). In the MK test, April's SSLs also showed

a de
reasing trend, despite an in
reasing trends in pro
eeding and immediately su

eeding

months (Tab. 5.4). In April, half of the �ow volume re
orded at Besham Qila 
omes from

Partab Bridge [144℄; however, 
orresponding to a 36% linear mean monthly in
rease at

Partab Bridge (Tab. 5.6), the in
rease in �ow at Besham Qila is only 7%. Therefore, the


orresponding in
rease in SSLs re
orded at Partab Bridge during April may be deposited

(due to less SSL transport 
apa
ity of the river) between Besham Qila and Partab Bridge,


ausing high SSLs during the su

eeding month (May) at Besham Qila, when the river

�ows show a signi�
ant in
reasing trend at both gauges. Over August, on the 
ontrary,

the de
lining trend in SSLs at Besham Qila is statisti
ally insigni�
ant and seems to be
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asso
iated with the de
rease in the 
ontribution of SSLs (Tab. 5.4) and �ow volume (from

whi
h 84% of �ow 
omes) from Partab Bridge.

As 
an be seen in Fig. 5.2, over the past 40 years, at Besham Qila, the average annual

volume of water was about 76 billion m

3

(BCMs), while the same average was 56 BCMs

at Partab Bridge. That means the 
at
hment at Partab Bridge (denoted by Zone 1)


ontributes 74.2% of the annual �ow volume at Besham Qila. The remaining 25.8% in

annual �ow volume is 
ontributed from the 
at
hment between Partab Bridge and Besham

Qila (denoted by Zone 2). The �ow volume in Zone 2 is mostly generated from rainfall

and snowmelt [21℄. The linear trend from 1969�2008 in Fig. 5.5 shows an in
rease in �ow

volume at Besham Qila of around 3.90% (denoted by ∆Q), while the same in
rease at

Partab Bridge is around 13.50% (denoted by ∆Q1). The variation of water availability in

the area between Partab Bridge and Besham Qila (denoted by ∆Q2) 
an be approximated

using the following mass balan
e equation:

100×∆Q = 74.2×∆Q1 + 25.8×∆Q2 5.21

From this equation, we obtain the variation in �ow in Zone 2 ∆Q2 = −38%. As Zone 2
is in�uen
ed by rainfall and snowmelt, it seems that the negative variation is attributable

to trends of these parameter. These parameters (snowmelt and rainfall) have further been


ausing a de
rease in water availability (between both gauges) required to transport the

in
reased SSLs 
oming from Partab Bridge. Thus, the annual SSL trends at Besham Qila

have shown a de
reasing tenden
y sin
e 1969 (Fig. 5.5). Similar results have also been

noted by [46℄, where the de
rease in rainfall in the study area has been bu�ered by the

in
rease in gla
ier melts. Additionally, the rise in gla
ier melt or pre
ipitation over the

western region of the upper Indus Basin noted by [38℄ might have been the 
ause of the

60% in
rease in SSLs during September at Partab Bridge. However, this in
rease has

not been re
eived at the downstream gauge, possibly due to a statisti
ally insigni�
ant

in
rease in dis
harge downstream of the same gauge till Besham Qila (Tab. 5.4).

In the future at the upper Indus River, the overall in
rease in �ow volume is expe
ted

to rea
h 7�12% [37℄. This in
rease will mostly in
rease the �ow share for the pre and

post summer months, whi
h will not be enough (it will be less than the most e�e
tive

dis
harges) to transport an additional sediment load. Consequently, the annual SSLs will

remain the same or will de
rease slightly at Besham Qila. Therefore, in keeping with

the 
urrent trends, the published sediment load estimates indi
ate an ongoing de
line at

Besham Qila (Tab. 5.1), sin
e 1970 to the present. Regardless of the in
rease or de
rease
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in the �ow volume, the resear
hers agree on the shift in �ow patterns at the upper In-

dus River [19, 36, 145℄. Sin
e there are neither hydrauli
 stru
tures at the upper Indus

River/basin, nor land use 
hanges that might have a�e
ted the situation, in 
ontrast to

[146, 147℄ studies for the East or Thames River, the temporal 
hanges in SSLs 
an only

be due to 
limate 
hange fa
tors. In addition, the statisti
ally-signi�
ant monthly SSL

trends 
ontradi
t the previous reservoir sedimentation studies, whi
h simply used the past

SSCs without modi�
ation to the future predi
tions, parti
ularly for the hydrauli
 stru
-

tures planned upstream of Besham Qila [58, 15, 6, 33℄. Thus, using modi�ed boundary


onditions for reservoir sedimentation studies in the presen
e of trends 
an improve the

overall quality of hydrauli
 designs and reservoirs' lives in the study area.

Nevertheless, the variations in SSLs, overall, may have serious impli
ations for water

storage, as well as the management of peak supply, peak demand and dam safety, whi
h

will require 
ertain 
hanges in the existing reservoirs' operational rules. These 
hanges

may in
lude the use of additional (in
reased) water for power generation during low

�ows (winter months) and for irrigation or �ushing operations in May when more water

is available. Flushing in May when 
rops are at a mature stage and do not require

irrigation will also provide the opportunity to re-�ll the reservoirs in the su

eeding high

�ow months (June�July). Although the overall �ow volume at Besham Qila has been

in
reasing slightly, the �ow 
ontribution of the 
at
hment between Partab Bridge and

Besham Qila (Zone 2) has been de
reasing and 
ausing substantial sediment deposition

and an overall de
rease in the SSLs re
eived at Besham Qila. Despite the fa
t that we

did not in
lude the impa
t of landslides on sediment deposition, the 
urrent �ndings are

of 
ru
ial importan
e for 143 existing or planned dams and other 
onstru
tion proje
ts in

the upper Indus River, espe
ially upstream of the Partab Bridge, whi
h has a gla
ier-fed


at
hment and is sensitive to 
hange in river dis
harges.

5.6 Con
lusions

Re
onstru
ted suspended sediment load (SSL) time series using wavelet neural networks

(WA-ANNs) along with the innovative trend test, the Mann�Kendall test, Sen's slope

estimator, the 
hange point dete
tion test and linear regressions have shown a shifting

trend from the summer (June, July and August) to the spring and winter months due to a


hange in water availability at the upper Indus River over the past 50 years. The spatio-

temporal trends between dis
harges and SSLs are disproportionate. This disproportional

behavior and the signi�
ant trends strongly dis
on�rm the hypothesis that future in�ows
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and SSLs are similar to the previous ones for reservoir sedimentation studies for the upper

Indus River. In addition, the SSLs re
orded at Partab Bridge are depositing in the river


hannel between both gauges. This deposition pro
ess has led to a long-term de
rease

in SSLs, in 
ontrast to a long-term in
rease in �ow volume at the Tarbela dam. For

future water and food se
urity along the Indus River 
ommand area, it is ne
essary to

estimate the impa
t of long-term SSL variations on the existing and planned water storage


apa
ities of the reservoirs. Moreover, the impa
t of planned 
onstru
tion a
tivities along

the upper Indus River, whi
h 
ontains enormous sediment deposits, should be evaluated.
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Chapter 6

An Innovative Approa
h for Modelling

Sedimentation in Reservoirs

This 
hapter is published as:

Ateeq-Ur-Rehman, S.; Bui, M.D.; Hasson, S.u.; Ruts
hmann, P. An innovative approa
h

to minimizing un
ertainty in sediment load boundary 
onditions for modelling sedimen-

tation in reservoirs. Water (Switzerland) 2018, 10, 1�27, doi:10.3390/w10101411

Abstra
t: A number of signi�
ant investigations have advan
ed our understanding

of the parameters in�uen
ing reservoir sedimentation. However, a reliable modelling of

sediment deposits and delta formation in reservoirs is still a 
hallenging problem due to

many un
ertainties in the modelling pro
ess. Modelling performan
e 
an be improved by

adjusting the un
ertainty 
aused by sediment load boundary 
onditions. In our study,

we diminished the un
ertainty fa
tor by setting more pre
ise sediment load boundary


onditions re
onstru
ted using wavelet arti�
ial neural networks for a morphodynami


model. The model was 
alibrated for hydrodynami
s using a ba
kward error propagation

method. The proposed approa
h was applied to the Tarbela Reservoir lo
ated on the Indus

River, in northern Pakistan. The results showed that the hydrodynami
 
alibration with


oe�
ient of determination (R

2

) =0.969 and Nash-Sut
li�e E�
ien
y (NSE) =0.966 also

fa
ilitated good 
alibration in morphodynami
 
al
ulations with R

2

=0.97 and NSE=0.96.

The model was validated for the sediment deposits in the reservoir with R

2

=0.96 and

NSE=0.95. Due to desyn
hronization between the gla
ier melts and monsoon rain 
aused

by warmer 
limate and subsequent de
rease of 17% in sediment supply to the Tarbela dam,

our modelling results showed a slight de
rease in the sediment delta for the near future

(until 2030). Based on the results, we 
on
lude that our overall state-of-the-art modelling

http://dx.doi.org/10.3390/w10101411
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o�ers a signi�
ant improvement in 
omputational time and a

ura
y, and 
ould be used

to estimate hydrodynami
 and morphodynami
 parameters more pre
isely for di�erent

events and poorly gauged rivers elsewhere in the world. The modelling 
on
ept 
ould

also be used for predi
ting sedimentation in the reservoirs under sediment load variability

s
enarios.

6.1 Introdu
tion

Reservoir sedimentation is a serious issue in many parts of the world. On average, the

annual rate of de
rease in the world's reservoirs' storage 
apa
ity is approximately 1%.

Together with the in
rease in world population, non-sustainable development and use of

water resour
es, and the imminent threat asso
iated with 
limate 
hange, it may 
ause

a 
risis in water supply [53, 54℄. In Asia alone, 80% of the useful storage 
apa
ity for

hydropower produ
tion will be lost by 2035, while 70% of the storage volume used for

irrigation will be lost to sedimentation by 2025 [52℄. Pakistan, where no new large water

storage has been 
onstru
ted sin
e the Tarbela dam in 1974, is fa
ing a similar situation.

The Tarbela dam has also lost 40.58% of its storage 
apa
ity due to high sediment trap

e�
ien
y [148℄. Consequently, the 
ountry's reservoirs' water holding 
apa
ity is su�
ient

only to supply 30 days' requirements, and has been de
reasing [45℄. The de
rease in water

supply from reservoirs (su
h as the Tarbela) will a�e
t millions of people who depend on

the water supply and 
ould lead to internal migration and severe geopoliti
al 
rises [20, 46℄.

Hen
e, it is ne
essary not only to operate the existing water storage 
apa
ities e�
iently

but also to 
onstru
t reservoirs so as to trap less sediment. Espe
ially in a s
enario

where reservoirs are the key infrastru
ture in mitigating the e�e
ts of 
limate 
hange by

their 
apa
ity to store and regulate water supply, the expe
ted in
rease in hydrologi


variability will demand more water regulatory 
apa
ity [52℄. In addition, optimizing

reservoir sedimentation will require new te
hniques for sediment load (SL) estimation, as


onventional methods are no longer adequate or reliable.

The 
onventional method used to estimate SL, i.e. sediment rating 
urve (SRC),

has limited a

ura
y due to 
omplex sediment transport pro
esses su
h as the hysteresis

phenomenon [26, 3, 149℄. For example, the mean deviation between the predi
ted SL using

SRC and the measurements 
ondu
ted for the Tarbela dam over a period of 26 years was

approximately 40% [3℄. A poor SL estimation a�e
ts the boundary 
onditions of the

modelling pro
ess and may 
ause a 
ir
ular error in reservoir sedimentation modelling,

whi
h subsequently results in the poor quality operation rules that ultimately 
ontribute



6.1. INTRODUCTION 101

to the stru
ture's life 
y
le. Additionally, applying past data without modi�
ation for

future modelling 
an also in
rease the 
ir
ular error. [4℄ found a signi�
ant trend for the

�ow and SL in the Indus River, where summer �ows have been de
reasing, while pre-

summer, post summer and winter �ows have been in
reasing. Therefore, assuming that

future �ows and SLs are similar to past ones is not appropriate for reservoir sedimentation

studies for the existing and planned dams on the Indus River [37, 43, 21, 44, 4℄. Even the

trap e�
ien
y 
al
ulated using [66℄ 
urves may result in plausible over-or-underestimates

of the trapped sediment volume. The same 
an also happen by 
alibrating a numeri
al

model of a planned hydrauli
 stru
ture with an (upstream or downstream) existing nearby

dam.

The Tarbela dam is used as a standard for the design of planned (30,000 MW) hy-

drauli
 stru
tures in the Upper Indus Basin (UIB). For studying reservoir sedimentation

and designing of sediment routing fa
ilities (invert level of low level outlets, bypass tunnels

or lo
ation of power tunnels intakes), some numeri
al models have been developed [6℄. In

previous studies only 1D numeri
al models (HEC-RAS, HEC6-KC, RESSASS) have been

used for Tarbela and other planned stru
tures in UIB, due to their simpli
ity and lower


omputational time [57, 58, 15, 6, 1, 59℄. The sediment boundary 
onditions in these

models were based on SRC estimates. A 1D model 
an be used in simple topography to

assess the 
ross-se
tion averaged sediment deposition/erosion and the life of reservoirs.

However, the SL boundary 
onditions based on SRC estimates may lead to false predi
-

tions. On the other hand, designers (in the detailed design stage) also need a more pre
ise

estimate of sediment 
on
entrations with regard to di�erent outlets, tunnels, et
., (and at

di�erent lo
ations), to enable them to optimize sedimentation related fa
ilities [60℄. Sin
e

a 2D depth averaged model with more pre
ise boundary 
onditions 
an provide more

detailed information (in both simple and 
omplex topographies) anywhere in the domain

for shallow waters (when the 3D nature of the pro
esses exists near the main dam body is

of minor importan
e [150, 151℄), its appli
ation is suitable for the Tarbela and other sim-

ilar existing/planned hydrauli
 stru
tures, where due to high width-depth ratio, verti
al

velo
ities are smaller than horizontal ones and pressure distribution is nearly hydrostati
.

For SL estimation, wavelet arti�
ial neural networks (WA-ANNs) have performed well

due to their ability to adjust for the hysteresis phenomena by de
omposing the data

time series in the time-frequen
y domain and revealing the information from a given

data s
enario [26℄. However, there is a resear
h gap in the literature with respe
t to

redu
ing the un
ertainty fa
tor (
ontributing to a

umulation of sediments in reservoirs)

using WA-ANN estimated sediment loads (SLs) as a model of boundary 
onditions. In
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addition, the 
omputation time of 2D and 3D models for long term simulation of large

systems su
h as the Tarbela dam is also very high. To address these resear
h gaps,

we employed a TELEMAC 2D open sour
e model developed by Laboratoire National

d'Hydraulique et Environnement (LNHE) Fran
e, whi
h has also been modi�ed by the

Chair of Hydrauli
 and Water Resour
es Engineering, at the Te
hni
al University of

Muni
h for graded sediment transport [63℄. Sin
e the modi�ed 
ode 
an run on 
omputers

with ve
tor and parallel pro
essing, the CPU time 
an be very signi�
antly redu
ed.

Calibration is the pro
ess of setting the parameters of the model to ensure that the


al
ulated values agree with observations. The validation pro
ess demonstrates whether

the predi
tions of the 
alibrated model agree with the observed data set that is di�erent

from the data used in the 
alibration pro
ess. In this study, we 
alibrated our model using

hydrologi
al, and morphologi
al data from the Besham Qila and Tarbela dam from 1983

(�rst 
omprehensive survey after its 
onstru
tion in 1974) to 1985, while the data from

1990 was used for the validation pro
ess. The 
alibration period of two years 
overs both,

dry and wet, hydrologi
al variations for the river. For example, 1984, with a �ow volume

of 83.8 billion m

3

(BCM) and SL of 209.6 million tons (Mt) was among the highest peak

�ow/SL years from 1969-2008, whereas 1985 had a lower �ow/SL than 
orresponding

averages. Similarly, the validation period of �ve years (1986-1990) also 
overs both dry

and wet periods [4℄. The 
omputational time for hydrodynami
 
alibration was redu
ed

using an automati
 
alibration method, whi
h updated roughness for ea
h mesh node us-

ing ba
kward error propagation. The boundary 
ondition of the morphodynami
 model

(in 
as
ade modelling) was modi�ed based on [3℄ studies where (due to the strong hys-

teresis phenomena) daily SL series was more pre
isely re
onstru
ted from non-
ontinuous

suspended sediment (SSC) samples using WA-ANN. The overall performan
e of the mod-

elling results was assessed using statisti
al performan
e parameters. To 
on�ne the length

of this paper, detail of daily SL series re
onstru
tion is not repeated here.

6.2 Methods

6.2.1 Study area

The Tarbela dam was 
onstru
ted in 1974 on the Indus River to help in regulating the

seasonal �ows both for irrigation and power generation (Fig. 6.1). The dam supplies 50%

of the total irrigation and 40% of the total energy produ
tion in Pakistan. The Tarbela

Reservoir is embanked by three dams; the main embankment is 2,750 m long and 143
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m high. The reservoir had an initial water storage 
apa
ity of 11.6 billion m

3

(BCM)

with reservoir length extending approximately 80 km. The outlet works 
onsist of four

tunnels 
ut through the right abutment of the main dam plus a �fth tunnel between the

main dam and the spillways on the left bank. The total installed 
apa
ity of the dam is


urrently 4,888 MW, 83% more than was originally envisaged in the initial design, with

several turbines installed on tunnels 1-4 (Fig. 6.2). This also in
ludes a re
ently installed

s
heme on tunnels 4 under Tarbela IV extension proje
t, whi
h has a power generation


apa
ity of 1,410 MW [152℄.
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Figure 6.1: Lo
ation map of the study area, modi�ed from [6℄

Sin
e 
ommissioning, sedimentation in the Tarbela Reservoir has been a 
on
ern due

to very high in�ow of the sediments from the Upper Indus River, i.e. approximately

160-200 Mt/yr. This is largely due to the erosion e�e
t of the gla
iers that supply mu
h

of the �ow. The Indus Basin upstream of the Tarbela dam has an area of about 169,650

km

2

(Fig. 6.1), of whi
h over 90% lies between the great Karakoram and the Himalaya

ranges. The snowmelt waters from this region 
ontribute a major part of the annual �ows

regulated by the reservoir. The remainder of the Basin lying immediately upstream of the

dam (Fig. 6.1) is subje
t to the monsoon rainfall primarily during the months of July to

September. The peak �ow due to snowmelt 
an be as high as 5,660 m

3

/s to 11,300 m

3

/s
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Figure 6.2: Sediment delta development in the Tarbela dam

with an additional rainfall 
ontribution typi
ally rea
hing a maximum of 5,660 m

3

/s. The

average annual in�ow to the Tarbela Reservoir is 81 BCM [65℄.

Study of [3℄ noted that from 1969-2008 the annual sediment in�ows into the reservoir

varied between 92-270 Mt, whi
h redu
ed the water storage 
apa
ity by 35% (Fig. 6.2) by

2011. The de
rease in the storage 
apa
ity is a 
on
ern as it 
ould result in redu
tion of

irrigation supplies/allo
ations as per the Histori
 Apportionment A

ord singed between

the provin
es in 1991 [153℄ and power supply. In addition, the impa
t of a delta 
reated

by the sediment deposits approa
hing the main dam is likely to blo
k the power intakes.

A re
ent alarming event at the Tarbela o

urred in summer season of 2018 when reservoir

levels dropped 
onsiderably, resulting in temporary blo
kage of power intakes. As the

storage 
apa
ity of the reservoir redu
es, more sediment will pass through the power

intakes and likely to damage the turbine blades/runners. The problems may also be

aggravated by the instability of the downstream sloping fa
e of the delta [14℄ 
oupled

with an o

urren
e of a earthquake [65℄.

6.2.2 Data des
ription

The available sediment transport data for the dam 
onsists of a long term hydrologi-


al database of published annual suspended sediment re
ords and hydrographi
 surveys
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ondu
ted ea
h year sin
e 1983 (�rst 
omprehensive survey after the dam's 
onstru
tion

in 1974). The hydrographi
 surveys are 
ondu
ted using a systemati
 sounding method

along the 73 
ross se
tional range lines, whi
h 
overs the whole dam area, i.e. 161 km

2

.

Approximately 3,500-4,000 measurements of the bed level 
hanges, water depths, and

water surfa
e elevations along these range lines are available, whi
h were mostly 
olle
ted

during ea
h survey 
ondu
ted from September to November. The distan
e between the


ross se
tions (range lines) and the (measured) data points along these 
ross se
tions is

not uniform. An average distan
e between ea
h 
ross se
tion along the river thalweg is

approximately 1.16 km. However, 
ompared to the upstream (upper periphery of the

reservoir), the distan
es between the 
ross se
tions are smaller near the dam. The dis-

tan
e between the measured data points along the 
ross se
tions (lateral distan
e in y

dire
tion) also varies with a mean of 39 m. The mean 
ross se
tional width near the

dam axis is approximately 4-5 km, whi
h redu
es to only 300-500 m at the upper periph-

ery. Therefore, the major ponding area is near the dam axis and 
ontains huge sediment

deposits (Fig. 6.2).

Long-term 
ontinuous dis
harge and dis
ontinuous suspended sediment 
on
entration

(SSC) sampling data is available at Besham Qila, whi
h fun
tions as an in�ow gauge

station for the Tarbela dam. On average, the SSC sampling frequen
y at the Besham

Qila gauge station is 22% of annual daily sampling, therefore a daily time s
ale 
an be

established using a sediment rating 
urve or an ANN and WA-ANN te
hniques [3℄. In

the present study, we used a WA-ANN te
hnique from [4℄ study, whi
h re
onstru
ted the

SSLs with Nash-Sut
li�e E�
ien
y (NSE)=0.837 for the 
alibration and NSE=0.871 for

the validation period (Tab. 6.1). The Indus River transports more silt (47%) 
ompared to

sand and 
lay (Tab. 6.2), and 90% of it is trapped in the dam [19℄. The density of sand,

silt and 
lay is 1,535, 1,330, and 1,170 kg/m

3

. Although, observations show that there is

no 
lear boundary of sizes between 
ohesive and non-
ohesive sediments, the de�nition of


ohesive sediment is usually site spe
i�
. Normally, 
ohesion plays a signi�
ant role for

sediment sizes smaller than 2 µ m in reservoirs (in
luding the Tarbela). We, therefore,

used 
ohesionless modelling [154, 19, 155℄). Most of the transport pro
esses o

ur in the

summer months; 84% of the total annual dis
harge and 99% of the SSL transport o

ur

from May to September (Tab. 6.3 and Fig. 6.3).

Water depth in the reservoir varies from a maximum 150 m near the main dam to

mostly 20 m upstream. To se
ure the stability of the dam and the slopes on the both

banks along the reservoir, the maximum lowering and rising rate for the reservoir during

operation, is 4 m/day and 3 m/day respe
tively between reservoir levels 396-460 m and
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only 1 m/day up to the maximum 
onservation level (472.5 masl). The average slope

upstream of the river bed in 1979 was

1m
892m

, whi
h be
ame �atter in 2010, with an av-

erage slope of

1m
1,670m

. More detail on data availability, data quality, re-
onstru
tion and

distribution 
an be found in [67, 3, 4℄.

Table 6.1: Statisti
al performan
e of WA-ANN for re
onstru
ting SSL in study period

(only high �ows from May to September). Sediment load was 
al
ulated in [4℄

Pro
ess Duration R

2

RSR NSE

Calibration 1984-1985 0.842 0.019 0.837

Validation 1986-1990 0.888 0.019 0.871

Table 6.2: Mean representative size 
lasses of SSC

Sand

Grain size (mm) 1.0 0.5 0.25 0.125 0.0625 Pan

Fra
tion (%) 100 99.87 96.98 85.85 71.98 71.97

Silt

Grain size (mm) 0.0442 0.0312 0.0221 0.0156 0.011 0.0078

Fra
tion (%) 64.51 57.12 49.59 41.07 32.70 25.29

Clay

Grain size (mm) 0.0055 0.0039

Fra
tion (%) 17.43 10.32

Table 6.3: Suspended sediment load and �ow volume distribution in million tons (MT) and

billion 
ubi
 meters (BCM) from 1984-1990. Out�ow also in
ludes the minor 
ontribution

(0.04% and 0.16%) of the Siran and Brandu tributaries

Months Average SSL Average in�ow Average out�ow

(Mt) (BCM) (BCM)

Jan-Apr 0.98 5.67 11.85

May-Sep 157.9 65.54 55.18

O
t-De
 1.11 5.50 11.25

6.2.3 Model system

TELEMAC is an open sour
e �nite element �ow model on an unstru
tured, triangu-

lar mesh [61℄. Whereas SISYPHE is a sediment transport model, whi
h is 
apable of
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Figure 6.3: Sediment in�ow, reservoir water level and dis
harges in 1984 (dash line rep-

resents out�ow from the dam).

modelling sedimentary systems 
ontaining very �ne to medium sand in suspension or as

bedload [62℄. Both models provide the opportunity to the users to adapt and modify the


odes to fa
ilitate a better simulation performan
e. In addition, the software pa
kage

programmed for the parallel pro
essing option, whi
h signi�
antly redu
es the simulation

time of study domains, have enormous mesh nodes. The opportunity to modify the sour
e


ode also allows to implement an automati
 
alibration 
on
ept using Matlab or other

programming languages. Di�erent numeri
al s
hemes are available whi
h 
an be sele
ted

a

ording to study requirements, available 
omputational power, time availability and de-

sired a

ura
y. However, an edge based N-s
heme based on a positive depth algorithm is

a good 
ompromise between a

ura
y and 
omputational time [62℄. The s
heme is stable

for the Courant number during ea
h time step where it remains less than 1. Cal
ulating a

�xed time step over whi
h the Courant number always stay below 1 is, nevertheless, 
hal-

lenging. Therefore, a variable time step option 
an be used where the model automati
ally

exe
utes intermediate time steps and the Courant number stays below a given value. The

variable time step option is useful for simulations over several years or de
adal, during

whi
h a river 
at
hment undergoes several dry and wet hydrologi
al 
y
les of run-o� and

subsequent sediment load.

The main fa
tors 
ontrolling the sand transport are: adve
tion by 
urrents, settlement

under gravity, turbulent di�usion in all dire
tions, and ex
hange of sand between the

�ow and the bed. Two methods, 
haining or internal 
oupling, are used to link the

hydrodynami
 and morphodynami
 models[62℄. In 
haining, both hydrodynami
 and

morphodynami
 models perform independently. For morphodynami
 
al
ulations the

�ow �eld is obtained from a previous hydrodynami
 simulation where the bed is assumed

to be non-moveable. Due to the di�eren
e in time s
ales of hydrodynami
s and bed
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evolution, this 
oupling method is normally used to model simple �ows and small bed


hanges. The 
haining 
oupling method does not 
onserve the mass due to 
hange in

the �ow �eld while the bed evolves, whi
h 
an lead to numeri
al instability. In internal


oupling, the models 
ommuni
ate through a quasi-steady morphodynami
 time stepping

approa
h and both models (TELEMAC and SISYPHE) 
an be run fully 
oupled in su
h

a way that after TELEMAC has 
omputed the �ow, the �ow �eld 
an be used at ea
h

time step by the SISYPHE to 
al
ulate the sediment transport and resulting 
hanges in

the bed. The new bathymetry is passed ba
k to the TELEMAC to 
al
ulate the new �ow

�eld on the next time step. If the �ow is stationary and the bed 
hanges in a time step

are small 
ompared to the water depth, a morphologi
al speed up is used to redu
e the


omputational time [156, 157, 158, 62, 159℄.

6.2.3.1 TELEMAC-2D for hydrodynami
s

The TELEMAC 2D solves the following 2D shallow water equation for hydrodynami
s.

The equations were derived from the Navier-Strokes equations by taking the verti
al

average:

∂h

∂t
+
∂(hu)

∂x
+
∂(hv)

∂y
= 0 6.1

∂(hu)

∂t
+
∂(hu2)

∂x
+
∂(huv)

∂y
= −hg∂Zs

∂x
+
τxx
ρ

6.2

∂(hv)

∂t
+
∂(hv2)

∂y
+
∂(huv)

∂x
= −hg∂Zs

∂y
+
τyy
ρ

6.3

Where h = depth of water (m); u, v = depth-averaged �ow velo
ity 
omponents in

x and y dire
tion, respe
tively (m/s); g = gravitational a

eleration (m/s

2

); Zs = free

surfa
e elevation (m); t = time (s); x, y = horizontal Cartesian 
oordinates (m); ρ =

density of water (kg/m

3

); τxx and τyy = depth-averaged turbulent stresses. The bed shear

stress is represented as a quadrati
 fun
tion of velo
ity:

τb(x,y) =
ρCf(u, v)|u|

2
6.4

Where Cf is roughness 
oe�
ient whi
h 
an be 
al
ulated using Manning (n: m1/3

s
),

Chezy (C:
√
m

s
), or Nikuradse (N : mm) equations.
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6.2.3.2 SISYPHE for morphodynami
s

The sediment transport model, SISYPHE, simulates river bed morphodynami
s by 
al-


ulating temporal 
hanges in bed elevation Zb using the Exner equation:

(1− p′)∂Zb

∂t
+
∂(δbcb)

∂t
+
∂(qt,x)

∂x
+
∂(qt,y)

∂y
+ η′e − η′d = 0 6.5

Where Zb = bed elevation (m); δb = bed load layer thi
kness (m); p′ = bed porosity (-

); cb = sediment 
on
entration in bed load layer (m

3

/m

3

); qt,x = total sediment transport

in x-dire
tion (m

2

/s); qt,y = total sediment transport in y-dire
tion (m

2

/s); η′e, η′d are

erosion and deposition rates, respe
tively (m/s).

The SISYPHE model assumes the Rouse 
on
entration pro�le, from whi
h the equi-

librium depth-averaged 
on
entration is 
al
ulated.

6.2.4 Model setup

6.2.4.1 Grid mesh

The geometry of the Tarbela dam reservoir area was drawn from the Tarbela Reservoir

Sedimentation Survey 
ondu
ted in 1983. The survey along the Indus River was 
ondu
ted

from dam axis (0 km) to 88.10 km upstream. The reservoir bathymetri
 survey 
ondu
ted

by the Water and Power Development Authority Pakistan (WAPDA) pro
eeded from the

left river bank to the right river bank, while looking downstream. The y distan
e (m)

along ea
h 
ross se
tion starts from left river bank (with an absolute value of zero) to

a maximum at the right river bank. The x distan
e (m) along the river starts from

the main dam axis (
entral line) to a maximum at upstream (upper periphery of the

reservoir (88.10 km)). The z is the river reservoir bed elevation in meters above sea level

(masl) at ea
h x and y distan
e. At ea
h 
ross se
tion, there was information of the

distan
e along the left river bank, the distan
e along the main river 
hannel (
entre line),

and the distan
e along the right river bank, i.e. at ea
h 
ross se
tion three values of

x-distan
e. All measurements of z at ea
h 
ross se
tion were between the left and right

river bank. On average 47 measurements were taken on ea
h of the 73 
ross se
tions,

whi
h resembles a total of 3,455, ex
luding the 
ross se
tion (R/line) 62, where no data

is available for 1983 (see Fig. 6.4). We ex
luded the Siran and Brandu tributaries (due

to their minor 
ontribution in the Tarbela dam) from the reservoir geometri
 model. To
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reate the geometry, SMS 12.2.9 developed by the Aquaveo and the open sour
e software

BlueKenue was used. In order to 
onvert the lo
al 
oordinates of the data points on

ea
h 
ross se
tion to global 
oordinates (Cartesian 
oordinate system), the y distan
e was

transformed with AutoCAD Civil 3D 2018 (Fig. S4). The �nal geometry applied in the

numeri
al model is shown in Fig. 6.4.

An unstru
tured mesh of various sizes, parti
ularly a �ner one for the areas where the

river meanders, was generated. The �nal mesh 
ontains 138,000 mesh elements repre-

senting 171 km

2

. In sele
ting 
ell resolution, we tried to a
hieve a reasonable 
ompromise

between a

ura
y and 
omputational time.

To 
on�rm the geometry approximation, we 
ompared elevation-storage volume 
urve

with the observation (whi
h does not in
lude the volumes of the Siran and the Brandu

tributaries) as shown in Fig. 6.5. We obtained the statisti
al performan
e parameters

NSE=0.99, R

2

=0.99, and a relative di�eren
e between the measured and the 
omputed

volume=1%. Furthermore, the longitudinal pro�le of the mean measured and 
al
ulated

river bed is also shown in Fig. 6.6. The results 
on�rmed a 
orre
t representation of the

grid mesh used in the numeri
al model.
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Figure 6.4: Measured data points (grey) along 
ross se
tions/range lines and TELEMAC

simulated water depth at 30 September 1983

6.2.4.2 Initial and boundary 
onditions

As an initial 
ondition, we �lled the reservoir up to the maximum 
onservation level, i.e.

472.5 m, so that the model 
an attain a stable 
ondition at the beginning. In addition,

we also set the SSC in equilibrium. In the numeri
al model, the verti
al variations in the

SSCs and river �ow were 
onsidered small 
ompared to their horizontal 
ounter parts.

The daily measured dis
harges and the WA-ANN re
onstru
ted suspended sediment

loads (SSLs) were applied as upstream boundary 
onditions while the reservoir water
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Figure 6.5: Comparison between the 
omputed elevation-storage volume and observation
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levels (RWL) were kept as the downstream boundary 
ondition. We used the data from

1983 for hydrodynami
 
alibration while the data from 1984 to 1985 was used for the

morphodynami
 
alibration and from 1985 to 1990 for the validation. We also omitted

the low �ow periods (from November to Mar
h (Tab. 6.3)) from the modelling due to

their small 
ontribution in the annual SSLs [4℄. We also ex
luded small tributaries, i.e.

the Siran and the Brandu, due to their minor (0.04% and 0.16%) 
ontribution to the total

sediment load entering the Tarbela Reservoir [19℄.
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6.2.5 Model performan
e

To evaluate the performan
e of the TELEMAC/SISYPHE model in terms of a

ura
y

and 
onsisten
y in predi
ting reservoir water depths and bed levels, the three following

statisti
al measures were employed: (a) Coe�
ient of determination (R

2

), whi
h is an

index of the degree of relationship between the observed and simulated data, ranging

from 0 to 1, as follows:

R2 =













P
∑

i=1

(Xobs
i − X̄obs)(Xsim

i − X̄sim)

√

P
∑

i=1

(Xobs
i − X̄obs)2

P
∑

i=1

(Xsim
i − X̄sim)2













2

6.6

Where Xobs
i , Xsim

i represent ith value of observed and simulated parameters, respe
-

tively, where X̄ denotes their mean values.

(b) Observations standard deviation ratio (RSR), whi
h is the ratio of root mean

square error (RMSE) and standard deviation (STDEV) of the observed data, as follows:

RSR =
RMSE

STDEVobs
=

√

1
P

∑P
i=1(X

obs
i −Xsim

i )2
√

P
∑

i=1

(Xobs
i − X̄obs)2

6.7

RSR varies from 0 to any positive value. A lower RSR value indi
ates a better per-

forman
e of the model simulation.

(
) Nash-Sut
li�e E�
ien
y (NSE), whi
h is a statisti
al measure to determine the

relative magnitude of the residual varian
e 
ompared to the measured data varian
e [160℄,

as follows:

NSE = 1−

P
∑

i=1

(Xobs
i −Xsim

i )2

P
∑

i=1

(Xobs
i − X̄obs)2

6.8

Although negative values are possible, the NSE generally ranges from 0 to 1. NSE

= 0 indi
ates that the model is no better than simply fore
asting the mean value. The
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loser the value of NSE to 1, the better the model performan
e. The simulated results

are normally referred as good when the NSE is higher than 0.75 and satisfa
tory when it

lies between 0.36 to 0.75 [115℄. To de�ne a stopping 
riteria (Eq. 6.17) for hydrodynami



alibration, we assigned equal weight to all three statisti
al parameters in the form of a

statisti
al mix (S) as follows:

S =
R2 + (1− RSR) +NSE

3
6.9

S 
an vary from 1 to a negative value, where 1 indi
ates a best performan
e of the

model.

6.2.6 Model parameters and automati
 
alibration

The information about the Tarbela dam other than daily in�ows, reservoir water levels,

and WA-ANN re
onstru
ted SSLs are: (a) volume of sediments deposited ea
h year after

the �ood season (between O
tober-November), (b) 72 longitudinal pro�les along the reser-

voir over the period 1983 to the present, (
) 
omposition of the sediment deposits in some

areas, (d) �ow velo
ities measured with an ADCP at several 
ross se
tions, (e) out�ow

dis
harge and sediment 
on
entration. This information were used for hydrodynami
 and

morphodynai
 
alibrations. The automati
 
alibration algorithm was developed to save


omputational time. We edited and 
ontrolled the TELEMAC and SISYPHE models

with a single Matlab 
ode (Fig. 6.7). The TELEMAC and SISYPHE models required

spe
ifying several parameters su
h as method for parametrising fra
tion 
oe�
ients, ini-

tial parti
le size distribution, sediment transport (suspended and bed load) formulae,


riti
al Shield parameter, and settling velo
ity. For the suspended sediment 
al
ulations

we tested di�erent transport formulae. The 
riti
al Shield parameter was set to 0.047 for

the simulations. We provided settling velo
ities (m/s) to the model using the following

equation [161, 162℄:

Ws =



















(s−1)gd2
50

18ν
, if d50 ≤ 10−4

10ν
d50

(

√

1 + 0.01
(s−1)gd3

50

18ν
− 1

)

, if 10−4 ≤ d50 ≤ 10−3

1.1
√

(s− 1)gd50, otherwise

6.10

To deal with limitation of the numeri
al s
heme, whi
h 
an arise due to a numeri
al

error and 
an 
reate negative water depths, we spe
i�ed a minimum water depth of 1
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nami
 
alibration �nished.


m in the whole study domain. As the Indus River has an alluvial bed, we spe
i�ed an

erodible layer thi
kness of 100 m. The Manning roughness (n) was 
al
ulated using a

ba
k propagation error method (dis
ussed below).

Based on preliminary results for the morphodynami
 
alibrations, we eventually used

the [161℄ suspended sediment transport formula (Eq. 6.11) with di�erent referen
e eleva-
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tions (Zref) by 
hanging total bed roughness (ks). We also tested di�erent fri
tion angles

and bedform 
orre
tion fa
tors for the sediment transport in the 
alibration pro
ess.

Ceq = 0.015d50 ×
( τ

′

τcr
− 1)0.66

Zref ×D0.3
∗

6.11

Where τcr is 
riti
al shear stress (N/m

2

), D∗ is dimensionless grain diameter, Zref

is referen
e elevation whi
h 
an be 
al
ulated after [161℄ using max(ks
2
; 0.01m), while ks

is total bed roughness (m) and is obtained from hydrodynami
 
al
ulations (Eq. 6.16:

fri
tion 
oe�
ients from hydrodynami
 results) and type of bed-forms (�at, smooth or

ripples bed). The τ
′

is total shear stress (N/m

2

) in
ludes skin fri
tion whi
h 
an be


al
ulated using Eq. 6.12:

τ
′

= µ× τb 6.12

Where τb is total bed shear stress and µ is bed form 
oe�
ient 
al
ulated as follows:

µ =
C

′

f

Cf

6.13

Where Cf is the 
ombined fri
tion of both drag forms and skin fri
tion, and 
an be

obtained from hydrodynami
 results. C
′

f is a fri
tion 
oe�
ient due to skin fri
tion and


an be 
al
ulated as follows:

C
′

f = 2×
( k

log(12×h

k
′

s
)

)2

6.14

Where k is von Karman 
oe�
ient(=0.40), and k
′

s is roughness height and 
an be 
om-

puted as:

k
′

s = αks × d50 6.15

Where αks is a 
alibration 
oe�
ient and d50 mean parti
le diameter (m). Although

the shallowness assumption is 
ompromised due to non hydrostati
 pressure distribution

near the main dam, to model the bed level 
hanges in the dam ponding area on a large

s
ale we assumed that pressure distribution is virtually hydrostati
 [150℄. More details

on morphodynami
 
al
ulations of the SISYPHE model 
an be found [62℄.
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The Manning roughness (n) is used as one of the key parameters for �ow 
alibration.

The hydrodynami
s was 
alibrated using the observed water levels at di�erent lo
ations

along the 72 
ross se
tions from 1983. The morphodynami
s were 
alibrated using the

river bed level 
hanges along these 
ross se
tions from 1985. To 
ompare the measurements

(3,455) in the 
alibration pro
ess we 
reated a 2D surfa
e, to obtain interpolated values

at the measured lo
ations, by interpolating the simulated results using a 2D interpolation

method. Based on the 
omparisons between the simulated and measured values, the

relevant hydrodynami
 and morphodynami
 parameters were updated (Fig. 6.7). For

interpolation we used: (a) linear, (b) nearest point, (
) natural, and (d) 
ubi
 interpolation

methods.

Initially, for hydrodynami
 
alibration a 
onstant hydrauli
 roughness n=0.04 from

the literature [59, 76, 57℄ was used for the whole domain. In su

essive simulations, the

model 
al
ulated n for ea
h node using a ba
kward propagation error method stated in

Eq. 6.16:

ni,node = ni−1,node − ni−1,node × P i−1,node ×K

P i−1,node =
2

1 + e(−2×ηi−1,node)
− 1 where −1 ≤ P ≤ +1

ηi−1,node =
doi−1,node − dsi−1,node

doi−1,node

where i = 2, 3, .., m

6.16

Where m represents numbers of simulations, do represents observed and ds simulated

water depths (m), and η is a dimensionless gradient used to arrive an optimal n. P is

used to avoid over or undershoots of n. K is used to 
urtail signi�
ant 
hanges in n due

to 
ontinuous large gradients η at 
ertain nodes. In subsequent iterations, the roughness

to unmeasured nodes/points was assigned using a 2D linear interpolation method. The

model stops when the di�eren
e between su

essive statisti
al mix (S) is a minimum,

given here:

Si − Si−1 ≤ 0.0001 6.17

Where S is given in equation Eq. 6.9. The 
onvergen
e depends on the sele
tion of an

initial value of n.
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6.3 Results

For the 
omputational grid mesh we used 1983's 
omprehensive dam bathymetri
 sur-

vey. To 
alibrate the TELEMAC 2D model (with an automati
 
alibration algorithm)

we use the hydrologi
al data from 1985. To 
alibrate the SISYPHE model, we used the

bathymetri
 survey from 1985. To validate the morphodynami
 
al
ulations, we use the

bathymetri
 survey from 1990. The simulation results were evaluated using the 
oe�
ient

of determinations (R

2

), observed standard deviation ratio (RSR), and Nash-Sut
li�e Ef-

�
ien
y (NSE). The results are dis
ussed in detail below.

6.3.1 Model 
alibration

Sin
e a better representation of the study domain in the form of a numeri
al mesh plays a

signi�
ant role in subsequent 
al
ulations, we tested di�erent types of mesh sizes to obtain

realisti
 results. Based on di�eren
e between measured and simulated water depths, we


alibrated the hydrodynami
 model by updating Manning roughness (n) for the whole

domain using an automati
 
alibration approa
h mentioned above (Fig. 6.7). The 
al-

ibrated �ow model was used further for 
alibrating and validating morphodynami
s as

well as applying to predi
t (upto 2030) the bed level 
hanges in the reservoir using more

pre
ise sediment load boundary 
onditions re
onstru
ted with a WA-ANN (for WA-ANN

model development please see [4℄). The overall performan
e of the modelling 
on
ept

was assessed using three statisti
al performan
e parameters, i.e. R

2

, RSR, and NSE. The

hydro-morphodynami
 results of the study are des
ribed below.

To obtain the simulated water depths at the measured points, we applied a 2D s
atter

data interpolation method. The method interpolates the surfa
e and returns the inter-

polated values at the desired points (x,y). The surfa
e always passes through the mesh

data points. In our study, we tested four di�erent interpolation methods, namely, (a) lin-

ear, (b) nearest point, (
) natural, and (d) 
ubi
. Due to the smooth river bed along

the 
ross se
tions in the Tarbela Reservoir, a linear interpolation performed better than

the other mentioned methods. Therefore, by using linear interpolation, we 
ompared the

interpolated and measured depths and updated n in the whole study domain using a ba
k

propagation method (Eq. 6.16). The �nal roughness (n) ranged from 0.035 to 0.045 with

a mean of value of 0.0395. The roughness was lower downstream near the dam and in the

middle of the 
hannel, and vi
e versa (Fig. 6.8).
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Initially, using a uniform value of n=0.04, we obtained an absolute average di�eren
e

of 1.6 m between the simulated and measured water depths. However, the di�eren
e

de
reased to only ±1 m after 5 iterations. The mean relative di�eren
e between the

simulated and measured data points was only 0.072%. At some 
ross se
tions we only

have measurements near the river banks, that is why their mean appears lower than

neighbouring 
ross se
tions (Fig. 6.9). Comparison of water depths at some sele
ted 
ross

se
tions is shown in Fig. 6.10.

Water depth 
onvergen
e depends upon an initial estimate of n. Using a single rough-

ness (n=0.04) from the literature [59, 76, 57℄ for the whole domain of 171 km

2

, initially

we obtained a statisti
al mix (S)=0.933, R

2

=0.90, and NSE=0.898 (Fig. 6.11). The per-

forman
e of the model in
reased to a statisti
al mix=0.978, R

2

=0.969, and NSE=0.966

by iterating n for ea
h node point as per Eq. 6.16 and the pro
ess stated in Fig. 6.7. The

approximated 
omputational time in ea
h simulation was 12-15 hours using a server with

20 physi
al 
ores (dual Intel XEON E5-2687W v3 � 3.1 GHz) and 128 GB of RAM. Due

to the large standard deviation (33.9 m) and small RMSE (0.0988) in the water depths,

the observation standard deviation ratio (Eq. 6.7) remained in the range of 10

-3

in all �ve

simulations.

Further, we used the 
alibrated �ow model for morphodynami
 
alibration and vali-

dation. As 90% of the sediment load (SL) entering the dam 
onsists of suspended load

[67, 4℄, we omitted bed load from the modelling pro
ess. For SL 
on
entration, we used

[161℄ formula (Eq. 6.11). The bed roughness was updated using a skin 
orre
tion fa
tor

in the formula. The 
alibrated 
oe�
ient αks=3 (Eq. 6.15) provided the best results.

By varying di�erent parameters (su
h as referen
e elevation, total roughness, et
.),

we 
ondu
ted a number of di�erent simulations until a good agreement between the
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Figure 6.10: Comparison between measured (
ir
les) and simulated water depths at se-

le
ted 
ross se
tions (R/line) for 1983' event. Measurements starts from orographi
ally

left side of the reservoir.

measured and simulated result was found as presented in Tab. 6.4. We also updated the

TELEMAC/SISYPHE 2D 
ode for all fra
tions of suspended SL boundary 
onditions. In

addition, the negative depth whi
h arose due to numeri
al error was solved by spe
ifying a

minimum water depth of 1 
m in the whole study domain. However, this overall minimum

water depth 
aused an ex
essive 
lay deposition due to its very low settling velo
ity=

2×10-5 m/s at some nodes on high river banks. We solved this issue by spe
ifying no SL
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transport at equal or less than 1 
m water depth. Our �nal simulated results from May

1984 to O
tober 1985 showed R

2

=0.97, RSR=0.36%, and NSE=0.96 (Fig. 6.12). There

was only 0.76% di�eren
e between the simulated and measured deposits in the reservoir.

However, the mean di�eren
es between the simulated and observed river bed was in the

range of −5 to 7 m.

Fig. 6.12 
ompared the mean 
omputed and observed river bed along the river rea
h.

The disagreement between measured and simulated results at some 
ross se
tions lo
ated

in the upstream part of the river may be 
aused by large distan
e between the mea-

sured 
ross se
tions in this part of the river, distorting the in-between initial geometri


information (see Fig. 6.4).

There was also a good agreement between ea
h measurement along the 
ross se
tions in

the ponding area (Fig. 6.13), where the Tarbela Reservoir has a sediment delta (Fig. 6.2).

The approximated 
omputational time in ea
h simulation from 1983-1985 for only high

�ows (Mar
h to September - Tab. 6.3) was one week. After 
alibrating the model, we

used the 1985 simulated river bed for the validation pro
ess.

6.3.2 Model validation

We validated the model using the sedimentation survey 
ondu
ted in 1990, whi
h (in
lud-

ing 
ross se
tion (R/line) 62) has 3,600 measured points of the river bed elevation along

73 
ross se
tions. For validation, we ran the model for the �ve years (1986-1990) and
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Table 6.4: Formulae and value of di�erent hydro-morphodynami
 parameters (stated in

Eq. 6.10 to 6.16) used in the 
alibration pro
ess.

Parameter Value/methods

Hydrodynami
s

Numeri
al s
heme Centred semi impli
it s
heme plus SUPG

Solver for hydrodynami
 propagation step Generalized minimum residual method

Equations Saint-Venant �nite element

Hydrodynami
 
alibration fa
tor (K) 1.0

Manning roughness (n) 0.035-0.045

Mean Manning roughness (n) 0.0395

TELEMAC and SISYPHE model 
oupling Internal

Morphodynami
s

Bed porosity (p′) 0.375

Fluids vis
osity (ν) 1× 10−6

Suspended sediment transport formula [161℄

Calibration 
oe�
ient (αks) 3

von Karman 
oe�
ient (k) 0.40

Shields parameter 0.047

Fri
tion angle of sediment (φs) 32

Minimum depth required for sediment transport 1 
m

Formula for deviation [163℄

Parameter for deviation (β2) [163℄ 0.85

Stream wise slope e�e
t (β) 1.3

Solver for suspension Conjugate gradient

Criti
al evolution ratio 0.5

Numeri
al treatment of the adve
tion term Edge-based N-s
heme


ompared the measured and simulated river bed elevations. The statisti
al 
omparison

showed R

2

=0.96, RSR=0.37%, and NSE=0.95, whereas the di�eren
e between the mea-

sured and simulated deposits was only 0.54%. Similar to the morphodynami
 
alibration,

the mean di�eren
es between the simulated and observed river bed were in the range of

−5 to 7 m (Fig. 6.14).

As with the longitudinal pro�le in the 
alibration pro
ess, we obtained good results

for the ponding area (Fig. 6.14). However, there were also disagreements between the

measured and simulated results at some 
ross se
tions lo
ated upstream of the ponding

area. In 
onformity with the 
alibration results, the model provided the results 
losed

to river bed elevations measured along the 
ross se
tions in the ponding area (Fig. 6.15).

The approximated 
omputational time in ea
h simulation from 1983-1990 for only high

�ows (Mar
h to September - Tab. 6.3) was three weeks.
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left side of the reservoir.

6.3.3 Model appli
ation

Sin
e the people, e
onomy and agri
ulture of the Pakistan rely heavily on the water supply

from the Tarbela Reservoir, the 
urrent and future state of river dis
harges and 
orre-
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sponding water storages are a matter of high politi
al sensitivity due to 
limate 
hange

[164℄. The politi
al tensions over water availability are further exa
erbated by existing

dwindling and planned storages. Hen
e, to evaluate the e�e
t of sediment transport vari-

ability on the reservoir sedimentation and water storage, we applied a future dis
harge

series for (2016-2030) 
al
ulated by [24℄ and 
orresponding SSLs estimated using WA-

ANN [3, 4℄ (Fig. 6.16). The reservoir water levels from 2016-2030 were kept same as

2000-2015. The near future s
enarios of WA-ANN estimated sediment load suggest a

substantial de
rease (20 million tons (Mt)) 
aused by drop in the gla
ier melt and one

month delay in peak of �ows and overall redu
tion in water availability. The mean an-

nual sediment load (SL) from 1969-2008 was 160 Mt with a mean annual dis
harge of 76

billion m

3

[4℄. However, the mean SL from 2000-2008 was de
rease to 146 Mt/yr with a

mean dis
harge of 75 billion m

3

/yr. Near future proje
tions from 2010-2030 also suggests

a further de
rease to 120 Mt/yr with a mean dis
harge of 75 billion m

3

/yr. These dis-

proportional spatio-temporal trends between SL and dis
harges are primarily 
aused by

intra-annual shifts in �ow dis
harges from summer to the winter under the in�uen
e of

warmer 
limates [24, 4℄. Our modelling results also showed a stability in sediment delta

development due to an average 17% de
rease in sediment supply in near future (Fig. 6.17).

Although, the overall water availability is expe
ted to slightly de
rease in the future, the

signi�
ant de
rease in sediment load 
an help to store more water for multi-purpose use

(irrigation, hydropower, et
.) and was likely to in
rease the life span of the reservoirs.
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ted �ow dis
harge and sediment load at the Tarbela dam
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6.4 Dis
ussion

The automati
 hydrodynami
 
alibration algorithm for the Tarbela dam improved the

model performan
e fromR

2

=0.90 and NSE=0.898 to R

2

=0.969, and NSE=0.966 (Fig. 6.11).

In addition, more pre
ise sediment load (SL) boundary 
onditions obtained using the

wavelet arti�
ial neural network (WA-ANN) 
alibrated the model with R

2

=0.97 and

NSE=0.96 (Fig. 6.12). The model validated the results by predi
ting the reservoir bed

for �ve years (1986-1990) with R

2

=0.96 and NSE=0.95 (Fig. 6.14). Although the over-

all statisti
al performan
e of the model was good, it also over-predi
ted the river bed

(0.76%) in the 
alibration pro
ess, parti
ularly upstream of the ponding area (Fig. 6.12).

However, the over-predi
tions were redu
ed to an average 0.54% in the validation pro
ess

(Fig. 6.14). The 
al
ulations for bed level 
hanges in the ponding area, parti
ularly for

the sediment delta, were 
lose to the measurements in both the 
alibration and validation

pro
esses (Fig. 6.13 and 6.15). In addition, our modelling also shows a stability in the

sediment delta development due to signi�
ant de
rease (17%) in near future sediment

load entering the reservoir (Fig. 6.16 and 6.17).

The ba
k propagation method has been su

essfully used in the training of arti�
ial

neural networks for hydro-sedimentologi
al studies [165, 105℄. Using the same method

along with a 2D linear interpolation during 
alibration pro
ess, we were able to update

and interpolate the Manning roughness (n) for ea
h node of the mesh. To a
hieve this,
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the TELEMAC model passed the hydrodynami
 information (water depths) to Matlab,

whi
h was 
ompared with the observations in the form of matri
es (Fig. 6.7). The di�er-

en
e was used to update n for the whole mesh using the linear interpolation method. The

overall set-up not only redu
ed the 
omputational e�ort but also saved 
omputational

time by using 
al
ulations in a more systemati
 way. Therefore, we were able to redu
e

the di�eren
e between predi
tions and measurements in only �ve iterations (Fig. 6.11)

by employing the stopping 
riteria de�ned in Eq. 6.17, i.e. the di�eren
e between su

es-

sive statisti
al mix (S) should be equal or less than 0.0001. The fast 
onvergen
e with

the minimum possible number of iterations not only saved 
omputational e�ort but also

provided us with an opportunity to 
urtail 
ir
ular error in subsequent morphodynami



al
ulations. Fast 
onvergen
e within minimum possible iterations is always required

where large water bodies su
h as the Tarbela Reservoir (having hundreds of thousands

of mesh nodes) are being simulated, whi
h requires huge 
omputational e�ort. Although

the bed roughness has 
omparatively less in�uen
e in high water depths su
h as in the

Tarbela (water depth approx. 100 m), the automati
 
alibration algorithm 
an also be

used e�e
tively in low water depth 
hannels/rivers, where the in�uen
e of roughness on

hydrodynami
 parameters is high.

The more pre
ise SL boundary 
onditions also improved the subsequent performan
e

of SISYPHE 
al
ulations for bed level 
hanges. In parti
ular, the bed level 
hanges in

the ponding area, whi
h 
ontained the sediment delta. As the sediment delta progresses

downstream towards the main dam, a pre
ise representation of the delta in the modelling

pro
ess 
an provide a better understanding of the impa
t of di�erent management options

ne
essary to preserve the fun
tionality of the dam. In addition, the 
alibration period

(1984-1985), whi
h represents both dry and wet hydro-sedimentologi
al events, favoured

good 
alibration. Consequently, during the testing/validation period (1986-1990), whi
h

also 
ontains the se
ond highest �ow and SL year (from 1969-2008), the model performed

well. Therefore, the representativeness of the data sets used for 
alibration and validation

should be 
onsidered, be
ause when the model is 
alibrated with a data set that represents

the 
hara
teristi
s of the hydro-sedimentologi
al patterns will a
hieve good mat
hing.

Although in terms of 
al
ulating total roughness using the [161℄ formula (Eq. 6.11)

the automati
 hydrodynami
 
alibration has improved the morphodynami
 
al
ulations

by spe
ifying the roughness for ea
h mesh node, the main fa
tors that in�uen
e reser-

voir sedimentation are: (a) in�ow of both dis
harges and SLs, (b) parti
le size distribu-

tion of sediments, (
) spe
i�
 weight of sediment deposits, (d) geometry of the reservoir,

and (e) reservoir operation rules [64℄. The in�uen
e of these fa
tors may vary prior to
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river and lo
ational 
hara
teristi
s. Despite the fa
t that all these fa
tors are to some

extent un
ertain, and also 
ause un
ertainty in the model out
ome, the in�ow dis
harges

and SLs are the most important fa
tors 
ontributing to the variation of a

umulating

sediments in the reservoirs [166℄. Measurements taken twi
e daily su

essfully redu
ed

the un
ertainties in in�ow dis
harge at Besham Qila. However, o

asional/non-daily SSC

sampling still 
ontributed to variation in a

umulating sediments in the Tarbela Reser-

voir, parti
ularly when the o

asional measurements were transferred on a daily time

s
ale using 
onventional sediment rating 
urves. In a re
ent study, [59℄ modelled the

Tarbela's delta using a 1D HEC-6 model. There was an average variation of 20 m (just

in one year) between the observed and simulated river bed at some 
ross se
tions (dur-

ing validation) in the dam ponding area. This variation 
ould relate to un
ertainty in

sediment load (SL) boundary 
onditions, whi
h were estimated using a sediment rating


urve (SRC). The SRC has limited a

ura
y sin
e it does not adjust 
omplex sediment

transport pro
esses related to hysteresis phenomena and temporary sediment storage in

the Upper Indus River [4℄. For example, the mean deviation between the predi
ted SL

using SRC and the measurements 
ondu
ted for the Tarbela over a period of 26 years

was as high as approximately 40%. However, using SL boundary 
onditions, estimated

using the WA-ANN model, the variation was redu
ed to a range of −5 to 7 m (using

TELEMAC/SISYPHE 2D model for 7 years) in the same domain (Fig. 6.12 and 6.14). In

another study [151℄ used a TELEMAC 2D model to assess the impa
t of sediment distri-

bution on the life of the Hirakud reservoir in India. The model slightly overestimated the

deposits at the inlet due to sudden expansion of inlets, whi
h redu
ed the water velo
ities,

turbulen
es and shear stresses, and 
aused a delta there. However, with NSE=0.51-0.77,

the model reasonably represented the overall 
hanges in the bathymetry of the reservoir

using daily measured sediment 
on
entrations as SL boundary 
onditions. Therefore, the

more pre
ise modelling of reservoir sedimentation signi�
antly depends on the quality of

the input parameters and representation of geometry in the form of a numeri
al mesh.

The use of a 2D model not only helps to design 
orre
t reservoir operation rules for the

�ushing of sediments but also 
ontributes to diminishing 
ir
ular error, parti
ularly in the

presen
e of 
omplex topography, where 2D models 
an provide more a

urate predi
tions

in detail.

Interestingly a slight de
rease in near future dis
harges 
aused by delaying gla
ier melt

[24℄ are stabilizing the sediment delta by de
reasing sediment supply to the Indus River

at Tarbela dam (Fig. 6.16 and 6.17). Compared to an initial estimates by [11℄ of 480

million tons/year (Mt/yr) or by [12℄ of 400 Mt/yr at the time of Tarbela's 
onstru
tion,

the sediment load in 2020 to 2030 will remain only at 120 Mt/yr. This is mainly 
aused
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by a desyn
hronization between the gla
ier melt (major sour
e of the �ow dis
harges)

and monsoon rain, whi
h will result in a subsequent de
rease in peaks �ows and 
ause

to redu
ed sediment transport due to de
rease in e�e
tive dis
harges - the most e�e
tive

dis
harge is de�ned as a midpoint of the range of �ows, whi
h over a 
ertain period


an transport a 
onsiderable proportion of the SSL [140℄. Although, 
urrent �ndings


ontradi
t the previous 
laims of high reservoir sedimentation due to 
limate 
hange

[52, 167℄, the desyn
hronization has a positive e�e
t on the life span and higher storage


apa
ities of planned hydrauli
 stru
tures on the Indus River. Additionally, the drop

in short future sediment loads also negates the previous reservoir sedimentation studies,

whi
h simply used the past hydro-meteorologi
al data without modi�
ation to the future

predi
tions, parti
ularly for the hydropower proje
ts planned in the Indus River/Basin

[6, 58, 15, 1, 59℄.

Despite the fa
t that the SISYPHE predi
tions for bed level 
hanges in the Tarbela

Reservoir are 
lose to our measurements, omission of low �ow/SL months from O
tober

to April (Tab. 6.3), when reservoir water levels are redu
ed to minimum level (Fig. 6.3),

might have a�e
ted trap e�
ien
y 
al
ulations and 
aused a 0.5-0.8% over-predi
tion.

However, to 
ompute seven years (1983-1990, only high �ows and SLs) of reservoir sed-

imentation required a three week simulation time using a server with 20 physi
al 
ores

(dual Intel XEON E5-2687W v3 � 3.1 GHz) and 128 GB of RAM. To save 
omputational

time and assess the e�e
ts of only signi�
ant SL 
ontributing periods, we de
ided to omit

the low �ow months from the modelling pro
ess.

The overall modelling approa
h 
an be used for better design of planned hydrauli


stru
tures and existing ones in the Indus Basin, parti
ularly in the Upper Indus Basin,

where the Tarbela dam is used as a standard/referen
e point for reservoir sedimentation

studies of 30,000 MW planned hydrauli
 stru
tures. In the absen
e of any hydrauli
 stru
-

ture or land use 
hanges in the Upper Indus River/Basin, there are statisti
ally signi�
ant

trends in dis
harges and SLs. Our 
as
ade modelling approa
h using future SL 
an also be

used to improve sediment management strategies and update reservoir operation rules for

hydrauli
 stru
tures. The SL boundary 
onditions for predi
tions 
an be estimated using

WA-ANN models and future dis
harges. A 
oupling of the TELEMAC/SISYPHE model

with a 1D model 
an redu
e 
omputation time, whi
h 
ould be useful for longer-range

predi
tions.
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6.5 Con
lusions

In this paper the un
ertainty fa
tor related to sediment load (SL) boundary 
onditions

were diminished using WA-ANN and TELEMAC-SISYPHE models, respe
tively. The

�ow model was 
alibrated using an automati
 
alibration algorithm along with more

pre
ise suspended SL boundary 
onditions. To predi
t the sediment delta movement in

the ponding area, a hydrologi
al and WA-ANN models were used to obtain the future

dis
harge and 
orresponding sediment load boundary 
onditions. Based on the study

results, we 
an draw the following main 
on
lusions:

� More a

urate WA-ANN estimated sediment load boundary 
onditions whi
h better

represent the hysteresis phenomenon and hydrologi
al variations for the Indus River

enabled the su

essive morphodynami
 model to a

urately predi
t the bed level


hanges in the Tarbela dam.

� Automati
ally 
alibrating hydrodynami
s improved the overall statisti
al perfor-

man
e and redu
ed the 
al
ulation time for long-term simulations. In addition,

spe
ifying the bed roughness for ea
h mesh node using the ba
k propagation error

method subsequently enhan
ed the performan
e of morphodynami
 
al
ulations by

providing better hydrodynami
 variables and total bed roughness for the 
al
ulation

of sediment erosion, transport and deposit in the �ow area.

� The desyn
hronization between gla
ier melt and monsoon rainfall due to warmer


limate will also 
ause a signi�
ant de
rease in future sediment loads and subsequent

delta development. Therefore, past hydro-meteorologi
al data (showing higher sed-

iment loads) 
annot be used without modi�
ation when making future predi
tions,

parti
ularly for the hydropower proje
ts planned at the Indus River/Basin.

On the basis of these 
on
lusions we would make the following re
ommendations:

� The presented modelling 
on
ept 
an be used to improve/design sediment manage-

ment strategies for the existing and planned hydrauli
 stru
tures in other un-gauged

or poorly-gauged rivers.

� Although the e�e
t of the bed roughness on the water depths in large dams is not

always dominant, the 
on
ept of an automati
 hydrodynami
 
alibration 
an also

be used for other water bodies where roughness has a signi�
ant in�uen
e on water

depths.
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� In order to redu
e 
omputational time for long term morphodynami
 predi
tions,


oupling of the TELEMAC 2D model with a 1D model/ANN is re
ommended.

Notation

The following symbols are used in this paper:

ADCP A
ousti
 Doppler Current Pro�ler

BCM billion 
ubi
 meter

cb sediment 
on
entration in bed load layer

Ceq equilibrium near-bed 
on
entration

Cf roughness 
oe�
ient

C
′

f 
ombined fri
tion of both drag forms and skin fri
tion

d50 mean diameter

D∗ dimensionless grain diameter

do observed water depth

ds simulated water depth

g gravitational a

eleration

h water depth

HEC-RAS Hydrologi
 Engineering Center-River Analysis System

k von Karman 
oe�
ient

km kilometre

ks bed roughness

k
′

s roughness height

masl mean above sea level

Mt million ton

MW megawatt

n Manning roughness
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NSE Nash-Sut
li�e E�
ien
y

p′ bed porosity

ppm part per million

qt,x and qt,y total sediment transport in x and y dire
tion

R

2


oe�
ient of determination

R/line range lines or 
ross se
tion

RESSASS Reservoir Survey Analysis and Sedimentation Simulation

RSR observations standard deviation ratio

RWL reservoir water level

S statisti
al mix

SL sediment load

SRC sediment rating 
urve

SSL suspended sediment load

SSC suspended sediment 
on
entration

SUPG Streamline-Upwinded Petrov-Galerkin

t time

u, v depth-averaged �ow velo
ity 
omponents in x and y dire
tion

µ mi
ro

ρ density

τxx and τyy depth-averaged turbulent stresses

δb bedload layer thi
kness

η′e erosion rate

η′d deposition rate

Xobs
i observed parameter

Xsim
i simulated parameter

τ
′

shear stress due to skin fri
tion

τcr 
riti
al shear stress
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τb total bed shear stress

µ bed form 
oe�
ient

αks 
alibration 
oe�
ient

UIB Upper Indus Basin

Ws settling velo
ity

WA-ANN wavelet arti�
ial neural network

WAPDA Water and Power Development Authority

yr year

Zb bed elevation

Zref referen
e elevation

Zs free surfa
e elevation
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Chapter 7

Con
lusion and Re
ommendations

7.1 Con
lusions

The present study was designed in the 
ontext of numeri
al modelling of sediment man-

agement studies in Pakistani reservoirs. The study used more a

urate sediment load

boundary 
onditions with an automati
 
alibration algorithm whi
h spe
ify bed rough-

ness for ea
h mesh node and subsequently enhan
e the performan
e of morphodynami



al
ulations by providing better hydrodynami
 variables and total bed roughness for the


al
ulations of sediment erosion, transport and deposit in the �ow area. Five di�erent


ases were do
umented with di�erent types of sediment load estimation methods and

boundary 
onditions. The 
on
lusions drawn from this study are summarized in the

following points.

� Estimation of sediment load deposits of Dasu Hydropower Proje
t

To obtain a sediment deposition pro�le with pressure or free �ow �ushing in the reservoir,

a 1D numeri
al model 
an be used in pre-feasibility studies.

� Re
onstru
tion of missing sediment load

WA-ANN 
an a

urately predi
t the sediment load time series with a temporal variation

of more than one level for the Indus River. The new estimate of only 160 million tons

per year for the Tarbela dam is 
lose to the real time �eld measurements. In addition,

the new estimate is lower than the published estimates, whi
h 
an be attributed to the

substantial sediment storage in the relatively �at Tibetan Plateau and the Indus River

Valley between the Partab Bridge and Besham Qila gauge stations.
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� Sediment load trends

The WA-ANN sediment load along with the innovative trend test, the Mann-Kendall test,

Sen's slope estimator, the 
hange point dete
tion test and linear regressions have shown a

shifting trend from the summer to the spring and winter months due to a 
hange in water

availability at the Upper Indus River over the past 50 years. The spatio-temporal trends

between �ow dis
harges and SSLs are disproportionate. This disproportional behaviour

and the signi�
ant trends strongly dis
on�rm the hypothesis that future in�ows and SSLs

are similar to the previous ones for reservoir sedimentation studies for the Upper Indus

River.

� TELEMAC 2D model

The well 
alibrated TELEMAC 2D model using more a

urate sediment load boundary


onditions (obtained using WA-ANN) enabled the su

essive morphodynami
 model to

a

urately predi
t the bed level 
hanges under a 
limate 
hanging s
enario in the Tarbela

dam. The Climate 
hange has been a�e
ting existing reservoirs on the Indus River due to


hanges in boundary 
onditions, su
h as modi�ed �ow regimes, 
hanged sediment loads,

and natural hazards. Therefore, a proje
ted desyn
hronization between gla
ier melt and

monsoon rainfall 
an 
ause a signi�
ant de
rease in future sediment loads due to 
hange

in most e�e
tive dis
harges.

7.2 Re
ommendation for further resear
h

Modelling of sediment transport using TELEMAC 2D model is highly 
hallenging and

the following issues need further work:

� Redu
tion in 
omputational time

Although the bed level predi
tions using TELEMAC model were 
lose to the real time

measurements, to 
ompute seven year (1983-1990, only high �ows and SLs) reservoir

sedimentation required three weeks simulation time using a server with 20 physi
al 
ores

(dual Intel XEON E5-2687W v3 � 3.1 GHz) and 128 GB of RAM. Therefore, to redu
e


omputational time for morphodynami
 predi
tions, 
oupling of TELEMAC 2D model

with a 1D model/ANN is re
ommended.
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� Predi
tion of reservoir sedimentation and sediment delta

Sin
e there are neither hydrauli
 stru
tures at the Upper Indus River/Basin, nor land use


hanges that will 
hange the situation, future sediment loads 
an be estimated with WA-

ANN based on future long term dis
harge of hydrologi
al models. Using these modi�ed

sediment load boundary 
onditions for reservoir sedimentation 
an improve the overall

quality of hydrauli
 designs and the lifespan of reservoirs in the study area - in parti
ular,

the modelling of the movement of the sediment delta in the Tarbela dam.

� Data availability

2D modelling requires additional data of di�erent parameters 
ompared to 1D for 
ali-

bration and validation pro
esses. The data of these parameters is normally assumed or

obtained using laboratory experiments. Therefore, the 2D modelling is still restri
ted to

resear
h institutions. Therefore, it is 
hallenging to rely only on the out
ome of WA-

ANN re
onstru
ted boundary 
onditions with 2D modelling. However, to implement

the 
hangeover to in
rease hydropower share in total energy mix and en
ounter 
limate


hanges, using state-of-the-art modelling (2D or 3D) will en
ourage data 
olle
tion agen-


ies to install new instruments for 
olle
ting more detailed data. This will not only provide

an opportunity to the resear
her to use a
tual �eld data in future but also bridge the gap

between resear
h and pra
ti
e.
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.1 Supplementary material

Table S1: Statisti
al parameters of annual linear and quadrati
 trends of re
onstru
ted

SSLs and observed dis
harges for the Besham Qila and the Partab Bridge sites. Note: Q

s

is annual SSL in Mt, Q is annual �ow volume in BCM for Besham Qila (1969 ≤ y ≤ 2008)
and Partab Bridge (1962 ≤ y ≤ 2008).

Trend Besham Qila Partab Bridge

Equation R

2

Equation R

2

SSL linear Qs = −0.315097y + 786 0.0087 Qs = 0.555835y − 932 0.0148

SSL quadrati
 Qs = −0.029615y2+117.465y−116, 312 0.0169 Qs = 0.131748y2 − 522.485y + 518, 161 0.1368

Flow linear Q = 0.075016y − 72 0.0082 Q = 0.155112y − 251 0.0863

Flow quadrati
 Q = −0.006747y2 + 26.908y − 26, 750 0.0153 Q = 0.002850y2 − 11.158y + 10, 976 0.0906
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Figure S1: Comparison between the mass of suspended sediment sampled daily and 
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puted results using WA-ANN models., (legends for Fig. S1b also apply for Fig. S1a).
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Figure S2: Mean monthly linear and quadrati
 trends in SSLs and dis
harges at Besham

Qila site from 1969-2008.
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Figure S3: Mean monthly linear and quadrati
 trends in SSLs and dis
harges at Partab

Bridge site from 1962-2008.
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