
High-level Decision Making for Safe and Reasonable Autonomous Lane
Changing using Reinforcement Learning

Branka Mirchevska1, Christian Pek1, Moritz Werling1, Matthias Althoff2, and Joschka Boedecker3

Abstract— Machine learning techniques have been shown to
outperform many rule-based systems for the decision-making
of autonomous vehicles. However, applying machine learning is
challenging due to the possibility of executing unsafe actions
and slow learning rates. We address these issues by presenting a
reinforcement learning-based approach, which is combined with
formal safety verification to ensure that only safe actions are
chosen at any time. We let a deep reinforcement learning (RL)
agent learn to drive as close as possible to a desired velocity by
executing reasonable lane changes on simulated highways with
an arbitrary number of lanes. By making use of a minimal state
representation, consisting of only 13 continuous features, and
a Deep Q-Network (DQN), we are able to achieve fast learning
rates. Our RL agent is able to learn the desired task without
causing collisions and outperforms a complex, rule-based agent
that we use for benchmarking.

I . I N T R O D U C T I O N

A. Motivation

Motion planning for autonomous vehicles is challenging
due to the influence of surrounding traffic participants, traffic
rules, and conflicting optimization criteria. One possibility
to handle this complexity is by separating the planning task
into high-level decision-making and maneuver execution. The
decision-making layer plans high-level maneuvers, such as
changing lanes or keeping the lane, while in the maneuver
execution layer, the detailed motion is planned and executed.

High-level decision making involves building a system
of rules and deducing the optimal maneuver online. The
disadvantages of these systems become obvious when consid-
ering traffic scenarios that have not been considered during
the construction of the rule-based system. In this case, new
rules need to be added and integrated in the existing rules-
based system. Usually, this vastly increases the complexity
of the decision-making process while the comprehensibility
is reduced during the development process.

In recent years, the evolution of computing power, as well
as the increased ubiquity of data, has paved the way for
applying machine learning techniques to decision-making.
Machine learning provides the possibility for vehicles to
learn from data and improve the learned strategy in the future
based on gathered experience. In particular, reinforcement

1 Branka Mirchevska, Christian Pek, and Moritz
Werling are with BMW Group, D-85716 Unterschleis-
sheim, Germany. Branka.Mirchevska@bmw.de,
Christian.Pek@bmw.de, Moritz.Werling@bmw.de

2 Matthias Althoff is with the Department of Computer Sci-
ence, Technical University of Munich, D-85748 Garching, Germany.
althoff@in.tum.de

3 Joschka Boedecker is with the Department of Computer
Science, Freiburg University, D-79110 Freiburg, Germany.
jboedeck@informatik.uni-freiburg.de

learning (RL) allows the vehicle to learn certain tasks based
on interaction with its environment. RL can deal with large-
scale systems with possibly infinite state and action spaces
in a model-free way.

Coming up with a minimal, yet sufficient representation of
the environment can drastically accelerate the learning process.
Additionally, guaranteeing that the vehicle only performs safe
maneuvers, i. e., does not cause a collision, increases the
complexity or the design even more. Safety at any time is
especially important when performing learning in real traffic
with imminent danger for other traffic participants.

B. Related Work

One of the first machine learning approaches for au-
tonomous vehicles was proposed in 1989 [1]. They developed
a neural network-based autonomous land vehicle which uses
camera and laser range inputs to stay on the road. Another
significant contribution in road following has been shown
in the DARPA challenge by the vehicle Stanley [2]: it
was capable of driving at relatively high speeds through
diverse and unstructured off-road environments using machine
learning and probabilistic reasoning for planning. However,
Stanley was only able to drive in static environments, without
the ability to deal with dynamic obstacles.

In [3], RL was applied to the continuous control of
autonomous vehicles. They applied the Neural Fitted Q
Iteration (NFQ) [4] method for teaching a controller to steer a
car based on continuous inputs. However, although the policy
manages to steer the car, it is not optimal with respect to
jerk minimization. In a similar direction, [5] relies on the
Asynchronous Actor Critic (A3C) framework for end-to-end
race driving. They use data from a single front camera as an
input, and their agent learns to drive on various racing tracks.
However, they were not able to teach the agent to avoid scene
objects in all cases. A case study showing that an agent can
learn a low-level control task from scratch by using RL was
conducted in [6]. They teach an agent to steer a front wheel
in order to drive as close as possible to a predefined course.
The work of [7] relies on a policy-gradient RL approach to
teach an agent to follow a front vehicle safely. The agent
learned steering and braking control based on three continuous
input features. Even though learning low-level control has
been shown to work, complex scenarios with multiple other
dynamic obstacles remain challenging. Furthermore, mature
control techniques for maneuver execution exist, which can
be used to focus on high-level decision making instead [8],
[9].

In the deep RL domain, the works in [10], [11] teach an
agent to perform continuous actions directly from sensor data.
The lateral control system of [10] indirectly learns the vehicle-
road interaction dynamics for vision-based road following. It
relies on a robust image processing algorithm, combined with
neural networks-based RL. The agent in [11] learns to map an
input image to a small number of key perception indicators
that directly relate to the affordance of a road/traffic state for
driving. Again, learning low-level control is a challenging
task and has slow learning rates.

Finally, we review the high-level decision making RL-
based approaches which are most related to our work. The
work of [12] teaches an agent to reach a highway exit in
minimal time. They use a binary occupancy grid as an input
to a convolutional neural network for finding the best action,
which is then masked-out by a simple safety checker if unsafe.
Besides their high-level actions, they include discrete actions
for accelerating and decelerating, increasing complexity due
to the integration of the maneuver execution. Furthermore,
their safety approach is not described and not proven to
be formally correct. As opposed to our approach, they are
dealing with a finite horizon problem, learning to reach a
predefined highway exit.

In our previous work [13], we use fitted Q-learning for
high-level decision making by applying extremely randomized
trees [14] as a function approximator. Our agent was able to
perform high-level decision-making on a busy simulated high-
way. However, we only used a two-lane highway, simplifying
the problem and decreasing the chance of causing collisions
as only one lane change option has to be considered at any
time.

C. Contributions

This paper proposes a DQN-based RL approach [15] for
learning safe high-level decision-making for autonomous
driving on highways. More specifically, we present a novel
approach that is able to

1) learn the high-level decision making of performing lane
changing or lane keeping on highways with an arbitrary
number of lanes while a low-level system executes the
maneuver,

2) use a minimal representation of the environment to re-
duce the dimensionality of the state space for accelerated
learning, and

3) incorporate safety verification in the system to ensure
that the agent only executes safe actions.

We train the RL agent to drive as close as possible to a desired
velocity. However, other driving goals can be integrated as
well. By incorporating a computationally efficient safety
verification method, our approach guarantees collision-free
learning even in real traffic. We are able to train a neural
network of small size and demonstrate the results of our
learning strategy by comparing the RL agent to an existing
rule-based approach.

The remainder of this paper is organized as follows:
Sec. II introduces the RL problem statement. In Sec. III,
we describe the learning process using Deep Q Networks

Fig. 1. Based on the current state st at time t, the RL agent performs an
action at in the environment, resulting in a new state st+1. The RL agent
receives a reward rt+1 for the chosen action.

(DQN). Subsequently, our procedure to verify the safety of
actions prior to execution is explained in Sec. IV. The training
procedure is explained in Sec. V. The application and the
results of the presented approach are summarized in Sec. VI.
We finish with conclusions and future work in Sec. VII.

I I . P R O B L E M S TAT E M E N T

We aim to teach an RL agent to make high-level decisions
in highway scenarios by dealing with an infinite continuous
state-space and a discrete action space, with the goal of driving
as close as possible to the desired velocity. We consider a
three-lane simulated highway with an arbitrary number of
vehicles as illustrated in Fig. 2.

All other traffic participants are controlled by a simulation
environment developed by the Institute for Automotive
Engineering Aachen and the BMW Group [18] using a
complex set of rules based on expert knowledge, which
consists of environment, driver, and vehicle models. Chosen
high-level actions from the RL agent are executed by a low-
level motion planner performing the lane changes. The agent
that is entirely controlled by the simulation is referred to as
the rule-based agent throughout this work. The RL agent
does not have any prior information on the intentions of the
other vehicles or on the logic of the underlying system.

A. General RL problem definition

The control problem we consider can be described as a
Markov Decision Process (MDP) [16]. An MDP is described
by a set S of states, a set A of actions, a stochastic transition
function p(s, a, s′) describing the system behavior, and an
immediate reward function r : S×A→ R, where R is the set
of rewards. The goal is to find an optimal policy π∗ : S → A
that maximizes the expected cumulative rewards for each
state. In particular, we allow S to be continuous and assume
A to be finite for our RL agent and p to be unknown to our
learning agent (model-free approach).

The RL agent and the environment interact during a
sequence of discrete time steps t = 0, 1, 2, ..., as shown in
Fig. 1. At each time step t the RL agent receives information
about the environment’s state st ∈ S and based on that,
selects an action at ∈ A(st). One time step later, as a result
of the action performed in st, the RL agent receives a reward
rt ∈ R, and finds itself in a new state st+1. A policy π is
a mapping S → A that maps each state s to an action that
should be executed when in s. The goal of the RL agent is

RL
agent

Left
adjacent

lane

Current
lane

Right
adjacent

lane

Relative
distance

Following
vehicle

Leading
vehicle

pRL

pn

drel

Fig. 2. The environment of the RL agent consists of three lanes with
multiple other leading and following vehicles, which are controlled by the
underlying rule-based system.

finding a policy to achieve the highest reward in the long run.
The Qπ function yielding the policy π is formally defined
as the expected cumulative future discounted reward E{Rt}
starting from state s at time-step t, performing the action a,
and following the policy π afterwards [17, Eq. 3.13]:

Qπ(s, a) = Eπ
{
Rt|st = s, at = a

}
=

= Eπ

{ ∞∑
k=0

γkrt+k+1|st = s, at = a

}
,

(1)

where γ is a discount factor between 0 and 1 [17, p. 352].
The state-value function which yields the optimal policy π∗

is called optimal state-action value function Q∗, defined as
[17, Eq. 3.17]:

Q∗(s, a) = max
π

Qπ(s, a),∀s ∈ S , a ∈ A. (2)

B. State description

We assume that the agent in Fig. 2 can only see the leading
and the following vehicles on its own lane and both its
adjacent lanes. Let us introduce pRL ∈ R as the longitudinal
position of the RL agent and pn ∈ R as the longitudinal
position of the n-th surrounding vehicle in a curvilinear
coordinate system of the lane (see Fig. 2). Furthermore,
vRL ∈ R and vn ∈ R denote the absolute velocities of the RL
agent and the n-th vehicle, respectively. The relative distance
and velocity of the n-th surrounding vehicle are obtained as
drn = pn − pRL and vrn = vRL − vn . We include

• the relative distance dr ∈ R,
• the relative velocity vr ∈ R for each of the six

surrounding vehicles, and
• the absolute velocity vRL ∈ R for the ego vehicle

into the state representation. When there is no adjacent lane
available, or there is no vehicle in an existing adjacent lane
to consider, we set the relative distance to dr = ±∞, and the

relative velocity to vr = 0. Our state vector s is composed
of 13 continuous values:

s =
[
drll, vrll, drol, vrol, drrl, vrrl, vRL,

drlf , vrlf , drof , vrof , drrf , vrrf
]T
,

where the indices for each of the surrounding vehicles indicate
whether the vehicle is in the left, its own or the right lane,
and whether the vehicle is leading or following, relative to
the ego vehicle.

C. Actions

Let us first define the discrete set of actions1 A:
a1: perform a lane change to the left,
a2: keep the lane, and
a3: perform a lane change to the right.
We choose A this way since we want to teach the RL agent

to perform high-level decisions in highway scenarios, and in
general, these actions are the minimal set for achieving that
goal. After one of these actions is chosen from the RL agent
at a certain time step t, our safety system checks the safety
of the chosen action. If the action is safe, the underlying
system takes care of the low-level execution. The duration
of a complete lane change maneuver is fixed to 3.5 seconds.
We choose discrete actions, instead of low-level controls
like steering or accelerating, since modularized systems have
been reported to perform better in autonomous driving than
end-to-end systems [19].

D. Reward Function

To reward behavior that maximizes the velocity of the
vehicle, we choose the following reward function:

rt = −
∣∣vRL,t − vdes,t∣∣,

where vdes,t is the desired velocity of the RL agent in time
step t.

I I I . R L M E T H O D

We apply the Deep Q Network (DQN) approach [15], which
is based on Q-learning but leverages the power of neural
networks for approximating the Q state-action value function.
Alg. 1 describes the offline batch mode DQN approach that
we use for learning.

Batch mode reinforcement learning is a sub-field of
dynamic programming-based reinforcement learning [20].
It originally refers to a mode of RL in which the whole
set (batch) of transition samples is known beforehand, from
which the agent should derive the optimal policy (aka offline
learning). The batch mode RL process can be divided into 3
separate phases, as shown in Fig. 3:

1) Collecting the data as a set of transition samples:

D =
{

(si, ai, ri, si+1) | i = 1, ..., k
}
,

2) performing the batch mode RL algorithm for learning
the best possible policy from the available data, and

1Note that the actions A only consider high-level decisions of the agent
in lateral direction. Acceleration until the desired velocity has been reached
is controlled by the low-level execution layer.

1. DATA
COLLECTION 2. LEARNING 3. APPLICATION

(s, a, r, s’)
Transitions

Batch learning task

Policy

Fig. 3. Illustration of batch reinforcement learning.

3) applying the learned policy to a particular problem.
The actual batch mode learning task takes place only in
the second phase and depends neither on the data-collection
phase nor the application phase. With that in mind, we need
to ensure that the agent has seen the relevant state-action
combinations during training often enough. If successful,
the RL agent is able to learn behaving optimally in unseen
situations (within an ε range of the seen situations) during the
application phase. Optimally in this case means to maximize
the discounted cumulative reward the RL agent receives in
the long run.

After acquiring the set of transition samples D, we create
the training samples by using the Q update as a target for each
state sj as shown in line 2 of Alg. 1. In each training iteration,
we select a mini-batch from the training set, i.e., a subset of
the complete training set D. In each training iteration, we
perform gradient descent on the loss between the target yj
(c. f. Alg. 1) and the estimated Q(sj , aj ; θ) values for the
particular mini-batch. We repeat this procedure until some
predefined number of training iterations is reached, or until
the difference between the target and the estimated values
does not decrease anymore. It is worth mentioning that our
approach achieves the same results by training online for a
longer time. For training in real traffic in more challenging
scenarios, online (or the combination of offline and online)
learning is the reasonable choice. We used offline learning on
the collected data for quickly trying out different architectures.

I V. V E R I F Y I N G A C T I O N S A S S A F E

Machine learning techniques are not capable of guarantee-
ing the safety of the agent at all times. Formal verification
methods, on the other hand, are suited for verifying the

Algorithm 1: B AT C H D E E P Q - L E A R N I N G [1 5]

Collect a set of transition samples D =
{
(si, ai, ri, si+1)

}
Initialize action-value function Q with random weights θ
Repeat

1 Sample random mini-batch of transitions sj , aj , rj , sj+1 from D
2

Set yj =

{
rj , terminal sj+1.

rj + γmaxa′ Q(sj+1, a
′; θ), non-terminal sj+1.

3 Perform a gradient descent step on (yj −Q(sj , aj ; θ))2,

with respect to the network parameters θ.

4 Until Termination conditions are reached

safety of the agent in a computationally efficient way. Thus,
combining ML techniques and formal verification provides a
way for safe learning, even in real traffic.

In order to guarantee that the agent only chooses safe
actions at all times, we make use of formal verification
for lane changes, as proposed in [21], which we briefly
recall: According to traffic rules [22], the agent must keep
a safe distance ∆safe from other vehicles so that it can
stop without colliding when the leading vehicles perform
emergency braking. This safe distance is formally derived in
[23] and accounts for the dynamics of both the agent and the
other traffic participant. Thus, we can define safe states of
the agent (position pRL) with respect to the leading vehicle
(position p`) and safe distance ∆safe,` as

pRL(t) < p`(t)−∆safe,`(t). (3)

Analogously, safe states with respect to the following vehicle
with position pf and the safe distance ∆safe,f are defined as

pf (t) + ∆safe,f (t) < pRL(t). (4)

Consequently, we can define the safe free space F t of the
agent in a lane (cf. Fig. 4) by combining (3) and (4).
Definition 1 (Safe Free Space):
The safe free space F t of the agent within a lane at a point
in time t is defined as

F t :=
{
p ∈ R | pf (t)+∆safe,f (t) < p < p`(t)−∆safe,`(t)

}
.

By enlarging the shape of each vehicle by its dimensions,
collision-checks are reduced to checking the enclosure of its
reference point in F t [24].

Other vehicles may accelerate or decelerate over time. How-
ever, we assume that other vehicles do not drive backwards
once they have stopped and that they do not accelerate beyond
a velocity vmax. For instance, vmax may correspond to the
speed limit multiplied with a parameterizable speeding factor
φ ≥ 1. The maximum positive acceleration α of following
vehicles with respect to the velocity v is modeled as

α(v) =


αmax if 0 ≤ v < vs,

αmax
vs
v if vs ≤ v < vmax,

0 if vmax ≤ v,
(5)

where vs is a parameterized switching velocity as described
in [25] and αmax corresponds to the maximal feasible
acceleration of the vehicle. When accelerating, following
vehicles are also obliged to respect safe distances to the
leading vehicles (e. g., to the agent when considering the safe
free space of the agent’s lane) according to traffic rules [22].

By ensuring that the agent is driving within the safe free
space (1), we are able to verify a given action a as safe
prior to execution (cf. Fig. 4). Let us first introduce F t0 as
the safe free space of the agent’s lane. Furthermore, F tl and
F tr denote the safe free space on the left adjacent and right
adjacent lanes2, respectively. We use pa(t) to describe the
position of the agent while executing the action a ∈ A over

2If a lane does not exist, we set its safe free space Ft = ∅.

Vleft,f

Vego,`Agent

pleft,f pRL pego,` pleft,`

Left lane

Agent’s lane

Vleft,`

Ft
0

Ft
l

∆safe,left,f

∆safe,ego,`

∆safe,left`

Fig. 4. Visualization of a lane change maneuver to the left lane: The agent with initial position pRL driving behind a leading vehicle Vego,` wants to
change to the left lane. This lane contains two vehicles, Vleft,f and Vleft,`. The safe distances are illustrated in red and the safe free spaces, Ft

0 and Ft
l , as

a shaded area. If the agent is located inside the safe free space at any time, its safety is guaranteed.

time interval t ∈ [t0, th], where th is the finite horizon of
action a.
Proposition 1 (Set of Safe Actions):
The set of safe actions Asafe(t) ⊆ A for a point in time t is
defined as

Asafe(t) :=
{
a ∈ A | pa(t) ∈

(
F t0 ∪ F tl ∪ F tr

)
,∀t ∈ [t, th]

}
.

Proof: The soundness of Prop. 1 has been shown for
all cases in [21].

We assume that the agent starts in a safe state, i. e., the
agent initially respects safe distances to leading vehicle. If
the agent always chooses safe actions a ∈ Asafe(t), the agent
remains in the safe free space indefinitely unless other traffic
participants violate traffic rules.

V. T R A I N I N G P H A S E

We collected 105 transition samples, which correspond
to approximately 90 hours of driving in our simulation
environment. One time step covers a duration of ∆t = 3.5 s,
which is the time the maneuver execution requires to finish
the chosen lane change.

In order to encounter as many diverse situations as possible
during the data collection phase, we do not rely on randomly-
collected data. Instead, we build a simple data-collecting
agent whose goal is to perform safe lane changes whenever
possible. The agent collects positive training samples that
would increase its reward by changing in lanes that allow
driving faster. Negative samples are collected when a certain
chosen action decreases the velocity of the RL agent. For
successful training, we ensure that the agent collects a
balanced data set consisting of both positive and negative
training samples.

In a preprocessing step, we perform min-max normalization
over the offline training data, i.e.,

snorm =
s−min(S)

max(S)−min(S)
,∀s ∈ S, (6)

to speed up training [17, p. 226]. The neural network that
estimates our Q state-action values during training has a
13-100-100-3 topology, which means 13 input features for
the state vector, 2 hidden layers with 100 neurons each,
and 3 output neurons for the Q values for each of the 3

TABLE I
T R A I N I N G PA R A M E T E R S

Number of input neurons 13
Number of hidden layers 2
Number of neurons in each hidden layer 100
Connection between layers Fully connected
Number of output neurons 3
Activation function ELU
Mini-batch size 5
Weights initialization 1√

num hidden neuons
Bias value initialization 0.01
Gamma 0.99
Learning rate for Adam 1E-5
Number of training iterations ~100

possible actions. As an activation function for all 3 layers,
we used ELU (exponential linear unit) and as an optimization
algorithm, the Adam optimizer [26]. We chose the above
parameters empirically, after trying out different architectures
with different optimizers and activation functions. Tab. I
summarizes all parameters used for training.

V I . A P P L I C AT I O N P H A S E A N D E VA L U AT I O N

After the data collection and the learning phase of the
batch RL task are done, we can employ the learned policy.
Fig. 5 shows the decision-making process, from observing
a new state to choosing a safe action. After forwarding the
input through the 2 hidden layers, as an output we get the
estimates for Q(s, left), Q(s, keep), and Q(s, right). We
choose the action with maximum Q value and forward it
to the safety algorithm. If the action is considered safe, it
is executed; if not, we take the second best action. If that
one is also unsafe, we stay in the current lane. Note that the
action keep is always safe, since the RL agent respects the
safe distance to leading vehicles at any time (cf. Sec. IV).
While the safety algorithm guarantees that the agent does not
cause an accident, unavoidable accidents are still possible:
for example, if someone crashes into our vehicle from the
side or rear-ends it at the end of a traffic jam. In our case,
the underlying system prevents rear-end collisions.

In order to evaluate the performance of the RL agent, we
created 10 simulated highway traffic scenarios. Each scenario
lasts 500.5 seconds, which means the RL agent needs to
make 143 decisions (one decision each 3.5 seconds). In each

Fig. 5. In the application phase, the neural network takes the new unseen state as an input and outputs the estimated Q values for each of the three
actions. Before execution, the safety verification algorithm proves the safety of the one with the highest Q estimate.

Fig. 6. The trained RL agent (shown in the red rectangle) executes two lane changes in order to overtake slower leading vehicles. a) the agent observes
the slower leading vehicle 2 in its lane, b) executes a lane change to the right lane, c) observes the slower leading vehicle 3, d) executes a lane change left,
and e) continues in the left most lane.

scenario, around 50 other vehicles are involved. We chose
this number based on the length of l = 1255 m and the width
w = 11.25 m of the highway, in order to create situations
with high traffic densities, as realistic as possible.

The desired velocity of the RL agent was set to vdes =
19.5 m/s as the curvature of the highway constrains the
maximal velocity to vmax = 24 m/s. Each of the surrounding
vehicles of the RL agent are randomly positioned on the
highway with random initial velocities and are assigned
arbitrary desired velocities 10 m/s < v < vmax. As mentioned
before, the RL agent does not have any information about the
intentions of the other traffic participants, and they change
lanes and increase/decrease their velocities arbitrarily.

For comparison, we let the rule-based agent drive on the
same test scenarios that we created and measured its average
velocity as well. We observe that the RL agent achieves
average velocity over all 10 scenarios of 17.3 m/s, whereas
the rule-based agent achieves 17.1 m/s.

If we take a look at each of the 10 scenarios separately

in Fig. 7, where on the x-axis we have ordered all 10 test
simulations, and on the y-axis we plot the average velocity,
we can see that the RL agent (shown in red) exceeds the
average velocity of the rule-based agent (shown in green) in
7 out of 10 test scenarios.

Fig. 6 shows the performance of the trained RL agent in
a segment of one of the testing simulations. The RL agent
is marked with a red rectangle and its trajectory is shown
with a red dashed line. The leading surrounding vehicles are
marked with numbers from 1 to 3. Starting from a), the agent
performs two lane changes. It first changes from the leftmost
lane to the middle one (b and c), since vehicle 2 would have
slowed it down. Afterwards, it encounters vehicle 3 which
drives slower than the RL agent as well. The RL agent then
decides to perform another lane change from the middle to
the leftmost lane (d and e), where it is able to accelerate to
the desired velocity.

In order to show the effectiveness of the safety layer, we
let the trained RL agent drive on the same 10 test scenarios,

Fig. 7. Average velocity of the RL vs. the rule-based agent

with the safety layer turned off. As Tab. II shows, the agent
crashed in 9 out of 10 scenarios, on average approximately
after one third of the simulation time has passed.

TABLE II
R L A G E N T P E R F O R M A N C E W I T H O U T T H E S A F E T Y L AY E R O N

T H E S A M E 1 0 T E S T S C E N A R I O S

Test simulation: 1 2 3 4 5 6 7 8 9 10
Crash after x sec: 249 96 no crash 159 30 208 412 219 40 327

V I I . C O N C L U S I O N S

We present a reinforcement-learning-based approach for
autonomous and safe lane-changing on simulated highways.
The goal for the RL agent is to drive as close as possible
to a desired velocity. We rely on the batch Deep Q Network
approach for model-free, offline learning. This allows the
agent to learn the task without knowing the dynamics of the
system including the intentions of the other vehicles. We
incorporate safety verification to guarantee that the RL agent
performs safe actions at all times.

Our results show that our trained agent is able to achieve
high velocities close to the desired speed limit while never
causing any collision. Moreover, our trained RL agent shows
better performance than a baseline rule-based agent with
respect to the achieved average velocity in different scenarios.

AC K N OW L E D G M E N T S
The authors thank Carmella Schürmann for the voiceover

in the video attachment. This work is partially funded by
the German Federal Ministry of Economics and Technology
through the research initiative Ko-HAF (https://www.
ko-haf.de/).

R E F E R E N C E S

[1] D. A. Pomerleau, “ALVINN: An autonomous land vehicle in a neural
network,” in Advances in Neural Information Processing Systems, 1989,
pp. 305–313.

[2] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel,
P. Fong, J. Gale, M. Halpenny, G. Hoffmann et al., “Stanley: The robot
that won the DARPA grand challenge,” Journal of field Robotics,
vol. 23, no. 9, pp. 661–692, 2006.

[3] M. Riedmiller, M. Montemerlo, and H. Dahlkamp, “Learning to drive
a real car in 20 minutes,” in Proc. of the IEEE Int. Conf. on Frontiers
in the Convergence of Bioscience and Information Technologies, 2007,
pp. 645–650.

[4] M. Riedmiller, “Neural fitted Q iteration–First experiences with a
data efficient neural reinforcement learning method,” in Proc. of the
European Conference on Machine Learning, 2005, pp. 317–328.

[5] M. Jaritz, R. De Charette, M. Toromanoff, E. Perot, and F. Nashashibi,
“End-to-end race driving with deep reinforcement learning,” arXiv
preprint arXiv:1807.02371, 2018.

[6] M. Lauer, “A case study on learning a steering controller from scratch
with reinforcement learning,” in Proc. of the IEEE Intelligent Vehicles
Symposium, 2011, pp. 260–265.

[7] C. Desjardins and B. Chaib-Draa, “Cooperative adaptive cruise control:
A reinforcement learning approach,” IEEE Transactions on Intelligent
Transportation Systems, vol. 12, no. 4, pp. 1248–1260, 2011.

[8] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Transactions on Intelligent Vehicles, vol. 1, no. 1, pp. 33–55,
2016.

[9] D. Gonzalez, J. Perez, V. Milanes, and F. Nashashibi, “A review of
motion planning techniques for automated vehicles,” IEEE Transactions
on Intelligent Transportation Systems, vol. 17, no. 4, pp. 1135–1145,
2016.

[10] S.-Y. Oh, J.-H. Lee, and D.-H. Choi, “A new reinforcement learning
vehicle control architecture for vision-based road following,” IEEE
Transactions on Vehicular Technology, vol. 49, no. 3, pp. 997–1005,
2000.

[11] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning
affordance for direct perception in autonomous driving,” in Proc. of
the IEEE Int. Conf. on Computer Vision, 2015, pp. 2722–2730.

[12] M. Mukadam, A. Cosgun, A. Nakhaei, and K. Fujimura, “Tactical
decision making for lane changing with deep reinforcement learning,”
in NIPS Workshop on Machine Learning for Intelligent Transportation
Systems, 2017.

[13] B. Mirchevska, M. Blum, L. Louis, J. Boedecker, and M. Werling,
“Reinforcement learning for autonomous maneuvering in highway sce-
narios,” in Workshop for Driving Assistance Systems and Autonomous
Driving, 2017, pp. 32–41.

[14] P. Geurts, D. Ernst, and L. Wehenkel, “Extremely randomized trees,”
Machine learning, vol. 63, no. 1, pp. 3–42, 2006.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[16] R. A. Howard, Dynamic programming and Markov processes. Wiley,
1966.

[17] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998.

[18] F. K. GmbH Aachen, “Pelops white paper,” Technical Report, 2010.
[19] S. Shalev-Shwartz and A. Shashua, “On the sample complexity of

end-to-end training vs. semantic abstraction training,” arXiv preprint
arXiv:1604.06915, 2016.

[20] S. Lange, T. Gabel, and M. Riedmiller, “Batch reinforcement learning,”
in Reinforcement learning. Springer, 2012, pp. 45–73.

[21] C. Pek, P. Zahn, and M. Althoff, “Verifying the safety of lane change
maneuvers of self-driving vehicles based on formalized traffic rules,” in
Proc. of the IEEE Intelligent Vehicles Symposium, 2017, pp. 1477–1483.

[22] Economic Comission for Europe: Inland Transport Committee,
“Vienna Convention on Road Traffic,” 1968. [Online]. Available:
http://www.unece.org/fileadmin/DAM/trans/conventn/crt1968e.pdf

[23] A. Rizaldi, J. Keinholz, M. Huber, J. Feldle, F. Immler, M. Althoff,
E. Hilgendorf, and T. Nipkow, “Formalising and monitoring traffic
rules for autonomous vehicles in Isabelle/HOL,” in Integrated Formal
Methods, 2017, pp. 50–66.

[24] J. Ziegler and C. Stiller, “Fast collision checking for intelligent vehicle
motion planning,” in Proc. of the IEEE Intelligent Vehicles Symposium,
2010, pp. 518–522.

[25] M. Althoff, M. Koschi, and S. Manzinger, “CommonRoad: Composable
benchmarks for motion planning on roads,” in Proc. of the IEEE
Intelligent Vehicles Symposium, 2017, pp. 719–726.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. on Learning Representations, 2014.

