
Extension of the Plant Feature Approach Introducing Temporal
Relations

Claudius V. Jordan+, Judit Cuezva Herrero∗ and Julien Provost+

Abstract— Testing of controllers with a large number of
inputs and outputs suffers from the curse of dimensionality
in terms of the combinatorial explosion of possible input
combinations. In particular for conformance testing, this re-
sults in unbearable large numbers of test cases. To mitigate
this problem, the plant feature approach has been proposed,
which guarantees full coverage of the nominal behavior of the
controller. This nominal behavior corresponds to the reachable
state space when combining in a closed-loop the controller with
its fault-free plant. Plant features are identified as intuitive
basic knowledge about a system based on its physical behavior.
Considering such physical limitations allows to reduce the scope
of testing to the actual relevant behavior.

I. INTRODUCTION

With the ever growing demand for more complex systems,
offering more functionalities, developed in shorter time, and
requiring frequent reconfiguration and update, the control
units for these systems also grow larger and gain in com-
plexity. One obvious factor for complexity is the number
of input and output signals to be handled by these control
units. A direct consequence of the large number of inputs to
a system is the curse of dimensionality, which is also known
as combinatorial explosion. Nevertheless, engineers desire
high confidence about their controllers’ behavior. This is why
several methods have been proposed and applied in industry
to address this problem, such as pair-wise testing, random
testing and various model-based approaches [1][2][3].

On the one hand, model-based approaches have in com-
mon that they are based on specification models of the
system-under-test and derive test cases and test sequences
from those specification models. Various methods can be
found in the literature based on state machines [4][5] and
UML diagrams [6] among others. As stated by [7] still
a challenge in MBT based on FSMs is the generation of
state verification or identification sequences. An example
for a model-based approach to generate such sequences is
complete conformance testing, a black-box testing methodol-
ogy, which takes specification models as basis and evaluates
the consequences of every combination of input signals
for all states. When comparing this method with others, it
presents the advantage that every possible behavior defined
in the specification is tested. However, this method suffers
from the combinatorial explosion. On the other hand, pair-
wise and random testing can be performed without any

∗Judit Cuezva Herrero is a student at Technical University of Munich,
Garching bei München, Germany

+Assistant Professorship for Safe Embedded Systems, Technical Uni-
versity of Munich, Garching bei München, Germany {jordan,
provost}@ses.tum.mw.de

knowledge about the system because only a subset of all
possible input combinations is chosen. For pair-wise testing,
all combinations of input pairs are considered, whereas ran-
dom testing uses any (desired) number of arbitrarily chosen
input combinations. The focus for those approaches is the
selection of the most relevant test cases given that, due to the
combinatorial explosion of the system-under-test’s behavior
and the finite test execution time, it is not feasible to test all
possible input combinations. However, they do not provide
a guarantee that all relevant behavior is tested.

Recently, an approach termed “testing with plant features”
was proposed in [8] [9]. This approach aims at guaranteeing
a high test coverage while, at the same time, reducing the
testing effort. This is motivated by the observation that a
controller and a physical system (plant) operating in a closed-
loop influence each others’ behavior, which leads to the
conclusion that the reachable state space of the controller
is also restricted by the plant it controls. In particular, this is
interesting for reactive systems where such features are rather
obvious and easy to capture from the physical plant and
its structural conditions. An example could be a production
automation site. Opposed to approaches like presented in
[3], the specifications, which are given as parallel Moore
machines, are composed to one monolithic stable composed
automaton.

This paper extends the testing with plant features approach
proposed in [8]. Its contribution are the definition of temporal
plant features that allow considering more details about a
plant’s behavior. These new plant features permit to further
restrict the meaningful reachable state space of the controller
operated in a closed-loop with the plant. The temporal
plant features allow specifying relations about sequences of
signals, which are added to the bundle of possibilities to
focus on the nominal behavior of the closed-loop system
during testing.

The remainder of this paper is organized as follows. First,
the extensions to the existing plant features are presented in
Sec. II. Afterwards, two case studies are presented to discuss
the application of those extensions in Sec. III. Finally, a
discussion on the potential gain during test case generation
concludes this paper.

II. EXTENSIONS TO EXISTING PLANT FEATURES

The plant feature approach has been introduced as an idea
to include basic and obvious information about the closed-
loop behavior of the controller with the plant, in order to
reduce the set of possible input combinations for test case
generation. Additional relations can be identified, which can



be integrated to this concept to represent more closely the
nominal behavior of the system and, consequently, further
improving the efficiency of the test case generation and
execution.

This section focuses on such aspects that have not been
taken into account in the plant feature approach so far. The
characteristic presented in this contribution are the tempo-
ral plant features. Temporal relations represent information
regarding the order in time.

A. Temporal Signal Relations

The first extension to the existing plant features is the
temporal relationship which occurs between signals. Such a
temporal relation is, for example, a sequence of observed
sensor values as consequence of activated actuators, which
is currently not taken into account within the plant feature
approach.

The former plant features were capable of defining static
relations between two signals (input-input or output-input).
Given N inputs, in general 2N possible combinations have to
be considered in every state. For example, given two signals
a and b, 22 combinations are possible at each time step,
which are (0, 0), (0, 1), (1, 0) and (1, 1).

When formulating static relations such as premise and
mutual exclusion, one out of four combinations can be
omitted [9]. These static relations can be seen in Fig. 1.

t
Premise Mutual Exclusion

a
1

0

b
1

0

Fig. 1. Evolution of two signals a and b over time. There are two situations
displayed. (a) Signal a is a premise for signal b, (b) Signals a and b are
mutually exclusive.

In addition to the static relations, the newly introduced
features take into account sequences of input combinations.
Consequently, the number of possible sequences of input
combinations for k time steps for N boolean inputs is (2N )k.
By introducing a new temporal plant feature, the feasible
input sequences can be reduced.

As an example, in a system one signal has to become 1
and fall back to 0 before another one will eventually become
1 (and reset to 0). Some sequences of signal combinations
will not represent the nominal behavior of the system. This is
interesting for the test case generation in terms of reduction
of combinatorial complexity.

In Fig. 2, possible combinations of signals over time are
displayed: premise, strict sequence and overlapped sequence.
The main difference between those are the order of signal
changes highlighted by blue ellipses. The premise (which is
also a static relation) represents the situation that a signal b
can only be 1 when another signal a is also 1 at the same
time. Otherwise, b cannot be 1. For a strict sequence, a signal
a has to be 1 and reset to 0 before another signal b can do
so. Another change of signal a is possible but it has no effect

unless b has been set to 1 and reset to 0. Compared to the
strict sequence, in the overlapped sequence b has to occur as
long as signal a is 1 and at the same time a is not allowed
to return to 0 until then. Likewise, b must change back to 0
only after a.

t
Premise Strict Sequence Overlapped Sequence

a 1
0

b
1
0

Fig. 2. Evolution of two signals a and b over time. There are three situations
displayed. (a) Signal a is a premise for signal b, (b) Signals a and b occur
in strict sequence, (c) Signals a and b occur in a overlapped sequence.

B. Temporal Plant Features

The graphical implementation as state machine for the
temporal plant features of two signals a and b is depicted
in Fig. 3. The values of signals a and b can be 0 (e.g. ¬a) or
1 (e.g. a). This results in a concise description of the input
restrictions on the states and transitions that cause changes on
the restrictions. On the left side, the strict sequence feature
is displayed, and on the right side the feature for overlapped
sequence. For both cases, it can be seen that initially b is 0,
because b is forced to be 0 represented by ¬b in the state. If
a has the value 1, the transition to the next state is fired and
the restrictions in the next state (here still ¬b) are activated,
which has no effect in this case. If afterwards a resets to 0
(¬a), the restrictions in the state are released. ∅ in a state
indicates that there is no restriction on the set of inputs.

For the strict sequence, b stays 0 (¬b in the states) until
a has become 1 and has been reset to 0 because then the
restrictions are released (∅ in the state). For the overlapped
sequence, a (b) has to stay 1 (0) until b (a) has changed its
value to 1 (1) and then b is forced to stay 1 at least until a
has reset to 0.

¬b

S1.1

¬b

S1.2

a

∅

S1.3

¬a

∅

S1.4

b

¬b

Strict sequence

¬b

S2.1

a

S2.2

a

b

S2.3

b

¬a

S2.4

¬a

¬b

Overlapped sequence

Fig. 3. State machine representation of the temporal plant feature strict
sequence and overlapped sequence for two signals a and b.

The presented temporal extension allows a further decrease
in possible input combinations. As stated in the example, it is
possible to reduce from originally 4 combinations down to 3
combinations, by means of static plant features. In addition,
according to the restrictions imposed on the sequence of
combinations, eventually, the input combinations that have
to be considered can be reduced to a minimum of 2. This



can be seen on states S1.1 and S1.2 as ¬b obliges the signal
value for signal b to be 0, consequently, in that situation
only the two combinations (a,¬b) and (¬a,¬b) are feasible.
In comparison, for the static features, e.g. mutual exclusion
of signals a and b, only one combination is eliminated.

III. CASE STUDIES

The applicability of the plant feature approach is demon-
strated with two case studies, first, a single one-way conveyor
belt with two proximity sensors and a pusher (Sec. III-A),
and then, a more complex elevator control (Sec. III-B). In
particular, the temporal plant features introduced in Sec. II
are further discussed and applied.

A. Conveyor Belt

The conveyor system consists of a single, one-way belt
which has two proximity sensors, one situated at the begin-
ning of the belt and the other one at the end. The pusher
situated at the end of the conveyor belt exports the package
from the system. The system is depicted in Fig. 4 and its
inputs and outputs are listed in Tab. I.

• •Belt

s1 s2

Pusher

Fig. 4. Figure representing the conveyor system used in the case study. The
top image represents the conveyor belt seen from above, whilst the bottom
image shows the lateral view of the system.

TABLE I
TABLE OF INPUTS & OUTPUTS FOR THE CONVEYOR BELT

Input Description

s1, s2
Sensor detecting packages at certain positions on the
belt. s1 is positioned at the beginning. s2 is located
at the end.

Output Description
Belt Move the belt.
Pusher Push package out of the system.

One can easily identify premise relations in the system for
the belt movement (output signal Belt) and the sensors s1
and s2: changing values of sensor s1 from 1 to 0 and values
of sensor s2 from 0 to 1.Likewise, the movement of the
pusher (output signal Pusher) is a premise for resetting
sensor s2 to 0.The reason for such plant feature is that the
sensors’ values will only change when the belt is running
(resp. the pusher is moving).If the belt is not running, then
no package can leave the position of sensor s1.The output

signal Belt is a premise for the change of sensor value s1
from 1 to 0.The same reasoning can be applied for a package
reaching the position of sensor s2. The output signal Belt is
again a premise for the change of the sensor value s2 from
0 to 1.Similarily, the change of sensor value s2 from 1 to
0 depends on the pusher.Note that the change from 0 to 1
for sensor s1 is not dependent on the movement because the
upstream process (e.g. a crane) can deploy a package at this
position at any time.

However, temporal relationships between signals have not
yet been considered. It can be seen that a package is going to
be detected first by sensor s1 and later by sensor s2, which
means that a temporal relationship exists between them.
As discussed in Sec. II, a plant feature can be formulated
to represent such situations. An implementation as state
machine is given in Fig. 5, where the sequence of possible
states considering only one package in the system at a time
are drawn in black color. When there is only one package
allowed in the system, the strict sequence plant feature is
straightforwardly instantiated from the template provided in
Fig. 3. Labels for output signals that enable the transition
from one state to another are added.

The transitions are again labeled with guards and actions.
If there is no guard, then the transition is independent of
an output signal, which is indicated by “-”. The states
are labeled with a tuple representing the current signal
values of the sensors (s1, s2). The only possible sequence
is a strict sequence of the input combinations (¬s1,¬s2),
(s1,¬s2), (¬s1,¬s2) and (¬s1, s2). Compared to the re-
duction induced by the three premises identified beforehand,
this temporal plant feature further reduces the set of input
combinations varying over time.

(¬s1,¬s2)

S1

(s1,¬s2)

S2

(¬s1,¬s2)

S3

(¬s1, s2)

S4

(s1, s2)

S5

- / c++

Belt

Belt /
(c−−)

Pusher ∧
(c==0)

-/ c++

Belt

Pusher

- / c++

Pusher

Fig. 5. Temporal plant feature for the conveyor belt example for the signal
values of sensors s1 and s2. Without the blue addition (edges and state
(s1, s2)) only one package is considered in the system. The blue addition
(introducing a counter c) allows considering multiple packages in the system
at the same time.

When allowing more than one package at a time, the pro-
posed feature template is less intuitive. An advantage of the
plant feature approach is, that once the features are specified,
they can be gathered in a library such that a user picks
a template and the implementation is done automatically.
The additions in blue color in Fig. 5 make it feasible to
consider multiple packages in the system at the same time.



Therefore, a counter c is added as internal variable. Now,
the state S5 is also reachable, as there can be a previous
package detected by sensor s2 and a new one entering the
system at sensor s1 simultaneously. This is in particular
of interest as it is considered not nominal when sensor s2
would encounter more packages than sensor s1. Actions, here
increment (c++) and decrement (c−−) the counter c, are
specified on the transitions. That way, the states represent the
current combination of sensor values, which is of interest for
the test case generation, and the guards represent restrictions
on the change of those input combinations. For example,
when currently the sensor input combination is (s1,¬s2)
(state S2), the change to the combination (¬s1,¬s2) is
considered nominal according to the plant feature if the belt
is running, indicated by the output signal Belt.

For the extended feature displayed in Fig. 5, a modified
version can be formulated, omitting the particular initial
state with no package in the system by merging it with the
situation that there is currently no package at neither of the
two sensors. This modification is presented in Fig. 6.

(¬s1,¬s2)

S1

(s1,¬s2)

S2

(s1,¬s2)

S3

(s1, s2)

S4

- /c++

Belt

Belt ∧ (c≥1)
/ c−−Pusher

- /c++

Belt

Pusher
Belt ∧ (c≥2)
/ (c−−)

Fig. 6. Modified temporal plant feature for the conveyor belt based on
Fig. 5.

B. Elevator

The elevator in this case study serves three different floors:
level 1, 2 and 3. On each floor there is a sensor indicating
the presence of the elevator cabin (s1, s2, s3), as well as door
sensors to indicate when the doors on the floors are closed
(dc1, dc2, dc3) or when they are open (do1, do2, do3). Addi-
tionally, the elevator has internal doors which also have door
sensors (dci, doi). For safety reasons, the doors of each floor
must always be closed, unless the elevator is on that floor.
The internal door is opened only when resting at one of the
floors. The vertical movement of the elevator is represented
by the output signal MoveU for the upwards movement and
MoveD for moving downwards. The opening and closing
of doors is also done by separate motors, controlled by the
output signals OpD1, OpD2, OpD3, OpDi for opening and
ClD1, ClD2, ClD3, ClDi for closing. Additionally, there is a
presence sensor (pres), which detects obstacles in the doors’
way, and an overweight sensor (overw) indicating excessive
weight in the cabin. The elevator system is depicted in Fig. 7
and the system’s inputs and outputs are listed in Tab. II.

Note, the elevator moves from floor to floor based on user
requests expressed via the buttons in the cabin or the ones

on each floor. The elevator’s movement cannot be interrupted
by any other call until it has finished the previous movement,
which means that if the elevator is going from the third to
the first floor, it won’t stop on the second floor on its way
down.

b3

b2

b1

Buttons
inside
cabin

Cabin

overw

pres

doidci

OpDi

ClDi

call1

call2

call3

s1

s2

s3

dc1

dc2

dc3

do1

do2

do3

MoveU

MoveD

Fig. 7. Elevator with inputs and outputs.

TABLE II
TABLE OF INPUTS & OUTPUTS FOR THE ELEVATOR

Input Description

b1, b2, b3 Buttons inside the cabin, to demand which
floor to go to.

s1, s2, s3 Sensors indicating the cabin’s position on a
specific floor.

dci, dc1, dc2,
dc3

Sensors indicating that the doors are closed
when value 1 (internal doors, doors on floor
1, 2, 3).

doi, do1, do2,
do3

Sensors indicating that the doors are open
when value 1 (internal doors, doors on floor
1, 2, 3).

overw Overweight sensor indicates overweight.

pres Presence sensor indicates that something is
detected in the doors’ way.

call1, call2,
call3

Button on each floor to enable calling the
elevator.

Output Description
MoveU Move the elevator upwards.
MoveD Move the elevator downwards.
OpDi, OpD1,
OpD2, OpD3

Open doors (internal doors, doors on floor 1,
2, 3).

ClDi, ClD1,
ClD2, ClD3

Close doors (internal doors, doors on floor 1,
2, 3).

Several static plant features can be identified in the el-
evator system. General mutual exclusion is represented in
Fig. 8. A special type of mutual exclusion, the so-called
“chain”-exclusion, can be found for the elevator that can
physically only be at maximum one floor at a time, which can
be captured in a mutual exclusion feature of the sensor values
s1, s2 and s3. In addition to the mutual exclusion, the order of
possible signal combinations is fixed, which allows to make
use of the findings regarding temporal relations presented
in Sec. II. In Fig. 9 the state machine model for this feature
is presented. Note that this differs from the one presented in
Fig. 8.

A simple example for a premise feature can be the
relation between the internal doors (dci) not being closed and



¬a,¬b,¬c

S0

a,¬b,¬c

S1

¬a, b,¬c

S2

¬a,¬b, c

S3

¬a
¬b

¬c

a

b

c

¬a ∧ b

a ∧ ¬b

¬b ∧ c

b ∧ ¬c¬a ∧ ca ∧ ¬c

Fig. 8. General mutual exclusion. When direct transition between the leafs
is not possible, the feature is called “star”-exclusion.

s1, ¬s2,
¬s3

Floor 1

¬s1,
¬s2, ¬s3

I12

¬s1,
s2, ¬s3
Floor 2

¬s1,
¬s2, ¬s3

I23

¬s1,
¬s2, s3
Floor 3

¬s1
s2

¬s2
s3¬s3

s2
¬s2

s1

Fig. 9. Mutual exclusion of the floor sensors of type “chain”-exclusion.

detecting overweight (overw). If the doors are open, there can
be an overweight detected or not, however, once the doors
have been closed, the overweight sensor will not change its
value. This premise relation is depicted in Fig. 10.

¬dci
Door not closed

¬overw, dci
Door closed

¬dci

dci

Fig. 10. Open internal door (dci) is a premise for detecting overweight
(overw).

Additionally, new plant features presented in Sec. II can
be found. For the mutual exclusion example mentioned
above regarding the floor sensors, a temporal relationship
can be added depending on the elevator’s movement and
the sequence of inputs which could be received. It looks
quite similar to the feature presented in Fig. 9 as the states
represent again the position of the cabin. However, the
feature presented in Fig. 12 is a level-2 feature. Note, as
introduced in [9] level-1 features refer to relations between
input signals only, whereas level-2 deals with output signals.
For example, if the elevator is in the third floor (s3) and it
is moving downwards MoveD to the first floor, then s3 will
deactivate, s2 will activate and deactivate, until finally s1
will activate. The signal changes over time are represented

in Fig. 11. The same sequence, in inverse order, applies if the
elevator is moving upwards. The state machine for this plant
feature (upwards and downwards movement) is presented in
Fig. 12.

t

MoveD
1

0

s3
1

0

s2
1

0

s1
1

0

Fig. 11. Evolution of floor sensor signals indicating the position of the
elevator cabin when moving downwards from the third to the first floor.

s1, ¬s2,
¬s3

Floor 1

¬s1,
¬s2, ¬s3

I12

¬s1,
s2, ¬s3
Floor 2

¬s1,
¬s2, ¬s3

I23

¬s1,
¬s2, s3
Floor 3

MoveU ∧
¬MoveD

MoveU ∧
¬MoveD

MoveU ∧
¬MoveD

MoveU ∧
¬MoveD

MoveD ∧
¬MoveU

MoveD ∧
¬MoveU

MoveD ∧
¬MoveU

MoveD ∧
¬MoveU

Fig. 12. Temporal relationship between the floor sensors (s1, s2, s3) as a
chain depending on the elevator’s movement (MoveU, MoveD).

By applying this sequence to the plant features approach,
it avoids the generation of inputs which would not match
the real behavior of the system, i.e. activating the third floor
sensor and then directly the first floor sensor, without the
activation of the second floor in between.

TABLE III
MEALY MACHINE RESULTS OBTAINED FOR THE ELEVATOR CASE STUDY

Case Considered # states # transitions Reduction
in %

CCT 575 301465600 –
with static plant
features 323 9506322 96.8%

with temporal
plant features 323 7594660 97.5%

Automatic test case generation is based on Mealy ma-
chines that are generated based on a specification model.
In order to compare the effort to perform complete con-
formance testing (CCT), the sizes of the generated Mealy
machines for the different cases discussed above are given
in Tab. III. When the restrictions expressed via plant features
are considered, the number of states and transitions is greatly
reduced. For the case study presented here, 12 static plant
features could be identified. With those static plant features
the number of transitions in the generated Mealy machine
could already be reduced by 96.8%. Identifying that one



of the mutual exclusion features is a “chain”-exclusion, as
discussed above, leads to further reduction by additional 20%
resulting in an overall testing effort that is less than 3%
compared to CCT.

IV. CONCLUSION & DISCUSSION

In this paper, the plant feature approach has been enriched
by considering temporal relations. As temporal relations,
a strict sequence and an overlapped sequence have been
introduced. In addition, the mutual exclusion has been gener-
alized to more than two signals and applied to the presented
approach. The ”Chain”-Type mutual exclusion is one useful
plant feature resulting from combining the before-mentioned
relations. As a result, further test cases can be neglected
during testing as they would not occur in the actual nominal
closed-loop behavior of the controller and the physical plant
under control.

Two examples have been presented that show the applica-
bility of the newly introduced plant features, where for the
second quantitative results are provided. Further case studies
will have to be conducted to show how much reduction in
terms of test cases can be achieved applying these additional
features. For future work it will be interesting to incorporate
timing in the specification model as well as using timing
information in a new set of plant features.

REFERENCES

[1] W.-l. Huang and J. Peleska, “Model-based testing strategies and their
(In)dependence on syntactic model representations,” Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 9933 LNCS,
pp. 3–21, 2016.

[2] P. Mahadik, D. Bhattacharyya, and H. jin Kim, “Techniques for
automated test cases generation: A review,” International Journal of
Software Engineering and its Applications, vol. 10, no. 12, pp. 13–20,
2016.

[3] K. Pinkal and O. Niggemann, “A new approach to model-based test
case generation for industrial automation systems,” in 2017 IEEE 15th
International Conference on Industrial Informatics (INDIN). IEEE,
jul 2017, pp. 53–58.

[4] A. C. Pinheiro, A. Simão, and A. M. Ambrosio, “FSM-based test
case generation methods applied to test the communication software
on board the ITASAT university satellite: A case study,” Journal of
Aerospace Technology and Management, vol. 6, no. 4, pp. 447–461,
2014.

[5] R. Dorofeeva, K. El-Fakih, S. Maag, A. R. Cavalli, and N. Yevtushenko,
“FSM-based conformance testing methods: A survey annotated with
experimental evaluation,” Information and Software Technology, vol. 52,
no. 12, pp. 1286–1297, dec 2010.

[6] Y. D. Salman and N. L. Hashim, “Automatic Test Case Generation from
UML State Chart Diagram: A Survey,” 2016, pp. 123–134.

[7] A. Sabbaghi and M. R. Keyvanpour, “State-based models in model-
based testing: A systematic review,” in 2017 IEEE 4th International
Conference on Knowledge-Based Engineering and Innovation (KBEI).
IEEE, dec 2017, pp. 0942–0948.

[8] C. Ma and J. Provost, “Using plant model features to generate reduced
test cases for programmable controllers,” IFAC-PapersOnLine, vol. 50,
no. 1, pp. 11 163–11 168, jul 2017.

[9] ——, “A model-based testing framework with reduced set of test cases
for programmable controllers,” in 13th IEEE Conference on Automation
Science and Engineering (CASE), 2017, pp. 944–949.


	Introduction
	Extensions to existing plant features
	Temporal Signal Relations
	Temporal Plant Features

	Case Studies
	Conveyor Belt
	Elevator

	Conclusion & Discussion
	References

