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Abstract: Data-driven approaches are well suited to represent human motion because arbitrary
complex trajectories can be captured. Gaussian process state space models allow to encode
human motion while quantifying uncertainty due to missing data. Such human motion models
are relevant for many application domains such as learning by demonstration and motion
prediction in human-robot collaboration. For goal-directed tasks it is essential to impose
stability constraints on the model representing the human motion. Motivated by learning by
demonstration applications, this paper proposes an uncertainty-based control Lyapunov function
approach for goal-directed path tracking. We exploit the model fidelity which is related to the
location of the training and test data: Our approach actively strives into regions with more
demonstration data and thus higher model certainty. This achieves accurate reproduction of the
human motion independent of the initial condition and we show that generated trajectories are
uniformly globally asymptotically stable. The approach is validated in a nonlinear learning
by demonstration task where human-demonstrated motions are reproduced by the learned
dynamical system, and higher precision than competitive state of the art methods is achieved.
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1. INTRODUCTION

Control engineering is increasingly applied at the intersec-
tion of human and technical systems. Prominent examples
are learning by demonstration scenarios and human-robot
collaboration. A key aspect to successfully incorporate
human behavior is the representation and prediction of
humans. However, volunteer human motion is difficult to
model based on first principles and is characterized by a
high degree of nonlinearity. Thus, conventional physics-
based parametric models are not suitable to represent
human movement. Recent technological advances in sensor
technology and data processing allow data-driven mod-
eling with high precision and data-efficiency. Therefore,
data-driven approaches are a promising path to model and
flexibly reproduce motions through the symbiosis of pow-
erful algorithms from machine learning and well-founded
mathematical tools from control theory. Non-parametric
(data-driven) models offer the advantage over parametric
models that no bias is implied towards a particular class
of system and the set of candidate model parameters is
not restricted. With only minimal prior knowledge their
complexity adapts to the amount of training data and
possibly increases the number of parameters infinitely.
This makes non-parametric models well-suited for human
motion representation, as in Lang et al. (2017).

Movement tasks in human centered applications often rely
on goal-directed expert demonstrations. For their replica-

tion, dynamical systems generating the motion are benefi-
cial due to smoothness of resulting trajectories, robustness
to perturbation, time independence and real-time capabil-
ity. The objective is to learn a dynamical system, which
generates stable trajectories similar to the training data
independently of the initial condition. However, recording
training data is time consuming and therefore the state
space is only covered sparsely. Thus, data-efficient methods
are needed in learning by demonstration applications to
achieve a high similarity of the reproduction.

When data-driven methods are applied to model goal-
directed motions, guaranteed convergence to a set point
of the resulting dynamical system is not guaranteed. A
first approach for stable movement generation based on
demonstrations are dynamic movement primitives (DMPs)
introduced by Ijspeert et al. (2002). It is based on a
stable linear second-order system which is augmented by
a nonlinear component learned from demonstrations. The
stable estimator of dynamical system (SEDS) approach
presented by Khansari-Zadeh and Billard (2011) builds on
parametric Gaussian mixture models (GMMs). Learning
the parameters based on demonstrations is restricted to
stable GMMs using a Lyapunov condition. Blocher et al.
(2017) stabilize GMMs using contraction theory. How-
ever, these approaches rely on manually set parameters
and do not consider uncertainty of the learned system
from sparse data. Recently, the encoding of desired tra-
jectories as autonomous dynamical system using the non-



parametric Gaussian process (GP) has emerged due to
the following favorable properties: implicit bias/variance
trade-off, incorporation of prior knowledge about the data
due to Bayesian nature, and the quantifiable model uncer-
tainty from missing data (Rasmussen and Williams, 2006).
First steps on enforcing stability for GPs as data-driven
probabilistic models are discussed by Khansari-Zadeh and
Billard (2014), Umlauft et al. (2018) and Umlauft et al.
(2017b). Most applications of GPs do not take advantage
of the inferred model fidelity since it is ignored, considered
as process noise in the system (Beckers and Hirche, 2016)
or used for other control tasks, e.g. gain tuning as in Beck-
ers et al. (2017). However, regions of the state space where
the model is uncertain bare a risk of undesired behavior
and should be avoided.

This paper considers a learning by demonstration scenario
with the aim to precisely model human goal-directed tra-
jectories using dynamical systems. We propose a frame-
work to generate guaranteed converging uncertainty-
avoiding trajectories from a stabilized Gaussian process
state space model (GPSSM). We propose an uncertainty-
based control Lyapunov approach which takes advantage
of the GPs quantified model fidelity. By applying a gra-
dient descent on this Lyapunov function, asymptotically
stable trajectories are generated along regions in the state
space with low uncertainty, thus approach the demon-
strations and avoid uncertain regions. We verify the path
tracking in simulations and show that it outperforms state
of the art methods on a real-world human demonstration
dataset with respect to tracking precision. After defining
the problem setting in Section 2, Section 3 reviews learning
of stabilized GPSSMs from demonstration data. Section 4
introduces the uncertainty-based control Lyapunov func-
tion, proofs its properties and presents our approach for
path tracking. Simulation results are shown in Section 5.

Notation: Lower/upper case bold symbols denote vec-
tors/matrices, R+,0/R+ all real positive numbers with/
without zero and E[·]/var[·] expected value/variance of a
random variable, respectively. · � 0 denotes the positive
definiteness of matrices/functions, In the n × n identity
matrix, ‖ · ‖ the Euclidean norm if not specified otherwise
and ∆x f the gradient of a function f with respect to x.
The Lie derivative of a scalar function V : Rn → R along
a vector field f : Rn → Rn is denoted by LfV (x).

2. PROBLEM FORMULATION

We assume a training data set D of human trajectories of
a goal-directed task being given. D contains the demon-
strations and consists of N data pairs representing the
current location as continuous-valued state x ∈ X ⊆ Rn
and a noisy version of the velocity

D =
{(
x(i),y(i)

)}N
i=1

, y(i) = ẋ(i) + ω(i), (1)

where ω(i) ∼ N (0,σ2
onIn) are i.i.d. samples with σ2

on ∈ R+.

We assume the data originates from a dynamical system

ẋ = f(x), x(0) = x0, (2)

where the function f : X → Rn is unknown but the fol-
lowing assumptions are made.

Assumption 1. The function f(x) is Lipschitz continuous.

Assumption 2. The dynamical system (2) is uniformly
globally asymptotically stable at x = 0.

Assumption 1 is a mild assumption and can be concluded
from the physical nature that a human demonstrator
can only expend limited force onto his body leading to
finite acceleration. The goal-directed demonstrations lead
to Assumption 2 for the underlying system. Without loss
of generality, the goal position is here set to the origin.

Our goal is to find a model

ẋ = f̂(x), (3)

for which the average reproduction error between the
generated and demonstrated path is minimized and the
uniform global asymptotic stability of system (3) is guar-
anteed. Thus, we aim for precise path tracking by reducing
the distance of the states x(t,x0) on the path starting
at x0 = x(0,x0) to the training points. 1

To solve the problem of precise tracking of human motion,

we generate trajectories from the model f̂(x) in (3).

f̂(x) is defined as the gradient descent on the proposed
control Lyapunov function (CLF). This CLF is obtained
by simulating mean trajectories from an asymptotically
stable dynamic model f̄(x), which is an GPSSM trained
from the data set D, and integrating along them over
the model uncertainty. In the following, we start with a
review on Gaussian processes as they build the core of the
identification of the stable dynamic model f̄(x).

3. LEARNING STABLE GAUSSIAN PROCESS
STATE SPACE MODELS

3.1 Gaussian Processes Regression

A GP is defined as a collection of random variables which
assigns to any finite subset {x1, . . . ,xM} ⊂ Rn in a con-
tinuous input domain a joint Gaussian distribution (Ras-
mussen and Williams, 2006). It is often considered as a
distribution over functions with interference between them
and denoted by

fψ(x) ∼ GP(mψ(x), kψ(x,x′)). (4)

It is specified by a mean function mψ(x) : X → R and a co-
variance function kψ(x,x′) : X × X → R. The subscript ψ
denotes the dependency on hyperparameters which char-
acterize the set of functions over which the GP is a distri-
bution. A widely used covariance function is the squared
exponential (SE) kernel

kSE
ψ (x,x′) = σ2

f exp

 n∑
j=1

(xj − x′j)2

−2l2j

 , (5)

which results in a distribution over bounded, infinitely
differentiable functions. The hyperparameters of the SE
kernel are the lengthscales lj ∈ R+, j = 1, . . . ,n. To inject
the prior knowledge, that the system (2) has a non-zero

1 We do not consider tracking in the classical sense, since we
focus on geometric paths rather than time-parametrized trajectories.
Accordingly, by precise tracking, we indicate a high spacial similarity
between the generated and the demonstrated path, which is for most
tasks more important than moving at the proper speed.



velocity everywhere outside the origin (otherwise it would
not be globally asymptotically stable), we set a linear prior

m(x) = αᵀx (6)

with α ∈ Rn, resulting in a hyperparameter vec-
tor ψ =

[
α1 . . . αn l1 · · · ln σ2

f

]ᵀ
.

Since (4) represents only functions with scalar out-
puts, n independent GPs are employed to model the dy-
namical system (2), denoted by

fΨ(x) =


fψ1

(x) ∼ GP (m1(x), k1(x,x′))
...

...

fψn
(x) ∼ GP (mn(x), kn(x,x′)) ,

(7)

where Ψ is the set of all ψj with j = 1, . . . ,n, which
are hyperparameters corresponding to mean and kernel
functions kj(·, ·) and mj(·), respectively.

Considering a dataset D as in (1), the Gaussian process
is often employed for regression. Given a test input x∗,
the j-th component of the inferred output y∗ is jointly
Gaussian distributed with the training data[

y∗j
yj

]
∼ N

([
mj(x

∗)
mj

]
,

[
k∗j kᵀj
kj Kj + σ2

on

])
, (8)

where k∗j = kj(x
∗,x∗) ∈ R, yj =

[
y

(1)
j · · · y

(N)
j

]ᵀ
∈ RN ,

kj =
[
kj
(
x(1),x∗

)
· · · kj

(
x(N),x∗

)]ᵀ ∈ RN ,

mj =
[
mj

(
x(1)

)
· · · mj

(
x(N)

)]ᵀ ∈ RN

and

Kj =

kj
(
x(1),x(1)

)
· · · kj

(
x(1),x(N)

)
...

. . .
...

kj
(
x(N),x(1)

)
· · · kj

(
x(N),x(N)

)
 ∈ RN×N .

Conditioning on test input x∗ and the data D yields

E[y∗j |D,x∗] = mj(x
∗) + kᵀj (Kj + σ2

onIN )−1(yj −mj)

(9)

var[y∗j |D,x∗] = k∗j − k
ᵀ
j (Kj + σ2

onIN )−1kj . (10)

To obtain the optimal hyperparameters ψj , a likelihood
maximization according to Bayesian principles is per-
formed for every j = 1, . . . ,n as

max
ψj

log p
(
yj |x(1:N),ψj

)
= (11)

max
ψj

(
−1

2
yTj K

−1
j yj −

1

2
log detKj −

N

2
log(2π)

)
,

where x(1:N) denotes the set of all x(i), i = 1, . . . ,N .
Even though this optimization problem is non-convex it is
usually solved with gradient-based methods because local
minima correspond to a different interpretation of the data
and still deliver a conclusive prediction.

3.2 Enforcing an Equilibrium Point

The Gaussian process as presented has been used to model
dynamical systems, see e.g. (Kocijan, 2016). However, we
impose a minor modification: As the equilibrium point
at f(0) = 0 is known from Assumption 2, we extend (8)
as followsy∗jyj

0

 ∼ N
[0

0
0

] k∗j kᵀj kj (x∗, 0)
kj Kj + σ2

on k0
j

kj (0,x∗) k0
j
ᵀ

kj (0, 0)

 ,

where

k0
j =

[
kj
(
x(1), 0

)
· · · kj

(
x(N), 0

)]ᵀ ∈ RN .

Note that for the training point (0, 0), there is no observa-
tion noise, since it is known a priori without uncertainty
and thus not measured. As a result, every function de-
scribed by the GP passes through the origin. For the mean
and variance predictions, we define

µj(x
∗) := E[y∗j |D,x∗, (0, 0)], j = 1, . . . ,n (12)

σ2
j (x∗) := var[y∗j |D,x∗, (0, 0)], j = 1, . . . ,n (13)

equivalently to (9) and (10). For their concatenation

µ(x) = [µ1(x) · · · µn(x)]
ᵀ

, (14)

σ2(x) =
[
σ2

1(x) · · · σ2
n(x)

]ᵀ
, (15)

the following is concluded:

Lemma 1. The posterior variance function σ2 : X → Rn+,0

from (15) from a GP with SE kernel (5) is bounded, in-
finitely differentiable and componentwise positive definite.

Proof. The variance function σ2(x) (index j omitted
for notational simplicity) of a GP with SE kernel (5) is
bounded by 0 ≤ σ2(x) ≤ σ2

f and infinitely differentiable
because it inherits these properties from the kernel. Ac-
cording to Umlauft et al. (2017a), if σ2

N (x) and σ2
N+1(x)

denote variance functions for N and N + 1 training data
points respectively, then

σ2
N (x) ≥ σ2

N+1(x), ∀x ∈ X . (16)

Considering only the training data point (0, 0), σ2(0) = 0
holds, as can be directly seen from (13). With N train-
ing data points it results from non-negativity and (16)
that σ2

N (0) = 0 holds. For all x ∈ X \{0}, we can conclude
that σ2(x) > 0 because of the measurement noise σ2

on > 0
and finite training data points. �

Fig. 1 illustrates the properties of the posterior variance
function of a GP as defined in (13). The GP variance gen-
erally grows with distance from training data. Therefore,
it can be interpreted as a suitable proximity measure.
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Fig. 1. The orange line visualizes the GP vari-
ance var[y|D,x] from (10) for N = 4 training points.
The blue line visualizes σ2(x) from (13), with the
enforced equilibrium point at x = 0 as (0, 0). The vari-
ance reduces globally according to (16), thus σ2(x) ≤
var[y|D,x], ∀x ∈ X . The positive definiteness of σ2(x)
from Lemma 1 is also observable.

3.3 Stabilization of the System

For the GPSSM we have ensured an equilibrium point at
the origin, µ(0) = 0, but it might be only locally attrac-
tive or even unstable. Therefore, we follow the approach
proposed by Umlauft et al. (2017b) and Khansari-Zadeh



and Billard (2014) to stabilize the GPSSM by applying a
corrective signal u ∈ Rn, given by

ẋ = f̄(x) := µ(x) + u(x). (17)

Note, that f̄(x) is not the final proposed model f̂(x)
but only an intermediate step. We will refer to it as the
stabilized GPSSM and the following is assumed.

Assumption 3. There exists u(x) such that, the sys-
tem (17) is uniformly globally asymptotically stable and
f̄ : X → Rn is locally Lipschitz ∀x ∈ X .

The existence of a corrective signal is shown by Khansari-
Zadeh and Billard (2014) and chosen to only minimally
change µ(x). It is derived based on a stabilizing Lyapunov
function, which is adapted for the data D. Umlauft et al.
(2017b) propose the use of sum of squares (SOS) as
stabilizing Lyapunov function VQ : X → R+,0, defined as

VQ = m(x)ᵀQm(x), (18)

where Q � 0 and m(x) are monomials of a user defined
degree, see also Papachristodoulou and Prajna (2005) for
details on the SOS technique. The entries of Q are chosen
such that the original GPSSM µ(x) is only minimally
adapted, thus ‖u(x)‖ is minimal. This is achieved by

minimizing the violations of
∂VQ

∂x
∂x
∂t < 0 for D. Since

the measurements are noisy and only a subset of all
positive definite functions can be described by the selected
parametric form, this might not be fulfilled for all data
points. Nevertheless, it is suitable for the stabilization.

For the computation of the corrective signal u ∈ Rn,
we impose a continuous positive definite function ρ (‖x‖)
as lowest acceptable rate of decrease for the Lyapunov
function VQ. The minimal corrective signal is

u∗ = argmin
u

1

2
uᵀu, (19a)

s.t. ∆xVQ(x) (µ(x) + u) ≤ −ρ(‖x‖) if x 6= 0

µ(x) + u = 0 if x = 0.
(19b)

The solution to this problem for the Lyapunov function is

u∗(x) =

{
0 if ∆xVQ(x)µ(x)+ρ(‖x‖)≤0
∆xVQ(x)µ(x)+ρ(‖x‖)
−‖∆xVQ(x)‖2 ∆x

ᵀVQ(x) otherwise.

Remark 1. Compared to previous work (Kocijan, 2016;
Umlauft et al., 2017b; Khansari-Zadeh and Billard, 2014),
we introduced two modifications of GPSSMs, a linear
prior and an enforced equilibrium point to ensure positive
definiteness of the variance function. This is necessary to
achieve a stable system as shown in the next section.

4. PATH TRACKING

In Section 3, we outlined how GPSSMs are applied to
learn a stable model for the true dynamics (2) which
fulfill Assumptions 1 and 2. However, the stabilized
GPSSM f̄(x) (17) does not take advantage of the GP un-
certainty and therefore trajectories x̄ generated from it do
not necessarily approach the demonstration data. In this
section, we present how to utilize knowledge about model
fidelity to introduce the uncertainty-aware system f̂(x).

4.1 Uncertainty-based Control Lyapunov Function

Given that the stabilized GPSSM f̄(x) is Lipschitz con-
tinuous by Assumption 3, there exists for each x0 ∈ X a

unique solution to the differential equation (17) denoted by
x̄(t,x0) : [0, ∞]×X → X according to Khalil and Grizzle
(1996). Together with its uniform global asymptotic sta-
bility holds

x̄(0,x0) = x0, lim
t→∞

x̄(t,x0) = 0, ∀x0 ∈ X . (20)

As already illustrated in Fig. 1, the posterior variance
function of the GP represents model fidelity based on the
location of the training points. Because it can be inter-
preted as a measure for proximity to the demonstrations,
it seems reasonable to reduce the norm of σ2(x) along the
path. We therefore consider the proximity of a path to the
demonstrations as accumulated model uncertainty along
the trajectory of the stabilized GPSSM, written as path
integral

Vσ(x0) =

∫ ∞
0

∥∥σ2 (x̄(t,x0))
∥∥ dt. (21)

Besides the interpretation as a cost-to-go term of the
path x̄(t,x0), it can also be seen as Lyapunov candidate.

Theorem 1. Consider the solutions x̄(t,x0) for the sys-
tem (17) under Assumption 3 and the GP posterior vari-
ance function σ2(x) in (15) with SE kernel (5). Then, the
function Vσ(x0) : X → R, defined in (21) is a Lyapunov
candidate, thus positive definite and differentiable. Addi-
tionally, it is radially unbounded.

Proof. Since trajectories starting in the origin never
leave it due to f̄(0) = 0 (Assumption 3), we can con-
clude Vσ(0) = 0. Since σ2

j is positive definite by Lemma 1,
any trajectory starting outside of the origin leads to a
positive integral, thus Vσ(x0) > 0 for all x0 ∈ X \ {0},
which concludes the positive definiteness. To show the
differentiability of Vσ(x), consider the Leibniz integral rule

∂

∂x

∫ ∞
0

∥∥σ2 (x̄(t,x0))
∥∥ dt =

∫ ∞
0

∂

∂x

∥∥σ2 (x̄(t,x0))
∥∥ dt.

The condition that the integrand is differentiable in t
is fulfilled in our case for the following reasoning: The
solution of the differential equation (17) given by x̄(t,x0)
is Lipschitz according to the continuity of solutions of
differential equations with their initial conditions (Khalil
and Grizzle, 1996, Theorem 3.4). The composite of the
Lipschitz function x̄(t,x0) and the differentiable func-
tion σj(·), j = 1, . . . ,n is differentiable and therefore,
the integrand is differentiable in t. As a consequence of
the Leibniz integral rule, the function Vσ(x) is differen-
tiable. Due to the observation noise for all training points
outside the origin, ∃r > 0 such that ∀‖x‖ > r holds
σ2
j (x) ≥ σ2

on, ∀j = 1, . . . ,n. Thus, for ‖x0‖ → ∞ the path
integral is unbounded Vσ(x0)→∞ because the integrand
is lower bounded by a constant for ‖x0‖ > r and the
length of the path over which is integrated is unbounded.
Thus, Vσ is radially unbounded. �

Remark 2. Note, that the Lyapunov function VQ is not
related to the proposed uncertainty Lyapunov function Vσ.
It is only required to obtain the stabilizing control u which
was, in the theoretical part, given by Assumption 3.

4.2 Stable Path Tracking System

The function Vσ(x) is not just a Lyapunov candidate but
also encodes the accumulated model uncertainty along



the trajectories of the stabilized GPSSM. We therefore
propose the following gradient descent on Vσ(x)

ẋ = f̂(x) := −kc∆x
ᵀVσ(x), (22)

where kc > 0 scales the speed of system. By descend-
ing Vσ(x), we expect, that the generated trajectories are
attracted by regions of the state space which are close to
the demonstrations and converge to the origin along the
trajectories of system (17). The following is concluded

Theorem 2. Consider the uncertainty Lyapunov func-
tion Vσ(x) : X → R+ defined in (21), where the solu-
tions x̄(t,x0) are obtained from system (17) under As-
sumption 3 and σ2(x) is the GP posterior variance func-
tion in (15) with SE kernel (5). Then, the dynamical sys-
tem obtained from its gradient descent in (22) is uniformly
globally asymptotically stable for any kc > 0.

Proof. The Lyapunov candidate Vσ(x) fulfills the re-
quired properties by Theorem 1. Its time derivative

V̇σ(x) = ∆xVσ(x)ẋ = −kc∆xVσ(x)∆x
ᵀVσ(x)

= −kc‖∆xVσ(x)‖2

is negative definite, shown as follows: ‖∆xVσ(0)‖ = 0 holds
due to the differentiability and the positive definiteness
of Vσ. To show ‖∆xVσ(x)‖ > 0 holds ∀x ∈ X \ {0},
we consider the Lie derivative Lf̂Vσ(x). It is strictly

negative ∀x ∈ X \{0} because the length of the integrated
path decreases in this direction and the integrand is
strictly positive (Lemma 1) outside the origin. A non-zero
Lie derivative leads to a non-zero norm of the gradient,
which shows the negative definiteness of V̇σ(x). Since
Vσ(x) is radially unbounded by Theorem 1, the uniform
asymptotic stability holds globally. �

Remark 3. To some extent our approach is related to an
optimal control problem. The Lyapunov function (21) ac-
cumulates the uncertainty along the GPSSM path. It can
therefore be interpreted as a cost-to-go function. However,
we do not compute the value function, for which (22)
would solve the optimal control problem (minimizing the
accumulated variance) for three reasons: First, it would
require to solve the Hamilton-Jacobi-Bellman equation for
which in a continuous state space only approximate solu-
tions exist in the general case. Second, the resulting value
function is generally not differentiable, a required property
for the further design steps. Third, finding an (approxima-
tively) optimal solution is computationally very expensive,
especially in high-dimensional state spaces. Our solution
requires a forward simulation to obtain x̄(t,x0), but other
than (for the optimal solution) exploring all possible direc-
tions, we only search along the GPSSM mean direction (a
good approximation if the demonstrations converge). This
keeps our approach computationally tractable.

5. EVALUATION

Before demonstrating the approach numerically in a hu-
man path tracking setting, we address a few points re-
garding the implementation including the stabilization of
the GPSSM, the calculation of the uncertainty-based Lya-
punov function and the performance measure. For conve-
nience, we label our approach with UCLD for Uncertainty-
based Control Lyapunov function Descent.

5.1 Implementation

Stabilization of GPSSMs The trajectories x̄ are obtained
from a forward simulation of the stabilized estimate f̄
from (17) as shown in Section 3.3. As stabilizing Lyapunov
function we use SOS as defined in (18) with a minimal
acceptable rate of decrease ρ of the form

ρ(‖x‖) = min(sin(ρ0), ‖x‖2).

This allows the interpretation of ρ0 ∈ (0,π] as the angle
between the direction of the stabilized system and the
tangent of the Lyapunov level line. We chose ρ0 = 5◦.

Computation of the uncertainty-based Lyapunov function
The most critical part of the implementation is the com-
putation of the uncertainty-based Lyapunov function Vσ
because the path over which it integrates, x̄(t,x0), is not
known analytically. However, through simulation, we find
arbitrary close approximations as shown in the following:
We obtain a finite number of consecutive states x̄0, . . . , x̄M
through forward simulation of (17), which approximate
the solution x̄(t,x0). The space between the discretiza-
tion is approximated by straight lines and we define
the line integral between two points x̄m and x̄m+1

over the variance σj(x̄) for all dimensions j = 1, . . . ,n
as Lj (x̄m, x̄m+1) ∈ R+. The vector L (x̄m, x̄m+1) =
[L1 (x̄m, x̄m+1) · · · Ln (x̄m, x̄m+1)]

ᵀ
concatenates the line

integrals for all dimensions and we can estimate the in-
tegral (21) by taking the norm of L (xm,xm+1) for all
points x0, . . . ,xM and sum them together as given by

V̄σ(x) =

M∑
m=0

‖L (xm,xm+1)‖ ≈ Vσ(x). (23)

The line integrals Lj can be computed analytically for the
squared exponential kernel as shown in Appendix A.

Although V̄σ is only an approximation of Vσ, it still
fulfills the positive definiteness and radial unboundedness
properties. In order to apply V̄σ as the control Lyapunov
function, its gradient is evaluated by first order finite
differences (with a finite difference εfd = 10−4). The
forward simulation is performed with ∆t = 0.1s.

Measuring tracking precision We consider the area error
to evaluate tracking precision. It is defined for Ndemo

generated trajectories x
(k)
p , with k = 1, . . . ,Nsim and

p = 1, . . . ,Ndemo as

∆rep :=
1

Ndemo

Ndemo∑
p=1

Nsim∑
k=1

A(x(k)
p ,x(k+1)

p ,x
(i)
p′ ,x

(i+1)
p′ ),

(24)

with x
(i)
p′ as the closest training point regarding Euclidean

distance to x
(k)
p and A(ξ1, ξ2, ξ3, ξ4) as area of a tetragon

of the points ξ1 to ξ4.

5.2 Setup

For the numerical evaluation, we demonstrate the effec-
tiveness of UCLD approach in a path tracking task of
demonstrated human goal-directed movement, a robot is
supposed to reproduce. We compare our UCLD 2 with two
frameworks that do not consider model uncertainties:
2 Available at https://gitlab.lrz.de/ga68car/cphs2018ucld.git



• The stable estimator of dynamical systems (SEDS)
from Khansari-Zadeh and Billard (2011), constrains
the learning of a Gaussian Mixture Model to ensure
stability of its dynamics. We denote this system in
the following as ẋSEDS = fSEDS(xSEDS).
• Taking directly the stabilized GPSSM as already

introduced in Section 3.3 as ˙̄x = f̄(x̄), which was
proposed in Umlauft et al. (2017b).

We demonstrate that the proposed method UCLD, pre-

cisely the dynamical system ẋ = f̂(x) defined in (22),
results in precise reproduction of human motions while
providing the necessary convergence guarantees. For vali-
dation, we employ the LASA handwriting dataset 3 con-
sisting of 24 movements, demonstrated by a human in two
dimensions with varying number of repetitions and 150 or
250 data points each and sampled with ∆t = 0.1s. The
goal is to reproduce the motion as precise as possible and
we apply the area error from (24) as a precision measure.
For the reproduction, one initial state is randomly sampled
in a ball with radius r = 10 around each starting point of
the training trajectories. The simulation is stopped when
the terminal condition ‖x‖ < 10 is reached and kc = 1.

5.3 Results

For the Sharp-C of the LASA dataset, the training
data D, the stabilized GPSSM f̄ and the model uncer-
tainty ‖σ2(x̄)‖ are shown in Fig. 2. By integrating shown
trajectories over ‖σ2(x̄)‖, V̄σ(x) (23) is calculated. The
resulting uncertainty-based control Lyapunov function is
depicted in Fig. 3. It also shows the trajectories gener-
ated by SEDS xSEDS(t), the stabilized GPSSM without
uncertainty awareness x̄(t) and our proposed approach
UCLD x(t). Table 1 shows the quantitative comparison
of the tracking precision defined in (24) for all these ap-
proaches for the Sharp-C movement and the full LASA
dataset of 24 motions. The uncertainty-based control Lya-
punov function outperforms the stabilized GPSSM and
SEDS methods numerically in terms of tracking precision.
However, the additional calculation steps result in longer
average training and reproduction times.

Table 1. Reproduction error ∆rep and average
times for training and reproduction in seconds.

UCLD f̂ f̄ SEDS fSEDS

∆rep Sharp-C 725.8 1553 5006
∆rep all 24 motions 1976 3787 3533
t̄train all 24 motions 208s 116s 24.0s
t̄rep all 24 motions 2.12s 0.81s 0.07s

5.4 Discussion

With the numerical example, we demonstrate that the
UCLD approach is well suited for precise tracking of hu-
man motion in a learning by demonstration setting. Fig. 3
makes clear that previous approaches (like SEDS), which
do not consider model uncertainty, suffer from imprecise
generalization: Once the path has left the proximity of the
training data, there is no incentive to return to a region
where the desired behavior is known. Thus, the general-
ization is not able to recover once it has left the trained
3 Available at https://bitbucket.org/khansari/seds
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Fig. 2. The training data (gray arrows), the model uncer-
tainty

∥∥σ2 (x̄)
∥∥ of the GPs (colormap) and the stable

trajectories x̄(t) (blue streamlines), generated by f̄ ,
for the LASA Sharp-C movement are shown.
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Fig. 3. The logarithm of the uncertainty-based control
Lyapunov function Vσ(xk) (colormap) defined in (21)
with the training data (gray arrows) from the LASA
Sharp-C movement are shown. The generated paths
from 3 initial states for UCLD x(t), generated by f̂ ,
stabilized GPSSM x̄(t), generated by f̄ , and SEDS
xSEDS(t), generated by fSEDS, are given by red,
dashed brown and dotted green lines, respectively.

region or if starting from a point not in the training set.
In contrast, the proposed method UCLD has incorporated
a mechanism to recover in these cases because the gra-
dient descent on the uncertainty-based control Lyapunov
function leads to regions containing trajectories with low
uncertainty and more demonstrations towards the goal.
Our evaluation on real-world data suggests that this ad-
vantage improves the tracking precision in the reproduc-
tion of demonstrated movements. Compared to SEDS, the
stabilized GPSSM and UCLD approaches employ with
GPs a non-parametric model for the dynamics which allow
to represent arbitrary complex motions. The comparison of
stabilized GPSSM and UCLD demonstrates the advantage
of uncertainty-based path tracking towards higher tracking
precision. Also important to note is that the approach
works parameter free (except for kc, which is here only
a time scaling factor), thus no manual tuning of a risk-
averseness or similar is necessary. However, the required



forward simulation depends on ∆t. Higher values of ∆t
make the approach faster but lead to numerical difficulties.
In our implementation, we a priori compute the Lyapunov
function on a discrete grid and interpolate it for the gradi-
ent descent. The approach aims to reduce the distance to
training data (which can also be formulated in an optimal
control problem) being computational tractable for high
dimensions of the state space. However, our approach
does not provide any optimality guarantees regarding a
particular cost function as pointed out in Remark 3.

6. CONCLUSION

The main contribution of this paper is an uncertainty-
aware control Lyapunov function approach for human
motion tracking based on Gaussian process state space
models. By integrating over the variance function of a
Gaussian process along the stabilized mean trajectories,
it takes the model uncertainty into account. It therefore
allows to track demonstrated motions with high precision.
It generates trajectories towards regions of the state space,
where training data is available and thus model fidelity is
high. We proof uniform global asymptotic stability of the
generated trajectories. In an evaluation with real human
data, we show the advantages of the proposed approach in
a reproduction task of human goal-directed motions.

ACKNOWLEDGEMENTS

The ERC Grant ”Control based on Human Models” sup-
ported this work under grant agreement no. 337654.

REFERENCES

Beckers, T. and Hirche, S. (2016). Equilibrium distribu-
tions and stability analysis of Gaussian process state
space models. In Conference on Decision and Control
(CDC), 6355–6361. IEEE.

Beckers, T., Umlauft, J., Kulic, D., and Hirche, S.
(2017). Stable Gaussian process based tracking con-
trol of Lagrangian systems. In Conference on De-
cision and Control (CDC), 5180–5185. IEEE. doi:
10.1109/CDC.2017.8264427.

Blocher, C., Saveriano, M., and Lee, D. (2017). Learn-
ing stable dynamical systems using contraction theory.
In International Conference on Ubiquitous Robots and
Ambient Intelligence (URAI), 124–129. IEEE.

Ijspeert, A.J., Nakanishi, J., and Schaal, S. (2002). Move-
ment imitation with nonlinear dynamical systems in hu-
manoid robots. In International Conference on Robotics
and Automation (ICRA). IEEE.

Khalil, H.K. and Grizzle, J. (1996). Nonlinear systems,
volume 3. Prentice hall New Jersey.

Khansari-Zadeh, S.M. and Billard, A. (2011). Learning
stable nonlinear dynamical systems with Gaussian mix-
ture models. IEEE Trans. on Robotics, 27(5), 943–957.

Khansari-Zadeh, S.M. and Billard, A. (2014). Learning
control Lyapunov function to ensure stability of dynam-
ical system-based robot reaching motions. Robotics and
Autonomous Systems, 62(6), 752–765.

Kocijan, J. (2016). Modelling and Control of Dynamic
Systems Using Gaussian Process Models. Springer.

Lang, M., Endo, S., Dunkley, O., and Hirche, S.
(2017). Object Handover Prediction using Gaus-

sian Processes clustered with Trajectory Classification.
arXiv:1707.02745.

Papachristodoulou, A. and Prajna, S. (2005). A tutorial
on sum of squares techniques for systems analysis.
In American Control Conference (ACC), 2686–2700.
IEEE.

Rasmussen, C.E. and Williams, C.K. (2006). Gaussian
Processes for Machine Learning. MIT Press, Cam-
bridge, MA, USA.

Umlauft, J., Beckers, T., Kimmel, M., and Hirche, S.
(2017a). Feedback linearization using Gaussian pro-
cesses. In Conference on Decision and Control (CDC),
5249–5255. IEEE.
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Appendix A. COMPUTATION OF THE PATH
INTEGRAL

We aim to compute the integral over the GP vari-
ance σ2

j (x) as defined in (13) along the line from xm
to xm+1, described as γ(s) = x̄ + sx̃, s ∈ [0, 1]. We
define

¯
x = xm, x̄ = xm+1, x̃ = x̄ −

¯
x, ki = k(x,x(i))

and Bij is defined as the i,j-element of
(
K + σ2

onIN
)−1

.
We drop the index j of the variance function for notational
simplicity. The integral is formulated as

L(
¯
x, x̄) =

∫ 1

0

σ2(γ(s))

∥∥∥∥dγ(s)

ds

∥∥∥∥ds,
where γ(0) =

¯
x and γ(1) = x̄. We rewrite the length of

the path
∥∥∥dγ(s)

ds

∥∥∥ = ‖x̃‖ and substitute k(x,x) = σ2
f , then

L(
¯
x, x̄)=‖x̃‖

∫ 1

0

σ2
f−

N∑
i,j=1

Bijk
(
x(i),γ(s)

)
k
(
x(j),γ(s)

)
ds

To compute the integral over a SE kernel product, we write

k
(
x(i),γ(s)

)
k
(
x(j),γ(s)

)
= σ4

f exp
(
−as2 − bijs− cij

)
where a =

n∑
k=1

x̃2
k

l2k
, bij =

n∑
k=1

x̃k

(
2
¯
xk − x(i)

k − x
(j)
k

)
l2k

,

cij =

n∑
k=1

1
2x

(i)
k

2
+ 1

2x
(j)
k

2
+

¯
x2
k −

(
x

(i)
k + x

(j)
k

)
¯
xk

l2k
.

Thus, we introduce

Mij :=

∫ 1

0

k
(
x(i),γ(s)

)
k
(
x(j),γ(s)

)
ds

=σ4
f

√
π exp

(
b2ij
4a −cij

)
2
√
a

(
erf

(
2a+bij

2
√
a

)
−erf

(
bij

2
√
a

))
,

where erf(·) is the Gauss error function. Thus, we conclude

L(
¯
x, x̄) = ‖x̃‖

(
σ2
f −

N∑
i,j=1

BijMij

)
.


