Some Results on Parametric Reduction of PortHamiltonian Systems

within the DFG-ANR-Project INFIDHEM: Interconnected Infinite-Dimensional Systems for Heterogeneous Media

Boris Lohmann and Tobias Scheuermann, Chair of Automatic Control

Technical University of Munich
$2^{\text {nd }}$ February 2018

INFIDHEM
 (Interconnected INfinite-Dimensional systems for Heterogeneous Media)

- French-German project with Universities of Besançon (Prof. Le Gorrec), Toulouse (Prof. Matignon), Lyon (Prof. Maschke), Wuppertal (Prof. Jacob), Kiel (Prof. Meurer), Munich (Prof. Lohmann)
- Period: 2017-2020, DFG-ANR funded
- Fluid-thermo-structure interaction on heterogeneous media
- Active material (e.g. Piezo)
- Modelling as port-Hamiltonian system

Metallic foam as an example for heterogeneous media ${ }^{1}$

[^0]
Port-Hamiltonian-System:

$$
\begin{aligned}
& \dot{\boldsymbol{x}}=(\boldsymbol{J}-\boldsymbol{R}) \nabla H(\boldsymbol{x})+\boldsymbol{B} \boldsymbol{u} \\
& \boldsymbol{y}=\boldsymbol{B}^{T} \nabla H(\boldsymbol{x})
\end{aligned}
$$

\boldsymbol{J} : Interconnection Matrix, skew symmetric
\boldsymbol{R} : Dissipation Matrix, pos. semidef.
is passive, since $\dot{H} \leq \boldsymbol{y}^{T} \boldsymbol{u}$ with pos. def. Energy Function $H(\boldsymbol{x})$.

Linear PH-System (with $H=1 / 2 \boldsymbol{x}^{T} \boldsymbol{Q} \boldsymbol{x}$)
a) in standard form:

$$
\begin{aligned}
& \dot{x}=\overbrace{(J-R) \boldsymbol{Q}} x+B u \\
& y=\underbrace{B^{T} \boldsymbol{Q} x}_{C}
\end{aligned}
$$

b) in co-energie form (by Trf. $\boldsymbol{Q x}=\boldsymbol{e}$):

$$
\begin{aligned}
& \overbrace{\boldsymbol{Q}^{-1}}^{E} \dot{\boldsymbol{e}}=\overbrace{(\boldsymbol{J}-\boldsymbol{R})}^{A} \boldsymbol{e}+\boldsymbol{B} \boldsymbol{u} \\
& \boldsymbol{y}=\underbrace{\boldsymbol{B}^{T} \boldsymbol{e}}_{\boldsymbol{C}}
\end{aligned}
$$

Topology of a metallic foam, extracted by image processing from tomography data (figure from DFG-ANR-application)

Starting Point: Projective reduction of linear state-space models:

$$
\begin{aligned}
& E \dot{x}=A x+B u \\
& y=C x
\end{aligned}
$$

$$
\begin{aligned}
& \overbrace{\boldsymbol{W}^{T} \boldsymbol{E} \boldsymbol{V}}^{\boldsymbol{x}_{r}} \dot{\boldsymbol{x}}_{r}=\overbrace{\boldsymbol{W}^{T} \boldsymbol{A} \boldsymbol{V}}^{\boldsymbol{A}_{r}}+\overbrace{\boldsymbol{W}^{T} \boldsymbol{B} \boldsymbol{u}}^{\boldsymbol{B}_{r}}=\underbrace{\boldsymbol{V}}_{\boldsymbol{C}_{r}} \boldsymbol{x}_{r}
\end{aligned}
$$

$\dot{x}=\overbrace{(\boldsymbol{J}-\boldsymbol{R}) \boldsymbol{Q}}^{A} x+\boldsymbol{B u} \quad \stackrel{\substack{\text { modal: } \\ x=z / z}}{\Rightarrow}$

$$
\begin{aligned}
& \dot{z}=\boldsymbol{V}^{-1}(\boldsymbol{J}-\boldsymbol{R}) \overbrace{\boldsymbol{V}^{-T} \boldsymbol{V}^{T}}^{U} \boldsymbol{Q V} \boldsymbol{z}+\boldsymbol{V}^{-1} \boldsymbol{B u} \\
& \boldsymbol{y}=\boldsymbol{B}^{T} \boldsymbol{Q V z}
\end{aligned}
$$

Outline:

How to choose $\boldsymbol{V}, \boldsymbol{W}$ so that:

- Rational Interpolation / Moment Matching is achieved,
- PH structure is preserved

How to perform parametric reduction by Matrix Interpolation
Application to a discretized model of the two-dimensional wave-equations

Notation

High dimensional parametric system:
High dimensional sample system (for specific value of parameter):

Locally reduced model:
Reduced model, transformed in joint subspace:
Reduced parametric model (from Interpolation):

Matrix
$\boldsymbol{A}(\boldsymbol{p})$
$\boldsymbol{A}_{i}=\boldsymbol{A}\left(\boldsymbol{p}_{i}\right)$
$x$$x$
$\boldsymbol{A}_{r, i}$ $\boldsymbol{x}_{r, i}$

$$
\boldsymbol{A}_{r, i}^{*}
$$

$$
\boldsymbol{x}_{r, i}^{*}=\boldsymbol{x}_{r}^{*}
$$

$$
\boldsymbol{A}_{r}^{*}(\boldsymbol{p})
$$

$$
\boldsymbol{x}_{r, i}^{*}=\boldsymbol{x}_{r}^{*}
$$

Structure preserving reduction of the co-energy form [1]

A projection matrix \boldsymbol{V} is calculated by some known method (Moment Matching, POD). Then, with the choice $\boldsymbol{W}=\boldsymbol{V}$ we find the reduced model in co-energy form (descriptor form)

$$
\begin{aligned}
& \overbrace{\boldsymbol{V}^{T} \boldsymbol{Q}^{-1} \boldsymbol{V}}^{\boldsymbol{e}_{r}} \\
& \boldsymbol{Q}_{r}^{-1}=\overbrace{\boldsymbol{V}^{T}(\boldsymbol{J}-\boldsymbol{R}) \boldsymbol{V}}^{\boldsymbol{e}_{r}}+\overbrace{\boldsymbol{V}^{T} \boldsymbol{B} \boldsymbol{u}}^{\boldsymbol{J}_{r}-\boldsymbol{R}_{r}} \\
& \boldsymbol{y}=\underbrace{\boldsymbol{B}_{r} \boldsymbol{V} \boldsymbol{e}_{r}}_{\boldsymbol{B}_{r}^{T}}
\end{aligned}
$$

where \boldsymbol{Q}_{r} is pos. def., \boldsymbol{J}_{r} skew symmetric, \boldsymbol{R}_{r} pos. semidef.

Structure preserving reduction of the standard PH form [2, 3] (DesPH)

A projection matrix \boldsymbol{V} is calculated by some known method (Moment Matching, POD). Then, with the choice $\boldsymbol{W}=\boldsymbol{Q} \boldsymbol{V}$ we first find

$$
\begin{aligned}
& \overbrace{\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V}}^{\boldsymbol{x}_{r}} \overbrace{\underbrace{-1}_{\boldsymbol{B}_{r}^{T}}}^{\boldsymbol{y}=\overbrace{\boldsymbol{V}^{T} \boldsymbol{Q}(\boldsymbol{J}-\boldsymbol{R}) \boldsymbol{Q} \boldsymbol{V}}^{\boldsymbol{B}_{r}^{T} \boldsymbol{Q} \boldsymbol{V}} \boldsymbol{x}_{r}} \boldsymbol{J}_{r}+\overbrace{\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{Q} \boldsymbol{u}}^{\boldsymbol{J}_{\boldsymbol{r}}} \boldsymbol{u}
\end{aligned}
$$

Applying the state transformation $\boldsymbol{z}_{r}=\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V} \boldsymbol{x}_{r}$ leads to the reduced model in standard PH form

$$
\begin{aligned}
& \dot{\boldsymbol{z}}_{r}=\overbrace{\boldsymbol{V}^{T} \boldsymbol{Q}(\boldsymbol{J}-\boldsymbol{R}) \boldsymbol{Q} \boldsymbol{V}}^{\boldsymbol{J}_{r}-\boldsymbol{R}_{r}} \overbrace{\left.\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V}\right)^{-1} \boldsymbol{z}_{r}}^{\boldsymbol{Q}_{r}}+\overbrace{\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{B} \boldsymbol{u}}^{\boldsymbol{B}_{\boldsymbol{B}}} \\
& \boldsymbol{y}=\underbrace{\boldsymbol{B}^{T} \boldsymbol{Q} \boldsymbol{V}}_{\boldsymbol{Q}_{r}} \underbrace{\left(\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V}\right)^{-1} \boldsymbol{z}_{r}}
\end{aligned}
$$

However, because of the state transformation, the vector \boldsymbol{z}_{r}, has the physical meaning of a co-state vector $\boldsymbol{e}_{r}=\boldsymbol{V}^{T} \boldsymbol{Q V} \boldsymbol{x}_{r}$.

Structure preserving reduction of the standard form (consistent state vector) [4]

A projection matrix \boldsymbol{V} is calculated by some known method (Moment Matching, POD). Then, with the choice $\boldsymbol{W}=\boldsymbol{Q} \boldsymbol{V}$ we first find

$$
\begin{align*}
& \overbrace{\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V}}^{Q_{r}} \dot{\boldsymbol{x}}_{r}=\boldsymbol{V}^{T} \boldsymbol{Q}(\boldsymbol{J}-\boldsymbol{R}) \boldsymbol{Q} \boldsymbol{V} \boldsymbol{x}_{r}+\boldsymbol{V}^{T} \boldsymbol{Q B u} \tag{*}\\
& \boldsymbol{y}=\boldsymbol{B}^{T} \boldsymbol{Q} \boldsymbol{V} \boldsymbol{x}_{r}
\end{align*}
$$

By pre-multiplication with $\left(\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V}\right)^{-1}$ and by inserting the identity matrix $\left(\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V}\right)^{-1}\left(\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V}\right)$, this becomes a reduced model in standard form

$$
\begin{align*}
& \dot{\boldsymbol{x}}_{r}=\overbrace{\left(\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V}\right)^{-1} \boldsymbol{V}^{T} \boldsymbol{Q}(\boldsymbol{J}-\boldsymbol{R}) \boldsymbol{Q} \boldsymbol{V}\left(\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V}\right)^{-1}\left(\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V}\right) \boldsymbol{x}_{r}+\overbrace{\left(\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V}\right)^{-1} \boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{B}}^{\boldsymbol{J}_{r}-\boldsymbol{R}_{r}} \boldsymbol{B}_{r}}^{\boldsymbol{y}=\underbrace{\boldsymbol{B}^{T} \boldsymbol{Q} \boldsymbol{V}\left(\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V}\right)^{-1}}_{\boldsymbol{B}_{r}^{T}} \underbrace{\left(\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V}\right)}_{\boldsymbol{Q}_{r}} \boldsymbol{x}_{r}}
\end{align*}
$$

This model is in standard form and physically consistent (By a different derivation, it was first suggested in [4], another version can be found in [7]).

Structure-preserving reduction of the standard PH-form using Choleskyfactorization [7]

The linear system is reduced with so far unknown matrices \boldsymbol{V} and \boldsymbol{W}^{T}. Additionally we perform the approximation $\boldsymbol{Q} \approx \boldsymbol{W} \boldsymbol{V}^{T} \boldsymbol{Q}$ and demand \boldsymbol{V} and \boldsymbol{W}^{T} to be biorthogonal $\left(\boldsymbol{W}^{T} \boldsymbol{V}=\boldsymbol{I}\right)$.
$\overbrace{\boldsymbol{W}^{T} \boldsymbol{V}}^{\boldsymbol{V}} \dot{\boldsymbol{x}}_{r}=\overbrace{\boldsymbol{W}^{T}(\boldsymbol{J}-\boldsymbol{R}) \boldsymbol{W} \boldsymbol{V} \boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V}}^{\boldsymbol{J}_{r}-\boldsymbol{R}_{r}}+\overbrace{\boldsymbol{W}^{\boldsymbol{T}} \boldsymbol{B} \boldsymbol{B}}^{\boldsymbol{B}_{r}}$
$\boldsymbol{y}=\underbrace{\boldsymbol{B}^{T} \boldsymbol{W}}_{\boldsymbol{B}_{r}^{T}} \underbrace{\boldsymbol{V}^{T} \boldsymbol{Q} \boldsymbol{V} \boldsymbol{x}_{r}}_{\boldsymbol{Q}_{r}}$

To achieve biorthogonality, we use Cholesky-factorization to generate \boldsymbol{V} and \boldsymbol{W}^{T} from a $\tilde{\mathbf{V}}$ resulting from an arbitrary reduction method:
$\tilde{\boldsymbol{V}}^{T} \boldsymbol{Q} \tilde{\boldsymbol{V}}=\boldsymbol{R}^{T} \boldsymbol{R}$
The reduction matrices are finally computed as:
$\boldsymbol{V}=\tilde{\boldsymbol{V}} \boldsymbol{R}^{-1}$
$\boldsymbol{W}=\boldsymbol{Q} \boldsymbol{V}$

Parametric Reduction of the co-energy form [1]

The matrices $\boldsymbol{J}, \boldsymbol{R}, \boldsymbol{Q}^{-1}, \boldsymbol{B}$ depend on a parameter p. We now specify some values p_{i} and reduce the corresponding models with corresponding individual projection matrices \boldsymbol{V}_{i} :

$$
\begin{aligned}
& \boldsymbol{V}_{i}^{T} \boldsymbol{Q}_{i}^{-1} \boldsymbol{V}_{\boldsymbol{e}} \dot{\boldsymbol{r}}_{r, i}=\boldsymbol{V}_{i}^{T}\left(\boldsymbol{J}_{i}-\boldsymbol{R}_{i}\right) \boldsymbol{V}_{i} \boldsymbol{e}_{r, i}+\boldsymbol{V}_{i}^{T} \boldsymbol{B}_{i} \boldsymbol{u} \quad, \quad i=1, \ldots, k \\
& \boldsymbol{y}_{i}=\boldsymbol{B}_{i}^{T} \boldsymbol{V}_{i} \boldsymbol{e}_{r, i}
\end{aligned}
$$

Matrix Interpolation: for some value p of interest, we like to find the matrices
$\boldsymbol{J}_{r}(p), \boldsymbol{R}_{r}(p), \boldsymbol{Q}_{r}^{-1}(p), \boldsymbol{B}_{r}(p)$ by Interpolation between the matrices $\boldsymbol{J}_{r, i}, \boldsymbol{R}_{r, i}, \boldsymbol{Q}_{r, i}^{-1}, \boldsymbol{B}_{r, i}$. In order to make this interpolation physically meaningful, we first have to adapt/adjust the state spaces of the local models to each others. This is done by

- State transformation of each local model,

$$
\begin{aligned}
& \boldsymbol{x}_{r, i}^{*}=\boldsymbol{T}_{\boldsymbol{i}} \boldsymbol{x}_{r, i} \\
& \text { with } \boldsymbol{T}_{i}=\boldsymbol{U}^{T} \boldsymbol{V}_{i} \quad \text { (where } \boldsymbol{U} \text { is from an } \operatorname{SVD}\left\{\left[\boldsymbol{V}_{1}, \ldots, \boldsymbol{V}_{k}\right]\right\},[5] \text {) and }
\end{aligned}
$$

- Pre-multiplication of each local model by a matrix

$$
\boldsymbol{M}_{i}=\left(\boldsymbol{V}_{i}^{T} \boldsymbol{U}\right)^{-1} \quad(\text { see }[5,1] . \text { Alternatives in [6]) : }
$$

$$
\begin{aligned}
& \overbrace{\left(\boldsymbol{V}_{i}^{T} \boldsymbol{U}\right)^{-1} \boldsymbol{V}_{i}^{T} \boldsymbol{Q}_{i}^{-1} \boldsymbol{V}_{i}\left(\boldsymbol{U}^{T} \boldsymbol{V}_{i}\right)^{-1} \dot{\boldsymbol{e}}_{r, i}^{*}}^{\boldsymbol{Q}_{r, i}^{-1}}=\overbrace{\left(\boldsymbol{V}_{i}^{T} \boldsymbol{U}\right)^{-1} \boldsymbol{V}_{i}^{T}\left(\boldsymbol{J}_{i}-\boldsymbol{R}_{i}\right) \boldsymbol{V}_{i}\left(\boldsymbol{U}^{T} \boldsymbol{V}_{i}\right)^{-1} \boldsymbol{e}_{r, i}^{*}}^{\boldsymbol{J}_{r, i}}+\overbrace{\left(\boldsymbol{V}_{i}^{T} \boldsymbol{\boldsymbol { R } _ { r , i }}\right)^{-1} \boldsymbol{V}_{i}^{T} \boldsymbol{B}_{i} \boldsymbol{u}}^{\boldsymbol{B}_{r, i}} \\
& \boldsymbol{y}_{i}=\underbrace{\boldsymbol{B}_{i}^{T} \boldsymbol{V}_{i}\left(\boldsymbol{U}^{T} \boldsymbol{V}_{i}\right)^{-1} \boldsymbol{e}_{r, i}^{*}}_{\boldsymbol{B}_{r, i}^{T}}
\end{aligned}
$$

Matrix Interpolation:

$$
\begin{aligned}
& \boldsymbol{J}_{r}(p)=\sum_{i} \omega_{i}(p) \boldsymbol{J}_{r, i}, \\
& \boldsymbol{R}_{r}(p)=\sum_{i} \omega_{i}(p) \boldsymbol{R}_{r, i}, \\
& \boldsymbol{Q}_{r}^{-1}(p)=\sum_{i} \omega_{i}(p) \boldsymbol{Q}_{r, i}^{-1}, \\
& \boldsymbol{B}_{r}(p)=\sum_{i} \omega_{i}(p) \boldsymbol{B}_{r, i} \\
& \text { with } \omega_{i} \geq 0, \quad \sum_{i} \omega_{i}=1
\end{aligned}
$$

Example of two weighting functions $\omega_{1}(p), \omega_{2}(p)$

Reduced parametric model in co-energy form:

$$
\begin{aligned}
& \boldsymbol{Q}_{r}^{-1}(p) \dot{\boldsymbol{e}}_{r}=\left(\boldsymbol{J}_{r}(p)-\boldsymbol{R}_{p}(p)\right) \boldsymbol{e}_{r}+\boldsymbol{B}_{r}(p) \boldsymbol{u} \\
& \boldsymbol{y}=\boldsymbol{B}_{r}^{T}(p) \boldsymbol{e}_{r}
\end{aligned}
$$

B. Lohmann \& T. Scheuermann

MOR 4 MECHATRONICS, Wilhelmshaven 2018

Parametric Reduction of the standard PH form (new)

a) Interpolate descriptor form, then convert to state-space form (Int/PH)

The locally reduced models (*) in descriptor form are

$$
\begin{aligned}
& \boldsymbol{V}_{i}^{T} \boldsymbol{Q}_{i} \boldsymbol{V}_{i} \dot{\boldsymbol{x}}_{r, i}=\boldsymbol{V}_{i}^{T} \boldsymbol{Q}_{i}\left(\boldsymbol{J}_{i}-\boldsymbol{R}_{i}\right) \boldsymbol{Q}_{i} \boldsymbol{V}_{i} \boldsymbol{x}_{r, i}+\boldsymbol{V}_{i}^{T} \boldsymbol{Q}_{i} \boldsymbol{B}_{i} \boldsymbol{u} \\
& \boldsymbol{y}_{i}=\boldsymbol{B}_{i}^{T} \boldsymbol{Q}_{i} \boldsymbol{V}_{i} \boldsymbol{x}_{r, i}
\end{aligned}
$$

Preparation of Interpolation by state transformation $\boldsymbol{T}_{i}=\boldsymbol{U}^{T} \boldsymbol{V}_{i}$ and pre-multiplier $\boldsymbol{M}_{i}=\left(\boldsymbol{V}_{i}^{T} \boldsymbol{U}\right)^{-1}$:

$$
\begin{aligned}
& \overbrace{\left(\boldsymbol{V}_{i}^{T} \boldsymbol{U}\right)^{-1} \boldsymbol{V}_{i}^{T} \boldsymbol{Q}_{i} \boldsymbol{V}_{i}\left(\boldsymbol{U}^{T} \boldsymbol{V}_{i}\right)^{-1}}^{\boldsymbol{Q}_{r,}} \dot{\boldsymbol{x}}_{r, i}^{*}
\end{aligned}=\overbrace{\left(\boldsymbol{V}_{i}^{T} \boldsymbol{U}\right)^{-1} \boldsymbol{V}_{i}^{T} \boldsymbol{Q}_{i}\left(\boldsymbol{J}_{i}-\boldsymbol{R}_{i}\right) \boldsymbol{Q}_{i} \boldsymbol{V}_{i}\left(\boldsymbol{U}^{T} \boldsymbol{V}_{i}\right)^{-1} \boldsymbol{x}_{r, i}^{*}}^{\boldsymbol{J}_{r, i}-\boldsymbol{R}_{r, i}}+\overbrace{\left(\boldsymbol{V}_{i}^{T} \boldsymbol{U}\right)^{-1} \boldsymbol{V}_{i}^{T} \boldsymbol{Q}_{i} \boldsymbol{B}_{i} \boldsymbol{u}}^{\boldsymbol{B}_{r i}}
$$

Matrix interpolation leads to:

$$
\begin{array}{ll}
\tilde{\boldsymbol{J}}_{r}(p)=\sum_{i} \omega_{i}(p) \boldsymbol{J}_{r, i}, & \widetilde{\boldsymbol{R}}_{r}(p)=\sum_{i} \omega_{i}(p) \boldsymbol{R}_{r, i}, \\
\boldsymbol{Q}_{r}(p)=\sum_{i} \omega_{i}(p) \boldsymbol{Q}_{r, i}, & \widetilde{\boldsymbol{B}}_{r}(p)=\sum_{i} \omega_{i}(p) \boldsymbol{B}_{r, i}
\end{array}
$$

and the reduced model in descriptor form is

$$
\begin{aligned}
& \boldsymbol{Q}_{r}(p) \dot{\boldsymbol{x}}_{r}^{*}=\left(\widetilde{\boldsymbol{J}}_{r}(p)-\widetilde{\boldsymbol{R}}_{r}(p)\right) \boldsymbol{x}_{r}^{*}+\widetilde{\boldsymbol{B}}_{r}(p) \boldsymbol{u} \\
& \boldsymbol{y}=\widetilde{\boldsymbol{B}}_{r}^{T}(p) \boldsymbol{x}_{r}^{*}
\end{aligned}
$$

By pre-multiplication with \boldsymbol{Q}_{r}^{-1} and by inserting the identity matrix $\boldsymbol{Q}_{r}^{-1} \boldsymbol{Q}_{r}$ we get parametric model in standard form:

$$
\begin{aligned}
& \dot{\boldsymbol{x}}_{r}^{*}=\overbrace{\boldsymbol{Q}_{r}^{-1}(p)\left(\tilde{\boldsymbol{J}}_{r}(p)-\widetilde{\boldsymbol{R}}_{r}(p)\right) \boldsymbol{Q}_{r}^{-1}(p)}^{\boldsymbol{J}_{r}(p)-\boldsymbol{R}_{r}(p)} \boldsymbol{Q}_{r}(p) \boldsymbol{x}_{r}^{*}+\overbrace{\boldsymbol{Q}_{r}^{-1}(p) \widetilde{\boldsymbol{B}}_{r}(p)}^{\boldsymbol{B}_{r}(p)} \boldsymbol{u} \\
& \boldsymbol{y}=\underbrace{\widetilde{\boldsymbol{B}}_{r}^{T}(p) \boldsymbol{Q}_{r}^{-1}(p)}_{\boldsymbol{B}_{r}^{T}(p)} \boldsymbol{Q}_{r}(p) \boldsymbol{x}_{r}^{*}
\end{aligned}
$$

Parametric reduction of the standard PH form (new)

b) Convert to state-space form, then interpolate ($\mathrm{PH} / \mathrm{Int}$)

The locally reduced models (**) in standard form are

$$
\begin{aligned}
\dot{\boldsymbol{x}}_{r, i} & =\left(\boldsymbol{J}_{r, i}-\boldsymbol{R}_{r, i}\right) \boldsymbol{Q}_{r, i} \boldsymbol{x}_{r, i}+\boldsymbol{B}_{r, i} \boldsymbol{u} \\
\boldsymbol{y}_{r, i} & =\boldsymbol{B}_{r, i}^{T} \boldsymbol{Q}_{r, i} \boldsymbol{x}_{r, i}
\end{aligned}
$$

Preparation of the interpolation by state transformation $\boldsymbol{T}_{i}=\boldsymbol{U}^{T} \boldsymbol{V}_{i}$ and by inserting an identity matrix:

$$
\begin{aligned}
& \dot{\boldsymbol{x}}_{r, i}^{*}=\overbrace{\left(\boldsymbol{U}^{T} \boldsymbol{V}_{i}\right)\left(\boldsymbol{J}_{r, i}-\boldsymbol{R}_{r, i}\right)\left(\boldsymbol{U}^{T} \boldsymbol{V}_{i}\right)^{T}}^{\left.\boldsymbol{J}_{r, i}^{*} \boldsymbol{R}^{\boldsymbol{R}}, \boldsymbol{U}^{T} \boldsymbol{V}_{i}\right)^{-T} \boldsymbol{Q}_{i}\left(\boldsymbol{U}^{T} \boldsymbol{V}_{i}\right)^{-1}} \boldsymbol{x}_{r, i}^{*}+\overbrace{\left(\boldsymbol{U}^{T} \boldsymbol{V}_{i}\right) \boldsymbol{B}_{r, i}, \boldsymbol{u}}^{\boldsymbol{B}_{B_{i, i}^{*}}^{*}} \\
& \boldsymbol{y}_{i}=\underbrace{\boldsymbol{B}_{r, i}^{T}\left(\boldsymbol{U}^{T} \boldsymbol{V}_{i}\right)^{T}}_{\boldsymbol{B}_{r, i}^{T}} \underbrace{\left(\boldsymbol{U}^{T} \boldsymbol{V}_{i}\right)^{-T} \boldsymbol{Q}_{i}\left(\boldsymbol{U}^{T} \boldsymbol{V}_{i}\right)^{-1}}_{\boldsymbol{Q}_{r, i}^{*}} \boldsymbol{x}_{r, i}^{*}
\end{aligned}
$$

Matrix Interpolation determines the matrices of the reduced model in standard form:

$$
\begin{array}{ll}
J_{r}^{*}(p)=\sum_{i} \omega_{i}(p) \boldsymbol{J}_{r, i}^{*}, & \boldsymbol{R}_{r}^{*}(p)=\sum_{i} \omega_{i}(p) \boldsymbol{R}_{r, i}^{*}, \\
\boldsymbol{Q}_{r}^{*}(p)=\sum_{i} \omega_{i}(p) \boldsymbol{Q}_{r, i}^{*}, & \boldsymbol{B}_{r}^{*}(p)=\sum_{i} \omega_{i}(p) \boldsymbol{B}_{r, i}^{*}
\end{array}
$$

Example: discretized linear wave equation [8]

$$
\frac{\partial u}{\partial t}=-d i v \mathbf{v}
$$

$$
\frac{\partial \mathbf{v}}{\partial t}=-\operatorname{grad} u-c \mathbf{v}
$$

- Discretizing PDE on dual complexes leads to a Port-Hamiltonian system.
- Physical values are connected to their geometrical domain.
- The discretized equations are an exact representation of the PDE (in each geometric element)

Reduction

Full Order: 682
Reduced Order: 50

Parameter: l_{x}

$$
l_{x_{1}}=50
$$

$$
l_{x_{2}}=60
$$

$$
w_{1}=w_{2}=0.5
$$

B. Lohmann \& T. Scheuermann

Interpolation

Bode Diagram

Comparison

Bode Diagram

Outlook: Reduction of non-linear PH-systems [7]

The PH system with nonlinear energy gradient

$$
\begin{aligned}
\dot{\boldsymbol{x}} & =(\boldsymbol{J}-\boldsymbol{R}) \nabla H(\boldsymbol{x})+\boldsymbol{B} \boldsymbol{u} \\
\boldsymbol{y} & =\boldsymbol{B}^{T} \nabla H(\boldsymbol{x})
\end{aligned}
$$

Is reduced with \boldsymbol{V} and \boldsymbol{W}^{T}. Additional approximation: $\frac{\partial}{\partial \boldsymbol{x}} H\left(\boldsymbol{V} \boldsymbol{x}_{r}\right) \approx \boldsymbol{W} \frac{\partial}{\partial \boldsymbol{x}_{r}} H_{r}\left(\boldsymbol{x}_{r}\right)$ with $H_{r}\left(\boldsymbol{x}_{r}\right)=H\left(\boldsymbol{V} \boldsymbol{x}_{r}\right)$ and $\boldsymbol{W}^{T} \boldsymbol{V}=\boldsymbol{I}$ (biorthogonal).

$$
\begin{aligned}
& \overbrace{\boldsymbol{W}^{T}}^{I} \boldsymbol{V} \dot{\boldsymbol{x}}=\boldsymbol{W}^{T}(\boldsymbol{J}-\boldsymbol{R}) \boldsymbol{W} \nabla H_{r}\left(\boldsymbol{x}_{r}\right)+\boldsymbol{W}^{T} \boldsymbol{B} \boldsymbol{u} \\
& \boldsymbol{y}=\boldsymbol{B}^{T} \boldsymbol{W} \nabla H_{r}\left(\boldsymbol{x}_{r}\right)
\end{aligned}
$$

The reduction matrices are generated by Snapshots and orthogonalized:

$$
\boldsymbol{V}=\operatorname{snap}\left[\begin{array}{lll}
\boldsymbol{x}_{1} & \ldots & \boldsymbol{x}_{k}
\end{array}\right] \quad \boldsymbol{W}=\operatorname{snap}\left[\nabla H\left(\boldsymbol{x}_{1}\right) \quad \ldots \quad \nabla H\left(\boldsymbol{x}_{k}\right)\right]
$$

Literature:

[1] Giftthaler, Wolf, Panzer, Lohmann: Parametric Model Order Reduction of Port-Hamiltonian Systems by Matrix Interpolation. at 2014, Seiten 619-628.
[2] Wolf, Eid, Kotyczka: Passivity and Structure Preserving Order Reduction of Linear PortHamiltonian Systems using Krylov Subspaces. European Journal of Control 2010.
[3] Lohmann, Wolf, Eid, Kotyczka: Passivity Preserving Order Reduction of Linear Port-Hamiltonian Systems by Moment Matching. Technical Report TRAC-4 (2009), TU München.
[4] Gugercin, Polyuga, Beattie, van der Schaft: Structure-Preserving Tangential Interpolation for Model Reduction for Port-Hamiltonian Systems. Automatica 48 (2012), Seiten 1963-1974
[5] Panzer, Mohring, Eid, Lohmann: Parametric Model Order Reduction by Matrix Interpolation. at 08/2010, Seiten 475-484.
[6] Geuß, Panzer, Lohmann: On Parametric Model Order Reduction by Matrix Interpolation. European Control Conference 2013.
[7] Chaturantabut, Beattie, Gugercin: Structure Preserving Model Reduction for nonlinear portHamiltonian systems, SIAM Journal on Scientific Computing (SISC)
[8] Kotyczka, Maschke: Discrete port-Hamiltonian formulation and numerical approximation for systems of two conservation laws. In: Automatisierungstechnik (2017).

[^0]: ${ }^{1}$ Tomography data from LAGEP, Université Claude Bernard Lyon 1 processed with iMorph (http://www.imorph.fr/)

