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Abstract

This thesis deals with the numerical treatment of contact problems considering inelastic de-
formation and thermomechanical coupling. For this purpose, a novel finite element approach for
elasto-plasticity at finite strains is developed and two different methods of numerical contact me-
chanics derived: the dual mortar method with a focus on isogeometric analysis and the Nitsche
method for nonlinear problems. All developed methods are investigated via both isothermal and
thermomechanical problems.

The new computational method for elasto-plasticity at finite deformations is based on a refor-
mulation of the plastic material constraints of Hill’s anisotropic yield criterion (with the well-
known von Mises law as a special case) in terms of a non-smooth nonlinear complementarity
(NCP) function. The resulting set of semi-smooth equations comprises of the discrete balance
of linear momentum and the roots of the NCP functions at every quadrature point. This coupled
system of equations can be solved for the displacements and plastic deformation efficiently by
a non-smooth variant of Newton’s method. Therein, the additionally introduced degrees of free-
dom describing the plastic deformation can be condensed from the global system of equations
such that a linear system only consisting of the displacement degrees of freedom has to be solved
in each iteration step. In contrast to classical return mapping methods for computational plas-
ticity, the plastic constraints are not required to hold at every iteration in the nonlinear solution
procedure, but only at convergence. This relaxation in the pre-asymptotic behavior results in an
increased flexibility regarding the algorithm design and a potentially higher robustness compared
to radial return mapping algorithms. Finally, the method is extended to account for plastic spin,
visco-plasticity, as well as thermo-plastic coupling where plastic work is converted to heat and
material parameters are temperature dependent.

Next, frictional contact is incorporated by the dual mortar method. Well-known from the lit-
erature, the use of biorthogonal (dual) basis functions for the contact Lagrange multiplier yields
a localization of the contact constraints and allows for a trivial condensation of the the discrete
Lagrange multiplier degrees of freedom from the global system of equations. Beyond estab-
lished Lagrange multiplier bases, this thesis presents a piece-wise constant Lagrange multiplier
basis for second order finite elements (FE). As compared to the dual mortar method for sec-
ond order FE in the literature, the piece-wise constant space greatly simplifies the construction
of the basis while maintaining optimal convergence properties. Aside from classical finite ele-
ments, isogeometric analysis (IGA) has received great attention in many fields of computational
mechanics research. Especially for computational contact mechanics, the smooth surface repre-
sentation provided by IGA is highly desirable. This thesis presents the first dual mortar method
for IGA applied to both domain decomposition as well as contact problems. A very simple and
commonly used element-wise construction of the dual basis functions is directly transferred to
the IGA case. The resulting Lagrange multiplier interpolation satisfies discrete inf-sup stability
and biorthogonality, however, the reproduction order is limited to one. In the domain decompo-
sition case, this results in a limitation of the spatial convergence order to O(h*?) in the energy
norm, whereas for unilateral contact, due to the lower regularity of the solution, optimal con-
vergence rates are still met. To include thermomechanical coupling, i.e. contact heat conduction
and frictional heating, in dual mortar contact formulations, an additional Lagrange multiplier
field representing the contact heat flux is introduced. By discretizing this thermal Lagrange mul-



tiplier with dual basis functions as well, it can also be condensed from the global system such
that the final consistently linearized monolithic system consists of discrete displacements and
temperatures only.

Finally, the application of Nitsche’s method to frictional contact problems is explored. Only
recently, Nitsche’s method, which has originally been developed for the weak imposition of
boundary conditions, has been extended to contact problems of small deformations. Different
variations of Nitsche’s method for large deformation contact problems are studied, ranging from
the classical symmetric option to a penalty free variant. In contrast to the mortar method, which
requires additional Lagrange multiplier degrees of freedom to enforce the contact constraints,
Nitsche’s method provides a stable and consistent contact discretization based on the original
displacement degrees of freedom only. This is achieved by including a consistent stabilizing
penalty term. As high penalty parameters are adverse to the robustness of the method, the min-
imal required penalty term is estimated here by the solution of local eigenvalue problems. For
highly nonlinear material behavior, the penalty parameter has to be adapted to account for stiff-
ening effects which is achieved by an adaptive re-evaluation of the estimate at the deformed
state. Moreover, the proposed harmonic weighting of the contact traction allows to reduce the
required penalty term significantly in the case of a large contrast in material parameters between
the contacting bodies. Lastly, a special focus is put on the enforcement of the thermal con-
straints at the contact interface, namely heat conduction and frictional heating. Two numerical
methods are presented to enforce these effects, a substitution method as well as a Nitsche-type
approach. While the former is simpler to implement the latter has the advantage of remaining
well-conditioned for all physical parameters. Numerical examples demonstrate competitive ac-
curacy of Nitsche’s method as compared to mortar contact formulations and demonstrate its
applicability to nonlinear problems including thermal coupling and elasto-plastic material laws.
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Zusammenfassung

Diese Arbeit beschiftigt sich mit der numerischen Behandlung von Kontaktproblemen unter
Beriicksichtigung inelastischer Deformationen und thermomechanischer Kopplung. Zu diesem
Zweck wird ein neuartiger finite Elemente Ansatz fiir Elastoplastizitit bei endlichen Dehnungen
entwickelt und zwei verschiedene Methoden der numerischen Kontaktmechanik abgeleitet: die
duale Mortar-Methode mit Schwerpunkt auf der isogeometrischen Analyse und die Nitsche-
Methode fiir nichtlineare Probleme. Alle entwickelten Methoden werden sowohl anhand von
isothermen als auch thermomechanischen Problemen untersucht.

Die neuartige Berechnungsmethode fiir Elastoplastizitit bei groen Verformungen basiert
auf einer Umformulierung der Nebenbedingungen plastischen Materialverhaltens als nicht-
glatte und nichtlineare Komplementéirfunktion (NCP-Funktion). Betrachtet wird insbesondere
das anisotrope FlieBkriterium nach Hill worin von Mises-Plastizitidt als Spezialfall enthal-
ten ist. Das resultierende System halbglatter Gleichungen besteht aus dem diskreten Krifte-
gleichgewicht und den Nullstellen der NCP-Funktionen an jedem Integrationspunkt. Dieses
gekoppelte Gleichungssystem kann durch eine nichtglatte Variante des Newtonverfahrens ef-
fizient nach den diskreten Verschiebungen und der plastischen Verformung geldst werden. Die
zusitzlich eingefiihrten Freiheitsgrade, die die plastische Verformung beschreiben, konnen dabei
aus dem globalen Gleichungssystem kondensiert werden. Das System, das letztlich in jedem
Iterationsschritt gelost werden muss, beinhaltet somit ausschlieBlich Verschiebungsfreiheits-
grade. Im Gegensatz zu klassichen Return-Mapping Methoden zur numerischen Behandlung
plastischer Materialien miissen die plastischen Nebenbedingungen nicht in jeder Iteration des
nichtlinearen Losungsprozesses eingehalten werden, sondern nur im konvergierten Zustand.
Diese Relaxation im prdasymptotischen Bereich ermoglicht eine groBere Flexibilitit im Entwurf
des Losungsverfahrens und eine potentiell hohere Robustheit im Vergleich zu Return-Mapping
Verfahren. Schliellich wird das Verfahren um plastischen Spin, Visko-Plastizitit sowie thermo-
plastische Kopplung, bei der plastische Arbeit in Wiarme umgewandelt wird und Materialpara-
meter temperaturabhiingig sind, erweitert.

Als nichstes wird reibungsbehafteter Kontakt mittels der dualen Mortar-Methode in das
numerische Modell eingebracht. Die Verwendung biorthogonaler (dualer) Basisfuntkionen fiir
den Kontakt-Lagrange-Multiplikator fiihrt zu der aus der Literatur bekannten Lokalisierung
der Kontaktbedingungen und ermdoglicht eine triviale Kondensation der diskreten Lagrange-
Multiplikator-Freiheitsgrade aus dem globalen Gleichungssystem. Jenseits der etablierten
Lagrange-Multiplikator-Basen présentiert diese Arbeit eine stiickweise konstante Lagrange-
Multiplikator-Basis fiir finite Elemente zweiter Ordnung. Im Vergleich zur dualen Mortar-
Methode vereinfacht der stiickweise konstante Ansatzraum die Konstruktion der Basisfunkti-
onen, wihrend optimale Konvergenzeigenschaften erhalten bleiben. Neben klassischen finiten
Elementen hat die isogeometrische Analyse (IGA) in vielen Bereichen der numerischen Me-
chanik groe Beachtung gefunden. Insbesondere fiir die numerische Kontaktmechanik ist die
glatte Oberflachenrepresentation, die durch IGA erreicht wird, sehr wiinschenswert. Diese Ar-
beit stellt die erste duale Mortar-Methode fiir IGA vor, die sowohl auf Gebietszerlegungs- als
auch Kontaktprobleme angewandt wird. Eine sehr einfache und hiufig verwendete elementweise
Konstruktion der dualen Basisfunktionen wird direkt auf den isogeometrischen Fall iibertragen.
Die resultierende Lagrange-Multiplikator-Interpolation erfiillt diskrete inf-sup-Stabilitdt und
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Biorthogonalitit, besitzt jedoch nur eine reduzierte Reproduktionsordnung. Im Fall der Gebiets-
zerlegung fiihrt dies zu einer Beschriinkung der raumlichen Konvergenzordnung auf O(h%?) in
der Energienorm, wohingegen in Kontaktproblemen aufgrund der reduzierten Regularitit der
Losung nach wie vor optimale Konvergenzordnungen erreicht werden. Um die duale Mortar-
Methode um thermomechanische Kopplung, also Kontaktwédrmeleitung und Reibungswirme, zu
erweitern, wird ein zusétzliches Lagrange-Multiplikatorfeld eingefiihrt, das den Kontaktwirme-
fluf} darstellt. Durch Diskretisierung dieses thermischen Lagrange-Multiplikators mit dualen
Basisfunktionen kann er ebenfalls aus dem globalen System kondensiert werden, sodass das
resultierende, monolithische System nur aus diskreten Verschiebungs- und Temperaturfreiheits-
graden besteht.

SchlieBlich wird die Anwendung der Nitsche-Methode auf Reibkontaktprobleme untersucht.
Erst kiirzlich wurde die Nitsche-Methode, die urspriinglich fiir die schwache Aufbringung von
Randbedingung entwickelt wurde, auf Kontaktprobleme kleiner Verformungen erweitert. Es
werden verschiedene Variationen der Nitsche-Methode — von der klassischen, symmetrischen bis
hin zu einer penalty-freien Variante — fiir Kontaktprobleme bei groen Verformungen untersucht.
Im Gegensatz zur Mortar-Methode, die die Kontaktbedingungen mittels zusétzlicher Lagrange-
Multiplikator-Freiheitsgrade aufbringt, liefert die Nitsche-Methode eine stabile und konsistente
Kontaktdiskretisierung, die ausschlieBlich auf den urspriinglichen Verschiebungsfreiheitsgraden
beruht. Dies wird durch einen konsistenten stabilisierenden Strafterm (Penaltyterm) erreicht.
Da hohe Penaltyparameter die Robustheit des Verfahrens beeintrichtigen, wird der minimal
erforderliche Penaltyparameter durch die Losung von lokalen Eigenwertproblemen abgeschitzt.
Fiir hochgradig nichtlineares Materialverhalten muss der Penaltyparameter angepasst wer-
den, um Versteifungseffekte zu beriicksichtigen, was durch eine adaptive Neuauswertung der
Eigenwertprobleme erreicht wird. Dariiber hinaus ermdéglicht die vorgeschlagene harmonische
Gewichtung der Kontaktspannung eine deutliche Reduzierung des erforderlichen Penaltyterms
bei Kontaktproblemen mit groBem Unterschied in den Materialparametern der beiden kontak-
tierenden Korper. Ein besonderes Augenmerk liegt schlieBlich auf der Aufbringung der thermi-
schen Randbedingungen an der Kontaktfliche in Form von Wirmeleitung und Reibungswirme.
Zwei numerische Methoden zur Einbringung dieser Effekte werden vorgestellt, eine Substitu-
tionsmethode sowie ein Nitsche-artiger Ansatz. Wahrend erstere einfacher zu implementieren
ist, hat letzterer den Vorteil, dass er fiir alle physikalischen Parameter gut konditioniert bleibt.
Numerische Beispiele zeigen die Konkurrenzfdhigkeit der Nitsche-Methode im Vergleich zur
Mortar-Methode sowie deren Anwendbarkeit auf nichtlineare Probleme, thermomechanische
Kopplung und elasto-plastische Materialgesetze.
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Nomenclature

Mathematical Operators

-
-1
-T
4

Py

)
)
)
)

vXa vw

Vx:, Vg

arg min
span
const
dev
skew

tr

exp

Transpose of a tensor

Inverse of a tensor

Inverse transpose of a tensor
Pseudo-inverse of a tensor

Material and spatial gradient operator
Material and spatial divergence operator
Argument of the minimizer

Linear span of a set

constant function

Deviatoric part of a tensor
Skew-symmetric part of a tensor
Trace of a tensor

Exponential of a scalar or tensor
Natural logarithm of a scalar or tensor
L?-norm of a vector or tensor
L?-norm on )

Energy norm

Anisotropic L2-norm of a tensor
Indicator function of

Jump across the contact interface in current configuration
Jump across the contact interface in reference configuration
w-weighted average across the contact interface

Order of ()
Negative part of (+)
Positive part of (-)

Directional derivative of y in direction of @

Projection of z onto a Ball of radius r
Kronecker delta
Special orthogonal group of order n

Special Tensors and Tensor Products

I
I
]Isk

Second order identity tensor
Fourth order symmetric identity tensor

Fourth order skew-symmetric identity tensor
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P dev

o ®

Fourht order deviatoric projection tensor

Single contraction
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Dyadic product
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Spatially discretized
Structural field
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Internal
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Mechanical
Thermal
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Attime t,,, t,,11
Elastic

Plastic

Dynamic

Isotropic hardening
Kinematic hardening
At quadrature point ¢
Trial

Slave

Master

Contact

Normal

Tangential

Configurations, Domains and Boundaries
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Reference (material) configuration

Current (spatial) configuration

Boundary of €2 and €,

Dirichlet boundary for displacement field in reference configuration
Dirichlet boundary for temperature field in reference configuration
Neumann boundary for displacement field in reference configuration
Neumann boundary for temperature field in reference configuration
Potential contact boundary in reference and current configuration



Nomenclature

Kinematics

Ndim

S

Uﬁmmmgémﬁjz'ﬂneﬁﬁﬁﬂ&zx

Number of spatial dimensions

Coordinate in reference configuration

Coordinate in current configuration

Time

Motion of a body

Mapping from reference to current configuration at time ¢
Displacement field

Velocity field

Acceleration field

Temperature field

Unit outward normal on 0€), and 0§,

Deformation gradient

Rotational part of the deformation gradient

Left and right stretch tensor

Right Cauchy—Green deformation tensor

Green—Lagrange strain tensor

Logarithmic strain tensor

Linearized strain tensor

Material velocity gradient

Material rate of deformation

Material spin tensor

Infinitesimal line element in material and spatial configuration
Infinitesimal surface element in material and spatial configuration
Infinitesimal volume element in material and spatial configuration
Jacobian determinant, determinant of F’

Principle invariants of C

Stress and Heat Flux

QR = ﬁMiCIJ"U*IQ”‘

Cauchy traction vector

Cauchy stress tensor

Kirchhoff stress tensor
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Material tangent tensor

Cauchy surface heat flux

Cauchy heat flux

Piola—Kirchhoff heat flux
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Nomenclature

Balance equations

P0s P Mass density in reference and current configuration
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Ko Heat conductivity tensor
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C. C, Elastic and plastic right Cauchy—Green deformation tensor
i, O Isotropic and kinematic hardening variable

v, Elastic free energy

Ve o Isothermal elastic free energy

Wy Thermal free energy

v, Hardening potential

Ui Yok Isotropic and kinematic hardening potential

L, Plastic velocity gradient

D, Plastic rate of deformation

W, Plastic material spin

Q, Plastic spin

A;, Ay Conjugate force to a; and oy



Nomenclature

[1]

s8]
e

I A

Plastic dissipation potential
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Nomenclature

T, Temperature of the contact surface
Pn Normal contact pressure
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e Contact Cauchy heat flux
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D, Contact dissipation
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F Global force vector

f Element force vector
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NURBS function of control point ¢
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Time Discretization
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T, T,

Time step size

Parameters of Newmark’s method
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Spectral radius of generalized-a method in the high-frequency limit
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Discrete nodal temperatures and temperature rates at ¢,,

Nonlinear Solution Technique

=

AT

Discrete residual

Effective stiffness matrix

Newton increment of discrete nodal displacements
Newton increment of discrete nodal temperatures

Computational Plasticity
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Discrete plastic velocity gradient

Discrete plastic flow increment over one time step

Discret plastic deformation increment over one time step

Discrete plastic spin over one time step

Shape function of quadrature point ¢

Set of all quadrature points
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Discrete plastic deformation gradient

Discrete isotropic and kinematic hardening variable
Plastic multiplier increment over one time step
Plastic complementarity parameter

Shape parameter of NCP function

Damping parameter in quasi-Newton scheme
Plastic NCP function with s, = 0

Plastic NCP function

Plastic NCP function including plastic spin
Integration weight of quadrature point ¢

Mortar Methods for Contact Mechanics

TF(%
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A, 0
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Az, 0
w

M, M
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7\1', 57\2
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X1V

Surface element j on ,Yc(zf)z
Generalized-« time integration factor of contact forces

Lagrange multiplier trial and test function

Normal component of Lagrange multiplier trial and test function

Tangential component of Lagrange multiplier trial and test function

Trace space of Lll(ll)
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Space of admissible Lagrange multipliers

1-th discrete Lagrange multiplier and its variation

Normal component of the i-th discrete Lagrange multiplier and its variation
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1 Introduction

Mankind’s discovery of metal production and ability to form metal tools marks a pivoting point
in human history: the transition from the Stone Age to the Bronze Age about 3000 BC. Forging
metal offered flexibility in design unattainable by stone cutting and cleared the way for mod-
ern engineering. To this day still, metal processing is a core component in modern engineering
technology. Taking a closer look at production technology, it becomes apparent that many man-
ufacturing processes of metal parts are based on plastic, i.e. irreversible, deformation either at
room temperature or pre-heated. Examples range from forging, a skill perfected over thousands
of years, to wire drawing as a corner stone of electrification, and to sheet metal forming of car
body panels. What all these processes have in common is that the plastic deformation of metal
is induced by contact between a work piece and tools. Such elasto-plastic contact scenarios are
the focus of this work.

From a perspective of modern mechanics and engineering science, the study of plastic mate-
rial behavior dates back to the work of Tresca [219] and Mises [150] in the late 19th and early
20th century, respectively. Both names are still famously linked to their derived yield criteria.
Later, various criteria to describe plastic yielding of metals have been derived to match experi-
mental observations for different materials. In the 1960s, the emerging mathematical framework
of nonlinear continuum mechanics lead the way for a sound mathematical description of large
plastic deformations by either hypo-elasto-plastic models, e.g. in Green and Naghdi [84], or
hyper-elasto-plastic models, e.g. Lee [134]. Methods derived in this thesis are based on the latter
kinematic assumption.

The first successful study of contact problems by means of modern mathematics dates back to
the pioneering work of Hertz [97] in the late 19th century. His analytical solutions for the contact
of elastic spherical bodies are relevant and serve as reference solutions to this day. While sig-
nificant progress in the mathematical analysis of contact problems have been made proving e.g.
existence and uniqueness of solutions, see Kikuchi and Oden [120] and the references therein,
actual closed form solutions to contact problems remain scarce, even for linearized elasticity let
alone for problems of elasto-plasticity. Already for one of the most studied contact problems, the
Hertzian contact problem of an elastic sphere with a rigid plane, analytical solutions are limited
to the size of the contact patch and the contact pressure distribution. The analytic displacement
field within the body remains unknown to date.

In practical applications, the lack of analytical solutions can be tackled by two remedies: ex-
perimental testing or computer simulation. Experiments, for instance crash tests of vehicles, are
often very costly and thus limited in number of variations that can investigated. In addition, not
every quantity of interest (e.g. local stresses in the material) is directly accessible to measure-
ments. These drawbacks of experimental methods have resulted in an ever-growing importance
of computational methods that provide a cost-efficient alternative to physical testing and insight
to effects unamenable to experimental observation. In computational solid and structural me-
chanics, the predominant numerical method is the finite element method (FEM) also applied in
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this work. Despite decades of active research on the treatment of (thermo-) plasticity and (ther-
momechanical) contact within the FEM, the development of accurate and robust solution meth-
ods remains a topic of ongoing research. While most works focus on numerical methods for
either thermo-plasticity or thermomechanical contact, the present thesis strives for a combined
approach to thermo-elasto-plastic contact problems. It makes, in fact, sense to investigate both
elasto-plasticity and frictional contact at the same time, since both effects have more in com-
mon than one might initially think. The common thread lies in the fact that both problem classes
introduce inequality constraints that are either geometrical (such as the contact non-penetration
condition) or somehow limit the admissible stress as in plasticity or friction. Consequently, sim-
ilar techniques can be used to tackle plasticity and frictional contact. Before discussing the novel
contributions of this thesis, a brief review on the relevant state of the art methods is given in the
following.

1.1 Computational Approaches to Thermoplasticity

The field of computational plasticity focuses on the inclusion of an elasto-plastic material re-
sponse in a computational mechanics framework, most commonly the FEM. It started in the
1960’s with Wilkins et al. [230] firstly introducing the radial return mapping algorithm (RMA)
in the infinitesimal theory. Over the years, the RMA has become the by far most common ap-
proach in the computational treatment of plastic material laws. Still, it took over 20 years until the
first applications of the return mapping to finite strains have been developed by Simo [196, 197].
Meanwhile, such algorithms for infinitesimal and finite deformation can be found in the stan-
dard textbooks of Bonet and Wood [19], de Souza Neto et al. [57], Simo and Hughes [200].
Most scientific research then focuses on material modeling, i.e. definition of yield functions and
flow rules, of advanced materials rather than actual numerical algorithms as this thesis does. In
terms of numerical methods, recent alternatives to the RMA at small strains include a sequential
quadratic programming algorithm by Wieners [227] and interior point algorithms by Krabben-
hoft et al. [123] which are both based on the variational formulation of small strain plasticity (see
e.g. Han and Reddy [92]), as well as semi-smooth Newton methods using nonlinear complemen-
tarity (NCP) functions by Christensen [37], Hager and Wohlmuth [91]. However, due to the fun-
damentally different kinematic description of plasticity at finite strains compared to small strains
(multiplicative vs. additive kinematics), these methods cannot be transferred directly to nonlinear
kinematics. At finite strains, variational constitutive updates as proposed by Ortiz and Stainier
[160] and more recently Bleier and Mosler [16], Fancello et al. [69], Mosler [154], Mosler and
Bruhns [155] have been shown to offer improved efficiency compared to radial return mapping
methods under certain conditions, see e.g. Bleier and Mosler [16]. Another alternative strategy
worth mentioning, the so-called generalized plasticity algorithm, was proposed by Grillo et al.
[87].

Transitioning from isothermal plasticity to thermoplasticity introduces a bidirectional cou-
pling of the mechanical response and the temperature of a body. On the one hand, the mechan-
ical material properties, most dominantly the yield stress, are temperature dependent. On the
other hand, plastic work within a material is converted to heat influencing the temperature dis-
tribution within a body. Numerical algorithms for finite deformation thermo-plasticity go back
to the seminal work by Simo [198], which is based on the isothermal radial return mapping al-
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gorithm presented in Simo [196, 197]. Both partitioned and monolithic solution approaches are
discussed in [198]. Several extensions to this algorithm have been presented later, e.g. a mono-
lithic formulation in principle axes by Ibrahimbegovic and Chorfi [114] and a variant including
temperature-dependent elastic material properties by Canajija and Brni¢ [27]. In a different line
of work, a variational formulation of thermo-plasticity has been developed by Yang er al. [246],
where the rate of plastic work converted to heat follows from a variational principle instead of
being a (constant) material parameter as in Simo [198]. A comparison to experimental results is
presented in Stainier and Ortiz [210] to support this variational form for certain alloys.

1.2 Computational Approaches to Contact Mechanics

Computational contact mechanics deals with the inclusion of contact constraints in a numerical
method. The most intuitive of said constraints consists of the fact that bodies do not interpene-
trate one another. Furthermore, frictional forces occur for contacting bodies in relative motion.
When extending contact problems to thermomechanics, additional thermal effects need to be ac-
counted for: Heat conduction appears through the contact region and frictional work is converted
to heat. A vast amount of literature on computational contact mechanics exists, such that the fol-
lowing literature review focuses mainly on methods relevant to the ones derived in this thesis.
In particular, this includes mortar finite element methods, isogeometric methods, Nitsche-type
methods and methods for thermomechanical contact.

Node-to-Segment methods The earliest method to enforce contact constraints across non-
matching interfaces in finite element simulations is the so-called node-to-segment (NTS) method,
whereby nodes of a designated slave side are prohibited to penetrate the master surface described
by line segments for two-dimensional problems or element facets in three dimensional problems.
As NTS contact algorithms have been studied for over thirty years and can be found in standard
textbooks, a literature review is skipped at this point, but the interested reader is rather referred
to the monographs of Laursen [131], Wriggers [240] instead. However, some properties of NTS
algorithms important for the course of this thesis should be mentioned. First, the collocated
constraint enforcement at discrete nodes is not consistent in a variational sense, such that, for
instance, a contact patch test of transmitting constant contact pressures is not passed without fur-
ther modification as demonstrated by Crisfield [41], Taylor and Papadopoulos [214]. Necessary
modifications to pass the patch test, e.g. the one proposed by Zavarise and De Lorenzis [248],
then include information of the discretization of the master side and therefore are somewhat in
conflict with the original NTS idea. A direct consequence of the lacking variational consistency
is that NTS coupling schemes deteriorate spatial convergence orders of the finite element method
[68]. A second drawback of the NTS method arises especially in sliding motions of two elastic
bodies and stems from the faceted non-smooth surface representation of the master side. Since
the discrete points, that is, the nodes of the slave side, may not penetrate this faceted surface,
kinks in the master surface directly result in oscillations of the contact forces or impedes con-
vergence of the nonlinear solution procedure entirely. To alleviate this issue, surface smoothing
techniques are applied to generate a smooth surface representation from the master-sided dis-
cretization; an incomplete review on such smoothing strategies may include Hermite [162] or
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Bernstein [239] polynomials as well as spline [135, 156], Gregory [135, 174] NURBS [209] or
Nagata patches [157].

Mortar methods Mortar finite element methods are derived from a mixed variational formu-
lation, in which in addition to the original primary variable (i.e. displacements in an isothermal
mechanical problem) also its flux at the contact interface (i.e. the traction in an isothermal me-
chanical problem) is discretized. Mortar methods were initially introduced in the context of
non-overlapping domain decomposition by Ben Belgacem [12], Bernardi er al. [14] to couple
non-matching interface discretizations. Being able to consistently treat non-matching interfaces,
mortar methods were soon applied to contact problems. First implementations for linearized
kinematics and frictionless contact were presented by Ben Belgacem et al. [13], Hild [101]. In
the subsequent years, limitations to small deformations and frictionless contact were gradually
removed, resulting in the works of McDevitt and Laursen [147] for small deformation frictional
contact, large deformation frictionless contact by, e.g., Cavalieri and Cardona [29], Fischer and
Wriggers [71], Puso and Laursen [175], Puso et al. [177] and large deformation frictional con-
tact by Fischer and Wriggers [72], Puso and Laursen [176], Tur et al. [220], Yang et al. [245].
Although mortar methods in the context of domain decomposition appear most natural with
Lagrange multipliers for the constraint enforcement [12], most early mortar-based contact algo-
rithms utilize a penalty regularization of the constraints [71, 72, 147, 246], potentially combined
with an Uzawa-type augmentation [175, 176]. Mortar contact methods that include Lagrange
multipliers to satisfy the contact constraints exactly (in an integral sense) were applied, e.g.,
by [101, 177, 220] and using the augmented Lagrangian functional of Alart and Curnier [3] in
Cavalieri and Cardona [29]. The issue of faceted surface geometries that necessitates surface
smoothing procedures for NTS contact algorithms is, to some extent, alleviated naturally as the
contact constraints are no longer enforced at collocated points but in a weak, integral sense; an
additional surface smoothing is still possible [221] but less beneficial compared to NTS algo-
rithms.

Dual mortar methods Wohlmuth [233, 234] proposed an alternative, so-called dual or
biorthogonal, approximation space for the discrete Lagrange multiplier in domain decompo-
sition problems. In contrast to simply using the trace space of the finite element mesh as done
in standard mortar methods, the biorthogonality results in a localization of the coupling condi-
tions across the contact interface and allows for a simple elimination of the additional Lagrange
multiplier unknowns. Corresponding contact algorithms using dual Lagrange multipliers were
developed in the context of linearized kinmatics by Hiieber and Wohlmuth [106] for frictionless
problems and Hiieber et al. [108], Hiieber et al. [109] for problems involving friction. These
works also introduce nonlinear complementarity functions to solve the inequality nature of con-
tact problems by means of a semi-smooth Newton scheme, which then serves as a primal-dual
active set strategy, see Hintermiiller et al. [103]. The review by Wohlmuth [235] may be con-
sulted for the mathematics behind dual mortar contact methods. A first extenstion of dual mortar
contact methods to finite deformation kinematics was presented by Hartmann ez al. [95] and fully
linearized by Popp et al. [168, 169] for frictionless contact and extended to Coulomb friction by
Gitterle et al. [80]. Popp et al. [170], Wohlmuth et al. [232] extended the construction of dual ba-
sis functions to quadratic finite spaces and proved optimal convergence orders for contact prob-
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lems. Cichosz and Bischoff [39], Popp et al. [172] improved robustness and consistency of the
method in certain scenarios. Especially the works of Popp et al. [168, 169, 170, 172], Wohlmuth
et al. [232] form the starting point for the mortar methods developed in this thesis.

Nitsche-type methods! More recently, consistent discretization schemes for contact prob-
lems based on Nitsche’s method have been developed. Originally introduced for the weak impo-
sition of boundary conditions by Nitsche [158], a first application of Nitsche’s method to contact
problems has been presented in Wriggers and Zavarise [237]. Later, Chouly and coauthors laid
the groundwork by providing mathematical analysis for the symmetric Nitsche method for fric-
tionless contact in Chouly and Hild [34], non-symmetric and skew-symmetric variants in Chouly
et al. [35], and frictional contact in Chouly [33]. Moreover, time integration schemes for dynamic
contact problems were analyzed in Chouly et al. [31, 32]. An unbiased variant, i.e. a variant in-
discriminative to the two contacting surfaces, was proposed in Chouly et al. [36] and extended
to nonlinear elasticity in Mlika et al. [152], which also includes some implementation details. In
contrast to mortar methods with Lagrange multipliers, Nitsche’s method consistently introduces
the contact constraints by means of the traction vector computed from the underlying bulk stress
tensor and a sufficiently large, consistent penalty term. Hence, no additional unknowns need to
be introduced. Consistency and stability can be proven for sufficiently large penalty parameters
or even any positive penalty parameter in case of the skew-symmetric Nitsche method [35]. In
view of the penalty term in the boundary integral, Nitsche’s method for contact problems bears
some similarity to so-called Gauss-point-to-segment (GPTS) algorithms proposed, e.g., in Tem-
izer et al. [216], which, however, lack the boundary traction term and are thus not consistent,
1.e. some remaining penetration is required to enforce the contact constraints, and large penalty
parameters are necessary to reduce the residual penetration. At the same time, GPTS algorithms
are not stable in the case of large penalty parameters where they yield oscillatory results as shown
by Sauer and De Lorenzis [188].

Isogeometric contact methods? Isogeometric analysis (IGA) as originally introduced by
Hughes et al. [112] is based on the use of splines, most commonly non-uniform rational B-
splines (NURBS) in an isoparametric finite element method. While finite elements based on La-
grange polynomials are limited to C° continuous displacement approximation across elements,
NURBS of order p can be constructed with a maximum of C?~! continuity. This increased con-
tinuity results in, among others, a smooth surface representation which, as already anticipated in
the original proposition of IGA [112], makes the application to computational contact mechan-
ics particularly appealing. As a consequence, in the past ten years various contact discretization
techniques have been developed for IGA or transferred from finite elements to IGA. The exten-
sion of NTS algorithms resulted in the point-to-segment (PTS) method by Matzen and Bischoff
[144], Matzen et al. [145], which, in contrast to NTS algorithms for finite elements, does not
require an additional surface smoothing as the isogeometric discretization already provides a
smooth surface description. However, the PTS method still lacks variational consistency and
therefore optimal convergence orders cannot be expected. Further, GPTS methods are used in
IGA by De Lorenzis et al. [50], Dimitri et al. [S9], Dimitri [60], Lu [137], Temizer et al. [216].

I'This section is adapted from the author’s publication [195].
2This section is adapted from the author’s publication [193].
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However, as aforementioned, such methods are not consistent and unstable for large penalty
parameters. Sauer and De Lorenzis [188] extended the isogeometric GPTS method by a two-
half-pass algorithm to obtain an unbiased scheme and introduced a post-processing of the, due
to the instability of the method, oscillatory contact traction. Obviously, a post-processing step
cannot cure the instability, but results appear better even for larger penalty parameters. Isogeo-
metric mortar methods can be found in Brivadis et al. [21] for domain decomposition problems
and for contact problems in De Lorenzis et al. [50, 51], Dittmann et al. [61], Kim and Youn
[121], Temizer et al. [216, 217], which are either combined with penalty approaches [50, 216],
Uzawa-type algorithms [217], Lagrange multipliers [61, 121] or augmented Lagrangian methods
[51] to enforce the contact constraints. In contrast to penalty methods, the other methods men-
tioned fulfill the contact constraints in a discrete sense exactly. The recent review by De Lorenzis
et al. [53] gives a comprehensive discussion of isogeometric contact methods, including com-
parisons to their finite element counterparts and further references. In addition to the mentioned
methods that are all based on an isogeometric Galerkin approximation, the higher inter-element
continuity of NURBS basis functions allows for the use of collocation methods, see Reali and
Hughes [182] for a general introduction and De Lorenzis et al. [52], Kruse et al. [125] for an
application to computational contact mechanics.

Thermomechanical contact! First implementations of thermo-elastic contact based on
node-to-segment contact formulations and linearized kinematics were published by Zavarise
et al. [249] in combination with a penalty approach and Johansson and Klarbring [117] us-
ing Lagrange multipliers. These algorithms were extended to nonlinear elasticity in Oancea
and Laursen [159], Pantuso et al. [163] and finite deformation elasto-plasticity in De Saracibar
[54], Wriggers and Miehe [236], Xing and Makinouchi [244]. All of the publications mentioned
employ a penalty regularization of the contact constraints with the exception of [117, 163] using
Lagrange multipliers. Within the last decade, more sophisticated variationally consistent con-
tact discretizations based on the mortar method have been developed. Hansen [94] and Hiieber
and Wohlmuth [107] applied mortar methods to small strain thermo-elasticity introducing La-
grange multipliers for both the contact traction as well as the contact heat flux, either by means
of standard [94] or dual basis [107] for the Lagrange multiplier. In the context of isogeometric
mortar methods, Temizer [215] developed a method for small strain thermo-elasticity based on
an augmented Lagrangian and Dittmann et al. [61] a Lagrange multiplier method for finite de-
formation thermo-elasticity. Due to an easier implementation and other benefits like symmetric
operators, most of the cited works above employ some sort of partitioned solution scheme for
solving the structural problem (at constant temperature) and thermal problem (at constant dis-
placement) sequentially. Only [61, 107, 163, 249] employ monolithic solution schemes, which
solve for displacements and temperatures simultaneously.

1.3 Research Objective

Based on the most robust, efficient, and accurate methods discussed in the previous section, the
present work aims at developing new numerical methods of thermomechanical contact problems.

I'This section is adapted from the author’s publication [194].
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To capture a wide range of engineering applications, large elastic and elasto-plastic deformations
should be accounted for. Furthermore, a broad range of thermomechanical coupling effects need
to be considered; from plastic work that is converted to heat and temperature dependent material
parameters in the bulk material to heat conduction and frictional heating at the contact inter-
face. Finally, to seek optimal performance in the nonlinear case, all methods employed should
have a sound mathematical basis and have been tested successfully on simplified problems of
infinitesimal deformation.

1.3.1 Specification of Requirements

Based on the abstract objective discussed above, a more detailed list of essential requirements
for the methods devised within this work is given in the following.

Computational Plasticity

Increased robustness compared to classical methods Robust numerical meth-
ods allow for larger time/load steps and can hence reduce the overall computational cost. In
computational plasticity, the main difficulty in constructing robust algorithms is the fact that
the apparent material stiffness varies drastically between an elastic and a plastic material
response and the transition between the two is non-smooth. During the nonlinear solution
procedure, state of the art methods for computational plasticity have to apply the exact local
elastic or plastic tangents at all time, even if the solution is far from converged, since no
information of the convergence of the nonlinear solver is included. More robust schemes
can be constructed by a more global treatment of plastic material behavior and including
information of the global nonlinear solution scheme.

Applicability to practically relevant plasticity models Even without any numer-
ics, material modeling of elasto-plasticity is an intricate field in itself and results in a large
variety if yield criteria and hardening behavior each tailored to a specific metal alloy or
polymeric compound. No matter how elegant, robust or efficient a numerical methods is, for
it to gain practical relevance it has to be applicable to real world problems. This constrains
methods of computational plasticity in a way that many mathematical tools can be applied to
solve certain simple material models, but are difficult, if at all, extensible to more complex
material models.

Extensibility to thermo-elasto-plasticity In many engineering applications, plastic
deformation is interconnected with an elevated or even spatially and temporally varying
temperature. Temperature, however, significantly influences the material response such that
accurate predictions need to account for this influence. For strong interdependency of me-
chanical and thermal behavior considered in this work, partitioned schemes solving me-
chanical and thermal problems sequentially exhibit poor convergence. Hence, monolithic
solution schemes solving for displacements and temperatures simultaneously are required
to obtain an efficient method.
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Computational Contact Mechanics

Consistent constraint enforcement To accurately represent the contact constraints,
e.g. the condition of no interpenetration, they have to be introduced consistently to the dis-
cretized problem. In particular, this requirement rules out the widely used penalty approach
which requires some residual penetration to generate contact forces. In consideration of the
methods discussed in Section 1.2, mortar methods with Lagrange multipliers or an aug-
mented Lagrangian approach as well as Nitsche’s method meet this requirement. Although
not variationally consistent, also NTS contact discretizations enforce the constraints (point-
wise) exactly if combined with Lagrange multipliers.

Unaltered system size Classical Lagrange multiplier formulations for contact prob-
lems yield an increased system size by the additionally introduced Lagrange multiplier de-
grees of freedom and, moreover, a saddle point system is obtained. Both the increased (and
potentially varying) system size as well as its indefinite character may have adverse effects
on efficient linear solvers. Consequently, a formulation based on the original displacement
degrees of freedom only is preferable. In view of the methods discussed in Section 1.2,
penalty methods apparently meet this requirement, however lack consistent constraint en-
forcement discussed above. Two methods are both consistent and do not yield an increased
system size: The dual mortar method intermediately introduces a Lagrange multiplier but
later eliminates it from the global system of equations. Nitsche’s method, on the contrary,
does not require any Lagrange multiplier at all to consistently enforce the contact conditions.

Applicability to finite elements and isogeometric analysis In recent years, iso-
geometric analysis gained a lot of attention in computational contact mechanics due to its
smooth surface representation in contrast to classical finite elements. Methods devised in
this thesis should be constructed without any specific spatial discretization in mind but rather
be applicable to FEM and IGA without any systemic changes.

Optimal performance for higher order elements Contact algorithms benefit from
second or even higher order approximations through a smoother surface representation.
Moreover, approximations of higher polynomial degrees yield improved convergence or-
ders in FEM or IGA. All methods developed in this thesis should yield optimal convergence
orders for contact problems, at least under uniform mesh refinement. A special character-
istic of contact problems at this point is the reduced regularity of the exact solution which
limits attainable convergence orders of uniform refinement to O(h*?) instead of the order
of the approximation. Restoration of higher order convergence requires adaptive refinement
which is beyond the scope of this work.

Compatibility with elasto-plastic material behavior As the present thesis aims at
(thermo-) elasto-plastic contact problems, the developed algorithms need to be compatible
with nonlinear elasto-plastic material models in the bulk structure. For different numerical
methods for contact constraint enforcement, this requirement is of different complexity.
While mortar methods are entirely independent of the material model in the underlying bulk,
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Nitsche’s method relies on the stress evaluation of the underlying continuum and therefore
requires special treatment for nonlinear or even elasto-plastic materials.

Consistent treatment of thermomechanical coupling Lastly, methods for compu-
tational contact mechanics derived in this thesis should include thermomechanical coupling.
Beyond the thermomechanics in the bulk material, this includes contact heat conduction as
well as frictional heating. All requirements stated above for isothermal contact problems
should still hold and the coupled problem is to be solved in a monolithic fashion to obtain a
robust solution.

1.3.2 Contribution of this Work

The methods proposed in this thesis address all requirements mentioned. The most important
scientific novelties include

e A semi-smooth Newton method for finite deformation elasto-plasticity (see also Seitz
et al. [192, 194]). The reformulation of the plastic material constraints in terms of non-
linear complementarity functions yields a more robust algorithm and allows for larger
load steps as compared to classical methods. Applications include arbitrary hyperelastic-
ity, plastic anisotropy, plastic spin, visco-plasticity as well as thermo-elasto-plasticity.

¢ A mortar method for second order finite elements with piece-wise constant Lagrange
multipliers. The use of piece-wise constant Lagrange multiplier ansatz functions com-
bines the advantages of standard and dual mortar methods, i.e. a simple to construct La-
grange multiplier space, the possibility to condense the discrete Lagrange multipliers from
the global system of equations, and optimal convergence orders for contact problems.

¢ An isogeometric dual mortar method for contact problems (see also Seitz et al. [193]).
The first application of the dual mortar method in isogeometric analysis transfers an
element-wise construction of biorthogonal basis functions to isogeometric analysis using
non-uniform rational B-splines (NURBS). As for classical finite elements, the biorthog-
onality yields a localized coupling and allows for an easy elimination of the discrete La-
grange multiplier. Though sub-optimal in applications of domain decomposition, the iso-
geometric dual mortar method yields optimal convergence orders in contact problems.

e A mortar method for finite deformation thermomechanical contact (see also Seitz
et al. [194]). The mortar method is extended to fully nonlinear thermomechanical contact
problems including contact heat conduction, frictional heating and thermo-elasto-plasticity
in the bulk material. The contact heat flux is introduced as an additional Lagrange multi-
plier field and discretized by dual basis functions such that it can be easily eliminated from
the global system. Thus, the final system in a monolithic scheme is solved for discrete dis-
placement and temperature degrees of freedom only.

e A Nitsche method for finite deformation elastic and elasto-plastic contact problems
(see also Seitz et al. [195]). Nitsche’s method for linearized contact problems is extended
to problems involving geometric and constitutive nonlinearities. A special focus is set
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on the accurate estimation of the required penalty parameter by solving local eigenvalue
problems. For contact problems involving a large contrast in material parameters, the in-
troduced harmonic weighting of contact tractions allows for a significant reduction in the
penalty parameter and thereby increase the robustness of the method. Finally, an adaptive
scaling of the penalty parameter is developed to maintain stability in the case of highly
nonlinear material behavior.

e A Nitsche method for finite deformation thermomechanical contact problems (see
also Seitz et al. [195]). The first application of Nitsche’s method to thermomechanical
contact problems is developed. Thermomechanical coupling therein comprises of con-
tact heat conduction, frictional heating and thermo-elasto-plasticity in the bulk material.
Two strategies to include thermal effects at the interface are discussed: a Galerkin sub-
stitution method and a Nitsche-type method. While the substitution method may become
ill-conditioned for some physical interface parameters, Nitsche’s method remains well-
conditioned for the entire range of parameters. Optimal convergence orders and the appli-
cability to thermo-elasto-plasticity are demonstrated by numerical examples.

As indicated, parts of this thesis have been published prior to this monograph in Seitz et al. [192,
193, 194, 195] and are reproduced here with permission of the publisher. All numerical methods
have been implemented in the parallel in-house finite element code BACI [225] developed at
the Institute for Computational Mechanics. Parallelization and linear solvers are based on the
open source trilinos project [96]. Wherever possible, existing functionality has been re-used; of
particular relevance to the present thesis are the work of Popp [171] and Gitterle [79] on contact
mechanics, and Danowski [48] on thermo-structure-interaction.

1.4 Outline

The discussed novelties can be clustered roughly into three major blocks: the numerical treat-
ment of (thermo-) elasto-plasticity, mortar methods for (thermomechanical) contact problems
and Nitsche-type methods for (thermomechanical) contact problems. Hence, the remainder of
this thesis is organized as follows:

Chapter 2 recalls the continuum thermomechanical basis for the subsequent developments.
Starting from the kinematic description of finitely deforming bodies, fundamental conservation
laws, and constitutive laws for hyperelasticity, thermoelasticity and thermo-elasto-plasticity, the
strong and weak form of the balance equations are derived. These are extended to a thermody-
namically consistent formulation of thermomechanical contact. The weak form serves as the ba-
sis of the derived numerical methods and are therefore discretized in space by either the classical
finite element method or NURBS-based isogeometric analysis. Lastly, the temporal discretiza-
tion is discussed.

Chapter 3 introduces a novel computational method for (thermo-) elasto-plasticity. After a
brief review on the classical return mapping algorithm, the novel semi-smooth Newton method
is derived. The reformulation of the inequality constraints of elasto-plasticity as a non-smooth
equality constraints allows for them to be solved within the same Newton loop as the global
equilibrium. To preserve efficiency, the additional unknown plastic flow at every quadrature
point is condensed from the global system of equations. Numerical examples demonstrate the
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superior robustness as compared to the classical return mapping algorithm. To be applicable to
practical problems, the method is extended to include plastic spin, visco-plasticity and thermo-
elasto-plasticity.

Mortar methods for contact problems are investigated in Chapter 4. After a short introduction
to the fundamental concept of mortar methods for isothermal contact problems, a special focus
is put on the discrete Lagrange multiplier space. The well-known standard and dual Lagrange
multiplier space for finite elements are only discussed briefly, before the two novel spaces are
introduced: a piece-wise constant Lagrange multiplier space for second order finite elements
and and a biorthogonal NURBS space for isogeometric dual mortar method. For both contribu-
tions, numerical examples are provided, ranging from convergence studies confirming optimal
convergence orders to problems of large frictional sliding and elasto-plasticity. Transferring the
idea of mortar methods isothermal to thermomechanical contact problems, an additional field of
Lagrange multipliers representing the contact heat flux is introduced. By again employing dual
basis functions for the Lagrange multiplier field, its discrete values can be condensed from the
final system of equations that ultimately consists of displacement and temperature degrees of
freedom only. A wide range of numerical examples underlines the versatility of the resulting
method.

As an alternative to mortar methods, Chapter 5 introduces Nitsche’s method for finite defor-
mation contact problems. Starting with isothermal contact problems, a family of Nitsche meth-
ods is derived, ranging from the classical symmetric variant to a penalty free method. Special
emphasis is put on the estimate of the required penalty parameter by local eigenvalue problems.
The extension to thermomechanical contact problems is done by either a substitution method or
again a Nitsche-type method for the contact heat flux. In both the isothermal and the thermo-
mechanical setting, numerical examples illustrate the differences between the various Nitsche
methods.

Finally, the most important findings of this thesis are summarized in Chapter 6 and an outlook
to the application of the derived methods is given.

11






2 From Continuum Thermomechanics
to a Finite Element Discretization

In the concept of continuum mechanics, the behavior, let it be mechanical, thermal or any other
physics, of a body is modeled by macroscopic models. The body is assumed to be governed by
partial differential equations of a continuous medium (hence the name), although on a micro-
scopic level, those equations do not hold. In the case of small deformations, for instance, the
mechanical behavior of polycrystalline metal may be modeled by elasticity, or, for larger defor-
mations, by elasto-plasticity with an appropriate plasticity model (see e.g. Section 2.3.4.4). If
one would “zoom in” to a smaller length scale, elasticity would be observed as lattice distortion
within the distinct single crystals and plasticity as the movement of dislocations within a sin-
gle crystal or across grain boundaries. These unresolved micro-mechanical effects are modeled
in the continuum approach. This chapter aims at presenting the necessary foundations for the
subsequent chapters, but, in itself, does not contain genuinely new results. Hence, it is stream-
lined towards the following numerical models rather than giving a broad overview over different
aspects of continuum thermomechanics. More comprehensive introductions to various aspects
can be found in the literature, for instance the textbooks Wegner and Haddow [226] for an easy
to read introduction to continuum mechanics a continuum thermodynamics, Holzapfel [104] for
an engineering introduction to nonlinear continuum mechanics, elasticity and visco-elasticity,
Marsden and Hughes [143] for a more mathematical approach to nonlinear elasticity, Lubarda
[138] and Lubliner [139] for a comprehensive introduction to the formulation of plasticity at
finite deformations and finally Bertram [15] and Miehe [149] for thermo-elasto-plasticity.

2.1 Kinematics, Deformation and Strain

As a starting point, the deformation of a body is considered with the reference (or material)
configuration (or domain) €2y, as an open set in a ng;,-dimensional space, 2o C R"™im ngy, €
{2, 3}. Though only the deformation of one body is discussed subsequently, the derived descrip-
tions can be readily extended to multiple bodies as used in contact mechanics, see Section 2.7.
The motion ¢(X ,t) thereby maps the material point X in the reference configuration {2 to its
current coordinate @ in the displaced (or spatial or current) configuration at time ¢. At any time,
the motion ¢(X,¢) results in a smooth, time-dependent, bijective and orientation preserving
mapping

or:Q—Q, X—x(X)t) . (2.1)

In contrast to linear continuum mechanics restricted to infinitesimal displacements, the displace-
ment

u(X,t)=x(X,t) - X (2.2)
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2 From Continuum Thermomechanics to a Finite Element Discretization

Figure 2.1: Illustration of the deformation ¢, of a body from reference configuration 2, to displaced configuration
Q,; as well as reference coordinates X i and displaced coordinates x i of a point K.

thereby may be finite. An illustration of a mapping ¢, at a given instant in time is provided in
Figure 2.1. For simplicity, the presentation is restricted to the case, where both reference and dis-
placed configuration are described by the common Cartesian coordinate system {e, ..., e, . }.
The extension to curvilinear coordinates through the concept of tensor calculus is well-known in
nonlinear continuum mechanics and the reader is referred to e.g. Marsden and Hughes [143] for
a thorough introduction to continuum mechanics using general curvilinear coordinate systems.

Deformation, in contrast to the motion introduced above which may include rigid body mo-
tions, describes the change of shape of the body. A first elementary measure of the local defor-
mation at a material point is given by the deformation gradient

F:VXa::g—;:VXu—l—I, (2.3)
where V x denotes the material gradient operator and I the second order identity tensor. Being
a second order tensor of which the first base vector resides in the displaced configuration, and
the second one in the reference configuration, the deformation gradient is coined a two-point
tensor. From its definition, the deformation gradient can also be interpreted as the mapping of
infinitesimal line (vector) elements d X in the reference configuration to the corresponding line
element in the current configuration dz, viz.

dz = FAX . (2.4)

Further, infinitesimal surface elements (defined as a vector in direction of the surface normal with
length defined as the surface area) can be transformed from reference to displaced configuration

by Nanson’s formula
da=JF TdA , (2.5)

where J = det(F') denotes the jacobian determinant of the mapping ;. Finally, infinitesimal
volume elements dV in () are transformed to volume elements dv in €2; by

dv=JdV . (2.6)

Due to the orientation preserving property of ¢y, it is ensured that J > 0 and hence no volume
elements can be inverted.
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2.1 Kinematics, Deformation and Strain

Although starting point for the measurement of deformation, the deformation gradient itself
is not a suitable measure for the local deformation of the body since it is contains not only
of the deformation at a material point but also its rigid body rotation. More precisely, a polar
decomposition of the deformation gradient yields

F=RU=vR , 2.7)

where R € SO(ng4in) denotes a rotation tensor, and U and v the symmetric positive definite
right and left stretch tensors, respectively. As these stretch tensors do no longer include the rigid
body rotation, they form the basis of objective measures of stretch and strain, such as the right
Cauchy—Green tensor C and the Green—Lagrange strain tensor E:

C=U=F"F , E:%(C’—I). (2.8)

Since C and E merely differ by a linear transformation, they essentially hold the same informa-
tion, however, the Green—-Lagrange strain tensor yields a zero tensor if only rigid body motions
appear, i.e. when F' € SO(ng;,) and therefore in fact acts as a strain measure. Unlike the defor-
mation gradient, which is a two-point tensor, both the right Cauchy—Green tensor as well as the
Green—Lagrange strain tensor are defined exclusively in the reference configuration. These two
tensors are by no means the only viable measures of stretch and strain in the setting of nonlin-
ear continuum mechanics. Yet, a multitude of others exist in the literature, which can be derived
from the right and left stretch tensors U and v. For the present thesis, however, those other strain
measures are of no particular interest, such that the reader, at this point, is merely referred to the
literature, e.g. Holzapfel [104].

In time dependent problems, not only the current displacement, but also its derivatives with
respect to time are of interest. Velocities v and accelerations a of material points follow directly
from the total time derivative of the displacement field, viz.

ou Oz Pu O’z
= J = - = — = Y = - == —— . 2.9
R T T TR T2 9
Further, one can define the material and spatial velocity gradient Fand L as
0 Ox .
— -~ _F 2.10
VXY= 5X an ’ 10
0 Ju .
Vov=—-——=FF'= L. 2.11
YT bz ot @11

The spatial velocity gradient can be decomposed in its symmetric part, the so-called rate of
deformation D), and its skew symmetric part W, the so-called spin, by

D= %(L +L7) (2.12)
W = %(L — L") . (2.13)

Finally, the rate of the right Cauchy—Green tensor and the Green—Lagrange strain can be obtained
by time differentiation of (2.8) and yields

C=2E=F'F+F'F , (2.14)

which concludes the necessary kinematic description required in the following.
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2 From Continuum Thermomechanics to a Finite Element Discretization

2.2 Conservation Laws and Entropy Inequality

The deformation of a body, as it can be described by the kinematics outlined in the previous
section, needs to comply with basic physical principles such as conservation of mass, Newton’s
laws of motion as well as the first and second law of thermodynamics. These basic principles
applied to infinitesimal volume elements within 2, are the topic of the following sections.

2.2.1 Conservation of Mass

In the processes investigated in this thesis, mass is always conserved. Though, from a physical
perspective, mass is conserved for any process, a mechanical model does not always have to
comply with this principle as loss or gain in mass can be included in the model without specif-
ically modeling the source or sink resulting in the change of mass. Examples for such systems
with changing mass can be, for example, wear phenomena where mass at the contact interface
is “lost” within the model if the debris is not explicitly handled, or conversely biological growth
mechanisms where the “source” of mass, i.e. nutrients transported into the tissue, is not part
of the mechanical model. Further, no convective mass transport is accounted for, such that the
infinitesimal mass element of a volume element dV in {2; needs to be conserved, i.e.

d d
—dm = —(ppdV) =0 < py= const |, (2.15)

which yields a constant reference density (since the volume element dV' in the reference do-
main is constant). Analogously, the conservation of mass can be formulated for an infinitesimal
volume element dv in the displaced configuration €2,. Using (2.6), one obtains

d d

d
—dm = —(pdv) pJdV) =0 & p=J"p, , (2.16)

= E(
i.e., to conserve mass, the density needs to transform reciprocally to the corresponding volume
elements.

2.2.2 The Concept of Stress and Conservation of Linear
Momentum

Before one can state the momentum balance (i.e. Newton’s second law of motion) for arbitrary
infinitesimal volume elements in €2, or €2, the notion of forces needs to be extended to such a
volume element. Let therefore Aa be a surface element of a fictitious surface introduced within
), with the outward unit-normal nn and A f the resulting force on said surface. Then, following
Cauchy’s postulate, a surface traction ¢ is defined via
Af
tin,x,t) = lim — . 2.17

( T ) Aa—0 Aa ( )
Since the surface Aa was introduced artificially into a body originally in equilibrium, the oppo-
site surface, according to Newton’s third law of motion, needs to be subjected to a force equal in
size and pointing in opposite direction yielding

tin,x,t) = —t(—n,x,t) . (2.18)
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Cauchy’s postulate then states that there exists a second-order tensor o (x, t) called Cauchy stress
tensor such that
t=on (2.19)

holds. Since both ¢ and n are vectors defined in the spatial configuration, o itself is a tensor with
both basis vectors defined in the spatial configuration and is therefore termed a spatial stress
tensor. In linearized kinematics (i.e. infinitesimal displacements) the reference configuration and
the displaced configuration of the body coincide and therefore o constitutes the unique measure
of stress. In nonlinear continuum mechanics, a vast number of alternative stress measures can be
defined, by selectively applying transformations of surface or volume elements derived above.
These alternative stress measures may not have direct physical interpretation of (2.17) and (2.19),
however they may be more suited for the formulation of certain balance equations or material
laws. The stress measures relevant to this thesis will be briefly introduced in the following. First,
there is the Kirchhoff stress tensor, which is obtained by scaling the Cauchy stress tensor with
the Jacobian determinant:

T=Jo . (2.20)

Next, there is the first Piola—Kirchhoff stress tensor
P=JoF T, (2.21)

which can be obtained by transforming the unit normal 7 in (2.17) into its counterpart in the
reference configuration by means of Nanson’s formula (2.5). Like the deformation gradient, the
first Piola—Kirchhoff stress tensor is a two-point tensor, with the first basis vector defined in the
spatial configuration and the second one defined in the reference configuration. A stress tensor
completely defined in the reference configuration (and hence termed material stress tensor) can
be obtained by

S=F'P=JF'oF" (2.22)

and is called second Piola—Kirchhoff stress. Finally, another material stress tensor is the so-called
Mandel stress tensor introduced by Mandel [141]

M=CS , (2.23)

which, for elastically isotropic materials, can be interpreted as the Kirchhoff stress tensor rotated
to the reference configuration, i.e. M = R'TR, see [116].

Shifting the focus back on balance equations, an infinitesimal volume element dv in the cur-
rent configuration which is subjected to a distributed load (body force) b is considered. The
balance of linear momentum applied to this volume element then reads

Ve - o+b=pa . (2.24)

In many applications it may be more convenient not to formulate the equilibrium on a deformed
infinitesimal volume element, since it is itself deformation dependent, but rather on a volume
element in the reference configuration. This yields

Vx - -P+by=pa , (2.25)

where by = Jb denotes the body force per unit volume in the reference domain.
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2 From Continuum Thermomechanics to a Finite Element Discretization

2.2.3 Conservation of Angular Momentum

To be in (static or dynamic) equilibrium, not only the balance of linear momentum described by
2.24 or 2.25 need to hold, but also the balance of angular momentum. In the spatial configuration,
this balance of angular momentum requires a symmetric Cauchy stress tensor (see e.g. [104]).
In view of the transformation between the different stress measures introduced above, this can
be stated equivalently as

oc=0', (2.26a)
=1, (2.26b)
PF" =FP" | (2.26¢)
S=S8T, (2.26d)
MC=CMT" . (2.26¢)

Since this balance of linear momentum is, in contrast to the balance of linear momentum, inde-
pendent of any external loading, it will not appear explicitly in any of the numerical methods
derived later but is built-in into any constitutive law such that, for instance, only symmetric
second Piola—Kirchhoff stresses occur.

2.2.4 The Heat Flux and Conservation of Energy

In many applications, energy not only appears in form of elastic deformation, but also other
physical effects such as thermal energy, electric or chemical potential or others. Their associated
energy fluxes can be defined as the heat flux, electrical current or diffusion of chemical species.
In the following, heat will be considered as the only energy flux within the system. The heat flux
can be derived analogously to the concept of stress in Section 2.2.2. By introducing an fictitious
surface Aa in (), with the outward unit-normal n, a fictitious (scalar) heat flux Agq, appears
across this surface with a positive sign if heat is entering the body through the surface. In the
limit case of an infinitesimal surface area, one obtains the spatial surface flux

Agn
u(n, x,t) = lim q

A (2.27)

in analogy to Cauchy’s postulate (2.17). Balance of energy across the fictitious interface Aa
yields
qu(n?w?t) = _QH(_nawat) ) (2.28)

which is ensured by Stokes’ heat flux theorem, the thermal equivalent to Cauchy’s theorem (2.19)
in elasticity, which reads
th=q-n, (2.29)

where q is called spatial or Cauchy heat flux, a first order tensor with its basis vectors in the
displaced configuration. Similar to the different stress measures defined in nonlinear continuum
mechanics, also different measures of the heat flux may be defined. For instance, the correspond-
ing material or Piola—Kirchhoff heat flux @ can be derived using the equality g - da = Q - dA
and Nanson’s formula (2.5) which results in

Q=JF1q . (2.30)
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With the definition of heat fluxes at hand, one can state the conservation of energy (also known
as the first law of thermodynamics) for an infinitesimal volume element dV" in ) as

d 1
T (5rv* +6)=Vx - (Pv)+by-v-Vx-Q+R , (2.31)

wherein the first term on the left hand side represents the kinetic energy and e the internal energy
of the volume element dV'. On the right hand side, the first term represents the power performed
by the traction on the boundary of dV/, the second one the power performed by the distributed
load, the third one the thermal energy flux across the boundary of dV” and the last one represents
a heat (resp. energy) source term per unit undeformed volume. Using the identity

) 1 .
VX'(PU):(VX-P)-v+P:F:(VX-P)-'v+§S:C, (2.32)
equation (2.31) can be re-arranged to the form

1 .
¢=58:C-Vx Q+R+(Vx P+by—pa)v, (2.33)

@.25)

0

from which the kinetic energy has been eliminated. Obviously, the conservation of energy (2.31)
or (2.33) can be stated equivalently for an infinitesimal volume element dv in €2,. However, the
given material form is sufficient for the subsequent derivations.

2.2.5 Entropy and the Second Law of Thermomechanics

The fist law of thermodynamics in the previous section ensures conservation of energy, however,
it provides no information the direction processes proceed. For instance, from an energetic point
of view, it would be admissible that, in the absence of any heat sources, an initially isothermal
body heats up at on point and cools down at another as long as the total energy is conserved
but apparently such a process does not occur in reality. The direction of physical processes is
the main concern of the second law of thermodynamics. An additional physical quantity, the
entropy, is introduced which, for any admissible process, may never decrease. The (material)
entropy flux Q and source R are closely related to the heat flux @ and heat source R via

% , R= g , (2.34)
where 7" > 0 denotes the absolute temperature. For an infinitesimal volume element dV" in )
with the specific entropy 7, the second law of thermodynamics then reads

Q=

Nn+Vx - Q—-R>0 . (2.35)

Accordingly, the local change of entropy 7) in an infinitesimal volume element dV is always
greater or equal to the sum of the entropy flux entering dV across its boundary (—Vx - Q), and
the local entropy production R. A substitution of (2.34) in (2.35), elimination of R via (2.33) and
multiplying with the absolute temperature 7" yields the so-called Clausius—Duhem inequality

T7'7—é+%S:C’—Q-VXT20. (2.36)
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2 From Continuum Thermomechanics to a Finite Element Discretization

Entropy, temperature and internal energy are related to the (Helmholtz) free energy ¥ by means
of the Legendre transformation
UV=e—-Tn, (2.37)

which can be used to eliminate the specific energy e from (2.36) resulting in an alternative form
of the Clausius-Duhem inequality

—Tn—\If+§S:C—Q-VXT20. (2.38)

If one further introduces the physical observation, that the heat flux points in the opposite direc-
tion of the temperature gradient, i.e. heat flows, in the absence of heat sources, from hotter to
cooler regions, the Clausius—Duhem inequality can be split into the heat conduction inequality
and the Clausius—Planck inequality

Q - VxT <0, (2.39)
. . 1 .
D= —~Tn-¥+58:C>0, (2.40)

which is obviously more restrictive than (2.38). Therein, D;,; denotes the so-called internal dis-
sipation.

2.3 Constitutive Relations

The balance equations derived in the previous section depend, on the one hand, on the displace-
ment and temperature state and their rates and gradients, and, on the other hand, on the me-
chanical stress and the heat flux. However, the balance equations do not provide the necessary
correlations, for instance how to determine stresses depending on the displacement and temper-
ature state. This connection is introduced by means of constitutive relations which are derived
from material modeling. As the term already indicates, material modeling is concerned with the
derivation of models that describe, for example, the stress-strain relation of a particular material.
These models may be purely phenomenological, derived from micromechanical considerations
or a combination of the two.

2.3.1 State Variables and Response Functions

In thermodynamics, one usually distinguishes between state variables (or sometimes called in-
dependent variables) and dependent variables derived from the state variables and their temporal
and spatial derivatives. Though there is no unique separation between state and dependent vari-
ables, in continuum thermomechanics usually the displacement field v and the temperature field
T are considered state variables, whereas the stress S, the free energy ¥, the entropy 7 and the
heat flux Q are considered dependent variables.! Displacement and temperature are so-called

!'Also this set of dependent variables is not unique as, for instance, other stress measures may be used or the
Cauchy heat flux q instead of the material heat flux Q). The free energy or entropy could be replaced by the internal
energy e via the Legendre transformation (2.37).
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observable quantities, since they can, in principle, be measured. For purely thermo-elastic pro-
cesses, knowledge of these observable quantities form a sufficient set of state variables. For in-
elastic processes, however, additional internal variables of state are required to track the local in-
elastic behavior of the material. These internal variables may be scalar, vector- or tensor-valued.
In the abstract setting, one internal variable of state will be denoted by a; = ¢;(X, ¢) and all
internal variables of state will be summarized in the set &« = {a;}. Most inelastic processes
are associated with some form of internal dissipation (e.g. visco-elasticity or elasto-plasticity),
but others are not, such as, for instance, growth and remodeling in living soft tissue [44]. While
keeping the derivations as general as possible, the present work focuses on elasto-plasticity as
the inelastic effect of concern; for a more general review on the concept of internal variables of
state, the reader is referred to, e.g., the review article of Maugin [146]. The derived quantities
then follow from the state variables trough response functions ‘R, i.e.

{S,9.7,Q} =R(F,T,.VxT,x, X) , (2.41)

where, for simplicity, only material quantities are used. Other dependencies of the response func-
tions might be conceivable, however some are in violation with the requirements specified in the
following and are therefore already omitted at this point. For example, a dependency on the dis-
placement field itself, in contrast to its derivative in the deformation gradient, contradicts the
principle of material objectivity. Higher order spatial derivatives of the displacement field, on
the other hand, can be used in the context of Cosserat or multipolar theory (Green and Rivlin
[85], Toupin [218]) but are not considered in this work. Spatial gradients of internal variables of
state are admissible as well and necessary in, for example, strain gradient plasticity (e.g. Fleck
and Hutchinson [73]) and gradient damage models (e.g. Peerlings et al. [165]). In the classical
plasticity models used in the course of this thesis, these spatial gradients are not used and there-
fore omitted at this point. For homogeneous materials, the material response depends on the state
variables but is independent of the position within the body, i.e. independent of X . Merely for
simplicity, this thesis considers homogeneous materials only.

While there is quite some freedom in developing material models that best fit experimental
data for a specific material, some basic requirements summarized in the following have to hold.
For an in-depth introduction of these concepts, the interested reader is referred to the text books
of Bertram [15], de Souza Neto et al. [57], Holzapfel [104], Marsden and Hughes [143].

Thermodynamic Determinism The axiom of determinism states that the response func-
tions may only depend on the current state variables and past values but never on future values.
In (2.41), this principle is already accounted for in an even stricter form since only state vari-
ables at the current time are involved. The dependency on the current values of the state variables
only is sufficient for many materials and tracking a finite or even infinite history is impractical
in numerical methods. For example, biological remodeling processes as modeled by constrained
mixture models as introduced by Humphrey and Rajagopal [113] require such an infinite history,
which can be overcome in more recent homogenized constrained mixture models [20, 45] which
again only depend on the current state variables.

Local Action Local action requires the response function at a given point X to only depend
on values of the state variables in finite neighborhood of X. In the case of so-called simple mate-
rials, the material response at a point is determined by the state in an infinitesimal neighborhood
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2 From Continuum Thermomechanics to a Finite Element Discretization

only, and hence, the response functions (2.41) can be formulated in terms of state variables and
their gradients only.

Frame Indifference The principle of frame indifference states, that the different observers
should monitor the same physical behavior. The observers thereby differ in an arbitrary relative
motion. This principle can be equivalently stated as the independence of the response to super-
imposed rigid body motions of the displaced configuration [104]. For a motion ¢; as introduced
in (2.1), a motion ¢, with a superimposed rigid body motion can be defined as

G o Q, X a(X)=Rp(X)+e, (2.42)

by a relative rotation R ¢ SO(ngim) and a relative displacement ¢, which may depend on time
but not on the material point X. The motion ¢; results in a deformation gradient F = RF.
As the response functions in (2.41) are defined for material quantities, i.e. quantities defined
in the reference configuration, they should, according to the principle of frame indifference, be
unaltered by the superimposed rigid body rotation of the displaced configuration, viz.

R(F,T,VxT, & X)=R(RF,T,VxT, & X) . (2.43)

Material Symmetry Similar to the principle of frame indifference, material symmetry re-
quires the response to be invariant with respect to a rotation of the reference frame. Consider
therefore a deformatlon &4, in which the current configuration coincides with €2, but the refer-
ence domain Qo differs from €2y by a rotation Rc SO(ngim):

Z:Go— % X=RX—z . (2.44)

The corresponding deformation gradient reads F = Vixx = FR". Moreover, the rotation R
is applied to any material direction vector a; determmmg possible axes of anisotropy within the
material to obtain the directions in QO as a; = Raz and any internal variable. Let therefore & =
{ap, a1, iz} consist of a scalar v, a vector ar; and a second-order tensor ay. The corresponding

internal variables in S\l/o are then obtained as
& = {ag, Ry, RouR™)} (2.45)
From the principle of material symmetry it then follows, that

{S7qjvnaQ}:%(FaT7vXT7“aX) Ang (246)
{RSR™, V.7, RQ} = R(FR", T, VT, & X) . '

Thermodynamic Consistency Finally, thermodynamic consistency (sometimes referred
to as axiom of entropy production) requires any material model to satisfy the Clausius—Duhem
inequality (2.38).
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2.3.2 Fourier’s Law of Heat Conduction

A simple phenomenological law of heat conduction that satisfies (2.39) is known as Duhamel’s
law of heat conduction, which, in spatial and material description, reads

1
q= —anoFTva , (2.47a)
Q= —koVxT , (2.47b)

with a positive (semi-) definite second order conductivity tensor «o which may depend on dis-
placements and temperatures. For isotropic heat conduction (in the current configuration) one
further requires FroF" = kol with the scalar thermal conductivity ko which may still de-
pend on displacements and temperatures. If finally this thermal conductivity is assumed to be a
constant value kg, one obtains Fourier’s law of heat conduction

q= —%va : (2.482)
Q= —kC'VxT , (2.48b)

in the extension to nonlinear kinematics as derived e.g. in Holzapfel [104]. As the material heat
flux depends on the displacement only via the right Cauchy—Green tensor, the principles of frame
indifference and material symmetry stated in the previous section can easily be shown for the
constitutive equation (2.48).

2.3.3 Thermo-Elasticity

For (thermo-) elastic materials, no internal variables of state are necessary, i.e. &« = (), since an
elastic response does not depend on any deformation history but can rather be determined solely
by the current deformation and temperature state. Moreover, to ensure frame indifference (2.43),
we assume the free energy ¥ to depend on the deformation through the right Cauchy—Green
tensor C rather than the deformation gradient F', and, for simplicity, homogeneous materials are
considered. With these assumptions, the Clausius—Planck inequality (2.40) reads

L 9v . OU. o 1
U\ . /1. 9T\ . U . :
- — — S ).C- : >0 .
( 8T)T+(2S ac) C—gvr VxT=0

As this inequality must hold for any C and T, the terms in parenthesis must vanish! which gives
rise to the thermo-elastic constitutive equations for the second Piola—Kirchhoff stress, and, using
(2.22), equivalently for the first Piola—Kirchhoff stress

ov ov
S =2— P=_— 2.50
ocC "’ OF ~’ (2.50)
! Assume a given state defined by C and 7" and rates C and T'. Then, merely by changing loading conditions, a

configuration can be achieved in which C=-CandT = —-T. Hence, for (2.49) to hold for both states, the terms
in parenthesis must vanish.
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and the specific entropy
ov

n= T
Consequently, the last term in (2.49) must vanish to ensure (2.49) to be valid for any temperature
rate (or the gradient thereof). This means, that while the free energy W may depend on the
temperature itself, it may not depend on the temperature gradient. In summary, (thermo-) elastic
materials yield no internal dissipation, i.e. D;,; = 0, what can be seen as the fundamental concept
of elasticity. The elastic response (2.50) is called isotropic, if the free energy W is an isotropic
tensor function of the right Cauchy—Green tensor, i.e. (C,T) = ¥(RTCR, T) for any rotation
R € SO(ngim). this isotropy requirement can be ensured, if ¥ = W(Iy,..., 1, ,7T) depends
on C only via its invariants

2.51)

L=tC, L=_(trC)’—t(C?) , L=detC , (2.52)

N | —

which remain constant under a rotation of C'. IN the special case of ng;,, = 2, only two of these
invariants are independent and any pair of two may be chosen.

2.3.4 Thermo-Elasto-Plasticity

The concept of plasticity is related to the fact, that most material have a limited load bearing
capacity. If this capacity were to be exceeded, the material limits the stress by plastic relaxation.
In the following sections, first the kinematics of elasto-plastic processes is introduced and the
corresponding thermodynamic implications are deduced. Finally, yield functions are introduced
to determine whether a given stress state is admissible or if plastic yielding is necessary to relax
the occurring stress.

2.3.4.1 Kinematics of Finite Elasto-Plasticity

At finite deformations, the kinematics of elasto-plasticity is described by a local multiplicative
split of the deformation gradient

F(X,t) = F.(X,t)Fy(X,t) (2.53)

at every material point X into an elastic and a plastic stage as originally introduced by Lee [134].
The kinematics of this process is illustrated in Figure 2.2: By the motion ¢, the infinitesimal vol-
ume element located at the point K with material coordinates X i is subjected to a deformation
gradient F'. If it were possible to extract this infinitesimal volume element from the deformed
body, it would return to a relaxed state reversing any elastic deformation Fi. A potential plastic
deformation of the volume element would, however, remain present. Formally, the remaining
plastic deformation after unloading can be expressed as F,, = F,'F." In plasticity of metals,
especially single crystals, this decomposition of the deformation gradient also has a microme-
chanical justification illustrated in Figure 2.2: The plastic deformation gradient is associated with

'In presence of substantial kinematic hardening, see Section 2.3.4.3, the unloaded, stress free state might actu-
ally not be admissible. Since this elastic unloading is, however, just an illustration of the multiplicative kinematics,
kinematic hardening does not preclude the validity of the kinematic assumption (2.53).
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2.3 Constitutive Relations

Figure 2.2: Illustration of the multiplicative decomposition of the deformation gradient at point K and time ¢ into
an elastic and plastic part as F/(Xg,t) = Fo(X gk, t)F,(Xk,t). F}, is associated with inelastic slip of
lattice layers and Fr is related to elastic lattice distortion.

the slip of atom layers or the movement of dislocations, whereas the elastic deformation is re-
lated to lattice distortion. In general, the rotational orientation of the intermediate configuration
is undetermined as an equivalent split F = F.F, = (F.R)(R"F,) = F.F, can be defined
by a rotation of the intermediate configuration by the proper orthogonal tensor R € SO(ndim )-
Therefore, the plastic deformation gradient F}, cannot be chosen as an internal variable of state
satisfying the material symmetry (see Section 2.3.1) if no assumption on the orientation of the
intermediate configuration is made. To overcome this non-uniqueness, Mandel [142] proposed
the use of a so-called isoclinic intermediate configuration, in which the orientation of the refer-
ence configuration is preserved (see Figure 2.2). If such an isoclinic intermediate configuration
is used, the plastic deformation gradient becomes a quasi-material tensor and therefore frame
indifference and material symmetry can easily be proven for F,, as an internal variable.! Similar
to the derivations in Section 2.1 several kinematic quantities can be derived from the elastic and
plastic deformation gradients F; and F}, such as the corresponding elastic right Cauchy—Green
tensor

C.=F'F.=F,"CF;" . (2.54)
As the elastic right Cauchy—Green tensor C',, which is defined in the intermediate configuration,

does only depend on the elastic stretch but not on the rigid body rotation part of F¢, it can be
used as an frame invariant measure of elastic stretch. In analogy to (2.11) - (2.13), the plastic

I'This also holds for other internal variables defined in the intermediate configuration.
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velocity gradient, plastic rate of deformation and plastic material spin can be defined as

L,=F,F*' (2.55)
1

D, = (L, + L), (2.56)
1

W, = 5(Lp —~ L) . (2.57)

Remark 2.1 (Isochoric plastic flow). A plastic flow is termed isochoric, if the plastic deformation
preserves the volume of each infinitesimal volume element, i.e. % det F,, = 0. According to
(2.55), this is equivalent to tr L, = 0.

2.3.4.2 Thermodynamics of Elasto-Plasticity

Besides this kinematic description of plastic deformation via F,, additional internal variables of
state might be necessary to accurately represent the micromechanical changes within the mate-
rial. For instance, interaction of moving dislocations in a crystal lattice can result in hardening
effects. To account for those hardening effects, a scalar o; and a second order tensor o, are
introduced as internal variables of state, which will be associated with isotropic and kinematic
hardening, respectively (see Section 2.3.4.3). Within the thermodynamical framework presented
above, this results in the set of internal variables & = {Fp7 a;, oy }. Furthermore, it is assumed
that the free energy W decomposes into additive components associated with elastic deformation,
heat and hardening effects, viz.

U(C, T, Fy, 05, 0) = Uo(Co, T) + Uy (T) + Wy (o4, ., T) (2.58)

At any point, sufficient smoothness of W with respect to all arguments is assumed. Inserting these
assumptions into the Clausius—Duhem inequality (2.36) and using the heat conduction inequality
(2.39) results in the Clausius—Planck inequality for elasto-plastic solids

. .1 .
Dint:—Tn—\If+§S:C:
v 1OVe 1) | o (2.59)
(-57) 7+ (35-mrggnT)
+X: L, + Ao + Ao >0,

with the Mandel stress of elasto-plasticity 3 = 2C, g‘é’ﬁ as introduced by Mandel [141] and the
conjugate forces A; = %\P" and A, = — \ij to the internal variables a; and . For elastically
isotropic materials, the Mandel stress 3 can be interpreted as the Kirchhoff stress rotated to the
intermediate configuration by ¥ = RT7 R, with the rotation tensor R, as the rotational part of
F, derived by polar decomposition (2.7). As in the thermo-elastic case, (2.59) has to hold for
any T and C and therefore the terms in parenthesis must vanish. This yields the constitutive

equations for the entropy 7 and the second Piola—Kirchhoff stress in an elasto-plastic solid

n=—or (2.60)
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ov ov
=2F ' _FF;7T, P=__F . 2.61
o Poc, P oF, ® 26D)
The equivalent form for the first Piola—Kirchhoff stress is again obtained using (2.22). With
(2.60) and (2.61), the Clausius—Planck inequality (2.59) reduces to

Dint =X Lp -+ Aidi + Ak : dk Z 0. (262)
In the following, isotropic elastic materials will be considered exclusively for which C', and ggz
commute and therefore the Mandel stress 3 is symmetric. As a consequence, the plastic spin
W,, does not contribute to the dissipation (3 : W}, = 0) and the dissipation inequality (2.62) is
equivalent to

Dy =X : Dy + Aici + Ax t o > 0 . (2.63)

Remark 2.2 (Internal dissipation in the presence of elastic anisotropy). For elastically anisotropic
materials, the Mandel stress X is no longer symmetric, however due to the balance of angular

momentum, it still has to satisfy C, = C. X" in analogy to (2.26e). Though non-symmetric,

3l is therefore confined to a six-dimensional manifold in the nine-dimensional space of second

order tensors. By an orthogonal projection onto this manifold, the plastic velocity gradient L,

can then be decomposed into two parts: The one part that lies on the manifold and therefore

contributes to the dissipation (D), for elastically isotropic materials) and the other part orthog-

onal to the manifold that does not contribute to the dissipation (W, for elastically isotropic

materials).

The requirement of a positive dissipation poses some restrictions on the otherwise, up to now,
undetermined evolution of the internal variables, i.e. on Fp, a; and ay. Following Moreau [153]
(see also de Souza Neto et al. [57]), positive dissipation for all loading conditions can be ensured
by postulating a convex' dissipation potential =, from which D,,, ¢; and a follow from the
(sub-) differential

(Dy, a4, ) € 02, (X2, Ay, Ay) (2.64)

and at the origin
£,(0,0,0) =0 and (0,0,0) € 0=,(0,0,0) . (2.65)

The current state may enter =, as parameters via F', T', F},, o; and « as long as the =, is frame
indifferent and satisfies the material symmetry.

2.3.4.3 Yield Function and Admissible Stress States

The previous section derived some requirements on the evolution of the internal variables of
state, i.e. on Fp, a; and oy, by (2.63) but does not provide any further specifications on how these
temporal derivatives look like. The presented thermodynamics in Section 2.3.4.2 rather applies
to any other inelastic material described by a multiplicative decomposition of the deformation
gradient as well, for instance the model of visco-elasticity proposed by Reese and Govindjee
[184]. In elasto-plasticity, one assumes that stresses cannot exceed a certain threshold (the yield

IConvexity of the dissipation potential may be relaxed to star convexity while still maintaining a positive dissi-
pation, see Green and Naghdi [84].
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limit). In the stress space, the admissible states are indicated by non-positive values of the yield
function

(bp(za A, Ay T) = Eeq(n) - (Z/o - Ai) = Zeq(n) -Y (2.66)

where yp and Y = gy — A; represent the initial and effective yield stress, respectively. The scalar
equivalent stress Y is a convex function' of the effective stress

n=13— A, (2.67)

and depends on the chosen plasticity model. The temperature may enter the yield function as
a parameter. The elastic domain £ in the stress space is then defined by the region of negative
yield functions, viz.

E(A, A T) = {3 € Rpgm>Taim - ¢ < 0} . (2.68)

sym

The kinematic hardening force Ay therein moves the elastic domain within the stress space,
whereas A; increases or decreases the size of the elastic domain. A purely elastic deformation is
assumed to not alter any of the internal variables, such that

¢p <0 = (Dp, a5 0x)=(0,0,0) , (2.69)

and hence, according to (2.63), no internal dissipation takes place. On the other hand, stress
states resulting in ¢, > 0 are inadmissible and plastic yielding takes place until the stress state
is located on the yield surface ¢, = 0 and therefore limiting the equivalent stress to X = Y.
Formally, the flow rules (2.64) then give

. a:fp . . a\:4p . . a:‘p

:78_2’ OéiZ’Ya—Ai, OékZ’YaAk 5

¢p=0 = D, (2.70)
with the plastic multiplier ¥ > 0. The equations for the elastic and plastic material response
(2.69) and (2.70) can be summarized in the Karush—Kuhn-Tucker complementarity (or load-
ing/unloading) conditions

Gp <0, 420, ¢7=0, @2.71)

in combination with the flow rule (2.64).

A common choice for the dissipation potential =, is derived from the principle of maximum
plastic dissipation, i.e. maximizing (2.63) subjected to the complementarity condition (2.71).
This results in the so-called associative flow rule

= =¢p (2.72)

where the direction of plastic flow is normal to the yield surface?, see e.g. Han and Reddy [92]
for the proof that this choice of the dissipation potential actually maximizes Dy;.

IConvexity of the yield function applies to almost every engineering material. For a discussion on physical
implications of convexity of the yield function as well as honeycomb structures as a counterexample, the reader is
referred to Gliige and Bucci [81].

2Strictly speaking, the yield function does not satisfy the requirement (2.65) on dissipation potentials. However,
the complementarity (2.71) prohibits any plastic flow for ¢, < 0, such that the dissipation potential may be chosen
equivalently as =, = max (0, d)p), which satisfies (2.71). Still, to be in accordance with the common literature, the
following presentation sticks to the format of (2.72).
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2.3.4.4 Some Examples of Yield Functions

The concrete choice of the yield function comprised of the equivalent stress >, as well as the
hardening behavior modeled by ¥, (entering through A; and Ay) depends on the material of
question. It can be either purely phenomenological or include some knowledge of the micro-
structure as, for instance, in crystal plasticity and has to be validated by experiments. A yield
function is called isotropic, if the equivalent stress X, () is an isotropic tensor function of 7 in
which case it can be expressed in terms of the principle stresses 7y, 2 and 73, i.e. the eigenvalues
of 1. In the following, some of the most popular yield functions are summarized.

Tresca Yield Criterion The Tresca yield criterion compares the maximal and minimal prin-
ciple stress 7max and 1min, respectively, using the equivalent stress

Eeq = Mmax — Tmin - (273)

A superimposed hydrostatic pressure increases both 1y.x and 7mi, by the same value leaving >
unaltered. Such yield functions, that are invariant under superimposed hydrostatic pressures are
called pressure insensitive.

Von Mises Yield Criterion 1In the von Mises yield criterion proposed by Mises [150], the
equivalent stress in a three-dimensional continuum is calculated as

Yeq = \/g\/devn cdevn =: \/%H devn| , (2.74)

which only depends on the deviatoric stress devny = Pg., : 1. The fourth order deviatoric
projection tensor Py, is obtained from the fourth order symmetric identity tensor [ by Py, =
Is —Y/naimI @ I. The factor of \/% is introduced such that the yield limit 3, in (2.66) corresponds
to the value measured in uniaxial tests. Since the effective stress (2.74) only depends on the
deviatoric part of the stress tensor, it is insensitive to hydrostatic pressure.

Hill’s Orthotropic Yield Criterion The von Mises criterion can be generalized to account
for anisotropy of the yield strength as proposed by Hill [102]. In three dimensions, let therefore
n;, i € {1,2,3} be orthogonal unit vectors in direction of the principle axes of the material and
N; = n; ® n; the corresponding structural tensors. In direction of n;, the normal yield stress of
the material is denoted by y;; and the shear yield stress in the n; — n;-plane (¢ # j) is denoted
by y;;. With the parameters

o = 2¥0 2% 24
1 — 2 , Qg = 2 , Q3= 2 )
Y11 3 Yo 3 Y33 (2.75)
1 92 1 92 1 92 '
_ 1Y% Ly Ly
=32 0 BT g AT giom
3 y1s 3 Y3 3yis

the Hill tensor H is defined as
H =a;N; ® Ni + asNy ® Na + azN3 ® N3
+ Yo(ag — ap — a2) (N7 ® Ny + Ny ® Np) + a7 (N7 © Ny + Ny © Ny)
+ 1/2(1 — g — a3)(IN2 @ N3 + N3 @ Na) + ag(Na © N3 + N3 © Ny)
+1/2(ap — a3 —a1)(IN1 ® N3 + N3 ® Np) + ag(N1 © N3+ N3 © INy)

(2.76)
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with the outer product ® defined by (A® B) : X = 1/2(AX BT + BXTAT) for second order
tensors A, B and X. From a given effective stress 1), the equivalent stress according to Hill’s
yield criterion is then defined as via the anisotropic quadratic norm

3 3
Sy = \/;/n oy = \@IIWIIH . 2.77)

The isotropic von Mises equivalent stress is retained for oy = @y = a3 = 2/3and a7 = ag =
a9 = 1/3 in which case H = Pg,. In any case, H includes a deviatoric projection, i.e. H = Py, :
H = H : Pq4., and therefore Hill’s yield criterion is also insensitive to hydrostatic pressure.

Pressure Sensitive Yield Functions Any of the above yield functions can be enhanced
with a pressure term by

Ve = Seq + Btrn | (2.78)

with a material constant 5 and 2/;1 chosen as (2.73), (2.74) or (2.77). Based on the von Mises
criterion, the resulting pressure sensitive yield function is called Drucker—Prager yield function
and enhancing the Tresca yield function with a pressure sensitive term results in the so-called
Mohr—Coulomb yield function.

2.3.4.5 The Plastic Spin

As discussed in Section 2.3.4.1, the rotational orientation of the unstressed intermediate config-
uration is set to be isoclinic, meaning that axes of the substructural material do not rotate. In the
context of anisotropic Hill-type plasticity, these axes are defined by the triad n;. Let w denote
the total spin of this triad between the reference and the intermediate configuration, also called
substructural spin. This substructural spin can be decomposed into two contributions

w=W,-Q, (2.79)

where the sign in this decomposition is obviously arbitrary, since £2,, remains undefined to this
point. The minus-sign is chosen out of convention, see e.g. [46, 47, 222, 250]. While W, de-
scribes the spin of the macroscopic continuum, €2, represents the relative spin of the triad n;
with respect to the macroscopic continuum. Microscopically, the directions 72; may be the result
of an anisotropy in the granular structure of a polycrystalline metal and finite plastic deformation
can influence this microscopic texture and result in said relative spin between the triad n; and
the macroscopic continuum. A common constitutive assumption on the plastic spin used e.g. in
[46, 47, 222, 250] is given by

Q, =L (XD, - D,%) | (2.80)
Yo
depending on a material parameter 7. According to (2.80), plastic spin occurs only in case of
plastic deformation (D, # 0 or equivalently ¥ > 0) and if 3 and D, are not coaxial. In an
isoclinic intermediate configuration, the total spin of the triad n; vanishes (w = 0) and therefore
(2.79) gives
W,=Q,=-L(sD,-D,%) . (2.81)
Yo
For a more detailed introduction to plastic spin including different relative spins for different
tensor valued internal variables the reader is referred to the review of Dafalias [47].
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2.3.4.6 Elasto-Visco-Plasticity

In the plasticity formulation derived in Sections 2.3.4.3 and 2.3.4.4, the plastic material response
is independent of the loading velocity since (2.70) determines the plastic flow such that >, =
Y. Hence, time acts on the evolution of the internal variables only as a path parameter. Many
materials, however, show a dependency of the resulting stress in the plastic deformations on the
loading velocity; this effect is called visco-plasticity. Contrary to (2.71), visco-plastic materials
allow the equivalent stress X to exceed the effective yield limit Y in dynamic loading processes.
Consequently, the yield function takes positive values and the plastic multiplier y defining the
evolution equations in (2.70) cannot be determined by the complementarity (2.71). Instead, the
visco-plastic flow rule

o= 0= o=
D _ . Y—p .i: . Y—p . 9] 2_82
P 0on T Tea0 T 04, (2.822)
with
0 if ¢, < 0
5 — NV , (2.82b)
iR%ﬂ —q if ¢ > 0

replaces (2.70). The particular model (2.82) was originally proposed by Peri¢ [166] and contains
two parameters, namely the viscosity p and the rate-sensitivity ¢ but many other models exist
in the literature, see e.g. Chaboche [30] for a review. It can easily be shown!, that (2.82b) is
equivalent to enforcing the complementarity

Gt <0, 4 >0, =0, (2.83)
with the dynamic yield function
P =g — (1 + p3) Y = Bgq — Y™ (2.84)

and the dynamic effective yield stress Y%, For a detailed discussion on dynamic yield surfaces,
the interested reader is referred to Ristinmaa and Ottosen [186]. With the concept of dynamic
yield functions, visco-plasticity (2.83) has formally the same complementarity structure as rate-
independent plasticity (2.71) (simply by replacing ¢, with gbgy“) and therefore similar numerical
techniques can be used. In the context of thermomecanics it is important to note, that viscosity
1 and rate-sensitivity e typically increase with increasing temperature [S7].

2.4 The Heat Conduction Equation

The constitutive equations of Section 2.3 can be used to derive a simplified form of the energy
balance equation (2.33) called heat conduction equation. The derivation presented in the fol-
lowing is based on the more general elasto-plastic constitutive relations of Section 2.3.4. The
corresponding thermo-elastic formulation can easily be obtained by setting F}, = I and neglect-
ing all terms associated with the internal variables {F},, s, o }. In a first step, the Legendre

I'To show equivalency of (2.83) and (2.84) with (2.82b) set qﬁgy“ = 0 and solve for 4.
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transformation (2.37) is used to eliminate ¢ from (2.33) to obtain
¢/+Tﬁ+Tn:%S:C—VX-Q+R. (2.85)
Inserting the free energy (2.58) and making use of relations (2.60)-(2.62) results in
Tn=-Vx - Q+R+Din . (2.86)

The entropy rate 7 can be expressed by the free energy W through the total time derivative of the
constitutive relation (2.60) to obtain

0P . o5 . ODing
srapl = ~Vx-Q+ Rt D+ T35 : C =Tt

In the following, it is assumed that W, and W, in (2.58) only depend linearly on the temperature
and the thermal free energy W, takes the form

Uy =cy ((T —Ty) =T (Z» : (2.88)
Th

with a reference temperature 7;. Finally, the heat source due to plastic work is approximated as

a,Z)int
oT

=T

(2.87)

Dy — T ~xX:D, , (2.89)
using a dissipation factor xy which for metals typically is in the range of x € [0.85, 1]. The dis-
sipation factor x is sometimes also termed Taylor—Quinney factor referring back to the original
publication of Taylor and Quinney [213]. As in most computational methods, x is assumed to be
constant throughout this thesis although some experimental evidence in e.g. [210, 247] points at
a dependency of the plastic strain. Stainier and Ortiz [210] suggest, that the heat source due to

plastic deformation actually follows the variational form (2.87) for certain materials. Inserting
(2.88) and (2.89) in (2.87) yields

. oS .
CVTZ—VX'Q+R+X23Dp+Ta—TIC, (2.90)

which is commonly referred to as the heat conduction equation.

2.5 Strong Form of the Initial Boundary Value Problem

The derivations above described the balance laws and constitutive behavior of a material point
within the body defined by the reference domain {2 or the displaced configuration §2;. Since,
in practice, bodies are of finite extent, they interact with their surrounding at the boundary
08 by so-called boundary conditions. To formulate boundary conditions, the boundary 0€2
is split into the sets I'y, I',, I't and I'y with prescribed displacements, traction, temperatures
and heat fluxes. The boundaries form a partition of the entire boundary 0f) in the sense that
T,ul, =TtuU F_q =0Qand ', N T, = 't N Ty = . Not only in space, but also in time
only a limited section defined by the interval [0, ¢.,q] is investigated. When setting “boundary”
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conditions on this time interval, it follows from the principle of determinism, that only values
at the beginning of the time interval (chosen to zero without loss of generality) may be set by
so-called initial conditions. As the balance of linear momentum (2.25) is a second order differ-
ential equation in time, initial conditions are required for both displacements and velocities. On
the contrary, the heat conduction equation (2.90) is of first order in time and hence only requires
initial temperatures, but no initial rates.

The initial boundary value problem (IBVP) of thermomechanics summarizes a set of equa-
tions to determine the motion and temperature evolution of a body over time and consists of the
balance of linear momentum (2.25) and the heat conduction equation (2.90) complemented by
initial and boundary conditions. Formulated in reference configuration, the strong form of the
IBVP reads

Vx P+ b() = poQ in QO X (Oytend] , (2913.)
oS . .
“Vx Q+R+xZ:Dy+ T C =0T in Qg % (0, tena] (2.91b)
u=1u on Ty x (0, tena] (2.91c¢)
PN =t, on Ty x (0, tend] , (2.91d)
T="T on 'y % (0, tena] (2.91e)
Q N=0, on Ty x (0, tend] (2.91f)
U = Uy in 2 x0 , (2.91g)
v = g in 2 x0 , (2.91h)
T="T, inQyx0 , (2.91)

where a hat (A) indicates a given boundary condition and w, vy and 7 denote the given ini-
tial conditions of displacement, velocity and temperature, respectively. The boundaries ', and
I'r prescribing the state variables w and 7' are referred to as Dirichlet boundaries, whereas I',
and I'y prescribing traction and heat flux, respectively, are referred to as Neumann boundaries.
The conservation of mass and the balance of angular momentum are not stated explicitly, since
they can easily be enforced by (2.15) and (2.26). Moreover, any constitutive relation derived in
Section 2.3 can be used to link displacements and temperatures with the first Piola—Kirchhoff
stress P and the heat flux ). Materials with internal variables of state such as plasticity (see
Section 2.3.4) require initial data for these internal variables, from which point on their evolu-
tion is governed by evolution equations (e.g. equations (2.70) and (2.81)). Commonly, the initial
plastic deformation gradient and hardening variables are set to F,(X,0) = I, a;(X,0) = 0 and
Oék(X s 0) =0.

2.6 Weak Form of the Initial Boundary Value Problem

In a first step towards a finite element method, the strong form of the IBVP (2.91) is transformed
into its alternative, so-called weak form. Applying the method of weighted residuals, weighting
functions (or test functions) du and 6T are introduced for the displacement and temperature field,
respectively. In analogy to the method of virtual displacements, these quantities are sometimes
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2 From Continuum Thermomechanics to a Finite Element Discretization

also referred to as virtual displacements and virtual temperatures. The strong form of the balance
of linear momentum (2.91a) is then equivalent to finding w, such that

/ (poa —Vx - P+by) - dud=0 VYou . (2.92)
Qo
Next, divergence theorem is applied to the stress term resulting in

/pga-5udQ+ P:VX5Ud§2+/
Qo

bo-éudQ—/ (PN)-sudl =0 Vou .
Qo Qo

(2.93)
This weak form does, so far, not account for the boundary conditions (2.91c) and (2.91d). To
incorporate the Dirichlet condition (2.91c), the function space U,, of admissible displacements
w is set to satisfy the (2.91¢), i.e.!

Qo

ulp, =u YuelU, . (2.94a)

Conversely, the admissible variations du vanish at the Dirichlet boundary, as the displacement
values are already set by (2.94a) resulting in the fest space V,, with

Sulp, =0 YueV, . (2.94b)

Finally, both ¢, and V,, are required to be sufficiently smooth for (2.93) to make sense. In prob-
lems of linear elasticity, this would require U, and V,, to be in the Sobolev space [H*(£)]"dim
of square integrable functions with square integrable first derivatives. In problems of nonlinear
elasticity, this is no longer a suitable space for the displacement field, but slightly stricter re-
quirements depending on the employed hyperelastic constitutive law occur and restrict U, to
so-called Orlicz—Sobolev spaces. Since strict mathematical proofs for the derived coupled non-
linear finite element formulations derived in this thesis are beyond its scope, an exact definition
of U, and V, is omitted here. Further discussions and exemplary spaces for certain hyperelas-
tic materials can be found in the mathematical literature of, e.g., Ball [10], Kikuchi and Oden
[120], Marsden and Hughes [143]. By (2.94b), the contribution of the Dirichlet boundary I';, to
the boundary integral in the weak form (2.93) vanishes; on the remaining Neumann boundary
[',, the traction PN to be integrated is given by the Neumann data (2.91d). Replacing this given
boundary value, the weak form of the structural balance equation reads: Find u € U, such that

oW, = poa-éudQ—i—/ P :VxoudQ— bo-oudl— | ty-dudl =0 YouecV, .
Qo

Qo Qo Lo
(2.95)
It can readily be shown that any sufficiently smooth solution to the weak form (2.95) is also a
solution of the strong form of the structural balance comprised of (2.91a), (2.91¢), (2.91d) and
vice versa (see e.g. Hughes [111]). Note, that the stress P in (2.95) is a nonlinear function of the
displacement and may as well depend on the temperature and internal variables of state in the
framework of Section 2.3.

'Tt is not necessary to incorporate the Dirichlet boundary condition directly into the trial and test function
spaces. Alternatively, they can be included in a weak sense, see e.g. Nitsche [158].
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2.6 Weak Form of the Initial Boundary Value Problem

Remark 2.3 (Principle of minimum total potential energy). The weak form (2.95) may alterna-
tively be derived by minimizing the potential energy in the system. Accordingly, for an isothermal
hyperelastic solid, the displacement field u is the minimizer

u:argmin{/ \IfdQ—/ bo-udQ—/ £0-udr} . (2.96)
uvu|Fu:a Q0 QO led

The weak form (2.95) is thereby equivalent to the first variation of (2.96) with respect to the
displacement field. However, not all mechanical problems derive from a potential especially
not those including dissipative effects, with one prominent example being plasticity. In a more
general setting, plasticity may be re-cast as a minimization problem of an incremental poten-
tial comprised of the elastic potential (2.96) plus the dissipation (2.63). The minimization is
then additionally subjected to the Karush—Kuhn—Tucker inequality constraints (2.71), see, e.g.,
Carstensen et al. [28] for the isothermal case and Yang et al. [246] for an application to thermo-
plasticity.

In complete analogy to the structural problem above, the weak form of the heat conduction
(2.91b) can be derived by multiplication with a test function §7', integration over the domain and
subsequent integration by parts, which results in

/ eTOTdQY — | Q- V6T d
5 SQO o (2.97)
—/ R+x¥ : D, + T+ :C|éTdQ — Q N6TAl =0 V6T .
Qo aT Qo

For (2.97) to make sense, the temperature 7" and its variation 07" are chosen from sufficiently
smooth spaces Ut and Vr, respectively. Moreover, satisfaction of the Dirichlet boundary condi-
tion (2.91e) is included directly into U and Vr by

Tlr, =T YV Telr , (2.98a)
6T|r, =0 YOT € Vr | (2.98b)

similar to the displacement Dirichlet condition in (2.94). The remaining boundary integral in
(2.97) is substituted by the given Neumann data (2.91f), which yields the weak form of the heat
conduction equation: Find T" € U, such that

SWr = / e, T6T dQ — / Q- VxiTdQ
Qo QO

os .

(2.99)
—/ (R+XE:DP+T—:C>6TdQ—/ Q0T dl' =0 YT € Vr .
Qo Fq

orT

As for the structural problem, any sufficiently smooth solution to the weak form (2.99) is also
a solution of the strong form (2.91b) in combination with the boundary conditions (2.91e) and
(2.91f) and vice versa. However, the weak form has weaker differenciablity requirements on the
temperature field, since only first spatial derivatives are required, compared to second derivatives
in the strong form (2.91b).
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2 From Continuum Thermomechanics to a Finite Element Discretization

2.7 Continuum Mechanics of Thermomechancial
Contact

The evolution of state variables within a single body, i.e. displacement and temperature, po-
tentially accompanied by internal variables of state, is governed by the continuum mechanical
description derived in Sections 2.1 - 2.3. For systems of multiple bodies, additional contact con-
straints have to be satisfied to ensure that, for instance, bodies do not penetrate. Within this
section, a thermodynamically consistent continuum mechanical description of contact problems
is derived following the same steps as in the derivations for the bulk of a single body: First, a
kinematic description of contact problems is summarized in Section 2.7.1 analogously to the
kinematics of the bulk continuum derived in Section 2.1. Next, Section 2.7.2 introduces balance
laws and the entropy inequality at the contact interface (cf. Section 2.2). Finally, contact con-
straints are incorporated in terms of contact constitutive laws in Section 2.7.3 (cf. Section 2.3).
This methodology to derive contact constraints based on conservation and constitutive laws was
introduced by Moreau [153] for isothermal contact problems to tackle such problems by math-
ematical tools of convex optimization. A more accessible introduction may be found in Curnier
[42] and an extension to thermomechancial contact problems in Oancea and Laursen [159] and
Laursen [131]. The thermodynamical derivation of the contact laws presented hereafter mainly
follows the one originally presented by Oancea and Laursen [159].

2.7.1 Contact Kinematics

For simplicity of presentation, a two-body contact problem as depicted in Figure 2.3 is con-
sidered, however extension to multiple bodies in contact is straightforward. The body Q((]l) will

gp,gl) XM s M)

gp,@ : X@ s 2@

Figure 2.3: Illustration of a two-body finite deformation contact problem.

be denoted as the slave body and Q(()z) as the master body and the same notation will be ap-
plied for coordinates, boundaries, and so on. This syntax is adopted from classical methods and
literature on computational contact mechanics; its original meaning, however, may not be appli-
cable to all methods developed within this thesis. If, for a domain, boundary or function space,
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2.7 Continuum Mechanics of Thermomechancial Contact

no superscript is given, the union of the respective quantity of slave and master side is used,

e.g. = Qél) U Q(()z) orUld, = U @UP . To account for the potential contact between the two
bodies, the boundary 898) is split into the Dirichlet and Neumann boundaries r® e Fg), F((f)
as introduced in Section 2.5 and the additional boundary 'Y on which contact between the two

bodies may occur. These boundaries form a partition of the entire boundary GQéi) such that

rur? ur? =19 ur? urd = 90 | (2.100a)
and
F(i) ATW = 17O ATO = 1O ATO =
A "Z (2.100b)
F()mr() F(T)mrg)zré) ro—gq .

The corresponding contact boundary in the displaced configuration is obtained via the motion
ol as 7 = o (T?). To quantify relative positions and motions of the current contact bound-

aries at any time ¢, a smooth mapping
xi i) =P, 2V @@ = x(2V) (2.101)

is defined for a point on ") on the slave surface 7§1) by projecting 2! along its current outward

normal n") onto %(2), see Figure 2.3. For sufficiently smooth bodies in contact, this mapping
can be assumed to exist in the zone of closed contact and a finite vicinity thereof. Vice versa,
no contact may occur at (! if x,(z*)) does not exist. For simplicity, x; is assumed to be well-
defined on the entire fyél) in the following. Moreover, the unique contact normal n. = n"(z")
will be chosen as the slave-sided normal if not indicated otherwise. At any point on the potential

contact surface %(1), the normal distance or gap between the two bodies is defined as

(V) = —(zW —2@) . n | (2.102)

where positive values indicate separation of the two bodies, contact yields a zero values and neg-
ative g, values are obtained if the bodies penetrate. A frame-indifferent measure of the relative
tangential velocity can be defined as

ve(V) = — (I —non) [a® - 3@ 4 gn(w“))n] . (2.103)

based on the frame-indifferent relative velocity (in brackets) as proposed by Curnier et al. [43].
Alternatively, the relative tangential velocity may be defined in terms of convective coordinates
on the contact surfaces, see e.g. Laursen [131], Schweizerhof and Konyukhov [191].

2.7.2 Conservation Laws and Entropy Inequality at the Contact
Interface

On the contacting surfaces, contact tractions such as the contact pressure in normal direction

occur. The spatial Cauchy contact traction ) can be evaluated from the Cauchy stress tensor
(1)
as

o within a body 7 and the unit outward normal n) on 7.

t?) = eWn® (2.104)
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2 From Continuum Thermomechanics to a Finite Element Discretization

and, for an infinitesimal surface element in the contact zone, the balance of linear momentum
(cf. Section 2.2.2) reads
tW (W) = —t@(z®@) . (2.105)

As the contact tractions only differ in sign, a unique definition of . = t((;l) will be used hereafter,

such that both the contact traction as well as the kinematic quantities in (2.102) and (2.103)
are defined on the slave side. The chosen slave side has no significant implication whatsoever
in the continuous setting and is merely introduced to fix notation. To be able to distinguish
between the contact non-penetration condition (in normal direction) and effects of frictionless or
frictional sliding (in tangential direction), the contact traction is split in its normal and tangential
component, the contact pressure p, and tangential traction ¢, respectively:

po=m-t (2.106a)
tr=I—-—nen)t. . (2.106b)

In addition to the balance of linear momentum (2.105), the conservation of energy (cf. Section
2.2.4) needs to hold at the contact interface. For the course of the derivation it is assumed, that
the contact interface may store an internal energy e. per infinitesimal area d%(l) at temperature
T.. Though it will not be used in the methods derived later on, this concept of contact surface
energies is still introduced here to clarify the derivation. Mechanically, such an internal energy
may include elastic deformation of asperities when modeling rough surfaces in contact or ther-
mal energy of debris created by abrasive wear. In rate form, the conservation of energy at the
contact interface then reads

€c = pngn +tc- v+ qél) + q((:Q) s (2107)

where the first two terms on the right hand side represent the mechanical work the contact trac-
tion in normal and tangential direction, respectively, and the third and fourth term denote the
spatial contact surface heat flux
¢V = q . n® (2.108)

of the slave and master side according to Stokes’ heat flux theorem (2.29) with a positive sign,
if a heat flux appears from the body into the contact zone.

Finally, the second law of thermodynamics (cf. Section 2.2.5) should also hold at the contact
interface, meaning that in analogy to (2.35), the entropy inequality reads

&

with the specific entropy 7). of an infinitesimal surface area dvél). The two fractions introduce the
entropy flux into the contact surface according to (2.34). Contact energy, entropy and temperature
are linked to a contact (Helmholtz) free energy V. via the Legendre transformation

Ve, =e.—Tene (2.110)

similar to the free energy in the bulk material introduced in (2.37). Using this contact free energy,
the contact entropy rate can be eliminated from (2.109) after multiplication with the positive
(absolute) temperature 7. to obtain the contact dissipation

(1) 52)

AN PN L 9e
DC - eC TCTIC ‘PC —"_ TC —"_ T(2)

0 T.>0 . 2.111)
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2.7 Continuum Mechanics of Thermomechancial Contact

2.7.3 Constitutive Equations at the Contact Interface

The question of contact constitutive equations is now how to define the contact free energy W,
as well as the contact heat fluxes q((;i) such that the balance of energy (2.107) and the entropy
inequality (2.111) hold. Generally, the free energy V., or equivalently the internal energy e,
may depend on the relative displacement of the contacting surfaces, i.e. g, in normal direction
and a tangential relative displacement u, = (I —n ® n)(u®(X®) — 4@ (X ), as well as
the temperature 7. The relative tangential displacement w. is then commonly split addititively
into an “elastic” and “plastic” part, where the former is associated with elastic deformation of
the asperities in contact and the latter is associated with frictional sliding, and hence only the
“elastic” part enters the free energy, see e.g. Laursen [131], Wriggers [240] for a discussion on
this split'. However, the energy stored in elastic deformation of asperities is usually negligibly
small and consequently the contact free energy is assumed in the following to depend on the
normal distance and contact temperature only, i.e.

U, = Ue(gn, To) - (2.112)

To avoid non-physical penetration of the two contacting bodies, any negative gap g, < 0
(i.e. penetration) can be associated with an infinite energy W. = oo; on the contrary, two sepa-
rated bodies, i.e. g, > 0, are unaffected by the contact condition. This relation can be achieved
by setting

Ve = In_(gn) + Ve (T2) (2.113)
with the indicator function
0 ifx >0
In_(z) = { nr=" (2.114)
oo else

Remark 2.4. Alternatively, a regularized contact formulation can be obtained by replacing the
indicator function with a penalty potential V. .., e.g. a quadratic potential

1
Wepen(gn) = 5éc (max (0, —g))” (2.115)

with a penalty parameter €. > 0. Such a regularization may be physically justified by elastic
compliance of asperities in contact if the penalty parameter €. or V¢ pen(gn) in general is well
chosen, see e.g. Sitzmann et al. [208] for a comparison with experimental data. Often, how-
ever, this argument is put forward to justify any regularized numerical method, without careful
consideration of the "physical” values of the penalty parameter.

Substituting the definition of the contact free energy (2.113) as well as the balance of energy
(2.107) in the dissipation inequality (2.111) yields

_ Oln—(gn) \ . Ve a0y, & o
DC - (pn - a—gn gn+ _TIC - 8TC TC+tT"UT+m0 +T(2)0 Z 0 N (2116)

I'The terminology of elastic” and “plastic” tangential displacement is commonly chosen in reference to elasto-
plastic material behavior, whereby only a part of the displacement (the elastic one) is recovered under unloading. It
should not be confused with the type of deformation, the asperities in contact undergo.
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2 From Continuum Thermomechanics to a Finite Element Discretization

with 80 = T4 — T, In the case of exact enforcement of the non-penetration condition by the
indicator function (2.113), the derivative with respect to the gap g, has to be interpreted as a
subdifferential. Using the same arguments as in Section 2.3.3, equation (2.116) has to hold for
any g, and T, such that the terms in parentheses give rise to the contact constitutive equations

Po € Olz(9.) , 2.117)
Agn
oW,

TR (2.118)

Again, due to the nature of the indicator function, the constitutive equation for normal contact
pressure takes the form of a subdifferential inclusion, which, as shown e.g. by Curnier [42], is
equivalent to the Hertz—Signiorini-Moreau conditions

20, =<0, pugn=0, (2.119)

commonly enforced at the contact interface. If instead a penalty potential, e.g. (2.115), is used in
normal direction, the normal contact pressure follows directly from the derivative of the penalty
potential as p, = 9¥e.pen/ag,. The remaining contact dissipation in (2.116) reads

(1) (2)

L0 + 2507 >0 . (2.120)

De =t vt 75y

As for the elasto-plastic material in the bulk continuum (cf. Section 2.3.4.2), non-negative dissi-
pation can be ensured by postulating a convex dissipation potential Z. (v, "), §®)) and deriving
the tangential contact traction as well as the entropy fluxes via the subdifferential inclusion

0’ (1) )
tT, m, m € 8:6(%, 0 ,9 ) . (2121)

Following Moreau [153], positive dissipation is ensured for a convex potential =. for which
=.(0,0,0) =0 and (0,0,0) € 0=,(0,0,0) . (2.122)

A simple choice for the contact dissipation potential that satisfies these conditions is
- - % (i)} 2
Ee = ptlpal[|v<] +21W CR (2.123)

with a potentially temperature dependent coefficient of friction 1 and commonly pressure de-
pendent heat transfer parameters v(*) on the slave and master side, respectively. In terms of the
tangential contact traction ., the subdifferential inclusion (2.121) with the dissipation potential
(2.123) is equivalent (see again Moreau [153]) to Coulomb’s law of friction

b= bl —ulpal SO . ve— =0, B>0, 65=0, (2.124)
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2.7 Continuum Mechanics of Thermomechancial Contact

which bears great similarity with the material constraints of plasticity in (2.70) and (2.71). The
consistency parameter (3 therein takes the role of the plastic multiplier . In a fully thermome-
canically coupled problem, the coefficient of friction may be temperature dependent; a simple
dependency is given in Oancea and Laursen [159] as

(19c - Td)2

4/ 2.125
(T —To)? (2.125)

:u(ﬁc> = Mo
where the apparent coefficient of friction decreases quadratically from a reference value p at 7
to zero at Ty depending on the the maximum of the temperatures of the two contacting surfaces
J. = max(TM (xM), T (£?)). The damage temperature T} is usually chosen to be the lower
melting temperature of the two contacting materials, since at this point, friction is no longer
dominated by solid shearing but rather viscous effects in a thin film of molten material. The
second part of (2.123) yields, via the inclusion (2.121), the contact heat fluxes

g = A9 (2.126)

The convexity requirement of the dissipation potential to ensure positive dissipation necessitates
fy(i) > 0. Further, no heat flux at the contact interface should occur if the bodies are not in contact.
Continuity of the problem formulation then depends upon v = 0if p, = 0, as p, = 0 holds for
separated bodies and p, increases continuously from there when bodies come into contact. By
(2.126), then also the contact heat fluxes are zero for separated bodies and evolve continuously
with p,,. Throughout this work, a simple linear function for

7D = |p|7@ (2.127)

with constants 59 > 0 will be adopted for demonstration purposes, however, any nonlinear rela-
tion satisfying the requirements above may be employed as discussed at the end of this section.
Lastly, it will be assumed that the thermal energy stored in the contact interface is negligible,
e. = 0, wherefore the of energy at the contact interface reduces to'

te-ve+qV+¢P =0, (2.128)

and the temperature of the contact interface 7, can be eliminated from (2.126) to directly define
the contact heat fluxes as

¢V = Belpal[T] = dete - v (2.1292)
¢ = =Belpal[T] — (1 = 6o)te - vr (2.129b)

in terms of the temperature jump across the interface [1] = T — (T® o x,) and the two
constants Dm @) W
A gl
c=————=2>0, 0¢=——7 €[0,1] , 2.130
g S0 150 = 50 1 7@ [0,1] (2.130)
as defined by Oancea and Laursen [159]. The first one, ., represents a contact heat conductivity
resulting in a heat flux from the hotter to the cooler contacting body driven by the temperature

I'The term p, g, in (2.107) drops out due to the complementarity (2.119).
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2 From Continuum Thermomechanics to a Finite Element Discretization

difference. Due to the linear law (2.127), this part of the heat flux is linear not only in the tempera-
ture difference [17] but also the contact pressure |p,|. Yet, more sophisticated models of interface
heat conductivity may be found in the literature. For instance, Wriggers [240] distinguishes three
sources of heat conduction across rough surfaces: conduction through contacting asperities, heat
conduction in enclosed gas and radiation. In that case, the product /. |p,| in (2.129) needs to be
replaced by a nonlinear function f(|p,|) > 0 with 3.(0) = 0. For the numerical methods de-
rived Chapters 4 and 5, this nonlinearity does not induce significant difficulties and is therefore
omitted in the following. The second parameter in (2.129), d., distributes the heat generated by
frictional work to the two bodies in contact. In the limit cases of 6. = 0 or §. = 1 the entire
frictional dissipation is converted to heat in on the master or slave side, respectively.

2.7.4 Weak Forms including Contact

Starting point for the derivation of weak forms is again the strong form of the initial boundary
value problem. The local balance of linear momentum and heat conduction equation as well as
the Dirichlet and Neumann boundary conditions and initial data remain unaltered to the defi-
nition in (2.91). As done in Section 2.6, multiplication of (2.91a) with a test function and sub-
sequent integration by parts yields the weak form of the balance of linear momentum as: Find
u € U, such that

2
W, — Z /W’ t . suVdy=0 YéuecVv, (2.131)
=1 c

with 0W, as defined in (2.95). Note, that the contact integrals are, in contrast to the all other

terms, written in the current configuration using the Cauchy traction vectors according to (2.104).
However, this is only a matter of notation at this point, as the surface integral on %(i) could be
reformulated equivalently as an integral of Piola traction t((f;i = PON® over I'Y” in terms by
means of Nanson’s formula (2.5). Exploiting the balance of linear momentum across the contact
interface (2.105), the contact terms may be written as a slave-sided integral only, in which case

(2.131) becomes: Find w € U, such that
W, — /(1) t. - [ou]dy=0 YoueV, . (2.132)
Yo

Similarly, the weak form of the heat conduction equation (2.99) has to be extended by the contact

heat fluxes qéi). If the contact integrals are again written on the slave side only, the weak form
reads: Find T' € U, such that

Wi + / AT 4 P (T 0x,)dy =0 VT € Vi (2.133)
Ye

In analogy to (2.132), in which the master-sided contact traction ) has been eliminated via the

balance of linear momentum (2.105), the master-sided contact heat flux qéz) can be eliminated
by virtue of the energy balance at the contact interface (2.128) to express (2.133) in terms of the

slave-sided heat flux only:

W + / L AIOT] — b o 6T® ox) dy =0 V6T € Vy (2.134)
;

C
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In addition to the satisfaction of the weak forms (2.132) and (2.133) (or (2.134)), the contact
constraints at the interface have to be met, i.e. the Hertz—Signiorini-Moreau conditions (2.119),
Coulomb’s law of friction (2.124) and the heat constitutive equations for the heat fluxes (2.129)
have to be satisfied.

2.8 Finite Element Discretization

Even in the absence of contact, only in very limited, simple cases the IBVP (2.91) can be solved
analytically; for most practical applications, approximate solutions are constructed using numer-
ical methods. In solid mechanics, the by far most common method to do so is the Finite Element
Method (FEM), which will also be used in this thesis. The introduction of the discretization given
in this section is not meant as an embracing introduction to the vast field of FEM, but to provide
a consistent basis for the methods derived in the following chapters. At this point, the derivation
of the FEM is restricted to thermo-elasticity without contact, as the extension to elasto-plasticity
is discussed in Chapter 3 and to thermomecanical contact problems in Chapters 4 and 5. For a
thorough introduction to the mathematical aspects of finite element methods, the reader is re-
ferred to, e.g., Strang and Fix [211] and to Hughes [111], Zienkiewicz et al. [252, 253] for an
engineering perspective. In line with the scope of this thesis, an introduction to nonlinear finite
element methods is given by Wriggers [241], applications to nonlinear and inelastic materials
can be found in Bonet and Wood [19], de Souza Neto et al. [57], Simo and Hughes [200] and to
contact mechanics in Laursen [131], Wriggers [240].

2.8.1 Spatial Discretization

While the weak forms derived in the previous section are still equivalent with the strong form
(2.91), they form the basis of a class of numerical methods, so-called Galerkin methods approxi-
mating the solution u and 7. Therefore, discrete, finite dimensional sub-spaces U, ,, Vun, Ut p,
and Vr, of the infinite dimensional function spaces U,, V,, Ur and Vr are introduced and
the weak forms (2.95) and (2.99) are required to hold only for these sub-spaces. For simplicity
of presentation, this section assumes homogeneous Dirichlet boundary conditions for both dis-
placements and temperatures, and consequently U, = V, and Ut = Vr. The discrete test and
trial spaces are spanned by a set of n basis functions N; : {2y — R, such that

Ndim
U, DU, =Vup = [ pan{Ni}} , (2.135a)
i=1...n

1=

Ur DUrp = Vi = span{NZ—} ) (2.135b)

i=1..

It is, however, not mandatory to use the same discrete function spaces for both the trial as well
as the test functions; if they are chosen equal, the resulting method is commonly referred to as a
Bubnov—Galrekin method, otherwise as a Petrov—Galerkin method. In accordance with (2.135),
the displacement and temperature field as well as their variations can be represented by linear
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combinations of basis functions N; with discrete values d;, dd; € R"dim and T,;,0T; € R by
w(X,t) ~ up(X, 1) ZN (), du(X) & duy(X) = ZNZ-(X)éd,» . (2.136a)

T(X,t) ~ Th(X,t) ZN . O0T(X) ~ 0TH(X ZN 6T; , (2.136b)

where the dependency of approximate fields on space and time is split to the basis functions and
discrete values, respectively. The time dependency of the discrete test test functions are dropped
at this point as they are supposed to take arbitrary values in the weak form anyway. Insertion
of the approximation (2.135) in the weak forms (2.95) and (2.99) results in a set of coupled
nonlinear equations in the discrete values d; and T; and their temporal derivatives. Subsequently,
two common methods to construct approximation spaces (2.135) are discussed.

2.8.1.1 Classical Finite Elements

The far most common numerical method for computational solid mechanics is the (continuous)
finite element method, subdividing the computational domain into non-overlapping elements of
simple shapes, usually triangles and quadrilaterals in two dimensions and tetrahedra or hexahe-
dra in three dimensions, and defining polynomial basis functions on these elements which are
continuous across element boundaries. To fix ideas, the following derivation assumes quadri-
lateral and hexahedral elements only. Let therefore 7, be a finite element mesh on €2y with a
characteristic element length h and 75, a quadrilateral or hexahedral element within this mesh,
such that

Qo ~ Qs =J7x . (2.137)

with n being the number of elements in the mesh. For any element 73, 5, there exists a mapping
<I>Th’ . 1 (=1, 1)"im — 73, of a bi-unit cube reference element with parametric coordinates &;,. . .,
Enas, 1O the actual element 73 ;. On the reference element, polynomial basis functions of degree
p in each direction are defined to span Q, = span,, ., {{" - . e dim 1 Commonly, a set of
element basis functions is chosen as Lagrange polynomials interpolatlng a grid of p 4+ 1 nodes
in each parametric direction; the one-dimensional basis functions of first and second order are
illustrated in Figure 2.4. The basis functions on the n4;,-dimensional bi-unit cube follow from
those by tensorization, i.e.

Ndim

N = [V (2.138)

with the multi-index i. In the isoparametric concept, the same basis functions are used to con-
struct the mapping ¢, , of reference element to the element 73, ; in Th. Let therefore X; be the

coordinate of the i-th element node interpolated by the basis function Nj; then, (I%h, . 1s set as

Or (=L)"Y NT(OX; (2.139)

With this mapping at hand, finally the global discrete trial and test spaces can be defined as
Uup = Vup = {un € [C°(Qop)]" ™| unls,, 0 sy, € [Qp]"™ smip € Tu} . (2.140a)
Urp =V = {Th € C'(Qo ) | Thlry 0P €Qp T €Tn} . (2.140b)
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Figure 2.4: Univariate Lagrange polynomial basis functions of first and second order on the reference domain
(—1,1).

where C" continuity across element boundaries can easily be achieved by elements sharing nodal
degrees of freedom on element boundaries. To guarantee the discrete function spaces to be in
sufficiently smooth, the isoparametric mapping ¢, , for every element 7, ;. has to be at least C L
smooth, orientation preserving, invertible, and one-to-one onto 7, see Hughes [111, Section
3.3].

Although the present thesis employs quadrilateral and hexahedral shape elements with the
described tensor product structure exclusively, two other classes of elements commonly used
should be commented on; a thorough introduction can be found in any textbook, e.g. the ones by
Hughes [111], Quarteroni and Valli [179]. First, finite elements of quadrilateral and hexahedral
shape can be constructed from the aforementioned by omitting the nodes on element faces and
the element interior. This results in so-called serendipity elements with the polynomial basis
T, of degree p. Of course, first order elements do not contain any interior nodes, such that
T, = Q. Second, finite elements of triangular and tetrahedral shape (sometimes referred to as
simplex elements) in two and three dimensions, respectively, can be constructed with the basis
functions in [P, containing all polynomials of degree p. For p = 1, this can be achieved using
Lagrange polynomials interpolating the corners of the triangle or tetrahedron, and for higher
orders, interpolatory nodes are inserted on element edges. Figure 2.5 illustrates the reference
elements of tensor product finite elements, serendipity elements and simplex elements in two
dimensions.

Semi-Discrete Balance of Linear Momentum The discrete function spaces (2.140), or
more generally any discretization of the type (2.136), yield the semi-discrete (discretized in
space, continuous in time) weak form of the balance of linear momentum (2.95) as

5Wu,h = / Poap, * 5’U,h dQ2 + P VX(;’U,}L d€2
o o (2.141)

—/ b0-5uth—/ fo-éuhdfzo ‘v’éuhevu,h .
Qo,n Ton
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Figure 2.5: Two dimensional reference elements and nodes (marked as dots) for different Lagrange finite elements:
First row p = 1, second row p = 2, first column tensor product elements, second column serendipity
elements, third column simplex elements.

The stress P therein depend on the discrete approximation of the displacement field w; (or
the gradient thereof) as well as the discretized temperature field 7}. In the presence of internal
variables of state, P additionally depends on a discretization «;, of the involved internal vari-
ables, where the exact algorithmic treatment of these dependencies is the topic of Section 3. The
discrete integrals, in general, cannot be evaluated analytically, but are approximated by Gaus-
sian quadrature on each element using p + 1 Gauss points in each parametric direction. As the
isoparametric mapping (2.139) as well as the dependency of P on discrete displacements and
temperatures may be non-polynomial, Gaussian quadrature will not be exact. As the discrete
weak form should hold for any discrete virtual displacement duy, it can be equivalently stated
as the coupled nonlinear differential equations in time

Myd + Fyii(d, T, 0) — Fluye =0 (2.142)

wherein the vectors d and T contain all nodal displacement and temperature values, respectively.
The first term corresponds to the first integral in (2.141) and relates to inertia forces using the
constant mass matrix M. The second term, called internal force vector F, ;.;, corresponds to
the second integral in (2.141) and accounts for discrete nodal forces emanating from internal
stresses, and finally the last term F, ¢ results from external forces from the third and fourth
integral in (2.141). For brevity of notation only, the external forces are assumed independent of
the displacement and temperature field.
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2.8 Finite Element Discretization

Semi-Discrete Heat Conduction Equation Analogously, the semi-discrete weak form of
the heat conduction equation (2.99) is obtained introducing the discretization (2.136) and reads

W = / e 10T, dQY — Q - Vx0T, dQ
Qo,n

Qo,n
oS . .
_/ (R—f—XZIDP’h—FT—ZC) 5Tth—/ QuoT,dI' =0 V(SThEVT’h ,
Qo,n r

or
(2.143)
with a discretization D, ;, of the plastic rate of deformation D), to be defined in Section 3.1.
Other stresses, strains and heat fluxes therein are determined as functions of the discretized fields.
Similar to (2.142), an equivalent coupled nonlinear differential equation can be formulated as

a,h

MyT + Fri(d, T, o) — Fre(d, T, o) =0 (2.144)

where the first term reflects the heat capacity (first integral in (2.143)) with the constant heat
capacity matrix M, the internal force vector Fr ;,; accounts for heat conduction through the
second integral in (2.143) and the Fp . accounts for heat sources in the bulk and on the Neu-
mann boundary determined by the third and fourth integral in (2.143).

Locking For problems in elasticity and elasto-plasticity, it is well-known that, for low order
approximations especially, solution quality may be poor for elements with high aspect ratios,
trapezoidal shape or nearly incompressible materials. This phenomenon is referred to as locking
in engineering literature. Methods to alleviate locking effects in different pathological cases are
summarized as element technology and, to this day, constitute an active field of research. Some
of meanwhile well-established methods are (selective) reduced integration introduced [251], B-
bar methods [110], mixed methods [206], enhanced assumed strain (EAS) methods [202], and
F-bar methods [55], where only the reference to the first appearance is given. For the course
of this thesis, locking due to incompressible material behavior is of special interest as plastic
deformation in metals is assumed to be volume preserving, which naturally follows from a pres-
sure insensitive yield criterion in conjunction with an associative flow rule, see Section 2.3.4.
Simply speaking, the issue of volumetric locking originates in the fact, that the displacement
approximation by QQ; hexahedrals is not capable of representing a discrete displacement field
with point-wise constant volume, i.e. det F' = 1. If a local change of volume is associated with
large reaction forces as it is the case in incompressible elasticity or volume preserving plastic
deformation, the discrete solution behaves to stiff ("locks’) underestimating displacements and
overestimating forces, respectively.

To overcome this type of locking, first order F-bar elements as originally introduced by
de Souza Neto et al. [55] for hexahedrals and extended to tetrahedrals by Andrade Pires et al.
[4], de Souza Neto et al. [56] will be used in this thesis and the general concept of these ele-
ments shall be recalled briefly. Though a point-wise volume preserving deformation cannot be
represented by Q; elements, a constant volume evaluated at the element centers can. The idea
therefore is, to first decompose the deformation gradient within an element into a purely volu-
metric part F\, = det[F]”/*I and a deviatoric part Fy = det[F]~/*F. An assumed deformation
gradient F' within an element is then constructed from the deviatoric part of the deformation gra-
dient compatible with the displacement approximation and the volumetric part from the element
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center as

1
det Fy\ 3
© 0) , (2.145)

det F’
where a subscript (+)o denotes a quantity evaluated at the element center. Then, the Cauchy

stress o is assumed to depend on F rather than F', which, in view of (2.21), yields a different
approximation of the internal forces (second integral in (2.141)) as

F:FV,OFd: (

2
det Fy\ 3 ~
Fuw -ou= | S0 P Vxdu,dQ (2.146)
’ - \ det F’
ThETH ¥ ™h

where P = P(F) s calculated according to (2.50) replacing the deformation gradient F' with its
assumed counterpart F'. For the elasto-plastic materials introduced in Section 2.3.4, the assumed
deformation gradient is then split into elastic and plastic contributions F' = F_ F},. If additionally
the plastic flow is isochoric as it is the case for pressure insensitive yield functions with an
associative flow rule, one obtains det F, = 1 and hence

F (detFo

3 _
— detF) F.F,= F.F, . (2.147)

The modification in the evaluation of stresses is therefore applied to the elastic part of the defor-
mation gradient only, from which stresses are calculated according to (2.61).

2.8.1.2 NURBS-based Isogeometric Analysis

Since its original publication by Hughes et al. [112], so-called isogeometric analysis has been
a very active field of research. The general idea is to use spline basis functions commonly used
in computer aided geometric design (CAGD) also in numerical methods and by doing so to re-
duce the effort in generating computational meshes for finite element analysis. Within this work,
non-uniform rational B-spline (NURBS) functions, which are one of the most frequently used
approximations in CAGD, will be employed. However, most of the presented methods also trans-
fer to more recent isogeometric methods based on trimmed NURBS [189] or T-splines [11] and
locally refined discretizations based on hierarchical NURBS [224] or THB-splines [78]. Aside
from the Galerkin-type approximations applied in this work, the higher continuity of NURBS
basis functions allow to use collocation methods [9], which, however, require special attention
in case of elasto-plasticity due to the non-smoothness of the stress-strain relation and are there-
fore not considered here. In the following, only a brief and far from complete introduction to the
methods later used in this thesis are presented; for a thorough introduction to NURBS functions
and the resulting numerical methods the reader is referred to the textbooks of Piegl and Tiller
[167] and Cottrell et al. [40], respectively.

NURBS are, as indicated by the name, based on Basis-splines or B-splines. Starting univariate
splines with the parametric coordinate &, a knot-vector

E= {517 527 s afn+p+1} (2-148)

is defined by a non-decreasing series of of knots &;, where n will be the number of basis functions
and p the polynomial degree. A knot-vector is called uniform if the knots are equally spaced and
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non-uniform otherwise. In open knot vectors the first and last knot are repeated (p + 1)-times
suchthat §; = & = ... {1 and &, = &1 = - -+ = Enqpr1. Without loss of generality, it will
be assumed in the following that §; = 0 and &,,,+1 = 1. Within a so-called knot-span [§;,&;+1)
a B-spline of degree p is defined by the Cox—de Boor recursion formula

B; (&) = L& B;p-1(§) + MBiJrl,p—l(g) : (2.149)
gier - fz €i+p+1 - 5i+1
with the initial basis of p = 0 defined as
1 ifg < i+l
Bio(&) = &=L <ln (2.150)
0 else .

In the case of repeated knot-values, the fraction “0/0” is defined as 0. The B-splines B, ,, form a
partition of unity (3, B; ,(§) = 1), are linearly independent and form a basis of the spline space
Sp(E) = span,{ B; ,(£) }. By removing all repeated entries from the knot vector, the break point
vector

E={4,5,.... 61} (2.151)
of strictly increasing break points &; is obtained. An interval (&;, &, 1) is then called element, as,
in analogy to classical finite elements, the B-spline functions are defined as polynomials within
each element. The break point vector (2.151) yields n. elements. Any univariate spline basis
function is supported on at most p + 1 elements, and within every element p + 1 basis functions
take non-zero values. Across element boundaries, B-spline basis functions have a continuity of
CP~mi~1 where m; denotes the multiplicity of the break point, that is the number of repetitions of
the break point & in the knot vector Z. An exemplary B-spline basis of degree p = 2 is depicted
in Figure 2.6. Note that, due to the varying multiplicity of break points, the basis functions are
C~'-continuous at the element boundaries at £ = 0 and £ = 1, C°-continuous at ¢ = 3/5 and C'-
continuous across all other element boundaries. Spline curves iz B—spline 1N R are constructed

1 2 3 4 1
5

— By — By — DBj By—— Bs— Bg B; — By

Figure 2.6: B-spline basis functions of degree p = 2 on the uniform knot-vector = = {0, 0, 0, %, %, %, %, %, 1,1,1}.
Element boundaries are depicted by dashed lines.
based on a mapping of the parametric knot space
d
C Bgpiine 1 (0,1) > R €= ) B (X (2.152)
i
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2 From Continuum Thermomechanics to a Finite Element Discretization

using coordinates X; of so-called control points which each are associated with one spline ba-
sis function. A linear interpolation of these control points froms the so-called control polygon.
An exemplary B-spline curve employing the basis functions depicted in Figure 2.6 is given in
Figure 2.7. Note that control point are in general not interpolatory, as the basis functions are not

[ [

3 Y crn WS < | N N s VA |
2 [ -

B-spline curve

O  Control points
1 5 --- Control polygon |

5 Element boundaries
| | | | I I

1 2 3 4 ) 6 7

Figure 2.7: Exemplary B-spline curve employing the basis functions of Figure 2.6. Knot space coordinates of ele-
ment boundaries are given for orientation.

interpolatory, however, for open knot vectors, the beginning and the end of the curve are, and,
in the given case, also the control point associated with B3 is due to the multiplicity m = p of
the knot £ = 3/5. The resulting spline curve inherits the inter-element smoothness properties of
the underlying spline basis, such that the given curve is C'* continuous at all internal element
boundaries except the one at £ = 3/5, where only C° continuity is obtained thus representing a
sharp corner.

Parametrizations of surfaces and volumes are readily obtained by forming tensor products
of univariate spline bases. In three dimensions, let 2, H and Z denote the knot vectors in the
parametric directions &, 1 and ¢, and B; ,(§), B;,(n) and By, ,(¢) the corresponding i-, j- and
k-th univariate spline, respectively. For simplicity, the same polynomial order p is assumed in
each direction. The multivariate basis functions

i,j ,p(f n) = Bip(§) - Bj,p(77> ) (2.153a)
Bii,j), (5 1,¢) = Bip(&) - Bjp(n) - Bip(C) (2.153b)

in combination with a regular mesh of control points with coordinates X; ;) for surfaces and
X(i,j k) for volumes give rise to the B-spline parametrization of a surface o B—spline and %B_spline

as
S b entine 1 (0,1)2 = R3 =y B, ) X (2.154a)
p p (i,
%,_/
g B(i ), p(f )
7 Bptine : (0,12 = R (£,0,¢) — Y Bip(©)Bip(0)Bip(¢) Xigpy - (2.154b)
bk B(l]k)p(gnc)

50



2.8 Finite Element Discretization

Surface and volume elements on which each multivariate B-spline basis is a polynomial, can be
defined from the break point vectors E, H, Z as (&, &i41) X (), 1j+1) and (&, &1) X (1, Tj41) X
(Ck, Ces1). For surfaces (resp. volumes), each basis function is supported on at most (p + 1)2
(resp. (p+1)?) elements and within each element exactly (p+1)? (resp. (p+ 1)) basis functions
take non-zero values. The function spaces spanned by the multivariate B-splines are similarly
obtained by the tensor product of univariate spaces, i.e. S,(E, H) = span, ;{ B ,(£,n)} =
Sp(E) x S,(H)and S,(E, H,Z) =S,(E) x S,(H) x S,(Z).

The non-uniform B-splines described above can be generalized to non-uniform rational B-
splines (NURBS) to enable a greater flexibility in curve representations (2.152) including, for
instance, conic sections. Therefore, every control point is, in addition to its coordinates X, given
a weight w and a NURBS basis function is then defined from the B-spline basis via

wiBip<€)
i = =5 = 2.1
R; () S0 Bi (@) (2.155a)
w(; ;) B j)p(€;n)
Riijp(&sn) = : (2.155b)
Go(&) > Wi Bijp(€:n)
wiy’: Bia', 3 67 7C
Riijnyp(6,m, ¢) = 20 ({677, 0) (2.155¢)

> ik Wik Bk p(§m )

As the B-spline basis functions form a partition of unity, the NURBS basis functions reduce
to their B-spline progenitors if all weights w are chosen to one. Moreover, NURBS inherit the
important properties of partition of unity as well as inter-element continuity from the underlying
B-splines. The corresponding univariate, bivariate and trivariate function spaces spanned by the
NURBS basis functions will be denoted as R (Z;w), R, (E, H;w) and R (£, H, Z; w) re-
spectively, wherein w contains the weights of all control points. Since the multivariate NURBS
in (2.155b) and (2.155c¢) are not constructed by a tensorproduct of univariate NURBS (2.155a)
also the multivariate function spaces cannot be constructed by tensorization of univariate spaces.
The parametrization of a NURBS curve, surface and volume follow the same way as for a B-
splines in (2.152) and (2.154) by replacing the B-spline basis functions with NURBS to obtain

7z 0,1) =R, ¢ =Y Ri(&X; (2.156a)

g:(oa 1)2 — %37 (67 7]) = Z R(i,j)(fa U)X(z,g) ) (2156b)
1,5

70,1 5 R (6O = Y R (6 O Xk - (2.156¢)
4,5,k

In practice, most geometries may not be described as the image of a single unit cube and are
instead split into several patches as illustrated, for example, in Figure 2.8.

Similar to the classical finite element approximation in Section 2.8.1.1, isogeometric analysis
is based on an isoparametric principle. Hence, the basis functions used to describe the geometry
in (2.156¢) are used in (2.136) for the approximation of the solution fields, i.e., in the case of
thermomecanics, the discrete displacement and temperature fields w,, and 7}, as well as their vari-
ations. For a three-dimensional geometry consisting of n patches Q% with knot vectors =;, H;, Z;
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Figure 2.8: An exemplary multi-patch geometry: A square plate with a circular hole €2 is split into four subdomains
Qd - Q4, which can be mapped onto a unit cube.

and weights w;, and again assuming homogeneous Dirichlet boundary conditions, the discrete
trial and test spaces are therefore given as

U =Vun = {Uh € [CO(QO,h>]3| Up

o o %Z € [R;(EZ,HZ,Z“U}Z)]?), 1= 1n} s
(2.157a)
(2.157b)

Uty =Vrh = {Th S CO(Qo,h) ! T,

The simplest method to ensure C°-continuity across patches is to use a matching discretiza-
tion on the interface between patches. However, due to the tensor product nature of NURBS
within the patches, this requires the same discretization not only at the patch boundary but also
within the patch. Methods of coupling dissimilar meshes at the interface include, among others,
Nitsche’s method (e.g. [6]) and mortar methods (e.g. [21]). Mortar metods and an a more conve-
nient dual mortar method for isogeometric patch coupling are introduced in detail in Chapter 4.
The definition of the discrete function spaces for finite elements (2.140) and isogeometric anal-
ysis (2.157) bear greats similarities, with the mayor difference being, that for finite elements the
mapping to the parametric domain @, ; is defined independently for every element 73, ;, whereas
in isogeometric analysis the mapping 7 i to the parametric space is defined on each patch ¢
containing multiple elements. As a consequence, mesh refinement within a patch, e.g. by insert-
ing additional knots into the knot vectors!, does not alter the geometric representation of g,
as the mapping 7" remains unaffected. The final discrete weak forms of isogeometric anal-
ysis are the same as for classical finite elements in (2.141) and (2.143), and also the compact
algebraical representations (2.142) and (2.144) remain unaltered.

2.8.2 Time Discretization?

To discretize the semi-discrete equilibrium (2.142) and (2.144) in time, commonly finite differ-
ence methods are applied. Therefore, a time interval of interest [0, tnq] is subdivided into n time

'Insertion of additional knots in the knot vector corresponds to classical h-refinement in finite elements and will
be the refinement strategy exclusively used in the course of this thesis. Besides knot insertion, p- and k-refinement
may be used in isogeometric analysis, see [40].

2This section is adapted from the author’s publication [194].
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intervals [t,, t,+1] with the, for simplicity reasons only, constant time step size At = ¢, 1 — t,.
All quantities at time ¢,, are assumed to be known, either by initial data for ¢, = 0 or by solution
of the previous time step, and the state at ¢,,, 1 is sought. Generally, time integration schemes can
be classified in explicit and implicit ones with the mayor difference being whether the internal
and external forces Fy, ) int and Fy, 1} ex; In (2.142) and (2.144), respectively, are evaluated
solely in dependence of the known state at ¢,, (explicit schemes) or also depend on the unknown
state at ,,,1. As explicit schemes are only conditionally stable (i.e. require sufficiently small
time steps), they are more efficient for highly dynamic problems, as internal and external forces
depend on known quantities of previous times only. On the contrary, implicit schemes can be
constructed unconditionally stable and may be preferred for the simulation of low frequency
responses or even quasi-static processes. The present work focuses on implicit methods exclu-
sively.

Exemplarily for implicit methods, generalized-« schemes are presented in the following. They
are of second-order accuracy, and can be formulated with the spectral radius in the high fre-
quency limit p,, as sole parameter. For structural problems, this method has been developed by
Chung and Hulbert [38]. The approximation of discrete (nodal) velocities v and accelerations a
is based on the Newmark-scheme, viz.

T Y — Bu Ta — 2B
Vo1 = ﬂuAt (dnJrl dn) 511 Vy Qﬁu Atan ,

1 1 1— 28,
an+1 — M(dn—&—l - dn) - 5uAtvn - 2511 a, ,

(2.158)

where the subscripts (-),, and (-), ,; denote whether the respective quantity is evaluated at ¢,, or
tny1 and B, € (0,0.5] and ~y, € (0, 1] are parameters. The discrete residual 7, of (2.142) is then
evaluated at a generalized mid-point by introducing the parameters s ,, and oy, y:

Tu(dn—i—la Tn—l—l) = Muan—i—l—am’u + Fu,int,n—&—l—ocf’u - Fu,ext,n—&—l—ocf,u =0 . (2.159)

The discrete forces (and accelerations) at the mid-points are eventually interpolated by the forces
(and accelerations) at the end of each time step, e.g. Fiintnt1-a;, = (1 — aru)Fuintnt1 +
oty By ing - In [38], an optimal set of parameters is derived based on second order accuracy, un-
conditional stability for linear problems, maximized high frequency dissipation and minimized
low frequency dissipation leaving the spectral radius in the high frequency limit p ,, as the sole
free parameter and

2 cou 1 oo,u
O = 20—~ Qpg = L2 (2.160)
’ Poo,u +1 Poo,u +1
1 1
Bu = Z(l — Qo + CYf,u)Q ) Yu = 5 — Qmut+ Qu - (2.161)

The generalized-a method has been extended to systems of first order in time by Jansen et al.
[115], which will be used for the temporal discretization of the thermal evolution (2.144). Similar
to (2.158), the temperature rate is approximated by
1 1-— VT =

(Tt —To) — T, . 2.162
’yTAt< +1 ) N ( )

Tn+1 -
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with a parameter yp € (0, 1]. Again, the discrete residual r1 of (2.144) is evaluated at a general-
ized mid-point defined by oy, T and oy 1t

rT(dn+17 Tn+1) = MTTn+am,T + Fu,int,nJraf’u - Fu,ext,nJraf,u =0 s (2163)

where the values at the mid-points are again obtained by an appropriate linear combination of
the end-point values. An optimal choice of the parameters has been derived in [115] in terms of
the spectral radius in the high frequency limit p, T as

1 13— Poo,T 1

S P 2.164
P T D por 4 1 YT T £ ( )

arT =
2

In the case of materials with internal variables of state such as presented in Section 2.3, ad-
ditional time integration rules for those variables need to be defined. These time integration
schemes may be tailored to fit certain characteristics of the evolution equations. For the kine-
matic description of elasto-plasticity derived in Section 2.3.4, such time integration schemes for
the plastic deformation gradient F}, as well as the hardening variables o; and oy will be given in
Section 3.1.

Remark 2.5 (Structure preserving time integration schemes). While being relatively easy to
implement and fairly robust, the presented generalized-a time integration schemes are not al-
gorithmically energy conserving. As an alternative, so-called structure preserving time inte-
gration schemes based on the (generalized) energy momentum method have been proposed in
[82, 126, 127, 203] for isothermal nonlinear elasticity. Later, those methods have been extended
to isothermal contact [98], elasto-plasticity [7], thermo-elasticity [88, 99, 187] and thermo-
elastic contact [61]. The combination of the cited works to a structure preserving time integra-
tion for a fully coupled thermo-elasto-plastic contact problem is beyond the scope of this thesis,
but might be a worthwhile topic of future research.

Remark 2.6 (Quasi-static processes). A process is called quasi-static, if is it “slow engough”
for the system to remain in static equilibrium at all times, i.e. the right-hand-sides of (2.91a) and
(2.91b) is zero. The discrete equilibria (2.159) and (2.163) then reduces to a series of equilibrium
states at times t,, 1 of the form

’ru(dn-i-la Tn+1) = Fu,int7n+1 - Fu,ext,n—i—l =0 5 (2165)
rT(dn+17 Tn—l—l) - Fu,int,n—l—l - Fu,ext,n—l—l =0 . (2166)

Time therein reduces to a path variable describing the loading path of the system by, e.g., varying
Dirichlet or Neumann boundary conditions.

2.8.3 Solution Scheme for Coupled Nonlinear Equations’

The spatial and temporal discretization results in a set of coupled nonlinear equations (2.159)
and (2.163) in the discrete displacements d,,.; and T, ;. Different solution strategies for such
coupled systems exist, which can generally be classified as partitioned and monolithic schemes.

I'This section is adapted from the author’s publication [195].
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While partitioned schemes solve the structural and thermal field sequentially (keeping the values
of the other field fixed) and iterate between the fields until convergence is achieved, monolithic
approaches aim at solving the coupled system of equations within one nonlinear solution proce-
dure. Though efficient for problems with rather weak coupling between the two fields (or a one-
directional coupling only), partitioned schemes may converge slowly for strong bi-directional
coupling. In such cases, monolithic approaches become more efficient, see e.g. Danowski et al.
[49] for a comparison in the context of linear thermo-elastic problems. The current thesis solely
follows the monolithic approach. The resulting coupled nonlinear system of equations is then
solved using Newton’s method, i.e. by solving a sequence of linearized problems of the form

W[

n+1

7

{K““ K“T] , (2.167)

KTu KTT

n+1

for increments of discrete nodal displacements Ad’ and AT*. The right-hand-side thereby con-
sists of blocks containing the structural and thermal residual and the tangent matrix K, contains
the respective partial derivatives of the structural and thermal residual, viz.

[ru} o [ru(d;+1,T;+1)} | (2.168)
Lo P TT(dn—f—lv Tn+1)
i Oru(dy 1, Thy1)  Ora(dy, 1, Thy)
K Kur _ I T (2.169)
Krn, Kror (A1 Thyr)  Ore(dy s Thy) '
u n+1 od oT

After each step i displacements and temperatures are updated (d};, = d;,, + Ad', T,}} =
T, ., + AT", i < i+ 1) until convergence is achieved. In the presence of internal variables of
state, as it is the case for elasto-plasticity (see Section 2.3.4), the derivatives in (2.167) are to be
understood as generic operators, since the exact algorithmic treatment of the internal variables
of state has not yet been specified, but is the topic of the following chapter.

For rather small problems, the linearized system (2.167) may be solved by means of direct
solvers, whereas iterative linear solvers may be preferable for larger systems. For thermome-
canical problems or other coupled problems of block structure similar to (2.167), efficient solvers
based on block Gauss—Seidel schemes in combination with algebraic multigrid preconditioners
have been presented, e.g., in Danowski et al. [49], Verdugo and Wall [223]. Systems with com-
plex coupling effects such as plasticity or contact interaction, however, may require special atten-
tion in the linear solution procedure as, for the isothermal case, derived in Adams [1], Wieners
[228] for elasto-plasticity and Wiesner et al. [229] for contact discretizations similar to the ones
derived in Chapter 4. Efficient linear solvers for problems of thermo-elasto-plasticity and ther-
momecanical contact are beyond the scope of this thesis, such that focus on the linear solvers
employed in the numerical examples is rather on robustness than on efficiency.
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3 Computational Methods for
Thermo-Elasto-Plasticity

The topic of computational methods for (thermo-) elasto-plasticity, or for inelastic materials in
general, concerns the question of how to incorporate the evolution of internal variables (e.g.
(2.70)) and potentially internal constraints (e.g. (2.71)) into the finite element discretization
(2.159) and (2.163). Within this Chapter, a computational approach to finite deformation (thermo-)
elasto-plasticity using nonlinear complementarity (NCP) functions is derived based on the small
strain method of Hager and Wohlmuth [91] is presented. Therefore, the incremental plastic flow
is introduced as additional unknowns and the constraints of elasto-plasticity are reformulated in
terms of an NCP function. In contrast to the previous NCP based plasticity formulations [37, 91]
using one scalar and one tensor-valued NCP function, only one tensor-valued NCP function is
used here, and thus reduce the number of additional unknowns. In the final system of equations
to be solved, the additionally introduced unknowns do not appear explicitly but are removed by
static condensation.

The chapter is outlined as follows: first, the spatial discretization of the internal variables of
state as well as the temporal discretization of their evolution equations are introduced. These
discretization schemes are common to almost any numerical algorithm to treat plasticity, includ-
ing the classical return mapping algorithm (RMA) as well as the newly proposed NCP function
based approach. As a reference, the RMA is briefly introduced next, before the NCP function
for von Mises and Hill-type plasticity is derived. Several extensions of the method are proposed
including plastic spin, visco-plasticity and thermo-plasticity. Numerical examples accompany
the different developments.

3.1 Discretization of Internal Variables

The internal variables of state enter the (discrete) weak form (2.141) via the first Piola—Kirchhoff
stress’ dependency on them. As the integrals in (2.141) are approximated by Gaussian quadra-
ture, the stress P as a function of the discrete displacement (and potentially temperature) field
is evaluated at each quadrature point. In the Lagrangian finite element formulation of continuum
mechanics used for solids, quadrature points can be associated with material points directly, as
the reference configuration of the mesh (and hence the location of quadrature points) does not
change over time. Therefore, the natural and most common choice for the internal variables of
state is to attribute independent values with each quadrature point. From a perspective of ap-
proximating the continuous fields F},, a; and o, this means introducing a function A, (X)
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3 Computational Methods for Thermo-Elasto-Plasticity

associated with a quadrature point ¢ in the set of all quadrature points G, such that

1 ifg=r
M,(X,) = Vq,r € G 3.1
q( ) {O ifq+£r Y (3.1

where X, denotes the material coordinate of quadrature point r. The approximate fields of the
internal variables are then obtained in analogy to (2.136) by

F(X . t) RF (X, t) =Y M/(X : (3.2a)
=Y

(X, )~ ain(X 1) =D My(X)oiy(t) (3.2b)
q€g

(X, t) monp(X 1) = Y T My(X)oxy(t) (3.2¢)
q€g

interpolating discrete Gauss point values F, ,, «;, and oy ,. For the sake of brevity of future
notation, the vectors F,, o; and o shall denote the collection of all Gauss point values of
the respective quantity. Since M (X ), as all other ansatz functions, are only evaluated at the
quadrature points and no gradients of //,(X) are involved, the actual function M,(X') does not
need to be specified explicitly. They may be seen as continuous functions within each element
[183] or by splitting each element into sub-elements each containing one quadrature point and
assuming M, = 1 within the sub-element associated with quadrature point ¢ and zero outside
[90].

In time, the evolution of the discretized internal variables of state F, ,, o , and o , follow the
evolution equations (2.70), which are first order ordinary differential equations (ODEs) in time.
As such, initial data at £y, = 0 needs to be provided and is commonly chosen as

Foo(to) =1 , og(to) =0, ouy(te) =0, VgegG . (3.3)

Starting from this initial data, a temporal discretization of the Gauss point local quantities F, ,,
i, and oy, is necessary. As for the displacement and temperature field in Section 2.8.2, the
quantities at time ¢,, are assumed to be given (either by initial data or the solution of the previous
time step) and quantities at time ¢,,.1 are sought. In computational plasticity, a first order accurate
backward exponential map integrator

Fognt1 =exp [ALp7q7n+1] Foan (3.4)

is commonly applied for the plastic deformation gradient. Therein, AL, ;11 = ADy g pnt1 +
AW, i1 = fti"“ L, ,dt represents an approximation of the plastic flow within a time interval
[tn, tn11] and has to be determined in such a way, that the time discrete Karush—-Kuhn-Tucker
conditions (see (2.71))

Polymir <0 A% >0 @l Ay =0 (3.5)
as well as the flow rule (see (2.70))
ADpgni1 = Ay 8355 (3.6)
gm+1
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3.2 Classical Return Mapping Algorithms

and the discrete evolution of plastic spin (see (2.81))

AWp,q,n-lrl = yﬂ (Eq,nﬂADp,q,nH - ADpyq,nHEqu) (3.7)
0

hold. Finally, standard backward Euler schemes are applied for the hardening variables resulting
in

0=
Xign+1 = Kign + A 8A1.) ) (3.8)
1lgn+1
0=,
ak7q7n+1 = ak7q7n + A’yq (3'9)
OAK|, i1

Remark 3.1 (Properties of the exponential map integrator). The exponential map integrator
(3.4) yields at least two advantages in computational plasticity. First, though less important for
the algorithm developed in this thesis, it allows, in conjunction with the use of logarithmic strain
measures, to construct RMAs that preserve the algorithmic format of small strain approxima-
tions [198]. Second and more importantly, for a flow rule that is isochoric in the time-continuous
setting (see Remark 2.1) this volume preserving property is maintained exactly also in the time-
discrete setting. More specifically, an isochoric plastic flow is obtained for a pressure insensitive
dissipation potential =, or a pressure insensitive yield function ¢, in conjunction with an asso-
ciated flow rule. By (3.6) and (3.7), this yields tr AL, 4,41 = 0 which results in an exponential
map integration (3.4) that satisfies det F,, , 11 = det F, , ., since detlexp A| = exp[tr A] holds
for the matrix exponential. Accordingly, the volumetric part of the plastic deformation gradient
is preserved exactly.

3.2 Classical Return Mapping Algorithms

Before the novel method is presented in the next section, a brief summary of the return mapping
algorithm for finite strain plasticity as the far most popular numerical method should be given.
This summary only presents the general procedure, the detailed steps as well as modifications
and simplifications based on particular assumptions can be found in the textbooks of Simo and
Hughes [200], Bonet and Wood [19] and especially de Souza Neto et al. [S7]. For simplicity,
the presentation is restricted to the isothermal case. Return mapping algorithms for finite defor-
mation thermo-plasticity are commonly based on the seminal work by Simo and Miehe [201],
which extends the isothermal radial return mapping algorithm presented in Simo [196, 197].
Both partitioned and monolithic solution approaches are discussed in [201]. Several extensions
to this algorithm have been presented later, e.g. a monolithic formulation in principle axes by
Ibrahimbegovic and Chorfi [114] and a variant including temperature-dependent elastic material
properties by Canajija and Brni¢ [27].

The fundamental idea in the RMA is to determine the stress P, in (2.159) at any evaluation
in such a way, that the discrete Karush—Kuhn-Tucker conditions and evolution equations of
the previous section hold. To abbreviate notation, the index (-), indicating a specific quadrature
point is omitted in the following. At the evaluation of P, , let the current deformation state
F, .1 = Vxupny1 + I and the history of the internal variables F;, ,,, o, and &, be given.
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3 Computational Methods for Thermo-Elasto-Plasticity

Then, the discrete Karusch—Kuhn—Tucker conditions (3.5) permits two mutually exclusive states:
either the material reacts purely elastic if ¢, ,+1 < 0 such that Ay = 0 or plastic deformation
takes place if ¢p, ,+1 = 0 and Ay > 0.

The Elastic Predictor. To determine which of the cases applies, a so-called elastic predictor
is introduced assuming A~ = 0 to determine the trial state

Fp,n+1,tr = Fp,n ) Kint1tr = Kin Kk nt+1,4r = Xk (310)

indicated by a subscript (-),,. With these trial values, one obtains F.,, 14 = F, 1 (Fp 1)t
and by the elastic constitutive relation a corresponding Mandel stress 3,11 ¢, which gives the
trial state of the yield function ¢y, 414 If @p i1 < 0 holds true, the assumption of Ay = 0
was correct, therefore

Fp,n+1 = Fp,n+17tr 5 Kint+1 = Kin+itr Kk ntl = Xk ntltr (311)

and F},,, in combination with F, .1 = F, .1, can be used in (2.61) to determine the stress
P, ..

The Plastic Corrector. In the case of ¢, .11 > 0, the assumption of purely elastic defor-
mation and Ay = 0 was incorrect and plastic deformation takes place within this time step. To
determine the actual values of the incremental plastic multiplier A+ and the internal variables of
state Fp, 41, & 541 and o .41, the coupled system of nonlinear equations

Gpni1 =0, (3.12a)

Fppst — €xp {m <% + % <(E% - 88? 2)))} Fon=0 | (3.12b)
X1 — My — Avgii) ~0 , (3.12)

Chorir — Open — Ay gii =0 (3.12d)

needs to be solved at a fixed total deformation gradient F}, ; all quantities not indexed are eval-
uated at ¢, ;. From the resulting inelastic deformation F ,, 1, the acting first Piola—Kirchhoff
stress can then again be evaluated according to (2.61).

Remark 3.2 (Simplified RMASs). In many practical implementations, the system of nonlinear
equations (3.12) can be reduced significantly, for instance using a formulation in logarithmic
strains [57], or, for isotropic plasticity, in principle directions [19]. For a Hencky-type hyperelas-
tic material’ in particular, the return mapping (3.12) can even be reduced to a scalar nonlinear
equation.

In view of the global solution of the nonlinear equation (2.159), the RMA yields a hierarchy
nonlinear solvers: At the global level, a Newton scheme (2.167) is applied and within each step

I'This material constitutes a linear relation between the logarithmic strains €, = 1/2 In[F.F.] ] and the Kirchhoff
stress 7.
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3.3 Nonlinear Complementarity Functions for Finite Strain Plasticity

of this Newton scheme, the RMA solves local nonlinear problem (3.12) to convergence at every
quadrature point undergoing plastic deformation. From a performance perspective it has to be
noted, that this remains rather efficient as the local problems (3.12), especially if simplified
(see Remark 3.2), is way smaller than (2.159) which consists of all nodal displacement degrees
of freedom. A consequence of solving (3.12) to convergence at every Newton step of (2.167)
is that the yield limit ¢, < 0 needs to be satisfied in every iterate. If the current iterate is,
however, far from the converged solution, the plastic deformation obtained by (3.12) may be
largely overestimated and result in divergence of the global Newton scheme. The relaxation of
this constraint in the pre-asymtotic range of the global Newton scheme is one of the ideas in the
subsequently derived plasticity algorithm.

3.3 Nonlinear Complementarity Functions for Finite
Strain Plasticity

Nonlinear complementarity (NCP) functions originate in the field of constrained optimization
and are used to convert inequality constraints into equivalent non-smooth equality constraints
[212]. These can then be used as merit functions (see e.g. Geiger and Kanzow [77]) or to ren-
der inequality constrained problems amenable to numerical methods for equality constraints,
e.g. semi-smooth Newton methods in Hintermiiller et al. [103], Qi and Sun [178]. For problems
of elasto-plasticity, NCP functions have been used by Christensen [37], Hager [90], Hager and
Wohlmuth [91] for small strain isothermal von Mises plasticity and in Seitz et al. [192] for finite
deformation isothermal Hill-type plasticity and extended to thermoplasticity in Seitz et al. [194].

In the following, the inequality-type material constraints posed by Hill’s yield criterion will
be recast as an equality constraint. This equality constraint can be solved simultaneously to the
global equilibrium search within one non-smooth Newton scheme, for which the robustness is
further increased by a quasi-Newton method.

3.3.1 Reformulation of the Inequality Constraints

Before the inequality constraints are reformulated as an equality constraint, the yield function
and evolution equations for associative Hill-type plasticity are recalled. For the yield function
and dissipation potential, (2.66) in combination with (2.67) and (2.77) yields

— 3 3
Ep=¢p = \/;HE_Ak”H_(yO_Ai)_ \/;H"T”H_Y . (3.13)

The evolution of the plastic flow (3.6) can be rewritten as

SH:n

AD S
2 |nllg

~ Ay (3.14)

P

wherein, as in the following, both indices (-), denoting the quadrature point and (-),,;; denoting
the time step have been dropped. If not indicated otherwise, all quantities are evaluated at a
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3 Computational Methods for Thermo-Elasto-Plasticity

discrete Gauss point and at time ¢,,, ;. The time discrete evolution of the hardening variables «;
and o in (3.8) and (3.9) can be reformulated in terms of AD,, as

X =
HnHHn T H : Aop>

(3.15b)

&ip +max [ 0,4/ =
( 3 [H:nlP

Xy = Kgn — ADp . (316)

The two variants (3.15a) and (3.15b) to define the evolution of the isotropic hardening variable
«; are equivalent, if (3.14) is satisfied, but yield slightly different numerical properties in the
subsequently derived algorithm.! More simply, the evolution of e, in terms of AD, follows
directly from the dependency of ¢, in (3.13) on the effective stress n = ¥ — Ay, such that
g% = %‘5’ = —D,, and (3.16) arises from a backward Euler discretization in time.

With the evolution of the hardening variables given in terms of AD,, the discrete Karush—
Kuhn—-Tucker conditions (3.5) together with the evolution (3.14) for AD,, can be stated equiva-

lently as finding the root

Y
G, = devn — min (1, —> Ne =0 (3.17a)
V32 1Ml
trAD, =0 (3.17b)
with the trial effective stress
Ny = devn + cp]HIJr :AD, , ¢, >0, (3.18)

wherein HT denotes the pseudo-inverse? of H in the sense that dev T = H™T : H : T'. This trial
stress is not to be confused with the trial state of the RMA outlined in the previous section. Here,

it merely represents an abbreviation for the combination of the effective stress 1) and the plastic
flow AD,,.

Proof. To show equivalence of (3.17) with (3.5) in combination with (3.13) and (3.14), it is
first assumed that (3.5), (3.13) and (3.14) hold true and (3.17) is verified. In the elastic case,
(3.5), (3.13) and (3.14) give /3/2||n||y < Y and AD, = 0, such that by (3.18) 1, = ) and
\/3/_2 M|l <Y and therefore (3.17) holds. In the plastic case, (3.5), (3.13) give \/% My =
Y and A+ > 0in (3.14). In that case, the trial stress 7, becomes

A
Mo = <1+ gc” 7) devn | (3.19)

[l

"Note that for von Mises plasticity, i.e. H = Pqey, (3.15b) simplifies due to the fact that | Pgey : 17| = ||7]lp,.. -
2Note that H includes a deviatoric projection H = Pge, : H = H : Pgey, see Section 2.3.4.4, and hence does
not have full rank.
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and, as H includes a deviatoric projection, the semi-norm

3 c, Ay
7| = <1+ T ) 7]l - (3.20)

2 [l

Since ¢, > 0 and Ay > 0 it follows that \/3/2 |1, |l > /32 ||nllz = Y, which guarantees that
(3.17a) holds true.

Conversely, now assume (3.17a) holds and (3.5), (3.13) and (3.14) have to be verified. In
the case of \/3/2||n|ly < Y, (3.17a) reduces to H* : AD, = 0, from which it follows that
dev AD, = 0 and finally together with (3.17b) one obtains AD,, = 0. As a consequence,

V32 Inellg = V32 Inllg <Y and therefore \/3/2 || .||y < Y in (3.17a) recovers the elastic
case of (3.5), (3.13) and (3.14). In the case of \/3/2 |||l > Y, (3.17a) (multiplied by ||7 ||y
and rearranged) becomes

V32 |y devny = Y, . (3.21)

Taking the ||-||z-semi-norm on both sides reveals that 1/3/2 ||n||; = Y. Finally, we replace 7,
on the right-hand-side of (3.21) by (3.18) and solve for AD,, to obtain

\/3 r -Y . \/3 r -Y
dev AD, = /2 |l H:n=AyH:nn with Ay= /2l g >0,
c

p ‘p
(3.22)
and, by using (3.17b), AD,, = dev AD,,. Hence, /3/2 |||l > Y in (3.17) recovers the plastic
case of (3.5), (3.13) and (3.14). ]

Remark 3.3 (NCP function in the stress-free state). Technically speaking, (3.17a) as well as the
evolution equations (3.15a) and (3.15b) are not well-defined in the stress-free case of || 1|y = 0
and ||H : n|| = 0, respectively. However, |||y = 0 implies ||n.|lg < Y, in which case the
NCP function reduces to G,, = ¢c,H" : AD,, = 0. Therefore, one directly obtains AD, = 0 and
the evolution of the isotropic hardening variable is set t0 & 11 = & p.

In Christensen [37] and Hager [90], a similar NCP function complemented by a scalar one for
the evolution of o is analyzed for small strain kinematics and shown to be equivalent with the
RMA, if linear kinematic hardening (¥, (s, a) = W, ;) +1/2Hy || ew||?, kinematic hardening
modulus H)) is assumed and the complementarity parameter ¢, is chosen as ¢, = 2u + 2/3H)
with the shear modulus . However, any modification of (3.17a) that does not alter its root yields
an equally valid NCP function to the problem (3.5), (3.13) and (3.14). Based on ideas of Hager
and Wohlmuth [91], Hiieber et al. [109], a shape parameter s, > 0 is introduced to add convexity
to the NCP function (3.17a) by

3 v
Gp,sp = (max <Y, \/;H"?trHH)) -Gy
3 S" Y
= | max | Y, \ﬁllmrH )) : (devn — min (1, —) m)
( ( 2 NATHE

Note, that the max-function therein is strictly greater than zero since Y > 0 and therefore the
modification has no influence on the root of the NCP function and therefore its equivalence

(3.23)
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(a) Gp,O- (b) Gp,l'

Figure 3.1: Visualization of the NCP function (3.23) for a one-dimensional problem with Y = 1, ¢, = 1 and
sp € {0, 1}. The blue and red parts of the functions denote the elastic (|7,;| < Y") and plastic branches
(Inee| > Y), respectively. The transparent green plane indicates the zero-plane and a solid green line the
root of the NCP function.

with the plastic inequality constraints. (3.17a) is recovered for s, = 0. For a one-dimensional
plasticity problem, (3.23) is visualized in Figure 3.1 for different values of s,,. The root of both
these NCP functions apparently reproduce the Kraush—Kuhn—Tucker conditions (3.5): either the
absolute value of the effective stress 7 is lower than Y = 1 and the plastic flow AD,, is zero, or
In| =Y = 1 and the plastic flow points in the same direction (same sign in the one-dimensional
case) as the stress 7).

Remark 3.4. The employed quadratic yield functions of von Mises and Hill according to (3.13)
admittedly fit particularly well into this framework of NCP functions, since they can be repre-
sented by a single NCP function (3.17a). Still, pressure sensitivity (see (2.78)) may easily be
added to extend the methodology to the Drucker—Prager yield function. Also, multi-surface yield
criteria such as the one by Tresca (2.73) or single crystal plasticity may be adopted by using
multiple NCP functions for the different yield surfaces. Yield criteria in which the equivalent
stress may not be represented as a quadratic (semi-) norm of the effective stress, on the contrary,
pose greater difficulty in deriving an equivalent NCP function. A general methodology to derive
such for arbitrary yield criteria is, to the best of the author’s knowledge, still an open issue.

3.3.2 Solution by a Semi-Smooth Newton Method

As the equivalence of the root of the NCP function with the plastic material constraints is
established, it can be solved alongside the discrete structural and thermal balance equations
(2.165) and (2.166), respectively. The presentation of the solution algorithm is, at this point, re-
stricted to quasi-static processes (see Remark 2.6), the absence of plastic spin, i.e. AW, = 0
and AL, = AD,, rate-independent plasticity and isothermal processes. The extension to dy-
namic processes is straightforward by replacing the balance equations (2.165) and (2.166) in the
following by (2.159) and (2.163). The extensions to plastic spin, visco-plasticity, and thermo-
elasto-plasticity will be outlined in the subsequent Sections 3.4.1 - 3.4.3.
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To solve the quasi-static discrete balance of linear momentum (2.165) with the constraints of
elasto-plasticity, the plastic flow increment AL, , at every quadrature point ¢ € G is introduced
as additional unknowns with the same “dignity” as the unknown nodal displacements. The non-
linear system of equations to be solved in each time step for the displacements d,,; and plastic
deformations AL, 11 then consists of

'ru<dn+1; AI-p,n—&—l) - Fu,int,n+1 (dn—l—l; ALp,n—H) - Fu,ext,n—l—l =0 ; (3243-)
Gp,sp,q<dn+1a AI-p,q,n+1) =0 ) Vq S g 3 (324b)
trAL,gn1 =0, Vgeg , (3.24¢)

AW, i1 =skew ALy, , 11 =0, VgeG . (3.24d)

The evolution of the hardening variables is thereby expressed in terms of AD,, by (3.15b) and
(3.16). In the following, the time step index (-),,,, will be dropped for brevity of notation. De-
spite the non-smoothness of G, ;, due to the involved norms and min- and max-functions, the
set of equations (3.24) still qualifies for the use of non-smooth versions of Newton’s method and
quadratic convergence close to the solution may be expected, see Qi and Sun [178]. In every step
1 of the Newton scheme, the linearized system

OF e (d', ALY) OF i (d', ALY)

5 Ad'+ PAL, AAL = —r,(d, AL,) | (3.25a)
aGp,sp%(: ALP)AdiJFaGPﬁSBﬁj Lp’q)AA'-i,q = —Gpsq(d,AL,,) . VgEG
(3.25b)
trAL;’q:(J , Ygeg ,
(3.25¢)
skew AL:'W =0, Yqe g
(3.25d)

is solved for the increments Ad’ and AA L; and the displacements and plastic deformations are
updated (d"™' = d' + Ad’, ALI’;rl — ALI’; + AAL; , i < i + 1) until a convergence tolerance
is met. The linear constraints (3.25¢) and (3.25d) enforcing a symmetric, traceless plastic flow
increment AL, do not have to be treated explicitly but are ensured implicitly in the subsequently
derived algorithm. With the plastic internal variables at each quadrature point being independent
and the NCP function at one quadrature point only depending on the discrete displacements of
the respective element, a Gauss point local formulation is sufficient. In the following, the result-
ing directional derivatives necessary at each quadrature point will be outlined. The subscript ¢
will be omitted for ease of notation, keeping in mind that all quantities are evaluated at the Gauss
point. To start with, the contribution f, i, of one quadrature point to the internal force vector
F, ;s emanating from (2.141) may be rewritten as

fuint =w - (FS):VxN | (3.26)

with the integration weight w composed of the weight of the quadrature point and the Jacobian of
the isoparemetric element mapping (2.139) and the matrix of element ansatz functions /N. The
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linearization of the internal force vector with respect to the discrete nodal displacements remains
unaltered from a standard geometrically nonlinear finite element formulation and results in the
tangential stiffness matrix contribution of a quadrature point:

l afu,int
w od

= (FVxN)":C: (FVxN)+S: ((VxN)"-VxN) , (3.27)

with the material stiffness tensor C = 295/sc. In the case of elasto-plasticity, this material stiff-
ness tensor also depends on the current state of plastic deformation through equations (2.53)
and (2.61). A derivation of C for arbitrary isotropic free energies V., multiplicative elasto-plastic
kinematics is given in Appendix A. The linearization of the internal force vector with respect to
the plastic flow increment yields

1 8fu,int

o8
_ — T.
w DAL, (FVxN)

AL,

(3.28)

wherein the derivative of the second Piola—Kirchhoff stress follows from the multiplicative kine-
matics (2.53), the constitutive equation (2.61) and the evolution of the plastic deformation gra-
dient (3.4). For elasically isotropic materials, this derivative is given in detail in Appendix A.
The derivatives of the NCP function (3.23) are more complicated and outlined below. To
distinguish the two branches of the involved min- and max-functions, the set of quadrature
points is split into elastic and plastic quadrature points G, and G, for which \/3/_2 1Muellg <Y
and \/3/2 | Ny > Y, respectively. In the special case of /3/2 |||z = Y, the derivatives of
either branch may be chosen or any other generalized derivative of the min- and max-functions.
For the derivative of the NCP function with respect to the discrete displacements, one obtains

'—spcp]H[Jr : ADPYSP_1 ® % if g € Go
2lmeell)
G, ., (ﬁ B . .
= . _ Y Nsp @M | 208 .
ad { |:(1 \/%HUHHH) IIEDdev + ||"7trH]12.H :| - aC - (FVXN)
tr BY .
el © %} ifgeg,

with

Y
Ny = (1 = 8p) —==———Nx + 5,057 . (3.30)
V2 1 nr

The additional factor

Y
a, =min | 1, ——— (3.31)
’ ( NGB HnHH>

is introduced in the spirit of Hager and Wohlmuth [91] to stabilize the Newton iteration within
the pre-asymptotic range, whereas in the converged state a,, tends to one and the fully consis-
tent Newton scheme is recovered. The derivative of the effective yield stress Y results trough
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linearization of a time discrete evolution of the isotropic hardening parameter (3.15b) in

29Y | ADp:H:y . [idl .
oy \/;a_ai [‘nnHﬁszH N+ e AD,

od _2”77”?]1{?:%]1{:771]141 :?%:(FVXN) if AD,:H:np>0 ~ (3.32)

0 it AD, :H:n <0

with 9Y/oa; = 9*¥p/pa? depending on the hardening potential ¥ ,. At this point, the advantage of
the more complicated evolution of the isotropic hardening parameter in (3.15b) as compared
to (3.15a) becomes obvious: Both variants result in a semi-smooth function for the equiva-
lent yield stress, but (3.15b) additionally yields a zero derivative for elastic Gauss points (for
which AD,, = 0 holds). Consequently and foreclosing some of the following derivatives, the
plastic complementarity function reduces to the trivial identity AD? = 0, so that regular elastic-
ity is recovered. This would not be the case if one used (3.15a) to describe the evolution of «;.

Finally, the derivative of the NCP function with respect to the plastic flow increment AL,
results in

,
¥ (B + 5,0,V THY :AD @ ) ifg €,

oG »5 /3 s on Y oY
8A10Lpp — ( /2 H"?trHH) P { AL, \/3/—2“%HH Tr AL, ) (3.33)
N Y Nsp QH:ner . Oner .
\ * |: \/3/_2”77tr||HPdeV + ||"7trHH2-ﬂ :| ’ 8ALP} lfq c gp
Herein, the derivatives of the effective stress and the effective trial stress are given by

on _ 0% N 0*V, One. _ On
OAL, ~ OAL, " denday ' OAL,  9AL,

+ e, H | (3.34)
and the derivative of the effective yield stress as

2 9Y AD,:H:n . Il .
oy \/;a_ai K‘||n||H||H:nn2H :1 + g AD,

AL, =) - nldDeng . H) con e gl i AD, H g s 0 339

([H:m ][4 OAL, © |[H:m|*
0 iftAD, :H:n <0

As aforementioned, the plastic variables are discontinuous over the Gauss points, and hence
only the plastic flow increment of the currently considered quadrature points enters the matrix
blocks above. Consequently, the increment AAL,, , of the plastic flow of each quadrature point
q € G in one step of the Newton iteration can be condensed from the global system of equations
(3.25) on a local Gauss point level by

0G

A 0G.,, .
AAL,, = — (ﬁ) : <Gp,sp,q + ailqud) . (3.36)
p,q

The use of the pseudo-inverse ()™ therein automatically guarantees (3.25c) and (3.25d) since
the NCP function G, 5, is symmetric and traceless by construction. Consequently, the linear

67



3 Computational Methods for Thermo-Elasto-Plasticity

system to be solved at every quadrature point contains five remaining independent equations
for the five components of the symmetric, traceless tensor AAD,, ,. It should be point out, that
in the case of linearized kinematics and linear kinematic hardening positive semi-definiteness
of 9Gr.sp.a/oAL,,, has been shown by Hager [90] to be ensured for s, = 0,¢, > 0 and for s, €
[0,1], ¢, > 2u+2/3Hy and a,, as in (3.31). Although this examination only considers infinitesimal
deformations and a slightly different formulation with two complementarity functions, numerical
experiments show that, for a sufficiently high complementarity parameter c,, a solution to the
local linear system for the five remaining unknowns exists. By inserting (3.36) in (3.25a), a
reduced stiffness matrix and residual vector vector (indicated by a tilde) can be obtained as

oy _ a.fu,int,q . aGp78p7q " . aGpvspvq

K=K qgeg [wq (aALm) : ( AL, : 7d Ad , (3.37a)
~ afu,int,q . 8Gp7sp,q " .
Ty =Ty qgeg [wq <8ALp,q) : (—3ALM o P (3.37b)

In practice, the full linearized system of equations (3.25) to be solved in each semi-smooth
Newton step is never actually built. Instead, the discrete plastic flow increments are directly con-
densed at Gauss point level, thus eliminating the AL, , from (3.25a) by using (3.37a) and (3.37b).
After solving the remaining reduced system for the displacement increment Ad, the plastic flow
at each quadrature point can be recovered by (3.36).

3.3.3 Numerical Examples'

In this section, three representative numerical examples demonstrate the robustness of the pro-
posed treatment of finite strain plasticity compared to the classical RMA. To avoid volumetric
locking effects in the plastic region, (Q; hexahedral F-bar finite elements (see Section 2.8.1.1)
are employed in all simulations. Convergence of the semi-smooth Newton method is checked
in terms of the L?-norm of the sub-residuals in (3.25a) and (3.25b) as well as the condensed
residual in (3.37b) versus a convergence tolerance of 10~%. In all simulations a simple explicit
linear extrapolation predictor is used and equidistant load/displacement steps are applied.

In a first example, the influence of the algorithmic parameters involved in the plasticity formu-
lation is investigated using the well-known example of a perforated strip. Second, the accuracy
of our approach is demonstrated with the common finite deformation plasticity benchmark sim-
ulating the necking of a circular bar. Finally, a squeezed metal tube is analyzed to demonstrate
the efficiency in the presence of kinematic hardening.

3.3.3.1 Perforated Strip

In this pseudo two-dimensional example, a strip with a circular hole is simulated. For both plane
stress and plane strain conditions, this setting serves as a benchmark example for finite strain
plasticity in the literature, e.g. in [76, 154, 155, 200, 204, 205]. A similar small strain setting has
been used by Hager and Wohlmuth [91] to assess the influence of the parameters on the semi-
smooth Newton method. Figure 3.2a illustrates the geometric setting; for obvious symmetry

I'This section is adapted from the author’s publication [192].
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reasons and since isotropic plasticity is employed, only one quarter is simulated. The elastic
material parameters are given by Young’s modulus £ = 70 and Poisson’s ratio v = 0.2. To
achieve the best possible comparison to the RMA, we assume a Hencky strain energy potential
as commonly used in computational plasticity, e.g. in de Souza Neto ef al. [57]. Von Mises
plasticity is assumed with yo = 0.243 and linear isotropic hardening, i.e. ¥, = 1/2H;a?, with the
linear hardening modulus H; = 0.2. The strip is stretched by a prescribed displacement of u = 3
using quasi-static time stepping, where different step sizes will be applied.

A plane strain setting is modeled with one F-bar hexahedral element in thickness direction
and appropriate boundary conditions reducing the 3D problem to a 2D one. The following sim-
ulations are performed using a relatively coarse mesh consisting of 108 elements. Figure 3.2
shows the initial mesh and deformed configuration (with contour plots of the accumulated plas-
tic strain «;) at different time steps.
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Figure 3.2: Perforated strip — Geometrical setting and deformed configuration at different displacement states with
contour plots of the accumulated plastic strain q;.

First, the influence of the shape parameter s, defined in (3.23) on the convergence of the semi-
smooth Newton method is investigated. Therefore, ¢, = 2 is set and the damping factor a,, as
defined in (3.31) is used. The total displacement is prescribed in 10, 20, 50 or 100 equal steps.
Figure 3.3a displays the average number of nonlinear iterations per time step as a function of
the shape parameter s,. The lower and upper bounds of s, in between which convergence can
be achieved, depend on the chosen step size. The fastest and most robust convergence behavior
is obtained for s, ~ 1, whereas larger values of s, result in a slight increase in the number
of necessary iterations. These observations are in excellent agreement with the results in Hager
and Wohlmuth [91]. A comparable simulation using the RMA, the same linear extrapolation
predictor, and equidistant steps requires about 80 steps to achieve convergence of the nonlinear
solver in every load step. For both methods the total number of necessary steps could, of course,
be reduced if adaptive step size control was applied, since the first steps are the most critical
with regard to convergence of the semi-smooth Newton scheme. Next, the step size is fixed at
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Figure 3.3: Perforated strip — Influence of the algorithmic parameters s, and c;, for different time step sizes.

a total of 20 equal steps to analyze the influence of the plastic complementarity parameter c;,.
Figure 3.3b shows the average number of iterations as a function of c, normalized with the
shear modulus p for different values of s;,. In the present example, a lower bound emerges at
about ¢, € [0.3u,0.5u] depending on s,. However, this bound is dependent on the step size and
especially the hardening parameters of the material. In a similar example in Hager and Wohlmuth
[91], the lower bound varied between 0.3 and 1.0 for different hardening parameters. A minimal
number of iterations is achieved for ¢, € [2u, 44|, and the average number of required iterations
increases at large values of c;,. But still, s, > 0.5 yields a robust scheme over a broad range
of ¢,. As one could expect from (3.23), the behavior of s, = 1 shows the least dependency on
the complementarity parameter for large values of c,,.

In the previous results, the damping parameter a, was set according to (3.31). This is crucial
for the robustness of the overall system. A strict Newton method, i.e. setting a, = 1, instead
of the quasi-Newton method using (3.31) would show similar robustness as setting s, = 0 in
this example. The stabilizing effect of the parameter s, can therefore only be exploited by an
advantageous combination of the shape parameter s, and the damping parameter a,. Yet, this
damping parameter tends to 1 quite quickly as is shown in Figure 3.4 for the minimal and mean
values, so that a superlinear rate of convergence is always obtained asymptotically. Only for large
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Figure 3.4: Perforated strip — Minimal and mean value of a;, over all quadrature points in the first of, respectively, 10
and 50 time steps.

step sizes locally smaller values of the damping parameter occur, thus resulting in the observed
gain in robustness.

In conclusion, the choice of s, = 1, ¢, = 2u and a,, as defined in (3.31) has proven to be
the best choice in terms of robustness and efficiency. This observation not only holds for the
illustrated academic example, but has also proven true in more complex examples, so that this
set of algorithmic parameters will be used from now on.

3.3.3.2 Necking of a Circular Bar

The necking of a circular bar is by far the most common benchmark example for finite strain
plasticity. It allows to assess the robustness and accuracy of plasticity formulations, nonlinear
solution methods and finite element technology for nearly incompressible material [4, 26, 55—
57, 64, 197-200]. Here, the necking of a tensile specimen with a radius of 6.413 mm, a length
of 53.334 mm and an elongation of U, = 7mm is simulated. To trigger the necking phe-
nomenon, a geometric imperfection of 1.8% is imposed in the mid-plane with a linear decrease
of the radius. The elastic material behavior is described by a neo-Hookean hyperelastic material
E v

\Pe:%<]3_6_1)+01(11—3), Clzm, 521_21/,
defined by the invariants (see (2.52)) of C, with the Young’s modulus £ = 206.9 GPa and
Poisson’s ratio v = 0.29. Isotropic von Mises plasticity is assumed with yy = 0.45 and the
nonlinear isotropic hardening potential

(3.38)

Lo s e 04 — 1
v, = §Hiai + (Yoo —Yo) | s + —— ) (3.39)

with the parameters H; = 0.12924 GPa, y., = 0.715GPa and § = 16.93. The computational
effort is reduced by exploiting the obvious symmetry, so that only one eighth of the bar is dis-
cretized with 960 first-order hexahedral F-bar finite elements and appropriate symmetry condi-
tions (see Figure 3.5a). Figure 3.5b illustrates the von Mises equivalent stress distribution in the
final deformation state. To quantitatively validate the results, load-displacement diagrams and

71



3 Computational Methods for Thermo-Elasto-Plasticity

TS
U

S

e N

von Mises stress [Gfﬁ
[ e

0 1.02
(a) initial mesh (b) deformed mesh

Figure 3.5: Necking of a circular bar — Initial mesh and final deformation state with a contour plot of the von Mises
equivalent stress.

the evolution of the radius in the necking zone are commonly analyzed. Figure 3.6 compares
these quantities for the RMA and the newly proposed algorithm based on NCP functions. For
both characteristic measures, excellent agreement between the two methods is obtained,which
is of course not surprising, since the same plastic constraints are enforced at each quadrature
point. The essential difference of the proposed formulation rather lies in the nonlinear solution
procedure than in the underlying physics to be solved.
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Figure 3.6: Necking of a circular bar — Comparison of the evolution of the necking radius and force-displacement
diagram between the plasticity algorithm presented in Section 3.3 and the classical RMA. The total
displacement is applied in 100 equidistant steps.

As aforementioned, this example also serves as a benchmark for nonlinear solvers, since it
poses severe difficulties to standard Newton methods. Different approaches to cope with these
convergence problems are used in the literature, for instance line search [196, 198-200], incre-
ment cutting [57] or dynamic simulations with artificial viscosity [64]. However, the presented
semi-smooth Newton approach allows for a computation in 42 equal load steps using the plain
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(quasi-) Newton method without any measures for convergence acceleration. A comparable sim-
ulation using the same mesh and same predictor in combination with a classical RMA takes 62
equidistant steps to achieve convergence of the plain Newton scheme in every step. Figure 3.7
illustrates the decay in the L?-norm of the reduced residual (3.37b) as well as different partial
residuals in (3.25) at different stages: «w = 2.0 corresponds to an almost uniform plastic defor-
mation over the whole specimen, at u = 3.5 the localization of the plastic deformation begins
(which is the most critical state), and at u = 6.0 plastic deformation is localized to the necking
region. As expected, quadratic convergence is observed in the limit once the correct active set
is found. Only at v = 3.5 the convergence of the norm of the structural residual stagnates at
about 1071° because some components are limited by numerical accuracy, so that no quadratic
convergence can be observed.
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Figure 3.7: Necking of a circular bar — Exemplary convergence behavior of the semi-smooth Newton method in
terms of the L2-norm of the condensed residual (3.37b) ("condensed”), the balance of linear momentum
(3.25a) (equilibrium”) and the NCP function (3.25b) ("NCP”). The vertical line "active set” indicates
the iteration, in which the correct sets G, and G, are identified. The total displacement is applied in 42
equidistant steps.
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3.3.3.3 Squeezed Elasto-Plastic Tube

This final example demonstrates the applicability not only to isotropic hardening (as used in
all previous examples) but also includes kinematic hardening. Inspired by a similar example
in [91], a cylindrical tube with an outer radius of 5, an inner radius of 4 and a length of 40
is squeezed in the middle by two rigid cylindrical tools of radius 5. Starting from an initially
stress-free contact, the tools undergo a prescribed displacement of 3.0 in 40 equal steps. After
that, the tools are removed within one step, the tube is rotated by 90 degrees about its axis and
a second stroke is performed at the same speed. Again a neo-Hookean hyperelastic potential

0 1.1

| __ = - _
(a) initial mesh (b) first stroke

T — T —
(c) rotated tube (d) second stroke

Figure 3.8: Squeezed plastic tube — Initial mesh and deformed configurations at different stages with a contour plot
of the accumulated plastic strain ¢; in case of linear kinematic hardening.

(3.38) is used with £ = 206.9 and v = 0.29. Moreover, von Mises plasticity is assumed with
an initial yield stress yo = 0.45 in combination with either linear isotropic hardening H; = 0.1
or linear kinematic hardening H, = 0.1. At the contact interface, the tube surface is chosen as
slave side and frictional contact according to Coulomb’s law with a friction coefficient © = 0.3
is assumed.! To reduce the computational effort, only one eighth of the problem is discretized

I'The exact numerical method to enforce the contact conditions is of no particular importance for the observa-
tions made in this example. For the results shown, a dual mortar method has been applied as derived in Chapter
4.
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and appropriate symmetry conditions are applied. One eighth of the tube is meshed with ap-
proximately 6500 8-node hexahedral F-bar elements as shown in Figure 3.8a. Figures 3.8b—3.8d
illustrate the deformation process in the case of kinematic hardening; the results for isotropic
hardening are omitted here, since they look almost the same. A comparison of the total contact
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Figure 3.9: Squeezed plastic tube — Evolution of the total contact forces comparing linear isotropic and kinematic
hardening material behavior.

force between the two settings using isotropic and kinematic hardening, respectively, is shown
in Figure 3.9. While the first stroke yields very similar results in both cases due to the monotonic
loading, the contact states differ significantly in the second stroke. As expected, the change in
the direction of plastic deformation results in the material with kinematic hardening to behave
softer during the second stroke.

3.4 Extensions to the Algorithm

In this section, several extensions to the basic methodology for the computational treatment of
large deformation plasticity are presented. While the focus is set on numerical and algorithmic
implications, inspiration for the extensions is taken from metal forming processes, especially
sheet metal forming. One ingredient to sheet metal forming simulation has already been intro-
duced by the use of an anisotropic yield function as sheet metal exhibits orthotropic behavior
due to milling of sheets in production. The modeling of this anisotropic plastic material behavior
will be further elaborated on in Section 3.4.1 by the introduction of plastic spin to the model.
Next, high strain rates during metal forming may preclude the use of rate-insensitive yield func-
tions considered so far. Instead, effects of visco-plasticity, coupling the apparent yield strength
with the deformation rate, may be necessary and will be incorporated in Section 3.4.2. Finally,
thermal effects are of interest in many forming applications, either by the heat produced by the
plastic deformation, or by forming pre-heated parts to make use of temperature dependent plas-
tic material behavior. Therefore, effects of thermo-elasto-plasticity will be considered in Section
3.4.3 within the computational framework developed above. Numerical examples accompany
each of the developments to demonstrate their respective effects.
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3.4.1 Anisotropic Plasticity with Plastic Spin

The plastic spin as introduced in Section 2.3.4.5 (see also Dafalias [47]) for Hill’s yield criterion
models the rotation of the axes of material orthotropy with respect to the macroscopic continuum.
This rotation is determined by a constitutive equation on the skew-symmetric part W}, of the
plastic velocity gradient L,,, for instance (2.81). For plastic internal variables discretized in space
and time as presented in Section 3.1 this yields the discrete evolution of the plastic spin (3.7).
As published in Seitz et al. [192], this evolution equation can be encorporated in the system
of nonlinear equations (3.24) by replacing (3.24d) with (3.7). As the NCP function (3.23) and
(3.7) are, respectively, symmetric and skew-symmetric by construction and therefore orthogonal,
conditions (3.24b) (i.e. solving for the root of the NCP function) and (3.7) (i.e. evolution of the
plastic spin) may be combined as

+ AW, — yﬁ (SAD, — AD,X) =0 . (3.40)
0

H

pvsp

=G

pzsp

The solution procedure by the semi-smooth Newton method presented in 3.3.2 can again be
applied by simply replacing G, ;, with H}, , . Its derivatives with respect to the nodal displace-
ments and plastic flow increment AL, follow straightforwardly from (3.40) as

H,, . !
0 p,pzaGp,p_ﬂ(ca_E:(FvXN)) ADP—ADP<26—Z:(FVXN)>> ,

ad ad  y \\aC aC
(3.41)

0H,,, 0Gy,, n oY \ ' %
AL = GAL. L= (E]Is ~ LY + (aALp> AD, — AD, (6A—Lp) . (3.42)

When performing the condensation of the plastic flow increment AL, by (3.36), now a system
of eight unknowns for a non-symmetric, traceless second order tensor needs to be solved in
comparison the the five unknowns in the absence of plastic spin. The condition of a traceless
plastic flow (3.25¢) is again satisfied automatically by the use of the pseudo-inverse in (3.36).

Numerical Example! A simple validation example is adopted from Ulz [222], where the
same problem has been solved using the RMA, see also Miehe et al. [148], Papadopoulos and Lu
[164] for a similar problem without plastic spin. The well-known benchmark example consists of
a circular flange (oriented along the z3-axis) with an inner radius of 200, an outer radius of 300
and a thickness of 10 which is supported on the lower surface. The inner surface is subjected
to a displacement driven contraction of & = 50. This setting can be interpreted as the loading
condition of an outer ring in a deep-drawing process. Due to the plastic anisotropy, a so-called
earing effect can be observed, i.e. the initially circular shape loses its rotational symmetry and a
periodic shape evolves. The same orthotropic yield function as in [222] is used and the plastic
spin parameter 7) controlling the evolution of the plastic spin is varied. The elastic response is
governed by the neo-Hookean material (3.38) and a linear isotropic hardening law ¥, = /2 H;a?
is employed, see Table 3.1 for the elastic and plastic material properties. Using the obvious
symmetry, only one quarter of the flange is discretized with 10 x 20 eight-node hexahedral F-bar

!'This example is taken from the author’s publication Seitz et al. [192].
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Table 3.1: Drawing of a circular flange — Material properties.

Young’s modulus E 210.0
Poisson’s ratio v 0.3

Initial yield stress Yo 0.275
Isotropic hardening modulus  H; 0.1
Orthotropy factors q 0.666666667

ag = a3 0.672790077

a7 = a9 0.785052599
Qs 1.012246821
Plastic spin parameter n {=500, —250, —100, 0}
plastic strain «; plastic strain oy plastic strain oy plastic strain oy
0 018 0 018 0 018 0 0.18
(@n=0 (b) n = —100 (c)n =-250 (d) n = —500

Figure 3.10: Drawing of a circular flange — Distribution of accumulated plastic strain for different values of the
plastic spin parameter 7 at « = 25mm. The initial mesh is outlined by black lines in the background.

. 5

plastic strain «; plastic strain oy plastic strain oy plastic strain «;
i — | - e -
0 0.4 0 04 O 0.4 0 0.4
(@n=20 (b) n = —100 (c)np = —250 (d) n = —500

Figure 3.11: Drawing of a circular flange — Distribution of accumulated plastic strain for different values of the
plastic spin parameter 7 at v = 50mm. The initial mesh is outlined by black lines in the background.
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elements. Figures 3.10 and 3.11 depict the deformed configuration at different load stages for
different values of 7 with the initial mesh being outlined in the background. In good agreement
with the results of Ulz [222], the presence of plastic spin results in a more and more isotropic
distribution of the accumulated plastic strain, the higher the absolute value of 1 becomes. At
different polar positions the plastic triad rotates differently around the xs-axis such that the
plastic response to the radial stress assimilates. The rate at which this rotation takes place is
controlled by the value of 7. For n = —500, which is preferred in [222] with comparison to
experimental data, hardly any earing can be observed at the final state v = 50mm. These results
demonstrate, that the NCP function based approach to plasticity not only captures von Mises
plasticity as in the previous examples, but also allows for an efficient computation of anisotropic
Hill-type plasticity including plastic spin, which is especially important in the application to
sheet metal forming.

3.4.2 Visco-Plasticity

Effects of visco-plasticity become increasingly important with higher strain rates. The presented
algorithm for finite strain plasticity based on NCP functions can easily be extended to visco-
plastic models based on dynamic yield surfaces as, for example, the model of Peri¢ [166] intro-
duced in Section 2.3.4.6. When approximating the plastic multiplier ¥ in (2.84) within the time
interval [t,, t,1] by a finite difference of the isotropic hardening variable, i.e. 4 ~z Zni=n
the effective dynamic yield stress is obtained as

i,n - Win ‘ 8\11
ydyn _ (1 + M%) (3/0 + 80;-)) : (3.43)

with the viscosity p and the rate sensitivity €. The only changes to be made to the method of
Section 3.3 is to replace the effective yield stress Y by Y4 in (3.23) and consequently in all
derived linearizations, particularly in (3.32) and (3.35).

Numerical Example To exemplify the effect of visco-plasticity, the necking of a circular bar
introduced in Section 3.3.3.2 is revisited using the same discretization and material parameters.
Figure 3.12 depicts the resulting force-displacement diagrams for different sets of visco-plastic
material parameters (viscosity p and rate sensitivity €) each at varying loading rates u. In the
case of either y — 0 or ¢ — 0 or u — 0, the rate-insensitive results of Figure 3.6a (black
dashed line in Figure 3.12) are recovered. For high viscosities and especially rate sensitivities,
the onset of necking, indicated by a decrease in force, is shifted towards larger elongations or
precluded entirely. This behavior is in good agreement with results of a similar setup reported in
de Souza Neto et al. [57].

3.4.3 Thermo-Plasticity’

Finally, the proposed plasticity algorithm based on NCP functions is extended to thermo-elasto-
plasticity. The general concept of solving plasticity using NCP functions is now extended to a

!'This example is taken from the author’s publication Seitz et al. [194].
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Figure 3.12: Elasto-visco-plastic necking of a circular bar — Force-displacement diagrams for different visco-plastic
material parameters at prescribed loading velocities & = {10~* =, 10° =, 101 M=} and the rate

insensitive case of w — 0.

coupled thermomechanical system, which, in its discrete setting, is governed by the discrete bal-
ance of linear momentum (2.159) and heat conduction equation (2.163). Again, the discrete plas-
tic flow increment AL, at each quadrature point is introduced as additional primary unknowns
and the set of nonlinear equations is extended by (3.24b) - (3.24d). Applying a semi-smooth
Newton method analogously to (3.25) yields the linearized system

or or or
~Ad UAT UAALL —
od + oT - aALp P Tu ,
Orr ory ory
—Ad — —— AAL —
od + oT dAL, p rrT o,
aGPS q aGps q (9Gps q
a2 2 AT P2 ANL, = —
od 4 oT + dAL,, pa = ~Gpsey V4EG
trAvaq:O ) Vgeg ,
skew AL,, =0 , Vgeg ,

(3.442)

(3.44b)

(3.44¢)

(3.44d)
(3.44e)
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that has to be solved in each iteration step. Compared to the isothermal case, a temperature de-
pendency of the stuctural residual r, is introduced by a temperature dependent stress derived
from a temperature dependent elastic free energy ¥, = W,(C,, T'). Conversely, the displace-
ments enter the thermal residual via Fourier’s law on finitely deforming bodies (see (2.48b)),
thermo-elastic coupling and plastic work converted to heat (see third integral in (2.99)). More-
over, all involved stress measures may depend on the discrete displacements, temperatures, the
plastic deformation history and the current plastic flow. In the NCP function, the additional tem-
perature dependency may enter both in the stress 17 as well as the effective yield stress Y. The
key arguments leading to the condensation of the plastic flow increments AAL,, from the system
(3.44) are the same as for the isothermal case in Section 3.3.2, namely the fact that (3.44c) only
contains the discrete plastic increment AL, , of one quadrature point ¢ as well as the displace-
ment and temperature degrees of freedom belonging to the element containing this quadrature
point. Hence, (3.44c) can be solved for AAL, , at each quadrature point directly to obtain

G, . G, 0G,, s
( D Pq> :(Gp7sp7q+—p’ Pl A 4 — 2%t "’qAT) . (3.45)

AAL
OAL,, od oT

g —

This condensation can in turn be inserted into (3.44a) and (3.44b) and results, analogously to
(3.37), in condensed residuals and tangent matrices

K _ O w1y 0Gypspa\ " . (0Grsra
K u,Tiu — Ky, u 7 = 2= Ad , 3.46
{w.T} {u.T} % ( DAL, ) (aAqu ad (3.462)
r [ or u s 0G s
Kumyr = Kumyr — Y ( agLT}) ( 5 APL = q) ( oy qAT) ,  (3.46b)
qeg L 1% P,q
~ [ 87‘{1171“} 0G Sp)
qeG L 1% P,q

The reduced linear system to be solved therefore consists of discrete displacement and tempera-
ture degrees of freedom only, such that it is of the same size as any monolithic thermo-structure-
interaction problem (2.167).

Numerical Example The necking problem as introduced for isothermal finite deformation
plasticity in Section 3.3.3.2 serves as a classical benchmark for thermo-plasticity as well, e.g. in
Canajija and Brni¢ [27], Ibrahimbegovic and Chorfi [114], Simo and Miehe [201], Wriggers
et al. [238]. In this thesis, further extension of the problem commonly analyzed using isotropic
von Mises plasticity to anisotropic thermo-plasticity is presented. The geometrical setting is
largely equivalent to the one described in Section 3.3.3.2 with the only difference being, that, in
the isothermal case, a geometric imperfection is introduced to trigger the necking of the speci-
men. In the fully coupled thermomechanical setting, necking can be triggered without any geo-
metrical imperfection merely by an inhomogeneous temperature distribution caused by convec-
tive heat transfer on the entire boundary of the specimen. The normal spatial heat flux is thereby
defined as ¢, = —h.(T — T.,), where h. denotes the coefficient of convection, 7" the temper-
ature at the surface, and 7T, the temperature of the surrounding medium. Plastic anisotropy is
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plastic strain o; plastic strain o;
0 1 1.91 0 1.5 2.8
- I - I
(a) initial mesh (b) final configuration, (c) final configuration,
isotropic plasticity anisotropic plasticity

Figure 3.13: Thermally triggered necking of an anisotropic circular bar — Initial mesh and final deformed configu-
ration colored by the accumulated plastic strain ;.

introduced by reducing the normal yield stress in one transversal direction (direction from the
central axis to point A in Figure 3.13a) by 17.5% (see y1; in Table 3.2). The isothermal elastic
free energy (3.38) (denoted as W, (11, I5, I3) in the following) is complemented by an additional
term to account for thermal expansion

L 307 1)
0I5 :

with the coefficient of thermal expansion at and a reference temperature 7y. The function
\D670(3I§/ ° 3I§/ ® I3) therein accounts for elastic stored energy associated to a purely volumet-
ric deformation. This simple extension of linear thermal expansion to nonlinear hyperelasticity
was proposed by Simo and Miehe [201] and is slightly generalized here to also accommodate for
isothermal elastic free energies W, o in which the volumetric and deviatoric response do not de-
couple. The same nonlinear isotropic hardening potential (3.39) as in the isothermal case is used,
however, the parameters in (3.39) are temperature dependent. This temperature dependency and
all other material parameters are summarized in Table 3.2. To be able to accurately capture the
effects of anisotropy, a slightly finer mesh (see Figure 3.13a) as compared to the isothermal case
(see Figure 3.5a) is employed consisting of 2250 first-order hexahedral finite elements. Further,
the anisotropic deformation involves a significant amount of shear (cf. Figure 3.13c), such that
enhanced assumed strain (EAS) elements with nine additional strain modes, see e.g. Klinkel
and Wagner [122], are employed. When the monolithic solution algorithm presented above is
combined with enhanced strain elements, coupling effects of the additional strain modes with
all other fields have to be considered carefully. The modes appear as additional (element-wise
discontinuous) unknowns in the system (3.44), having common coupling terms with the discrete
displacements d, temperatures T and plastic deformation increments AL,. The local condensa-
tion procedure in (3.46) then becomes a two-stage process: first, at Gauss-point level, the plastic
deformation increment is eliminated, and secondly, the additional strain modes are condensed
at element level. Figures 3.13b and 3.13c illustrate the final deformed stage and Figure 3.14a

OV, 0(3
Uo(Iy, Iy, I3, T) = Weo(Iy, Iy, Is) — 6ap(T — Ty)\/Is of (3.47)
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Table 3.2: Thermally triggered necking of an anisotropic circular bar — Material parameters.

Young’s modulus E 206.9 GPa
Poisson’s ratio v 0.29
Initial yield stress yo(T) (1 —wo(T —1Tp)) - 0.45 GPa
Anisotropy parameters Y11 y11 = {0.825y0, Yo }
Y22, Y33, Y12, Y13, Y23 Y22 = Y33 = Y12 = Y13 = Y23 = Yo
Linear hardening modulus  H;(T) (1 —wyn(T —Tp)) - 0.12924 GPa
Saturation yield stress Yoo(T') (1 —wn(T —1Tp)) - 0.715 GPa
Hardening exponent ) 16.93
Density 00 7.8-107Y N—rf;
Heat capacity Cy 3.588 —> >
Heat conductivity ko 45 X
Expansion coefficient o 1077 &+
Yield stress softening Wo 0.002 %
Hardening softening Wh 0.002 %
Dissipation factor X 0.9
Initial temperature Th 293K
Surrounding temperature Ty 293 K
Convection coefficient he 17.5 — HIIISK

the force-elongation curve for the isotropic and anisotropic thermomechanical necking problem.
The isotropic case therein reproduces the results reported by Canajija and Brni¢ [27] accurately.
In the first phase up to an elongation of approximately 3.5 mm the deformation is dominated
by homogeneous plastic deformation in longitudinal direction, such that the reaction force is
dominated by plastic hardening, and the influence of anisotropy is very low. Once the necking
is initiated, the plastic deformation is anisotropic in the transversal plane of the specimen, thus
resulting in an anisotropic deformation pattern, see Fig. 3.13c and 3.14b. The anisotropy in the
temperature distribution in Figure 3.14c is less pronounced and the temperatures in points A and
B follow the temperature evolution in the isotropic case.
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Figure 3.14: Thermally triggered necking of an anisotropic circular bar — Evolution of reaction force, necking radius
and temperature in the necking zone for isotropic and anisotropic thermo-plasticity.
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4 Mortar Methods for Contact
Mechanics

This chapter is devoted to the development of mortar-based computational methods for isother-
mal and thermomechanical contact problems. Starting point is the continuum mechanical de-
scription of contact problems derived in Section 2.7, in particular the weak forms introduced
in Section 2.7.4. Mortar methods are based on a mixed variational formulation introducing the
boundary traction (or the heat flux for thermal problems) as an additional field of unknowns. The
mathematical derivation of mortar methods for contact problems has become quite standard in
the literature over recent years, such that it will only be sketched briefly in the following. A more
detailed introduction may be found, for instance, in the theses by Hiieber [105], Popp [171] and
the review article of Wohlmuth [235].

Section 4.1 introduces the concept mortar contact formulations for isothermal problems. A
special focus therein is put on the discrete approximation space of the Lagrange multiplier.
Meanwhile well-known in the literature are the so-called standard and biorthogonal (or dual)
bases for finite elements recalled in Sections 4.1.1 and 4.1.2. Compared to the standard basis,
dual bases have the advantage that the discrete Lagrange multiplier degrees of freedom can easily
be eliminated from the global system of equations. Beyond those two well-known Lagrange mul-
tiplier bases, two novel schemes are developed within this thesis: First, Section 4.1.3 introduces
a piece-wise constant Lagrange multiplier approximation for quadratic finite elements. This ap-
proach inherits the advantages of dual bases, including elimination of the discrete Lagrange
multiplier and optimal convergence in contact problems, without the necessity of constructing
a dual basis. Second, a biorthogonal NURBS basis is constructed in Section 4.1.4 for contact
treatment in the framework of isogeometric analysis. Compared to classical finite elements, con-
tact treatment by isogeometric analysis benefits from a smooth surface representation provided
by the higher inter-element continuity of NURBS basis functions. Again, emphasis is put on
achieving optimal convergence orders for contact problems. The performance of the developed
methods is demonstrated by various numerical examples.

Finally, a thermomecanically coupled, fully nonlinear mortar finite element method is derived
in Section 4.2. In the coupled thermomechanical mortar method, not only the contact traction, but
also the contact heat flux is introduced as an unknown field to the mixed variational form. In the
discrete setting, the use of biorthogonal or piece-wise constant Lagrange multiplier bases again
allows for the condensation of the additional unknown Lagrange multiplier fields of traction and
heat flux. Ultimately, a coupled system of equations consisting only of discrete displacement and
temperature degrees of freedom needs to be solved. This renders the approach very efficient yet
maintaining the variational foundation of the mortar method.
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4 Mortar Methods for Contact Mechanics

4.1 Mortar Methods for Isothermal Contact Problems

As aforementioned, the mortar finite element method is a mixed discretization scheme for which,
in the isothermal case, the slave sided contact traction ¢, is introduced as an additional primary
field, the Lagrange multiplier. For technical reasons it is convenient to actually take the negative
slave-sided contact traction as the Lagrange multiplier field:

A= —t, . (4.1)

To enforce the normal contact constraint (2.119) and Coulomb’s law of friction (2.124) in tan-
gential direction separately, the Lagrange multiplier X is split into its normal and tangential
components A\, and \; by

A=n-A (4.2a)
M=T—-—n@n)A , (4.2b)

in the style of (2.106). Accomodating the contact constraints, the Lagrange multiplier is chosen
from the convex set

M(A) = {w eEM| /(1) w-vdy < /<1> pAn||ve]| dy ;v € W with v, < 0} ,  (43)
Ve Ve

wherein W represents the trace space of Lll(ll) on I'Y and M its corresponding dual space.

With this Lagrange multiplier space, the mixed variational form of the contact problem may be
formulated as: Find u € U, and A € M (), such that

oWy + /(1) A Jou]dy=0 YéueVy, , 4.4)

Ye

/(1)(5)\n — An)gndy — /(D((S)\T —A) - vdy >0 VoA E M(A) . 4.5)
Ve Ve
The first line therein represents the discrete balance of linear momentum (2.132) replacing the
contact traction with the Lagrange multiplier (4.1). The first integral in the second line is an
equivalent reformulation of the normal contact constraints (2.119) in terms of a variational in-
equality and the second integral the equivalent variational inequality to Coulomb’s law of friction
(2.124). The technicalities of the proof of equivalence of the variational inequalities with (2.119)
and (2.124) are of minor importance for this thesis and are therefore omitted. The interested
reader is instead referred to, e.g., Curnier [42], Hiieber [105], Wohlmuth [235].

Spatial discretization To obtain the mortar finite element method, discretizations of both
displacements as well as the Lagrange multiplier field A are required. The discrete trial and test
spaces for the displacement U, and V,, are the same as derived in Section 2.8.1, i.e., (2.140) for
classical finite elements and (2.157) in the case of isogeometric analysis. The Lagrange multi-
plier field on 721,2 is approximated by set £ of still to be defined ansatz functions ¢; and discrete
values A; similarly to (2.136) as

A(X7t) ~ Ah(X’ t) = Z ¢1(X)Az(t) ’ (46)

i€l

86



4.1 Mortar Methods for Isothermal Contact Problems

resulting in the discrete space M, = [span,;..{¢;}]"*™. Different variants of how to choose
the Lagrange multiplier basis functions ¢; will be discussed in detail in Sections 4.1.1 - 4.1.4.
At this point, only inf-sup-stability of the pair of displacement and Lagrange multiplier basis
shall be required, see e.g. Boffi er al. [18], Brivadis et al. [21], Wohlmuth [234]'. The admissible
discrete Lagrange multiplier space M, () derived therefrom by restricting the coefficients
accordingly:

My (Ag) = {wh = Z¢iwi EMy | win >0, |lwiq < FL}\i,n} : 4.7)
ieL

Strictly speaking, putting the restrictions to positive normal values and bounded tangential values

on the components rather than the interpolated function in the sense of (4.3) with v € W,

is generally more restrictive. In the present case, it is only equivalent for the use of dual basis

functions as derived in Sections 4.1.2 —4.1.4, see Hiieber [ 105, Remark 2.5] for details. Spatially

discretized, the contact contribution to weak form (4.4) is expressed as

/ A [[(S’U,]] d’y ~ / )\h[[éuhﬂ d
%(1) )]

Ye,h
=> > N\ ( N @i N dfy) ad' (4.8)
i€L jES Ye,h
> >N (/ ¢Z<N()OX h> dv)&i )
€L keM

with the sets S and M contalmng all nodes (or control points in IGA) on the slave and master

contact boundary 7( ) and % h, respectively, and the ]\7 @ _ N @ )| ol denotes the restriction of

an ansatz function j to the contact boundary. Note that the present thes1s only considers open
knot vectors in IGA (cf. Section 2.8.1.2) and hence the discrete surfaces are described by the
ansatz functions and coordinates of control points on the boundary only. When grouping the
virtual displacements dd = [dd,;, dds, dd4]" into the ones on the slave side dds, the master
side dd , and all others dd,  and combining all discrete Lagrange multiplier values in A, (4.8)
can be abbreviated as

0
/ M [dup]dy=6d" | DT | A=6d"F,.(d,A) | (4.9)
v M

with the discrete contact force F), . and the well-known mortar matrices D and M consisting of
blocks

Dli,j] = I 9 6N}V dy i€L, jeS, (4.102)

M, k] = /m ¢Z< OXth) dy , iel, keM . (4.10b)

"Note that inf-sup-stability may not be sufficient for the mathematical analysis nonlinear problems, c.f. [136].
Exact mathematical analysis of nonlinear problems are, however, not the topic of this thesis such that details are
omitted here.
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A stable mortar method for contact problems requires [232, Assumption 1]:

(l)gbiN]O)deO i€eL, jES . (4.11)
Ye,n

<,

Assuming frictionless contact for simplicity, this ensures that a positive Lagrange multiplier,
i.e. a negative contact pressure p,, yields by (4.9) discrete force separating the two contacting
surfaces.

The matrix D contains the integration over a product of ansatz functions both defined on
the slave mesh and thus could be integrated accurately by standard quadrature rules on slave
elements. The matrix M, on the other hand, includes the integration of a product two ansatz
functions defined on the slave and the master sided mesh respectively. To maintain optimality
of mortar methods, sufficiently accurate integration is of great importance. Various integration
strategies have been proposed in the literature. The simplest and widely used one is termed
element-based in Farah et al. [70] and consists of simply using higher order integration rules
on slave elements, which, of course, cannot be exact as it disregards the master-sided mesh. An
exact integration requires integration on an imprinted mesh constructed of both the slave and
master side which is still rather simple to obtain in two-dimensional problems but becomes more
intricate in 3D. Such an integration technique is commonly referred to segmentation and can be
found, e.g., in Popp et al. [168, 169], Puso and Laursen [175, 176] for first order finite elements,
Puso et al. [177] for second order finite elements, and Dittmann et al. [61], Hesch and Betsch
[100], Seitz et al. [193] for isogeometric analysis. A comparison of element-based integration
and segmentation in terms of accuracy and efficiency has been performed, e.g., by Farah et al.
[70] for finite elements and Brivadis et al. [22] in the context of isogeometric analysis. Finally,
Maday et al. [140] obtained accurate results integrating D and M using independent quadrature
rules on the slave and master-sided mesh, respectively. This approach has been transferred and
analyzed for isogeometric discretizations by Brivadis et al. [22].

In addition to the contact forces acting in the weak form of the balance of linear momentum
(4.4) and are discretized by (4.9), the weak form of the contact constraints (4.5) have to be dealt
with. In mortar methods for contact problems, they are commonly introduced for each discrete
Lagrange multiplier independently. In normal direction, one obtains

gn,i 2 O 5 }\n,i Z 0 5 )\n,ign,i = 0 VZ € E 5 (412)
based on the so-called weighted gap
Gnji = / Gignndy (4.13)
€)
ch,h
with a discrete approximation ¢, ~ g, of the gap function (2.102). A minimum requirement

to obtain a stable method is that the Lagrange multiplier ansatz functions have at least a positive
mean value [232, Assumption 2]:

/(1) ¢pidy>0 VieLl . (4.14)
’Yc,h

This entails that a positive, constant gap g, 5, over the support of ¢; yields a positive weighted
gap value g, ;. More desirable than merely positive mean values is non-negativity of ¢;, in which
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case any strictly positive g, , over the support of ¢, yields a positive weighted gap value g, ;. If
the ansatz functions ¢;, for some reason (e.g. dual basis, see Sections 4.1.2 and 4.1.4), cannot
satisfy ¢; > 0, Popp et al. [172] propose to use a Petrov—Galerkin-type approach to use different
ansatz and test functions for A and JA in (4.4) and (4.5), respectively. The calculation of the
mortar matrices (4.10) is then using the ansatz functions for A;, which require (4.11) rather than
(4.14), whereas in (4.13), ¢; is then replaced by the newly chosen test function for A; which can
be constructed to be non-negative.
Similarly, the constraints of Coulomb friction are enforced as

(b"r,h,i = HAT,’LH - ,U/}\n,i S 0 s ﬁT,i +5}\T,z’ =0 ) ﬁ Z 0 5 Qb"r,h,iﬁ =0 VieLl . (415)

The weighted tangential velocity v.; associated with a Lagrange multiplier A; can either be
derived analogously to (4.13) and the local tangential velocity (2.103), or, as introduced by Puso
and Laursen [176], via a time derivative of the mortar matrices:

b= —(I —m; @ ny) (Z D[, jl={" — Y M, k;]zc,f)) , (4.16)

JjeS keM

which is frame indifferent for any discrete time derivative by construction and consistent for
nodes in closed contact, see [176] for details. For all mortar methods including friction, (4.16)
will be employed throughout this thesis.

Remark 4.1. It should be noted that the decoupling of discrete constraints (4.12) and (4.15) only
emanates consistently from the discretization of the variational inequality (4.5), if the discrete
Lagrange multiplier basis satisfies a biorthogonality condition as the ones derived in Sections
4.1.2 — 4.1.4, see Hiieber [105, Lemma 2.6]. For efficient implementations of mortar contact
methods, however, the constraints are commonly still enforced on nodal values independently
even if no dual basis for the Lagrange multiplier is employed, see e.g. [50, 51, 147, 176, 216, 217,
220, 245], which can be interpreted as a lumping technique. Only Blum et al. [17] enforce the
constraints consistently with the variational inequality for standard Lagrange multiplier spaces.

Temporal discretization Up to now, the contact terms have only been discretized in space
but remain continuous in time. To encorporate contact forces in the time discrete balance of
linear momentum, the contact force Fj . has to be included in the fully discrete equilibrium
equation (2.159) for dynamic problems or (2.165) for quasi-static problems respectively. In the
simpler case of quasi-static problems, this means including the contact forces at a given time
step t,,+1 to the equilibrium (2.165) to obtain

Tu(dn-l—la An—‘,—l) = Fu,int<dn+1) - Fu,ext,n+1 + Fu,c<dn+17 An—‘,—l) = 0 . (417)

The discrete contact force F;, . therein depends nonlinearly on the displacements, since the pro-
jection and integration are performed in the displaced configuration, and linearly on the La-
grange multipliers A, via (4.9). For dynamic problems solved by the generalized-o method,
see Section 2.8.2, the contact forces are applied at a generalized mid-point with the parameter
o . resulting in the balance equation

'ru<dn+1; 7\n+1> - Muan—l—l—am,u + Fu,int,n—l—l—af’u - Fu,ext,n—l—l—af’u + Fu,c,n—l—l—af’C =0 y (418)
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whereby the discrete contact force at the interpolated mid-point is, as the inertia, internal and
external forces, obtained by interpolation of time steps ¢, and t,,11, i.e. Fycnt1-ar, = (1—
ase)Fuc(dnit, Aug1) + asoFyc(dy, Ay). Contact dynamics is inherently non-smooth in time,
as, at the time of impact, an instantaneous deceleration of material points on the contacting
surface occurs. In the time discrete setting of (4.18), this can result in oscillatory solutions of
contact forces in highly dynamic impact problems. Several approaches to deal with this non-
smoothness in time in the context of Newmark-type time integrators have been proposed in the
literature, for instance by Deuflhard et al. [58], Hager et al. [89], Khenous et al. [119], Laursen
and Chawla [132]. Krause and Walloth [124] provide a review and comparison of different mod-
ified Newmark-type time integrators for dynamic contact and impact problems. In this thesis, an
approach originally proposed by Laursen and Love [133] for NTS contact algorithms is pursued.
For simplicity of presentation, frictionless contact is assumed. 'In a first step, a fully implicit
treatment of the contact forces is chosen by setting o . = 0, which guarantees that the discrete
work in one time step W, = (d,.;1 — d,,) - F,, . becomes negative (i.e. dissipative) for Lagrange
multipliers A; when the contact constraint is activated (g, ,+1 = 0) and zero if the contact con-
straint is deactivated (A; = 0). Following an idea of Laursen and Love [133], the dissipated
energy can be re-introduced into the system via a velocity update procedure. If, however, the
contact force were discretized in time by a linear combination of two time steps, Lagrange mul-
tipliers leaving the active contact set would introduce energy to the discrete system, which one
might not be able to compensate via the velocity update procedure.

Finally, also the relative tangential velocity (4.16) requires an appropriate time discretization.
As in the case of plasticity, time in quasi-static frictional contact problems plays the role of a
path variable. With a backward-Euler scheme, one obtains

~ /&T,rel,i,n—l—l
Vrintl = Tt
D,i1)i, 7] — D,li, g
= —(I = Mip 1 ® M) - ( > 1] J]At | j]azﬁﬂ (4.19)
jES
Mn—&-l[i» k] — Mn[iv k] (2)
B Z At wkz,nJrl ’
keM

by means of which the contact constraints at ¢,,, can be stated
gn,i,n—i—l Z 0 ) }\n,i,n—i-l Z 0 ) )\n,i,n—i-lgn,i,n-l—l =0 Vi S L ) (420)

and
Grpint1 = || Aint1l — HAint1 <0,
Urrelin+1 + BAringr =0,
B8>0,
G nint1 =10 Vie Ll

(4.21)

in the time discrete setting.

!'The remainder of this paragraph is adapted from the author’s publication [194].
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Reformulation of inequality constraints To this point, the mortar finite element dis-
cretization yields a nonlinear problem, that is, the balance of linear momentum (4.17) or (4.18),
under the inequality constraints (4.20) and (4.21). Similar to the numerical algorithm for com-
putational plasticity derived in Section 3, these inequality constraints are transferred to equiva-
lent non-smooth equality constraints by means of nonlinear complementarity (NCP) functions.
Hiieber and Wohlmuth [106] introduce the reformulation of the contact constraints in normal
direction (4.20) in terms of the NCP function

Gn,i = }\nfi — maX(O, }\n,i — Cngn,i) =0 Vi c L y (422)

where the subscript (-),,,, is omitted for brevity. It can easily be verified that the root of (4.22)
is equivalent to (4.20) for any complementarity parameter ¢, > 0, which is also apparent from
the visualization of the NCP function in Figure 4.1. At the root (green line), either the weighted

An,i

—2 7\17,1'

Figure 4.1: Visualization of the NCP function (4.22) Figure 4.2: Visualization of the NCP function (4.23)

for a one-dimensional problem with
¢, = 1. The blue and red parts of
the functions denote the inactive (A, ; —
cngn,s < 0) and active branches (A, ; —
cngn,; > 0), respectively. The transpar-
ent green plane indicates the zero-plane
and a solid green line the root of the

for a one-dimensional problem with
i — cabng) = 1 and ¢ =
1. The blue and red parts of the
functions denote the stick (||Ar; +
CT'&T,rcl,i” < /i()\n,i - Cngn,i)) and SliP
branches (|| A, +crrreri| > p(An,i—
CnGn,i)), respectively. The transparent

NCP function. green plane indicates the zero-plane and
a solid green line the root of the NCP
function.

gap gn; is positive and the and the normal Lagrange multiplier A, ; is zero in the red zone, or the
weighted g,;, = 0 and A, ; > 0 in the blue zone. Meanwhile, the NCP function (4.22) has been
widely used in computational contact mechanics based on mortar methods (see e.g. [39, 62, 80,
91, 95, 109, 168, 169, 235]) or other computational approaches, e.g. [34, 35, 173, 185].

The frictional constraints (4.21) bears great similarity to the ones of elasto-plasticity (see (3.5),
(3.6)) and therefore a similar NCP function can be constructed as

GT,’i = max (N(}\n,i - Cngn,i); ||}\T,i + C’c'&"r,rel,i”)

i (1, At~ o) ; | (4.23)
| Ay —min (1, — AtitCUrre;) | =0 Vie Ll |
< ) < ||}\T’i + cTuT,rel,i”) ( © el >>

91



4 Mortar Methods for Contact Mechanics

with a complementarity parameter ¢; > 0. As compared to the NCP function of elasto-plasticity
(3.23), the analog to shape parameter s, i.e. an exponent to the max-function, is directly set to 1
for frictional contact, since this has proven most robust in case of elasto-plasticity (cf. Section
3.3.3.1) and the study of Hager and Wohlmuth [91] for both elasto-plasticity and frictional con-
tact at small strains. In the case of closed contact, i.e. A, ; — cngn,; > 0, it can easily be shown,
that the root of G- ; is equivalent to the inequality constraints (4.21). However, this does not
necessarily hold for inactive contact A, ; — ¢, gn,; < 0, in which case G, is replaced by A; = 0
as no contact traction, neither in normal nor in tangential direction, is permitted if there is no
contact. A detailed discussion on this modification of the tangential NCP function in the case
of inactive contact is given in Hiieber [105, Section 5.1.2.]. A more in-depth introduction to the
NCP functions for frictional contact problems can be found in e.g. Gitterle [79], Gitterle et al.
[80], Hager and Wohlmuth [91], Hiieber [105], Hiieber et al. [109], Wohlmuth [235].

Both in normal and tangential direction, the introcuded complementrity parameters ¢, and ¢
have no effect on the solution (as the roots of the NCP functions are independent of ¢, and c.).
However, their choice can have significant effects on the convergence of the nonlinear solution
scheme derived in the following. Since ¢, and c; balance contact tractions A, and A with the
weighted geometric quantities ¢, and . .1, respectively, Hager and Wohlmuth [91] propose to
scale ¢, and ¢, with a material stiffness parameter, e.g. Young’s modulus, and the inverse finite
element mesh size. Numerical experiments on the influence of the compelementarity parameters
on the convergence of the nonlinear solution procedure have been performed, among others, by
Gitterle [79], Hager and Wohlmuth [91].

Semi-smooth Newton method With the NCP functions replacing the inequality constraints,
the discretized system including frictional contact is given by a set of coupled nonlinear equa-
tions

Ty = MuanJrlfam,u + Fu,int,nJrlfaf,u - Fu,ext,nJrlfafTu + Iru,c,nJrlfozf,C =0 ) (4243)
Gui=0 VieL , (4.24b)
G.;=0 VieLl , (424c)

which is amenable to a Newton-type scheme. Let G ; = n;G,, ; + G- ; denote the complete NCP
function containing the contact constraints in both normal and tangential direction associated
with a Lagrange multiplier A; and G'. the combination of all G ; in one vector. The consistent
linearization of (4.24) in a compact form then reads

Iguu,/\/ 0 TunN

Kus aD' | [Ad Tus

oo = — ’ 4.25

Kuu,M _aCMT |:A7\:| TuM ( )
C, Ci G.

with a. = 1 — oy, and the derivatives of the NCP function C,, = % and C, = 866;1'3. The check

in Iv{uu73 and Iv{uu, M indicates that these stiffness blocks contain derivatives of the mortar matri-
ces D and M in addition to the terms of a purely structural problem without contact. Within this
thesis, the concrete derivations of C, and C, are not elaborated on, as they are discussed exten-
sively in Popp et al. [168, 169] for the frictionless case and Gitterle et al. [80] for terms related
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to friction. Due to the non-smoothness of the NCP functions, a consistently linearized Newton
scheme of (4.24) constitutes a semi-smooth Newton method, for which local quadratic conver-
gence rates are proven in Qi and Sun [178]. Additionally, this semi-smooth Newton method
including NCP functions actually constitutes a primal-dual active set strategy (PDASS) for the
inequality constrained problem, as shown by Hintermiiller ez al. [103] in an abstract setting and
Hiieber and Wohlmuth [106], Hiieber et al. [109] for frictionless and frictional contact problems,
respectively.

Domain Decomposition as a simplified contact problem As mentioned in the begin-
ning of this chapter, mortar methods originate in (non-overlapping) domain decomposition appli-
cations, sometimes termed tied contact or mesh tying, where an internal interface is introduced
to a single physwal domain. Splitting the computational domain €2, along virtual interfaces into
sub-domains QO can be used beneficially to simplify mesh generation and allow for different
mesh sizes in different sub-domains. In isogeometric analysis especially, composing the entire
computational domain by sub-parts is crucial to analyze more complex geometries, cf. Figure
2.8. Within this thesis, mesh tying problems will be used to analyze mortar methods, and dif-
ferent Lagrange multiplier spaces in particular, on a simplified model problem before applying
them to contact mechanics. Hence, the basic concept of mortar methods in mesh tying problems
will be summarized briefly in the following; a more extensive introduction to mortar methods in
nonlinear solid mechanics can be found, e.g., in Popp [171]. For simplicity, a decomposition of
(29 into two non-overlapping domains Q(()l) and Q(()Q) with the common boundary

0V ne® =r, =10 =@ (4.26)

C

is considered only. As the interface I'. in mesh tying problems does not model a physical inter-
face but is merely introduced to facilitate mesh generation, continuity of the solution across the
interface has to be enforced, e.g., for displacements:

[ulo=0 onT, . 4.27)

with the jump operator [(-)]o = (1) — ((-)® o xy) in reference configuration. In comparison
to contact the contact constraints (2.119) and (2.124), the mesh tying constraint (4.27) is simpler
in multiple regards. First, the constraints can be formulated directly in reference configuration,
second, it does not distinguish between normal and tangential direction, and third, it is of equality
nature rather than inequalities. A mixed variational form of the mesh tying problem is derived
analogously to (4.4) and (4.5) by introducing a Lagrange multiplier field on I'. and reads: Find
u € U, and A € M, such that

Wy + / A [bulodl =0 YoueV, , (4.28a)
/ [uo-SAAL =0 VYéAe M . (4.28b)

The displacement field u is then discretized according to Section 2.8.1 and the Lagrange multi-
plier field according to (4.6). While the detailed derivation is being omitted, the resulting non-
linear system of equations is then again solved by Newton’s method with the tangent system
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Kuu,]\//\/' Kuu,NS Kuu,NM 0 Ad./\/ TunN
Kuu,S./\/ Kuu,SS Kuu,SM Qe DE)I- AdS _ Tus (4 29)
Kuu,MN Kuu,MS Kuu,/\/l/\/l _acM;)r AdM B Tu,M ’ .

0 Dy —My 0 AN 0

which is of saddle-point structure. The coupling matrices Dy and My, are calculated according to
(4.10) with the only difference being the integration on the boundary in reference configuration

FS,{ instead of the displaced boundary %(,1,2, as indicated by the subscript (-)o.

Notes on spatial convergence orders A crucial distinction of different mortar methods
lies in the chosen discrete Lagrange multiplier space. This choice influences both the efficiency
and accuracy of the resulting scheme. Efficiency improvements lie mostly in the construction
of mortar coupling matrices D and M with a beneficial structure, such as a diagonal matrix
D in dual mortar methods, see Section 4.1.2. In terms of accuracy, the achievable convergence
orders with uniform mesh refinement depend on the polynomial reproduction order of both the
discrete displacement and Lagrange multiplier field as well as the regularity of the solution.
Since derivations of a priori error estimates and achievable convergence orders are beyond the
scope of this thesis, only the relevant results are summarized briefly here. For a mathematical
analysis, the reader is referred to the respective literature, e.g. Boffi e al. [18] for mixed finite
elements in general, Bernardi et al. [14] for mortar methods Wohlmuth [234] for dual mortar
methods for finite elements, Brivadis et al. [21] for isogeometric mortar methods, and Wohlmuth
et al. [232] for dual mortar methods for contact problems based on classical finite elements.
Consider a problem of linearized kinematics and let s denote the smoothness of the solution, i.e.
u € [H*T1(Q)]"aim, p the polynomial order of uy, and ¢ the polynomial approximation order

of A in the sense that for any A € H q(FS))’

/LiEI/l\fI;L ||)‘ - 'MHL2(F£12L) < Chq”)\HHq(pgl})L) ) (4.30)
with a generic constant C' independent of h, see Brivadis et al. [21]. For example, a discrete
space MM, able to reproduce constants exactly yields ¢ = 1. Roughly speaking, the expected
convergence order under uniform mesh refinement is then given as

lun — ullgq,) < ChF | with &k =min(s,p,q+ %) ) (4.31)
and a generic constant C' independent of h. Convergence of type (4.31) will be abbreviated
as convergence of order O(h*). In contact problems, the solution w is typically in H(€) with
t < 5/2, such that a priori estimates (4.31) are limited to O(h”?) already for quadratic approxima-
tions p = 2 with a Lagrange multiplier reproducing constants ¢ = 1, see Wohlmuth ef al. [232].
Restoring convergence orders O(h?) requires either an enriched function space Graveleau et al.
[83] or adaptive refinement, see e.g. the h-adaptive scheme of Rademacher [180], Rademacher
and Frohne [181] and the rp-adaptive method by Franke [75]. The present thesis, however, con-
siders uniform refinement exclusively.

In the following sections, different Lagrange multiplier spaces are discussed: Section 4.1.1 in-
troduces the so-called standard mortar method most commonly used in the literature, and Section
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4.1.2 recaps the dual mortar method for contact problems as derived by Hiieber and Wohlmuth
[106], Hiieber et al. [109] and applied e.g. by Gitterle et al. [80], Popp et al. [168, 169] to fi-
nite deformation problems. As both these methods are fairly common in the literature, they are
only introduced briefly and serve as a reference for the newly presented methods. Section 4.1.3
introduces a new piece-wise constant Lagrange multiplier approximation for second order finite
elements, and Section 4.1.4 an isogeometric dual mortar method. For those newly derived meth-
ods, numerical examples of mesh tying and contact problems demonstrate optimal convergence
orders for contact applications while sacrificing optimality for mesh tying applications.

4.1.1 Standard Lagrange Multipliers

The most common choice for the discrete Lagrange multiplier is to associate a discrete Lagrange
multiplier A; with each node on the slave surface, i.e. £L = S, and employ the same basis func-
tions Ni(l) for the interpolation of displacements on the slave boundary as well as the Lagrange
multiplier to obtain the discrete Lagrange multiplier field

(Xt =D NP XN (4.32)
ieL
Obviously, the reproduction order (4.30) of the Lagrange multiplier interpolationis ¢ = p + 1
for this choice, such that it does not have any negative effect on the convergence order according
to (4.31).

For contact problems, however, additionally (4.11) and (4.14) have to be satisfied for stability
reasons [232]. For first order finite elements, this is obviously guaranteed by the non-negativity
of the ansatz functions NZ—(I). For Q, element boundaries, i.e. facets of (@5, Ty and [Py elements
in ng;m = 2 dimensions and facets of (9, hexahedrals in ng;,, = 3, (4.11) and (4.14), are also
met when taking into account the fundamental requirements isoparametric mapping (2.139), see
Section 2.8.1.1 and Hughes [111, Section 3.3]. However, for Ty and P, element boundaries,
i.e. facets of Ty and P, elements in ng;,, = 3 dimensions, respectively, the ansatz functions for
the corner nodes (cf. Figures 2.5e and 2.5f) do not have a positive mean value (4.14) on the
reference element. To deal with this deficiency, Popp et al. [170] propose a basis transformation
of the ansatz functions Ni(l), to guarantee (4.11) and (4.14). Puso et al. [177] combines sec-
ond order finite element approximations with a piece-wise linear Lagrange multiplier to ensure
(4.14), which yields ¢ = p and therefore optimal convergence rates according to (4.31) can still
be expected as demonstrated by numerical experiments in Popp et al. [170].

4.1.2 Biorthogonal Lagrange Multipliers for Finite EIments

Biorthogonal or dual Lagrange multiplier bases as introduced by Wohlmuth [233] for domain
decomposition problems, aim at simplifying the coupling conditions by choosing the Lagrange
multiplier ansatz functions ¢; such that D has a diagonal structure. To that end, it is again as-
sumed that every node on the slave surface carries a discrete Lagrange multiplier value, i.e.,
L = §. A diagonal coupling matrix D according to (4.10a) is equivalent to

13

95



4 Mortar Methods for Contact Mechanics

with the Kronecker delta d;; and a constant ¢; > 0 to ensure (4.11). Note that for contact prob-

lems, this biorthogonality has to hold as an integral over the displaced contact boundary 7(51}2,

whereas in domain decomposition problems (4.28), it can be enforced on the F( Different
methods to construct such dual bases exist. In the most simple one, where the dual ba51s func-
tions have the same support as their primal counterparts, the dual basis fulfills a partition of
unity and are constructed via element-wise linear combinations of the primal shape functions,
see e.g. Flemisch and Wohlmuth [74], Lamichhane and Wohlmuth [129], Lamichhane et al.
[130], Wohlmuth [234]. This can be achieved by enforcing the biorthogonality indepenently on

.
each slave surface element TF( ,1 o 1.€.

ND gy = 5.
i ¢ilN; 7 dy = by o N d’y ) (4.34)
T,h,k T,h,k
and construct the dual basis functions ¢; as linear combinations of the primal ones N;:

W e (1)

TFhk T,hk Dok gy Dok
¢¢|T(1) = N ‘ o, AT(l) = [ ] € RMoa  X™nod , (4.35)
T,h,k b,k T,h,k
ok W
where n_ ;" denotes the number of nodes associated with the slave surface element 7, , and

the coefficient matrix for said element

A A =D (1) ]\4_(1 , (4.36a)
T,k k T, h,k

D, = [d#’)l ] QT Z g, NP d (4.36b)
élf)lk = 1% ) ij IR AT i 47 :

T,k

M = [mTél})Lk] i NYNM g =L 4360)

Tflh A i ) i ) 7 i ’)/ ) 7] v "nod . .
b,k

To ensure biorthogonality in the displaced configuration, also the integration of the element

matrices D ) and M ) has to be performed in the displaced state. A direct consequence
F h k F h,k

of this construction of the biorthogonal basis functions is that if the primal basis functions Ni(l)
form a partition of unity so do the dual basis functions ¢;, and therefore their reproduction (4.30)
yields at least ¢ = 1. For higher order finite elements, Lamichhane and Wohlmuth [129] prove
that a higher reproduction order of the presented dual basis can be obtained if the elements
are constructed using Gaull—Lobatto nodes. For quadratic finite elements, this means locating
the nodes on edges, faces and inside the element symmetrically, as it is the natural choice, cf.
Figure 2.5. Finally, for the mean value of ¢;, one obtains as

¢idy = N dv , (4.37)
(1) (1)
’yc h ’yc h

and hence (4.14) requires a positive mean value of Ni(l). As already discussed in the context

of standard mortar methods (cf. Section 4.1.1), this may not always be the case for higher or-
der finite elements which necessitates a basis transformation as proposed by Popp et al. [170],
Wohlmuth et al. [232].
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The use of dual basis functions for the Lagrange multiplier brings two major advantages. For
one, nodally decoupled constraints emanate consistently from the variational inequality (4.5) as
discussed in Remark 4.1. Moreover, (4.34) directly results in a diagonal structure of the mortar
matrix D in (4.10a) and so its inverse is cheaply obtained and sparse. This fact can be used to
eliminate the discrete Lagrange multiplier increments AA from the linearized system of equa-
tions solved in each Newton step. For contact problems, solving the second line in (4.25) for the
multiplier increment yields

1 -
M =D (Rysdd+r,s) . (4.38)
G
which can be used to eliminate AA from the remaining lines in (4.25) and results in the reduced
linear system

Kuu,/\/ TuN
Kum+P Kus | Ad=—| rom+PTrys , (4.39)
Cu — aLC)\DiTKuuﬁg GC — C)\(ILCD_TT‘u’S

with the mortar projection matrix P = D™*M. In contrast to (4.25), the condensed linear system
(4.39) contains the discrete displacement unknowns Ad only and is positive definite, whereas
(4.25) is of saddle-point structure. Having solved this reduced linear system, the Lagrange mul-
tiplier increment AA can be recovered using (4.38).

In mesh tying problems, dual Lagrange multipliers not only allow for the condensation of
the discrete Lagrange multipliers, but also the displacement unknowns on the slave side of the
interface. For that purpose, the second line of (4.29) is solved for the AA and the last line for
Adg to obtain

1
AN = —a—DgT (KuusnAdy + KuussAds + KuusamAd g + 7us) (4.402)
Ads = PoAdy (4.40b)

with the mortar projection matrix Py = D *M,. These expressions can then be used to eliminate
AN and Adg from (4.29). The condensed linear system to be solved then reads

KUU,NN Kuu,./\f/\/l + Kuu,NSPO :| {AdN} _ [ TuN

. (441
Kuuv + P Kunsy  Kuuvn + Py KuussPo | [Adag Tum + PoTTu,s} 41

Unlike (4.29), a saddle-point system containing Lagrange multipliers, this condensed linear sys-
tem contains displacement degrees of freedom only and is positive definite. If, moreover, the
original tangent matrix K, is symmetric, so is the condensed system (4.41).

4.1.3 Piece-wise Constant Lagrange Multipliers for Quadratic
Finite Elements

This section introduces an alternative Lagrange multiplier space, that allows for the condensation
of the discrete Lagrange multiplier degrees of freedom and yields optimal convergence results
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for contact problems under uniform mesh refinement without the necessity of constructing a
biorthogonal basis. Thus, it combines all the advantages of standard and dual mortar methods.

In a first observation, (4.31) reveals, that a reproduction order ¢ = 1 for the Lagrange multi-
plier is already sufficient to obtain convergence of order O(h”?) in the H'-norm, which, due to
the lower regularity of the solution u is considered optimal for contact problems [232]. Arguably
the simplest way to ensure reproduction order ¢ = 1 is to use constant Lagrange multipliers
on each slave element, resulting in a globally piece-wise constant approximation. Interestingly,
this was one of the first segment-to-segment contact algorithms proposed by Simo et al. [207].
Therein, however, this piece-wise constant Lagrange multiplier is combined with first order finite
elements which is not an inf-sup-stable pair [18]. Recently, Brivadis et al. [21] combined piece-
wise constant Lagrange multipliers with quadratic splines in isogeometric analysis and proved
stability for that pair. Without giving a formal proof, this stability should also apply to quadratic
finite elements of Q, since for regular meshes, the quadratic spline space is included in Q2, and
numerical experiments confirm this stability.

4.1.3.1 The Lagrange Multiplier Space

To formalize the method, let Q(()l) be meshed with Q5, T or Py elements in two dimensions or
Q4 elements in three dimensions. In the two dimensional case, Tr(l,)” then represents a three node
quadratic line element with the Lagrange polynomial ansatz functions depicted in Figure 2.4b.
It is observed that the ansatz functions N Z-(l) corresponding to the center node of the line at § = 0

(i.e. NéTh) in Figure 2.4b) is only supported on one slave surface element and hence represents a
bubble function on yc(l}z In the three dimensional case, the same holds for the center node for Qs
surfaces (cf. Figure 2.5d) emanating as slave surface elements in a three dimensional problem
with Q; finite elements in the bulk discretization.

Instead of associating discrete Lagrange multiplier values with every node on the slave surface
S, now one discrete Lagrange multiplier value A; is set for every slave surface element Tlglf)” and

the discrete multiplier field is given by (4.6) with ansatz functions

1 ifX en,

4.42
0 else ( )

¢z(X) :{

These ansatz functions obviously satisfy (4.14) and, for isoparametric finite elements (see Sec-
tion 2.8.1.1 and Hughes [111, Section 3.3]), also (4.11).

Formally, the vector of nodal displacements on the slave surface can be split into the displace-
ments of the boundary bubble functions ds, and those of the skeleton ds,. With this split of
the displacement vector and the corresponding virutal displacements dd, the linear system of a
mortar contact problem with Lagrange multipliers (4.25) reads

£<uu,./\f 0 | TuN
Kuuss  ae D} Ad Tu,Se
Ifuu,SD acDE |:AA:| = — [Tusg ) (443)
Kuu,./\/l —GCMT TuMm
C. Ci G.
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with the mortar matrices D = [D,, D] and M as defined in (4.10). Unlike the previous methods
of Sections 4.1.1 and 4.1.2 which used £ = S, the matrix D is now no longer square but rectan-
gular. However, the combination of element-wise constant Lagrange multipliers (4.42) with the
bubble functions corresponding to the nodes in S, results in a diagonal structure of D,. Thus,
the second line of 4.43 can be easily solved for the increments of the Lagrange multiplier

1 o
M= =D (K, Ad +1ys,) (4.44)
Qe
similar to (4.38) in the case of dual Lagrange multipliers. This, in turn, can be used in the re-
maining lines of (4.43) to eliminate AA finally resulting in the condensed linear system

Kuu,/\/ TunN
T1s T
Kuu,SD - PDKHU,SQ Ad Tu,SD - PDru,S@ (4 45)
~ T N pr— T .
Kuu,M + PMKuu,S@ TuM + PMTWS@ 7

1 -T _ 1 =T
Cu — a_cc)‘DQ Kuu,S@ Gc aCCADQ T’u73®

with the two matrices P = DngD and Py, = DglM. For mesh tying problems, of course not
only the discrete Lagrange multipliers but also the displacement unknowns ds can be condensed
from the global system of equations analogously to (4.41).

Remark 4.2. The proposed element-wise constant Lagrange multiplier for quadratic finite ele-
ments can be extended further to higher approximation orders p, by taking piece-wise, element-
discontinuous (p—2)-polynomials for the Lagrange multiplier. For instance in a two-dimensional
problem with third order polynomials, every element on the slave side (i.e. a line) is discretized
with third order Lagrange polynomials which contain two bubble functions that are only sup-
ported on the specific slave element. Now taking an element-wise discontinuous linear Lagrange
multiplier yields block-diagonal matrix D¢, consisting of 2 X 2-blocks for each element that is
still cheap to invert. For any polynomial order p > 2, the Lagrange multiplier can therefore be
chosen of reproduction order ¢ = p — 1 and, according to (4.31), convergence orders O(hP~"?)
can be achieved, given sufficient regularity of the solution. As contact problems, however, do not
provide this regularity, higher order approximations are not pursued further at this point.

4.1.3.2 Numerical Examples

To validate the approach of using element-wise constant Lagrange multipliers for quadratic finite
elements, several numerical examples are presented in the following and results are compared to
standard and dual mortar methods.

4.1.3.2.1 Mesh tying - Infinite Plate with a Circular Hole First, a two-dimensional
mesh tying example, the well-known and wide-spread benchmark of an infinite plate with a cir-
cular hole, is studied for which an analytical solution exists, see e.g. Apostolatos et al. [6]. In
the framework of linear elasticity applied for this example, the Cauchy stress o0 = 2ue + Atrel
depends linearly on the linearized strain € = 1/2(Vxu + (Vxu)T") via the Lamé parameters

w o= ﬁ and \ = (1+1/)b2+2v) At an infinite distance from the hole, a constant traction
too = [two,0]" in z-direction is applied. For the numerical analysis, the geometry is cut and
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the exact traction is applied as a boundary condition and, moreover, only one quarter is analyzed
with appropriate symmetry conditions. The geometric setup as well as the material properties
are given in Figure 4.3a. The domain is cut by the diagonal interface I'. into two sub-domains

exact traction

loo
—_—
L —_—
Q o >
15} L =4 o
g E —
£ R=1 &
> s —
z E=10> = b
g —
v=20.3 <
o —
teo = 10
Y\‘ —_—
2\ —
symmetry
(a) Problem setup. (b) Coarsest mesh, nomralized mesh size h = 1.

Figure 4.3: Infinite plate with a circular hole — Geometry and material properties as well as coarsest mesh with a
ratio 3 : 2.

Q(()D and Q(()H), which, on the coarsest level are discretized with 3 x 6 and 2 x 4 quadratic Q
finite elements, respectively. Starting from this mesh, uniform mesh refinement is performed and
convergence is monitored in the energy norm

|lu — upl|p = \/Z/Qm o(u—up):e(u—uy)dQ , (4.46)

an equivalent norm to the H'-norm, considered in (4.31). The convergence results are summa-
rized in Figure 4.4 once choosing the finer mesh of QE)I) as the slave side (Figure 4.4a) and once
choosing the coarser mesh of Q(()H) as the slave side (Figure 4.4b). As a reference, the results
of the standard and dual mortar methods of Sections 4.1.1 and 4.1.2 are included. Both these
references exhibit optimal convergence orders O(h?), as they provide the full reproduction order
q = p + 1; the standard mortar method by nature and the dual mortar method since the nodes
are chosen as GauB3—Lobatto nodes, putting the interior nodes of faces centered between the ele-
ment corners which yields optimal convergence results according to Lamichhane and Wohlmuth
[129]. Focusing on the piece-wise constant Lagrange multiplier interpolation, convergence of
O(h?) is observed if the slave side is chosen as the finer side (Figure 4.4a) with an error level
sightly higher than for the standard or dual mortar method. The convergence order O(h?) thereby
exceeds the theoretical prediction of O(h*?). In the case of a coarse slave side (Figure 4.4b), the
convergence order of the piece-wise constant Lagrange multiplier deviates more significantly
from the standard and dual mortar method and tends towards the predicted value O(h*?) for fine
meshes. For mesh tying problems, it is therefore advisable to choose the finer side as the slave
side when working with piece-wise constant Lagrange multipliers.
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Figure 4.4: Infinite plate with a circular hole — Spatial convergence for Qy finite elements standard (’std’), dual

(’dual’) or piece-wise constant ("const’) Lagrange multipliers. For the mesh ratio s : m = 3 : 2, Qél)

is chosen the slave side, and for the mesh ratios : m = 2 : 3, Q(()H)

4.3b).

is chosen the slave side (cf. Figure

4.1.3.2.2 Two-dimensional Contact — Convergence Study As observed in the previ-
ous example, the piece-wise constant Lagrange multiplier approximation ensures at least con-
vergence orders O(h”?) and hence are supposed to yield optimal convergence results for contact
problems. To verify this expected behavior, the two-dimensional frictionless contact of a cylin-
drical arc with a rectangular block as defined in Figure 4.5a is investigated.

i

I o

T
u=0.3
W vertical displacement

» —0.0205 0.14 0.3
B=2 - - —
(a) Initial geometry, boundary conditions and (b) Deformed mesh for h = 272 and Qs finite
exemplary mesh with b = 272, elements.

Figure 4.5: Two dimensional contact of a circular arc with a rectangle — Geometric setup, exemplary mesh and
deformed configuration.

Both Q" and Q) are modeled with a neo-Hookean material (3.38) with E() = 5, E?) =
1 and vV = »® = 0.3 under plane strain conditions. Owing to the obvious symmetry of
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the problem, one half is solved with appropriate symmetry conditions. Despite the fact, that
a priori estimates are only given for linearized kinematics, large deformations are applied by
moving the lower edge of the rectangle upwards while keeping lateral motion unconstrained.
The final, displaced configuration is depicted in Figure 4.5b. Obviously, no analytical solution
exists for this finitely deforming contact problem, such that errors are computed versus a numeric
reference solution obtained with using a very fine mesh of » = 27® and Q, finite elements
with dual Lagrange multipliers. Figure 4.6 displays the obtained convergence results for h €

o 1077 =
v@f I 1

g - -
— 107
T 1074 B =
ze | f
QL// 10° - 1
< i :
> i ]
1076 L :

mesh size h

Figure 4.6: Two dimensional contact of a circular arc with a rectangle — Spatial convergence of the displacements of
the slave and master body in the H! semi-norm using dual (denoted as ’dual’) and piece-wise constant
(denoted as ’const’) Lagrange multipliers.

{27,...,277} measured in the H' semi-norm of the displacements within the two bodies. Both
the proposed piece-wise constant Lagrange multiplier and the classical dual mortar method of
Section 4.1.2 exhibit optimal convergence of O(h”?); only the finest mesh deviates from the
expected order for both methods, since the employed mesh of = 277 it is too close to the
reference solution of h = 278, Comparing the piece-wise constant Lagrange multiplier with the
dual one, a slightly elevated error level is observed which can be attributed to the use of a smaller
Lagrange multiplier space. However, this marginally increased error level comes at the benefit
of not having to construct deformation dependent, biorthogonal basis functions.

To further exemplify the effect of the piece-wise constant Lagrange multiplier, the example is
enhanced with Coulomb friction with a friction coefficient of ; = 0.25 and the discrete approx-
imation of the contact traction is investigated. Figure 4.7 displays the discrete representation of
the contact traction (i.e. the Lagrange multiplier) over the x-coordinate (horizontal direction in
Figure 4.5b) for two relatively coarse meshes as well as the fine reference solution. Note the
transition between stick and slip at |x| &~ 0.2 in the reference solution. While the coarser mesh
h = 272 exhibits larger discrepancies in the normal contact pressure, the next refined mesh
h = 273 with 14 active Lagrange multipliers already yields a good approximation of the refer-
ence data. Naturally, the jump in the discrete Lagrange multiplier values across element edges
reduces further with mesh refinement.
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Figure 4.7: Two dimensional contact of a circular arc with a rectangle — Discrete solution of the normal and tangen-
tial Lagrange multiplier compared to the reference solution obtained using dual Lagrange multipliers
andh =277,

4.1.3.2.3 Three-dimensional Contact — Ironing Example Finally, the extension to three-
dimensional contact problems is demonstrated by an example introduced in Popp et al. [169],
Popp [171] for frictionless contact using first and second order finite elements and also analyzed
by Gitterle [79] for frictional contact using first order finite elements. The quasi-static contact of
a cylindrical shell 982) of internal radius 3, thickness 0.2 and height 5.2 with a cuboid Q(()l) of size
9 x 4 x 3 1is analyzed. As shown in Figure 4.8a, the two bodies are discretized with 24 x 5 x 1

(a) Initial geometry and applied mesh.

-1.45

vertical displacement
-0.73 0

| \i\ (I

(b) Deformed configuration in step 85.

Figure 4.8: Three-dimensional ironing problem — Initial mesh and exemplary deformed configuration.

and 20 x 5 x 3 quadratic Q, finite elements respectively. As given in [169], both bodies are
modeled with a neo-Hookean material (3.38) with E) = 1, E® = 1000 and v") = v = (.3.
Within the first 20 time steps, a prescribed vertical displacement of 1.4 is applied to the top sur-
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Figure 4.9: Three-dimensional ironing problem — Evolution of vertical contact force over time for the standard
(denoted as ’std’), dual (denoted as ’dual’) and piece-wise constant (denoted as ’const’) Lagrange mul-
tipliers.

faces of the cylinder. Subsequently, a horizontal movement of 4 in direction of the longest edge
of the cuboid is applied in 130 steps. Both motions are applied in equidistant increments. The
cuboid is deliberately chosen as the slave body, such that the contact location moves relative to
the Lagrange multiplier mesh. Figure 4.9 displays the vertical contact force over time for dif-
ferent Lagrange multiplier discretizations, namely the standard approach of Section 4.1.1, the
dual mortar method of Section 4.1.2 and the newly proposed piece-wise constant Lagrange mul-
tiplier. Depending on the position of the contact patch relative to the Lagrange multiplier mesh,
all methods exhibit marginal oscillations in the total contact force. For the piece-wise constant
Lagrange multiplier, these oscillations are slightly larger compared to the other methods which
can again be attributed to the smaller Lagrange multiplier space. Yet, the piece-wise constant
Lagrange multiplier presents a competitive alternative to dual mortar methods since it allows
for the same condensation of the Lagrange multiplier values without the necessity to construct
deformation dependent biorthogonal basis functions.

4.1.4 Biorthogonal Lagrange Multipliers for Isogeometric Analysis'

In isogeometric analysis, the geometry and solution field are discretized using spline basis func-
tions, most commonly NURBS as introduced in Section 2.8.1.2. In a two-dimensional example,
the (slave) contact boundary and the displacement thereof may then, for instance, be discretized
by the ansatz functions depicted in Figure 2.6. Mortar methods for isogeometric analysis can
then be constructed similar to discretizations based on classical finite elements, e.g. using stan-
dard or dual basis functions as introduced in Sections 4.1.1 and 4.1.2, respectively. Brivadis et al.
[21] mathematically analyzes the standard mortar method in the context of domain decomposi-
tion and additionally proposes the use of lower order spline spaces for the Lagrange multiplier.
Applications of the standard mortar method to isogeometric contact problems are presented, e.g.,

I'This section is adapted from the author’s publication [193].
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in De Lorenzis et al. [51], Kim and Youn [121]. This section now focuses on the extension of
the biorthogonal basis introduced in Section 4.1.2 to isogeometric analysis.

4.1.4.1 The Lagrange Multiplier Space

Although splines, and NURBS in particular, are defined not on elements but on entire patches,
a notion of elements can still be applied as discussed in Section 2.8.1.2. To summarize the def-
inition of elements in the context of NURBS-based IGA, an element boundary is defined by a
non-zero interval in the knot vector. On each element (p + 1)? basis functions take non-zero
values, with p being the polynomial order of the spline and d the number of parametric direc-
tions of the element. In this respect, NURBS discretizations bear great similarities to classical
finite elements and consequently, the construction of dual basis functions as linear combinations
of primal basis functions independently on each element, as outlined in Section 4.1.2, can be
transferred to IGA. A discrete Lagrange multiplier is associated with every control point ¢ on
the slave side, i.e. L = S, and dual NURBS basis functions are constructed that satisfy the
biorthogonality

p(1) 3. _ p(1)
[, ofla=s [ R @47)

T,hk T,hk

where Rgl) = Rl(l) |7(1) denotes the restriction of the NURBS function associated with control
c,h

point ¢ to the contact boundary. The dual NURBS basis functions ¢; are obtained via element-
wise linear combinations of the primal basis functions by

s (1) U 7—I(}). o K
¢i|7_(1) = ai;’h’kRj ’T(1) , A 1y = [a-r’h’k] € Rer XTep , (448)
T,h.k

2.
T,h,k T, h,k J

1)
. T bk 1 . . . 1 ..
with nqy™" being the number of basis functions taking non-zero values on element TF( ,)L - Similar

to (4.36), the coefficient matrix is obtained by

—1
Ay =D oy M, , (4.492)
Ch,k C b,k b,k
7'1(“12L k Tlgf)z k (1)
D o =[d;""], d;"" =d; R, dy (4.49b)
TD,h,k J J (1)
T, h,k
1 1 1
M = Tﬁ,;)l,k] TI<‘J)L,k _ RYRW 4 =1 Tﬁ,i,k (4.49¢)
A T Mgl My = Ay AT bd = heees Tep e
" T h,k

Figure 4.10 illustrates an exemplary set of NURBS basis functions and its corresponding dual
basis.

Remark 4.3. For simplicity of presentation, this thesis assumes that the discrete projection Xy,
i.e. the discrete version of (2.101), exists on the entire slave contact boundary 7(51}2. If this is not
the case, the mortar coupling matrices D and M have to be evaluated only on the part of 7(51,2 for

which a feasible projection exists, see Cichosz and Bischoff [39], Popp et al. [172] for a detailed

discussion in the context of first order finite elements. Consequently, also the biorthogonality

(4.48) has to be guaranteed not on the entire element Tlgl})bk but the part that has a feasible
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(b) Dual basis
Figure 4.10: Primal and dual B-spline basis functions of degree p = 2 on the uniform knot-vector &= =
{0,0,0, %, %, %, %, %, 1,1,1}. Element boundaries are depicted by dashed lines. The primal basis is

reproduced from Figure 2.6.

projection and therefore contributes to the integration of D. This is achieved by restricting the

integrals in (4.49) accordingly. For first order finite elements discussed in [39, 172] and NURBS

of arbitrary order, regularity of M ) in (4.49) is guaranteed by the non-negativity and linear
T',h,k

independence of Rl(l). Second order finite element ansatz functions are not non-negative and, as

a consequence, existence of M _(11) cannot be ensured ad hoc. Popp et al. [170], Wohlmuth et al.
b,k
[232] introduce a basis transformation to cure this issue for second order finite elements. It is

important to note, that no such transformation is necessary for any approximation order in the
isogeometric setting.

It should be pointed out that the dual basis functions generated by (4.48) only guarantee a
partition of unity. Consequently, the global approximation order ¢ in (4.30) is limited to one,
independent of the local approximation, i.e. the polynomail degree of the primal NURBS ba-
sis. Since the dual NURBS do not possess the optimal reproduction order, optimal convergence
rates in domain decomposition applications as proven in Brivadis et al. [21] cannot be guaran-
teed. For dual mortar methods based on Lagrange polynomials optimality can be recovered by
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a transformation of the primal basis [129] or by extending the support of the dual basis func-
tions [161]. An extension of the latter approach to NURBS basis functions has been proposed
recently by Wunderlich ef al. [242], Wunderlich [243]. Moreover, Dornisch et al. [66] develop
approximate dual basis functions with enlarged support that exhibit optimal convergence or-
ders in numerical examples and Zou et al. [254] locally refines the master-sided mesh to obtain
optimal convergence if matching parametrizations of the slave and master surface are used. For
contact problems of linearized kinematics, the solution is typically in [H t(Qéi))]"dim with ¢ < 5/2,
such that the a priori estimate (4.31) is already limited by the regularity of the solution. Even this
simple construction of dual basis functions meets the requirements in [232] for optimal a priori
estimates for the displacements in the H'-norm of order O(h*?). Namely, we have

e a partition of unity ) ._ . ¢; = 1 by construction; proof see e.g. [74],

e inf-sup stability, see e.g. [128, Remark 2.11],

e a positive mean value of the dual basis function (4.14) on each element Tlglf)L ;> Since

/(1) ¢z d’)/ = /(1) Rl d"}/ >0 VieLl (4.50)

T,hk I,hk

where the equality directly follows from (4.47) in conjunction with the element-wise con-
struction (4.48), (4.49) together with the partition of unity property of the NURBS basis
functions, and the inequality results from the non-negativity of NURBS.

¢ Finally, a non-negative integral of each dual basis function tested with a primal one

¢;Rjdy >0 Vi,jeL | 4.51)

Yon
which follows from (4.47) and the non-negativity of the NURBS basis functions R;.

These properties, together with a regularity assumption on the shape of the active contact zone
gives the optimal a priori estimates [232] for the discrete contact problem. Therefore, the more
intricate construction of dual NURBS basis functions with optimal reproduction properties of
[66, 242, 243, 254] are not pursued further in this thesis.

4.1.4.2 Numerical Examples

In the following, the proposed isogeometric dual mortar method is investigated in three numer-
ical examples and results are compared to standard isogeometric mortar methods as well as
contact formulations based on Lagrange polynomials. In a first example, the isogeometric dual
mortar method for domain decomposition is analyzed for linear elasticity. The problem of an
infinite plate with a circular hole under tension is simulated to investigate the convergence or-
der in a domain decomposition case and shows predicted reduced convergence order O(h”?).
The second example is a two-dimensional, small deformation, frictionless Hertzian type con-
tact problem against a rigid obstacle. Both spatial convergence orders as well as contact stress
representations are analyzed. Due to the switch-over from domain decomposition to unilateral
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contact, the reduced regularity of the solution already limits the spatial convergence order. Thus,
both standard and dual mortar methods now converge equally optimal at order O(h*?). Finally,
a three dimensional rotating ironing example is simulated to compare the isogeometric formu-
lation to approximations based on Lagrange polynomials of first and second order. This last
example incorporates both finite deformations and large frictional sliding.

4.1.4.2.1 Mesh tying — Infinite Plate with a Circular Hole The infinite plate with a
circular hole is a common benchmark in (isogeometric) domain decomposition (mesh tying)
applications and has been analyzed e.g. in [21, 40, 66, 254]. Here, the same geometric setup
and material parameters as in Section 4.1.3.2.1 (cf. Figure 4.3a) is discretized with two differ-
ent types of meshes; one with a straight interface (Figure 4.11a) whereby the NURBS at the
interface reduce to B-splines (i.e. piece-wise polynomials), and one with a circular interface
(Figure 4.11b) with an actual NURBS approximation of the inteiface. For the given geometry

(a) Coarsest mesh, straight interface. (b) Coarsest mesh, curved interface.

Figure 4.11: Infinite plate with a circular hole - Coarsest mesh represented by the control points (dots and boxes)
and mesh (dashed and dotted lines) for the two patches of second order NURBS.

a parametrization with a single NURBS patch is only possible using repeated control points as
done in [40] which, however, results in a singular point in the inverse mapping at the repeated
node. Instead, two patches are used here such that the mapping of the isogeometric surface and
its inverse is well defined everywhere within the domain. After uniform knot insertion for both
patches an element size ratio of 2 : 3 at the interface is reached, see Figure 4.11 for the coars-
est levels; this ratio is fixed in the following. Uniform refinement via knot insertion is analyzed
for second and third order NURBS basis functions. Note that the two patches do not share any
control points at the interface, but the coupling is enforced using the mortar method. Conver-
gence of the approximated solution w; towards the analytical solution u is assessed in terms
of the energy norm (4.46) in which, given the smoothness of the analytical solution, O(h?) is
the optimal order, whereas for the presented dual Lagrange multiplier basis only O(h%?) can be
guaranteed theoretically for any p > 2. This is again due to the reduced approximation order
of one of the dual Lagrange multiplier basis. Figures 4.12 and 4.13 compare the convergence
behavior for standard and dual Lagrange multiplier shape functions for second and third order
NURBS and different choices of the slave side for the straight and curved interface, respectively.
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Figure 4.12: Infinite plate with a circular hole — Spatial convergence for second order NURBS with standard (’std”)
or dual (’dual’) Lagrange multipliers. Fractions indicate the slave to master mesh ratio, i.e., for a ratio

of 3/2, Q(()I) is chosen the slave side, and for the mesh ratio 2/3, Qén) is chosen the slave side (cf. Figure

4.11).
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Figure 4.13: Infinite plate with a circular hole — Spatial convergence for third order NURBS with standard (’std’) or
dual ("dual’) Lagrange multipliers. Fractions indicate the slave to master mesh ratio, i.e., for a ratio of

3/2, Qg) is chosen the slave side, and for the mesh ratio 2/3, Qéﬂ) is chosen the slave side (cf. Figure

4.11).
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As expected, a standard Lagrange multiplier method yields optimal convergence of order O(h?)
for both choices of the slave side. In the isogeometric dual mortar approach, on the other hand,
the choice of the slave side has an influence on the convergence orders. If the coarser side is
chosen as slave, the convergence order drops to the theoretically predicted O(h*?), whereas if
the finer side is chosen as slave, order O(h?) convergence can be observed. This implies optimal
behavior for second order NURBS (Figure 4.12) if the finer side is chosen as the slave side. For
third order NURBS in Figure 4.13, on the other hand, even a finer slave side yields sub-optimal
convergence results and choosing a coarse slave side significantly deteriorates the achievable
convergence order. The gain of order O(h"/?) may be the result of super convergence effects,
theoretical investigation of which are, however, beyond the scope of this thesis.

Next, the results above are compared to approximations based on Lagrange polynomials of
first and second order. For the sake of brevity, the investigation is restricted to the more general
case of a curved interface, since the results are qualitatively the same. Figure 4.14 displays the
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—— dual 3/2 —8—std 3/2 —a— dual 3/2—8—std 3/2

(a) Q finite elements. (b) Q- finite elements.

Figure 4.14: Infinite plate with a circular hole — Spatial convergence for Q; and Q- finite elements with standard
(’std’) or dual ("dual’) Lagrange multipliers. Fractions indicate the slave to master mesh ratio, i.e., for

a ratio of 3/2, Q(()I) is chosen the slave side, and for the mesh ratio 2/3, Qén) is chosen the slave side
(cf. Figure 4.3b).

convergence behavior of first and second order finite elements with different approximations of
the Lagrange multiplier. Here, all methods converge with the optimal order of O(h) and O(h?),
respectively, even the theoretically most critical one using second order dual basis functions with
a coarser slave discretization. This is due to the fact that the used discretization with second order
9-node quadrilaterals always places the side-mid nodes and the central nodes equally spaced,
i.e. at the locations of the Gauss—Lobatto points. Therefore, O(h?) convergence can be expected,
see Lamichhane and Wohlmuth [129]. For orders p > 2, equally spaced nodes do no longer
correspond to Gauss—Lobatto points and convergence orders for the dual case may deteriorate.
Such higher order Lagrange polynomial approximations are, however, beyond the scope of this
thesis and the reader is referred to [129] for a detailed investigation of this topic.
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Finally, a comparison of the convergence rates of different dual mortar interpolations in the
most critical case, i.e. the curved interface with a coarse slave discretization and a dual Lagrange
multiplier approximation, is drawn. Figure 4.15 compares the isogeometric results from 4.12b
and 4.13b with the results using classical finite elements in Figure 4.14. Basically, two ways are
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(a) Comparison by mesh size. (b) Comparison by number of nodes or control points.

Figure 4.15: Infinite plate with a circular hole — Spatial convergence for first and second order finite elements (Q;
and Q7) as well as second and third order NURBS (R and R3) for the curved interface, a coarse slave
discretization and dual Lagrange multipliers.

possible to compare finite elements and IGA, either by the element size (Figure 4.15a) or by
the number of nodes, respectively control points (Figure 4.15b). Since IGA requires less control
points per element, these two approaches yield different results. While the former compares the
efficiency in terms of element evaluations, the latter rather focuses on the size of the resulting
linear system to be solved. The complexity of solving this linear system is, however, not only
determined by its size, but also the bandwidth, which is increasing with the polynomial order.
Obviously, the first order approximation yields the largest errors and converges slowly. Compar-
ing the second order methods Q; and R,, one observes that when taking the element size as a
reference the finite element version converges faster and yields lower errors from the beginning.
However, taking the number of control variables as a reference, the isogeometric discretization
R, is more accurate than the finite element counterpart (Q,, despite the reduced convergence
order. Only if the already very fine mesh is further refined, the Q; version would gain the ad-
vantage due to faster convergence. The third order NURBS version R3 gives the best results in
coarse meshes and behaves similarly to the Ry case in the limit.

In summary, the presented simple element-wise construction of dual NURBS basis functions
may yield a deterioration in the convergence orders for domain decomposition. Thanks to the
higher accuracy per degree of freedom, however, the isogeometric dual mortar method is, despite
sub-optimal convergence, competitive to classical finite elements using Lagrange polynomials.
To obtain optimal convergence, more sophisticated methods of constructing the dual basis are
necessary, e.g. dual shape functions with an extended support [66, 242, 243, 254]. Nonetheless,
the presented method provides an easy and efficient way of coupling patches without increasing
the global system size (compared to [21]) and gaining a localization of the coupling (compared
to [65]).
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4.1.4.2.2 Hertzian Contact Although the presented element-wise construction of dual shape
functions yields sub-optimal convergence in domain decomposition applications, they may still
be interesting for unilateral contact applications. In this case, the spatial convergence is usu-
ally limited by the reduced regularity of the solution, such that even the simple element-wise
construction gives optimal convergence in finite element analysis [232]. Hence, in a second ex-
ample, the spatial convergence properties of the isogeometric dual mortar contact algorithm is
investigated in detail. Therefore, a two dimensional Hertzian-type contact of a cylindrical body
(radius R) with a rigid planar surface under plane strain conditions is analyzed. To avoid singu-
larities in the isogeometric mapping, a small inner radius (radius r) is introduce, see Figure 4.16
for the geometric setting, the material parameters and the coarsest mesh. The two horizontal up-
per boundaries undergo a prescribed vertical displacement. Meshes using second and third order
NURBS basis functions are used as depicted in Figure 4.16 for the coarsest level, where differ-
ent patches are marked with different shading. In this setup, half of the elements on the potential

1 -t

U U
R=8
r=20.5
E =200
v=20.3
u=0.1

Figure 4.16: Hertzian contact — Problem setup and coarsest mesh with patches in different shading.

contact surface are located within one ninth of the circumferential length and C?~! continuity
is ensured over the entire active contact surface. In the convergence study, uniform mesh refine-
ment via knot insertion is performed on each of the patches resulting in a constant local element
aspect ratio. Although only relatively small deformations are to be expected, a fully nonlinear
description of the continuum using nonlinear kinematics and a Saint—Venant—Kirchhoff material
under plane strain condition is assumed. Figure 4.17 depicts the convergence behavior in terms
of the energy norm. Since no analytical solution is available, the finest mesh of level 7 with
standard third order NURBS is used as a numerical reference solution. In the limit, all methods
converge with the expected order of O(h*?) in the energy norm and also the absolute error val-
ues are quantitatively very similar. In the second order case (p = 2) the standard and dual mortar
method yield the same error asymptotically, whereas for third order NURBS, a slightly elevated
error of the dual mortar method as compared to the standard one can be observed. In view of
Figure 4.17, the use of dual shape functions for the Lagrange multiplier instead of primal ones
does not come at the expense of a reduced accuracy but yields equally accurate results while re-
ducing the total system size to the number of displacement degrees of freedom only. In contrast
to the domain decomposition case above, the convergence is now limited by the regularity of the
solution, such that both standard and dual interpolations converge with the same order. The use
of higher order NURBS, i.e. third order in Figure 4.17 or even higher seems questionable from
this viewpoint, since no faster convergence is gained from the higher order interpolation.
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Figure 4.17: Hertzian contact — spatial convergence for standard (denoted as ’std’) and dual (denoted as ’dual’)
mortar methods for second and third order NURBS.

In the context of isogeometric contact formulations, Hertzian-type contact settings are com-
monly used to assess the smoothness of the pressure distribution using different computational
methods, see e.g. [50, 51, 53, 59, 121, 216]. Strictly speaking, the Lagrange multiplier in a vari-
ationally consistent contact formulation is not a point-wise defined function but an element of
the dual space of the trace space. Thus, one cannot evaluate the Lagrange multiplier point-wise
with respect to the space coordinates, but only as a linear functional. This observation motivates
to associate a NURBS function A, with Aj, in (4.6) specified in terms of the non-negative ba-
sis functions REI) and the discrete control point values A; g, already computed using the dual
mortar method. More precisely, the definition

A= RiAiaual (4.52)
el

guarantees that A is strongly non-negative. Moreover, due to (4.50), one finds that

/T<1> )\h d’}/:/T(l) )\hd"}/ . (453)

T',h,k T',h,k

Thus, both A, and A, impose the same mean contact pressure per face Tr(l,)L . on the contact zone.

Following Hiieber [105], it can be shown that the modified discrete Lagrange multiplier has the
same convergence order and, moreover, in contrast to the standard low order finite element ap-
proach, a CP~! continuous contact pressure is found. Figures 4.18-4.20 compare the pressure
distributions for the meshes h =€ {271,272 27°} using second order NURBS with the stan-
dard Lagrange multiplier approach and the dual approach using either dual or standard shape
functions for the pressure post-processing. Therein, red circles indicate the discrete control point
values of the Lagrange multiplier. Since the given example does not exactly model a Hertzian
contact problem (nonlinear kinematics vs. linear Hertzian theory, thick hollow cylinder vs. full
circular disk, displacement control vs. point load), the contact pressure of the mesh i = 2~7 with
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Figure 4.18: Hertzian contact — Contact pressure for & = 27! using different second order NURBS methods.
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Figure 4.19: Hertzian contact — Contact pressure for A = 23 using different second order NURBS methods.
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Figure 4.20: Hertzian contact — Contact pressure for h = 2° using different second order NURBS methods.
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Figure 4.21: Hertzian contact — Contact pressure for h = 273 using different third order NURBS methods.
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the post-processed dual NURBS approximation is depicted as a reference with dashed blue lines
instead of the solution according to Hertzian theory. As expected, the visualization using dual
shape functions results in a strongly oscillatory behavior due to the discontinuous and not even
strictly non-negative nature of the dual shape functions. However, the post-processed contact
traction for the dual Lagrange multiplier method yield even smoother and less oscillatory results
than the standard case on the same mesh. Especially with the medium mesh (Fig. 4.19) the use
of standard NURBS basis functions for the Lagrange multiplier yields oscillations in the con-
tact stress; a similar behavior can also be observed in various IGA contact formulations, e.g. in
De Lorenzis et al. [50, 51, 53], Temizer et al. [216]. Those oscillations vanish completely for
the post-processed dual mortar method. This effect also transfers to higher order NURBS basis
functions: Figure 4.21 depicts the contact stress distributions for third order NURBS and mesh
h = 273. Again, the standard isogeometric mortar method shows some oscillations in the contact
pressure whereas the dual mortar method yields a perfectly smooth result. Since the oscillations
in the standard mortar method usually occur at the boundary of the active contact zone, they are
suspected to be a result of the localized active set strategy. As mentioned in Remark 4.1, only the
use of dual basis functions yields decoupled constraints in a consistent way. For standard mortar
methods, the imbalance of coupled virtual work contributions for the control points in (4.4) and
decoupled constraints may be responsible for the oscillations. This being only a suspicion at the
current stage, the oscillations in standard mortar methods may require further study in the future.

Next, four different dual mortar methods are compared. Therefore, the NURBS approxima-
tion of mesh h = 273 from above is used and an approximation using the same number of
elements, but based on first order Lagrange polynomials (denoted as Q) is generated. Addition-
ally, a second order Lagrange polynomial approximation is generated by keeping the number of
nodes fixed and elevate the order to second order Lagrange polynomials (denoted as Q). Fig-
ure 4.22 compares the obtained contact stress distribution from the four dual mortar methods.
Figures 4.22¢ and 4.22d are reproduced from Figure 4.19¢ and 4.21c for illustrative purposes.
One observes the usual behavior for higher order contact formulations: starting from the com-
mon ancestor (Q;/R; and a piece-wise linear approximation of the contact stress, order elevation
for Lagrange polynomials (QQ3) yields oscillations and locally negative contact traction. Order
elevation using NURBS basis functions, on the other hand, gives smoother contact pressure
distributions. This trend becomes even more pronounced, if the order is further increased, see
e.g. [53]. Comparing the two isogeometric methods R, and R3 in Figures 4.22¢ and 4.22d, it
has to be noted that in the higher order case R3 the contact pressure distribution gets “smeared”
over a larger region. This is a consequence of the inability of smooth NURBS basis functions
to accurately represent the non-smooth contact pressure solution. Increasing the approximation
order in the IGA case while keeping the inter-element continuity at a maximum aggravates this
deficiency.

Finally, the adequate representation of frictional contact tractions should be investigated using
this setup. To this end, the problem is enhanced with Coulomb friction with a friction coeffi-
cient 4 = 0.75. Figure 4.23 displays the solution of mesh h = 273 and the results are again
compared to the solution of mesh A = 277 with the post-processed second order dual NURBS
approximation. Obviously, none of the relatively coarse discretizations are able to fully capture
the sharp kink in the frictional contact traction at the stick/slip transition. However, the obser-
vations already made for the normal contact pressure appear even more pronounced here. For
the standard Lagrange multiplier approximation the oscillations in the normal contact pressure
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Figure 4.22: Hertzian contact — Post-processed contact pressure for h = 273 using different dual mortar methods.

also influence the frictional response, thus yielding oscillatory tangential tractions in the central
region. The dual approximation seems to be oscillatory at first sight, but this is not the case since
the discrete control point values are smoothly distributed. Quite in contrast, the oscillations in
the standard approximation are actually completely removed in the post-processed dual solution
where, a smooth distribution of both normal and tangential contact traction is obtained.
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Figure 4.23: Hertzian contact — Computed pressure (red and blue lines) and frictional traction (dark red and dark
blue lines) distributions for mesh h = 273 using different second order NURBS methods.

4.1.4.2.3 Three-dimensional Rotating Ironing This final example demonstrates the ap-
plicability of the presented isogeometric dual mortar method to large frictional sliding and
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again compares the result to contact formulations based on Lagrange polynomials. Inspired by

(a) Initial mesh. (b) Step 10. (c) Step 30.

(d) Step 50. (e) Step 70.

Figure 4.24: Rotating ironing — Initial mesh and deformed configurations displaying the post-processed normal
contact pressure for the second order dual NURBS approximation.

De Lorenzis et al. [53], a rotating ironing example is chosen and enhanced with Coulomb fric-
tion (friction coefficient ;x = 0.1). An indentor Q(()l) with an approximate size of 6 X 6 x 4 with a
curved contact surface is pressed onto an elastic cuboid Q((f) of size 10 x 22 x 5. After 10 steps
of this vertical movement, the indentor is slid over the cuboid while performing a rotation of 180
degrees around its vertical axis within 60 steps, see Figure 4.24 for an illustration of the initial
mesh and different deformed stages. For both bodies, the same neo-Hookean hyperelastic mate-
rial (3.38) with £/ = 1 and v = 0.3 is assumed. Starting from the common Q;/R; discretization
either eight first order finite elements are combined to one second order element Q, i.e. keeping
the number of nodes fixed, or keeping the number of elements fixed and elevating the NURBS
order to R, and R3 with CP~! inter-element continuity, and slightly increasing the number of
unknowns. Similar to De Lorenzis et al. [53], Temizer et al. [217], the total vertical and hori-
zontal contact reaction forces during the sliding phase are analyzed in Figures 4.25 and 4.26.

At first sight, the resulting normal contact force behaves quite smoothly for all discretization in
Figure 4.25. Taking a closer look and magnifying the sliding phase, reveals that both the (Q; and
@ schemes show some periodic oscillations. The isogeometric approaches R, and R3, on the
other hand, give much smoother results and for the third order case R3 hardly any oscillations
can be observed. The oscillations become more pronounced, if the horizontal contact force due
to frictional effects is analyzed as done in Figure 4.26. Here, even the second order NURBS
solution Ry oscillates and only the R3 version gives reasonably smooth results for the friction
force thanks to the smooth contact surface representation. Those investigations hold for both
the standard and the dual Lagrange multiplier interpolations without any qualitative difference.
In summary, the known advantages of isogeometric contact algorithms also transfer to the dual
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Figure 4.25: Rotating ironing — Comparison of vertical contact forces for different approximation schemes.
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Figure 4.26: Rotating ironing — Comparison of horizontal contact forces for different approximation schemes.

mortar approach: keeping the inter-element continuity at a maximum, higher order NURBS give
smoother contact forces, whereas higher order Lagrange polynomial finite elements do not.

4.2 Mortar Methods for Thermomechanical Contact'’

The mortar method for isothermal contact derived in the previous section is now to be extended
to include thermal coupling effects consisting of heat conduction across the contact interface,
frictional heating and a temperature dependent coefficient of friction. From the continuum me-
chanical perspective, the first two coupling effects are included in the contact interface heat
fluxes (2.129), while the last one enters in Coulomb’s law of friction (2.124) via the temperature
dependent coefficient of friction (2.125). The thermomechanical coupling in the bulk continuum

I'This section is adapted from the author’s publication [194].
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is not revisited here, but the reader is referred to Chapter 2 for the continuum mechanical de-
scription including finite element schemes for thermoelasticity, and Chapter 3 for the numerical
treatment of thermo-elasto-plasticity.

4.2.1 Mortar Finite Element Discretization

To prepare the subsequent mortar finite element discretization of the thermomechanical contact
problem, again a mixed formulation of the weak forms introduced in Section 2.7.4 has to be
derived. As in the isothermal case of Section 4.1, a Lagrange multiplier field A is introduced
to enforce the mechanical contact constraints (2.119) and (2.124), and can be identified as the
negative slave-sided contact traction, i.e. A = —¢". In a similar fashion, a thermal Lagrange
multiplier field A is introduced to enforce the thermal constraint (2.129) and will be chosen as
the slave side heat flux A\p = qél). The complete weak form of the coupled thermomechancial
contact problem then reads: Find u € U, T' € U, A € M(A) and A € M, such that

OWa + /W) A [ouldy=0 Youew,, (4.54a)

OWr + /ygn Ar[6T] dvy + /751) A-ve (ST ox,) dy=0 V6T € Vy | (4.54b)
/7 él)(“n — An)gndy — A énm — X)) - vedy >0 VoA € M(A) (4.54c¢)

/V o O = BA[T] = 0eX - we) GArdy =0 VoAt € M (4.54d)

The first and second line represent the weak forms (2.132) and (2.134) replacing the slave sided
contact traction and heat flux by the respective Lagrange multiplier. The third line reproduces
the mechanical contact of no-penetration and Coulomb’s law in form of a variational inequality
as already introduced in (4.5) and finally the fourth line weakly enforces A\ = qgl) with qél) as
defined by (2.129a). Note that also for the thermal contact contributions, all integrals are written
as slave-sided integrals only.

Within this thesis, the spatial discretization of displacements and temperatures is either done
by classical finite elements (see Section 2.8.1.1) or NURBS in the case of isogeometric anal-
ysis (see Section 2.8.1.2). Since these discretizations do not require any special treatment for
the thermomechanical mortar method, they are not recapitulated here. Also, the mechanical part
of (4.54), i.e. the balance of linear momentum (4.54a) and the variational inequality (4.54c),
remain virtually unaltered from the one treated in Section 4.1 and will not be discussed in de-
tail in the following. The discrete contact forces entering the balance of linear momentum are
again obtained via (4.9) and the inequality constraints are reformulated as nonlinear complemen-
tarity functions (4.22) and (4.23). The only noteworthy difference to the isothermal case is the
temperature dependency of the coefficient of friction.

Focusing on the thermal contributions, the thermal Lagrange multiplier and its variation are
discretized by discrete values At ; and 0Ar;, and the same ansatz functions as used for the struc-
tural Lagrange multiplier A in (4.6) resulting in the discrete field

A~ Ay = > G X)Ara(t) . Sht ~ dArn = Y ¢i( XAz, (4.55)

€L €L
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The application of this discretization together with the approximation of displacements, temper-
atures and structural Lagrange multipliers (2.136) and (4.6) in the contact contribution to the
weak heat conduction equation (4.54b) yields

. (2)
/7£1> Ap[6T] dvy + /(1) A v (6T o Xt) d~y

Ye
L(l)

c,h

_ (D) (1)
B Z Z A ( o PN d7> o (4.56)
’YCJL

Arp[6Th] dy + / A vep (0@, 0x4p) doy
7,

(1)
c,h

iel jeSs

=) M (/(1) b; (Nk(f) oXt,h) d~y> 5T
ZEE keM c h

+ Z Z A ( " GV (Nl?) o Xt,h) d7> 6T,€(2)
€L keM ﬁ/c,h

The first and second sum therein stem from the heat conduction over the contact interface and
result in the similar coupling matrices Dt and M+ already introduced in the structural coupling
(4.10). The only difference between the temperature coupling Dt and M, and structural cou-
pling D and M in (4.10) is in the size of the matrices: one entry per node for the thermal part and
ngim €ntries per node - one for each displacement degree of freedom - in the structural coupling.
The last integral is the result of frictional dissipation at the contact interface and, in the stated
form gives rise to some complications. First, an objective measure of relative tangential velocity
v, has to be used, e.g. a discrete version of (2.103). Moreover, it involves a triple integral over
a product of three ansatz functions on the contact interface as v, includes ansatz functions via
(2.103) as well. This poses high demands on the quadrature accuracy at the contact interface,
especially when going to higher order approximations using Lagrange polynomials or NURBS,
see e.g. Dittmann et al. [61]. Following the work of Hiieber and Wohlmuth [107], an appropriate
lumping technique in (4.56) is applied to reduce the computational cost by replacing the last

summand by
S5 n( f dmon (37 ) ) o
’yc h

€L keM

~ Z Z f’v;l(z; (;y (/(1) P <N152) © Xt,h) dv) 5Tl§2) .
! Ye,n

€L keM

(4.57)

From a physical point of view, this means that instead of interpolating the contact Lagrange
multiplier and the relative velocities separately, only the scalar product T Orihi P 1s inter-

(1) ¢idy
c,h

polated, which represents the frictional dissipation power of a discrete Lagrange multiplier A;
with the weighted relative tangential velocity v.; defined in (4.16). Numerically, (4.57) implies
a lumping of the triple integrals, thus resulting in an integral over the product of two ansatz
functions only. Equation (4.56) with the lumping (4.57) provide a spatial approximation of the
contact-related terms in (4.54b) which is, however, still continuous in time.
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An appropriate temporal discretization of the bulk terms by means of a generalized-a method
or quasi-statics has been introduced in Section 2.8.2, so the focus here is on the contact terms
only. The contact contribution to the discrete thermal equilibrium (2.163) is also interpolated at
the generalized mid-point Frr ¢ ya; . = @r 1 Frcns1 + (1 — ag 1) Fr ., such that

rr = MTTn—i-am,T + Fu,int,n—&—oaf’u - Fu,extm—&—oaf,u + FT,c,n-l—agT =0 5 (458)

with
FT,c,n = [07 DT7 _MT]TAT,n + [07 07 MT]TPC,TL s (459)

wherein the vector P, ,, assembles the frictional power of all discrete Lagrange multipliers at
time ¢,,. For clarity of notation, the discrete temperature variations o T have again been re-ordered
as 0T = [0Tn,0Ts, 6T )" with 6Ts, 6T and 6T containing all nodal values §T; on the
slave surface, the master surface and the remaining ones, respectively. Note that Fr ,, is linear
in the structural and thermal Lagrange multiplier but nonlinear in the discrete displacements due
to the nonlinearity of the mortar matrices Dt and Mr.

Lastly, the thermal interface constraint (4.54d) needs to be discretized. At this point, a slight
deviation from a strict application of the spatial discretization to (4.54d) is introduced as already
done in (4.57) to end up with a vector Gt of nodal constraints and the discrete form

A -Gt = Z OAT,;i (/(1) (o CW) At

i€l ch
_ Z Z 67\T,i/80)\n7i (/(1> ¢2N] d’y) Tgl)
ieL jes e,h
i (4.60)
2
I Z > oAt iBen ( / o O (N® ox,5) dv) T
ieL keM Teuh
_ 25)\“ (/ oy d7> Pei
4 1)
€L Te,h
0 VoAr,; € R .

Thanks to the lumping procedure, especially for the first integral, the thermal interface condition
decouples for the Lagrange multiplier £, i.e. one can set At ; to zero for all inactive contact
nodes. For the contact interface constraints, this decoupling can be achieved in a consistent
manner using dual shape functions, such that only local, decoupled constraints have to be solved
instead of an inequality constraint coupling all interface nodes, see Remark 4.1. To keep up this
advantage in the coupled thermomechanical contact problem, the presented lumping is required,
see Hiieber and Wohlmuth [107] for a more detailed discussion. It should be emphasized that for
standard thermomechanical mortar methods, e.g. Dittmann et al. [61], a similar simplification is
made implicitly by using a node-wise decoupled active set strategy, although strictly speaking the
variational inequality does not not allow for such a decoupled treatment in that case as discussed
in Blum et al. [17], Wohlmuth [235].

Remark 4.4. To enforce the thermal interface constraints, it is not necessary to introduce the
Lagrange multiplier field \t. An alternative formulation proposed e.g. in Dittmann et al. [61],
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Gitterle [79], Pantuso et al. [163] directly substitutes the heat fluxes qgi) according to (2.129)
in the weak form of the heat conduction equation (2.133). In the present syntax, the resulting
thermal weak form would read

SWrt / L BNT] + 62 -0 5T dy
h (4.61)
/(1) (=BcAalT] + (1 = 0c) Ac - vr) (5T(2) oxi)dy=0 V0T € Vr ,

in which only the displacement and temperature field as well as the structural Lagrange mul-
tiplier X need to be discretized. At first glance, this seems to be the more intuitive formulation
as no additional thermal Lagrange multiplier field and corresponding weak form (4.54d) has to
be introduced. In comparison to the weak constraint enforcement derived above, there is, how-
ever, a drawback to this method: it becomes ill-conditioned for large values of ., that is for
a high thermal conductivity enforcing the two contacting surfaces to have the same tempera-
ture. In this case, the terms [\, [T'] will dominate the remaining terms in the discretized weak
form of (4.61). The presented weak constraint enforcement (4.54d), and its discrete counterpart
(4.60), on the other hand, reduce to a mesh tying type condition weakly enforcing continuity
of temperatures across the contact interface and therefore remains well-conditioned in the limit
Be — oo.

4.2.2 Algebraic Representation

The fully coupled nonlinear system to be solved for each time step is comprised of the struc-
tural and thermal equilibrium (4.18) and (4.58), respectively, the contact NCP function G.; =
n,;G,; + G ; composed by its normal and tangential components (4.22) and (4.23), and, finally,
thermal contact interface condition (4.60). All in all, one obtains

ro(d, T,A) =0 , (4.62a)
ro(d, T,A A1) =0 , (4.62b)
G.i(d, T, A) = Vie Ll (4.62¢)
Gri(d, T,A Ap) = Vie L | (4.62d)

which is to be solved for the discrete displacements and temperatures d and T as well as the
Lagrange multipliers A and Ap. As in the isothermal case (cf. equation (4.24)), (4.62) is non-
smooth due to the involved NCP functions, but still amenable to non-smooth versions of New-
ton’s method. A consistent linearization with respect to all unknowns yields the tangent system

Iguu,./\/' KuT,N 0 0 -ru,/\/-
Kuu,S KuT,S CLCDT 0 Tus
Kuu,/\/l KuT,/\/l _acMT 0 Ad Tum
K’I‘u_/\/ KTTN 0 0 AT T N
T , . — " (4.63)
K’I‘u,S KTT,S 0 CYf7TDT AN rrs
Krym Krrom \ —agrMT| [AAr L
Cu CT Cy\ 0 Gc
| E. Er Ex Err | | G |
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to be solved in every Newton step. Therein, a. = 1 — a . denotes the time integration factor
for the contact forces, the matrix V follows differentiation of (4.56) with respect to the contact
Lagrange multiplier A, and E, represent the derivatives of Gt with respect to the discrete un-
knowns. These matrix blocks are not specified in detail here, as their derivation follow straight-
forwardly from (4.60) and do not yield any further insight. The superposed check at the stiffness
blocks K., indicates that these blocks contain additional linearizations of the discrete coupling
forces and heat fluxes with respect to the displacement unknowns. Finally, in the case of thermo-
elasto-plastic materials, the stiffness blocks K, and the residuals 7, contain the condensed plastic
NCP functions of every quadrature point as derived in Section 3.4.3.

If dual basis functions as introduced in Section 4.1.2 for finite elements and Section 4.1.4 for
NURBS are used for the Lagrange multipliers A and Ar, the mortar matrices D and D+ are of
square and diagonal shape. Hence, the Lagrange multiplier increments can be trivially condensed
one after another: the second and fifth row of (4.63) can easily be solved for the increments AA
and AAr. The general procedure is similar to the one presented in Section 4.1.2, however, in
the thermomechanically coupled system, expressions become more cumbersome such that an
explicit presentation of the condensed system is omitted here. After inserting those values for
the Lagrange multiplier increments in the other lines, the remaining linear system to be solved
consists of displacement and temperature degrees of freedom only; in an abstract notation, it

reads
]Cuu ’CuT Ad _ n
o n) lav] =[x 69

Having solved this condensed system, the discrete Lagrange multiplier values can be recovered
using the second and fifth row of (4.63). Obviously, a similar condensation can be performed for
the piece-wise constant Lagrange multiplier interpolation introduced in Section 4.1.3.

4.2.3 Numerical Examples

In the following, several numerical examples are presented to demonstrate the wide range of ap-
plications covered with the methods presented. In a first step, consistency of the discrete method
is demonstrated by a thermomechanical contact patch test. Next, optimal spatial convergence
orders are demonstrated in a finite deformation two-body contact problem for first and second
order finite elements as well as NURBS-based isogeometric analysis. Next, the incorporation of
frictional dissipation is analyzed. After that, energy conservation is investigated in a dynamic
thermomechanical contact setting. Finally, a fully coupled thermo-elasto-plastic contact simula-
tion concludes this section.

4.2.3.1 Stationary Heat Conduction

In this first example, the pressure dependent heat conduction (i.e. the first term on the right hand
sides of (2.129)) over a non-matching contact interface is verified. This setting has already been
studied in Oancea and Laursen [159], Wriggers and Miehe [236] for node-to-segment contact
formulations with a matching interface discretization and a similar setting in Zavarise et al.
[249]. Contact between two elastic unit cubes is analyzed, where the lower surface of the lower
cube is supported and kept at a fixed temperature of 20, while the upper surface of the upper
block is subjected to an increasing Neumann load and has a fixed temperature of 40, see Figure
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Figure 4.27: Thermomechanical contact patch test — Temperature distribution at different contact pressure and com-
parison with analytical solution.

4.27a. Both blocks are modeled with a Saint-Venant—Kirchhoff material with Young’s modulus
E = 4000, Poisson’s ratio v = 0, a heat conductance of ky, = 52 and no thermal expansion.
For this setup, there exists an analytical solution for the steady state [236]. Figure 4.27b shows
the resulting linear temperature distribution within each block. As can be expected for mortar
methods, the contact patch test is passed to machine precision, i.e. a spatially constant contact
pressure and contact heat flux can be transmitted exactly. Moreover, Figure 4.27c compares the
interface temperatures depending on the normal contact pressure with the analytical solution,
which is recovered perfectly. Notably, the results are independent of the choice of slave and

master side and do not require a matching interface discretization as used in previous studies
[159, 236].

4.2.3.2 Frictionless Two Body Contact: Convergence Study

To further study the accuracy of the presented method, spatial convergence is investigated in the
following example. Thereto, the example introduced in Section 4.1.3.2.2 is extended to thermo-
mechanics. Again, the contact of a cylindrical arc with a rectangular block is analyzed and, to
include thermal coupling, the lower edge of the block is fixed at T = 0 and the upper edges
of the arc are fixed at T = 1, see Figure 4.28a, for the exact geometric setup and boundary
conditions. As in the isothermal setting of Section 4.1.3.2.2, both bodies are modeled with a
neo-Hookean material law (3.38) with EV) = 5, E® = 1 and vV = 1@ = 0.2. Further, ther-
mal expansion according to (3.47) with the coefficent of thermal expansion a(Tl ) = a(T2 ) =0.01
is included and thermal conductivities are set to k(()l) = 1and k;((f) = 5. At the contact interface,
frictionless contact is assumed with a contact heat conductivity 3. = 103. The lower edge of the
rectangular block is moved upwards quasi-statically to a total displacement of & = 0.3; the final
configuration and temperature distribution is illustrated in Figure 4.28b.

Figure 4.29 depicts the convergence behavior in the H' semi-norms of the discrete displace-
ment and temperature fields within the two bodies Qél) and ng) for mesh sizes of h € [277,271].
Different spatial discretizations and Lagrange multiplier methods derived in Sections 4.1.2 -
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—
I o
T
i=03 |
K x temperature
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B=2 T =0 — —
(a) Initial geometry, boundary conditions and (b) Deformed mesh and temperature distribution
exemplary mesh with b = 272, for b = 272 and Q; finite elements.

Figure 4.28: Two dimensional contact of a circular arc with a rectangle — Geometric setup, exemplary mesh and
deformed configuration.

4.1.4, namely
(a) first order Q; finite elements with dual Lagrange multipliers (Figure 4.29a)
(b) second order Q, finite elements with dual Lagrange multipliers (Figure 4.29b)

(c) second order Q finite elements with piece-wise constant Lagrange multipliers (Figure
4.29c¢)

(d) second order NURBS Ry with dual Lagrange multipliers (Figure 4.29d).

Since no analytical reference solution exists, errors are calculated versus a numerical reference
solution obtained on a mesh of size h = 27® with second order finite elements in combination
with the dual Lagrange multiplier method. Before going into detail with the comparison of the
different methods, it should be stressed that all variants converge with their respective optimal
orders. In particular, the first order approximation in Figure 4.29a converges with O(h), whereas
the second order approximations based on either finite elements or NURBS converge with order
O(Rh*?). In comparison of the two second order finite elements with either dual (Figure 4.29b) or
piece-wise constant Lagrange multipliers (Figure 4.29¢), the latter option yields slightly higher
error values which confirms the findings of the isothermal case in Section 4.1.3.2.2. The loss in
accuracy is, however, a small price to pay in view of the significantly simplified construction
of the Lagrange multiplier basis. The second order NURBS approximation also converges with
order O(h?), however, the absolute values are larger than for quadratic finite elements. Figure
4.30 gives a more detailed comparison of the second order NURBS discretization to the Q,
approximation both using dual Lagrange multipliers. The NURBS discretization yields larger
errors compared to the (Q, approximations at the same mesh size (Figure 4.30a). This is not
surprising, at the same mesh size h, the isogeometric approximation has a smaller function space.
More specifically, the B-spline basis used for the discretization of QéQ) at a certain mesh size is
included entirely in the corresponding (- discretization at the same mesh size. In addition the

125



4 Mortar Methods for Contact Mechanics

%o 10_1\; I \\\\H? %O 10_1 é\\w T T T TTT7T \/) \—\\\\%
5 § | 5 of i
— o | =
= 0 = w00
I ] Ll |
=< 1070} {2 )
S e 2ol ey
| (2) 2) || F e (2) (2)
[>>< 104 e —u, +Th ! [>>< 10-6 1 /l o, +Th
1072 101 10° 102 107!
mesh size h mesh size h
(a) Qq, dual Lagrange multiplier. (b) Q2, dual Lagrange multiplier.
{:/\ _ T TTT7T T T T T 11T T ) T T T 1717 ’5\ _ IREBEREI T T 11 \\\/[/ T /\/)' T 1117
T 107 e - U
S 02l i S 02 L i
— 1 =
= 107 T 10
= 1074 % é ~ 104 % i
== § == i
N 1075 s +u§11) +T,§1) ' C// 1075 3 +u§11) +T}51)
i (2 2 & (2) (2)
[>>< 10-6 | | +uh +Th I l>b<: 10-6 1 | +uh +Th
1072 101 10° 10~2 107!
mesh size h mesh size h
(c) Qo, piece-wise constant Lagrange multiplier. (d) Ry, dual Lagrange multiplier.

Figure 4.29: Two dimensional contact of a circular arc with a rectangle — Spatial convergence of different dis-
cretizations and Lagrange multiplier methods. Dashed lines indicate the optimal order of the respective
method, that is O(h) in Figure 4.29a and O(h*?) in Figures 4.29b - 4.29d.

Q- approximation can represent kinks of the primal variables at element boundaries which R,
cannot. This, in turn, yields the lower errors of the Q; approximation. If, however, the errors are
analyzed with respect to the number of, respectively, nodes or control points, the isogeometric
case is slightly more accurate in the displacement solution, whereas the error in the discrete
temperature field is of similar accuracy as compared to finite elements (cf. Figure 4.30b).

4.2.3.3 Frictional Heating of a Rotating Ring

This short validation example is concerned with the effects of frictional heating. A rectangular
block Q(()l) of dimensions 100 x 25 is pressed onto a ring Q(()Q) with an inner radius I%; = 75
and an outer radius of R, = 100. The top surface of the block is loaded with a constant ver-
tical Neumann load of, in total, F;, = 150. Moreover, this top surface is fixed in horizontal
direction and kept planar at all time and the ring rotates at various angular velocities w. Both
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Figure 4.30: Two dimensional contact of a circular arc with a rectangle — Comparison of spatial convergence of
second order finite elements (solid lines), and second order NURBS (dashed lines). For both approxi-
mations, dual Lagrange multipliers are employed.

bodies are modeled with a Saint-Venant—Kirchhoff masterial with Young’s moduli Fyjox = 2
and Fy,, = 10 and Poisson’s ratios ok = Viing = 0.25 under plane strain conditions with
a thickness of z = 10. The thermal material parameters are given by a specific heat capacity
¢, = 1072 and thermal conductivity ky = 6. To keep the focus on the thermomechanical contact
and avoid potential thermo-elastic dissipation effects, themal expansion is not accounted for in
this example, i.e. ar = 0, and the structural response is assumed to be quasi-static. At the con-
tact between the block and the ring, frictional contact is assumed with a temperature dependent
coefficient of friction according to (2.125) with po = 0.2, Ty = 293 and T3 = 493. Further, heat
conduction across the contact interface is precluded and the entire frictional power is converted
to heat within the ring by setting the parameters 5. = 6. = 0. By doing so, and assuming an
instantaneous heat conduction (ky — o0), or equivalently low rotational speeds w — 0, an an-
alytical solution for the temperature, or equivalently the thermal energy FEy,, of the ring can be
derived:

1 2 2
By = /Q((f) oTdQ= Ty — — ToE ez (R2— RY) , (4.65)

alt
Tq—To - (Td—To)chﬂ'z(Rg—Riz)

where «(t) is the rotation angle of the ring over time. Figure 4.31 displays the temperature
distribution in the ring for different angular frequencies. Clearly, the higher the angular frequen-
cies are, the more inhomogeneous the temperature distribution becomes; for the lowest shown
frequency of w = 107! an almost constant temperature across the entire ring is obtained. In
Figure 4.32, the analytical solution is recovered for low angular frequencies, whereas higher fre-
quencies show a discrepancy as the assumptions made for the analytical solution are not met.
For all frequencies, the apparent coefficient of friction drops due to the increasing temperature,
thus reducing the slope in the energy gain. Higher angular velocities result in locally higher
temperatures in the contact zone (cf. Figure 4.31c) and therefore a lower friction coefficient,
consequently reducing the increase in thermal energy. Ultimately, all energy curves in Figure
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Figure 4.31: Frictional heating of a rotating ring — Temperature distribution after three full rotation at different
angular frequencies.

4.32 saturate at an energy, which corresponds to a homogeneous temperature 7 in the entire
ring. Approaching this temperature, the friction coefficient tends to zero, thus precluding any
further thermal energy being introduced via work of friction at the interface.
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Figure 4.32: Frictional heating of a rotating ring — Change of thermal energy for different angular velocities w
compared to the analytical value for w — 0.

4.2.3.4 Bouncing Ball

The next example considers contact dynamics and especially matters of energy conservation in
the discrete system. A bouncing hollow sphere (Q(()l), outer radius 4, inner radius 1) between

two rigid plates (Q((JQ), dimensions 50 x 1 x 10, distance 14) is simulated. The ball is modeled
with a Saint-Venant—Kirchhoff material with Young’s modulus £/ = 12.5 and Poisson’s ratio
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v = 0.2. The heat capacity and conductivity of the ball and the two plates are set to ¢y pay = 0.1,
Cy plate = 1, Ko pant = 1 and Ko piae = 0.1, respectively. Initially, the ball is given a velocity of Vv2in
a 45 degree angle towards the lower plate and a superimposed spin around an inclined axis. Initial
temperatures are 1 in the ball and 0 in the plates. The coefficient of thermal expansion o is set to
zero, such that no transfer from mechanical to thermal energy is possible and vice-versa. The ball
is discretized with 3456 second order NURBS elements and the plates with 459 elements each.
Figure 4.33 shows the deformation and temperature distribution at different time steps. During

temperature temperature

temperature
L R L -
0 1 0 0 1

(a) Step 0. (b) Step 35. (c) Step 110.

temperature temperature temperature =
I I - I
0 0 0 1

(d) Step 185. (e) Step 260. (f) Step 335.

Figure 4.33: Bouncing ball — Temperature distribution and deformation state for po, yw = poo, 7 = 0.9 at different
time steps.

the five contact events, heat is transferred from the ball to the plates and the ball cools down to a
final temperature of approximately 0.25, meaning that 75% of the thermal energy in the system
is transmitted through the contact interface. Owing to the relatively coarse discretization of the
plates in combination with their low thermal conductivity, slight oscillations in the temperature
distribution occur in the surroundings of the contact zone, see Figure 4.33b. This is due to the
inability of the coarse discretization to correctly reproduce the steep gradients in the temperature
field, an effect that vanishes for finer discretizations. Figure 4.34 shows the relative change in
mechanical and thermal energy over time for different spectral radii of the generalized-« time
integration schemes. As outlined in Remark 2.5, exact algorithmic energy conservation cannot
be expected with the employed time integrator. For p,, = 1, a gain of about 8% in mechanical
energy after the five contact events (see Figure 4.34a) is observed. Smaller values of p., yield
an energy dissipative, stable behavior. The thermal energy in Figure 4.34b, on the other hand,
is conserved to a very high accuracy, especially considering the fact that a significant amount is
transmitted through the contact interface.
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Figure 4.34: Bouncing ball — Relative changes in mechanical and thermal energies for different time integration
parameters Poo,u = Poo,T = Poo-

4.2.3.5 Squeezed Elasto-Plastic Tube

Finally, a fully coupled thermo-elasto-plastic contact example demonstrates the robustness of
the developed thermomechanical contact algorithm and its compatibility with the computational
method for thermoplasticity derived in Chapter 3. A squeezed metal tube Q(()l) with an inner
and outer radius of 4 cm and 5 cm, respectively, and a length of 40 cm is analyzed. In the mid-
dle, the tube is squeezed by two rigid cylindrical tools ng) with an inner and outer radius of
4.5cm and 5cm, respectively, and a length of 16 cm. Figure 4.35 depicts the initial geome-

try and the employed mesh. Due to the symmetry of the problem, only one eighth of the en-

Figure 4.35: Squeezed elasto-plastic tube — Initial configuration and employed mesh.

tire model is discretized with about 20.000 first order F-bar finite elements (see Section 2.8.1.1
and de Souza Neto et al. [55]); all results are reflected for visualization purposes. The thermo-
elasto-plastic material properties are set to the ones given in Table 3.2, with plastic isotropy,
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i.e. y11 = Yo. Between the tools and the tube, frictional contact with a temperature depen-
dent friction coefficient according to (2.125) is assumed with the initial coefficient of friction
to = 0.25, the reference temperature 7, = 293 K and the damage temperature 7 = 1793 K.
Heat conduction across the contact interface is allowed with 5, = 0.1 % and frictional dissi-
pation is evenly distributed to the two sides by . = 0.5. The tools are initially in stress free
contact and perform a vertical displacement of u(t) = (1 — cos(s57)) - 1.75 cm over time. Figure
4.36 illustrates the plastic strain and temperature distribution at different times. In the early de-

plastic strain ¢;

plastic strain ¢;

plastic strain «;

0.72 0

0.72 0

0.72

T — T - T
293 329 293 329 293 329
temperature temperature temperature

(@)t =0.5s. b)t=1s. (©)t=2s.

Figure 4.36: Squeezed elasto-plastic tube — Deformed configurations at different times including accumulated plas-
tic strain and temperature distribution.

formation stages, plastic deformation and the heat generation induced thereby is mainly located
directly beneath the contact zone (see Figure 4.36a), whereas later the main plastic deformation
occurs at the side of the tube, where the highest temperatures are reached (see Figure 4.36b). Af-
ter contact is released, thermal conduction tends to equilibrate the temperature inhomogeneity,
see Figure 4.36¢c. The results of a coupled thermo-elasto-plastic analysis are compared with an
isothermal simulation. Figure 4.37 displays the total contact forces for the two cases: initially,
the temperature changes are low and the contact forces for both cases practically coincide. As
the temperature increases, the coupled thermomechanical analysis softens and terminally yields
contact forces about 4% lower than in the isothermal case, with a peak temperature change of
36 K.

The presented monolithic scheme for thermo-elasto-plastic contact solves this problem within
only 100 time steps with a constant step size of At = 0.02s, of which the first 55 steps involve
contact. Each of those time steps is solved with a standard Newton—Raphson scheme, which
required an average of 9.9 iterations to converge to machine precision.To illustrate the efficient
nonlinear solution procedure using Newton’s method with a consistent linearization, Figure 4.38
displays the convergence behavior of different residual contributions in the time step of maximal
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Figure 4.37: Squeezed elasto-plastic tube — Contact force over tool displacement for isothermal and coupled ther-
momechanical analysis.

tool velocity (¢ = 0.5s). All residuals clearly exhibit a quadratic rate of convergence asymptoti-
cally, until they are at some point limited by machine precision. The residual of the NCP function
for plasticity (3.44c), for instance, has been reduced by ten orders of magnitude within the first
seven iterations and is then limited by numerical accuracy. In the final iteration steps, also the
other residual contributions converge rapidly as expected.
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Figure 4.38: Squeezed elasto-plastic tube — Convergence of different residuals in Newton’s method for ¢ = 0.5s.
“coupled” shows the residual of (4.64), “structure” the residual (4.62a), “thermo” the residual (4.62b),
“str. LM” the residual of (4.62c), “thr. LM” the residual (4.62d) and “plast.” the residual (3.44c).
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In this chapter, a finite element method for thermo-elasto-plastic frictional contact based on
Nitsche’s method is derived. As for the mortar method derived in Chapter 4, the point of de-
parture is the continuum mechanical description of the thermomechanical contact problem pre-
sented in Section 2.7, more specifically the weak forms in 2.7.4. In contrast to the mortar method,
which is based on a mixed finite element method, Nitsche’s method provides an alternative to
impose boundary or interface constraints without the necessity to introduce any additional un-
knowns. Thereby, the consistent boundary integral in the derivation of the weak form remain
unaltered and additional terms are added to weakly enforce the constraints. Stability of the nu-
merical method is ensured by the presence of a consistent penalty term. In multi-field problems,
e.g. thermomechanics, all coupling terms arise naturally by the respective inter-dependency of
derived quantities, such as stresses, in the boundary integral. The apparent simplicity of Nitsche’s
method comes at the expense of the fact that the boundary traction computed from the under-
lying bulk discretization remains to be evaluated in the weak form. While this is rather simple
to compute in linear problems, it adds significant complexity in nonlinear elasticity and elasto-
plasticity.

The following derivation of Nitsche’s method for contact problems starts with the isothermal
case of finite deformation frictional contact in Section 5.1. Special focus is set on the nonlinear-
ity resulting from finite deformation kinematics and nonlinear elasticity or even elasto-plasticity.
Moreover, an accurate estimate for the required penalty parameter based on generlized eigen-
value problems is presented, which in the case of nonlinear material behavior needs to be updated
to account for potential stiffening in the material. In Section 5.2, Nitsche’s method is extended
to thermomechanical contact problems. Two different methods to enforce the thermal interface
conditions, i.e. heat flux across the contact interface and frictional heating, are presented.

It should be pointed out that the focus of this thesis is on nonlinear, coupled multi-field prob-
lems which, in general, precludes a thorough numerical analysis of well-posedness and optimal
a priori error estimates. Nevertheless, convergence orders are investigated by numerical exam-
ples and optimal results are confirmed. Moreover, all methods derived for nonlinear problems in
the following have been analyzed mathematically for simplified problems elsewhere; in partic-
ular, an analysis of Nitsche’s method for isothermal small deformation frictionless contact can
be found in Chouly et al. [35] and the penalty free variant in Burman et al. [25]. An extension
to Tresca friction is investigated by Chouly [33]. The proposed Nitsche-type formulation for
contact heat conduction is based on the original work by Juntunen and Stenberg [118], who pro-
vides numerical analysis for general boundary conditions on a Poisson problem. An extension
to the genaral Navier boundary condition is presented by Winter et al. [231], who also perform
mathematical analysis of a skew-symmetric variant on the Oseen equation. Finally, an adaptation
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of the method of Juntunen and Stenberg [118] to interface rather than boundary conditions on
linear elasticity problems is given by Annavarapu et al. [5].

5.1 Nitsche Methods for Isothermal Contact Problems

The starting point for the derivation of Nitsche’s method for isothermal contact problems is the
weak form (2.132). In its discretized form, it reads: Find u;, € U,, 5,, such that

§Wu,h — /(1) tc,h . [[5uh] d’y =0 Véuh c vu,h . (5.1
7,

c,h

Therein, 6WW,, 5, (as defined in (2.141)) contains the contributions of intertia, internal and external

forces. On the discrete contact boundary 7(5’1}2, the discrete contact traction . j, = t((zl})L = a'}(bl)ng)

of the slave side (see (2.104)) is computed from the approximate displacement field 'u,,(ll). In

contrast to the mortar method of Chapter 4, where this traction is replaced by a discrete Lagrange
multiplier field, it retains its original form of a boundary traction in Nitsche’s method. In a first
step towards a more general method, it is observed that, from (2.105),

te =wutl) — (1 —w )t = {t}, . w.€[0,1] (5.2)

holds exactly in the continuous setting and approximately for the discrete solution. The operator
{-},, defined by (5.2) represents a weighted average of the traction derived from the slave and
master side, respectively. The exact choice of the weighting w, will be discussed in detail in
Section 5.1.2. The weighted average may be used in (5.1) to replace the contact traction yielding
the discrete weak form: Find u;, € U, ;,, such that

5Wu,h — 0 {tc>h}wu . [[5uh]] d’}/ =0 Vou, € vu,h s (5.3)

’Yc,h

wherein (5.1) can be recovered by w, = 1.

5.1.1 Weak Contact Constraint Enforcement

The weak form (5.3) represents a consistent approximation to the balance of linear momentum in
the two contacting bodies. The additional contact constraints, i.e. the Hertz—Signiorini-Moreau
conditions (2.119) in normal direction and Coulomb’s law of friction (2.124) in tangential di-
rection are still unaccounted for. Within this section, these inequality conditions are enforced on
(5.3) weakly by means of different variations of Nitsche’s method.

Normal contact constraints To include the Hertz—Signiorini—-Moreau conditions (2.119)
in the discretized weak form of the balance of linear momentum, the inequality constraints are re-
formulated in terms of non-smooth equality constraints. One possible reformulation has already
been introduced as the NCP function in normal direction (4.22) as used in the mortar method of
Chapter 4. In the context of Nitsche’s method, a similar constraint function can be constructed
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by replacing the negative Lagrange multiplier in normal direction (—A,, ;) with the contact pres-
sure py, the weighted gap g, ; with the local gap g, and the complemetarity parameter c,, with a
penalty parameter ~y,,. One obtains

{pn}wu = [{pn}wu + Vngn}_ N U (5.4

where [-| . = min(0, -) denotes the negative part of the argument. The penalty parameter therein
is of order O(%), where E represents the Young’s modulus of one of the contacting materials
and h the mesh size. The exact definition of the penalty parameter ~, used will be the subject
of Section 5.1.2. Since (5.4) holds if and only if the contact constraints (2.119) are met, these
constraints can be enforced on (5.3) weakly by adding

Oy
/ o <{pn,h}wu — {pante, +%gn,h],> (nh [oun] — =D {pun}., [5uh]> dy  (5.5)
’yc,lh, ,y

n

to (5.3). Therein, Dy|x] denotes the directional derivative of y in direction of = and 6,;, €
{—=1,0, 1} denotes a parameter. For linearized kinematics and w,, = 1, this formulation is equiv-
alent to the one presented by Chouly et al. [35], where the parameter 0, ; is introduced to derive
a symmetric variant (¢,; = 1), a non-symmetric variant with fewer terms (6,; = 0) and a
skew-symmetric variant (6, ; = —1).

Recently, a more general formulation has been introduced by Burman ez al. [25] in the context
of the Signiorini problem, i.e., a Poisson problem with a boundary condition of type (2.119).
Transferred to the present framework of nonlinear elasticity, it states that the inequality con-
straints (2.119) can also be cast in form of an equality condition as

TnGn = [{pn}wu + 7ngn}+ ;T >0 (5.6)

with []; = max(0,-) denoting the positive part of the argument. Analogously to (5.5), the
contact constraints can be in introduced in (5.3) weakly by adding

eu,l
- /y(l}i (’Yngn,h - [{pn,h}wu + ’yngn,h] +) (eu,Znh : Héuh]] - 5

D{pn,h}wu [(Suh]> df)/ ’

(5.7)
with an additional parameter 6, 5 € {0, 1}. It can easily be verified that the classical version (5.5)
of Chouly et al. [35] is recovered by (5.7) through fixing 0, 2 = 1, such that further elaborations
will be based on the more general case (5.7). When making the assumption of frictionless con-
tact, the tangential stress % can be set to zero in the boundary integral of (5.3) and the resulting
weak form including the contact constraints reads: Find u;, € U, 5, such that

n

OWan — /(1) {Punt,, mn - [0un] dy
’Yc,h

_ /(1) <7ngn,h - [{pn,h}wu + 'Yngn,h] +> (58)

’yc, h

eu,l

n

. (911,27% . Héuh]] — 'D{pn,h}wu [(5uh]> d")/ =0 Véuh € vah .
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Tangential contact constraints For problems involving friction, a similar approach can
be pursued to incorporate the contact constraints in tangential direction into the weak form (5.8).
First, a time discrete form of the relative tangential velocity (2.103) is obtained by a simple
backward-Euler method on the involved time derivatives (see e.g. Mlika et al. [152], Poulios and
Renard [173]). For a time step At = t,,,1 — t,, this yields
1
oe@) % A (1= @ 1) [ () = @) = g = 22kl
t At

wherein all quantities marked with a subscript (-), are evaluated at ¢,, and all others at ¢,_.
Notably, the projection (2.101) to determine & as the projection of ") onto the master contact
surface 732 is performed at ¢,,. 1. Within one time step, the tangential slip distance is denoted as
A . The time discrete version of Coulomb’s law of friction is then given by

(bT = H {tT:h}wu H —,u\pn,h| S 0 s A'U,T’h _B{t’f:h}wu =0 s ﬁ 2 O s ¢Tﬂ = O . (510)

Inequality conditions of such type have already been transferred to equivalent equality con-
straints in the course of this thesis; once in the context of elasto-plasticity, see Chapter 3, and
once in the context of mortar methods, see Chapter 4, which lead to the nonlinear complemen-
tarity functions (3.17a) and (4.23), respectively. For the present setting, (5.10) can be expressed

equivalently as
—i [{Papte, + G
t = min | 1, . — 129 + YA,
{ T,h}wu ( || {tth}wu + ryTAuT,hH ({ Th}wu T Th)

= PB(,E) ({tT,h}wu + ’VTAUT,h> » Yo = 0,

wherein ji = —pu [{pmh}wu + ”yngmh} _ represents the effective friction bound, Pg(, (2z) denotes
the orthogonal projection of z onto a ball (or disc) with radius r, and . is a penalty parameter
potentially different from -, but also of order O(%) Analogously to (5.7), the Coulomb’s law
of friction can be enforced consistently on the weak form (5.3) by adding

O
[ b, = P ((teabe, +9eu)) - (o] = 22D (s, ] )
’Yc,h
(5.12)

T
The complete weak form of a frictional contact problem finally comprises the structural balance
(5.3), including the consistent boundary integral, the weak normal contact constraint (5.7) and
the tangential constraint (5.12). In summary, it reads: Find w;, € U, 5, such that

(SWu,h - /<1> {tc’h}wu . [[5uh]] d”)/
’yc,h

(5.9)

(5.11)

_ /<1> <7ngn,h - [{pn,h}wu + %gn,h] +)
’yc,h
eu,l

n

. (quznh - [our] — D{pnn},, [5uh]> dy (5.13)

+ /(1) ({tents, — Pog ({ten}y, +1Au))
v

c,h

eu,l

T

: (9u72[[(5uh]] — —D{twn},, [(5uh]> dy=0 Vou, € Vy, .
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A family of Nitsche methods To illustrate the resulting family of Nitsche methods obtained

by different combinations of 6, ; and 6, 5, the contact boundary 7(51,3 is first decomposed in the

regions of closed contact 'yél}z o and separation 7(1}2 +» such that

C,

(1)
0 on .,
{Popt, +MWmGnn|, = G0 (5.14)
[ u L {Punty, + Tagnn on 7§7}Z7+

The interface conditions to be applied on the two parts in normal direction are a homogeneous

Neumann condition {pmh}wu =0on fyél,z + and a Dirichlet-type interface condition g, , = 0 on

Ye,h,0- For the treatment of frictional contact, the active contact zone is further split into stick and

1
(1,250 and 7( )

slip region vy e hry

<,

respectively. These regions are separated by the condition

chto 5.15
[{tent, + 7B |<1 onslh 61

C,h,T+

K [{pn,h}wu + 7ngn,h] _ {Z 1 on ’7(1)

The condition in the sticky region corresponds to the Dirichlet-type condition Au.;, = 0 and in
the slip region a Robin-type condition is applied.

To demonstrate how all these interface conditions are applied in the presented Nitsche meth-
ods, the weak form (5.13) is re-arranged as

5Wu7h+ /
7(1)

c,h,+

_ /(1) ({pn,h}wu + eu,27ngn,h) ny - ﬂéuhﬂ — qulgn’hD {pnvh}wu [5uh] d’}/
7,

c,h,0

" 6,
{ton) - <<eu,2 - D] = 1 D s, o] - 22

n T

D {tth}wu [5’U,h]) d’)/

- /(1) ({tento, + Ou2rcAUcp) - [0un] — Ou1Aucp - D {te s}, [dup] dy
’YC,h,TO

_ / (= 00) ftenb, + OuaPogy ({teab, + D) - [u]
,yc,h,T+

+0u1 ({tende, — Poe ({Bendy, + 9 Aucn)) - D {tenl,, [0un] dy
=0 VYoup € Vyuy .

(5.16)
Note that this weak form is in fact continuous in the discrete displacements (at least for elasticity,
see Section 5.1.3 for a discussion on elasto-plasticity) which may not be directly obvious in
(5.16) but follows directly from the continuity of the min and max functions employed in (5.13).
In addition, one can observe from (2.102) and (2.103) that the directional derivatives of the

normal gap ¢, 5, and tangential velocity Awu. in closed contact yield

Dgun|Auy] = —ny, - [Auy] (5.17a)
DAup[Auy] = —(I — ny, @ mp)[Aws] (5.17b)

meaning that g, », and Aw., represent the negative jump of the displacement field across the
interface. A strict equality does not hold at this point due to the fact that in the discrete setting
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the slave and master sided normals are only approximately equal and opposite, ng)(w(l)) ~

—nf)(.fv@)), even in closed contact ’yé}}z,o. In conjunction with the projection strategy (2.101),
this disparity in normal directions results in (5.17) holding only approximately as discussed in

detail in Poulios and Renard [173].

The first class of Nitsche methods, the ones analyzed for linearized kinematics by Chouly
[33], Chouly et al. [35], are recovered for 6, » = 1, where (5.16) reduces to

5Wu,h—/
ot

c,h,+

_/7(

_/ ({t"‘»h}wu + ’YTAUT,]L) . Hduh]] — 9u71AuT,h -D {tT’h}wu [5uh] dy (5.18)

0, 2
o (b (20D o)+ 2

n T

D {tT7h}wu [(5uh]> d")/

({pn,h}wu + ’Yngn,h) ny, - [0un] — Ouw1gnnD {pn,h}wu [0wy) dy

)]

(1)
'Yc,h,"q_

- / Pyay ({ten}, +1Aun) - [0un]

+ Qu,l ({t’t,h}wu - PB(;]) ({t’t,h}wu + ’YTAUT,h)) -D {tT,h}wu [5uh] d7
=0 You;, € vu,h .

In this case, 0, = 1 yields a symmetric Nitsche method. Summarizing the analysis in Chouly
et al. [35], the homogeneous Neumann boundary condition in the inactive region is enforced
by a symmetric penalty term (first integral in (5.18)), which, however, has a negative sign and
does therefore not contribute to the stability of the method. In the active contact region 78}370,
the Dirichlet-type condition g, = 0 in normal direction is enforced by the classical symmet-
ric Nitsche method (second line in (5.18)), as is the stick constraint of no relative tangential

displacement (third line in (5.18)). Therein, the penalty terms fw) TnGnnMh - [0us] dy and
c,h,0

e YrAur p, - [ouy] dy in normal and tangential directions, respectively, enter with a negative
c,h,Tg

sign which, in view of (5.17), yields a positive, i.e. stabilizing, penalty term. Lastly, the Robin-
type slip condition (fourth line in (5.18)) is constructed as the continuous extension of the stick
case. Typical for the symmetric Nitsche method, the case of 0,,; = 60,2 = 1 requires a lower
bound on 7, and 7. to ensure stability. Conversely, setting ,, ; = —1 in (5.18) results in a skew-
symmetric Nitsche method, where the penalty term on the homogeneous Neumann boundary
(first integral in (5.18)) has a positive sign and is therefore stable, and the Dirichlet-type con-
ditions are enforced with the well-known skew-symmetric Nitsche method [35]. This method
is stable for any v,,~, > 0. Finally, a non-symmetric Nitsche method is obtained by 6,; = 0
in (5.18). This variant is particularly appealing in the case of nonlinear elasticity as it requires
fewer terms. Specifically, all directional derivatives of the contact traction, D {t. 5 },, [dus], drop
out of the equation. When solving the nonlinear, weak form (5.18) by a (generalized) Newton
method, the linearization of this directional derivative requires the second derivative of the stress,
a term commonly not present in nonlinear finite elements. Like the symmetric method, this non-
symmetric variant exhibits a lower bound on the penalty parameters v, and . to ensure stability.
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Finally, Burman et al. [25] propose a penalty free method which is obtained from (5.16) by
setting 0,1 = —1 and 6, » = 0. The weak form then reduces to

1 1
Wan+ /(1) {tc,h}wu . (nhﬁy—D {pmh}wu [up] + ’Y_D {tT7h}wu [5uh]> dy
Y, T

b+ n

- /(1) {pn,h}wu ny, - [dup] + gnnD {pn,h}wu [dwp) dy

Ye,n,0

- {ten},, - [0un] + Aucy - D {tr s}, [Jup] dy

(1
’Yc,h,T+

_/ {t’r,h}wu : Héuhﬂ - ({t’c,h}wu - PB(ﬂ) ({t’r,h}wu + /YTA’U’T,h)) -D {tT,h}wu [5uh] d’V
=0 VYouy € vu,h .
(5.19)
In the first line, the homogeneous Neumann boundary condition on the inactive contact zone is
enforced by a positive, symmetric penalty term. In the second and third line, the non-symmetric
penalty free Nitsche method analyzed by Burman [23] is used to enforce the Dirichlet condition
of closed contact in normal direction on %(,1;3,0 and the stick constraint in tangential direction

on ’Y'E,lfz,m- Finally, the slip condition is obtained by a continuous extension of the stick branch.

For the Signiorini problem and a nonconforming finite element method, Burman et al. [25] prove
stability and optimal convergence orders of sufficiently low penalty parameters -, and ~y.. Calling
this method penalty free may be misleading as a penalty term is still present. The name rather
originates from the fact that the constraint of closed contact g, = 0 (and the stick constraint)
are enforced by the penalty free Nitsche method.

5.1.2 Penalty Parameter Estimates and Harmonic Weights'

Besides the discussed parameters 0, ; and 0, o, the weak form (5.13) still contains the so-far un-
specified weighting w, € [0, 1] and penalty parameters 7, and .. It is well-known that, to ensure
coercivity, the penalty parameters need to scale with a material stiffness parameter (e.g. Young’s
modulus £) and the inverse mesh size, i.e. to be of the order (’)(%) [35]. Moreover, the variants
0.1 € {0,1}, 6,2 = 1 analyzed in [35] exhibit a lower bound on 7, and 7, to ensure coer-
civity. At the same time, small penalty parameters are favorable, especially in nonlinear contact
problems. This is due to the non-smoothness of the boundary integral (5.7), which, depending
on the result of the involved min-function, switches the penalty term on or off. For high penalty
parameters, this nonlinearity can severely deteriorate the convergence behavior of a nonlinear
solver for finding the equilibrium (e.g. Newton’s method) or even lead to divergence.

For a first estimate of the penalty parameter, linearized kinematics based on the strain tensor
e(u) = 1/2(Vxu + (Vxu)T") and the linear elastic constitutive law o (u) = C : e(u) with the
constant, symmetric positive definite fourth order elasticity tensor C is assumed. Moreover, the
discrete contact traction entering the weak form is taken from the slave side by setting w, = 1.
Under these simplifying assumptions, Chouly et al. [35, Theorem 3.2] show that for 6,; €

I'This section is adapted from the author’s publication [195].
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{0,1}, 6,2 = 1 a spatially constant penalty parameter has to be chosen such that it satisfies
Vg > Crus (5.20)

where (7, in turn satisfies the trace inequality:

(1)
0,h

/m o (un) N |2 dT gCLu/ e(un) : C:e(u)d , Vuy, €Uen ,  (521)
T 4 Q

with the unit normal IN on F((:l,)l. The constant 7, is then obtained as the maximum eigenvalue

Amax Of the associated eigenvélue problem [86]. Note that this eigenvalue problem contains all

discrete degrees of freedom associated to elements T}(Ll]z € 771(1) intersecting the contact boundary

Fgl}z To avoid solution of the large eigenvalue problem across the entire interface to compute
C',4 as proposed by Griebel and Schweitzer [86], local eigenvalue problems

Av = )\Bv | (5.22a)

with the Hessians A and B to the quadratic forms

A= / o (uy,)N||?dl (5.22b)
+ A
h,k c,h

B = /(1) e(uy) : C:e(up)dQ (5.22¢)

h,k

are solved in Hansbo [93] for every T,(ll,z € 771(1) intersecting the contact boundary. From each

(1) 1)
. . Th i T . .
eigenvalue problem, one obtains a local constant C;"* = A% as the maximum eigenvalue.

ey
Hansbo [93] suggests to choose a spatially constant penalty parameter vy, 4 > max; C’I,’;"’“.

More elaborate, Dolbow and Harari [63] show that stability can also be achieved by using piece-
wise constant penalty parameters

(1)

T

Tt orgy = G o (5.23)

satisfying (5.20) on each facet of the slave surface for given reference penalty parameters vy 3,0 >
1 independent of the mesh size and material parameters.

It is important to note that for problems of linear elasticity the eigenvalues A of (5.22) can be
determined to hold for any displacement state. This is due to the fact that A and B in (5.22b)
and (5.22c) are quadratic in u;, and therefore the Hessians A and B in (5.22a) are constant. In
problems of nonlinear elasticity, on the contrary, nonlinear strain measures are used and the stiff-
ness of the material depends on the deformation state. In high compression cases, for instance,
the material is expected to stiffen, tending to infinite stiffness for a compression to zero volume.
Hence, to keep the penalty term to the order of the stiffness, the penalty parameters are required
to increase in that case. A possible solution is to replace the eigenvalue problem (5.22) by a
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deformation dependent analog the deformation dependent matrices

A= vy ((F®N) :C: afg(:")) : <(F®N) . C: aEa(;"h)) dr ,  (5.24a)

(1)
Tk )

8E ’U,h T ) . 8E(uh)
B = /(1)( ) .C.( 7d )dQ, (5.24b)

and the nonlinear elasticity tensor C = aEaE This present form is obtained from the inequal-
ity fF“) |(FS)N|?dl’ < Ci, fQ U dS2 and linearizing the second Piola—Kirchhoff stress .S

only. Admlttedly, this is a rather heurlstlc approximation as different linearized systems may be
obtained, e.g. including the deformation gradient F' therein. However, the presented form per-
formed best in numerical examples (see Section 5.1.4.2) and will be used in the following. In the
future, a combination with arguments of polyconvexity for the strain energy function [10] could
yield more accurately tailored estimates for the penalty parameter in the nonlinear case.

A fixed one-sided weighting, i.e. w, = 1, can result in large penalty parameters from the
strategy described above, especially if the body Qél) has a much larger stiffness compared to

Q(()Z). This can also negatively affect the accuracy of the discrete solution, see e.g. Annavarapu

et al. [5]. For problems with a large contrast in material parameters, Burman and Zunino [24]
(1) (2)
introduce so-called harmonic weights. In the present case, the weight w9 between a slave-

)
and a master-sided element 7'( ) and T}E ) is defined using their respective constants C’ * obtained

from the eigenvalue problems (5 22) or (5.24) as
(2)

,
S1)_(2) C. "

i "h,j Lu
wuh’ g :ﬁ . (525)

C«hz Ch]

This leads to a weighting that is discontinuous across boundaries of both slave- and master

contact facets. Regarding the case where the master (resp. slave) side is much stiffer, than the
ey ) e e
slave (resp. master) side, or rigid in the limit case, i.e. C" g CI (resp. C'; s CIZJ)
(5.25) yields a one-sided weighting w, = 1 (resp. w, = O) Hence, the weight i is fully shifted
to the softer side. Similar to Burman and Zunino [24], the penalty parameters in the common

integration domain of T}(L ) and T}(L on 7( ,2 are then defined as

) )
Vinay = 01u Yins}o - (5.26)

Due to the discontinuity of the penalty term across both slave and master surface element edges,
stability of the Nitsche method with 0, ; € {0,1}, .2 = 1 can, even for linearized kinematics,
no longer be guaranteed for vy, 13,0 > 1, but, by numerical evidence , v, 1,0 > 1 still appears
to be sufficient.

Remark 5.1 (Nitsche methods with 0, ; = —1). The above investigations on the penalty param-
eter concerned the Nitsche methods of Chouly et al. [35] with 6,; € {0,1}, 0,2 = 1. Beside
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those, two other options are of particular interest: First, 0,1 = —1, 0,2 = 1 is shown in Chouly
etal. [35] to be stable for any v <10 > 0. Second, the so-called penalty free variant 0,,; = —1,
0u2 = 0 proposed by Burman [23] is proven stable for sufficiently low penalty parameters
Vins},0- Although the proof in [23] considers the (scalar) Signiorini problem and nonconform-
ing finite elements only, numerical experiments indicate that the result also transfers to contact
problems.

Remark 5.2 (unbiased formulation). If the weighting factor w, is defined independently of the
chosen slave and master side (as is the case for harmonic weighting), the presented algorithm
is almost unbiased, i.e. independent of the chosen slave side. The only influence of the slave
and master choice is the integration domain and, more importantly, the definition of the contact
normal n. However, this influence of the contact normal is very limited, since in closed contact
the discrete normals point in almost the same direction, ng) (V) ~ —nf) (@).

Remark 5.3 (numerical integration). Basically, two different integration strategies are common
for computational contact mechanics: The simpler one suggests to generate integration points
using standard quadrature rules for each element on the slave surface irrespective of the master-
sided mesh, whereas the more accurate integration strategy first imprints the master-sided mesh
on the slave side and then generates quadrature points on the polygonal intersection of one
slave with one master element A detailed comparison of the two strategies to Nitsche-based
contact algorithms is performed in Mlika [151]. In the case of harmonic weights w, # 1, the
more accurate integration on the intersected slave and master mesh is strongly recommended.
For classical finite elements, the integrand of the slave-side integral in (5.13) (or (5.8) in the
frictionless case) then not only contains kinks at master element edges, but also jumps, since
the traction vector t. is discontinuous across elements. Simply generating integration points
on slave elements accurately integrates the possible discontinuities resulting from the slave-
sided traction, but ignores potential discontinuities of the master sided traction. Therefore, if the
master-side traction is involved, a large integration error is introduced that even deteriorates
the convergence of Newton’s method. In isogeometric analysis, on the contrary, the higher inter-
element continuity of the basis functions yields a continuous stress approximation, however,
accurate integration is still mandatory to achieve optimal convergence orders as demonstrated
by Brivadis et al. [22] for mortar methods.

5.1.3 Application to Elasto-Plasticity

The combination of the Nitsche-type contact formulation derived above with an elasto-plastic
material introduces two major difficulties. These appear independently from the employed nu-
merical treatment of elasto-plasticity in the bulk material whether it is the classical return map-
ping algorithm or the algorithm devised in Chapter 3.

The first difficulty is related to the directional derivative of the contact traction Dt [du,] in
the weak form (5.13). As the derivative of a stress-like quantity, this directional derivative relates
to the tangent stiffness of the material. In elasto-plasticity, however, the directional derivative
Dt [duy), as material stiffness in general, is not continuous at the transition between elastic
and plastic deformation. This discontinuity can be exemplified by means of the stress-strain (or
macroscopic force-displacement) relationship depicted e.g. in Figure 3.6a. While the stress (or
force in Figure 3.6a) is a continuous function of the strain (or elongation in Figure 3.6a), its
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derivative is not. In the discrete weak form (5.13), the discontinuity of Dt.[du;] renders the
whole weak form a discontinuous function of the discrete unknown displacements. While the
employed generalized Newton scheme does converge for non-smooth yet continuous problems
[178], the same cannot be expected for a discontinuous residual. To this end, the only valid
Nitsche-based contact formulation for elasto-plastic problems is the one with 8, ; = O and 0, » =
1 in which no directional derivative of the contact traction occurs in the weak form.

The second difficulty in the combination of Nitsche’s method and elasto-plastic materials
lies in the evaluation of the contact traction ¢, = omn. In problems of elasticity, the contact
traction depends on the current displacement state only such that it can be evaluated at any given
point, e.g. an integration point on the contact surface ’yélfz For elasto-plastic materials, on the
other hand, the Cauchy stress o, and consequently the contact traction ¢., not only depends
on the current displacement state but also on internal variables of state describing the plastic
deformation history of the material. Classically, these internal variables of state are defined in the
quadrature points of the bulk material (see Section 3.1) but not on the boundary of the domain.
The numerical evaluation of the boundary integrals in (5.13), however, requires the evaluation
of the contact traction at discrete integration points on the boundary. In principle there are three
conceivable solutions to this problem:

1. The plastic deformation is tracked at all quadrature points on the potential contact surface.
This approach is only practical for w, = 1 and an element based integration, since only
then the set of surface quadrature points, on which ¢. needs to be evaluated, can be defined
in advance and the plastic deformation can be tracked there.

2. When evaluating ¢, the plastic deformation history, i.e. all internal variables of state, are
extrapolated from quadrature points in the bulk continuum to the contact boundary. With
the displacement field and internal variables of state defined on the contact boundary, the
Cauchy stress o is determined such that the plastic material constraints are met. Several
options to perform this extrapolation are imaginable, the simplest one consists of perform-
ing an extrapolation of each internal variable of state directly. A more complex option
takes into account some physical properties of the internal variables of state. Particularly,
the plastic deformation gradient Fj, usually has a determinant of one for pressure insen-
sitive yield functions, which is not preserved by simply extrapolating Gauss-point values
of Fj,. Instead, Armero and Love [8] propose to extrapolate the exponential of the plastic
deformation gradient rather than the deformation gradient itself and subsequently take the
natural logarithm of the extrapolated value. This procedure actually preserves the condi-
tion det F}, = 1. Finally, the contact traction . = o'n can be calculated.

3. The evaluation of the constitutive law and the extrapolation process described in the previ-
ous solution can also be reversed by first evaluating the (Cauchy) stress at the quadrature
points of the bulk finite element and subsequently extrapolating the quadrature point values
to the contact boundary. On the upside, this approach does not require any extrapolation
of internal variables of state as the constitutive relation is, in any case, only evaluated at
the quadrature points within an element. On the downside, the extrapolated stress state
may not comply with the plastic material constraints even though the values at the bulk
quadrature points do.
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In summary, options 2 and 3 are more generally applicable than the first variant and both option
2 and 3 introduce some error in the extrapolation of either the the internal variables of state or
the Cauchy stress. Throughout this thesis, only the third option will be considered.

5.1.4 Numerical Examples

To investigate the presented finite deformation contact discretization based on Nitsche’s method,
four numerical examples are presented in the following. In the first example, spatial convergence
orders and benefits of the proposed harmonic weighting are demonstrated for a two-dimensional,
frictionless contact problem. The second example underlines the necessity of an adaptive penalty
parameter for highly nonlinear material behavior in a three dimensional setup. Third, the enforce-
ment of frictional constraints is compared for various Nitsche methods in a two-dimensional
ironing example. Finally, an elasto-plastic problem highlights the applicability of the derived
methods to real-world applications.

5.1.4.1 Two-dimensional Frictionless Contact: Convergence Study

The first example considers the contact of a circular arc with a rectangular block and has already
been analyzed in the context of isothermal and thermomechanical mortar methods in Sections
4.1.3.2.2 and 4.2.3.2, respectively. To recall, the exact geometric setting and deformed config-
uration is illustrated in Figure 5.1. Contact occurs due to a prescribed vertical displacement of

u = 0.3 of the lower edge of the rectangle. First, both bodies Q(()l) and Q(()z) are modeled with

—

I 0y

T

u=0.3
x \ T vertical displacement
—0.0205 0.14 0.3
B=2 - | -
(a) Initial geometry, boundary conditions and (b) Deformed mesh for h = 272 and Q, finite
exemplary mesh with b = 272, elements.

Figure 5.1: Two dimensional contact of a circular arc with a rectangle — Geometric setup, exemplary mesh and
deformed configuration (reproduced from Figure 4.5 for illustration purposes).

a neo—Hookean material (3.38) with E") = 5, E? = 1 and vV = v = (.3 under plane
strain conditions is considered and spatial convergence orders for different Nitsche methods are
investigated. Due to the obvious lack of an analytical solution, the errors are calculated versus
a numerical reference obtained with Q, finite elements on an even finer mesh of h = 278 and
the mortar method of Chapter 4 with dual Lagrange multipliers. Figures 5.2 and 5.3 depict the
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Figure 5.2: Two dimensional contact of a circular arc with a rectangle — Spatial convergence of the displacements
of the slave and master body in the H' semi-norm using linear order Q; finite elements and different
Nitsche methods.

convergence behavior of the discrete displacement field obtained for first and second order finite
elements, mesh sizes of h € {277,276 ... 27!} and different Nitsche methods. Specifically,
the four distinct methods devised from (5.8) are analyzed:

(a) The symmetric Nitsche method of Chouly and Hild [34], Chouly et al. [35] is obtained by
setting 0,1 = 1 and 0, » = 1. This method requires a sufficiently large penalty parameter,
which is ensured by setting v, o = 2.

(b) The non-symmetric Nitsche method with fewer terms analyzed in [35] is obtained by
setting 0,1 = 0 and 0, = 1. This variant as well requires a sufficiently large penalty
parameter, which is ensured by setting 7, o = 2.

(c) The skew-symmetric variant of [35] obtained by setting 6, ; = —1 and 6, » = 1 is, in the
linearized case, stable for any ~, o > 0. To demonstrate this, a small value of 7, o = 0.02
is chosen.
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(d) The penalty free variant of Burman [23] emanates from (5.8) by setting §,; = —1 and
2 = 0. This variant requires a sufficiently small value of 7, here set to vy, o = 0.02.
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Figure 5.3: Two dimensional contact of a circular arc with a rectangle — Spatial convergence of the displacements of
the slave and master body in the H' semi-norm using quadratic Q, finite elements and different Nitsche
methods.

The linear finite elements exhibit optimal convergence of order O(h) in Figure 5.2 for all meth-
ods. Also the absolute error values for all methods are virtually identical. The quadratic finite
elements all converge with order O(h*?) in Figure 5.3, which can be considered optimal for
contact problems due to the reduced regularity of the solution [35, 232]. Comparing the var-
ious methods, some variation in the error appears for coarse meshes. In addition, the variants
with 6, ; = —1 in Figures 5.3c and 5.3d yield marginally elevated absolute error values in the
asymptotic region.

Next, the influence of the relative stiffness of the two contacting bodies is analyzed. To this
end, Young’s modulus of the master body Q(()Z) is fixed at £ = 1 and the stiffness of the slave
body is given values of E") € {1,5,20,100}. The symmetric Nitsche method Oug = Ouo =1
and a Q; finite element mesh of size h = 272 is used. The lines in Figure 5.4 indicate the exper-
imentally determined minimal penalty parameter 7, to obtain a converged solution depending
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Figure 5.4: Two dimensional contact of a circular arc with a rectangle — Minimal required penalty parameter for
Q finite elements and h = 273 depending on the weighting w, for different material pairings. Lines
indicate experimentally determined lower bounds and dots the estimate of Section 5.1.2 with 7, o = 1.

on the weighting factor w,. This minimum value to obtain convergence in the nonlinear solution
procedure is a good indicator for the stability limit of the spatial discretization as unstable meth-
ods tend to diverge in nonlinear problems. Conversely, low penalty parameters are in general
favorable since the penalty term is switched on and off depending on active or inactive contact.
As a consequence, the nonlinearity of the discrete problem is reduced by low penalty parameters
and the robustness of the nonlinear solution procedure is increased. Obviously, there exists a
weighting w, min at which the required penalty parameter takes a minimum value; location and
value of this minimum depends on the material pairing. For equal stiffnesses of the two bodies

% = 1), varying the w, has only a limited effect on the required penalty parameter. Although
both bodies have equal stiffness, the minimal penalty parameter is not obtained for a symmetric
weight w, = 0.5, since the location of the minimum not only depends on the stiffness but also the
mesh size ratio. Hence, the minimum of the penalty parameter for equally stiff bodies is shifted
towards the coarser mesh, that is Q(()Q) in this case and therefore wy min < 0.5. For problems with
large material contrasts, choosing an appropriate weight w, can yield a significant reduction in
the necessary penalty parameter. In the case of a stiffness ratio % = 100 depicted in Figure
5.4, the minimal penalty parameter is obtained by shifting the weight almost entirely to the softer
side 982), 1.e. Wy min ~ 0. In comparison to a completely one-sided weighting or a fixed weight
of wy, = 0.5 as used in Chouly et al. [36], Mlika et al. [152], the required penalty parameter

reduces by approximately 99% and 95%, respectively.

For practical applications, the experimental determination of a sufficient penalty parameter by
trial and error is infeasible and an automatically determined value is required. Such an automatic
estimation of the penalty parameter has been presented in Section 5.1.2 based on element-wise
generalized eigenvalue problems. The thereby obtained average weighting and penalty parameter

- fvé,lﬁ wy dy o fvﬁfﬁ Yu dy

_ A= er (5.27)
Loy d oy dv

Wy
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with a reference value of 7, o = 1 are depicted as dots in Figure 5.4 for the different material
pairings. Note that due to the nonlinear material behavior and the adaption of the generalized
eigenvalue problem, w, and v, are not constant across the interface; accordingly only average
values can be depicted. The harmonic weighting shifts w, automatically to the softer side and
only a slight increase in the necessary penalty term appears in Figure 5.4b for increasing stiffness
of Qél). Especially in cases of high material contrasts, a significant reduction in the required
penalty parameter can be achieved. It has to be emphasized that this shift in the weighting factor
and the adaptation of the penalty parameter depending on the stiffness ratio happens without
any user interference. The only parameter determining -, is the reference value v, o, which
can easily be set in low single digits without risking an unstable discretization, even for the
symmetric Nitsche method.

5.1.4.2 High Compression Test: Adaptive Penalty Scaling

To assess the adaptive estimate of the penalty by the generalized eigenvalue problem (5.24) with
deformation dependent matrices, a problem of high compression is investigated. A unit cube is
compressed by a rigid spherical shell of unit radius as illustrated in Figure 5.5a. The block is

displacement
0 0.5 1
o -

(a) Initial configuration. (b) 98% compression.

Figure 5.5: High Compression Test — Initial configuration and deformed mesh at 98% compression.

modeled with a neo-Hookean material (3.38) with Young’s modulus £ = 1 and Poisson’s ratio
v = 0.3. For a vertical displacement of & = 1 prescribed on the spherical shell, the material in the
center of the cube would be compressed to zero volume. As such a compression to zero volume
would require infinite (contact) force F., thus the effective stiffness of the cube tends to infinity
as a compression of 100% is approached. Since in Nitsche’s method the penalty parameter -,
needs to scale with both the mesh size and the material stiffness, which exhibits significant
changes in this example, an adaptive scaling of the penalty parameter is quintessential. Figure
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contact stiffness k.
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Figure 5.6: High Compression Test — Evolution of system stiffness k. and average penalty parameters v, (Yn,0 = 2)
obtained by adaptive scaling over the compression of the block. Additional vertical lines indicate the
maximum compression attainable using the linear estimate of the penalty parameter only.

5.6 depicts the evolution of the average penalty parameter 7, (see (5.27)) employed during the
compression of the block with a reference penalty parameter of v, o = 2. As a reference, also the
evolution of the overall system stiffness k. = %ZC is plotted. Both quantities show a very similar
behavior and the adaptive penalty parameter closely follows the highly nonlinear stiffening effect
at high compression. The additional gray vertical lines indicate the maximum compression upto
which, for the symmetric Nitsche method, convergence of the nonlinear solution scheme can
be achieved without nonlinear adaptation of the penalty parameter for different values of v, o.
Even for a large reference penalty parameter v, o = 100, no solution can be obtained for the
case of high compression > 90%. With the nonlinear estimate of Section 5.1.2, on the other
hand, a reference penalty parameter of ~,, = 2 is sufficient to obtain a stable solution for
a compression up to 98%. As for the harmonic weighting analyzed in the previous section, it
should be emphasized that also the adaptation of the penalty parameter does not require any user

interference, but is obtained based on element-wise generalized eigenvalue problems (5.24) only.

5.1.4.3 Frictional Ironing

In this numerical example, frictional sliding and the stick-slip transition is studied for the differ-
ent Nitsche-based methods derived in this chapter. A typical two-dimensional ironing example
is investigated using an indentor Qél) with a circular lower edge which is pressed into a rect-
angular foundation Q(()z) and is dragged in its tangential direction. The exact geometric setting
and the coarser of two investigated Q; meshes is depicted in Figure 5.7a; the finer of the two
meshes is obtained by one level of h-refinement. Both bodies are modeled with a neo-Hookean
material (3.38) under plane strain conditions with Young’s moduli £) = 10 and E® = 1
and Poisson’s ratios v) = 1(2) = (.32, respectively. At the contact interface, Coulomb’s law
of friction is applied with a friction coefficient of ;1 = 0.3. Within the first 20 time steps, the
top edge of the indentor performs a prescribed vertical displacement of, in total, 0.5 and is then
moved a distance of 2.5 horizontally within 100 equidistant steps. Three characteristic deforma-
tion stages are illustrated in Figures 5.7b - 5.7d. Four different methods are compared, namely
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Figure 5.7: Frictional ironing — Geometric setup and representative deformation stages.

the symmetric method (6,1 = 6,2 = 1) of Chouly et al. [35] with a sufficiently large penalty
parameter y(, 13,0 = 2, the skew-symmetric variant (6,,; = —1, 0,2 = 1) of [35] with either the
same penalty parameter as the symmetric variant or a low penalty parameter of vy, 3,0 = 0.02
and finally the penalty-free variant (6,; = —1, 6,2 = 0) based on Burman ez al. [25] with a
sufficiently low penalty parameter of -y, 1},0 = 0.02. Figure 5.8 depicts the vertical and horizon-
tal contact forces, which approximately correspond to the normal and tangential components,
respectively. Focusing on the vertical contact force on the coarse mesh (Figure 5.8a) first, slight
oscillations can be observed, originating in the coarseness of the mesh and therefore rather poor
smoothness of the boundary representation. For the variants with low penalty parameters, the
weak form puts less emphasis on the exact, point-wise satisfaction of the kinematic constraint
gn > 0 and hence exhibit less oscillations. For the penalty-free variant, hardly any oscillations
can be observed, even on the coarse mesh. In horizontal direction, the variants with a penalty pa-
rameter of vy, 13,0 = 2 accurately capture frictional sliding with a ratio between horizontal and
vertical contact force of 0.304 (computed at time step 70, see Figure 5.7c¢) which is almost ex-
actly the set friction coefficient of 1+ = 0.3. For low penalty parameters, the tangential constraint
is not enforced with sufficient accuracy, resulting in the horizontal contact force to be clearly
underestimated. For the skew-symmetric variant of [35], the apparent coefficient of friction is
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Figure 5.8: Frictional ironing — Vertical (solid lines) and horizontal (dashed lines) contact forces for different meshes
and methods.

only 0.221 and, even more significant, merely 0.165 for the penalty-free method. The under-
estimation of friction forces is, however, only a noticeable effect on relatively coarse meshes,
as shown by the results after performing one step of A-refinement reported in Figure 5.8b. In
vertical direction, the amplitude of the oscillations of the contact force has diminished notice-
ably while their frequency follows the mesh size and is therefore doubled. In tangential direction
the accuracy of frictional forces increased also for the variants with low penalty parameters.
Only the skew-symmetric variant with 6, ; = —1, 6,2 = 1 in combination with a low penalty
parameter of v, 1,0 = 0.02 now slightly overestimates frictional forces, yielding a ratio of hor-
izontal to vertical contact force of 0.342 whereas all other methods give values in the range of
[0.310,0.317]. It should be noted that, due to nonlinear geometric effects, the investigated ra-
tio of horizontal to vertical contact force does not converge to to the coefficient of friction .
The stick-slip transition in step 35, marked by a kink in the evolution of the horizontal contact
force, is only well captured for sufficiently large penalty parameters, even on the finer mesh.
Otherwise, the transition is “smeared” over several time steps. Nevertheless, also for low penalty
parameters, the stick-slip transition becomes sharper for more refined meshes. In summary, this
example demonstrates, that even if the penalty term is not necessary for stability for all meth-
ods, it still contributes to an accurate constraint enforcement on coarse meshes, especially in
tangential direction.

5.1.4.4 Squeezed Elasto-Plastic Tube

Finally, a coupled elasto-plastic frictional contact problem is considered. The same setup has
already been analyzed in the context of thermomechanical mortar contact formulations in Sec-
tion 4.2.3.5. A metal tube (length 40 cm, inner radius 4 cm, outer radius 5 cm) is deformed by
two rigid cylindrical tools (outer radius 5 cm), see Figure 5.9. The tools are subjected to a time
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Figure 5.9: Squeezed elasto-plastic tube — Initial configuration and representative deformed states colored by the
accumulated plastic strain ;.
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Figure 5.10: Squeezed elasto-plastic tube — Total contact force for dual mortar and Nitsche-based contact formula-
tions.

dependent prescribed displacement of u(t) = (1 — cos(s57)) - 1.75 cm applied in time steps
At = 0.02s. The elastic material response of the tube is modeled with a neo-Hookean material
(3.38) with Young’s modulus £ = 206.9 GPa and Poisson’s ratio v = 0.29. Further, von Mises
plasticity with an initial yield stress of yy = 0.45 GPa and the nonlinear isotropic hardening
potential (3.39) with H; = 0.12924 GPa, y,, = 0.715 GPa and 6 = 16.93 is assumed. Between
the tube and the tools, frictional contact with a coefficient of friction ¢ = 0.25 occurs. Making
use of the apparent symmetry of the problem, only one eighth of the tube is meshed with 18000
elements. To avoid volumetric locking due to the volume preserving plastic flow, first order F-
bar elements as discussed in Section 2.8.1.1 are employed and the plastic material constraints
are imposed by the algorithm devised in Section 3. As discussed in Section 5.1.3, the only viable
Nitsche method for elasto-plastic problems is the simple non-symmetric one with 6, ; = 0 and
0,2 = 1 which, in this example, has been used with a reference penalty parameter v, ;0 = 1.
Figure 5.10 compares the total contact force obtained with Nitsche’s method with a reference so-
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lution using the dual mortar method of Chapter 4. Both methods yield virtually identical results,
hence it can be concluded that the extrapolation of stresses for elasto-plastic materials intro-
duced in Section 5.1.3 represents a feasible approach to incorporate inelastic material behavior
in Nitsche-type algorithms.

5.2 Nitsche Methods for Thermomechanical Contact
Problems!

This section extends the isothermal Nitsche-based contact algorithm introduced in the previous
section to coupled thermomechanics. As far as the weak form of the mechanical problem (5.13)
is concerned, two minor modifications have to be accounted for as compared to the isothermal
case. For one, the contact traction ., (and its directional derivative Dt. ;[du;]) are now temper-
ature dependent. In the simplest case, thermal expansion is modeled via (3.47) or, more complex,
coupled thermo-elasto-plasticity is included with potentially temperature dependent plastic ma-
terial parameters as introduced in Section 3.4.3. The second temperature dependency in (5.13)
stems from a temperature dependent coefficient of friction, in accordance with (2.125). Both ad-
ditional temperature dependencies do not alter the characteristic of Nitsche’s method for contact
problems (5.13), and are therefore not discussed in detail here. It should, however, be noted that
they require consistent linearization if, as is the case in this thesis, the coupled thermomechanical
problem is to be solved within a monolithic Newton scheme (see Section 2.8.3).

Considering the thermal sub-problem, the point of origin for the subsequently devised meth-
ods is again the weak forms introduced in Section 2.7, in particular the weak form of the heat
conduction equation (2.133) including contact heat fluxes (2.129). The two following sections
introduce two different methods to consistently introduce these thermal heat fluxes to the weak
form: First, a strong substitution method is discussed which, at first glance, captivates with its
simplicity. However, it yields an ill-conditioned problem for large values of the thermal contact
conductivity .. This drawback can be overcome by using the second option, a Nitsche-type for-
mulation, which reduces to a classical Nitsche method for interface-continuity in the limit case
Be — o0.

5.2.1 A Substitution Method for the Thermal Interface Condition

The probably most straight-forward way to account for contact heat conduction is to simply
substitute the interface heat fluxes qéi) in (2.133) (or its discrete counterpart, to be precise) by
the expressions (2.129a) and (2.129b), respectively. This approach is known as the substitution
method. Since the normal contact constraint is introduced via (5.4) (or (5.6)), the effective heat

conductivity
Be = —=Be [{pu}u, + Mmon] (5.28)

is introduced as a consistent substitute for 3.|p,|. Similarly, the frictional power

Pen = PB(ﬂ) ({tr,h}wu + ’YTA'U'T,h) * Ut h (5.29)

I'This section is adapted from the author’s publication [195].
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obtained utilizing relation (5.11) serves as a replacement for t. - v, in (2.129) in the continuous
problem. With these surrogates, the heat fluxes qu) can be substituted in a discretized form of

(2.133) yielding the weak form: Find 7}, € Uy 3, such that

Wet [ (BTi] = 6Pen) o1
e (5.30)

+ (—BCHTh]] — (1 — 5C)Pc7h) (5T§LQ) e} Xt,h) d’)/ =0 V(STh € VT7h .

There is, however, a drawback to this method: The case of a very high thermal contact conduc-
tivity, i.e. 3, — 00, is no longer permitted, since for increasing (3, the jump terms in (5.30) will
increase linearly with 3., dominating the weak form, and finally yield an ill-conditioned system.

5.2.2 Nitsche’s Method for the Thermal Interface Condition

To overcome this drawback of the substitution method and to allow the case of 3. — oo, a
Nitsche method for general boundary conditions has been introduced in Juntunen and Stenberg
[118] and extended to interface conditions in Annavarapu et al. [5] with prescribed jumps in
the primal variable (i.e. the temperature in the present case) and its derivative. This method is
now applied to the Robin-type interface condition in equation (2.129). As its derivation does
not yield any deep insight, only the resulting weak form of the thermal problem including the
Nitsche terms is presented here. In addition, Appendix B briefly demonstrates that this weak
form is actually consistent with the continuous problem. The weak form reads: Find 7}, € Ut 4,
such that

Be

v [ mipTa

30 Be + 1

1
- (9 3 ¢ 1) c (ST d
T/Wilﬁ ER {ge.n( h>}wT {qen( h)}wT ’Y

#00 [ g Bl Tk, 5:31)

/ Pos (8670 4+ (1= ) OT( o x00) )y

“Jum

1
+ 0 / (1 — 0c — wT)Pgh {chh((STh)}w d’y =0 VT, € VT,h .
(1) ﬂc + T T

1 — 0c — wr)Pep[0T] dy

Therein, qéiZL(Th) = -0 F(l) —0 -V, T n® represents the surface (Cauchy-) heat flux computed
from the dlscrete temperature ﬁeld accordlng to Fourier’s law (2.48a) and Stokes’ heat flux the-
orem (2.29); q.. h(éTh) is defined analogously. Furthermore, wr € [0, 1] is a weighting between
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the slave and master sided heat flux and ~yr is a penalty parameter of order O(";l—o) The determi-
nation of wr and 1 will be discussed in detail in Section 5.2.2.2. Finally, 1 € {—1,0, 1} allows
the use of different variants of Nitsche’s method, similar to the structural formulation in (5.13).
For frictionless contact of one body Qél) with a rigid surface of constant temperature, and when
choosing wr = 1 and 1 = 1, (5.31) reduces to the method originally presented by Juntunen and
Stenberg [118]. Furthermore, setting wr = 1 — J. and 1 = 1 yields the method presented by
Annavarapu et al. [5]. Depending on the parameter f1 different variants are obtained similar to
the structural problem: 61 = 1 gives a symmetric method, 7 = 0 has fewer terms and 1 = —1
yields a coercive formulation for any vt > 0, whereas the other variants have a lower bound for
~r (see Winter et al. [231] for a proof of the same method applied to boundary conditions in the
Oseen equation). The simple substitution approach (5.30) is recovered in the limit yp — oo.

5.2.2.1 Limit Cases of Nitsche’s Method

In contrast to the substitution method (5.30), the Nitsche method (5.31) also allows both limit
cases . = 0 and . — o0, i.e. an adiabatic contact interface and perfect heat conduction across
the contact interface. To illustrate this, the resulting weak forms of these limit cases are discussed
in the following.

Adiabatic contact interface. For an adiabatic contact interface, 5. = 0, no heat flux may
occur across the contact interface but only source terms appear due to frictional dissipation.
Inserting 5. = 0 in (5.31) reduces to

1
Wi — Ox / L @}, {aen (6T}, dy
7,

(1)
c,h ’YT

- / ) Pen (00T1) + (1= 0) 0T 0 x0)) dy (5.32)

c,h

1
+ HT/ —(1 — (5C — wT)PQh {qc,h(dTh)}wT d’}/ =0 \V/(;Th € VT,h .
7,

In comparison to the substitution method, which is recovered for yr — oo (i.e. dropping the fist
and third integral), an additional symmetric penalty-like term (first integral in (5.32)) remains
along with the frictional heat source in the third line of (5.32). For 1 = —1, this penalty term
has a positive sign and therefore stability of the method is retained for vy > 0. However, low
values of yp — 0 results in an ill-conditioned system, since the first integral in (5.32) increases.
For 1 = 1, on the other hand, the negative sign of the penalty term requires ~yr to be sufficiently
large to ensure stability.

Perfect contact heat conduction. The other limit case of 5. — oo corresponds to perfect
heat conduction, i.e. the contacting surfaces have equal temperature at any point of closed con-
tact. To illustrate the resulting method, the contact boundary is split into its active and inactive

part 7'5’1,2’0 and fyél}z . according to (5.14), such that

. 0 on fyél)
B = { ({ﬁ* . (5.33)
o0 0N Y0
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The weak form (5.31) then reduces to

1
OWrn — 9T/ — {qC,h(Th)}wT {qC,h(5Th>}wT dy
72,1}2,4- T

"‘/(1) {QC,h(Th)}wT [6T4] dvy

Ye,n,0

+ [ wIGIBTI
Ve,h,0 (534)
or [ B HaaGTIY, &
7

c,h,0

- / o Pen (6657’53 +(1—6.) (0T oth)) dy
7,

c,h,0

_ /(1) (1 — 0p — (,UT)'PC,}L[[(ST}L]] d’y =0 VT, € VT,h .
Ye,h,0

In the inactive contact zone (first integral in (5.34)), an additional penalty term, identical to the
one in the adiabatic case (5.32), remains enforcing the homogeneous Neumann boundary con-
dition. In the active contact zone, the second to fourth line in (5.34) enforce continuity of the
temperature field across the contact interface via the classical symmetric (AT = 1) or skew-
symmetric (6t = —1) Nitsche method. Finally, the fifth and sixth line act as source terms in-
troducing frictional heating. Although the thermomechanical coupling and nonlinear kinematics
preclude a thorough mathematical analysis, the typical stability results for Nitsche’s method ap-
ply if the mechanical state was fixed. This implies that the symmetric variant 6 = 1 is stable
for a sufficiently large penalty parameter yr, whereas the skew-symmetric variant = —1 is
stable for any 1 > 0.

5.2.2.2 Penalty Parameter Estimates and Harmonic Weights'

The required penalty parameter ~r to ensure stability of the symmetric Nitsche method 6 = 1
in (5.31) can, in analogy to the structural problem discussed in Section 5.1.2, be estimated by
solving local generalized eigenvalue problems. To start with, a slave sided weighting of the
contact heat flux, wp = 1, is considered. Under some simplifying assumptions such as Fourier’s
law of heat conduction (2.48), the absence of thermo-strucutural coupling and closed contact on
the entire potential contact boundary 751,2 stability of the approximation (5.31) can be guaranteed
if y7 > 0 and O = —1 [231, Lemma 5.2] and, according to [118, Theorem 3.2], for 61 # —1

with v > Cp 1 where C 1 satisfies the trace inequality

/ o gV (@) - mf? dy < Cia / qW(Th) - VoL dQ , VI, €lrn , (539
Wc,h

(1)
Qh

or equivalently in reference configuration

/rm 1QM(T;,) - N dI’ < Cyr /Qm QW(Ty) - VxTpdQ , VI, €Uy . (5.36)
c,h 0,h

I'This section is adapted from the author’s publication [195].
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Akin to the trace estimate of the structural problem in Section 5.1.2, local generalized eigenvalue
problems

Av = \Bv (5.37a)
with the Hessians A and B to
A= [ 1@ N (5:370)
+) A
h, c,h
B = QYT - VxT,dQ | (5.37¢)
)
e L+
yield constants C}71" = Amax for each element on the slave contact surface. Note that for

Fourier’s law of heat conduction (2.48), @ is linear in the temperatures but nonlinear in the
(1)
structural displacements. Consequently, the constants C’IT " depend on the deformation state but

not on the temperature. A sufficient penalty parameter to ensure stability for 7 # —1 is given
by a piece-wise constant function

e

h,k
7T|T§1;10Filf)l =Cit Y10 5 (5.38)

with a reference value v > 1.

Following up on the discussions of Section 5.1.2, (5.38) yields large penalty parameters in
cases where the thermal conductivity of the slave side is much larger than that on the master
side, 1.e. k:(()l) > k(()z). To reduce the penalty parameter in such cases, harmonic weights are again
introduced based on Burman and Zunino [24] and applied in a similar fashion as in Section 5.1.2.
On the common integration domain of a slave sided element T}(L}i) and a master sided element T(?,

the weighting is defined according to

T,(f?

M _(2) C.

Th,iThgj _ LT
W - T o @ 0 (5.39)

T

h,i Th,j
CLT + CI,T

and the corresponding penalty parameter by
el _ [ et
Yt = {CLT’ } Y10 - (5.40)
wT

In contrast to Annavarapu et al. [5], who set wp = 1—4., the proposed harmonic weighting (5.39)
is determined independently of the interface parameter ¢, distributing the frictional heating to the
two sides. Since o, is a physical parameter, it cannot be set freely as proposed in [5], where d. is
adjusted to reduce the necessary penalty parameter. Instead, the weighting (5.39) is solely based
on element shapes and the thermal conductivity. Additional terms are added in the sixth and
seventh line of (5.31) as compared to [5] to allow w # 1 — 4.
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5.2.3 Numerical Examples

In this section, numerical examples of increasing complexity are presented. Starting with a ther-
momechanical patch test demonstrating the consistency of the method in Section 5.2.3.1, spatial
convergence orders for thermo-elastic frictionless contact problems are investigated in 5.2.3.2.
Next, effects of frictional heating are demonstrated in Section 5.2.3.3 and finally a fully coupled
thermo-elasto-plastic problem is presented in Section 5.2.3.4. The distinctive features of stability
and potential ill-conditioning of the presented methods will be highlighted.

5.2.3.1 Thermomechanical Contact Patch Test

As a first example, consistency of the presented methods is demonstrated by means of a contact
patch test with heat conduction. The presented setting has already been analyzed using a node-
to-segment penalty contact formulation in Oancea and Laursen [159], Wriggers and Miehe [236]
and using a mortar method with dual Lagrange multipliers in Section 4.2.3.1. As illustrated in
Figure 5.11a, two stacked unit cubes are simulated, where the lower surface of the lower cube is
fixed in space with a uniform temperature of 7" = 20 and the upper surface of the upper cube is
fixed at 7" = 40. The two blocks are compressed until a final value of the contact pressure of p, =
30 is reached. Both cubes are modeled with a Saint-Venant—Kirchhoff material model with a
Young’s modulus of £/ = 4000 and a Poisson’s ratio v = 0 as well as a heat conductivity of ky =
52. Frictionless contact with a heat conductivity of 5. = 5 is assumed. The final temperature
distribution is depicted in Figure 5.11b, which perfectly reproduces the analytical solution as
shown for the temperatures of the contact surfaces in Figure 5.11c. The analytical solution is

40

temperature 7'
(O8]
o
T
|

— A — 752) - == analyt.

20
temperature temperature 0 10 20 30
20- 30 _4:0 20- 30 -40 contact pressure p,
(@ pn =0 (b) pr, = 30 (c) interface temperatures over py,

Figure 5.11: Thermomechanical contact patch test — Temperature distribution at different contact pressure and com-
parison with analytical solution.

a linear displacement field and a piece-wise linear temperature field with a jump at the contact
interface [159, 236]. Since this solution can be represented exactly by a discretization with first
order hexahedral elements, any consistent method will reproduce this analytical solution up to
machine precision. This is also the case for all combinations of the methods presented in this
chapter, i.e. for any choice of the slave and master side as well as any 7, 6,1, 6,2 and w, in
(5.8), in combination with either the substitution method (5.30) or Nitsche’s method (5.31) with
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5.2 Nitsche Methods for Thermomechanical Contact Problems

varying vy, 61 and wr. For this setup, the methods are completely unbiased if harmonic weights
are used, since the discrete normals point exactly in opposite directions, i.e. n/) = —n(®. Asa
result, the final system matrix is identical for either choice of the slave and master side. It is worth
mentioning that the analytical solution is only reproduced exactly, if the numerical integration
at the contact interface is exact. This in particular includes integration on the intersected slave-
and master-side mesh as discussed in Remark 5.3. If integration points are defined on slave
elements only, an integration error is introduced. The effect of this integration error on the contact
patch test performance of an isothermal finite deformation Nitsche method is analyzed in Mlika
et al. [152]. Due to the simplicity of the solution, even unstable approximations with penalty
parameters that would otherwise be too low yield the correct results.

5.2.3.2 Convergence Study of Frictionless Thermo-Elastic Contact

The convergence behavior of the presented methods with mesh refinement is studied using the
2-dimensional, plane strain example already used in this thesis for the isothermal mortar method
in Section 4.1.3.2.2 and the thermomechanical mortar method in Section 4.2.3.2. A rectangular
block 982) is pressed against a circular arc Qél) by a prescribed vertical displacement of © =
0.3. Moreover, a prescribed temperature difference between the lower end of the block and the
upper ends of the arc yields an inhomogeneous temperature distribution. The exact geometry and
boundary conditions are given in Figure 5.12a. The elastic material behavior of both bodies is

—

I o)

T
=03

N x temperature
. 0 0.5 1
B =2 T=0 - | —
(a) Initial geometry, boundary conditions and (b) Deformed mesh and temperature distribution
exemplary mesh with b = 272, for b = 272 and Q; finite elements.

Figure 5.12: Two dimensional contact of a circular arc with a rectangle — Geometric setup, exemplary mesh and
deformed configuration. (Reproduced from Figure 4.28 for illustrative purposes.)

modeled by the neo-Hookean material law (3.38) and thermal expansion is included by means of
(3.47). The material parameters are chosen as Young’s moduli £ = 5 and E®® = 1, Poisson’s
ratio v = 12 = (.2, thermal conductivity k:(()l) = land k((]2) = 9, and the coefficient of thermal
expansion a(Tl ) = Oz(T2 ) = 0.01. Note that for those material parameters, the harmonic weighting
presented in Sections 5.1.2 and 5.2.2.2 yields different weightings for the structural and thermal
part. Here, the weighting of the contact traction is shifted to the softer side, i.e. Q(Q), whereas the

weighting of the contact heat flux is shifted to the side with lower thermal conductivity, i.e. Q(()l).
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Figure 5.13: Convergence study of frictionless thermo-elastic contact — Convergence behavior of H! semi-norms of
displacements and temperatures on the two sub-domains using QQ; finite elements and different variants
of Nitsche’s method for mechanical and thermal interface constraints. Dashed lines are of order O(h).

At the contact interface, frictionless contact is assumed and the heat transfer parameter is set to

B = 103.
In the following, the convergence behavior of the presented methods is investigated using lin-
ear Q; and quadratic Q, finite elements of mesh sizes h € {277,276 ... 271}, Since there is

no analytical solution to this problem, the error norms are calculated with respect to a reference
solution s and T}.; that has been calculated with a very fine mesh (h = 27%), quadratic fi-
nite elements and the Lagrange multiplier method using dual basis functions for the Lagrange
multiplier as introduced in Section 4.2. Owing to the symmetry of the problem, only one half is
discretized with appropriate symmetry conditions and the result in Figure 5.12b is reflected for
visualization purposes. Different combinations of the proposed methods are analyzed, namely

(a) the symmetric Nitsche method for the structural problem (6,1 = 0,2 = 1, Yo = 2) in
combination with the substitution method for the contact heat flux (5.30),
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Figure 5.14: Convergence study of frictionless thermo-elastic contact — Convergence behavior of H' semi-norms
of displacements and temperatures on the two sub-domains using Qo finite elements and different
variants of Nitsche’s method for mechanical and thermal interface constraints. Dashed lines are of
order O(h™/?).

(b) the symmetric Nitsche method for both the structural and thermal problem (0,,; = 0,2 =
1, Yo =2and 0y = 1, yp o = 2),

(c) the non-symmetric Nitsche method for both the structural and thermal problem (6, ; = 0,
9u72 = 1, Yn,0 = 2 and GT = O, YT = 2) and

(d) the skew-symmetric Nitsche method with a small penalty parameter for both the structural
and thermal problem (6,1 = —1, 0,2 = 1, oo = 0.02 and Oy = —1, yp o = 0.02).

Of course, other combinations are possible; in particular it is not necessary to use the same
parameters for the structural and thermal interface problems. Figures 5.13 and 5.14 show the
convergence behavior of the H' semi-norms of displacements and temperatures on the two sub-
domains for first and second order finite elements, respectively, and dashed lines indicate the
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5 Nitsche Methods for Computational Contact Mechanics

expected orders. All combinations in Figure 5.13 show the optimal convergence order of O(h)
with only slight variations between the different methods. For quadratic (Q; finite elements in
Figure 5.14, convergence of order O(h”?) is observed for all variables. As usual in computa-
tional contact mechanics, the convergence order of the discrete displacement field is, for second
order finite elements and uniform refinement, no longer limited by the polynomial order of the
finite element approximation but rather by the smoothness of the solution [35, 232]. Under these
circumstances, the obtained order O(h*?) in the H' semi-norm can be considered optimal for
the displacement approximation uy,. The reduced converge order of the temperature solution 7},
is, most likely, a secondary effect of the limited convergence of u; as the approximation of the
contact pressure is derived from u;, and enters the thermal interface condition via (2.129).
Next, the possible ill-conditioning arising from the substitution method (5.30) and Nitsche’s
method (5.31) with high or low penalty parameters is investigated. Exemplarily, the mesh size
h = 273 with Q; elements is used with fixed parameters for the structural problem Ou1 =
0.2 = 1 and 7,9 = 2. Both the methods applied to enforce the contact heat conduction and
the contact heat conductivity parameter . are varied. Note that by altering (3. the solution of
the problem is altered: In the limit case . — 0 there is no heat flux across the interface, such
that le) and QéQ) will have homogeneous temperatures of 1 and 0, respectively. Conversely, for

107 I I I I I I T
—— substitution -0y = —1,v90 =2
108 | by =1, 1,0 =2 ——0y = —1, 790 =2-1072 i
=0y =1,790=2-10> 20y = —1,990=2-10"*
21077%9921,7§,0:2~104 |
£
=
§ 100 1 1
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Q
104 .
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10-¢ 1074 1072 10° 10? 10 10° 108
interface heat conductivity [,

Figure 5.15: Convergence study of frictionless thermo-elastic contact — Condition numbers over . for 0,1 =
0,2 = 1,0 = 2 and different methods for the thermal interface condition.

B. — oo both sides of the contact interface are forced to have the same temperature as there
1s no interface resistance to heat conduction. Figure 5.15 illustrates the condition number of the
fully coupled tangent matrix in (2.167) including all Nitsche coupling terms of (5.8) and (5.30)
or (5.31), respectively, at the final converged state for different methods for the thermal interface
condition. First, one observes the expected linear increase in the condition number with . for the
substitution method (5.30) as the absolute value of the boundary integral term 3.[T},] increases,
while the other integrals (5.30) remain unchanged and therefore 3.[T},] dominates the condition
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5.2 Nitsche Methods for Thermomechanical Contact Problems

number starting at 5. = 350. This value, however, depends on the mesh and material parameters.
Next, the influence of high penalty parameters is investigated by using the symmetric variant
Ot = 1, see the red lines in Figure 5.15. The condition number remains constant for lower
values of (3., while higher values yield an increase of the condition number. This increase is
expected for stabilized methods with increasing penalty parameter and in the present case only
appears for larger values of f., since the penalty term (i.e. the integral in the second line of
(5.31)) vanishes for low values of f.. Still, in contrast to the substitution method, the condition
number remains bounded for 5. — oo. Finally, the case of low penalty parameters is adressed
using 01 = —1, since stability for low penalty parameters can only be ensured using the skew-
symmetric variant of (5.31), see Winter et al. [231]. As expected, low values of (3. results in an
increased condition number, as the integral in the third line of (5.31) increases for low values of

yr (Hm Y/ (Be—yr) = —/71).
Bc—0

5.2.3.3 Frictional Heating of a Rotating Ring

To assess the effect of frictional heating, the example of a rotating ring introduced in Section
4.2.3.3 is revisited. To recall, a block Q(()l) of dimension 100 x 25 is pressed onto a rotating ring

ng) (outer radius 100, inner radius 75, angular velocity w) with a resultant force F;, = 150.
The block and ring are modeled with a Saint-Venant—Kirchhoff material with Young’s moduli

temperature temperature temperature
425 426 427 413 419 424 401 413 425
(a)w=10"1. (b) w = 10°. () w = 10,

Figure 5.16: Frictional heating of a rotating ring — Temperature distribution after three full rotation at different
angular frequencies. An arrow indicates the direction of rotation.

Fhiock = 2 and Eiine = 10 and Poisson’s ratios vyiock = ing = 0.25 under plane strain conditions
with a thickness of 10. Furthermore, both bodies have a heat capacity of ¢, = 10~ and thermal
conductivity of ky = 6. At the contact interface, a temperature dependent coefficient of friction
according to (2.125) with o = 0.2, Ty = 293 and Ty = 493 is applied. The heat transfer
parameters at the interface are chosen as 3. = d. = 0, thus excluding any heat conduction across
the interface and restricting frictional heating to the ring only such that an analytical solution
(4.65) can be obtained in the limit case of w — 0. Three full rotations at different angular
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Figure 5.17: Frictional heating of a rotating ring — Change of thermal energy for different angular velocities w
compared to the analytical value for w — 0.

velocities are simulated using in total 375 time steps. Figure 5.16 illustrates the final temperature
distribution in the ring for different angular velocities. When comparing the change in thermal
energy of the different angular velocities to the analytical solution in Figure 5.17, one observes
a good agreement for the slowest angular velocity w = 1072 for which an almost homogeneous
temperature distribution is observed. In addition, the results for larger angular velocities are in
perfect agreement with the ones obtained by the thermomechanical mortar method depicted in
Figure 4.32.

Finally, Table 5.1 compares the change in thermal energy for different parameters in the pre-
sented methods after three full rotations. To be able to actually draw a comparison to the an-

Table 5.1: Frictional heating of a rotating ring — Comparison error in thermal energy change for different methods
of constraint enforcement.

mechanical contact parameters thermal contact parameters | energy error
Oui =1, Ou2=1 Yur0=2 substitution 0.283%
eu,l =1, 9u,2 =1, Y{n,1},0 = 2 HT = 1, YT,0 = 2 0.282%
b1 =1, Ou2=1, Y0 = 0.02 Or =1, yro =2 no convergence
Ou1=—1, Ou2 =1, Yur0 =2 substitution 0.281%
Our = =1, bu2 =1, Ynp0 = 0.02 substitution 0.267%
eu,l =—1, 9u,2 =1, Y{n,1},0 = 0.02 QT = —1, YT,0 = 0.02 0.268%

alytical solution, an angular velocity of w = 1072 is used. In the presented setting, the skew-
symmetric Nitsche method for the mechanical constraints yields the lowest error in the thermal
energy, whereas the chosen method of thermal constraint enforcement (substitution or different
Nitsche variants) has little effect on the result. As expected, the symmetric variant with an insuf-
ficient penalty parameters does not converge, since it does not result in a stable approximation.
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5.2.3.4 Squeezed Thermo-Elasto-Plastic Tube

The final example is again taken from the analysis of the thermomechanical mortar method de-
rived in Chapter 4 involving finite thermo-elasto-plasticity. To recap Section 4.2.3.5, the setup
illustrated in Figure 5.18a consists of a metal tube Q(()l) with an inner and outer radius of 4 cm and
5 cm, respectively, and a length of 40 cm. At its center, the tube is squeezed between two rigid
cylindrical tools QE)Q) with an inner and outer of radius 4.5 cm and 5 cm, and a length of 16 cm.
Exploiting the symmetry of the problem, only one eighth is discretized with 18000 elements in

plastic strain oy plastlc strain oy

0 0.72 0.72
— I | — - | —
- - — o - —
293 329 293 329
temperature temperature
(a) Initial mesh. (b)t=1s. ©)t=2s.

Figure 5.18: Squeezed thermo-elasto-plastic tube — Initial mesh and displaced configurations at different times in-
cluding accumulated plastic strain and temperature distribution.

the tube and 2700 elements in the tool. To overcome locking effects due to the incompressibility
of plastic deformation, first order (Q; hexahedral elements with an F-bar technology as introduced
in Section 2.8.1.1 are used. The tube is modeled with a thermo-elasto-plastic material law, which
uses a neo-Hookean model (3.38) for the elastic part, thermal expansion according to (3.47) and
1sotropic von Mises plasticity with nonlinear hardening. All material parameters are summarized
in Table 3.2 with y1; = y,. From a numerical point of view, the plasticity algorithm developed
in Chapter 3 is used, where the plastic inequality constraints are recast as non-smooth equal-
ity conditions at every quadrature point and additionally introduced unknowns are condensed at
quadrature points. The tools start from an initially stress-free contact state and perform a pre-
scribed motion of u(t) = (1 —cos({57)) - 1.75 cm in equidistant time steps At € {0.01s,0.02s}
as illustrated in Figures 5.18b and 5.18c for the time of maximum compression and the final time
tenda = 2s. At the contact interface, contact with a temperature dependent coefficient of friction
according to (2 125) with g = 0.25, T, = 293K and Ty = 1793K is assumed. A heat flux
of 5. = 0. 1 1 18 permitted across the contact interface and both bodies are equally heated by
frictional work by setting 6. = 0.5. As outlined in Section 5.1.3, the non-smooth stress-strain
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relation in elasto-plasticity exclusively permits the use of the non-symmetric Nitsche method
0,1 = 0 and 6,2 = 1 to enforce the mechanical contact constraints. Moreover, the fact that the
tools are rigid results in a one-sided weighting of the stress at the interface, i.e. w, = 1. Con-
trary to the structural problem, the thermal interface formulation can be chosen freely from the
proposed methods, including harmonic weights and 61 # 0. Figure 5.19 depicts the total contact
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Figure 5.19: Squeezed thermo-elasto-plastic tube — Contact force over tool displacement for different mechanical
contact penalty parameters and At = 0.02s.

force over the tool displacement for different values of the contact penalty parameters and, as a
reference, the solution using the dual mortar method of Chapter 4 (see Section 4.2.3.5). All vari-
ants accurately reproduce the results of the reference solution if convergence can be achieved. At
the larger time step size At = 0.02s depicted in Figure 5.19, no convergence could be achieved
in Newton’s method for v, 1,0 = 10 at a tool displacement of u ~ 8 mm. Although different
methods yield virtually indistinguishable results (if convergence can be achieved), they signif-
icantly differ in the number of nonlinear iterations required to achieve convergence. Table 5.2
summarizes average number of required iterations during Newton’s method and potential line

Table 5.2: Squeezed thermo-elasto-plastic tube — Average number of Newton iterations (line search steps) per time
step during ¢ € [0, 1.1 s] for different methods and time step sizes.

mechanical contact

thermal contact

Newton iter. (+Is steps)

Newton iter. (+Is steps)

parameters parameters At =0.01s At =0.02s
Yoo =1, Yo =1 substitution 6.06 (+0.05) 8.49 (+0.35)
Yoo =1, Ym0 =1 Or =1, y10=1 6.24 (+0.07) 8.69 (+0.33)
Yoo = 10, 710 =1 Or=1, yro=1 7.47 (+0.19) 9.98 (+0.87)
Mo =1, Yo=10 | Op =1, ypp=1 9.47 (+2.90) 11.51 (+3.60)

’Yn,O = 109 ’VT,O = 10

QT:]_, 'YT,O:]-

10.58 (+3.15)

no convergence
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search steps per time increment during ¢ € [0, 1.1s], that is, the time steps involving contact.
Obviously, increasing penalty parameters yields stiffer nonlinear systems and therefore make it
harder to achieve a converged solution. It is important to note, that the lack of convergence for
Yinyp,0 = 10 and the larger time step At = 0.02 s is not due to an instability of the discretization
but rather a divergence of Newton’s method as shown by the fact that convergence for the same
set of parameters can be achieved with a reduced time step.

Finally, to demonstrate the effect of the consistent linearization, the convergence behavior of
Newton’s method is given in Table 5.3 at the time of maximal tool speed, the larger time step
and the more reasonable penalty parameters v, ;0 = 1. A clear acceleration in convergence
is observed as the solution is approached. Full quadratic convergence is not observed, since,
given the severe nonlinearity of the problem, the region of quadratic convergence is very small
and machine precision already limits the decay of the residuals. In particular, machine precision
limits the structural residual ||7,|| to 5 - 107'? and the thermal residual ||7r|| to 2 - 107, which
corresponds to a decay of over 12 orders of magnitude compared to their respective initial values.

Table 5.3: Squeezed thermo-elasto-plastic tube — Convergence of the L2 norms of the partial residuals in (2.167) at
t =0.5s for At = 0.02s and v ry,0 = 1,07 =1, y70 = 1.
step | [l 7o
0 | 5.68e+02 | 3.46e-01
2.56e+01 | 2.99¢-01
8.69e+00 | 1.80e-02
2.98e+00 | 4.68e-03
1.61e+00 | 3.65e-03
5.38e-01 | 2.65e-03
9.28e-02 | 4.22e-04
3.37e-04 | 2.27e-05
9.32e-07 | 1.20e-08
5.01e-10 | 4.78e-12

O 0 IO\ kA~ W=
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6 Summary and Outlook

This thesis dealt with innovative numerical methods for thermo-elasto-plastic contact problems
at finite deformations by the finite element method. To this end, a new method for computational
(thermo-) plasticity has been developed and new methods of computational contact mechanics
based on mortar methods and Nitsche’s method have been derived for isothermal and thermo-
mechanical contact problems. Originally motivated by the analysis of metal forming processes,
the developments have been kept as general as possible such that the method is to be open to any
application of thermomechanical contact problems.

In a first step, a novel approach to computational plasticity at finite deformations has been
developed. Its distinctive feature is the reformulation of the plastic material constraints of Hill’s
anisotropic yield criterion in terms of a non-smooth nonlinear complementarity (NCP) function.
By solving the resulting equality constraint within the same semi-smooth Newton scheme as
the balance of linear momentum, the plastic material constraints are guaranteed to hold at con-
vergence. Unlike the commonly used return mapping algorithm (RMA) for elasto-plastic ma-
terials, however, a violation of the material constraints is permitted pre-asymptotically. Hence,
it allows for an increased flexibility in the development of robust algorithms compared to the
classical RMA. Numerical examples confirm the superior robustness of the proposed method.
The derived semi-smooth Newton method has been extended to include various physical effects
relevant to practical applications of metal forming: First, the anisotropic yield criterion is sup-
plemented by an evolution of the plastic spin taking into account the relative rotation of the axes
of anisotropy with respect to the macroscopic continuum. Second, effects of visco-plasticity at
high strain rates have been included. Finally, a fully coupled algorithm for thermo-elasto-plastic
problems has been derived, which solves not only for the discrete displacement field and the
plastic deformation but also for the discrete temperature distribution. A consistently linearized,
monolithic solution scheme ensures fast convergence even in strongly coupled problems. For
future research, some issues have to be addressed, which all revolve around the construction of
appropriate NCP functions. For one, the number of local unkowns may be reduced by a suitable
re-parametrization of the yield function. A similar approach has been applied successfully in the
context of variational constitutive update algorithms by Bleier and Mosler [16]. For another, the
derivations presented in this thesis are restricted to Hill’s orthotropic yield criterion that includes
the widely used von Mises law as a special case. Therein, the equivalent stress is a quadratic
(semi-) norm of the effective stress tensor which facilitates the construction of the NCP func-
tion. While extensions to other quadratic yield functions, such as the Tresca yield function or
the ones employed in single crystals seems straightforward, the construction of appropriate NCP
functions for arbitrary, non-quadratic yield functions remains open.
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The second field of research in this thesis concerned mortar finite element methods for con-
tact problems. In the isothermal setting, two new Lagrange multiplier spaces have been pro-
posed, namely a piece-wise constant Lagrange multiplier for second order finite elements and an
isogeometric dual mortar method. As commonly known for dual mortar methods, these spaces
result in a localization of the coupling conditions and allow for an elimination of the discrete
Lagrange multiplier. Both spaces have a reduced polynomial reproduction order as compared
to the underlying displacement approximation limiting the achievable convergence orders in
domain decomposition applications. Yet, they still provide optimal convergence orders (under
uniform mesh refinement) for contact problems due to the reduced regularity of the solution. If,
however, future applications include adaptive mesh refinement for contact problems, the point
of reproduction orders needs to be revisited. In that case, the adaptive displacement approxima-
tion can provide higher order convergence but only if the Lagrange multiplier approximation
provides a sufficient reproduction order. For domain decomposition applications, such optimal
Lagrange multiplier spaces have been studied by Lamichhane and Wohlmuth [129], Oswald and
Wohlmuth [161] for classical finite elements. Very recently, the idea of [161] has been extended
to isogeometric analysis by Wunderlich et al. [242]. Concerning thermomechanical frictional
contact, a new discretization approach based on dual mortar finite element methods has been
derived. The model includes a pressure dependent heat conduction across the contact interface
as well as frictional work converted to heat. An additional thermal Lagrange multiplier field has
been introduced to enforce these effects. The use of dual basis functions again allows for an easy
condensation of the additional Lagrange multiplier degrees of freedom, such that the resulting
system consists of discrete displacements and temperatures only. Numerical examples showed
optimal convergence orders and a broad applicability from contact dynamics to isogeometric
analysis and coupled thermo-elasto-plastic problems.

Finally, various Nitsche-type methods for finite deformation contact mechanics have been
developed. In particular, this includes the extension of the symmetric and non-symmetric meth-
ods of Chouly et al. [35] and the penalty free variant of Burman [23] to geometrically nonlinear
frictional contact problems. One of the main challenges when applying Nitsche’s method to non-
linear elasticity, or even elasto-plasticity, lies in the use of the boundary traction, which has been
derived consistently with the employed nonlinear material. Furthermore, an accurate estimate of
the necessary penalty parameter has been devised based on local eigenvalue problems. While
for linear problems the lower bound of the penalty parameter can be determined in advance,
nonlinear materials require an estimate adjusted to the current displacement. Therefore, an adap-
tive penalty parameter estimate has been developed and verified in highly nonlinear examples. It
should be pointed out, that the presented nonlinear estimate is rather heuristic but performs well
in numerical tests. Future research should focus on a mathematical analysis of Nitsche’s method
for problems of nonlinear elasticity based on arguments of poly-convexity [10]. In the course
of such research, a more accurate lower bound for the necessary penalty term could emerge.
Moreover, the solution of the local eigenvalue problems has been used to derive a harmonic
weighting of the boundary traction which allows for a significant reduction in the penalty term
for problems involving a large contrast in stiffness of the contacting bodies. Lastly, Nitsche’s
method has been extended to thermomechanical contact problems. The Robin-type condition of
heat conduction (and frictional dissipation) can either be substituted directly into the weak form
of the heat conduction equation or introduced weakly by employing a Nitsche-type approach.
While being a rather simple formulation, the substitution method becomes ill-conditioned for
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high thermal contact conductivities. The Nitsche-type method, on the other hand, involves more
terms but remains well-conditioned over the entire range of physical parameters. Although non-
linear kinematics and thermomechanical coupling preclude strict mathematical analysis and op-
timal a priori estimates, numerical examples evidence the expected optimal convergence orders.
Furthermore, extensions from thermo-elasticity to coupled thermo-elasto-plasticity have been
demonstrated by a numerical example.

In summary, this work provides numerical methods for thermo-elasto-plastic contact problems
at finite deformations based on mathematically sound and well analyzed discretizations. Taking
a broader perspective, contact analysis in a thermomechanically coupled system investigated in
this work can be seen as a prototype for contact interaction in a general multi-field problem.
Therefore, as a closure to this thesis, an outlook to ongoing research on the numerical treatment
of contact problems in two other multi-field applications is given. The first one deals with contact
modeling inside all-solid-state batteries. In this post lithium-ion battery technology, not only the
electrodes but also the electrolyte consists of a solid material. Consequently, contact interaction
takes place between the different components. The greatest difficulty in the development of ro-
bust contact discretizations lies in the highly complex geometries and potential self-contact. This
is due to the fact that a maximized interface area between electrode and electrolyte is beneficial
for the battery performance which results in a porous, sponge-like micro-structure. Figure 6.1
depicts such a micro-structure of a cathode reconstructed from X-ray tomography by Ebner et al.
[67]. During charging and discharging of the battery, transport of Lithium ions takes place. Fur-

Figure 6.1: Micro-scale geometry of an all-solid-state battery with the cathode in red, the anode in gray and the
electrolyte in blue.

ther, the intercalation of Lithium in the electrodes alters their mechanical properties and yields
volumetric growth. Hence, the coupling of electro-chemistry and structural response bears great
similarity to the problem of thermomechanical coupling investigated in this thesis. In the analogy
to thermomechanics, the concentration of Lithium takes the place of the temperature distribution
in a thermomechanical system as temperature also follows a diffusive transport, changes me-
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6 Summary and Outlook

chanical properties, and results in volumetric changes due to thermal expansion. Consequently,
the numerical methods proposed for thermomechanical contact can readily be extended to elec-
tromechanical systems.

Conceptually, thermomechanical and electromechanical systems as volume-coupled multi-
field problems form only one class of coupled problems. Another class consists of surface cou-
pled problems such as fluid-structure interaction (FSI). A promising approach to handle contact
scenarios in FSI applications is the use of non-boundary fitted discretizations for the fluid do-
main, as they allow for large motion of the structure or even topological changes. The cut finite
element method provides such a discretization approach and the use of Nitsche’s method allows
for a stable imposition of the constraints of fluid-structure interaction. For details, the reader is
referred to Schott [190] and the references therein. With the FSI condition enforced by Nitsche’s
method, it is advisable to also treat the contact interaction by Nitsche-type methods as derived in
this work. This allows for a continuous transition between the two type of interface conditions:
either FSI or contact between two solids. A detailed description of the combined formulation of
fluid-structure-contact interaction is given in Ager et al. [2]. Without specifying any details, a
first numerical example is illustrated in Figure 6.2 and models a simple pump consisting of two
valves. The initial geometry and meshes for the fluid (light gray) and solid discretization (dark
gray) are depicted in Figure 6.2a. Note that while a classical boundary fitted discretization is

(a) Initial mesh. (b) Step 63.
| c—
-
| —
(c) Step 125. (d) Step 188.

fluid velocity

0 | 25 50 ‘75 100
- I

(e) Step 250.

Figure 6.2: Fluid structure contact interaction in a simplified pump: Initial mesh and deformed configurations at
different time steps with contours of the fluid velocity magnitude.

applied for the solid, the fluid discretization is not fitted to the FSI interface but rather cut by
the solid domain. In the center, the structure is compressed vertically by a harmonic Neumann
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load with one period divided in 250 time steps. During compression (Figures 6.2b, 6.2¢), the left
valve closes and fluid is pushed out on the right hand side. As the load is removed (Figures 6.2d,
6.2e), the structure relaxes, the right valve closes and fluid is sucked in from the left. Figure 6.3

fluid pressure

F6.5
4.75

1.25

R sr—

-0.5

Figure 6.3: Fluid structure contact interaction in a simplified pump: Detail view to the left valve in Figure 6.2b with
fluid pressure distribution.

provides a detailed view to the left valve in step 63 (cf. Figure 6.2b) and the corresponding fluid
pressure distribution. It can again be seen, that the fluid discretization is cut by the structural
mesh and the pressure jump between the two sides of the valve is captured sharply. In terms
of contact mechanics, it is remarkable that the use of Nitsche’s method as a consistent contact
discretization yields accurate contact constraint enforcement and no residual penetration is to be
seen.

In conclusion, the methods developed in this thesis not only cover computational analysis of
thermomechanical contact problems but provide a basis for the treatment of contact constraints
in multi-field problems in general.
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A Hyperelasticity and some
derivatives

In this appendix, some of the directional derivatives employed in Section 3.3.2 are particularized
for the application of arbitrary isotropic hyperelastic materials. The linearizations follow from
rather straight forward computations when inserting the multiplicative split of the deformation
gradient (2.53) into the definition of the second Piola—Kirchhoff stress tensor S and the Mandel
stress tensor 3. The notation generally follows the one in Holzapfel [104]. For an elastically
isotropic material, ¥, = W, ([, I5, I3) may be expressed in terms of the invariants

L=t1Co , L=<(trC)’—tx(C?)) , Iz=detC. (A.D)

1
2
of the elastic right Cauchy—Green tensor C,. The second Piola—Kirchhoff stress tensor can then
be expressed as

S =7%C,t+7C,'CCt+C71 | (A.2)
with the coefficients
oV, ov, oV, ov,
=2 I = -2 =21 ) A3
M <3Il + 18]2> V2 o, 3 3813 (A.3)

The derivative of the second Piola—Kirchhoff stress with respect to the right Cauchy—Green
tensor as well as the inverse plastic deformation gradient follow by straightforward calculations
as

oS
C=255=0C" 00" +6(C 2 C'CC +CCC 2 C)
+6(CleC 1 +Cr e CY) +a,ClCCt @ CTCCL Y (Ad)
+6 (CICC'RCTT+CH 0 CICCY) +6C 0 CY

+6CTOC T +6C 00T

and
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A Hyperelasticity and some derivatives

with the coefficients

9%, 92U, 9U, 9%, 0%, 9%,
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(A.6)
Analogously, the Mandel stress 32 for an isotropic hyperelastic material can be computed as

¥ =1 Ce +7:C2 + 51 (A7)

and its relevant directional derivatives as

b
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Finally, the directional derivative of the inverse plastic deformation gradient with respect to the
plastic flow increment follows from the discrete evolution equation (3.4), i.e.

OFpnin _ poa Oexp(=ALy)

_ Al
AL, P 9AL, (A.10)

from which the derivative of the second Piola—Kirchhoff and Mandel stress with respect to the
plastic flow increment AL, follow as

98 0S8 OF L., ox 0% OF, .,

OAL, OF;'  0AL, ° O0AL, OF;!' O0AL,

(A.11)
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B Consistency of the thermal weak
form using Nitsche’s method

To show the consistency of (5.31), i.e. equivalence of (the continuous form of) (5.31) with
(2.133) in combination with (2.129), first observe that 3, and P, are, due to (5.4) and (5.11),
consistent substitutes for . |p,| and ¢. - v, in (2.129). Next, (2.129) provide the following equiv-
alences for weighted heat fluxes:

{a.(T)},, = {qc(T)}(lféc) + (1 =0 —wr)te - vr (B.1a)
{4e(T)} s,y = PelpullT] (B.1b)

with which (5.31) can be re-written as
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B Consistency of the thermal weak form using Nitsche’s method

What remains from (B.2) is

Belp
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which is indeed equivalent to (2.133).
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