
Fakultät für Elektrotechnik und Informationstechnik
Technische Universität München

A Traced-based Automated System Diagnosis and Software
Debugging Methodology for Embedded Multi-core Systems

Lin Li

Vollständiger Abdruck der von der Fakultät für Elektrotechnik und Informationstechnik
der Technischen Universität München zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr.-Ing.)

genehmigten Dissertation.

Vorsitzender:
Prof. Dr.-Ing. Samarjit Chakraborty

Prüfende der Dissertation:
1. Prof. Dr. sc. techn. Andreas Herkersdorf
2. Prof. Dr.-Ing. Frank Slomka

Die Dissertation wurde am 19.09.2018 bei der Technischen Universität München
eingereicht und durch die Fakultät für Elektrotechnik und Informationstechnik am
22.06.2019 angenommen.

Abstract

Nowadays devices in our daily life e.g. self-driving cars, phones and smart factories are
becoming smarter because powerful embedded systems are widely applied. This trend
demands the support of more advanced and more sophisticated embedded systems. As
the complexity of both hardware and software in embedded systems increases, the gap
between the developers’ understanding and the actual system status grows broader, re-
sulting in increasing time and effort spent on software validation and debugging. Worse
still, new issues also occur accompanying the current trend of multi-core/manycore em-
bedded systems.

Conventional debugging and diagnosis tools are not efficient enough to handle these
new challenges. First, many conventional debugging methods may encounter problems
like “heisenbugs” that seem to disappear or alter the behavior when one tries to debug
them. This is because many methods based on e.g. setting breakpoints or software
instrumentation change the timing behavior of systems, which can jeopardize the repro-
duction of bugs. Second, the observability and the traceability of complex embedded
systems are limited and not all information can be transferred out of chip. The modern
single-core system already produces more than 10 gigabits per second of raw trace data
while the multi-core systems are even higher. The off-chip tracing bandwidth cannot
catch up the increase of raw data generated on chip so not all data can be captured
continuously without halting the system. Picking up the “right” raw data to be traced
with limited bandwidth in such a huge volume of raw data is challenging. Third, con-
ventional debugging solutions e.g. breakpoints are inefficient to deal with some issues
introduced by multi-core architectures. For instance, the performance impact due to
shared resource contention is usually underestimated. Such contention e.g. program
flash contention is transparent to software developers and improperly emphasized. For
multi-core timing related issues that occur only sporadically, manual debugging is very
time-consuming or sometimes even impossible.

Therefore, a novel automated system diagnosis and debugging methodology is pro-
posed to tackle the above challenges. The proposed methodology is named “embedded
health” because the initial idea is from one of best practices to cure diseases – medicine.
It can be performed as a generally applicable automated diagnosis for various embedded
system issues. This is very similar to a blood test via which several diseases can be
rapidly and precisely detected. This methodology makes use of hardware tracing that
is supposed to be supported intrinsically by the embedded system, and detects special
symptoms replying on the predefined indicators. Hardware tracing is non-intrusive and
thus the system timing is not influenced by the debugging process. The predefined in-
dicators are the most important part in this methodology. The design of the indicators
is independent of applications and operating systems. The low-level hardware-related

iii

Abstract

behavioral patterns are used to design the indicators, similar to the metric system in
the medical “blood test”. If the patterns are hit, the related indicator becomes positive
and the corresponding issue is detected. The debugging process is automated and the
manual involvement is minimized.

Several aspects that are not usually well covered by conventional tools are taken
care of by this methodology, for instance, program flash contention, data locality and
data memory contention, hardware configuration validation, DMA channel visualization,
lock usage profiling etc. Data memory contention is studied by much research but the
program flash memory contention is rarely covered. The program flash contention can
also greatly influence the performance in multicore embedded systems by jeopardizing
the instruction fetch. However, its impact is not well studied and underestimated. Worse
still, the performance impact is hard to measure precisely as only contention that occurs
at critical time points degrades performance. In this dissertation, an indicator is designed
to handle this problem and it is the first one to detect program flash contention spots
and estimate the performance impact accurately.

For multicore systems, locks are widely used to regulate the accesses from different
tasks to the shared resources. The efficiency of locks is an important factor of system
performance so many profiling methods are introduced for various operating systems.
An indicator that profiles the lock performance independent of operating systems and
reminds developers of improper lock behavior is introduced.

Embedded systems distinguish themselves from general purpose computers by many
peripherals for various applications. These peripherals are supposed to be configured
properly in order to have the expected functionalities. The hardware configurations are
error-prone and issues caused by misconfigurations are sometimes hard-to-detect. In the
proposed methodology, a method is designed to efficiently detect configuration issues
even before the symptom appears.

The proposed methodology differentiates from related research in several aspects.
First, it makes use of non-intrusive hardware tracing to monitor the system execution.
Hardware tracing is non-intrusive, which is mandatory for analyzing hard real-time ap-
plications. Second, different indicators are investigated and designed for various issues
independent of applications, meaning that the same indicator is also feasible for another
application. Third, the target issues are rarely covered or not well solved by existing
solutions. Issues e.g. program flash contention are even not detectable with existing
tools. Finally, the detection of issues relies on the root causes instead of the superficial
symptoms. It is able to detect issues even before the symptom appears and estimate the
severity of the issues.

The proposed methodology was proven with experiments and then implemented as an
automated system diagnosis and debugging tool named ChipCoach working for Infineon’s
AURIX microcontroller family which is a popular microcontroller in the automotive
industry. ChipCoach is currently used quite intensively by a group of customer support
engineers and it receives very positive feedback. It continues to be improved based on
field experience and will be released in a commercial way.

iv

Acknowledgment

I would like to express my sincere appreciation and thanks to my PhD adviser Prof.
Dr. sc. techn. Andreas Herkersdorf for the continuous support of my PhD study and
master study. His guidance enlightened my path of exploration in the academic world
and helped me all the time during my research and thesis writing. He encouraged me
to cultivate innovative and critical thinking, which will benefit my whole life. Without
his guidance and help this thesis would not have been possible. I also would like to
thank my PhD adviser at Infineon Dr. Albrecht Mayer who provided direct support and
guidance to me. He established the firm foundation of my research and showed me the
promising direction that led to my current work. His experience enabled me to avoid
a lot of repeated work and his optimism always heartened me when I was frustrated in
the darkness.

I would also like to thank Prof. Dr.-Ing. Frank Slomka who provided me invaluable
feedback in my dissertation. I thank very much my colleague Jens Harnisch, with whom
I discussed a lot and improved many ideas. His experience in both the technical field
and project management greatly optimized the development efficiency and the quality
of the ChipCoach project. A special thanks to my project partner Philipp Wagner, who
spend much time on our papers and the cooperated funding project. And also a special
thanks to Max Brand, who had fruitful discussions with me and helped me with my
German translation. Moreover, I am thankful to working students who contributed to
the ChipCoach project and spent days on debugging.

Last but not the least, I would like to thank my family: my parents for supporting me
spiritually throughout my life and my wife for her understanding. I would also like to
thank all of my friends who supported me in writing, and incented me to strive towards
my goal.

v

Contents

Abstract iii

Acknowledgment v

Contents vii

1 Introduction 1
1.1 Background . 1

1.2 The proposed solution . 3

1.2.1 Methodology – embedded health 3

1.2.2 Implementation – ChipCoach . 5

1.2.3 Contributions . 7

2 Related Work 9
2.1 System diagnosis classification . 9

2.1.1 Analysis types . 9

2.1.1.1 Static analysis . 9

2.1.1.2 Runtime analysis . 11

2.1.1.3 Post-processing analysis 13

2.1.2 Data collection methods . 13

2.1.2.1 Software-based . 14

2.1.2.2 Hardware-based . 14

2.1.2.3 Hybrid-based . 14

2.1.2.4 Simulation-based . 15

2.2 The automated “blood test” in system diagnosis 15

2.3 Target issues of the proposed system diagnosis methodology 17

2.3.1 Hardware configuration issues . 17

2.3.1.1 Linear Temporal Logic 17

2.3.1.2 Runtime Monitoring . 17

2.3.2 Lock issues . 19

2.3.3 Interrupt performance issues . 21

2.3.4 Shared resource contention . 21

2.3.4.1 Program flash contention 22

2.3.4.2 Data memory contention and data locality 22

3 Preliminaries 25
3.1 TriCore . 25

vii

Contents

3.2 Infineon AURIX . 25

3.2.1 Atomic instructions . 28

3.2.2 Interrupt system . 28

3.2.3 OCDS . 29

3.3 Infineon’s MCDS . 30

3.4 MCDS tracing . 32

3.5 AURIX tools . 34

3.5.1 DAS . 34

3.5.2 MTV . 35

4 Embedded Health – How to diagnose a complex system? 37
4.1 Learn from medicine – embedded health 37

4.1.1 An automated system diagnosis and debugging methodology . . . 38

4.1.2 Issue classification . 42

4.2 Diagnosis methodologies of functional issues 43

4.2.1 Hardware configuration validation 43

4.2.1.1 Introduction . 43

4.2.1.2 Methodology . 47

4.3 Diagnosis methodologies of non-functional issues 52

4.3.1 DMA channel activity analysis . 53

4.3.1.1 Introduction . 53

4.3.1.2 Solution . 54

4.3.2 Interrupt profiling analysis . 57

4.3.2.1 Introduction . 57

4.3.2.2 Solution . 58

4.3.3 Lock profiling . 62

4.3.3.1 Introduction . 62

4.3.3.2 Lock Profiling Approach 63

4.3.4 Program flash contention . 67

4.3.4.1 Introduction . 67

4.3.4.2 Methodology . 69

4.3.5 Data memory analysis . 75

4.3.5.1 Introduction . 75

4.3.5.2 Methodology . 76

5 Implementation and experimental Evaluations 81
5.1 The implementation of the proposed methodology — ChipCoach 81

5.1.1 ChipCoach . 81

5.1.1.1 Global functions . 83

5.1.1.2 automated system diagnosis 86

5.1.1.3 Hardware validation analysis 87

5.1.1.4 DMA activity analysis . 89

5.1.1.5 Interrupt profiling . 90

5.1.1.6 Lock profiling . 92

viii

Contents

5.1.1.7 Program flash contention 92
5.1.1.8 Data memory contention 95
5.1.1.9 Clock configuration view 97
5.1.1.10 Other features . 99

5.2 Experimental evaluation . 100
5.2.1 Lock profiling analysis . 100

5.2.1.1 Ethernet demonstration application 100
5.2.1.2 Lock profiling results . 101

5.2.2 Program flash contention analysis 103
5.2.2.1 Experiment setup . 103
5.2.2.2 Results . 105
5.2.2.3 Assessments . 106

5.2.3 Data memory analysis . 108
5.2.3.1 Setup . 109
5.2.3.2 Results . 110
5.2.3.3 Assessments . 111

6 Conclusions 115
6.1 Embedded Health – How to diagnose a complex system? 115
6.2 Implementation – ChipCoach . 117
6.3 Summary and future work . 117

List of Figures 119

List of Tables 121

Acronyms 123

Bibliography 127

ix

1 Introduction

1.1 Background

Software bugs are causing great losses to modern society. In 2002, a study commissioned
by the US concluded that ”Software bugs or errors, are so prevalent and so detrimental
that they cost the US economy an estimated $59 billion annually” [1]. Testing and
debugging of software also consume a significant amount of time. Debugging can take
up to 50% of the development time [2]. There are many famous accidents caused by
software bugs resulting in great losses of not only money but also time and lives. For
instance, the American robotic spacecraft ”Mars Pathfinder” which landed on Mars in
1997, jeopardized the mission owing to the constantly computer resetting caused by a
priority inversion bug in software. The mission was interrupted and heavily delayed just
by this bug. Fortunately, this software was fixed with a short C program after hours’
debugging. An unfortunate example is the first test flight of the Ariane 5 rocket. It
exploded just 37 seconds after launch because of the arithmetic overflow in the hardware
caused by a piece of software which is in fact not required at all, resulting in a loss of
millions of dollars. The most dangerous example is the cold war missile crisis, which
could have led to a nuclear war and destroyed the world. The Soviet early warning
satellite system sent out a false warning that five missiles were launched by the US,
which could be a trigger of a nuclear war. Fortunately, it was avoided by a smart duty
officer. Afterwards, they found that the root of the false warning was also a software
bug.

The examples given above are from years ago, when both hardware and software
architecture were much simpler than the current ones. Modern devices are smarter e.g.
self-driving cars, phones and smart factories, and embedded systems play important
roles in these devices. This requires more advanced and higher performance systems.
The rapid advances in System on Chip (SoC) have led to powerful multicore/manycore
systems. For instance, it is said that today’s cell phones have more computing power than
the computer NASA used to go to the moon in the 1960s [3]. As a side effect, many new-
coming issues are also introduced together with the application of multicore/manycore
systems, e.g. limited observability & traceability, sporadic timing issues, shared resource
contention, multicore synchronization issues and complex hardware configurations in
modern embedded systems. Several new issues are described as examples in the following.

As the number of cores and the core clock frequency increase, the amount of trace data
generated per second also explodes. Modern single-core system already produces more
than 10 gigabits per second of raw trace data [4]. The tracing bandwidth for multi-core
systems should be much higher than for the single-core as the number of cores multiplies.
However, the number of pins and the bandwidth of pins are not following the same trend

1

1 Introduction

as the required tracing bandwidth so not all data can be traced continuously without
halting the system. The observability and the traceability become more limited due to
this bandwidth bottleneck.

Many issues are sporadic, relying on the system timing that is sensitive to software
instrumentation. Setting a breakpoint or modifying software changes the timing, leading
to a different system behavior, which impedes the debugging process. For such issues,
the debugging solution is supposed to be non-intrusive.

Contention for shared resources emerges after the introduction of multicore/manycore
architecture. When two cores access the same shared resource simultaneously, usually
one core has to wait until the first one finishes, if this shared resource does not support
accesses in parallel. Contention delays the access and has an influence on the system
performance. Many contention issues are underestimated as they are usually transparent
to software developers and also are not detected easily by conventional tools.

The conventional debug methods, for example, setting a breaking point and stepping
through a program fulfill the basic debugging requirements, but they are not efficient
in handling new coming challenges. First, many conventional debug methods change
the timing behavior of systems, which may hide bugs and cause heisenbugs because
the changes in timing can obstruct the reproduction of bugs. To deal with multicore
concurrent debugging, concurrent execution control is needed. Usually the solution
is that one more selected core can be halted by external pins. External pins can be
used to signal other cores to halt. However, this solution suffers from significant latency
problems [5]. Setting a break point cannot ideally halt all hardware modules at the same
time in a multi-core system. Therefore, it is not suitable for handling timing-sensitive
issues. Second, conventional debug solutions are not efficient to deal with certain new
issues [6] such as performance issues introduced by multi-core architecture. Some new-
coming issues are sporadic, e.g. deadlocks and priority inversions. Manually debugging
sporadic issues is time-consuming or even not possible. Some have no obvious symptoms
e.g. improper type of locks and inefficient lock granularity compared to the conventional
functional bugs. Finally, knowing where to explore is extremely challenging in a complex
system with limited observability. A normal debug process works in this way: observe
symptom, look into related parts and find issue. This process is not easy to apply to a
highly complex system with many inter-dependencies. Meanwhile, conventional debug
tools need precise human control to configure the analysis scope, which is not feasible
for complex multi-core debugging.

Two complex real-life examples that are hard for conventional debugger to deal with
are introduced below. As the complexity of SoC increases, the integration of more and
more hardware components like peripherals into a single chip resulted in complex rules
governing the configuration and the use of these components. Not completely following
the rules of proper hardware usage can result in functional bugs and performance bugs.
A real life example for Infineon’s AURIX microcontroller: Clock Control Unit (CCU) in
AURIX is responsible for the clock distribution. The clock configuration is changed by
writing several control registers. The UP bit in the control register works as an update
switch for activating the whole configuration consistently when the last configuration
register is written. If this field is not set, the CCU still works in the previous setting,

2

1.2 The proposed solution

though the registers show the newly written values, which is misleading for developers.
The issue with this configuration is that the register does not show the actual state when
the UP field is neglected. A conventional debugger may also contain a feature to show
the current clock configuration but it is usually based on the current misleading register
values. The wrong displayed clock states provide the software developer with wrong
information, which could lead to a wrong direction. Another example about complex
hardware configuration is about flash wait state configuration, which relies on the system
clock frequency. An improper flash wait state configuration will either result in sporadic
bus errors or lower performance. A conventional debugger is not capable of handling
such issues.

1.2 The proposed solution

As mentioned in the above section 1.1, conventional tools are not able to address the new
challenges brought by multi-core architectures efficiently. A novel debug methodology
is needed to help software developers to conquer the debugging of complex software in
multi-core embedded systems. In the following, a methodology is proposed to deal with
the mentioned new challenges.

1.2.1 Methodology – embedded health

The goal of this research is to create a novel system diagnosis methodology that can
automatically diagnose certain new-coming system issues which are rarely covered or
not well addressed by conventional solutions, to increase the debugging efficiency. This
research covers the debug challenges in the area of shared resource contention, atomic
violations, memory locality, lock profiling and hardware configuration validation for
embedded systems etc. Based on this research, a novel debug methodology is designed
and implemented to automatically detect these issues in embedded systems.

Modern embedded systems are becoming more complex as the number of cores and
peripherals increases. The software complexity also explodes in the same trend. Embed-
ded systems are complex from both software and hardware perspectives but even worse,
the observability is limited. A simple question whether there is anything wrong inside
of an embedded system is not so easy to answer anymore, let alone the question of what
causes the wrong behavior. How can we diagnose issues in a complex system?

This question of how to figure out what is wrong in a complex system is not new for
doctors in the medicine field who have been facing the same challenge for thousands of
years. They found that the symptoms of diseases are depending on individuals. For
instance, catching a cold for some patients means sniffling while for the others may be
sneezing. Only relying on the superficial symptoms to diagnose a disease is not very
reliable as there are also many diseases sharing the same symptoms and symptoms are
individualized on different persons. Accordingly, doctors invented many diagnosis meth-
ods such as blood tests, X-ray tests, Magnetic Resonance Imaging (MRI) and biopsies.
One common characteristic of these diagnosis methods is that they are not only relying

3

1 Introduction

on the superficial symptoms but also the radical causes. One typical successful well-
known example is a blood test, via which many diseases such as leukemia, hepatitis,
malnutrition etc. can be diagnosed. Blood tests are standardized and can be conducted
for different patients and different diseases. Many reference ranges for blood tests that
are usually given as what are the usual values of substance levels found in the population
are created to help to diagnose physical problems[7]. They may also be called standard
ranges and work as the indicators of issues. Many diseases caused by virus are also
detectable via a blood test.

With many similarities in complexity, a complex embedded system is also limited in
observability as a human body that cannot be opened to see what is going on as wishes.
Bugs in the system are similar to diseases in body. The lessons ”Do not only rely on the
superficial symptoms but also the radical causes.” learned by doctors can also help to
debug complex embedded systems. Therefore, the root cause of issues should be focused
via the limited observability.

For embedded systems, hardware tracing in the embedded field provides certain ob-
servability like the blood test in the medicine field. It also brings the internal information
in a system to the outside world for analysis. Hardware tracing is widely supported by
many Commercial Off-The-Shelf (COTS) devices e.g. Infineon’s Multi-Core Debug So-
lution (MCDS), ARM’s Coresight and Freescale Nexus 5001. The issue diagnosis in
embedded system should not depend on specific superficial symptoms but on the inter-
nal root causes. Therefore, similar to blood test indicators, indicators that are extracted
from hardware-related and low-level information are designed for embedded systems.
Different indicators are supposed to show different system issues corresponding to differ-
ent diseases in medicine. In a human body, usually the concentration level of a specific
substance in blood tests is an important indicator. The indicators in the embedded sys-
tem are usually patterns e.g. a memory access pattern and collections of various kinds
of information. The design of indicators is the key in this methodology.

Based on the blood test idea, in this thesis a trace-based automated system diagnosis
and debug methodology as shown Figure 1.1 is proposed to cover issues that cannot be
efficiently solved by conventional tools. It makes use of hardware tracing and it is aimed
to deal with various system issues instead of limiting to a specific issue. The hardware
tracing provides hardware-level trace data including program flow, bus transfers, memory
accesses etc. As the trace data provides the execution history and the execution modules,
the time and location information is intrinsically contained. Based on such low-level
and hardware-related information, various indicators are designed to detect different
target system issues e.g. data memory contention, program flash contention, hardware
configuration issues. The indicators are combinations of different types of information
depending on time and location.

The diagnosis process is generally applicable and automated, meaning that it should
be applicable for a wide range of issues similar to a blood test without pre-knowledge
of where to investigate. It should be effective for most applications and the involvement
of developers should be minimized, so only the basic debug information e.g. an .elf file
is needed as the input for the methodology. Depending on the type of analysis, the
tracing hardware is configured accordingly and performed by the methodology. The

4

1.2 The proposed solution

End

PreprocessingTracingStart

Report Analysis

Debug
information

Indicators

Optional

Figure 1.1: The generic flow chart of the proposed automated system diagnosis and debug
methodology

collected trace data is processed and analyzed with the help of pre-defined indicators
and a report is created by the methodology for software developers to give hints of issues
and suggestions. In this way, automated diagnosis can be conducted and many system
issues can be detected automatically. The proposed methodology applies post-processing
analysis, which means that trace data is first collected by the tracing hardware during
execution and then analyzed by the proposed methodology offline.

For a certain issue, one indicator or several indicators are usually designed to detect
it. The generic design process of indicators for a certain issue is illustrated in Figure 1.2.
First, the target issue is analyzed at the hardware level. A coarse indicator is extracted
and then tested to make sure the target issue can be effectively detected. If not, either
the refinement of the existing indicator or the extraction of a new indicator can be
applied to increase the detection rate. The iteration ends until the designed indicators
are effective enough for the issue detection. The details of indicator design are described
in the following chapters.

1.2.2 Implementation – ChipCoach

Based on the proposed automated system diagnosis and debug methodology, a tool
named ChipCoach was designed and implemented for Infineon’s AURIX devices. The
purpose of ChipCoach is to provide an efficient and convenient solution that detects sys-
tem issues in seconds. Several experiments were also conducted on ChipCoach to prove
the feasibility and effectiveness of the designed indicators. ChipCoach runs on Windows
and currently supports Infineon microcontroller AURIX and AURIX 2G devices. The

5

1 Introduction

Start
Indicator
analysis

Extraction

Issue detected

Indicator
refinement

End
YesNo

Figure 1.2: The generic design flow of indicators

Table 1.1: The overview of features in ChipCoach

Features Target issues

Clock configuration
visualization

Clock configuration issues

DMA activity
visualization

DMA related issues

Data memory analysis
Data locality and

memory contention

Hardware configuration
validation

Hardware configuration issues

Lock profiling
analysis

Lock issues

MPU configuration
visualization

Memory protection issues

Program flash
contention analysis

Program flash contention

Performance
counter statistics

Performance issues

6

1.2 The proposed solution

main part of ChipCoach is programmed in Java and the lower layers are in C/C++. It
is based on Device Access Server (DAS) and MCDS Trace Viewer (MTV) which will be
introduced later. There are separate views in ChipCoach and they are almost indepen-
dent. Each view is focused on a special type of issues. The features cover functional
issues and performance issues as show in TABLE 1.1.

Basic features including Direct Memory Access (DMA) channel activity visualization,
memory protection configuration visualization, clock tree configuration visualization,
performance counter statistics benefit the exploration and the understanding of the sys-
tem. Advanced functions including data memory contention analysis, program flash
contention analysis, hardware configuration issues detection, spinlock profiling are spe-
cialized in a specific issue.

ChipCoach can be applied as a generally applicable validation and debug method like a
blood test in software development process. It can be run even when software developers
do not know if there is an issue and which issue it is. Different analyses are conducted
one by one automatically and finally a report is generated to show the health status of
the target system.

ChipCoach based on hardware tracing is designed to detect different system issues.
So far ChipCoach supports Infineon’s AURIX family, which provides hardware tracing
facilities named MCDS. MCDS is able to trace a system non-intrusively, meaning no
software instrumentation and no impact on normal execution. During the tracing phase,
MCDS is configured by ChipCoach according to the type of analysis. The trace data
is transferred to the computer. Then the trace messages containing hardware-related
operations are linked to binary and symbolic information available in the .elf file. In
the indicator extraction phase, the trace data is compared against the pre-designed
indicators. Finally, a report is generated to show the detected issues based on the
comparison. The user involvement and information from the user side are minimized,
facilitating the analysis automation. The report contains the information of the issues
and root causes. In some functions, suggestions to solve the issues are also proposed by
ChipCoach. ChipCoach has been used widely by internal application engineers and it is
being commercialized by a tool partner of Infineon.

1.2.3 Contributions

In this thesis, an innovative system diagnosis and debug methodology based on hardware
tracing is proposed to bridge the gap between increased debug difficulty and inefficient
debug solutions. The main contributions of this thesis are as follow:

• The proposed methodology makes use of hardware tracing, which is non-intrusive
meaning that the normal execution is not impacted. This feature is preferred
by real-time systems because changes in timing also impact the behaviors of the
system.

• The indicators of the methodology are designed for the hardware platform instead
of applications. No training is needed. The only information needed can be the
.elf file which contains binary and symbolic information.

7

1 Introduction

• It focuses on many specific issues that are usually underestimated and rarely cov-
ered by other solutions, e.g. program flash contention.

• It detects the system issues and reports the root causes of the issues. The detection
relies on the root causes instead of the superficial symptoms. It is able to detect
issues even before the symptom appears and estimate the severity of the issues.

Hardware tracing has the advantage that no software instrumentation, binary instru-
mentation or source code instrumentation is needed. The observed timing behavior of
the system is not impacted by the observation itself, which provides more advantages
over software instrumentation. As timing is critical for embedded real-time systems,
different timing may result in different behaviors and therefore changes to timing should
be avoided. For example, a heisenbug [8] disappears when one attempts to observe it
via debugger or software instrumentation. The proposed methodology uses hardware
tracing and does not modify software, facilitating the analysis for real-time applications.

In order to boost the efficiency of the system diagnosis and debug tools, automation
is usually applied. Therefore, human involvement is minimized. The proposed method-
ology requires only the .elf file that provides binary and symbolic information, and no
input e.g. judgment criteria from user side is needed. It is a general solution of different
applications and is not limited for a specific application.

As discussed above, many new challenging issues were introduced by multi-core/manycore
embedded systems. These issues are not well solved efficiently or even not covered by ex-
isting solutions. The proposed methodology is focused on such issues or specific aspects,
showing an innovative way to handle such issues.

Many existing debug tools detect problems based on the symptoms of the problems.
This is a practical solution, but what will happen when there is no symptom at all?
Merely relying on the symptoms is not sufficient and sometimes does not work well. The
proposed solution also makes use of hardware tracing, observes the low-level hardware
operations instructed by software, and derives issues from the root cause. In this way,
many issues even without symptoms can be detected by this methodology. The detailed
discussions are introduced in the following chapters.

8

2 Related Work

The emerge of multicore/manycore systems introduces many new issues that are difficult
to be handled with the conventional debugging/testing tools. The gap between the
developers’ understanding and the actual status of complex multicore/manycore systems
increases. In order to bridge this gap, many new methods have been invented and
automated system diagnosis solutions provide an efficient way. In this part, different
automated system diagnosis solutions for various issues are discussed in detail.

2.1 System diagnosis classification

There are many types of automated system diagnosis solutions. In this part, these solu-
tions are introduced in different sections depending on analysis type and data collection
method.

2.1.1 Analysis types

According to the relation between analysis and system execution, automated system
diagnosis solutions can be classified into three categories, i.e. pre-execution anal-
ysis, runtime analysis and post-execution analysis, as shown in Figure 2.1. Pre-
execution analysis is also named as static analysis meaning that it analyzes the program
without actual execution of programs. Compared to static analysis, runtime analysis
usually conducts the analysis while the system is running. Accordingly, post-execution
analysis is a kind of post-processing analysis method or postmortem analysis, which
is usually based on the data collected during runtime. In the following, the related
research belonging to the three types is described in detail.

2.1.1.1 Static analysis

Static analysis has several advantages over dynamic analysis. It adds no overhead to
the normal execution and its analysis scope is not limited by the execution path. Many
quite specific issues are covered by static automated diagnosis tools.

A performance analysis tool named CARAMEL was designed to detect and fix per-
formance bugs that are related to a scenario with a condition and a loop [9]. When the
condition turns true during the execution, the remaining computation performed in the
loop will be wasted, resulting in a performance loss. This type of issue can be fixed by
simply adding a break line.

Static analysis is not only applied to diagnose performance issues but also functional
issues. Polyspace [10] is a static analysis tool to detect and prove the absence of certain

9

2 Related Work

Pre-execution analysis

(Static analysis)
Runtime analysis

Post-execution analysis

(Post-processing analysis)

System execution

Figure 2.1: Three different types of analyses

run-time errors for C, C++ and Ada. It examines the code to detect issues such as
arithmetic overflow, division by zero and others. Wang et al. proposed a static analysis
method to show that code blocks are atomic, meaning that every execution is equivalent
to the one in which the code block is executed serially, i.e., without interruption by other
threads [11]. Atomic issues are critical in multicore systems because unexpected program
interrupt may change its behavior, leading to malfunctions. Atomic issues are typical
depending on timing and might result in a sporadic behavior. There is much research
conducted in this field using static analysis. For example, Flanagan et al. created a
technique to verify the atomicity of some problematic cases by applying reduction to
an abstraction of the program [12]. They presented the abstraction notations based on
purity and insatiability. The correctness of an atomic procedure can be verified using
sequential reasoning. Another common functional issue is caused copy-paste operations
by developers. In the software development, copy-paste is widely used by developers.
However, copy-paste is also error-prone so a tool named CP-miner using data mining
techniques to efficiently identify copy-pasted code in large software suites and detect
copy-paste bugs was implemented [13]. This tool is token-based and the program is
divided into a stream of tokens. Duplicated sequences are then identified.

Static analysis is also applied to deal with issues in the embedded field. For instance,
a user-supplied compiler extension [14] was designed to pinpoint the cache coherence
errors in embedded flash, which show up sporadically and are difficult to find. It checks
the source code and compares the code against the invariant defined by users.

Static analysis has many advantages but it is also limited in several aspects. It checks
all possible program paths even including paths that will never be executed, leading to
many false alarms. Many issues depending on timing are not easy to be detected via
static analysis for instance shared resource contention.

10

2.1 System diagnosis classification

2.1.1.2 Runtime analysis

Compared to the static analysis, automated system diagnosis methods based on runtime
analysis typically have execution overhead. They are able to collect various execution
information during runtime and detect different problems. There exist a lot of research
and methods focused on runtime analysis. In the following, some research and methods
are introduced depending on the target issues.

There are two types of issues including functional issues and non-functional issues.
Non-functional issues in this dissertation are mainly about performance issues. Various
causes can lead to performance issues, e.g. low performance algorithm, inefficient lock
usage, shared resource contention etc.

2.1.1.2.1 Performance issues

Shared resource contention introduced by multicore architecture degrades system per-
formance. The contention is located in many shared resources e.g. memory, bus and
I/O. It attracts much attention of researchers owing to its high importance. General
solutions dealing with general shared resource contention (not specific to a special re-
source) detect shared resource contention and also estimate the performance impact
caused by contention. For example, Dey et al. [15] proposed a general methodology
for the characterization of multicore applications based on experimental comparison. In
their methodology, two different configurations namely one baseline configuration and
one contention configuration are executed and the runtime difference is compared to
derive the impact of shared resource contention. However, it is impractical to obtain
such two different configurations just to estimate the performance difference. Kumar
et al. [16] designed a probabilistic approach to estimate the performance impact due to
contention based on real execution, which is more accurate and much faster than simu-
lation. The duration of shared resource usage by one application is analyzed. Then the
blocking ratio that is defined as the chance of a core blocked by another core occupying
the busy resource is calculated based on uniform distribution. The expected waiting
time caused by shared resource contention is derived.

Such general solution estimates the performance impact at the application granularity.
More detailed contention information requires more precise analysis methods. A very
sophisticated hardware approach [17] to build accurate Cycle Per Instruction (CPI)
stacks was created to use hardware counters to measure the waiting time for each shared
resource. It makes use of a top down approach that overcomes the previous bottleneck:
counting contention events without considering how these contention events affect overall
performance.

The impact of a specific shared resource contention is also interesting. For example,
data cache, that has a great influence on the system performance, is studied by many
researchers. Chandra et al. [18] proposed three performance models that predict the
cache impact on the performance on co-scheduled threads. The input of these models
is the stack distance information and circular sequence profiles of each thread. This
information can be collected during runtime. Scheduling as an attractive tool to deal

11

2 Related Work

with shared resource contention, draws a lot of attention [19][20].

Contention does not only happen at the interface of hardware modules but also at soft-
ware level. Lock is a common method to sequence the accesses from different threads to
a shared resource. Contention may also happen when several threads are competing for
the same lock, leading to performance degradation. Therefore, lock contention should be
avoided. Scheduling has been utilized to relieve lock contention. For example, Pusukuri
et al. [21] proposed a scheduling framework named Shuffling that likely migrates the
threads accessing a common lock to the same socket. This is because the threads com-
peting for a common lock on the same socket may result in less cache misses in Last
Level Cache (LLC), meaning better performance compared to the scenario with a re-
mote socket. Heavy lock contention will lead to scalability collapse [22]. Based on this
observation, Cui et al [22] designed a scheduler which monitors each thread’s percentage
of lock waiting time continuously. If the waiting time is above a predefined threshold,
the monitored thread is migrated to Special Set of Cores (SSC), in order to avoid scal-
ability collapse. Some lock contention is introduced by improper software design. For
example, unnecessary lock contention is analyzed in the research [23]. The goal of this
research is to detect the false inter-thread dependencies, which causes unnecessary lock
contention. It records the program execution and finds the unnecessary lock contention
patterns based on the tracing.

Data cache false sharing is also one of the common performance issues. Different from
lock contention, false sharing is typically invisible in the source code. In order to detect
false sharing, tools are designed to detect it during runtime. For example, SHERIFF-
DETECT [24] finds false sharing issues by comparing cache updates by different threads
in the same cache line, and ranks them according to the performance impact. The
performance impact can also be reduced by migrating false sharing from different threads
to separated physical addresses. To detect latent false sharing, Liu et al. [25] proposed
a tool called PREDATOR. It is able to precisely predict false sharing including latent
false sharing problems that can happen later but are not observed during the current
execution. This latent problem detection ability overcomes the limit of other detection
approaches [25]. PREDATOR performs instrumentation at an intermediate presentation
level.

The above solutions are specific to one performance issue. There are also general
solutions for performance issues. Eyerman et al [26] proposed the speedup stack, which
quantifies the impact of the various speedup limiting factors of multithreaded applica-
tion in a single stack. These limiting factors include synchronization, contention, cache
coherency, imbalance etc. This solution provides a reference to analyze parallel perfor-
mance and identify scaling bottlenecks. It modifies the hardware modules to count the
cycles that are wasted due to various reasons [27].

2.1.1.2.2 Functional issues

Regard functional issues, automated tools that locate and correct erroneous programs
will reduce the cost of software development significantly. Fault localization is a process

12

2.1 System diagnosis classification

to find the location of a fault given failed executions and passed executions. Many
automated tools are focused on this process. For instance, a statistical approach to
localize software faults without prior knowledge of program was designed by Liu et
al. [28]. This approach improves the previous methods in modeling the divergence of
predicated evaluations between correct and incorrect runs by a hypothesis testing-based
approach. Moreover, another fault localization method, which is able to identify the state
differences that cause the failure by searching in both space and time, was proposed by
Cleve [29]. These two approaches are focused on fault localization. A step further than
fault localization is automated fault correction. For example, the approach by He [30]
et al. automatically corrects an erroneous statement in a faulty function, based on the
assumption that the correct specification of the erroneous function is available in the
form of preconditions and postconditions of the function. This approach combines ideas
from software testing and weakest preconditions used in correctness proof methods to
locate a likely erroneous statement.

2.1.1.3 Post-processing analysis

Runtime analysis typically has overhead on the normal execution. The overhead can be
relieved by migrating the processing part afterward, which means post-processing also
named as postmortem processing. Post-processing techniques can be applied to different
aspects. A tool called Memphis based on Instruction Based Sampling (IBS) [31] sup-
ported by AMD is to pinpoint the low performance memory accesses including remote
accesses and contended accesses. A post-processing part of this tool interprets the raw
data collected by kernel. OProfileBM [32] is a Linux system profiler linked to standalone
applications that run on bare metal cores without an operating system and collects sam-
ples in the background during runtime. For critical lock analysis [33], a new method for
diagnosing critical section bottlenecks in multithreaded applications was introduced to
improve the overall performance. Only the critical sections which appear on the critical
path that have a direct impact on the completion time of multithreaded applications are
related to the overall performance improvement. Post-processing tools are also utilized
for detecting functional errors. For example, AVIO-S [34] was proposed to detect concur-
rent bugs based on a novel observation called access interleaving invariant. Compared
to AVIO-H, AVIO-S is more suitable for bug detection and postmortem bugs.

2.1.2 Data collection methods

Data collection is an important part in analysis. Several classes of data collection meth-
ods are sorted according to the way of collecting data. Various data collection methods
including software-based, hardware-based, hybrid-based and simulation-based have dif-
ferent characteristics. Depending on the method applied, certain aspects are sacrificed,
for example, usually execution overhead is added to the analysis based on a software-
based method. For each class, several examples related to system diagnosis are briefly
introduced.

13

2 Related Work

2.1.2.1 Software-based

Software-based method is also named as software instrumentation. It means that addi-
tional software functions are inserted to the normal software product to diagnose errors
and trace information [35]. Typically, software instrumentation causes additional ex-
ecution time and changes the system timing. Two types of software instrumentation
approaches are available either source code instrumentation or binary instrumentation.

A tool called HAVE [36] was implemented to tackle atomic violations in Java program
based on source code instrumentation. In this tool, static analysis is first performed to
obtain summaries of synchronizations and accesses to shared variables. Then dynamic
analysis is applied to refine the analysis results e.g. branches that are not taken, to
reduce the number of false positives. Another tool named Pin [37] that performs runtime
binary instrumentation of Linux applications was designed to provide an instrumentation
platform for building a wide variety of program analysis tools.

The overhead incurred by software instrumentation is harmful to the system analysis
because any change to the execution time may cause changes in scheduling, resulting
in very different timings. Therefore, minimizing the overhead is extremely important
especially for hard real-time applications, the timing of which is critical.

2.1.2.2 Hardware-based

To reduce the overhead caused by software instrumentation, hardware-based data collec-
tion methods are applied. The hardware of hardware-based solutions can either already
exist in products or be specially designed upon request.

The specially designed hardware is flexible and has the advantage to collect different
types of information at the cost of die area. A novel implementation of hardware perfor-
mance counters for building accurate CPI stacks was proposed by Eyerman et al. [17].
Special hardware counters are added to the hardware module interfaces. Detecting data
races by software solutions generally incurs large overheads so that hardware support
for race detection is applied in the research proposed by Zhou et al. [38].

The already existing hardware is able to collect a predefined range of information.
An example [39] to make use of existing hardware support in COTS devices is about
memory placement in Non-Uniform Memory Access (NUMA) systems. It considers
NUMA together with contention in kernel level and optimizes performance by several
measures. The data collection is supported by IBS in AMD and Intel, leading to much
lower overhead than software-based solutions.

Hardware-based data collection method is usually limited by the hardware implemen-
tation. As platform users, they may not have the freedom to change the hardware as
they wish, and thus making use of existing supported hardware is a preferred approach.

2.1.2.3 Hybrid-based

A hybrid-based data collection method usually combines both advantages of hardware-
based and software-based methods such as low overhead and good flexibility. For ex-
ample, Huang et al. [40] noticed that lock profiling tools usually store profiling data

14

2.2 The automated “blood test” in system diagnosis

directly into local memory which results in significant memory interference on normal
programs’ execution. Therefore, they proposed a hardware-assisted lock profiling ap-
proach called HaLock which combines software-based lock detector and hardware-based
trace collector, achieving negligible overhead. Another example is AVIO-H [34] which ex-
tends several additional bits to the cache coherence hardware to detect atomic violations
with negligible overhead compared to AVIO-S that is a pure software-based solution.

2.1.2.4 Simulation-based

Simulation is a powerful approach to diagnose systems because of the high observability
and the high flexibility. It can be used to detect different issues. For instance, La-
graa et al. [41] proposed an approach making use of a virtual prototyping simulation
and data mining to find data memory contention. Latent performance bugs severely
degrading end-to-end system performance in distributed systems can be detected by
the research [42] based on simulation. Memory system behaviors for both parallel
and sequential programs and even memory performance bottlenecks are explored by
a simulator-based tool called MemSpy [43].

The disadvantages of simulation are that the detailed models of commercial embedded
systems are typically not available and the plant models that interact with the simulated
embedded systems are also missing. Compared to on-chip analysis, simulation costs
much more time especially when more details are included in the output of the simulation.

2.2 The automated “blood test” in system diagnosis

In this dissertation, a system diagnosis methodology is proposed based on the hardware
tracing, meaning that no software instrumentation is needed. The utilized hardware
tracing method is supposed to be intrinsically supported by COTS system e.g. Infineon’s
MCDS, Freescale’s Nexus and ARM’s Coresight. Such kind of hardware tracing e.g.
Infineon’s MCDS has no impact on the normal execution. Therefore, the system timing
is not modified by the observation and this feature is preferred by hard real-time systems
where the timing is critical. The proposed method is a post-processing method. The
execution data is collected during runtime and analyzed afterwards by the host computer.

The proposed methodology proposed in this dissertation is inspired by the blood
test as described in the previous chapter. The blood test is a standard method that
automatically detects diseases in a complex system and covers various diseases. This
methodology is designed to have similar characteristics.

Compared to other research, the proposed methodology has the following advantages.
First, it is able to automatically detect with a wide range of system issues from perfor-
mance bottlenecks to functional errors. The other research usually focuses on a single
problem or a small group of problems. Second, the methodology is capable of solving
many issues that are not emphasized by other research. For instance, the design of
indicators in this methodology contains low-level hardware information. This facilitates
the analysis many issues that are closely related to the hardware. Third, the proposed
methodology is independent of the applications of embedded systems and is based on

15

2 Related Work

hardware tracing. The design of indicators doesn’t rely on the applications and the
pre-knowledge of the applications. With the help of hardware tracing, software instru-
mentation can be avoided. These features make the automation of system diagnosis
easier. The details of these three points are described below in detail.

Most automated system diagnosis research focuses on a specific issue or a small group
of issues. For example, a famous tool named “Eraser” [44] that dynamically detects
the data races in lock-based multi-threaded programs. It uses the binary rewriting to
monitor the shared memory reference and verify the locking behavior. It is designed
to only deal with data races. Similar examples are SHERIFF [24] or AVIO [45]. Some
research is targeted at a group of issues. For instance, several papers from Eyerman
et al. based on a similar methodology are mainly focused on performance problems.
It is able to provide the insight into the scaling behavior on multi-core hardware [26],
detect the influence of inter-thread on the performance [27] and compute the CPI loss
caused by multi-core effects based on hardware counters [17]. The target of this series
of research is to detect the performance impact by multithread and multi-core systems.
Another example is the BugFix [46] that automatically analyzes the debugging situation
and reports a list of relevant bug-fix suggestions. It requires as input a faulty program
and a corresponding failing test case. The target scope of this tool covers functional
errors. Compared to the above research, the proposed methodology has the capability
to solve many various problems. For example, it is able to detect performance issues such
as program flash contention [47] and data memory contention [48]. It detects functional
errors such as hardware configuration errors [49] and lock usage errors [50]. Moreover,
it has the potential to automatically diagnose many other issues especially issues in the
low-level. By designing new indicators for new groups of issues, this methodology will
gain the ability to analyze new problems, which is easy to extend.

Owing to the applied data collection method, the proposed methodology is able to
collect much low-level information and solve many issues closely related to hardware.
Many of such issues are rarely emphasized by the existing research. For instance, shared
resource contention in multi-core systems is well studied but most research is focused on
the data memory or bus contention instead of program flash contention. Program flash
contention also influences the system performance in multi-core systems [47]. The impact
of program flash contention and the performance impact estimation are not studied by
the other research. A similar story happens to the hardware configuration problems.
The hardware configuration problems are time-consuming to debug but they are also
not thoroughly studied [49].

Most tools for automated software debugging needs the pre-knowledge of the running
software. For example, many lock profiling tools like ANOLE [51], HaLock [40] or
LiMit [52] are designed for a specific Operating System (OS) or a virtual machine. Some
tools like BugFix [46] or Atomizer [53], need the manual input or manual annotation by
the software developers. The indicators in the proposed methodology are independent of
the software and the OS. This independence provides advantages in embedded systems
as there are no dominant OSes like Windows or Linux on PC. The methodology is based
on the trace data collected from hardware tracing and the data collection can be non-
intrusive. It is also preferred in the analysis of hard real-time systems because the timing

16

2.3 Target issues of the proposed system diagnosis methodology

of the systems is critical.

2.3 Target issues of the proposed system diagnosis
methodology

In the previous part, the comparison of the methodology with the related work in a
high level is given. In this methodology, the indicators play a very critical role and each
indicator is targeted at a specific problem. Therefore, the related work of different target
issues is described in this part. The proposed methodology is designed to conquer many
multi-core issues that are not yet well solved. These issues cover many different aspects
such as hardware configuration, multi-core contention, synchronization etc.

2.3.1 Hardware configuration issues

Embedded systems are usually equipped with many different types of peripherals. The
peripherals are supposed to be configured properly in order to have the expected func-
tionalities. However, there are rules that define the right procedures to configure in
the long tedious user manual and misconfigurations may happen when these rules are
not correctly followed. Misconfigurations can lead to issues such as malfunction, low
performance and even sporadic errors. In this dissertation a methodology focused on
hardware configurations is proposed.

It is based on Linear Temporal Logic (LTL), which is applied as a standardized rule
format in the methodology. The related research about LTL is first introduced. Then
research related to runtime monitoring/verification is described.

2.3.1.1 Linear Temporal Logic

LTL is a specification language for programs [54]. Various types of temporal logic were
created, e.g. trace propositional temporal logic (TrPTL) [55]. For software debugging,
a temporal debugger was applied in the work [56]. LTL is used in this work to control
stepping through different states of a concurrent program. It detects finite sequences
of states that satisfy a predefined given specification and then stops the system at that
state. In our approach, LTL is applied to describe the legal register access sequence rule.

2.3.1.2 Runtime Monitoring

Rule-based runtime monitoring & verification have been studied for decades. The char-
acteristics of embedded systems such as limited resources and limited observation points,
introduce particular challenges in runtime monitoring/verification. To conquer such chal-
lenges, a plenty of methods have been applied including hardware, software or hybrid
probes [57]. In the following, research related to rule-based runtime monitoring/verifi-
cation is introduced.

The monitored system executions are checked against the properties, which are of-
ten derived from the software requirement specification [57]. One concern of runtime

17

2 Related Work

monitoring/verification method is the overhead to normal execution. The additional
execution time caused by runtime monitoring/verification does not only make the exe-
cution slower but also changes the timing and scheduling, which also changes the system
behavior. Therefore, some research is conducted to reduce the execution overhead. A
framework was presented in [58] to reduce the intrusiveness of the runtime monitoring.
The proposed framework applies hardware and hybrid probes, which provide system-
wide observability and minimize the impact on normal executions. The hardware area
requirement is also reduced incorporating the presented framework. Barringer et al. [59]
proposed a finite tracing monitoring logic called EAGLE. Its purpose is to check whether
the program execution during runtime conforms to the requirement specification, in-
volving rule definition, manipulation and execution. In the rule definition part, LTL
is applied to describe the requirement specification. Based on this, another monitoring
method RULER [60] was then proposed to improve the simplicity and efficiency as well
as to compile a wide range of temporal logic and other formalisms.

Hardware-related issues that the proposed method focuses on are also studied by
other researchers. For example, a runtime monitoring system for real-time embedded
system was presented in [61] and it makes use of a special FPGA device plugged to a
peripheral bus to observe the bus transfers including writes and reads. The purpose of
this approach is to guarantee the safety when a violation is detected, by restoring the
system to a safe state. Compared to this work, this method is targeted at detecting
hardware configuration issues.

Debugging deeply embedded peripherals is challenging due to the limited observability.
The research [62] has shown that hardware/software interface debugging is the most
time-consuming step and shortening the debugging time is a key to shorten the total
design cycle. Peripheral debugging and hardware configuration validation have been
studied in several papers. An assertion-based online debug environment was raised
by Peterson et al. [63]. It is designed to handle the challenges of debugging high-speed
complex SoCs. It requires additional hardware and also hardware changes to the existing
SoCs. The focus of this method is on the hardware validation and testing instead of
software debugging. Hardware probes are inserted to SoCs and validated by an external
FPGA.

Compared to the above work, the proposed method distinguishes itself in several as-
pects. First, it covers both the SoC development phase and the software development
phase. The rules are directly input by SoC designers and are valid for a specific device
regardless of applications. Usually runtime monitoring & verification also make use of
rules that are extracted from the software specifications only valid for a particular ap-
plication. Second, this method applies hardware tracing, meaning no extra hardware is
needed. One advantage of hardware tracing is that software instrumentation is avoided,
no change of the system timing. Third, the methodology is focused on hardware config-
uration issues, which usually takes a lot of time to be detected but are not thoroughly
studied. In this approach, an automated technique is performed to increase the produc-
tivity.

18

2.3 Target issues of the proposed system diagnosis methodology

2.3.2 Lock issues

For multi-core systems, locks are widely used to regulate the accesses from different
tasks to the shared resources. The efficiency of locks is an important factor of system
performance so many profiling methods are introduced for various operating systems.
In this dissertation, a profiling method that profiles the lock performance independent
of operating systems and reminds developers of improper lock behavior is introduced.
To detect spinlocks, an understanding of different types of spinlock implementations is
required. The findings on this are introduced in the first part of this section. After that
the state of the art in the development of lock profilers is discussed [50].

Spinlocks have been studied for years as a classic synchronization method to regulate
shared resource accesses for multithread systems. A primitive and simple spinlock imple-
mentation is the test-and-set spinlock. It always uses atomic operations to compare and
modify the lock value, which is harmful to the performance of both the current spinning
thread and the threads [64] from other cores. This is because atomic operations block
the memory interface longer than normal memory accesses and other threads using this
memory will be influenced. Due to this drawback, an improved implementation test-
test-and-set lock was proposed [65]. It spins with normal a read operation first and only
tries to apply atomic operations when the lock is potentially free. The performance of
this implementation is better than the previous one but it still has many issues. In a
cache-coherent machine, if several threads are waiting for a lock, only one will acquire
it after releasing. The others’ cache will still be invalidated, causing additional mem-
ory accesses and lower performance. Therefore, backoff spinlock was created to avoid
such collisions [64]. However, all locks mentioned above do not guarantee fairness, so
queue-based spinlocks e.g. MCS [66] were designed to fulfill this requirement. The MCS
spinlock has a queue to sequence the lock acquisition, which is suitable for many threads
competing for one lock [67]. There are many more lock types with different advantages
and disadvantages. Recent research from Guiroux et al. [68] has found that no single
lock is best for all applications. The best lock varies with the number of threads, the
number of cores and the hardware architecture, so the insight into the system is needed
to find a proper lock type.

Lock profilers are tools that give insight into the system and enable developers to im-
prove lock usage. Many lock profiling tools for different applications are already available
as shown in Table 2.1. Locks and wait analysis in Intel VTune [69] uses interrupts to sam-
ple basic information about threads and synchronization objects. VTune works for x86
architecture instead of embedded systems. HPCToolKit [70] utilizes sampling instead
of software instrumentation. It can be applied from desktop to supercomputers [71]. To
make use of hardware performance counters efficiently, Demme et al. created LiMiT [52]
that instruments applications and provides fast access to performance counters without
kernel calls, achieving a lower overhead. For the same reason, HaLock [40] is applied and
a specific uncacheable memory address is reserved to record lock information so that the
memory inference to normal memory operations is minimized. HaLock leverages a hy-
brid mechanism which combines software-based lock detector and hardware-based trace
collector. Lockmeter [72] was developed and released as a Linux kernel patch to record

19

2 Related Work

Table 2.1: Comparison of Lock Profiling Tools

Tool Data collection method Target

ANOLE [51] Virtual machine instrumentation Linux KVM
Free Lunch [74] Virtual machine instrumentation Java
HaLock [40] HW-assisted kernel instrumentation Linux
HPCToolKit [70] Sampling Desktop [71]
Jucprofiler [75] Library instrumentation Java
LiMiT [52] Software instrumentation Linux
Lockmeter [72] kernel instrumentation Linux
PEPs [73] Application instrumentation OS specific
Vtune [69] Interrupt-based sampling x86
Our method Hardware tracing Embedded systems

the spinlock usage by applications. A framework named PEPs [73] allows developers
to manually annotate the interesting source code. Then timestamped event tracing per
thread is collected during execution and presented to the developer. The target plat-
form of PEPs is not specified but it relies on a specific OS. Lock profiling tools are also
useful to virtual machines. In a kernel based virtual machine, a virtual CPU (vCPU)
could be preempted while holding a lock. Then other vCPUs have to spin extra-long
time to acquire this lock, resulting in a waste of performance. Zhang et al. proposed
ANOLE [51], which instruments the kernel based virtual machine to minimize this issue.
Lock profiling tools for Java applications also have been studied, where instrumentation
can be either done in the Java virtual machine [74] or in Java libraries [75].

Compared to the above existing tools, the proposed approach is focused on binary
semaphore spinlocks operating on a single variable without OS dependency. This feature
is favored by the embedded field due to the fact that there exist many embedded OSs.
There are no other studies focused on the lock profiling for embedded systems without
OS dependency and the proposed approach is the first pure hardware-based solution. It
makes uses of non-intrusive hardware tracing. In this way, software instrumentation and
execution overhead are avoided.

Based on the lock statistics measured by the lock profilers, software developers can
make their judgment on the lock usage. One step further, showing improper lock se-
lection and inefficient lock behaviors directly by the profilers is more helpful. A recent
study [68] has shown that choosing the right lock for a particular scenario is challenging
as there is no clear guideline for developers to follow. For many applications, software
developers have freedom to choose their lock types and they may choose an improper
lock based on their hypothesis during programming. There are several studies existing.
Lozi et al. [76] proposed a new lock type named remote call locking that is aimed to
accelerate the execution of legacy software on multi-core systems. A special lock profiler
is also developed to identify the existing locks that can benefit from remote call lock-
ing. A method by Pan et al. [77] forecasts lock contention before adopting another lock,

20

2.3 Target issues of the proposed system diagnosis methodology

providing useful information to make a decision. Our approach indicates basic improper
lock selection and inefficient lock usage based on the hardware-level behaviors. It is
flexible and widely applicable.

2.3.3 Interrupt performance issues

Interrupts are critical for timely handling of events in real-time systems. Unfortunately,
interrupts are difficult to predict: they alter the program control flow and complicate
the invariants in low-level code [78]. Therefore, an interrupt profiling methodology is
introduced to provide the insight of the interrupt usage of embedded systems.

There are several papers focused on interrupts. Brylow et al. [79] proposed and im-
plemented a static checker for interrupt-driven Z86-based software with hard real-time
requirements. The proposed checker is based on static analysis and assembly instructions
are detected. The control flow graph is then generated and interrupt latency analysis is
conducted. The implemented checker was tested with a 1000-line benchmark. However,
there are several limitations of this work. First, many false positives will be generated
as this is a static analysis method. Some of them are caused by paths that will actu-
ally not be executed. Second, the proposed method does not consider many dynamic
problems related to multi-core, for instance shared resource contention. Such issues
will degrade the performance and this information is missing in this work. Third, the
analysis becomes very complex when the size of software increases because many paths
and branches will be generated exponentially. The Worst case execution time analysis
of interrupt is of interest for embedded operating systems. For example, Carlsson et
al. [80] developed a tool, the goal of which is to produce flow information graphs from a
number of source code files and an .elf containing object code binaries. This tool applies
also a static analysis method and has the intrinsic disadvantages of static analysis, as
also the author claims in the conclusion that the tool is not sure whether the WCET is
found and not comparable to physical tests.

Dynamic solutions to measure interrupts are also investigated by researchers. For
instance, the interrupt handler performance is profiled by a method proposed by Moore
et al. [81]. This method instruments the Linux kernel and uses the system performance
counters provided by IA-32 processors. Interesting results show that the performance
of interrupts does not scale proportionally to overall system performance. Software
instrumentation is flexible but it changes the system timing of the instrumented system.
Simulation is also a good solution to obtain the interrupt information as described in
the research from Yu [82]. The purpose of this research is to calculate the Worst Case
Interrupt Latency (WCIL). However, simulation has the problem that the simulation
models and plant models are usually missing for COTS platforms. Also, the simulation
speed will be slow for very accurate detailed hardware models.

2.3.4 Shared resource contention

Significant research has been done for shared resource contention [19, 83, 84, 85, 86, 87,
20, 88, 89, 27]. A general system-level solution considers contention of different shared

21

2 Related Work

resources. For example, Du Bois et al. [27] proposed a method that modifies the hardware
modules to count the cycles that are wasted due to various reasons including memory
contention, cache contention and bus contention. The research [85] distinguishes and
measures the impacts due to sharing of different individual resources e.g. cache, bus
and memory, by comparing the runs of different process patterns. The method in the
paper [90] copes with the contention for shared cache and bus with modeling. Another
solution is simulation that is time-consuming but is able to provide accurate detailed
information. Lu et al. [83] proposed a SystemC modeling focused on shared resource
conflicts while accurate timing information is provided and the simulation speed is also
accelerated.

2.3.4.1 Program flash contention

Many solutions are only focused on the contention of a specific shared resource. Cache as
an performance-critical module can be shared among several cores/threads. The cache
contention heavily degrades performance [91, 92]. A fast and accurate shared cache aware
performance model named CAMP was proposed [89] that considers distance histograms,
cache access frequencies, and the relationship between the throughput and cache miss
rate of each process It models both cache miss rate and performance degradation and
provides information about cache behavior to improve system throughput and reduce
power consumption. The research [93] is focused on the performance optimization by
considering both data allocation and data cache contention for NUMA systems.

Memory contention is also of interest. Liu et al. [87] proposed the notion of memory
access intensity to facilitate quantitative analysis of program’s memory behavior in multi-
cores. In other studies [19, 20, 88], contention-aware schedulers are used to minimize the
impact on the performance from shared resource contention.

Shared resource contention is also considered in the worst case analysis field. For
instance, Lampka et al. [84] proposed an approach for bounding worst case response
time considering share resource contention especially memory contention. Pellizzoni et
al. [86] introduced an analysis methodology to compute the upper bounds of the task
delay due to data memory contention.

The above research performs the analysis of the contention problem via simulation [83,
86, 84], static source code analysis, statistical analysis [85], hardware modification [27] or
software instrumentation [19, 87, 20]. However, none of them has used hardware tracing.
Hardware tracing has advantages such as non-intrusive and no software instrumentation.
Most research focuses on the data memory contention while this methodology is address-
ing program flash contention, which is applied to store instructions and constant data.
Compared to other shared resource contention, program flash contention is difficult to
measure but can cause significant performance degradation.

2.3.4.2 Data memory contention and data locality

The performance penalties incurred by both data locality and memory contention must
be analyzed before performance optimization as data locality and contention are mu-

22

2.3 Target issues of the proposed system diagnosis methodology

tually dependent. In the proposed methodology, a new memory contention indicator is
designed to show the memory contention penalties quantitatively, which is comparable
to data locality penalties, providing a reference for performance optimization. It detects
both data locality and memory contention. Related research about indicators for these
two effects is introduced below.

The location of shared variables makes a difference in a NUMA system. Early re-
search [94] shows that the location of data and code impact the performance of NUMA
system. In order to evaluate the performance influence, the embedded generic allocator
(EGA) [95] was proposed, in which different allocations are loaded and the performance
difference is measured directly on the target hardware. Evaluation directly on the target
hardware is practical but consumes much time especially when there are many allocation
possibilities. Static analysis is applied to deal with this challenge. For example, in the
study [96], remote accesses are recognized by creating a data access relationship graph
between memory access instructions and data at compile time. Similarly, sophisticated
interprocedural analysis techniques are used to determine such relation graphs for both
static global variables and dynamic global variables in [97]. Another solution is dynamic
analysis. The data locality analysis can be performed at runtime via e.g. software in-
strumentation, hardware monitoring and simulation. In the research [98] conducted by
Diener et al. the kernel is instrumented to use the virtual memory implementation of
operating systems to characterize the memory access behavior. The observed informa-
tion can be then used to optimize the affinity of data and thread. Another study by
Molina et al. [99] uses Simics simulator to collect memory accesses and to optimize the
allocation.

Memory contention also degrades system performance. It depends on the system tim-
ing and the contention symptoms cannot be observed directly on commercial embedded
systems. Therefore, contention metrics should be designed to indicate the contention
level. The most common contention indicator is the LLC miss rate. For example, the
miss-rate heuristic – a measure of LLC misses per thousand instructions in distributed
intensity [19] is used as an approximation of contention of shared resources including
cache, memory and bus. The core idea is that a higher miss rate means higher ac-
cess frequency, leading to more load to shared resources and higher contention level.
Similarly, Blagodurov et al. [100] also used this to detect memory contention. More
sophisticated metrics are also created for example Pain [100], Animal [101] based on the
stack distance profile. The stack distance profile is a compact summary of cache reuse
pattern. For some COTS architectures like x86, IBS is supported. An indicator that in-
cludes more information such as memory access latency is designed based on IBS and this
indicator is transferred to the scheduler by interrupts. The memory access latency shows
whether there is a contention and how many clock cycles are added by the contention.
In order to calculate the worst case execution time tightly, usually shared resource has
to be considered. A measurement-based approach considering both memory and bus
contention is proposed in [102] for worst case analysis. A further solution is to analyze
the contended memory accesses by simulation. Virtual prototyping is applied to find
memory contention patterns [41], which utilizes a data mining approach to facilitate the
contention pattern extraction. To avoid the software instrumentation, hardware solu-

23

2 Related Work

tions are studied. For instance, hardware counters are implemented to count the number
of wait cycles due to memory contention was implemented by Du Bois et al. [27]. They
increment when a core is waiting for another core’s completion. The accumulated values
are accounted as memory contention metrics to calculate the performance penalties.

The performance penalties by these two data locality and memory contention should
be analyzed in a quantitative, comparable way to provide a reference to optimization.
Blagodurov et al. [100] discovered that state-of-the-art contention management algo-
rithms fail to be effective on NUMA systems and may even hurt performance relative
to a default OS scheduler. This is because, in order to avoid contention, data allocation
is modified, which could result in increased remote accesses and additional cycles. A
similar conclusion was drawn in [103], system software must take both data locality and
memory contention into account to optimize performance.

The method proposed here is distinguished from other methods by three aspects.
First, most previous research [19, 39, 31, 41, 99, 98] detecting data locality and con-
tention makes use of software instrumentation or simulation to trace memory accesses,
and none of them is utilizing non-intrusive hardware tracing. Software instrumentation
is commonly used but it changes the timing behavior of the system, which is criti-
cal for hard-real-time and safety-critical applications. The cycle-accurate simulation is
powerful, whereas the simulation model is not available for most commercial embed-
ded systems. Moreover, the plant model is missing in such simulation. Pure hardware
solution avoids software instrumentation but needs hardware modification that limits
its usage. Second, a new contention indicator applicable for embedded systems is pro-
posed to evaluate the contention impact quantitatively and precisely. The occurrence
of remote accesses and memory contention and the overall penalties, including locality
penalties and memory contention penalties, are also summed and compared, as a refer-
ence to performance optimization. Third, the proposed method is based on hardware
tracing which is suitable for commercial embedded systems. No hardware modification
or special hardware e.g. IBS is needed. The only hardware support necessary is tracing
hardware already supported by many COTS embedded systems as mentioned above.

24

3 Preliminaries

3.1 TriCore

TriCore is a 32-bit microcontroller architecture, optimized for real-time embedded sys-
tems. It unites the elements of a Reduced Instruction Set Computer (RISC) processor
core, a microcontroller and a DSP in one chip package [104]. The Instruction Set Ar-
chitecture (ISA) supports both 16-bit and 32-bit instruction formats. TriCore avoids
long multi-cycle instructions and provides hardware-supported interrupt to reduce the
interrupt latency and real-time responsiveness [105].

The TriCore architecture has 32 general purpose registers, Program Counter (PC)
and two information registers as shown in Figure 3.1. A[0H − FH] store the address
information and D[0H −FH] store the data. The Previous Context Information Register
(PCXI), Program Status Word Register (PSW) and PC registers are used for storing
and restoring a task’s context. There are two groups of registers namely upper registers
and lower registers. Lower registers include A[0H − 7H] and D[0H − 7H] while upper
registers include A[8H − FH] and D[8H − FH].

However, different terms namely lower context and upper context are used for context
switching. Upper context consists of A[10H −FH], D[8H −FH], PCXI and PSW. Lower
context has A[2H − 7H], D[0H − 7H], A[BH] and PCXI. These two groups are used
for different scenarios. For example, a context switching usually occurs when an event
or instruction causes a program execution break. The current execution state shall be
stored in order to continue to run the previous program. Upper context will be saved
automatically due to interrupts, function calls or traps. Lower context can be saved
explicitly by instructions e.g. Save Lower Context (SVLCX).

The 32 general purpose registers usually work as the operand in the instruction set.
Some registers are explicitly stated in the instructions and some are implicit. For ex-
ample, a CALL instruction that is used to call a function also pushes the upper context
into stack. On the contrary, a RET instrumentation that performs the return jump also
restores the upper context from the stack.

3.2 Infineon AURIX

The AURIX family is especially designed for automotive applications, e.g. Advanced
Driver Assistance Systems (ADAS), powertrain control units and chassis control units for
braking, steering and suspension. There are many device classes namely AURIX TC29x,
TC27x, TC26x and TC23x. The Infineon AURIX TC29x device is as an example shown
in Figure 3.2. It combines three powerful technologies within one silicon die including

25

3 Preliminaries

A[15](implicit base address)

A[14]

A[13]

A[12]

A[11](return address)

A[10](stack return)

A[9](global address register)

A[8](global address register)

A[7]

A[6]

A[5]

A[4]

A[3]

A[2]

A[1](global address register)

A[0](global address register)

D[15](implicit data)

D[14]

D[13]

D[12]

D[11]

D[10]

D[9]

D[8]

D[7]

D[6]

D[5]

D[4]

D[3]

D[2]

D[1]

D[0]

PCXI

PSW

PC

Address registers: Data registers: System registers:

Figure 3.1: TriCore registers[105]

RISC processor architecture (TriCore), DSP and on-chip memory/peripherals [106]. The
TC29x device consists of three TriCore processors running at frequencies up to 300 MHz.
A TriCore processor has L1 data cache and program cache implemented. Both program
cache and data cache are two-way set associative and least recently used (LRU) based.

AURIX TC29x is a NUMA system. Each core has both local data memory and local
program memory attached. Local data memory in the core actually consists of several
memory modules namely Data Scratch Pad RAM (DSPR), Data Cache (DCACHE) and
cache tag memory. Similar to local data memory, local program memory has several
blocks including Program Scratch Pad RAM (PSPR), PSPR and cache tag memory.
Cache tag memory is meant to be used as general memory blocks but for testing pur-
pose, which is not covered in this research. All these memory blocks are Error Correcting
Code (ECC) protected. Global memories such as Local Memory Unit (LMU) and Pro-
gram Memory Unit (PMU) are used to store data and program. LMU’s primary purpose
is to provide local memory for general purpose usage and it also provides access to sep-
arate block of Emulation and debug Memory (EMEM). Data stored in LMU is also
protected by ECC. A special feature named Online Data Acquisition (OLDA) is a range
of addresses which can be written without causing errors but no memory is really ad-
dressed, and it is also supported by LMU. The PMU controls the flash memory and the
boot ROM. Flash memory is composed of both Data Flash (Dflash) and Program Flash
(Pflash), which are also ECC protected.

There are two types of interconnects including Shared Resource Interconnect (SRI)

26

3.2 Infineon AURIX

CPU1 CPU2

CPU0
Program

Memory Unit
(PMU)

Local
Memory

Unit
(LMU)

DMA Bridge

SENT

MultiCAN+

PSI5

E-Ray

EtherMac

HSM

Interrupt
Router

BCU

VADC

STM

ASCLIN

I2C

QSPI

GTM

SMU

Ports

IOM

FCE

SCU
MTU
EVR
PLL

PLL ERAY

System Peripheral Bus (SPB)

System Peripheral Bus (SPB)

System Peripheral Bus (SPB)

Cross Bar Interconnect

PSPR
PCACHE

DSPR
DCACHE

PSPR
PCACHE

DSPR
DCACHE

PSPR
PCACHE

DSPR
DCACHE

Figure 3.2: Infineon AURIX TC29x system diagram (some models are omitted)

27

3 Preliminaries

and System Peripheral Bus (SPB). The SRI allows parallel transactions among different
hardware modules. The SPB mainly connects CPUs and peripherals.

Another safety feature that differentiates AURIX from general-purpose consumer mi-
crocontrollers is lockstep. The lockstep logic provides one of the cores with an identical
checker core which runs the same operations as the main core. This is meant to guar-
antee the detection of transient failures and permanent faults. The comparison between
the checker core and the main core is delayed with two clock cycles to create a temporal
barrier. The space separation is also guaranteed by placing the checker core not close to
the main core.

In order to fulfill the increasing demand of various applications in the automotive
field [107], many peripherals have been implemented on AURIX. These peripherals in-
clude Analog-to-Digital Converter (ADC), Queued SPI Controller (QSPI), Ethernet Me-
dia Access Controller (MAC) etc. They are not the focus of this research and will not
be described in detail.

3.2.1 Atomic instructions

Atomic operations are beneficial to the performance of multithreaded systems as they
are often applied in the synchronization methods. The TriCore architecture supports
atomic instructions which read and/or write memory in atomic fashion:

• LDMST (Load, Modify, Store)

• SWAP.W (Swap register with memory)

• ST.T (Store bit)

• CMPSWAP.W

• SWAPMSK.W

3.2.2 Interrupt system

Multiple modules such as peripherals or external interrupts or software, acting as inter-
rupt sources, can generate interrupt requests to interrupt service providers such as CPUs
or DMA as shown in Figure 3.3. Each source is connected to a Service Request Node
(SRN) and assigned a unique interrupt priority number that is used to prioritize between
different interrupt requests coming at the same time. The arbitration is conducted by
the Interrupt Control Unit (ICU), which is implemented for each service provider. Each
SRN contains a Service Request Control (SRC) register to configure the service request
regarding e.g. priority, mapping to the corresponding service providers. When an inter-
rupt request is triggered and the information stored in the SRC is forwarded to all ICUs.
The configured ICU runs the interrupt arbitration and the winning request is reported
to the service provider by the ICU. The processing of service request starts after the
acknowledgment by the service provider. If the requested service provider is a CPU,
then interrupt service routine is entered and the interrupt system is globally disabled.

28

3.2 Infineon AURIX

CPU0

CPU1

CPU2

DMA

SRN

SRN

SRN

SRN

SRN

ICU0

ICU1

ICU2

ICU3

...

Interrupt trigger

signals from

peripherals/

external/software Interrupt router (IR)

Interrupt bus

0

Interrupt bus

1

Interrupt bus

2

Interrupt bus

3

Request &

acknowledgement

Request &

acknowledgement

Request &

acknowledgement

Request &

acknowledgement

Figure 3.3: The simplified diagram of the TC29x Interrupt System [106]

If the requested service provider is the DMA, then the configured DMA channel will be
activated.

3.2.3 OCDS

AURIX devices have many resources for debugging and performance optimization which
provide high visibility and controllability of software, hardware and system [108]. The
On-Chip Debug Support (OCDS) infrastructure is not a single block but a network
closely coupled in other system modules, as depicted in Figure 3.4. It involves features
such as debugging and calibration. In Figure 3.4, the closely coupled parts in other
system modules are also named OCDS. Many peripherals can be monitored by OCDS
Trigger Switch (OTGS) such as DMA, Generic Timer Module (GTM), CAN, FlexRay
and Ethernet. The collected information by OTGS can then forwarded to MCDS and
stored in the trace memory, which only exists in the emulation device. The emula-
tion device provides additional trace/calibration memory and trace logic than a normal
production device.

The connection between an AURIX device and a debugger can be either via Device
Access Port (DAP) or via Joint Test Action Group (JTAG), which are connected to the
IOClient. Infineon’s DAP that allows robust high speed connections over a long cable
is a two-wire tool access port for microcontrollers [109]. JTAG supports up to 40 MHz
serial clock while 2-pin and 3-pin DAP works up to 160 MHz serial clock. Even though

29

3 Preliminaries

PINs DAP JTAG

SCUOCDS

MCDS EMEM

IOClient

#2

OTGS TRIG OSCU

DMA

OCDS

Bus switch

fabric

TriCore

OCDS

SBCU

OCDS

CERBERUS

Emulation device only

IOC32

SPB

SRI

IOClient

#1

Figure 3.4: OCDS Components of AURIX TC29x [108]

the theoretical bandwidth can be 320 Mb/s, the on-chip trace generation bandwidth can
still easily exceed the limit. The solution is controlling the data generation bandwidth in
a continuous tracing. Another alternative is storing the trace data in the trace memory
and then transferring the data out of chip.

3.3 Infineon’s MCDS

MCDS is used for tracing and is the most important tool used in this dissertation.
EMEM acts as tracing memory or calibration memory or normal memory. In ADAS
applications EMEM is however frequently used as normal memory and is not available
for on-chip trace storage.

For each device class, there are two types of products including Production Device
(PD) and Emulation Device (ED) [110]. The TC2xxED is the ED of the corresponding
TC2xxPD. It consists of the unchanged product chip part (SoC) and the Emulation
Extension Chip (EEC) part, as shown in Figure 3.5. Both parts are on the same chip.
PD and ED have similar packages to reduce the overhead of Printed Circuit Board (PCB)
design.

The MCDS is designed for debugging and tracing. It is part of EEC. The hardware-
level operations are observed by MCDS via observation blocks. There are two types of
observation blocks: Processor Observation Block (POB) for core monitoring and Bus
Observation Block (BOB) for bus monitoring. In AURIX, each core to be traced can
be paired with a dedicated POB. Two cores can be traced in parallel because there are

30

3.3 Infineon’s MCDS

SBCU CPUx SRI CPUx LMU

DMA

interface

SRI

SPB

DAP/

JTAG

Product Chip Part (SoC)

Emulation Memory EMEM (2 MB SRAM)

BOB POB BOB POB

MCX

MCDS

DMC

Message Sequencer

IOC32

EBCU

TC29xED

Emulation Extension Chip

(EEC)

Back Bone Bus (BBB)

Figure 3.5: Infineon AURIX TC29xED diagram

31

3 Preliminaries

only two POBs. As discussed above, two different buses SRI and SPB are implemented
in AURIX. In order to trace the both buses, two BOBs are implemented in MCDS.

Multi Core Cross-connect (MCX) is meant to guarantee a consistent view of the
system components running independently and concurrently. It creates time stamps on
the buffered trace messages. On the other hand, it also handles the trace qualification
across boundaries. For example, if a core executes a specific routine, bus tracing is then
enabled. Debug Memory Controller (DMC) is a hardware module that is responsible for
packing tracing messages from different sources into the trace buffer (EMEM). It keeps
the temporal order of messages.

3.4 MCDS tracing

various kinds of information can be collected by MCDS. A POB is able to trace core
related information including program flow, data accesses and core states. For program
flow tracing, three alternatives with different granularity are provided, which are in-
struction tracing, flow tracing and compact function tracing. The alternative is selected
as a compromise of tracing duration and granularity. The instruction tracing records
the ending time of each instruction execution as shown in TABLE 3.1. It provides very
detailed information of the instruction execution but consumes the trace buffer fast.
Flow tracing offers a balance between the tracing duration and the tracing granular-
ity as shown in TABLE 3.2. It does not trace detailed instruction execution but the
discontinuity of the program flow, which is resulted from function calls, branches and
interrupts. Only the discontinuity recording is necessary because by default the PC
is continuously incremented. In this way, the ending time of each instruction is not
available but it lowers the data generation bandwidth. The least bandwidth-demanding
alternative is compact function tracing, which only generates messages when function
calls and function returns are observed TABLE 3.3. This alternative consumes little
bandwidth but it also omits detailed execution information. For instance, the detailed
branch execution is not contained in compact function tracing [111].

The three tables 3.1 3.2 3.3 show the three alternative examples. They trace the
same program execution scope, in which Ifx OSTask Application is called in main and
then EE oo StartOS is executed. The examples above are decoded by MTV, which is an
MCDS configuration and trace decoding tool. The .elf file is also given to provide the de-
tailed binary and symbolic information. TimeR shows the time stamp information. The
time stamp is added in MCDS after a message is generated. For instruction tracing, a
message is generated when an instruction is executed. For flow tracing, the generation of
a message is triggered when a discontinuity happens. The exact time information of each
instruction is missing in flow tracing. Accordingly, a function call or return creates a com-
pact function tracing message. Opoint is short for observation point, corresponding to
the observation blocks, where the message is captured. Origin indicates the origin of the
operation. Operation is meant to distinguish different types of operations. It is noted
that EE oo StartOS is called by a branch instruction from Ifx OSTask Application

so the operation of the last message in Ifx OSTask Application in TABLE 3.1 is IP

32

3.4 MCDS tracing

Table 3.1: An instruction tracing example

Index TimeR Opoint Origin Operation Address Symbol

1 1 CPU0 CPU0 IP A001C2CC core0 main
2 1 CPU0 CPU0 IP A001C2D0 core0 main

3 3 CPU0 CPU0 IP A001C2D4 core0 main

4 4 CPU0 CPU0 IP A001C2D8 core0 main

5 6 CPU0 CPU0 IP A001C2DC core0 main

6 8 CPU0 CPU0 IP A001C2DE core0 main

7 9 CPU0 CPU0 IP A001C2E2 core0 main

8 11 CPU0 CPU0 IP A001C2E6 core0 main

9 12 CPU0 CPU0 IP A001C2EA core0 main

10 14 CPU0 CPU0 IP A001C2EE core0 main

11 16 CPU0 CPU0 IP CALL A001C2F2 core0 main

12 25 CPU0 CPU0 IP A00022C4 Ifx OSTask ApplicationInit

13 26 CPU0 CPU0 IP A00022C6 Ifx OSTask ApplicationInit

14 40 CPU0 CPU0 IP A001F2E0 EE oo StartOS

15 41 CPU0 CPU0 IP A001F2E4 EE oo StartOS
16 41 CPU0 CPU0 IP A001F2E8 EE oo StartOS
17 41 CPU0 CPU0 IP A001F2EC EE oo StartOS

Table 3.2: A flow tracing example

Index TimeR Opoint Origin Operation Address Symbol

1 17 CPU0 CPU0 IP A001C2CC core0 main
2 17 CPU0 CPU0 IP A001C2D0 core0 main
3 17 CPU0 CPU0 IP A001C2D4 core0 main
4 17 CPU0 CPU0 IP A001C2D8 core0 main
5 17 CPU0 CPU0 IP A001C2DC core0 main
6 17 CPU0 CPU0 IP A001C2DE core0 main
7 17 CPU0 CPU0 IP A001C2E2 core0 main
8 17 CPU0 CPU0 IP A001C2E6 core0 main
9 17 CPU0 CPU0 IP A001C2EA core0 main
10 17 CPU0 CPU0 IP A001C2EE core0 main
11 17 CPU0 CPU0 IP CALL A001C2F2 core0 main

12 26 CPU0 CPU0 IP A00022C4 Ifx OSTask ApplicationInit
13 26 CPU0 CPU0 IP A00022C6 Ifx OSTask ApplicationInit

14 53 CPU0 CPU0 IP A001F2E0 EE oo StartOS
15 53 CPU0 CPU0 IP A001F2E4 EE oo StartOS
16 53 CPU0 CPU0 IP A001F2E8 EE oo StartOS
17 53 CPU0 CPU0 IP A001F2EC EE oo StartOS
18 53 CPU0 CPU0 IP A001F2F0 EE oo StartOS
19 53 CPU0 CPU0 IP A001F2F4 EE oo StartOS
20 53 CPU0 CPU0 IP A001F2F6 EE oo StartOS

33

3 Preliminaries

Table 3.3: A compact function tracing example

Index TimeR Opoint Origin Operation Address Symbol

1 17 CPU0 CPU0 IP CALL A001C2F2 core0 main
2 17 CPU0 CPU0 IP CALL A00022C4 Ifx OSTask Application

3 77 CPU0 CPU0 IP CALL A001F36E EE oo StartOS
4 77 CPU0 CPU0 IP CALL A0001C50 StartupHook

instead of IP CALL. Such kind of compiler optimizations makes the compact function
trace interpretation sometimes challenging for the user. The Address column shows
the IP address of executed instructions, based on which the detailed instructions and
function symbols can be parsed with the binary and symbolic information contained in
an .elf file.

BOBs are designed to capture bus transfer operations and bus states. Information
related to a bus transfer including address, data, time stamps is collected. A bus tracing
example of SPB is shown in TABLE 3.4. Similar to the instruction tracing, the time
stamp is added to each message, which is corresponding to a bus transfer. The operation
contains the bus transfer type information about the accessing type and accessing width.
The Symbol column indicates the target hardware module, which is post-processed
based on the device information. The first message in TABLE 3.4 describes that CPU0
reads 0xF0036100, corresponding to a register in the System Control Unit (SCU) module.

Table 3.4: A bus transfer tracing example

Index TimeR Opoint Origin Data Operation Address Symbol

1 19889 SPB CPU0.DMI FFFC000E R32 SV F0036100 .SCU
2 19911 SPB CPU0.DMI FFFC000E R32 SV F0036100 .SCU
3 19916 SPB CPU0.DMI FFFC000E R32 SV F0036100 .SCU
4 19934 SPB CPU0.DMI FFFC00F1 W32 SV F0036100 .SCU
5 19938 SPB CPU0.DMI FFFC00F2 W32 SV F0036100 .SCU

3.5 AURIX tools

The implementation of the proposed methodology is developed on the basis of several
existing tools. DAS and MTV are the most important ones. DAS deals with the con-
nection to devices while MTV is focused on MCDS tracing and decoding.

3.5.1 DAS

The DAS architecture was designed for multi-device multi-core systems with very de-
manding emulation requirements [112]. It provides one single interface for different types
of tools. The same tooling interface supports various device representations from ESL
model to end product to reduce cost and risk.

34

3.5 AURIX tools

Tool

Core specific layer

Client socket layer

Server socket layer

Device specific layer

Access hardware

Device

EXE

MCD API DLL

DAS API DLL

UDAS server

miniWiggler, etc.

JTAG, DAP, SPD, etc

MCD API

DAS API

TCP/IP

(remote or

local)

USB or Ethernet

Figure 3.6: The block diagram of Infineon’s DAS [112]

The detailed structure of DAS is shown in the block diagram Figure 3.6. The tool
interface is on software level (DAS Application Programming Interface (API)), which is
implemented in a .dll file. This layer provides the abstraction of the device connection. In
this way, the connection will be transparent for the tool. On top of this layer, MCD API
is created to better fulfill the requirement mentioned in [112]. The connection between
computer and access hardware is via either USB or Ethernet. The access hardware here
means miniWiggler, that is a converter between USB and DAP/SPD/SWD/JTAG. For
development boards provided by Infineon, an on-board miniWiggler is already integrated
on the PCB so that the board can be connected directly from the computer via USB.

3.5.2 MTV

MTV is developed on top of DAS. The goal of MTV is to utilize the power of MCDS
in an easy and user-friendly way. It has main functions including MCDS configuration,
MCDS tracing and trace data decoding. MTV is programmed in C++ and FLTK that
is a cross-platform Graphical User Interface (GUI) library.

As mentioned in the previous sections, MCDS is very flexible. Various triggers and
qualifications are possible. It is capable of tracing many hardware modules flexibly
with different levels of details. To perform various triggers and qualifications, configura-
tions directly on MCDS registers are needed, which are complex for software debugging.
MTV provides a user-friendly GUI and facilitates the configuration of MCDS. Instead

35

3 Preliminaries

Figure 3.7: The screenshot of MTV

of handling register values, users can select a tracing mode from a software developers’
perspective. Then, the corresponding MCDS configurations are generated and automat-
ically configured.

The collected trace data is stored in the EMEM. It must be decoded in order to be
interpreted. The decoded messages are displayed in a table as shown in the screenshot
in Figure 3.7.

36

4 Embedded Health – How to diagnose a
complex system?

Testing and debugging of software consume a significant amount of time and money.
Debugging, testing and verification activities can take up from 50% to 75% of the devel-
opment cost [113]. The conventional debugging tools fulfill the basic debugging require-
ments. However, the rapid advances in SoCs have led to powerful multi-core/manycore
systems, in which new issues are introduced. These issues include shared resource con-
tention, atomic violations, deadlocks, priority inversion and inefficient type of locks.
Some of these issues are sporadic, e.g. deadlocks and priority inversions. Some of them
have no obvious symptoms e.g. inefficient lock usage and memory contention com-
pared to the conventional functional bugs. The conventional debugging solutions like
breakpoint/step are not efficient enough for these cases. The gap between conventional
debugging tools and the debugging requirements for SoC increases. As a result, the
conventional debugging tools can hardly deal with the new-emerging issues [6]. Quality
of the software has not kept the pace [114] of SoC advances. Software bugs are still
frequent and even harder to detect. New debugging challenges with complex SoCs and
multi-core architectures have to be managed by a new powerful tool.

4.1 Learn from medicine – embedded health

Modern embedded systems are complex from both software and hardware perspectives.
The challenge how to figure out what is going wrong in a complex system is not new.
Doctors in the medicine field have been facing the same challenge for thousands of years,
in terms of the human body and the diseases it faces. Doctors know that the diagnosis
based only on the superficial symptoms is not a reliable best-practice. A disease like
leukemia for example, can exhibit symptoms that are similar to the flu and other common
diseases. Only more detailed tests, such as blood tests, will help reveal if it is actually
leukemia. Thus in medicine standardized diagnosis procedures are used to systematically
check many points rather than relying on assumptions based on the initial superficial
symptoms. As in our example, a blood test is a typical case of such a procedure that
is very useful for diagnosing different diseases and can be used for a great number of
patients. Blood tests are standardized and can be conducted for different individuals.
In blood tests, various indicators are designed to show the health state of a body.

Embedded health, based on the concept of a blood test, incorporates an innovative
system diagnosis and debug methodology to automatically detect issues in embedded sys-
tems and act as a generally applicable diagnosis tool for a variety of system issues. By
making use of hardware tracing supported by the target system, the proposed method-

37

4 Embedded Health – How to diagnose a complex system?

ology detects ”diseases” by using predefined indicators. The predefined indicators are
low-level hardware-related behavioral patterns acting as the metric system in our ”blood
test”. For complex embedded systems, software debugging and system diagnosis can be
solved in a similar way [115]. Hardware tracing is supported by many COTS devices e.g.
Infineon’s MCDS, ARM’s Coresight and Freescale’s Nexus 5001. It can help developers
figure out what is going on in systems. One advantage of hardware tracing is that it is
non-intrusive, thus there is no impact on system timing and no software instrumenta-
tion is required. This is especially important for real-time systems as a bug may not be
reproducible with a different timing after software instrumentation. Various indicators
are designed based on the trace data to show different system issues corresponding to
”diseases” in medicine. Usually the concentration of a specific substance in blood tests
is an important indicator and however it is not sufficient for embedded systems.

4.1.1 An automated system diagnosis and debugging methodology

In order to solve the new-coming challenges, in this chapter a trace-based automated
system diagnosis and debugging methodology is proposed to cover issues in embedded
systems that cannot be efficiently solved by conventional tools. It is based on the em-
bedded health and makes use of hardware tracing like blood tests. The hardware tracing
provides hardware-level trace data including program flow, bus transfers, memory ac-
cesses etc. However, hardware tracing is limited by the bandwidth and the trace buffer
size [116]. It is not feasible to trace all program flows and memory addresses continu-
ously. Tracing qualification is usually used to reduce the amount of trace data, meaning
tracing only the necessary information. The decision what should be traced depends on
the analysis, which is conducted by the tool. Various indicators are designed to detect
different system issues e.g. data memory contention, program flash contention, hardware
configuration issues. Applications with potential issues are examined by the diagnosis
tool and a diagnosis report is generated automatically without the involvement of users.
The detected issues are described in detail on the report and appropriate solutions can
be then applied.

Indicators are independent of applications and software. Accordingly, the proposed
automated system diagnosis and debugging methodology is a general solution regardless
of applications.

The design of indicators is critical for the detection of issues. An indicator can be
simply a temporal rule or a complex model. For instance, a write operation to a protected
register is a violation of a rule (a protected area cannot be written). One write operation
to a disabled register before enabling it is also a violation of a rule. This rule also contains
temporal information (before enabling). The violation of the rule can be treated as an
indicator. A more complex indicator example is the memory access contention indicator,
which is a model depending on the previous memory accesses, access origin, access
destination and even interval between two memory accesses. In summary, an indicator
is a criterion to judge whether an issue occurs and how severe the issue is, given an input.
The input here in the proposed methodology is trace data as shown in Figure 4.1. The
mapping between issues and indicators is not necessarily one-to-one mapped. An issue

38

4.1 Learn from medicine – embedded health

Trace data

...

indicator1

indicator2

indicator3

“blood” indicators “Diseases”

Trace data

...

indicator4

indicator5

...

issue1

issue2

issue3

issue4

issue5

...

Figure 4.1: The basic work flow of the indicators in embedded health

may only be determined if several indicators are positive. For example, the stalling of a
CPU pipeline can be an indicator of program flash contention. It can also be an indicator
of data memory contention. If another indicator that shows the existence of a conflicting
data memory access, the data memory contention issue is confirmed. Therefore, more
than one indicator might be needed to make sure which issue it is.

The indicator plays an important role in the proposed methodology. The designed
indicators influence directly the detection of issues. Figure 4.2 illustrates the design
flow of indicators. Before the design of indicator, the first step is to decide the target
issue. When the target issue is selected, analysis can be performed to check the related
effects in the hardware level. For example, CPU pipeline stall can be related to memory
contention. Then, a coarse indicator can be extracted and corresponding testing is
applied to make sure that the issue can really be detected with the designed indicator.
If the indicator is not effective, another indicator may be needed or the indicator should
be refined. For instance, some hardware configuration issues can be detected by checking
the configuration process of the registers, so one indicator is usually sufficient for the
detection. While, for flash contention, relying on one indicator may result in many
false alarms and therefore several indicators are needed to confirm the contention. The
details of these two examples will be introduced later. If the designed indicators are
good enough for the detection, then mapping of indicators and the issue will be stored
in the indicator pool.

The proposed methodology is aimed to solve the new-coming issues introduced by com-

39

4 Embedded Health – How to diagnose a complex system?

Start

Analysis
Indicator

extraction

More indicator Issue detected

Indicator
refinement

End
Indicator

pool

Target issue
selection

YesNo

NoYes

Figure 4.2: The basic design flow of indicators

plex hardware and software in an automated and efficient way. It runs on a computer
and connects to target devices via debug interfaces, via which trace data is transferred
from chip to the computer. It automatically configures the tracing hardware that is
intrinsically integrated to the embedded platform, and decides the scope of tracing. The
tracing hardware is responsible for trace message generation, compression and temporal
storage. The trace data provides low-level information of executed hardware operations
including program flow, bus transfers, memory accesses, based on which various indica-
tors are created to detect different target system issues e.g. data memory contention,
program flash contention, hardware configuration issues. The indicators can be patterns
of operations or a sequence of patterns. A specific issue can be detected relying on a
pre-defined indicator. For different diagnoses, the tracing hardware is configured ac-
cordingly to obtain the required data. The only input file from users is the .elf file that
provides symbolic and section information. If a user has no idea about where to look
at, the proposed methodology will start the analysis from the beginning, e.g. after reset
and run a general physical examination.

During the tracing phase, the tracing hardware is configured automatically by the
proposed methodology as shown in Figure 4.3. Then the trace messages containing
hardware-related operations are linked to binary and symbolic information available in
the .elf file. In the indicator extraction phase, the trace data is compared to the standard
indicators. The indicators can be stored in the tool or in a special format that is easy to
be read. In this way, this methodology can be applied for different hardware platforms
given the necessary input indicators. Finally, a report is generated to pinpoint the
detected issues based on the comparison. In the report, issues are highlighted and even
suggestions may be raised automatically by the implemented tool.

40

4.1 Learn from medicine – embedded health

End

Tracing

Start

Debugging information

Application file

FilteringRaw data

Report Analysis

Linking

Indicators

Optional

Figure 4.3: The work flow of the automated system diagnosis methodology

As shown, the proposed methodology has an automated work flow from conventional
debugging process, in which software developers are highly involved. The comparison be-
tween conventional debugging process and the proposed debugging process is illustrated
in Figure 4.4.

In the scenario if the clock configuration is wrong, using the conventional debugging
approach, the software developer has to collect the observed data and read through the
clock configuration part in the user manual. Then he has to do a considerable amount
of analysis to figure out the root cause. Several hypotheses might be assumed by the
developer and verification measures are applied. If the hypothesis is right, he can fix the
issue. Otherwise, he has to repeat this process until the real root cause is found, though
new observed data may be added after each iteration. It is obvious that the conventional
debugging approach is a manual approach, which involves the software developer a lot.
The duration of this debugging process depends on the experience level of the software
developer.

The right part in the Figure 4.4 shows the proposed work flow using the proposed
automated debugging tool. Other than the conventional method, the software developer
is not required to know what exactly is wrong, even without knowing the clock configu-
ration is wrong. For instance, he can directly run the tool to do a full check, which covers
several groups of issues. Afterward, a report is available right away. The clock configu-
ration error is highlighted in the report as the configuration violates the predefined rules.
Accordingly, the configuration can be fixed immediately by the developer. As shown,
this process involves much less the software developer, increasing the efficiency of the
debugging process. The debugging duration is not relying on the experience level as the

41

4 Embedded Health – How to diagnose a complex system?

Documents

Hypothesis
right?

Observed
data

Hypothesis

Verification

Analysis

Issue fix

Software develoer

.elf file, input
indicators

Analysis by the
tool

Report

Issue fix

Trace
data

: involved

Conventional debugging
approach

Proposed debugging
approach

Figure 4.4: The comparison of the conventional debugging flow and the proposed work flow

knowledge can be shared even for different applications.
There are many automated debugging tools emphasized on a specific software issue.

Compared to such tools, the proposed methodology covers different types of issues, which
are rarely emphasized by existing solutions. In summary, the proposed methodology is
designed to be an innovative general and efficient solution for software debugging.

4.1.2 Issue classification

Software bugs can be classified into several groups [117] namely arithmetic, logic, syntax,
resource, multithreading, interfacing, performance, team working. Arithmetic bugs are
mainly calculation related such as division by zero and arithmetic overflow as shown in
TABLE 4.1. Logic bugs are logic related, e.g. off-by-one error. Syntax bugs are bugs for
example wrong usage of operators and are usually caught by compilers. Resource errors
are closely related to memory and data structure usage, for instance stack overflow.
Logic bugs, syntax bugs and resource bugs are classic and have been studied for quite a
long time.

The above classification is comprehensive and general. It covers a very broad range of
software bugs. In this dissertation, only new-emerging ones that are rarely covered by
the existing studies are focused. Therefore, a different classification is used to emphasize
this small group.

Merely replying symptoms is not sufficient to diagnose system issues. A criterion is

42

4.2 Diagnosis methodologies of functional issues

Table 4.1: Software bug classification according to Wikipedia [117]

Software bug types Examples

Arithmetic Division by zero, arithmetic overflow
Logic Infinite loops, counting one too many while looping
Syntax Wrong programming language usage
Resource Memory leakage, access violations, using uninitialized variable
Multithreading Dead lock, race condition
Interfacing Incorrect hardware handling, incorrect APU usage
Performance random memory accesses
Teamworking Documentation errors

necessary to define what is right. This criterion could be binary, either good or bad.
It can also be more complex and fuzzy. For example, some issues may slightly impact
the performance but they are not fatal. These issues might be tolerated by the system.
Some other issues may heavily influence the performance resulting in system functional
changes. They are supposed to be notified to developers. Based on this classification,
two different categories are created, namely functional issues and non-functional
issues. The overview of both categories is explained in the Figure 4.5. Some of the
example issues are covered by the proposed methodology in this dissertation.

The methodologies to solve these two different types of issues are described in the
following two sections. The implementation and the experiential results for each analysis
are introduced in the next chapter 5.

4.2 Diagnosis methodologies of functional issues

In this section, a methodology dealing with hardware configuration issues is introduced.
Hardware configuration issues are mostly binary issues as the valid hardware configu-
ration is clearly explained by the rules documented in user manual. A small part of
hardware configurations may be related to performance degradation but still this group
of issues is assigned to functional group.

4.2.1 Hardware configuration validation

4.2.1.1 Introduction

More and more processing elements and functional units are integrated into multi-core
SoC, fueled by exponentially increasing transistor numbers. The integration of more
components into a single chip leads to complex configurations. Most configurations
are configured by software during runtime. Many rules are defined to regulate the
procedure to set them, for example, a rule defining which write value is allowed for
a specific register. Usually these rules are described in user manual and the growth

43

4 Embedded Health – How to diagnose a complex system?

functional
issues

 Program flash
contention

 Data memory
contention

 Inefficient data
locality

 Inefficient lock usage
 Blocked interrupts
 DMA issues
 ...

 HW configuration issues
 Unprotected shared

resource by locks
 Missing deadline
 Stack overflow
 Dead lock
 ...

Non-functional
issues

Figure 4.5: The overview of two categories of example issues: functional issues and non-
functional issues

in configuration complexity can be illustrated by the length of the user manual. For
example, the user manual of Infineon AURIX TC29 exceeds 6000 pages.

The violations of the rules defined in the user manual may lead to many issues. These
issues include performance issues and functional issues. If the issues have obvious symp-
toms, they can be easily noticed. Otherwise, they may be ignored or hard to detect. In
the following, two real-life examples based on Infineon AURIX are described.

In the Infineon AURIX devices, on-chip flash stores target code and constant data.
Flash is slower than SRAM and needs at least certain time to access. This time is to be
configured by a special register, which notifies the bus when to fetch the read data after
the read data is available at the interface between the flash and the bus. The detailed
requirements are shown in TABLE 4.2. The flash wait state configurations depend on
the clock frequencies.

Table 4.2: Wait Cycle Calculation on AURIX TC29 [49]

Delay Register Field Minimum Value Constant

program flash read access delay FCON.WSPFLASH dtPF · fFSI2e − 1 tPF

program flash ECC decode delay FCON.WSECPF dtPFECC · fFSI2e − 1 tPFECC

data flash read access delay FCON.WSDFLASH dtDF · fFSIe − 1 tDF

data flash ECC decode delay FCON.WSECDF dtDFECC · fFSIe − 1 tDFECC

The Delay column indicates different delays required by the flash configuration. There

44

4.2 Diagnosis methodologies of functional issues

are two different flashes namely Pflash and Dflash. For each type of flash, read access
delay and ECC decode delay have to be configured to properly guarantee that the data
is already available at the interface to be fetched by the bus. Register Field as the
name explains shows which field in a register should be set. The minimum value in this
field is calculated according to the formula defined in the Minimum Value column.
Constants such as tPF, tPFECC, tDF and tDFECC are defined in a data sheet.

If the waiting time is below the minimum requirement, the read operation may fail,
leading to bus errors. Depending on the working condition e.g. temperature, the bus
errors happen sporadically from a software developer’s view. The bus errors then trigger
exceptions, which are usually solved in the following process: The exception name indi-
cates which exception type it is and the instruction causing the exception can also be
derived. However, this instruction may differ due to the fact that this error is sporadic,
which is usually confusing for software developers. Furthermore, linking the bus errors
to flash configurations is also not straightforward, which may take a long time to figure
out without experienced expert’s help.

It looks safer to set the value larger than the necessary minimum value. In fact,
the configuration with a value larger than needed means that the bus waits longer
than necessary, causing larger access delay and lower performance. Such non-optimal
configurations are also subtle because they don’t have obvious symptoms e.g. exceptions.

Another example is about clock configurations. In an embedded system, many hard-
ware modules are running at different frequencies. A CCU is responsible for the clock
distribution in AURIX. The clock configuration is set by writing the configuration reg-
ister and then by setting the update request (UP) field that works as an update switch
for updating the module frequencies. An issue with this is that the register doesn’t show
the actual state when the UP field is neglected. The newly-written value is read but
the clock runs in the previous state in such situation. A conventional debugger may
have a clock configuration view based on the current register values, which provides mis-
leading information to software developers. A wrong clock configuration could lead to
many problems in hardware modules due to the close relation between the clock and the
module. Debugging becomes even more complex and challenging based on this wrong
information.

The above two real-life examples show the consequences of wrong hardware configu-
rations and the challenges in debugging hardware configuration. These challenges are
not easy to be conquered by conventional debugging methods as shown in left part of
Figure 4.6. In the conventional process, a user manual is the key and is created by
a hardware designer. The user manual defines all the rules which are supposed to be
followed to use hardware properly. Then, a software developer receives a user manual
copy and programs hardware relying on this user manual. If anything goes wrong with
the hardware configuration, the software developer has to go through the user manual
again and try to figure out the root cause. Even worse, sometimes there are no obvious
symptoms of a misconfiguration or the symptoms are not well understood by the soft-
ware developer. The error may go into production without any notice, which might be
life-threatening for products like cars.

An improved hardware configuration validation methodology is proposed to increase

45

4 Embedded Health – How to diagnose a complex system?

User Manual/
Data Sheet

Chip Designers

SoC Design SoC Design

Software
Development

Software
Development

Database

Off-chip Analysis
Tool

Application
Software

User Manual/
Data Sheet

Chip Designers

Software Developers

Application
Software

Software Developers

Figure 4.6: Comparison of the conventional design flow (left) and the methodology proposed
in this paper (right) [49].

the developers’ productivity [49]. It is shown in the right part of the Figure 4.6. Instead
of only replying on user manual as the channel between hardware developers and software
developers, the proposed methodology add a new channel that is a database and provide
a connection with an off-chip analysis tool. The hardware configurations can be checked
by the off-chip analysis tool directly on the running system using hardware tracing. This
checking is not relying on the symptoms, thus many hard-to-find configuration issues
can be detected easily by this tool. The software developers will be notified if any issues
appear.

The methodology consists of three major components [49]:

• A formal configuration rule language based on LTL describes valid hardware
configurations.

• A configuration rule database stores those rules.

• An off-chip analysis tool checks whether violations of the configuration rules
occurred at runtime. The tool uses the tracing facilities available in many of
today’s COTS chips to gather data from the running system without modifying
its target software. It then compares the traced system behavior to the rules and
verifies whether the hardware-related configurations are properly applied.

Compared to the other related research, this methodology covers both the SoC devel-
opment phase and the software development phase. The rules are directly input by SoC

46

4.2 Diagnosis methodologies of functional issues

designers and are valid for a specific device regardless of applications It uses no-intrusive
hardware tracing and needs no additional hardware. Moreover, it can efficiently solve
hardware configuration issues that are time-consuming and hard-to-detect.

4.2.1.2 Methodology

The proposed methodology has two phases namely the SoC design phase and the software
development phase.

SoC Design Phase: at the SoC design phase, basic software rules are defined by
the hardware developers. These rules should be complied during runtime in order to
work as expected. Instead of the conventional way, in which these rules are written into
the user manual, the rules are formalized to a standardized format. The standardized
format acts as a bridge between the SoC design phase and the software development
phase. It is easier for automation tools to read. The rules are also transformed into the
user manual in an unambiguous mathematical format. The rules should be presented
precisely.

Software Development Phase: the software development phase is corresponding to
the software development on the given hardware by software developers. The rules de-
fined by the hardware vendors are supposed to be followed by the software developers.
An off-chip analysis tool helps to guarantee that the pre-defined rules are not violated
by the software during runtime. Those rules are stored in a database that provides con-
nections to the off-chip analysis tool. The analysis tool configures the tracing hardware
to focus only on the interesting register accesses. Then a diagnosis report is generated
to inform software developers of improper configurations and the rules by comparing the
traced access history to the rules.

The rules are managed in a hierarchical structure as shown in Figure 4.7. The SoC
level consists of several SoC hardware modules, which contains detailed rules. Core
modules means that they are always utilized by the application and should be always
checked, including CPU, flash, buses and clock configurations etc. Other modules e.g.
DMA, Ethernet MAC are optional to be validated. With this structure, the rules are
organized in a logical and convenient way.

4.2.1.2.1 Linear Temporal Logic
The rules are supposed to be easy to understand and contain temporal information. LTL
is applied to define the rules because of several advantages. It was first proposed for
formal verification in [54] and is a core part of several runtime verification systems [59]
due to its flexibility and simplicity. As the name explains, it is an important method to
express the time related properties. It is also expressive and unambiguous.

An introduction of LTL is described here [49]. A LTL (ϕ) is built up from a set of
propositional variables (P), Boolean operators (¬,∧,∨...) and temporal operators (X,
G, F, U ...). For example,

47

4 Embedded Health – How to diagnose a complex system?

SoC

Core
Modules

Module 1 Module 2 Module 3 ...

Rule 0 Rule 2 Rule 5 Rule 23 Rule30

Figure 4.7: The rule management hierarchy in the off-chip analysis tool [49]

ϕ = (p1 ∨ p2) U ¬p3 (4.1)

with p1, p2, p3 ∈ P .

The LTL example shown above means that either p1 or p2 is valid until p3 is not valid.
A subset of temporal operators, that indicate the temporal relations, is shown below.

• X (©) for next.

• G (�) for always.

• F (♦) for eventually.

• U for until.

If w is a sequence of P , the satisfaction relation |= means that w satisfies the LTL
formula ϕ. Several satisfaction examples Equation 4.2 4.3 4.4 4.5 with different temporal
operators are given below, corresponding to the diagrams (A), (B), (C) and (D) in
Figure 4.8 respectively.

w1 |= © p1 (4.2)

w2 |= � p1 (4.3)

48

4.2 Diagnosis methodologies of functional issues

w3 |= ♦ p1 (4.4)

w4 |= p1U p2 (4.5)

The current state is at index 0. The sequence (A) satisfies the LTL formula Equa-
tion 4.2 because at the next state (w1(1)) p1 holds. The Equation 4.3 is also satisfied
since p1 always holds. In the sequence (A), p1 will be finally true, which also satisfies
the Equation 4.4. The last Equation 4.5 means that p1 must be true until p2 becomes
true, which is exactly the case of the sequence (D).

. . .

. . .

. . .

. . .

p1

p1 p1 p1 p1 p1

. . .
p1

p1 p1 p1 p2
. . .

(A)

(B)

(C)

(D)

w1

w2

w3

w4

Figure 4.8: Diagrams of temporal operators

The description of LTL is not the focus of this methodology so only simple examples
are explained. The detailed information about LTL is available in [54, 59, 118].

4.2.1.2.2 Rule Definition
There are two types of rules namely combinational rules and sequential rules. LTL is
applied to both of them.

A combinational rule defines the combinational issues that depend only on the present
state. The flash configuration issue belongs to this group. The combinational rule is
defined in Equation 4.6

R := Rule(Combinational, ϕ); (4.6)

49

4 Embedded Health – How to diagnose a complex system?

A sequential rule covers the sequential issues that depend not only on the present
state but also on the previous history, for instance, the clock configuration update issue.
It is defined in Equation 4.7. The direction shows in which direction should be searched
starting from the condition, either forward or backward. It is used for two scenarios e.g.
an enabling access should be before the register access or an updating access should be
after the register access.

R := Rule(Direction, ϕ); (4.7)

ϕ as defined above, is an LTL formula describing the register access sequence that
is supposed to be obeyed. The propositional variables that are the basic elements in
an LTL are defined as Rregister ∈ P . Rregister is a qualification function that validates
whether a register access belongs the predefined access as shown in Equation 4.8. The
origin as the name explains indicates the origin of the access, e.g. CPU0, DMA. This
deals the cases that only specific modules are allowed or not allowed to access the some
registers. The type argument defines the access type and access width e.g. a read 32-bit
access. The other arguments including register, field and value specifies the detailed
register access information. It is noted that not all arguments must be filled to qualify
an access and the granularity of the access qualification is flexible. If an argument is not
defined, this argument doesn’t matter in the qualification.

Rregister = f(origin, type, register, field, value) (4.8)

An example based on a real-life case is given here. The configuration of a module
can be modified by writing the register CONFIG. In order to validate the newly written
configuration, the register UPDATE has to be set, which is commonly applied in many
cases. A rule in Equation 4.9 is defined for this example. The equation indicates that
a sequential rule which means that a write access to register CONFIG happens, then
eventually a set access to register UPDATE must be observed, as defined in Equation 4.10.

R = Rule(forward, ϕ); (4.9)

ϕ = �(RCONFIG ⇒ ♦RUPDATE) (4.10)

4.2.1.2.3 Rule Checker

A rule list can be generated by selecting the rules by developers as in Figure 4.9.
Once a module is selected, all rules under this module will be added to the list and
checked during runtime. If necessary, a SoC restart can also be triggered by the tool. To
shorten the tracing duration, the proposed method only configures the MCDS to trace
limited to the interesting scope, which further decreases the data generation bandwidth.
The interesting tracing scope differs for each rule as different rules may involve different
registers and address ranges. Then, the trace data is processed by the tool and compared

50

4.2 Diagnosis methodologies of functional issues

HW module selection
by SW developer

Rules to be analyzed
generated

Trace HW automatically
configured for the rule(s)

Device run, trace
data collected then the

next rule(s)

Results
analysis

Analysis report
generated

Figure 4.9: The analysis steps of the proposed method

Activation
Ra

Rb Ú Rc

false

true

Re

Rd

 Rb = true

 Rc = true

Sucessful
true

true

Failed

false

false

false

Figure 4.10: A rule checker example

51

4 Embedded Health – How to diagnose a complex system?

to the existing rules in database automatically. Finally, a report is created by the method
and detected issues are highlighted to developers.

A finite state machine (FSM) is utilized to check whether the satisfaction relation
between w and ϕ is true as shown in Equation (4.11).

w |= ϕ ? (4.11)

The collected trace data is compared against the pre-defined selected rules by a rule
checker that is constructed as an FSM diagram based on the rule. A rule checker example
is given in Figure 4.10 and the corresponding equation is in Equation (4.12). It starts
with an activation condition, whose fulfillment means rule activation. An intermediate
state always falls into failed state when the current requirement is not fulfilled. Then,
if the successful state is reached, the rule is qualified and fulfilled. Otherwise, a rule
violation is reported.

ϕ = �(Ra ⇒ (♦Rb ∧ (Rb ⇒ ♦Rd))) ∨ �(Ra ⇒ (♦Rc ∧ (Rc ⇒ ♦Re))) (4.12)

A node in an FSM stands for a propositional variable, as a collection of Rregister. It
defines the register access requirements in the current state e.g. a write access of a
specific value to a field. A false condition means that the current node is not fulfilled.
Depending on the result of propositional statement, the next state will be reached. The
arrow between two states indicates the next state condition.

4.3 Diagnosis methodologies of non-functional issues

In this section, non-functional issues are described. These issues may cause problems e.g.
performance degradation which is not fatal. However, these issues may also be harmful
e.g. missed real time deadlines due to the issues, which may not be unconsidered in the
system timing analysis.

First a non-intrusive approach to observe and analyze DMA channel activities is de-
signed. For DMA channel activities, there are no well-defined rules to determine whether
the activities are right.

Then, two methodologies focused on the profiling of interrupts and locks are intro-
duced. These methodologies cover both functional issues and non-functional issues. The
interrupt profiling methodology is mainly focused on the interrupt performance. How-
ever, if an important interrupt cannot be handled in time, it may lead to a functional
error. The lock profiling methodology also emphasizes on lock performance. Functional
synchronization errors can also be detected by this methodology. Finally, contention
analysis methodologies of flash memory and data memory are described. They are aim-
ing at performance issues.

Finally, contention for shared resources is analyzed. It is usually invisible for software
developers but can heavily impact the performance in multi-core systems. In this chap-
ter, two methodologies with two different emphases are introduced. One is focused on

52

4.3 Diagnosis methodologies of non-functional issues

program and the other one is related to data. The program flash contention analysis
methodology is able to detect program flash contention which is rarely detectable by
other existing tools. The data memory contention methodology is capable of analyzing
both data contention and data locality in a quantitative way, facilitating the balanced
performance optimization.

4.3.1 DMA channel activity analysis

4.3.1.1 Introduction

In the automotive industry more cars are equipped with ADAS and there is a trend that
autonomous driving cars will be released. In order to cope with new challenges intro-
duced by these sophisticated features, more requirements of communication and sensing
are posed to embedded systems, and therefore more peripherals are added to embedded
systems. Using DMA is more preferred as this avoids the involvement of CPUs and
requests can usually be serviced faster and it is quite common to have peripherals coop-
erated with DMA channels. Thus, DMA has been widely applied in modern embedded
systems.

In the recent multi-core/manycore design, a combination of Scratchpad Memories
(SPM) [119] and DMAs has been proposed as an alternative to traditional caches,
where data transfers through the memory hierarchy are explicitly managed by the soft-
ware [120]. The advantages of this alternative include reduced power consumption, and
better performance;. However, this alternative also increases the programming complex-
ity that is challenging for software developers to manipulate memory accesses through
multiple layers, leading to more error-prone software.

Until now, most debugging solutions are CPU-centric as CPU is the module executing
software, for example, setting break point, performance analysis of specific tasks, race
condition etc. DMA as a type of widely utilized resource is underestimated and there are
not many debugging solutions focusing on DMA. As a classic debugging solution, setting
a break point may be the first thing a software developer trying to do when malfunction
happens, which freezes the execution and gives the software developer a ”screenshot” of
what is happening at that moment. However, a break point cannot stop a DMA channel
as DMA usually is not halted by the debugging module. The interaction between DMA
channels and peripherals cannot be frozen by a break point. Software developers can
only imagine what is going on according to the DMA configurations, and this might be
different from the actual situation.

To close this gap between software developers’ understanding and systems’ real states,
a solution which is able to illustrate what is happening to DMA channels and peripherals
is required. In this section, a new method making use of MCDS is proposed to trace and
visualize the DMA channel activities and function information. Function tracing and
also flow tracing are added to make the results more comprehensive. This information
is visualized via an easy-to-understand Gantt chart.

DMA is widely used in embedded systems to service peripherals and to boost the sys-
tem performance by using DMA to handle memory accesses explicitly. However, only a

53

4 Embedded Health – How to diagnose a complex system?

few studies are focused on the analysis of DMA [120]. For instance, in order to deal with
the DMA channel contention that means two DMA channels operate on the same mem-
ory and at least one modifies the memory, an automatic formal verification tool called
SCRATCH was designed by Donaldson et al. [121, 122]. SCRATCH runs on a C program
for Cell BE processors, which consist of two different types of computational units: a
power processing element (PPE) and several synergistic processing elements (SPE) [123].
The Cell architecture was initially designed for gaming and used for PlayStation 3. Then
it is embraced by the scientific community for high performance computing. In the Cell
architecture, DMA as a central means of intra-chip data transfer is equipped for each
SPE and PPE and is controlled directly by software developers. The SCRATCH tool
uses a combination of SAT-based bounded model checking and k -induction to detect
or prove absence of DMA races [121, 122]. In order to detect DMA races, a dynamic
approach based on software instrumentation was proposed by Saidi et al. [120]. It is
a monitoring algorithm which observes during runtime dynamically the arrival of a se-
quence of DMA events and emits a verdict each time a DMA race is detected. Moreover,
it can enforce a correct and DMA race-free execution of the program.

4.3.1.2 Solution

The DMA analysis proposed here is based on features supported by Infineon’s MCDS.
The DMA channel activity information is collected by MCDS and then presented to
users. Before that, the background knowledge of interrupt handling and DMA operations
is introduced.

4.3.1.2.1 The DMA module in AURIX
DMA is a hardware module that is able to access system memories independent of the
CPU, which reduces the service latency and saves computation power. The DMA module
in AURIX supports 128 DMA channels and the channel index indicates the priority.
DMA channel 127 has the highest priority while channel 0 has the lowest. There are two
DMA move engines for parallel execution of requests. DMA channel requests coming
from the interrupt router (IR) can initiate a DMA transfer. Figure 4.11 shows the block
diagram of the DMA module and the closely related modules such as buses and interrupt
router are also illustrated. The transaction control sets are used to store DMA channel
configurations. Requests from the IR are handled and arbitrated in the DMA channel
request and arbitration sub-block. The DMA module is also able to generate requests
to the IR that can then be served either by CPU or DMA. Programming of the DMA
transaction control sets is via a bus slave interface while DMA data operations are via
a master interface.

A DMA move is the basic operation which consists of a read operation that loads
data from a data source and a write operation that stores data to a data destination as
shown Figure 4.12. Each DMA move can read and write data with a width of 8 bit, 16
bit or 32 bit for SPB and 8 bit, 16 bit, 32 bit, 64 bit, 128 bit or 256 bit for SRI. A DMA
transfer can be composed of several DMA moves while a DMA transaction is composed
of several DMA transfers. For instance, the example in the figure has a DMA transfer

54

4.3 Diagnosis methodologies of non-functional issues

Transaction

control sets

Bus slave

interface Bus master interface

DMA

channel

request &

arbitration

Active channel

Transaction control

unit

Interrupt

control

unit

Service request

nodes

DMA controller

DMA channels DMA sub-block

On chip bus

Interrupt router

Figure 4.11: The DMA block diagram in AURIX [106]

with three DMA moves.

4.3.1.2.2 DMA tracing
MCDS has many designated features for different hardware modules. DMA as a widely
applied module is also supported by the MCDS tracing. The DMA module provides a
8-bit vector that is traced and collected by MCDS. The meaning of each bit is described
in TABLE 4.3. The lower 7 bits show which DMA channel is active in the move engine
0 and the 7th bit indicates the availability of the move engine 0. Similarly, the upper 8
bits contain the same information of the move engine 1. The traced data in DMA will
be transferred to OCDS Trigger Bus (OTGB) and trace messages are generated there.
During the message generation, time stamps are also created and attached to messages.

Table 4.3: TS16 PF Trigger Set Channels [106]

Bit Name Description

[6 : 0] CH0 Channel number active in move engine 0
7 ME0 Move engine 0 idle/active
[14 : 8] CH1 Channel number active in move engine 1
15 ME1 Move engine 1 idle/active

Based on DMA tracing, the activity status of DMA channels become available. Some-
times, a DMA request comes and it is not handled in time because DMA move engines
are fully occupied by other channels. In order to observe this delayed DMA channel han-

55

4 Embedded Health – How to diagnose a complex system?

Data source
Data

destination
DMA channel

DMA

controller

Read move Write move

DMA

move

DMA

move

DMA

move

DMA

move

DMA

move

DMA

move
...

DMA Transfer DMA Transfer

DMA transaction

Figure 4.12: DMA terms: DMA moves, DMA transfer and DMA transaction in AURIX [106]

dling, service requests from hardware modules are also traced by MCDS, which involves
interrupt router. Four different service requests can be traced in parallel by configuring
MCDS as described in TABLE 4.4. The selected service requests should be configured
before tracing in the interrupt router. It can be either configured by the application
software or by the debugging interface. In this proposed method, it is configured during
the configuration of MCDS via the debugging interface. When a service request comes,
the corresponding bit will become one, meaning the arrival of the service request. The
collected data is transferred to MCDS also via OTGB. With the help of this information,
the service request delay which is defined as the delay between request’s arrival and its
DMA service is measured.

Table 4.4: Trigger Set Interrupt Selection [106]

Bit Name Description

0 AIL Any interrupt trigger lost
1 SIL Selected (INT OIXMS) interrupt trigger lost
2 SI0 Selected (INT OIXS0) interrupt 0
3 SI1 Selected (INT OIXS1) interrupt 1
4 SI2 Selected (INT OIXS2) interrupt 2
5 SI3 Selected (INT OIXS3) interrupt 3
[7 : 6] Reserved

56

4.3 Diagnosis methodologies of non-functional issues

Only relying on DMA channel information to diagnose issues and anomalies is not
easy. This is because software developers are usually thinking from a software-centric
perspective. It will be easier to link DMA activities to the software execution for example
functions that are executed by CPUs when some DMA channels are active. Fortunately,
it can be fulfilled with MCDS function tracing or flow tracing. The details of function
tracing and flow tracing are explained before.

4.3.2 Interrupt profiling analysis

4.3.2.1 Introduction

An interrupt is a signal to indicate an event that needs immediate attention [124] by
service providers. Interrupts are widely used in both embedded systems and general pur-
pose computers. They are designed for multi-tasking especially for real-time computing.
Depending on the priority, the interrupted CPU may suspend its execution and store the
current states e.g. current register values. Then the interrupt handler will be executed.
Usually this process takes only a few clock cycles and acts as an efficient solution. The
service providers are not limited to CPUs and the DMA can also be a service provider.
Many peripherals work in cooperation with DMA as discussed in the previous section.
For example, an SPI module triggers a service request to the interrupt router to empty
its received data. Then the interrupt router will forward this request to the configured
service provider which is the DMA module. The corresponding DMA channel will then
be activated to handle the task.

In real-time systems, interrupts are applied to trigger tasks which are supposed to be
finished in time. Timely handling of interrupts is critical for such systems, especially
when the task is safety critical. Unfortunately, interrupts are difficult to predict: they
alter the program control flow and complicate the invariants in low-level code [78]. In-
terrupt handling can be delayed or blocked by many reasons. For instance, the interrupt
system is disabled by software or higher priority interrupt occupies the service provider
or critical interrupt is frequently preempted by other tasks. Therefore, interrupt profil-
ing that helps software developers to understand their system and find the suspicious
interrupt behavior benefits reliable and efficient system development. As the system
timing behavior is critical for real-time systems which are aimed to be not changed,
the interrupt profiling method is designed to be non-intrusive and based on hardware
tracing.

With the help of the proposed interrupt profiling method, interrupt handling infor-
mation such as interrupt arriving time, response latency, interrupt duration, blocking
time is measured. Software developers will get direct impression of how interrupts work
in their systems. Based on the measured information, suspicious interrupt behaviors
will be highlighted, warnings and suggestions will be proposed by the interrupt pro-
filer. Performance information of the interrupt system is also measured and available for
users. Software developers have the freedom to decide whether they should implement
the suggestions.

This method has several advantages over the other research. First, it uses the dynamic

57

4 Embedded Health – How to diagnose a complex system?

analysis instead of the static analysis to achieve more accurate results and it applies non-
intrusive hardware tracing. It is the first interrupt profiling method based on hardware
tracing as far as known. With the help of non-intrusive tracing, the timing of interrupts
is not influenced by the observation. Second, the method is independent of OSes and
applications. This is preferred for the analysis of embedded systems because there is no
dominant OS on embedded systems like Windows on PC.

4.3.2.2 Solution

In this chapter, an interrupt profiling methodology is designed for Infineon TriCore based
on the special features provided by MCDS. In order to facilitate the linking between the
trace data and interrupts, several terms of time point related to interrupts are defined.

4.3.2.2.1 Interrupt time points

The term definitions here are different from other research as these terms are defined
from the tracing perspective as shown in Figure 4.13.

Service Request Arriving Time (SRAT) the time when the service request arrives
at the interrupt router system, corresponding to the corresponding bit of this service
request in OTGB becomes active.

Service Request Arbitration Time (SRART) the time interval between the SRAT
and the time when the arbitration winner that is acknowledged by the service provider
is generated. Note: cannot be observed if the arbitration winner of current round is the
same as that of the last arbitration round in current MCDS implementation.

Service Routine Starting Time (SRST) the time when the first instruction of the
Interrupt Service Routine (ISR) of this service request is executed, corresponding to the
time when the first instruction of the ISR is finished.

Service Routine Ending Time (SRET) the time when the last instruction of the ISR
of this service request is executed, corresponding to the time when the RFE instruction
of the ISR is finished.

Service Request Response Latency (SRRL)) the time interval between the SRAT
and the SRST.

Service Routine Duration (SRD) the time interval between the SRST and the
SRET.

Service Duration (SD) the time interval between the SRAT and the SRET.

58

4.3 Diagnosis methodologies of non-functional issues

Service duration (SD)

Service request response latency(SRRL) Service routine duration (SRD)

Service request arbitration
time(SRART)

Service request
arriving time (SRAT)

Service routine starting
time (SRST)

Service routine
ending time (SRET)

Figure 4.13: Definition of interrupt from the tracing perspective

If several service requests to the same service provider come one by one, requests
will be handled by the service provider relying on the priority, which is stored in the
interrupt router module. An example of this case is illustrated in the Figure 4.14. When
an interrupt routine is entered, usually the interrupt will be disabled to guarantee that
it is executed without interruption. Some interrupts may also have interrupt enabled to
allow higher-priority interrupts to preempt. In such cases, interrupts will be embedded
and stacked, meaning several interrupts are running on the same service provider and
low priority interrupts are interrupted by higher ones.

In AURIX, four different interrupts can be traced in parallel as shown TABLE 4.4
that is introduced in section 4.3.1. Additionally, a trigger set which records for a specific
service provider is also provided as described in TABLE 4.5. With the help of this
trigger set, the SRN information of the previous arbitration winner is recorded. In this
way, the service routine execution can be linked to the SRN and the blocking duration
can also be derived. In AURIX, the arbitration process always continues, meaning the
arbitration winner may change when a request with higher priority comes before the
acknowledgment from service provider. The change of arbitration winner is able to be
traced in MCDS.

Table 4.5: TS16 SP Trigger Set Service Provider

Bit Name Description

[9 : 0] ASR SRN index of last arbitration winner for this service provider
[14 : 10] Selected (INT OIXMS) interrupt trigger lost
15 SIP One or more requests waiting for arbitration by this service provider.

The traced trigger set information is combined with the flow tracing, which contains
the whole execution history of one CPU. Interrupts are supposed to be started from
entries in the interrupt vector table, the address of which is stored in the base interrupt
vector. Interrupt priorities are calculated based on the offset from the base address,
given the size of individual entry. For example, if the interrupt priority is 0, then the
interrupt routine’s entry of this interrupt is supposed to be the first one.

59

4 Embedded Health – How to diagnose a complex system?

interrupt0

interrupt1

interrupt2

interrupt3

Time

Being serviced

Being suspended

Arbitration

Arriving time

Response latency

Starting time Ending time

Service routine
duration

Figure 4.14: An embedded interrupt example: four interrupts with different priorities come
one by one

SRAT: for each tracing, MCDS is able to trace four interrupts in parallel and SRAT
is measured by observing the corresponding bit in TABLE 4.4.

SRART: similarly, SRART is measured by observing the arbitration winners in TA-
BLE 4.5.

SRST: a service routine always starts from the interrupt vector table so the SRST
can be easily obtained by recording the execution finishing time of the first instruction
of an interrupt.

SRET: owing to the fact that an interrupt also ends with an RFE instruction, the
SRET is derived by recording the execution finishing time of the RFE instruction.

SRRL: = SRST − SRAT .

SRD: SRET − SRST .

SD: = SRET − SRAT .

60

4.3 Diagnosis methodologies of non-functional issues

The whole process of handling an interrupt looks like this: an interrupt request is
raised by a node. Then, the request is forwarded to the corresponding ICU as described
in Figure 3.3. If the configured service provider is a CPU, CPU is informed by the ICU.
After the acknowledgment of request from the CPU, the CPU enters the interrupt vector
table after storing all current running contexts. Depending on the interrupt priority, an
entry is selected and entered. Afterward, the CPU can jump to a programmed interrupt
function.

Priority information is important for the analysis but it is not contained in the
trace data. Instead it should be derived afterward during the post-processing. This
is achieved by making use of the interrupt vector table that is the entry for entering
interrupt routine. The flow trace provides the executed program flow. As the base
address of the Base Interrupt Vector (BIV) is static information and can be obtained by
reading the corresponding register, the starting point of this table is available. The offset
address then can be calculated and the priority is derived according to the Equation 4.13.

Entry address = BIV + priority ∗ single entry size (4.13)

Blocking are caused by either an interrupt with higher priority or disabled inter-
rupt system. An interrupt with lower priority must wait until an interrupt with higher
priority is finished. In this case, SRRL will be extended. The interrupt system can
be disabled by Hardware (HW) or Software (SW). For AURIX, the interrupt system
is automatically disabled when an interrupt is being serviced. It can then be enabled
manually by software, allowing embedded interrupts. It is also quite often to disable
the interrupt system manually by software when it is not supposed to be preempted,
for instance, during the watchdog servicing. If the interrupt system is disabled and no
interrupt can be serviced, leading to longer SRRL. Both cases can be derived as the
priority information is already available and manually enabling or disabling instructions
are observable in the flow tracing.

Based on the above basic measurement, more sophisticated metrics are designed. The
contended interrupt is defined as the interrupt blocking the measured interrupt. It can
be detected by checking if measured SRRL is longer than normal and another interrupt
is also running before the measured interrupt serviced. A list of contended interrupts
is summarized and shown. Blocking rate is the chance of being blocked by another
interrupt or by the disabled interrupt system. The maximum and minimum SDs are
also calculated to show the stability of the measured interrupts. If the blocking rate of
an interrupt is very high, it can be optimized by rescheduling or changing the priority
numbers.

The locations of interrupt vector table and interrupt routine do matter as they heav-
ily influence the interrupt performance. For example, if an interrupt vector table and
interrupt routines are stored in the PSPR0 which is inside CPU0, the interrupt handling
for CPU0 will be faster compared to the case that they are stored in the program flash.
Suggestions can be provided to allocate the interrupt vector table and the interrupt
routine to a better location if the interrupt performance can be optimized.

Both basis measurement and more sophisticated metrics are measured and displayed

61

4 Embedded Health – How to diagnose a complex system?

Figure 4.15: The screenshot of the interrupt profiling feature

in table. An example table is shown in the Figure 4.15. The table contains the overall
information in the first level and the tree can be expanded by clicking. More details
about specific interrupt services are in the second level. The highlighted suggestion
information is displayed in the console part.

4.3.3 Lock profiling

4.3.3.1 Introduction

Multi-core embedded systems are now commonly applied in daily life. Synchroniza-
tion methods are needed to regulate the accesses to shared resources in multithreaded
systems. As a classical synchronization method, locks are widely used due to the ad-
vantages such as easy applicability and simple implementation. They have been studied
for years to improve performance, fairness, predictability etc. There is a variety of lock
implementations, which are usually optimized for specific scenarios. Applying an inap-
propriate lock type for a particular scenario may result in issues like low performance or
bad fairness [68]. Hugo Guiroux et al. have found that no single lock is systematically
the best and some locks are harmful for specific applications. The performance of lock
depends on many factors e.g. contention level and the number of threads. The lock type
selection is based on the developers’ hypothesis, which might be improper. A gap exists
between developers’ hypothesis and the actual situation. Therefore, a lock profiling tool
is needed to increase the transparency of the system and bridge this gap.

For general-purpose computers, there are many lock profiling tools designed for partic-
ular operating systems or virtual machines. These tools rely on specific lock acquisition

62

4.3 Diagnosis methodologies of non-functional issues

and releasing routines to profile the lock usage. However, there is a different situation
in the embedded field, which has no standardized operating systems like Windows or
Linux. Creating a lock profiling tool for each operating system is challenging considering
the fact that numerous embedded operating systems exist. Thus, a lock profiling tool
independent of operating systems is preferred in the embedded world.

In this section, an operating-system-independent spinlock profiling method is pro-
posed. At the moment, the focus is single-binary-semaphore-based spinlocks because
they are simple and popular in many applications. For instance, in AUTOSAR Real-
time Operating System (RTOS) standard a spinlock interface is defined [125]. There are
two common symptoms within different spinlock implementations. First, atomic opera-
tions are usually applied during lock acquisition. Modern embedded cores intrinsically
support atomic instructions and those instructions are usually used during lock opera-
tions. Second, the value of a spinlock can only be modified by its owner. When a thread
accesses an occupied lock, it is allowed to read or write the lock but the value of the
lock is not supposed to be changed. The proposed spinlock profiling method utilizes the
above symptoms to detect the lock location. Given the lock location, lock acquisition
and lock releasing information is derived. Then, more detailed information including
protected shared resource, waiting time, holding time and failed attempts is collected
and analyzed. Basic improper lock behavioral will also be reported to developers.

An example of improper lock type is test-and-set lock, which has been thoroughly
studied. Compared to test-test-and-set lock, it has better performance if there is almost
no contention. Otherwise, the thread keeps on spinning using the test-and-set atomic
operation, which locks the memory until the operation has finished. This spinning not
only degrades the current thread but also blocks memory accesses from other threads.
The whole system performance is then impacted. With the help of the proposed spinlock
profiling tool, this low-performance pattern that is spinning with the atomic operation
will be detected and reported to developers. A better suitable lock type can then be
selected.

The proposed method makes use of hardware tracing, which is supported by many
COTS embedded systems. Such hardware tracing provides information including mem-
ory accesses and program flow without instrumenting software. This information can be
used to extract the lock candidates and then verify whether a memory location is a lock
instance according to the two common symptoms.

This method has two main advantages for embedded systems:

• The lock profiling is not relying on a specific OS. Software instrumentation can
also be avoided.

• It not only reports lock statistics but can also notify software developers about
improper lock behavior.

4.3.3.2 Lock Profiling Approach

Our approach is designed to detect and analyze spinlocks in an OS-independent, non-
intrusive way. In the following, we present it in three parts. First, the spinlock charac-

63

4 Embedded Health – How to diagnose a complex system?

teristics from a hardware perspective are discussed. In the second part, we show how
to link low-level hardware-related trace data to lock operations based on these char-
acteristics. Low-level hardware-related trace data can be used to detect spinlocks and
associated lock operations. Finally, in the third part profiling statistics are defined and
symptoms to recognize the inefficient spinlock behaviors are described.

4.3.3.2.1 Spinlock Characteristics
In order to detect spinlocks without instrumentation at the source code level and without
knowing the lock and unlock function calls, our approach relies merely on the data
available on chip. This data includes all program instructions as they are executed on
CPU, and all accesses to data memory. Using this information, we formulate a pattern
to detect binary semaphore spinlocks.

A binary semaphore spinlock has only a single semaphore for the availability. In this
section, only the ones based on a single variable are considered. This group includes
many classic spinlock types e.g. test-and-set [64], test-test-and-set [65] and backoff
locks [64]. Many queue based locks are not included because they usually have a copy
for each thread. Several assumptions are made to limit our analysis scope. (i) the
architecture supports atomic instructions and the target lock types also use atomic
instructions. Modern multi-core architectures support atomic instructions and most
lock types employ these instructions. (ii) lock variable is allocated statically, which
means lock variables are allocated during compile time. Many embedded applications
especially safety-critical applications utilize static allocation. (iii) thread ID information
is provided. Thread tracing is already supported by many commercial tools and is not
the focus of this approach, so this information is considered as given.

During the initialization, the initialized value is considered as free while the opposite
value is defined as busy. A binary semaphore spinlock, described by the memory address
of its lock variable, is observed, if all three conditions below hold.

1. An atomic instruction writing to a memory location is observed.

2. Only the binary values 0 or 1 are written to this memory location.

3. The value of this memory location is only changed by its owner thread, which
is defined as the thread that temporarily owns the memory location. A thread
becomes the owner by changing a lock’s value from free to busy. Then it changes
the value back to free, meaning not the owner anymore. During this time, the lock
value is not supposed to be changed by any other threads.

4.3.3.2.2 Runtime Spinlock Detection
By applying the described characteristic pattern matching to the observations from an
embedded system, spinlocks during the program execution can be detected. A prerequi-
site is the ability to collect the required data during runtime. For this task, we use the
hardware tracing support embedded in most of today’s COTS chips.

64

4.3 Diagnosis methodologies of non-functional issues

Tracing

Lock
detection

Profiling statistics and report

Program flow
& memory

tracing

Trace data
decoding

Lock
candidate
extraction

Lock
candidate

refinement

Binary &
Thread ID

information

Binary &
Thread ID

information

Lock profiling
statistics

Profiling
report

Figure 4.16: The workflow of the proposed multi-phase approach

Tracing is able to observe low-level hardware-related operations e.g. program flow,
bus transfers and memory accesses. The traced data is decoded by an off-line post-
processing tool. Table 4.6 shows one tracing example from Infineon’s MCDS. This
example is decoded and slightly simplified.

Table 4.6: A hardware tracing example

Index Time Opoint Origin Address Operation Value

1 19 CPU0 CPU0 0x80000A48 IP -
2 20 CPU0 CPU0 0x80000A4C IP -
3 21 CPU1 CPU0 0x70000030 R32 0x0
4 30 CPU1 CPU0 0x70000030 R32 0x0
5 37 CPU1 CPU0 0x70000030 W32 0x1

A time stamp records the ending time when an operation finishes. For example, the
message in the first row records an instruction (0x80000A48) executed by CPU0. The
fifth message shows that CPU0 issues a 32-bit write to CPU1’s local memory.

Lock detection: hardware tracing enables us to gain insight into the embedded
system. On top of this monitoring technique, the spinlock profiling approach is built, as
it is presented in Figure 4.16.

The lock detection process is split into two parts. First, we obtain a list of candi-
date locks by observing the full program stream and picking out all program counters

65

4 Embedded Health – How to diagnose a complex system?

which execute atomic instructions. In COTS tracing systems, this requires the program
binary, as the information which instruction was executed is omitted as part of tracing
compression process. The memory locations that are accessed by the atomic instruc-
tions are marked as lock candidates. The corresponding variable information can also
be extracted including symbol, type and size.

Second, the obtained list of lock candidates is refined by following the above require-
ments 2 and 3. The memory locations with non-binary values are removed from the list.
The rule that the busy lock’s value is not allowed to be modified except for its owner
should be conformed to. This rule is checked against the remaining lock candidates and
the not complying candidates are abandoned.

Using this approach, we are able to obtain a list with all memory locations of spinlocks
used by the application.

4.3.3.2.3 Profiling statistics and report
Given the lock locations after the refinement, all the memory accesses to these locations
are collected and ordered according to time stamps. After initialization, lock acquisition
is identified by detecting a value change and a write operation to the lock with the busy
value. Only a write to a lock with the busy value does not indicate a lock acquisition.
This is because a thread may write the busy value without a value change depending
on the lock implementation. For instance, a thread uses SWAP instruction to acquire
a lock. It always writes the busy value to the lock no matter which value the lock
currently has. It only successfully acquires the lock when the swapped value is free.
Accordingly, lock releasing is marked by a similar mechanism with the free value. For
example, the last three messages in Table 4.6 show a lock acquisition example. A lock
exists at 0x70000030 in CPU1’s local memory. CPU0 successfully acquires this lock
using the test-test-and-set mechanism.

The Origin shows which CPU issues a memory access. Using the information when a
given thread is active on a core, a mapping between thread IDs and lock operations is
established. The proposed approach itself is independent of thread ID tracing. In order
to validate the proposed approach, a tool was implemented based on this approach. In
this tool, memory accesses to a special range of memory named OLDA are traced. From
the operating system side, thread ID is sent by the operating system. The operating
system writes the ID to OLDA when a thread is started or resumed. The OLDA range
is located inside the LMU and is a virtual memory. The write operation does not
store anything but this bus transfer can be recorded by MCDS. In this way, thread ID
information is also included in the memory access tracing.

For hardware platforms that do not support continuous tracing, the trace buffer is
limited. This situation is improved by a two-step strategy. First, all memory accesses
are recorded by tracing and locks inside are analyzed. This tracing provides a good
overview, even though the tracing duration is short. Second, an interesting lock can be
selected. At this time, only the selected lock is traced again and the tracing duration
is much longer, which allows developers to conduct a deeper analysis about one lock.
The two-step strategy offers both an overview and details. Another solution could be

66

4.3 Diagnosis methodologies of non-functional issues

continuous hardware tracing using high performance tool hardware, which provides high-
speed connection to the chip and a large trace buffer.

A lock protects a shared resource, i.e. a shared variable or an I/O. It is possible to
associate a shared resource with a lock variable using the Lockset algorithm [44, 53]. The
algorithm first creates a candidate list for each shared resource. Each time a resource
is accessed, locks except for the ones that are currently held are deleted from the list.
After several iterations, only the lock that is always held when the resource is accessed
remains. This lock is then interpreted as protecting the resource. Resources which are
shared among threads but not protected by locks are highlighted for developers.

Many statistics can be calculated to show the lock usage. Waiting time is defined
as the time spent from the first attempt to acquire a lock until the lock acquisition
succeeds. Holding time is the time between the lock acquisition and the lock releasing.
The number of failed attempts is the number of attempts from one thread to an occupied
lock by another thread. The first attempt acquisition ratio, as the name indicates, is
the ratio of the number of attempts that successfully acquire the lock at the first try
to the total number of first attempts. It is calculated for each thread and each lock,
showing the contention level. All these statistics are based on memory access tracing in
which time stamp information is already provided. Inefficient lock behaviors observed
during the tracing such as spinning with atomic operations and thread preemption while
holding a lock are reported as warnings. Improvements could be adopted by developers
based on this information.

4.3.4 Program flash contention

4.3.4.1 Introduction

Contention for shared resources degrades the overall system performance and the real-
time performance of embedded multi-core systems. Program flash that stores program
instructions and constant data is frequently accessed by cores. Contention can happen
at the program flash interface when more than one core attempts to read it, leading to a
larger delay. For example, if a core accesses the program flash that is currently occupied
by another core, it has to wait until the previous one finishes. The waiting time can
be longer when there are more than two cores. Even worse, the read latency of flash
is much larger than the read latency of Random Access Memory (RAM). The number
of core stalls caused by program flash contention is much bigger than the number of
core stalls by RAM contention. Although in most cases the average number of core
stalls is largely reduced by a program cache, the program flash contention impact on a
specific non-cached function could be high. This is particularly a problem for systems
when such a function is in a critical path, as it cannot be guaranteed to always have the
needed instructions in program cache. In order to avoid such problems, program flash
contention should be detected and analyzed, which is currently not solved with existing
tools. Only when the contention details and the performance loss are analyzed in detail,
can it be efficiently reduced by solutions such as program code relocation or a change in
the scheduling of program execution on the different cores.

67

4 Embedded Health – How to diagnose a complex system?

0x80000EB0 MOV.A A2, D3

0x80000EB2 MOV D2, 0x0

0x80000EB4 MOV.A A15, 0x0

0x80000EB6 MOV.A A4, 0x0

...

0x80000EC0 Program Flash Read

0x80000EC8 Program Flash Read

0x80000ED0 Program Flash Read

0x80000ED8 Program Flash Read

0x80000EC4 OR D2, D3

Trace Data

Program Flash

Contention Analyzer

0x80000EB0 MOV.A A2, D3

0x80000EB2 MOV D2, 0x0

0x80000EB4 MOV.A A15, 0x0

0x80000EB6 MOV.A A4, 0x0

...

0x80000EC0 Program Flash Read

0x80000EC8 Program Flash Read

0x80000ED0 Program Flash Read

0x80000ED8 Program Flash Read

0x80000EC4 OR D2, D3

 Detailed

Contention

Information

Delayed 5 Clock

Cycles due to

Contention

HW

parameters

Performance

Impact

Performance impact

on the function:

Approx. 10%

PC

Figure 4.17: The overview of the proposed program flash contention analysis method

A novel analysis methodology is proposed to detect program flash contention and
estimate the performance loss caused by the contention [47]. The methodology is based
on the non-intrusive tracing in embedded multi-core systems. Many COTS chips provide
such solutions. As a requirement of the methodology, the tracing hardware needs to be
able to trace non-intrusively, which means without any impact on execution and timing.
The trace data has to include fine grained time stamps for instructions and bus transfers
related to the program flash. Based on the trace data and several hardware parameters,
program flash contention can be spotted and the performance loss introduced by the
contention can also be estimated as shown in Figure 4.17.

After execution, the collected low-level trace data is read into the program flash con-
tention analyzer to find all the spots where the core is idle and halted, resulting in
performance loss. These suspicious spots are then further analyzed according to the
proposed methodology. Referring to the trace data and several HW parameters avail-
able in data sheets, the analyzer decides for each spot whether the delayed instruction
fetch is caused by a contention or other factors. Finally, the program flash contention
spots are derived and the stalled cycles due to each contention spot are estimated.
The output information contains instruction-level program flash contention information,
showing every instruction that is fetched late because of contention.

The performance loss of functions or threads can be easily accumulated from this
detailed instruction-level contention information. This is important in the real-time
field especially for specific real-time critical functions. When known, the program flash

68

4.3 Diagnosis methodologies of non-functional issues

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

0 1 2 3 4 5 6 7 8 9

Clock cycles

Figure 4.18: Basic pipeline stages:(IF = Instruction Fetch, ID = Instruction Decode, EX =
Execute, MEM = Memory access, WB = Register write back) [126]

contention can be reduced by adopting appropriate measures. For instance, the program
flash contention can be avoided by instruction relocation to a different flash bank if
applicable. Another solution can be copying the instructions from the flash to program
RAM, which can be accessed faster. Furthermore, this information can also act as
the input to contention-aware schedulers [19] which ensure that congested functions are
executed at different points in time.

This methodology has three contributions:

• As far as known, the detection and analysis of program flash contention are cur-
rently missing in the existing tools. This is the first approach to detect program
flash contention based on the non-intrusive trace and also estimate the performance
impact of program flash contention. The analysis results facilitate the performance
optimization for multi-core embedded systems.

• The proposed approach is demonstrated to have high contention detection rate and
accurate performance impact estimation, which gives users a direct impression of
how bad the contention is.

• It provides an example of how to make use of non-intrusive tracing to analyze
system issues automatically for commercial off-the-shelf embedded systems.

4.3.4.2 Methodology

Modern core architectures make use of pipelines to gain fast CPU throughput. An
instruction is split up into a sequence of steps and these steps are executed in the

69

4 Embedded Health – How to diagnose a complex system?

pipeline. In this way, several instructions can be executed concurrently. The Figure 4.18
illustrates a basic pipeline diagram. Usually the first step is to fetch the instruction
and then execute it in the following stages. If one stage halts, the whole pipeline may
stall and require longer time, resulting in lower performance. There are many causes
e.g. branches, hazards which can lead to pipeline halt. Instructions are usually fed to
the pipeline at the beginning pipeline stage. This is guaranteed by a hardware module
called Pre-fetch Unit (PFU) which pre-fetches instructions from either flash or cache. A
pipeline cannot run smoothly without continuous instruction feeding.

Ideally, a core should always have instructions running in its pipeline and never wait for
the instruction fetching. However, in reality it has to halt its pipeline due to many factors
and one of them is flash contention. This phenomenon is called Delayed Instruction Fetch
(DIF) [47]. In brief, the basic idea of this methodology is deriving subtle program flash
contention based on the detectable DIFs.

The proposed methodology is introduced in detail in these following three parts. These
three parts namely input, analysis and output are organized according to methodology
phases. The first input part describes the input of the methodology, which is hardware
trace data. The second part introduces the different factors leading to DIFs and the way
to derive program flash contention. The last part shows the analysis results including
contention spots and performance impact due to contention.

4.3.4.2.1 Input: trace data acquired by hardware tracing
This methodology makes use of hardware tracing, which consists of program flow and bus
transfer information. A simplified block diagram of an Infineon AURIX SoC is shown
in Figure 4.19 to explain the contention spots and tracing points. Program flash con-
tention happens at the interface of the program flash when more than one core accesses
the program flash. From the hardware tracing, program flow information TABLE 4.7
and bus transfer information TABLE 4.8 are obtained by the tracing hardware. The
time stamps (TimeR) indicate the time information when an operation finishes. The
beginning time of an operation is usually not included in the tracing so the duration of
an operation is not available in tracing. The executed specific instructions are decoded
when the binary information is given, e.g. an .elf file. Address column contains instruc-
tion pointer address, which is also the program flash address that stores instructions.
The bus transfer tracing scope is limited to the program flash.

Table 4.7: An instruction trace

Index TimeR Opoint Origin Address Instruction

0 19 CPU0 CPU0 80000A48 MOVH.A A15,xF0030000
1 20 CPU0 CPU0 80000A4C LEA A15, [A15], 0x6100
2 20 CPU0 CPU0 80000A50 LD.W D15, [A15], 0x0
3 25 CPU0 CPU0 80000A52 MOVH D2, 0x70020000

70

4.3 Diagnosis methodologies of non-functional issues

pipeline PFU
Program

Cache Program

Flash

&0

0

0

Core 0

Core 1

Core 2

Instruction

trace Bus transfer

trace

Contention!

Cross Bar

Interconnect

Figure 4.19: Example: An instruction trace and a bus transfer trace in AURIX TC29x

Table 4.8: A bus transfer trace

Index TimeR Opoint Origin Address

0 59516 PF0 CPU0.PMI 800006A0
1 59517 PF0 CPU0.PMI 800006A8
2 59518 PF0 CPU0.PMI 800006B0
3 59519 PF0 CPU0.PMI 800006B8
4 59526 PF0 CPU1.PMI 80002AE8

71

4 Embedded Health – How to diagnose a complex system?

4.3.4.2.2 Analysis: contention symptoms

The obtained trace data only has the ending time of many operations and no con-
tention information is given directly by the hardware tracing. It is also not straightfor-
ward to derive the contention which impacts the system performance. In this part, the
question how to find program flash contention based on the trace data is answered.

Causal Delayed Instruction Fetch: Not all the program flash contention has an in-
fluence on the core’s pipeline and the core performance. A PFU is normally implemented
in a core to ensure a core pipeline’s continuous execution. PFU inside a core prefetches
the instruction from the memory. This prefetch operation could be much earlier in ad-
vance than necessary. In this case, the core pipeline has a large tolerance of program
flash contention. This is because an instruction can still arrive at the pipeline in time
before causing the pipeline to halt in spite of slight program flash contention. Such
cases are not considered since the methodology is only targeted at the program flash
contention degrading the performance.

Table 4.9: A CDIF example

Index TimeR Opoint Origin Address Instruction

1 59526 PF0 CPU0.PMI 80000A40 -
2 59527 PF0 CPU0.PMI 80000A48 -
3 59528 PF0 CPU0.PMI 80000A50 -
4 59529 PF0 CPU0.PMI 80000A58 -
5 59532 CPU0 CPU0 80000A40 MOVH.A A15,xF0030000
6 59533 CPU0 CPU0 80000A44 LEA A15, [A15], 0x6100
7 59533 CPU0 CPU0 80000A58 LD.W D15, [A15], 0x0
8 59538 CPU0 CPU0 80000A5A MOVH D2, 0x70020000

For the performance-degrading DIFs, a new term Causal DIF (CDIF) is introduced,
which means that a core finishes the execution of the current instruction and waits for
the next instruction fetch. As explained before, this should not exist in an ideal case but
in reality it can be detected in hardware tracing. CDIFs can be detected by recognizing
a special pattern that is an instruction fetch closely followed by the execution of the
fetched instruction. For example, an instruction fetch operation (yellow rows 1 to 4)
happens just before an instruction execution (green row 5) without another instruction
executed in between in TABLE 4.9. The time offset between the executed instruction
and the fetch is relying on the specific design of PFU and CPU pipeline. Here the
threshold (tthreshold) to recognize a CDIF is defined as the time offset in a scenario when
the CPU runs out of instructions and fetches instructions from memory. If the time
offset in the trace is equal or smaller than tthreshold, the fetch operation is treated as a
CDIF, as in Equation 4.14. The tinstr and tfetch are the time points recorded by the
tracing hardware. According to the above definition, CDIFs are picked out.

CDIF : tinstr − tfetch ≤ tthreshold (4.14)

72

4.3 Diagnosis methodologies of non-functional issues

The target group of this methodology is Program Flash Contention (PFC) that influ-
ences the CPU performance. There are many factors leading to CDIFs including PFC
and Other Delay Factor (ODF)s. In order to derive PFC, ODFs are introduced.

Other delay factors: There are various factors that can cause CDIF s including
wrong branch predictions by PFU, reaching the maximum throughput limit of the pro-
gram flash and instructions that cannot be predicted by PFU. To guarantee the contin-
uous pipeline execution, the instructions are fetched in advance, so a branch prediction
is needed in the PFU. Accordingly, the prediction result can be either a correct branch
prediction or a wrong branch prediction. For a correct prediction, a core is supposed to
run without waiting for an instruction fetch. On the contrary, a wrong branch prediction
will result in a wrong instruction fetch and a core idle state waiting for the instruction
fetch, which could be a CDIF.

The Wrong Branch Prediction (WBP) has symptoms and can be detected in trace
data. There are two different ways to recognize WBP spots. First, for PFUs with static
branch prediction algorithm that is the simplest prediction algorithm, the prediction
merely on the branch instruction itself. A prediction whether it is right or wrong can be
calculated by comparing the prediction result to the real execution result. The prediction
algorithm is needed as the input of the methodology. Second, for PFUs with other branch
prediction algorithms, the WBP spots are detected by comparing the program execution
flow and the instruction fetch sequence. The comparison depends on the specific design
of CPU and PFU. An easy method can be checking whether the fetched instructions are
executed in the next certain number of instructions. For instance, an instruction fetch
happens in a bus transfer tracing and the fetched instruction is not executed in the next
for example 20 instructions. In this case, this branch prediction causing the instruction
fetch is considered to be wrong. By either of two ways, WBP spots can be collected. In
the implemented methodology, the second way is adopted.

Another factor leading to CDIF s is program flash Overload (OL). Usually the designed
program flash throughput satisfies the requirements of continuous accessing. However,
the flash is accessed block by block. The size of a block is normally large and they are
aligned, e.g. 32 bytes in AURIX TC29. If many jump instructions happen in a short time,
the maximum designed throughput can be reached even for a single core application.
In this case, CDIF s happens without program flash contention. The OL spots have a
straightforward symptom, which is the time interval between two program flash accesses
equal to the minimum interval limited by the hardware design. The minimum interval
also depends on the application configuration related to the flash module.

The last factor is named Unpredictable (UP), meaning the branch instructions that
cannot be predicted by the PFU. This group strongly relies on the CPU architecture.
For AURIX, some instructions e.g. indirect branch instruction, in which the jump des-
tination address depends on the register value, are listed as the UP. Interrupts usually
cannot be predicted either. UPs cause CDIF s in a similar way as WBPs. The conse-
quence of the unpredictable instructions is that the next instructions may have to be
fetched after the execution of the unpredictable instructions

73

4 Embedded Health – How to diagnose a complex system?

The set ODF includes all the other delay factors including WBP, OL and UP as
shown in Equation 4.15.

ODF = WBP ∪OL ∪ UP (4.15)

Contention: the factors described above can overlap. For this situation, it is ana-
lyzed by comparing to the sole situation in the system. For example, an instruction fetch
after an unpredictable branch takes much longer than a normal contention-free fetch,
which is a contention indicator. This group is denoted by Contention and Others (CO).

Finally, after analyzing all these factors, the PFC is the intersection between set CDIF
and complement set ODF, and then union the set CO, as shown in Equation 4.16.

PFC = (CDIF ∩ODF) ∪ CO (4.16)

In the implementation, pre-selection can be conducted to improve the methodology
performance. The pre-selection here means only the interleaved program flash accesses
from different cores have the potential to have contention so that only these spots are
considered in the methodology.

4.3.4.2.3 Output: Contended instructions and performance impact
The proposed methodology outputs both contention spots information and performance
impact information.

Contended instructions: after the analysis, PFC spots are calculated and picked
out. The affected instructions are defined as contended instructions, which are delayed
by PFC. Based on this information, functions with contention spots are also obtained
when the symbolic information and range information are provided by e.g. an elf. file.

Performance impact: the performance impact is defined as the extra clock cycles
added by program flash contention. It is estimated by comparing the contention case
to an ideal contention-free situation. The extra clock cycles are estimated for each
contended instruction. Then, performance impact at the function level or thread level
is calculated. With the help of this information, the program flash contention can be
reduced for a specific function or a specific thread by developers.

Others: the contended functions are of interest for many users as they can make use
this information to avoid the conflicts by allocating a function to a different location. For
instance, a function can be allocated to a different flash bank or scratch pad memory.
If task/thread information is also provided, then a task/thread-level analysis can be
performed, which provides the contended task/thread information. Then the usage of
the tasks or threads can be optimized.

74

4.3 Diagnosis methodologies of non-functional issues

4.3.5 Data memory analysis

4.3.5.1 Introduction

The data memory performance has been the bottleneck of modern multi-core embedded
systems for quite a while. In order to break this barrier, NUMA architectures with
scratchpad memory become popular. In a typical NUMA architecture each core has its
own local memory, allowing fast accesses from the core to the local memory. However,
new issues as side effects are also introduced. The local memory accesses consume less
time but the remote memory accesses take longer. Data allocation determining the local
and remote accesses should be considered and optimized carefully.

Another bottleneck of multi-core systems is shared resource contention. When a core
accesses a shared resource occupied by another core, it has to wait until the previous one
finishes. Data memory, as a frequently accessed shared resource, is vulnerable to con-
tention. Data memory contention is supposed to be detected and measured. Compared
to remote accesses, memory contention effect has no obvious symptoms and cannot be
detected directly by observing the memory accesses in commercial embedded systems.
An indicator e.g. data cache miss rate is needed to show the effect indirectly [19].

The performance penalties incurred by both data locality and memory contention
must be analyzed before performance optimization [48]. This is because data locality
and contention are mutually dependent. The study conducted by Blagodurov et al. [100]
shows that the-state-of-the-art contention management algorithms fail to be effective in
NUMA systems and may even degrade performance compared to a default OS scheduler.
In the experiment, the data allocation was optimized to avoid data memory contention,
which, however, led to increased number of remote accesses. On the contrary, Majo et
al. [103] concluded that maximizing data locality does not always minimize execution
time because of memory contention. It may be beneficial for performance to allocate
data to remote memory to avoid memory contention. Merely detecting the occurrence
of remote accesses or memory contention is not sufficient. The performance penalties
by both effects should be quantified and be compared to provide a reference for perfor-
mance optimization, which has to be kept in balance for both data locality and memory
contention effects to achieve the optimal performance. Therefore, a novel memory access
analysis approach is proposed to evaluate data locality penalties and memory contention
penalties in a quantitative, comparable way.

The proposed approach has two contributions:

• To the best of my knowledge, the proposed method is the first non-intrusive post-
processing analysis method estimating both NUMA data locality and memory
contention penalties.

• A new memory contention indicator is proposed to show the memory contention
penalties quantitatively, which is comparable to data locality penalties, providing
a reference for performance optimization. The experiment section also indicates
accurate penalty estimation.

75

4 Embedded Health – How to diagnose a complex system?

4.3.5.2 Methodology

The proposed methodology provides a generic flow to estimate extra memory access
latencies due to both data locality and memory contention based on hardware trace
data. In the following, some basic terms and assumptions for the methodology are
defined first. Then the way to measure data locality penalty is described. After that,
a model to detect memory contention spots and estimate memory contention penalty
is introduced. Finally, the both memory contention and data locality are considered
together.

4.3.5.2.1 Prerequisite terms

• Consumer (C): a memory consumer, which accesses a memory [48]. E.g. CPUs

• Provider (P): a provider is identical with a memory. A provider has a name,
start address and a size.

• Variable (V): a variable stored in a provider and accessed by a consumer. It has
a name, address and size.

As the input for this methodology, a memory access MA is defined as follows:

MA = (time, source, address,mode) (4.17)

A memory access contains the hardware-level information including time, source, ad-
dress and mode. Time stamps, which indicate the ending time of an access, are stored
in the time information. Source shows the master of a memory access and address tells
the address of the memory access. The mode information is used to distinguish the
write operations from read operations. The access width is also contained in the mode
information. Every access can be mapped to a provider and a variable in the application
using the address of the access. It should be noted that the memory access does not
contain the starting time, which is usually the case with COTS embedded systems.

For this methodology, we need to make several assumptions [48]. (i) the arbitration
does not need additional time. (ii) the memory controller does not have a request
buffer. (iii) the memory providers have a static response time (from request until data
available). (iv) the memory is globally addressable. (v) the memory module is only
capable of handling one access request at a time. The assumptions above are proposed
based on ordinary embedded systems e.g. Infineon’s AURIX.

4.3.5.2.2 Data locality
To distinguish local memory accesses from remote memory accesses, the access source
information has to be compared to the access target information. Given the hardware
model, the target of a memory access is calculated using the address.

76

4.3 Diagnosis methodologies of non-functional issues

Knowing which accesses are remote accesses, the Locality Penalty (LP), which is de-
fined as the extra time added by remote accesses, is calculated according to Equa-
tion 4.18. In Equation 4.18, the function L(a ∈ MA) returns the expected additional
latency for a given memory access a compared to local access. The latency mainly from
interconnect so it is usually static depending on the locations of both consumer and
provider. For each hardware platform, this information can be organized as a look-up
table.

LP :=
∑

a∈MA

L(a) (4.18)

4.3.5.2.3 Memory contention
As discussed above, the time stamp indicates the ending time of an operation. Whether
an operation is delayed by contention cannot be observed directly. Therefore, a con-
tention indicator based on a memory contention model is created. The memory model
is described in the following.

Merely relying on the time stamps cannot determine if contention happens because a
contention-free memory access may have the same access pattern as a contention memory
access. Figure 4.20 demonstrates this case and introduces the basic of the designed
contention indicator. When memory accesses are investigated, the INT between two
traced memory accesses to the same memory provider can be observed. If two memory
accesses a and a′ are issued to the provider interface at the same time (Figure 4.20.a)
and the provider can only handle one request at a time, a′ has to wait, then a′ is delayed
by exactly INT clock cycles. INT is assumed to be 3 in this case, so a′ finishes at
the aendTime + 3 clock cycle. In the second example (Figure 4.20.b) a′ is issued INT
cycles after a. The ending time of a′ is INT cycles after the ending time of a, which is
exactly the same as the first scenario (Figure 4.20.a). Therefore, two cases cannot be
distinguished. However, the second case is contention-free while the first case is with
contention. In order to link this hardware-level information to memory contention, a
statistical method is introduced to design a contention indicator.

Several different memory access possibilities may result in the identical access pattern
from the trace data perspective. A new assumption (vi) is made here: the probability
of all memory access possibilities for the identical access pattern is the same, meaning
that the probability of the arriving time of a memory access is uniformly distributed in
the small time window (INT + 1). The probability that a potential contention is a real
contention can be calculated in (4.19).

PoCwp =
INT

INT + 1
(4.19)

Besides the probability of a contention, the expected additional cycles for the delayed
access a′ compared to a contention-free case is also of importance [48]. In the previous
example, 3 delay cycles can be observed when both accesses are issued at the same time
(Figure 4.20.a) and 0 delay cycles when a′ is issued 3 cycles after a (Figure 4.20.b). The
rest can be done in the same manner. 2 delay cycles is observed if a′ is issued 1 clock

77

4 Embedded Health – How to diagnose a complex system?

t(cycle)

a)

b)

a
a'
astartTime

astartTime
a'startTime

a
a'

t(cycle)

Memory Access Delay

a'startTime a'endTime

aendTime

aendTime
a'endTime

INT

Figure 4.20: a) shows a contention sequence; b) shows a contention-free sequence

cycle after a and 1 delay cycle if a′ is issued 2 cycles after the access a. Considering all
the possibilities, the contention penalties (CP) can be defined as follows:

CPwp =
INT∑
i=0

1

INT + 1
× i (4.20)

The example shown in (Figure 4.20) has the identical memory access pattern. All of
the possibilities for this pattern has expected penalties (14×0+ 1

4×1+ 1
4×2+ 1

4×3 = 1.5)
according to Equation 4.20.

The above example shows the case that a has priority over a′ as a is first handled
when two come at the same time. In a different scenario, if a has no priority, then a′

will be serviced first when they are simultaneously, which is not same as the depicted
pattern. For the depicted pattern, the possibility that they are arriving simultaneously
can be eliminated for the case that a has no priority. Accordingly, the probability of
contention and contention penalties equations with subscript p are defined for contention
with priority as follows:

PoCp =
INT − 1

INT
(4.21)

CPp =

INT−1∑
i=0

1

INT
× i (4.22)

For dynamic priority assignment techniques (e.g. round-robin) noted by d , a weighted
equation is applied, shown in (Equation 4.23) and (Equation 4.24). w is the probability
of access without priority.

78

4.3 Diagnosis methodologies of non-functional issues

PoCd = w × PoCwp + (1− w)× PoCp (4.23)

CPd = w × CPwp + (1− w)× CPp (4.24)

4.3.5.2.4 Sum penalties
Both locality penalties and contention penalties are supposed to be analyzed in a quan-
titative and comparable way. They are both calculated in cycle so the sum penalties
that are defined as the penalties caused by both effects are simply derived by adding
them up according to Equation 4.25

P := LP + CP (4.25)

In this way, sum penalties are considered for each memory access in the trace data.
The total penalties to functions or threads or cores can be then analyzed, given the
memory trace data. The optimization direction can be then well-adjusted according to
the analysis results.

79

5 Implementation and experimental
Evaluations

In the previous chapter, a methodology that automatically detects system issues is pro-
posed. In this chapter, a software tool named ChipCoach implemented based on the
proposed methodology is described. First, ChipCoach is introduced in detail. Then,
experimental evaluations and case studies using ChipCoach are described to show the
feasibility and the effectiveness of the proposed methodology.

5.1 The implementation of the proposed methodology —
ChipCoach

The implemented software tool named ChipCoach is a post-processing tool for embedded
systems, which makes use of MCDS to gather trace data and diagnoses issues automat-
ically from different perspectives.

5.1.1 ChipCoach

ChipCoach is a post-processing system diagnosis tool. It exploits the tracing and de-
bugging functionalities of the MCDS. The main purposes of using ChipCoach include:

• Automated hardware configuration check: ChipCoach is designed to monitor the
configuration process of hardware modules and report the detected violations of
rules, which are predefined by the SoC designer and stored in ChipCoach.

• Performance profiling & bottleneck analysis: ChipCoach targets at the automated
detection of several types of performance issues including shared resource con-
tention, data locality issues, lock contention, blocked interrupts etc. These issues
are usually hard-to-detect or even invisible to software developers.

• Specific module support: ChipCoach facilitates the usage of several important
hardware modules for instance, memory protection unit, DMA, clock control unit
etc.

• System exploration: ChipCoach helps users to understand and explore their sys-
tems from different perspectives.

ChipCoach is programmed in Java and is based on Rich Client Platform (RCP). The
hardware-related operations are handled by lower layers such as the MTV layer and the

81

5 Implementation and experimental Evaluations

ChipCoach (Java)

C to Java interface

Trace configurer Message decoder Message viewer

MCDS Trace Viewer (MTV)

DAS API (connecting to board, core, OCDS and MCDS
configuration)

Figure 5.1: The architecture of ChipCoach

MCD API layer Figure 5.1. The MTV layer is responsible for MCDS configuration,
tracing and decoding. This layer has the most features provided by MTV and the
details of this layer are described in the previous chapter 3. The DAS API layer deals
with the device connection and device-related operations. It is programmed in C/C++
and provided by Infineon.

In order to call APIs in the lower layer from ChipCoach, Java Native Interface (JNI)
is applied as an interface between Java and C/C++. The lower layers including the
MTV layer and the MCD API layer are programmed in Microsoft Visual C++. MTV
provides tracing support for ChipCoach. The MCDS configurations are stored in the
.mcdsc file that contains a list of MCDS register information including addresses and
values. These files are the input of MTV. More specific MCDS configuration files could
be created based on these template MCDS configuration files. The APIs between the
Java project and the C++ project are first defined in the Java project and then a C
header file that will be included in the C++ project is generated with JNI. Finally, a
.dll file that will be used directly by ChipCoach is generated within the C++ project.

ChipCoach is designed to be as easy as possible to apply. It works on a normal
computer with Windows installed. The connection to the device is also supposed to be
simple and easy as shown in Figure 5.2. It is via DAS server [112]. DAS server supports
both DAP and JTAG connections.

As can be seen from Figure 5.2, ChipCoach uses only the on-chip tracing feature
provided by the AURIX device instead of using simulation. No expensive hardware

82

5.1 The implementation of the proposed methodology — ChipCoach

TriBoard
TC297

miniWiggler

Windows
PC

Figure 5.2: An AURIX device is connected to ChipCoach via miniWiggler

boxes are needed to temporarily store the trace data. The miniWiggler acts only as a
converter between DAP and USB as described in the previous Chapter 3. The cost of
the debug solution using ChipCoach is low, compared to commercial debuggers.

Figure 5.3 shows a screenshot of ChipCoach. Different analyses can be triggered by
clicking the corresponding items in the tree view. The triggered analysis will then be
displayed in the middle named analysis view as a tab. For analysis with tracing, the
tracing control can be applied to configure the tracing scope and trace triggers, allowing
flexible analysis. Information related to devices, .elf file and messages are shown in the
bottom views.

In the following, the functions that are globally used by other features are described
first. Then, all feasible features are individually introduced. Many of the features
are implemented based on the methodology in Chapter 4. Moreover, several practical
features that are not described in Chapter 4 are also provided and elaborated.

5.1.1.1 Global functions

5.1.1.1.1 Device-related information
The device-related information is needed by ChipCoach, as for example SRC indexes,
register information changes for different connected devices. In ChipCoach, this infor-
mation is handled with the same strategy: integrating this information directly into
ChipCoach source code. This is because the strategy is faster and more efficient com-

83

5 Implementation and experimental Evaluations

Analysis selection

Tracing control

Analysis view

Application information

Console and global information

Figure 5.3: The screenshot of ChipCoach

84

5.1 The implementation of the proposed methodology — ChipCoach

Pre-processing

User manual, device

spec, application

note...

Information in .xml

.xlsx files
Automatic Java

code generation
Java code files

Figure 5.4: The generation flow of the device-related information

pared to processing this information during runtime. Moreover, it is feasible for a small
number of supported devices.

The device-related information contained in the user manual, device specification and
other files as shown in Figure 5.4. These files are reprocessed first to transform them into
files that are easier for machine processing. In the ChipCoach project, they are converted
into .xml and .xlsx files. Then, an automatic code generator that is programmed also
in Java is applied to generate Java source code. For each device, a corresponding class
is created and can be dynamically loaded during runtime depending on the connected
device.

5.1.1.1.2 Debugging information
Debugging information is necessary to make the debugging process feasible and efficient.
It is usually generated together with the binary by compilers. It indicates the relation
between the executable program and the original source code. The debugging infor-
mation is encoded into a pre-defined format which is debugging with attributed record
format (DWARF).

DWARF is a widely used, standardized debugging data format [127]. It was designed
along with Executable and Linkable Format (ELF). A lightweight DWARF parsing algo-
rithm was already implemented which is public and is used to read function information.
For the memory access analysis more DWARF information is needed, so the parsing al-
gorithm is extended for ChipCoach. The details of the parsing algorithm and DWARF
are not described in this dissertation.

With the help of the DWARF parser in ChipCoach, various kinds of information
contained in the .elf file is extracted, for instance, function information including the
function symbol, the address range, the function arguments and even the function return
type, variable information including the structure, the symbol, the location and the type.
The DWARF parser is globally accessible and used by all features in ChipCoach. It
significantly facilitates the mapping between addresses and symbols.

5.1.1.1.3 ChipCoach tracing

Most analyses in ChipCoach apply tracing to detect issues. As the most commonly
used function, the tracing function is also globally accessible similar to the DWARF
parser. Its main tasks are tracing configuration, trace data processing and lower layer
handling.

85

5 Implementation and experimental Evaluations

The tracing function provides a type of tracing for each analysis. The tracing type
implicitly defines the interesting tracing scope e.g. bus transfers, program flow or data
accesses. Several function arguments further specify the detailed tracing configuration.
For example, the hardware configuration validation needs the trace of register accesses.
Therefore, the corresponding trace type covers register accesses. During the analysis,
which hardware module is supposed to be validated can be further specified via argu-
ments.

5.1.1.1.4 Tracing control
MCDS allows various triggers to be configured according to different scenarios. A trigger
is a sequence of specific operations or even a specific operation that fulfill the pre-defined
requirements. It could be an instruction executed at a specific address, a bus transfer,
a memory access to a pre-defined address or a counter reaching its limit. The detailed
trigger configuration is available in the manual [110]. The configuration of a trigger is
flexible. With the help of a trigger, the starting point or the ending point of tracing can
be controlled. A trace can start when a trigger is met until the trace buffer is full. It
can also start immediately and always overwrite the trace buffer which is a ring buffer
until the trigger is fulfilled. The bandwidth of the trace data generation can be further
reduced by applying tracing qualification that defines which kind of message is qualified
to be stored.

In ChipCoach, the tracing control is available at the top of the view as shown in Fig-
ure 5.3. Users can define their own triggers to only focus on specific parts of programs,
increasing the efficiency of the analysis. The tracing control is globally effective to all
analyses in ChipCoach.

5.1.1.2 automated system diagnosis

The welcome view is the first view available after launch. It tells the basic facts about
the connected systems. When a device is connected and ChipCoach is being launched,
ChipCoach detects the device’s ID and also measures the basic information about the
device for example clock frequencies as shown in Figure 5.3. EMEM usage is also veri-
fied in order to avoid collisions between MCDS tracing and the application usage. Some
applications use EMEM for calibration and large data storage, for example ADAS ap-
plications. The EMEM can be split into two parts, one for tracing and the other one for
the application. The allocated tracing EMEM capacity determines the size of tracing,
which is important especially for features such as profiling and performance analysis.

One advantage of using ChipCoach is that it also helps developers to figure out what
is going wrong even when they have no idea where to look at. It is realized with
the system diagnosis function as shown in the lower part of the welcome view. There
are two types of system diagnoses namely basic system detection and advanced system
detection, corresponding to the automated diagnosis with functional issues and non-
functional issues described in Chapter 4. The purpose of placing these two diagnoses
here is to explore the system in just one click. After the connection, a “blood test” can
be performed to check the health status of the system, by clicking the start button. A

86

5.1 The implementation of the proposed methodology — ChipCoach

sequence of analyses covering various types of potential issues will be run automatically
one by one. A report is generated to show the system status from different perspectives,
which provides a convenient way for users to understand their systems better.

The system diagnoses are collections of different analyses. The generated report is
a summary of results from each analysis. A potential issue can then be found in this
report and the individual analysis can be applied.

5.1.1.3 Hardware validation analysis

In ChipCoach, the hardware validation flow is not fully implemented. The rules are
currently hard-coded instead of storing in the database. However, the essential idea is
identical.

To facilitate the rule definition, a regular expression is applied to register names.
This helps the rule definition with groups of registers. A group of registers with similar
names may have an identical rule. In the rule definition, the regular expression in the
rule indicates a group of registers instead of defining the similar rules repeatedly.

For the value argument defined in the register access (Equation (4.8)), it is not limited
to a single value. More flexible inputs are allowed. In the current implementation, several
types are created.

• Default: A single value.

• Not: A single value that is not allowed.

• List: A white list that contains the allowed values.

• Not list: A black list that contains the disallowed values.

The motivational example from Section 4.2.1 about the UP issue could be checked by
the rule in Equation (5.1). The details of register accesses are specified in Equations
(5.2)(5.3). These equations describe the rule that once one of the registers CCUCON0,
CCUCON1 and CCUCON5 is written, a set operation will eventually happen to the UP field
in one of these registers.

ϕ = �((R0 ∨R1 ∨R5)⇒ (♦ (R′0 ∨R′1 ∨R′5))) (5.1)

with i = 0, 1, 5.

Ri = f(write, CCUCONi) (5.2)

R′i = f(write, CCUCONi, UP, [1]) (5.3)

Another typical scenario is a sequence of accesses to the same register field. For
example, an OCDS exists in the AURIX device. The OCDS is responsible for debugging
and calibration. It is usually disabled due to safety reasons. The enabling of OCDS
is protected by a password pattern that is a sequence of write accesses with predefined

87

5 Implementation and experimental Evaluations

different values to the field PAT in the register OEC. The sequence of the write accesses
must be exactly the same as specified. A rule could be defined to check the sanity.

A sequence of numbers “0”, “1”, “2” is assumed to be the password pattern.

ϕ = �(R⇒ (♦R′ ∧ (¬R′′UR′) ∧�(R′ ⇒ (♦R′′′ ∧ (¬R′′′′UR′′′))))) (5.4)

with

R = f(write,OEC,PAT, [0]) (5.5)

R′ = f(write,OEC,PAT, [1]) (5.6)

R′′ = f(write,OEC,PAT, [Not 1]) (5.7)

R′′′ = f(write,OEC,PAT, [2]) (5.8)

R′′′′ = f(write,OEC,PAT, [Not 2]) (5.9)

As can be seen, the rule definition is quite flexible and it covers a variety of cases.

Figure 5.5: The screenshot of the hardware configuration validation view

For combinational issues, no tracing is needed. The register value is obtained by
reading registers directly via debug interface e.g. JTAG after the configuration phase.
For sequential issues, a trace is necessary to obtain the register access history. For each
product generation and each device, the rules could differ. Therefore, only the valid
rules for a device should be selected. For each device, a list of available rules is provided.
Different rules are selected and validated depending on the connected device. For each
check, the device could be restarted by the tool to trace complete access history starting
from the beginning. ChipCoach searches through the trace from the beginning, e.g. a
reset. A rule becomes valid when an activation condition is fulfilled. Then the searching
direction becomes either forward or backward, depending on the rule definition, as shown
in section 4.2.1.

5.1.1.3.1 Demonstration
Several rules are implemented in the analysis tool. A diagnosis report is generated as
shown in Figure 5.5. The report is formed as a table, in which the check result that is
either a successful message or an error message is displayed. Errors and warnings are

88

5.1 The implementation of the proposed methodology — ChipCoach

highlighted and a short description of the problem is also given. The second category
named “ClockRegSequence” contains the rules of the UP issues. The first error in this
category shows that CCUCON0 is modified but it is not updated. The next category is
named “FlashDelay”, which is also described in the motivational examples. The errors
mean that the minimum requirements are not fulfilled by the current configuration,
while the warnings remind the developer that the performance is not optimal. The last
category checks whether OCDS is accessed by the application software and whether it
is enabled before accesses.

5.1.1.4 DMA activity analysis

The DMA activity analysis feature is meant to help users to explore what is really hap-
pening to the DMA channels in systems. DMA is very widely applied in embedded
systems to transfer data between peripherals and memory. There are many DMA chan-
nels (128 channels in TC29x) and quite flexible configurations for different use cases.
Compared to the program execution, which can be analyzed by setting break points
and single stepping in conventional debuggers, DMA channel activities are difficult to
be ”frozen” by setting break points. Usually, users assume that DMA channels work as
they are configured, which could not be the case. The designed feature enlightens the
darkness between the reality and the assumptions.

As described in the previous section 4.3.1, DMA activities are traced via OTGB. The
trace data is then visualized as a Gantt chart by ChipCoach as shown in Figure 5.6.
The Gantt chart displays the starting time and the ending time of a channel’s active
state. All DMA channel activities during the tracing are shown without any need of
configurations by the user.

This feature is not limited to DMA channel activities. The service latency, which is
defined as the time from a service request arrives until the corresponding DMA channel
is active, is traced also via OTGB and displayed in the Gantt chart. It benefits the
understanding of the request load situation in the system. Due to the limitation of
MCDS, four service requests can be traced in parallel. Thus, users have to decide which
four requests are interesting and critical. Once decided, the target service requests are
configured via writing the corresponding SRN indexes. In this view, a look up table is
provided to facilitate the searching of the corresponding SRN indexes. The users just
need to know the hardware module information and the corresponding SRN indexes are
calculated by ChipCoach.

Moreover, the Gantt chart provides a possibility to show both program execution and
DMA channels in the same view as shown in Figure 5.7. It has two options, including
function tracing and flow tracing. In order to use this option, the .elf file that con-
tains the symbolic and the binary information is supposed to be available. The details
of difference between the flow tracing and the function tracing are discussed in Chap-
ter 3. The function tracing supports longer tracing with fewer details than the flow
tracing. A strategy can be applied: first, having a function trace to get the overview
then investigating an interesting area with a flow trace.

Stack levels and also function duration are also calculated and visualized based on the

89

5 Implementation and experimental Evaluations

Service latency configuration

Program tracing configuration

DMA channel mask

DMA channel 21
activities

Figure 5.6: The screenshot of ChipCoach’s DMA activity view

program trace. Stack levels are increased or decreased by detecting calls and returns.
Different colors are applied to distinguish the stack depth. Combined with DMA channel
activities, it becomes straightforward to notice the internal system execution.

5.1.1.5 Interrupt profiling

The interrupt profiling analysis is also implemented as a tree table 5.8. There are two
tabs that are the summary statistics and the detailed trace data in this view. The
summary statistics contain statistics defined in the Section 4.3.2 e.g. blocking time,
contended interrupts, SRRL and SRD. The detailed trace data helps users to figure out
what really happens.

Several options can be applied to trace the interrupt execution. A two-step strategy is
advised. First, one CPU can be selected as the target service provider and all interrupts
going to this CPU will be recorded as explained in TABLE 4.5. The arriving time of
interrupts with this option is missing. Second, four additional interrupts that should be
investigated deeply can be drawn into the view by using the SRN look up table. Then,
more detailed information of these four interrupts is displayed.

In the tree table, the interrupt function name is defined as the first function executed
after jumping out of the interrupt vector table. The service request name is obtained
from the look up table that contains the mapping between the SRN indexes and SRN
names. The frequency indicates how often interrupts occur. Additionally, minimum
service time, maximum service time, average service time and deviation are calculated.
A list of interrupts that preempt the current running interrupt is also given.

90

5.1 The implementation of the proposed methodology — ChipCoach

Traced functions

Traced DMA
channels

The function execution of
Ifx_Qspi_SpiMaster_getStatus

Figure 5.7: The screenshot of flow tracing and DMA channel activities in ChipCoach’s DMA
activity view

Four interrupts in parallel

Service provider selection

Profiling results

Proposed suggestions

Figure 5.8: The screenshot of the interrupt profiling view in ChipCoach

91

5 Implementation and experimental Evaluations

Lock selection Detailed profiling
results

Summary

Figure 5.9: The screenshot of ChipCoach’s lock profiling view

Given an .elf file, the implemented interrupt profiling view automatically measures
the current interrupt execution and provides beneficial information. Suggestions are
also proposed to increase the performance of specific interrupts or even all interrupts.
Based on the measured statistics, users acquire the accurate impression of how interrupts
are being serviced in the system.

5.1.1.6 Lock profiling

The lock profiling analysis displays the results in several tables. As mentioned in Sec-
tion 4, one of the given prerequisites is that the task ID information is provided. In
ChipCoach, this is realized by tracing the OLDA range. The OS is modified to write the
task ID when a task is started and resumed. Due to the limited trace buffer in AURIX,
a two-step strategy is applied in the ChipCoach. First, all memory accesses are recorded
by tracing and locks inside are detected. This tracing provides a good overview. Second,
an interesting lock can be selected. At this time, only the selected lock is traced again
and the tracing duration is much longer, which allows developers to conduct a deeper
analysis about one lock. The two-step strategy offers both a balanced compromise of an
overview and details. The implemented lock profiling view is shown in Figure 5.9. Dif-
ferent statistics are calculated including waiting time, holding time, failed attempts etc.
By clicking a lock name, all threads accessing this lock are expanded. Further details
are also available by expanding the specific thread ID. A console under the tables shows
more flexible information such as warnings and suggestions.

5.1.1.7 Program flash contention

According to the proposed methodology of program flash contention analysis, the per-
formance impact on all cores can be measured and estimated in just one run. However,

92

5.1 The implementation of the proposed methodology — ChipCoach

Start
Instruction & flash

access tracing
Pre-processing

CDIF

detection

WBP

detection

OL

detection

UP

detection

PFC?
Performance

estimation
Yes

Report End

Figure 5.10: The analysis flow of the program flash contention analysis in ChipCoach

the implementation in ChipCoach is compromised due to the limitation of the MCDS
that not all cores can be observed in parallel. Therefore, the implemented analysis is
designed to detect program flash contention and estimate the performance impact on one
core. It is sufficient for most use cases. A different core can be analyzed by rerunning
the application.

The analysis flow is implemented as depicted in Figure 5.10. Both the instruction
flow and the bus transfers related to program flash are traced. Based on the trace
data, different possibilities including CDIF, WBP, OL and UP are detected respectively.
Then, the program flash contention spots are derived and the corresponding performance
impact is also estimated. Finally, a report is generated.

The program flash contention feature has a view to show performance penalties caused
by program flash contention as shown in Figure 5.11. In the view, a core can be selected
to be analyzed and also a range of program addresses can be typed into the view to
limit the analysis to several specific functions. The view shows the overview of the
results including the performance impact and the exact number of clock cycles added
by program flash contention. A more detailed report is also generated locally as a text
file, in which the delayed numbers of cycles and the number of contention spots for each
instruction are available. By utilizing this report, the program flash contention can be
reduced for a specific function, a thread or even a core.

93

5 Implementation and experimental Evaluations

Results

Analysis scope configuration

Figure 5.11: The screenshot of the program flash contention analysis view

94

5.1 The implementation of the proposed methodology — ChipCoach

AnalysisEnd

LinkingFiltering

Tracing

Start
Application

Binary

Extract Debugging

Information

Section Variable

Report

Raw Trace

Data

Memory

Accesses

Variable

Accesses

Figure 5.12: The workflow of the memory contention analysis feature in ChipCoach

5.1.1.8 Data memory contention

In ChipCoach, the data memory contention analysis is implemented according to Fig-
ure 5.12. At the beginning, ChipCoach configures MCDS to trace the memory accesses
to a specific memory in the Tracing phase. Similar to the program flash contention anal-
ysis, not all memory modules can be traced at one time. For data memory contention
analysis, the limitation is solved by automatic application rerunning. The tracing trig-
ger is configured so that the tracing always starts at the point, which is guaranteed by
the MCDS trigger support. Then the raw data is then reprocessed including filtering,
which filters out the unneeded trace data and merges data from different tracing. The
contention analysis for a specific memory module here is reliable because the proposed
data memory contention methodology relies on the timing of memory accesses to the
specific memory module, which are traced in one tracing. The merging operation here
is for comparing the contention situations in different memory modules. Given the .elf
file, symbolic and binary information is provided to the ChipCoach, which allows the
ChipCoach to link memory accesses to variables and sections in the Linking phase.
Finally, some metrics are calculated for each variable and each core in the Analysis,
providing reference to the user to optimize the memory performance.

To start with the analysis, firstly the hardware dependent properties including the
system consumers, providers, access latencies and the minimum memory access cycle
interval (INT) have to be defined [48]. The AURIX TC29x device has the following
consumers:

• Core0, core1, core2: every core is considered as a unique consumer.

95

5 Implementation and experimental Evaluations

• DMA: AURIX TC29x has a DMA which can also be a consumer.

Other potential consumers such as High Speed Serial Link (HSSL) and Ethernet are
treated similar to DMA.

In addition, TC29x has the following providers:

• DSPR0, DSPR1, DSPR2: are the local scratchpad SRAMs directly coupled
to their cores. They are accessible by their local cores and every other consumer
connected to the SRI.

• LMU is a global data memory that is not directly associated with any core.

Latencies First, the memory access latencies between consumers and providers have
to be identified [48]. Table 5.1 can be obtained from the AURIX user manual [106],
presenting the read latencies in the AURIX TC29x system. It also shows the maximum
CPU stall cycles due to access latency. The write latencies can be omitted, because a
write operation is posted and does not halt the issuing core. Write operations could
however introduce a bus (SRI) contention, which then delays the read operations. In
AURIX, this penalty is mostly relieved by core-coupled store buffers that hold the write
requests (store operations) from the core temporally. A read request has priority over the
write requests in the store buffer so that it is not delayed by the previous write operations.
In this implementation, the remote write access penalties are ignored. Table 5.1 states
that accesses to the local memory consume zero clock cycles. The memory access latency
for LMU is not provided in the user manual but measured in experiment.

Table 5.1: Read latencies (clock cycle) in AURIX TC29x

DSPR0 DSPR1 DSPR2 LMU

core0 0 8 8 11
core1 8 0 8 11
core2 8 8 0 11

Minimum memory access cycle intervals: for AURIX TC29x, the following INTs
are observed with several experiments.

Local to remote access: an access to the local memory has the INT of one clock
cycle, to the nearest remote access from a different core to the same memory.

Remote to remote access: when two remote cores are concurrently accessing the
same DSPR, the INT is three clock cycles.

Remote to remote access: if the LMU is accessed by two cores, the INT is four
clock cycles.

The analysis results are displayed in two modes namely the basic view and the expert
view, as shown in Figure 5.13 and Figure 5.14 respectively. The basic view only displays
the basic information and suggestions without any details, which is suitable for users
who would like to have a quick view. In the basic view, simple suggestions are also
provided to give quick hints to improve the performance. The expert view shows all

96

5.1 The implementation of the proposed methodology — ChipCoach

Figure 5.13: The screenshot of the basic view in the data memory analysis

detailed statistics of every detected global variable. With the expert view, users know
the penalties of both data locality and contention of each variable. The switch of these
two views is via the tab under the view.

Both the data locality analysis and the contention analysis are visualized as tables.
In Figure 5.14, the memory contention analysis table is shown. The results are organized
in a hierarchical way. Global variables are arranged under different core groups. Under a
specific global variable, the contended cores and contended variables are shown by click-
ing the variable name. Penalties for both the data locality and the memory contention
are calculated and displayed. The number of contention spots and the contention ratio
are also provided to the users.

5.1.1.9 Clock configuration view

The clock distribution in state-of-the-art microcontroller is complex. The clock config-
uration feature shows the frequency of each module in AURIX and their hierarchical
dependencies depicted in Figure 5.15. The hierarchical dependencies are indicated in
the CCU registers that control the ratio between two modules. The root of the clock
tree is starting from either an external oscillator or an internal clock. The frequency
of the external oscillator is not known from the register configurations and it must be
measured. In ChipCoach, either the clock frequency of CPU or the frequency of MCDS
can be measured. The performance counters in CPU are used to measure the CPU
frequency, while clock counter register in MCDS is applied to measure the frequency of
MCDS. Then the frequency of the clock tree root can then be derived first and other
modules can also be calculated. The CCU configuration process is also validated by
rules that involve clock configurations as introduced before.

97

5 Implementation and experimental Evaluations

Analysis result selection

Analysis result selection

Contention ranking

Tree-based
contention results

Analysis configuration

Figure 5.14: The screenshot of the expert view in the data memory analysis

Update the frequencies

Tree root: oscillator frequency
HW module frequencies

Figure 5.15: The screenshot of the clock configuration view

98

5.1 The implementation of the proposed methodology — ChipCoach

Figure 5.16: The screenshot of ChipCoach’s memory protection unit view

5.1.1.10 Other features

The Memory Protection Unit (MPU) is used to prevent unintended memory accesses,
which is critical for safety-related applications. The CPU MPU provides multiple pro-
tection sets with multiple protection ranges. It is meant to guarantee that no unintended
memory access is initiated by a particular core. An alarm will be triggered if a violation
happens. The CPU MPU is supposed to be configured at the beginning of a task phase.
ChipCoach provides visualization support for the CPU MPU configurations, which al-
lows users to see the current valid MPU configuration, as shown in Figure 5.16. The
view displays the current setting for different cores and for different operations (read,
write, execution).

Another performance profiling feature in ChipCoach is the performance profiling
counter visualization. MCDS supports performance counter tracing. This includes many
different counters like instruction, interrupt, memory accesses, bus transfers, DMA trans-
actions, cache hit, cache miss etc. as shown in Figure 5.17. These counters can be used
to analyze the system performance. ChipCoach also displays the counter values in dif-
ferent formats. It provides the original counter values, the value over cycle number (e.g.
Instruction Per Cycle (IPC)) and the value over instruction number (e.g. cache misses
per instruction). These formats can be chosen by selecting the dropdown list.

99

5 Implementation and experimental Evaluations

Figure 5.17: The screenshot of the performance counters view in ChipCoach

5.2 Experimental evaluation

The proposed methodologies are first implemented as features in ChipCoach. In order to
prove the effectiveness and the accuracy of the proposed methodology and the implemen-
tation, several experiments were designed and experimental results are evaluated. The
experimental evaluations cover only the quantitative analyses such as the lock profiling
analysis, the program flash contention analysis and the data memory analysis.

5.2.1 Lock profiling analysis

In this part, a case study is done with ChipCoach to analyze the lock appliance of two
applications on Infineon AURIX TC29x. These two applications run on the OSs Erika
and FreeRTOS respectively. Active locks on both OSs are detected and reported to
the developers. One of the applications, i.e. an Ethernet demonstration application on
Erika, is described in detail and then the profiling results obtained with ChipCoach are
discussed in this section.

5.2.1.1 Ethernet demonstration application

The Ethernet demonstration application is designed to show the basic functionality of
Ethernet that is currently being used to transfer large amounts of data in cars. It consists

100

5.2 Experimental evaluation

UDP testing program

Hardware layer

CPU0 CPU1

Ethernet interface Rx and Tx
handler

Rx mailbox system and Tx
message queues

IPv4 (ARP, ICMP)

UDP
Service layer

Administration layer

Abstract layer

Erika

Figure 5.18: The architecture of the Ethernet demonstration application

of two parts as shown in Figure 5.18. The first part is the main functionality running on
CPU0, which provides UDP service. It is capable of receiving, processing and sending
UDP frames. It has several layers including abstract layer, administration layer and
service layer. All these layers are scheduled using Erika, a hard real-time embedded
OS. Threads can be preempted depending on the priority. The second part is the UDP
testing program running on CPU1 without OS. The main purpose of this part is to
stimulate and verify the first part. It periodically generates data and then sends it out
using the UDP service provided in the service layer. It also checks the received UDP
frames and validates the correctness. This part is periodically triggered by the System
Timer (STM). The interaction between the UDP testing program (Thread 200) and the
UDP service (Thread 14) is protected by a spinlock.

5.2.1.2 Lock profiling results

ChipCoach is applied to check the spinlock usage in the Ethernet demonstration ap-
plication. After the first run, a lock named eth test lock is detected as a spinlock
protecting shared variables, which are commonly used data buffers for the UDP testing.
Then a second run with tracing limited to only eth test lock is performed. The tool
displays the statistics in the table and also indicates two bad lock behaviors to the user.
Those are spinning with atomic operations and thread preemption while holding a lock.
It is noticed that the current lock is a test-and-set lock and interrupts are not disabled
inside the critical section. Two optional improvements are available i.e. applying the
test-test-and-set lock and disabling interrupts inside the critical section.

101

5 Implementation and experimental Evaluations

test-and-set
without

protection

test-and-
set with

protection

test-test-
and-set
without

protection

test-test-
and-set with
protection

2 000

2 500

3 000

3 500
h

ol
d

in
g

ti
m

e
[C

P
U

cy
cl

es
] Thread 200

Thread 14

Figure 5.19: The holding time of thread 14 and thread 200 owning eth test lock

With these two options, four alternatives namely test-and-set without protection (with-
out any improvement), test-and-set with protection, test-test-and-set without protection
and test-test-and-set with protection are investigated. The holding time and the waiting
time for the four alternatives are depicted in Figure 5.19 and Figure 5.20 respectively.
The thread 200 is the UDP testing program while the thread 14 is the UDP service. The
values shown in the figures are the average numbers of ten measurements.

Due to the fact that interrupts are not disabled in alternatives test-and-set without
protection and test-test-and-set without protection, thread 14 could be preempted while
holding the lock. This results in extra-long holding time as shown in Figure 5.19, while
the holding time of thread 200 does not change much among the different alternatives.

As the holding time of thread 14 without protection is much larger than the one with
protection, the blocking chance of thread 200 is also higher, resulting in longer waiting
time of thread 200 in Figure 5.20. The waiting time of thread 14 with test-test-and-set
lock is always higher than the first two alternatives. This is because the spinlock is
located in the CPU1’s local memory and thread 200 accesses this lock much faster than
the remote thread 14. It is easier for a local thread to acquire with the test-test-and-set
implementation. test-test-and-set without protection has extremely long waiting time for
both threads. They are having many collisions in this timing. According to the results,
protection is necessary to avoid preemption while holding a lock. The test-test-and-set
lock gives the local thread a better chance. For this Ethernet demonstration application,
the test-and-set lock with protection could be selected to decrease the waiting time of
the thread 14.

The experience in profiling applications on Erika and FreeRTOS indicates the feasibil-

102

5.2 Experimental evaluation

test-and-set
without

protection

test-and-
set with

protection

test-test-
and-set
without

protection

test-test-
and-set with
protection

50

100

150

w
a
it

in
g

ti
m

e
[C

P
U

cy
cl

es
] Thread 200

Thread 14

Figure 5.20: The waiting time of thread 14 and thread 200 acquiring eth test lock

ity of the proposed OS-independent lock detection approach. The above profiling anal-
ysis explains how to apply the proposed approach to increase the system transparency
and improve the lock usage. The lock usage situation is complex and sometimes out of
developer’s expectation. The suitable lock type depends on different working conditions.
A profiling tool clarifying this complex situation is therefore necessary. Especially for
embedded applications, such an OS-independent tool is convenient to use.

5.2.2 Program flash contention analysis

To prove the feasibility and the effectiveness of the proposed program flash contention
analysis algorithm, an experiment was designed using third-party test program on AU-
RIX TC29x. Owing to the limitation that program flash cannot be detected with the
existing tools, a controlled experiment, consisting of a Control Group (CG) and several
Experimental Group (EG)s, is created to derive the contention spots and performance
impact caused by the contention. In this way, the results analyzed by ChipCoach can be
compared against the results measured by the controlled experiment, showing the level
of accuracy.

5.2.2.1 Experiment setup

The experiment is conducted on AURIX TC29x with disabled program cache which
facilitates the observation of program flash contention. Instructions have to be fetched
from the program flash and more program flash contention should be observed. The
proposed contention analysis method is independent of cache configuration and it also

103

5 Implementation and experimental Evaluations

Program
Flash

Program
Flash

Core0Core0

Core1Core1

Core2Core2

RAM RAM

RAM

DMADMA

(Test Program)(Test Program)

(Artificial load)(Artificial load)

Instruction fetchInstruction fetch

DMA transfers from
flash to RAM

DMA transfers from
flash to RAM

Cross Bar
Interconnect

Cross Bar
Interconnect

(System init)(System init) (STM & DMA init)(STM & DMA init)

Figure 5.21: Experiment setup: The control group has only instruction fetches while the EG has
both instruction fetches and DMA transfers that cause program flash contention.

works well with enabled program cache. In this experiment, the frequency of the core is
set at 80MHz that is the same as the frequency of MCDS.

The program flash contention can be generated in two ways. (a) a real multicore appli-
cation running on AURIX and program flash contention might be introduced. However,
whether there is contention and the degree of the flash contention depends on the charac-
teristics of the application itself, which is difficult to control. (b) a single-core application
running on AURIX and program flash contention can be introduced by adding artificial
load generated by DMA as shown in Figure 5.21. The program flash contention occurs
when the DMA accesses are conflicting with the normal instruction fetches by the tested
core. The artificial load is totally under control so the degree of the program flash con-
tention can be also tuned. The above two ways have advantages and disadvantages. The
way (a) is the closer to reality but the flash contention is determined by the application
itself, making it difficult to measure different contention degrees. The way (b) outpaces
the way (a) in controllability. The accuracy of the proposed approach can be evaluated
in different contention scenarios in the way (b). Therefore, the way (b) is chosen in
experiment.

A time-triggered DMA channel is applied to generate the artificial load by transferring
data from the program flash to DSPR in the CPU2. The trigger is controlled by the
STM, which sends out a DMA request when the time reaches a pre-defined value. This
pre-defined value is set in the STM by adjusting the lower compare bits. Each time, a
32-bit-word is read from the program flash by DMA. The read addressing increments
by one word after each transfer to avoid the ”cache” effect since a small buffer exists
in the program flash. Accordingly, the artificial load is tuned by setting the different

104

5.2 Experimental evaluation

trigger periods in STM. This artificial load generation is considered to have no impact
on normal operations of the CG except for the program flash contention as the test
program does not use DMA and STM, meaning no sharing between the artificial load
generation and the normal operations.

The single-core test programs mentioned in the way (b) include two benchmarks
namely EEMBC and Dhrystone [128] for AURIX. The EEMBC is AutoBench version
1.14 from Automotive Subcommittee and the Dhrystone is C 2.1 version. In both the
controlled group and the EG, non-intrusive instruction tracing is applied to record the
time information of each instruction, artificial flash accesses and instruction fetches. As
the program flash contention is the only difference between two groups, the extra time
consumed in the EG compared to the CG is then only caused by the program flash
contention. Then the instructions in the EG consuming more clock cycles than those in
the CG are treated as contended instructions, meaning that they are impacted by the
contention.

To evaluate the methodology accurately and comprehensively, several terms are de-
fined as follow [47].

Measured means the value is measured by comparing the EGs to the contention-free
CG. It shows the actual performance impact and the contended instructions.

Estimated means the value is estimated by ChipCoach based only on the EG.

Load is defined as the DMA read frequency. The average access period cycles (access
intervals) are measured and then the load is calculated, which is presented in read/cycle.

Correctly Estimated Contention (CEC) is defined as the intersection set be-
tween measured contended instructions and estimated contended instructions. To show
the correctness of the method, detection rate defined the ratio of correct contention
estimations to measured contention, is introduced.

False Positives in this experiment, means the overestimated contention that actually
is not contention.

False Negatives in this thesis, is the underestimated instructions that indicate no
contention in the estimation but actually have contention.

Performance Impact is defined as the ratio of additional clock cycles over the
measured total clock cycles. For each contention, the extra clock cycles are estimated
by the methodology and then added up to have an overall performance impact in the
experiment.

5.2.2.2 Results

The tracing scope is adjusted to the same sequence of the instructions in all tests to make
the comparison reproducible. The experiments were repeated 5 times and the variances
are only several clock cycles, which can be ignored. This is because a hardware reset
is performed for each measurement and the identical trace scope is also guaranteed by
the MCDS tracing trigger. In the experiment, the measured contention spot numbers
and the estimated contention spot numbers are recorded. The detection rate as defined
above is also calculated.

105

5 Implementation and experimental Evaluations

Two experiments with different test programs were conducted. Experiment 1 is with
the EEMBC benchmark and Experiment 2 is with Dhrystone. The results of both
experiments are shown in TABLE 5.2 and TABLE 5.3 respectively.

The measured tracing scope starts from the reset and ends until the trace buffer is full.
As shown in Table 5.2, always the same number of instructions in the identical sequence
is considered as the measurement scope. For each row in the table, the only setup dif-
ference is the degree of the artificial load or access frequency. The measured contention
is calculated by comparing the EGs to the contention-free CG while the estimated con-
tention is estimated by ChipCoach based only on the EG. However, some contention
spots may be overlooked (false negative) by the analysis method and some spots may be
overestimated (false positive). Only the common spots between the measured and the
estimated are treated as correctly estimated contention.

Table 5.2: The experiment results of the EEMBC benchmark

Load (read/cycle) Instructions
Measured
contention

Estimated
contention

CEC
False

negatives
False

positives
Detection

rate

0,008 14486 90 89 81 9 8 90,00%
0,016 14486 189 182 170 19 12 89,95%
0,031 14486 366 365 343 23 22 93,72%
0,063 14486 761 751 724 37 27 95,14%
0,124 14486 1708 1675 1645 63 30 96,31%

Table 5.3: The experiment results of the Dhrystone benchmark

Load (read/cycle) Instructions
Measured
contention

Estimated
contention

CEC
False

negatives
False

positives
Detection

rate

0,008 16367 95 86 74 21 12 77,89%
0,016 16367 158 158 133 25 25 84,18%
0,031 16367 342 330 304 38 26 88,89%
0,062 16367 615 646 592 23 54 96,26%
0,124 16367 1429 1427 1373 56 54 96,08%

In order to show the impact of the program flash contention better, the performance
impact is also analyzed compared to the ideal scenario that is without program flash
contention i.e. the controlled group. Both the measured performance impact and the
estimated performance impact for the Experiment 1 and the Experiment 2 are shown
in Figure 5.22 and Figure 5.23.

5.2.2.3 Assessments

The artificial load shown in Table 5.2 is doubled in every row by using fewer comparison
bits for STM. The number of contention spots also increases according to the artificial
load as shown in TABLE 5.2. The overlooked contention spots which are false negatives
are mainly slight contention. As discussed in the methodology Section 4.3.4.2, only

106

5.2 Experimental evaluation

0.008 0.016 0.031 0.063 0.124

0 %

5 %

10 %

15 %

Load (read/cycle)

P
er

fo
rm

an
ce

Im
p

ac
t

Estimated
Measured

Figure 5.22: The performance impact in the Experiment 1 with the EEMBC benchmark

0.008 0.016 0.031 0.062 0.124

0 %

5 %

10 %

15 %

Load (read/cycle)

P
er

fo
rm

an
ce

Im
p

ac
t

Estimated
Measured

Figure 5.23: The performance impact in the Experiment 2 with the Dhrystone benchmark

107

5 Implementation and experimental Evaluations

CDIFs which delay a lot and even stop the core running are analyzed. The slight
contention spots also slightly disturb the normal execution of the core’s pipeline but the
influence is slight. Therefore, the performance impact caused by slight contention spots
can be ignored, which is also verified by the performance impact in Figures 5.22 5.23
that have high estimation accuracy. The detection rates in both experiments indicate
that the detection rate increases when load is higher. This is because the faction of
slight contention spots is less in higher load scenarios.

The maximum measured performance impact is up to 16%. Even though this is only
the worst case with disabled program cache, this shows the significant impact of program
flash contention and the importance of the program flash contention analysis. In fact,
program cache may not help if the routine has not been executed before. For example, an
interrupt happens and it is not cached. The execution of this interrupt can be severely
delayed by program flash contention, which may result in issues.

In this experiment, the performance impact estimation matches the measured perfor-
mance impact quite well but it still has deviations. The performance impact deviations
come from the estimation of the ideal scenario. The ideal scenario can only be coarsely
estimated without simulations. The real scenario is usually much more complex than
the ideal case. The flash-contention-free scenario could be influenced by other factors
such as other resource contention, extremely long instruction execution time and pipeline
hazards. All these other non-ideal cases could cause errors in the ideal case estimation.
For example, in the ideal case an instruction takes 2 cycles. In the analysis, we observe
5 cycles caused by program flash contention. The additional 3 cycles cannot be imputed
to only the program flash contention. This instruction may also have data memory con-
tention, which leads to e.g. 1 additional cycle, so the program flash contention is only
responsible for additional 2 cycles.

The flash contention is not only limited to the instruction fetch contention but also
happen to constant data read. Usually const data is stored together with instructions.
This allocation has two possibilities: contention between instruction and const data or
between constant data and constant data/instruction. For the first possibility, they
could also be analyzed and estimated by this method. The second possibility that has
no impact on the instruction fetch but have influence on the constant data fetch, are not
detectable with the proposed method. For example, a const data fetch is delayed due
to a simultaneous instruction fetch by another core. This situation can also be solved
similarly by the proposed method 4.3.5.

5.2.3 Data memory analysis

Similar to the previous situation in the Section 5.2.2, a controlled experiment is designed
to measure the accuracy and the effectiveness of the proposed method in Section 4.3.5.
Both the performance impact and the numbers of memory contention spots are esti-
mated by ChipCoach and compared to the experimental results. As mentioned before
Section 5.2.2, there are two ways to generate memory contention. One is using a real
multi-core application and the other is based on a single-core application with artificial
load. In this experiment, the second way is still selected as it is more controlled and more

108

5.2 Experimental evaluation

Cross Bar Interconnect

core0

(Test program)

(System init)

(Artificial load)

Glob Var
DSPR0

core1

DSPR1 DSPR2

core2

Global variable accesses

Random load

LMU

Figure 5.24: AURIX TC29x diagram. Experiment setup: core0 initializes the system; core1
runs the test program; core2 adds load to DSPR0

flexible. The single-core test programs in this experiment include the EEMBC bench-
mark and the Dhrystone benchmark. The EEMBC is AutoBench on matrix calculation
from Automotive Subcommittee and the Dhrystone is C version 2.1. The runtimes of
the two test programs under various conditions that are with/without data locality/
memory contention are manipulated and compared to show the performance impact.

5.2.3.1 Setup

This experiment is based on AURIX TC29x with both program cache and data cache
enabled. The experiment setup is as shown in Figure 5.24. The Tasking (TriCore
v4.3r3) compiler was used to compile the application. As shown in the figure, each core
has its local data memory and the global variables can be allocated to any of these
data memories at compile time. The data allocation is done by pragma commands,
which are supported by the compiler. Different experimental scenarios can be created
by manipulating the location of these global variables. The CG as a reference group
is designed to be the basic group. The EGs always deviate from the CG by only one
factor. This guarantees that the result difference is caused by the deviated factor.

In this experiment setup, core0 is responsible for the system initialization. When
the initialization is finished, an interrupt is triggered to wake up both core1 and core2.
core1 runs the single-core test program, which is either the Dhrystone or the EEMBC
benchmark. core2 is designated to generate artificial load to core0 by accessing a variable
ld sourceTarget in core0.DSPR0 randomly. The random access here means that the time

109

5 Implementation and experimental Evaluations

Table 5.4: Dhrystone: analyzed penalties

Group Runtime Locality Penalties Contention Penalties Sum Penalties

CG 215 406 35 200 0.00 35 200.00
EG0 216 528 35 200 1 080.70 36 280.70
EG1 216 806 35 200 1 335.10 36 535.10
EG2 180 590 0 0.00 0.00

Table 5.5: Dhrystone: measured performance impact

Group
Contention Impact Locality Impact Total Impact

Error
(EG-CG) (CG-EG2) (EG/CG-EG2)

CG - 34 816 34 816 1.10%
EG0 1 122 - 35 938 0.95%
EG1 1 400 - 36 216 0.88%
EG2 - - - -

interval between two read operations is a random number of cycles.

The CG is the group with remote accesses but without potential contention. This is
achieved by locating the global variable on core0’s DSPR0 and switching off the random
access generation on core2. Two EGs (EG0, EG1) are designed to have both potential
contention and data locality issues. The difference between these two groups is that the
accessing intervals of the artificial load are generated by two different random seeds. In
the last EG (EG2), which is meant to be the optimal group, the global variable is moved
from core0 to core1. Therefore, no potential memory contention and data locality issues
are possible.

5.2.3.2 Results

Tables 5.4, 5.5, 5.6 and 5.7 show the results of the experiment with the two test programs.
The Runtime shows the total runtime in CPU cycle of the test programs in different
groups, which are measured by the CPU clock counter. The locality penalties and
contention penalties are analyzed and estimated by ChipCoach while the locality impact
and the contention impact are measured calculating the runtime difference between the
EG0, EG1 groups and the CG group. The group name (CG, EG0...) in the following
calculations is short for the runtime of this group. The locality penalties are the same for
CG, EG0 and EG1 groups, since the numbers of remote accesses to the global variable
are identical. Error is calculated according to Equation 5.10.

Error =

∣∣∣∣Sum Penalties−Total Impact

Total impact

∣∣∣∣ (5.10)

110

5.2 Experimental evaluation

Table 5.6: EEMBC: analyzed penalties

Group Runtime Locality Penalties Contention Penalties Sum Penalties

CG 626 547 27 352.00 0.00 27 352.00
EG0 627 486 27 352.00 796.70 28 148.70
EG1 627 407 27 352.00 902.07 28 254.07
EG2 599 601 0.00 0.00 0.00

Table 5.7: EEMBC: measured performance impact

Group
Contention Impact Locality Impact Total Impact

Error
(EG-CG) (CG-EG2) (EG/CG-EG2)

CG - 26 946 26 946 1.51%
EG0 939 - 27 885 0.95%
EG1 860 - 27 806 1.61%
EG2 - - - -

Figures 5.25 and 5.26 display the measured runtime (blue) of all the experiment groups.
The middle bar shows the optimal runtime estimated by ChipCoach, which is defined
as the runtime excluding the estimated sum penalties. The measured optimal runtime
is EG2.

The next Figures 5.27 and 5.28, show the contributions to the sum penalties from
locality issues and memory contention issues. The group CG only has the locality
penalties because the random access generation is inactive in core2. EG has neither the
locality penalties nor the contention penalties.

5.2.3.3 Assessments

In the EG2, all three bars are the same height as expected, because there are no memory
contention and data locality penalties in this group. The runtime of the contention
groups EG0 EG1 is slightly higher the reference group CG, which is caused by the
introduction of data memory contention. The reason why the impact is slight is that the
contention only exists in the accesses to the global variable, which impacts only a small
part of the test program. Another reason is that only partial accesses have contention
with the artificial load. The estimated optimal runtime by ChipCoach is quite close
the real measured optimal runtime EG2, meaning that the estimation accuracy of the
proposed method is good. The comparison of the Locality Impact column and the
Locality Penalties column in tables 5.4 5.5 5.6 5.7 also indicates a close estimation and
it is similar to the contention comparison. The estimated locality penalties are always
higher than the measured locality impact. The reason is that the locality penalties are
described as maximum core stall cycles according to the user manual so they are the

111

5 Implementation and experimental Evaluations

CG EG0 EG1 EG2

1.8

1.9

2

2.1

2.2

·105

Groups

R
u

n
ti

m
e

(c
y
cl

e)

Runtime Runtime - Sum Penalties EG2

Figure 5.25: Dhrystone runtime comparison: the first bar shows the measured runtime (blue);
the second bar shows the estimated optimal runtime (green) and the third bar
shows the measured optimal runtime (gray).

CG EG0 EG1 EG2

6

6.1

6.2

6.3

·105

Groups

R
u

n
ti

m
e

(c
y
cl

e)

Runtime Runtime - Sum Penalties EG2

Figure 5.26: EEMBC runtime comparison: The first bar shows the measured runtime (blue);
the second bar shows the estimated optimal runtime (green); and the third bar
shows the measured optimal runtime (gray).

112

5.2 Experimental evaluation

CG EG0 EG1 EG2
0

1

2

3

4

·104

Groups

P
en

al
ti

es
(c

y
cl

e)

Locality penalties Contention penalties

Figure 5.27: Dhrystone allocation and contention penalties: Estimated locality penalties (blue)
and contention penalties (green) of the different groups.

CG EG0 EG1 EG2
0

1

2

3

·104

Groups

P
en

al
ti

es
(c

y
cl

e)

Locality penalties Contention penalties

Figure 5.28: EEMBC allocation and contention penalties: Estimated locality penalties (blue)
and contention penalties (green) of the different groups.

113

5 Implementation and experimental Evaluations

upper bound of the performance impact. The calculated errors in the tables are very
small and can be negligible. By comparing the EGs EG0, EG1 to the optimal group
EG2, nearly 20% performance impact can be saved by just relocating the global variable
from core0 to core1. Thus, locality and contention issues should be considered carefully
in multi-core embedded systems.

Figure 5.27 and Figure 5.28 show that the locality penalties strongly dominate the
performance impact in this experiment, meaning that the data locality should be op-
timized preferentially. However, this does not mean that we do not have to care the
memory contention, and it only shows the characteristics of this test program and char-
acteristics of Infineon’s AURIX TC29x. For this test program, only one global variable,
which is related to only a small part of the test program, has potential contention. If
more cores and peripherals (e.g. DMA) are involved, the contention can be much higher.
From a architecture point of view, for the AURIX TC29x devices, the latency difference
between a local memory access and a remote memory access is large, while the scratch-
pad memory contention penalties are low. The characteristics could be totally different
for various applications on distinguished platforms, which on the other side shows the
importance of our proposed method. Before performance optimization, those charac-
teristics should be analyzed by this method and be understood by software developers.
Then the optimization can be in the right direction.

The proposed contention indicator is based on a statistical method with the assump-
tion (vi) that memory accesses are uniformly distributed in a small time window. Hence,
the accuracy is better for a large number of samples. If this assumption is not the case,
the probability and the expected penalties can be adjusted accordingly.

114

6 Conclusions

As the complexity of embedded hardware and software increases, the effort spent on
software debugging and performance analysis becomes high. The gap between the de-
velopers’ understanding and the actual system status becomes wider. One reason is that
the bandwidth of information generated on-chip is much higher than the bandwidth
available for transferring it out of chip. Worse still, new issues such as shared resource
contention, lock contention, and atomicity violations are introduced by multi-core and
many-core architectures.

Conventional debug and diagnosis tools are not efficient in handling these challenges
for several reasons: First, many conventional tools change the timing behavior of systems,
which may jeopardize the debug process. Second, some issues do not have obvious
symptoms in the lab environment, and hence usually no debugging or analysis takes
place. Third, knowing where to look is extremely challenging in a complex system due
to limited observability. A normal debug process works in this way: symptom reported,
look into related parts, find the issue. Conventional debugging tools e.g. breakpoints
need precise human control to configure the analysis scope, which makes debugging very
time-consuming.

The challenge of how to figure out what is going wrong in a complex system is some-
thing that doctors in the field of medicine have been dealing for a long time, in terms
of the human body and the diseases it faces. Doctors know that attempting to diag-
nose based only on the superficial symptoms is not a reliable best-practice. A disease
like leukemia for example, can exhibit symptoms that are similar to the flu and other
common diseases. Only more detailed tests, such as blood tests, will help reveal if it
is actually leukemia. So in medicine standardized diagnosis procedures are used to sys-
tematically check many points rather than relying on assumptions based on the initial
superficial symptoms. As in our example, a blood test is a typical procedure that is very
useful for diagnosing many diseases and that can be used for a great number of patients.

6.1 Embedded Health – How to diagnose a complex system?

In this dissertation, a methodology based on the concept of a blood test, incorporates
an innovative system diagnosis and debug methodology to automatically detect issues
in embedded systems and act as the generally applicable diagnosis tool for a variety of
system issues. By making use of hardware tracing of the target system, the proposed
methodology detects diseases by using predefined indicators. The predefined indicators
are low-level hardware-related behavioral patterns acting as the metric system in a blood
test. To deal with different system issues, special indicators are designed for different
diagnoses.

115

6 Conclusions

For complex hardware configuration issues that are hard to detect and sometimes even
without symptoms, LTL is applied to define rules in the SoC development phase. The
purpose of using LTL is to define rules in an unambiguous and expressive way. These LTL
rules are stored in database and checked against the traced register operations. Moreover,
they can be applied to generate unambiguous rules in user manual. Whether they are
violated by the running software is considered as indicators of hardware configuration
issues. With the help of these indicators, many subtle hardware configuration issues that
impact the system functionality and system performance can be detected immediately.

The introduction of multi-core and many-core architectures greatly improves system
performance. However, new performance problems such as shared resource contention
also come along. In this dissertation, two types of shared resources namely program flash
and data memory are investigated as they are critical for system performance. When
two cores access the same flash interface, one core has to wait until the other finishes.
The access latency of program flash is much larger than normal RAM, causing a great
contention penalty. A core cannot run continuously if the instruction fetch is strongly
delayed by flash contention. However, this severe issue is hard to notice because it is usu-
ally invisible to software developers. In order to cope with this issue, an indicator based
on instruction tracing and bus tracing is designed. It detects program flash contention
spots by finding the delayed instruction fetch excluding the scenarios with wrong prefetch
prediction, unpredictable instruction and fully loaded flash interface. The performance
impact is estimated by the proposed indicator. In this way, program flash contention
can be detected and avoided by re-scheduling of tasks or re-allocation of program in-
structions. Compared to program flash contention, the contention penalty of data RAM
is not so high but it also greatly impacts system performance considering the frequency
of data accesses. The detection of memory contention is not new. In this dissertation,
memory contention is not considered alone. Instead, data memory contention together
with data locality is calculated and compared because merely detecting the occurrence
of remote accesses or memory contention is not sufficient [100][103]. The performance
penalties by both effects need to be quantified and be compared to provide a reference
for the performance optimization, which has to be kept in balance for both data locality
and memory contention effects to achieve the optimum. A statistic indicator is designed
to estimate the contention penalty and the performance impact due to both data locality
and memory contention is considered. This indicator helps developers to improve system
performance by data reallocation.

Performance issues are not the only effect caused by multi-core architecture. Locks
as a classic way to regulate accesses to shared data, is commonly applied to multi-
core architectures. There are many types of spinlock implementations. However, no
lock implementation is the best for all scenarios so lock profilers are useful and help
developer to optimize their systems. Usually lock profilers are designed for specific OSs
or APIs. For embedded systems, there is no dominating OS like Windows or Linux on
computers. Therefore, a method to profile spinlock usage without OS/API knowledge
is proposed. This method recognizes spinlocks relying on the characteristics instead of
a specific routine or API. Performance issues and mapping issues can be diagnosed by
this method.

116

6.2 Implementation – ChipCoach

Many other indicators are also designed for issues related to e.g. DMA, interrupts,
clock configurations. Similar to a physical examination, a system is supposed to be
checked against all indicators even without any symptoms. Then a report is available
for developers to help them to understand their systems.

6.2 Implementation – ChipCoach

ChipCoach was implemented relying on the proposed methodology. It is designed for
Infineon’s AURIX and AURIX2G. It is non-intrusive, so there is no impact on system
timing and no software instrumentation is required. This is especially important for real-
time systems as bugs may not be reproducible with a different timing. Many issues which
are usually not covered by conventional tools are efficiently detected by ChipCoach.
Because the detection methods do not rely on the superficial symptoms but on the
essential causes, issues and potential issues without obvious symptoms can be detected in
advance. The designed indicators are independent of the application implementation so
the tool works effectively for a wide variety of applications, while user-involvement is kept
to an absolute minimum. ChipCoach runs on computers and connects to target devices
via debug interfaces. It automatically configures the tracing hardware (MCDS) that is
integrated into the embedded platform, and decides the scope of tracing. The output is
a report that reflects the health status of the target system and guides developers to the
root causes of issues. As an internal tool, ChipCoach has been used by many internal
application engineers. It is also being commercialized by a tool partner from Infineon.

6.3 Summary and future work

In general, the proposed methodology deals with many issues. It has several advan-
tages over the other solutions. First, it leverages on-chip hardware tracing module to
collect trace data and then diagnoses system’s health status with the help of designed
indicators. Hardware tracing is non-intrusive, which is mandatory for hard real-time
applications. Software instrumentation is also unnecessary, which facilitates automated
system diagnosis. The whole system can be run while different checks are on-going
without disturbing the normal execution. Second, various indicators are proposed and
designed for different issues covering both functional and performance issues. These in-
dicators are based on the knowledge of the hardware architectures and basic parameters.
The indicator design is independent of applications, meaning that the same indicator is
also feasible for another application. No additional input is needed. Third, the target
issues are rarely covered or not well solved by existing solutions. Issues e.g. program
flash contention are even not detectable with existing tools. The proposed methodol-
ogy solves these target issues from a totally innovative perspective: root causes at the
hardware-operation-level. Finally, this methodology tells developers where they should
look at, even for a “healthy” system. It detects the system issues and reports the issues,
relying on the root causes instead of the superficial symptoms. It is able to detect is-
sues even before the symptom appears and estimate the severity of the issues. A health

117

6 Conclusions

status report tells developers the potential functional and performance issues. One step
further, suggestions are also raised to solve these issue.

There are still many limitations of the proposed methodology and the implementa-
tion. The proposed methodology reports statistics and issues directly to developers.
Potentially intelligent judgment could be conducted already by the tool. For example, a
performance issue can be ignored if it is really slight. The definition of “slight” is not easy
because it is usually different for applications and the tool should be intelligent enough
to make this judgment whether it should be reported to developers or just ignored. The
proposed methodology is powerful for specific issues but it is not a general solution to
replace traditional debuggers. More indicators should be designed to enrich the group of
target issues. Machine learning may also be applied to automatically extract indicators
for each individual application.

The current implementation does not support continuous tracing, which is able to
provide higher tracing capacity. All trace data is temporarily stored in the on-chip trace
buffer and the size of this buffer is limited. Therefore, the duration of tracing might
be a limiting factor especially for profiling tasks. For example, the interesting issues
may not be detected if they are out of the scope. Another limitation is the number of
observation points available on chip. It will become more powerful if more types of data
can be collected directly from the tracing hardware module.

In the future, the indicator design continues and more special indicators will be avail-
able for interesting issues. If possible, machine learning algorithms can be introduced.
ChipCoach will continue to be an internal tool. More practical features are supposed to
be added to fulfill the actual industrial debugging requirements. Continuous tracing is
feasible and might be implemented for ChipCoach.

118

List of Figures

1.1 The generic flow chart of the proposed automated system diagnosis and
debug methodology . 5

1.2 The generic design flow of indicators . 6

2.1 Three different types of analyses . 10

3.1 TriCore registers[105] . 26
3.2 Infineon AURIX TC29x system diagram (some models are omitted) . . . 27
3.3 The simplified diagram of the TC29x Interrupt System [106] 29
3.4 OCDS Components of AURIX TC29x [108] 30
3.5 Infineon AURIX TC29xED diagram . 31
3.6 The block diagram of Infineon’s DAS [112] 35
3.7 The screenshot of MTV . 36

4.1 The basic work flow of the indicators in embedded health 39
4.2 The basic design flow of indicators . 40
4.3 The work flow of the automated system diagnosis methodology 41
4.4 The comparison of the conventional debugging flow and the proposed work

flow . 42
4.5 The overview of two categories of example issues: functional issues and

non-functional issues . 44
4.6 Comparison of the conventional design flow (left) and the methodology

proposed in this paper (right) [49]. 46
4.7 The rule management hierarchy in the off-chip analysis tool [49] 48
4.8 Diagrams of temporal operators . 49
4.9 The analysis steps of the proposed method 51
4.10 A rule checker example . 51
4.11 The DMA block diagram in AURIX [106] 55
4.12 DMA terms: DMA moves, DMA transfer and DMA transaction in AU-

RIX [106] . 56
4.13 Definition of interrupt from the tracing perspective 59
4.14 An embedded interrupt example: four interrupts with different priorities

come one by one . 60
4.15 The screenshot of the interrupt profiling feature 62
4.16 The workflow of the proposed multi-phase approach 65
4.17 The overview of the proposed program flash contention analysis method . 68
4.18 Basic pipeline stages:(IF = Instruction Fetch, ID = Instruction Decode,

EX = Execute, MEM = Memory access, WB = Register write back) [126] 69

119

List of Figures

4.19 Example: An instruction trace and a bus transfer trace in AURIX TC29x 71
4.20 a) shows a contention sequence; b) shows a contention-free sequence . . . 78

5.1 The architecture of ChipCoach . 82
5.2 An AURIX device is connected to ChipCoach via miniWiggler 83
5.3 The screenshot of ChipCoach . 84
5.4 The generation flow of the device-related information 85
5.5 The screenshot of the hardware configuration validation view 88
5.6 The screenshot of ChipCoach’s DMA activity view 90
5.7 The screenshot of flow tracing and DMA channel activities in ChipCoach’s

DMA activity view . 91
5.8 The screenshot of the interrupt profiling view in ChipCoach 91
5.9 The screenshot of ChipCoach’s lock profiling view 92
5.10 The analysis flow of the program flash contention analysis in ChipCoach . 93
5.11 The screenshot of the program flash contention analysis view 94
5.12 The workflow of the memory contention analysis feature in ChipCoach . . 95
5.13 The screenshot of the basic view in the data memory analysis 97
5.14 The screenshot of the expert view in the data memory analysis 98
5.15 The screenshot of the clock configuration view 98
5.16 The screenshot of ChipCoach’s memory protection unit view 99
5.17 The screenshot of the performance counters view in ChipCoach 100
5.18 The architecture of the Ethernet demonstration application 101
5.19 The holding time of thread 14 and thread 200 owning eth test lock . . 102
5.20 The waiting time of thread 14 and thread 200 acquiring eth test lock . 103
5.21 Experiment setup: The control group has only instruction fetches while

the EG has both instruction fetches and DMA transfers that cause pro-
gram flash contention. 104

5.22 The performance impact in the Experiment 1 with the EEMBC benchmark107
5.23 The performance impact in the Experiment 2 with the Dhrystone benchmark107
5.24 AURIX TC29x diagram. Experiment setup: core0 initializes the system;

core1 runs the test program; core2 adds load to DSPR0 109
5.25 Dhrystone runtime comparison: the first bar shows the measured runtime

(blue); the second bar shows the estimated optimal runtime (green) and
the third bar shows the measured optimal runtime (gray). 112

5.26 EEMBC runtime comparison: The first bar shows the measured runtime
(blue); the second bar shows the estimated optimal runtime (green); and
the third bar shows the measured optimal runtime (gray). 112

5.27 Dhrystone allocation and contention penalties: Estimated locality penal-
ties (blue) and contention penalties (green) of the different groups. 113

5.28 EEMBC allocation and contention penalties: Estimated locality penalties
(blue) and contention penalties (green) of the different groups. 113

120

List of Tables

1.1 The overview of features in ChipCoach . 6

2.1 Comparison of Lock Profiling Tools . 20

3.1 An instruction tracing example . 33
3.2 A flow tracing example . 33
3.3 A compact function tracing example . 34
3.4 A bus transfer tracing example . 34

4.1 Software bug classification according to Wikipedia [117] 43
4.2 Wait Cycle Calculation on AURIX TC29 [49] 44
4.3 TS16 PF Trigger Set Channels [106] . 55
4.4 Trigger Set Interrupt Selection [106] . 56
4.5 TS16 SP Trigger Set Service Provider . 59
4.6 A hardware tracing example . 65
4.7 An instruction trace . 70
4.8 A bus transfer trace . 71
4.9 A CDIF example . 72

5.1 Read latencies (clock cycle) in AURIX TC29x 96
5.2 The experiment results of the EEMBC benchmark 106
5.3 The experiment results of the Dhrystone benchmark 106
5.4 Dhrystone: analyzed penalties . 110
5.5 Dhrystone: measured performance impact 110
5.6 EEMBC: analyzed penalties . 111
5.7 EEMBC: measured performance impact 111

121

Acronyms

ADAS Advanced Driver Assistance Systems.
ADC Analog-to-Digital Converter.
API Application Programming Interface.

BIV Base Interrupt Vector.
BOB Bus Observation Block.

CCU Clock Control Unit.
CDIF Causal DIF.
CEC Correctly Estimated Contention.
CG Control Group.
CO Contention and Others.
COTS Commercial Off-The-Shelf.
CPI Cycle Per Instruction.
CPU Central Processing Unit.

DAP Device Access Port.
DAS Device Access Server.
DCACHE Data Cache.
Dflash Data Flash.
DIF Delayed Instruction Fetch.
DMA Direct Memory Access.
DMC Debug Memory Controller.
DSPR Data Scratch Pad RAM.

ECC Error Correcting Code.
ED Emulation Device.
EEC Emulation Extension Chip.
EG Experimental Group.
ELF Executable and Linkable Format.
EMEM Emulation and debug Memory.

GTM Generic Timer Module.
GUI Graphical User Interface.

HSSL High Speed Serial Link.

123

Acronyms

HW Hardware.

IBS Instruction Based Sampling.
ICU Interrupt Control Unit.
INT Minimum memory access cycle Interval.
IPC Instruction Per Cycle.
ISA Instruction Set Architecture.
ISR Interrupt Service Routine.

JNI Java Native Interface.
JTAG Joint Test Action Group.

LLC Last Level Cache.
LMU Local Memory Unit.
LP Locality Penalty.
LTL Linear Temporal Logic.

MAC Media Access Controller.
MCDS Multi-Core Debug Solution.
MCX Multi Core Cross-connect.
MPU Memory Protection Unit.
MRI Magnetic Resonance Imaging.
MTV MCDS Trace Viewer.

NUMA Non-Uniform Memory Access.

OCDS On-Chip Debug Support.
ODF Other Delay Factor.
OL Overload.
OLDA Online Data Acquisition.
OS Operating System.
OTGB OCDS Trigger Bus.
OTGS OCDS Trigger Switch.

PC Program Counter.
PCB Printed Circuit Board.
PCXI Previous Context Information Register.
PD Production Device.
PFC Program Flash Contention.
Pflash Program Flash.
PFU Pre-fetch Unit.
PMU Program Memory Unit.
POB Processor Observation Block.
PSPR Program Scratch Pad RAM.

124

Acronyms

PSW Program Status Word Register.

QSPI Queued SPI Controller.

RAM Random Access Memory.
RCP Rich Client Platform.
RISC Reduced Instruction Set Computer.
RTOS Real-time Operating System.

SCU System Control Unit.
SD Service Duration.
SoC System on Chip.
SPB System Peripheral Bus.
SPM Scratchpad Memories.
SRART Service Request Arbitration Time.
SRAT Service Request Arriving Time.
SRC Service Request Control.
SRD Service Routine Duration.
SRET Service Routine Ending Time.
SRI Shared Resource Interconnect.
SRN Service Request Node.
SRRL Service Request Response Latency.
SRST Service Routine Starting Time.
SSC Special Set of Cores.
STM System Timer.
SVLCX Save Lower Context.
SW Software.

UP Unpredictable.

WBP Wrong Branch Prediction.
WCIL Worst Case Interrupt Latency.

125

Bibliography

[1] M. Newman. Software errors cost us economy $59.5 billion annually. NIST Assesses
Technical Needs of Industry to Improve Software-Testing, 2002.

[2] H. Agrawal, R. A. DeMillo, and E. H. Spafford. Efficient debugging with slicing
and backtracking. Software Practice & Experience, 23(6):589–616, 1993.

[3] Your smartphone is millions of times more powerful than all of nasa’s com-
bined computing in 1969. http://www.zmescience.com/research/technology/
smartphone-power-compared-to-apollo-432/. [Online; accessed 09-June.2017].

[4] A. Mayer, H. Siebert, and K. D. McDonald-Maier. Boosting debugging support
for complex systems on chip. Computer, 40(4):76–81, 2007.

[5] E. Mitchell. Multi-core and multi-threaded socs present new debugging challenges.
Datasheet MIPS Technologies, pages 1–6, 2003.

[6] H. Park, J.-Z. Xu, K. H. Kim, and J. S. Park. On-chip debug architecture for
multicore processor. ETRI Journal, 34(1):44–54, 2012.

[7] Reference ranges for blood tests. https://en.wikipedia.org/wiki/Reference_
ranges_for_blood_tests. [Online; accessed 17-May.2017].

[8] Heisenbug. https://en.wikipedia.org/wiki/Heisenbug. [Online; accessed 11-
Jan.2017].

[9] A. Nistor, P.-C. Chang, C. Radoi, and S. Lu. Caramel: Detecting and fixing
performance problems that have non-intrusive fixes. In 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering, volume 1, pages 902–
912. IEEE, 2015.

[10] Polyspace. https://en.wikipedia.org/wiki/Polyspace. [Online; accessed 21-
June.2017].

[11] L. Wang and S. D. Stoller. Static analysis of atomicity for programs with non-
blocking synchronization. In Proceedings of the tenth ACM SIGPLAN symposium
on Principles and practice of parallel programming, pages 61–71. ACM, 2005.

[12] C. Flanagan, S. N. Freund, and S. Qadeer. Exploiting purity for atomicity. IEEE
Transactions on Software Engineering, 31(4):275–291, 2005.

127

http://www.zmescience.com/research/technology/smartphone-power-compared-to-apollo-432/
http://www.zmescience.com/research/technology/smartphone-power-compared-to-apollo-432/
https://en.wikipedia.org/wiki/Reference_ranges_for_blood_tests
https://en.wikipedia.org/wiki/Reference_ranges_for_blood_tests
https://en.wikipedia.org/wiki/Heisenbug
https://en.wikipedia.org/wiki/Polyspace

Bibliography

[13] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner: Finding copy-paste and related
bugs in large-scale software code. IEEE Transactions on software Engineering,
32(3):176–192, 2006.

[14] A. Chou, B. Chelf, D. Engler, and M. Heinrich. Using meta-level compilation to
check flash protocol code. ACM SIGOPS Operating Systems Review, 34(5):59–70,
2000.

[15] T. Dey, W. Wang, J. W. Davidson, and M. L. Soffa. Characterizing multi-threaded
applications based on shared-resource contention. In (IEEE ISPASS) IEEE In-
ternational Symposium on Performance Analysis of Systems and Software, pages
76–86. IEEE, 2011.

[16] A. Kumar, B. Mesman, H. Corporaal, B. Theelen, and Y. Ha. A probabilistic ap-
proach to model resource contention for performance estimation of multi-featured
media devices. In 2007 44th ACM/IEEE Design Automation Conference, pages
726–731. IEEE, 2007.

[17] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith. A performance counter
architecture for computing accurate cpi components. ACM SIGOPS Operating
Systems Review, 40(5):175–184, 2006.

[18] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread cache con-
tention on a chip multi-processor architecture. In 11th International Symposium
on High-Performance Computer Architecture, pages 340–351. IEEE, 2005.

[19] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource con-
tention in multicore processors via scheduling. volume 45, pages 129–142, 03 2010.
doi:10.1145/1736020.1736036.

[20] S. Blagodurov, S. Zhuravlev, and A. Fedorova. Contention-aware scheduling on
multicore systems. ACM Transactions on Computer Systems (TOCS), 28(4):8,
2010.

[21] K. K. Pusukuri, R. Gupta, and L. N. Bhuyan. Shuffling: a framework for lock con-
tention aware thread scheduling for multicore multiprocessor systems. In Proceed-
ings of the 23rd international conference on Parallel architectures and compilation,
pages 289–300. ACM, 2014.

[22] Y. Cui, Y. Wang, Y. Chen, and Y. Shi. Lock-contention-aware scheduler: A
scalable and energy-efficient method for addressing scalability collapse on multicore
systems. ACM Transactions on Architecture and Code Optimization (TACO),
9(4):44, 2013.

[23] L. Zheng, X. Liao, B. He, S. Wu, and H. Jin. On performance debugging of
unnecessary lock contentions on multicore processors: A replay-based approach. In
2015 IEEE/ACM International Symposium on Code Generation and Optimization
(CGO), pages 56–67. IEEE, 2015.

128

http://dx.doi.org/10.1145/1736020.1736036

Bibliography

[24] T. Liu and E. D. Berger. Sheriff: precise detection and automatic mitigation of
false sharing. ACM Sigplan Notices, 46(10):3–18, 2011.

[25] T. Liu, C. Tian, Z. Hu, and E. D. Berger. Predator: predictive false sharing
detection. In ACM SIGPLAN Notices, volume 49, pages 3–14. ACM, 2014.

[26] S. Eyerman, K. Du Bois, and L. Eeckhout. Speedup stacks: Identifying scaling bot-
tlenecks in multi-threaded applications. In 2012 IEEE International Symposium
on Performance Analysis of Systems & Software, pages 145–155. IEEE, 2012.

[27] K. Du Bois, S. Eyerman, and L. Eeckhout. Per-thread cycle accounting in multicore
processors. ACM Transactions on Architecture and Code Optimization (TACO),
9(4):29, 2013.

[28] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff. Statistical debugging: A
hypothesis testing-based approach. IEEE Transactions on software engineering,
32(10):831–848, 2006.

[29] H. Cleve and A. Zeller. Locating causes of program failures. In Proceedings of
the 27th international conference on Software engineering, pages 342–351. ACM,
2005.

[30] H. He and N. Gupta. Automated debugging using path-based weakest precondi-
tions. In International Conference on Fundamental Approaches to Software Engi-
neering, pages 267–280. Springer, 2004.

[31] C. McCurdy and J. Vetter. Memphis: Finding and fixing numa-related perfor-
mance problems on multi-core platforms. In Performance Analysis of Systems &
Software (ISPASS), 2010 IEEE International Symposium on, pages 87–96. IEEE,
2010.

[32] A. Schmidt. Profiling bare-metal cores in amp systems. In System, Software, SoC
and Silicon Debug Conference (S4D), 2012, pages 1–4. IEEE, 2012.

[33] G. Chen and P. Stenstrom. Critical lock analysis: Diagnosing critical section bot-
tlenecks in multithreaded applications. In Proceedings of the International Confer-
ence on High Performance Computing, Networking, Storage and Analysis, page 71.
IEEE Computer Society Press, 2012.

[34] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting atomicity violations via
access interleaving invariants. In ACM SIGOPS Operating Systems Review, vol-
ume 40, pages 37–48. ACM, 2006.

[35] Instrumentation (computer programming). https://en.wikipedia.org/wiki/

Instrumentation_(computer_programming). [Online; accessed 28-Nov.-2016].

[36] Q. Chen, L. Wang, Z. Yang, and S. D. Stoller. Have: Detecting atomicity viola-
tions via integrated dynamic and static analysis. In International Conference on
Fundamental Approaches to Software Engineering, pages 425–439. Springer, 2009.

129

https://en.wikipedia.org/wiki/Instrumentation_(computer_programming)
https://en.wikipedia.org/wiki/Instrumentation_(computer_programming)

Bibliography

[37] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In ACM Sigplan Notices, volume 40, pages 190–200.
ACM, 2005.

[38] P. Zhou, R. Teodorescu, and Y. Zhou. Hard: Hardware-assisted lockset-based
race detection. In 2007 IEEE 13th International Symposium on High Performance
Computer Architecture, pages 121–132. IEEE, 2007.

[39] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers, V. Quema,
and M. Roth. Traffic management: a holistic approach to memory placement on
numa systems. In ACM SIGPLAN Notices, volume 48, pages 381–394. ACM, 2013.

[40] Y. Huang, Z. Cui, L. Chen, W. Zhang, Y. Bao, and M. Chen. Halock: hardware-
assisted lock contention detection in multithreaded applications. In Proceedings of
the 21st international conference on Parallel architectures and compilation tech-
niques, pages 253–262. ACM, 2012.

[41] S. Lagraa, A. Termier, and F. Pétrot. Data mining mpsoc simulation traces to
identify concurrent memory access patterns. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 755–760. EDA Consortium, 2013.

[42] C. Killian, K. Nagaraj, S. Pervez, R. Braud, J. W. Anderson, and R. Jhala. Find-
ing latent performance bugs in systems implementations. In Proceedings of the
eighteenth ACM SIGSOFT international symposium on Foundations of software
engineering, pages 17–26. ACM, 2010.

[43] M. Martonosi, A. Gupta, and T. Anderson. Memspy: Analyzing memory system
bottlenecks in programs. In ACM SIGMETRICS Performance Evaluation Review,
volume 20, pages 1–12. ACM, 1992.

[44] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: A
dynamic data race detector for multithreaded programs. ACM Transactions on
Computer Systems (TOCS), 15(4):391–411, 1997.

[45] S. Lu, J. Tucek, F. Qin, and Y. Zhou. Avio: detecting atomicity violations via
access interleaving invariants. In ACM SIGOPS Operating Systems Review, vol-
ume 40, pages 37–48. ACM, 2006.

[46] D. Jeffrey, M. Feng, N. Gupta, and R. Gupta. Bugfix: A learning-based tool to
assist developers in fixing bugs. In Program Comprehension, 2009. ICPC’09. IEEE
17th International Conference on, pages 70–79. IEEE, 2009.

[47] L. Li and A. Mayer. Trace-based analysis methodology of program flash contention
in embedded multicore systems. In Proceedings of the 2016 Conference on Design,
Automation & Test in Europe, pages 199–204. EDA Consortium, 2016.

130

Bibliography

[48] L. Li, M. Fussenegger, and G. Cichon. A data locality and memory contention
analysis method in embedded numa multi-core systems. In IEEE 10th Interna-
tional Symposium on Embedded MulticoreMany-core Systems-on-Chip (MCSoC-
16), pages 85–92. IEEE, 2016.

[49] L. Li, P. Wagner, R. Ramaswamy, A. Mayer, T. Wild, and A. Herkersdorf. A rule-
based methodology for hardware configuration validation in embedded systems.
In Proceedings of the 19th International Workshop on Software and Compilers for
Embedded Systems, pages 180–189. ACM, 2016.

[50] L. Li, P. Wagner, A. Mayer, T. Wild, and A. Herkersdorf. A non-intrusive, op-
erating system independent spinlock profiler for embedded multicore systems. In
Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017,
pages 322–325. IEEE, 2017.

[51] J. Zhang, Y. Dong, and J. Duan. Anole: a profiling-driven adaptive lock waiter
detection scheme for efficient mp-guest scheduling. In 2012 IEEE International
Conference on Cluster Computing, pages 504–513. IEEE, 2012.

[52] J. Demme and S. Sethumadhavan. Rapid identification of architectural bottlenecks
via precise event counting. In ACM SIGARCH Computer Architecture News, vol-
ume 39, pages 353–364. ACM, 2011.

[53] C. Flanagan, C. Flanagan, and S. N. Freund. Atomizer: a dynamic atomicity
checker for multithreaded programs. In ACM SIGPLAN Notices, volume 39, pages
256–267. ACM, 2004.

[54] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foun-
dations of Computer Science (sfcs 1977), pages 46–57. IEEE, 1977.

[55] P. Thiagarajan. A trace based extension of linear time temporal logic. In Logic in
Computer Science, 1994. LICS’94. Proceedings., Symposium on, pages 438–447.
IEEE, 1994.

[56] E. Gunter and D. Peled. Temporal debugging for concurrent systems. In Tools and
Algorithms for the Construction and Analysis of Systems, pages 431–444. Springer,
2002.

[57] C. Watterson and D. Heffernan. Runtime verification and monitoring of embedded
systems. Software, IET, 1(5):172–179, 2007.

[58] J. C. Lee, A. S. Gardner, and R. Lysecky. Hardware Observability Framework for
Minimally Intrusive Online Monitoring of Embedded Systems. In Engineering of
Computer Based Systems (ECBS), 2011 18th IEEE International Conference and
Workshops on, pages 52–60. IEEE, 2011.

[59] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verifi-
cation. In International Workshop on Verification, Model Checking, and Abstract
Interpretation, pages 44–57. Springer, 2004.

131

Bibliography

[60] H. Barringer, D. Rydeheard, and K. Havelund. Runtime Verification: 7th Interna-
tional Workshop, RV 2007, Vancover, Canada, March 13, 2007, Revised Selected
Papers. pages 111–125. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

[61] R. Pellizzoni, P. Meredith, M. Caccamo, and G. Rosu. Hardware runtime monitor-
ing for dependable cots-based real-time embedded systems. In Real-Time Systems
Symposium, 2008, pages 481–491. IEEE, 2008.

[62] M.-W. Youssef, S. Yoo, A. Sasongko, Y. Paviot, and A. A. Jerraya. Debugging
HW/SW interface for MPSoC: video encoder system design case study. In Pro-
ceedings of the 41st annual Design Automation Conference, pages 908–913. ACM,
2004.

[63] K. Peterson and Y. Savaria. Assertion-based on-line verification and debug en-
vironment for complex hardware systems. In Circuits and Systems, 2004. IS-
CAS’04. Proceedings of the 2004 International Symposium on, volume 2, pages
II–685. IEEE, 2004.

[64] T. E. Anderson. The performance of spin lock alternatives for shared-money mul-
tiprocessors. IEEE Transactions on Parallel and Distributed Systems, 1(1):6–16,
1990.

[65] L. Rudolph and Z. Segall. Dynamic decentralized cache schemes for MIMD parallel
processors, volume 12. ACM, 1984.

[66] J. M. Mellor-Crummey and M. L. Scott. Algorithms for scalable synchroniza-
tion on shared-memory multiprocessors. ACM Transactions on Computer Systems
(TOCS), 9(1):21–65, 1991.

[67] P. H. Ha, M. Papatriantafilou, and P. Tsigas. Reactive spin-locks: A self-tuning
approach. In 8th International Symposium on Parallel Architectures, Algorithms
and Networks (ISPAN’05), pages 6–pp. IEEE, 2005.

[68] H. Guiroux, R. Lachaize, and V. Quéma. Multicore locks: The case is not closed
yet. In USENIX Annual Technical Conference, pages 649–662, 2016.

[69] H. Shojania. Hardware-based performance monitoring with vtune performance
analyzer under linux.

[70] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-Crummey,
and N. R. Tallent. Hpctoolkit: Tools for performance analysis of optimized parallel
programs. Concurrency and Computation: Practice and Experience, 22(6):685–
701, 2010.

[71] J. Mellor-Crummey, L. Adhianto, M. Fagan, M. Krentel, and N. Tallent. Hpc-
toolkit user’s manual.

132

Bibliography

[72] R. Bryant and J. Hawkes. Lockmeter: Highly-informative instrumentation for spin
locks in the linux kernel. In Proc. Fourth Annual Linux Showcase and Conference,
Atlanta, 2000.

[73] Z. Benavides, R. Gupta, and X. Zhang. Parallel execution profiles. In Proceed-
ings of the 25th ACM International Symposium on High-Performance Parallel and
Distributed Computing, pages 215–218. ACM, 2016.

[74] F. David, G. Thomas, J. Lawall, and G. Muller. Continuously measuring crit-
ical section pressure with the free-lunch profiler. In ACM SIGPLAN Notices,
volume 49, pages 291–307. ACM, 2014.

[75] Profiling java.util.concurrent locks. https://www.infoq.com/articles/

jucprofiler, 2010. [Online; accessed 31-July-2016].

[76] J.-P. Lozi, F. David, G. Thomas, J. Lawall, and G. Muller. Fast and portable lock-
ing for multicore architectures. ACM Transactions on Computer Systems (TOCS),
33(4):13, 2016.

[77] X. Pan, D. Klaftenegger, and B. Jonsson. Forecasting lock contention before adopt-
ing another lock algorithm, 2015.

[78] X. Feng, Z. Shao, Y. Dong, and Y. Guo. Certifying low-level programs with hard-
ware interrupts and preemptive threads. In ACM SIGPLAN Notices, volume 43,
pages 170–182. ACM, 2008.

[79] D. Brylow, N. Damgaard, and J. Palsberg. Static checking of interrupt-driven soft-
ware. In Proceedings of the 23rd international conference on software engineering,
pages 47–56. IEEE Computer Society, 2001.

[80] M. Carlsson. Worst case execution time analysis, case study on interrupt latency
for the ose realtime operating system. Master’s Thesis in Electrical Engineering,
Royal Institute of Technology, Stockholm, Sweden, 3:18, 2002.

[81] B. Moore, T. Slabach, and L. Schaelicke. Profiling interrupt handler performance
through kernel instrumentation. In Computer Design, 2003. Proceedings. 21st
International Conference on, pages 156–163. IEEE, 2003.

[82] T. Yu, W. Srisa-an, M. B. Cohen, and G. Rothermel. Simlatte: A framework
to support testing for worst-case interrupt latencies in embedded software. In
Software Testing, Verification and Validation (ICST), 2014 IEEE Seventh Inter-
national Conference on, pages 313–322. IEEE, 2014.

[83] K. Lu, D. Müller-Gritschneder, and U. Schlichtmann. Analytical timing estima-
tion for temporally decoupled tlms considering resource conflicts. In 2013 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pages 1161–1166.
IEEE, 2013.

133

https://www.infoq.com/articles/jucprofiler
https://www.infoq.com/articles/jucprofiler

Bibliography

[84] K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu, and N. Stoimenov. A formal
approach to the wcrt analysis of multicore systems with memory contention under
phase-structured task sets. Real-Time Systems, 50(5-6):736–773, 2014.

[85] R. Hood, H. Jin, P. Mehrotra, J. Chang, J. Djomehri, S. Gavali, D. Jespersen,
K. Taylor, and R. Biswas. Performance impact of resource contention in multi-
core systems. In 2010 IEEE International Symposium on Parallel & Distributed
Processing (IPDPS), pages 1–12. IEEE, 2010.

[86] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and L. Thiele. Worst
case delay analysis for memory interference in multicore systems. In 2010 Design,
Automation & Test in Europe Conference & Exhibition (DATE 2010), pages 741–
746. IEEE, 2010.

[87] L. Liu, Z. Li, and A. H. Sameh. Analyzing memory access intensity in parallel
programs on multicore. In Proceedings of the 22nd annual international conference
on Supercomputing, pages 359–367. ACM, 2008.

[88] F. Pinel, J. E. Pecero, P. Bouvry, and S. U. Khan. Memory-aware green schedul-
ing on multi-core processors. In 2010 39th International Conference on Parallel
Processing Workshops, pages 485–488. IEEE, 2010.

[89] C. Xu, X. Chen, R. P. Dick, and Z. M. Mao. Cache contention and application
performance prediction for multi-core systems. In Performance Analysis of Sys-
tems & Software (ISPASS), 2010 IEEE International Symposium on, pages 76–86.
IEEE, 2010.

[90] S. Chattopadhyay, A. Roychoudhury, and T. Mitra. Modeling shared cache and
bus in multi-cores for timing analysis. In Proceedings of the 13th international
workshop on software & compilers for embedded systems, page 6. ACM, 2010.

[91] A. Fedorova, M. Seltzer, and M. D. Smith. Improving performance isolation on
chip multiprocessors via an operating system scheduler. In Proceedings of the 16th
International Conference on Parallel Architecture and Compilation Techniques,
pages 25–38. IEEE Computer Society, 2007.

[92] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni. Communist, utilitarian, and
capitalist cache policies on cmps: caches as a shared resource. In Proceedings of the
15th international conference on Parallel architectures and compilation techniques,
pages 13–22. ACM, 2006.

[93] Z. Majo and T. R. Gross. Memory management in numa multicore systems:
trapped between cache contention and interconnect overhead. In Acm Sigplan
Notices, volume 46, pages 11–20. ACM, 2011.

[94] R. P. LaRowe Jr and C. S. Ellis. Experimental comparison of memory manage-
ment policies for numa multiprocessors. ACM Transactions on Computer Systems,
9(4):319–363, 1991.

134

Bibliography

[95] D. Cousins, J. Loomis, F. Roeber, P. Schoeppner, and A.-E. Tobin. The embedded
genetic allocator-a system to automatically optimize the use of memory resources
in high performance, scalable computing systems. In SMC’98 Conference Pro-
ceedings. 1998 IEEE International Conference on Systems, Man, and Cybernetics
(Cat. No. 98CH36218), volume 3, pages 2166–2171. IEEE, 1998.

[96] A. Marongiu and L. Benini. An openmp compiler for efficient use of distributed
scratchpad memory in mpsocs. IEEE Transactions on Computers, 61(2):222–236,
2010.

[97] M. L. Chu and S. A. Mahlke. Compiler-directed data partitioning for multicluster
processors. In Proceedings of the International Symposium on Code Generation
and Optimization, pages 208–220. IEEE Computer Society, 2006.

[98] M. Diener, E. H. Cruz, P. O. Navaux, A. Busse, and H.-U. Heiß. kmaf: automatic
kernel-level management of thread and data affinity. In Proceedings of the 23rd
international conference on Parallel architectures and compilation, pages 277–288.
ACM, 2014.

[99] E. H. M. da Cruz, M. A. Z. Alves, A. Carissimi, P. O. A. Navaux, C. P. Ribeiro, and
J.-F. Méhaut. Using memory access traces to map threads and data on hierarchical
multi-core platforms. In 2011 IEEE International Symposium on Parallel and
Distributed Processing Workshops and Phd Forum, pages 551–558. IEEE, 2011.

[100] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova. A case for numa-aware
contention management on multicore systems. In Proceedings of the 2011 USENIX
Conference on USENIX Annual Technical Conference, pages 1–1, 2011.

[101] Y. Xie and G. Loh. Dynamic classification of program memory behaviors in cmps.
In the 2nd Workshop on Chip Multiprocessor Memory Systems and Interconnects,
2008.

[102] J. Jalle, M. Fernandez, J. Abella, J. Andersson, M. Patte, L. Fossati, M. Zulianello,
and F. J. Cazorla. Bounding resource contention interference in the next-generation
microprocessor (ngmp). 2016.

[103] Z. Majo and T. R. Gross. Memory system performance in a numa multicore
multiprocessor. In Proceedings of the 4th Annual International Conference on
Systems and Storage. ACM, 2011.

[104] Infineon tricore. https://en.wikipedia.org/wiki/Infineon_TriCore. [Online;
accessed 12-April.2017].

[105] Infineon. TriCore TC1.6P & TC1.6E Core Architecture 32-bit Unified Processor
Core.

[106] Infineon Technologies. AURIX TC29x B-step User’s Manual.

135

https://en.wikipedia.org/wiki/Infineon_TriCore

Bibliography

[107] G. Macher, A. Höller, E. Armengaud, and C. Kreiner. Automotive embedded
software: Migration challenges to multi-core computing platforms. In 2015 IEEE
13th International Conference on Industrial Informatics (INDIN), pages 1386–
1393. IEEE, 2015.

[108] Infineon Technologies. AURIX TC29x A-step User’s Manual.

[109] Infineon Technologies. Application Note: AURIX, TriCore, XC2000,
XE166,XC800 Families DAP Connector.

[110] Infineon Technologies. AURIX TC29/7/6/3x ED Target Secification.

[111] A. Mayer and R. Deml. Compact function trace (cft). In Proceedings of the 2012
System, Software, SoC and Silicon Debug Conference, pages 1–2, Sep. 2012.

[112] A. Mayer. A seamless tool access architecture from esl to end product. In System,
Software, SoC and Silicon Debug Conference (S4D), 2009.

[113] B. Hailpern and P. Santhanam. Software debugging, testing, and verification. IBM
Systems Journal, 41(1):4–12, 2002.

[114] S. Hangal and M. S. Lam. Tracking down software bugs using automatic anomaly
detection. In Proceedings of the 24th International Conference on Software Engi-
neering. ICSE 2002, pages 291–301. IEEE, 2002.

[115] A. Mayer. Embedded health the step beyond debugging. In Multicore Application
Debugging (MAD) Workshop 2013, 2013.

[116] P. Wagner, L. Li, T. Wild, A. Mayer, and A. Herkersdorf. Knowledge-based on-
chip diagnosis for multi-core systems-on-chip. In edaWorkshop 15, pages 39–45,
2015.

[117] Software bug. https://en.wikipedia.org/wiki/Software_bug. [Online; ac-
cessed 07-Feb.2017].

[118] G. De Giacomo and M. Y. Vardi. Linear temporal logic and linear dynamic logic
on finite traces. In Proceedings of the Twenty-Third international joint conference
on Artificial Intelligence, pages 854–860. AAAI Press, 2013.

[119] R. Banakar, S. Steinke, B.-S. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad
memory: design alternative for cache on-chip memory in embedded systems. In
Proceedings of the tenth international symposium on Hardware/software codesign,
pages 73–78. ACM, 2002.

[120] S. Saidi and Y. Falcone. Dynamic detection and mitigation of dma races in mpsocs.
In Digital System Design (DSD), 2015 Euromicro Conference on, pages 267–270.
IEEE, 2015.

136

https://en.wikipedia.org/wiki/Software_bug

Bibliography

[121] A. F. Donaldson, D. Kroening, and P. Rümmer. Scratch: a tool for automatic
analysis of dma races. In ACM SIGPLAN Notices, volume 46, pages 311–312.
ACM, 2011.

[122] A. F. Donaldson, D. Kroening, and P. Rümmer. Automatic analysis of dma
races using model checking and k-induction. Formal Methods in System Design,
39(1):83–113, 2011.

[123] L. Ionkov, A. Nyrhinen, and A. Mirtchovski. Cellfs: Taking the “dma” out of
cell programming. In Parallel & Distributed Processing, 2009. IPDPS 2009. IEEE
International Symposium on, pages 1–8. IEEE, 2009.

[124] Interrupt. https://en.wikipedia.org/wiki/Interrupt. [Online; accessed 05-
April.2017].

[125] A. Wieder and B. B. Brandenburg. On spin locks in autosar: Blocking analysis
of fifo, unordered, and priority-ordered spin locks. In 2013 IEEE 34th Real-Time
Systems Symposium, pages 45–56. IEEE, 2013.

[126] Instruction pipelining. https://en.wikipedia.org/wiki/Instruction_

pipelining. [Online; accessed 03-April.2017].

[127] Dwarf. https://en.wikipedia.org/wiki/DWARF. [Online; accessed 01-
June.2017].

[128] Wikipedia. Dhrystone. https://en.wikipedia.org/wiki/Dhrystone. [Online;
accessed 20-August-2015].

137

https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/Instruction_pipelining
https://en.wikipedia.org/wiki/DWARF
https://en.wikipedia.org/wiki/Dhrystone

	Abstract
	Acknowledgment
	Contents
	1 Introduction
	1.1 Background
	1.2 The proposed solution
	1.2.1 Methodology – embedded health
	1.2.2 Implementation – ChipCoach
	1.2.3 Contributions

	2 Related Work
	2.1 System diagnosis classification
	2.1.1 Analysis types
	2.1.1.1 Static analysis
	2.1.1.2 Runtime analysis
	2.1.1.3 Post-processing analysis

	2.1.2 Data collection methods
	2.1.2.1 Software-based
	2.1.2.2 Hardware-based
	2.1.2.3 Hybrid-based
	2.1.2.4 Simulation-based

	2.2 The automated ``blood test'' in system diagnosis
	2.3 Target issues of the proposed system diagnosis methodology
	2.3.1 Hardware configuration issues
	2.3.1.1 Linear Temporal Logic
	2.3.1.2 Runtime Monitoring

	2.3.2 Lock issues
	2.3.3 Interrupt performance issues
	2.3.4 Shared resource contention
	2.3.4.1 Program flash contention
	2.3.4.2 Data memory contention and data locality

	3 Preliminaries
	3.1 TriCore
	3.2 Infineon AURIX
	3.2.1 Atomic instructions
	3.2.2 Interrupt system
	3.2.3 OCDS

	3.3 Infineon's mcds
	3.4 mcds tracing
	3.5 AURIX tools
	3.5.1 DAS
	3.5.2 MTV

	4 Embedded Health – How to diagnose a complex system?
	4.1 Learn from medicine – embedded health
	4.1.1 An automated system diagnosis and debugging methodology
	4.1.2 Issue classification

	4.2 Diagnosis methodologies of functional issues
	4.2.1 Hardware configuration validation
	4.2.1.1 Introduction
	4.2.1.2 Methodology

	4.3 Diagnosis methodologies of non-functional issues
	4.3.1 DMA channel activity analysis
	4.3.1.1 Introduction
	4.3.1.2 Solution

	4.3.2 Interrupt profiling analysis
	4.3.2.1 Introduction
	4.3.2.2 Solution

	4.3.3 Lock profiling
	4.3.3.1 Introduction
	4.3.3.2 Lock Profiling Approach

	4.3.4 Program flash contention
	4.3.4.1 Introduction
	4.3.4.2 Methodology

	4.3.5 Data memory analysis
	4.3.5.1 Introduction
	4.3.5.2 Methodology

	5 Implementation and experimental Evaluations
	5.1 The implementation of the proposed methodology — ChipCoach
	5.1.1 ChipCoach
	5.1.1.1 Global functions
	5.1.1.2 automated system diagnosis
	5.1.1.3 Hardware validation analysis
	5.1.1.4 DMA activity analysis
	5.1.1.5 Interrupt profiling
	5.1.1.6 Lock profiling
	5.1.1.7 Program flash contention
	5.1.1.8 Data memory contention
	5.1.1.9 Clock configuration view
	5.1.1.10 Other features

	5.2 Experimental evaluation
	5.2.1 Lock profiling analysis
	5.2.1.1 Ethernet demonstration application
	5.2.1.2 Lock profiling results

	5.2.2 Program flash contention analysis
	5.2.2.1 Experiment setup
	5.2.2.2 Results
	5.2.2.3 Assessments

	5.2.3 Data memory analysis
	5.2.3.1 Setup
	5.2.3.2 Results
	5.2.3.3 Assessments

	6 Conclusions
	6.1 Embedded Health – How to diagnose a complex system?
	6.2 Implementation – ChipCoach
	6.3 Summary and future work

	List of Figures
	List of Tables
	Acronyms
	Bibliography

