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Vollständiger Abdruck der von der Fakultät für Informatik der Technischen
Universität München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften
(Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr. Matthias Nießner
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Abstract

Autonomous navigation for vehicles is a fascinating research topic with increasing
number of applications in everyday life. To achieve a high level of autonomy in
different environments vehicles must rely on onboard sensors. Moreover it is often
required that those sensors are low-cost, small, lightweight and low-power. Cameras
and inertial measurement units (IMUs) are two sensors that fit those requirements
particularly well. In this thesis we explore different aspects of visual-inertial navi-
gation: sensor modeling, odometry, real-time mapping of the environment around
the vehicle and using the acquired map for obstacle-free trajectory generation.

First, we focus on the visual-inertial odometry (VIO), which exploits the comple-
mentarity of cameras and IMUs to achieve robust and accurate pose estimation. We
present two novel methods for visual-inertial odometry that form major contribu-
tions of this thesis. The novelty of the methods is that the terms from direct image
alignment are combined with IMU terms in a tightly coupled way, which produces
better results than losely coupled systems. The first system is based on LSD-SLAM
and has an alternating optimization to track the camera and estimate the geometry
of the scene. The second system is based on DSO and simultaneously optimizes
geometry, pose, velocity, IMU biases and scale. To facilitate thorough evaluation
of the VIO systems we have also collected a visual-inertial dataset that provides
accurate geometric and photometric calibration.

Estimating the pose of the vehicle is only one part of the autonomous navigation
problem. Another part is being able to model the environment around the vehicle
and plan the actions according to the current state. A further contribution of
this thesis is a novel method for real-time trajectory replanning that addresses this
problem. Unlike other camera-based methods that aim to achieve photorealistic
reconstruction or large-scale occupancy maps we aim to achieve the highest possible
update rate when modeling the environment. We propose to use a vehicle-centered
volume represented as a circular buffer that achieves an order-of-magnitude faster
measurement insertion time compared to octree-based solutions. For representing
the trajectory we use uniform B-splines that ensure the required smoothness of the
trajectory and allow for efficient optimization. We formulate an error function that
computes an optimal trajectory that follows a global path and penalizes proximity
to obstacles based on current estimate of the environment in real time.

Finally, the combination of VIO and real time trajectory replanning for au-
tonomous navigation is demonstrated with a micro aerial vehicle as an example.





Zusammenfassung

Autonome Navigation für Fahrzeuge ist ein faszinierendes Forschungsthema mit
einer zunehmenden Anzahl von Anwendungen im Alltag. Um einen hohen Grad
an Autonomie in verschiedenen Umgebungen zu erreichen, muss sich das Fahrzeug
auf Onboard-Sensoren verlassen, die darüber hinaus oft kostengünstig, klein, leicht
und stromsparend sein sollten. Kameras und Inertialsensoren (Intertial Measure-
ment Units – IMUs) sind zwei Sensortypen, die diese Anforderungen besonders gut
erfüllen. In dieser Arbeit untersuchen wir verschiedene Aspekte der visuell-inertialen
Navigation: Sensormodellierung, Odometrie, Echtzeit-Kartierung der Umgebung des
Fahrzeugs und die Verwendung der gewonnenen Karten für die Erzeugung hinder-
nisfreier Trajektorien.

Zunächst konzentrieren wir uns auf die visuell-inertiale Odometrie (VIO), die
sich auf die komplementäre Natur von Kameras und IMUs stützt, um eine robus-
te und genaue Posenschätzung zu erzielen. Wir stellen zwei neue Methoden zur
visuell-inertialen Odometrie vor, welche wesentliche Beiträge dieser Doktorarbeit
darstellen. Die Neuheit der Methoden ist, dass Fehlerterme aus der direkten Bildre-
gistrierung mit IMU-Fehlertermen auf eng gekoppelte Weise kombiniert werden, was
bessere Ergebnisse liefert, als lose gekoppelte Systeme. Das erste System basiert auf
LSD-SLAM und beinhaltet eine alternierende Optimierung, um die Kamerapose zu
verfolgen und die Umgebungsgeometrie zu schätzen. Das zweite System basiert auf
DSO und optimiert gleichzeitig Geometrie, Pose, Geschwindigkeit, sowie systema-
tische IMU-Messabweichung und Skalierung. Um die gründliche Bewertung dieser
VIO-Systeme zu erleichtern, haben wir auch einen visuell-inertialen Datensatz auf-
genommen, der genaue geometrische und photometrische Kalibrierung bietet.

Die Schätzung der Pose des Fahrzeugs ist nur ein Teil des autonomen Navigati-
onsproblems. Ein anderer Aspekt ist die Modellierung der Umgebung und, basierend
auf dem aktuellen Stand, das Planen von Aktionen. Ein weiterer Beitrag dieser Ar-
beit ist eine neuartige Methode zur Planung von Trajektorien in Echtzeit, die dieses
Problem adressiert. Im Gegensatz zu anderen kamerabasierten Methoden, die auf die
Erstellung fotorealistischer Rekonstruktionen oder großflächiger Belegungskarten ab-
zielen, wollen wir eine möglichst hohe Updaterate beim Modellieren der Umgebung
erreichen. Wir schlagen vor, ein Fahrzeug-zentriertes und als Ringpuffer dargestell-
tes Volumen zu verwenden, was im Vergleich zu Octree-basierten Lösungen ein um
Größenordnungen schnelleres Einfügen von Messdaten erlaubt. Trajektorien werden
durch B-Splines dargestellt, die zu ausreichend glatten Trajektorien führen und eine
effiziente Optimierung erlauben. Wir stellen eine Fehlerfunktion auf, die in Echtzeit
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eine optimale Trajektorie berechnet, welche gleichzeitig einem globalen Pfad folgt
und die Nähe zu Hindernissen, basierend auf der aktuellen Umgebungsschätzung,
bestraft.

Schließlich demonstrieren wir die Kombination aus VIO und Echtzeit-
Trajektorienplanung für die autonome Navigation am Beispiel einer Mikrodrohne.
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Chapter 1
Introduction

Humans have an extraordinary ability to perceive the environment and interact with
it. Despite large variations in illumination, time of the day, season, etc, we are able
to describe our motion in 3D space, build a map of the environment and successfully
navigate between different places. We can also reason about possible collisions and
plan our path to avoid them, even in rapidly changing environments. Adding such
capabilities to autonomous vehicles represents a significant scientific and engineering
challenge, but opens a huge amount of potential applications, e.g. autonomous
driving, goods delivery or inspections with micro aerial vehicles, household robotics
and others.

Autonomous vehicle require some representation of the environment for naviga-
tion. The type of representation depends on the task of the vehicle and available
sensors. For the task of localization it is enough to have a sparse map consisting
of landmarks that can be easily detected by the sensors mounted on the vehicle,
while for obstacle avoidance and path planning a dense occupancy map is preferred.
In most cases vehicles use several representations of the environment for different
navigation tasks.

We can subdivide the navigation tasks that need to be solved by the autonomous
vehicle into: odometry – incremental tracking of the motion relative to the start
frame; localization – the problem of finding the location of the robot in a pre-
defined map; SLAM – a combination of the two previous tasks, where building the
map is done simultaneously with tracking the camera motion; motion planning –
finding an optimal collision-free path from one point to another.

Even though there exist systems for precise localization that rely on infrastruc-
ture (GPS outdoors, motion capture systems indoors), to achieve a human level of
autonomy for autonomous agents they have to rely on a similar-to-human set of
onboard sensors. Cameras and inertial measurement units (IMUs) are particularly
interesting for the navigation task because they are cheap, lightweight, have low
power consumption and are widely available on the market. Moreover, you can find
a direct correspondence to the human sensors – eyes and vestibular system.
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1.1 Related Work

In this section an overview of the relevant related work is provided. First, we discuss
off-line camera-based solutions for motion estimation and 3D reconstruction, then
we discuss real-time visual and visual-inertial odometry and SLAM methods. After
that, we provide an overview of different environment representations that can be
used for autonomous navigation and an overview of obstacle-free trajectory planning
methods.

1.1.1 Structure from Motion

Estimating the motion of the camera and the 3D structure of the environment is
an old problem. First approaches to solve it appeared more than a century ago
[70] and relied on manually selected correspondences, while more recent approaches
date back to the 1980s [77]. Modern methods for structure from motion (SfM) can
process thousands of unordered photographs collected from the internet to perform
large-scale 3D reconstruction [42] [12]. Some implementations, such as COLMAP
[118], OpenMVG [91] and Bundler [120] are even available open-source.

Figure 1.1: Example of a 3D reconstruction with a state-of-the-art SfM system. Illustration
taken from [118].

To achieve this level of performance several underlying problems have to be
solved. First, we need to identify keypoints that have a unique appearance and
can be reliably matched between different images. The keypoint detector proposed
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by Harris in 1988 [49] and Shi in 1994 [119] are, despite the age, among the most
popular methods even nowadays. For real-time applications several learned keypoint
detectors such as FAST [115] and AGAST [83] have been proposed. After detecting
keypoints, descriptors such as SIFT [78], SURF [14] and BRIEF [22] can be used to
compute keypoint descriptors that are invariant to scale, rotation and affine light
transformations. Finally, the descriptors are matched between different images,
which allows us to initialize relative pose and camera intrinsic parameters [99]. Initial
values are then refined using non-linear optimization methods.

SfM methods can work with unordered image sequences where camera parame-
ters are not known in advance and handle significant variations in illumination due
to the time of the day and season changes. All these factors do not allow to achieve
real-time performance since slower, but more accurate keypoint detectors and de-
scriptors should be used, and for every new image a time consuming initialization
procedure is required.

1.1.2 Real-Time Visual Odometry and SLAM

The task of incrementally tracking the camera motion from video is commonly called
visual odometry. The fact that we have a calibrated camera and can assume that
the sequence of images is temporally consistent allows us to make visual odometry
methods real-time capable.

First attempts to use cameras for incremental motion estimation were done in the
1970s [90]. The term visual odometry was first introduced by Nister et al. [100], who
proposed to match a sparse set of keypoints from frame to frame, yielding multiple
observations of the same point in different images. The 3D camera motion is then
computed by minimizing the reprojection error. Such systems were also successfully
deployed on the Mars rovers in NASA’s Mars exploration program [82].

The first systems capable of performing visual odometry in real-time were based
on the Extended Kalman Filter (EKF) [26, 29]. These methods included both
the motion parameters of the camera and 3D landmarks in the state space and
formulated filter updates minimizing the reprojection error. In this formulation of
the visual odometry problem the computation complexity scales cubicly with the
size of the state space, which limits the size of the map. In practice, these systems
can be used only in very small environments.

The next generation of algorithms was not only able to track the camera motion,
but also reconstruct the map with subsequent refinement of the trajectory [68, 94].
These methods are called SLAM methods, which stands for simultaneous localization
and mapping. They are based on bundle adjustment which runs in the background
thread and maintains a map consisting of a subset of selected frames (keyframes)
and a camera tracking thread that uses the map to track the camera motion for
every frame. Overall, these methods are capable of tracking the camera motion and
creating a consistent map with the ability to close trajectory loops and relocalize
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the camera, outperforming previous methods in accuracy and robustness.
Recently, direct methods for visual odometry became popular. Unlike feature-

based methods, direct methods use unprocessed intensities in the image to estimate
the motion of the camera. The first real-time capable direct approach for stereo
cameras was presented in [27], where the authors do not explicitly reconstruct the
3D environment, but formulate quadrifocal constraints on pixels for estimating the
motion. The introduction of consumer RGB-D cameras caused a rapid development
of direct methods, since depth for every pixel is provided by the camera. This
makes it easy to formulate the visual odometry problem. Several methods for motion
estimation for RGB-D cameras were developed by Kerl et al. [65, 66] and Newcombe
et al. [96].

Figure 1.2: An example of the direct visual-inertial odometry method presented in this
thesis.

Direct approaches for visual odometry and SLAM can be also used with monoc-
ular cameras. There exist several examples of such algorithms that work with dense,
semi-dense and sparse maps of the environment. Newcombe et al. [97] proposed a
dense approach which reconstructs the depth map for the entire image. To achieve
the dense reconstruction a smoothness assumption has to be made, because only the
image regions with a sufficient gradient can be used for precise depth estimation.
Another approach is to ignore the regions of the image that do not contain enough
information for depth estimation. This approach is used by Engel. et al. [33], which
is an example of a semi-dense SLAM system.

Direct sparse methods have been discussed in two recent publications. SVO pro-
posed by Forster et al. [40] uses a keypoint-based approach for mapping keyframes
and performs sparse direct image alignment to track intermediate frames. DSO pro-
posed by Engel et al. [32] is a purely direct and sparse system. By using a sparse
set of points it can simultaneously optimize the 3D structure of the environment
and camera motion parameters on a window of keyframes yielding superior accu-
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racy and robustness compared to the semi-dense approach, which uses alternating
optimization.

1.1.3 Visual-Inertial Odometry

Cameras and IMUs complement each other in many ways. The accelerometer and
gyroscope measurements provide good short-term motion information, and the cam-
eras eliminate long-term drift and allow large-scale mapping and localization. Fur-
thermore, an IMU makes scale as well as the roll and pitch angles observable, which
is relevant for many applications. Therefore there were several methods which com-
bine an IMU with vision to solve the visual odometry problem. By the type of IMU
integration these methods can be classified into two general approaches.

The first one is the so-called loosely coupled fusion. In such systems the vision
sub-system is used as a blackbox, providing pose measurements, which are then
combined with inertial data in an (extended or unscented) Kalman filter. Examples
of such systems are presented in [35, 87, 130].

Recently, several tightly coupled approaches were presented. In these approaches
the motion of the camera is computed by jointly optimizing the parameters in a
combined energy function consisting of visual and inertial error terms. This makes
the optimization better constrained and better captures correlations between differ-
ent sensors, which results in better accuracy and robustness. IMU data also helps to
better initialize the optimization, which helps for the cases when the energy function
has many local minima. Tightly coupled fusion has been presented for filtering-based
approaches [17, 74, 126] as well as for energy-minimization-based systems [39, 73,
95, 8].

Since the cost function that we try to minimize is highly non-convex, an initial-
ization close to the global minimum is required for the optimization to converge.
In the case of visual-inertial odometry initial velocity, bias and gravity direction
have to be initialized. Therefore apart from the usual visual initialization procedure
most visual-inertial systems need a specific visual-inertial initialization. However
the problem is even more difficult, because several types of motion do not allow to
uniquely determine all variables. In [85] a closed-form solution for visual-inertial
initialization was presented, as well as an analysis of exceptional cases, which was
later extended to account for IMU biases by [60].

1.1.4 Environment Representation

The autonomous navigation problem usually requires different environment repre-
sentations for different subtasks. Figure 1.3 shows an example of two maps generated
from the same sensor data in an indoor GPS-denied environment. The keypoint map
is used for vehicle localization and the occupancy map is used for obstacle avoid-
ance and path planning. Since the type of the map used for localization is defined
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Figure 1.3: Example of representations of an indoor GPS-denied environment used for
autonomous vehicle navigation. A keypoint-based map used for localization is shown on
the left and an octree-based occupancy map used for path planning and collision avoidance
is shown on the right.

by the selection of the visual odometry or SLAM system discussed in the previous
subsections, in this subsection we discuss the map representations that can be used
for path planning and collision avoidance.

In order to plan a collision-free trajectory, an environment representation that
stores information about the occupancy is necessary. In the 3D case the simplest
solution that can be used for this purpose is a voxel grid. In this representation,
a volume is subdivided into a regular grid of smaller sub-volumes (voxels), where
information about the occupancy is stored. The main disadvantage of this approach
is its large memory-footprint, which does not allow to map large volumes. However,
the advantage is very fast constant-time access to any of the elements.

To cope with the memory limitation, octree-based representations of the envi-
ronment were presented in [52] and [122]. They store information in an efficient way
by pruning the leaves of the octree that contain the same values, but this results in
logarithmic access times for each element, instead of constant time as in voxel-based
representations.

Another widespread approach to environment mapping is voxel hashing, which
was proposed by [98] and used in [102]. It is mainly used for storing a truncated
signed distance function representation of the environment. In this case, only a
narrow band of measurements around the surface is inserted and only the memory
required for that sub-volume is allocated. However, this approach does not offer
significant advantages when storing non-truncated measurements or dense informa-
tion.
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1.1.5 Optimal Path Planning

Figure 1.4: Path planning approaches. A search-based path planning approach based
on rapidly exploring random tree (RRT) is shown on the left. The optimization-based
approach from [133] is shown in the middle. The dynamic window approach, one of the
motion-primitive-based approaches, proposed in [41] is shown on the right. Illustrations
taken from [25, 113, 133].

There exist three main approaches for trajectory generation: search-based
path planning followed by smoothing, optimization-based approaches and motion-
primitive-based approaches.

In search-based approaches, first, a non-smooth path is constructed on a graph
that represents the environment. The graph can be a fully-connected grid as in [31]
and [59], or be computed using a sampling-based planner (rapidly exploring random
tree, probabilistic roadmap) as in [113] and [21]. After that, a smooth trajectory
represented by a polynomial, B-spline or discrete set of points is computed to closely
follow this path. This class of approaches is currently the most popular choice
for large-scale path planning problems in cluttered environments where a map is
available a priori.

Optimization-based approaches minimize a cost function that consists of smooth-
ness and collision terms. The trajectory in such approaches can be represented as
a set of discrete points [133] or polynomial segments [101]. The approach presented
in Chapter 8 falls into this category, but represents a trajectory using uniform B-
splines.

A different group of approaches is based on path sampling and motion prim-
itives. Motion primitives were successfully applied to a flight through the forest
[105] and autonomous robot navigation [41], and sampling-based approaches were
successfully used for challenging tasks such as ball juggling [93], but the ability of
both approaches to find a feasible trajectory largely depends on the selected dis-
cretization scheme.
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Figure 1.5: The Standford AI cart from the 1970s shown on the left was one of the first
robots to use cameras for navigation [90]. One of Waymo’s modern self-driving cars that
have autonomously driven 3.5 million miles and have a 360-degree camera system among
other sensors [129] is shown on the right. Illustrations taken from [90, 129].

1.2 Applications

Visual-inertial navigation has a large number of applications that potentially have
a huge impact on everyday life. Some examples of such applications are described
in the following.

Autonomous driving has gone a long path from early prototypes with very
limited functionality in the 1970s [90] to autonomous cars that have driven millions
of kilometers on public roads [129].

Most of the current prototypes rely on Lidar for localization and obstacle detec-
tion due to the advantages of this technology: it can precisely measure the distance
to objects that are hundreds of meters away; as an active sensor it works at night
and in low light conditions; Lidar measurements are not subject to drastic changes
of appearance and work well in rain and fog. However, the complex mechanical
structure which degrades over the years, the large price and power consumption
motivate the manufacturers to look for alternatives.

Camera-based solutions are one of the alternatives, and in fact are frequently
used for redundancy. Vision-based solutions can not only be used for localization,
but due to the large amount of information provided by the cameras and recent
advances in machine learning it is possible to use cameras for depth estimation [71],
vehicle, pedestrian and traffic light detection [111].

Micro aerial vehicles (MAVs) have recently moved from research prototypes
to common consumer products. In order to control the position of the MAV, or
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to implement trajectory following, position feedback is required. Most consumer
MAVs rely on GPS for that purpose, which constrains MAV applications to places
where good GPS reception is available.

Figure 1.6: An MAV autonomously inspects the structure of a bridge. Since the GPS
reception under the bridge is unreliable the MAV relies on visual and inertial sensors to
estimate the position in the environment and plan the trajectory.

For applications like package delivery where the MAV has to operate close to
buildings at the last stage of the delivery, or for inspection tasks in areas where
the GPS signal is reflected or absent (Figure 1.6) it is important to obtain pose
feedback from the onboard sensors. Even though sometimes different sensors (such
as Lidar, RGB-D cameras, sonars and radars) can be used, using a combination of
passive cameras and IMUs is often preferred because of the size, weight and power
consumption.

Service Robotics is another application area for visual and visual-inertial nav-
igation. The Dyson 360 Eye vacuum cleaner robot was one of the first consumer
products to use vision-based navigation to localize itself in the environment and
clean it in a systematic way.

Virtual and Augumented Reality is another application area where precise
camera tracking is essential. It is required to correctly render virtual objects in the
world and track the precise location of the user. Creating environment maps on-line
allows to correctly process occlusions and user interactions with the environment.
Since most smartphones are already equipped with cameras and IMUs, this makes
visual-inertial odometry and SLAM an obvious choice for this task.





Chapter 2
Contributions and Outline

The purpose of this thesis is to develop the technologies relevant for autonomous
navigation of vehicles using onboard sensors, in particular the combination of cam-
eras and IMUs. First, we investigate models of the sensors and present a novel
camera model for wide-angle lenses. Then, we present two direct visual-inertial
odometry methods (semi-dense and sparse) and provide a dataset for the evaluation
of visual-inertial odometry. After that, we propose a novel method for real-time
trajectory replanning and demonstrate autonomous navigation of a flying vehicle.

2.1 Major Contributions

This cumulative thesis comprises five full-length publications [4, 5, 7, 8, 10], which
are the result of joint work with Lukas von Stumberg, Nikolaus Demmel, David Schu-
bert, Thore Goll, Andrej Pangercic, Jakob Engel, Jörg Stückler and Prof. Daniel
Cremers. All these works were published in highly ranked, peer-reviewed inter-
national conferences. The paper [5] is based on the Master’s thesis of Lukas von
Stumberg supervised by me. The paper [10] was finalist of the Best Paper Award
at the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Table 2.1 shows a complete summary of all works published as part of, or
in conjunction with this thesis. It also lists other publications done while pursuing
this degree, originating from different projects, which are not included as part of
this cumulative thesis.

In this thesis a novel camera model, two visual-inertial odometry systems, a
visual-inertial dataset and a system for real-time trajectory replanning are presented.
We also demonstrated how all these components can be used for navigating a vehicle
using onboard sensors in an unknown environment, using a micro aerial vehicle as
an example. Overall the contributions of the thesis are as follows.
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Table 2.1: Full Publication Summary. Complete list of publications done while pursu-
ing this degree, ordered chronologically. For publications that are included in this cumu-
lative thesis, we list the respective chapter. Publications that are not part of this thesis
are listed in gray.
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2.1.1 Novel Camera Model for Wide-Angle Lenses

One contribution of this thesis is a novel camera model for cameras with wide-angle
lenses. Recently several researchers have shown the benefit of using cameras with
a large field of view for vision-based motion estimation, which results in increased
accuracy and robustness.

In Chapter 4 we provide an extensive review of existing camera models for large-
field-of-view cameras. To make the thesis self-contained, for each of the models
we provide projection and unprojection functions and the subspace of points which
result in valid projections. After that, we propose the new Double Sphere camera
model that fits well for lenses with a large field of view, has a closed form inverse and
is computationally inexpensive. We evaluate the models on a dataset collected with
several different wide-angle lenses. The models are compared using the metrics that
are relevant for visual odometry: reprojection error, computation time for projection
and unprojection functions and their Jacobians. We also provide qualitative results,
analyse the performance of all models and discuss the suitability of the models for
real-time visual odometry and SLAM applications.

2.1.2 Direct Semi-Dense Visual-Inertial Odometry for
Stereo Cameras

In Chapter 5 we propose a novel direct visual-inertial odometry method for stereo
cameras based on [33]. In this method pose, linear velocity and IMU biases are esti-
mated by minimizing a combined photometric and inertial energy functional. This
allows us to exploit the complementary nature of inertial and visual data. The pro-
posed method belongs to the direct methods. Here geometry is estimated in the form
of semi-dense depth maps instead of manually designed sparse keypoints. For depth
estimation the method uses both static and temporal stereo, which results in depth
maps with metrically correct scale. This property is important since camera tracking
and depth estimation are performed it two separate optimization processes, so the
IMU data is not able to propagate scale information from the tracking optimization
to the estimated depth maps. Because of that, initialization of the depth map with
proper scale is essential for the operation of the system. Evaluation showed that our
method outperforms not only vision-only or loosely coupled approaches, but also can
achieve more accurate results than state-of-the-art keypoint-based methods on dif-
ferent datasets, including sequences with rapid motion and significant illumination
changes. In addition, the method provides accurate semi-dense, metric reconstruc-
tions of the environment, which can be used for obstacle avoidance and exploration
algorithms [6].
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2.1.3 Direct Sparse Visual-Inertial Odometry

In Chapter 6 we present a novel approach for visual-inertial odometry based on [32].
It jointly estimates camera poses and sparse geometry of the scene by minimizing
photometric and IMU measurement terms in a combined energy functional. This
constitutes the main difference to the method described in Chapter 5, since now
we can actually propagate scale information from the IMU measurements to the
geometry of the scene. This way we can reconstruct metrically correct geometry of
the environment with a single monocular camera and an IMU.

In the proposed method the system performs a bundle-adjustment-like optimiza-
tion on a sparse set of points. Unlike regular bundle adjustment, the system min-
imizes the photometric error, instead of minimizing the reprojection error of the
detected keypoints. Because of that, the system is able to track any pixels with
large enough intensity gradients. To cope with the fact that the IMU measurements
have a much higher rate than the camera measurements, a preintegration is used to
summarize several consecutive measurements into one pseudo-measurement.

Scale and gravity direction are explicitly included into our model and jointly
optimized with other variables. Since with a monocular camera the scale is not im-
mediately observable we initialize our visual-inertial system with an arbitrary scale
instead of delaying the initialization. To ensure a bounded computation time we
marginalize out old states as described in Section 3.2.3. In order to keep the system
consistent we introduce a novel strategy which we call dynamic marginalization.
This strategy allows us to use partial marginalization even in the cases when scale
is initialized far from the true value. Evaluation on the EuRoC dataset shows that
the proposed method outperforms the state of the art and the method presented in
Chapter 5.

2.1.4 Visual-Inertial Dataset with Precise Geometric and
Photometric Calibration

In Chapter 7, we propose the TUM VI benchmark, a novel dataset with 28 sequences
in different environments for evaluating visual-inertial odometry. It contains one-
megapixel camera images at 20 Hz with a high dynamic range. Moreover, the two
cameras have a linear response function and pre-calibrated vignetting which gives
additional information about the image formation process. The cameras and the
IMU in all sequences are time-synchronized in hardware. The IMU contains a three-
axis accelerometer and gyroscope and provides measurements at 200 Hz. Figure 2.1
shows the setup that was used for collecting the dataset.

At the start and end segments of the sequences the ground-truth pose from a
motion capture system at 120 Hz is available. To provide the pose information in
the IMU frame we performed hand-eye calibration on the calibration sequences.
For other sequences we perform time alignment to the motion capture data using
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rotational velocities and gyroscope measurements.
The full dataset with raw and calibrated data is publicly available. The main

advantage over the existing datasets is the precise geometric and photometric cali-
bration, high resolution, wide field of view of the cameras and high dynamic range
of the collected image data.

Figure 2.1: Setup that was used for collecting the visual-inertial dataset. Two wide-
angle cameras are hardware-synchronized with the IMU to ensure accurate timestamps.
Reflective markers mounted on the setup are used to obtain the ground-truth pose from
the motion capture system.

2.1.5 Real-Time Trajectory Replanning for MAVs

In Chapter 8, we propose a real-time approach to local trajectory replanning for
micro aerial vehicles (MAVs). Trajectory generation for static environments, where
the map is known a priori, is a well studied problem with many solutions proposed
over the last years. In this thesis, we assume there exists a planned global trajectory
and introduce an algorithm that can avoid unmodeled (possibly dynamic) obstacles
while closely following the global trajectory in the obstacle-free environment (Figure
2.2).

To make the proposed approach real-time capable, we maintain the information
about the environment around the MAV in a robocentric occupancy grid stored in
a three-dimensional circular buffer. This gives us a magnitude faster measurement
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insertion time compared to competing methods. The trajectory that we optimize is
represented with uniform B-splines, which ensures the required smoothness and fast
optimization.

Figure 2.2: Autonomous navigation of a flying vehicle. Visual-inertial odometry is used
to track the 3D position of the MAV. Occupancy information is stored in the robocentric
3D circular buffer shown on the right. The trajectory is planned according to the most
recent state of the environment with the global path shown in pink and the optimized
trajectory shown in green (still being optimized) and blue (fixed). An image from the
on-board camera is shown on the bottom left and the corresponding third-person view is
shown on the top left.

2.2 Outline of the Thesis

This thesis consists of three parts. Part I introduces the research problem, pro-
vides motivation and possible applications, and introduces state-of-the-art methods
for visual-inertial odometry, 3D mapping and optimal trajectory generation. Chap-
ter 1 presents the research problem, a review of the related work and applications.
Chapter 2 states the contribution of this thesis and provides an overview of se-
lected publications. Chapter 3 gives the necessary mathematical background, which
includes 3D geometry, probability theory and non-linear optimization.

Part II provides the main content of the cumulative thesis that consists of five
research publications. To achieve high-accuracy localization precise modeling of
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the sensors is required. This is addressed in Chapter 4, which introduces a novel
camera model for wide-angle and fisheye cameras. Chapter 5 presents a novel direct
semi-dense visual-inertial odometry for stereo cameras based on [33]. This tightly
coupled method, combines direct image alignment and IMU terms in one energy
functional for camera tracking, while the mapping part uses stereo images to recover
metrically scaled semi-dense depth maps. Chapter 6 presents an improved version of
visual-inertial odometry based on [32]. Unlike the previous version it simultaneously
estimates camera motion and 3D geometry in one combined functional, which makes
it possible to use monocular cameras and still recover the metric scale from IMU
measurements in one combined optimization. To evaluate the methods we need
publicly available datasets with time-synchronized IMU and camera measurements.
Even though several such datasets exist they do not have photometric calibration.
This yields sub-optimal performance for direct methods. Chapter 7 presents a public
dataset that provides precise geometric and photometric calibration and ground-
truth poses for the start and end of the sequences. Assuming that we can track the
3D position of a vehicle Chapter 8 presents a novel method for optimal trajectory
planning based on the current environment state.

Part III concludes the thesis with Chapter 9 which states the limitations of the
current approaches and discusses possible future work and remaining challenges in
Chapter 10.





Chapter 3
Fundamentals

In this chapter we provide the fundamental mathematical concepts that will be used
in the thesis. First, we discuss 3D geometry and pose representations. After that,
we describe the foundations of probability theory and nonlinear optimization.

3.1 3D Geometry

3.1.1 Rotation Representations in 3D Space

There exist several ways to represent a rotation in 3D space. A rotation in 3D space
has three degrees of freedom but some representations are overparametrized. In this
subsection Euler angles, unit quaternions and rotation matrices that form the SO(3)
Lie Group are discussed.

Euler angles are three angles, that represent the orientation of an object as a
sequence of rotations around defined axes. Given that the order of the axes around
which the rotations are performed can be different, there exist 12 different sequences
of rotations. One of the typical sequences is Yaw-Pitch-Roll (YPR). In this notation
first a rotation around the Z axis is performed, then around the modified Y axis
and finally around the modified X axis for yaw, pitch and roll angles respectively.
This representation is minimal, because it uses three parameters to describe three
degrees of freedom of the object orientation. However this representation has a
degenerate case called Gimbal Lock. If the roll angle is equal to ±90◦ then there
is no unique correspondences between object orientation and these three angles,
because in this case a change in roll causes a change in yaw. This requires handling
these cases with special care. Another issue with Gimbal Lock is that the Jacobian
in this configuration is rank deficient which makes it not suitable for optimization.
Concatenation of several rotations represented as Euler angles is not straightforward,
so it is better to use other rotation representations for this task.
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Unit quaternions use 4 parameters to represent an orientation of the body.

q = (qx, qy, qz, qw), (3.1)

where qx, qy and qz represent the imaginary part of the quaternion and qw represents
the real part of the quaternion. Here we use Hamilton convention for quaternions,
but there exist other notations such as JPL [121]. Essentially, a quaternion repre-
sents a rotation for an angle around an axis. If we have an angle α and a unit vector
n = (nx, ny, nz) representing the axis of rotation we can construct a quaternion using
the following equations

qx = sin(
α

2
)nx, (3.2)

qy = sin(
α

2
)ny, (3.3)

qz = sin(
α

2
)nz, (3.4)

qw = cos(
α

2
). (3.5)

The corresponding rotation matrix can be computed from a quaternion as follows

R =

1− 2q2
y − 2q2

z 2qxqy − 2qzqw 2qxqz + 2qyqw
2qxqy + 2qzqw 1− 2q2

x − 2q2
z 2qyqz − 2qxqw

2qxqz − 2qyqw 2qyqz + 2qxqw 1− 2q2
x − 2q2

y

 . (3.6)

This representation does not have a gimbal lock problem, but the quaternions q
and −q represent the same rotation. Concatenation of several rotations represented
as quaternions is straightforward and done by quaternion multiplication. Also unit
quaternions might de-normalize because of rounding errors, so they have to be pe-
riodically normalized. The normalization, however, is simple and computationally
inexpensive compared to the normalization of rotation matrices.

Rotation Matrices are 3× 3 orthonormal matrices with |R| = 1 which represent
the orientation of a rigid object.

R =

r1,1 r1,1 r1,3

r2,1 r2,2 r2,3

r3,1 r3,2 r3,3

 (3.7)

This representation specifies the orientation of the rigid body relative to some ex-
ternal coordinate system. To find the coordinates (x′, y′, z′) of a rotated point we
have to simply multiply the rotation matrix with the original point (x, y, z)x′y′

z′

 = R

xy
z

 . (3.8)
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Rotation matrices can be easily concatenated using matrix multiplication. This
representation of a rotation is over-parametrized, because it uses 9 values to rep-
resent 3 degrees of freedom. The other 6 degrees of freedom are constrained by
orthonormality assumption.

3.1.2 SO(3) Lie Group and so(3) Lie Algebra

Rotation matrices form the SO(3) group under the matrix multiplication operation.
This means that when multiplying rotation matrices the result will always be a
rotation matrix and that the other group axioms (associativity, neutral element,
unique inverse element) hold

R1(R2R3) = (R1R2)R3, (3.9)

R1I = IR1 = R1 (3.10)

R1R
−1
1 = R−1

1 R1 = I, (3.11)

where R1, R2, R3 ∈ SO(3) and I is the identity matrix. Moreover, for rotation
matrices the inverse of the matrix is its transpose R−1 = RT .

For Lie groups we can also define a corresponding Lie algebra that describes
the tangent space around identity. In this case we define a vector ξ ∈ R3 from
which we can construct the corresponding element in the so(3) lie algebra using
the hat operator and the corresponding rotation matrix R ∈ SO(3) using matrix
exponentiation.

R = eξ̂, (3.12)

ξ̂ =
3∑
i=1

Giξ(i), (3.13)

where ξ(i) is the i-th component of vector ξ and Gi is the i-th generator of the
SO(3) group

G1 =

0 0 0
0 0 −1
0 1 0

 , G2 =

 0 0 1
0 0 0
−1 0 0

 , G3 =

0 −1 0
1 0 0
0 0 0

 , (3.14)

and e stands for matrix exponentiation

eX =
∞∑
i=0

1

i!
X i. (3.15)

In the case of the SO(3) group a closed-form solution exists, which is called Ro-
drigues formula

eξ̂ = I +
sin(||ξ||)
||ξ|| ξ̂ +

1− cos(||ξ||)
||ξ||2 ξ̂2. (3.16)
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The inverse operator, which is called log, also exists in closed form for the SO(3)
group

log(R) =
arccos(d)

2
√

1− d2
(R−RT ), (3.17)

d =
1

2
(tr(R)− 1), (3.18)

where tr is the trace operator. The log operator gives the element in so(3), which
we can compress into a three dimensional vector ξ = log(R)∨ using the operator vee
which is the inverse of the hat operator.

If we unroll the resulting 3 × 3 matrix to a 9 dimensional vector, the Jacobian
of this function at ξ = 0 is

∂eξ̂

∂ξ

∣∣∣∣∣
ξ=0

=

 | | |
G1 G2 G3

| | |

 =



0 0 0
0 0 1
0 −1 0
0 0 −1
0 0 0
1 0 0
0 1 0
−1 0 0
0 0 0


. (3.19)

This Jacobian is used in the iterative numeric optimization methods discussed in
the following sections.

3.1.3 Rigid Transformations in 3D space

Rigid transformations, also referred to as Isometries, are the transformations that
preserve the distance between each pair of points and the orientation between each
pair of vectors [19]. In three dimensional space rigid transformations are called Eu-
clidean transformations. These transformations include translation, rotation and in
some sources reflection, however in this thesis we only consider rigid transformations
that include rotation and translation. In general, a three dimensional Euclidean
transformation is a function:

f : R3 → R3. (3.20)

Each Euclidean transformation can be decoupled into rotation and translation and
can be parametrized by a minimum of six parameters – three for rotation and three
for translation. Rotation parametrizations were discussed in the previous section,
and for translation the most common representation is a three dimensional vector
that specifies the displacement. It does not have discontinuities and uses exactly
three parameters to specify three degrees of freedom.
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Transformation Matrix is a 4× 4 matrix that has the following structure

T =

(
R ∈ SO(3) t ∈ R3

01×3 1

)
,

with rotation matrix R and translation vector t. The coordinates (x′, y′, z′) of the
transformed point can be computed by pre-multiplying the homogeneous coordinates
of the point (x, y, z) with the transformation matrix

x′

y′

z′

1

 = T


x
y
z
1

 . (3.21)

Several transformations can be concatenated by multiplying their transformation
matrices and the inverse can be computed as follows

T−1 =

(
RT −RT t
01×3 1

)
.

3.1.4 SE(3) Lie Group and se(3) Lie Algebra

Transformation matrices form the SE(3) group under matrix multiplication and
represent six degrees of freedom. Lie algebra elements can be parametrized with
ξ ∈ R6 which can be transformed to an se(3) element with the hat operator. Similar
to SO(3) the mapping from se(3) to SE(3) is called exponential map

T = eξ̂, (3.22)

ξ̂ =
6∑
i=1

Giξ(i), (3.23)

where Gi is the i-th generator of the group

G1 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , G2 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , G3 =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , (3.24)

G4 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , G5 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , G6 =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 . (3.25)
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Again, the Rodrigues formula can be used to find a solution in closed form. The
vector ξ = (ω ∈ R3, t′ ∈ R3) consists of the translation and the rotation part, so the
mapping to SE(3) can be done with the following equation:

T = eξ̂ =

(
eω̂ V t′

01×3 1

)
, (3.26)

where

V = I +
1− cos(θ)

θ2
ω̂ +

θ − sin(θ)

θ3
ω̂2, (3.27)

θ = ||ω||, and eω̂ and ω̂ defined in Section 3.1.1. The log map also has a closed-form
solution in SE(3) and is defined as

ξ = log(T )∨ = (ω, t′), (3.28)

ω = log(R)∨, (3.29)

t′ = V −1t, (3.30)

where log map for the rotation part is defined in Eq. 3.17.
The Jacobian of this function at ξ = 0 is given as follows

∂eξ̂

∂ξ

∣∣∣∣∣
ξ=0

=

 | | | | | |
G1 G2 G3 G4 G5 G6

| | | | | |

 . (3.31)
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3.2 Probability Theory and Optimization

3.2.1 Multivariate Gaussian

The common way to parameterize the multivariate Gaussian (normal) distribution
density function is according to

x ∼ N(x;µ,Σ) =
1

(2π)p/2|Σ|1/2 exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (3.32)

where x is a p dimensional vector that is Gaussian distributed, with mean µ and co-
variance Σ (symmetric positive-definite). This parametrization is called the moment
form.

An alternative parametrization of the Gaussian density is called information
form and is defined as follows

x ∼ N−1(x; v,Λ) =
exp

(
−1

2
vTΛ−1v

)
(2π)p/2|Λ|−1/2

exp

(
−1

2
xTΛx+ xTv

)
, (3.33)

where v is called information vector and Λ is called information matrix.
It is easy to see that these two forms are equivalent with

v = Σ−1µ, (3.34)

Λ = Σ−1. (3.35)

3.2.2 Maximum Likelihood Estimation

In this section we describe the maximum likelihood estimation (MLE) framework
that is used throughout this thesis. The theory provided here can be found in
probability theory and statistics textbooks, for example [106]. Some proofs are
skipped for brevity, so we refer the reader to the textbooks.

Let y = (Y1, ..., Yn) be n independent random variables with probability den-
sity function defined as fi(yi, θ) that depends on the vector-valued parameter
θ = (θ1, ..., θp). The likelihood function is then defined as follows

L(θ,y) =
n∏
i=1

fi(yi, θ). (3.36)

We use the natural logarithm to turn the product into a sum and define the log-
likelihood as

logL(θ,y) =
n∑
i=1

log fi(yi, θ), (3.37)
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which has the same maximizer as the original likelihood function.

The maximum-likelihood estimate of the parameters θ̂ is the one that maximizes
the likelihood. More formally

logL(θ̂,y) ≥ logL(θ,y),∀θ. (3.38)

The vector of partial derivatives of the log-likelihood function u(θ) is called score
vector. It has the size p× 1 and is defined as

u(θ) =
∂ logL(θ,y)

∂θ
, (3.39)

and the Fisher information matrix is defined as a p× p matrix of second derivatives
of the negative log-likelihood function:

I(θ) = −
{
∂2 logL(θ,y)

∂θi∂θj

}
. (3.40)

If certain regularity conditions are met, the MLE estimate θ̂ is asymptotically
(n → ∞) normal with mean θt and variance-covariance matrix I(θt)

−1 [62]. More
formally

θ̂ ∼ N(θt, I(θt)
−1), (3.41)

where N is a multivariate Gaussian distribution and θt is the true value of the
parameter. In practice, since the true value of θt is not known, the distribution can
be estimated by substituting the MLE value θ̂ to the information matrix I(θ̂). This
matrix is called observed sample Fisher information and it asymptotically converges
to the Fisher information matrix.

Note that until now we did not discuss how we can find the MLE solution. This
will be discussed in Section 3.2.4 for the cases that are relevant for this thesis. An
important result from this subsection is that the MLE solution is asymptotically
normal and we can estimate the parameters of this normal distribution.

3.2.3 Partial Marginalization

After estimating the maximum likelihood solution θ̂ we obtain the estimated distri-
bution of this solution that is a Gaussian with Σ = I(θ̂)−1. The probability density
function is defined as follows

x ∼ N(x; θ̂,Σ) =
1

(2π)p/2|Σ|1/2 exp

(
−1

2
(x− θ̂)TΣ−1(x− θ̂)

)
. (3.42)
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Splitting the parameter vector in two components θ̂ = [θ̂a, θ̂b] we are interested
in the marginal distribution of θ̂a. We can separate Σ into corresponding blocks

Σ =

[
Σaa Σab

ΣT
ab Σbb

]
, (3.43)

and rewrite the probability distribution as[
xa
xb

]
∼ 1

(2π)p/2|Σ|1/2 exp

(
−1

2

[
xa − θ̂a
xb − θ̂b

]T [
Σaa Σab

ΣT
ab Σbb

]−1 [
xa − θ̂a
xb − θ̂b

])
. (3.44)

The marginal distribution of xa can be found by selecting corresponding blocks
of θ and Σ (for formal proof see [117])

xa ∼ N(xa; θ̂a,Σaa) =
1

(2π)p/2|Σaa|1/2
exp

(
−1

2
(xa − θ̂a)TΣ−1

aa (xa − θ̂a)
)
. (3.45)

If the distribution density function is provided in the information form
N−1(x; v,Λ) (Equation 3.33), the marginal distribution is computed using the Schur
complement as follows (for proof see [127])

xa ∼ N−1(xa; v̄a, Λ̄aa), (3.46)

Λ̄aa = Λaa − ΛabΛ
−1
bb ΛT

ab, (3.47)

v̄a = va − ΛabΛ
−1
bb vb, (3.48)

Λ =

[
Λaa Λab

ΛT
ab Λbb

]
, (3.49)

v =

[
va
vb

]
. (3.50)

3.2.4 Maximum Likelihood Estimate for Observations with
Gaussian Noise

Until now we assumed we have a maximum-likelihood estimate for our problem, but
we did not discuss how we can compute it. Assume we have a set of n independent
observations y = (Y1, ..., Yn), where each observation has the form Yi = gi(θ) +
N(0, σ2

i ). With Equations 3.38 and 3.32 we can write the log-likelihood as follows

logL(θ,y) =
n∑
i=1

log
1√

2πσ2
i

exp

(
−1

2

(Yi − gi(θ))2

σ2
i

)
(3.51)

= C − 1

2

n∑
i=1

(Yi − gi(θ))2

σ2
i

, (3.52)

(3.53)
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where C is constant. Maximizing the log-likelihood is the same as minimizing the
negative log-likelihood, so we can write

θ̂ = arg min
θ
− logL(θ,y) = arg min

θ

1

2

n∑
i=1

(Yi − gi(θ))2

σ2
i

, (3.54)

where θ̂ is the maximum likelihood estimate of the parameter. This problem is
known as a least-squares problem. It is a well studied problem for which efficient
solving methods exist. They will be discussed in the following.

3.2.5 Gauss-Newton Method for Least-Squares Problems

Non-linear least-squares problems are widely used to fit the parameters of a function
to measurement data. For a vector function r : Rp → Rm we are looking for the
parameter vector θ that minimizes ||r(θ)||2 [81], where the elements of the vector

function ri(θ) = Yi−gi(θ)
σi

are the residuals.

θ̂ = arg min
θ

F (θ), (3.55)

where

F (θ) =
1

2

∑
ri(θ)

2 =
1

2
r(θ)T r(θ). (3.56)

This is exacly the same minimization problem as in Eq. 3.54. The Gauss-Newton
method uses a linear approximation of r(θ)

r(θ + h) ' l(h) = r(θ) + J(θ)h, (3.57)

where J is the Jacobian of the vector function r, the entries in which can be computed
as

J(θ)ij =
∂ri
∂θj

(θ). (3.58)

With this approximation

F (θ + h) ' L(h) =
1

2
l(h)T l(h) (3.59)

=
1

2
r(θ)T r(θ) + hTJ(θ)T r(θ) +

1

2
hTJ(θ)TJ(θ)h (3.60)

= F (θ) + hTJ(θ)T r(θ) +
1

2
hTJ(θ)TJ(θ)h. (3.61)
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L(h) is a quadratic function function with derivative

L′(h) = J(θ)T r(θ) + J(θ)TJ(θ)h. (3.62)

We know that for the optimal value of h that minimizes L(h) this derivative should
be zero. According to that

J(θ)TJ(θ)h∗ = −J(θ)T r(θ) (3.63)

As the function F is non-linear we have to iteratively linearize it around the current
state and search for the optimal solution of the linear function.

θi+1 = θi + h∗ (3.64)

If the curvature of the functions ri is small this method shows quadratic conver-
gence [81]. This usually holds when the state is close to the minimum of a smooth
differentiable function. In this thesis the Gauss-Newton method will be used for the
visual-inertial odometry algorithms described in the next chapters.

3.2.6 Gauss-Newton Method for Smooth Manifolds

For many problems in the real world the state variables that we want to estimate
lie on a smooth manifold and not in Euclidean space. Some examples of such states
include the rotations SO(3) and the rigid body transformations SE(3) as discussed
in Section 3.1. Luckily the optimization method described in Section 3.2.5 can be
easily adapted for such cases.

When optimizing on smooth manifolds we parametrize updates to the state in
the tangent space and compute the Jacobians accordingly. We can then rewrite the
linearization defined in Eq. 3.57 as

r(θ ⊕ h) ' l(h) = r(θ) + J(θ)h, (3.65)

and rewrite the update defined in Eq. 3.64

θi+1 = θi ⊕ h∗. (3.66)

One possible (but not unique) selection of the ⊕ operator is post-multiplication with
the exponential map and the increment defined in Lie algebra tangent space. In the
case of poses the state update can be represented as

Ti+1 = Tie
ĥ∗ . (3.67)

In this formulation the exponential map is linearized around zero at every iteration,
so the Jacobians from Section 3.1 can be used for computing the Jacobians of the
residual function using the chain rule.
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3.2.7 Levenberg-Marquardt Method

Even though the Gauss-Newton algorithm described in Section 3.2.5 has quadratic
convergence close to the optimum, for arbitrary initialization it can become unstable.
It also does not guarantee that the value of the function that is being minimized
will decrease at every iteration.

To overcome these limitations the Levenberg-Marquardt method can be used,
which is a mixture of the gradient descent method that always decreases the function
with sufficiently small step size, but has linear convergence, and the Gauss-Newton
method with quadratic convergence. The update step is very similar to Eq. 3.63
and can be expressed as

h∗ = −(JTJ + λ diag(JTJ))−1JT r(θ), (3.68)

where diag denotes the diagonal matrix with the elements taken from the argument.
The algorithm to set the λ largely depends on the problem. One possible al-

gorithm is described in [81] where the parameter is decreased if the linear approx-
imation of the function (Eq. 3.57) behaves similar to the non-linear function, and
increased if the behavior is different or the current step has increased the value of
the minimized function.

3.2.8 Huber Norm and Iteratively Reweighted Least-
Squares Problem

The methods described in the previous subsections minimize the sum of squared
residuals and, because of that, are not robust to outliers. One way to make the
methods more robust to outliers is to use a robust norm instead of the l2 norm. In
Chapters 5 and 6 we use the Huber norm to make the method robust to outliers.
The Huber norm is defined as follows

ρ(r) =

{
1
2
r2, for |r| ≤ σ
σ|r| − 1

2
σ2, for |r| > σ

, (3.69)

where σ is the parameter of the Huber norm. For residuals smaller than σ it has the
same properties as the l2 norm, but for large residuals the loss becomes linear instead
of quadratic. This allows to minimize the effect of outliers on the optimization
procedure.

With that, we can formulate a robust optimization function as follows

θ̂ = arg min
θ

F ′(θ), (3.70)

F ′(θ) = ρ(r(θ)), (3.71)

where ρ is applied elementwise to all elements of the residual vector function r(θ).
This function can be minimized using iteratively reweighted least-squares. We know
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that the minimizer of the function should have the derivative equal to zero. We can
write the derivative of the function F ′ using the chain rule as

∂F ′(θ)

∂θ
=
∂ρ(r)

∂r

∂r(θ)

∂θ
=

1

r

∂ρ(r)

∂r
r
∂r(θ)

∂θ
=

1

r

∂ρ(r)

∂r

∂F (θ)

∂θ
= 0, (3.72)

where F is the original loss function with l2 norm defined in 3.56. If we define the
weight function as

w(r) =
1

r

∂ρ(r)

∂r
, (3.73)

we can see that equation 3.72 can be obtained by taking the derivative of the fol-
lowing function

F ′′(θ) =
1

2

∑
w(r(θ))r2(θ). (3.74)

In iteratively reweighted least squares we fix w(r(θ)) in every iteration and ignore
its dependency on the residual for the Jacobian computation. This simplification
turns the problem at every iteration into the simple weighted least-squares problem
discussed in the previous subsections. Despite this approximation of the Jacobians,
iteratively reweighted least squares shows fast convergence in practice.
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Abstract Vision-based motion estimation and 3D reconstruction, which
have numerous applications (e.g., autonomous driving, navigation sys-
tems for airborne devices and augmented reality) are receiving significant
research attention. To increase the accuracy and robustness, several re-
searchers have recently demonstrated the benefit of using large field-of-
view cameras for such applications.
In this paper, we provide an extensive review of existing models for large
field-of-view cameras. For each model we provide projection and unpro-
jection functions and the subspace of points that result in valid projection.
Then, we propose the Double Sphere camera model that well fits with large
field-of-view lenses, is computationally inexpensive and has a closed-form
inverse. We evaluate the model using a calibration dataset with several
different lenses and compare the models using the metrics that are relevant
for Visual Odometry, i.e., reprojection error, as well as computation time
for projection and unprojection functions and their Jacobians. We also
provide qualitative results and discuss the performance of all models.

4.1 Introduction

Visual Odometry and Simultaneous Localization and Mapping are becoming impor-
tant for numerous applications. To increase the accuracy and robustness of these
methods, both hardware and software must be improved.

Several issues can be addressed by the use of large field-of-view cameras. First,
with a large field-of-view, it is easier to capture more textured regions in the envi-
ronment, which is required for stable vision-based motion estimation. Second, with
a large field-of-view, large camera motions can be mapped to smaller pixel motions
compared to cameras with a smaller field-of-view at the same resolution. This en-
sures small optical flow between consecutive frames, which is particularly beneficial
for direct methods.

Previous studies have demonstrated that a large field-of-view is beneficial for
vision-based motion estimation [132] [114]. Catadioptric cameras are mechanically
complex and expensive; however fisheye lenses are small, lightweight, and widely
available on the consumer market. Thus, in this paper we focus on fisheye lenses
and models that describe their projection.

The reminder of this paper is organized as follows. In Section 8.2 we provide an
extensive review of camera models that can be used with fisheye lenses. To make
the paper self-contained we provide the projection and unprojection functions and
define the subspace of valid projections for each model. In Section 4.3, we propose
a novel projection model for fisheye cameras that has the following advantages.

• The proposed projection model is well suited to represent the distortions of
fisheye lenses.
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• The proposed model does not require computationally expensive trigonometric
operations for projection and unprojection.

• Differing from projection models based on higher order polynomials [61] [116],
that use iterative methods to unproject points, the inverse of the projection
function exists in a closed form.

In Section 4.5, we evaluate all presented models with respect to metrics that are
relevant for vision-based motion estimation. Here, we use a dataset collected using
several different lenses to evaluate the reprojection error for each model. We also
present the computation time required for projection and unprojection functions
and the time required to compute Jacobians relative to their arguments.

The datasets used in this study together with the open-source implementation
of the proposed model are available on the project page:

https://vision.in.tum.de/research/vslam/double-sphere

4.2 Related Work

We define the notations used in this paper prior to reviewing existing camera models
that can be used with fisheye lenses. We use lowercase letters to denote scalars, e.g.,
u, bold uppercase letters to denote matrices, e.g., R, and bold lowercase letters for
vectors, e.g., x.

Generally, we represent pixel coordinates as u = [u, v]T ∈ Θ ⊂ R2, where Θ
denotes the image domain to which points can be projected to. 3D point coordinates
are denoted x = [x, y, z]T ∈ Ω ⊂ R3, where Ω denotes the set of 3D points that result
in valid projections.

For all camera models we assume all projections cross a single point (i.e., central
projection) that defines the position of the camera coordinate frame. The orien-
tation of the camera frame is defined as follows. The z axis is aligned with the
principal axis of the camera, and two other orthogonal directions (x, y) align with
the corresponding axes of the image plane. We define a coordinate frame rigidly
attached to the calibration pattern such that the transformation Tcan ∈ SE(3),
which is a matrix of the special Euclidean group, transforms a 3D coordinate from
the calibration pattern coordinate system to the camera coordinate system for image
n.

Generally, a camera projection function is a mapping π : Ω → Θ. Its inverse
π−1 : Θ → S2 unprojects image coordinates to the bearing vector of unit length,
which defines a ray by which all points are projected to these image coordinates.

For all camera models discussed in this section, we provide definitions of π, π−1,
the vector of intrinsic parameters i, Ω and Θ.

https://vision.in.tum.de/research/vslam/double-sphere
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α
1−α

ξ

Figure 4.1: The proposed Double Sphere (DS) projection model. Initially, the point is
projected onto the first sphere (green) and then onto the second sphere, which is shifted
with respect to the first sphere by ξ (red). Then, the point is projected onto the image
plane of a pinhole camera that is shifted by α

1−α from the second sphere. The image below
is the reprojection of the pattern corners after calibration using the proposed DS model,
which indicates that the model fits the lens well.
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α
1−α

β

Figure 4.2: Schematic representation of the Unified Camera Model (UCM) and Extended
Unified Camera Model (EUCM). First a 3D point is projected onto a unit sphere and
then projected onto the image plane of the pinhole camera shifted by α

1−α from the center
of the sphere. In the EUCM, the sphere is transformed to an ellipsoid using the coefficient
β.

4.2.1 Pinhole Camera Model

The pinhole camera model has four parameters i = [fx, fy, cx, cy]
T with a projection

function that is defined as follows:

π(x, i) =

[
fx

x
z

fy
y
z

]
+

[
cx
cy

]
, (4.1)

It is easy to see that projection is defined for Ω = {x ∈ R3 | z > 0}, which theo-
retically limits the field-of-view to less than 180◦. However, in practice, even when
distortion model is added the pinhole camera demonstrates suboptimal performance
for a field-of-view greater than 120◦.

We can use the following function to unproject a point:

π−1(u, i) =
1√

m2
x +m2

y + 1

mx

my

1

 (4.2)

mx =
u− cx
fx

, (4.3)

my =
v − cy
fy

, (4.4)

where unprojection is defined for Θ = R2.
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4.2.2 Unified Camera Model

The unified camera model (UCM) has five parameters i = [γx, γy, cx, cy, ξ]
T and is

typically used with catadioptric cameras [86]. A previous study [47] has shown that
the UCM can represent systems with parabolic, hyperbolic, elliptic and planar mir-
rors. This model can also be applied to cameras with fisheye lenses [131]. However,
it does not fit most fisheye lenses perfectly; thus, an additional distortion model is
often added.

In the UCM, projection is defined as follows:

π(x, i) =

[
γx

x
ξd+z

γy
y

ξd+z

]
+

[
cx
cy

]
, (4.5)

d =
√
x2 + y2 + z2. (4.6)

In this model, a point is first projected onto the unit sphere and then onto the image
plane of the pinhole camera, which is shifted by ξ from the center of the unit sphere.

For practical applications we propose to rewrite this model as follows:

π(x, i) =

[
fx

x
αd+(1−α)z

fy
y

αd+(1−α)z

]
+

[
cx
cy

]
. (4.7)

This formulation of the model also has five parameters i = [fx, fy, cx, cy, α]T ,
α ∈ [0, 1] and is mathematically equivalent to the previous one (ξ = α

1−α , γx =
fx

1−α , γy = fy
1−α). However, as discussed in Section 4.5, it has better numerical prop-

erties. Note that for α = 0, the model degrades to the pinhole model.

The set of 3D points that result in valid projections is defined as follows:

Ω = {x ∈ R3 | z > −wd}, (4.8)

w =

{
α

1−α , if α ≤ 0.5,
1−α
α

if α > 0.5,
(4.9)

where (for α > 0.5) w represents the sine of the angle between the horizontal axis
on schematic plot (Figure 4.2) and the perpendicular to the tangent of the circle
from the focal point of the pinhole camera.
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θ

d(θ)

Figure 4.3: Schematic representation of the Kannala-Brandt Camera model (KB). The
displacement of the projection from the optical center is proportional to d(θ), which is a
polynomial function of the angle between the point and optical axis θ.

The unprojection function is defined as follows:

π−1(u, i) =
ξ +

√
1 + (1− ξ2)r2

1 + r2

mx

my

1

−
0

0
ξ

 , (4.10)

mx =
u− cx
fx

(1− α), (4.11)

my =
v − cy
fy

(1− α), (4.12)

r2 = m2
x +m2

y, (4.13)

ξ =
α

1− α, (4.14)

where Θ is defined as follows.

Θ =

{
R2 if α ≤ 0.5

{u ∈ R2 | r2 ≤ (1−α)2

2α−1
} if α > 0.5

(4.15)

4.2.3 Extended Unified Camera Model

A previous study [67] extended the unified camera model (EUCM) to have six
parameters i = [fx, fy, cx, cy, α, β]T , α ∈ [0, 1], β > 0 and defined the following
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projection function.

π(x, i) =

[
fx

x
αd+(1−α)z

fy
y

αd+(1−α)z

]
+

[
cx
cy

]
, (4.16)

d =
√
β(x2 + y2) + z2. (4.17)

The EUCM can be interpreted as a generalization of the UCM where the point
is projected onto an ellipsoid symmetric around the z axis (Figure 4.2). That study
also indicated that when treating the model as a projection on a quadratic surface
followed by orthographic projection on the image plane the model is complete in the
sense that it can represent all possible quadratic surfaces.

With EUCM, a set Ω is defined similar to the UCM, with the difference that d is
computed by Eq. 4.17. Note that the EUCM degrades to a regular UCM for β = 1.

As mentioned previously, the EUCM projects on the ellipsoid. Therefore, the
unit length vector for unprojection cannot be obtained directly; consequently, we
must employ normalization. The unprojection function is defined as follows:

π−1(u, i) =
1√

m2
x +m2

y +m2
z

mx

my

mz

 , (4.18)

mx =
u− cx
fx

, (4.19)

my =
v − cy
fy

, (4.20)

r2 = m2
x +m2

y, (4.21)

mz =
1− βα2r2

α
√

1− (2α− 1)βr2 + (1− α)
, (4.22)

where Θ is defined as follows.

Θ =

{
R2 if α ≤ 0.5

{u ∈ R2 | r2 ≤ 1
β(2α−1)

} if α > 0.5
(4.23)

4.2.4 Kannala-Brandt Camera Model

The previous study [61] proposed the Kannala-Brandt (KB) model, which is a
generic camera model that well fits regular, wide angle and fisheye lenses. The
KB model assumes that the distance from the optical center of the image to
the projected point is proportional to the polynomial of the angle between the
point and the principal axis (Figure 4.3). We evaluate two versions of the KB
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model, i.e.,: with six parameters i = [fx, fy, cx, cy, k1, k2]T and eight parameters

i = [fx, fy, cx, cy, k1, k2, k3, k4]T . The projection function of the KB model is defined
as follows:

π(x, i) =

[
fx d(θ) x

r

fy d(θ) y
r

]
+

[
cx
cy

]
, (4.24)

r =
√
x2 + y2, (4.25)

θ = atan2(r, z), (4.26)

d(θ) = θ + k1θ
3 + k2θ

5 + k3θ
7 + k4θ

9, (4.27)

assuming that polynomial d(θ) is monotonic Ω = R3 \ [0, 0, 0]T .
The unprojection function of the KB model requires finding the root of a high-

order polynomial to recover angle θ from d(θ). This can be achieved through an
iterative optimization, e.g., Newton’s method. The unprojection function can be
expressed as follows:

π−1(u, i) =

sin(θ∗) mx
ru

sin(θ∗) my
ru

cos(θ∗)

 , (4.28)

mx =
u− cx
fx

, (4.29)

my =
v − cy
fy

, (4.30)

ru =
√
m2
x +m2

y, (4.31)

θ∗ = d−1(ru), (4.32)

where θ∗ is the solution of d(θ) = ru. If d(θ) is monotonic Θ = R2.
The KB model is sometimes used as a distortion model for a pinhole camera,

e.g., the equidistant distortion model in Kalibr1 [43] or the fisheye camera model in
OpenCV2. The model is mathematically the same; however, since it first projects
the point using the pinhole model and then applies distortion, it has a singularity
at z = 0, which makes it unsuitable for fisheye lenses with field-of-view close to
180◦when implemented is this manner.

Several other models for large field-of-view lenses based on high-order polyno-
mials exist. For example, the main differences between [116] and the KB model
are as follows: the model calibrates two separate polynomials for projection and
unprojection to provide a closed-form solution for both, and for projection it uses
the angle between the image plane and the point rather than of the angle between

1https://github.com/ethz-asl/kalibr
2https://github.com/opencv/opencv

https://github.com/ethz-asl/kalibr
https://github.com/opencv/opencv
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rd

ru

Figure 4.4: Schematic representation of the Field-of-View Camera model (FOV). Dis-
placement of the projection from the optical center is proportional to the angle between
the point and optical axis

the optical axis and the point. We expect this model to have similar performance
and do not explicitly include it in our evaluation.

4.2.5 Field-of-View Camera Model

A previously proposed Field-of-view camera model (FOV) [30], has five parameters
i = [fx, fy, cx, cy, w]T and assumes the distance between an image point and the
principal point is typically approximately proportional to the angle between the
corresponding 3D point and the optical axis (Figure 4.4). According to authors,
parameter w approximately corresponds to the field-of-view of an ideal fisheye lens.
The projection function for this model is defined as follows:

π(x, i) =

[
fx rd

x
ru

fy rd
y
ru

]
+

[
cx
cy

]
, (4.33)

ru =
√
x2 + y2, (4.34)

rd =
atan2(2ru tan w

2
, z)

w
, (4.35)

where Ω = R3 \ [0, 0, 0]T .

The FOV model has a closed-form solution for unprojecting the points, which is
defined as follows:
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Figure 4.5: Lenses used to evaluate camera models; left to right: BF2M2020S23 (195◦),
BF5M13720 (183◦), BM4018S118 (126◦), BM2820 (122◦), and GoPro replacement lens
(150◦).

π−1(u, i) =

mx
sin(rdw)
2rd tan w

2

my
sin(rdw)
2rd tan w

2

cos(rdw)

 , (4.36)

mx =
u− cx
fx

, (4.37)

my =
v − cy
fy

, (4.38)

rd =
√
m2
x +m2

y, (4.39)

where Θ = R2.

Similar to the KB model, the FOV model can be used as a distortion model for
a pinhole camera.

4.3 Double Sphere Camera Model

We propose the Double Sphere (DS) camera model that better fits cameras with
fisheye lenses, has a closed-form inverse, and does not require computationally ex-
pensive trigonometric operations. In the proposed DS model a point is consecutively
projected onto two unit spheres with centers shifted by ξ. Then, the point is pro-
jected onto the image plane using the pinhole model shifted by α

1−α (Figure 4.1).

This model has six parameters i = [fx, fy, cx, cy, ξ, α]T and a projection function
defined as follows:
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π(x, i) =

[
fx

x
αd2+(1−α)(ξd1+z)

fy
y

αd2+(1−α)(ξd1+z)

]
+

[
cx
cy

]
, (4.40)

d1 =
√
x2 + y2 + z2, (4.41)

d2 =
√
x2 + y2 + (ξd1 + z)2. (4.42)

A set of 3D points that results in valid projection is expressed as follows:

Ω = {x ∈ R3 | z > −w2d1} (4.43)

w2 =
w1 + ξ√

2w1ξ + ξ2 + 1
(4.44)

w1 =

{
α

1−α , if α ≤ 0.5
1−α
α

if α > 0.5
(4.45)

The unprojection function is computed as follows:

π−1(u, i) =
mzξ +

√
m2
z + (1− ξ2)r2

m2
z + r2

mx

my

mz

−
0

0
ξ

 , (4.46)

mx =
u− cx
fx

, (4.47)

my =
v − cy
fy

, (4.48)

r2 = m2
x +m2

y, (4.49)

mz =
1− α2r2

α
√

1− (2α− 1)r2 + 1− α
, (4.50)

where the following holds.

Θ =

{
R2 if α ≤ 0.5

{u ∈ R2 | r2 ≤ 1
2α−1
} if α > 0.5

(4.51)

4.4 Calibration

To estimate the camera parameters of each model we use a grid of AprilTag markers
[104] (Figure 4.1) that can be detected automatically in the images. For each image
n in the calibration sequence, the detection gives us the 2D position unk of the
projection of corner k onto the image plane and the associated 3D location xk of
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the corner. After initial marker detection we use local subpixel refinement for each
corner to achieve better calibration accuracy.

We formulate the optimization function that depends on the state s =
[i,Tca1 , ...,TcaN ] as follows:

E(s) =
N∑
n=1

∑
k∈K

ρ
(
(π(Tcanxk, i)− unk)

2
)
, (4.52)

where i is the vector of intrinsic parameters, π is the projection function, Tcan ∈
SE(3) is the transformation from the coordinate frame of the calibration grid to the
camera coordinate frame for image n. K is a set of detected corner points for the
image n and ρ is the robust Huber norm.

We parameterize the updates to the state with vector ∆s = [∆i,∆t0, ..., tN ]T as
follows:

s⊕∆s =


i + ∆i

Tca1 exp(∆t1)
...

TcaN exp(∆tN)

 (4.53)

Given the current state sl we can rewrite the optimization function as:

E(sl ⊕∆s) = r(sl ⊕∆s)TWr(sl ⊕∆s), (4.54)

and use the Gauss-Newton algorithm to compute the update for the current iteration
as follows:

∆s = (JTl WJl)
−1JTl Wrl, (4.55)

where rl is a stacked vector of residuals evaluated at sl, Jl is the Jacobian of residuals
with respect to ∆s, and W is the weighting matrix corresponding to the Huber norm.
With that, we update the current estimate of the state

sl+1 = sl ⊕∆s, (4.56)

and iterate until convergence.

Since the optimization function is non-convex, good initialization of the intrinsic
parameters i and camera poses Tca is important for optimization to converge. We
initialize the intrinsic parameters with using the previously proposed method [51]
(with β = 1 for EUCM and ξ = 0 for DS) and find initial poses using the UPnP
algorithm [69].
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Expressions
Computed

UCM FOV DS EUCM KB 6 KB 8

π(x, i) 33.842 419.339 55.020 32.965 288.003 305.841
π(x, i), Jx, Ji 34.555 433.956 55.673 33.534 293.625 310.399
π−1(u, i) 71.945 430.109 107.054 92.735 561.174 638.150
π−1(u, i), Ju, Ji 71.079 891.556 181.119 95.883 537.291 613.287

Table 4.2: Timing for 10000 operations in microseconds measured on Intel Xeon E5-
1620. J denotes the Jacobian of the function. The results demonstrate that with similar
accuracy, our model shows around five times faster computation time for the projection
function than the KB 8 model.

4.5 Evaluation

We evaluate the presented camera models using a dataset with 16 sequences. This
dataset contains calibration sequences captured with five different lenses (three se-
quences for each lens) and one calibration sequence from the EuRoC dataset [20].
The lenses used to collect the sequences are shown in Figure 4.5. To ensure fair
comparison, we first detect the calibration corners from all sequences and perform
the optimization described in Section 4.4 using the same data for all models.

Reprojection error which indicates how well a model can represent the projec-
tion function of the actual lens, is one of the most important metrics for a camera
model. Table 4.1 shows the mean reprojection error after optimizing for poses and
intrinsic parameters computed for all datasets using different camera models. The
best and second-best results for each sequence are shown in green and orange, re-
spectively. For all entries, we also provide overhead computed as c−b

b
× 100%, where

b is the smallest reprojection error in the sequence and c is the reprojection error of
the current model.

With most of the sequences, the KB model with eight parameters shows the
best result, and the proposed model (DS) is the second best. Despite the fact
the KB model has eight intrinsic parameters compared to six in the proposed DS
model, the reprojection error overhead is less than 1% for all sequences. The EUCM
demonstrates slightly greater reprojection error than that of the DS model and
smaller reprojection error than the KB model with six parameters. The UCM and
FOV models show greater reprojection errors among all tested models.

Computation time is another important aspect of a camera model because pro-
jection and unprojection functions are evaluated thousands of times in each iteration
of vision-based motion estimation. Moreover, for optimization algorithms we must
compute the Jacobians of these functions relative to the points and intrinsic param-
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(a) UCM (b) FOV

(c) DS (d) EUCM

(e) KB 6 (f) KB 8

Figure 4.6: Corners of the calibration pattern (purple) projected onto the image after
optimizing camera poses and intrinsic parameters for different camera models. The DS,
EUCM and KB 8 models show high reprojection accuracy, while the UCM and KB 6
models have slightly shifted corner positions at the bottom-left corner of the calibration
pattern. For the FOV model, displacement of the bottom-left corner is clearly visible,
which indicates this model does not well fit the lens.
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eters; thus, the computation time of these operations should also be considered.

Table 4.2 summarizes the computation times of those operations for the presented
models. For each camera model, we measure the time of 10000 operations using
the Google Benchmark3 library on an Intel Xeon E5-1620 CPU. To compile the
benchmarks, we use GCC 7 with O3 optimization level and execute the code in a
single thread. Note that a small time difference between computing only the function
and computing the function with Jacobians can be explained by the superscalar
architecture of modern CPUs, which parallelizes execution internally.

The timing results show that the FOV and KB models are much slower than the
other models. For example, the KB model with eight parameters is approximately
nine times slower than the EUCM and five times slower than the DS model when
evaluating the projection function. This is due to the fact that the KB model
involves computationally expensive trigonometric operations (atan2).

Unprojection in KB models require iterative optimization to solve the polynomial
roots, which together with the trigonometric operations, makes it several times
slower than the UCM, EUCM and DS models. The FOV model is the slowest
relative to unprojection, which is likely due to its multiple trigonometric operations.

Qualitative results of reprojection quality for the evaluated models are shown in
Figure 4.6. Here, we project the corners of the calibration pattern after optimizing
for pose and intrinsic parameters and visualize them on the corresponding image
taken from the BF2M2020S23-3 sequence. The DS EUCM and KB 8 models provide
similar results that are difficult to distinguish by the human eye. The UCM and KB
6 model well fit the corners in the middle of the image; however, these models have
a small shift close to the edges. Note that imperfections are clearly visible with the
FOV model.

Different formulations of UCM are evaluated in terms of the numerical sta-
bility of the results. Table 4.3 shows the mean and standard deviation (in %) of
the intrinsic parameters computed on three different sequences for each lens. For
the UCM we provide two formulations with the same reprojection error that are
formulated with different intrinsic parameters. The results for the standard formu-
lation as defined in the literature [86] (i = [γx, γy, cx, cy, ξ]

T ) are presented in the
second column and show higher standard deviation than the results of the model
parametrized with i = [fx, fy, cx, cy, α]T . This can be explained by the strong cou-
pling between γx, γy and ξ, which is not the case for the proposed parametrization.
Moreover, for this formulation the focal length stays close to the focal length of the
other camera models.

3https://github.com/google/benchmark

https://github.com/google/benchmark
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4.6 Conclusion

In this paper, we present the novel Double Sphere camera model that is well suited
to fisheye cameras. We compare the proposed camera model to other state-of-the-
art camera models. In addition, we provide an extensive evaluation of the presented
camera models using 16 different calibration sequences and six different lenses. The
evaluation results demonstrate that the model based on high-order polynomials (i.e.,
KB 8) shows the lowest reprojection error but is 5-10 times slower than competing
models. Both the proposed DS model and the EUCM show very low reprojection
error, with the DS model being slightly more accurate (less than 1% greater reprojec-
tion error compared to KB 8 on all sequences), and the EUCM being slightly faster
(nine times faster projection evaluation than KB 8). Moreover, both models have
a closed-form inverse and do not require computationally expensive trigonometric
operations.

These results demonstrate that models based on spherical projection present a
good alternative to models based on high-order polynomials for applications where
fast projection, unprojection and a closed-form inverse are required.
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Abstract We propose a novel direct visual-inertial odometry method for
stereo cameras. Camera pose, velocity and IMU biases are simultaneously
estimated by minimizing a combined photometric and inertial energy func-
tional. This allows us to exploit the complementary nature of vision and
inertial data. At the same time, and in contrast to all existing visual-
inertial methods, our approach is fully direct: geometry is estimated in
the form of semi-dense depth maps instead of manually designed sparse
keypoints. Depth information is obtained both from static stereo – relating
the fixed-baseline images of the stereo camera – and temporal stereo – re-
lating images from the same camera, taken at different points in time. We
show that our method outperforms not only vision-only or loosely coupled
approaches, but also can achieve more accurate results than state-of-the-
art keypoint-based methods on different datasets, including rapid motion
and significant illumination changes. In addition, our method provides
high-fidelity semi-dense, metric reconstructions of the environment, and
runs in real-time on a CPU.

5.1 Introduction

Camera motion estimation and 3D reconstruction are amongst the most prominent
topics in computer vision and robotics. They have major practical applications,
well-known examples are robot navigation [130] [87] [123], autonomous or semi-
autonomous driving [45], large-scale indoor reconstruction, virtual or augmented
reality [89], and many more. In all of these scenarios, in the end one requires both
the camera motion as well as information about the 3D structure of the environment
– for example to recognize and navigate around obstacles, or to display environment-
related information to a user.

In this paper, we propose a tightly coupled, direct visual-inertial stereo odometry.
Combining a stereo camera with an inertial measurement unit (IMU), the method
estimates accurate camera motion as well as semi-dense 3D reconstructions in real-
time. Our approach combines two recent trends: Direct image alignment based on
probabilistic, semi-dense depth estimation provides rich information about the en-
vironment, and allows for exploiting all information present in the images. This is
in contrast to traditional feature-based approaches, which rely on hand-crafted key-
point detectors and descriptors, only utilizing information contained at, e.g., image
corners – neglecting large parts of the image. Simultaneously, tight integration of in-
ertial data into tracking provides accurate short-term motion constraints. This is of
particular benefit for direct approaches: Direct image alignment is well-known to be
heavily non-convex, and convergence can only be expected if a sufficiently accurate
initial estimate is available. While in practice techniques like coarse-to-fine tracking
increase the convergence radius, tight inertial integration solves this issue even more
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Figure 5.1: Tight fusion of the IMU measurements with direct image alignment results
in more accurate position tracking (bottom) compared to the odometry system that only
relies on image alignment (top). The reconstructed pointclouds come from pure odometry,
no loop closures were enforced.

effectively, as the additional error term and resulting prior ensure convergence even
for rapid motion. We show that it even allows for tracking through short intervals
without visual information, e.g. caused by pointing the camera at a white wall. In
addition, inertial measurements render global roll- and pitch observable, reducing
global drift to translational 3D motion and yaw rotation.

In experiments we demonstrate the benefits of tight IMU integration with
our Stereo LSD-SLAM approach [34] towards loose integration or vision-only ap-
proaches. Our method performs very well on challenging sequences with strong
illumination changes and rapid motion. We also compare our method with state-
of-the-art keypoint-based methods and demonstrate that our method can achieve
better accuracy on challenging sequences.



60 Chapter 5. Direct Visual-Inertial Odometry with Stereo Cameras

5.2 Related Work

There exists a vast amount of research towards monocular and stereo visual odome-
try, 3D reconstruction and visual-inertial integration. In this section we will give an
overview over the most relevant related publications, in particular focussing on direct
vs. keypoint-based approaches, as well as tight vs. loosely coupled IMU integration.

While direct methods have a long history – first works including the work of Irani
et al. [55] for monocular structure-and-motion – the first complete, real-time capable
direct stereo visual-odometry was the work of Comport et al. [27]. Since then, direct
methods have been omni-present in the domain of RGB-D cameras [66] [96], as they
directly provide the required pixel-wise depth as sensor measurement. More recently,
direct methods have become popular also in a monocular environment, prominent
examples include DTAM [97], SVO [40] and LSD-SLAM [33].

At the same time, much progress has been made in the domain of IMU integra-
tion: due to their complementary nature and abundant presence in all modern hard-
ware set-ups, IMUs are well-suited to complement vision-based systems – providing
valuable information about short-term motion and rendering global roll, pitch, and
scale observable. In early works, visual-inertial fusion has been approached as a pure
sensor-fusion problem: Vision is treated as an independent, black-box 6-DoF sensor
which is fused with inertial measurements in a filtering framework [130] [87] [35].
This so-called loosely coupled approach allows to use existing vision-only methods
– such as PTAM [68], or LSD-SLAM [33] – without modifications; and the chosen
method can easily be substituted for another one. On the other hand, in this ap-
proach, the vision part does not benefit from the availability of IMU data. More
recent works therefore follow a tightly coupled approach, treating visual-inertial
odometry as one integrated estimation problem, optimally exploiting both sensor
modalities.

Two main categories can be identified: Filtering-based approaches [74] [17] [126]
operate on a probabilistic state representation – mean and covariance – in a Kalman-
filtering framework. One of the filtering approaches [48] claims to combine IMU mea-
surements with direct image tracking, but does not provide a systematic evaluation
and comparison to the state-of-the-art methods. Optimization-based approaches on
the other hand operate on an energy-function based representation in a non-linear
optimization framework. While the complementary nature of these two approaches
has long been known [37], the energy-based approach [73] [58] [64], – which we em-
ploy in this paper – allows for easily and adaptively re-linearizing energy terms if
required, thereby avoiding systematic error integration from linearization. Another
example of energy-based approaches is presented in [39] which combines IMU mea-
surements with direct tracking of a sparse subset of points in the image. In contrary
to our method, old states are not marginalized out which on one hand allows for
loop closures, but on the other hand does not guarantee bounded update time in
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the worst case.

5.3 Contribution.

The main novelty of this paper is the formulation of tight IMU integration into di-
rect image alignment within a non-linear energy-minimization framework. We show
that including this sensor modality which in most practical cases is abundantly
available helps to overcome the non-convexity of the photometric error, thereby
eliminating one of the main weaknesses of direct approaches over keypoint-based
methods. We evaluate our approach on different datasets and compare it to al-
ternative stereo visual-inertial odometry systems, out-performing state-of-the-art
keypoint-based methods in terms of accuracy in many cases. In addition, our method
estimates accurate, metrically scaled, semi-dense 3D reconstructions of the environ-
ment, while running in real-time on a modern CPU.

5.4 Notation

Throughout the paper, we will write matrices as bold capital letters (R) and vectors
as bold lower case letters (ξ). We will represent rigid-body poses directly as elements
of se(3), which – with a slight abuse of notation – we write directly as vectors, i.e.,
ξ ∈ R6. We then define the pose concatenation operator ◦ : se(3) × se(3) → se(3)
directly on this notation as ξ ◦ ξ′ := log (exp(ξ) exp(ξ′)).

For each time-step i, our method estimates the camera’s rigid-body pose ξi ∈
se(3), its linear velocity vi ∈ R3 expressed in the world coordinate system, and
the IMU bias terms bi ∈ R6 for the 3D acceleration and 3D rotational velocity

measurements of the IMU. A full state is hence given by si :=
[
ξTi v

T
i b

T
i

]T ∈ R15.
For ease of notation, we further define pose concatenation and subtraction directly
on this state-space as

si ⊕ s′i :=

 ξi ◦ ξ′ivi + v′i
b+ b′i

 (5.1)

and

si 	 s′i :=

ξi ◦ ξ′−1
i

vi − v′i
b− b′i

 . (5.2)

The full state vector s :=
[
sT1 . . . s

T
N

]T
includes the states of all frames.
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5.5 Direct Visual-Inertial Stereo Odometry

We tightly couple direct image alignment – minimization of the photometric error –
with non-linear error terms arising from inertial integration. In contrast to a loosely
coupled approach, where the vision system runs independently of the IMU and is
only fused afterwards, such tight integration maintains correlations between all state
variables and thereby arbitrates directly between visual and IMU measurements.

Our photometric error formulation is directly based on the formulation proposed
in LSD-SLAM [33], including robust Huber weights and normalization by the prop-
agated depth variances. Recently, we extended this approach to stereo cameras [34]
and augmented it with affine lighting correction. We then formulate a joint op-
timization problem to recover the full state containing camera pose, translational
velocity and IMU biases of all frames i. The overall energy that we want to minimize
is given by

E(s) :=
1

2

N∑
i=1

EI
i→ref(i)(ξi, ξref(i)) +

1

2

N∑
i=2

EIMU(si−1, si), (5.3)

where EI
i→ref(i) and EIMU

i are image and IMU error function terms, respectively.
This optimization problem can be interpreted as maximum-a-posterior estimation
in a probabilistic graphical model (s. Fig. 5.2).

To achieve real-time performance, we do not optimize over an unboundedly
growing number of state variables. Instead, we marginalize out all state variables
other than the current image, its predecessor, and its reference keyframe. Through
marginalization, all prior estimates and measurements are included with their un-
certainty in the optimization.

Note that both modalities complement each other very well in a joint optimiza-
tion framework – beyond the level of simple averaging of their motion estimates:
Images can provide rich information for robust visual tracking. Depending on the
observed scene, full 6-DoF relative motions can be observable. Degenerate cases,
however, can occur in which the observed scene does not provide sufficient informa-
tion for fully constrained tracking (e.g. pointing the camera at a texture-less wall).
In this case, IMU measurements provide complementary measurements that bridge
the gaps in observability.

IMUs typically operate at a much higher frequency than the frame-rate of the
camera and make measuring gravity direction and eliminating drift in roll and pitch
angles possible. The downside of IMUs is, however, that they measure relative poses
only indirectly through rotational velocities and linear accelerations. They are noisy
and need to be integrated and compensated for gravity which strongly depends on
the accuracy of the pose estimate. The measurements come with unknown, drifting
biases that need to be estimated using an external reference such as vision. While
IMU information is incremental, any images can be aligned towards each other that
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prior factor
image alignment factor

IMU factor

bias random walk factor
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Figure 5.2: Factor graph representing the visual-inertial odometry optimization problem.
Poses of the keyframes are shown in red, poses of other frames in blue, velocities in green
and biases in yellow. Poses and velocities are connected to the pose, velocity and biases
of the previous frame by an IMU factor. The pose of each frame is connected to the pose
of the keyframe by a VO factor, and factors between biases constrain their random walk.
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Figure 5.3: Evolution of the factor graph during tracking. After adding a new frame and
optimizing the estimates of the variables in the graph, all variables except the keyframe
pose and the current frame pose, velocity and biases are marginalized out. This process
is repeated with each new frame.

have sufficient overlap. This allows for incorporating relative pose measurements
between images that are not in direct temporal sequence–enabling more consistent
trajectory estimates.

5.5.1 Direct Semi-Dense Stereo Odometry

We base visual tracking on Stereo LSD-SLAM [34]:

• We track the motion of the camera towards a reference keyframe in the map.
We create new keyframes, if the camera moved too far from existing keyframes.

• We estimate a semi-dense depth map in the current reference keyframe from
static and temporal stereo cues. For static stereo we exploit the fixed baseline
between the pair of cameras in the stereo configuration. Temporal stereo
is estimated from pixel correspondences in the reference keyframe towards
subsequent images based on the tracked motion.

There are several benefits of complementing static with temporal stereo in a
tracking and mapping framework. Static stereo makes reconstruction scale observ-
able. It is also independent of camera movement, but is constrained to a constant
baseline, which limits static stereo to an effective operating range. Temporal stereo
requires non-degenerate camera movement, but is not bound to a specific range
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as demonstrated in [33]. The method can reconstruct very small and very large
environments at the same time. Finally, through the combination of static with
temporal stereo, multiple baseline directions are available: while static stereo typ-
ically has a horizontal baseline – which does not allow for estimating depth along
horizontal edges, temporal stereo allows for completing the depth map by providing
other motion directions.

Direct Image Alignment

The pose between two images I1 and I2 is estimated by minimizing the photometric
residuals

rIu(ξ) := aI1(u) + b− I2(u′). (5.4)

where u′ := π (Tξπ
−1 (u, D1(u))) and ξ transforms from image frame I2 to I1. The

mappings π and π−1 project points from the image to the 3D domain and vice
versa using a pinhole camera model. The parameters a and b correct for affine
lighting changes between the images and are optimized alongside the pose ξ in an
alternating fashion, as described in [34]. We also determine the uncertainty σIr,u of
this residual [33]. The optimization objective for tracking a current frame towards
a keyframe is thus given by

EI
cur→ref(ξcur, ξref) :=

∑
u∈ΩD1

ρ

([
rIu(ξ−1

ref ◦ ξcur)

σIr,u

]2
)
, (5.5)

where ρ is the Huber norm. This objective is minimized using the iteratively re-
weighted Levenberg-Marquardt algorithm.

Depth Estimation

Scene geometry is estimated for pixels of the key frame with high image gradient,
since they provide stable disparity estimates. Fig. 5.1 shows an example of such a
semi-dense depth reconstruction. We estimate depth both from static stereo (i.e.,
using images from different physical cameras, but taken at the same point in time)
as well as from temporal stereo (i.e., using images from the same physical camera,
taken at different points in time).

We initialize the depth map with the propagated depth from the previous
keyframe. The depth map is subsequently updated with new observations in a
pixel-wise depth-filtering framework. We also regularize the depth maps spatially
and remove outliers [33].
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Static Stereo We determine the static stereo disparity at a pixel by a corre-
spondence search along its epipolar line in the other stereo image. In our case of
stereo-rectified images, this search can be performed very efficiently along horizon-
tal lines. We use the SSD photometric error over five pixels along the scanline as
a correspondence measure. If a depth estimate with uncertainty is available, the
search range along the epipolar line can be significantly reduced. Due to the fixed
baseline, we limit disparity estimation to pixels with significant gradient along the
epipolar line, making the depth reconstruction semi-dense.

Static stereo is integrated in two ways. If a new stereo keyframe is created, the
static stereo in this keyframe stereo pair is used to initialize the depth map. During
tracking, static stereo in the current frame is propagated to the reference frame and
fused with its depth map.

Temporal Stereo For temporal stereo we estimate disparity between the current
frame and the reference keyframe using the pose estimate obtained through tracking.
These estimates are fused in the keyframe. Only pixels are updated with temporal
stereo, whose expected inverse depth error is sufficiently small. This also constrains
depth estimates to pixels with high image gradient along the epipolar line, producing
a semi-dense depth map.

5.5.2 IMU Integration

Underlying our IMU error function terms is the following nonlinear dynamical model.
Let the pose ξ consist of the position p and rotation R of the IMU expressed in the
world frame. Note that the velocity estimate v also is in the world frame. According
to the IMU measurements of rotational velocities ωz and linear accelerations az the
pose of the IMU evolves as

ṗ = v (5.6)

v̇ = R (az + εa − ba) + g (5.7)

Ṙ = R [ωz + εω − bω]× (5.8)

where [·]× is the skew-symmetric matrix such that for vectors a, b, [a]× b = a × b.
The process noise εa, εω, εb,a, and εb,ω affect the measurements and their biases ba
and bω with Gaussian white noise. Hence, for the biases ḃa = εb,a and ḃω = εb,ω.
Note that we neglect the effect of Coriolis force in this model.

IMU measurements typically arrive at a much higher frequency than camera
frames. We do not add independent residuals for each individual IMU measurement,
but integrate the measurements into a condensed IMU measurement between the
image frames. In order to avoid frequent reintegration if the pose or bias estimates
change during optimization, we follow the pre-integration approach proposed in [79]
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and [54]. We integrate the IMU measurements between timestamps i and j in the
IMU coordinate frame and obtain pseudo-measurements ∆pi→j, ∆vi→j, and Ri→j.

We initialize pseudo-measurements with ∆pi→i = 0, ∆vi→i = 0, Ri→i = I,
and assuming the time between IMU measurements is ∆t we integrate the raw
measurements:

∆pi→k+1 = ∆pi→k + ∆vi→k∆t (5.9)

∆vi→k+1 = ∆vi→k + Ri→k (az − ba) ∆t (5.10)

Ri→k+1 = Ri→k exp([ωz − bω]×∆t). (5.11)

Given the initial state and integrated measurements the state at the next time-step
can be predicted:

pj = pi + (tj − ti)vi +
1

2
(tj − ti)2g + Ri∆pi→j (5.12)

vj = vi + (tj − ti)g + Ri∆vi→j (5.13)

Rj = RiRi→j. (5.14)

For the previous state si−1 and IMU measurements ai−1, ωi−1 between frames i and
i− 1, the method yields a prediction

ŝi := h (ξi−1,vi−1, bi−1,ai−1,ωi−1) (5.15)

of the pose, velocity, and biases in frame i with associated covariance estimate Σ̂s,i.
Hence, the IMU error function terms are

EIMU(si−1, si) := (si 	 ŝi)T Σ̂−1
s,i (si 	 ŝi) . (5.16)

5.5.3 Optimization

The error function in eq. (5.3) can be written as

E(s) =
1

2
rTWr (5.17)

=
1

2

[
rTI rTIMU

] [WI 0
0 WIMU

] [
rI
rIMU

]
. (5.18)

The weights either implement the Huber norm on the photometric residuals rI using
iteratively re-weighted least-squares, or correspond to the inverse covariances of the
IMU residuals rIMU (eq.(5.16)). We optimize this objective using the Levenberg-
Marquardt method. Linearizing the residual around the current state

r(s⊕ δs) = r(s) + Jsδs (5.19)
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Figure 5.4: Orientation error evaluated over different segment lengths for the three EuRoC
dataset sequences (from top to bottom: stage 1 task 2.1, 2.2, 2.3). While both loosely-
coupled and tightly-coupled IMU integration significantly decrease the error as global roll
and pitch become observable, the tightly coupled approach is clearly superior. In particular
in the last sequence – which includes strong motion blur and illumination changes – direct
tracking directly benefits from tight IMU integration. See also Fig. 5.5.
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where

Js =
dr(s⊕ δs)

dδs

∣∣∣∣
δs=0

, (5.20)

the error function E(s) can be approximated around the current state s with a
quadratic function

E(s⊕ δs) = Es + δsTbs +
1

2
δsTHsδs (5.21)

bs = JTsWr(s) (5.22)

Hs = JTsWJs (5.23)

where bs is the Jacobian and Hs is the Hessian approximation of E(s) and δs is a
right-multiplied increment to the current state. This function is minimized through
δs = −H−1

s bs, yielding the state update s← s⊕δs. This update and relinearization
process is repeated until convergence.

5.5.4 Partial Marginalization

To constrain the size of the optimization problem, we perform partial marginaliza-
tion and keep the set of optimized states at a small constant size. Specifically, we
only optimize for the current frame state si, the state of the previous frame si−1,
and the state sref of the reference frame used for tracking. If we split our state
space s into sλ and sµ, where sλ are the state variables we want to keep in the
optimization, and sµ are the parts of the state that we want to marginalize out, we
can rewrite the update step as follows

[
Hµµ Hµλ

Hλµ Hλλ

] [
δsµ
δsλ

]
=

[
bµ
bλ

]
. (5.24)

Applying the Schur complement to the upper part of the system we find

δsλ = − (H∗λλ)
−1 b∗λ, (5.25)

H∗λλ = Hλλ −HλµH
−1
µµHµλ, (5.26)

b∗λ = bλ −HλµH
−1
µµbµ. (5.27)

which represents a system for E∗(sλ) with states sµ marginalized out. Figure 5.3
shows the evolution of the graph with the marginalization procedure applied after
adding every new frame to the graph.
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Figure 5.5: Translational drift evaluated over different segment lengths for the three Eu-
RoC sequences (from top to bottom: stage 1 task 2.1, 2.2, 2.3). As for rotation (Fig. 5.4),
the tightly coupled approach clearly performs best.
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5.5.5 Changing the Linearization Point

Partial marginalization fixes the linearization point of sλ for the quantities involving
both sµ and sλ in eq. (5.25). Further optimization, however, changes the lineariza-
tion point such that a relinearization would be required. We avoid the tedious
explicit relinearization using a first-order approximation. If we represent the new
linearization point s′λ by the old linearization point sλ and an increment ∆sλ,

s′λ = sλ ⊕ s−1
λ ⊕ s′λ︸ ︷︷ ︸
=:∆sλ

, (5.28)

we can change the linearization point of the current quadratic approximation of E∗

through

E∗(s′λ ⊕ δsλ) = E∗(sλ ⊕∆sλ ⊕ δsλ) (5.29)

≈ E∗(sλ ⊕ (∆sλ + δsλ)). (5.30)

The approximation made holds only if both ∆sλ and δsλ are small – as both
represent updates to the state, this is a valid assumption. We can then approximate
the error function linearized around s′λ:

E∗(s′λ ⊕ δsλ) = E∗λ′ + δs
T
λb
∗
λ′ +

1

2
δsTλH∗λ′λ′δsλ, (5.31)

E∗λ′ = E∗λ +
1

2
∆sλ

TH∗λλ∆sλ + ∆sTλb
∗
λ, (5.32)

b∗λ′ = b∗λ + H∗λλ∆sλ, (5.33)

H∗λ′λ′ = H∗λλ. (5.34)

5.5.6 Statistical Consistency

Our framework accumulates information from many sources, in particular it uses (1)
IMU observations, (2) static stereo, (3) temporal stereo / direct tracking and (4) a
smoothness-prior on the depth. While old camera poses are correctly marginalized,
we discard all pose-depth and depth-depth correlations: For each image alignment
factor, depth values are treated as independent (noisy) input (eq. (5.5)). In turn,
the effect of noisy poses is approximated during depth estimation [36]. While from a
statistical perspective this is clearly incorrect, it allows our system to use hundreds of
thousands of residuals per direct image alignment factor in real-time. Furthermore,
it becomes unnecessary to drop past observations in order to preserve depth-depth
independence, as done in [68]. Also note that – in contrast to monocular LSD-
SLAM – much of the depth information originates from static stereo, which in fact
is independent of the tracked camera poses.
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Figure 5.6: Long-run comparison with state-of-the-art keypoint-based VI odometry meth-
ods, both filtering-based (msckf) and optimization-based (aslam). Dataset and results
reported in [73]. Top: horizontal trajectory plot. Middle: height estimate. Bottom:
Translational/rotational drift evaluated over different segment lengths.
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Figure 5.7: Qualitative results on a subset of Malaga Urban Dataset. Semi-dense recon-
structions of selected parts of the map are shown on the left, and the overall trajectory
with semi-dense reconstruction is shown in the middle. On the right a map of the city
with overlayed trajectory measured with GPS is presented.

5.6 Results

We evaluate our approach both qualitatively and quantitatively on three different
datasets, including a direct comparison to state-of-the-art feature-based VI odome-
try methods.

We have selected the datasets as they are especially challenging for direct visual
odometry methods. They contain contrast changes, pure rotations, aggressive mo-
tions and relatively few frames per second, and for all of them the pure monocular
algorithm [33] fails to track the sequence until the end. For Malaga dataset we used
the default calibration parameters for evaluation. For all other datasets an offline
calibration was performed using the Kalibr framework [43].

We compare loosely- with tightly-coupled IMU integration with Stereo LSD-
SLAM. The loosely coupled version runs the direct image alignment process sepa-
rately, and only the final pose estimation result of the alignment is included into
the optimization as a relative pose constraint between reference and current frame.
With regards to the reconstruction accuracy, ground truth is not available on the
datasets, such that it can only be judged qualitatively. Nevertheless, as tracking
is based on the reconstruction, its accuracy implicitly depends on the trajectory
estimate.

5.6.1 EuRoC Dataset

This dataset is obtained from the European Robotics Challenge (EuRoC), and con-
tains three calibrated stereo video sequences with corresponding IMU measurements,



74 Chapter 5. Direct Visual-Inertial Odometry with Stereo Cameras

recorded with a Skybotix VI sensor. They were obtained from a quadrocopter flying
indoors (stage 1, tasks 2.1, 2.2, 2.3) and are in increasing difficulty: The third and
most challenging sequence includes fast and aggressive motion, strong illumination
changes as well as motion-blur and poorly textured views; some example images are
shown in Fig. 5.8, as well as in the attached video. The images are provided with all
required calibration parameters and motion-capture based ground truth, at WVGA
resolution.

On this dataset, we evaluate the difference between tight IMU integration, loose
IMU integration and purely vision-based LSD-SLAM. With the two upper plots
in Fig. 5.6, we give a qualitative impression of the absolute trajectory estimate
as in [73]. Since visual odometry does not correct for drift like a SLAM or full
bundle adjustment method, the quantitative performance of the algorithm can be
judged from the relative pose error (RPE) measure in the two bottom plots. The
results in Fig. 5.5 and Fig. 5.4 demonstrate that our tightly-integrated, direct visual-
inertial odometry method outperforms loose IMU integration both in translation
and orientation drift. Both IMU methods in turn are better than the purely vision-
based approach. The differences become particularly obvious for the last sequence,
as here the tight IMU integration greatly helps to overcome non-convexities in the
photometric error, allowing to seamlessly track through parts with strong motion
blur.

Qualitatively, the reconstruction in Fig. 5.1 demonstrates a significant reduction
in drift through tight IMU integration. The improved performance becomes appar-
ent through the well-aligned, highlighted reconstructions which are viewed at the
beginning and the end of the trajectory.

5.6.2 Long-Term Drift Evaluation

The second dataset contains a 14 minutes long sequence designed to evaluate long-
term drift, captured with the same hardware setup as the EuRoC dataset. It is
described and evaluated in [73] facilitating direct numeric comparison.

On this dataset, we compare our method with stereo depth estimation to the
keypoint-based nonlinear optimization methods presented in [73] (aslam, aslam-
mono) and the filtering-based approach in [92] (msckf). The aslam methods come
in a stereo (aslam) and a monocular (aslam-mono) version. From Fig. 5.5 we can
observe that the proposed method outperforms the filtering-based approach and the
state-of-the-art keypoint-based optimization methods. Note, that our method at
the same time provides a semi-dense 3D reconstruction of the environment.

5.6.3 Malaga Dataset: Autonomous Driving

Third, we provide qualitative results on the Malaga dataset [16], obtained from a
car-mounted stereo camera. For this dataset only raw GPS position without ori-
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Figure 5.8: Images from the EuRoC (upper row: motion blur, middle row: textureless)
and Malaga datasets (bottom row) with semi-dense depth estimates. Semi-dense depth
maps, with color-coded depth estimates are shown on the left.
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entation is available as ground-truth such that we cannot provide a quantitative
evaluation. Figure 5.8 shows a resulting trajectory, a semi-dense reconstruction of
the environment, and a city map overlaid with GPS signal obtained on the Malaga
dataset. These qualitative results demonstrate our algorithm in a challenging out-
door application scenario. Repetitive texture, moving cars and pedestrians, and
direct sunlight pose gross challenges to vision-based approaches.

5.7 Conclusion

We have presented a novel approach to direct, tightly integrated visual-inertial
odometry. It combines a fully direct structure and motion approach – operat-
ing on per-pixel depth instead of individual keypoint observations – with tight,
minimization-based IMU integration. We show that the two sensor sources ideally
complement each other: stereo vision allows the system to compensate for long-term
IMU bias drift, while short-term IMU constraints help to overcome non-convexities
in the photometric tracking formulation, allowing to track through large inter-frame
motion or intervals without visual information. Our method can outperform ex-
isting feature-based approaches in terms of tracking accuracy, and simultaneously
provides accurate semi-dense 3D reconstructions of the environment, while running
in real-time on a standard laptop CPU.

In future work, we will investigate tight IMU integration with monocular LSD-
SLAM. We also plan to employ this technology for localization and mapping with
flying and mobile robots as well as handheld devices.
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Abstract We present VI-DSO, a novel approach for visual-inertial odom-
etry, which jointly estimates camera poses and sparse scene geometry
by minimizing photometric and IMU measurement errors in a combined
energy functional. The visual part of the system performs a bundle-
adjustment like optimization on a sparse set of points, but unlike key-point
based systems it directly minimizes a photometric error. This makes it
possible for the system to track not only corners, but any pixels with
large enough intensity gradients. IMU information is accumulated be-
tween several frames using measurement preintegration, and is inserted
into the optimization as an additional constraint between keyframes. We
explicitly include scale and gravity direction into our model and jointly
optimize them together with other variables such as poses. As the scale
is often not immediately observable using IMU data this allows us to ini-
tialize our visual-inertial system with an arbitrary scale instead of having
to delay the initialization until everything is observable. We perform par-
tial marginalization of old variables so that updates can be computed in
a reasonable time. In order to keep the system consistent we propose a
novel strategy which we call ”dynamic marginalization”. This technique
allows us to use partial marginalization even in cases where the initial
scale estimate is far from the optimum. We evaluate our method on the
challenging EuRoC dataset, showing that VI-DSO outperforms the state
of the art.

6.1 Introduction

Motion estimation and 3D reconstruction are crucial tasks for robots. In general,
many different sensors can be used for these tasks: laser rangefinders, RGB-D cam-
eras [66], GPS and others. Since cameras are cheap, lightweight and small passive
sensors they have drawn a large attention of the community. Some examples of
practical applications include robot navigation [123] and (semi)-autonomous driv-
ing [45]. However, current visual odometry methods suffer from a lack of robustness
when confronted with low textured areas or fast maneuvers. To eliminate these
effects a combination with another passive sensor - an inertial measurement unit
(IMU) can be used. It provides accurate short-term motion constraints and, unlike
vision, is not prone to outliers.

In this paper we propose a tightly coupled direct approach to visual-inertial
odometry. It is based on Direct Sparse Odometry (DSO) [32] and uses a bundle-
adjustment like photometric error function that simultaneously optimizes 3D ge-
ometry and camera poses in a combined energy functional. We complement the
error function with IMU measurements. This is particularly beneficial for direct
methods, since the error function is highly non-convex and a good initialization is
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Figure 6.1: Bottom: Example images from the EuRoC-dataset: Low illumination, strong
motion blur and little texture impose significant challenges for odometry estimation. Still
our method is able to process all sequences with a rmse of less then 0.23m. Top: Recon-
struction, estimated pose (red camera) and groundtruth pose (green camera) at the end
of V1 03 difficult.

important. A key drawback of monocular visual odometry is that it is not possible
to obtain the metric scale of the environment. Adding an IMU enables us to observe
the scale. Yet, depending on the performed motions this can take infinitely long,
making the initialization a challenging task. Rather than relying on a separate IMU
initialization we include the scale as a variable into the model of our system and
jointly optimize it together with the other parameters.

Quantitative evaluation on the EuRoC dataset [20] demonstrates that we can
reliably determine camera motion and sparse 3D structure (in metric units) from
a visual-inertial system on a rapidly moving micro aerial vehicle (MAV) despite
challenging illumination conditions (Fig. 6.1).

In summary, our contributions are:

• a direct sparse visual-inertial odometry system.

• a novel initialization strategy where scale and gravity direction are included
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into the model and jointly optimized after initialization.

• we introduce ”dynamic marginalization” as a technique to adaptively employ
marginalization strategies even in cases where certain variables undergo drastic
changes.

• an extensive evaluation on the challenging EuRoC dataset showing that both,
the overall system and the initialization strategy outperform the state of the
art.

6.2 Related work

Motion estimation using cameras and IMUs has been a popular research topic for
many years. In this section we will give a summary of visual, and visual-inertial
odometry methods. We will also discuss approaches to the initialization of monocu-
lar visual-inertial odometry, where the initial orientation, velocity and scale are not
known in advance.

The term visual odometry was introduced in the work of Nister et al. [100],
who proposed to use frame-to-frame matching of the sparse set of points to estimate
the motion of the cameras. Most of the early approaches were based on matching
features detected in the images, in particular MonoSLAM [29], a real-time capable
EKF-based method. Another prominent example is PTAM [68], which combines
a bundle-adjustment backend for mapping with real-time capable tracking of the
camera relative to the constructed map. Recently, a feature-based system capable
of large-scale real-time SLAM was presented by Mur-Artal et al. [94].

Unlike feature-based methods, direct methods use un-processed intensities in
the image to estimate the motion of the camera. The first real-time capable direct
approach for stereo cameras was presented in [27]. Several methods for motion
estimation for RGB-D cameras were developed by Kerl et al. [66]. More recently,
direct approaches were also applied to monocular cameras, in a dense [97], semi-
dense [33], and sparse fashion [40] [32].

Due to the complementary nature of the IMU sensors, there were many attempts
to combine them with vision. They provide good short-term motion prediction and
make roll and pitch angles observable. At first, vision systems were used just as a
provider of 6D pose measurements which were then inserted in the combined opti-
mization. This, so-called loosely coupled approach, was presented in [87] and [35]. It
is generally easier to implement, since the vision algorithm requires no modifications.
On the other hand, tightly coupled approaches jointly optimize motion parameters
in a combined energy function. They are able to capture more correlations in the
multisensory data stream leading to more precision and robustness. Several promi-
nent examples are filtering based approaches [74] [17] and energy-minimization based
approaches [73] [39] [8] [95].
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Another issue relevant for the practical use of monocular visual-inertial odometry
is initialization. Right after the start, the system has no prior information about the
initial pose, velocities and depth values of observed points in the image. Since the
energy functional that is being minimized is highly non-convex, a bad initialization
might result in divergence of the system. The problem is even more complicated,
since some types of motion do not allow to uniquely determine all these values. A
closed form solution for initialization, together with analysis of the exceptional cases
was presented in [85], and extended to consider IMU biases in [60].

6.3 Direct Sparse Visual-Inertial Odometry

The following approach is based on iterative minimization of photometric and iner-
tial errors in a non-linear optimization framework. To make the problem computa-
tionally feasible the optimization is performed on a window of recent frames while all
older frames get marginalized out. Our approach is based on [32] and can be viewed
as a direct formulation of [73]. In contrast to [8], we jointly determine poses and
3D geometry from a single optimization function. This results in better precision
especially on hard sequences. Compared to [39] we perform a full bundle-adjustment
like optimization instead of including structure-less vision error terms.

The proposed approach estimates poses and depths by minimizing the energy
function

Etotal = λ · Ephoto + Einertial (6.1)

which consists of the photometric error Ephoto (section 6.3.2) and an inertial error
term Einertial (section 6.3.3).

The system contains two main parts running in parallel:

• The coarse tracking is executed for every frame and uses direct image align-
ment combined with an inertial error term to estimate the pose of the most
recent frame.

• When a new keyframe is created we perform a visual-inertial bundle adjust-
ment like optimization that estimates the geometry and poses of all active
keyframes.

In contrast to [95] we do not wait for a fixed amount of time before initializing the
visual-inertial system but instead we jointly optimize all parameters including the
scale. This yields a higher robustness as inertial measurements are used right from
the beginning.

6.3.1 Notation

Throughout the paper we will use the following notation: bold upper case letters
H represent matrices, bold lower case x vectors and light lower case λ represent
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scalars. Transformations between coordinate frames are denoted as Ti j ∈ SE(3)
where point in coordinate frame i can be transformed to the coordinate frame j using
the following equation pi = Ti jpj. We denote Lie algebra elements as ξ̂ ∈ se(3),
where ξ ∈ R6, and use them to apply small increments to the 6D pose ξ′i j =

ξi j � ξ := log
(
eξ̂i j · eξ̂

)∨
.

We define the world as a fixed inertial coordinate frame with gravity acting in
negative Z axis. We also assume that the transformation from camera to IMU frame
Timu cam is fixed and calibrated in advance. Factor graphs are expressed as a set G
of factors and we use G1 ∪ G2 to denote a factor graph containing all factors that
are either in G1 or in G2.

6.3.2 Photometric Error

The photometric error of a point p ∈ Ωi in reference frame i observed in another
frame j is defined as follows:

Epj =
∑

p∈Np

ωp

∥∥∥∥(Ij[p
′]− bj)−

tje
aj

tieai
(Ii[p]− bi)

∥∥∥∥
γ

, (6.2)

where Np is a small set of pixels around the point p, Ii and Ij are images of respec-
tive frames, ti, tj are the exposure times, ai, bi, aj, bj are the coefficients to correct
for affine illumination changes, γ is the Huber norm, ωp is a gradient-dependent
weighting and p′ is the point projected into Ij.

With that we can formulate the photometric error as

Ephoto =
∑
i∈F

∑
p∈Pi

∑
j∈obs(p)

Epj, (6.3)

where F is a set of keyframes that we are optimizing, Pi is a sparse set of points in
keyframe i, and obs(p) is a set of observations of the same point in other keyframes.

6.3.3 Inertial Error

In order to construct the error term that depends on rotational velocities measured
by the gyroscope and linear acceleration measured by the accelerometer we use the
nonlinear dynamic model defined in [8, eq. (6), (7), (8)].

As IMU data is obtained with a much higher frequency than images we follow
the preintegration approach proposed in [79] and improved in [24] and [39]. This
allows us to add a single IMU factor describing the pose between two camera frames.
For two states si and sj (based on the state definition in Equation (6.9)), and IMU-
measurements ai,j and ωi,j between the two images we obtain a prediction ŝj as

well as an associated covariance matrix Σ̂s,j. The corresponding error function is

Einertial(si, sj) := (sj � ŝj)
T Σ̂−1

s,j (sj � ŝj) (6.4)
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where the operator � applies ξj �
(
ξ̂j

)−1

for poses and a normal subtraction for

other components.

6.3.4 IMU Initialization and the problem of observability

In contrast to a purely monocular system the usage of inertial data enables us to
observe metric scale and gravity direction. This also implies that those values have
to be properly initialized, otherwise optimization might diverge. Initialization of the
monocular visual-inertial system is a well studied problem with an excellent sum-
mary provided in [85]. [85, Tables I and II] show that for certain motions immediate
initialization is not possible, for example when moving with zero acceleration and
constant non-zero velocity. To demonstrate that it is a real-world problem and not
just a theoretical case we note that the state-of-the-art visual-inertial SLAM system
[95] uses the first 15 seconds of camera motion for the initialization on the EuRoC
dataset to make sure that all values are observable.

Therefore we propose a novel strategy for handling this issue. We explicitly
include scale (and gravity direction) as a parameter in our visual-inertial system and
jointly optimize them together with the other values such as poses and geometry.
This means that we can initialize with an arbitrary scale instead of waiting until it
is observable. We initialize the various parameters as follows.

• We use the same visual initializer as [32] which computes a rough pose estimate
between two frames as well as approximate depths for several points. They
are normalized so that the average depth is 1.

• The initial gravity direction is computed by averaging up to 40 accelerome-
ter measurements, yielding a sufficiently good estimate even in cases of high
acceleration.

• We initialize the velocity and IMU-biases with zero and the scale with 1.0.

All these parameters are then jointly optimized during a bundle adjustment like
optimization.

6.3.5 SIM(3)-based Representation of the World

In order to be able to start tracking and mapping with a preliminary scale and
gravity direction we need to include them into our model. Therefore in addition
to the metric coordinate frame we define the DSO coordinate frame to be a scaled
and rotated version of it. The transformation from the DSO frame to the metric
frame is defined as Tm d ∈ {T ∈ SIM(3) | translation(T) = 0}, together with the
corresponding ξm d = log(Tm d) ∈ sim(3). We add a superscript D or M to all
poses denoting in which coordinate frame they are expressed. In the optimization
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(a) Factor graph for the visual-
inertial optimization.

(b) Factor graph after keyframe 1
was marginalized.

Figure 6.2: Factor graphs for the visual-inertial joint optimization before and after the
marginalization of a keyframe.

the photometric error is always evaluated in the DSO frame, making it independent
of the scale and gravity direction, whereas the inertial error has to use the metric
frame.

6.3.6 Scale-aware Visual-inertial Optimization

We optimize the poses, IMU-biases and velocities of a fixed number of keyframes.
Fig. 6.2(a) shows a factor graph of the problem. Note that there are in fact many
separate visual factors connecting two keyframes each, which we have combined to
one big factor connecting all the keyframes in this visualization. Each IMU-factor
connects two subsequent keyframes using the preintegration scheme described in
section 6.3.3. As the error of the preintegration increases with the time between the
keyframes we ensure that the time between two consecutive keyframes is not bigger
than 0.5 seconds which is similar to what [95] have done. Note that in contrast to
their method however we allow the marginalization procedure described in section
6.3.6 to violate this constraint which ensures that long-term relationships between
keyframes can be properly observed.

An important property of our algorithm is that the optimized poses are not
represented in the metric frame but in the DSO frame. This means that they do
not depend on the scale of the environment.

Nonlinear Optimization

We perform nonlinear optimization using the Gauss-Newton algorithm. For each
active keyframe we define a state vector

si := [
(
ξDcami w

)T
,vTi , b

T
i , ai, bi, d

1
i , d

2
i , ..., d

m
i ]T (6.5)

where vi ∈ R3 is the velocity, bi ∈ R6 is the current IMU bias, ai and bi are the
affine illumination parameters used in equation (6.2) and dji are the inverse depths
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of the points hosted in this keyframe.

The full state vector is then defined as

s = [cT , ξTm d, s
T
1 , s

T
2 , ..., s

T
n ]T (6.6)

where c contains the geometric camera parameters and ξm d denotes the translation-
free transformation between the DSO frame and the metric frame as defined in
section 6.3.5. We define the operator s � s′ to work on state vectors by applying
the concatenation operation ξ� ξ′ for Lie algebra components and a plain addition
for other components.

Using the stacked residual vector r we define

J =
dr (s� ε)

dε

∣∣∣∣
ε=0

, H = JTWJ and b = −JTWr (6.7)

where W is a diagonal weight matrix. Then the update that we compute is
δ = H−1b.

Note that the visual energy term Ephoto and the inertial error term Eimu do not
have common residuals. Therefore we can divide H and b each into two independent
parts

H = Hphoto + Himu and b = bphoto + bimu (6.8)

As the inertial residuals compare the current relative pose to the estimate from
the inertial data they need to use poses in the metric frame relative to the IMU.
Therefore we define additional state vectors for the inertial residuals.

s′i := [ξMw imui
,vi, bi]

T and s′ =
[
s′T1 , s

′T
2 , ..., s

′T
n

]T
(6.9)

The inertial residuals lead to

H′imu = J′TimuWimuJ
′
imu and b′imu = −J′TimuWimurimu (6.10)

For the joint optimization however we need to obtain Himu and bimu based on the
state definition in Equation (6.6). As the two definitions mainly differ in their
representation of the poses we can compute Jrel such that

Himu = JTrel ·H′imu · Jrel and bimu = JTrel · b′imu (6.11)

The computation of Jrel is detailed in the supplementary material. Note that we
represent all transformations as elements of sim(3) and fix the scale to 1 for all of
them except ξm d.
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(a) Gmetric (b) Gvisual

Figure 6.3: Partitioning of the factor graph from Fig. 6.2(a) into Gmetric and Gvisual.
Gmetric contains all IMU-factors while Gvisual contains the factors that do not depend on
ξm d. Note that both of them do not contain any marginalization factors.

Marginalization using the Schur-Complement

In order to compute Gauss-Newton updates in a reasonable time-frame we per-
form partial marginalization for older keyframes. This means that all variables
corresponding to this keyframe (pose, bias, velocity and affine illumination param-
eters) are marginalized out using the Schur complement. Fig. 6.2(b) shows how
marginalization changes the factor graph.

The marginalization of the visual factors is handled as in [32] by dropping residual
terms that affect the sparsity of the system and by first marginalizing all points in
the keyframe before marginalizing the keyframe itself.

Marginalization is performed using the Schur-complement [32, eq. (16), (17) and
(18)]. As the factor resulting from marginalization requires the linearization point
of all connected variables to remain fixed we apply [32, eq. (15)] to approximate the
energy around further linearization points.

In order to maintain consistency of the system it is important that Jacobians are
all evaluated at the same value for variables that are connected to a marginalization
factor as otherwise the nullspaces get eliminated. Therefore we apply ”First Esti-
mates Jacobians”. For the visual factors we follow [32] and evaluate Jphoto and Jgeo

at the linearization point. When computing the inertial factors we fix the evaluation
point of Jrel for all variables which are connected to a marginalization factor. Note
that this always includes ξm d.

Dynamic Marginalization for Delayed Scale Convergence

The marginalization procedure described in subsection 6.3.6 has two purposes: re-
duce the computation complexity of the optimization by removing old states and
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Figure 6.4: The scale estimation running on the V1 03 difficult sequence from the EuRoC
dataset. We show the current scale estimate (bold blue), the groundtruth scale (bold red)
and the current scale interval (light lines). The vertical dotted lines denote when the side
changes (blue) and when the boundary of the scale interval is exceeded (red). In practice
this means that Mcurr contains the inertial factors since the last blue or red dotted line
that is before the last red dotted line. For example at 16s it contains all inertial data since
the blue line at 9 seconds.

maintain the information about the previous states of the system. This procedure
fixes the linearization points of the states connected to the old states, so they should
already have a good estimate. In our scenario this is the case for all variables except
of scale.

The main idea of ”Dynamic marginalization” is to maintain several marginal-
ization priors at the same time and reset the one we currently use when the scale
estimate moves too far from the linearization point in the marginalization prior.

In our implementation we use three marginalization priors: Mvisual, Mcurr and
Mhalf. Mvisual contains only scale independent information from previous states of
the vision and cannot be used to infer the global scale. Mcurr contains all information
since the time we set the linearization point for the scale and Mhalf contains only
the recent states that have a scale close to the current estimate.

When the scale estimate deviates too much from the linearization point of Mcurr,
the value of Mcurr is set to Mhalf and Mhalf is set to Mvisual with corresponding
changes in the linearization points. This ensures that the optimization always has
some information about the previous states with consistent scale estimates. In the
remaining part of the section we provide the details of our implementation.

We define Gmetric to contain only the visual-inertial factors (which depend on
ξm d) and Gvisual to contain all other factors, except the marginalization priors.
Then

Gfull = Gmetric ∪Gvisual (6.12)

Fig. 6.3 depicts the partitioning of the factor graph.
We define three different marginalization factors Mcurr, Mvisual and Mhalf. For

the optimization we always compute updates using the graph

Gba = Gmetric ∪Gvisual ∪Mcurr (6.13)
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When keyframe i is marginalized we update Mvisual with the factor arising from
marginalizing frame i in Gvisual ∪ Mvisual. This means that Mvisual contains all
marginalized visual factors and no marginalized inertial factors making it indepen-
dent of the scale.

For each marginalized keyframe i we define

si := scale estimate at the time, i was marginalized (6.14)

We define i ∈M if and only if M contains an inertial factor that was marginal-
ized at time i. Using this we enforce the following constraints for inertial factors.

∀i ∈Mcurr : si ∈ [smiddle/di, smiddle · di] (6.15)

∀i ∈Mhalf : si ∈
{

[smiddle, smiddle · di] , if scurr > smiddle

[smiddle/di, smiddle] , otherwise
(6.16)

where smiddle is the current middle of the allowed scale interval (initialized with
s0), di is the size of the scale interval at time i, and scurr is the current scale estimate.

We update Mcurr by marginalizing frame i in Gba and we update Mhalf by
marginalizing i in Gmetric ∪Gvisual ∪Mhalf

In order to preserve the constraints in Equations (6.15) and (6.16) we apply
Algorithm ?? everytime a marginalization happens. By following these steps on the
one hand we make sure that the constraints are satisfied which ensures that the
scale difference in the currently used marginalization factor stays smaller than d2

i .
On the other hand the factor always contains some inertial factors so that the scale
estimation works at all times. Note also that Mcurr and Mhalf have separate First
Estimate Jacobians that are employed when the respective marginalization factor is
used. Fig. 6.4 shows how the system works in practice.

An important part of this strategy is the choice of di. It should be small, in
order to keep the system consistent, but not too small so that Mcurr always contains
enough inertial factors. Therefore we chose to dynamically adjust the parameter as
follows. At all time steps i we calculate

di = min {djmin | j ∈ N \ {0}, si
si−1

< di} (6.17)

This ensures that it cannot happen that the Mhalf gets reset to Mvisual at the same
time that Mcurr is exchanged with Mhalf. Therefore it prevents situations where
Mcurr contains no inertial factors at all, making the scale estimation more reliable.
In our experiments we chose dmin =

√
1.1.

6.3.7 Coarse Visual-Inertial Tracking

The coarse tracking is responsible for computing a fast pose estimate for each frame
that also serves as an initialization for the joint optimization detailed in 6.3.6. We
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Figure 6.5: rmse for different methods run 10 times (lines) on each sequence (columns) of
the EuRoC dataset.

perform conventional direct image alignment between the current frame and the lat-
est keyframe, while keeping the geometry and the scale fixed. Inertial residuals using
the previously described IMU preintegration scheme are placed between subsequent
frames. Everytime the joint optimization is finished for a new frame, the coarse
tracking is reinitialized with the new estimates for scale, gravity direction, bias, and
velocity as well as the new keyframe as a reference for the visual factors. Similar
to the joint optimization we perform partial marginalization to keep the update
time constrained. After estimating the variables for a new frame we marginalize out
all variables except the keyframe pose and the variables of the newest frame. In
contrast to the joint optimization we do not need to use dynamic marginalization
because the scale is not included in the optimization.
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Figure 6.6: Cumulative error plot on the EuRoC-dataset (RT means realtime). This ex-
periment demonstrates that the additional IMU not only provides a reliable scale estimate,
but that it also significantly increases accuracy and robustness.

6.4 Results

We evaluate our approach on the publicly available EuRoC dataset [20]. The per-
formance is compared to [32], [17], [94], [8], [73] and [63]. We also provide supple-
mentary material with more evaluation and a video at vision.in.tum.de/vi-dso.

6.4.1 Robust Quantitative Evaluation

In order to obtain an accurate evaluation we run our method 10 times for each
sequence of the dataset (using the left camera). We directly compare the results to
visual-only DSO [32] and ROVIO [17]. As DSO cannot observe the scale we evaluate
using the optimal ground truth scale in some plots (with the description ”gt-scaled”)
to enable a fair comparison. For all other results we scale the trajectory with the
final scale estimate (our method) or with 1 (other methods). For DSO we use the
results published together with their paper. We use the same start and end times
for each sequence to run our method and ROVIO. Note that the drone has a high
initial velocity in some sequences when using these start times making it especially

http://vision.in.tum.de/vi-dso
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Figure 6.7: Scale estimate for MH 04 difficult (median result of 10 runs in terms of tracking
accuracy). Note how the estimated scale converges to the correct value despite being
initialized far from the optimum.

challenging for our IMU initialization. Fig. 6.5 shows the root mean square error
(rmse) for every run and Fig. 6.6 displays the cumulative error plot. Clearly our
method significantly outperforms DSO and ROVIO. Without inertial data DSO is
not able to work on all sequences especially on V1 03 difficult and V2 03 difficult
and it is also not able to scale the results correctly. ROVIO on the other hand is
very robust but as a filtering-based method it cannot provide sufficient accuracy.

Table ?? shows a comparison to several other methods. For our results we have
displayed the median error for each sequence from the 10 runs plotted in Fig. 6.5(c).
This makes the results very meaningful. For the other methods unfortunately only
one result was reported so we have to assume that they are representative as well.
The results for [73] and [63] were taken from [63]. The results for [94] (as reported
in their paper) differ slightly from the other methods as they show the error of
the keyframe trajectory instead of the full trajectory. This is a slight advantage as
keyframes are bundle-adjusted in their method which does not happen for the other
frames.

In comparison to VI ORB-SLAM our method outperforms it in terms of rmse on
several sequences. As ORB-SLAM is a SLAM system while ours is a pure odometry
method this is a remarkable achievement especially considering the differences in
the evaluation. Note that the Vicon room sequences (V*) are executed in a small
room and contain a lot of loopy motions where the loop closures done by a SLAM
system significantly improve the performance. Also our method is more robust as
ORB-SLAM fails to track one sequence. Even considering only sequences where
ORB-SLAM works our approach has a lower maximum rmse.

Compared to [73] and [63] our method obviously outperforms them. It is better
than the monocular versions on every single sequence and it beats even the stereo
and SLAM-versions on 9 out of 11 sequences.

In summary our method is the only one which is able to track all the sequences
successfully except ROVIO.

We also compare the Relative Pose Error to [94] and [8] on the V1 0*-sequences
of EuRoC (Fig. 6.8). While our method cannot beat the SLAM system and the
stereo method on the easy sequence we outperform [8] and are as good as [94] on
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the medium sequence. On the hard sequence we outperform both of the contenders
even though we neither use stereo nor loop-closures.

6.4.2 Evaluation of the Initialization

There are only few methods we can compare our initialization to. Some approaches
like [85] have not been tested on real data. While [60] provides results on real data,
the dataset used was featuring a downward-looking camera and an environment with
a lot of features which is not comparable to the EuRoC-dataset in terms of difficulty.
Also they do not address the problem of late observability which suggests that a
proper motion is performed in the beginning of their dataset. As a filtering-based
method ROVIO does not need a specific initialization procedure but it also cannot
compete in terms of accuracy making it less relevant for this discussion. Visual-
inertial LSD-SLAM uses stereo and therefore does not face the main problem of
scale estimation. Therefore we compare our initialization procedure to visual-inertial
ORB-SLAM [94] as both of the methods work on the challenging EuRoC-dataset
and have to estimate the scale, gravity direction, bias, and velocity.

In comparison to [94] our estimated scale is better overall (Table ??). On most
sequences our method provides a better scale, and our average scale error (0.7%
compared to 1.0%) as well as our maximum scale error (1.2% compared to 3.4%) is
lower. In addition our method is more robust as the initialization procedure of [94]
fails on V1 03 difficult.

Apart from the numbers we argue that our approach is superior in terms of the
general structure. While [94] have to wait for 15 seconds until the initialization is
performed, our method provides an approximate scale and gravity direction almost
instantly, that gets enhanced over time. Whereas in [94] the pose estimation has
to work for 15 seconds without any IMU data, in our method the inertial data is
used to improve the pose estimation from the beginning. This is probably one of the
reasons why our method is able to process V1 03 difficult. Finally our method is
better suited for robotics applications. For example an autonomous drone is not able
to fly without gravity direction and scale for 15 seconds and hope that afterwards
the scale was observable. In contrast our method offers both of them right from the
start. The continuous rescaling is also not a big problem as an application could use
the unscaled measurements for building a consistent map and for providing flight
goals, whereas the scaled measurements can be used for the controller. Fig. 6.7
shows the scale estimation for MH 04.

Overall we argue that our initialization procedure exceeds the state of the art
and think that the concept of initialization with a very rough scale estimate and
jointly estimating it during pose estimation will be a useful concept in the future.
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6.5 Conclusion

We have presented a novel formulation of direct sparse visual-inertial odometry.
We explicitely include scale and gravity direction in our model in order to deal
with cases where the scale is not immediately observable. As the initial scale can
be very far from the optimum we have proposed a novel technique called dynamic
marginalization where we maintain multiple marginalization priors and constrain the
maximum scale difference. Extensive quantitative evaluation demonstrates that the
proposed visual-inertial odometry method outperforms the state of the art, both
the complete system as well as the IMU initialization procedure. In particular,
experiments confirm that the inertial information not only provides a reliable scale
estimate, but it also drastically increases precision and robustness.
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Figure 6.8: Relative Pose Error evaluated on three sequences of the EuRoC-dataset for
visual-inertial ORB-SLAM [94], visual-inertial stereo LSD-SLAM [8] and our method.
Although the proposed VI-DSO does not use loop closuring (like [94]) or stereo (like [8]),
VI-DSO is quite competitive in terms of accuracy and robustness. Note that [94] with
loop closures is slightly more accurate on average, yet it entirely failed on V1 03 difficult.
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Abstract Visual odometry and SLAM methods have a large variety of
applications in domains such as augmented reality or robotics. Comple-
menting vision sensors with inertial measurements tremendously improves
tracking accuracy and robustness, and thus has spawned large interest in
the development of visual-inertial (VI) odometry approaches. In this pa-
per, we propose the TUM VI benchmark, a novel dataset with a diverse
set of sequences in different scenes for evaluating VI odometry. It provides
camera images with 1024x1024 resolution at 20 Hz, high dynamic range
and photometric calibration. An IMU measures accelerations and angular
velocities on 3 axes at 200 Hz, while the cameras and IMU sensors are
time-synchronized in hardware. For trajectory evaluation, we also pro-
vide accurate pose ground truth from a motion capture system at high
frequency (120 Hz) at the start and end of the sequences which we accu-
rately aligned with the camera and IMU measurements. The full dataset
with raw and calibrated data is publicly available. We also evaluate state-
of-the-art VI odometry approaches on our dataset.

7.1 Introduction

Visual odometry and SLAM is a very active field of research with an abundance
of applications in fields such as augmented reality or robotics. Variants include
monocular ([32, 56]), stereo ([103, 128]) and visual-inertial ([17, 73, 8]) methods.
Compared to one camera, adding a second one in a stereo setup provides better
robustness and scale-observability. Adding an inertial measurement unit (IMU)
helps dealing with untextured environments and rapid motions and makes roll and
pitch directly observable. On the other hand, the camera complements the IMU
with external referencing to the environment in 6 degrees of freedom.

To compare competing methods, it is necessary to have publicly available data
with ground truth. Given the relevance of the topic of visual-inertial odometry,
the availability of high-quality datasets is surprisingly small. Compared to single-
camera, purely visual datasets, the challenge with a stereo visual-intertial dataset
lies in the accurate synchronization of three sensors. A commonly used option for
evaluating visual-inertial odometry is the EuRoC MAV dataset [20], but its image
resolution and bit depth is not quite state-of-the-art anymore, and the number and
variability of scenes is very limited.

For direct methods, which do not align pixel coordinates but image intensities,
the assumption that the same 3D point has the same intensity in two different images
should be satisfied. It has been shown that providing a photometric calibration
that allows to compensate for exposure times, camera response function and lense
vignetting is beneficial in this case [32], however it is not a common feature of
existing datasets.
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Figure 7.1: The TUM VI benchmark includes synchronized measurements from an IMU
and a stereo camera in several challenging indoor and outdoor sequences. The cameras are
equipped with large field-of-view lenses (195◦) and provide high dynamic range images (16
bit) at high resolution (1 MP) with linear response function. The figure shows example
frames from the dataset.

In this paper, we propose the TUM VI benchmark, a novel dataset with a di-
verse set of sequences in different scenes, with 1024x1024 image resolution at 20 Hz,
16-bit color depth, known exposure times, linear response function and vignette cal-
ibration. An IMU provides 3-axis accelerometer and gyro measurements at 200 Hz,
which we correct for axis scaling and misalignment, while the cameras and IMU sen-
sors are time-synchronized in hardware. We recorded accurate pose ground truth
with a motion capture system at high frequency (120 Hz) which is available at the
start and end of the sequences. For accurate alignment of sensor measurements with
the ground truth, we calibrated time offsets and relative transforms.

We evaluate state-of-the-art visual-inertial algorithms on our dataset. The full
dataset with raw and calibrated data, together with preview videos, is available on:

https://vision.in.tum.de/data/datasets/visual-inertial-dataset

https://vision.in.tum.de/data/datasets/visual-inertial-dataset
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Table 7.1: Comparison of datasets with vision and imu data.

dataset year environ. carrier cameras IMUs time
sync

ground
truth stats/props

Kitti
Odome-
try [46]

2013 outdoors car 1 stereo
RGB
2x1392x512
@10Hz,
1 stereo
gray
2x1392x512
@10Hz

OXTS
RT 3003
3-axis
acc/gyro
@10Hz

sw OXTS RT
3003 pose
@10Hz,
acc.
<10cm

22 seqs,
39.2 km

Malaga
Urban [16]

2014 outdoors car 1 stereo
RGB
2x1024x768
@20Hz

3-axis
acc/gyro
@100Hz

sw GPS pos
@1Hz, low
acc

15 sub-
seqs,
36.8 km

UMich
NCLT [23]

2015 in-
/outdoors

Segway 6 RGB
(omni)
1600x1200
@5Hz

3-axis
acc/gyro
@100Hz

sw fused GPS
/ IMU /
laser pose
@150Hz,
acc≈10cm

27 seqs,
147.3 km

EuRoC
MAV [20]

2016 indoors MAV 1 stereo
gray
2x752x480
@20Hz

ADIS16488
3-axis
acc/gyro
@200Hz

hw laser
tracker pos
@20Hz,
motion
capture
pose
@100Hz,
acc≈1mm

11 seqs,
0.9 km

Pen-
nCOSYVIO
[107]

2017 in-
/outdoors

handheld 4 RGB
1920x1080
@30Hz
(rolling
shutter),
1 stereo
gray
2x752x480
@20Hz,
1 fish-
eye gray
640x480
@30Hz

ADIS16488
3-axis
acc/gyro
@200Hz,
Tango
3-axis acc
@128Hz /
3-axis gyro
@100Hz

hw
(stereo
gray/
ADIS),
sw

fiducial
markers
pose@30Hz,
acc≈15cm

4 seqs,
0.6 km

Zurich
Urban
MAV [84]

2017 outdoors MAV 1 RGB
1920x1080
@30Hz
(rolling
shutter)

3-axis
acc/gyro
@10Hz

sw Pix4D vi-
sual pose,
acc un-
known

1 seq, 2 km

Ours
(TUM
VI)

2018 in-
/outdoors

handheld 1 stereo
gray
2x1024x1024
@20Hz

BMI160
3-axis
acc/gyro
@200Hz

hw partial
motion
capture
pose
@120Hz,
marker
pos
acc≈1mm
(static
case)

28 seqs,
20 km,
photo-
metric
calibra-
tion
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7.2 Related Work

Datasets have in the past greatly fostered the research of visual odometry and SLAM
algorithms. In table 7.1 we give an overview over the most relevant datasets that
include vision and IMU data.

Visual odometry and SLAM datasets: The TUM RGB-D dataset [124]
is focused on the evaluation of RGB-D odometry and SLAM algorithms and has
been extensively used by the research community. It provides 47 RGB-D sequences
with ground-truth pose trajectories recorded with a motion capture system. It also
comes with evaluation tools for measuring drift and SLAM trajectory alignment.
For evaluating monocular odometry, recently the TUM MonoVO dataset [1] has
been proposed. The dataset contains 50 sequences in indoor and outdoor environ-
ments and has been photometrically calibrated for exposure times, lens vignetting
and camera response function. Drift can be assessed by comparing the start and
end position of the trajectory which coincide for the recordings. We also provide
photometric calibration for our dataset, but additionally recorded motion capture
ground truth in parts of the trajectories for better pose accuracy assessment. Fur-
thermore, the above datasets do not include time-synchronized IMU measurements
with the camera images like our benchmark.

For research on autonomous driving, visual odometry and SLAM datasets have
been proposed such as Kitti [46], Malaga Urban dataset [16], or the Robot Oxford
car dataset [80]. The Kitti and Malaga Urban datasets also include low-frequency
IMU information which is, however, not time-synchronized with the camera im-
ages. While Kitti provides a GPS/INS-based ground truth with accuracy below
10 cm, the Malaga Urban dataset only includes a coarse position for reference from
a low-cost GPS sensor. Our dataset contains 20 Hz camera images and hardware
time-synchronized 3-axis accelerometer and gyro measurements at 200 Hz. Ground-
truth poses are recorded at 120 Hz and are accurately time-aligned with the sensor
measurements as well.

Visual-inertial odometry and SLAM datasets: Similar to our benchmark,
some recent datasets also provide time-synchronized IMU measurements with visual
data and have been designed for the evaluation of visual-inertial (VI) odometry and
SLAM approaches. The EuRoC MAV dataset [20] includes 11 indoor sequences
recorded with a Skybotix stereo VI sensor from a MAV. Accurate ground truth (ap-
prox. 1mm) is recorded using a laser tracker or a motion capture system. Compared
to our benchmark, the sequences in EuRoC MAV are shorter and have less variety
as they only contain recordings in one machine hall and one lab room. Further-
more, EuRoC MAV does not include a photometric calibration which is important
to benchmark direct methods. Further datasets for visual-inertial SLAM are the
PennCOSYVIO dataset [107] and the Zurich Urban MAV dataset [84]. However,
they do not contain photometric calibration and as accurate ground truth or time-
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Table 7.2: Overview of sensors in our setup.

Sensor Type Rate Characteristics

Cameras 2 × IDS uEye
UI-3241LE-M-GL

20 Hz global shutter
1024x1024
16-bit gray

IMU Bosch BMI160 200 Hz 3D accelerometer
3D gyroscope
temperature

MoCap OptiTrack Flex13 120 Hz 6D Pose
infrared cameras

Light sensor TAOS TSL2561 200 Hz scalar luminance

synchronization of IMU and camera images like our benchmark (cf. table 7.1).

7.3 Sensor Setup

Our sensor setup consists of two monochrome cameras in a stereo setup and an IMU,
see fig. 7.2. The left figure shows a schematic view of all involved coordinate systems.
We use the convention that a pose TBA ∈ SE(3) transforms point coordinates pA ∈
R3 in system A to coordinates in B through pB = TBApA. For the coordinate
systems, we use the following abbreviations,

I IMU

C0 camera 0

C1 camera 1

M IR-reflective markers

G grid of AprilTags

W world frame (reference frame of MoCap system)

The IMU is rigidly connected to the two cameras and several IR-reflective mark-
ers which allow for pose tracking of the sensor setup by the motion capture (MoCap)
system. For calibrating the camera intrinsics and the extrinsics of the sensor setup,
we use a grid of AprilTags [104] which has a fixed pose in the MoCap reference
(world) system. In the following, we briefly describe the hardware components. An
overview is also given in table 7.2.
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Cam1
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TIC0

TIC1

TMI

MoCap TWM

Grid

TWG

TGI

Cam0
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IMU

Marker

Figure 7.2: Sensor setup. Left: Schematic view of the different coordinate systems. The
rounded rectangle contains all components which are rigidly connected with the IMU
coordinate system. A dotted line indicates a temporally changing relative pose when
moving the sensor. Right: Photo of the sensor setup. It contains two cameras in a
stereo setup, a microcontroller board with integrated IMU, a luminance sensor between
the cameras and IR reflective markers.

7.3.1 Camera

We use two uEye UI-3241LE-M-GL cameras by IDS. Each has a global shutter
CMOS sensor which delivers 1024x1024 monochrome images. The whole intensity
range of the sensor can be represented using 16-bit images, so applying a non-linear
response function (usually used to increase the precision at a certain intensity range)
is not required. The cameras operate at 20 Hz and are triggered synchronously by
a Genuino 101 microcontroller.

The cameras are equipped with Lensagon BF2M2020S23 lenses by Lensation.
These fisheye lenses have a field of view of 195◦ (diagonal), though our cameras
record a slightly reduced field of view in horizontal and vertical directions due to
the sensor size.

7.3.2 Light Sensor

We design our sensor setup to ensure the same exposure time of corresponding
images for the two cameras. This way, both camera images have the same brightness
for corresponding image points (which otherwise needs to be calibrated or estimated
with the visual odometry). Furthermore, this also ensures the same center of the
exposure time (which is used as the image timestamp) for two corresponding images
and allows us to record accurate per-frame exposure times.

We use a TSL2561 light sensor by TAOS to estimate the required exposure
time. The sensor delivers an approximate measurement of the illuminance of the
environment. The relation of these measurements and the exposure times which are
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Figure 7.3: Relation of illuminance measurements by our light sensor and corresponding
exposure time settings by the camera’s auto exposure mode. The dashed lines show the
minimum and maximum exposure times possible. The red line shows the least-squares fit
(without saturated values) which we use for estimating the next exposure time.

selected by the camera’s auto exposure is approximately inversely proportional, as
can be seen in fig. 7.3. We find its parameters using a least-squares fit and use it to
set the exposure times of both cameras based on the latest illuminance measurement.
This assumes that the change in scene brightness between the light measurement
and the start of the exposure is negligible. Note that it is not necessary to reproduce
the cameras’ auto exposure control exactly as long as too dark or too bright images
can be avoided. In most cases, the results of our exposure control approach are
visually satisfying, but short video segments may be challenging.

7.3.3 IMU

Our sensor setup includes a Bosch BMI160 IMU, which contains 16-bit 3-axis
MEMS accelerometer and gyroscope. IMU temperature is recorded, facilitating
temperature-dependent noise models. We set its output rate to 200 Hz. The IMU
is integrated in the Genuino 101 microcontroller board which triggers the cameras
and reads the IMU values. This way, the timestamps of cameras and IMU are well
aligned. We estimate the remaining small constant time offset (owing to the read-
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out delay of IMU measurements) during the camera-imu extrinsics calibration which
yields a value of 5.3 ms for our setup. We estimated this value once and corrected
for it in both raw and calibrated datasets.

7.3.4 Motion Capture System

For recording accurate ground-truth poses at a high frame-rate of 120 Hz, we use an
OptiTrack motion capture system. It consists of 16 infrared Flex13 cameras which
track the IR-reflective markers on the sensor setup. The MoCap system only covers
a single room, so we cannot record ground truth for parts of the longer trajectories
outside the room. Instead, all sequences start and end in the MoCap room such
that our sequences provide ground truth at the beginning and the end.

7.4 Calibration

We include two types of sensor data in our dataset: raw data and calibrated data.
The raw data is measured directly by the sensors as described so far, but cannot be
used without proper calibration. In the following, we describe which calibrations we
apply to the raw data in order to make it usable.

7.4.1 Camera Calibration

Firstly, we calibrate the camera intrinsics and the extrinsics of the stereo setup. We
use one of the calib-cam sequences, where we took care to slowly move the cameras
in front of the calibration grid to keep motion blur as small as possible.

7.4.2 IMU and Hand-Eye Calibration

We then calibrate the extrinsics between IMU and cameras as well as between IMU
and MoCap frame. Concurrently, we estimate the time-synchronization of IMU with
MoCap measurements and IMU parameters such as axis alignment, scale differences
and biases.

Specifically, we keep the camera intrinsics from the previous calibration fixed
and optimize for

• the relative pose between cameras and IMU,

• the time shift between MoCap and IMU time,

• the time shift between camera and IMU time,

• the relative pose between the cameras,

• the relative poses TMI and TWG,
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Figure 7.4: Left and middle: Time alignment is performed using grid search. After a
coarse initialization it is followed by parabola fitting to find the sub-discretization mini-
mum. Right: Rotational velocities from gyroscope and MoCap after time alignment on
the test sequence. MoCap angular velocities are computed using central differences on the
orientation.

• coarse initial accelerometer and gyroscope biases ba and bg,

• axis scaling and misalignment matrices as in [112] Ma,Mg ∈ R3×3.

The relative poses TMI and TWG are found through hand-eye calibration using a
non-linear least squares fitting procedure. Using the relative poses, we convert raw
MoCap poses TWM to calibrated ground-truth poses TWI for the IMU.

Additionally, we compensate for the time shift between MoCap and IMU time in
the calibrated data. The time offset between MoCap and IMU has to be estimated
for each sequence individually. To find the time offset, angular velocities are calcu-
lated from the MoCap poses and aligned with the gyroscope measurements. This
is done — after a coarse alignment based on measurement arrival time — using a
grid search with a stepsize of 100µs. Then a parabola is fitted around the minimum
and the minimum of the parabola is the resulting time offset. The results of this
procedure can be seen in fig. 7.4. The ground-truth poses in the calibrated data are
always given in IMU time.

We also compensate for axis/scale misalignment and initial biases of the raw
accelerations araw and angular velocities ωraw using

acalibrated = Ma · araw − ba , (7.1)

ωcalibrated = Mg · ωraw − bg . (7.2)

The matrices Ma,Mg account for rotational misalignments of gyroscope and ac-
celerometer, axes not being orthogonal or axes not having the same scale. For Mg,
all 9 entries are optimized, whereas Ma is chosen to be lower triangular with 6 pa-
rameters. The remaining three parameters (rotation) are redundant and have to be
fixed in order to obtain a well-constrained system.

In principle, it is not necessary to deduct ba and bg, as inertial state estimation
algorithms usually estimate a time-varying bias. However, we found that in our
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hardware setup there is a large IMU bias that is coarsely reproducible between
sensor restarts and therefore approximate precalibration is reasonable. Note that
estimating the biases accurately from the sequences is still required for inertial state
estimation.

For the calibration step, we use one of the calib-imu sequences which are recorded
in front of the calibration grid with motions in all 6 degrees of freedom.

7.4.3 IMU Noise Parameters

For proper probabilistic modeling of IMU measurements in state estimation algo-
rithms and accurate geometric calibration, the intrinsic noise parameters of the IMU
are needed. We assume that our IMU measurements (accelerations or angular ve-
locities) are perturbed by white noise with standard deviation σw and a bias that
is slowly changing according to a random walk, which is an integration of white
noise with standard deviation σb. To estimate these quantities, we analyse their
Allan deviation σAllan(τ) as a function of integration time τ . For a resting IMU with
only white noise present, the Allan deviation relates to the white noise standard
deviation as

σAllan(τ) =
σw√
τ
, (7.3)

so the numerical value of the parameter σw can be found at τ = 1 s. If the measure-
ment is only perturbed by the bias, the relation is

σAllan(τ) = σb

√
τ

3
, (7.4)

which means the parameter can be found at τ = 3 s. The relations between Allan
deviation and integration time in Eqs. 7.3 and 7.4 can be found in [53]. White
noise and bias dominate the Allan variance in different ranges of τ . Thus, in the
log-log plot of σAllan(τ) in fig. 7.5, a straight line with slope −1

2
has been fitted to

an appropriate range of the data to determine σw, and a straight line with slope 1
2

has been fitted to another range to determine σb.

7.4.4 Photometric Calibration

To enable good intensity matching for direct methods, we also provide vignette
calibration. For this, we use the calibration code provided by the TUM MonoVO
dataset1 [1]. The image formation model is given by

I(x) = G (tV (x)B(x)) . (7.5)

1https://github.com/tum-vision/mono_dataset_code

https://github.com/tum-vision/mono_dataset_code


108 Chapter 7. The TUM VI Benchmark for Evaluating Visual-Inertial Odometry

10−2 10−1 100 101 102 103 104 105

τ [s]

10−4

10−3

10−2

A
lla

n
de

vi
at

io
n

[m
/s

2
]

Accelerometer

x
y
z
white noise fit
bias fit
σw
σb

10−2 10−1 100 101 102 103 104 105

τ [s]

10−5

10−4

10−3

A
lla

n
de

vi
at

io
n

[ra
d/

s]

Gyroscope

x
y
z
white noise fit
bias fit
σw
σb

Figure 7.5: Allan deviation of both accelerometer (left) and gyroscope (right). For the fit
with slope −1/2 we averaged over all three dimensions and took the range 0.02 ≤ τ ≤ 1
into account. For the fit with slope 1/2, the same averaging was done for the accelerome-
ter, but for the gyroscope we only averaged the y-coordinate and the z-coordinate. The fit
region is 1000 ≤ τ ≤ 6000. The assumed slope of 1/2 does not fit perfectly, which might
be due to unmodeled effects such as temperature dependence. The numerical values of
noise densities σw can be found at an integration time of τ = 1s on the straight line with
slope −1/2, while bias parameters σb are identified as the value on the straight line with
slope 1/2 at an integration time of τ = 3s. This results in σw = 1.4× 10−3 m/s2/

√
Hz,

σb = 8.6× 10−5 m/s3/
√

Hz for the accelerometer and σw = 8.0× 10−5 rad/s/
√

Hz,
σb = 2.2× 10−6 rad/s2/

√
Hz for the gyroscope. The white noise parameters are similar to

typical values provided by the manufacturer, σw = 1.8× 10−3 m/s2/
√

Hz (accelerometer)
and σw = 1.2× 10−4 rad/s/

√
Hz (gyroscope).
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Table 7.3: RMSE RPE OF THE EVALUATED METHODS ON 1 SECOND SEGMENTS

Sequence OKVIS ROVIO VINS

room1 0.013m / 0.43◦ 0.029m / 0.53◦ 0.015m / 0.44◦

room2 0.015m / 0.62◦ 0.030m / 0.67◦ 0.017m / 0.63◦

room3 0.012m / 0.63◦ 0.027m / 0.66◦ 0.023m / 0.63◦

room4 0.012m / 0.57◦ 0.022m / 0.61◦ 0.015m / 0.41◦

room5 0.012m / 0.47◦ 0.031m / 0.60◦ 0.026m / 0.47◦

room6 0.012m / 0.49◦ 0.019m / 0.50◦ 0.014m / 0.44◦

This means for an image point x, light with intensity B(x) is attenuated by a vi-
gnetting factor V (x) ∈ [0, 1], then is integrated during the exposure time t, and
finally is converted by a response function G into the irradiance value I(x). In our
case, we assume G linear, so the model simplifies to I(x) ∝ tV (x)B(x). The given
code requires images of a plane with a small calibration tag, taken from different
viewpoints. It then alternatingly optimizes the texture of the wall (up to a con-
stant factor) and a non-parametric vignette function. The result is a PNG image
representing vignette values between 0 and 1 for each pixel.

7.5 Dataset

7.5.1 Sequences

Besides evaluation sequences, we also make our calibration data accessible such that
users can perform their own calibration, even though we provide calibrated data and
our calibration results. The sequences can be divided into the following categories.

• calib-cam: for calibration of camera intrinsics and stereo extrinsics. A grid
of AprilTags has been recorded at low frame rate with changing viewpoints
and small camera motion.

• calib-imu: for cam-imu calibration to find the relative pose between cameras
and IMU. Includes rapid motions in front of the April grid exciting all 6 degrees
of freedom. A small exposure has been chosen to avoid motion blur.

• calib-vignette: for vignette calibration. Features motion in front of a white
wall with a calibration tag in the middle.

• imu-static: only IMU data to estimate noise and random walk parameters
(111 hours standing still).

• room: sequences completely inside the MoCap room such that the full tra-
jectory is covered by the ground truth.
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• corridor: sequences with camera motion along a corridor and to and from
offices

• magistrale: sequences featuring a walk around the central hall in a university
building

• outdoors: sequences of a larger walk outside on a university campus

• slides: sequences of a walk in the central hall of a university building including
a small part sliding in a closed tube with no visual features.

7.5.2 Format

ROS Bag Files

For each sequence, we provide three different ROS bag files, one raw bag and two
calibrated ones. Raw bags contain the data as it has been recorded, i.e. before
hand-eye, time shift or IMU calibration. They include the following topics.

/cam0/image raw

/cam1/image raw

/imu0

/vrpn client/raw transform

The first two contain the images of the cameras. Most fields in the messages are
self-explanatory and follow standard conventions, but note that frame id provides
the exposure time in nanoseconds. In the IMU topic, we do not give the orientation,
but we use the second entry of orientation covariance to provide the temperature
of the IMU in degree Celsius. The last topic contains the raw MoCap poses TWM.
For each pose there is a timestamp in MoCap time, a translation vector and a
rotation quaternion.

Calibrated bags contain the same topics as raw bags but with calibrated data.
The differences are:

• MoCap poses have been aligned with the IMU frame (through hand-eye cali-
bration, TWI),

• outlier MoCap poses have been removed with a median filter on positions,

• timestamps of the MoCap poses have been synchronized with the IMU time
using the time shift calibration,

• IMU data has been processed according to eqs. (7.1) and (7.2).

We provide two kinds of calibrated bags: one with full resolution and one with
quarter resolution (half resolution for each dimension). The downsampled version
facilitates usage for users with storage or bandwidth limitations.
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Calibration Files

We also provide geometric calibration files which have been obtained from the pro-
cessed calibration bags using the Kalibr toolbox2 [43]. They include intrinsic camera
parameters for different models and the relative poses between cameras and IMU.
Additionally, the vignette calibration result is given for each camera in PNG format
as described in section 7.4.4.

7.6 Evaluation

7.6.1 Evaluation Metric

To evaluate the performance of tracking algorithms on the dataset, we use different
evaluation metrics. The absolute trajectory error is used, which is the root mean
squared difference of ground-truth 3D positions p̂i and the corresponding tracked
positions pi, aligned with an optimal SE(3) pose T,

rate = min
T∈SE(3)

√
1

|Igt|
∑
i∈Igt

‖Tpi − p̂i‖2 . (7.6)

All tracked poses where ground truth is available are used, which corresponds to
indices Igt. For most sequences, this is the case at the start and at the end, but for
some sequences, there is ground truth throughout.

For visual odometry without global optimization, another reasonable quantity is
the relative pose error. Following [124], it is defined as

rrpe =

√
1

|Igt,∆|
∑
i∈Igt,∆

‖trans(Ei)‖2 , (7.7)

Ei =
(
T̂−1
i T̂i+∆

)−1 (
T−1
i Ti+∆

)
, (7.8)

where trans(·) takes the 3D translational component of a pose. This error measures
how accurate pose changes are in a small time interval ∆. The set of frame indices
Igt,∆ is the same as Igt, but we have to take out ∆ poses at the end of each tracked
segment.

7.6.2 Results

To verify that the dataset is suitable for benchmarking visual-inertial odometry
systems, we provide the results of several state-of-the-art methods that have open-
source implementations. Unless specified otherwise, the methods are used with

2https://github.com/ethz-asl/kalibr

https://github.com/ethz-asl/kalibr
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Figure 7.6: Results of evaluated methods for room3, magistrale2 and slides1 sequences
from our dataset. The ground truth is shown in black for the segments of the trajectory
where it is available. The presented results are obtained with synchronous processing,
without enforcing real-time and otherwise default parameters (except VINS-Mono for
which non-realtime version is not implemented). Noise parameters are set to inflated
values from the Allan plots in fig. 7.5 to account for unmodeled noise and vibrations.
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default parameters on quarter resolution images (512x512 pixels). We found that
most of the algorithms have default parameters tuned to images with VGA reso-
lution, which makes their performance better on sub-sampled datasets, while full
resolution data might be useful for future research.

We provide evaluations for ROVIO [17], OKVIS [73] and VINS-Mono [110]. The
results are summarised in table 7.3 and table 7.4 and a visualization for some se-
quences is presented in fig. 7.6. All systems are able to track most of the sequences
until the end, surprisingly, even the sequences with complete absence of visual fea-
tures for some parts of the trajectory (slides). However, sometimes the estimators
diverge at some point during the sequence, which results in erratic translation or
rapid drift. We call a sequence diverged, if the ATE based on just the end-segment is
larger3 than 2 m, which is indicated by underlines in table 7.4. The ATE values are
still informative, as most often divergence happens towards the end (values larger
than 1000 m are shown as “X”).

OKVIS and VINS-Mono perform mostly well, but struggle for some of the longer
outdoor sequences. ROVIO is more prone to drift and diverges on several sequences,
which might be explained by it’s use of a Kalman filter compared to computationally
more demanding non-linear least squares optimization employed by OKVIS and
VINS-Mono. VINS-Mono diverges on most of the outdoor sequences, but typically
only after the camera returns to the motion capture room and switches from mainly
forward motion to fast rotations. This might indicate a drift in accelerometer bias
estimates.

The evaluation shows that even the best performing algorithms have significant
drift in long (magistrale, outdoors) and visually challenging (slides) sequences. This
means that the dataset is challenging enough to be used as a benchmark for further
research in visual-inertial odometry algorithms.

7.7 Conclusion

In this paper, we proposed a novel dataset with a diverse set of sequences in different
scenes for evaluating visual-inertial odometry. It contains high resolution images
with high dynamic range and vignette calibration, hardware synchronized with 3-
axis accelerometer and gyro measurements. For evaluation, the dataset contains
accurate pose ground truth at high frequency at the start and end of the sequences.
We perform hand-eye calibration on calibration sequences and time-offset estimation
on all sequences to have ground truth data geometrically and temporally aligned
with the IMU. In addition, we provide sequences to calibrate IMU white noise and
random walk and vignetting of the camera. The dataset is publicly available with
raw and calibrated data.

3For all evaluated systems, median values over all sequences for ATE based on just the start-
segment are less than 0.1 m and less than 0.5 m for just the end-segment.
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Table 7.4: RMSE ATE IN M OF THE EVALUATED METHODS

Sequence OKVIS ROVIO VINS length [m]

corridor1 0.33 0.47 0.63 305
corridor2 0.47 0.75 0.95 322
corridor3 0.57 0.85 1.56 300
corridor4 0.26 0.13 0.25 114
corridor5 0.39 2.09 0.77 270
magistrale1 3.49 4.52 2.19 918
magistrale2 2.73 13.43 3.11 561
magistrale3 1.22 14.80 0.40 566
magistrale4 0.77 39.73 5.12 688
magistrale5 1.62 3.47 0.85 458
magistrale6 3.91 X 2.29 771
outdoors1 X 101.95 74.96 2656
outdoors2 73.86 21.67 133.46 1601
outdoors3 32.38 26.10 36.99 1531
outdoors4 19.51 X 16.46 928
outdoors5 13.12 54.32 130.63 1168
outdoors6 96.51 149.14 133.60 2045
outdoors7 13.61 49.01 21.90 1748
outdoors8 16.31 36.03 83.36 986
room1 0.06 0.16 0.07 146
room2 0.11 0.33 0.07 142
room3 0.07 0.15 0.11 135
room4 0.03 0.09 0.04 68
room5 0.07 0.12 0.20 131
room6 0.04 0.05 0.08 67
slides1 0.86 13.73 0.68 289
slides2 2.15 0.81 0.84 299
slides3 2.58 4.68 0.69 383



7.7. Conclusion 115

We also use our benchmark to evaluate the performance of state-of-the-art
monocular and stereo visual-inertial methods. Our results demonstrate several open
challenges for such approaches. Hence, our benchmark can be useful for the research
community for evaluating visual-inertial odometry approaches in future research.
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Abstract In this paper, we present a real-time approach to local trajec-
tory replanning for microaerial vehicles (MAVs). Current trajectory gen-
eration methods for multicopters achieve high success rates in cluttered
environments, but assume that the environment is static and require prior
knowledge of the map. In the presented study, we use the results of such
planners and extend them with a local replanning algorithm that can han-
dle unmodeled (possibly dynamic) obstacles while keeping the MAV close
to the global trajectory. To ensure that the proposed approach is real-
time capable, we maintain information about the environment around the
MAV in an occupancy grid stored in a three-dimensional circular buffer,
which moves together with a drone, and represent the trajectories by us-
ing uniform B-splines. This representation ensures that the trajectory is
sufficiently smooth and simultaneously allows for efficient optimization.

8.1 Introduction

In recent years, microaerial vehicles (MAVs) have gained popularity in many practi-
cal applications such as aerial photography, inspection, surveillance and even deliv-
ery of goods. Most commercially available drones assume that the path planned by
the user is collision-free or provide only limited obstacle-avoidance capabilities. To
ensure safe navigation in the presence of unpredicted obstacles a replanning method
that generates a collision-free trajectory is required.

Formulation of the trajectory generation problem largely depends on the ap-
plication and assumptions about the environment. In the case where an MAV is
required to navigate a cluttered environment, possibly an indoor one, we would sug-
gest subdividing the problem into two layers. First, we assume that a map of the
environment is available and a trajectory from a specified start point to the goal
point is planned in advance.

This task has been a popular research topic in recent years, and several solu-
tions have been proposed by Achtelik et al. [11] and Richter et al. [113]. They used
occupancy representation of the environment to check for collisions and searched
for the valid path in a visibility graph constructed using sampling based planners.
Thereafter, they followed the approach proposed by Mellinger and Kumar [88] to fit
polynomial splines through the points of the planned path to generate a smooth fea-
sible trajectory. The best algorithms of this type can compute a trajectory through
tens of waypoints in several seconds.

To cope with any unmodeled, possibly dynamic, obstacle a lower planning level
is required, which can generate a trajectory that keeps the MAV close to the global
path and simultaneously avoids unpredicted obstacles based on an environment rep-
resentation constructed from the most recent sensor measurements. This replanning
level should run in several milliseconds to ensure the safety of MAVs operating at
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Figure 8.1: Example of local trajectory replanning algorithm running in the simulator.
Global trajectory is visualized in purple and the local obstacle map is visualized in red.
The local trajectory is represented by a uniform quintic B-spline, and its control points
are visualized in yellow for the fixed parts and in green for the parts that can still change
due to optimization.

high velocities.
The proposed approach solves a similar problem as that solved by Oleynikova

et al. [101], but instead of using polynomial splines for representing the trajectory we
propose the use of B-splines and discuss their advantages over polynomial splines
for this task. Furthermore, we propose the use of a robocentric, fixed-size three-
dimensional (3D) circular buffer to maintain local information about the environ-
ment. Even though the proposed method cannot model arbitrarily large occupancy
maps, as some octree implementations, faster look-up and measurement insertion
operations make it better suited for real-time replanning tasks.

We demonstrate the performance of the system in several simulated and real-
world experiments, and provide open-source implementation of the software to com-
munity.

The contributions of the present study are as follows:

• Formulation of local trajectory replanning as a B-spline optimization prob-
lem and thorough comparison with alternative representations (polynomial,
discrete).

• High-performance 3D circular buffer implementation for local obstacle map-
ping and collision checking and comparison with alternative methods.

• System design and evaluation on realistic simulator and real hardware, in
addition to performance comparison with existing methods.

In addition to analyzing the results presented in the paper, we encourage the
reader to watch the demonstration video and inspect the available code, which can
be found at
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https://vision.in.tum.de/research/robotvision/replanning

8.2 Related Work

In this section, we describe the studies relevant to different aspects of collision-free
trajectory generation. First, we discuss existing trajectory generation strategies and
their applications to MAV motion planning. Thereafter, we discuss the state-of-the-
art approaches for 3D environment mapping.

8.2.1 Trajectory Generation

Trajectory generation strategies can be subdivided into three main approaches:
search-based path planning followed by smoothing, optimization-based approaches
and motion-primitive-based approaches.

In search-based approaches, first, a non-smooth path is constructed on a graph
that represents the environment. This graph can be a fully connected grid as in
[31] and [59], or be computed using a sampling-based planner (RRT, PRM) as in
[113] and [21]. Thereafter, a smooth trajectory represented by a polynomial, B-
spline or discrete set of points is computed to closely follow this path. This class
of approaches is currently the most popular choice for large-scale path planning
problems in cluttered environments where a map is available a priory.

Optimization-based approaches rely on minimizing a cost function that consists
of smoothness and collision terms. The trajectory itself can be represented as a set
of discrete points [133] or polynomial segments [101]. The approach presented in
the present work falls into this category, but represents a trajectory using uniform
B-splines.

Another group of approaches is based on path sampling and motion primitives.
Sampling-based approaches were successfully used for challenging tasks such as ball
juggling [93], and motion primitives were successfully applied to flight through the
forest [105], but the ability of both approaches to find a feasible trajectory depends
largely on the selected discretization scheme.

8.2.2 Environment Representation

To be able to plan a collision-free trajectory a representation of the environment
that stores information about occupancy is required. The simplest solution that can
be used in the 3D case is a voxel grid. In this representation, a volume is subdivided
into regular grid of smaller sub-volumes (voxels), where each voxel stores information
about its occupancy. The main drawback of this approach is its large memory-
footprint, which allows for maping only small fixed-size volumes. The advantage,
however, is very fast constant time access to any element.

https://vision.in.tum.de/research/robotvision/replanning
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To deal with the memory limitation, octree-based representations of the environ-
ment are used in [52] [122]. They store information in an efficient way by pruning
the leaves of the trees that contain the same information, but the access times for
each element become logarithmic in the number of nodes, instead of the constant
time as in the voxel-based approaches.

Another popular approach to environment mapping is voxel hashing, which was
proposed by Nießner et al. [98] and used in [102]. It is mainly used for storing a
truncated signed distance function representation of the environment. In this case,
only a narrow band of measurements around the surface is inserted and only the
memory required for that sub-volume is allocated. However, when full measurements
must be inserted or the dense information must be stored the advantages of this
approach compared to those of the other approaches are not significant.

8.3 Trajectory Representation using Uniform B-

Splines

We use uniform B-spline representation for the trajectory function p(t). Because, as
shown in [88] and [11], the trajectory must be continuous up to the forth derivative
of position (snap), we use quintic B-splines to ensure the required smoothness of the
trajectory.

8.3.1 Uniform B-Splines

The value of a B-spline of degree k−1 can be evaluated using the following equation:

p(t) =
n∑
i=0

piBi,k(t), (8.1)

where pi ∈ Rn are control points at times ti, i ∈ [0, .., n] and Bi,k(t) are basis
functions that can be computed using the De Boor – Cox recursive formula [18] [28].
Uniform B-splines have a fixed time interval ∆t between their control points, which
simplifies computation of the basis functions.

In the case of quintic uniform B-splines, at time t ∈ [ti, ti+1) the value of p(t)
depends only on six control points, namely [ti−2, ti−1, ti, ti+1, ti+2, ti+3]. To simplify
calculations we transform time to a uniform representation s(t) = (t− t0)/∆t, such
that the control points transform into si ∈ [0, .., n]. We define function u(t) =
s(t) − si as time elapsed since the start of the segment. Following the matrix
representation of the De Boor – Cox formula [109], the value of the function can be
evaluated as follows:
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Figure 8.2: Comparison between octomap and circular buffer for occupancy mapping on
fr2/pioneer slam2 sequence of [124]. Being able to map only a local environment around
the robot (3 m at voxel resolution of 0.1 m) circular buffer is more than an order of
magnitude faster when inserting point cloud measurements from a depth map subsampled
to a resolution of 160 × 120. Subplots ((a)) and ((b)) show the histograms of insertion
time, and ((c)) and ((d)) show the qualitative results of the circular buffer (red: occupied,
green:free) and the octomap, respectively.
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p(u(t)) =


1
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Given this formula, we can compute derivatives with respect to time (velocity,
acceleration) as follows:

p′(u(t)) =
1

∆t


0
1
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p′′(u(t)) =
1
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 . (8.5)

The computation of other time derivatives and derivatives with respect to control
points is also straightforward.

The integral over squared time derivatives can be computed in the closed form.
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For example, the integral over squared acceleration can be computed as follows:

Eq =

∫ ti+1

ti

p′′(u(t))2dt (8.6)

=
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where

Q =
1

∆t3

∫ 1
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=
1

∆t3


0 0 0 0 0 0
0 0 0 0 0 0
0 0 8 12 16 20
0 0 12 24 36 48
0 0 16 36 57.6 80
0 0 20 48 80 114.286

 . (8.9)

Please note that matrix Q is constant in the case of uniform B-splines. Therefore, it
can be computed in advance for determining the integral over any squared derivative
(see [113] for details).

8.3.2 Comparison with Polynomial Trajectory Representa-
tion

In this subsection, we discuss the advantages and disadvantages of B-spline trajec-
tory representation compared to polynomial-splines-based representation [113] [101].

To obtain a trajectory that is continuous up to the forth derivative of position,
we need to use B-splines of degree five or greater and polynomial splines of at
least degree nine (we need to set five boundary constraints on each endpoint of the
segment). Furthermore, for polynomial splines we must explicitly include boundary
constraints into optimization, while the use of B-splines guarantees the generation of
a smooth trajectory for an arbitrary set of control points. Another useful property
of B-splines is the locality of trajectory changes due to changes in the control points,
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which means that a change in one control point affects only a few segments in the
entire trajectory. All these properties result in faster optimization because there are
fewer variables to optimize and fewer constraints.

Evaluation of position at a given time, derivatives with respect to time (velocity,
acceleration, jerk, snap), and integrals over squared time derivatives are similar for
both cases because closed-form solutions are available for both cases.

The drawback of B-splines, however, is the fact that the trajectory does not pass
through the control points. This makes it difficult to enforce boundary constraints.
The only constraint we can enforce is a static one (all time derivatives are zero),
which can be achieved by inserting the same control point k + 1 times, where k is
the degree of the B-spline. If we need to set an endpoint of the trajectory to have
a non-zero time derivative, an iterative optimization algorithm must be used.

These properties make polynomial splines more suitable for the cases where
the control points come from planning algorithms (RRT, PRM), which means that
the trajectory must pass through them, else the path cannot be guaranteed to be
collision-free. For local replanning, which must account for unmodeled obstacles,
this property is not very important; thus, the use of B-spline trajectory representa-
tion is a better option.

8.4 Local Environment Map using 3D Circular

Buffer

To avoid obstacles during flight, we need to maintain an occupancy model of the
environment. On one hand, the model should rely on the most recent sensor mea-
surements, and on the other hand it should store some information over time because
the field of view of the sensors mounted on the MAV is usually limited.

We argue that for local trajectory replanning a simple solution with a robocentric
3D circular buffer is beneficial. In what follows, we discuss details pertaining to
implementation and advantages from the application viewpoint.

8.4.1 Addressing

To enable addressing we discretize the volume into voxels of size r. This gives us
a mapping from point p in 3D space to an integer valued index x that identifies a
particular voxel, and the inverse operation that given an index outputs its center
point.

A circular buffer consists of a continuous array of size N and an offset index o that
defines the location of the coordinate system of the volume. With this information,
we can define the functions to check whether a voxel is in the volume and find its
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Figure 8.3: Example of online trajectory replanning using proposed optimization objective.
The plot shows a global trajectory computed by fitting a polynomial spline through fixed
waypoints (red), voxels within 0.5 m of the obstacle (blue), computed B-spline trajectory
with fixed (cyan) and still optimized (green) segments and control points. In the areas
with no obstacles, the computed trajectory closely follows the global one, while close to
an obstacle, the proposed method generates a smooth trajectory that avoids the obstacle,
and rejoins the global trajectory.
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(a) (b)

(c)

Figure 8.4: Real-world experiment performed outdoors. The drone (AscTec Neo) equipped
with RGB-D camera (Intel Realsense R200) is shown in ((a)). In the experiment, the global
path is set to a straight line with the goal position 30 m ahead of the drone, and trees
act as unmapped obstacles that the drone must avoid. Side view of the scene is shown in
((b)), and visualization with the planned trajectory is shown in ((c)).
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address in the stored array:

insideV olume(x) = 0 ≤ x− o < N, (8.10)

address(x) = (x− o) mod N. (8.11)

If we restrict the size of the array to N = 2p, we can rewrite these functions to use
cheap bitwise operations instead of divisions:

insideV olume(x) = ! ((x− o) & (∼ (2p − 1))), (8.12)

address(x) = (x− o) & (2p − 1). (8.13)

where & is a ”bitwise and,” ∼ is a ”bitwise negation,” and ! is a ”boolean not.”.

To ensure that the volume is centered around the camera, we must simply change
the offset o and clear the updated part of the volume. This eliminates the need to
copy large amounts of data when the robot moves.

8.4.2 Measurement Insertion

We assume that the measurements are performed using range sensors, such as Lidar,
RGB-D cameras, and stereo cameras, and can be inserted into the occupancy buffer
by using raycast operations.

We use an additional flag buffer to store a set of voxels affected by insertion.
First, we iterate over all points in our measurements, and for the points that lie
inside the volume, we mark the corresponding voxels as occupied. For the points
that lie outside the volume, we compute the closest point inside the volume and mark
the corresponding voxels as free rays. Second, we iterate over all marked voxels and
perform raycasting toward the sensor origin. We use a 3D variant of Bresenham’s
line algorithm [13] to increase the efficiency of the raycasting operation.

Thereafter, we again iterate over the volume and update the volume elements
by using the hit and miss probabilities, similarly to the approach described in [52].

8.4.3 Distance Map Computation

To facilitate fast collision checking for the trajectory, we compute the Euclidean
distance transform (EDT) of the occupancy volume. This way, a drone approxi-
mated by the bounding sphere can be checked for collision by one look-up query.
We use an efficient O(n) algorithm written by Felzenszwalb and Huttenlocher [38]
to compute EDT of the volume, where n = N3 is the number of voxels in the grid
(the complexity is cubic in the size of the volume along a single axis). For querying
distance and computing gradient, trilinear interpolation is used.
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8.5 Trajectory Optimization

The local replanning problem is represented as an optimization of the following cost
function:

Etotal = Eep + Ec + Eq + El, (8.14)

where Eep is an endpoint cost function that penalizes position and velocity deviations
at the end of the optimized trajectory segment from the desired values that usually
come from the global trajectory; Ec is a collision cost function; Eq is the cost of
the integral over the squared derivatives (acceleration, jerk, snap); and El is a soft
limit on the norm of time derivatives (velocity, acceleration, jerk and snap) over the
trajectory.

8.5.1 Endpoint Cost Function

The purpose of the endpoint cost function is to keep the local trajectory close to
the global one. This is achieved by penalizing position and velocity deviation at
the end of the optimized trajectory segment from the desired values that come from
the global trajectory. Because the property is formulated as a soft constraint, the
targeted values might not be achieved, for example, because of obstacles blocking
the path. The function is defined as follows:

Eep = λp(p(tep)− pep)2 + λv(p
′(tep)− p′ep)2, (8.15)

where tep is the end time of the segment, p(t) is the trajectory to be optimized,
pep and p′ep are the desired position and velocity, respectively, λp and λv are the
weighting parameters.

8.5.2 Collision Cost Function

Collision cost penalizes the trajectory points that are within the threshold distance
τ to the obstacles. The cost function is computed as the following line integral:

Ec = λc

∫ tmax

tmin

c(p(t))||p′(t)||dt, (8.16)

where the cost function for every point c(x) is defined as follows:

c(x) =

{
1
2τ

(d(x)− τ)2 if d(x) ≤ τ

0 if d(x) > τ,
(8.17)
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Figure 8.5: Soft limit cost function l(x) proposed in Section 8.5.4 for pmax equals three
(red), six (green), and nine (blue). This function acts as a soft limit on the time derivatives
of the trajectory (velocity, acceleration, jerk, and snap) to ensure they are bounded and
are feasible to execute by the MAV.

where τ is the distance threshold, d(x) is the distance to the nearest obstacle, and λc
is a weighting parameter. The line integral is computed using the rectangle method,
and distances to the obstacles are obtained from the precomputed EDT by using
trilinear interpolation.

8.5.3 Quadratic Derivative Cost Function

Quadratic derivative cost is used to penalize the integral over square derivatives of
the trajectory (acceleration, jerk, and snap), and is defined as follows:

Eep =
4∑
i=2

∫ tmax

tmin

λqi(p
(i)(t))2dt. (8.18)

The above function has a closed-form solution for trajectory segments represented
using B-splines.

8.5.4 Derivative Limit Cost Function

To make sure that the computed trajectory is feasible, we must ensure that velocity,
acceleration and higher derivatives of position remain bounded. This requirement
can be included into the optimization as a constraint ∀t : p(k)(t) < pkmax, but in
the proposed approach, we formulate it as a soft constraint by using the following
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function:

Eep =
4∑
i=2

∫ tmax

tmin

l(p(i)(t))dt, (8.19)

where l(x) is defined as follows:

l(x) =

{
exp((p(k)(x))2 − (pkmax)

2)− 1 if p(k)(x) > pkmax
0 if p(k)(x) ≤ pkmax

(8.20)

This allows us to minimize this cost function by using any algorithm designed
for unconstrained optimization.

8.5.5 Implementation Details

To run the local replanning algorithm on the drone, we first compute a global tra-
jectory by using the approach described in [113]. This gives us a polynomial spline
trajectory that avoids all mapped obstacles. Thereafter, we initialize our replanning
algorithm with six fixed control points at the beginning of the global trajectory and
C control points that need to be optimized.

In every iteration of the algorithm we set the endpoint constraints (Sec. 8.5.1)
to be the position and velocity at tep of the global trajectory. The collision cost
(Sec. 8.5.2) of the trajectory is evaluated using a circular buffer that contains mea-
surements obtained using the RGB-D camera mounted on the drone. The weights
of quadratic derivatives cost (Sec. 8.5.3) are set to the same values as those used for
global trajectory generation, and the limits (Sec. 8.5.4) are set 20% higher to ensure
that the global trajectory is followed with the appropriate velocity while laterally
deviating from it.

After optimization, the first control point from the points that were optimized
is fixed and sent to the MAV position controller. Another control point is added to
the end of the spline, which increases tep and moves the endpoint further along the
global trajectory.

For optimization we use [57], which provides an interface to several optimiza-
tion algorithms. We have tested the MMA [125] and BFGS [75] algorithms for
optimization, with both algorithms yielding similar performance.

8.6 Results

In this section, we present experimental results obtained using the proposed ap-
proach. First, we evaluate the mapping and the trajectory optimization components
of the system separately for comparison with other approaches and justify their se-
lection. Second, we evaluate the entire system in a realistic simulator in several
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Algorithm
Success
Fraction

Mean Norm.
Path Length

Mean Com-
pute time [s]

Inf. RRT* + Poly 0.9778 1.1946 2.2965
RRT Connect + Poly 0.9444 1.6043 0.5444
CHOMP N = 10 0.3222 1.0162 0.0032
CHOMP N = 100 0.5000 1.0312 0.0312
CHOMP N = 500 0.3333 1.0721 0.5153
[101] S = 2 jerk 0.4889 1.1079 0.0310
[101] S = 3 vel 0.4778 1.1067 0.0793
[101] S = 3 jerk 0.5000 1.0996 0.0367
[101] S = 3 jerk +
Restart

0.6333 1.1398 0.1724

[101] S = 3 snap +
Restart

0.6222 1.1230 0.1573

[101] S = 3 snap 0.5000 1.0733 0.0379
[101] S = 4 jerk 0.5000 1.0917 0.0400
[101] S = 5 jerk 0.5000 1.0774 0.0745
Ours C = 2 0.4777 1.0668 0.0008
Ours C = 3 0.4777 1.0860 0.0011
Ours C = 4 0.4888 1.1104 0.0015
Ours C = 5 0.5111 1.1502 0.0021
Ours C = 6 0.5555 1.1866 0.0028
Ours C = 7 0.5222 1.2368 0.0038
Ours C = 8 0.4777 1.2589 0.0054
Ours C = 9 0.5777 1.3008 0.0072

Table 8.1: Comparison of different path planning approaches. All results except thouse of
the presented study are taken from [101]. Our approach performs similarly to approaches
using polynomial splines without restarts, which indicates that B-splines can represent
trajectories similar to those represented by polynomial splines. Lower computation times
of our approach can be explained by the fact that unconstrained optimization occurs
directly on the control points, unlike other approaches where the problem must first be
transformed into an unconstrained form.
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different environments, and finally, present an evaluation of the system running on
real hardware.

8.6.1 Three-Dimensional Circular Buffer Performance

We compare our implementation of the 3D circular buffer to the popular octree-
based solution of [52]. Both approaches use the same resolution of 0.1 m. We insert
the depth maps sub-sampled to the resolution of 160 × 120, which come from a
real-world dataset [124]. The results (Fig. 8.2) show that insertion of the data is
more than an order of magnitude faster with the circular buffer, but only a limited
space can be mapped with this approach. Because we need the map of a bounded
neighborhood around the drone for local replanning, this drawback is not significant
for target application.

8.6.2 Optimization Performance

To evaluate the trajectory optimization we use the forest dataset from [101]. Each
spline configuration is tested in 9 environments with 10 random start and end posi-
tions that are at least 4 m away from each other. Each environment is 10× 10× 10
m3 in size and is populated with trees with increasing density. The optimization is
initialized with a straight line and after optimization, we check for collisions. For all
the approaches, the success fraction, mean normalized path length, and computation
time are reported (Table 8.1).

The results of the proposed approach are similar in terms of success fraction to
those achieved with polynomial splines from [101] without restarts, but the computa-
tion times with the proposed approach are significantly shorter. This is because the
unconstrained optimization employed herein directly optimizes the control points,
while in [101], a complicated procedure to transform a problem to the unconstrained
optimization form [113] must be applied.

Another example of the proposed approach for trajectory optimization is shown
in Figure 8.3, where a global trajectory is generated through a pre-defined set of
points with an obstacle placed in the middle. The optimization is performed as
described in Section 8.5.5, with the collision threshold τ set to 0.5 m. As can be
seen in the plot, the local trajectory in the collision free regions aligns with the
global one, but when an obstacle is encountered, a smooth trajectory is generated
to avoid it and ensure that the MAV returns to the global trajectory.

8.6.3 System Simulation

To further evaluate our approach, we perform a realistic simulation experiment by
using the Rotors simulator [44]. The main source of observations of the obstacles is a
simulated RGB-D camera that produces VGA depth maps at 20 FPS. To control the
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Figure 8.6: Result of local trajectory replanning algorithm running in a simulator on the
forest dataset. The global trajectory is visualized in purple, local trajectory is represented
as a uniform quintic B-spline, and its control points are visualized in cyan. Ground-truth
octomap forest model is shown for visualization purposes.

MAV, we use the controller developed by Lee et al. [72], which is provided with the
simulator and modified to receive trajectory messages as control points for uniform
B-splines. When there are no new commands with control points, the last available
control point is duplicated and inserted into the B-spline. This is useful from the
viewpoint of failure case because when an MAV does not receive new control points,
it will slowly stop at the last received control point.

We present the qualitative results of the simulations shown in Figures 8.1 and
8.6. The drone is initialized in free space and a global path through the world
populated with obstacles is computed. In this case, the global path is computed to
intersect the obstacles intensionally. The environment around the drone is mapped
by inserting RGB-D measurements into the circular buffer, which is then used in
the optimization procedure described above.

In all presented simulation experiments, the drone can compute a local trajectory
that avoids collisions and keeps it close to the global path. The timings of the various
operations involved in trajectory replanning are presented in Table 8.2.

8.6.4 Real-World Experiments

We evaluate our system on a multicopter in several outdoor experiments (Fig. 8.4).
In these experiments, the drone is initialized without prior knowledge of the map
and the global path is set as a straight line with its endpoint in front of the drone
1 m above the ground. The drone is required to use onboard sensors to map the
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Operation
Computing

3D
points

Moving
volume

Inserting
measure-
ments

SDF
computa-
tion

Trajectory
optimiza-
tion

Time [ms] 0.265 0.025 0.518 9.913 3.424

Table 8.2: Mean computation time for operations involved in trajectory replanning in the
simulation experiment with depth map measurements sub-sampled to 160×120 and seven
control points optimized.

environment and follow the global path avoiding trees, which serve as obstacles.
We use the AscTec Neo platform equipped with a stereo camera for estimating

drone motion and an RGB-D camera (Intel Realsense R200) for obstacle mapping.
All computations are performed on the drone on a 2.1 GHz Intel i7 CPU.

In all presented experiments, the drone can successfully avoid the obstacles and
reach the goal position. However, the robustness of the system is limited at the
moment owing to the accuracy of available RGB-D cameras that can capture outdoor
scenes.

8.7 Conclusion

In this paper, we presented an approach to real-time local trajectory replanning for
MAVs. We assumed that the global trajectory computed by an offline algorithm is
provided and formulated an optimization problem that replans the local trajectory
to follow the global one while avoiding unmodeled obstacles.

We improved the optimization performance by representing the local trajectory
with uniform B-splines, which allowed us to perform unconstrained optimization
and reduce the number of optimized parameters.

For collision checking we used the well-known concept of circular buffer to map
a fixed area around the MAV, which improved the insertion times by an order of
magnitude compared to those achieved with an octree-based solution.

In addition, we presented an evaluation of the complete system and specific
sub-systems in realistic simulations and on real hardware.





Part III

Conclusion





Chapter 9
Summary

In this thesis we proposed several technologies relevant for autonomous vehicle nav-
igation. We concentrated on the combination of cameras and IMUs as sensors for
navigation, because of their low cost, small weight, size and power consumption.
First, we proposed a novel camera model for cameras with fisheye lenses. Then, we
presented two direct visual-inertial odometry methods and provided a visual-inertial
dataset. After that, we proposed a novel method for real-time trajectory replanning
and demonstrated autonomous vehicle navigation with a micro aerial vehicle as an
example.

In the following, we make a short summary of the main contribution of each
publication included in this thesis.

Chapter 4: We proposed the novel Double Sphere camera model, which works
well with fisheye cameras, and compared it to other state-of-the-art camera models.
We performed an extensive evaluation of the presented camera models on 16 different
calibration sequences collected with 6 different lenses. The evaluations have shown
that models based on higher-order polynomials, such as the Kannala-Brandt model,
have the lowest reprojection error but are five to ten times slower than competing
models. Both the proposed Double Sphere and Extended Unified models show very
small reprojection error, with the Double Sphere model being slightly more accurate
and the Extended Unified model being a bit faster. In addition, both models do not
require computationally intensive trigonometric operations and have a closed-form
inverse.

We showed that models based on spherical projection are a good alternative to
models based on higher-order polynomials for applications requiring fast projection,
unprojection, and a closed-form inverse.

Chapter 5: We introduced a novel approach to direct, tightly integrated visual-
inertial odometry. It combines direct visual odometry that minimizes the repro-
jection error based on the estimated semi-dense depth maps with pre-integrated
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IMU terms based on the measurements between consecutive frames. The system
estimates depth maps and tracks the pose of new frames in an alternating fashion
in two separate optimization processes. The two sensor sources complement each
other ideally: stereo vision enables the system to correct the long-term IMU bias
drift, while short-term IMU constraints help to cope with non-convexities in the
photometric tracking formulation. This allows to track the system through large
inter-frame motions or intervals without visual information. The method proposed
in this chapter provides accurate semi-dense 3D reconstructions of the environment
and outperforms existing feature-based approaches in terms of tracking accuracy.

Chapter 6: We presented a novel formulation of direct sparse visual-inertial odom-
etry. Unlike the method presented in the previous chapter, we optimize both motion
parameters and 3D geometry in a single optimization using camera and IMU mea-
surements. This allows us to use a single monocular camera as the scale can be
recovered from the IMU. The model explicitly includes scale and gravity direction
in the model in order to deal with cases where the scale is not observable from the
beginning. As the initial scale can be far from the true value we have proposed
a novel technique called dynamic marginalization, where multiple marginalization
priors are maintained to constrain the maximum scale difference. The quantitative
evaluation demonstrated that the proposed visual-inertial odometry method outper-
forms the state-of-the-art and the approach presented in Chapter 5. In particular,
experiments confirm that the inertial information provides a reliable scale estimate
and significantly increases robustness and precision.

Chapter 7: We proposed a novel dataset for evaluating visual-inertial odometry
with a diverse set of sequences in indoor and outdoor environments. It contains
high resolution images with high dynamic range and vignette calibration, hardware
time-synchronized with 3-axis accelerometer and gyro measurements. The dataset
also contains accurate pose ground truth at high frequency at the start and end of
each sequence. To have the ground truth data geometrically and temporally aligned
with the IMU we perform hand-eye calibration on calibration sequences and time-
offset estimation on all sequences. The dataset is publicly available with raw and
calibrated data, as well as sequences to calibrate IMU white noise and random walk
and vignetting of the camera.

We also evaluated the performance of state-of-the-art monocular and stereo
visual-inertial methods on our benchmark. The results show that even for the best
methods there is a significant drift on long indoor and outdoor sequences. This sug-
gests that the dataset can be useful for the research community to further improve
visual-inertial odometry methods.
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Chapter 8: We introduced a real-time local trajectory replanning approach for
micro aerial vehicles. Given the global trajectory computed by an offline algorithm
we formulated an optimization problem that replans the local trajectory to avoid
unmodeled obstacles and closely follow the global path.

By representing the local trajectory with uniform B-splines we improved the opti-
mization performance by formulating the problem as an unconstrained optimization
and reducing the number of optimized parameters.

The well-known concept of circular buffer was used for collision checking in order
to map a fixed area around the MAV. This improved the measurement insertion time
by an order of magnitude compared to the time of an octree-based solution.

Finally, we presented an evaluation of the complete system in realistic simulations
and on a real micro aerial vehicle.





Chapter 10
Future Research

In this chapter we discuss several interesting research directions. We start from
straightforward extensions that can be implemented to improve different aspects of
the system and continue with long-term open challenges.

Using better camera models is a straightforward extension for the methods
that were proposed in Chapters 5 and 6. Currently both implementations rely
on pinhole rectified images that limit the field of view and introduce undistortion
artefacts. One step in this direction was done in [2] (Figure 10.1), where the unified
camera model was integrated into DSO, but we anticipate better results when using
the models from Chapter 4.

Figure 10.1: Comparison of pixels used for motion estimation for pinhole-rectified (left)
and omnidirectional (right) camera models. Illustration taken from [2].

Better modeling of IMU scale, bias and axis misalignment. The motion esti-
mation methods presented in Chapters 5 and 6 assume well calibrated IMU mea-
surements, which are corrupted with white noise and slowly evolving bias. This
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assumption holds well for industry-grade IMUs, for example the ADIS16448 in the
Euroc dataset [20], but low-cost IMUs, that are typically used in smartphones, suffer
from many other effects. Scaling of the axes, axis misalignment, rotation between
accelerometer and gyroscope can be included into the optimization and estimated
in real time. This can increase the computation time for the algorithms but may
result in better accuracy.

Incorporating semantic information is another promising direction for future
work. One obvious application is dynamic object filtering. State-of-the-art methods
show high accuracy for instance segmentation and even generate masks for objects
[50]. This information can be easily incorporated into SLAM and odometry methods
to improve keypoint selection methods and the quality of the maps. Given the
semantic meaning of the objects we can avoid selecting keypoints on objects that
are known to be dynamic (humans, cars), which will result in better tracking and
cleaner maps (Figure 10.2).

Figure 10.2: Semantic segmentation of the scene allows to remove dynamic objects to
improve keypoint selection and mapping of the environment. Illustration taken from [15].

Long-term visual localization is a challenging task due to significant appear-
ance variation between time of the day, season and weather. Currently even indirect
methods for SLAM, that are more robust to illumination changes than direct meth-
ods, have significant problems to localize in the environment if the map was created
in different light conditions. Learning based methods [76] [108] have shown impres-
sive results for generating images for different seasons and times of the day that
can enable localization for such challenging scenarios, but at the moment they rely
on separate networks to generate images for every time of the day and weather
condition (Figure 10.3).
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Figure 10.3: Recent developments in deep learning for image-to-image translation. A
winter-to-summer translation is shown on the top and a night-to-day translation is shown
below. Illustrations taken from [76] and [108].

Finding an invariant representation for all possible variations in appearance or
incorporating this knowledge directly at the keypoint level are two other directions
that can improve vision-based localization.

Thorough Safety Analysis of Trajectory Generation Finally, for the obsta-
cle avoidance and trajectory generation algorithms presented in Chapter 8 more
thorough evaluation for practical applications is required. It is clear that the max-
imum allowed velocity of the vehicle should depend on the range of the sensor and
the dimensions of the stored environment map. Otherwise, the path until full stop
might be too long and result in a collision. Another aspect that requires further
investigations is the field of view of the sensors. Zones that are not covered by the
sensors can contain obstacles, so to guarantee an obstacle-free trajectory we have to
ensure that the sensors cover well all directions where obstacles can appear.
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Appendix A

Multimedia Material

Direct Visual-Inertial Odometry with Stereo Cam-

eras

https://youtu.be/XSvFpPYfKWA

https://youtu.be/XSvFpPYfKWA
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Direct Sparse Visual-Inertial Odometry using Dy-

namic Marginalization

https://youtu.be/GoqnXDS7jbA

Real-Time Trajectory Replanning for MAVs using

Uniform B-splines and a 3D Circular Buffer

https://youtu.be/jh6tMHjxHSY

https://youtu.be/GoqnXDS7jbA
https://youtu.be/jh6tMHjxHSY


Appendix B
Open-Source Code and Datasets

The Double Sphere Camera Model

https://vision.in.tum.de/research/vslam/double-sphere: Dataset, calibra-
tion results and open-source implementation of the camera model.

Direct Sparse Visual-Inertial Odometry using Dy-

namic Marginalization

https://vision.in.tum.de/research/vslam/vi-dso: Additional evaluation re-
sults and supplementary material.

TUM VI Benchmark for Evaluating Visual-Inertial

Odometry

https://vision.in.tum.de/data/datasets/visual-inertial-dataset:
Dataset, calibration dataset, calibration results and evaluations.

Real-Time Trajectory Replanning for MAVs using

Uniform splines and a 3D Circular Buffer

https://github.com/VladyslavUsenko/ewok: C++ implementation of the pro-
posed algorithm with demonstration in realistic simulator.

https://vision.in.tum.de/research/vslam/double-sphere
https://vision.in.tum.de/research/vslam/vi-dso
https://vision.in.tum.de/data/datasets/visual-inertial-dataset
https://github.com/VladyslavUsenko/ewok
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