
1 INTRODUCTION 

The digitization of the construction industry offers 
various new possibilities for the planning, monitor-
ing, and design process of buildings. In recent years, 
many research projects are focusing on using methods 
of computer-aided engineering, such as building in-
formation modeling or structural simulations, to facil-
itate and enhance the planning process. However, as 
of now, not many of the advantages of using digital 
support are used after the planning of a construction 
has been finished. While monitoring of the construc-
tion progress by comparing planned conditions to the 
actual situation is a labor-intensive task, it is still 
mostly conducted by the workforce on site with little 
technical support.  

During the last decades, image processing tech-
niques have been increasingly adopted by the con-
struction industry, greatly improving and facilitating 
the process of construction monitoring. These meth-
ods gained new potential due to the more affordable 
and precise acquisition devices like unmanned aerial 
vehicles (UAVs) or laser scanners. Using the result-
ing 3D point clouds and information retrieved from 
the building information model, the possibility to 

track the progress of construction sites arises 
(Golparvar-fard, Pena-Mora, and Savarese 2009; 
Braun et al. 2015). 

A detailed geometric as-planned vs. as-built com-
parison allows to track the current progress of a con-
struction site, assess the quality of the construction 
work, and to check for construction defects such as 
cracks.  

To generate high-quality point clouds, a signifi-
cant number of consecutive photographs covering the 
monitored area is needed, requiring extensive image 
capturing and processing. However, most monitoring 
tasks do not entail the need for detailed 3D infor-
mation. These include the monitoring of the quantity 
and positions of site equipment, of externally stored 
construction material, and major construction phases. 

The image analysis and object detection on aerial 
photographs, which can be taken with relatively low 
effort, offers an alternative to expensively generating 
3D point clouds. The scientific field of computer vi-
sion provides different solutions to process and, to a 
certain extent, understand images.  

In this contribution, we use two state-of-the-art 
techniques of image processing to analyze aerial pho-
tography of construction sites. On the example of 
formwork elements, we demonstrate an artificial in-
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ABSTRACT: 

The monitoring of the construction progress is an essential task on construction sites, which nowadays is con-
ducted mostly by hand. Recent image processing techniques provide a promising approach for reducing manual 
labor on site. While modern machine learning algorithms such as convolutional neural networks have proven 
to be of sublime value in other application fields, they are widely neglected by the CAE industry so far. In this 
paper, we propose a strategy to set up a machine learning routine to detect construction elements on UAV 
photographs of construction sites.  In an accompanying case study using 750 photographs containing nearly 
10.000 formwork elements, we reached accuracies of 90% when classifying single object images and 40% when 
locating formwork on multi-object images. 

 



telligence approach to recognize and locate construc-
tion elements on site. In the first part of the paper, we 
give an overview of the state of the art in image anal-
ysis as used on construction sites today, followed by 
a further description of the used methodology. We 
conclude the paper with a proof of concept and a sum-
mary of our results. 

2 STATE OF THE ART 

Computer Vision is a heavily researched topic, that 
got even more attention through recent advances in 
autonomous driving and machine learning related 
topics. Image analysis on construction sites, on the 
other hand, is a rather new topic. Since one of the key 
aspects of machine learning is the collection of large 
datasets, current approaches focus on data gathering. 
In the scope of automated progress monitoring, Han 
et al. published an approach for Amazon Turk based 
labeling (Han and Golparvar-Fard 2017). (Kropp, 
Koch, and König 2018) tried to detect indoor con-
struction elements based on similarities, focusing on 
radiators. 

For effective and efficient image analysis and ob-
ject recognition, machine learning algorithms have 
been increasingly used during the last decades. In 
2012, the convolutional neural network (CNN) 
“AlexNet” (Krizhevsky, Sutskever, and Hinton 2017) 
achieved a top-5 error of 15.3% in the prestigious 
ImageNet Large Scale Visual Recognition Challenge 
(Russakovsky et al. 2015). These results were surpris-
ingly accurate at the time, proving the advantages of 
using CNN. On this account, the software industry 
shifted towards using CNN for all machine learning 
based image processing tasks (LeCun, Bengio, and 
Hinton 2015). 

There are different tasks to be solved by image 
processing algorithms. Well known problems include 
classification, where single-object images are ana-
lyzed, object detection, where several objects in one 
image may be classified and localized within the im-
age, and image segmentation, where each pixel of an 
image is classified (Buduma 2017). In this paper, we 
focus on image classification and object detection. 

CNNs are structured in locally interconnected lay-
ers with shared weights. Each layer comprises multi-
ple calculation units (called neurons). The neurons of 
the first layer (input layer) represent the pixels of the 
analyzed image, the last layer (output layer) com-
prises the predictable object classes.  

In between input and output layer, any number of 
hidden layers can be arranged. While AlexNet con-
tained 8 hidden layers, GoogLeNet (Szegedy et al. 
2015),  and Microsoft ResNet (He et al. 2016) use 
more than 100 hidden layers. The layers are usually 
convolution layers (sharpening features), pooling lay-
ers (discarding unnecessary information), or fully 
connected layers (enabling classification) (Buduma 
2017; Albelwi and Mahmood 2017).  

To adapt to different problems, such as recogniz-
ing formwork elements on images, CNNs must be 
trained. During training, the connections between cer-
tain neurons are increased, while the connections be-
tween other neurons are reduced–the weights connec-
tion consecutive layers are weighted. The training is 
usually carried out using supervised backpropagation, 
meaning that the network is fed with example input-
output pairs (Buduma 2017). The correct solution for 
each input is called ground truth. To train a CNN to-
wards reliable predictions, a significant amount of 
training data is required, which has to be prepared in 
a preprocessing step. ImageNet provides around 
1.000 images per class, for example (Russakovsky et 
al. 2015). To accelerate the training processes, 
weights of previously trained CNNs can be used. To 
adapt pretrained CNNs, the fully connected layers are 
replaced with layers representing the new data and 
trained with the new data.  

3 METHODOLOGY 

In the context of the introduced research topics, the 
paper focusses on the image-based detection of tem-
porary construction elements such as formwork. The 
detection of recurring, similar objects can be solved 
by machine-learning approaches. Several tools sup-
port the image analysis regarding automated detec-
tion of pretrained image sets.  

3.1 Image classification using CNN 
During image classification, which is also known as 
image recognition, images that contain but exactly 
one object are classified. Each class, that the CNN can 
detect, is represented by one output neuron. The ac-
tivity of the neurons is read as the probability that the 
image contains an object of the corresponding class. 
Image classification algorithms will fail on images 
containing multiple objects. As images of construc-
tion sites contain more than one object, image classi-
fication algorithms can only be applied after prepro-
cessing of the data. However, they can be very useful 
to confirm certain questions, e.g. if a wall with a 
known position is missing, currently shuttered or fin-
ished. 

Figure 1: Structure of a sample CNN containing convolutional, 
pooling and fully connected layers. 



3.2 Object detection using CNN 
The evident solution to analyze multi-object images 
is using a sliding window on the image and run an 
image classification on each window, which is com-
putationally very expensive. Different proposals have 
been made to reduce the computational effort, e.g. re-
gion-proposal networks (e.g. R-CNN, (Girshick et al. 
2014), (Girshick 2015), (Ren et al. 2017)), which in-
telligently detect regions of interest within an image 
and analyze those further, and single shot detectors 
(e.g. DetectNet (Tao, Barker, and Sarathy 2016) and 
YOLO (Redmon et al. 2016), (Redmon and Farhadi 
2017), (Redmon and Farhadi 2018)), which overlay 
the image with a grid and analyze each cell. 

3.3 Evaluation of CNN 
To measure the performance of an image classifying 
CNN, the top-1 error and top-5 error are used. The 
top-1 error represents the fraction of images, for 
which the correct class has been predicted with the 
highest probability. The top-5 error is the fraction of 
images, for which the correct class is within the 5 
classes that have been predicted with the highest 
probability, accordingly.  

To measure the performance of an object detecting 
CNN, precision p, recall r and mean average preci-
sion mAP can be used. They are calculated using the 
number of true positives TP, false positives FP and 
false negatives FN: 
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In object detection tasks, a prediction is counted as 

true positive, if it has an intersection over union IoU 
of a distinct value, usually over 0.5, meaning that 
more than 50% of the predicted bounding box should 
overlap the ground truth bounding box (see Figure 2): 
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For object detection, the mAP is the average of the 
possible precision at different recall values across all 
classes. To calculate the AP for each class, 
(Russakovsky et al. 2015) propose to consider 11 re-
call values according to the proposal by ImageNet: 
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With 𝑝𝑝𝑖𝑖 = maximum precision for any recall value 

exceeding r. 

3.4 Labeling 
Labeling defines the approach of marking all regions 
of interest in a set of pictures and defining the type of 
the marked region. A subset of labeled pictures is de-
picted in Figure 5 a). The labels are marked with 
green bounding boxes. 

As the labeling work takes a lot of time, a novel 
approach for automated labeling has been introduced 
by (Braun et al., 2018). In the frame of the research 
project ProgressTrack focusing on automated pro-
gress monitoring with photogrammetric point clouds, 
an algorithm has been developed to validate detection 
results of the as-built vs. as-planned comparison. As 
depicted in Figure 3, the projected 2D geometry of 
construction elements can be transformed from the 
building information model’s coordinate system into 
the 2D coordinate system of each picture, the element 
is included in. This is possible, as the pictures were 
aligned and oriented during the photogrammetric pro-
cess and thus making it possible to know the exact 
position in relation to the Building Information 
Model.

Figure 3: Reprojected bounding box of a column on a picture gath-
ered during acquisition 
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Figure 2: Area of overlap and area of union for predicted and 
labeled bounding boxes 



 Figure 2: Sample data from a) labeling, b) image snippets for classification, as well as c) snippets for DetectNet 



The process of labeling can benefit from this work 
because by this method, labels for all building ele-
ment can be marked in all pictures, that were taken 
and aligned accordingly. Future research will focus 
on this method to extract labels for all construction 
elements and train a CNN accordingly without the 
time consuming, manual labeling work to be done. 

4 CASE STUDY 

In the following sections, we present an image analy-
sis routine including data preparation as well as the 
training of convolutional neural networks to be able 
to recognize formwork elements. We focus on two 
different image analysis tasks: image classification 
and object detection. 

4.1 Data preparation 
As an initial dataset, 9.956 formwork elements were 
labeled manually on pictures of three construction 
sites that were collected during different case studies 
in the recent years. The images contain formwork el-
ements from two different, German manufacturers 
and vary in size (30cm up to 2,70m length) as well as 
color (red, yellow, black, grey). They were taken at 
varying weather conditions on partly cloudy, as well 
as sunny days. The image acquisition was achieved 
with aerial photography by different UAVs, but also 
from the ground with regular digital cameras, result-
ing in image sizes from 4000 x 3000 px up to 6000 x 
4000 px. The manual labeling process for this data set 
took around 130h to complete.  

The gathered data is processed as plain text files 
for each picture and processed for the various neural 
networks according to their respective requirements. 

4.2 Image analysis 
For image analysis, we used the Nvidia Deep Learn-
ing GPU Training System DIGITS (Yeager 2015), 
which provides a graphical web interface to the wide-
spread machine learning frameworks TensorFlow, 
Caffe, and Torch (NVIDIA 2018). It enables data-
management, network design and visualization of the 
training process. 

4.2.1 Image classification 
We used a standard GoogLeNet CNN implemented in 
Caffe for the image classification task. The training is 
performed using the Adam Solver (Kingma and Ba 
2014). We retrieved a classification dataset of form-
work elements from the labeled data (Section 4.1) by 
automatically trimming the images around the bound-
ing boxes of the labeled formwork elements (see a 
subset in Figure 4 b)). The automation was achieved 

                                                 
1 https://github.com/tumcms/Labelbox2DetectNet 

by a self-written tool that takes all labeled data and 
images as input and crops them automatically. The 
tool is made available on GitHub as an OpenSource 
solution1. To assure relatively even image sizes with 
sufficient detailing, we removed all images with re-
sulting dimensions under 200 x 200 pixels.  

To train the algorithm not only on formwork ele-
ments but on several classes, we added seven classes  
(see Table 1) that are related to construction sites 
from the Caltech 256 dataset (Griffin, Holub, and 
Perona 2007). The Caltech 256 provides single object 
images of 256 classes that need no further prepro-
cessing for image classification. 
 

Table 1: Classes and number of images per class used for train-
ing of an image classification CNN 

Class Origin Number of  
images 

Barrel Caltech 256 47 
Bulldozer Caltech 256 110 
Car Caltech 256 123 
Chair Caltech 256 62 
Formwork Own dataset 1410 
Screwdriver Caltech 256 102 
Wheelbarrow Caltech 256 91 
Wrench Caltech 256 39 

 
As GoogLeNet requests input images of 256 x 256 

pixels, all images are resized to that dimensions by 
DIGITS. For image classification, DIGITS automati-
cally splits the data into training and validation data. 

The CNN converged quickly towards high accura-
cies (top-1-error) around 85% (Figure 4) and stag-
nated at 90% after 100 epochs, which is a satisfying 
result. To achieve even higher accuracies throughout 
all classes, the number of images per class could be 
evened out by adding additional images to the un-
derrepresented classes of the training data in future 
work. 

 

Figure 3: Loss and accuracy of the GoogLeNet after 30 epochs of 
training for classifying images of formwork elements and objects typi-
cally found on construction sites. 



4.3 Object detection 
As next step, an object detection algorithm is 
introduced, to exactly detect certain elements in 
images and also precisely find the position of these 
elements. For this purpose, the dataset depicted in 
Figure 4 c) is used. To detect several formworks 
within an image of a construction site, we used a CNN 
with DetectNet architecture, implemented in Caffe. 
To reduce training time, we used the weights of the 
“BVLC GoogleNet model”2, which has been 
pretrained on ImageNet data. The training again is 
performed using the Adam Solver.  

We split the labeled images into 85% of training 
data and 15% of validation data. The images were rec-
orded at a high resolution between 4000 x 3000 and 
6000 x 4000 pixels. To minimize the necessary com-
putational effort, we split the images into smaller 
patches with a size of 1248 x 384 pixels. 

We trained the CNN twice with 300 epochs each. 
Both precision and recall reached values around 63%, 
the mAP stagnated around 44% (Figure 5). The net-
work manages to detect most formwork elements cor-
rectly with low rates of false detections. In Figure 6, 
the resulting bounding box for one example image is 
depicted. For this image, a very good result was re-
trieved. 

Further steps to improve the object detection algo-
rithm entail more extensive preprocessing of the data, 
longer training periods and adjustments of both the 
network architecture and the solving algorithms. 

 
Table 2: Number of images and number of formwork elements 

contained in that images for training and validation of the object 
detection 

Purpose Nr. of images 
Nr. of form-

work elements 
Training 646 8429 

Validation 99 1487 

5 SUMMARY 

The presented research focusses on image analysis of 
construction site images. To make automated as-
sumptions on the construction elements depicted on 
an image, machine learning tools need to be trained. 
First, the current state of the art for machine learning 
approaches is introduced and examined for their suit-
ability of application in the domain of construction. 

Then, these approaches are tested on construction 
site elements. For the training, 750 images of con-
struction sites were labeled, resulting in nearly 10.000 
labeled formwork elements. The images were used as 

                                                 
2 Released for unrestricted use at 

https://github.com/NVIDIA/DIGITS/tree/master/examples/ob-
ject-detection  

input to various classification and detection algo-
rithms, resulting in very high success rates for the 
classification of single object images and mediocre 
success rates for object detection on multi-object im-
ages. However, as object detection is a highly de-
manding task concerning a large community of re-
searchers, the results give a promising starting point 
for future improvements. 
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