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Abstract— Ensuring the safety of self-driving vehicles is a
challenging task, especially if other traffic participants severely
deviate from the predicted behavior. One solution is to ensure
that the vehicle is able to execute a collision-free evasive
trajectory at any time. However, a fast method to plan these so-
called fail-safe trajectories does not yet exist. Our new approach
plans fail-safe trajectories in arbitrary traffic scenarios by
incorporating convex optimization techniques. By integrating
safety verification in the planner, we are able to generate
fail-safe trajectories in real-time, which are guaranteed to
be safe. At the same time, we minimize jerk to provide
enhanced comfort for passengers. The proposed benefits are
demonstrated in different urban and highway scenarios using
the CommonRoad benchmark suite and compared to a widely-
used sampling-based planner.

I. INTRODUCTION

The development of self-driving vehicles promises en-
hanced road safety. However, after test vehicles have en-
countered their first accidents, multiple institutions around
the world have raised concerns about safe motion planning
[1]. Various concepts aiming to guarantee safety in arbitrary
traffic situations have been proposed (cf. Sec. I-A).

An interesting approach is the fail-safe planning frame-
work proposed in [2] (cf. general idea in Fig. 1). This
framework enforces the existence of a fail-safe trajectory,
which is collision-free with respect to any legal future
motion of obstacles, at any time. If traffic participants violate
certain traffic rules, the approach adjusts and also considers
behaviors ignoring traffic rules. If traffic participants deviate
from the predicted motion, the vehicle has two options to
remain safe: (1) execute the previously computed fail-safe
trajectory (cf. Fig. 1a), or (2) find a new combination of
an intended motion and fail-safe trajectory (cf. Fig. 1b).
The concept in [2] only specifies safety properties, but does
not propose a method to compute fail-safe trajectories in
arbitrary scenarios with low computational costs, which is
addressed in this work.

A. Literature Overview

a) Trajectory planning: Various trajectory planning ap-
proaches are discussed in [3]. We briefly review the most
popular below. Sampling-based planners, such as rapidly ex-
ploring random trees [4]–[6], randomly sample and connect
collision-free states toward a specified goal region to obtain
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Fig. 1: Fail-safe trajectories are collision-free with respect to any feasible
behavior of obstacles (a). While the ego vehicle proceeds along its intended
motion, new fail-safe trajectories are computed to ensure safety at any
time (b). In case no new valid fail-safe trajectory is found, the previously
computed fail-safe trajectory is executed.

kinematically feasible trajectories. However, the randomiza-
tion step may lead to large computation times. Furthermore,
sampling may cause motions with high jerks, which should
be avoided in case the critical situation resolves, i. e., a new
collision-free intended motion has been determined.

State lattices compute a trajectory set over a predefined
and fixed grid of goal states. In combination with optimal
control, state lattices can produce jerk-optimal trajectories
[7]. However, predefined grids lead to non-optimal solutions.

Continuous optimization techniques are used to overcome
discretization effects that limit sampling-based planners [8],
[9]. Trajectories are obtained by minimizing a certain cost
function subject to a set of state and input constraints despite
disturbances. For example, mixed-integer programming is
used in [10] and non-linear programming in [11]. Never-
theless, optimization may be harder to solve due to the non-
convex nature of most motion planning problems [12].

Instead, convex approximations of motion planning prob-
lems can be used. Convex optimization offers the advan-
tage of global convergence and the existence of mature
and efficient solving techniques [13]–[15], which have been
numerously applied to automotive problems, see e. g., [16]–



[20]. Nevertheless, in most traffic situations with multiple
other vehicles, the planning problem can only be formulated
as convex if the motion is separated into longitudinal and
lateral components, possibly resulting in non-drivable solu-
tions. However, we show that our approach can combine both
motions while obtaining feasible trajectories, even in heavily
linked situations such as evading.

As for planning evasive trajectories, most works focus on
a discrete set of maneuvers, so that they can only handle
specific traffic situations or cannot ensure safety if traffic
participants deviate from the predicted motion [21]–[25].

b) Safety verification: In general, planned trajectories
are only collision-free if obstacles do not deviate from the
predicted motion used during planning. Reachability analysis
[26] has been used to verify the safety of trajectories with
respect to any feasible future motion of obstacles. This is
done by computing the reachable set of obstacles, i. e., the
set of reachable states from a given initial set, and checking
for collisions with the trajectory of the ego vehicle [27]–[29].
However, if a trajectory is regarded as unsafe, no alternative
trajectory to avoid a collision is returned.

Logical reasoning has also been applied to safety veri-
fication. For instance, lane change maneuvers are verified
in [30], [31] and safe vehicle following is verified in [32].
Although these approaches guarantee safety, the logical
formulas involved are often complex and adjusted to the
considered traffic situation.

To ensure that trajectories with finite planning horizons
remain safe beyond the planning horizon, trajectories must
end in a safe state, e. g., by avoiding inevitable collision states
[33], [34]. States of invariant sets guarantee the existence of
at least one collision-free trajectory [35], [36].

Note that the focus of this work is not to check if planned
fail-safe trajectories end in a safe state. However, such a
goal region may be incorporated as a terminal constraint in
our approach. Furthermore, we assume redundant hardware,
allowing us to ignore hardware faults.

B. Contributions

This paper introduces a method to compute fail-safe tra-
jectories in arbitrary traffic scenarios. Unlike existing work,
our approach can

1) plan fail-safe trajectories in real-time by making use of
convex optimization, in particular quadratic program-
ming,

2) guarantee the safety of planned trajectories with respect
to any feasible (legal) future motion of obstacles, and

3) enhance passenger comfort by minimizing jerks, which
is beneficial if the critical situation resolves.

The remainder of this paper is structured as follows: In
Sec. II, we introduce mathematical models and assumptions.
The trajectory planners are described in Sec. III. Subse-
quently, the procedure for computing fail-safe trajectories is
explained in Sec. IV. The benefits of the proposed concept
are highlighted in different urban and highway scenarios and
compared to a widely-used sampling-based trajectory planner
in Sec. V. We finish with conclusions in Sec. VI.

II. PRELIMINARIES

Let us introduce the configuration space X ⊂ Rn as the
possible set of states x and U ⊂ Rm as the set of admissible
control inputs u of a self-driving vehicle, whose motion is
governed by the differential equation

ẋ(t) = f
(
t, x(t), u(t), z(t)

)
, (1)

where z(t) ∈ Z describes disturbances. We use x(i), i ∈
N0 to describe the i-th component of the state variable x.
Without loss of generality, we assume that the initial time is
t0 = 0, and we adhere to the notation x

(
[t0, th]

)
to describe

a state trajectory for the time interval [t0, th], t0 < th.
We consider a lane-based environment for fail-safe plan-

ning, which is modeled as a subset of the Euclidean space
Rk. We introduce a relation occ from the configuration space
X to the lane-based environment in world coordinates:
Definition 1 (Occupancy of States)
The operator occ(x) relates the state vector x to the set of
points in the environment occupied by the system as occ(x) :
X → P

(
Rk
)
, where P(Rk) is the power set of Rk. Given a

set X , we define occ(X ) := {occ(x) |x ∈ X}.

A curvilinear coordinate system is used for motion planning
and is aligned to a given reference path Γ. This means that
all Euclidean positions will be described in terms of the
arclength s along Γ and the orthogonal deviation d to Γ
(cf. Fig. 2).

The set B ⊂ N+ contains indices, referring to all safety-
relevant obstacles within the environment, e. g., obtained
from on-board sensors of the vehicle [37]. In order to guar-
antee safety of planned motions, we assume the existence of
a prediction which accounts for any feasible future motion of
obstacles, see e. g., [38]. The set of possibly occupied points
at a given point in time is represented as an occupancy set:
Definition 2 (Occupancy Set)
The occupancy set O(t) ⊆ Rk describes the set of points in
the environment possibly occupied by an obstacle at time t.
For the time interval [t1, t2], t1 < t2, we define O

(
[t1, t2]

)
=⋃

t1≤t≤t2 O(t).

III. TRAJECTORY GENERATION

To reduce computational cost, we use a convex approxi-
mation of the motion planning problem [13]. This is achieved
by separating motions into a longitudinal and a lateral
component while guaranteeing the drivability of the resulting
motion plan.

A. Longitudinal Motion

We model the state of the vehicle’s longitudinal motion as
xlon = (s, v, a, j)T , where s is the longitudinal position, v
is the velocity, a is the acceleration, and j is the jerk along
a given reference path Γ (cf. Fig. 2). Using the input u(t) =
ä(t), the longitudinal motion of the vehicle is represented by
the linear time-invariant system

d4

dt4
s(t) = u(t). (2)



To ensure that the trajectory is kinematically feasible, the
following time-invariant state constraints apply:

amin ≤ a(t) ≤ amax,

vmin ≤ v(t) ≤ vmax.
(3)

For collision avoidance, positions are restricted based on
obstacles blocking the reference path Γ:

smin(t) ≤ s(t) ≤ smax(t). (4)

The quadratic cost function Jlon favors comfortable trajec-
tories by punishing high accelerations and jerk with weights
wa ∈ R+ and wj ∈ R+, respectively, and is defined as:

Jlon

(
xlon(t)

)
=

∫ th

0

wax
(2)
lon(t)2 + wjx

(3)
lon(t)2 dt. (5)

B. Lateral Motion

The lateral motion of the vehicle is described by the state
xlat = (d, θ, κ, κ̇)T , where d is the lateral distance to the
reference path Γ, θ is the orientation, κ is the curvature, and
κ̇ is the change of curvature of the ego vehicle. In order to
obtain smooth lateral motion profiles, we choose the input
u(t) = κ̈(t).

As the vehicle is supposed to move along the predefined
reference path, we can assume that the difference ∆ =
θ−θΓ between the current orientation and the reference path
orientation θΓ is negligibly small. Thus, the trigonometric
functions can be approximated as sin(∆) ≈ ∆ and cos(∆) ≈
1. To efficiently integrate collision avoidance without intro-
ducing a new state variable, we model the orientation θΓ of
the reference path Γ as a disturbance z(t) = θΓ

(
s(t)

)
. Then,

the lateral motion of the vehicle is given by the time-variant
linear system

ẋlat =


0 v(t) 0 0
0 0 v(t) 0
0 0 0 1
0 0 0 0

xlat(t) +


0
0
0
1

u(t) +


−v(t)

0
0
0

z(t).
(6)

Note that (6) qualifies as a linear system because v(t) is not
a state variable for the lateral dynamics.
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`
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`
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Fig. 2: Kinematic model with respect to a curvilinear coordinate system
aligned to the reference path Γ with orientation θΓ. The vehicle’s pose is
described by the longitudinal position s, the lateral deviation d, and the
orientation θ.

For collision checking, we approximate the shape of the
vehicle using three circles with equal radius r (cf. Fig. 2)
[39]. Without loss of generality, we choose the centers of
the first and third circle to coincide with the rear and front
axle, respectively. The distance between the center points
corresponds to `. The center of the second circle is positioned
such that the distance to the other circle’s center is 1

2`.
Thus, the lateral distance di from the i-th circle’s center,
i ∈ {1, 2, 3}, to the reference path Γ is obtained as:

di = d+
i− 1

2
` sin(θ − θΓ) ≈ d+

i− 1

2
`(θ − θΓ). (7)

We define the constrained values of the system as xconstr =
(d1, d2, d3, κ, κ̇)T :

xconstr(t) =


1 0 0 0
1 1

2` 0 0
1 ` 0 0
0 0 1 0
0 0 0 1

xlat(t) +


0
− 1

2`
−`
0
0

 z(t). (8)

By computing the allowed minimum and maximum lateral
displacement along the reference path Γ for each circle i ∈
{1, 2, 3}, we can incorporate collision avoidance constraints
into the lateral motion model. Furthermore, the physical
constraints of the steering actuators are included:

d1,min(t)
d2,min(t)
d3,min(t)
κmin(t)
κ̇min(t)


︸ ︷︷ ︸

xmin(t)

≤ xconstr(t) ≤


d1,max(t)
d2,max(t)
d3,max(t)
κmax(t)
κ̇max(t)


︸ ︷︷ ︸

xmax(t)

. (9)

The quadratic cost function Jlat with weights wd ∈
R+, wθ ∈ R+, wκ ∈ R+, and wκ̇ ∈ R+ minimizes the lateral
distance to Γ and orientation deviation from θΓ and punishes
high curvature rates to achieve smooth trajectories:

Jlat

(
xlat(t)

)
=

∫ th

0

wdx
(0)
lat (t)2 + wθ

(
x

(1)
lat (t)− θΓ(t)

)2
+ wκx

(2)
lat (t)2 + wκ̇x

(3)
lat (t)2 dt.

(10)

C. Categorization of the Optimization Problem

The vehicle models for both the longitudinal and lateral
trajectory planning problems are linear. In addition, the input
u(t) and state x(t) in (1) are subject to linear constraints:

umin(t) ≤ u(t) ≤ umax(t),

xmin(t) ≤ x(t) ≤ xmax(t).
(11)

The optimization problem for a quadratic cost function
J(x) : Rn × Rm → R over the time horizon th

argmin
u

∫ th

0

J
(
x(t)

)
dt, subject to: (1), (11)

is a convex optimization problem [13, p. 152].



IV. COMPUTATION OF FAIL-SAFE TRAJECTORIES

Fig. 3 illustrates the procedure for computing fail-safe
trajectories using the decoupled motion problems described
in Sec. III. We assume that the initial state x0 of the fail-
safe trajectory and the reference path Γ to be known a priori.
Note that computing Γ is not the focus of this work; readers
are referred to [3, Sec. IV].

In Step 1 of Fig. 3, the longitudinal collision constraints
are extracted. To accomplish this, we transform the predicted
occupancy Ob(t) (cf. Def. 2) of each safety-relevant obstacle
b ∈ B in a curvilinear coordinate system aligned with Γ,
resulting in Ob,cls(t). Based on the longitudinal position of
the vehicle sego, the position constraint s(t) ≤ smax(t) in
(4) is computed as (cf. Fig. 4):

smax(t) = inf
{
s > sego | (s, d)T ∈ Ob,cls(t), b ∈ B

}
. (12)

The minimum position constraint s(t) ≥ smin(t) is obtained
similarly as:

smin(t) = sup
{
s < sego | (s, d)T ∈ Ob,cls(t), b ∈ B

}
. (13)

Note that smin(t) is only used if the ego vehicle is changing
to another lane as described in [40].

In Step 2, we check if a braking maneuver alone is
sufficient to avoid a collision as this is often considered to
be the most comfortable maneuver for passengers. Since the
occupancy sets include information about the dynamics of
the obstacles over time, we can use (12) for this check.
Proposition 1 (Collision Avoidance Through Braking)
A collision with obstacles, represented as a collision con-
straint s(t) ≤ smax(t), t ∈ [0, th], can be avoided for the

state x0, reference path Γ

1) Obtain longitudinal constraints (12)

2) Collision-free braking possible? Prop. 1

4) Plan longitudinal
trajectory Sec. III-A

3) Compute evasive
acceleration Prop. 2

5) Obtain lateral constraints (15)

6) Lateral motion infeasible? (9)

7) Plan lateral
trajectory Sec. III-B

8) Execute previous
fail-safe trajectory

9) New fail-safe trajectory

Yes No

No Yes

Infeasible

Feasible

Fig. 3: Procedure for fail-safe trajectory computation with a given initial
state x0 and reference path Γ.

s
Oj,cls(t)

smax(t)smin(t)

Oi,cls(t)

ego vehicle
Fig. 4: Illustration of calculating the longitudinal collision constraints, smin

and smax, in a lane for given occupancy sets Oi,cls and Oj,cls.

initial position s0, velocity v0, and reaction time δbrake of
the vehicle using emergency braking with |amax| if

∀t ∈ [0, th] : s0 + v0(τ + δbrake)− 1

2
|amax|τ2 ≤ smax(t),

τ := min(t, v0/|amax|).

Proof: Using the maximum feasible deceleration amax,
collision-avoidance using braking directly follows from the
definition of smax(t) in (12).
If the ego vehicle can avoid a potential collision using
braking, the longitudinal trajectory is computed using the
planner described in Sec. III-A. An example, in which
the ego vehicle avoids a collision with crossing traffic by
initiating a braking maneuver, is illustrated in Fig. 6b.

Otherwise, a collision may be avoided by swerving to
another lane or evading obstacles without leaving the current
lane. For these situations, let us first introduce the guaranteed
time-to-collision.
Definition 3 (Guaranteed Time-To-Collision)
The guaranteed time-to-collision (GTTC) with respect to the
initial longitudinal position s0 and velocity v0 of the vehicle
and the maximum allowed position smax(t), t ∈ [0, th] is
defined as

GTTC := argmin
t∈[0,th]

∣∣(s0 + v0t)− smax(t)
∣∣.

Due to the decoupled longitudinal and lateral dynamics in the
vehicle motion model, we must ensure that the necessary
maximum lateral acceleration aeva for evading is feasible
throughout the maneuver. In the worst case, the evasive
maneuver does not allow braking anymore. We therefore
introduce the duration of the evasive maneuver as GTTC,
assuming no deceleration, and the lateral distance to fully
reach an adjacent lane as deva > 0.
Proposition 2 (Evasive Acceleration)
The required lateral acceleration aeva of an evasive maneu-
ver with initial lateral velocity vlat ≥ 0 over the lateral
distance deva with duration GTTC and reaction time for
steering δsteer < GTTC is obtained as

aeva =
2
(
deva − vlat(GTTC− δsteer)

)
(GTTC− δsteer)2

.

Proof: The soundness of Prop. 2 has been shown in
[41, III-A].
Based on the maximum possible acceleration |amax|, the
maximum allowed deceleration is

abrake =
√
a2

max − a2
eva. (14)



In Step 5 of Fig. 3, the constraints on the vehicle’s lateral
motion are computed. Therefore, we predict the poses of
the vehicle along Γ with respect to the previously planned
longitudinal motion. Based on the approximation of the ve-
hicle’s shape described above (cf. Sec. III-B), the maximum
allowed lateral offsets of each circle are computed, under the
constraint that no collisions with obstacle occupanices occur.
Let circi(d, t) denote the occupancy of circle i ∈ {1, 2, 3},
which is shifted by d along the normal direction (note the
sign of d) from the ego pose at time t. The maximum lateral
offset constraints are

di,max(t)=sup

{
d ≥ 0 | circi(d, t) ∩

( ⋃
b∈B

Ob(t)
)

=∅
}
.

(15)
The minimum lateral offset constraints di,min(t) are obtained
analogously for negative values of d.

Note that if a circle initially intersects with an occupancy
set for d = 0, the circle must be shifted to determine whether
the ego vehicle should pass left or right. The passing side
can be decided with reachability analysis, for example [42],
and is not the focus of this work.

In Step 6, we check if ∃t ∈ [0, th] : dmin(t) > dmax(t)
which means that there is no longer a feasible solution
because (9) has been violated. If the lateral planning problem
becomes infeasible, we switch directly to the previously
computed fail-safe trajectory which is still valid (cf. Fig. 1).
However, if the evasive maneuver option is feasible, we plan
the lateral motion of the ego vehicle as described in Sec. III-
B and obtain the new valid fail-safe trajectory.

In contrast to existing verification methods, which do not
return an alternative collision-free trajectory if the verifi-
cation fails, our approach incorporates the verification in
the planner by using over-approximative occupancy sets as
constraints. If the utilized solver is numerically stable, the
resulting fail-safe trajectory is guaranteed to be safe with
respect to any physically feasible future motion of obstacles.
The drivability of the trajectory considering controller un-
certainties can be ensured using optimal control techniques,
see e. g., [43].

V. EVALUATION

The longitudinal and lateral planners are implemented
partly in Python and C++ (for computational efficiency) on
a computer with an Intel i5 1.4GHz processor and 8 GB of
DDR3 1600 MHz memory. We use a discrete-time version
of the vehicle models with step size ∆t to construct the
optimization by assuming a constant input for each discrete
time step k ∈ {1, N} over the time horizon th. We use the
convex programming package CVXPY [15] and the solver
ECOS [14].

Our scenarios are modeled using the CommonRoad bench-
mark suite for motion planning [44]. In order to predict
the feasible future motion of obstacles, we use the open-
source set-based prediction tool SPOT [38] and the motion
assumptions listed in Tab. I. We set the maximum absolute
acceleration of each vehicle to |amax| = 8 m s−2 and the

TABLE I: List of motion assumptions based on [45].

Assumption Description

Aamax Maximum absolute accelerations |amax,b| ≥
|amax,ego| of traffic participants b ∈ B are known.

Avmax Positive longitudinal acceleration is stopped when a
parameterized speed vmax is reached.

Aback Driving backward in a lane is not allowed, i. e., v ≥ 0.
Alane Changing lanes is only allowed if the new lane has the

same driving direction.

vehicle dimensions to a length of 4.5 m and width of 2 m.
The parameters of the approximation of the ego vehicle’s
shape are r = 1.3 m and ` = 3 m.

We validated our approach on multiple CommonRoad
scenarios and are able to compute fail-safe trajectories in
less than 5 ms on average (cf. Tab. IV). A video showcasing
different scenarios can be found in the video attachment of
this paper and at https://mediatum.ub.tum.de/1453855.

A. Static Obstacle in Driveway

In our first scenario (cf. Fig. 5), the ego vehicle’s driveway
is blocked by a static obstacle b1 (parameters listed in
Tab. II). The ego vehicle is approaching the obstacle with a
velocity of v = 17 m/s. Fig. 5a shows the last possible point
at which the ego vehicle can perform a braking maneuver to
avoid a collision with obstacle b1. The occupancy of the ego
vehicle along the braking trajectory is marked in red.

If the ego vehicle is closer to obstacle b1 as illustrated in
Fig. 5b, the only option to avoid a collision is to swerve to
the left adjacent lane. However, if the vehicle is even closer
to obstacle b1, a collision cannot be avoided since the lateral
acceleration and orientation constraints would be violated.
Since the inputs are ä(t) for the longitudinal motion and
κ̈(t) for the lateral motion, the resulting fail-safe trajectories
do not compromise comfort (cf. Fig. 5c) by minimizing jerks
at the beginning.

B. Comparison with Sampling-based Planner

For comparison with another approach from the literature,
we implemented a popular sampling-based trajectory planner
that uses quintic polynomials to minimize jerk [7]. In contrast
to our approach, quintic polynomials can only produce tra-
jectories with a sigmoidal shape (cf. Fig. 5d). Depending on
the complexity of the fail-safe maneuver, multiple replanning
phases may be needed. For instance, in order to return to
the initial lane in Fig. 5d, two consecutive trajectories need
to be sampled. Determining the optimal time horizon th
for the first trajectory part so that replanning is feasible
may be challenging, e. g., we chose th = 1.9 s. In addition,
discontinuities in the acceleration may arise when connecting
trajectories as shown in [40].

Our approach directly obtains the optimal solution with
global convergence, while sampling involves planning mul-
tiple trajectories and evaluating them with respect to potential
collisions and costs, which increases the computation time.
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(a) Fail-safe trajectory involving braking.
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(b) Fail-safe trajectory involving evading.
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(d) Sampled trajectory using [7] for th = 1.9 s.

Fig. 5: Scenario with a static obstacle b1 which is blocking the lane of the
ego vehicle. The ego vehicle can either brake (a) or perform an evasive
maneuver (b) to avoid a collision (CommonRoad-ID: ZAM Overtake-
1 1:2018a). The acceleration a and orientation θ of the evasive maneuver
are shown in (c). For comparison, we planned a trajectory using a sampling-
based planner [7] in (d).

In our example, we sampled 3.9× 103 candidate trajectories.
Scenarios with more complexity may require the evaluation
of even more candidates. Furthermore, planning in a dis-
cretized space is limited in that the only possible collision-
free solution may be missed due to the used discretization
step.

C. Urban T-junction

Let us now consider an urban environment (cf. Fig. 6a)
in which the ego vehicle is approaching a T-junction along
with three other vehicles bi, i ∈ {1, 2, 3} (parameters listed
in Tab. III). The ego vehicle is driving with a speed of v0 =
8.3 m/s and has the right of way on its lane; it can thus legally
continue its intended motion if other vehicles give way.

Assuming vehicle b2 disrespects the right-of-way rule, the
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(a) Initial scenario at t = 0 s.
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(b) Fail-safe trajectory involving braking.
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(c) Fail-safe trajectory involving evading.

Fig. 6: Urban T-junction scenario (CommonRoad-ID: DEU Ffb-2 2 S-
1:2018a) in which vehicle b2 violates the right of way rule of the ego
vehicle. The predicted occupancies are shown for t = 6 s for clarity. The
ego vehicle can avoid a collision by emergency braking in (b) or using a
combined braking and evasive maneuver to the right lane (c).

ego vehicle can remain safe with the fail-safe trajectory
planned using our approach. Fig. 6b shows the pose of the
last state along the intended motion of the ego vehicle from
which a collision with the predicted occupancy of vehicle b2
can be avoided with a braking maneuver. The ego occupancy
along the planned fail-safe trajectory is marked in red.

After the ego vehicle has passed its last chance for braking
along its intended motion, it can still avoid a collision by
turning right and stopping behind vehicle b3 as illustrated in
Fig. 6c. Nevertheless, if the ego vehicle is too close to the
occupied region, a collision cannot be avoided.



TABLE II: Parameters of the static obstacle scenario (cf. Sec. V-A).

Parameter Description

Ego vehicle in (a) (x, y, θ, v)Tego = (34 m,−1 m, 0 rad, 17 m/s)T

Ego vehicle in (b) (x, y, θ, v)Tego = (36 m,−0.9 m, 0 rad, 17 m/s)T

Static obstacle b1 (x, y, θ)Tb1 = (60 m,−0.9 m, 0.08 rad)T

Obstacle dimensions length = 6 m,width = 3.5 m

Planning horizon th = 3.0 s, N = 30,∆t = 0.1 s

TABLE III: Parameters of the urban T-junction scenario (cf. Sec. V-C).

Parameter Description

Ego vehicle in (a) (x, y, θ,v)Tego =(45.8 m,−2.7 m,2.9 rad,8.3 m/s)T

Ego vehicle in (b) (x, y, θ,v)Tego =(27.2 m, 1 m, 3 rad, 8.3 m/s)T

Ego vehicle in (c) (x, y, θ,v)Tego =(26.2 m, 1.3 m, 2.9 rad, 8.3 m/s)T

Vehicle b1 (x, y, θ, v)Tb1 =(14.6 m, 11 m,−1.67 rad,7 m/s)T

Vehicle b2 (x, y, θ, v)Tb2 =(8 m, 0 m,−0.1 rad, 14 m/s)T

Vehicle b3 (x, y, θ, v)Tb3 =(18 m, 14.6 m, 1.73 rad, 7 m/s)T

Planning horizon th = 6.0 s, N = 30,∆t = 0.2 s

TABLE IV: Average computation times of the longitudinal and lateral
planners for each scenario.

Scenario Average computation time

Static obstacle tlon = 1.2 ms, tlat = 2.9 ms

Urban T-junction tlon = 0.8 ms, tlat = 3.2 ms

Highway scenario tlon = 1.3 ms, tlat = 4.0 ms

Sampling planner [7] t = 510 ms

D. Cut-in Vehicle on Highway

In a third scenario, we demonstrate how our proposed
approach enables the lateral planner to plan fail-safe ma-
neuvers which let the ego vehicle swerve to another lane in
order to avoid a collision. Therefore, we consider a highway
scenario as illustrated in Fig. 7a, in which the ego vehicle
is endangered by a cut-in of the slower driving vehicle b1
(parameters listed in Tab. V).

If vehicle b1 changes to the ego vehicle’s lane, the ego
vehicle cannot avoid a collision by solely braking. The
utilized lateral collision constraints consider other obstacles
and the left bound of the leftmost lane as well as the right
bound of the shoulder lane. Considering these constraints,
the solver is able to determine a feasible and collision-free
fail-safe maneuver to the shoulder lane (cf. Fig. 7b).

VI. CONCLUSIONS

This paper develops a fail-safe trajectory planner for
self-driving vehicles that employs a variational approach to
compute fail-safe trajectories in arbitrary traffic scenarios.

In contrast to existing research on fail-safe maneuver plan-
ning, the trajectories are computed in real-time in continuous
space by making use of convex optimization techniques for
which mature and efficient solvers exist. In addition, our
approach incorporates safety verification in the planner itself.
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(b) Fail-safe trajectory involving swerving to the shoulder lane.

Fig. 7: Highway scenario (CommonRoad-ID: ZAM HW-1 1 S-1:2018a) in
which vehicle b1 performs a cut-in to the ego vehicle’s lane (a). The ego
vehicle can avoid a collision by swerving to the adjacent shoulder lane (b).
For clarity, the predicted occupancy is only shown for b1.

TABLE V: Parameters of the highway scenario (cf. Sec. V-D).

Parameter Description

Ego vehicle (x, y, θ, v)Tego = (2.25 m, 3.5 m, 0 rad, 23 m/s)T

Vehicle b1 (x, y, θ, v)Tb1 = (10 m, 7 m, 0 rad, 20 m/s)T

Vehicle b2 (x, y, θ, v)Tb2 = (25 m, 3.5 m, 0 rad, 25 m/s)T

Vehicle b3 (x, y, θ, v)Tb3 = (30 m, 7 m, 0 rad, 30 m/s)T

Vehicle b4 (x, y, θ, v)Tb4 = (42 m, 3.5 m, 0 rad, 20 m/s)T

Vehicle b5 (x, y, θ, v)Tb5 = (45 m, 7 m, 0 rad, 35 m/s)T

Planning horizon th = 4.0 s, N = 40,∆t = 0.1 s

Thus, the trajectories generated by the motion planner are
always verified as safe. Simultaneously, our approach favors
jerk-minimized fail-safe trajectories, which can enhance pas-
senger comfort in case a critical situation suddenly resolves
and the vehicle can return to the original intended motion.

We demonstrated the benefits of our comprehensive fail-
safe planning approach in highway and urban scenarios and
in comparison with a widely-used sampling based trajectory
planner. We are currently implementing the approach in a
test vehicle to gather real-world validation results.
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