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Abstract

Embedded devices have become ubiquitous. Yet, developing software for such devices
is challenging, with requirements ranging from high reliability to real-time constraints
and a focus on safety and security. To keep up, or even increase, developer productivity,
insight into the software as it executes on the chip is essential.

Today, the prevalent method to gather non-intrusive runtime observations is tracing.
Systems like ARM CoreSight or Nexus 5001 observe CPUs, memories, and interconnects,
compress this data, and send it off-chip, where specialized tools analyze the data to
help the developer to understand the software execution. With tracing, the insight into
the chip is limited by the off-chip interface. Since its bandwidth is orders of magnitude
below the amount of observable data, developers face an observability gap: they need
to limit their observations to short time frames, or to parts of the chip.

This work is based on the realization that insight for developers is not proportional
to the amount of trace data they can access, but to the number of questions about the
software execution that are answered. The goal of this work is to enable developers to
ask questions, and to help them obtain the necessary information for the answer.

Towards this goal we present DiaSys, an approach to give developers comprehensive,
non-intrusive insight into the software execution on embedded systems. We reduce the
observability gap by distilling information out of the observation data directly on the
chip in a hierarchical, fully configurable/programmable multi-step analysis process.
DiaSys observes the software execution to generate “observation events,” which are
then processed by a dataflow application. The execution of the analysis application can
be shared between the chip and the host PC to flexibly trade off the cost of on-chip
logic with the bandwidth of the off-chip interface.

With DiaSys, developers describe the collection and analysis of observation data as
script written in a novel domain-specific language, the Dia Language. This high-level
language is based on C and SQL to reduce the barrier of entry. It is target-independent
and can be compiled by the Dia Compiler for different configurations of the Dia Engine,
our execution environment with on-chip and off-chip components.

We have fully implemented DiaSys, with all hardware components targeting FPGAs.
The observation and analysis components increase the size of an eight-core, micro-
controller-class memory-less observed system by 23 percent, or less than the DRAM
infrastructure in absolute numbers. In three case studies we evaluate DiaSys in a
functional debugging/testing scenario, and in two profiling scenarios. We show that
DiaSys can reduce the off-chip bandwidth by several orders of magnitude with the
stated hardware cost. We further show that the given dimensioning is sufficient to
create a sampling-based function profile for arbitrarily fast processor systems.
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1 Introduction

Good morning! It’s a grayish winter day in 1998. Your alarm clock makes one
last tick before its ring wakes you up and triggers the start of your well-practiced
morning routine. You silence the alarm clock, turn on the radio at 104.6 MHz, and
walk over to the bathroom to brush your teeth and take a shower. At the breakfast
table you quickly flip through a couple of pages in the newspaper before it is time to
get to work. You get behind the steering wheel and off you go.

It has been a long day at work. A very long one in fact. You start your way back
home twenty years later, in the year 2018. You unplug your electric car from the
charger in front of the office, get in and start the engine. “Drive me home!” you
instruct the car, and the journey starts. A game on your smartphone keeps you
entertained while the city flies past the windows. As the car heads up the driveway
your house already awaits you. The door opens, lights turn on and the music start
playing. It’s Angels by Robbie Williams—just where you left off this morning.
Welcome home!

Embedded systems surround us. They are everywhere: in our pocket, in our house,
in the city infrastructure, in the cars and the trains, possibly even inside our body. At
every tick of the seconds hand, millions of lines of software code command powerful
processors to execute trillions of instructions. Embedded systems make our lives more
entertaining, comfortable, and safe, often without us noticing. That is, as long as they
function correctly. If not, we might be annoyed. Or dead.

This thesis is about improving software on embedded systems. It is about making
sure these systems run correct, safe, and efficient code. To reach this goal this thesis
presents a way to find and analyze software flaws, or bugs, in systems which might be
distributed over the world, systems which must function correctly under all circum-
stances to preserve lives, tiny systems which process more data in a second than a
whole data center could process only some years ago.

Embedded systems come with various name tags, such as IoT (Internet of Things)
devices, “Industrie 4.0” controller, or smart devices. They have in common that
hardware and software are tightly integrated to fulfill a specific task. To do so embedded
systems often interact with the outside world through sensors and actuators, even
though they are hidden behind the functionality they provide.

The market for embedded systems is growing steadily, research groups predict an
annual worldwide growth between 4 and 9 percent [2, 3, 4]. Parts of the market are
expected to grow at much faster pace. For example, the number of small connected
devices (”IoT devices”) is expected to increase by a factor of 4.9 in just ten years to

1
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Figure 1.1: Internet of Things (IoT) connected devices installed worldwide in billions. Data
from 2015 and 2016, predictions from 2017 until 2025 by IHS Markit [1].

75 billion devices, as predicted by the research group IHS Markit (Figure 1.1). But not
only the number of devices grows, also growing is their complexity. Already today,
the software within something as “simple” as a washing machine can easily exceed
100 000 instructions, as Figure 1.2 illustrates.

To improve the software running inside this growing number of embedded systems,
to optimize performance, to minimize power usage, or to evaluate the effectiveness
of algorithms in real-world scenarios, developers need deep insight into the software
execution. The most powerful way to gain this insight is through on-chip runtime
observation, i.e. the software is observed as it executes on the chip.

An ideal observation system provides complete and non-intrusive insight. Complete
insight covers all parts of the chip which participate in the software execution. This
includes first and foremost the CPU, but, depending on the use case, also the memory,
the input/output interfaces, the peripherals, and the communication infrastructure.
Non-intrusive observation does not change the function or the timing of the observed
software, and hence allows developers to locate even defects which depend on software
timing, such as race conditions.

Today, tracing systems are the primary method to gain non-intrusive runtime insight
into embedded systems. A tracing system consists of logic added to the chip, and
software running on a PC. The on-chip logic captures observation data in the form
of trace streams, which are compressed and sent off-chip. Different trace streams can
be produced, depending on the part of the chip being observed. The most common
ones are instruction (or program) traces (the control flow of a CPU), data traces, and
interconnect (or bus) traces.
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Figure 1.2: Code size in selected embedded systems. Data published in [4] in 2009.
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Figure 1.3: Predicted evolution of the logic size, the number of signal I/O pins, and the test
I/O speed, normalized to a 2011 baseline, according to the ITRS Roadmap 2013

Edition [5]. Multiplying the number of I/O pins with their speed gives an indication
of the available off-chip bandwidth of a chip. The amount of observation data is
proportional to the on-chip logic, i.e. the number of transistors in a chip.
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Already today, the insight gained through tracing is insufficient in many cases, and it
is decreasing. The ITRS roadmap predicts a small linear growth in the available off-chip
bandwidth, which does not keep up with the exponential growth of observation data
produced on the chip, as Figure 1.3 shows. This gap between the on-chip data a
developer would potentially like to observe, and the ability to transfer it off-chip is
called “observability gap.”

The observability gap does not only frustrate developers, it also has severe economical
impacts due to its direct impact on the development productivity. If developers cannot
observe what the software does, they must rely on the observation of effects and
guessing—a time-consuming and error-prone approach. A study [6, p. 27] found that
in the development of embedded systems reducing the time to market and increasing
the quality are seen as the most important challenges. In both challenges debugging
and testing play a key role. Even though, as Jones et al. note, “there is a significant
shortage of reliable quantitative data on testing efficiency, [and] testing costs” [7, Ch.
5], the available studies can provide insight into the dimension of the problem.

In a study [8, p. 23] for the National Institute of Standards and Technology (NIST)
in the United States in 2002 the authors estimate that inadequate infrastructure for
software testing costs the U.S. economy US$ 59.5 billion per year, or 0.6 percent of its
gross domestic product (GDP). 40 percent of this cost is borne by software developers
(the rest is borne by the users of the software working around the software flaws). This
number could be reduced by a third, or US$ 22.5 billion every year, with improved
testing and debugging infrastructure. A study done by Hailpern and Santhanam [9]
in the same year found that “in a typical commercial development organization, the
cost of [...] debugging, testing, and verification activities can easily range from 50 to
75 percent of the total development cost.” This number has not significantly changed
over the decades [10]. For example, Beizer [11, p. 1] summarizes various studies in 1990

by “testing consumes at least half the labor expended to produce a working program.”
To overcome the observability gap, prior work has primarily focused increasing the

compression rate of trace streams. However, the efforts in this regard have shown
diminishing results in recent years. We take a different approach: We argue that insight
is proportional to the questions answered about the software execution, not to the
amount of trace data sent off-chip. For most developers, “having full insight” means the
ability to obtain an answer to any question he/she has about the software execution—it
does not mean access to all possible observation data. In other words, developers are
interested in information, not in data.

Based on this idea we aim to create a system that answers similar questions about
the software execution as tracing does today, but without being limited by the off-chip
bandwidth.
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Figure 1.4: Architecture of today’s tracing systems (left) compared to DiaSys (right).

1.2 Contributions

In this work we show that the insight into embedded software can be increased through
on-chip analysis of observation data. As realization of this idea we present DiaSys, a
method and a tool which non-intrusively collects and analyzes observation data in-situ,
i.e. directly on the chip.

We evolve this idea further with three core contributions.

• We contribute a hierarchical multi-step data analysis system with a flexible off-
chip boundary as a way to trade off on-chip logic with off-chip bandwidth. We
propose to collect and iteratively reduce observation data close to the source,
which is enabled by modeling the data analysis process as dataflow application
(c.f. Figure 1.4).

• Our system architecture is distributed and composable, built from programmable
or configurable components. The data collection components incorporate architec-
tural knowledge and are highly selective to be able to capture also high-volume
observations like data/memory traces.

• We introduce a high-level programming language to describe the data collection
and analysis as a “script,” making the description reusable, shareable, and com-
posable. Composability creates symbiotic effects when developers from different
areas of the hardware and software design contribute knowledge about expected
and unexpected behavior within their area of expertise.

To realize DiaSys we have designed and implemented three components.

• The Dia Language, a domain-specific programming language to express the col-
lection and analysis of runtime observation data. A script written in the Dia
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Language describes what data to collect when and where, and how to process,
combine, or filter it to create meaningful information. Dia scripts are target
independent, i.e. the description is portable across different chips.

• The Dia Compiler, a tool which transforms a Dia script into a representation
suitable for execution on the Dia Engine.

• The Dia Engine, an execution platform consisting both of on-chip components, and
software components running a host PC. The hardware of the Dia Engine consists
of a set of standardized components which can be distributed across the observed
chip. Next to data collection components we also include a freely programmable
data analysis processor. The software is equally flexible and scalable.

In this work we show that DiaSys can

• be implemented with reasonable hardware and software cost which scales linearly
with the observed system,

• be used instead of a tracing system in its two main application areas, the genera-
tion of runtime statistics (profiling), and in debugging/testing scenarios,

• reduce the off-chip bandwidth in common application scenarios as compared to
today’s tracing systems.

A note on terminology: We use the term “software diagnosis” for the combined
task of data collection and analysis, and the name DiaSys originated as short form of
”diagnosis system.”

1.3 Thesis Outline

This thesis is structured as follows. Section 2.1 presents background information on
how software is developed, with a particular focus on the application areas of software
diagnosis: debugging and testing. The current state of the art in the collection and
analysis of observation data (not only in embedded systems) are presented in Section 2.2
and Section 2.3, respectively.

Based on a solid understanding of the state of the art we present our DiaSys method-
ology in Chapter 3. The three main components, the Dia Language, the Dia Compiler,
and the Dia Engine, are then discussed in Chapter 4. These chapters also include details
on the design decisions, the implementation, and its evaluation.

In Chapter 5 representative use cases show DiaSys at work and evaluate various
aspects of its design.

Chapter 6 concludes the thesis and gives an outlook on future work.
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1.4 Earlier Publications

1.4 Earlier Publications

Subsets of the work presented in this thesis have been previously published in the
following peer-reviewed conference and journal papers by the author of this thesis.

• The motivation for DiaSys and its initial idea was presented first in [12] and later
in [13].

• The the theoretical foundations presented in Chapter 3, as well as initial versions
of Case Study I (Section 5.2) and III (Section 5.4) have been published in [14] and
[15].

DiaSys was partially developed within the collaborative project “SoC Doctor,” funded
by the Bayerisches Staatsministerium für Wirtschaft und Medien, Energie und Tech-
nologie (StMWi). While DiaSys focuses on the description and execution of diagnosis
applications on embedded systems, the author of this thesis also closely collaborated
with Lin Li at Infineon to explore algorithms and defect patterns which could benefit
from the features DiaSys offers. This work was published in [16] and [17].
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2 Background and State of the Art

This thesis describes an approach to improve software diagnosis on embedded systems.
Before the subsequent chapters go into the details of our method this chapter sets the
scene, starting with background information on how software is developed. The chapter
then goes on to discuss work related to our approach in two areas: the observation of
software execution on a chip, and the analysis of said data to create information which
is useful to a developer.

2.1 Background: How Software is Developed

DiaSys performs software diagnosis, the process of obtaining and analyzing runtime
observation data from software executions. Software diagnosis is performed in multiple
areas of software development. A knowledge of these application areas is essential to
understand the requirements and constraints placed on DiaSys. In the following we
give a brief introduction into this topic. For a more in-depth discussion we need to
refer the reader to the wealth of literature on the topic and its various sub-topics.

2.1.1 Software Development Methodologies

To reliably produce software, various development methodologies have been created.1

Depending on the size of the project such methodologies can be implicit (e.g. if only
single developer works on a hobby project), or very formalized (e.g. when a large team
works on a complex project over a long time). Software development methodologies
structure a development effort from the definition of requirements until the delivery
(and possibly operation) of the software, and guide the team through the design,
implementation, and test phases. Multiple methodologies exist and are used in parallel,
catering the needs of different development environments and teams, and incorporating
“lessions learned” over the last decades.

As a first rough classification, software development methodologies can be grouped
into pre-agile, or “heavyweight,” and agile, or “lightweight,” methodologies. Agile
methods started to become available in the mid-1990s, but gained more following in
the early 2000s.

Pre-agile methodologies are characterized by a linear, top-down, and document-
driven approach. Each step in the methodology refines the requirements down to
implementable pieces, which are then integrated and tested to ultimately form a

1Instead of methodology, the terms process, method, or life cycle are sometimes used with meaning differing
between authors. For the purpose of the discussion in this work a strict differentiation is not essential.
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Figure 2.1: The V-model software development methodology.

working software product. Notably, pre-agile methodologies create a working product
only at the end of the development process, when all requirements have been covered.

The most prominent examples are the waterfall model and the V-model, both of
which are vaguely defined and of which multiple variations exist. Figure 2.1 shows
one representation of the V-model. The general “V” structure stems from the match
between design and testing phases. Each testing phase (on the right) validates that the
implementation fulfills the goals specified in the corresponding design step (on the left).
Starting from the requirements (as defined by the customer) the design is iteratively
refined in multiple design steps. The result of each design step is documented and used
as input for the subsequent step. After each step, the results are considered “fixed,” i.e.
they should not be changed. It is therefore necessary to carefully execute the individual
steps in depth to avoid problems in later steps of the methodology.

The sequential structure of pre-agile methodologies makes them well-suited for
projects with clearly defined, fixed requirements and short project durations. Otherwise,
the risk is high to create a product which matches the requirements, but not the needs
of the user (anymore).

In the light of raising complexity in software projects and decreasing time to market
requirements agile methods arose, which reached a wider audience with the publication
of the “Agile Manifesto” in the year 2001 [18]. While agile methodologies differ
significantly in detail, they are all characterized by an iterative approach (loop structure),
a close collaboration between stakeholders (developers, testers, customers), and a focus
on “[w]orking software over comprehensive documentation” [18].

Popular representatives of agile methodologies are Scrum and Extreme Programming
(XP). Figure 2.2 illustrates how software is created using the Scrum framework. The
requirements in a Scrum project are collected and prioritized in a product backlog by
the Product Owner, who represents the customer in a cross-functional Scrum team.
Teams consist of typically seven people, including the Product Owner, a Scrum Master
(a person who removes roadblocks for other team members), programmers, testers,
and other specialists (depending on the project). From the product backlog items are
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Figure 2.2: The Scrum software development methodology. Figure adapted from [19, p. 8].

taken and implemented during a “sprint,” an interval of typically four weeks. During
a sprint the development team is self-organizing. It splits the work into smaller chunks,
the status of which is discussed in a short daily meeting (“Daily Scrum”). The result
of each sprint is a working product, which could (theoretically) be delivered to the
customer, and which iteratively gains functionality as the product backlog is reduced.
All steps required to create a working product are performed repeatedly within a
Scrum cycle, including design, integration, and various forms of testing.

All software development methodologies contain phases in which code is produced,
and phases in which this code is tested to ensure it works and fulfills the design goals.
For the purpose of this thesis we are most interested in the phases where insight into
the code is required, since that is when software diagnosis is needed. During the
development (i.e. “code production”) phase software diagnosis is performed as part
of the debugging process. Even more insight into the software execution is needed
during the testing and (possibly) verification steps. The next sections describe these
three topics in more detail.

2.1.2 Debugging

Debugging is a process in the field of software diagnosis which is performed by a
programmer (coder) while implementing software. It is performed to understand the
(mis-)behavior of software with the goal of ultimately removing a defect [10, Ch. 8].

Zeller describes the debugging process according to the “TRAFFIC” scheme [20, pp. 5

and 20]. (Similar, yet slightly different, descriptions are presented by other authors, e.g.
[10].)

1. Track: Create an entry in the problem database.

2. Reproduce: Reproduce the failure.
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3. Automate: Automate and simplify the test case.

4. Find origins: Follow back the dependencies from the failure to possible infection
origins.

5. Focus: If there are multiple possible origins, first examine the most likely ones
using known patterns.

6. Isolate: Use scientific method to isolate the origin of the infection. Continue
isolating origins transitively until you have an infection chain from defect to
failure.

7. Correct: Remove the defect, breaking the infection chain. Verify the success of
your fix.

The “isolate” step is the central and often most time-consuming step in the debugging
process.2 To isolate a defect developers need to form a hypothesis (e.g. “The problem
might be caused by x being below 0.”), and use data obtained at runtime to confirm
or refute it. This approach is also known as “scientific method,” the scheme followed
by researchers and others to systematically acquire knowledge. It starts by asking
a question. Then a hypothesis is formulated, and a prediction about the expected
outcome is made. The hypothesis is then tested by conducting an experiment, which
can confirm or refute the hypothesis (or have no outcome). Finally, the obtained results
are analyzed and integrated into the knowledge base of the scientist (or, in our case,
the programmer).

Hypothesis tests, as performed during debugging, are a form of software diagnosis,
and a key application area of DiaSys. Even though the scientific method is likely
followed by most advanced software developers, few do so explicitly. Most questions
and hypotheses are never written down or even explicitly formulated, and many
tests do not follow the strict standards required for scientific experiments (especially
regarding reproducibility). Typically, hypothesis testing (and debugging overall) is a
weakly standardized, manual, and developer-driven process.

2.1.3 Software Testing

Software testing tries to show that software works as intended, or, as Kaner defined
it, “[s]oftware testing is an empirical technical investigation conducted to provide
stakeholders with information about the quality of the product or service under
test” [21]. The stakeholders in this definition are typically the creator of the software
(producer or developer), and the customer (consumer or user). While debugging is
done by programmers to get their code to work, testing is performed to validate that
the software fulfills certain properties. Implementation and testing are often done by
distinct people to have a “second pair of eyes” on the problem.

2As Myers et al. note “Of the two aspects of debugging, locating the error and correcting it, locating the
error represents perhaps 95 percent of the problem.” [10, Ch. 8]
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Just like debugging, testing is an area of software development which is performed
regularly, but has not been put onto a solid scientific foundation. As Myers notes,
“testing remains among the ‘dark arts’ of software development” [10]. Much of that
comes from the fact that software testing is an empirical “art,” which is performed on
many abstraction levels using various tools and techniques. Testing approaches range
from reviews and module (unit) tests to system and user tests.

For the purposes of this work the relevant aspects of software testing on embedded
systems are the following.

• Software tests are often automated to run them repeatedly and reproducibly.

• Testing is performed for functional and non-functional aspects of the software
design.

• Higher level tests often interact with peripherals, which either need to be phys-
ically present during the test, or their functionality needs to be modeled. For
example, a system level test might require the Ethernet interface to be functional
to send and receive data from it. If the interface is not physically present during
the test, it can be modeled using a bus-functional model (BFM).

As part of a test software diagnosis is used to gain insight into the execution
state of a program, and to assert that it matches the expectations. The mentioned
aspects of software testing directly translate into design goals for a software diagnosis
approach like DiaSys: support for automation, non-intrusiveness (to test non-functional
properties), and the ability to perform tests directly on the target device.

2.1.4 Verification

Verification can be seen as the “formal version of testing.” While software testing is
an empirical technique, verification provides stronger guarantees and generality as
part of the result. Empirical techniques provide a good trade-off between the effort to
make sure a program work as intended, and the confidence into the results—at least
for many use cases. In safety- or security-critical domains empirical techniques are not
sufficient, however. Verification fills this gap with multiple techniques.

Formal verification provides the strongest guarantees (proofs) on certain properties
of the software. However, many properties in today’s complex software (especially
for software written in general-purpose languages like C) cannot be fully proven, or
the creation of a proof would require an unreasonably high effort. Therefore, formal
verification is only rarely used in the development of software, with some notable
exceptions, for example the seL4 micro kernel [22].

In those cases runtime verification can be a suitable approach. Runtime verification
checks certain properties using observation data at runtime. While formal verification
can give guarantees in the form “this property is always true,” runtime verification can
(in most cases) only declare “this property has never been observed to be false.”
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2.1.5 Software Diagnosis Needs a Toolbox

The preceding sections have shown the need for diagnosis techniques at various points
in the software development process. However, a “one size fits it all” solution to
software diagnosis does not exist. Just like a craftsman uses a toolbox full of diverse
tools, ranging from general-purpose tools like screwdrivers and pliers to custom-made
tools for a single job, software engineers use different tools for software diagnosis at
different times.

DiaSys, the diagnosis system we present in this work, is tailored towards non-
intrusive runtime observation of embedded systems. It is a powerful tool to have in
the toolbox of software diagnosis, but it is not the only one. In fact, with the power
of runtime observation comes a certain amount of inherent complexity and some
limitations, which sometimes make it the “last resort” in diagnosis. Other forms of
software diagnosis make different trade-offs and can be the more productive solution
for a given problem. As so often, developers are most productive if they can choose
“the right tool for the job.” To describe the environment that runtime diagnosis is best
used in, and consequently, areas for which it is not designed, we present an overview
of other software diagnosis methods.

A first important category are static analysis tools. Static analysis approaches use (as
the name suggests) no runtime information, i.e. they analyze the program (typically its
source code) without the actual data inputs. Using techniques like symbolic execution
static analysis can produce proofs and argue for all possible execution paths. The
obtained results are typically more general, at the cost of higher analysis complexity.
Depending on the input (e.g. the programming language the source code is written in),
and the question asked, static analysis tools might not be able to produce an answer.
Static analysis is especially beneficial if the target system (e.g. the chip) is not (yet)
available, since the analysis can be performed nonetheless.

Apart from static analysis many forms of runtime analysis are available, most of
which are intrusive and/or work in simulation or emulation (as opposed to “directly on
the target chip”). These tools work at different levels of abstraction and make different
trade-offs between ease of use, performance, and accuracy of results.

The probably most-used technique to gain runtime insight is code instrumentation.
In its simplest form instrumentation is performed by adding code to the program
source code, e.g. printf() calls in a C program. More advanced approaches exist as
well, e.g. library preloading (a way to overwrite calls to external software libraries),
or binary instrumentation (as performed by tools like DynInst [23]). Instrumentation
can also be used to create an intrusive tracing system. A prominent example is the
strace tool on Unix-like platforms, which traces (i.e. creates a log) of all system calls
performed by an application.

Another often-used intrusive approach to gain runtime insight are run-control debug-
gers such as the GNU Project Debugger (GDB) or the Visual Studio Debugger. These
tools allow a developer to set breakpoints, a point at which the program execution is
interrupted. The debugger then hands the control over the application to the developer,
who can now inspect the current program state, and re-start the execution.
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To conclude, software diagnosis can be performed in many different ways. Depending
on the problem at hand and his or her personal experience, a developer choses a tool
suitable for the job. In this work we focus on diagnosis techniques which are non-
intrusively performed at runtime. Techniques like static analysis, instrumentation,
or run-control debugging do not fulfill these basic requirements; we see them as
orthogonal to our approach.

2.1.6 Summary: Software Development and Diagnosis

Software development is a large field of research and of even more empirical knowledge.
A first structure is provided by software development methodologies. They can roughly
be grouped into pre-agile (heavyweight) and agile (lightweight) approaches. Examples
for heavyweight approaches are the waterfall and V-models; on the agile side Scrum and
Extreme Programming (XP) are well known. All methodologies cover code production
(implementation) and testing/verification; software diagnosis is a sub-process in both
phases.

During the implementation phase, developers use software diagnosis as part of the
debugging process. Debugging is a highly subjective task which very much depends
on the experience of the human developer. A productive tool in such an environment is
easy to use and does not require substantial effort to set up or maintain. Even if parts
of a debugging session are automated little re-use happens: most debugging tasks are
one-off jobs.

In testing re-use is essential. Tests are written once and executed repeatedly, often
as part of a continuous integration system without human interaction. For testing use
software diagnosis tools must be automated, and reliable (to find potential problems in
the software execution, not fluctuations in the test execution). Especially in system tests
where complex functional and non-functional aspects are tested, tests benefit heavily
from running them on the target embedded system. Non-intrusive behavior makes it
possible to easier test for non-functional properties, such as the execution time of parts
of the code.

This concludes the first section of this chapter, in which we looked at software
development in general. This background information helps to position non-intrusive
runtime observation within the development flow, and explains some requirements
and limitations we place on our work.

We now continue to explore the state of the art in the two main pillars DiaSys stands
on: non-intrusive software observation in embedded systems, and analysis of said data
for the purposes of software diagnosis.

2.2 Non-Intrusive Software Observation

For quite some time now Central Processing Units (CPUs) have been significantly
smaller than the human programmers writing software for it (dwarfs included; even
a developer’s hair is thicker than the structures he or she wants to observe). To
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Figure 2.3: A schematic view of a common tracing system like ARM CoreSight or NEXUS 5001.

counteract this mismatch in size chips contain dedicated hardware to give insight
into the software execution. In this work we focus on general-purpose, non-intrusive
software observation. Two mechanisms provide this kind of insight in today’s chips:
tracing and performance counters. We discuss both approaches in the following,
including commercial and academic approaches.

2.2.1 An Overview on Tracing Systems

Tracing is the most powerful technique to gain insight the software execution on today’s
embedded systems. The basic concept is simple: the software execution is observed on
the target device using dedicated logic, and the observation data is sent to an external
observer, e.g. a developer sitting in front of a PC. There the trace data can be viewed,
or analyzed by dedicated software tools. For example, a developer can step through
the recorded program flow, or the tool can calculate metrics out of the data pool, such
as code coverage metrics or profiles.

In practice, the achievable insight into the chip is limited by the available off-chip
bandwidth: far less data can be transported to the external observer than what is
collected at the same time. As Figure 1.3 on page 3 showed, this problem is not getting
better any time soon. As mitigation three mechanisms are employed (typically in
combination): on-chip buffering, compression, and data selection (also called “trace
qualification”).

On-chip buffers bridge the mismatch between the rate at which observations are
generated, and the rate at which they can be sent off-chip. Observations are temporarily
stored on-chip, and then gradually sent to the host PC at a lower rate. However,
this mechanism limits the observation duration. With typical buffer sizes in today’s
System-on-Chips (SoCs) in the range of kilobytes to megabytes, observations are limited
to typically multiple seconds. Additionally, on-chip buffers are expensive, in that they
consume significant amounts of logic area, which in practice places a limit on their size.

A standard way to reduce the size of a data stream is compression. Tracing systems
assume that the developer has access to the static program information, i.e. the program
binary. Hence, all static information can be seen as redundant and is removed from
the trace stream. Depending on the compression scheme, temporal redundancy is also
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removed, for example using run-length encoding. The achievable compression rates
depend on the implementation and the workload (i.e. the observed software). Program
trace compression available in commercial solutions typically requires 1 to 4 bit per
executed instruction [24, 25], while solutions proposed in academia claim compression
ratios down to 0.036 bit per instruction [26]. Even though data traces contain in general
no redundancy, in practice compression rates of about 4:1 have been achieved [24].

The probably most significant way of reducing a trace data stream is data selection:
do not collect data which is not interesting to the problem at hand. To facilitate
data selection tracing systems typically provide two mechanisms: filters and triggers.
Triggers perform temporal selection, they allow the developer to specify when in the
execution flow the observation should start, and when it should end. For example, a
trace stream can be generated only if a certain function is called (as represented by
a program counter). Filters perform spacial selection by defining the data which is
collected. Should the trace only contain function calls? Or only executed instructions
from CPU 7? With filters developers specify such selection criteria to reduce the data
stream to what they are interested in.

All major commercial SoC vendors offer tracing solutions based on this template.
ARM provides its licensees the CoreSight intellectual property (IP) blocks [27]. They
are used in SoCs from Texas Instruments, Samsung and STMicroelectronics, among
others. Vendors such as NXP (formerly Freescale) include tracing solutions based on
the IEEE-ISTO 5001 (Nexus) standard [28], while Infineon integrates the Multi-Core
Debug Solution (MCDS) into its automotive microcontrollers [29]. Since 2015 Intel also
includes a tracing solution in their desktop, server and embedded processors called
Intel Processor Trace (PT) [30]. The main differentiator between the solutions is the
configurability of the filter and trigger blocks.

In the following we take a closer look at the major commercial tracing implementa-
tions.

2.2.2 A Closer Look: ARM CoreSight

The probably most widely used tracing system is CoreSight, which is primarily a
specification published by ARM. It is currently available in its third version, released in
2017 [27]. The specification covers mandatory components of any CoreSight-compliant
system, protocol and interface definitions, and system architecture requirements. It
covers both run-control debug and trace use cases; for the purpose of this work we limit
our discussion to the trace components. Based on this specification different vendors
can provide implementations; however, it seems that typically vendors include the
implementations provided by ARM itself.

The ARM implementation of the CoreSight Architecture specification is marketed
as CoreSight SoC and CoreSight Design Kit. These components can be licensed by
OEMs and integrated into chip designs, possibly in addition to custom or third-party
component implementations. An overview of all available components is given in [31]
and [32].
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Figure 2.4: An example of the CoreSight architecture for tracing. Drawing adapted from [31,
p. 19].
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Figure 2.4 gives an overview of a CoreSight system with ARM components. The
observed system in this example (green) consists of two CPU cores of different types
which are connected through a bus. The CPUs are observed by two CoreSight com-
ponents which generate an instruction trace (also called program trace): the ETM
(Embedded Trace Macrocell) and the PTM (Program Trace Macrocell). Which module
is used depends on the CPU family. The HTM (AHB Trace Macrocell) observes the
AHB bus, e.g. to observe accesses to the memory or to peripherals. All trace data is
sent through a dedicated bus (the ATB trace bus) to a trace funnel, which combines
multiple streams into a single one. This stream can then be either temporarily stored
on-chip in the Embedded Trace Buffer, or sent off-chip through the Trace Port Interface
Unit (TPIU).

In addition to getting trace data off-chip, the tracing system needs to be controlled,
configured, and enumerated. For this job the debug infrastructure is re-used. It consists
of a low-speed external interface (typically JTAG or SWD), and a dedicated debug bus
(APB). In a nutshell, every CoreSight component provides a register-mapped interface
which can be read and written through the debug bus. In this way the components
can be described (by reading identifier registers), configured (e.g. to set the program
counters at which a ETM component should start recording), and controlled. To make
it possible for tracing tools on the PC discover all components within a chip CoreSight
includes the “reusable component specification” [27]. By implementing a common
register set as described in this specification, components can be recognized from the
outside, and their internal connectivity can be determined. However, the CoreSight
architecture does not require this specification to be followed, and some commercially
available chips require the tracing tool to know which components are available.

Triggers and filters can be configured directly with the respective trace modules
(such as the ETM). In addition, CoreSight provides an infrastructure to propagate
trigger conditions between modules, so-called cross-triggers. With cross-triggers, a
trigger condition from one trace module (e.g. the observation of a specific program
counter by an ETM module) can result in actions on other debug modules, or the
CPU. This can be used, for example, to observe all bus traffic during the execution of a
program function. For that to work, an instruction trace module is configured to issue
two cross-triggers, one at the beginning and one at the end of a function execution
(e.g. based on the observed program counters). The cross-trigger matrix forwards
these triggers to the bus trace module (HTM), which activates and deactivates its data
recording based on the trigger signals. It must be noted, however, that in asynchronous
SoCs no time relationship between the firing and the reception of a cross-trigger is
defined; depending on the necessary synchronization stages between the source and
the sink the signal can be delayed by multiple implementation-defined cycles.

The most commonly used feature in any tracing system are program or instruction
traces, for which ARM provides the ETM and PTM CoreSight components with their
CPU core offerings. Four versions of these components are available [33]. The first
two versions, ETMv1 and ETMv2 were used prior to the introduction of CoreSight.
ETMv3 is the first version compliant with CoreSight, and still used widely today for
lower-powered devices (like the Cortex M and R series). As seemingly intermediate
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step ARM briefly decided to rename ETM to PTM and the corresponding protocol to
PFTv1 (program flow trace). While ETMv3 supports instruction and data traces, PTM
only supports instruction traces. As of now, the PTM interlude lasted only for the A9,
A12 and A15 processors. The latest version, as of today, switched back to the previous
naming and is known as ETMv4. With ETMv4 data traces made a comeback and are
now available on the high-performance CPU cores such as Cortex R7, A53, and A57. In
addition to supporting newer CPU cores (and their instruction set), the compression
ratio improved with newer ETM/PTM versions [34].

Public information about implementation characteristics such as performance and
area usage are rare, given that CoreSight is a commercial closed-source implementation.
For Cortex R processors, the ARM processor family for real-time applications, [35]
claims an area usage of “∼ 40 kGates [NAND 2.1-equivalent] for a full debug and
multicore tracing (TPIU + ETB)” at “400Mhz on 65nm LP.” The size of the “CPU trace
macrocells are between 10 to 20% of the processor gate count.” For Cortex A series,
another document [36] claims similar area numbers, and adds that the trace bandwidth
can be “[d]own to 0.3 bit per instruction for non-cycle accurate instruction trace.” On
the low-end microcontroller core Cortex M3 [25] claims an area use of 7000 gates for a
ETM (v3?) cell and a compression ratio of “∼ 1 bit/instruction/CPU” and adds that a
“data trace from an ARM ETM typically requires 1-2 bytes/instruction.”

Overall, CoreSight has seen steady development since its introduction in 2004. It is
an extensible, complete, and efficient debug and trace solution, which is used by many
ARM-based SoCs. A large ecosystem of tools from different vendors provides choice
on the software side.

Even though CoreSight is in theory vendor-independent, the licensing model of the
specification and the implementation do not seem to make it a viable option for non-
ARM SoCs.3 For this market other tracing solutions have been developed, especially
Nexus 5001, which is discussed next.

2.2.3 A Closer Look: Nexus 5001

Nexus 5001 is a vendor-independent standard for debug and trace on multi-core
microcontrollers, with a focus on the interface between the host and the chip.

The work on what later was called Nexus 5001 was started in 1998 by Motorola and
Hewlett Packard (as the companies were called back then) [37]. The consortium grew,
and by 1999 the first Nexus 5001 standard was published by as IEEE-ISTO 5001-1999.
Since then the standard has been revised in 2003 [38] and 2012 [28].

The Nexus standard describes a common, high-level data exchange format, and a
choice of port interfaces to connect a chip with a host. To give chip vendors flexibility
when implementing a debug and trace solution based on Nexus, the available features
are placed into four classes. In Class 1 are basic features for device identification, and
run-control debug. Class 2 contains features for program traces, which are extended

3No information about the patent and license situation for implementing the CoreSight specification
seems to be publicly available.
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with data traces in Class 3. Class 4 extends the data trace functionality with memory
substitution features, which essentially redirects memory accesses from the internal
memory to the host PC. For each feature certain protocol messages, so called “Public
Messages” are defined. For program and data trace messages the standard also defines
a simple compression scheme.

In addition to the protocol the Nexus 5001 standard also discusses debug ports,
transport mechanisms to connect Nexus-enabled chip with a PC (or an intermediate
device). Three categories of ports are supported: dedicated parallel ports (“parallel
AUX”), test access ports (TAPs), and high-speed serial ports (“serial AUX”). To enable
interoperability, all devices must support a TAP (either IEEE 1149.1, a.k.a. JTAG, or
IEEE 1149.7, a.k.a. “compact JTAG”). While the low-speed TAP is sufficient for Class 1

operation, including run-control debug, a higher-speed port is needed for transmitting
traces. For this purpose the auxiliary port (AUX) has been introduced; both parallel
and serial options exist.

Despite being a vendor-independent standard, Nexus 5001 is too loosely defined
to provide “out of the box” interoperability between implementations. Notably the
Nexus 5001 standard calls for a significant amount of vendor-dependent functionality,
without providing extensive ways of self-description. Additionally, no application
programming interface (API) on the software side is defined, and hardware vendors
sometimes deviate from the standard in incompatible ways.4 Hence, software tools
need built-in in knowledge about the protocol variant spoken by specific device they
are connected to.

The Nexus Forum, the group of authors behind the standard, does not provide IP
implementing the standard. Even though some companies (such as HDL Dynamics
led by Neil Stollon, a principal author of the specification) are known to provide
Nexus-compliant IP, it is unclear if the implementation between chip vendors is
(at least partially) shared. This opens the door to further incompatibilities due to
implementation bugs or missing features. Furthermore, a compliance test suite does
not seem to exist.

Just like for CoreSight, public area and performance numbers for Nexus 5001 are
rare. A visual inspection of a die photograph of one of the first Nexus implementations
on a Motorola 32 bit MPC565 microcontroller estimates the size of the debug and trace
unit to be 0.6 mm2 in a 180 nm technology node. The device supports Nexus Class 3,
i.e. program and data traces [39, p. 897]. This equals, for comparison, the size of a
floating point unit (FPU) or two 4 kB static random-access memorys (SRAMs) [24].

Hopkins and McDonald-Maier report in [24] a compression of program traces com-
pared to their raw size to between 9.5 and 11.5 percent (depending on protocol options),
which corresponds to roughly 3 bit/instruction. For data traces, their results “indicate
that the encoding for the Nexus options had almost no effect on the trace size” [24].

4For example, the reference manual of the MPC565 microcontroller notes: ”The READI [the implementa-
tion name of the debug and trace unit] registers do not follow the recommendations of the IEEE-ISTO
5001 - 1999, but are loosely based on the 0.9 release of the standard.” [39, p. 904]
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Absent from the Nexus standard are methods for trace qualification, i.e. filters
and triggers, including cross-triggers. However, implementors like NXP add custom,
non-standard mechanisms to fill this gap.

Today, Nexus-based trace implementations are mainly found in non-ARM devices
for automotive applications and (rotating) hard drives [37]. Even though the vendor-
independent nature of Nexus makes it well-suited for increasingly heterogeneous chips
which integrate components from different vendors, this potential remains to be fully
used.

2.2.4 A Closer Look: Infineon MCDS

In its Aurix microcontroller family Infineon includes debug and trace support based on
its On-Chip Debug System (OCDS), which is extended by the Multi-Core Debug System
(MCDS). Aurix chips mainly target the automotive powertrain market. This market
requires high reliability and real-time features, but is also cost-sensitive. Therefore
Infineon does not include the advanced tracing functionality in all its chips, but only
in a special version of it. The normal chip (called “Production Device”) only contains
the OCDS-based basic debugging functionality. Additionally, an “Emulation Device” is
produced, which contains the die of the production device together with a further die
in a pin-compatible package. The additional die, the “Emulation Extension Chip (EEC),”
contains the MCDS functionality, and trace memory in the megabyte range [40].

MCDS is a modular system, consisting of modules to observe CPU cores (POB,
“Processor Observation Block”) and the bus (BOB, “Bus Observation Block”). Data
traces can be collected through the BOB component. Further auxiliary modules perform
timestamping of messages, and other utility tasks. Traces are typically recorded in
the trace memory, and once the observation has finished, sent off-chip through a low-
speed interface (e.g. IEEE 1149.1, a.k.a. JTAG). Some devices also include high-speed
interfaces to stream traces off-chip.

MCDS differentiates itself mainly through its advanced mechanisms for data selection
(trace qualification) [42]. Figure 2.5 shows an example of the cross-trigger functionality.
In this example, trigger events from two CPUs are combined and a complex trigger is
built using a counter element. In this way, trigger conditions can be produced which
only fire on the nth trigger event, e.g. after a program counter has been executed
five times. The combination of triggers from multiple sources can be programmed
using a matrix of AND and OR gates, as Figure 2.6 shows. In contrast to ARM
CoreSight, the time relationship between trigger events in MCDS is deterministic. Since
MCDS is only implemented in fully synchronous chips, no clock-domain crossings
with non-deterministic temporal behavior are needed.

MCDS seems to be implemented currently only by Infineon, even though the imple-
mentation has been available for licensing through an IP vendor. No public numbers
regarding compression performance or resource usage seem to be available.
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2.2.5 Discussion: Tracing Systems

Today’s tracing systems all follow a common scheme: they observe data on-chip,
compress this data with more or less sophisticated compression schemes, combine the
streams from individual trace sources, and send the stream off-chip. We presented
three commercial implementations, ARM CoreSight, Nexus 5001, and Infineon MCDS.
All solutions have a modular structure and been developed and used in products for
multiple years now. The main differentiators are the trace compression efficiency, and
the methods to select relevant data.

Data selection, also known as trace qualification, is performed through filters and
triggers, representing spacial and temporal data selection. Nexus 5001 does not contain
data selection mechanisms. CoreSight provides advanced cross-trigger infrastructure
also between different clock domains. The MCDS trace qualification mechanisms are
most advanced, with support for flexible combination of triggers, and event counters.

Trace compression removes all static information from the trace stream which can be
reconstructed on a host PC using the program binary. In addition to the compression
algorithm, compression ratios depend on the executed program, the granularity of
timestamps, and the overhead introduced by the off-chip interface. Even though
no extensive evaluations of trace compression ratios with realistic benchmarks are
available, typical numbers for instruction traces are in the range of 1 to 4 bit/instruction.
Academic publications claim compression ratios down to 0.036 bit/instruction [26].
However, these numbers are typically for a small set of benchmark programs, or best-
case numbers. For an in-depth discussion on trace compression schemes we refer
German-speaking readers to [43].

All tracing systems produce heavily compressed traces close to the data source.
Uncompressing a trace requires the program binary and significant processing power.
Some compression schemes even require an emulation of the functionality of the CPU,
since all CPU operations which are not input-dependent (and hence deterministic) are
stripped from the trace. While such a compressed trace can be sent off-chip more easily,
it cannot be used for on-chip processing, where decompression cannot be performed.
The online (real-time) decompression of an instruction and data trace stream in a
dedicated device (e.g. an FPGA) is possible (within reason), but requires significant
hardware effort, as [44] shows.

Tracing is the most general way of gaining insight into the software execution on a
chip, but it is not the only one. Another commonly available feature are performance
counters, which are discussed next.

2.2.6 Performance Counters

Performance counters are built-in features of many of today’s processors to collect
aggregate information about the software execution. In its most general form, perfor-
mance counters are CPU registers which can be configured to count certain events
within the hardware. Almost anything happening on a SoC can be an event: a cache
miss, an executed instruction, or an access to a certain memory address are only some
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examples. The available events, the number of counters, and other configuration op-
tions depend on the CPU implementation. Recent, high-end desktop and server CPUs
have shown a trend to integrate more and more performance counter functionality.
However, performance counters are not new: already Intel Pentium processors released
in 1993 included two performance counters which can count 38 events [45].

As the differences in implementation are small between the different CPU vendors, we
limit our discussion to one exemplary implementation: IBM Power. Instruction sets and
processor designs of the Power architecture provide extensive support for performance
counters through the “Performance Monitor Facility.” The current version of the ISA
specification [46, Book III, Chapter 4] describes these. Up to five programmable counters
can be configured to count events of a given type. Many types of events can be counted,
including various types of executed instructions, interrupts and exceptions, instruction
and data cache accesses and misses, address translation events and more. Instead of
counting all events of a given type, the data collection can also be randomly sampled.
If a counter has reached a programmable threshold, the software can be notified to
make use of the data.

In POWER 9 processors, the performance counters can also be used by the In-
Memory-Collection (IMC) unit [47]. The performance counter values are grouped by
core, thread, or task, and written to memory. The data aggregation is done in software,
although the code apparently cannot be modified by end users.

Even though performance counters can typically not be read non-intrusively, their use
is minimal-intrusive and gives developers a good way to capture frequent events with
low overhead. Today, performance counters are mainly used to analyze and optimize
the performance of software. They are not well-suited for other areas of software
diagnosis, where the averaged and/or aggregated data hides important information,
such as the correlation between events.

2.2.7 Summary: Non-Intrusive Software Observation

In the last sections we discussed tracing and performance counters as ways to observe
the software execution in a (mostly) non-intrusive way. Tracing is the most general
approach, with tracing hardware integrated into most commercially available SoCs
today. Well known implementations are ARM CoreSight, Nexus 5001, and Infineon
MCDS. Academic research mostly focuses on the improvement of (program and data)
trace compression algorithms.

Another way to gain insight into the software execution are performance counters.
These counters are included in many of today’s CPUs and can be configured to count a
large amount of events. Since the counting is performed in dedicated hardware, the
software execution is not impacted, even at high event rates.

DiaSys takes inspiration from both approaches, as discussed further in Section 3.
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2.3 Observation Data Analysis

A human is easily overwhelmed when asked to analyze multiple gigabits of trace data
each second. Automated analysis tools perform better in this regard; they can quickly
extract useful information out of the vast amount of trace data. Such tools have one
common goal: to help a developer better understand the software execution on the
target system. The means to achieve this goal, however, vary widely. In the following
we present some of these approaches. Approaches used for embedded systems today
are typically not very customizable, while systems used for desktop and server PCs
are customizable, but intrusive. Still, these approaches serve as a valuable source of
inspiration in the design of DiaSys.

2.3.1 Trace Analysis Software for Embedded Systems

Hardware vendors include trace support based on CoreSight, Nexus 5001, or similar
approaches, but leave the software side mostly to independent tool vendors. Commonly
used tools are TRACE32 by Lauterbach, Universal Debug Engine by PLS, or DS-5 by
ARM. The interface between the hardware and software components is the trace, which
is first reconstructed using the program binary and other information (c.f. Figure 2.3).
While the reconstruction depends on the observed chip (and the used trace compression
algorithm), the further analysis is mostly target-independent. Many tools use this
abstraction to provide a common user interface for all supported tracing systems,
hiding the differences in hardware support from the developer.

Typically, a graphical user interface (GUI) is the main “point of contact” for de-
velopers. Through this interface developers can view the decoded trace for manual
inspection, or trigger more complex built-in analyses such as the generation of runtime
profiles, code coverage reports, or cache access analyses. In addition to the GUI, many
tools provide a scripting interface which enables the automation of the user interface
functionality (“batch processing”).

The mentioned trace tools can provide the same GUI and re-use code to perform trace
analysis because they abstract away the differences between devices. This abstraction
works well for the trace stream itself; a reconstructed trace from a Nexus implementation
is identical to one from a CoreSight trace system (assuming the same CPU type,
of course). However, abstracting away the configuration of a trace system is more
challenging. Each tracing system, and each chip, supports different triggers and filters,
not to mention complex trigger functionality like counters in MCDS. However, making
full use of the data selection functionality a chip provides is vital, as it directly impacts
the gained insight into the software execution: the less filtering is applied, the more
data must be sent off-chip of buffered on-chip, which either reduces the observation
time (if on-chip buffers are used), or prevents observation altogether (if the off-chip
interface does not provide sufficient bandwidth).

An approach to make the creation of trigger configurations easier is presented by
Braunes and Spallek [48]. Their Trace Qualification Language targets the Infineon
MCDS system and can be used to describe events and combine these events in a state
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machine to form higher-level events and perform limited actions, such as “record the
address currently on the bus.”

To make full use of the provided hardware functionality, some tools integrate more
deeply with the target tracing system. For example, the TASKING Embedded Pro-
filer [49] provides insight into reasons for performance bottlenecks by using the ad-
vanced features of MCDS. (In fact, this product is based on an Infineon-internal tech-
nology demonstration called ChipCoach, to which the author of this work contributed
in a joint project.)

To summarize, today’s commercial tools to perform tracing are mostly GUI-based,
with optional scripting abilities. They abstract away differences in the trace hardware,
which is easier for the trace itself than it is for the trace configuration. The trace analysis
(e.g. the creation of a runtime profile) is performed using built-in algorithms, which
cannot be changed by the end-user. Scriptable tracing tools, which are not yet common
for embedded systems, enable more customization in this regard. We discuss them in
the following section.

2.3.2 Scriptable Event-Based Debugging

In run-control debugging, as performed with GDB, a breakpoint is set to halt the
program execution at an interesting point in the program flow. Once this breakpoint
is hit, the developer takes control and manually inspects the program state. Another
name for this debugging approach is “interactive debugging.” Scriptable event-based
debugging is the logical continuation of this concept. A breakpoint is now considered
an “event,” and instead of manually inspecting the system state developers write small
pieces of code which perform this analysis. In essence, the code snippets describe
desired or non-desired behavior of the program.

The general concept has been developed since the 1970s, and even though the
methods to collect observations were typically intrusive and the used programming
languages reflect the choice of languages at the time, this body of work remains highly
relevant to our approach today.

One of the first event-based debugging approaches was presented in 1977 by Johnson.
With RAIDE [50] debugging scripts can be written which do not depend on the
programming language of the source code being debugged. It uses a declarative
language to define events, and to write “debugging procecures,” small snippets of code
which perform the analysis. These procedures could also be collected in libraries for
reuse. Procedures cannot, however, emit further events, and the approach is limited to
sequential software.

In 1988 Bates [51, 52] introduces the “Event-Based Behavioral Abstraction” (EBBA),
a way to describe the expected program behavior and matching that with observed
behavior. It targets heterogeneous, distributed architectures and is especially designed
with reusability in mind: for example, a model describing a deadlock situation can
be applied to different software to find a deadlock bug. EBBA distinguishes between
primitive events, which are generated by the software execution, and high-level events,
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which model the program behavior by matching primitive events within an event stream
using the sequential, choice, concurrency, and repetition event expression operators.

Lumpp et al. present a debugging system which is based on an event/action
model [53]. They include a description of a non-intrusive observation system for
early parallel computers. The language syntax given in the paper is “currently being
developed,” but their syntax example shows the author’s ideas well. An analysis pro-
gram contains multiple sections: global variables, event definitions, action definitions,
bindings of events to actions. Notably, changes to the global variables can trigger
further events. The approach has not been implemented, and no work is known which
improves on the proposed language syntax.

Dalek [54], presented in 1991, is built on top of GDB and can be used to debug a
single, sequential application. It extends the scripting mechanism of GDB with the
ability to declare events. Primitive events can be triggered on a breakpoint, and carry
data. For example, an event triggered on the call of a function can be accompanied
with the first argument to this function. Primitive events can then be further processed
by high-level events, resulting in a dataflow-like processing of events. Dalek has been
fully implemented (according to its authors), but even though the paper states “[t]he
Free Software Foundation plans to incorporate Dalek into a future release of gdb,” this
future has not yet arrived.

Event-based debugging has also been implemented in commercial tools, such as
the “HP Distributed Debugging Environment” (DDE) [55], a debugger presented in
1994. In this tool custom code can be executed when an event (e.g. a breakpoint or
a watchpoint) is hit to decide if the debugger should stop the program execution, or
continue.

Coca [56], on the other hand, uses a language based on Prolog to define conditional
breakpoints as a sequence of events described through predicates for debugging C
programs.

Marceau et al. present MzTake, an interactive scriptable debugger which uses FrTime,
a Lisp-inspired dataflow language, to debug Java and Scheme programs [57, 58].

Auguston et al. have continued developing FORMAN [59], into PARFORMAN
(“Parallel Foremal Annotation Language”) [60] and a decade later into UFO [61]. It
describes an event-based assertation language which is used to specify the expected
program behavior, which can then be checked against an actual program execution to
detect bugs.

A major inspiration for our work are scriptable or programmable debug solutions
which are available on today’s desktop and server machines. Their basic functionality is
simple: whenever a defined probe point is hit, an event is triggered and an event handler
executes. The analysis is essentially described as a dataflow program with only a single
actor. Common probe points are the execution of a specific part of the program (like
entering a certain program function), or the access to a given memory location. The
best-known current implementations of this concept are DTrace and SystemTap, which
run on, or are part of, BSDs, Linux, and macOS (where DTrace is integrated into the
“Apple Instruments” product) [62, 63]. DTrace has been a significant improvement over
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1 SELECT event-type, timestamp, transaction-id, event-dependent-data

2 FROM R

3 WHERE (event-type = 'message send' or

4 event-type = 'message receive') and

5 process-id = 352 and

6 timestamp > 10:00 AM

Listing 2.1: Code example from [64] to query the execution database of a distributed system to
obtain all messages sent or received after 10:00 am by process 352.

the state of the art at its time5, and is discussed in more detail in Section 2.3.4. Today,
the prime scriptable tracing solution within Linux is eBPF/BCC. A limited (and not
well defined) subset of C can be used to describe actions, which are then executed
in the context of the Linux kernel by a bytecode interpreter. This approach results in
efficient execution of action handlers, but much of the infrastructure around it are not
yet well-defined or convenient to use.

DTrace, SystemTap, and eBPF/BCC-based approaches all use a C-like language to
define event handlers, and custom syntax to define the events. Other works have used
SQL or a SQL-like syntax for both tasks, defining events and processing them.

2.3.3 Query-Based Debugging

Query-based debugging models execution traces as database, which can be queried to
obtain information about the software execution. Since the advent of SQL in the 1970s
using this language to query the “execution database” was a logical choice.

In one of the first works in this regard, Garcia-Molina et al. propose a debugging
system which works across distributed nodes [64] (published in 1984). Execution
traces from each process are collected and sent to a central server, where they could be
analyzed using SEQUEL (as SQL was called back then). Listing 2.1 gives an impression
of the query language the authors envision in their approach.

The idea of using SQL has remained popular over the decades. Presented in 2012

by a group from Microsoft Research, Fay [65] describes itself as a “comprehensive
tracing platform that provides both expressive means for querying software behavior
and also the mechanisms for the efficient execution of those queries.” [65] The authors
have realized that when employed on distributed systems “there is little room for
optimization in script-based tracing systems such as [...] DTrace and SystemTap.”
Therefore, they created a new language, FayLINQ, which can perform data collection
and distributed aggregation over multiple machines in a way which can be optimized
towards efficient execution.

Another example for a SQL-like observation collection and analysis language is
presented by Mace et al. under the name Pivot Tracing [66]. It combines data collection

5An indication for the success of DTrace can be seen in the awards it won, including the first place in the
Wall Street Journal’s 2006 Technology Innovation Awards, and the USENIX Software Tools User Group
award.
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1 syscall:::entry

2 /execname == "firefox-bin"/

3 {

4 @num[probefunc] = count();

5 }

Listing 2.2: A DTrace script which counts all system calls performed by the Firefox and groups
them by system call name.

through dynamic instrumentation with a high-level SQL-like query language, which
introduces a new happened-before join operator to “group and filter events based on
properties of any events that causally precede them in an execution” [66].

Finally, a tool used today in commercial settings for large fleets of servers is osquery.6

Developed by Facebook, osquery maps system information to relational database tables
and makes them accessible through SQL queries. For example, the query SELECT uid,

name FROM listening_ports l, processes p WHERE l.pid=p.pid returns a list of
all processes which are currently listening on a TCP socket, including the ID of the user
which is running the process.

2.3.4 A Closer Look: DTrace

DTrace [62] is a scriptable dynamic tracing framework for desktop and server ma-
chines. Designed by Bryan Cantril, Adam Leventhal, and Michael Shapiro at Sun
Micrososystems, DTrace has been published in 2003 to diagnose both kernel and user
space applications running on Solaris. It has since seen wider adoption and been ported
to FreeBSD, macOS, and partially to Linux.

DTrace follows the event-action approach of diagnosis. A user writes a script
which defines probe points and associated actions. When a probe point is hit, the
software execution is stalled, and the code within the action is executed. The probe
points can be either built into the kernel or user-space applications, or dynamically
inserted at runtime. Actions are described in a C-like programming language called
D. Even though D looks like C in many regards, it is designed with safety in mind:
actions written in D cannot crash the system, making the whole DTrace safe to use
in production environments. To provide this guarantee, actions written in D must
be statically analyzable; all features which hinder this analysis are not part of the
language. Most notably, loops are not allowed in D. On the other hand, convenience
features are added to the language, such as associative arrays, easier string handling,
and aggregations.

Listing 2.2 shows an exemplary DTrace script. The script probes all system calls
(syscall:::entry) and uses a predicate to filter out only system calls issued by an
executable named firefox-bin (i.e. the Firefox web browser). Given between the
curly braces is the action. In our example, the action makes use of the aggregation

6https://osquery.io/
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functionality (@num) to count the number of system calls, grouped by the system call
name (which is given in the DTrace-defined probefunc variable).

The success of DTrace can be most likely attributed to three points.

• DTrace is safe to use and incurs little overhead.

• The language has found the a good balance between expressiveness and safety.

• A large number of example scripts exist, collected by Brendan Gregg in the DTrace
Toolkit.

Today, DTrace receives less attention. The Solaris operating system (together with
Sun Microsystems) is only a shadow of its former glory, and on Linux DTrace never
gained wide adoption due to licensing issues. However, it has inspired the design
of other approaches on Linux, notably of SystemTap and ktap (even though these
solutions do not provide the same safety guarantees as DTrace).

2.3.5 Summary: Observation Data Analysis

The analysis of observation data can be performed in general ways: either, using fixed-
function analysis tools, or using scriptable frameworks. In the domain of embedded
systems, today the analysis is performed mostly using tools which have certain analysis
algorithms built-in. These tools and algorithms can often be lightly customized, but
still, the freedom of expression is limited.

A more flexible way to analyze observation data are scriptable approaches. They
can roughly be split into two categories: event-action based approaches, and query-
based ones. Event-action based approaches evolve the manual run-control debugging
approach, in which events are called “breakpoints,” and provide ways to automate the
previously manual step, the action that is performed once an event has been issued.
First developed in the 1970s, the basic concept has been applied again and again, with
DTrace and its successors SystemTap and eBPF/BCC being the current representatives
which are in wide industry use. It is likely that this success comes from the simplicity of
the concept to typical software developers, which are accustomed to writing sequential
code within an “action.”

Query-based approaches gained less traction. These approaches model the observed
system(s) as database, which can be queried to collect and aggregate observation
data. Typically, the querying is done using SQL or a SQL-like language. With initial
works also presented as early as 1984, Fay [65] showed how powerful this approach
can be to distribute the data aggregation across a cluster of machines. Mainly for
performance optimization work osquery is currently being used in the industry. One
can only speculate as to why query-based approaches gained less traction. It seems
likely, however, that aggregating SQL queries are unfamiliar to many developers.
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2.4 Summary: Background and State of the Art

DiaSys performs non-intrusive software diagnosis at runtime: it observes software
running on embedded systems, and analyzes these observations to provide meaningful
information to the developer. In this chapter we looked at the environment in which
such a system is used, and at work related to our approach.

Observation and analysis, which we combine in the term “software diagnosis,” are
part of the larger software development effort. Independent of the chosen software
development methodology, be it a pre-agile one like the V-model, or an agile one
like Scrum, software diagnosis is needed during both debugging and testing. In
debugging, programmers try to understand the program execution with the ultimate
goal of locating and resolving a defect in the software. Testing tries to show that a
program behaves as designed regarding functional and non-functional aspects.

Debugging is a subjective and mostly manual process performed by a human devel-
oper. To be suitable in debugging, a diagnosis system must be flexible, easy to use for a
human developer, and require little setup time. Typically, the focus in debugging is on
the collection of observation data, while the analysis is performed manually.

On the other hand, effective testing requires automation in the data collection and the
analysis. This is especially true today when agile methods like Scrum iterate quickly to
produce a potentially shippable product every couple of weeks. In such an environment,
the setup cost of automated tests diminishes compared to their execution time, giving
an incentive for higher degrees of test automation.

Overall, the discussion of the software development environment showed diverse
requirements, which require a flexible general-purpose diagnosis system. We discuss
the requirements which guide DiaSys in more detail in Section 3.1.

In order to bring the analysis of observation data into the chip, DiaSys integrates
the non-intrusive collection of observation data, and its analysis closer together than
existing solutions. We therefore discuss related work from two areas: the non-intrusive
collection of observation data from embedded systems, and the (scriptable) analysis of
such data.

The first step in software diagnosis is the collection of observation data. For this
purpose two main non-intrusive approaches are available today: tracing systems, and
performance counters. Most embedded systems today contain a tracing system based
on ARM CoreSight or Nexus 5001. They observe functional units like CPUs, memories,
or the interconnect, and compress and stream these observations off-chip. The other
approach, performance counters, is tailored towards collecting aggregate data of high-
frequency events. Such events can be very diverse, ranging from cache misses to
executed CPU instructions.

The second step in software diagnosis is the analysis of the collected observation data.
Today, observations from embedded systems are typically analyzed with tools with
built-in analysis algorithms and limited flexibility. On desktop and server machines, the
scriptable analysis has seen wider adoption, with tools such as DTrace having gained
wide acclaim in the community.
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The design of DiaSys is based on a careful study of the related work presented in this
chapter. However, no approach is directly suitable to bring the analysis of observation
data on-chip. On the observation side, today’s tracing systems compress data in a
way that makes it unsuitable for on-chip processing, while performance counters are
too limited in their functionality. On the analysis side, the well-known event based
approaches, like DTrace, use monolithic code blocks as event handler (or action). This
prevents the split of the execution between chip and host PC. Older approaches, most
notably Dalek [54], provide the ability to describe the event processing as dataflow
network. This work can be seen as closely related to our approach regarding the
analysis data processing.

Based on a solid understanding of the environment DiaSys operates in, and the
related work in the collection and processing of observation data, we present our
diagnosis system in the following.
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Diagnosis

DiaSys has been created to perform on-chip processing of observation data with the
goal of increasing the software insight, and reducing the off-chip traffic compared
to today’s tracing systems. The previous chapter has set the scene by discussing the
environment in which DiaSys is employed (debugging and testing), and by discussing
related work. In this and the following chapters we present our contribution. We start
with a detailed discussion of the assumptions we made, and the goals we want to
achieve with DiaSys.

Some of the work presented in this chapter has previously been published in [15].

3.1 Assumptions and Goals

We designed DiaSys with the following assumptions and goals in mind.

For software observation While finding bugs and errors is part of any development
process, this work is only concerned with finding functional and non-functional bugs
in software running on embedded systems. The SoC itself is assumed to behave as
specified, i.e. we are not concerned with hardware bugs or after-production tests.

For embedded systems DiaSys targets embedded systems or SoCs. Even though many
concepts could equally be applied to e.g. desktop, server, cloud or HPC environments,
we do not further consider these use cases.

We do not place strong restrictions on the type of SoC, or its usage area. We explicitly
include SoCs used in hard real-time scenarios, as well as consumer devices which
mostly operate in “best effort” mode. We also place no limit on the size of the SoC,
ranging from small systems with only one CPU core, to large MPSoCs with hundreds
or even thousands of CPU cores.

General purpose The problems a software developer is facing are diverse—and so
must be the scope of the diagnosis solution. DiaSys does not target one single type of
bug or software problem, but provides a general-purpose (universal, generic) tool to
analyze a wide range of problems.
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Distributed The diagnosis system must be able to reduce the amount of observation
data as close to the source as possible, i.e. close to the observed units. Since the data
sources are distributed across the chip, the diagnosis system must also be distributed
appropriately.

Non-intrusive The diagnosis system must be non-intrusive (passive). Non-intrusive
observation preserves the event ordering and temporal relationships in concurrent
executions, a requirement for debugging multi-core, real-time, or cyber-physical sys-
tems [67]. Non-intrusiveness also gives a developer the confidence that he or she is
observing a bug in the program code, not chasing a problem caused by the observation
(a phenomenon often called “Heisenbug” [68]).

Flexible on-chip/off-chip cost split The diagnosis system must be flexible to imple-
ment. The implementation of the diagnosis system involves a trade-off between the
provided level of observability and the system cost. The two main cost contributions
are the off-chip interface and the chip area spent on diagnosis extensions. The diagnosis
system concept must be flexible enough to give the chip designer the freedom to
configure the amount of chip resources, the off-chip bandwidth and the pin count in a
way that fits the chip’s target market.

Relaxed timing constraints The diagnosis system must not assume a defined timing
relationship between the individual distributed components. Today’s larger SoCs are
designed as globally asynchronous, locally synchronous (GALS) systems with different
power and clock domains, where no fixed time relationship between components can
be given.

Enable reuse and automation It is rare that a functional or non-functional software
issue is truly unique. Hence DiaSys should facilitate sharing and reuse—reuse of
knowledge how to diagnose software issues, and sharing of this knowledge across
teams, companies, hardware and software generations. Ultimately, we envision that
DiaSys enables the sharing of diagnosis applications similar to how a software library
and other program code is shared today.

Going one step further is the automated execution of diagnosis applications. If not
only the steps to analyze a problem are coded within a diagnosis application, but
also the evaluation of results, an automated execution of a wide range of diagnosis
applications is possible without human intervention. It has been shown in the past that
such automation significantly increases the quality of a resulting product [69].

The assumptions and goals presented in this section guide the design of DiaSys, from
the architecture down to the implementation. The design on the highest level is what
we present next.
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Figure 3.1: A schematic overview on the concept of DiaSys.

3.2 The DiaSys Concept

To perform software diagnosis with DiaSys, multiple components interact in well-
defined ways. Figure 3.1 gives an overview of the components which we explain in the
following.

The input to the diagnosis system is the state of the observed system over time, the
output are the diagnosis results, which can be represented in various forms. The output
is created from the input with the help of event generators, the diagnosis application
running on an execution platform, and event sinks. Between these components data is
exchanged as diagnosis events.

Diagnosis events are the container for data exchanged in DiaSys. In the general case,
an event consists of a type identifier and a payload. Events are self-contained, i.e. they
can be decoded without the help from previous or subsequent events.

Event generators produce observation events based on state changes in the observed
system. Typically, event generators are attached to a single unit in the observed system,
e.g. a CPU or a memory. They continuously compare the state of the observed unit with
a trigger condition. If the condition holds, they trigger the generation of an observation
event.

An observation event is a specialized diagnosis event. The payload contains a partial
snapshot of the state of the observed system at the same instant in time as the event
was triggered. Which parts of the state are attached to the event is specified by the
event generator configuration. For example, a CPU event generator might produce
observation events when it observes a function call and attach the current value of a
CPU register as payload. An observation event answers two questions: why was the
event generated, and in which state was the observed system at this moment in time.

The diagnosis application describes how the observations should be analyzed/pro-
cessed with the goal of producing higher-level information. We describe diagnosis
applications, which are modeled as transformational dataflow application, and their
properties in more detail in Section 3.3.
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To execute diagnosis applications, DiaSys provides an execution platform. The
execution platform can span (transparent to the developer of a diagnosis application)
across the chip boundary. On the chip it consists of specialized hardware blocks which
are able to execute (parts of) the diagnosis application. On the host PC software
components execute of the remaining parts of the diagnosis application. The on- and
off-chip part of the execution platform are connected by the off-chip interface. This
split design of the execution platform allows hardware designers to trade off chip area
with the bandwidth provided for the off-chip interface, while retaining the same level
of processing power, and in consequence, system observability.

Event sinks consume output events produced by the diagnosis application. Their
purpose is to present the data either to a human user in a suitable form (e.g. as a
simple log of events, or as visualization), or to format the events in a way that makes
them suitable for consumption by an automated tool, or possibly even for usage by an
on-chip component.

Together, event generators, the diagnosis application and the event sink form a pro-
cessing chain which provides a powerful way to distill information out of observations
in the SoC. A key innovation of DiaSys is the use of diagnosis applications to describe
the processing of observation data. They are described next.

3.3 Diagnosis Applications

Diagnosis applications are the heart of the diagnosis system, as they perform the
“actual work” of interpreting what happens on the observed system during the software
execution. Diagnosis applications are transformational dataflow applications. We
chose this model to enable the transparent mapping of the diagnosis application to an
execution platform spanning across the chip boundary. Our goal is that the developer of
the diagnosis application does not need to explicitly partition the diagnosis application
into an on-chip and an off-chip part; instead, this mapping can be performed in an
automated way. No matter how the diagnosis application is mapped onto the execution
platform, the behavior of the application follows identical rules, i.e. the semantics of
the application stays the same.

The diagnosis application is a transformational application, in contrast to reactive
or interactive applications [70]. This means, starting from a given set of inputs, the
application eventually produces an output. The application code only describes the
functional relationship between the input and the output, not the timing when the
output is generated. The application also does not influence or interact in another way
with the observed system from which its inputs are derived; diagnosis applications are
guaranteed to be non-intrusive.

The structure of diagnosis applications follows the dataflow concept. The complete
computation is represented by a directed graph, in which the nodes model the compu-
tation, and the edges model communication links. In diagnosis applications we call the
graph nodes transformation actors, and the graph edges channels.
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Figure 3.2: A model of a diagnosis application. Diagnosis applications are structured as
hierarchical dataflow applications. Across the edges events are sent, which are
processed within the nodes (transformation actors). The goal of the processing is the
reduction of the event/data rate, which an corresponding increase in information
density.

Each transformation actor reads events from n ∈ N0 input channels, and writes
events to m ∈ N0 output channels. The sequence of events consumed on a single
channel x is described by a vector of input events ~Ex = (ex

1 , ex
2 , ...). We call ~Ex, in line

with the definitions used by Kahn [71], history of events on channel x.
A transformation actor starts its processing, it “fires,” if a sufficient number of events

are available at its inputs. The definition of “sufficient” depends on the individual
transformation actor. For example, one transformation actor might always read one
event from each input before starting the processing, while another one might always
read two events from input 1 and one event from input 2.

When firing, the transformation actor applies an arbitrary transformation function f
to the input events. The generated output depends on

• the read input events,

• the ordering of the input events, and

• the internal state of the transformation actor.

Transformation actors may communicate only through the input and output channels,
but not through additional side channels (e.g. shared variables). Hence, all state is
contained within a transformation actor, and all data exchanged between actors is
explicit, which significantly eases the partitioning of a diagnosis application to different
execution units. (This is discussed further when we explain the design of the Dia
Engine in Section 4.4.)
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3.4 Analyzability of Diagnosis Applications

Diagnosis applications built out of such transformation actors are in general nonde-
terministic, as defined by Kahn [71, 72]. This means, the output not only depends on
the history of inputs (i.e. the current input and the state of the actor), but also on the
relative timing (the ordering) of events.

Nondeterministic behavior of diagnosis applications is, in most cases, the expected
and wanted behavior; it gives its authors much-needed flexibility. An example of
nondeterministic diagnosis applications are applications which aggregate data over
time, like profiling applications. These applications consume an unspecified amount of
input events and store an aggregate of these inputs. After a certain amount of time (e.g.
one second), they send a summary of the observations to an output channel.

Unfortunately, it is not possible to perform static analysis of nondeterministic di-
agnosis applications regarding event rates, bandwidth, or processing requirements.
Therefore, if wanted, application authors can create deterministic diagnosis applications,
if they restrict themselves to

• always reading the input channels in the same order without testing for data
availability first (instead, block and wait until the data arrives),

• connecting one channel to exactly one input and one output of an actor, and

• using only transformation functions which are deterministic themselves.

3.5 Behavior in Overload Situations

Overload situations occur if the observed system triggers the production of more events
than the diagnosis system can process. Given the generally unknown input data, and
the generally nondeterministic behavior of the diagnosis application, it is not possible
to statically dimension the diagnosis system to be able to handle all possible input
sequences. Therefore, overload situations are unavoidable in the general (and most
common) case. If an overload situation is detected, the diagnosis system can react in
multiple ways.

First, the diagnosis system can temporarily stall the observed system. This gives
the diagnosis system time to process outstanding events without new events being
produced. This approach is only feasible in a synchronous non-realtime system.

A more common approach is to discard incoming data until further processing
resources are available. Depending on the diagnosis application, a recovery strategy
needs to be formulated. Some applications can deal easily with incomplete input data,
e.g. diagnosis applications creating statistics. Others are not able to work with an
incomplete input sequence and in consequence fail to be executed properly.

It is up to the implementation of DiaSys to define a suitable strategy to handle
overload situations.
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3.6 On the Benefits of Programmable Diagnosis

The data analysis in DiaSys is performed by the diagnosis application. While it is
possible to create a diagnosis application through a graphical user interface, or hard-
code it into a software diagnosis application, we focus in our work on programmable
or, as we call it from now on, script-based diagnosis.

The main benefit of a script-based diagnosis approach as proposed in DiaSys is the
increase in developer productivity. Developers need to spend less time on repetitive,
manual tasks, and have more time to find creative solutions to novel problems. Script-
based diagnosis shares work between human and machine in a way which allows
everybody to do what they can do best. Machines are best at following a script to the
dot, over and over again. And humans are best at inventing, at finding new solutions
to new problems.

Splitting work between human and machine in this way is not new, of course. Since
the early days of industrialization the concept has been applied repeatedly, profoundly
changing our industry and our society along the way.

The increase in productivity comes from increasing automation. The first step
towards automation is documentation: writing down the steps which must be taken to
diagnose a software problem. As a subsequent step, this documentation must be made
machine-readable and machine-executable, i.e. the documentation is now “code,” or as
we call it in this context, a “script.” Once a diagnosis script has been written it can be
executed repeatedly, making it easier to run diagnosis scripts more often, unattended,
and to create reproducible results.

To better understand the benefits and limitations of automation we can have a look
at a widely studied example close to our topic of diagnosis: automated software testing
(AST). A large literature review study showed [73] clear benefits of automation: less
human effort is required, which reduces the time spent on executing tests, and increased
the reliability, reusability and the confidence in the result.

But where there is light, there must be shadow, or limitations. The study [73] also
includes an overview on those. First and foremost: automation cannot replace a human.
Second, creating a fully automated solution requires time and skills, which in turn
means that automation is not the answer to every problem.

In DiaSys, the goal is not to make the human developer superfluous, but to free his or
her time for tasks which require skills a computer does not possess: to create novel and
creative solutions. DiaSys does not take an “all or nothing” approach. Instead, DiaSys
provides a gradual path to more automation and enables developers to find a trade-off
between automation and manual work that fits their needs. Reusability is another
challenge: the return on invest in writing a diagnosis script is significantly larger if
the same script can be used in multiple projects on multiple hardware platforms. We
address these challenges with the Dia Language and the Dia Compiler, which are
discussed in the next chapter.

41



3 The DiaSys Approach to Software Diagnosis

3.7 Design Discussion: Limitations and Consequences

The presented diagnosis system is designed to fulfill the requirements outlined in
Section 3.1. In the following, we discuss the consequences of the design decisions,
which can limit the applicability of the DiaSys concept in some cases.

No access to resident state. DiaSys, like all non-intrusive tracing systems, is only
able to observe state changes, not resident state. For example, only memory access can
be observed, but it is not possible to access the memory contents itself. This limitation
is due to the non-intrusiveness of DiaSys: accessing resident state on a SoC requires
interfering with the observed SoC, i.e. by multiplexing accesses to the memory and
hence changing the (timing) behavior for the functional SoC. This limitation is especially
visible when DiaSys (like any tracing system) is compared to run-control debugging,
which draws its power from the ability to access all state available on the SoC once the
CPU is halted (i.e. once a breakpoint is hit).

No recording of a full trace stream. By transforming the observed system state close
to the source into denser information the off-chip bottleneck can be circumvented. As
a downside this lossy transformation thwarts two usage scenarios of today’s tracing
systems: off-line analysis and reverse debugging.

In many of today’s tracing systems it is possible to capture a trace once, store it, and
run different analysis tasks on it. If major parts of the captured data are dismissed early,
this is not possible anymore. Instead, the analysis task must be defined (as diagnosis
application) before the system is run. If the problem hypothesis changes and a different
diagnosis application is required, the observed software must be executed again. The
severity of this limitation strongly depends on how hard it is to reproduce a bug or
behavior across runs.

A special use of recorded trace information is reverse debugging [74]. Reverse
debugging (sometimes also called time travel debugging) is the process of stepping
backwards through a program flow. This requires a full instruction trace (and often a
data trace) being present, which DiaSys by design does not record.

No cross-triggers. Another feature present in many of today’s tracing systems, which
is explicitly not supported by the diagnosis system, are cross-triggers. Cross-triggers
are a mechanism in the tracing system to start or stop the observation, or to observe
different components, based on another observation in the system. For example,
memory accesses could be traced only after a CPU executed a certain program counter.
Cross-triggers are most useful if their timing behavior is predictable. For example,
memory accesses are traced “in the next cycle” after the specified program counter
was executed. In GALS SoCs, such timing guarantees cannot be given; for a diagnosis
application spanning across a SoC and a host PC, it is equally impossible to give
(reasonably low bounded) timing guarantees. We make this property explicit by
modeling the diagnosis system as a transformational system, not a reactive system. The
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commercially available tracing systems today are less specific about this. For example,
ARM CoreSight uses a handshaking protocol for cross-triggers delivered across clock
boundaries, which guarantees save delivery of the signal, but does not guarantee any
latency.

Instead of relying on cross-triggers to collect data from different sources at the same
instant in time, we capture this data already when creating observation events through
event generators. The payload of observation events is the only way to pass multiple
state observations with a defined timing relation to the diagnosis system. For example,
an event generator attached to a CPU can trigger an event based on a program counter
value, and attach current contents of certain CPU registers or stack contents to it. Using
this method, it is possible to generate for example an event which informs about a
function being called, and which function arguments (stored in CPU registers or on the
stack) have been passed to it. We show an example of such an event generator as part
of our hardware implementation in Section 4.4.8.

3.8 Summary

DiaSys is our approach for non-intrusive software diagnosis on embedded systems. It
combines the on-chip observation of software with a flexible data analysis approach,
which can be performed (partially) on-chip. Following the event-action model of
debugging, software observations are modeled as events, which can be triggered at
configurable points in the program execution.

The transformation of observation data into useful information is performed by
a dataflow program. This dataflow program consists of multiple transformation
actors arranged in a directed tree structure. The semantics of the dataflow program
are rather loose by necessity: stricter semantics, which would provide better static
analyzability, prevent common use cases of software diagnosis, such as the aggregation
of an unspecified amount of events over a fixed period of time (as commonly done in
profiling).

We explained the components that make up DiaSys and took a closer look at diagnosis
application, a concept at the heart of DiaSys. In the next chapter we move closer towards
the implementation, by first describing the three components that form the DiaSys
implementation: the Dia Language, the Dia Compiler, and the Dia Engine.
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The power of DiaSys comes from the generality of the concept, and the flexibility inherit
in it. We realized DiaSys in a way which carries this flexibility across the layers of
design and implementation.

Before we dive into the details we start with a big picture overview shown in
Figure 4.1. The primary goal of DiaSys is to answer questions, questions that a
developer has about the execution of software on an embedded system. Examples
for questions include “How often is function x() called?” “Could I get a histogram
of execution times for this function?” or “How many lines in the code are actually
executed?” From a high level point of view DiaSys takes a question as input, and
returns an answer as output.

To ask DiaSys a question developers need to formulate it in a way that DiaSys can
understand: they write a little program called Dia script in our own domain-specific
language (DSL), the Dia Language. But writing a Dia script with only a question is
not enough, unfortunately. Developers also need to write code describing what DiaSys
needs to do to answer the question they asked. This code is the diagnosis application
that was discussed in Section 3.3. In more technical terms, a Dia script written by a
developer defines where in the system observations are made, when they are made,
and how they are processed to answer the developer’s question.

Once the Dia script has been created it can be passed on to DiaSys which then
performs the analysis. To do so the Dia Compiler first transforms the Dia script into
code of a diagnosis application and configurations that the execution environment
understands. This execution environment, the Dia Engine, then observes the software
execution on the chip and analyzes generated observation data according to the code
in the script. Finally, the results are presented to the developer, who can interpret them
and either refine the question, i.e. start the process over, or end the diagnosis process.

In Section 4.2 we look at the Dia Language, a developer-friendly DSL to write Dia
scripts, little programs which consist of a diagnosis application and associated event
generator configurations. Then we present the Dia Compiler in Section 4.3, a tool for
preparing Dia scripts for execution on the Dia Engine, which we discuss subsequently
in Section 4.4.

Before we go into the details of the components, however, we start with a motivational
example.
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Figure 4.1: An overview of the DiaSys diagnosis method from a user’s perspective.

4.1 How DiaSys Works: A First Glimpse From a Developer’s
Perspective

As shown in the big picture overview in Figure 4.1 a developer’s entry point to
DiaSys is a question formulated as Dia script. Listing 4.1 presents a small example
of such a Dia script. It has been written to answer the question “How often is the
program calling the function push(linked list ll, int item), and in how many of
those calls is the argument item above the value 50?”

When would such a Dia script be used? Imagine the observed application to be a
measurement software. It reads sensor values from an external interface and pushes
(appends) the obtained values to a linked list data structure. From this data structure
another part of the program can pop (remove) the values to process them further. For
the sake of this discussion let the sensor values represent temperatures in degrees
Celsius. By using DiaSys the developer now wants to know how often the temperatures
exceed 50 ◦C.

Let’s take a closer look at the Dia script in Listing 4.1. The first part of the script are
event definitions, starting with the keyword EVENT. All communication in DiaSys is
done by exchanging events, and these events needs to be defined first. Two types of
events exist: events that are generated as result of observations, and events that are
created as (intermediate) result of a data processing action.

The definition of the event ev cnt (lines 1–5 in Listing 4.1) showcases how an SQL-
like language can be used to describe which units in the SoC are observed, when an
observation event is generated, and what data will be “bundled” with it. In addition,
two more events are defined in our example. ev get sum is an event triggered by
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1 EVENT ev_cnt

2 TRIGGER

3 AT Cpu WHERE core_id = 0

4 WHEN pc = pc_from_elf("binary.elf", "push.call")

5 CAPTURE uint32_t r5 AS "item"

6

7 EVENT ev_get_sum

8 EVENT ev_sum CONTAINS uint16_t sum_hi, uint16_t sum_lo

9

10 count_events(in ev_cnt, in ev_get_sum, out ev_sum) {

11 static uint16_t sum_hi = 0;

12 static uint16_t sum_lo = 0;

13

14 dia_ev_t* in_event = dia_ev_wait(ev_cnt | ev_get_sum);

15 switch (in_event->type) {

16 ev_cnt:

17 if (in_event->item > 50)

18 sum_hi += 1;

19 else

20 sum_lo += 1;

21 break;

22 ev_get_sum:

23 ev_sum_t* sum_event = dia_ev_new(ev_sum);

24 sum_event->sum_hi = sum_hi;

25 sum_event->sum_lo = sum_lo;

26 dia_ev_send(sum_event);

27 break;

28 }

29 }

Listing 4.1: A simple Dia script which describes an analysis to count the number of calls to the
push() function on a CPU depending on the value of the function argument item.

the developer when he or she wants to obtain the result of the analysis. DiaSys then
responds with an ev sum event which contains the requested information.

What happens based on these events is described in the count events block, which is
called a “transformation actor” in the Dia language. Transformation actors are written
in a C-based programming language. In our example, the transformation actor waits
for an arbitrary input event (line 14), and then, depending on the type of the input
event, either counts it (and ends the processing; lines 16–21), or creates a new ev sum

event and sends it (lines 22–27).
This small example already highlights some of the unique features of DiaSys. First

and most obvious: Dia scripts build on knowledge many embedded developers already
have: programming in C. Beyond the script DiaSys abstracts away many implementation
details of the observed system and the diagnosis system. For example, the presented
Dia script would not look different if changes were made to the processor architecture,
the interconnect, or to the way the chip connects to the PC. It does not matter how and
where the data aggregation is performed, i.e. if count events is executed on the chip
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Figure 4.2: Graphical overview of the motivational example in Listing 4.1 as seen from a
developer’s perspective (top), and how DiaSys ultimately executes the observation
and data analysis job (bottom).

or on the host PC. What the developer must know, of course, is the observed system:
which CPUs are available, which memories are available, etc.

A second differentiator of DiaSys is the fact that observations can result in events
which carry state data. In our example, the ev cnt event does not only signal “the
function push() has been called”, but it says “the function has been called with this
value of item.” It is obvious from our example that data values, e.g. the arguments of a
function, are highly valuable when performing diagnosis. Yet state of the art tracing
systems often do not provide this information.

After the developer has finished writing the Dia script DiaSys takes over to produce
the desired answers. First, the Dia compiler checks and transforms the script into
something that the Dia Engine can understand and run. This step involves a compi-
lation and a mapping sub-step, in which the script is matched with the capabilities
of the execution hardware (what observation hardware is available, which on-chip
processing blocks can be used, etc.). The execution of the script is shown in the bottom
part of Figure 4.2. An event generator (a hardware module part of the Dia Engine
implementation) is attached to the observed CPU. Before the execution starts the event
generator is configured to create a new ev cnt event when it observes a call to the
program counter representing the function push(). It is also configured to attach the
value of the CPU register r3 to the event, since this register contains the value of item,
the second argument to push().
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The event then travels over a dedicated interconnect to an on-chip processing unit,
where the event is counted according to the code given in count events. How this
on-chip processing unit is implemented does not matter at this stage, as long as it
provides the functionality asked for. In our implementation we include special-purpose
(fixed-function) processing units, as well as freely programmable ones.

The developer interfaces with the system through software running on a host PC.
Through this software the developer can send and receive events, in our example the
user sends the ev get sum event and gets the ev sum event back.

This concludes our first look at DiaSys based on a small motivational example. It
helps to keep this full picture in mind when we dive into the individual subtopics,
starting with the Dia Language.
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4.2 The Dia Language: A Domain-Specific Language for
Diagnosis Descriptions

DiaSys improves the insight into on SoCs by moving (part of) the data analysis into
the chip. The data analysis is modeled as diagnosis application, a transformational
dataflow application. The input to a diagnosis application are observation events,
which are generated properly configured by event generators.

To give developers a convenient way to “program” diagnosis applications, and to
configure the event generators, we have created the Dia Language. It is a DSL, which
builds on top of concepts and languages embedded developers typically know.

A standalone piece of code written in the Dia Language is called “Dia script” in the
following. This section describes the language, starting with goals and requirements
guiding its design.

4.2.1 Goals and Requirements

The Dia Language was designed to meet the overall goals of DiaSys as outlined in
Section 3.1. In addition the following goals and requirements are specific to the Dia
Language.

Make developers highly productive. Writing a script using the Dia Language should
not be a burden to developers, but increase their productivity. In consequence the Dia
Language should make use of concepts familiar to embedded software developers, and
provide a consistent experience.

Support gradual increase in automation. The ultimate goal for DiaSys is to increase
developer productivity. This goal cannot not reached by full automation of all diagnosis
tasks, but by making sure a developer’s time is well spent. As [75] shows a trade-off
needs to be found: some tasks are best executed by hand (e.g. if they are not well
defined, or occur only rarely), while other tasks are best automated. DiaSys should
support a gradual increase in automation. A Dia Script may be used to only collect
observation data, to perform initial processing on it, or to fully measure and evaluate
the results—all depending on the developer’s needs.

Be explicit. The Dia Language should prefer explicit information over implicit con-
ventions. The event and transformation actor-based design of DiaSys clearly shows
communication between the parts of the system. The Dia Language should follow
down this path to increase readability of Dia scripts for less experienced developers. As
a side effect being explicit reduces the guesswork required by the compiler and hence
simplifies its implementation.

Based on these goals and requirements we developed the Dia Language to be used
in Dia scripts. In the following we discuss the language design in detail.
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4.2.2 Dia Language Overview

Upon a closer look, the Dia Language consists of two sub-languages: one to declare
events, and one to describe the diagnosis application, i.e. the transformation/processing
of events. Both parts are loosely coupled: the event specification sub-language describes
which events exist in the system, what data they carry and possibly how they are
generated. The transformation actor sub-language is used to describe the code within
the transformation actors, i.e. how events are processed. Additionally, by specifying
input and output events, the transformation actors define the channels (edges) in the
dataflow network.

A Dia script always starts with the event definitions, followed by the transformation
actors. In the following we look first at the event specification sub-language.

The language discussion in this section is mostly using a non-formal grammar and
examples to build up an understanding of the language without getting lost in details.

4.2.3 Event Specification Sub-Language

The event specification sub-language is the part of the Dia Language used by developers
to describe all events flowing in the diagnosis system. Its syntax is inspired by SQL [76]
and can be read almost like an English sentence. DiaSys differentiates between two
types of events: observation events are generated by observing a unit in the SoC, and
simple events carry information between transformation actors (i.e. within a diagnosis
application).

4.2.3.1 Simple Events

The description of a simple event only needs two things: a unique name, and a
specification of the data fields it contains. Simple events can contain additional data
(payload), but do not have to. If an event is used only to signal that something happened
or should happen (e.g. a counter should be incremented, or reset) the event does not
contain data.

The event specification of a simple event then takes the following form.

EVENT <event-name> [CONTAINS <payload-fields>]

The only required part is the event name (<event-name>). After the CONTAINS

keyword a comma-separated list of payload fields can be given in the form <datatype>

<fieldname>.

Before we can move on to discuss the other type of events, observation events, we
need to answer a preliminary question: “How can a developer reference an individual
part of the SoC, e.g. the CPU on the top-left?”
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Figure 4.3: Classes and objects of observation units shown in an example.

4.2.3.2 Observation Objects and Classes

To specify an observation event a developer needs a way to reference parts of the SoC,
e.g. the specific CPU he or she wants to observe. Developers also need to know what
data can be used to trigger on, and what data can be captured with the event. The Dia
Language cannot define these things upfront, since they are dynamic and depend on
the specific SoC. Therefore, the event specification sub-language makes use of classes
and objects of observed units, following well-known concepts from object-oriented
programming.

Figure 4.3 gives an overview of the concept by example. It shows three observable
objects in the SoC, two CPUs and one memory. The observable objects are grouped into
classes; the observed objects are an instance of a class. In the example the classes Cpu
and Memory are shown. Each class has three types of fields: identity fields, trigger fields,
and capture fields. All fields have a name and a data type. Identity fields describe and
distinguish the object (instance). Trigger fields describe on what data the class of units
can trigger. Finally, capture fields define which data can be collected together with an
event.

It depends on the Dia Engine implementation which classes of observed units
are available. When the engine connects to a target SoC it searches for observable
objects, identifies them and makes them available to be used within a Dia script. As a
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consequence, classes and objects may or may not be available depending on how and
where a Dia script is executed. Whatever objects are available can be used to specify
observation events, the topic we discuss next.

4.2.3.3 Observation Events

Compared to simple events, more information is needed to specify an observation
event. In particular, the following four pieces of information must be present:

• What is the name of the event? (<event-name>)

• Where in the SoC should the observation be made? (<class> together with
<object-select-expr>)

• When should the event generation be triggered? (<trigger-expr>)

• What data should be collected if the event is triggered? (<capture-fields>)

In the Dia Language these four pieces of information are combined into an event
declaration which takes the following form (indentation and line breaks are optional
and added for clarity):

EVENT <event-name>

TRIGGER

AT <class>

WHERE <object-select-expr>

WHEN <trigger-expr>

[CAPTURE <capture-fields>]

To write the event declaration the Dia Language makes use of the fields specified
in the observation objects. Each field type is used in a different part of the event
declaration. First, after the AT keyword the class is given (e.g. Cpu). After the WHERE

keyword the identity fields select one or multiple object(s) of this class. The WHEN

keyword precedes the trigger expression. In this expression any of the trigger fields of
the associated class can be compared to arbitrary values to construct a trigger condition.
Finally, the captured data (i.e. the data attached to an event) is specified following the
CAPTURE keyword by giving a list of one or multiple capture fields.

After the WHERE and WHEN keywords an expression is expected. Just like in SQL, an ex-
pression can consist of multiple sub-expressions combined through the AND and OR key-
words. Each sub-expression is given in the format <field-identifier> <operator>

<const-expr>. Valid <field-identifier>s are discussed below. <operator> can be
any of the comparison operators known from SQL and C: = or == (equal), <> or != (not
equal), > (greater than), < (smaller than), >= (at least), and <= (at most). Finally, <value>
can be either a literal (e.g. a number), or a function call returning a value. (Functions
are discussed in the next section.)

With expressions being defined we can focus again on the event specification, and
discuss the individual parts in more detail.
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• <event-name> can be any valid identifier. The identifier must be unique within
the Dia script.

• <class> identifies the class of objects. Which classes are available is implementation-
dependent.

• <object-select-expr> is an expression to select an object of <class>. In this
expression the <field-identifier> can be any identity field available to the
class.

• <trigger-expr> defines the trigger expression. Here <field-identifier> can
be any trigger field of the class, however sub-expressions can be only combined
using the OR keyword, the AND keyword may not be used. (This design choice is
motivated below in Section 4.2.3.5.)

• <capture-fields> is a comma-separated list of <capture-field> elements. Each
<capture-field> is described as
<datatype> <field-identifier> [AS <alternative-name>].
<field-identifier> can be any capture field available to the class. To provide a
more convenient name within a transformation actor, a field can optionally be
renamed using the AS keyword.

This ends the discussion of observation events. We next look at a convenience feature,
which significantly simplifies writing an observation event description.

4.2.3.4 Functions in the Event Specification Sub-Language

One of the design goals of the Dia Language is to create a highly productive experience
for developers. Writing an observation event specification like WHEN pc = 0x1234 is nei-
ther intuitive nor productive: developers typically don’t think about program counters,
but about function calls, returns and lines in the source code. They can, of course, man-
ually look at the program binary to match a function call to a program counter value,
but that is rather tedious. With functions in an event specification this lookup process
can be automated. Developers can now write WHEN pc = pc_from_elf("binary.elf",

"main.call") and the program counter representing the call to the main() function
in the program binary binary.elf is looked up automatically. A function call can be
used in place of a literal value in the trigger expression (<trigger-expr>), the object
select expression (<object-select-expr>), and the specification of capture fields.

The Dia Language itself does not specify which functions are available, it is up to the
implementation to provide such functions (possibly as extension points).

With the discussion of functions we have completed the description of the event
specification sub-language as part of the Dia Language. In the following we discuss the
design decisions and their implications.
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4.2.3.5 Design Rationale

In the following we discuss the design decisions which led to the current design of
the event specification sub-language, not only to serve as a justification, but also to
provide a basis for future iterations of the language. Languages, in programming as
in real life, are a living entity, they evolve as they are used to provide more efficient
communication.

The most obvious discussion question is “Why is a SQL-like language used?” A look
at the evolution of the language helps to answer this question. The initial inspiration
came from the DTrace [62] and SystemTap [63] languages. These languages, as pre-
sented in Section 2.3.4, tightly couple the event handler with the trigger conditions
(which are called “probe points” there). For example the following code shows a probe
definition in SystemTap syntax which triggers on either the call of a kernel function,
and once every second. (DTrace uses a different syntax, but follows essentially the
same design.)

probe kernel.function("tcp_accept").return, timer.s(1) {

// do something

}

Three things should be noted. First, the captured data (i.e. the data that can be
accessed within the function body) is not specified explicitly, since the body can access
(almost) any data available in the system once the handler is called. Second, what data
values are actually observed and compared is implicit: the function trigger compares
the program counter, while the timer trigger compares some form of time data. And
third, no location where the observation is made is given; it is always assumed that the
current CPU(s) are observed. Observing a memory or a NoC router is not in the scope
of SystemTap or DTrace.

Following our goals to create a solution which is suited for SoCs, and to prefer
explicit descriptions over implicit ones, we need to improve the language into these
directions. Even though used on a different abstraction level, SQL addresses our
requirements well. If the data generated by the software execution on a SoC is seen
as a database, using SQL to select a subset of this data is an obvious choice, as the
related work in Section 2.3.3 shows. Using SQL or a SQL-like language does not
create additional barriers of entrance for embedded developers. First, (simple) SQL
is well-known to many developers who have interacted with databases in some way.
Second, even for developers who have never used SQL before the event specifications
are easy to understand, since SQL can be read almost like an English sentence.

A natural follow-up question would be: “Why is it a SQL-like language, and not
(a subset of) standard SQL?” The short answer: SQL can be both too powerful and
too limiting at times. To discuss this answer further we assume in the following basic
understanding of SQL.

1. SQL is a large standard and contains many features which are not applicable to
our use case. Hence, in any way, a subset of SQL must be defined for our use
case. For example, JOINs, subqueries and similar features cannot be supported.
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2. SQL blurs the line between data selection and processing. The aggregate functions
(e.g. AVG(), SUM(), etc.) of SQL are a powerful way to combine and process data.
In DiaSys, however, we keep data selection (observation) and processing separate
to be able to perform the processing in a distributed manner.

3. The WHERE clause of SQL is too powerful and ambiguous. In DiaSys observation
events need to be specified in two dimensions: in the spacial dimension (which
unit in the SoC should be observed), and in the temporal dimension (when should
an event be triggered). In SQL both dimensions are combined in a WHERE clause,
resulting in a (hypothetical) query like

SELECT ts FROM cpus WHERE core_id = 1 AND pc = x'1234'

to trigger on program counter 0x1234 at core 1 and capture the timestamp (ts).
This mixing of dimensions in the WHERE clause can be seen as reducing the
usability, but is not a significant problem.

What is problematic is shown in the following example:

SELECT ts FROM cpus

WHERE (core_id = 1 AND pc = x'1234') AND (core_id = 2 AND pc =

x'5678')↪→

DiaSys cannot execute this query as triggers cannot be AND-combined. If the
statement would read

SELECT ts FROM cpus

WHERE (core_id = 1 AND pc = x'1234') OR (core_id = 2 AND pc =

x'5678')↪→

the execution would be possible. If standard SQL syntax was used the developer
gets no clear indication from the language what constructs are allowed, and which
ones are not.

For all these reasons, we chose to take inspiration from SQL and keep the event
specification sub-language close to it, but take the freedom to modify the basic concepts
of SQL according to our needs.

Now that we have explained our use of a SQL-like language we can focus on the
details of it. One topic which has been mentioned before is the fact that DiaSys does not
allow combining triggers using an AND operation (i.e. the <trigger-expr> may not
contain the AND keyword). This limitation can be explained by the asynchronous nature
of DiaSys: to support large, asynchronous SoCs, DiaSys does not allow cross-triggers or
similar statements which assume an “at the same time” relationship (c.f. Section 3.1).

Another detail of the event specification sub-language is its strong typing, something
not seen in SQL. We do this, following our goal to be prefer explicit over implicit
functionality, to simplify the implementation and to help developers better understand
the data and amount of data exchanged with an event. Since thinking about data types
is common for embedded software developers writing C code we do not expect this
design decision to create significant usability hurdles.
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A last discussion point is our choice of comparison operators, which follow both the
SQL and the C standard. SQL uses = and <> for equal and not equal comparisons while
C uses == and !=. The event specification sub-language looks similar to SQL, hence the
SQL-style operators seem a natural fit. However, the transformation actors, written into
the same script file, use C syntax. To reduce the confusion we allow both SQL-style
and C-style operators in the event specifications.

This concludes the discussion of the event specification sub-language, in which
developers write the first part of a Dia script. The second part of a Dia scripts describes
how events are processed. The syntax used for this description is the transformation
actor sub-language, which is described next.

4.2.4 Transformation Actor Sub-Language

The transformation actor sub-language is the second sub-language of the Dia Language
(next to the event specification sub-language). It describes the diagnosis application, i.e.
the processing or data analysis of observation data within a Dia script. The language
based heavily on C, with only small modifications done to make it suitable for our use
case.

4.2.4.1 General Structure

Transformation actors have a structure similar to a function definition in C.

[<attriutes>] <ta-name>(<arg-list>) {

<ta-body>

}

The following three elements make up a transformation actor.

• <attributes> is an optional space-separated list of attributes helping the compiler
to perform the compilation and mapping process. Only the on host attribute
is supported currently, forcing the mapping of a transformation actor to the host
PC.

• <ta-name> is an identifier naming the transformation actor.

• <arg-list> is a list of input and output events the transformation actor takes. It
is a comma-separated list of <arg> arguments, which consist of a <direction>

<event-name> tuple. <direction> can be either the keyword in for events sent
to the transformation actor, or out for events sent out from the transformation
actor. <event-name> is expected to be a valid event name, i.e. an event which has
been defined before using the using the event specification sub-language.

• <ta-body> is the body of the transformation actor, i.e. the part which contains
the actual processing code. The syntax, which is a dialect of C, is described below.
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4.2.4.2 Transformation Actor Body

The body of the transformation actor describes the processing performed on input
events which can lead to output events. The code is written in a C dialect, which
is valid C in itself. In the following we describe the language in a practical way by
describing the syntax for specific scenarios. It should be noted that beyond what is
shown here all C features can be used.

Referencing events Within the body of a transformation actor events need to be
referenced. For each event defined in a Dia script two identifiers are made available.

• An (integer) constant <event-name>, which can be used when the “name” of the
event is needed in the code.

• A data type <event-name> t (i.e. the event name with t appended to it) which
is used when, unsurprisingly, the data of the event is to be accessed. This data
type is called <event-type> in the description below.

Waiting for a single event In its simplest form a transformation actor waits for
exactly one event to happen. To perform a blocking wait for a specific event the
function dia ev wait() can be used.

<event-type>* <identifier> = dia_ev_wait(<event-name>);

The function expects the name of the event as argument. It returns a pointer which
can be cast to the event-specific data type. An example shows this construct in action:

lock_call_t* my_lock_call = dia_ev_wait(lock_call);

Waiting for all events in a list of events Waiting for multiple events to all happen
does not require special syntax as the functionality can be achieved by placing multiple
calls to dia lock wait() after each other. The ordering of the wait statements does not
influence the behavior if the events do not depend on each other.

In the following example the code waits for two events and only then continues with
its processing.

lock_call_t* my_lock_call = dia_ev_wait(lock_call);

lock_ret_t* my_lock_ret = dia_ev_wait(lock_ret);

A slightly different syntax is needed when not waiting for all events, but for any
event.
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Waiting for any event in a list of events The DiaSys processing model as described
in Section 3.3 allows for non-deterministic behavior of transformation actors by waiting
for any event in a list of events. In code this functionality is realized by passing a
OR-combined list of event names to the dia ev wait() function. The function blocks
until it receives any event (within the list of events) and returns it with the dia ev t

data type. (The exact type is not known at compile time.)

dia_ev_t* <identifier> = dia_ev_wait(<event-name> | <event-name> | ...);

A practical example which waits for either a count or a reset event shows this
concept at work. To determine which event was actually received the type field of an
event can be used. (These fields are further discussed in the next paragraph.)

dia_ev_t* my_event = dia_ev_wait(count | reset);

switch (my_event->type) {

case count:

// got a count event, do processing on it

break;

case reset:

// got a reset event, do processing on it

break;

}

Access to event data The previous example already showed that all event data types
have a type field with the <event-name> constant. This field can be used to distinguish
event types, which all “inherit” from a base data type, dia ev t.

typedef struct {

uint64_t type;

} dia_ev_t;

The event-specific data types <event-type> make all fields specified in a CONTAINS

(simple events) or CAPTURE (observation events) clause available as members.
For example, an event declared as EVENT sum_event CONTAINS uint32_t sum re-

sults in the sum event t data type as shown below.

typedef struct {

uint64_t type; /* == sum_event */

// CAPTURES fields start here

uint32_t sum;

} sum_event_t;

// usage example

sum_event_t* my_sum = dia_ev_wait(sum_event);

uint32_t sum = my_sum->sum;
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Creating and sending an event Transformation actors can create and send output
events. To create a new event the function dia ev new() is used, and to send an event
dia ev send() is used. The sending of an event does not end the processing of the
transformation actor (i.e. return from it) to allow multiple events to be sent.

<event-type>* <identifier> = dia_ev_new(<event-name>);

dia_ev_send(<identifier>);

The code below shows how to use this syntax to create an event, assign a value to its
data field, and send it.

// sum_event as defined previously

sum_event* my_sum = dia_ev_new(sum_event);

my_sum->sum = 27;

dia_ev_send(my_sum);

Actor state Transformation actors can have local state, according to the DiaSys pro-
cessing model. This state is represented by static variables in C. The following
example code shows how to make use of local state to implement a counter transforma-
tion actor.

ta_count(in cnt_event) {

static uint32_t counter_state = 0;

dia_ev_wait(cnt_event);

counter_state += 1;

}

This completes our presentation of the special syntax used within transformation
actors which goes beyond standard C. Beyond what has been shown all features of
standard C can be used. In the following we discuss the design decisions which lead to
what has been shown.

4.2.4.3 Design Rationale

The design of the transformation actor language is motivated by three goals. The
language

1. should feel familiar to embedded software developers,

2. serve as a foundation for future experimentation, and

3. be analyzable at compile time.
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Within this set of goals we evaluated multiple languages and implemented some
ideas as prototype. Ultimately, we settled with the C dialect as it is presented in the
previous section.

The goal that the language should be familiar to embedded software developers
results from the higher-level goal to create a productive language (c.f. Section 4.2.1).
Even though diagnosis can take a significant amount of time in the development
process, it is still a side task next to the actual writing of code. Writing a Dia script
will in many cases only occupy a fraction of a developer’s day, and hence the effort
of learning a new programming language will pay off only slowly. The language the
overwhelming majority of embedded developers are familiar with is C, as statistics
show. In the TIOBE Programming Community Index, which is “an indicator of the
popularity of programming languages”, C has constantly held either the first or the
second place since 1988 [77]. Similarly, in a survey done by IEEE Spectrum the first
place in the category languages for embedded programming held by C (followed by
C++, which is very close to C in the embedded domain) [78]. For this reason, we
decided to use C or a language close to C for the description of the transformation
actors.

The second goal calls for a language which can be used as a foundation for exper-
imentation. Right now we do not know enough about how developers will make
use of the Dia language. This prevents the creation of a high-level domain-specific
language, as productivity comes from specialization, essentially following the mantra
“do one thing, and do it well.” Until we know more about the usage patterns of the
Dia Language we want to enable progress, not stand in the way of it. By making the
transformation actor language a (possibly overly) general-purpose language it can serve
as a base for add-ons, specializations, and other experiments. These experiments may
take different forms: voluntary restriction to only some features, additional libraries, or
even an additional, source-to-source compiled language layer.

Finally, in the third goal we aim for a language which can be analyzed well at
compile time. The transformation actors written in the Dia Language can be mapped
to different execution units, some of which provide very specialized functionality. In
order to decide at compile time if a piece of code can be executed by such a unit, or if it
needs to be executed on a fully-fledged general purpose processor, the compiler needs
to fully understand the code. The first step into this direction is already the limitation
of side effects to the transformation actor boundaries, i.e. no implicit dependencies or
side channels are present between actors. Within an actor a statically typed language
significantly helps analyzability, as does the absence of exceptions. All these features are
present in C, making it suitable to reach our goal. At the other hand, some C constructs
can be very hard or impossible to reason about at compile time. The most significant
challenge in this regard is aliasing, i.e. the access of a memory location through
different (pointer) variables. Additionally, statically understanding the semantics (i.e.
the meaning) of C code is hindered by the low orthogonality of the language, i.e.
multiple ways exist to describe the same outcome (i++ vs. i = i + 1 vs. i += 1 is just
simplest example).
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The discussion of the three goals shows a conflict, especially between the first
two goals (developer-friendly foundation for experimentation) and the third goal
(analyzability). In the process of creating the Dia Language we considered, partially
implemented and evaluated different approaches, from a complete new language design
with a syntax similar to C [79] to an extension of C which adds a limited amount of new
constructs [80]. Both approaches showed different deficiencies regarding expressiveness,
and significantly increased the implementation effort. Ultimately, we settled for the
language design presented in the previous section, which makes the full power of C
available in transformation actors.

At the same time we encourage authors of Dia scripts limit themselves to a suitable
subset of C. At this point in time, we do not know exactly how this subset is defined, but
in general the advice is “Limit the code to well-defined, compile-time-understandable,
and simple constructs.” Several groups have attempted to create such subsets of C,
typically for safety or security purposes. Good examples are the C secure coding
rules described in ISO/IEC TS 17961 [81], MISRA C [82], or the SEI CERT C Coding
Standard [83].

4.2.5 Summary: The Dia Language

The Dia Language gives developers a voice when writing diagnosis scripts, or “Dia
scripts.” These scripts describe where and when to observe the software execution on
a SoC, and how to process these observations to yield information, which ultimately
helps the developer to understand and improve the software execution. By describing
the analysis process in a script as opposed to using a state-of-the-art graphical user
interface developers can increase the portability and enable the sharing of diagnosis
knowledge.

The main theme in the design of the Dia Language is improving developer produc-
tivity. This theme runs through both parts of the Dia Language, the event specification
language and the transformation actor language. The former sub-language describes
the data observation using a SQL-like syntax. The latter describes the processing
performed on the observation data using a C dialect.

The design of the Dia Language was performed in an environment with a lot of
unknowns, which is not an uncommon setting for programming language designers.
(In fact it is an ongoing debate in the programming language community how a
“proper” evaluation of languages should be performed [84, 85].) In our case, we see the
design of the Dia Language as a first step which enables further experimentation and
improvements. This will be especially necessary once more experience has been gained
regarding how the language is actually used by developers. The design rationales given
in Section 4.2.3.5 and 4.2.4.3 describe our motivations in order to build up a knowledge
base upon which further improvements can be built.

The Dia Language is the interface between the developer and DiaSys. The first
component which “takes over” a Dia script is the Dia Compiler, which is described
next.
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4.3 The Dia Compiler

Between a script written in the Dia Language and its execution on the Dia Engine sits
the Dia Compiler. Its job is to transfer a Dia script into something the Dia Engine can
execute. To do so it needs input from both sides: the Dia script from the developer, and
information about the Engine and its configuration, which depends on the observed
SoC. The compiler abstracts away the specifics of the Dia Engine to allow developers
to write target-independent scripts. Depending on the available execution units in the
Dia Engine the compiler can perform semantic analysis on the code to perform better
mapping to special-purpose execution units (such as counters).

How the compiler performs these jobs is described in this section. We start by outlin-
ing the goals, non-goals and requirements which guided the design and implementation
of the Dia Compiler.

4.3.1 Goals and Requirements

In addition to the overall goals of DiaSys as described in Section 3.1 the Dia Compiler
was developed with the following goals and requirements in mind.

Abstract away differences in the Dia Engine. The Dia Engine is a modular system
which can be combined and configured in a way which fits the observed system best.
The Dia script, on the other side, does not make strong assumptions about its execution
platform. Bridging this gap is the main goal of the Dia Compiler.

Explore mapping of transformation actors to special-purpose execution units. In
addition to providing general-purpose processing elements to analyze observation data
(both on-chip and on the host PC) the Dia Engine can be equipped with special-purpose
processing elements. To make use of such elements, such as hardware counters or
state machines, the compiler needs to detect code which can be executed on such
elements. While this task is impossible in the general case, the compiler should show
the feasibility of such a semantic analysis and mapping based on well-defined code
patterns. We limit this exploration to the mapping of complete transformation actors;
no attempt is made to e.g. split the description of a transformation actor in the Dia
Language into two processing nodes.

Show general feasibility. The compiler implementation should have proof-of-concept
quality. Neither is the performance of the compilation of output expected to be fully
optimized, nor is the usability a focus (e.g. regarding error messages). Addressing
these points is beyond the scope of this work.

4.3.2 Introduction to Compilers

While we expect the reader of this work be familiar with the design of embedded
systems, the inner workings and design of compilers may not be well-known. Readers
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Figure 4.4: General structure of a compiler.

experienced in compiler design may safely skip beyond this section. This section
aims to be a very quick introduction to the topic of compiler design as needed for a
better understanding of the subsequent sections. Compilers have been developed and
studied for decades, and the general structure of a compiler is modified and extended
depending on the use case.

In the most general terms a compiler translates between a source language and a
target language. Typically, the source language is a high-level language like C, and
the target language is an assembly language. The compilation process is split into two
parts: the analysis and the synthesis part, also called front-end and back-end.

Figure 4.4 gives an overview of the inner structure of a generic compiler.
First, the lexical analyzer (also called lexer or scanner) splits the stream of source

code into a sequence of tokens, each representing an atomic unit of the language.
Then the parser validates the token sequence to check if it conforms to the language

grammar. As result a tree representation of the source program is generated, called
abstract syntax tree (AST).

The tree representation of the program is used in the semantic analysis phase to
check the program against additional rules, and to build up a symbol table. The symbol
table is a data structure in the compiler which keeps track of all symbols, identifiers
like function or variable names, and their scope.
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In an optional next step the syntax tree and the symbol table can be used together to
perform various optimizations. These optimizations transform the syntax tree to reach
various optimization objectives, such as reduced code size, increased performance, or
efficient use of target-specific functionality.

As last step the syntax tree is used to generate the target code, which is the result of
the compilation process.

We end our discussion of compilers already at this point. For more information
interested readers are referred to [86], [87], and other literature on the topic. (The first
two books also served as reference for this section.) We continue with a description of
the design of the Dia Compiler.

4.3.3 Design of the Dia Compiler

The Dia Compiler is designed following the established patterns of compiler design, as
discussed in the previous section. Figure 4.5 gives an overview of the structure of the
Dia Compiler.

The input to the compiler are two files: the Dia script and a platform configuration file.
While the former is written by the developer, the platform configuration is dynamically
generated by the Dia Engine when it connects to a target system. It contains information
about the observable units in the SoC, the attached event generators, and the on-chip
and off-chip processing elements.

Out of these two input files the compiler generates multiple output files. First, it
generates a configuration file for all event generators in the Dia Engine, which describes
when and where to trigger the event generation, and where to send the resulting
events to. Second, it generates configuration for all special-purpose on-chip processing
elements when transformation actors are mapped to such elements. And third, the
compiler generates C code for all remaining transformation actors, which should be
mapped to general-purpose processing elements (either on-chip or off-chip).

To generate the output from the input the compiler performs multiple steps. First, it
parses the Dia script into a tree intermediate representation (and shows error messages if
the script is syntactically invalid). The compiler then uses the platform configuration to
validate the script, e.g. to check a Cpu addressed in an event specification actually exists
in the target system. Once a script has been validated it can be optimized. The only
optimization which we perform is a semantic analysis to determine if transformation
actors can be mapped to dedicated execution units. Once all mapping options available
the transformation actors are mapped to the available units (as defined by the platform
configuration). Finally, the output files are generated and the compilation process ends.

Based on this high-level overview we shed in the following a light onto individual
subtopic in the design Dia Compiler. For reasons of brevity we do not discuss design
decisions which do not differentiate our compiler design from typical designs. (The
full compiler design is disussed in [80].)
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Figure 4.5: An overview on the Dia Compiler, with its inputs, outputs and internal processing
steps.

4.3.4 From Event Specifications to Event Generator Configurations

Events are specified using the syntax described in Section 4.2.3. First, all functions (as
described in Section 4.2.3.4) are called, and their return value is insert into the AST in
place of the function call. Then all location and data select statements in observation
event descriptions are resolved and verified using the description of the available
observation units in the hardware configuration file. For example, a statement core id

> 2 AND core id < 5 could be resolved to select the CPU cores with IDs 3 and 4. At
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the same time, observation event specifications which do not resolve to event generators
or valid observed units are reported to the developer.

Once the AST has been verified it is used in two ways. First, the event names are
added to the symbol table to make the event names known globally. As a second step a
configuration file for the event generators is produced, which is used by the Dia Engine.
For each observation event the necessary configuration (i.e. the trigger and capture
data configuration) is added to this file.

This concludes the transformation of event specifications, in the next step the trans-
formation actors are compiled.

4.3.5 Translation of Transformation Actors

Transformation actors consist of declaration and a body of C code. The declaration is
similar to a function declaration in C, but differs in that it specifies the direction of
the event input and output arguments, and that it does not have a return type. The
full syntax is described in Section 4.2.4. To be able to perform a deeper analysis of the
transformation actor body, the Dia Compiler parses not only the declaration, but also
the body of the transformation actor according to the rules of the C11 grammar [88].
Hence, after the parsing step the AST contains the full Dia script down to the individual
tokens that make up the body of the transformation actor.

This representation is then verified to check the correct usage of events: only declared
events may be used as input or output. And within the body of the transformation
actor only events which have been specified in the declaration may be used (e.g. in
dia ev wait() or dia ev send() statements). The verification of the full C code is
beyond the abilities of the Dia Compiler, and can be better performed by a fully-
featured C compiler. We therefore do not perform deeper inspection of the body of the
transformation actors.

After the verification step all events and transformation actors are known and the
dataflow graph of the Dia script can be created. In the general case, transformation
actors are mapped to general-purpose processing elements, i.e. an on-chip or off-chip
CPU. Since we require a C compiler for such processing elements to be present, we do
not perform further compilation steps on the body of the transformation actor, but pass
the C code on to a C compiler.

To map a transformation actor to a special-purpose execution unit more work needs
to be performed by the compiler, which is described next.

4.3.6 Type Mapping of Transformation Actors

One of the stated goals of the Dia Compiler is to evaluate the feasibility of mapping
transformation actors to special-purpose execution units. In the Dia Language, a
transformation actor is described using a C dialect, which allows the description of
arbitrary processing in the general case. Hence, in the general case, the code of a
transformation actor can only be executed on a general-purpose processing element,
a CPU. However, in many cases transformation actors describe operations which
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are common, such as counting events, or creating statistics. If such commonly used
transformation actors can be mapped to special-purpose execution units, as opposed to
general-purpose ones, savings in logic area, or increases in performance can be realized.

Before such a mapping can be performed, the code of a transformation actor must be
analyzed if it matches the feature set of the special-purpose execution unit. Such an
analysis cannot be perfect, and does not need to be, as long it is conservative. C is a
highly complex language, which severely hinders (or even prevents) a full semantic
analysis at compile time. False negatives only result in suboptimal mapping decisions,
if general-purpose execution units are available as fall-back. False positives, however,
must be avoided.

The limitations of such an approach are similar to the those of hardware description
language (HDL) synthesis tools: if common (and documented) coding patterns are
followed the code is detected as such and can be mapped to special-purpose units. If
these patterns are not followed general-purpose units are used, degrading the quality
of the result, but not the correctness.

Within the area of compiler research the detection of idiomatic similar code has been
studied extensively under the term “clone detection” [89, 90]. The approaches can be
grouped based on the input and data structures they work on, from a textual analysis,
token-based and tree-based approaches to semantic approaches. The approaches can
further be categorized based on the type of clones they detect. For our use case we
are ideally interested in “type 4” clones, defined as “[t]wo or more code fragments
that perform the same computation but are implemented by different syntactic vari-
ants” [90]. However, as [90] shows, only approaches performing semantic analysis can
reliably detect type 4 clones. Semantic analysis is typically performed using a program
dependency graph (PDG), which is not available in our compiler design.

We therefore chose an approach which is less powerful, but able to work with the
AST-based intermediate representation our compiler has available. Multiple AST-based
clone detection approaches have been proposed, starting with the work of Baxter
et al. [91], which is implemented the CloneDR product1. In our implementation we
built on this concept and used tree pattern matching to identify sub-trees in the AST
which match a set of patterns. A pattern describes code which can be executed by a
special-purpose execution unit. Baxter and subsequent research works describe multiple
optimizations which can be performed on the matching processing to make it more
robust and increase its performance. In line with our goal to create a proof-of-concept
implementation we opted for a “naı̈ve” implementation without such optimizations.

To detect mappable code we perform tree-pattern matching on the AST, or more
specifically tree template matching. This type of tree matching permits the pattern
to contain wildcards (or “don’t cares”). Tree pattern matching has been studied
extensively since the 1960s with many algorithms, optimized for various use cases,
being available [92]. In our work we make use of existing implementations to perform
the tree matching and do not further try to optimize the algorithms.

1https://www.semanticdesigns.com/products/clone/
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1 <waitSpec>

2 <waitSpec>

3 <typeSpecifier> <Identifier> = <additiveExpression>;

4

5 <eventCreate>

6 <Identifier>.<Identifier> = <assignmentExpression>;

7 <sendSpec>

Listing 4.2: A tree template matching a transformation actor which waits for two events, adds
(or subtracts) a payload field within them, assigns the result of the operation to a
new event, and sends it out.

The actual pattern matching is performed in two steps: first all bodies of transfor-
mation actors are selected from the parse tree using a XPath expression. XPath is
a query language for tree structures originally developed to selects parts of a XML
document [93]. However, subsets of it have seen wider adoption to describe a query
on a tree structure. In our case, the XPath expression //actor/compoundStatement*

selects all bodies of transformation actors form the parse tree.
Then various tree pattern templates are tested on each body of a transformation

actor. To simplify the creation of such templates they can be described in textual form
using “tags,” which can represent either a token or a rule reference in the grammar 2.
For example, the template in Listing 4.2 waits for two events, adds (or subtracts) them,
assigns the result to the data of a new events, and sends out this event.

This example highlights two properties of our approach: first, the matching can
performed on different levels of granularity. And second, matching results need to be
further validated.

The tag <additiveExpression> represents a subtree in the parse tree, it can represent,
for example the code 2 + 3 or the code var1 - var2. Using coarse-grained templates
helps to cover more semantically identical, but syntactically different code. But at the
same time coarse-grained templates can also match code which is not semantically
equivalent and cannot be mapped to a given special-purpose unit. Therefore, all
matching results must be validated if they can really be mapped. The more fine-grained
a template is the less validation needs to be performed.

If a transformation actor is mappable to a special-purpose execution unit the respec-
tive subtree is annotated, which makes this information available to the mapping and
output generation steps.

4.3.7 Mapping, Allocation, and Scheduling of Transformation Actors

After the previous compilation steps the application structure is known to the compiler,
and a type mapping has been performed, i.e. it is known to which processing elements
a transformation actor can be mapped to. What is missing is the actual allocation of
execution units, the mapping of the Dia script to them, and the scheduling of their

2For a full description see https://github.com/antlr/antlr4/blob/master/doc/tree-matching.md.

71

https://github.com/antlr/antlr4/blob/master/doc/tree-matching.md


4 DiaSys Design and Realization

execution. Since the problem is NP-complete heuristics need to be applied when
searching for a solution.

We build our heuristic on the following facts and assumptions.

• The activation rate (or the event rate) of a transformation actor is not known at
compile time. Events in DiaSys are generated by observing software and from
user input; the event generation is not controlled by DiaSys, but given by an
uncontrolled external environment. This prevents event rates from being known
at compile time.

• The execution time of a transformation actor is assumed to be unknown at compile
time. Transformation actors are written in a C dialect, which severely hinders the
compile-time analysis with respect to the execution time. Even though mechanism
to determine an estimate of the execution time, or the worst-case execution time,
exist, we currently do not perform this analysis.

• It is assumed that each transformation actor reduces the event rate between input
and output events. This assumption is based on the typical use case of DiaSys,
where each transformation actor aggregates data to create denser, “more valuable”
information.

• Each special-purpose processing element can be used by most one transformation
actor (1:1 mapping). Each general-purpose processing element can be used by
n transformation actors, where n is a static value assigned to a general-purpose
processing element at design time. Hence, for the purposes of the allocation step,
each (physical) general-purpose processing element can be seen as n “virtual”
elements.

For mapping and allocation the Dia Compiler uses this heuristic: First, use all special-
purpose on-chip processing elements. Then use all remaining on-chip processing elements, before
using off-chip ones.

This heuristic brings the processing close to the data sources (i.e. the event generators)
hence potentially reducing the off-chip traffic. And it prefers computationally denser
special-purpose processing elements over general-purpose ones. In case that the
mapping is ambiguous, i.e. in cases where multiple possible mapping options exist,
the behavior is implementation-dependent, i.e. it should be considered to be “random”
by the user of the compiler.

All transformation actors are executed using run-to-completion scheduling. Given
that transformation actor are expected to be small chunks of code which are triggered
repeatedly by incoming events, and that latency within the DiaSys processing model is
generally undefined and hence of less importance, this scheduling algorithm is able to
maximize the utilization of processing elements by reducing scheduling overhead. The
arbitration between runnable transformation actors (i.e. actors which have received a
sufficient amount of events to be executed) is implementation-defined, typically using
a FIFO mechanism.
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The chosen algorithm has limitations especially when multiple mapping options
exist. Consider a case where two transformation actors are described in a Dia script,
both of which can be mapped to a special-purpose processing element. But only one
such special-purpose element is present in the Dia Engine. In this case, it is beneficial
to map the most frequently used transformation actor to the special-purpose unit, and
map the other one to a general-purpose one. Such a decision cannot be made at compile
time as long as the event rates are unknown. A similar scenario is concerned with the
mapping of transformation actors to on-chip or off-chip processing elements. Ideally,
the compiler maps the actors on-chip which yield the largest reduction in off-chip
traffic—a decision which, again, cannot be made at compile time due to unknown event
rates.

To overcome these limitations runtime information needs to be collected and used
in the process. While we expect such dynamic scheduling and mapping to improve
the quality of the compilation result such an investigation was out of scope for a
proof-of-concept implementation of the Dia Compiler.

Until the compiler gains this functionality, the developer can use transformation
actor attributes to explicitly specify the mapping. We currently use this functionality
to force the mapping of some transformation actors to the host PC by specifying the
on host attribute.

4.3.8 Implementation

The Dia Compiler has been implemented to evaluate the design trade-offs between
implementation complexity and performance. Writing a compiler, especially a compiler
which supports a complex high-level language, is a non-trivial task and requires
substantial development effort. To reduce the amount of work put into the “basic” tasks
of compiler construction, i.e. the creation of a lexer, parser and methods to traverse
through trees, several “parser generators” exist. The most widely known free and open
source options are lex/yacc, flex/bison, and ANTLR (“Another Tool For Language
Recognition”) [94]. The Dia Compiler is built with ANTLR version 4 (ANTLR 4),
mainly because it is the most convenient tool to use, a decision which is in line with
the goal to create a proof-of-concept implementation of the compiler. In contrast to
some other options ANTLR combines the lexer and parser generator in one tool, takes
a very general and easy to write grammar as input, and provides a lot of utility classes
to iterate through parse trees and abstract syntax trees. ANTLR 4 supports multiple
“language targets,” i.e. programming languages used to write the compiler in. (As of
mid-2018 Java, C#, Python 2/3, JavaScript, Go, C++ and Swift are supported.3) When
the development of the Dia Compiler started only the Java target was usable, hence the
Dia Compiler is written in Java. Even though the code should (through its use of Java)
run on any operating system, only Linux x86 64 systems were used in the development
phase and hence are the only tested target.

3https://github.com/antlr/antlr4/blob/master/README.md

73

https://github.com/antlr/antlr4/blob/master/README.md


4 DiaSys Design and Realization

The convenience of ANTLR does not come for free: the lexing and parsing is typically
slower than compared to other tools, and of course significantly slower than a hand-
written parser/lexer. (Since we created no alternative implementation this claim has
not been validated by us, but is based on the experience other developers made with
ANTLR.) However, the performance we get is within reasonable bounds and not
critically deteriorating the user experience (as shown in the evaluation in Section 4.3.9).

An extremely helpful feature of ANTLR which our implementation makes extensive
use of is its support for tree listeners and visitors. Instead of writing large amounts of
code to iterate over a tree structure, listeners and visitors make it easy to perform actions
based on the presence of certain tokens in the parse tree. Additionally, the built-in
support for using XPath to search in the parse tree, and template matching to perform
subtree matching significantly simplifies the implementation of the special-purpose
mapper.

4.3.9 Evaluation

The Dia Compiler was created as a proof-of-concept implementation to evaluate where
the bottlenecks and challenges lie. Our evaluation (beyond the correctness of the
result) focused on the compilation performance and especially on the mapping of
transformation actors to special-purpose execution units.

4.3.9.1 Compiler Performance

A Dia script is compiled on the fly when it is executed, after the connection to the target
system has been established (only then the available observation units are known).
Therefore, the compiler must be fast enough to not impact the developer productivity.

We evaluated the execution time and memory usage depending on the size of the
input Dia Script.4 A small Dia script of roughly 1 kB takes less than 1 s to compile. This
time increases linearly with the size of the input script. The compiler throughput, the
size of the input Dia script divided by the execution time, saturates at approximately
75 kB/s when processing multiple megabyte of data.

The memory usage in our measurements stayed below 200 MB, but did not show a
clear dependency on the input file size. We can only speculate as to the reasons, but
the nondeterminism of the Java garbage collector might play a role.

Overall, we can conclude that the compiler, even though it is not particularly fast, is
sufficiently fast for our use case. Typical Dia scripts in our evaluations were between
1 kB and 10 kB in size, resulting in a compilation taking not more than 1.5 s.

4.3.9.2 Effectiveness of Processing Element Type Mapping

Section 4.3.6 discussed the ability of the Dia Compiler to identify code constructs in a
transformation actor which can be mapped to special-purpose execution units (such as

4The measurements were performed on a x86 64 Intel Core i7-3770 CPU running at 3.40 GHz with 16 GB
memory being available. The system ran Ubuntu Linux 16.04.
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dedicated counters). Since, as discussed, a full-blown semantic clone detection is not
feasible within the scope of this work, we used an approach based on tree matching.
In this approach code templates are compared with the user code to determine if it
follows a common structure which is known to be executable by a special-purpose unit.

To gain initial insight into the effectiveness of this approach we performed a limited
user study in which participants were asked to write a part of a Dia script to fulfill a
given task. The answers were then collected and evaluated to answer two questions.
First, do the templates we created before the study match the code written by the users?
And second, how would the templates need to be modified to match the user’s code?
How many templates would be needed to match all user inputs?

The questions were handed out on paper, and the participants were informed about
the goal to find differing syntax for coding the same algorithm. In the first part the
Dia Language was introduced by giving an example of how to write a script which
implements an event counter (both with code and textual explanations). Then two tasks
were given.

The first task asked the participant code a transformation actor which calculates a
moving average with a window size of three. The code to wait for input events, and
to send out output events, was already given. Missing was code to remember the last
three values of an event’s data and to calculate the average out of it.

The second task asked the user to write a complete transformation actor to calculate
the difference between the payload of two events.

The last part of the questionnaire asked for a self-assessment of the participant. Did
he/she understand the question? How difficult did they find reading and creating a
script? Finally, the participants were asked to rate their programming experience and
state their main programming language.

The tasks were chosen with the focus on two aspects. Calculating a moving average
in C syntax can be performed in various ways. The primary goal of this task was to
evaluate how many syntax options the users would come up with. The calculation
of a difference between two variables can be performed in less ways. Since this task
required the participant to write more “boilerplate” code, i.e. the full transformation
actor, our evaluation focus in this task was the matching performance when considering
larger code fragments.

In the study eight (8) people participated, all of which were either staff members or
students at the Chair of Integrated Systems. Half of the participants stated between
one and three years of programming experience, the other half had at least three years
of experience. All but one participant uses C or C++ as their primary programming
language. Nobody found the process of reading or writing a Dia script “hard,” and
everybody with three or more years of programming experience found it to be “easy.”

Since all coding was done on paper, the answers were edited for minor mistakes (such
as omitted semicolons (;) to make them compilable. In the first task one submission
had to be excluded from the evaluation as the code did not compile. The code was then
compiled using our compiler and the matching performance was observed.

Our first research question was: “How many solutions are matched by the predefined
set of templates?” For the moving average actor a single template matched 29 percent
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(2 out of 7) solutions. For the difference actor a single template matched 63 percent (5
out of 8).

The second research question was: “How many templates would be needed to match
all submitted code?” For the moving average actor, the solutions were differing so much
that only an individual template for each solution would have created a 100 percent
match. For the difference actor two templates would have already resulted in 88 percent
of match rate, while three templates would have created full coverage.

The results can be interpreted in various ways. First, non-novice developers experi-
enced in C/C++ did find reading and writing Dia scripts easy. This indicates that our
choice of syntax for the transformation actors is intuitive for this group of developers.

Second, the matching of code to describe simple constructs can be performed reliably,
as the difference actor task showed. With only three fine-grained templates all given
answers could be matched; by using fine-grained templates only a small amount of
validation needs to be performed on a successful match.

Third, matching of more complex algorithms, such as the moving average actor,
shows the limits of the tree pattern matching approach for the Dia Language. The
conclusion could be two-fold: either the language provides too little orthogonality,
i.e. allows too many syntactic variants to describe identical semantic concepts. Or the
matching approach is not powerful enough, and a semantic clone detection approach
could be used.

Finally, while the survey gave interesting insights, its conclusions cannot be general-
ized. The sample size was very low (eight participants), and the participants do not
represent the full spectrum of potential users of DiaSys. Additionally, the information
at the beginning of the questionnaire that we look for syntax variations might have
invited participants to write more “exotic,” but syntactically valid, code. This was
confirmed in personal interviews after the evaluation was performed.

4.3.10 Summary: The Dia Compiler

The Dia Compiler translates Dia scripts, written in the Dia Language, into code that can
be executed by the Dia Engine. The compiler was designed and implemented to show
the general feasibility of the processing chain from Dia scripts to their execution. As a
secondary goal, the compiler serves as an experimentation platform to gain insight into
the optimizations which can be performed on a Dia script. In particular we evaluated
the identification of transformation actors describing given algorithms with the goal to
map them to special-purpose execution units in the Dia Engine. The implementation
was done in Java using the ANTLR compiler framework and targeting Linux x86 64

systems.
The evaluation shows that the compilation process can be performed fast enough

not to hinder the diagnosis workflow of a developer. Furthermore, a small user study
showed that the identification of small mappable code fragments can be done reliably
using a tree pattern matching approach. However, for more complex algorithms this
approach does not result in good matching performance. This result could be addressed
in two ways: The Dia Language could be modified to provide fewer options in its syntax

76



4.3 The Dia Compiler

to describe the same algorithm. Or a different approach to detect code clones could be
used, most likely also creating a need for an additional intermediate representation.
As both mitigations are not exclusive, it is likely that a sweet spot lies somewhere in
between the two approaches.

This concludes our look at the Dia Compiler. The output of the compiler is consumed
and executed by the Dia Engine, which is discussed next.
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4.4 The Dia Engine: The Workhorse of DiaSys

The Dia Engine is the work horse of DiaSys, it is the platform on which Dia scripts are
executed. For that the Dia Engine must do two things. First the software execution on
an embedded system must be observed to collect data. And then the collected data
must be analyzed as described in the Dia script.

The observation of the software must by nature happen where it is executed: on the
chip. The data analysis, however, can theoretically be performed anywhere: on the
chip, on a host PC, or on a dedicated device in-between (an option we do not discuss
further). The Dia Engine provides this flexibility in its design and its implementation.

During the design and development process we recognized that the features of the
Dia Engine are useful in other projects and for other people as well. We therefore created
the Open SoC Debug (OSD) project with the primary goal to create a specification
for a reusable debug and tracing system, together with an open source reference
implementation. In its current form, the Open SoC Debug (OSD) specification is closely
aligned with the Dia Engine described in this thesis. Hence the description of the Dia
Engine in this thesis focuses on the novel and “interesting” aspects of the architecture
and its implementation.

The full specification of OSD is available online [95], as are the reference imple-
mentation of the software and hardware components. The web site http://www.

opensocdebug.org links to all available material, download links, and documentation.

The first part of this chapter presents the overall architecture of the Dia Engine and
motivates its design decisions. The second part then describes the implementation of
the architecture both in hardware and in software, and discusses the implementation-
specific design decisions which have been made.

4.4.1 Architecture of the Dia Engine

The Dia Engine collects and analyzes observation data from software executed on an
embedded system. What data is collected where, and how and where it is processed
varies heavily between implementations and use cases. We therefore designed the
Dia Engine in a very flexible way. All data gathering and processing is performed
by components called Debug Modules. Debug Modules can communicate with each
other over the Debug Network. A number of Debug Modules are provided with the
Dia Engine to cover the most common use cases, e.g. the observation of a CPU, or the
processing of observation data.

As an introduction Figure 4.6 presents the architecture of the Dia Engine in an
exemplary configuration. The shown setup consists of multiple on-chip and off-chip
Debug Modules, which are connected by the Debug Network. The Debug Network is
segmented into two subnets, one on-chip subnet (left) and one off-chip subnet (right).
The subnets are connected by a gateway.

The example includes various types of Debug Modules. Within each subnet a Subnet
Control Module (SCM) provides management and discovery functionality. The Core
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Figure 4.6: The architecture of the Dia Engine in a simple exemplary setting with two subnets
connected through a gateway. Each subnet is shown with the required Subnet
Control Module at the local address 0 and several exemplary Debug Modules. See
Figure 4.12 for a more advanced scenario with multiple cores.

Event Generator and the Noc Router Monitor are Debug Modules which collect data
from components in the observed system, here a CPU and a Network-on-Chip (NoC)
router. The Diagnosis Processor, which can be placed on-chip or off-chip, processes the
observation data, and the Event Logger shows the analysis results to a developer.

The example in Figure 4.6 provided an overview of the Dia Engine. In the following
we discuss the individual components in more detail.

Debug Modules are general encapsulations of data gathering or processing function-
ality within the Dia Engine. Debug Modules can be used for widely different purposes:
they can observe units in the SoC, e.g. a CPU, but they can also process observations or
control the target system, e.g. to reset it or to initialize its memories. The architecture of
the Dia Engine does not mandate where Debug Modules must be placed or how they
are implemented: in hardware or in software, on-chip, off-chip, or in another device.

All Debug Modules are connected through the Debug Network. The Debug Network
is a packet-switched, connectionless network which provides bi-directional and directed
(unicast) communication between Debug Modules. A DNP address uniquely identifies
the Debug Module within the network.

The Debug Network does not mandate a specific network topology. For implementa-
tion and routing purposes the Debug Network can be segmented into subnets, which
are connected through gateways. In the most common case subnets are used to separate
the on-chip part(s) of a Debug Network from the off-chip (host) part.

Within the Debug Network the Debug Network Protocol (DNP) is used for data
exchange. This network protocol can be layered on top of other communication
protocols and used with various physical interconnect types. For example, DNP can be
used on-chip over a NoC with low overhead, or on a host PC on top of TCP/IP.
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Figure 4.7: Block diagram of a Debug Module. Only the base registers are required, all other
blocks (shaded in the figure) are optional and their use depend on the specific
purpose of the Debug Module.

The data transferred within the Dia Engine falls into two categories with distinct
characteristics: control and streaming traffic. Synchronous, request-response based
communication between Debug Modules is characterized as control traffic, while the
transfer of observation data, e.g. from a CPU, are best described as streaming traffic.
The Debug Network and the DNP are designed to handle both types of traffic within
the same network and protocol while taking care of the individual needs of the two
traffic types.

Control communication between Debug Modules is modeled as register access, which
is performed over the Debug Network by register access packets. Event packets are
used to exchange unsolicited (“asynchronous”) and often high-bandwidth data between
Debug Modules. The data format specified within the DNP for event packets places
few restrictions on its contents. This allows Debug Modules to efficiently pack data in
a way which reduces its size and hence increases bandwidth utilization.

This concludes the overview of the Dia Engine architecture. The following sections
take a closer look at the Debug Network, the Debug Network Protocol, and associated
infrastructure components, before moving on to implementation topics.

4.4.2 Debug Modules

Most functionality provided by the Dia Engine is encapsulated within Debug Modules.
Debug Modules share a common structure, as shown in Figure 4.7. An interface to the
Debug Network is present in every Debug Module. Over this interface both register
access and event data can be exchanged. However, only accesses to certain registers,
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called base registers, must be handled by every Debug Module. The 200 base registers
are the lowest common denominator between all Debug Modules. Three base registers
are used to describe the module through a vendor and module identifier and a version
number. A further base register is used to activate and deactivate sending of event
packets from the module.

Debug Modules often extend the base register set with additional registers for
module-specific functionality. Up to 65336 register addresses are available for this
purpose, and module-specific registers can be 16, 32, 64 or 128 bit wide. (Base registers
are always 16 bit wide.)

All remaining blocks in a Debug Module are optional. Depending on how the Debug
Module is used it may or may not send or receive event packets. It may interface with
other components (e.g. a CPU on a chip, or a graphical user interface on a desktop PC),
or it may be self-contained (e.g. in case of a Debug Module which analyzes observation
data). We present specific implementations of Debug Modules later in this chapter.

4.4.3 The Debug Network: Communication Within the Dia Engine

The Debug Network provides bidirectional any-to-any connectivity between Debug
Modules, even across chip and device boundaries. It is a connectionless, packet-
switched network in which data is exchanged according to the rules of the Debug
Network Protocol (DNP).

The Debug Network is designed to provide interoperability between Debug Modules
while leaving enough room for optimizations when implementing it (e.g. on a host PC
or within a SoC). For this reason all implementations of the Debug Network need to
guarantee the following properties.

• The network must guarantee the delivery of every packet if the destination is
generally reachable. All injected packets must reach its destination after some
time, no packets may be dropped.

• The network must guarantee strict ordering of packets with the same (source,
destination) tuple. If source A sends multiple packets to destination B, the packets
must arrive at B in the order A has sent them. No ordering guarantees must be
given regarding packets sent from, for example, source C to destination B.

Within those boundaries implementations have significant freedoms.

• No specific network topology is mandated. (We have implemented both star and
ring topologies.)

• No specific routing algorithm is required, it is up to the implementer to choose a
suitable one.

Three aspects of the Debug Network deserve further discussion: subnets, the subnet
controller, and gateways.
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4.4.3.1 Segmenting the Debug Network Into Subnets

To a Debug Module the whole Debug Network is opaque in that it transparently
provides any-to-any connectivity between all Debug Modules, wherever they live.
Internally, however, the Debug Network can be segmented into “islands” called subnets.
Splitting up the Debug Network significantly eases its implementation. Within a
subnet an implementor can freely choose a network topology, routing algorithm, and
the protocol stack below the DNP. (The last aspect is discussed in more detail in
Section 4.4.4.2.)

In the most common scenario two subnets are used: the on-chip segment of the
Debug Network is organized as a first subnet, and the software on the host PC is
organized as a second subnet. However, subnets have uses beyond such a simple
scenario. They are in general useful wherever a system should be seen as a whole
from a debug point of view, but where it in reality consists of different connected
components, potentially even provided by different vendors. One such advanced
scenario is sketched in the discussion in Section 4.4.3.4.

Debug Modules are addressed by their DNP address, which contains the subnet as
part of the address. This makes it straightforward for a router to decide if a packet
should be routed within its own subnet, or sent to another subnet. If another subnet
should be reached the traffic is sent through a gateway.

4.4.3.2 Gateways in the Debug Network

Gateways connect the different subnets of the Debug Network. A gateway is a point-to-
point connection between two subnets (typically between two “gateway routers” in a
subnet). Gateways are invisible to the Debug Modules as they are not assigned a DNP
address.

In addition to connecting subnets, gateways can be used to convert data between
transmission protocols. In the typical example of two subnets, one on-chip and one on
a host PC, the off-chip connection is hidden behind the gateway. On the chip side the
gateway is connected to the debug NoC, and on the host side the gateway connects to a
TCP network. All necessary data conversion in between is handled in a way that is not
visible to the Debug Network.

In addition to subnets and gateways, Debug Networks require a third component:
the Subnet Control Module.

4.4.3.3 The Subnet Control Module

The Subnet Control Module (SCM) is a Debug Module which is always present at local
address 0 of a subnet, and which provides subnet-wide functionality. This functionality
can be grouped into three categories: description, enumeration and implementation-
specific functions.

The SCM describes a subnet through an implementation-defined vendor and device
identifier. A debugger can use this information to modify its behavior depending on
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which target it connected to, or to simply display it to a user. The current status of the
chip can also be part of the description: “Are the clocks in the system running?” “Is
the chip in a secured mode?”, etc.

Enumeration is the process by which Debug Modules learn which other Debug
Modules are present in the network. The SCM is the only module in a subnet which is
always present and has a well-known address. It therefore facilitates the enumeration
process by serving as a first point of contact and by keeping track of all other Debug
Modules within the subnet.

Finally the SCM can be used to control subnet-wide functionality. The exact function-
ality is implementation-defined. For example, in our on-chip implementation of the
Dia Engine the SCM can reset the observed system and stall and start its CPUs.

With the presentation of the SCM we completed our journey through the Debug
Network. The next section continues by motivating key design decisions and widens
the view to how the Debug Network enables novel functionality.

4.4.3.4 Discussion: The Design of the Debug Network

The presented architecture of the Debug Network is tailored towards the needs of the
Dia Engine and differs significantly from today’s commercial approaches for debug
connectivity as discussed in Section 2.2.1. The two main differentiators are the use of
packet-switched, connectionless communication, and the removal of the strict distinc-
tion between host and device. Both design decisions are primarily motivated by the
desire to enable a transparent mapping of data processing elements to the host, or to
the device.

The first differentiator is the use of packet-switched, connectionless communication,
both of which can be explained by the gained flexibility. If for example a Debug Module
wants to send observation data to a different processing unit it only needs to change
the destination address of its data packets, thanks to the packet-switched nature of the
network. The module also does not need to initialize or tear down communication
channels, communication can start immediately.

This flexibility is paid for with larger packet overhead, since every packet needs
to contain full routing information. (In our design the routing information is the
destination DNP address.) We minimize the impact of this overhead in the design of
the data exchange format, which makes it possible to reuse the routing information
across protocol layers. For example, in our implementation the destination address
is used on the DNP layer as well as on the NoC transport layer. This optimization
is further discussed as part of the hardware architecture in Section 4.4.5.2. If in the
future the overhead of certain transmission paths should be reduced further, routers
can be extended to create a “fast path” between two nodes, essentially creating a fixed
communication channel between two nodes, which allows removing the source and
destination information from the Debug Packet during the transmission (and adding it
back at the destination node to restore the full packet).

As a second main differentiator the Debug Network architecture does not give special
meaning to a SoC or to the host PC. Instead of hard-coding their semantics, the Debug
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Network consists of multiple subnets, all of which follow the same semantics. Beyond
the typical scenario of two subnets (one host subnet, and one on-chip subnet), more
advanced scenarios are possible, for example the following two.

• Diagnosis beyond die or chip boundaries: The integration of multiple chip dies
within a package, or the close coupling of multiple chips to achieve a given
functionality is becoming more common. The closer the coupling, the closer are
also the interactions in software, and the more pressing is the need to perform
software diagnosis across die or chip boundaries.

• Dedicated diagnosis dies or chips: Already today Infineon (and potentially
other chip vendors) produce two versions of their SoCs. The standard version
contains only the SoC itself in a package, while special debug chips (called
“emulation device” by Infineon) bond two dies together within one package: the
SoC itself, and a reusable die containing advanced tracing functionality and
memory. Similarly a SoC die could be produced containing a subnet of Debug
Modules focusing on data collection. A second die could then provide a subnet of
Debug Modules performing advanced data analysis. Cost savings can be realized
by reusing this “diagnosis die” for multiple SoCs, and only packaging it with
the SoC when the advanced analysis functionality is actually needed (e.g. for
development chips).

Both example scenarios show how the design of the Debug Network fosters reuse,
helps to decrease cost, and increases insight into today’s complex SoCs.

The design of the Debug Network, which was motivated in this section, enables
any-to-any connectivity between Debug Modules. But not only connectivity, but also
a “common language” is required for a successful communication. This common
language, the Debug Network Protocol, is described next.

4.4.4 The Debug Network Protocol

The Debug Network is designed to enable seamless communication between Debug
Modules, wherever they reside (on-chip, off-chip), or how they are implemented
(in hardware or in software). The network itself provides connectivity between the
components, which is is a necessary prerequisite, but not sufficient. For successful
communication the components need to speak a common “language,” they need
to use the same communication protocol. For the purposes of the Dia Engine the
communication protocol must fulfill three requirements.

1. The protocol must provide a common data exchange format for both (request-
response) control traffic, as well as for asynchronous, streaming traffic.

2. The data exchange format must be agnostic to how a Debug Module is imple-
mented or where it resides.

3. It must be possible to layer the protocol on top of other transmission layers.
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Figure 4.8: Structure of a 16 bit wide DNP address. The most significant 6 bit represent the
subnet address, the remaining 10 bit represent the (subnet-) local address.

Based on these requirements we created the Debug Network Protocol (DNP). In
addition to the data format the specification also defines a communication protocol, the
rules which guide the interaction between Debug Modules. In the following we start
with a discussion of the general aspects of the DNP: how Debug Modules are identified
within the network, how DNP is layered on top of other protocols, and how the DNP
supports the segmentation of the Debug Network into subnets. This discussion is
followed by an in-depth description of the data format and protocol rules governing
the DNP.

4.4.4.1 Addressing in the DNP

Each Debug Module is assigned a DNP address which uniquely addresses it. To ease
the routing of data between subnets a DNP address is split into two parts: a subnet-local
address and a subnet address. (This approach is comparable to the implementation
of subnets in TCP/IP.) Figure 4.8 shows this split for a single DNP address. The
most significant 6 bit of a 16 bit wide DNP address identify the subnet and are hence
called “subnet address.” The remaining 10 bit are called “local address” and identify a
Debug Module within a subnet. This structure enables routers within the network to
easily determine which packets should be routed within the own subnet, and which
packets must be routed through a gateway to reach another subnet. By assigning
10 bit to the local address each subnet is restricted to 210 = 1024 Debug Modules.
The complete network can consist of 26 = 64 subnets, and a total of 216 − 26 = 65472
non-infrastructure Debug Modules (excluded is one Subnet Control Module for each
subnet).

4.4.4.2 Layering of the DNP

Figure 4.9 shows a typical layering of protocols when a Debug Module on a chip
communicates with a Debug Module on a host PC. On the chip the data is transmitted
over a NoC, where each DNP packet is transmitted as one NoC packet. To transfer
the data between the chip and the host each DNP packet is wrapped in a Debug
Transport Datagram (DTD). The DTD data format is designed for efficient point-to-
point transmission of debug packets in a stream. A DTD stream can be transmitted
over any off-chip interface a chip provides; in the exemplary setup we used USB 3.0.
Not shown in the figure are the protocol layers that Universal Serial Bus (USB) itself
consists of. Once the data stream reaches the host PC a DNP packet is wrapped inside
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Figure 4.9: An exemplary layering of protocols in the DNP for a common communication
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Figure 4.10: Structure of a Debug Packet. The first three 16 bit words are the header, consisting
of the destination address, the source address, the packet type and the packet
subtype. All remaining words are occupied by payload.

a ZeroMQ message. ZeroMQ is a lightweight communication protocol which itself
builds on top of and abstracts from various other protocols, such as TCP.

While the shown layering in Figure 4.9 is typical, it is in no way the only option: all
layers below the top DNP layer can be replaced, and they often are. For example, our
implementation of the Dia Engine can also make use of UART, JTAG or Ethernet for
off-chip communication. On the host TCP can be replaced with, for example, in-process
or inter-process shared memory communication for increased performance.

4.4.4.3 Debug Packets, The Common Data Exchange Format of the DNP

The DNP describes a common format for all data exchanged within the network called
Debug Packet. Debug Packets are structured as sequence of 16 bit words. Unless
specified otherwise the byte ordering is big endian.

The structure of a Debug Packet is shown in Figure 4.10. The first and second word
are the DEST and SRC fields, containing the DNP address of the packet destination and
the packet source. The third word is used for packet flags. The two most significant bit
(TYPE) specify the packet type, followed by four bit for the packet subtype (TYPE SUB).
Ten bit remain in the third data word which are currently unused and reserved for
future extensions. Starting with the fourth data word is the packet payload, which may
be empty. The number and semantics of the payload words depend on the packet type
and possibly its subtype.

Two packet types are defined: TYPE = 0b00 (REG) is used for register access packets,
while TYPE = 0b10 (EVENT) is used for event packets. These two packet types enable
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Figure 4.11: An example scenario showing the successful read access of a 32 bit wide register at
the module at DNP address 0x0042 by module 0x0041.

distinction between the two main traffic types: register access packets are used for
request-response oriented, low-volume traffic, while event packets are used for unso-
licited (asynchronous) and often high-volume messages. Typical use cases for event
packets are signaling between Debug Modules (e.g. “interrupt x was fired”) and the
streaming of observation data between modules.

The maximum number of words that make up a Debug Packet can be limited
by the implementation. This maximum length must be at least 12 words, i.e. all
implementations must support Debug Packets consisting of 12 words or less. Specifying
a maximum packet length is useful if an implementation needs to buffer a full packet
somewhere in the system. Knowing the maximum size of a packet allows for examples
chip designers to instantiate a buffer in hardware which is in any case able to hold a
full packet. The requirement to set this length to at least 12 words is due to the fact
that register access packets can be up to 12 words in size, and splitting such packets is
not allowed by the protocol. The maximum packet length for any given subnet can be
queried from the Subnet Control Module.

In the following sections the two types of Debug Packets are discussed in detail:
register access packets and event packets.

4.4.4.4 Accessing Debug Registers

Every Debug Module can be configured, controlled and described by accessing a set
of registers called debug registers. These registers can be read and written over the
Debug Network through standardized messages, which are Debug Packets of the type
REG (coded as 0b00). Accessing a debug register requires two packets, a request and a
response packet as shown in the example in Figure 4.11. In this example, a 32 bit wide
debug register inside the Debug Module with the DNP address 0x0042 is read from
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the Debug Module at address 0x0041. The operation is successful, and the requested
data is returned.

Depending on the type of access (read/write and register width) and the result of the
operation (success or error) different request and response packets have been defined.
The different packets can be distinguished by their TYPE SUB value, a full list of which
is available in the Open SoC Debug specification [95].

Register accesses are synchronous operations: a sender may not initiate another regis-
ter access request until the response has been received. If asynchronous communication
is required event packets can be used, which are described next.

4.4.4.5 Event Packets, a Multi-Purpose Data Container

Debug Packets used for register accesses are defined strictly from both a protocol and a
data format point of view. For event packets that is not the case: the payload of an event
packet can be used for any purpose, and there are no rules how and when packets are
produced or consumed. This makes event packets a suitable container for a wide range
of communication between debug modules. Typical uses include the transmission of
asynchronous interrupt messages, the streaming of observation data, or the exchange
of other large amounts of data between modules (such as memory contents).

Event packets set the TYPE field in the packet header to EVENT (coded as 0b10). Two
packet subtypes (values of TYPE SUB) are defined: EV CONT and EV LAST.

The two subtypes are used to support split event transmissions. As discussed
earlier, Debug Packets are limited to an implementation-defined maximum size. Split
transmissions transmit data over the Debug Network which does not fit into a single
packet, but should still be kept together as if it was one packet. In this case the payload
is split into multiple packets with identical source, destination and type fields. The first
packet in a split transmission sets TYPE SUB to EV CONT, signaling that more packets are
to follow. Only the last packet in the transmission sets TYPE SUB to EV LAST.

Supporting split event transmissions within the DNP significantly eases the imple-
mentation and documentation of Debug Modules. Since their semantics are defined
in the scope of the DNP split packets can be handled in a generic fashion within a
Debug Module. This makes the existence of split packets “invisible” to a sender or
receiver on a higher level. Event packets which are too long can be split before the
transmission, and reassembled upon reception, making it possible to describe event
packets of arbitrary length according to the needs of the data transmission, and without
taking care of the packet length restrictions.

The discussion of the event packets completed the implementation-agnostic overview
of the Dia Engine. The following sections move closer to the implementation by
presenting the hardware and software architecture, followed by an even deeper dive
into the implementation itself.
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Figure 4.12: The hardware of the Dia Engine shown in an exemplary configuration. One
compute tile is observed, which consists of two CPU cores, a distributed memory
and a network adapter. The observed system uses a bus interconnect within a
tile, and a NoC interconnect between tiles. Each CPU core is observed by a Core
Event Generator (CEG) module, the NoC router by a NoC Router Monitor (NRM).
The Dia Engine can process observation data on-chip in the Diagnosis Processor
(DIP). The on-chip debug communication is handled over a unidirectional ring
NoC (blue). The Host Gateway connects the on-chip subnet of the Debug Network
with a host PC.

4.4.5 On-Chip Hardware Architecture of the Dia Engine

We implemented the Dia Engine in hardware, to accompany the observed system on a
chip. This section presents the architecture of the hardware design; implementation-
level details are discussed in Section 4.4.7.

The hardware architecture of the Dia Engine is designed with reusability in mind.
The modularity and flexibility of the Dia engine overall architecture is reflected in the
hardware design, and ultimately in the implementation. All components have clearly
defined interfaces to make it easy to replace them with compatible implementations,
and common functionality is encapsulated and reused.

Figure 4.12 introduces the hardware architecture of the Dia Engine by example. In
this example a tiled system is observed with one tile being shown. The tile contains
two CPU cores which can access a distributed memory block and a network adapter
over the tile-internal bus interconnect. The network adapter connects the tile with other
tiles over a NoC.
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To observe the software execution on this system the Dia Engine adds three Debug
Modules: two Core Event Generators observe the software execution on the CPU cores,
and a NoC Router Monitor (NRM) observes the NoC router. The observation data
can be processed on-chip within the Diagnosis Processor (DIP). All Debug Modules
can communicate with each other over the on-chip debug interconnect, which is
implemented as unidirectional ring NoC (blue). Also shown are the debug NoC routers
together with their DNP address. From a Debug Network perspective the on-chip
debug interconnect is a subnet, which requires a Subnet Control Module (SCM). In our
example the on-chip subnet is given the subnet address 0. The router at address 0.0 is
different from the other routers in that it has not only ports for input, output and local
traffic, but also a gateway port. All packets which do not have a destination within the
local subnet 0 are sent through the gateway port to the host gateway. This component
converts NoC packets into Debug Transport Datagrams (DTDs) and ultimately sends
this data to the host. Incoming data from the host is likewise unpacked from DTDs
into NoC packets and injected into the on-chip ring NoC.

At this point we could end the discussion—but the Dia engine can do more. The
Memory Access Module (MAM) highlights how the Dia Engine supports software
development beyond the collection and analysis of observation data. During the
development it is often necessary to access the memories of the system, typically
to load software into it. The Memory Access Module (MAM) gives developers this
memory access, which is, of course, an intrusive operation and should not be done
during the production use of the SoC.

Based on this introduction by example the following sections take a closer look
at the key components of the hardware architecture: Debug Modules, the on-chip
interconnect, and the off-chip connectivity.

4.4.5.1 On-Chip Debug Modules

On-chip Debug Modules closely follow the architecture described in Section 4.4.2
regarding their registers and interfaces to other components in the system. These topics
are not discussed here any further. Instead we focus on two issues, both of which are
related to time: clocking and synchronous behavior.

Larger SoCs often consist of multiple clock domains, chiefly to reduce the power
consumption and to cater to a thermal budget. Since the Dia Engine (and particularly
the Debug Network) spans across the whole chip, it also spans across multiple clock
domains. This makes it necessary to cross clock domain boundaries at some point.
While in theory the clock domain crossing can be performed anywhere, the recom-
mended crossing opportunity exists within a Debug Module at the network interface.
In this case the on-chip debug NoC is part of a different clock domain than the Debug
Module, which is then in the same clock domain as the unit it observes. Crossing the
clock domain boundary at this point is recommended because the network interface is
a well-defined and common interface to all Debug Modules. Its FIFO characteristics
simplify the building of the clock domain crossing hardware from standard and mature
IP. Clock domain crossing are easy to get wrong and are notoriously hard to test.
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Figure 4.13: A Debug Packet when transferred over the on-chip NoC. Data words are mapped
directly into NoC flits, an additional last bit indicates the start and end of the
packet on the NoC. The NoC routes the packet based on the DEST field, i.e. the first
flit of the packet.

Building on top of tested components, and increasing reuse are essential for productive
engineering and high-quality results.

The second time-related topic in the implementation of Debug Modules is their role
as “synchronous island.” The architecture of the Dia Engine (like all of DiaSys) is
designed to cope well with large asynchronous SoCs. We achieve this goal by requiring
no timing relationship (ordering) between events generated from different sources.
However, in some cases having a well-defined time relationship between two data items
is necessary. For example, the CPU Event Generator must be able to report the contents
of a CPU register at exactly the time when a given program counter was executed.
Within a Debug Module (and only there) collecting data with such a well-defined
timing relationship is possible. Section 4.4.8 shows based on the example of the Core
Event Generator how a specific implementation of that concept is realized.

4.4.5.2 On-Chip Debug Interconnect

The on-chip interconnect connects all Debug Modules and forms the on-chip subnet
of the Debug Network. In our implementation we chose a unidirectional ring NoC as
on-chip interconnect. The NoC is buffered, packet-switched and wormwhole routed.
Flits are 16 bit wide and each hop takes one cycle, which results in a NoC bandwidth
of up to 2 byte/cycle.

These design choices are driven by our desire for a simple design which fulfills the
performance and resource consumption constraints of our evaluation platform. (The
evaluation platform is presented in more detail in Section 4.4.7 on page 98.) Depending
on various factors, including the number of observed units, their operating frequency,
and the chip’s target market the design choices will likely differ.

In Section 4.4.4.2 we discussed how the DNP can be layered on top of other protocols.
When being exchanged over the on-chip NoC interconnect one Debug Packet is wrapped
into one NoC packet. NoC packets consist of a sequence of flits, in every clock cycle one
flit is transferred one hop. In typical network protocol stacks (such as TCP/IP/Ethernet)
each protocol layer adds its own headers to a packet, thereby increasing the packet
size and the overhead (i.e. the difference between transmitted data and payload). We
optimized the transmission of DNP over NoC to result in only very little overhead
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Figure 4.14: A Debug Transport Datagram (DTD) is wrapping a Debug Packet for transmission
over the off-chip interconnect.

through multiple design decisions. First, we have a one-to-one mapping between Debug
Packets and NoC packets, i.e. every NoC packet contains one Debug Packet. Second,
the data width of the NoC (16 bit) matches the word width of a Debug Packet. Third,
the destination address used to address network participants on the DNP layer is equal
to the address in the NoC. The last property makes it possible to reuse the DEST field in
the first word of a Debug Packet as destination address within the NoC (and hence as
routing information).

The only information missing in a Debug Packet is the length of the packet, i.e. the
number of words it consists of. Within the NoC this information is added in the form of
a last bit added to every data word, indicating if the word is the last word in a packet.
With this additional bit a flit is 17 bit wide, as shown in Figure 4.13. Together the
optimizations reduce the overhead of transferring a Debug Packet over the NoC to only
6.25 percent, or one additional wire, independent of the size of the packet. Since no
modifications of the payload in the data stream are necessary a simple implementation
in hardware is possible.

4.4.5.3 Off-chip Connectivity

After gathering observation data and possibly performing initial processing on-chip
the data is typically sent to a host PC. The host PC also communicates with the chip
to initiate and control the analysis. All this communication is performed through the
off-chip interface. Unfortunately “the” off-chip interface does not exist: every device
provides different connectivity options, such as serial connections (UART), Ethernet
or USB. With those different physical interfaces also come different protocols which
must be followed to exchange data. To keep the hardware architecture of the Dia
Engine flexible and retargetable to different devices we abstracted the off-chip interface
through a FIFO interface. The actual off-chip connection is wrapped into a module
which provides two FIFOs as an interface, one for receiving data (RX) and one for
transmitting data (TX). The FIFOs are 16 bit wide, hence data needs to be provided as
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16 bit wide data stream. Preparing data for transmission from and to the FIFO interface
is the job of the host gateway.

The host gateway, as shown in Figure 4.14, connects on the one side to the gateway
router of the debug NoC. (Figure 4.12 shows the architecture with more context.)
Within the host gateway each Debug Packet as received over the NoC is converted into
a Debug Transport Datagram (DTD). To be compatible with the FIFO interface the data
width must be 16 bit, but a NoC flit is 17 bit wide. The host gateway hence codes the
packet length information differently than the NoC. While the NoC uses the last bit to
indicate the length of the packet, the DTD codes this information as a separate data
word which precedes the Debug Packet. After this initial data length word the Debug
Packet is sent unchanged, as shown in Figure 4.14. The DTDs are then passed on to the
off-chip FIFO interface.

The details of how the data is exchanged between host and device FIFOs differ
significantly depending on the actual off-chip interface (e.g. UART or USB). In the
process of implementing the Dia Engine we have also developed several off-chip
communication interfaces which we collected in the Generic Logic Interfacing Project
(GLIP). Since the implementation details do not add value to the discussion of the Dia
Engine we refer the interested reader to the web site at https://www.glip.io.

By treating the interface between chip and host as abstract FIFO we can continue our
discussion at the host side. There software reads the data from its side of the FIFO and
processes it further, something we explore in detail in the next section.

4.4.6 Host Software Architecture

The Dia Engine is unique in that it extends beyond the chip boundary. The host software
is an equal part of the Dia Engine and its architecture follows the same design as the
on-chip part. Debug Modules perform processing, a subnet of the Debug Network
connects the Debug Modules on the host, and a gateway connects to the on-chip subnet
of the Debug Network. But, of course, software is not hardware, a desktop PC is not a
SoC. Implementing the Dia Engine architecture in software on a desktop PC requires
a series of design decisions that tailor it to such an execution platform. These design
decisions, and the resulting architecture of the host implementation of the Dia Engine,
are explained in this section.

In addition to the general design goals of the Dia Engine, the host software architec-
ture was created with a focus on the following aspects.

• The modularity and extensibility of the Dia Engine should also be visible in the
software implementation. The resulting implementation should not be “one big
block,” but a collection of communicating pieces.

• The communication between components should have high throughput and low
overhead. The communication path with the lowest bandwidth should always be
the connection between device and host.
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Figure 4.15: Architecture of the Dia Engine as implemented in software on a PC. A minimal
configuration consists of the host subnet controller and the device gateway. The
host subnet controller performs at the same time the duties of a Subnet Control
Module and of a router of all host traffic, which exchanged over a ZeroMQ DEALER

and ROUTER sockets (blue). The three Debug Modules shown on top in green are
examples.

• The Debug Network on the host should be dynamic, it should be possible to add
and remove network participants during runtime.

• The implementation should be able to make use of the computational power
provided by today’s PCs, especially its concurrency.

• The software design should follow and enable the best practices of software
engineering, which make the creation of a reliable, high-quality implementation
possible. This especially includes a strong focus on testability of functional and
non-functional aspects.

These goals are reflected in the software design as presented in Figure 4.15. The
central point of communication is the host subnet controller, which serves two purposes:
it acts as Subnet Control Module (SCM) for the host subnet of the Debug Network,
and it is the central communication hub. The Debug Network on the host is organized
in a star topology, and the host subnet controller is the “center of the star,” i.e. the
module which serves as connection point for all other modules and routes messages
between them. The data exchange itself is handled by ZeroMQ, a library and protocol
for messaging on top of other protocols like TCP. The host communication and ZeroMQ
are explained in more detail in Section 4.4.6.1.

Debug Modules on the host implement the same specification as Debug Modules
on the chip: the are addressed by a DNP address, they implement base registers and
optionally the module-specific register set. Debug registers are read and written by
REG messages as specified in the DNP, EVENT packets can equally be sent and received.
While on the chip most Debug Modules are used to collect observation data, the Debug
Modules on the host are mainly used for processing and control functions. Figure 4.15

shows three Debug Modules as examples: an event logger module writes incoming
event packets into a file, events which typically represent the result of a Dia script-
triggered observation task. The Diagnosis Processor fulfills the same task as its on-chip
counterpart: it processes observation data and creates new events as result. And the
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memory loader communicates with the on-chip Memory Access Module (MAM) to
initialize the on-chip memories with program code.

The use of ZeroMQ together with an object oriented software design makes it
possible to instantiate the components shown in Figure 4.15 in different ways to form
an application. The components can be used within one (operating system) process. In
this case they typically communicate over shared memory. Or every component can be
made its own process. In this case the communication is typically handled over TCP
or intra-process shared memory. To change the communication mechanism no code
changes are required, ZeroMQ makes it possible to switch between them at runtime.

The next section takes a closer look at the communication on the host, and how the
design decisions enable a modular, flexible and highly performant design.

4.4.6.1 Host Communication Over ZeroMQ

No matter where the Debug Network is implemented: the topmost layer is always the
Debug Network Protocol (DNP). Below that we use ZeroMQ on the host.

ZeroMQ is a distributed messaging protocol and implementation provided as a
software library. It provides an abstraction between the exchange of messages and the
actual implementation of the message transport. More information, documentation,
and the code itself is available at http://zeromq.org/.

The use of ZeroMQ is beneficial for two reasons. First, ZeroMQ makes it possible
to abstract from the underlying transmission mechanism, and hence switch between
TCP, in-process or intra-process shared memory communication without changing a
single line of code. Second, the implementation of ZeroMQ is of very high quality
and optimized in many ways for reliability and performance. While communication in
general is relatively simple to implement, aspects like setting up a connection, handling
unexpected disconnects, or retransmissions tend to be more difficult and are error-
prone. By using ZeroMQ we can focus on the exchange of data and let the library
handle the majority of tricky edge cases.

Communication in ZeroMQ is performed over sockets. Even though they share a
name, these sockets are not to be confused with TCP or operating system sockets.
ZeroMQ provides different types of sockets, which can be combined to create certain
messaging patterns (e.g. broadcast or bidirectional communication). In our case we
make use of two socket types, DEALER and ROUTER sockets, to create a network with
bidirectional communication in a star topology, as shown in Figure 4.15. The “center of
the star,” the host subnet controller, provides a ROUTER socket. All other participants in
the network connect to the central point by using a DEALER socket.

As shown in Figure 4.9 on page 87 host communication over ZeroMQ is layered
below the DNP. In addition to exchanging Debug Packets the host communication layer
also handles the dynamic addition and removal of Debug Modules, which also includes
the assignment of DNP addresses to joining Debug Modules. All this communication
is handled between the ZeroMQ sockets by exchanging messages according to the host
communication protocol as shown in Figure 4.16. ZeroMQ messages can consist of
an arbitrary amount of frames, in our protocol three frames are used. The first frame
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Figure 4.16: Structure of a ZeroMQ message in the host communication protocol. Messages
consist of three ZeroMQ frames. The first frame is the “identity frame,” which
contains the message source. The second frame determines the type of the message.
Data messages (type D) carry a single Debug Packet, management messages (type
M) contain a management command and possibly an argument to it.

is the “identity frame,” a ZeroMQ-provided mechanism to identify the sender of a
message based on a unique address assigned to it when connecting. (The destination is
not explicitly visible in the message on this level.) The second frame determines the
message type, and the third frame contains payload depending on the message type.

Messages of type D are data messages which contain a Debug Packet as payload.
Most messages exchanged on the host during the runtime of the Dia Engine are of this
type.

Messages of type M are management messages. These messages are used to provide
network management functionality below the DNP layer. This includes adding a Debug
Module to the Debug Network (and by that, assigning a DNP address to it), removing
modules, or informing the network participants about routing changes (e.g. an added
gateway to another subnet).

Management messages warrant further discussion, together with the mechanisms that
provide the dynamicity of the Debug Network on the host. A full list of management
messages is presented in Table 4.1, in the following we take a closer look at two
scenarios.

The first scenario we look at is adding a Debug Module to the Debug Network on the
host. When a Debug Module connects to the host subnet controller its DEALER socket
has already an identity, i.e. an address on the ZeroMQ-layer. It does not yet, however,
have a DNP address assigned to it. The Debug Module therefore sends a management
message DIADDR REQUEST to the host subnet controller to “introduce itself,” and to
request the assignment of a free DNP address. Upon reception of this message the
host controller picks an unused DNP address within the subnet and sends it to the
requesting module. It also updates its internal routing table by adding a mapping
between the newly assigned DNP address and the identity of the Debug Module.
Disconnecting a Debug Module on the host happens in a similar fashion using the
DIADDR RELEASE message.
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Message Source Destination Reply Description

DIADDR REQUEST Debug Module subnet ctrl. <dnp-address> Request a new DNP address
from the subnet controller.

DIADDR RELEASE Debug Module subnet ctrl. ACK or NACK Release the DNP address as-
signed to the source.

GW REGISTER

<subnet-addr>

device gateway subnet ctrl. ACK or NACK Register the source of this
message as gateway for all
traffic intended for subnet
<subnet-addr>.

GW UNREGISTER

<subnet-addr>

device gateway subnet ctrl. ACK or NACK Unregister the source of this
message as gateway.

ACK any any none Generic acknowledgement
“operation successful.”

NACK any any none Generic error message “opera-
tion failed.”

Table 4.1: List of management messages exchanged over the ZeroMQ-based host communica-
tion protocol.

The second scenario involves a device gateway. After it has established the connection
to the chip the device gateway registers the subnet of the Debug Network used on
the device with the host gateway. For that it sends a GW REGISTER message to the
host controller, which (if successful) registers the device gateway as destination for all
messages going to the subnet. When disconnecting from the subnet the gateway can
unregister itself with the message GW UNREGISTER.

4.4.6.2 Architecture Summary

In the previous sections of this chapter we presented the architecture of the Dia
Engine on different levels. Starting with the implementation-independent architecture
in Section 4.4.1 we moved closer to the implementation by discussing the on-chip
hardware architecture in Section 4.4.5 and the software architecture in Section 4.4.6.
We have shown how the general design goals of the Dia Engine tickle through the
abstraction hierarchy to create a coherent implementation. We continue this journey in
the following sections by looking at the implementation itself.

4.4.7 Implementation Overview

The Dia Engine as described is fully implemented both in hardware and in software.
The discussion in this thesis focuses in the following on the key challenges and their
solutions that were encountered while creating the implementation. In addition we
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provide evaluations and measurement data which support the design choices made
along the way.

Beyond that the details of an implementation are best studied by reading the source
code itself, which is available online as part of the Open Soc Debug source code.

We first discuss two auxiliary topics, the platform that the development and testing
happened on, and the architecture of the observed system. We then continue with the
description of the key modules that make up the Dia Engine.

4.4.7.1 Target Platforms

Both the hardware and the software implementation are written in a highly portable
way to be able to run the same code on different target platforms. For our evaluations
we especially made use of the following targets, and the implementation is optimized
to run on those platforms.

The hardware has been mainly been developed and evaluated on two FPGA boards,
the “Xilinx Virtex UltraScale FPGA VCU108 Evaluation Kit” and the “Digilent Nexys 4

DDR” board. The VCU108 contains a Xilinx Virtex Ultrascale FPGA (XCVU095) with
1, 176 thousand logic cells and 60.8 Mbit on-chip memory. It is accompanied by 8 GB
of DDR4 memory and a large variety of off-chip interfaces. More information on the
VCU108 board is available at https://www.xilinx.com/products/boards-and-kits/
ek-u1-vcu108-g.html. The Nexys 4 DDR board is roughly ten times smaller, con-
taining a Xilinx Artix 7-series FPGA (XC7A100T) with 101 thousand logic cells and
4.7 Mbit on-chip memory. On the board 128 MB DDR2 memory are available, together
with (among others) UART and Ethernet I/O options. More information on the
Nexys 4 DDR board is available at https://reference.digilentinc.com/reference/
programmable-logic/nexys-4-ddr/start. The Xilinx 7-series and Ultrascale(+) FPGA
families share a similar architecture so that most optimizations done in the design
process apply equally to both families.

The host software was developed for PCs with a 64 bit x86 processor architecture
(aka x86 64 or amd64) and a Linux-based operating system. The development and
testing was performed using Ubuntu 16.04 and openSUSE Tumbleweed.

4.4.7.2 Observed System

Observing the software execution on a SoC of course requires a SoC design in the first
place. And even though the Dia Engine is designed and implemented to be flexible
and customizable to various observed systems, at some point the implementation
becomes specific to the SoC. For the purpose of this thesis we built different SoC
designs out of the same set of building blocks. These building blocks are collected in
the OpTiMSoC [96] framework, co-developed by the author of this thesis.

All designs we used follow the tiled multi-/many-core design pattern. A mesh
NoC connects a variable amount of tiles, most of which are so called compute tiles.
Each compute tile contains between one and eight CPU cores, memory, and a network
adapter connecting it to the NoC. The NoC is a 32 bit wide, packet-switched and
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wormhole routed mesh network, in which the packets are routed according to the XY
routing algorithm.

For the CPU cores we made use of the mor1kx implementation5 of the OpenRISC
architecture (or1k). It is a multi-core capable 32 bit in-order RISC design with MMU and
all “standard” features of microcontroller-class CPU, like separated L1 instruction and
data caches and a FPU. Most instructions are executed within one cycle (IPC = 1). For
the or1k architecture a full open source toolchain is available with the GCC compiler
for C and C++, a linker, binutils, and the GDB run-control debugger. Also available are
ports for different C standard libraries (libc), most notably musl6 (which also supports
Linux) and newlib7 (best used for “baremetal” software which does not make use of an
operating system).

Even though a port of the Linux operating system kernel to the mor1kx CPU core
is available we created most applications on top of custom minimal library operating
system, similar to programming a microcontroller. We did this to reduce the number of
unknowns in the development process: our library operating system is simple enough
to understand exactly how the execution of an application reflects on the underly-
ing execution hardware, since for example no scheduler, no virtual memory and no
supervisor/user-mode switches interfere with the execution flow. Developing, debug-
ging and evaluating a debugging environment on a system where it is hard to know
what the expected software execution should be can easily lead to misinterpretations
and wrong results, something we tried to avoid. We claim that this approach does not
reduce the validity of our results, but improves them. Initial tests of the Dia Engine
together with Linux seem to support this hypothesis, even though we cannot report
exhaustive results in this regard.

As the observed system is built from using the OpTiMSoC framework we were able
to adjust it as needed for the evaluation of our DiaSys use cases. The exact configuration
for each use case is described in Chapter 5.

Out of the components presented in this section we built our observed systems, into
which we then integrated the Dia Engine components. In the following sections we
take a closer look at them.

4.4.8 Implementation of the Core Event Generator (CEG)

The Core Event Generator (CEG) observes a single CPU core and creates event packets
when an observation matches a configured trigger condition. As this event generator is
the most commonly used one the implementation details are directly impacting the
performance and resource utilization of the Dia Engine. This section gives insight into
the implementation of the Core Event Generator.

All implementation work on the CEG is guided by the following functional require-
ments.

5The mor1kx CPU core is available online at https://github.com/openrisc/mor1kx.
6https://www.musl-libc.org/
7https://sourceware.org/newlib/
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Figure 4.17: Implementation of the Core Event Generator (CEG) module in hardware.

• It must be possible to capture at least two events which are triggered immediately
after each other.

As an example, two such events would be generated if two triggers are configured,
one at program counter x and one at the next program counter x + 4.8

• Events may be dropped if the Debug Interconnect cannot accept the generated
data in time.

• Each executed instruction may cause only one observation event to be generated,
even if two or more trigger conditions hold.

For example, only one event is generated if the CPU executes the program counter
0x1000 and one trigger is configured for PC == 0x1000, and another trigger is
configured for 0x0000 <= PC <= 0x5000.

In addition to the functional requirements, which are visible to the user of the Dia
Engine, the following non-functional requirements were used in the process of the
implementation.

• The implementation of the Core Event Generator should target the mor1kx CPU
core implementation. To ease the porting to different CPU core (implementations),
all generic parts should be encapsulated in a reusable way.

• The implementation should be optimized for Field Programmable Gate Array
(FPGA) synthesis on Xilinx 7-series and newer9 FPGAs.

• The implementation should be configurable at synthesis time in various ways to
enable the exploration of trade-offs between features and resource consumption.

8The example assumes byte addresses and a 32 bit/4 B word width.
9The Xilinx 7-series, Ultrascale, and Ultrascale+ FPGA families share a very similar architecture so that

most optimizations done in the design process apply equally to both families.
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name width (bit) description

valid 1 the trace data is valid
pc 32 program counter value
insn 32 executed instruction (opcode)
wben 1 register write back active
wbreg 5 write back register address
wbdata 32 data written to the register

Table 4.2: For the CEG relevant signals of the trace port for the mor1kx CPU core. All data
flows from the CPU to the CEG.

A block diagram of the resulting implementation of the Core Event Generator is
shown in Figure 4.17. We start the discussion with the interfaces of the module. The
trace port carries data from the CPU core to the CEG module (left), and the standard
Debug Interconnect Interface (DII) connects the module with the rest of the Dia Engine
(right).

The CPU trace port is in its implementation specific to the mor1kx CPU core, but
similar data could be obtained from other CPU cores as well. The relevant signals10 are
listed in Table 4.2: in addition to the program counter and the opcode of the executed
instruction the trace port includes signals to observe writes to the register file of the
CPU.

The inner structure of the CEG (shown in the center of Figure 4.17) can be split into
four parts: triggers, state capture, event packetization, and configuration.

All trigger modules work in parallel and continuously observe the data coming
from the trace port and check if their configured trigger condition matches. Our
implementation provides the following four trigger types.

• Program counter exact match: observed pc == conf pc

• Program counter range match:
observed pc >= conf pc lower && observed pc <= conf pc upper

• Instruction value (opcode) match with an optional mask:
(observed instruction & conf mask) == conf match

The mask can be used to filter out the opcode from an instruction value (“assembly
statement”), and hence trigger for example at all l.jal jump instructions.

• Time interval: a trigger is periodically generated after a configured amount of
cycles. This trigger is especially useful for sampling use cases.

Not only the trigger modules, but also the state collector modules observe the
trace port. They use, among other things, the observed data to reconstruct parts

10The interested reader may find the full interface definition in the source file mor1kx trace exec.sv.
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of the internal state of the CPU. The following state information is collected by our
implementation and can be included in observation events.

• The current time in the form of a 32 bit wide timestamp.

• The currently executing program counter.

• The program counter of the jump target (the “next” program counter)

• The address of the most recent function call, i.e. the last l.jal or l.jalr instruc-
tion.

• The general purpose register (GPR) Collector module creates a shadow register
file by observing the register writes that the CPU performs. The main usage for
the GPR collector is to access arguments to a called function, which are stored on
the stack.

We continue our journey through the implementation of the Core Event Generator
with the event FIFO. This FIFO sits between the state collector and the packetizer. If a
trigger fires the FIFO stores all state data together with the index of the firing trigger.

On the consuming side of the FIFO is the packetizer. The packetizer first uses the
index of the firing trigger to determine which parts of the collected state data the user
wants to be included in the event packet, what DI address the packet should be sent to,
and what event identifier should be assigned to it. Then the packetizer continues by
reading the relevant state data from the FIFO to construct an event packet, which is
then sent out to the Debug Interconnect.11

The operation of the Core Event Generator is highly configurable at runtime. The
configuration is performed by writing a set of debug registers. The configuration
register module (at the bottom of Figure 4.17) makes this data available to the triggers
as well as the packetizer.

The Core Event Generator exposes a number of parameters, which can be used at
synthesis time to explore the trade off between features and logic size in various ways.

• The number of parallel triggers is configurable.

• The number of observed CPU general purpose registers is configurable.12

• The width of the timestamp (in bit) is configurable.

The most “expensive” resource in chip designs are memory resources. Depending
on the FPGA vendor and family different dedicated memory resources are embedded
with in the FPGA fabric. For example, Xilinx 7-series devices contain memory within
Block RAM, Distributed RAM, and LUTRAM [98]. The implementation design of the

11This is a slight simplification: in fact, one event is transmitted as multiple split packets if the payload size
exceeds a limit imposed by the Debug Interconnect.

12The or1k ISA allows implementers to build 32 bit CPU cores with up to 32 general purpose registers [97,
Section 4.5], commonly used by a compiler are the first 16 registers.
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parameter chosen value

number of concurrent triggers 4

number of GPRs 12

depth of the event buffer 2

Table 4.3: Parameter values chosen for the CEG.

module heavily influences how well the synthesis tool is able to map the design to such
FPGA memory resources. The Implementation Spotlight 1 gives an insight into how
this was achieved for the CEG implementation.

4.4.8.1 Parametrization of the CEG

The CEG can be parameterized at synthesis time in various ways to trade off resource
consumption with provided functionality. Finding a “sweet spot” in this trade-off
requires answering two questions for every parameter value: “How much (logic area)
does it cost?” and “How valuable is this parameter setting to the user of the Dia
Engine?”

Answering the first question is relatively easy: a synthesis run with the given
parameter value will produce the required data. Finding an answer to the second
question is harder. The Dia Engine is designed to be a general purpose execution
platform, therefore no single use case can be used to determine the value of a feature;
instead, a common set of use cases must be analyzed. Even by following this approach
the “value” assigned to a parameter value remains a subjective measure—a fact we
must acknowledge, but not worry too much about: in an FPGA design, adjusting the
parameterization only requires a fresh synthesis run.

Table 4.3 presents the parametrization we chose for the CEG. The following sections
discuss how these values were determined.

Number of concurrent triggers The CEG features multiple triggers which concur-
rently observe the CPU.

We first tried to answer the question “How many concurrent triggers are typically
used?” Since we cannot resort to a large body of existing Dia scripts to answer this
question, we choose an alternative approach: we analyzed a large collection of scripts
from a similar tracing language, SystemTap. This collection of 177 scripts13, which is
distributed as part of SystemTap, has been developed over a period of 10 years and
represents common analysis tasks executed on Linux systems.

We analyzed every script and counted the number of “probes” in it. A “probe” in
SystemTap is comparable to a trigger in the CEG, therefore the number of probes in

13
165 of the 177 scripts were used in the analysis. The directories stapgames (games as proof-of-concept)

and tapset/general (not standalone scripts) were excluded.
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Spotlight 1: Optimizing the memory usage of the CEG on an FPGA

A significant portion of the CEG implementation is memory: memory to store
the runtime configuration, memory to create shadow data structures like the
GPRs and the stack, and memory to decouple the event generation from the
(slower) Debug Interconnect.
In such a design it is of critical importance to enable the FPGA toolchain to map
the design well into dedicated memory resources on the FPGA device. In the
design of the CEG the following rules were followed.

1. Strictly follow the Vivado code templates. In the user guide 901 [99]
Xilinx describes in detail how Verilog or VHDL code must be written when
describing certain types of memories (e.g. single-port RAM). If these tem-
plates are closely followed Vivado recognizes the code and infers memory
primitives such as Block RAM or Distributed RAM from it. Otherwise all
memories are mapped into SLICE registers, which can increase the resource
consumption by a factor of ten or more.

2. Make memories deep, not wide. The memory primitives provided by
Xilinx are all deeper than wide. For example, the 36 kbit Block RAM
(BRAM) primitives can be up to 72 bit wide and store in this configuration
up to 512 data words. Similar rules apply for Distributed RAM and
LUTRAM. It is hence more resource efficient to store a given amount
of data as multiple words sequentially, instead of storing it as one large
data word. This comes, of course, at the cost of additional latency when
accessing the data, and typically requires more design effort, e.g. to create
more complex read and write state machines.

3. Be aware of the width and depth limitations of memory primitives. All
memory primitives have limitations regarding their maximum data width
and depth. If one of the limits is exceeded, another memory primitive
is instantiated, instantly doubling the resource utilization. On the other
side, staying below the limit does not reduce the resource cost either. For
example, storing 37 bit wide data in a BRAM incurs the same resource
cost as storing 72 bit wide data, while storing 73 bit instantly doubles
the resource consumption. The Xilinx user guides 473 and 474 [100, 98]
describe the limits in more detail.
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Figure 4.18: Number of probes (similar to concurrent triggers in the Dia Engine) per SystemTap
script in the SystemTap example collection.

a SystemTap script gives a good indication for the number of concurrent triggers if a
similar script would be implemented in Dia.

The outcome of the analysis is shown in Figure 4.18. 90 percent of the SystemTap
scripts in the example collection use four or less concurrent probes, and 97 percent of
scripts rely on nine or less probes.

With that result we can now turn our attention to the cost side of things: how
much logic area is consumed by each additional trigger? To answer this question we
synthesized and implemented a full SoC design containing the CEG for a Xilinx 7-series
device while varying the number of concurrent triggers between one and twelve.

The analysis shows that between two and eight concurrent triggers, each trigger
requires typically 67 Slice Registers. Between nine and twelve triggers no additional
registers are used.

The analysis of the combinatorial logic usage, expressed in Slice Look-Up Tables
(LUTs), does not give a conclusive result: for some numbers of concurrent triggers the
number of required LUTs increases, while for others it decreases by roughly the same
amount. We attribute this fluctuation to differences in the non-deterministic synthesis
and implementation process.

Given this data we chose to parameterize the CEG with four concurrent triggers.

Number of captured GPRs Each captured GPR increases the size of the CEG on
average by 80 registers and 95 LUTs. On 32 bit OpenRISC architectures the following
registers are of special interest when observing the program execution [97, p. 336].

• R1 (SP) and R2 (FP), which store the stack and frame pointers,
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Instance Total LUTs Logic LUTs RAM (kbit) DSPs

Core Event Generator (CEG) 1493 1453 0 0
configuration registers 562 522 0 0
triggers 52 52 0 0
state collectors (incl. timestamp) 93 93 0 0
event buffer 651 651 0 0
DI packetization 137 137 0 0

Table 4.4: Hierarchical resource utilization of one instance of the Core Event Generator (CEG)
after implementation with Vivado 2018.1 (default settings) for a Xilinx XCVU095

FPGA.

• R3 to R8, which store six function parameter words,

• R9 (LR), the link register (the address to jump back to after a function call)

• R10 (TLS), which can be used to identify the currently executing thread, and

• R11 (RV), the function return value.

The remaining registers R12 to R31 have no special meaning in the Application Binary
Interface (ABI) and are used for temporary values. The CEG is therefore parameterized
to capture registers R0 to R11, i.e. 12 GPRs.

Depth of the event buffer The largest contributor to the size of the CEG module is
the event buffer. This buffer decouples the event generation from the packetization
logic. Its size influences how well the CEG can handle bursts of triggered events.

A look at the data rates at the producing and consuming side explains this. At the
producing side of the buffer, up to one event per clock cycle can be generated. At the
consuming side the packetizer requires at least four cycles to transmit a minimum-sized
packet to the Debug Interconnect (DI). Depending on the configuration of the trigger,
e.g. if captured state or a timestamp is included in the packet, the number of cycles
required to send out an event can further increase.

An evaluation of the CEG size depending on the depth of the event buffer shows
that increasing the event buffer depth by one entry typically adds 419 registers and 419

LUTs to the size of the CEG (using four concurrent triggers and twelve GPRs).
In order to reduce the overhead of the CEG module, while still fulfilling the require-

ment outlined in Section 4.4.8, we dimensioned the event buffer to be able to store two
events.

4.4.8.2 Resource Utilization of the CEG

The resource consumption of a single CEG module (attached to a single processor
core) using the parametrization shown in Table 4.3 is presented in Table 4.4. Note
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Figure 4.19: Resource utilization in LUTs for one instance of the Core Event Generator. See
Table 4.4 for detailed data values.

that the LUT figures used in the dimensioning of the CEG are post-synthesis, while
the numbers presented in this table are post-implementation, i.e. taken out of a fully
implemented design.

Also notable is the resource consumption of the event buffer and the config registers,
both components which mainly consist of memory. Even though we have designed
them in a way that allows Vivado to place the memory cells into block RAM (BRAM),
Vivado chose not to do so. This decision depends on the utilization of the device and is
subject to a global optimization performed during the implementation step (in Vivado).
Due to the width of the event buffer, Vivado chose to implement it in normal LUTs. The
configuration registers are more narrow, and have been placed into 40 LUTRAM cells.

4.4.9 Implementation of the Debug Interconnect

The Debug Interconnect is the on-chip implementation of the Debug Network. It is
implemented as a NoC with unidirectional ring topology, a single (physical) channel,
and buffered routers. The topology was chosen mainly due to its simplicity and the
comparably low overhead. The data links are 16 bit wide, each hop between two
routers takes one cycle. The routers follow a standard implementation pattern, with no
pipelining and round-robin port arbitration.

4.4.10 Implementation of the Diagnosis Processor (DIP)

The Diagnosis Processor (DIP) is a freely programmable general-purpose processing
node on the chip. Like any processor design, it sacrifices computational density for
flexibility.

The Diagnosis Processor design is extended from a standard processor template like
it is used in the observed system. The main components, shown in Figure 4.20, are
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Figure 4.20: Block diagram of the Diagnosis Processor (DIP), a freely programmable processing
node.

Instance Total LUTs Logic LUTs RAM (kbit) DSPs

Diagnosis Processor (DIP) 3439 3418 1584 3
mor1kx CPU core w/ L1 I$ 2723 2723 432 3
network adapter 243 222 0 0
SRAM (128 kB) 130 130 1152 0
MAM (for program loading) 342 342 0 0

Table 4.5: Hierarchical resource utilization of the Diagnosis Processor (DIP) after implementa-
tion with Vivado 2018.1 (default settings) for a Xilinx XCVU095 FPGA.

a single mor1kx CPU core and an 128 kB SRAM block acting as program and data
memory.

The main extension is the special network adapter, which queues incoming event
packets, and sends outgoing event packets to the debug interconnect. To write the
program into the SRAM block the Diagnosis Processor contains a standard Memory
Access Module (MAM).

The diagnosis processor design is optimized for low resource consumption; the
resource consumption numbers on a Xilinx XCVU095 FPGA after the implementation
step are given in Table 4.5. The SRAM size is large enough to support all case studies
presented in Chapter 5, but still rather small to keep the area cost of the diagnosis
processor low.

The diagnosis processor runs user code given as transformation actor in a Dia script.
To support the execution of this code we have implemented a minimal runtime environ-
ment based on the OpTiMSoC “baremetal” runtime environment (a microcontroller-like
minimal runtime system). Without any custom transformation actor code the compiled
binary 50 kB large, leaving 78 kB of memory for custom code and data. The reception of
one packet with five words takes 3000 cycles, which includes the allocation of memory
for the received packet, and copying the data from the buffers in the network adapter
to the main memory. The sending of a equally sized packet takes 1340 cycles.

109



4 DiaSys Design and Realization

In summary, the Diagnosis Processor has been designed with hardware cost in mind,
causing more work on the software side. We show in Chapter 5 that this trade-off is
suitable for the case studies we have developed.

If needed in the future, multiple hardware offload options exist. To reduce the
amount of time spent on copying data by the software, a DMA engine and hardware
buffer management can be introduced. To further reduce the overhead in the software,
i.e. the time not spent on executing the transformation actor, a hardware run queue or
a hardware scheduler for transformation actors can be added.

4.4.11 Implementation of the Event Counter (CNT)

In cases where the flexibility of a programmable execution unit like the Diagnosis
Processor is not needed, special-purpose execution units can be employed. The Event
Counter (CNT) is a simple example of such a module, which we have include into our
Dia Engine design.

This special-purpose execution unit does what its name suggests: it counts events. It
is typically used in profiling scenarios, e.g. to count the number of incoming packets or
calls to a function. To retrieve the counter value, a special event is sent to the module,
which then answers with the requested data.

The implementation of the CNT module requires 201 LUTs. It operates in streaming
mode, i.e. it can count events as fast as the Debug Interconnect can provide them.

4.4.12 Implementation of Dia Engine Host Software

The host software of the Dia Engine is implemented according to the architecture de-
scribed in Section 4.4.6. In the following we take a glimpse at the implementation itself
and highlight some implementation techniques. The implementation work discussed
here has been fully incorporated into the Open SoC Debug software reference imple-
mentation and is available online at https://github.com/opensocdebug/osd-sw.

Overall the software implementation consists of roughly 10,000 lines of C code. It
is structured into a library called libosd, tools which make use of this library, and
bindings to the Python programming language.

4.4.12.1 libosd: The Dia Engine Host Software as Library

The code is written following the object-oriented design paradigm. By preferring
composition to inheritance dependencies between parts of the code are reduced and
the testability is improved.
libosd provides functionality which can be grouped into three categories: base

building blocks, Debug Module clients, and high-level APIs. The first category of
base building blocks includes classes like osd hostmod (implementation of a Debug
Module on the host), osd hostctrl (implementation of the host subnet controller),
or osd gateway (a device gateway). In the second category Debug Module clients
provide a low-level API to access the functionality of a specific Debug Module on-chip.
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Examples includes osd cl mam to access the Memory Access Module, or osd cl scm

to access the Subnet Control Module. Classes of the third category make use of
classes in the other two categories to provide high-level functionality. For example,
the osd memaccess class uses the MAM and SCM modules through the osd cl mam

and osd cl scm classes to write and read memories on the chip. Ultimately the user
of libosd can then make use of the function osd memaccess loadelf() to transfer a
program binary in the ELF format to the system’s memory.

4.4.12.2 Tools to Interact with the Dia Engine

The functionality provided by libosd can be used in applications to interface with
the Dia Engine or extend its functionality. As part of our implementation we pro-
vide applications for the most essential tasks performed on a DiaSys-enabled system.
These tools are osd-device-gateway, osd-host-controller, osd-systrace-log and
osd-target-run. osd-device-gateway, and osd-host-controller do exactly as their
name suggests: they implement a device gateway to a target (either an FPGA or a
simulation), and implement a host controller. These tools can be implemented with
very little code as they only wrap around the corresponding classes. For example,
osd-host-controller consists only of 55 lines of C code (not counting blank and
comment lines). osd-systrace-log shows the standard output stream (STDOUT) of
an application running on the SoC. And finally osd-target-run writes an Executable
and Linking Format (ELF) file to a memory in the target system and starts the CPUs.

Writing tools in C is a robust and highly performant way of implementation. In many
cases, however, flexibility and implementation productivity are the most important
design goals. For those scenarios libosd provides Python bindings, something we will
explore next.

4.4.12.3 Python Bindings

C is a time-proven programming language which enables the creation of high-quality,
performance optimized applications. By writing libosd in C we were able to make it
a solid foundation which we can build on. For applications on these “higher layers”
we were looking for a programming language which provides a higher productivity in
writing code, at the cost of less reliability or performance. A good fit in this regard is
the Python programming language.

To be able to interface with the Dia Engine through Python we created a Python
extension module which wraps libosd. This extension is created with Cython14 and
can be used from any Python 3 application by including the osd module. To show how
simple the creation of an application interfacing with the Dia Engine is in Python we
have included Listing 4.3. The listing contains the full source code for a tool to run an
application in an ELF file on a target connected over USB 3. The code first starts the
host controller listening at the TCP port 9537. It then initiates a device gateway, which
connects to the host controller and to the device over USB 3. Finally, the MemoryAccess

14http://cython.org/
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1 import osd

2

3 def main():

4 log = osd.Log()

5

6 # start host subnet controller

7 hostctrl = osd.Hostctrl(log, 'tcp://0.0.0.0:9537')

8 hostctrl.start()

9

10 # start device gateway and connect over USB 3 to an FPGA

11 gw = osd.GatewayGlip(log, 'tcp://localhost:9537', 0, 'cypressfx3')

12 gw.connect()

13

14 # find memories in subnet 0 (i.e. the target device)

15 memaccess = osd.MemoryAccess(log, 'tcp://localhost:9537')

16 memaccess.connect()

17 memories = memaccess.find_memories(subnet=0)

18

19 # stop all CPUs in subnet 0

20 memaccess.cpus_stop(0)

21

22 # load ELF file

23 memaccess.loadelf(memories[0], '/some/elf/file.elf', verify=False)

24

25 # start CPUs in subnet 0 to run program

26 memaccess.cpus_start(0)

27

28 # disconnect from the system

29 memaccess.disconnect()

30 gw.disconnect()

31 hostctrl.stop()

32

33 if __name__ == '__main__':

34 main()

Listing 4.3: Complete code listing for a Python application loading a ELF file into the memory
of a target and starting the CPUs. The application includes the host controller and
the device gateway to work without additional components (standalone).

class is used to list all memories available in the system, stop the CPUs in the subnet,
initiate the first memory found with the ELF file, and then start the CPUs again.

This example used the high-level classes of libosd. Similarly the Hostmod class can
be used in Python to implement a host Debug Module with a couple lines of code.
This functionality is used to connect the Dia Compiler with the Dia Engine, and to
prototype and implement special Debug Modules for data analysis tasks, something
we explore further in Chapter 5.
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4.4.12.4 Quality Assurance of the Software Implementation

Reliability is key for any debugging tool: nobody wants to debug the debugger at
the same time as debugging the actual application on the SoC. We therefore went to
great lengths to improve the quality of the software implementation through extensive
testing. Most test coverage is achieved by unit tests, which target a single class. Unit
tests are written using the check15 framework and amount to over 3,000 lines of C code
(in addition to the 10,000 lines of code which are being tested). The unit tests target
libosd and achieve a line code coverage of 84 percent16.

In addition to testing for functional issues the unit tests are also used to check for
non-functional issues, especially in regard to memory usage. Running the tests with
Valgrind’s memcheck tool17 can uncover especially issues with memory allocations and
deallocations on the heap. Running the tests with Address Sanitizer (ASan)18 primarily
finds buffer overflow issues both on the heap and on the stack. Our code is free of any
such issues (as reported by the tools).

To maintain the code quality over time all source code changes are automatically
tested with all mentioned tools when being checked into the git repository.

4.4.13 Summary: The Dia Engine

The Dia Engine is the “workhorse” in DiaSys: it executes Dia scripts using both on-chip
and off-chip components. The power of the Dia Engine comes from its careful design
with well-defined abstractions. It starts with the implementation-agnostic definition
of the components of the Dia Engine, most importantly the Debug Modules and the
Debug Network.

Debug Modules are generic containers for data collection and data processing func-
tionality. They provide a common interface towards the Debug Network, which makes
them discoverable across the system and ensures unhindered communication between
them.

The Debug Network provides a shared communication platform between all Debug
Modules. It specifies a segmented network topology with subnets, and a shared commu-
nication protocol. This communication protocol supports both control communication
through its REG packet type, and streaming or asynchronous traffic through its EVENT

type. Control communication is modeled as register accesses, a common abstraction in
embedded systems.

The Dia Engine spans from the chip across the chip boundary to the host PC. We have
designed and implemented both parts, and presented the design choices in Section 4.4.5
and 4.4.6 respectively. The hardware implementation is written in SystemVerilog and
runs on FPGAs and in cycle-accurate simulation. It extends a tiled multi-core system

15https://libcheck.github.io/check/
16Line coverage as calculated and reported by Codecov, see https://codecov.io/gh/opensocdebug/

osd-sw/tree/master/src for the full report.
17http://valgrind.org/docs/manual/mc-manual.html
18https://github.com/google/sanitizers/wiki/AddressSanitizer
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with diagnosis components to observe the CPUs and the memory, and to perform
on-chip processing of observations using the Diagnosis Processor.

The implementation on the host PC is composed of individual components which
can communicate over TCP. The shared implementation parts are contained within
a software library (libosd) written in C. Python bindings make it easy to extend the
Dia Engine with new Debug Modules, as the bindings are sufficiently abstracted to
focus on the functionality of the Debug Module, without the need to worry about the
underlying communication infrastructure.

Overall, the Dia Engine has shown to be a flexible and reliable runtime environment,
not only for our experiments, but also for use cases beyond our research goals. We have
therefore released its specification and implementation under an open source license in
the Open SoC Debug project.

4.5 Summary: DiaSys Design and Realization

Based on this general approach we have further refined and implemented DiaSys in
three components: the Dia Language, the Dia Compiler, and the Dia Engine. The Dia
Language is a domain-specific programming language to describe software diagnosis
tasks. A Dia script, a piece of code written in the Dia Language, consists of two parts:
first, events are declared using a SQL-like syntax. These events can be either created
through software observations on the chip, or carry intermediate data or analysis
results between actors in the dataflow program. Transformation actors contain the data
analysis program, split up into individual actors written in a C-like language, which is
extended with facilities to wait for events and to send out events.

A Dia script is then transformed by the Dia Compiler and executed by the Dia Engine.
The event declarations are compiled into configurations for the event generators. The
code with in the transformation actors is analyzed and either transformed into standard,
platform-independent C-code, or into configurations for special-purpose execution
units. A semantic analysis step based on tree pattern matching is able to determine the
mappability of code to special-purpose execution units (such as event counters); if no
such mapping can be found, general-purpose execution units, such as the Diagnosis
Processor on-chip, or equivalent execution modules off-chip can be used.

Finally, the compiled Dia script is executed by the Dia Engine. Designed as flexible
runtime environment for Dia scripts it spans from the chip to the host PC. By abstracting
away implementation-defined details through concepts like Debug Modules and the
Debug Network the whole Dia Engine can be seen as “one unit,” independent of
where the actual data processing components reside. By necessity, the data collection is
performed on-chip where the software runs.

We have designed and implemented all parts of the Dia Engine, which enables us
to study various aspects from implementation effort to performance and applicability
to certain debugging and testing use cases. We present selected use cases in the next
chapter.
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The previous chapters presented the concept, design, and realization of DiaSys. It
is now time to take DiaSys on a “test drive” to explore how it performs in different
scenarios.

DiaSys is designed to be a general-purpose approach. Since exhaustively evaluating
such an approach in full generality is infeasible, we picked three representative case
studies. The main technology we compare DiaSys to are traditional tracing systems.
Hence, our case studies resemble tasks for which tracing systems are commonly used
today: debugging and testing for time-dependent functional bugs (like race conditions),
and the generation of runtime statistics (e.g. profiles).

5.1 The “Chip Design” For Our Case Studies

Two of our three case studies run on an FPGA with our Dia Engine implementation.
Just like in a production chip, the parametrization of the Dia Engine must be able to
support multiple use cases. We have hence created one “chip design,” which we use in
both case studies.

Our “chip design” is shown in Figure 5.1. The observed system follows the tiled
multi-core design pattern. Four compute tiles are connected by a 2× 2 mesh NoC. The
NoC uses 32 bit wide bidirectional links, is wormhole switched, and XY routed. Each
compute tile consists of two mor1kx CPU cores, a distributed memory block, and a
network adapter, all connected by a 32 bit wide Wishbone bus. The mor1kx CPU core
implements the or1k (OpenRISC) instruction set architecture (ISA) and has a standard
five-stage in-order pipeline, a FPU, and Level 1 instruction cache (the L1 data cache
is disabled). Each distributed memory is a 128 MB large DRAM block. The network
adapter is capable of remote memory accesses (remote loads/stores), message passing,
and direct memory access (DMA).

The observed system is amended with the Dia Engine implementation. All compo-
nents of the Dia Engine are connected by the Debug Network, which is implemented on
the chip as 16 bit wide unidirectional ring NoC. To observe the software execution each
CPU core is attached to one Core Event Generator (CEG), as described in Section 4.4.8.
For the on-chip processing of observation data we have integrated two modules: a
Diagnosis Processor (DIP), and an Event Counter Module (CNT).

In addition, auxiliary on-chip modules make the system accessible from the host PC.
The Software Trace Module (STM) transports the standard output (i.e. the “printf()
output”) of the observed applications to the host PC. The Memory Access Module
(MAM) is used to load the program into the distributed memory within each tile. Fur-
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Figure 5.1: The “chip design” used for the case studies on DiaSys. The observed system consists
of four dual-core compute tiles with distributed memory, connected by a 2× 2
mesh NoC. Shown in green and orange are components of the Dia Engine, and
blue are the Debug Network components. Orange components are “auxiliary”
components, which are necessary for the operation of the Dia Engine, but do not
provide observation or analysis functionality. Key components which are involved
in the execution of a Dia script are shown in green.

ther components are the Subnet Control Module (SCM) as described in Section 4.4.3.3,
and the Host Interface Module (HIM), which connects the on-chip components of the
Dia Engine to the host PC over USB 3.0.

On the host, the SCM is the center of the Debug Network. It establishes the connection
to the on-chip components through the device gateway, which forwards the data to the
USB interface. All Debug Modules on the host are connected to the SCM. The program
loader and the systrace logger are helpers to load the program into the target memories
and to log the standard output of the observed applications. The diagnosis controller
initiates and controls the execution of a Dia script. Depending on the executed Dia
script further “soft” diagnosis processors on the host are instantiated, represented by
the “on-demand modules” in Figure 5.1.

All hardware components run on a Xilinx VCU108 evaluation board, containing a
Xilinx UltraScale XCVU095 FPGA. The USB 3.0 off-chip interface uses the Cypress FX3
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Debug Interconnect
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auxiliary debug and program loading
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Figure 5.2: Distribution of total LUTs to the components of the Dia Engine. See Table 5.1 for
detailed data values.

chip mounted on an adapter board. The host software runs on an Ubuntu Linux 16.04

system with an Intel Core i7-3770 CPU running at 3.4 GHz and 16 GB main memory.
All logic, with the exception of I/O logic, is clocked with a 50 MHz clock. This clock

frequency is below the maximum achievable frequency, but was chosen as a safe target
to simplify the implementation. Ultimately, the chip frequency is a scaling factor in the
evaluation results, but does not (within reasonable bounds) affect the validity of the
results.

With the given parameters the Debug Interconnect can carry up to 16 bit · 50 MHz =
100 MB/s. Each Debug Packet consists of three header flits and between zero and nine
payload flits. This leads to a net (payload) data rate of up to 9/12 · 100 MB/s = 75 MB/s.

In our case studies we measure the actual off-chip bandwidth, and use this data to
discuss possible off-chip interface choices. We have therefore dimensioned the off-chip
interface in our “chip design” to be not a bottleneck, as the following calculations show.
The Host Interface Module encodes Debug Packets in a way that adds one word per
packet to the data stream. With minimum-sized packets of three flits the overhead is
1/3, resulting in a peak off-chip data rate of 133 MB/s. This is safely below 190 MB/s,
the data rate which can be sustained by the USB 3.0 off-chip interface.1

5.1.1 Evaluation System Resource Usage

The complete implementation of the observed system together with the Dia Engine
allows for a closer look at the resource consumption of the evaluation chip design, and
its individual components. Table 5.1 gives the resource usage numbers after the routing
step of the implementation. All numbers are produced by Xilinx Vivado 2018.1 using
the default synthesis and implementation settings.

1https://www.glip.io/group__backend__cypressfx3-examples-vcu108__loopback.html
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Instance Total LUTs Logic LUTs RAM (kbit) DSPs

observed system (gray) 72 211 69 923 4662 59
compute tile (1 of 4) 12 055 11 937 864 14

CPU core (1 of 2 per tile) 4154 4145 432 7
2× 2 mesh NoC 4381 4381 0 0
DRAM infrastructure 19 590 17 774 1206 3

Dia Engine 27 047 26 303 1620 3
Debug Interconnect (blue) 1907 1570 0 0
observation and analysis (green) 15 905 15 516 1584 3

Core Event Generator (CEG) (1 of 8) 1493 1453 0 0
Diagnosis Processor (DIP) 3439 3418 1584 3
Event Counter (CNT) 198 198 0 0

auxiliary debug/trace (orange) 9235 9217 36 0
STM (program output) (1 of 8) 923 923 0 0
MAM (program loading) (1 of 4) 340 340 0 0

Table 5.1: Hierarchical resource utilization of our case study design after implementation
(routing) with Vivado 2018.1 for a Xilinx XCVU095 FPGA. The “RAM” column
shows the sum of all dedicated 18 and 36 kbit RAM blocks (RAMB18 and RAMB36).
Additional memory may be instantiated as LUTRAM or shift registers; this memory
is included in the “Total LUTs.” The colors refer to Figure 5.1. Only selected modules
are shown. Due to cross-hierarchy optimization in the implementation process
per-module numbers are not fully accurate.

The observed system (gray in Figure 5.1) consists of a total of 72k 6-input look-up
tables (LUTs), 97 percent of which are used for logic. The remaining LUTs are used for
memory, shift registers, and other special-purpose functionality. A rather constraint
resource on any FPGA are RAM blocks (BRAM); the observed system makes use of a
total of 4.5 Mbit of such memory. Additionally, 59 DSP blocks are used.

The observed system contains four compute tiles, each with two CPU cores, and the
mesh NoC. Each compute tile contains a distributed memory block, which is mapped
to DRAM. To interface with this memory Xilinx provides memory interface IP, which
hides the complexity of the DDR interface. Since this block contains, among other
things, a dedicated soft core microprocessor, it occupies around 27 percent of the
observed system (20k LUTs).

The complete Dia Engine requires 27k LUTs, the distribution to its subcomponents
is visualized in Figure 5.2. 41 percent of the Dia Engine are used by the Debug
Interconnect and the auxiliary modules (sending the program output to the host PC,
program loading, and the off-chip interface). The remaining resources are used by
the observation and analysis components of the Dia Engine, the main contribution of
this work. The eight Core Event Generators dominate the resource usage of 16k LUTs
and 1.5 Mbit of block RAM. As discussed in Section 4.4.8 their size is mainly due to
the amount of memory used to collect data and to buffer event packets in the case of
bursts.
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The Diagnosis Processor is 27 percent smaller than a regular processor since it does
not contain a FPU, even though the DIP contains, in contrast to a normal core, two more
components: while the main CPU cores use off-chip DRAM, the Diagnosis Processor
includes 128 kB on-chip SRAM (block RAM). Additionally, the Diagnosis Processor
includes a MAM (to load the Dia script onto it), and a dedicated network adapter to
send and receive event packets.

The benefit of special-purpose execution units compared to the Diagnosis Processor
is obvious by looking at the Event Counter (CNT): it only takes 0.2k LUTs, less than six
percent of a Diagnosis Processor.

Overall, the observation and analysis part of the Dia Engine adds 23 % LUTs and
34 % block RAM to the size of the memory-less observed system. It must be noted,
however, that this number is somewhat “unfair” towards the Dia Engine, as it does not
equally account for the chip area occupied by memory: the Dia Engine components are
self-contained and consist of significant amounts of on-chip SRAM, while the observed
system makes use of off-chip DRAM.

5.1.2 Data Rates for Tracing Systems

Our case studies compare the off-chip data rate achieved by DiaSys with data rates
from traditional tracing systems, like ARM CoreSight. However, we cannot directly
compare measurement results, as the traditional tracing systems are closed systems
which do not provide ways to obtain the necessary measurement data. We therefore
compare our measurements with calculated data rates from traditional tracing systems,
assuming typical compression ratios from literature for instruction and data traces.

For instruction traces, we assume a compression to 2 bit/instruction (c.f. Sec-
tion 2.2.1). Hence, a full instruction trace from one of our CPUs running at 50 MHz
with an IPC of 1 results in a data rate of 12.5 MB/s. Tracing all eight CPUs in the
system would create an instruction trace of 100 MB/s. For data traces, we assume a
compression to 16 bit/access, which includes the address and the 32 bit data value (c.f.
[35]).

By combining these two numbers we can give an estimate of an instruction and
data trace for an application executing on a single CPU. Assuming that every fifth
instruction performs a memory access, the trace would consume 32.5 MB/s.

While these numbers should provide a fair comparison point, several things must be
noted.

• None of the mentioned trace data rates include timestamps, or other information
to correlate data traces with instruction traces.

• The compression ratios presented are averages. Depending on the executed
software the actual rates can be higher or lower.

• Depending on the filtering and triggering capabilities of the tracing system a full
(instruction or data) trace might not be needed for a given observation task.
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The “chip design” we have presented in this section is now used in our case studies.
In the first case study we debug and later test a functional problem, a race condition.
The focus of this case study is on the usability and flexibility of DiaSys. The second
and third case study focus on the data rates produced by runtime analysis scenarios.
Case Study II looks at a function profile, and Case Study III creates a lock contention
profile from a real-world application in the PARSEC benchmark suite.
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5.2 Case Study I: Debugging and Testing of Race Conditions

Race conditions are among the most challenging defects in software. To locate and
understand a bug caused by a race condition developers need to reason about multiple
concurrent threads of execution, and understand possible interleavings between them.
Race conditions are not only challenging for a human developer, but also for the
diagnosis tool. The visibility of a race condition depends on the execution timing,
which rules out the use of all intrusive diagnosis techniques. In such a scenario tracing
systems are employed today.

In this first case study we show that DiaSys performs well in such a challenging
debugging scenario. We further show how DiaSys can be used to evolve the manual
debugging knowledge into a test which can be run repeatedly to ensure that the race
condition does not reappear in future versions of the program code.

The case study presented in this section is an extended version of a case study
previously published in [15].

5.2.1 Problem Description

A race condition occurs if the outcome of an operation depends not only on the
executed instructions, but also on the timing between them. Sometimes race conditions
are intended, but in many cases they are not and considered a bug.

For this case study we chose to use a textbook example of a race condition. Even
though the example might seem “trivial” and not related to embedded systems, it
helps to reduce our discussion to the essentials of a race condition and its debugging
approach, without lengthy discussions of the example itself.

The example features three “actors,” a bank, which holds a single bank account, and
two ATMs, which can be used to withdraw money from the bank account. The balance
on the bank account may never become negative, and the ATMs check that by first
obtaining the current balance from the bank, and proceeding with the withdrawal only
if sufficient funds are available.

Expressed as an application running on an embedded system the example looks like
this. The bank and the two ATMs are each a task, each running on one processor in
different tiles. The tasks communicate with each other by exchanging messages over
the NoC.

Each exchanged message has a source, a destination, a type, and a data value.
The messages get balance req and get balance resp are the request and response
messages to get the account balance from the bank. The message modify balance

modifies the account balance.
In our implementation both ATM tasks repeatedly get the balance, and withdraw

money if the funds are sufficient for the withdrawal. The time between the withdrawal
attempts and the amount of “withdrawn money” are random.

In a bug-free implementation, the account balance would never reach a negative
value. However, exactly that is observed by the developer. He/she now uses DiaSys to
locate the defect.
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1 // int message_send(uint32_t dest_tile_id, message_type_t msg_type,

2 // uint32_t msg_data);

3 EVENT message_send TRIGGER

4 AT Cpu WHERE core_id = 0

5 WHEN pc = pc_from_elf("binary.elf", "message_send.call")

6 CAPTURE

7 uint32_t elf_funcarg("binary.elf", "message_send", 1) AS "dest_tile_id",

8 uint32_t elf_funcarg("binary.elf", "message_send", 2) AS "msg_type",

9 uint32_t elf_funcarg("binary.elf", "message_send", 3) AS "msg_data"

10

11 // void queue_message_received(uint32_t src_tile_id, message_type_t msg_type,

12 // uint32_t msg_data);

13 EVENT message_received TRIGGER

14 AT Cpu WHERE core_id = 0

15 WHEN pc = pc_from_elf("binary.elf", "queue_message_received.call")

16 CAPTURE

17 uint32_t elf_funcarg("binary.elf", "queue_message_received", 1) AS "src_tile_id",

18 uint32_t elf_funcarg("binary.elf", "queue_message_received", 2) AS "msg_type",

19 uint32_t elf_funcarg("binary.elf", "queue_message_received", 3) AS "msg_data"

20

21

22 __on_host__ log_msgs(in message_received, in message_send) {

23 dia_ev_t* ev = dia_ev_wait(message_received | message_send);

24 switch (ev->type) {

25 case message_send:

26 message_send_t* send_ev = (message_send_t*) ev;

27 printf("<- dest=%lu, msg_type=%lu, msg_data=%lu\n",

28 send_ev->dest_tile_id, send_ev->msg_type, send_ev->msg_data);

29 break;

30 case message_received:

31 message_received_t* rcv_ev = (message_received_t*) ev;

32 printf("-> src=%lu, msg_type=%lu, msg_data=%lu\n",

33 rcv_ev->src_tile_id, rcv_ev->msg_type, rcv_ev->msg_data);

34 break;

35 }

36 }

Listing 5.1: Dia script to create a log of messages received by and sent to the bank task. A
graphical representation of the script’s output is shown in Figure 5.3.

5.2.2 Debugging by Hand: Observe Exchanged Messages

Software diagnosis during the debugging process helps the developer to understand
how the program behaves, and consequently, why it misbehaves. A common starting
point in debugging is to add additional program output like log messages, and check
that output manually for correctness.

This is also the first step in our debugging scenario. Under the assumption that the
interaction between the ATMs and the bank is somehow faulty, the developer creates
a log of all exchanged messages. To create this log, he/she instructs DiaSys to create
an observation event whenever the bank tasks sends or receives a message. A single
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:atm0 (core 1.0) :bank (core 0.0) :atm1 (core 2.0)

get balance req

get balance resp

get balance req

get balance resp

modify balance

modify balance

Figure 5.3: Sequence diagram showing the race condition discussed in Case Study I.

transformation actor in the Dia script receives all messages, and displays them in a
human-readable form. Listing 5.1 shows the corresponding Dia script.

To make the text log produced by DiaSys even easier to understand we visualized it
in the form of a message sequence chart shown in Figure 5.3. Looking at this diagram
experienced developers will notice the bug: withdrawal transactions from two ATMs
are interleaved. Even though each ATM individually checks the account balance before
withdrawing money, the results of the check are invalidated by another ATM changing
the balance before the modification happens.

After this analysis the developer has located the bug: the two operations get balance

and modify balance are not executed as an atomic transaction. Following the debug-
ging process outlined in Section 2.1.2 (p. 11) the developer can now proceed to correct
the defect.

Fixing this bug would usually involve either introducing a lock, or using a compare-
and-swap (CAS)-like behavior when modifying the balance variable. To do so the
modify_balance(int amount) function would be extended to include an old value like
modify_balance(int old_balance, int amount). The old balance can then be used
by the bank task to detect a race condition and inform the atm tasks to try again.

5.2.3 Discussion: Manual Debugging with DiaSys

The use of a software diagnosis tool for program comprehension is a very common
task during the development of software. Due to its non-intrusive nature DiaSys can
be used in scenarios where inserting “a printf()” into the program code is not an
option—a feature it shares with traditional tracing systems. In the following we discuss
the example in two aspects. We first compare the data rates of our approach with
traditional tracing systems. And we then discuss the usability of DiaSys, especially
regarding the Dia Language.
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Figure 5.4: Comparison of data rates between a traditional tracing system and DiaSys when
detecting race conditions using the manual approach as outlined in the first part
of Case Study I. DiaSys requires less off-chip bandwidth than a traditional tracing
system up to a message rate of 1.7 million messages per second.

When compared to a traditional tracing system, DiaSys has two advantages: the
observation is very selective, and yet provides rich insight. To obtain similar insight
from a traditional tracing system, an instruction and a data trace must be obtained.
This requirement already excludes many of today’s SoCs which offer an instruction
trace, but no data trace. If a data trace is available and the off-chip interface is powerful
enough to stream it to the host PC, much effort is needed to correlate the two traces on
the host side to find the arguments passed to the send and receive functions. By only
capturing required data, but including data in the observation events, DiaSys reduces
the cost of the off-chip interface, and the processing on the host.

A quantitative analysis of the data rates supports this argument. Each observation
event described in Listing 5.1 is 20 B large. The packet header is 6 B, the event ID
occupies 2 B, and the captured data 12 B. One packet takes 10 cycles to transmit over
our 16 bit wide Debug Interconnect. The resulting data rate depends on the observed
software, more specifically on the rate of sent and received messages at the bank task.

For comparison, obtaining a compressed instruction and data trace from a single
CPU in our system would produce 32.5 MB/s of data (c.f. Section 5.1.2)—independent
of the message rate. Hence, up to a rate of one (received or sent) message per 30 clock
cycles, or more than 1.7 million messages per second, the data rate produced by DiaSys
is below the one produced by typical tracing systems, as Figure 5.4 shows.

The second, necessarily subjective, topic is usability. The Dia script shown in List-
ing 5.1 is not very long, hence relatively fast to write for a developer. Roughly half of
the code is used to specify the events and especially the captured function arguments.
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The other half is the transformation actor which converts the received events into text
form.

The example code shows that the Dia Language is sufficiently expressive for this
task, but it also shows areas in which the language could be improved.

• In event definitions, the specification of function arguments could be made less
verbose.

• The transformation actor code could be simplified by removing the need for type
casts, complexity that is necessary due to our use of C.

• Finally, it could be considered to have a “default” actor for events which are not
processed explicitly by an transformation actor. This actor could print out events
in a standardized form, which is sufficient for many manual observation tasks.

In summary, DiaSys provides the necessary insight to help a developer understand
the software execution in the presented race condition example. In realistic scenarios
DiaSys provides this insight with less off-chip traffic than traditional tracing systems.
The Dia Language provides sufficient expressiveness, but could be improved to reduce
the amount of necessary “boilerplate” code.

After this discussion we return to the race condition example. Now that the developer
has located the defect and fixed it, he or she wants to ensure that it does not happen
again. To do this, he/she writes automates the diagnosis in the form of a test.

5.2.4 From Debugging to Testing: A Transaction Checking Test

Once the developer understood the race condition, he/she can use DiaSys to check if
all messages are exchanged according to a race-free protocol. In the correct scenario the
sequence of getting the balance, comparing it, and modifying it is an atomic transaction.
We use this correct scenario as hypothesis and use DiaSys to check it. If the hypothesis
does not hold, we have found a race condition.

A Dia script which performs this automated checking is presented in Listing 5.2. It
makes use of the same observation events as before (c.f. Listing 5.1). A transformation
actor check transaction checks the atomicity of the transaction. If violations are
found, a new event race found is triggered, which is ultimately reported back to the
host.

5.2.5 Discussion: Testing

The most significant benefit from automating the hypothesis test, as shown in the
previous section, is the increase in productivity for the developer. No manual inspection
of the event log is necessary, which is beneficial especially if race conditions happen
only rarely (as they usually do). Additionally, the test can be executed unattended, for
example as part of a continuous integration system, which tests the software repeatedly
and reports failures back to the developer.
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Furthermore, the additional processing within the check transaction reduces the
required off-chip bandwidth: only if a race condition is found, an event is sent off-chip;
otherwise, all processing can happen on-chip.

In our evaluation chip design the check transaction actor is mapped to the on-chip
Diagnosis Processor (DIP). In the longest code path we measure an execution time of
the transformation actor of 2498 cycles after the dia ev wait() function returns. (The
longest code path includes the sending of a race found event.) The reception of an
incoming message received packet is performed within an interrupt service routine
taking 3000 cycles (c.f. Section 4.4.10), which can be called at any time during the
program execution. Since the transformation actor is triggered once per incoming event,
we get a total processing time for one incoming event packet of 5498 cycles. Therefore,
the Diagnosis Processor running at 50 MHz can execute the check transaction actor
9090× per second. We can conclude that as long as the bank task receives less than 9090

requests per second the atomicity of the get balance / modify balance transaction can
be checked fully on-chip. Only atomicity violations, i.e. race conditions, are reported to
the developer on the host.

5.2.6 Summary: Debugging and Testing of Race Conditions with DiaSys

Race conditions are among the most challenging defects faced by software developers,
as they rarely occur, and may or may not be visible depending on the execution timing.
In this case study we have shown the DiaSys is a suitable debugging and testing tool in
such a scenario.

In the first part of the case study, we have used DiaSys for manual debugging of the
race condition. A Dia script printed out a log of messages, which allowed the developer
to manually compare his/her expectations how the software should execute with the
actual execution. Thanks to the very selective data collection mechanisms of DiaSys the
off-chip data rate produced by DiaSys is significantly lower than in a traditional tracing
system.

In a second step we evolved the Dia script to perform an automated checking of the
software execution, i.e. we built knowledge how the software should execute into a
test. This test can be run on-chip in the Diagnosis Processor, and the off-chip traffic is
limited to the reporting of violations. In addition to saving the developer time, since
he/she does not need to manually check the message log anymore, the observation
can be run for a long time and/or unattended. As such the test can be executed in a
continuous integration environment, ensuring that the race condition, after it has been
fixed, does not reappear in future versions of the code.
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1 EVENT message_received TRIGGER

2 AT Cpu WHERE core_id = 0

3 WHEN pc = pc_from_elf("binary.elf", "queue_message_received.call")

4 CAPTURE

5 uint32_t elf_funcarg("binary.elf", "queue_message_received", 1) AS "src_tile_id",

6 uint32_t elf_funcarg("binary.elf", "queue_message_received", 2) AS "msg_type"

7

8 EVENT race_found CONTAINS uint32_t id1, uint32_t id2

9

10

11 check_transaction(in message_received, out race_found) {

12 static bool in_transaction = false;

13 static uint32_t transaction_owner;

14

15 message_received_t* ev = dia_ev_wait(message_received);

16

17 // copied from the application source code for symbolic names of msg_type

18 typedef enum {

19 GET_BALANCE_REQ,

20 GET_BALANCE_RESP,

21 MODIFY_BALANCE

22 } application_message_types;

23

24 // only consider these two messages

25 if (ev->msg_type != GET_BALANCE_REQ && ev->msg_type != MODIFY_BALANCE) {

26 return;

27 }

28

29 // check for race condition

30 if (in_transaction && ev->src_tile_id != transaction_owner) {

31 race_found_t* out_ev = dia_ev_new(race_found);

32 out_ev->id1 = transaction_owner;

33 out_ev->id2 = ev->src_tile_id;

34 dia_ev_send(out_ev);

35 }

36

37 // mark transaction start

38 if (ev->msg_type == GET_BALANCE_REQ) {

39 transaction_owner = ev->src_tile_id;

40 in_transaction = true;

41 }

42 // mark transaction end

43 if (ev->msg_type == MODIFY_BALANCE) {

44 in_transaction = false;

45 }

46 }

47

48 __on_host__ report_results(in race_found) {

49 race_found_t* ev = dia_ev_wait(race_found);

50 printf("Found a violation of the transaction protocol. "

51 "Tile %lu interleaved with tile %lu.\n", ev->id1, ev->id2);

52 }

Listing 5.2: The Dia script to automate the checking of the transaction.
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5.3 Case Study II: Function Profiling

Profiles, especially function profiles, are a commonly used analysis technique when
evaluating the performance of an application. While many developers have a good
understanding of the complexity of the source code they are currently working on, it is
often less obvious which parts of a program account for the most execution time. A
profile provides this information at function granularity in the form of a sorted list,
containing the number of calls to the function, the average execution time, and the total
execution time (possibly in relation to the calling function, or the whole program). In
this case study we present two approaches to create a function profile with DiaSys: one
exact approach, and one approach which uses sampling.

5.3.1 Creating a Function Profile with Exact Accounting

Our first profiling approach is “exact” as it counts every function call. Listing 5.3
shows the used Dia script. We configure the Core Event Generator to trigger the
creation of a new event whenever a function is called. Calls to a function are identified
by their opcode; for the or1k ISA the opcodes j.jal and j.jalr are used.2 As payload
we capture the timestamp (timestamp), and the program counter of the jump target
(npc), which is equal to the entry point of the called function.

Two other events are defined to transfer the resulting profile from the transfor-
mation actor to the host: the request profile event is sent from the host to the
create profile transformation actor to trigger the sending of the profile. The re-
sponse is sent as a series of profile entry events, each of which contains a single
entry (i.e. a single function) in the profile.

In the following we discuss two scenarios: in the first one, the create profile actor
is executed off-chip, while in the second scenario it is executed on-chip.

5.3.1.1 Off-chip Profile Generation with Exact Accounting

If the create profile transformation actor is executed off-chip, all func call events
must be sent through the off-chip interface to the host PC. Each func call event is 16 B
large, hence the resulting off-chip data rate roffchip can be calculated as a function of the
function call rate fcall.

roffchip = 16 B · fcall

Figure 5.6 shows this relation (blue). Up to fcall = 819 · 103 function calls per second,
the exact accounting approach of DiaSys is more bandwidth-efficient than traditional
tracing, even without any on-chip processing. With on-chip processing even more
off-chip bandwidth can be saved, as shown next.

2The opcode num() function used in Listing 5.3 returns the opcode number for the given symbolic name
according to the ISA manual. For example, the l.jal symbolic name is resolved to the value 0x01.
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5.3.1.2 On-chip Profile Generation with Exact Accounting

The key limiting factor for on-chip profile generation is the available processing power
provided by the Diagnosis Processor. We discuss this first, before moving on to discuss
the achievable off-chip bandwidth savings.

Listing 5.3 shows the processing performed in the create profile actor to create
a profile. At its core is the stat account() function, which is part of the runtime
system provided for the DIP. This function manages a data structure which records
the total execution time and the number of calls for each observed function call. It is
implemented as an open addressing (fixed-size) hash table with linear probing. The
implementation requires a static amount of memory (defined at compile time). Looking
up keys, or inserting new data, takes constant time if no hash conflict is present.

The program binary loaded onto the DIP has a static size of 53 kB, leaving up to
75 kB for runtime-allocated data. The largest data structure is the statistics hash table,
which requires 12 B per bucket (entry in the hash table). An optimal size of the hash
table depends on the number of entries, i.e. the number of unique functions observed
during the program execution. In our implementation we have dimensioned the hash
table to contain 1024 entries, which is large enough for applications up to roughly 700

unique functions.3 Hence, our statistics hash table adds 12 kB of runtime data, leaving
enough headroom for other dynamically allocated data, such as incoming packets and
the stack.

To process a single func call event the Diagnosis Processor needs 3550 cycles, which
consists of 3000 cycles to receive the event from the network interface, and 550 cycles to
update the statistics hash table.4

The processing time can also be viewed from another angle: the DIP is able to create
a function profile if functions in the observed software take 3550 cycles or more on
average. If multiple CPUs are observed the number needs to be multiplied with the
number of CPUs.

It therefore depends on the observed software if the processing performance of the
DIP is sufficient to create a profile. More specifically, up to fcall = 14.1 · 103 function
calls per second (by any CPU), the on-chip profile generation is possible. In this case,
shown as dashed line in Figure 5.6, the off-chip data rate is reduced from 12.5 MB/s for
a traditional tracing system to 200 B/s, assuming that every second a profile containing
10 entries is sent from the chip to the host PC.

Sampling-based analysis can avoid the dependency on fcall, as shown next.

5.3.2 Creating a Function Profile with Sampling

Instead of accounting for every function call in the observed software, sampling can be
used to create a profile. The main benefit of sampling is its controllability: whereas

3A hash table as we implemented it performs well up to a maximum load factor of roughly 70 %. The
load factor is defined as the number of entries over the number of buckets. If this factor is exceeded,
the number of hash collisions increases and hash table lookups do not have near-linear performance
anymore.

4All runtime numbers are given after the initialization has been completed.
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Figure 5.5: Program counter sampling using simple sampling, or the function call sampling
feature of the CEG. A black dot represents a program counter value, a blue circle is
a function call.

in the exact accounting approach the rate of observation events is a function of the
observed software, with sampling it is a design-time constant, the sample rate. For
profiling typical sample rates are around 1 kHz and 10 kHz.5

To create a function profile using sampling we use two special features of the Core
Event Generator.

1. We use the time trigger to issue a new observation event after a configurable
period.

2. The CEG continuously remembers the address of the currently executing function.
This data value can be captured when the trigger fires and included in the
observation event.

Commercially available tracing systems do not provide comparable functionality.
Therefore, they need to capture a full instruction trace, sample the program counter, and
then use the program binary to map arbitrary program counters to function addresses,
as Figure 5.5 illustrates.

The aggregation of observation events into a profile is performed as in Listing 5.3;
the only difference is that events are now arriving at a predefined, regular interval. As
in the exact accounting case, we can execute the create profile transformation actor
on-chip or off-chip.

5.3.2.1 Off-chip Profile Generation with Sampling

If the sampled data is aggregated into a profile on the host PC, all sample events need
to be sent off-chip. For a 1 kHz sampling rate the data rate is reduced to 15.6 kB/s,
or a factor of 819 compared to a traditional tracing system; for a 10 kHz sampling
rate the data rate is reduced by 82×. The absolute data rates are given for a single
observed CPU; if a profile from multiple CPUs is to be generated, the required off-chip
data rate scales linearly with the number of CPUs. For example, a sampling-based

5Typically, rates are used which do not coincide with periods of time-triggered systems, e.g. 999 Hz or
9999 Hz.
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profile obtained at a 10 kHz sampling frequency from our eight-core system generates
1.2 MB/s off-chip traffic.

Notably, this off-chip traffic is independent of the frequency of the observed CPUs: a
high-performance eight-core server processor generates the same amount of data as
our evaluation system. A data rate of 1.2 MB/s can be handled even by a comparably
cheap Universal Asynchronous Receiver Transmitter (UART) interface.

5.3.2.2 On-chip Profile Generation with Sampling

With a 10 kHz sampling rate the processing of a single event within the DIP may take
up to 5000 cycles, with a 1 kHz sampling rate even up to 50 000 cyles. Since the actual
processing only takes 3550 cycles in our current implementation we have room to
extend the analysis, e.g. with the calculation of a standard deviation.

As in the exact accounting case, on-chip processing reduces the off-chip data rate
from 12.5 MB/s for a traditional tracing system to 200 B/s, assuming that every second
a profile containing 10 entries is sent from the chip to the host PC.

In summary, sampling-based profiling is a good way to gain back control over the
analysis process, and reduce the off-chip data rate along the way. It allows the developer
to design a Dia script which is guaranteed to be executable, since the answer to this
question does not depend on the observed software, but only on design parameters.
The downside of sampling is a loss in accuracy, especially for functions which have a
short runtime and are rather infrequent.

5.3.3 Summary: DiaSys for Function Profiling

Function profiling is one of the most common tasks to assess the performance of an
application, and to find a starting point for further investigations. To obtain a good
profile, the software execution must be observed for a longer period. In traditional
tracing systems, the creation of a profile requires a full instruction trace which is
streamed to the host PC [101].

With DiaSys a function profile can be created in two ways: either with exact ac-
counting, or with sampling. The exact method has an important downside: the rate of
observation events, and hence the needed processing power to create a profile, depends
on the observed software. Given that developers create a profile to understand the
software this creates “chicken or egg”-style problem.

Creating a profile using sampling leads a way out of this problem. Since the sampling
rate is a developer-controlled parameter he/she can determine a sustainable amount of
processing at design time.

In this case study we have shown that the Diagnosis Processor is sufficiently dimen-
sioned to create a sampling-based function profile at 10 kHz sampling rate. Notably
this dimensioning is not only sufficient for our evaluation system, but also for any
system running at much higher frequencies, e.g. a desktop processor running at 3 GHz.
A necessary prerequisite, however, is an event generator as the one present in DiaSys
which is able to sample function addresses, as opposed to only program counters.
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Figure 5.6: Comparison of data rates between a traditional tracing system and DiaSys when
creating a function profile. The DiaSys data rates assume no on-chip processing, all
processing is performed off-chip.
In contrast to the exact accounting approach (blue), sampling produces constant
off-chip traffic, only depending on the sampling rate (green).
Up 14.1 · 103 function calls per second an exact profile can be generated on-chip by
the Diagnosis Processor. This boundary is shown as dashed line. The dots denote
the maximum data rate savings achievable with on-chip processing, compared to a
traditional tracing system, and off-chip processing in DiaSys.
With on-chip processing only the aggregated profile needs to be sent off-chip when
the user requests it, the data rate is hence close to zero (not shown).
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1 EVENT func_call TRIGGER

2 AT Cpu WHERE core_id = 0

3 WHEN opcode = opcode_num("l.jalr") OR opcode = opcode_num("l.jal")

4 CAPTURE uint32_t timestamp, uint32_t npc

5

6 EVENT request_profile

7

8 EVENT profile_entry

9 CONTAINS uint32_t func_pc, uint32_t cnt, uint32_t time

10

11 create_profile(in func_call, in request_profile, out profile_entry) {

12 static uint32_t timestamp_prev = 0;

13 static uint32_t npc_prev = 0;

14 static struct stat_ctx *stat_ctx = NULL;

15

16 dia_ev_t* ev = dia_ev_wait(func_call | request_profile);

17

18 stat_init(&stat_ctx);

19

20 if (ev->type == func_call) {

21 func_call_t *cnt_ev = (func_call_t*)ev;

22

23 if (timestamp_prev != 0) {

24 uint32_t tdiff = cnt_ev->timestamp - timestamp_prev;

25 stat_account(stat_ctx, npc_prev, tdiff);

26 }

27 timestamp_prev = cnt_ev->timestamp;

28 npc_prev = cnt_ev->npc;

29

30 } else if (ev->type == request_profile) {

31 profile_entry_t* out_ev;

32 struct ht_entry *item = stat_first(stat_ctx);

33 while (item != NULL) {

34 out_ev = dia_ev_new(profile_entry);

35 out_ev->func_pc = item->key;

36 out_ev->cnt = item->cnt;

37 out_ev->time = item->sum;

38 dia_ev_send(out_ev);

39

40 item = stat_next(stat_ctx);

41 }

42

43 // send one last event to signal the receiver the end of the transmission

44 // [omitted for space reasons]

45 }

46 }

47

48 __on_host__ show_profile(in profile_entry, out request_profile) {

49 /* Implementation omitted for brevity.

50 1. Send request_profile event

51 2. Wait for all profile_entry events and sort them

52 3. Print data out as table.

53 4. Wait for e.g. 10 seconds, and repeat */

54 }

Listing 5.3: The Dia script used in Section 5.3.1 to create a function profile.
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5.4 Case Study III: Lock Contention Profiling of a Standard
Benchmark Application

In our third case study we generate a lock contention profile. To give meaningful
insight into data rates generated when analyzing large real-life applications, we use
in this example not a self-created example application, but an application from the
PARSEC benchmark suite. We also show how the hierarchical data reduction within a
diagnosis application offers trade-offs between adding on-chip processing power and
off-chip bandwidth.

The case study presented in this section is an extended version of a case study
previously published in [15].

5.4.1 Evaluation Prototype

The hardware implementation prototype of DiaSys presented in Section 4.4.7 is only
able to run baremetal applications, i.e. applications which do not require an operating
system. To run larger applications, such as standard benchmarks, we therefore created
a software prototype of DiaSys. It runs purely in software on a Linux PC and is best
suited for an evaluation of event rates inside the diagnosis system. Since no hardware
extensions are used, its operation is intrusive, i.e. the timing of the observed application
is slightly changed. The prototypical event generators can only trigger on the call of
and return from a C library function, and the function arguments can be included in
the event as data items.

The software prototype consists of two parts, which are shown in Figure 5.7. The
first part is a “preload library.” It is a small software library written in C which is
able to monitor all calls to C library functions and write them into an event log file.
This event log file is then used by a prototype of the diagnosis system implemented in
Python. It consists of event generators, which read the event log file. A set of Python
functions connected by channel objects represent the transformation actors. (We assume

observed application

preload 
library

C library / Linux kernel

pthread_mutex_lock()
all other 

library 
calls

log call and return

diagnosis
application

observed system DiaSys prototype

event log 
file

event 
gener-
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results
report

prototyped as Python application

Figure 5.7: The software prototype of the diagnosis system. All calls in the observed application
are recorded in an event log file by an preloaded library. The event log file is read
by the diagnosis system implemented as Python application. The figure shows the
monitoring of all pthread mutex lock() calls and returns.

134



5.4 Case Study III: Lock Contention Profiling of a Standard Benchmark Application

1 int pthread_mutex_lock(pthread_mutex_t *mutex) {

2 blocking_wait_until_mutex_is_free(mutex);

3 lock_mutex(mutex);

4 return 0 /* success */ ;

5 }

Listing 5.4: A sketch of the pthread mutex lock() function. This function must be executed
atomically, i.e. without interruption.

a one-to-one mapping of transformation actors to processing nodes in this prototype.)
The output of the Dia script is directly printed to a console.

We now use this software prototype to create the lock contention profile.

5.4.2 Problem Description

A lock contention occurs in concurrent programs if multiple threads try to acquire a
mutex lock at the same time [102, p. 147]. In this case, all but one threads have to
wait for the lock to be released before they can continue processing. Therefore, the
lock acquisition time is a good metric for program efficiency: the less time it takes, the
earlier the thread is done with its work.

In order for a developer to get insight into the lock contention behavior of the
program, a contention profile can be created. It lists all acquired locks, together
with the summarized and averaged times the acquisition took. Such a profile can be
generated in an intrusive way with tools like Intel VTune Amplifier or mutrace6, and is
traditionally formatted as shown in Listing 5.7.

5.4.3 Measurement Approach

The lock acquisition time can be measured by obtaining the time the mutex lock
function took to execute. In applications using pthreads, as it is the case for almost
all applications running on Linux, macOS or BSD, the mutex lock function is named
pthread_mutex_lock().

As shown in the simplified code sketch in Listing 5.4, the function blocks for an
indefinite amount of time until a lock is available. If it is available, it acquires the lock
and returns.

To create a lock contention profile, we need to measure the execution times of all
pthread_mutex_lock() function calls in all threads. We then group this measurement
by lock, given by the argument mutex of the lock function, to obtain the number of
times a lock was acquired, how long all lock acquisitions took in summary, and on
average.
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Figure 5.8: A graphical representation of the Dia script to create a lock contention profile.

5.4.4 The Dia Script

To perform the analysis outlined in the previous section, we configure DiaSys as shown
in Figure 5.8. First, we configure the event generator on each CPU to generate two
observation events which together measure the execution time of the lock acquisition
function pthread mutex lock().

• One observation event lock call is triggered if the CPU enters (calls) the pthread -

mutex lock function. The first function argument to pthread mutex lock, the
mutex, is attached to the event as data item, together with a timestamp containing
the current time.

• Another observation event lock return is triggered if the CPU returns from the
pthread mutex lock() function. For this event, only a timestamp is attached as
event data.

To calculate the execution time of the function pthread mutex lock(), we create a
transformation actor ta diff as shown in Listing 5.5.

It waits for both observation events lock call and lock return, calculates the
difference between the timestamps, and creates a new event lock acq time with two
data items, the lock acquisition time and a hash of the mutex argument to reduce the
data size.

As last step in the processing, all lock acq time events are aggregated by another
transformation actor called ta stat. Again, a pseudo code implementation is given in
Listing 5.6.

If an event of type lock acq time is received, the timestamp is added to a hash
data structure which records, grouped by the mutex, the number of calls to the lock
function and the total time these calls took. Whenever the (intermediate) results of the
profile are wanted, a send lock profile event is created, which triggers the sending

6http://0pointer.de/blog/projects/mutrace.html
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1 ta_diff(in lock_call, in lock_return, out lock_acq_time) {

2 lock_call_t *call = dia_ev_wait(lock_call);

3 lock_return_t *ret = dia_ev_wait(lock_return);

4

5 uint16_t time = ret->ts - call->ts;

6 uint16_t mutex_hash = hash(call->mutex);

7

8 lock_acq_time_t *lock_acq_time = dia_ev_new(lock_acq_time);

9 lock_acq_time->lock = mutex_hash;

10 lock_acq_time->time = time;

11 dia_ev_send(lock_acq_time);

12 }

Listing 5.5: The transformation actor calculating the lock acquisition time, written in the Dia
Language. In our prototype we implement equivalent functionality in Python.

1 ta_stat(in lock_acq_time, in send_lock_profile, out profile_entry) {

2 static struct stat_ctx *stat_ctx = NULL;

3

4 dia_ev_t *ev = dia_ev_wait(lock_acq_time | send_lock_profile);

5

6 stat_init(&stat_ctx);

7

8 // aggregate

9 if (ev->type == lock_acq_time) {

10 lock_acq_time_t acq_time = (lock_acq_time_t*) ev;

11 stat_account(stat_ctx, acq_time->mutex, acq_time->time);

12

13 // send statistics output to host PC

14 } else if (ev->type == send_lock_profile) {

15 profile_entry_t* out_ev;

16 struct ht_entry *item = stat_first(stat_ctx);

17 while (item != NULL) {

18 out_ev = dia_ev_new(profile_entry);

19 out_ev->mutex = item->key;

20 out_ev->cnt = item->cnt;

21 out_ev->time = item->sum;

22 dia_ev_send(out_ev);

23

24 item = stat_next(stat_ctx);

25 }

26

27 // send one last event to signal the receiver the end of the transmission

28 // [omitted for space reasons]

29 }

30 }

Listing 5.6: The transformation actor creating the lock profile in the Dia Language.
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1 mutex # acq. sum [ns] avg [ns]

2 (01) 0x7fd9ac018988 47785 8835387 184.90

3 (02) 0x7fd9d1ed2978 47784 226012031 4729.87

4 (03) 0x1c36500 9426 53724035 5699.56

5 (04) 0x1c36660 9423 21904608 2324.59

6 (05) 0x1c36710 4638 12528702 2701.32

7 (06) 0x1c365b0 105 46999 447.61

8 (07) 0x7fd9d2091430 8 1974 246.75

9 (08) 0x7fd9b41948f8 8 2277 284.62

10 (09) 0x7fd9b42b9ad8 8 2560 320.00

11 (10) 0x7fd9d20f8928 8 2215 276.88

Listing 5.7: Output of the lock contention profile diagnosis application observing the PARSEC
dedup application.

of the statistics. A transformation actor running on the host can then display the lock
contention profile in text form.

5.4.5 Evaluation

In the evaluation of this case study we focus on the event and data rates between the
event generators and transformation nodes. In order to provide realistic inputs, we
profiled the dedup application from the PARSEC 3.0 Benchmark Suite with the large
input data sets [103]. As PARSEC does not run on our custom-built prototype MPSoC
platform, we used the software prototype described in Section 5.4.1. All transformation
actors were implemented in Python code equivalent to the Dia scripts in Listings 5.5
and 5.6.

5.4.5.1 Output of the Diagnosis Application

Before we analyze the diagnosis application itself, we discuss the output it generates, i.e.
the lock contention profile shown in Listing 5.7. PARSEC was instructed to use at least
four threads; ultimately 16 threads were spawned by the dedup application. (There is
no option in PARSEC to specify the exact number of threads used.) The execution of
the observed application took 2.68 s.

The output shows the top ten most acquired mutexes, together with the total and
averaged lock acquisition time. Notable in this profile are mutexes 2 to 5, which take
on average significantly longer to acquire: these locks are called to be “contended.”

A profile helps to understand the program behavior and serves as a starting point
to fix possible bugs or inefficiencies. If lock contention is observed (and performance
goals of the application are not met), it is common to replace coarse-grained locks with
more fine-grained locks, i.e. locks which protect a shorter critical section. However,
fixing a bug is not in the scope of this work. Instead, we now turn our discussion to
the event and data rates generated when executing the Dia script that generated the
profile as shown.
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5.4.5.2 Event and Data Rates

We designed DiaSys to reduce the off-chip traffic by moving the data analysis partially
into the SoC. To evaluate if the data rates are in fact reduced, we analyze event rates
between the transformation actors.

We use the following event sizes:

• A lock call event requires 20 B: 6 B for the packet header, 2 B event type identifier,
4 B, and 8 B for the mutex argument.

• A lock return event requires 12 B.

• A lock acq time event requires 12 B: 6 B for the packet header, 2 B for the event
type identifier, 2 B for the lock acquisition time, and 2 B for the hashed mutex

argument.

Over the whole program run, the event generators attached to the 16 CPUs generate
a total of 258 127 lock call and an equal number of lock return observation events,
which equals 7.9 MB of data or, over the program runtime, an average data rate
of 2.94 MB/s. The ta diff transformation actors reduce the number of events by
half, resulting in a data rate of 1.1 MB/s, or a reduction to 37 %. Finally, after being
aggregated by ta stat, the full result can be transferred off-chip with 204 B.

A traditional tracing system produces much higher data rates, since an instruction
trace and a data trace (for the mutex function argument) are needed. Since PARSEC runs
on Linux on an Intel processor, we only have access to an instruction trace through Intel
PT to perform a real-world comparison. However, as a first lower-bound estimation of
the data rate generated by a state-of-the-art tracing system, we created a full instruction
trace using Intel PT. The same PARSEC dedup application created a trace file of 1.82 GB,
which corresponds to 679 MB/s over the program run-time.

In summary, DiaSys is able to reduce the required trace bandwidth compared to
an Intel PT instruction trace significantly due to on-chip analysis. When transferring
data off-chip after processing in the ta diff processing nodes, the bandwidth is
reduced from more than 679 MB/s to 1.1 MB/s, a reduction by 617×. After the ta stat

transformation actor only the profile itself needs to be transferred as events, which
results in not more than a couple of bytes, which need to be transferred whenever an
updated profile is desired, e.g. every second.

5.4.5.3 Discussion

Depending on the feature set and timestamp granularity of the various tracing imple-
mentations, the bandwidth reduction that DiaSys is able to achieve can vary. However,
a general observation holds: the most significant bandwidth savings result from the
fact that we very precisely capture only data in the event generators which is relevant
to our problem. The subsequent processing step ta diff of calculating the time differ-
ence between two events is further able to discard roughly 2/3 of the data. Due to its
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simplicity this step can be easily performed on-chip. The final step ta stat is again
able to give large percentage-wise reductions in data rate, however the absolute savings
might not justify an on-chip processing any more. This last step could therefore be
executed on the host PC, without changing the Dia script.
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5.5 Summary: Case Studies

DiaSys is designed to be a general-purpose observation system for today’s and to-
morrow’s embedded systems. As with any hardware-based system, the chip area
needed by the system is an important factor, as it determines the production cost of
the system. In Section 5.1.1, we present the implementation results for a eight-core
system, which is extended with a fully featured observation system. In this scenario
the observation and analysis components amount to 23 % of the observed system, a
high cost, when seen in relative numbers. This mismatch is mostly caused by the small
size of the observed CPU cores, which follow a very simple design pattern and use
off-chip DRAM. When seen in absolute numbers, the observation system is smaller
than the DRAM infrastructure components.

To analyze the performance of DiaSys we have taken this implementation and ran
two case studies on it. The first case study is from the field of functional debugging
and testing: DiaSys is used to debug and test for a race condition bug. Our case
study showed that this analysis can be performed fully on-chip within the Diagnosis
Processor, causing no off-chip traffic except for the transfer of the final results to the
developer. The case study also showed how Dia scripts can be evolved from manual
debugging helpers to fully automated tests, reducing the learning curve for developer
using DiaSys.

The second case study evaluated different options to create a function profile. It
concluded that especially with the use of sampling a profile can be created fully on-
chip, enabled by the advanced functionality within the Core Event Generator, and the
on-chip Diagnosis Processor. Notably, by adding the DiaSys components in the same
dimensioning and with the same hardware cost as in our evaluation system a function
profile can be created for arbitrary systems, including systems with high-performance
CPUs running at multiple GHz.

In the first two case studies we focused on the limits of DiaSys by giving bounds for
values which depend on the observed software. In the third case study we used an
application from the PARSEC benchmark suite for a closer look into event rates created
by a real-world application. The scenario in this case is the creation of a lock contention
profile, a task which typically requires a full instruction and a data trace in traditional
tracing systems, and hence produces high off-chip data rates.

Overall, we have shown DiaSys to be applicable in many scenarios in which tracing
systems are employed today. We have shown that on-chip processing can significantly
reduce the off-chip data rate, or conversely, provide more insight into the software
execution at the same data rate. Especially the function profiling scenario showed how
little additional hardware is needed to create a profile fully on-chip, a task for which
traditional tracing systems transfer gigabytes of data between the chip and the host PC.

Table 5.2 gives an overview over all case studies and the achieved reductions in off-
chip traffic, which is also given in graphical form in Figure 5.9. The exact reductions in
the off-chip traffic depend strongly on the case study and other assumptions. However,
it is safe to say that reductions in the order of multiple magnitudes are possible.
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off-chip traffic
tracing [B/s] DiaSys [B/s] reduction

Case Study I: Debugging a race condition (Section 5.2)
1.1 message log (manual debugging) 34 · 106 20 · 103 2 · 102

1.2 transaction checking (automated testing) 34 · 106 16 · 102 2 · 104

Case Study II: Function profiling (Section 5.3)
2.1 accurate function profiling (off-chip processing) 13 · 106 225 · 103 6 · 101

2.2 sampling with 1 kHz (off-chip processing) 13 · 106 16 · 103 8 · 102

2.3 sampling with 10 kHz (off-chip processing) 13 · 106 160 · 103 8 · 101

2.4 full on-chip processing 13 · 106 200 6 · 104

Case Study III: Lock contention profiling (Section 5.4)
3.1 only ta diff on-chip 711 · 106 1 · 106 6 · 102

3.2 full profile generation on-chip 711 · 106 204 3 · 106

Table 5.2: Overview on all case studies, comparig the off-chip traffic of a traditional tracing
system with the traffic produced by DiaSys. Most case studies depend strongly on
the executed program and other factors, such as the update frequency of a profile.
These assumptions are discussed within the case studies.
Furthermore, in case study 1 the message rate is set to 9090 messages/s, the maximum
sustainable message rate for on-chip processing. For case study 1.2 it is assumed that
1% of transactions violate the protocol. When a profile is fully generated on-chip, it
is sent off-chip once per second.
Figure 5.9 presents the data rate reductions in graphical form.
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Figure 5.9: Graphical representation of the data rate reductions achieved by DiaSys in the
presented case studies, compared to traditional tracing systems. Refer to Table 5.2
for more details on the shown case studies.
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In 1956, Herbert Benington wrote in an article on the software engineering processes
used to develop SAGE, a massive defense project during the cold war. He concluded
that “Eventually, programming should become a two-way conversation between the
imprecise human language and the precise, if unimaginative, machine. The programmer
will say, ‘Do this,’ and the machine will answer, ‘OK, but what happens if ...?’ ” [104]

In 2018, more than two generations of engineers and dozens of generations of
“machines” (as they were called back then) later, we are still not there. Despite all the
advances in software engineering, it is still the creative human mind that asks questions
to the computer, not the computer asking “intelligent” questions to the programmer.
Maybe we will never reach this level of sophistication. What is shame, however, is that
the tools and methods that allow developers to ask a computer questions about the
software execution are still inconvenient to use or wholly unavailable.

If we don’t want software development to happen blindfolded and outpaced by the
rapid increase in available processing power, we need to invest more into tools and
processes that help developers to observe and understand what they write. At its core
this is what motivated the design of DiaSys, which we presented in this work.

Our work addresses non-intrusive runtime observation of software executing on
embedded systems. Today, the insight into such systems is limited by the bandwidth of
the off-chip interface, which is orders of magnitude below the amount of observation
data available on-chip. The key idea of DiaSys is to move the processing of observation
data partially onto the chip, thus avoiding the bottleneck, while providing the developer
comparable insight into the software execution. The core of method behind DiaSys is
the description of an observation and analysis task as dataflow program, which we call
“Dia script.” To write such a script we contribute a novel domain-specific language, the
Dia Language. It has been designed to enable a distributed execution of the observation
data analysis, both on-chip and off-chip. However, this distinction does not need to be
made by the developer writing the script: the Dia Compiler translates the high-level
description to a target-specific representation, which is executed by the Dia Engine. The
Dia Engine consists of both hardware components which are added to an observed chip
design, and software components which complement the hardware implementation.

We have designed and implemented all three components of DiaSys, and used them
in case studies taken from typical scenarios in debugging and testing: the manual and
automated debugging of a race condition, and the creation of a function and a lock
contention profile. In these case studies we show that by moving the processing of
observation data partially on-chip, DiaSys can significantly reduce the off-chip traffic,
and in consequence increase the insight into the software execution.
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First we use DiaSys to manually debug a race condition bug, and evolve the manual
debugging into an automated test. We then discuss two use cases of DiaSys which are
especially challenging for today’s tracing systems, since they generate large amounts
of trace data. In the function profiling case study, we show that DiaSys can be used
to create a function profile for an arbitrarily fast processor with a hardware cost of
less than the DRAM infrastructure components. Finally, we employ observation data
created from the execution of a PARSEC benchmark application to gain insight into
real-world event and data rates.

The case studies have shown that DiaSys can be realized with reasonable hardware
cost, and that it is able to reduce the off-chip traffic by several orders of magnitude (at
least in the cases we have shown). On the other hand, the case studies also show areas
in which future research is needed.

First, we feel that more work is needed in the Dia Language to find an optimal
balance between usability, expressiveness, and compilability. Finding a good trade-off
in this domain has been a recurring topic over many decades, and the search does not
seem to end here.

Second, the evaluation of the Dia Engine implementation, especially the hardware
implementation, presents opportunities for further research. The resource utilization
could be lowered by sharing replicated structures, e.g. in the Core Event Generators
which are present for every observed CPU core. Also, the processing overhead of the
Diagnosis Processor could be reduced by including more hardware offloading, such as
a hardware scheduler.

Finally, more research into defect patterns and bug detection algorithms is needed to
better help developers detect sub-optimal or faulty program behavior. Initial work in
this domain has been done by the author of this thesis in collaboration with Infineon,
where we explored algorithms to detect wrong hardware configuration settings in [16]
and inefficient locking implementations in [17]. Using DiaSys in these and other scenar-
ios will undoubtedly uncover areas in which the current design, the implementation,
or the dimensioning of DiaSys need to be extended.

For the first time, DiaSys introduces script-based, non-intrusive diagnosis to em-
bedded developers. It unlocks unprecedented opportunities of sharing diagnosis
knowledge in the form of Dia scripts, and automating their execution. While this does
not make “the machine” ask questions during debugging, as Benington hoped for, it at
least frees developers from asking the machine the same questions again and again.
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