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Abstract— This work presents techniques for efficiently
checking location compliance of automated road vehicles. We
refer to location compliance as an allowed translational and
rotational positioning of a vehicle on a road network, i.e.,
the vehicle does not enter forbidden lanes or regions reserved
for other traffic participants, such as bike lanes or dedicated
bus routes. Previous work has mostly focused on efficient
collision detection between traffic participants and static ob-
stacles represented as bounded sets. We formulate location
compliance as a set enclosure problem, which cannot be solved
directly with collision detection; thus, different algorithms
from computational geometry have to be applied. We present
polygon enclosure and boundary mesh generation approaches
and evaluate them using existing road geometries from the
CommonRoad database. For a fair comparison, we generate
thousands of random instances which are evaluated statistically.

I. INTRODUCTION

One of the most important constraints of autonomous
vehicles is to stay in certain lanes and avoid unsafe regions.
In emergency situations, regions such as open spaces and
bike lanes, which are typically not allowed to be entered,
can suddenly be utilized to avoid a collision. We refer to
checking whether a vehicle is allowed to drive in a certain
region as location compliance. This includes determining
enclosure in a certain region or the entering of forbidden
regions. While many approaches exist for checking collisions
between traffic participants and static obstacles (see e.g.,
[1], [2]), both of which can be represented by bounded
sets, very little work exists on efficient and exact algorithms
for checking location compliance. This often involves deter-
mining whether unbounded areas are entered—the different
nature of unbounded sets requires different computational
geometry algorithms. Checking whether the vehicle under
consideration (the ego vehicle) is location compliant has
to occur at high frequency for all vehicle poses in each
motion plan, typically with more than 10Hz. As a result,
the performance of location compliance largely determines
the performance of motion planners. Subsequently, we detail
how this work is related to the literature on motion planning
and lane departure detection.

Motion planning can be roughly categorized in graph
search techniques and continuous optimization techniques
[3]. All graph search techniques (e.g., rapidly exploring
random trees [4], probabilistic roadmaps [5], or motion
primitives [6], [7] in combination with A* [8], Anytime
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A* [9], ARA* [10], D* [11]) require collision checks.
Concerning optimization techniques, one can consider road
boundaries as constraints: For fixed Cartesian coordinate
systems, those constraints are non-convex and hard to handle.
For this reason, almost all publications are planning in lane-
based coordinate systems and typically assume constant road
width, although this is a strong simplification, see e.g.,
[12]–[15]. No matter what motion planning technique is
used, in reality, the executed motion differs from the plan
due to disturbances, sensor noise, and unmodeled dynamics.
Consequently, verification techniques are necessary, which
typically require collision checking with road boundaries
[16], [17].

Although the survey paper [3] and all previously men-
tioned works on motion planning of road vehicles state the
importance of location compliance, no work explicitly pro-
vides an efficient computational solution for non-discretized
road boundaries. However, many works exist for discretized
road boundaries, e.g., represented by occupancy maps [1],
[18]. As discussed later, using box-shaped occupancy grids
results in unnecessary inaccuracy and thus possibly unsound
verification results. In [19], [20], the occupancy map is
referred to as a drivability map and also suffers from the
previously mentioned resolution issue. In [21], polygons in-
stead of an occupancy map are used to formulate constraints
for their continuous trajectory optimization. Generally, one
can say that most works do not precisely check if road or
lane boundaries are met. We have not found a single paper
in the Darpa Urban Challenge book [22] or any reference
in the overview paper [3], that describes beyond occupancy
maps how to best check whether the lane/road boundary has
been left when following a planned trajectory. Additionally,
works with a stronger safety focus do not describe how the
departure of lane/road bounds is detected [23], [24].

Please note that this work intentionally does not consider
the problem of detecting lane and road bounds from on-board
sensors [25]–[27] or fusing this information with map data
[28], but assumes that the maps are already provided. To
account for missing or outdated map data, an autonomous
vehicle should additionally be able to perform instantaneous
detection or short-term prediction of lane/road departure
from sensor data as presented in [29], [30]. These do not
require map data, but only work for short-term predictions
and do not perform exact intersections for verifying location
compliance [31], [32].

In this work, we present efficient methods for loca-
tion compliance in a systematical way. Sec. II provides
an overview of our developed approaches. The polygon
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enclosure approach is presented in Sec. III and different
boundary mesh approaches are introduced in Sec. IV. All
developed approaches are evaluated in Sec. V using existing
road geometries, followed by conclusions in Sec. VI.

II. PROBLEM STATEMENT

Let us first introduce some sets before formalizing the
problem of location compliance. We denote the occupancy
of the ego vehicle on a two-dimensional surface as E ⊂ R2.
As mentioned before, we assume that fused maps (maps
corrected by sensor information) are already provided. We
also assume that the allowed region for a vehicle, denoted
by A ⊂ R2, within the map, is provided as well. These
regions typically originate from combining the given map
information with traffic rules [33]. Checking location com-
pliance can be done either by determining the enclosure of
E in the allowed region, or by checking intersection with the
compliment AC of the allowed region:

E ⊆ A ⇔ E ∩ AC = ∅. (1)

Both options are visualized in Fig. 1.

(a) Enclosure checking: Is the
blue vehicle enclosed in the red
allowed region? (E ⊆ A?)

(b) Boundary generation: Does
the blue vehicle collide with
the orange forbidden region?
(E ∩ AC = ∅?)

Fig. 1: Visualization of enclosure checking and boundary
generation approaches. The vehicle is depicted as a blue
rectangle.

Determining E ⊆ A is often realized with significantly
different algorithms than collision detection

⋂
iOi = ∅

between objects Oi ⊂ R2 [34], [35]. In Sec. III we solve
location compliance by checking E ⊆ A, which we refer to
as the polygon enclosure approach. For instance, this can be
done by checking whether the vehicle intersects with the road
border. In Sec. IV we compute whether E ∩AC = ∅, which
we refer to as the boundary mesh approach. This approach
uses collision detection between objects, but it requires the
construction of the complement region AC .

In order to represent the problem in (1) by a finite
representation for computational analysis, we express the ego
vehicle as a polygon and the road network with lanelets,
which are essentially polygons with a left and right border,
to determine the driving direction.

Definition 1 (Lanelet [36]): A lanelet is defined by its left
and right bound, where each bound is represented by an array
of points (a polyline), as shown in Fig. 2. �

Due to the use of polygons, we can represent arbitrary
shapes with arbitrary precision [37]. In reality, road and
vehicle information might not be exact, so that a vehicle
could potentially leave the allowed area without it being
detected. This can be prevented by appropriately enlarging E
or shrinking A as a safety margin for inaccurate map data.
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Fig. 2: Road network composed of lanelets.

The main objective of this work is to present the enclosure
and the boundary mesh approaches and to evaluate their
efficiency for checking the location compliance of road
vehicles. Results of the evaluation are presented in Sec. V.
Please note that our work focuses on the location compliance
in relatively small maps. When operating on large road
networks, it might be required that the map is divided
into several local regions. During motion planning, different
regions have to be loaded due to the motion of the ego
vehicle. However, we do not analyze the loading times of
map regions, because typically only a few loading operations
are required, compared to thousands of location compliance
checks, which thus dominate the computation time.

III. POLYGON ENCLOSURE APPROACH

The polygon enclosure technique checks whether the ego
vehicle E is enclosed by the allowed region A, which
is described by lanelets. Let us abstract away the driving
direction of each lanelet and model the ith lanelet as a
polygon Li. The task now is to check whether E ⊆

⋃
i Li.

Note that E might intersect with multiple lanelets, so it is
not enough to check for ∃i : E ⊆ Li. There are different
considerations for how this can be computed efficiently.
Here, we discuss the three following aspects: The choice of a
basis from which the polygons are constructed, the selection
method for polygons, and the computational method to check
for inclusion.

a) Polygon basis: As mentioned before, A is described
by lanelets, and these can be modeled as polygons. However,
for a more efficient algorithm, we can also unify laterally
adjacent lanelets into a single polygon. We call a set of
laterally adjacent lanelets lane sections. In Fig. 3 on the
following page, the lanelet and lane section representation
are compared. The motivation for utilizing lane sections is
that two laterally adjacent lanelets share a polyline between
them, but this line is not present in the lane section polygon.
This means that the total number of points can be reduced



with this representation, which might lead to a more effi-
cient algorithm. In the following, we denote the individual
polygons as Li, regardless of their basis.

(a) Lanelets.

(b) Lane sections.

Fig. 3: Comparison of different polygon representations.

b) Selection criteria: Only some of the Li potentially
intersect with E . For this reason, we observe different strate-
gies how to select the relevant polygons:
• Map region: The union of all Li of a map region
M⊃ E is constructed. We get a single polygon L∪ =⋃

i Li which represents A. The benefit of this strategy
is that this union can be precomputed for a certain M.
However, L∪ can have as many points as the sum of
the points of all Li, which might lead to an inefficient
inclusion test.

• Box selection: Potentially intersecting Li inM are iden-
tified by intersecting their axis-aligned bounding box
with the bounding box of E . This can be computed in
constant time and provides a set of candidate polygons
Ld
i . This set is often much smaller than the set of all Li,

and it is guaranteed to contain all polygons that intersect
with E . However, each Ld

i and their union cannot be
precomputed as the selection depends on E .
c) Computational method: Depending on the selection

strategy, we operate on a single polygon L∪ or on a set of
candidate polygons Ld

i . We can reduce all Ld
i to a single

polygon by computing their union
⋃

i Ld
i . For all following

discussions on time complexity in this paper, we assume
that each involved polygon has N line segments. Computing
the union of two general polygons has time complexity
O(N2) and well-known algorithms exist [38]. In particular,
for union operations we use the General Polygon Clipper
(GPC) library [39], which implements the algorithms by
Vatti [40]. GPC can handle non-convex, self-intersecting
polygons, and polygons with holes, so we can perform the
union operation for arbitrary road shapes.

Now, with a single polygon L ∈ {L∪,
⋃

i Ld
i }, computing

E ⊆ L can be done in the following ways:
• Segment intersection: The enclosure test of two poly-

gons can be performed in O(N logN) time [41, Theo-
rem 5] by checking whether any of their line segments
intersect. If they do, E 6⊆ L. Otherwise, if their line
segements do not intersect, E ⊆ L iff any point of E is
located in L.

• Difference: As polygon clipping operations are already
implemented for computing the union, we also examine

using polygon difference:

E ⊆ L ⇐⇒ E \ L = ∅, (2)

where the difference operation is a clipping operation,
and therefore has a complexity of O(N2), and checking
for an empty polygon takes constant time. While this en-
closure test has a higher worst-case bound than segment
intersection, both methods have an overall complexity of
O(N2) if we operate on a polygon set, as this requires
us to compute its union.

• Iterative difference: If we operate on the polygons Ld
i ,

instead of computing their union, we can also perform
iterative differences:

Eremain,i+1 = Eremain,i \ Ld
i , (3)

where Eremain,0 = E . The benefit of this method is that
at each step i, we can check whether Eremain,i+1 = ∅.
If this is the case, it can be concluded that E ⊆ A,
without necessarily iterating over all Ld

i .

IV. BOUNDARY MESH APPROACHES

In contrast to the polygon enclosure approach, the bound-
ary mesh approach checks whether E ∩ AC = ∅; see (1).
Computing whether two polygons intersect can be done in
O(N logN) time [41, Theorem 5]. It remains to compute
AC whose representation directly affects the computation
times. Computing AC can however be done preemptively for
a map region M. With this, we can determine the location
compliance in O(N logN) compared to O(N2) for polygon
enclosure of two polygons. Nonetheless, the average number
of polygons in AC to be checked might be larger than the
average number of polygons for the enclosure approach.
Also, the average computation time for operations involving
two polygons might be different from the worst-case time
complexity. Both aspects are evaluated in Sec. V.

The goal for generating a boundary mesh that models
AC is twofold: First, it should be composed from simple
objects for which efficient collision checks exist, and second,
it should be composed of as few objects as possible. In
the following, we give an overview of three investigated
approaches.

A. Quadtree

Quadtrees (see e.g., Ericson [42]) can be used to fill AC

with axis-aligned rectangles. In short, a quadtree recursively
splits a rectangle into four equal parts if it intersects with
A. With this procedure, after several iterations a rather tight
boundary mesh is obtained, as shown in Fig. 4 on the next
page. The method can fill large spaces with only a few boxes,
while a large number of boxes are constructed close to the
edge of the road. While there are small gaps between the
mesh and the road (since the road is generally not axis-
aligned), these can be reduced by increasing the maximum
depth, but at the cost of creating more boxes.



Fig. 4: The boundary mesh (in blue) generated by the basic
quadtree approach. Scenario map: GER Ffb 2 from [43].

B. Shell

The main disadvantage of the quadtree approach is that
many boxes are required at the border of the road to fill
non-axis-aligned regions with axis-aligned boxes. This dis-
advantage is addressed by our so-called shell approach. The
method constructs boundary rectangles along the polylines
of the road border. The rectangles have a user-defined width
w. To handle areas between lanelets where a rectangle is too
wide to fit and it intersects with A, a recursive subdivision
algorithm is used, just like for quadtrees. The result of the
shell approach is shown in Fig. 5.

In contrast to the quadtree approach, AC is not filled
completely; only the immediate area around A contains
rectangles. When the ego vehicle occupancy E is computed
for consecutive time intervals, as e.g., presented in [16],
crossing the shell is detected irrespectively of the width w (a
minimum distance regarding floating point errors is required,
of course). When collision checks are performed at discrete
points in time with a time increment ∆t, the width should be
chosen as w ≥ vmax∆t, where vmax is the maximum velocity
of the ego vehicle. To keep this overview concise, we present
the implementation of this newly developed approach in the
Appendix.

C. Triangulation

Finally, triangulation is proposed, which is an exact
method to create the boundary mesh. We perform a Delaunay
Triangulation between the road border and the border of
the map region M. Our implementation uses the Triangle
library by Shewchuk [44]. Fig. 6 on the next page shows the
triangulation of an example map.

Some maps contain polygons with excessively many
points potentially creating many thin triangles; this has two
disadvantages: a) increased computational load for location
compliance testing, and b) potentially wrong computations
due to floating point rounding errors. We are using the
following measures to counteract this issue:

• We resample the lanelet polylines and remove unneces-
sary points using the Douglas-Peucker point reduction
algorithm [45].

(a) Full view.

(b) Detailed view.

Fig. 5: An example of the shell approach with rectan-
gles (dark green) surrounding the road. Scenario map:
GER B471.

• We apply a constrained Delaunay triangulation, where
a minimal angle for each triangle is enforced [46].

All measures are applied during the construction of the mesh
and thus do not influence the online computation times. The
effects of the countermeasures are presented in Fig. 7 on the
following page.

V. EVALUATION

In this section we evaluate all presented approaches. We
use three road networks from the CommonRoad database
[43]: GER Ffb 2, GER Muc 1a, NGSIM US 101, and an
additional map GER B471 that we have created for this
work. All computations are performed on a Core i7 2600K
CPU with 8 GB of DDR3-RAM. To account for fluctuations
in computational times, each computation was repeated 20
times, and the minimum time of each run1 is presented. Each
evaluation is performed by sampling 10,000 random poses of
vehicles with uniformly distributed position and orientation.
Further details are presented in the Appendix.

In this measurement, we only focus on the runtime of
the location compliance check. The memory requirements

1as recommended in the documentation for time measurements in
Python, see: https://docs.python.org/3/library/timeit.
html#python-interface (Accessed date 12.01.18)
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Fig. 6: Triangulation result for scenario map GER Muc 1a
from [43].

(a) Before countermeasures. (b) After countermeasures.

Fig. 7: Triangulation before and after countermeasures. Sce-
nario map: NGSIM US 101 from [43].

are negligible here because the maps only contain a few
thousand vertices. However, for a large road network, where
different maps have to be loaded dynamically, the memory
consumption becomes a valid concern.

d) Polygon enclosure approaches: Tab. I on the next
page shows the time measurements for the enclosure ap-
proach. We can see that the box selection is more efficient
than operating on the union of all lanelets or lane sections
in the map. This is because the polygon that represents the
entire map has too many vertices, and therefore the difference
operation with O(N2) for N vertices takes more time than
for the smaller polygons.

Furthermore, we can see that for checking the polygon in-
clusion, the segment intersection performs far worse than the
polygon difference. This is suprising, because as mentioned
in Sec. III on page 2, the worst case runtime of segment
intersection is in O(N logN) compared to that of polygon
clipping O(N2). As the approach is non-competitive, we
have not computed the segment intersection for the map
selection strategy and for the lane section basis.

When comparing the lanelet and lane section approaches,
the lane sections tend to be faster, but the relative difference
between them varies between maps. For instance, the lane
difference is 4.3 times faster than the lanelets difference for
NGSIM US 101, but only 1.1 times faster for GER Muc 1a.
This is because the maps have different numbers of adjacent

lanelets. If more of the lanelets are neighboring, the lane
sections are larger. The lane polygons have only slightly
more vertices than a single lanelet, as they do not contain
the edges between the neighbors. Hence, the lane section
representation leads to fewer polygons, and overall to fewer
vertices that have to be computed.

Finally, we compare the difference and the iterative dif-
ference approaches. Computing the iterative difference tends
to be faster for lanelets and for lane sections. This makes
sense, as for the iterative differences, the remaining polygon
is checked for emptiness after each difference operation.
This means that this approach can terminate preemptively.
Additionally, the iterative method requires one less clipping
operation, as the other approach first builds the union of poly-
gons and then performs an inclusion check by set difference.
However, this does not always seem to be more efficient; for
the map GER Ffb 2, the non-iterative algorithm is slightly
faster. Overall, the measurement shows that computing the
iterative differences for lane sections is the most efficient
method for the polygon enclosure approach.

e) Boundary mesh approaches: Tab. II shows the evalu-
ation for the runtime and mesh size of the boundary collision
approaches. The quadtree is clearly non-competitive, because
of the large number of rectangles that it generates. The
triangulation tends to be faster than the other methods,
mostly because the resulting meshes contain fewer collision
objects. Another reason is that collision detection performs
better with triangles than with oriented rectangles, which we
can see in the case of the map GER Ffb 2, where the number
of objects is almost equal between the shell and triangulation
methods, but the latter is much faster. However, there is an
outlier with NGSIM US 101, where the shell is slighly faster
than the triangulation, because it generates roughly half as
many objects. Nonetheless, the triangulation seems to be the
best boundary approach in most cases, particularly because
it represents an exact solution, while the quadtree and shell
are approximations. We chose a high recursion depth for the
quadtree and shell approaches so that their approximation
errors are relatively low. Instead of using them as a stand-
alone method for testing the location compliance, it might
be beneficial to apply them with a low depth value for fast,
preemptive checks.

TABLE II: Boundary approach measurement. The number
of objects (nr) in the boundary meshes are listed and the
runtime is measured in seconds.

Quadtree Shell Triangulation
time nr time nr time nr

GER
B471 1.8049 7098 1.2352 3040 0.3143 2213

GER
Ffb 2 0.7515 4021 0.2947 685 0.0974 653

GER
Muc 1a 4.519 16813 5.3756 12893 0.8544 6457

NGSIM
US 101 1.1346 4705 0.1927 431 0.2297 916



TABLE I: Polygon enclosure runtime measurement. Time measured in seconds.

Polygon basis Selection
criteria

Computational
method

GER
B471

GER Ffb
2

GER
Muc 1a

NGSIM
US 101

Lanelets

Map Difference 0.6901 0.2929 6.4191 0.6881

Box

Difference 0.327 0.1748 1.696 0.6159
Segment Intersection 6.1982 3.1636 21.9658 5.6783
Iterative Difference 0.2905 0.1451 1.0426 0.362

Lane sections
Map Difference 0.6928 0.2959 6.4199 0.6875

Box Difference 0.2568 0.0787 1.5852 0.1423
Iterative Difference 0.2275 0.0803 0.7317 0.1084

f) Overall assessment: When we compare the best
results of the polygon and boundary approaches, the iterative
lane difference approach is slightly faster than the triangu-
lation in all cases. However, the measurements are highly
dependent on the implementation of the methods. An area
for future improvement is to ensure that the frameworks for
polygon enclosure and collision detection are optimized.

Overall, in the current implementation, the polygon and
boundary approaches have a comparable runtime. This sug-
gests that both are similarly efficient methods to check for
location compliance.

To better understand the performance of our approaches,
it is necessary to compare them to collision detection on
occupancy grids, which to date is the primarily-used method
for checking location compliance. While we have not evalu-
ated occupancy maps directly, a quadtree is essentially a non
uniform grid that contains discrete occupancy information.
The advantage of our proposed algorithms is that there is no
inherent inaccuracy in the obstacle representation. In a grid, a
large amount of cells is necessary to be able to describe road
boundaries with a precision of a few centimeters. Therefore,
our approaches are better suited if this level of accuracy is
required. The disadvantage of our approaches is that they are
currently not as efficient as state-of-the-art occupancy grid
methods, since collision detection within a uniform grid can
be reduced to querying distinct cells in the grid [1]. However,
our results show that much more compact representations
can be used for storing obstacle information compared to
a grid, such as a triangle mesh or polygon representation
and we also show that checking location compliance can
be performed relatively efficient with them. It remains to
optimize our collision detection and polygon intersection
tests, with the goal that our approaches reach a similar
performance as occupancy grids.

VI. CONCLUSIONS

To conclude, we propose multiple methods to check for
location compliance of vehicles with an arbitrary polygon
shape. The algorithms operate on a map region M, which
is part of a road network that is represented by lanelets. Our
approaches include both approximate and exact methods, but
from our results, we strongly encourage the use of exact
location compliance detection.

The polygon enclosure approach determines whether the
vehicle occupancy E is covered by the allowed area A

(E ⊆ A). This is done with polygon clipping operations. In
particular, our measurements suggest that the most efficient
method is to iteratively compute the polygon difference with
the polygons that represent A.

On the other hand, the boundary mesh approach checks
with collision detection whether E ∩ AC = ∅. We present
quadtree, shell, and triangulation approaches to construct
the mesh that represents the forbidden area AC . Our mea-
surements show that Delaunay triangulation is the most
promising approach for creating AC .

Both the polygon and boundary mesh approaches have
comparable performance in our evaluation. Further work on
comparing them should be done; in particular, their imple-
mentation should be extended so that both methods utilize
state-of-the-art frameworks. Another area for improvement
is to examine the performance on more and, in particular,
larger maps.
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APPENDIX

a) Shell approach: The goal of the shell approach is
to create a boundary mesh that tightly fits around A. This
is done by slightly offsetting the polylines that describe the
road border and then creating rectangles along these lines.
The resulting objects might intersect A, and to solve these
cases in a simple way, rectangles that intersect are split into
four parts, like in a quadtree. We require three parameters
for the algorithm:

1) the width, which determines how far an initial rectan-
gle at depth 0 extends to the sides;

2) the margin, which adds a small space between the
road boundary and the shell, as all rectangles would
otherwise intersect with the road at their edge;

3) the max depth, which specifies the maximum recur-
sion depth for rectangle subdivision;

The implementation of the shell approach is shown in
algorithm 1 on the following page. In line 3, the lane
boundaries are offset. The distance is calculated so that the



margin between the rectangles and the road is ensured. Then,
in line 8, the recursive function BUILD RECTANGLE is
called for each two points of all the road border polylines.
It is defined in the following line 11. The parameters of the
function are two points v1 and v2, the width of its rectangle
local width, and the recursion depth. First, in line 13, a
rectangle is created, which has the line segment (v1, v2) as
a central axis. If the rectangle does not collide with A, it
is added to the output. Otherwise, it is recursively split into
four parts. However, the orientation has to be considered
when calculating the coordinates for the four sub-rectangles.
Summarizing line 18 to line 24: The line segment (v1, v2) is
constructed, as well as the normal, which is perpendicular to
the segment. Additionally, the middle point of the segment
is computed. With these vectors, four sub-rectangles can be
calculated.

b) Evaluation details: Each of the 10,000 random
vehicles has a width of 1.9 and a length of 5 meters, in order
to roughly model a real world automobile. The polylines
of all maps are resampled and reduced (with Douglas-
Peucker, epsilon = 0.1) before the evaluation to make the
results more consistent and to solve cases where adjacent
lanelets would not share a polyline (this creates discrepancies
between the lanelet and lane section polygons). Some of the
evaluated algorithms require parameters; these are listed in
the following:
• Quadtree: The recursion is limited with a maxium depth

of 10.
• Shell: Width = 0.2, margin = 0.02, maximum depth =

5.
• Triangulation: Triangles are constrained to have mini-

mal angles of 20 degrees, but the number of vertices
may at most double to fullfill this.

• Iterative Differences: Unique to the polygon enclosure
approaches, iterative differences introduce floating point
inaccuracies. This is because the difference operation
computes new points, which is not the case for polygon
unions. As a result, if a vehicle intersects with multiple
polygons, checking for the emptiness of the remaining
polygon might not give the correct result. In practice,
we set a small threshold of 1e-7 for the minimal area
of the polygon.

REFERENCES

[1] J. Ziegler and C. Stiller, “Fast collision checking for intelligent vehicle
motion planning,” in Proc. of the IEEE Intelligent Vehicles Symposium,
2010, pp. 518–522.
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Algorithm 1 Algorithm of the shell approach. The recursive
function BUILD RECTANGLE is defined and called in a
loop.

1: constant width,margin,max depth
2: offset← margin + width/2
3: bounds← GENERATE OFFSET BOUNDS(offset)
4: rectangles← {}
5: A ← GENERATE ROAD REPRESENTATION( )

6: for bound in bounds do
7: for v1, v2 in bound do
8: BUILD RECTANGLE(v1, v2, width, 0)
9: end for

10: end for

11: function BUILD RECTANGLE(v1, v2, local width, depth)

12: rectangle← CREATE RECTANGLE ALONG LINE
13: (v1, v2, local width)
14: if not rectangle.COLLIDES WITH(A) then
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