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Abstract— Autonomous vehicles face the challenge of pro-
viding safe transportation while efficiently maneuvering in an
uncertain environment. Considering surrounding vehicles, two
types of uncertainties occur: multiple future maneuvers are
possible, and within these maneuvers the vehicle can vary
from the predicted ideal maneuver path. Focusing on only one
of these uncertainties can either lead to neglecting potential
risks or result in overly conservative motion planning. Here,
we suggest a Stochastic Model Predictive Control strategy that
tackles the possibility of multiple future maneuvers of sur-
rounding vehicles, while also considering uncertainty within the
execution of these predicted maneuvers. The proposed control
method is a combination of Scenario Model Predictive Control
to cope with multiple predicted maneuvers of other vehicles, and
Stochastic Model Predictive Control using chance-constraints
to take into account vehicle deviations from the predicted
maneuver trajectories of the respective maneuver. Adjustable
risk parameters permit a violation of safety constraints up to
a desired probability, allowing a trade-off between risk and
performance. A simulation of a two-lane scenario demonstrates
the effectiveness of our method.

I. INTRODUCTION

The past decade has seen an increasing interest in au-
tonomous driving. Highway and urban traffic will remain
at the center of attention for researchers working on au-
tonomous vehicles, advancing safe and efficient transporta-
tion.

Autonomous driving requires dealing with environments
that contain uncertainties, i.e., imperfect knowledge about
current and future states of the controlled and surrounding
vehicles. Among these uncertainties are sensor inaccuracy
as well as vehicle maneuvers. Assuming that sensing will
improve due to advances in technology, a major control
challenge is to not necessarily only handle uncertainty in
the state of the ego vehicle, i.e., the controlled vehicle, but
effectively handle uncertainty in the predicted future motion
of surrounding vehicles. There are two types of uncertainties
when regarding other vehicles. First, vehicles can execute
one of multiple possible maneuvers in the future, which is
unknown to the controlled vehicle beforehand. Second, the
precise execution of a future maneuver cannot be predicted
with perfect accuracy, leading to trajectory uncertainty for
each of the predicted possible maneuvers. Nevertheless,
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ensuring complete safety for all possible uncertainties dras-
tically limits the performance of the autonomous vehicle. It
is therefore necessary to find a reasonable trade-off between
safety and efficiency.

In this paper we propose a combined Stochastic and Sce-
nario Model Predictive Control (MPC) method, S+SC MPC,
for trajectory planning that considers future motion of other
vehicles, denoted as target vehicles in the following. In order
to obtain an accurate prediction of target vehicle motion, we
suggest predicting possible future target vehicle maneuvers,
while at the same time including uncertainty in the maneuver
execution. Adjustable risk parameters provide the possibility
of weighting performance against safety.

MPC has proved to be effective for autonomous driving
[1]–[3]. In MPC an optimal control problem for a finite
horizon is repeatedly solved at each time step, while only
the first input is applied to the system.

Recent advances in Stochastic Model Predictive Control
(SMPC) and Scenario Model Predictive Control (SCMPC)
are presented in [4], [5]. Multiple works focus on a trade-off
between risk and conservativeness in autonomous driving.
SMPC is used in [6] to find a trade-off between comfort
and tracking quality in an autonomous driving example
with fixed obstacles, while [7] focuses on lane keeping of
semi-autonomous driving using the unscented transformation
method to propagate the disturbance more precisely. In [8]
an Interacting Multiple Model Kalman Filter is used to
predict future positions of target vehicles. The predicted
maneuver with the highest probability is then used to solve
a chance-constrained MPC problem. In [9] a multipolicy
decision-making algorithm is presented, which recursively
chooses policies from a preselected set of possible policies,
assuming that other traffic participants will perform the most
likely of multiple possible policies in the future. SCMPC
is applied in [10], [11] to plan lane change maneuvers for
the controlled ego vehicle by sampling possible future target
vehicle trajectories. Feasibility is ensured by assuming that
it is always possible to abort the lane change maneuver.

However, to predict future target vehicle motion accu-
rately, the number of samples necessary for SCMPC might
be too high to be reasonable for an optimization problem.
Yet, it is imprecise to predict target vehicle motion by only
considering the most probable maneuver. Here, we tackle
this issue by combining an SMPC method [12], [13] with an
SCMPC approach [14], [15].

We use SCMPC to consider possible target vehicle maneu-



vers. Samples of potential future target vehicle maneuvers
are drawn according to the likelihood of each maneuver. A
maneuver risk parameter is used to determine the necessary
number of samples to keep the probability of a constraint
violation below a specified level. If more samples are drawn,
it is more likely that a maneuver that could cause a collision
in the future is included in the prediction and then accounted
for in the planning of the vehicle trajectory.

The SCMPC approach is combined with an SMPC
method, using chance-constraints, to account for uncertainty
in the predicted target vehicle trajectory for each of the
predicted maneuvers. Assuming that the predicted target
vehicle maneuver trajectory is not perfectly accurate, the
SMPC method ensures that the probability of violating safety
constraints due to this inaccuracy is below a specified value.

In summary, the contribution of this work is a combination
of an SMPC method and SCMPC. This S+SC MPC approach
accurately considers future behavior of target vehicles to
plan trajectories and ensures that the risk of violating safety
constraints remains below a desired level. Future target
vehicle motion is accounted for by first predicting possible
target vehicle maneuvers and then considering uncertainty
within the target vehicle maneuver execution. This reduces
both the necessary samples drawn for SCMPC and also
the prediction error of the target vehicle motion for SMPC
as only errors within a predicted maneuver need to be
considered. The prediction error for SMPC does not need
to cover maneuver uncertainty as this is accounted for by
SCMPC. This yields an accurate target vehicle prediction
while limiting the conservativeness of the estimation.

This paper begins with introducing the vehicle models
and safety constraints in Sec. II. The S+SC MPC method is
derived in Sec. III. The simulation, results, and a discussion
are presented in Sec. IV, whereas concluding remarks follow
in Sec. V.

II. MODELING

A. Vehicle Models

Two vehicle models are considered. The controlled vehicle
will be denoted as the ego vehicle (EV) and surrounding
vehicles are referred to as target vehicles (TVs). The TV
model is used by the EV to predict future TV states. A
linear, discrete point-mass model describes the dynamics of
all vehicles. However, an uncertainty term is added to the TV
model, which considers that the EV is unable to perfectly
predict future TV states.

The dynamics of the EV are given by

ξEV
k+1 = AξEV

k +BuEV
k , (1)

where ξEV
k = [xEV

k , vEV
x,k, y

EV
k , vEV

y,k]> and uEV
k = [uEV

x,k, u
EV
y,k]>

are the EV state and input at time step k, respectively, with
the longitudinal position, velocity, and acceleration input
xEV
k , vEV

x,k, and uEV
x,k and the lateral position, velocity, and

acceleration input yEV
k , vEV

y,k, and uEV
y,k. The system matrices

are

A =


1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 , B =


0.5(∆t)2 0

∆t 0
0 0.5(∆t)2

0 ∆t


(2)

with sampling time ∆t.
For the TV we now consider uncertainty in future states

using the continuous random variable wTV
k and the diagonal

matrix G = diag(g1, g2, g3, g4). This results in the TV model

ξTV
k+1 = AξTV

k +BuTV
k +GwTV

k (3)

with the TV state ξTV
k = [xTV

k , vTV
x,k, y

TV
k , vTV

y,k]> similar to
(1) and the stabilizing feedback controller

uTV
k = K

(
ξTV
k − ξTV

k,ref

)
, (4a)

K =

[
0 k12 0 0
0 0 k21 k22

]
. (4b)

In the following we will omit the index EV for the EV states
and inputs.

Assumption 1. The vehicle models (1) and (3) describe
exact EV and TV models, respectively.

Assumption 2. The TV model used by the EV to predict
future TV states coincides with the actual TV model, i.e., the
EV has perfect knowledge of A, B, G, K, and ξTV

k,ref .

B. Target Vehicle Prediction and Safety Constraint

Two types of TV uncertainty are focused on for colli-
sion avoidance. First, possible TV maneuvers are predicted
and then uncertainty within each predicted TV maneuver
is considered as varying executions of the maneuvers are
possible. This approach has the advantage that only small
TV state deviations for each predicted maneuver need to
be considered, instead of having to model and predict large
future TV state deviations from the current TV state to
account for all possible future TV maneuvers. The following
will first address uncertainty in one maneuver and then focus
on multiple possible maneuvers combined with maneuver
execution uncertainty.

It is necessary to define a region around the TV that is
considered unsafe for the EV, i.e, collision free motion is
only ensured outside the restricted area. This is the safety
constraint and is modeled by an ellipse around the TV given
by

dk =
(∆xk)2

a2
+

(∆yk)2

b2
− 1 ≥ 0, (5)

which is used to prevent the EV from entering an ellipse
with the TV as its center, as shown in Fig. 1. The safety
constraint is satisfied if dk ≥ 0 and violated if dk < 0. The
longitudinal and lateral distance between the EV and TV are[

∆xk
∆yk

]
=

[
xEV
k − x̂TV

k

yEV
k − ŷTV

k

]
, (6)

using the EV state and the TV state prediction
ξ̂TV
k = [x̂TV

k , v̂TV
x,k, ŷ

TV
k , v̂TV

y,k]>. The ellipse semi-major and
semi-minor axes are a and b, respectively.
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Fig. 1. Illustration of the safety constraint ellipse around the TV. The gray
area is the constrained area. The TV is not drawn to scale.

Remark 1. An ellipse is used as the safety area around
the TV to ensure that the constrained area is convex. Other
convex shapes different than the proposed ellipse are possi-
ble [8].

Remark 2. The safety constraint ellipse around the TV can
be chosen larger than the actual vehicle shape, i.e., slight
violations of the safety constraint do not necessarily result
in a collision.

After having addressed uncertainty in the predicted TV
state, it is now considered that in addition the planned TV
maneuver is uncertain.

Assumption 3. There are two lanes and two possible TV
maneuvers: lane keeping (LK) and lane changing (LC) with
the respective probabilities pLK and pLC = 1− pLK.

At every time step the EV predicts the TV maneuvers over
a finite prediction horizon. Two TV maneuvers that start at
the beginning of the prediction are considered. The TV is
predicted to stay in its lane with probability p = pLK. With
probability p = pLC the EV expects that the TV will start
a LC maneuver immediately, resulting in an altered lateral
reference position yTV

k+1,ref . For the prediction horizon the TV
is then expected to continue the initially chosen maneuver
yTV
k+i,ref = yTV

k+1,ref , i.e., the lateral reference position can
only change at the beginning and then remains constant
throughout the prediction horizon. Only assuming immediate
lane changes yields a more conservative estimation compared
to considering possible lane changes at arbitrary points
within the horizon. At the next time step, the EV starts a
new TV maneuver prediction.

In other words, sampling the uniformly distributed random
variable p ∈ [0, 1] and given the initial lateral reference posi-
tion yTV

k,ref, the predicted future lateral TV reference positions
yTV
k+i,ref for the prediction horizon with i ∈ 1, ..., N − 1 are

yTV
k+i,ref =

{
yTV
k,ref if p ≤ pLK

llane − yTV
k,ref else,

(7)

where llane is the lane width. If for example the TV starts on
the right lane, i.e. yTV

k,ref = 0, and a sampled random variable
p ≥ pLK, i.e., a LC is sampled, the new lateral reference
position yTV

k+i,ref = llane is the left lane.

TVLK
k TVLK

k+3

TVLC
k+3

k k + 1 k + 2 k + 3

Fig. 2. Qualitative illustration of the combined safety constraint ellipse.
The ellipse at time step k only covers one maneuver (LK), while the larger
ellipse at time step k+3 covers both individual ellipses for a LK and a LC
maneuver, as both maneuvers are possible. Time steps k+1 and k+2 are
only represented by gray dots, the ellipses are omitted here.

The safety constraint (5) is now adapted to hold for all
possible maneuvers. Therefore, an ellipse is designed that
covers the restricted region around the TV for both possible
maneuvers, as displayed in Fig. 2. This yields

d̃k=
(∆x̃k)2

ã2
+

(∆ỹk)2

b̃2
− 1 ≥ 0, (8)

x̃k= xTV, LC
k = xTV, LK

k , (9a)

ỹk=
yTV, LC
k + yTV, LK

k

2
, (9b)

where xTV, LC
k , xTV, LK

k denote the longitudinal position and
yTV, LC
k , yTV, LK

k represent the lateral position of the TV for
both maneuvers. The result is an ellipse with center (x̃k, ỹk)
that contains the individual TV constraint ellipses of both
maneuvers at the predicted time step k. The semi-major and
semi-minor axes for the combined ellipse are

ãk= a+
2

llane
(b̃k − b), (10a)

b̃k=
∣∣∣0.5(yTV,LC

k − yTV,LK
k

)∣∣∣+ b. (10b)

Definition 1. The virtual state of the ellipse that combines
individual maneuver ellipses is

ξ̃TV
k =

[
x̃TV
k , ṽTV

x,k , ỹ
TV
k , ṽTV

y,k

]>
, (11a)

=
[
xTV
k , vTV

x,k , 0.5
(
yTV,LC
k + yTV,LK

k

)
, vTV
y,k

]>
(11b)

Remark 3. The combined ellipse is only an approximation
and does not completely cover both individual ellipses.

Perfect coverage would require an area much larger than
both individual ellipses, resulting in a highly restrictive safety
constraint. The ellipses around the target vehicles must be
chosen large enough so that the combined ellipse still covers
the actual vehicles. The maximal neglected difference d∗k
between the combined ellipse and the individual ellipses is
obtained by solving

d∗k = min dk s.t. d̃k = 0. (12)

This means the maximal violation can be found at the point
where d̃k = 0, which is an admissible point using the
combined ellipse, but it is within the constrained area of
the individual ellipse.



III. STOCHASTIC MODEL PREDICTIVE CONTROL

The overall aim is to plan safe ego vehicle trajectories
by accounting for possible future target vehicle motion. A
major challenge is to reduce the conservativeness of these
planned trajectories, which can be tackled by exploiting the
two sources of target vehicle uncertainty, i.e., multiple pos-
sible maneuvers and the specific execution of the respective
maneuver.

MPC solves an optimization problem on a finite horizon.
At each time step only the first input of the optimized input
sequence is applied. This process is then repeated for the next
time step. Assuming uncertainty in the TV state, we will
first formulate an SMPC problem with chance-constraints
for collision avoidance. Subsequently, we will derive an
S+SC MPC method that takes into account the possibility
of multiple TV maneuvers by using SCMPC, while still
accounting for TV trajectory uncertainties.

Definition 2. Two risk parameters are considered. The
maneuver risk parameter εm relates to the uncertainty due
to multiple possible maneuvers, while the trajectory risk
parameter εt accounts for uncertainty within the executed
trajectory for a given maneuver.

A. SMPC Formulation

First, an SMPC problem is set up including a chance-
constraint. The parameter εt specifies the desired probability
of constraint satisfaction, i.e., the chance-constraint may only
be violated with probability 1− εt at each predicted step.

The optimal control problem to be solved at each step is

arg min
U

N−1∑
k=0

(
‖∆ξk‖2Q + ‖uk‖2R

)
+ ‖∆ξN‖2S , (13a)

s. t. ξk+1 = Aξk +Buk, k ∈ N0, (13b)
ξk+j ∈ Ξ, j = 1, . . . , N − 1, (13c)
ξk+N ∈ Ξf, (13d)
uk+j ∈ U , j = 1, . . . , N − 1, (13e)
Pr
(
ξk+j ∈ Ξsafe

k+j

)
≥ εt, εt ∈ [0.5, 1] (13f)

with the EV input U = (uk,uk+1, . . . ,uk+N−1)> and
EV state ξ, reference states ξk,ref, time step k, prediction
horizon N , and the sets of admissible states, terminal states,
and inputs Ξ, Ξf, and U , respectively. The difference be-
tween the vehicle state and reference state is denoted by
∆ξk = ξk − ξk,ref and the norm ‖ζ‖2Z is given by ζ>Zζ.
The matrices Q,S ∈ R4×4 and R ∈ R2×2 are weighting
matrices. The set of safe states at each time step is denoted
by Ξsafe

k+j .
The chance-constraint (13f) can be reformulated using (5)

according to [8]. First, the error between the actual and the
predicted TV state eTV

k = ξTV
k − ξ̂TV

k is defined with the
predicted TV state ξ̂TV

k and eTV
k = [eTV

k,x, e
TV
k,vx

, eTV
k,y, e

TV
k,vy

]>.
Given (6), linearizing (5) around the predicted TV state ξ̂TV

k

yields
dk +∇dkeTV

k ≥ 0, (14)

where the gradient ∇dk is

∇dk =
∂dk

∂ξ̂TV
k

=
[−2∆xk

a2 , 0, −2∆yk
b2 , 0

]
. (15)

Thus, the safety constraint (5) can be rewritten as
−∇dkeTV

k ≤ dk and therefore the chance-constraint (13f)
is substituted by

Pr(−∇dkeTV
k ≤ dk) ≥ εt, (16)

which can then be reformulated.

B. Deterministic Reformulation of the SMPC Problem

As the chance-constraint (16) cannot be applied directly,
a transformation from the probabilistic to a deterministic
problem is necessary. The constraint is thus split into a
probabilistic equation and a deterministic inequality

dk ≥ γk, (17a)
Pr(−∇dkeTV

k ≤ γk) = εt. (17b)

Assumption 4. The distribution of the random vari-
able wTV

k is known and normally distributed, i.e.,
wTV
k ∼ N

(
0,ΣTV

w

)
with the TV covariance matrix

ΣTV
w = diag

(
(σTV
x )2, (σTV

vx )2, (σTV
y )2, (σTV

vy )2
)

. The
probability distribution of the prediction error for fu-
ture TV states eTV

k is a known normal distribution
eTV
k ∼ N (0,Σek) with the prediction error covariance

matrix Σek.

Assumption 5. The initial TV state ξTV
0 is known with the

initial error covariance matrix Σe0 = 0.

Theorem 1. Let Assumption 1,2,4,5 hold. Then, the deter-
ministic expression for the probabilistic chance-constraint
(16) is

dk≥ γk, (18a)

γk=
√

2∇dkΣek(∇dk)> erf−1(2εt − 1) (18b)

with the inverse error function erf−1(.) and the prediction
error covariance matrix Σek+1 = ΦΣekΦ> +GΣTV

w G>.

Proof. This proof is based on [8], which addresses EV state
uncertainty. Introducing the matrix Φ = A+BK, it follows
that

ξTV
k+1 = ΦξTV

k −BKξTV
k,ref +GwTV

k . (19)

Separating the target vehicle state ξTV
k into the sum of the

estimated TV state ξ̂TV
k and the prediction error eTV

k yields

ξTV
k+1= ξ̂TV

k+1 + eTV
k+1

=
(

Φξ̂TV
k −BKξTV

k,ref

)
+
(
ΦeTV

k +GwTV
k

)
. (20)

Given Assumptions 4,5, the prediction error covariance ma-
trix is

Σek+1 = ΦΣekΦ> +GΣTV
w G>. (21)

This yields −∇dkeTV
k ∼ N

(
0,∇dkΣek(∇dk)>

)
. Using

the quantile function for univariate normal distributions it
follows that γk =

√
2∇dkΣek(∇dk)> erf−1(2εt − 1).



Remark 4. Here, TV state uncertainty is accounted for,
which is different from [8] where only EV uncertainty is
considered.

C. Combined S+SC MPC Problem Formulation

Using the constraint formulation (8), the SMPC problem
(13) is now extended to handle multiple possible maneuvers
while accounting for uncertainty within the execution of
these maneuvers. An SCMPC approach is used in combi-
nation with the SMPC method of Sec. III-A, resulting in a
combined approach. We will refer to this new method as
S+SC MPC. At the beginning of each optimization problem
we draw Kεm samples of p, evaluate the TV predictions
using (7), and calculate the safety constraint according to (8),
accounting for all sampled TV maneuvers. By introducing a
tunable maneuver risk parameter εm ∈ (0, 1), it is possible to
define the necessary number of samples Kεm ∈ N0 to ensure
a desired safety level.

Theorem 2. Let Assumption 3 hold. Then, a sample size

Kε > logpLK

(
εm

1− pLK

)
(22)

satisfies that εm is greater than the probability p∗ of not
having sampled a TV LC maneuver if an actual TV LC
maneuver occurs.

Proof. The Kεm drawn samples p(1), ..., p(Kεm ) are inde-
pendent and identically distributed. The probability that no
sample includes a TV LC maneuver and simultaneously the
TV actually performs a LC maneuver is therefore given by
p∗ = pLC(pLK)Kεm = (1− pLK)(pLK)Kεm . If εm > p∗, then
solving for Kε yields (22). This ensures with a probability
greater than 1− εm that at least one LC maneuver had been
sampled if a TV LC actually occurs at the next time step.

Remark 5. If the maneuver risk parameter is chosen to be
εm > pLC, no samples are necessary as a LC is less likely
than the accepted probability εm of not having predicted a
LC if it actually occurs at the next time step.

In the following we will combine the scenario approach
of Theorem 2 with the SMPC optimization problem of (13)
and (18). First, the resulting optimization problem is stated.
Then, the subsequent theorem will provide details for the
computation of the chance-constraint.

The S+SC MPC method yields the optimization problem

arg min
U

N−1∑
k=0

(
‖∆ξk‖2Q + ‖uk‖2R

)
+ ‖∆ξN‖2S , (23a)

s. t. ξk+1 = Aξk +Buk, k ∈ N0, (23b)
ξk+j ∈ Ξ, j = 1, . . . , N − 1, (23c)
ξk+N ∈ Ξf, (23d)
uk+j ∈ U , j = 1, . . . , N − 1, (23e)

d̃k ≥ γk, (23f)

γk =

√
2∇d̃kΣ̃ek(∇d̃k)> erf−1(2εt − 1). (23g)

The framework of (23) is according to the SMPC formulation
of (13). The chance-constraint in (23g), accounting for
trajectory uncertainty, is updated so that it covers all TV
maneuvers that need to be considered as determined by the
the drawn samples Kεm according to the SCMPC approach.
This results in an updated prediction error covariance matrix
Σ̃ek for the virtual ellipse combining individual maneuver
ellipses.

Assumption 6. The prediction errors covariance matrix Σek
is equal for every maneuver and can be calculated using
(21).

Theorem 3. Let Assumptions 1–6 hold. Given an adapted
safety constraint ellipse due to drawing Kεm scenarios, the
deterministic expression for the chance-constraint is

d̃k ≥ γk, (24a)

γk =

√
2∇d̃kΣ̃ek(∇d̃k)> erf−1(2εt − 1) (24b)

with

Σ̃ek+1= ΦΣ̃ekΦ> +GΣ̃TV
w G>, (25a)

Σ̃TV
w = diag

(
(σTV
x )2, (σTV

vx )2, 0.5(σTV
y )2, (σTV

vy )2
)
. (25b)

Proof. Using the virtual state of the combined ellipse ξ̃TV
k

from Definition 1, we obtain

x̃TV
k = xTV

k ∼ N
(
xTV
k , (σTV

x )2
)

(26)

as the longitudinal position in both maneuvers, LK and LC,
is equal. Similar to (26) it holds that

ṽTV
x,k∼ N

(
vTV
x,k , (σ

TV
vx )2

)
, (27a)

ṽTV
y,k∼ N

(
vTV
y,k , (σ

TV
vy )2

)
. (27b)

Assumption 6 with ỹTV
k = 0.5

(
yTV,LK
k + yTV,LC

k

)
yields

0.5yTV,LK
k ∼ N

(
0.5yTV,LK

k , 0.25(σTV
y )2

)
, (28a)

0.5yTV,LC
k ∼ N

(
0.5yTV,LC

k , 0.25(σTV
y )2

)
. (28b)

This leads to

ỹTV
k ∼ N

(
0.5
(
yTV,LK
k + yTV,LC

k

)
, 0.5(σTV

y )2
)
. (29)

It follows that w̃TV
k ∼ N

(
0, Σ̃TV

w

)
with covariance matrix

Σ̃TV
w = diag

(
(σTV
x )2, (σTV

vx )2, 0.5(σTV
y )2, (σTV

vy )2
)

.

Splitting ξ̃TV
k into the estimated state of the combined

ellipse ˆ̃
ξTV
k and the prediction error ẽTV

k ∼ N
(

0, Σ̃ek

)
delivers

Σ̃ek+1 = ΦΣ̃ekΦ> +GΣ̃TV
w G>. (30)

With ∆x̃k = ∆xk and ∆ỹk = yk − ˆ̃yTV
k the gradient of d̃k

is given by

∇d̃k =
∂d̃k

∂
ˆ̃
ξTV
k

=
[
−2∆x̃k

ã2 , 0, −2∆ỹk
b̃2

, 0
]
, (31)



resulting in

−∇d̃kẽTV
k ∼ N

(
0,∇d̃kΣ̃ek(∇d̃k)>

)
(32)

which then yields the chance-constraint

γk =

√
2∇d̃kΣ̃ek(∇d̃k)> erf−1(2εt − 1), (33)

using the quantile function for univariate normal distribu-
tions.

Remark 6. If a LC is not sampled, then ỹTV
k = yTV

k .

IV. SIMULATION STUDY

Simulations to evaluate the presented method were carried
out in MATLAB® using the MPC routine developed by [16]
as the base for implementing our method. All quantities in
this section are given in SI units unless stated otherwise.
A scenario with two lanes and one TV is assessed, utilizing
the S+SC MPC method.

For all simulations we use a prediction horizon N = 20, a
time step ∆t = 0.2, and a total simulation time of tsim = 10.
The EV and TV models are according to (1) and (3). The
lane width is llane = 3.5 and the EV follows the constraints

yk∈ [−1.75, 5.25] , (34a)
ux,k∈ [−5, 5] , (34b)
uy,k∈ [−0.5, 0.5] , (34c)

∆ux,k+1∈ [−1, 1] , (34d)
∆uy,k+1∈ [−0.2, 0.2] (34e)

with ∆ux,k+1 = ux,k+1 − ux,k for longitudinal and
∆uy,k+1 = uy,k+1−uy,k for lateral acceleration. The initial
lateral position of all vehicles is the center of the vehicles’
respective lanes. The reference ξk,ref = [0, vx,ref, yk,ref, 0]> is
chosen so that the EV longitudinal velocity remains constant
and it follows the lane which is closest to the EV center, i.e.,

yEV
k,ref =

{
0 if |yEV

k | < |yEV
k − llane|

llane else,
(35)

assuming a two-lane scenario where the lateral center of the
right and left lane is 0 and llane, respectively.

The TV controller matrix values are [k12, k21, k22] =
[−1,−0.8,−2.2]. The random variable wTV

k ∼ N
(
0,ΣTV

w

)
is a Gaussian distribution with covariance matrix
ΣTV
w = diag(1, 1, 1, 1) and the uncertainty matrix

is given by G = diag(0.05, 0.067, 0.013, 0.03), reflecting
different TV uncertainty in lateral and longitudinal direction.
The weighting matrices are Q = diag(0, 2, 0.5, 0.1) and
R = diag(1, 0.1).

The length and width of all vehicles are assumed to be 6m
and 2m, respectively. Choosing [a, b] = [30, 3] the minimal
allowed longitudinal and lateral distances between the EV
and TV are [∆xmin,∆ymin] = [24, 1], assuming that the EV
center is on the ellipse boundary for dk = 0. It follows from
(12) that the combined ellipse considering two maneuvers
has a maximal difference to the individual ellipses that is
d∗k = −0.073 which translates to a maximal longitudinal
ellipse difference ∆x̄ = 1.26 for yEV = yTV or lateral ellipse
difference ∆ȳ = 0.18 for xEV = xTV, respectively.

A. Recovery SMPC Problem Formulation

As feasibility can become an issue for the MPC prob-
lem (23), we implement a recovery strategy that relies on an
alternative MPC problem. The MPC problem (23) is altered
by introducing a slack variable σk to soften the chance-
constraint. This results in a recovery strategy MPC problem
that is solved if the original MPC problem (23) becomes
infeasible. For the next time step k + 1 the original MPC
(23) problem is solved again. The recovery problem is given
by

arg min
U,σ

N−1∑
k=0

(
‖∆ξk‖2Q̃ + ‖uk‖2R̃ + λσ

)
+ ‖∆ξN‖2S̃ , (36a)

s. t. ξk+1 = Aξk +Buk, k ∈ N0, (36b)
ξk+j ∈ Ξ, j = 1, . . . , N − 1, (36c)
ξk+N ∈ Ξf, (36d)
uk+j ∈ U , j = 1, . . . , N − 1, (36e)

d̃k ≥ γk − σ, σ ≥ 0, (36f)

γk =

√
2∇d̃kΣ̃TV

k ∇d̃k)> erf−1(2ε̃t − 1). (36g)

with the recovery strategy trajectory risk parameter ε̃t and
the positive slack variable σ that transforms the deterministic
chance-constraint (24) into a soft constraint. The weighting
matrices Q̃, R̃, S̃ and the scalar slack variable λ are chosen
depending on the selected ratio between performance and
conservativeness. Here, Q̃ = diag(0, 0.1, 0.5, 0.1), R̃ = R,
and λ = 50 are used.

Remark 7. The recovery strategy trajectory risk parameter
ε̃t can be chosen different from εt to put increased focus on
constraint satisfaction.

B. Two Vehicle Scenario with S+SC MPC Method

In the simulated scenario the EV starts on the left lane and
only one TV is considered, initially positioned in front of the
EV on the right lane. The initial EV and TV states are given
by ξ0 = [0, 27, 3.5, 0]> and ξTV

0 = [29, 24, 0, 0]> with the
reference states vx,ref = 27, yref = 3.5, vTV

x,ref = 24, yTV
k,ref = 0

for no TV LC, and yTV
k,ref = 3.5 once a TV LC begins. The

EV assumes that the probability of a TV LC maneuver is
pLC = 0.1 at every time step and that the maneuver will be
executed completely once it has started. In the simulation two
cases are distinguished: one scenario where the TV initiates
a LC at tLC = 4s and one where the TV keeps its lane.
Different maneuver risk parameters εm are evaluated with
εt = 0.8 and ε̃t = 0.995. Each maneuver risk parameter and
scenario is simulated 150 times. Positions of both vehicles
at different time steps for a TV LC simulation are shown in
Fig. 3(a) and 3(b), showing that a higher value εm leads to
larger input values, Fig. 4(a), as the EV needs to account for
an unexpected LC maneuver. If a LC maneuver is predicted,
the EV reduces its velocity earlier, Fig. 4(b), allowing an
increased distance to the TV compared to the case of no
predicted LC, as shown in Fig. 4(c). In order to compare the



(a) Vehicles after 6.6s at time step k = 33 for εm = 0.085

(b) Vehicles after 6.6s at time step k = 33 for εm = 0.010

Fig. 3. TV LC maneuver; red boxes represent the EV, blue boxes display
the TV. Fading boxes show past states. Increasing space between past boxes
represents acceleration. (a) The EV does not expect a TV LC maneuver and
keeps a high velocity. Once the TV initiates a LC, the EV decelerates hard
and moves to its left in order to increase the distance to the TV to regain
d̃k ≥ 0. (b) The EV predicted a TV LC maneuver and is almost able to
keep its longitudinal velocity and lateral position once the TV changes lanes
while still satisfying d̃k ≥ 0.
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(a) Longitudinal acceleration of EV
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(b) Velocities of EV
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(c) Longitudinal distance between EV and TV

Fig. 4. TV LC maneuver with conservative (green) and aggressive (orange)
maneuver risk parameter. (a) The longitudinal acceleration inputs are less
smooth if the TV LC maneuver occurs unexpectedly due to a high εm. (b) If
a LC is predicted due to a low εm, the EV decelerates earlier to be prepared
for a possible TV LC. (c) If no LC is expected (high εm), the longitudinal
distance between EV and TV decreases, causing the EV to move to its left
to keep a maximal possible distance to the TV.

results, similar to (13a) the total cost J50 for all 50 steps is
calculated by

J50 =

49∑
k=0

(
‖∆ξk‖2Q + ‖uk‖2R

)
. (37)

The averaged results of the simulations are depicted in
Tab. I, where dk,min denotes the minimal value for dk in
all simulated scenarios, which equals the maximal constraint
violation.
If no TV LC occurs, a higher εm, i.e., less maneuver
samples drawn, leads to lower costs. However, if a TV
LC maneuver occurs, for a high value εm the EV did not

TABLE I
COST AND CONSTRAINT VIOLATION FOR SMPC/SCMPC METHOD

TV LC TV LK
εm Kεm J50 dk,min J50 dk,min

0.085 2 1700 -0.151 39 0
0.070 4 1484 -0.104 197 0
0.035 10 1092 -0.017 583 0
0.010 22 1014 -0.016 640 0

expect the LC maneuver and was unprepared. The EV needs
to decelerate stronger, increasing the cost, and violates the
safety constraint more than if a low value for εm is chosen.
If εm is small, the sample size Kεm is larger and therefore
the likelihood increases that a TV LC maneuver is predicted
before it occurs.

C. Discussion

In the presented approach there are two risk parameters
to be chosen, εt and εm. By adjusting the maneuver risk
parameter εm a trade-off is possible between performance
and risk in the presence of multiple TV maneuvers. A lower
value for εm leads to more samples considered, increasing the
probability of having a larger restricted area. As handling
uncertainty within the maneuver execution by only using
SCMPC would require extensive modeling and sampling
to cover all possible cases, a different approach, similar to
SMPC with chance-constraints, is taken to ensure a specified
level of constraint violation is not exceeded. This leads to
the trajectory risk parameter εt, which influences how much
risk is accepted for the EV in the presence of TV trajectory
uncertainty.

In the simulated scenarios the LC probability remains
constant with the effect that a high number of samples Kεm

is more likely to include a predicted LC maneuver than a
small number Kεm . One could argue that a maneuver risk
parameter εm is not necessary, as in this scenario a TV LC
could be considered if the focus is on safety, or a potential
TV LC could be ignored if the main target is performance.
However, the advantage of using the maneuver risk parameter
εm lies in adaptability. In general, the probability of a TV
LC maneuver is not constant, it changes depending on the
situation and scenario: if a TV is faster than a vehicle in
front, the LC probability is higher than in a scenario where
the lane in front of the TV is empty. For each situation
the EV updates the probability of a TV LC maneuver. With
this belief, the EV then plans its trajectory according to the
specified maneuver risk parameter εm.

A relatively small sample size Kεm , given by the maneuver
risk parameter εm, can be used to first evaluate if a TV
LC maneuver needs to be considered. Then, the trajectory
risk parameter εt specifies how conservative the planned EV
motion is, given the TV maneuvers to be considered as
determined in the previous step. A positive effect on safety
can be achieved by increasing the trajectory risk parameter
εt or decreasing the maneuver risk parameter εm.

In the simulation results it is visible that a safety constraint
violation does not necessarily lead to a collision as the safety



ellipse is chosen larger than the TV. For εm = 0.085 the max-
imal constraint violation simulated was dk,min = − 0.151
which translates to a minimal distance between the vehicle
bodies of ∆x∗min = 21.6m in longitudinal direction for
yEV = yTV, or ∆y∗min = 0.7m in lateral direction for
xEV = xTV. These values indicate that no actual collision
occurred even though the safety constraint was violated. This
also means that the safety ellipse parameters need to be
considered when aiming at improving performance.

In this work the focus lies on designing a method to com-
bine SMPC and SCMPC that can be used for autonomous
driving. However, the accuracy of the vehicle models needs
to be increased. This could be done by including kinematic or
dynamic bicycle models [17], which provide a more precise
approximation of actual vehicle behavior [18].

V. CONCLUSION

We presented a combined method of SMPC and SCMPC.
This S+SC MPC approach is suitable to plan vehicle tra-
jectories that satisfy a specified safety level in the presence
of multiple possible maneuvers of other vehicles, including
uncertainty within the target vehicle maneuver execution.
With this approach a trade-off between risk and performance
is possible by choosing risk parameters according to a
desired risk level. Uncertainties arising from the two sources,
possible target vehicle maneuvers and maneuver execution,
can be handled individually, allowing for less conservative
ego vehicle motion planning. Future work includes applying
the proposed method to more accurate vehicle models, as
well as increasing the number of target vehicles and target
vehicle maneuvers that are considered by the ego vehicle.
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