
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Robotik, Künstliche Intelligenz und Echtzeitsysteme

A Modeling Framework to Facilitate Schedule
Synthesis of Time-Sensitive Networking

Morteza Hashemi Farzaneh

Vollständiger Abdruck der von der Fakultät der Informatik der Technischen Universität München

zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Prof. Dr.-Ing Georg Carle

Prüfer der Dissertation: 1. Prof. Dr.-Ing. habil. Alois Christian Knoll

2. Prof. Miroslav Pajic, Ph.D.

Die Dissertation wurde am 09.10.2018 bei der Technischen Universität München eingereicht

und durch die Fakultät für Informatik am 29.03.2019 angenommen.

http://www.tum.de
http://www6.in.tum.de
mailto:morteza.hashemi@tum.de

Abstract

Over the last two decades, various proprietary modifications have been applied to

Ethernet technology to fill the gap of supporting determinism required for time-

critical systems. Time-Sensitive Networking (TSN) standards are under develop-

ment by the Institute of Electrical and Electronic Engineers (IEEE) and address

hard timing requirements of Ethernet-based distributed applications. The main

objective of these standards is to support distributed applications with different

levels of criticality in the same networking infrastructure. The support of mixed-

criticality reduces heterogeneity of networking technologies and simplifies not only

the development but also the integration of distributed applications.

However, the traffic planning and verification of these networks require advanced

expertise and are time-consuming.

In this thesis, a modeling approach is presented based on logic programing to facil-

itate network scheduling and infrastructural verification and to enable the analysis

of design errors. A graphical editor is conceived and implemented containing mod-

eling elements (topology, data flows, and requirements) to create adequate network

models. These models are automatically translated into a network knowledge base

which is the core of the framework. It is used to process queries for verification and

selective information gathering in order to build scheduling constraints. Based on a

constraint-labeling approach, design errors in model instances are retraced and iter-

atively corrected. Moreover, an approach is proposed based on the data-centricity

paradigm to enable network autoconfiguration at run-time.

The feasibility of the approach is evaluated using exemplary networking scenarios

and an experimental setup. The demonstrations emphasize that significant parts of

the manual TSN configuration and verification can be automated using the devel-

oped framework. Hence, this thesis contributes to simplification and acceleration of

implementing TSN-based applications.

Zusammenfassung

In den letzten zwei Jahrzehnten wurden verschiedene proprietäre Modifikationen

auf die Ethernet-Technologie angewendet. Das Ziel dieser Modifikationen war, den

notwendigen Determinismus zu ermöglichen, der von zeitkritischen Systemen an-

gefordert wird. Time-Sensitive Networking (TSN) Standards, die vom Institute of

Electrical and Electronic Engineers (IEEE) entwickelt werden, adressieren harte

Echtzeitanforderungen der Ethernet-basierten verteilten Anwendungen. Das Haupt-

ziel dieser Standards besteht darin, die Implementierung verteilter Anwendungen

mit unterschiedlichen Kritikalitätsstufen in derselben Netzwerkinfrastruktur zu un-

terstützen. Die Unterstützung von Mixed-Criticality reduziert die Heterogenität der

Vernetzungstechnologien und vereinfacht die Entwicklung und Integration verteilter

Anwendungen.

Die Planung und Verifikation dieser Netzwerke sind zeitintensiv und verlangen fort-

geschrittene Fachkenntnisse.

In dieser Arbeit wird daher ein Modellierungsansatz basierend auf logischer Pro-

grammierung entwickelt, um die Netzwerkplanung und infrastrukturelle Verifikati-

on zu unterstützen und die Analyse der Entwurfsfehler zu ermöglichen. Zur Erstel-

lung von adäquaten Netzwerkmodellen wird ein grafischer Editor mit entsprechen-

den Modellierungselementen (Topologie, Datenflüsse und Anforderungen) konzipiert

und implementiert. Die erstellten Modelle werden automatisch in eine Netzwerk-

Wissensbasis übersetzt, die den Kern des Frameworks bildet. Sie ermöglicht Abfra-

gen zur Verifizierung und selektiven Informationserfassung (z.B. notwendig für die

Generierung der Planungsrandbedingungen). Basierend auf einem Randbedingungs-

kennzeichnungsansatz werden Entwurfsfehler in Modellinstanzen zurückverfolgt und

iterativ korrigiert. Darüber hinaus wird ein Ansatz entwickelt, der das Konzept der

datenzentrischen Kommunikation nutzt, um die Autokonfiguration zur Laufzeit zu

ermöglichen.

Die Umsetzbarkeit des Ansatzes wird mit Hilfe beispielhafter Vernetzungszenarien

und eines experimentellen Aufbaus evaluiert. Diese Beispiele verdeutlichen, dass

signifikante Teile der manuellen Konfiguration und Verifikation der TSN-Netzwerke

mit Hilfe des entwickelten Frameworks automatisiert werden können. Deshalb trägt

diese Arbeit zur Vereinfachung und Beschleunigung der Entwicklung TSN-basierter

Anwendungen bei.

vi

Acknowledgements

I would like to express my sincere gratitude to Professor Alois Knoll for giving me

the opportunity to join his esteemed research group. He has always supported me

with fruitful discussions, motivating feedback, and future-oriented suggestions.

I would like to thank all my colleagues at the Chair of Robotics, Artificial Intelli-

gence, and Real-time Systems for their fantastic co-operation. I want to thank Amy

Bücherl for her continues support and proof reading of the thesis. I also want to

thank Ute Lomp for permanent support and helping me with the organization of

the dissertation process. I want to thank Marie-Luise for her support in my project

management tasks at the chair. I would like to thank Dr. Suraj Nair, Dr. Ali

Nasseri, Dr. Alejandro Mendoza, Brian Jensen, Philipp Heise, Dr. Daniel Renjew-

ski, Dr. Alexander Lenz, Sina Shafaei, Dr. Claus Lenz, Dr. Hardik Shah, Professor

Matthias Althoff, Dr. Kai Huang, and Dr. Stefan Kugele for the productive discus-

sions.

My special thanks to my wife, Helena, for her love and proof reading of the thesis.

Many thanks to my lovely children Hossein and Minou who provide fun in my life.

I want to express my special thanks to my parents, Effat and Javad, and my sis-

ter, Atefe, who have always supported me with their love and prayers from long

distances. This work is dedicated to them.

Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Background . 1

1.1.1 Time-Sensitive Networking . 2

1.1.2 Time-Aware Shaper IEEE 802.1Qbv . 5

1.2 Motivation and Research Questions . 7

1.3 Contribution . 9

1.4 Structure . 11

2 Literature Review 13

2.1 Schedule Synthesis for Time-triggered Ethernet 13

2.2 Timing Analysis of AVB/TSN Networks . 17

2.3 Autoconfiguration Concepts for Real-time Ethernet 21

2.4 Modeling of Real-time Networks . 25

2.5 Discussion . 30

3 Approach Overview 37

3.1 Framework Architecture . 37

3.2 Object-oriented Metamodel . 39

3.3 Network Knowledge Base . 40

3.3.1 Network Facts . 41

3.3.2 Network Rules . 43

3.3.3 Model-based Generation of the TSN Knowledge Base 44

3.3.4 Exemplary Use Cases . 45

iii

CONTENTS

3.3.4.1 Network Configuration and Management 46

3.3.4.2 Network Property Verification 47

3.3.4.3 Time-triggered Schedule Synthesis 48

3.3.4.4 Model Optimization . 49

3.3.4.5 Plug-and-Play and Dynamic Reconfiguration 50

4 Model-based Schedule Synthesis 51

4.1 Satisfiability Modulo Theories . 51

4.2 Constraints Overview . 53

4.3 Non-overlapping Constraints and Packet Fragmentation 54

4.4 Infrastructural Constraints . 58

4.4.1 Node Capability Constraints . 58

4.4.2 Port Programming Memory Constraints 59

4.4.3 Synchronized Actions . 61

4.5 Preparing the Synthesis Result for 802.1Qbv . 63

4.6 Time-Critical Sporadic Streams . 66

4.7 Implementation . 70

4.7.1 Framework Components . 70

4.7.2 Demonstration . 74

4.7.3 Discussion . 75

5 Model Correction and Optimization 79

5.1 Problem Localization in Unsatisfiable Models . 79

5.1.1 Background: Unsatisfiable Cores . 80

5.1.2 Approach . 81

5.1.2.1 Constraint Labeling . 81

5.1.2.2 Iterative Correction . 83

5.1.3 Evaluation . 86

5.2 Shortening Synthesis Time . 88

5.2.1 Decelerating Factors . 89

5.2.2 Model Optimization . 91

iv

CONTENTS

6 AutoTSN: Plug&Configure Concept for TSN 93

6.1 Background: Publisher-Subscriber Paradigm . 94

6.2 Approach Overview . 95

6.3 Autoconfiguration of IEEE 802.1Qbv . 97

6.3.1 Adequate Prolog Rule . 100

6.3.2 Demonstration . 100

6.4 Implications for Future Implementation . 103

7 Experimental Evaluation 105

7.1 Setup . 105

7.1.1 Step Motor Control Application . 106

7.1.2 Drowsiness Detection Application . 107

7.1.3 Infotainment Video Streaming Application 108

7.1.4 Network Load Generator . 108

7.1.5 Central User Interface . 109

7.2 Initial Observations . 110

7.3 Model-based Configuration . 111

7.4 IEEE 802.1Qbv: Test Cases . 113

7.4.1 Experiment 1: IEEE 802.1Q . 114

7.4.2 Experiment 2: IEEE 802.1Qbv without synchronization 115

7.4.3 Experiment 3: 802.1Qbv with PTP . 116

8 Conclusion and Future Work 121

8.1 Discussion of the Research Questions . 121

8.2 Limitations . 122

8.3 Future Work . 123

8.4 Industrial Practice . 124

A Appendix 125

References 131

v

CONTENTS

vi

List of Figures

1.1 Overview of standardization activities in TSN workgroup. 2

1.2 Mixed-criticality with Time-Aware Shaper (IEEE 802.1Qbv). 6

1.3 An exemplary Gate Control List (GCL) . 7

1.4 Thesis Structure . 11

3.1 Overview of the modeling framework. 38

3.2 Object-oriented metamodel of the network. 40

3.3 An excerpt of the LP-based model of an in-vehicle network using the formally

defined facts. 46

3.4 Prolog-based information extraction from the network model. 47

3.5 Verification of required network properties. 49

3.6 Integration units of an exemplary automotive E/E-architecture. 50

4.1 Constraint overview for TSN scheduling. 53

4.2 Exemplary network model containing synchronized actions. 62

4.3 Synchronization errors caused by network topology 63

4.4 Trasnformation of the offsets to GCL entries. 65

4.5 Modeling network topology using the graphical editor. 70

4.6 Modeling dataflow and QoS requirements using the graphical editor 71

4.7 Sequence diagram of the framework from modeling to the distribution of the

synthesized schedule. 73

4.8 An excerpt of the modeling elements, created graphical model, and node proper-

ties of the case study. 74

4.9 Modularity and extensibility of the developed framework 76

5.1 Constraint labeling approach. 83

vii

LIST OF FIGURES

5.2 Overview of the model correction approach using the unsatisfiable cores. 84

5.3 The label structure of the non-overlapping constraint. 85

5.4 Overview of the model correction approach using the unsatisfiable cores. 86

5.5 A complex unsatisfiable network model. 87

5.6 Step-by-Step analysis of the unsatisfiable cores. 89

6.1 Three steps towards fully-automated configuration of TSN networks. 94

6.2 Location transparency provided by publishing and subscribing data topics by

distributed applications. 95

6.3 A general approach for automated reconfiguration of TSN networks. 96

6.4 Plug&Play Procedure for the 802.1Qbv . 98

6.5 Decision procedure whether a new synthesis and reconfiguration of 802.1Qbv is

required. 99

6.6 The topology of the network model before and after the critical node is plugged

in. 101

7.1 Overview of the setup. 106

7.2 Drowsiness detection application. 107

7.3 Network load generator Ostinato. 108

7.4 Central user interface to control applications. 109

7.5 The network model of the experimental setup. 112

7.6 The developed schedule visualizer. 112

7.7 Higher traffic load and priority of the unscheduled traffic leads to higher latency

and jitter for the time-triggered stream. 114

7.8 IEEE 802.1Qbv without synchronization. 116

7.9 The computed schedule presents the configuration of the GCL for a single period

of the time-triggered stream with priority 6. 117

7.10 Observation of precision of the software-based PTP. 118

7.11 Minimized latency by IEEE 802.1Qbv with software-based PTP. 119

7.12 By increasing ∆, no stream misses its GCL slot and latency outliers remain below

32µs. 119

A.1 Domain application 1 in details. 129

A.2 Domain application 4 in details. 130

viii

List of Tables

2.1 Overview of related work and provided features. 32

4.1 Stream properties and schedule synthesis results of the demonstration use case. . 75

5.1 The synthesis time is increased with the increasing complexity of the competing

streams based on the network model in Figure 5.5. 90

6.1 Topics properties of the Plug&Play example. 102

7.1 A roughly estimated GCL table for the demo applications. 111

ix

x

Chapter 1

Introduction

1.1 Background

Standard switched Ethernet is a wide-spread, successful, low-cost, high-bandwidth and future-

oriented infrastructure that is used in home and office networks. Due to the lack of real-time

capabilities, it does not fulfill hard timing requirements. The main issue is the best effort

strategy of the Ethernet which leads to the nondeterministic transmission of competing Ethernet

frames.

Based on the advantages of Ethernet and interests of the factory automation domain, it

has been modified to enable deterministic and real-time communication. The result is a set

of Ethernet-based technologies such as e. g. Time-Triggered Ethernet [1, 2] and EtherCAT [3]

which provide timing guarantees. Almost all of them require significant modifications in hard-

ware, network, and application stack to achieve real-time guarantees. Ethernet Powerlink [4]

for instance uses obsolete network hubs to achieve the lowest latency and does not use the capa-

bilities of switched Ethernet in the duplex mode which can be considered a waste of bandwidth.

EtherCAT slave stack is implemented in Field Programmable Gate Array (FPGA) to achieve

the highest performance and minimum cycle times. Moreover, the communication control is

part of the protocol and tightly coupled with the proprietary application layer. In our previous

work, a subset of known Industrial Ethernet technologies is analyzed and compared [5].

Based on the timing requirements of the audio and video transmission application domain,

the Institute of Electrical and Electronics Engineers (IEEE) decided to extend Ethernet stan-

dards to develop real-time Audio Video Bridging (AVB) [6] technologies. AVB is an IEEE

working group which defines a set of standards to achieve timing and synchronization guaran-

1

1. INTRODUCTION

Time-Sensitive Networking

• IEEE 802.1AS-Rev • IEEE 802.1Qbv

• IEEE 802.1Qbu

• IEEE 802.1Qch

• IEEE 802.1Qcr

• IEEE 802.1CB

• IEEE 802.1Qca

• IEEE 802.1Qcc

• IEEE 802.1Qcp

• IEEE 802.1Qci

• IEEE 802.1CM

• IEEE 802.1Qcj

T
ra

ff
ic

 s
ch

ed
u

li
n

g

an
d

 s
h

ap
in

g

S
y
n

ch
ro

n
iz

at
io

n
S

ea
m

le
ss

re
d

u
n

d
an

cy

C
o

n
fi

g
u
ra

ti
o

n
 a

n
d

m
an

ag
em

en
t

Figure 1.1: Overview of standardization activities in TSN work group. Highlighted standards

(drafts) are relevant in the context of this thesis.

tees. Its objective is to guarantee a worst-case latency of 2ms for the high-priority traffic class

A and worst-case latency 50ms for traffic Class B over a maximum of seven hops. To guarantee

timing, Credit-Based Shaper (CBS) [7], Stream Reservation Protocol (SRP) [8] and timing and

synchronization [9] have been specified in IEEE 802.1Qav, IEEE 802.1Qat, and IEEE 802.1AS.

Applying CBS, network bursts (transmission of multiple frames directly behind each other) are

controlled such that reserved AVB streams fulfill their timing requirements.

The motivation for further developments and enhancements of AVB standards is originated

in the hard timing and safety requirements of factory automation and automotive applica-

tions. The main motivation is to reduce the worst-case latency and jitter down to microsecond

range. It also aims to develop important additional features such as fault-tolerance mechanisms

to meet safety-relevant requirements such as fail-operational. The Time-Sensitive Network-

ing (TSN) [10] task group aims at developing the required standards towards a unified hard

real-time Ethernet technology.

1.1.1 Time-Sensitive Networking

The standards on which the TSN task group is working can be divided into four categories as

depicted in Figure 1.1. A short summary of the standards is presented.

Synchronization: Time synchronization plays a significant role in real-time communica-

2

1.1 Background

tion and means that all network devices involved in a real-time application require the same

time reference. To achieve this, the device clocks need to be synchronized. The TSN syn-

chronization specification which is currently under development is based on the IEEE 1588

standard. The new version IEEE 802.1AS-Rev aims to incorporate the accepted features of

one-step transparent clocks [11]. The main improvement is to consider error situations and to

handle them (e. g. to find a solution in case of failure of a physical communication link or a

master clock). Moreover, the new version is designed to deal with different time domains in

switches and end-stations [12].

Traffic scheduling and shaping: IEEE 802.1 Qbv Time-Aware Shaper (TAS) proposes

a time-triggered scheduling approach to prioritize and control frame forwarding at egress ports

of the switches and end-stations [13] (in the context of this thesis, both terms frame and

stream are used to describe a dataflow between a sender and receiver. We use stream when the

periodic dataflow could contain more than one Ethernet frame. We use the term frame, when

the concepts of TSN standards are explained which are applied on single Ethernet frames).

Its main objective is to minimize the latency and jitter of high-priority frames. Virtual Local

Area Network (VLAN) tag is used to encode priority values from 0 to 8 which are inserted into

frames allowing support of mixed-critical streams over Local Area Networks (LANs). TAS has

to ensure that the Ethernet interface is not transmitting any low-priority frame on an egress

port when a time-triggered frame has to be sent. To guarantee this, a guard band is reserved

before the time slot of a time-triggered frame. Within the guard band, the start of transmission

for all frames is blocked. The length of a guard band window is equal to the maximum frame

size which may be transmitted.

The time slots which are occupied by guard bands reduce the bandwidth utilization for low-

priority traffic. To reduce these negative effects, a frame preemption mechanism is specified

in IEEE 802.1Qbu [14]. The main idea is to preempt a long low-priority frame in favor of

a high-priority time-triggered frame. The capability of frame preemption reduces the size of

guard band windows and therefore increases the bandwidth utilization.

Another ongoing standard which deals with traffic shaping is IEEE 802.1Qch [15] which also

deals with scheduling. It aims to reduce the configuration complexity by relaxing the timing

requirements. The main concept is to supports a cyclic queuing and forwarding mechanism such

that the received frames within a cycle are collected and transmitted to the next hop which will

happen in the next consecutive cycle. Hence, the worst-case latency can be calculated using the

number of hops. This standard also requires network synchronization similar to the time-aware

3

1. INTRODUCTION

shaper. In contrast, a recently approved draft IEEE 802.1Qcr [16] deals with asynchronous

traffic shaping which does not require synchronization and aims to increase the bandwidth

utilization for low-priority frames.

Seamless redundancy: To support fail-operational and seamless redundancy require-

ments (common in many critical distributed applications), IEEE 802.1CB standard is under

development to support frame replication and elimination [17]. The approach is similar to High-

Availability Seamless Redundancy (HSR) and the Parallel Redundancy Protocol (PRP). The

frames are duplicated and transmitted in parallel via disjoint network paths. To avoid the mis-

understanding of multiple replicated frames at the receiver end-stations, the frame duplicates

have to be detected and eliminated at the receiver side. To support seamless redundancy, it is

crucial to find disjoint redundant paths by obtaining information about the network topology.

Topology discovery and bandwidth reservation are treated in IEEE 802.1Qca standard [18,19].

Management and configuration: The configuration and management of TSN networks

is the topic of IEEE 802.1Qcc standard [20] in which different configuration approaches are

proposed. The centralized approach assumes a central entity in the network which has an

overview of all network components and is responsible for configuration decisions based on the

requirements. In contrast, in the decentralized approach, each network component uses its

locally available information for configuration activities.

In IEEE 802.1Qcp, a Unified Modeling Language (UML) based information model and a

YANG data model are specified. These models aim to support configuration and status re-

porting for bridges [21]. The draft of IEEE 802.1Qcj [22] draft intends to specify protocol

and procedures enabling the auto-attachment of network devices to provider backbone ser-

vice instances. To ensure that all TSN nodes’ behavior conforms to the configuration, IEEE

802.1Qci [23] standard is being developed. The main objective is to specify per-stream filtering

and policing mechanisms which detect and mitigate stream transmissions which show trou-

bling behavior. This is also highly related to security aspects of the network when a malicious

(e. g. hijacked) end-station produces more traffic than reserved. Such misbehaviors prevent

other streams to fulfill their requirements. Finally, IEEE 802.1CM [24] deals with the trans-

mission of time-sensitive fronthaul streams in TSN networks.

In the context of this thesis, we discuss the significant role of node synchronization (IEEE

802.1AS-Rev based on IEEE 1588 v2 PTP) as an infrastructural requirement for time-triggered

communication. We investigate how the configuration of IEEE 802.1Qbv nodes can be auto-

mated. The developed concepts show how redundancy requirements which are e. g. related to

4

1.1 Background

IEEE 802.1CB can be verified. Moreover, we explain the relation of the developed modeling

framework in this thesis to the configuration draft IEEE 802.1Qcc. The remaining standards

are out of the scope of this thesis.

The main focus of this thesis is on the configuration and verification of the TSN mechanisms

which enable standardized time-triggered communication in switched Ethernet networks. Thus,

the corresponding standard IEEE 802.1Qbv is explained in detail.

1.1.2 Time-Aware Shaper IEEE 802.1Qbv

Fulfilling tight timing requirements of time-critical traffic is not possible if only packet priori-

tizing mechanism based on the First-In-First-Out (FIFO) principle is applied (cf. IEEE 802.1Q

and IEEE 802.1P). If a frame with lower priority is going to be transmitted on an egress

port, it has to be guaranteed that its transmission will be completed before a frame with a

higher priority arrives for transmission. Without this guarantee, in a worst-case scenario, a

high-priority frame may experience a delay of a maximum-sized Ethernet frame based on the

defined Maximum Transmission Unit (MTU). The sum of such delays over multiple hops in-

creases the transmission latency and could result in missing end-to-end deadlines. Moreover,

the end-to-end transmission jitter becomes non-deterministic, because the delays at each hop

are nondeterministic. The most significant contribution of TSN to the standard Ethernet is

the standardization of the time-triggered communication paradigm (TAS) specified in IEEE

802.1Qbv (regarding enhancements for scheduled traffic). TAS supports applications which

require highly predictable frame delivery with lowest latency and jitter. Such applications are

common in e. g. the industrial automation and automotive domain, for example, where critical

data is transmitted periodically using a pre-defined static schedule. Missing deadlines of such

critical frames can result in inaccuracy or system failure. Using TAS mechanism, it is possible

to mix the time-critical traffic with less time-critical traffic in the same network.

The core idea is that at each arbitrary point in time, TAS can control, which traffic priority

class or classes have exclusive link access to transmit data. To avoid that low-priority traffic

disturbs the transmission of time-critical traffic, the transmission of low-priority traffic has to

be blocked in advance. This time slot is called guard-band, which starts before the transmission

of the time-critical traffic. Exemplary scheduling using TAS is demonstrated in Figure 1.2. At

a given egress port, nine streams are competing to get the link access. Streams S1, S2, and S3

are time-critical with periods of 10ms, 10ms, and 20ms and priority class 7. The non-critical

5

1. INTRODUCTION

S1

S2 S2

S4 S5 S6 S7 S8 S9

GCL Cycle = Hyperperiod = 20ms

Guard-band

Critical slot, priority=7

Non-critical slot, priority=6

S3

S1

T0

T1 T2

T3 T5

T6

T4

T7 T8

T9

T10 T11

T12T13 T14

Figure 1.2: Mixed-criticality with Time-Aware Shaper (IEEE 802.1Qbv). The conflict-free

transmission of periodic time-critical traffic is guaranteed.

streams S4, S5, S6, S7, S8, S9 have priority 6 and are not transmitted within the defined

guard-bands.

The reserved slots for transmission of these streams do not overlap with other priority classes

(as specified in IEEE 802.1Qbv to minimize buffering of time-critical streams). Within guard-

bands, no frames can be transmitted. The remaining time is available for transmission of other

priority classes.

Each Ethernet port has eight time-aware gates for eight priority classes from 7 (highest) to

0. A gate driver opens and closes these gates based on a predefined schedule stored in Gate

Control List (GCL). To use the previously presented sample schedule, the schedule has to be

transformed as GCL entries. As presented in Figure 1.3, at each point in time, gates can be

either closed (0) or opened (1). At T0 there is a guard-band and therefore no frames can be

transmitted and all gates are closed. At T1, T4, T7, T10, and T13 the gates are only open for

priority class 7 which time-critical streams S1, S2, and S3 are scheduled (cf. Figure 1.2). When

the end of a critical slot arrives e. g. at T2, other gates are opened for other priority classes

such as priority class 6 in which the remaining streams get access to the link. The length of

the GCL cycle depends on the hyper period of all competing time-critical streams. Each queue

can apply its own transmission selection algorithm. It can be a simple FIFO mechanism or a

6

1.2 Motivation and Research Questions

Transmission Selection

Transmission Selection

Algorithmus

Gate Status = 1

Transmission Selection

Algorithmus

Gate Status = 0

Transmission Selection

Algorithmus

Gate Status = 0

Transmission Selection

Algorithmus

Gate Status = 0

...
T0: 00000000

T1: 10000000

T2: 01111111

T3: 00000000

T4: 10000000

T5: 01111111

T6: 00000000

T7: 10000000

T8: 01111111

T9: 00000000

Queue for

priority class 7

Queue for

priority class 6

Queue for

priority class 5

Queue for

priority class 0
Gate Control List

(GCL)

Figure 1.3: An exemplary Gate Control List (GCL)

credit-based shaper as specified in [7]. When a new GCL cycle starts, the opening and closing

events will be repeated.

1.2 Motivation and Research Questions

TSN standards have the potential to build an open, vendor-independent basis technology for

real-time communication. The support of mixed-criticality (co-existence of applications with

different levels of criticality in the same networking) reduces the heterogeneity of networking

technologies and simplifies not only the development but also the integration of distributed

applications.

However, the traffic planning and verification of these networks require advanced expertise

and are time-consuming. Assisting tools can mitigate the configuration and verification chal-

lenges for network designers and application developers. Following this motivation, we aim to

answer three research questions in the context of automated configuration and verification of

TSN networks.

RQ1: How can the complexity of TSN schedule synthesis be reduced?

To justify this question, first the term complexity has to be explained in the context of this

work. Finding a feasible time-triggered schedule is a known NP-complete problem. Hence, there

7

1. INTRODUCTION

is no available efficient algorithm which can be applied to find a feasible schedule. To tackle

this problem, computer-based constraint solving approaches are applied. In the literature,

schedule synthesis is used as a term to describe this problem and approaches to deal with it

(cf. Chapter 2). All necessary steps required for extracting relevant information for scheduling,

understanding them, transforming them into mathematical constraints, and distributing them

among the network nodes build together a complex heterogeneous task list.

Considering the information available about a TSN network, we define two different views.

The network topology view focuses on the information related to the physical components e. g.

switches, end-stations, cables, and their capabilities. For instance, an end-station either sup-

ports synchronization and IEEE 802.1Qbv or does not support this standard. In the dataflow

view, the focus is on the applications and their timing or redundancy requirements. For example,

an end-station can send a stream with a certain timing requirement to a receiving end-station (a

communication which is required to implement a time-critical application). Obtaining the net-

work information and extracting the relevant parts for schedule synthesis, requires an efficient

approach where the required information can be queried with a minimum of implementation

overhead (software routine) for each new type of query.

The extracted information has to be translated into scheduling constraints which are then

solved by constraint solvers. From the perspective of network designers and end-users, details

such as how the information is obtained, how constraints are built, and which solvers are used to

find a feasible schedule, are less relevant. Obviously, it is more worthwhile to have a possibility

to model and design TSN networks in order to automate the configuration procedures hiding

the unnecessary details and complexities. To achieve this, the schedules computed by solvers

have to be prepared and distributed among switches and end-stations.

RQ2: How to facilitate model verification before schedule synthesis and support infeasibility

analysis after synthesis?

Designed network models are not always error-free. A design error is defined as a logical

mistake by the designer. For instance, a time-triggered stream can be modeled with tightest

timing requirements. Such a stream must travel through network nodes which support IEEE

802.1Qbv and synchronization. A design error can occur when one of the physical nodes in

the path does not support synchronization. Ignoring this error in the model can lead to a

feasible schedule (calculated by the solver). However, after the distribution of this schedule in

8

1.3 Contribution

the real network, the latency measurement of the stream will show that it misses its timing

requirements. A network model has to be verified prior to the schedule synthesis.

Even if all design errors of the model are corrected, there is no guarantee that the set of

modeled streams is feasible. In other words, the solver can conclude that there is no feasible

schedule for the streams defined in the network model. It is significantly helpful for the designers

to be able to localize and backtrace the origin of the infeasibility in order to find a solution.

RQ3: How to facilitate autoconfigurtion of TSN networks with focus on IEEE 802.1Qbv

standard?

One of the aspects that determine the potential of the TSN standards is the possibility

of dynamical automated configuration and verification. Automated network configuration at

run-time without involving human expertise, reduces network downtime and managing costs

caused by interruption of running applications. This brings us to the last research question of

this thesis:

1.3 Contribution

In order to answer the research question RQ1, the first contribution fills the identified gap of a

graphical modeling tool for TSN which simplify network modeling towards automated schedule

synthesis for IEEE 802.1Qbv. A modeling framework is presented. First, a formal meta-model

is developed which builds the basis of a network knowledge base containing network details in

the form of facts. The logic programming paradigm is used to implement the knowledge base.

Secondly, to hide the complexity of logic programming for the network designer, we develop an

object-oriented graphical modeling tool. Using the graphical elements of this tool, TSN network

architectures can be modeled. A model translator is implemented that use the graphical model

and generates network facts for the knowledge base. Thirdly, using the generated facts, the

schedule constraints are built and solved to create the necessary configuration parameters for

switches and end-stations. We define infrastructural constraints which have to be fulfilled before

starting a synthesis.

Regarding the second research question RQ2, the second contribution extends the state of

the art in time-triggered schedule synthesis by considering and labeling the constraints of IEEE

802.1Qbv (required for schedule synthesis) while they are generated from the model. We present

inference rules which can be used to verify the model prior to the synthesis. After the synthesis,

if streams are infeasible, we enable the designers to backtrace the origin of the infeasibility.

9

1. INTRODUCTION

The labels contain information about the involved hardware components, application domains,

stream period, stream size, etc. Using these labels, the designers can localize the problem.

The presented approach exploits the newest developed algorithms to find minimal unsatisfiable

cores. Using a complex network model as a case study, the approach is evaluated.

The third contribution presents a novel approach to enable IEEE 802.1Qbv for automated

network reconfiguration at run-time. A Plug&Configure concept for TSN is proposed to address

the third research question RQ3. The core idea is to combine the strengths of the data-centricity

paradigm with the advantages of TSN (especially synchronization and scheduled traffic). Using

data-centric middleware approaches, highly flexible networking based on a publisher-subscriber

model is possible. The presented approach proposes that a new device intending to join a

running TSN network, has to send its profile to configuration entity in the network. The

configuration entity specifies the streams which will be published or consumed based on device

profiles. The configuration entity adds the new profile to the existing network knowledge base.

If required, a re-synthesis request will be sent to the synthesis entity in the network. The end-

station is informed about the status of synthesis and if it is successful, it can start to execute

the data-centric application. A TSN experimental setup is built to demonstrate the capabilities

of the developed concepts.

Parts of this thesis are published at several international conferences. The most relevant

publications are listed below.

� Hashemi Farzaneh, Morteza; Kugele, Stefan; Knoll, Alois: A Graphical Modeling Tool

Supporting Automated Schedule Synthesis for Time-Sensitive Networking, in: IEEE In-

ternational Conference on Emerging Technologies And Factory Automation (ETFA), 2017

� Hashemi Farzaneh, Morteza; Knoll, Alois: Time-Sensitive Networking (TSN): An Exper-

imental Setup, in: IEEE Vehicular Networking Conference (VNC), 2017

� Hashemi Farzaneh, Morteza; Shafaei, Sina; Knoll, Alois: Formally verifiable modeling of

in-vehicle time-sensitive networks (TSN) based on logic programming, in: IEEE Vehicular

Networking Conference (VNC), 2016

� Hashemi Farzaneh, Morteza; Knoll, Alois: An ontology-based Plug-and-Play approach

for in-vehicle Time-Sensitive Networking (TSN), in: IEEE 7th Annual Information Tech-

nology, Electronics and Mobile Communication Conference (IEMCON), 2016

10

1.4 Structure

Literature Review (Chapter 2)

Conclusion and future work (Chapter 8)

Introduction (Chapter 1)

IEEE 802.1Qbv Constraints
Infrastructural

Constraints

Graphical Modeling and

Synthesis Tool

Constraint Labeling
Exploitation of Unsatisfiable

Cores

Case Study

Data-centric Plug&Configure Concept for TSN

TSN Setup

Implementation and Demonstration

Model-based Schedule Synthesis (Chapter 4)

Model Correction and Optimization (Chapter 5)

AutoTSN (Chapter 6)

Framework Components Network Knowledge BaseT Use Cases

Approach Overview (Chapter 3)

Shortening Synthesis Time

Experimental Evaluation (Chapter 7)

Framework-based Network

Configuration
Latency Measurements

RQ1

RQ2

RQ3

Figure 1.4: Thesis Structure

1.4 Structure

The thesis is structured as follows. In Chapter 2, the state of the art is reviewed. The focus

is on most recent achievements in time-triggered scheduling theory, formal timing analysis

of Ethernet-based networks, Plug&Play approaches for industrial Ethernet, and model-based

network engineering concepts. Research gaps are identified and presented which motivate the

contributions of this thesis.

The modeling framework and its main components are presented in Chapter 3. The model-

based schedule synthesis approach is explained in Chapter 4. Model correction and optimization

are presented in Chapter 5 explaining the overall concept based on a constraint labeling ap-

proach and exploitation of the state of the art in the extraction of minimal unsatisfiable cores.

The developed Plug&Configure concept AutoTSN is discussed in Chapter 6. The experimental

setup and benchmarks are placed in Chapter 7 which is used to demonstrate parts of the de-

veloped concepts using prototypical switches supporting synchronization and IEEE 802.1Qbv.

11

1. INTRODUCTION

Finally, we conclude in Chapter 8 and discuss the planned future works. An overview of the

thesis structure is depicted in Figure 1.4.

12

Chapter 2

Literature Review

In this chapter, the related work is studied and analyzed based on the research questions.

We aim to derive concrete required contributions which help to answer the research questions.

Time-triggered schedule synthesis, timing analysis of TSN, autoconfiguration, and network

modeling approaches are reviewed and summarized at the end of the chapter in Table 2.1

2.1 Schedule Synthesis for Time-triggered Ethernet

Basic time-triggered constraints such as the non-overlapping of Ethernet frames are formu-

lated. The experiments using the YICES solver which is based on Satisfiability Modulo Theo-

ries (SMT) show that the scheduling problem can be solved for a few hundred random stream

instances. Regarding the scheduling quality, the approach produces up to ninety percent maxi-

mum utilization on a network link with synthesis times of about thirty minutes for the biggest

study case.

In a further work [25], the co-existence of time-triggered traffic with non-time-triggered

traffic is discussed. The authors introduce the term schedule porosity and study the impact

of time-triggered traffic on unsynchronized traffic. The core idea is to enlarge the blank space

between time-triggered slots to transmit the non-synchronized traffic.

The concept of creating communication schedules for the time-triggered traffic while mini-

mizing its makespan is studied in [26]. In contrast to [25], the proposed approach, maximizes

the uninterrupted gap for non-synchronized traffic in each integration cycle. The approach

is based on a load balancing heuristic. The results show enhancements in comparison to the

schedule porosity approach by analyzing the worst-case delay of non-synchronized traffic.

13

2. LITERATURE REVIEW

In [27], the authors study time-triggered distributed systems where periodic application

tasks are mapped onto different end stations which communicate over an Ethernet network.

As distinguished to [28], application-level constraints are studied. The co-synthesis problem

of task and communication schedules is formulated as a Mixed Integer Programming (MIP)

problem considering different timing parameters such as precision of synchronization. The

authors present optimization objectives regarding timing. The applicability of the approach is

shown considering an industrial size case study using a number of different sets of objectives.

The simultaneous co-generation of static network and task schedules is discussed in [29] with

a focus on preemptive time-triggered tasks (in contrast to [27]) communicating over switched

time-triggered networks. The authors use first-order logical constraints for the formulation of

schedule constraints which are solved by SMT and MIP solvers. Furthermore, asynchronous

tasks have been considered to improve the scalability of the scheduling problem. Based on the

evaluation results, the authors conclude that even if using optimization, most of the problems

are solved within a reasonable time using the developed method.

This work is further extended by [30], who identifies and analyzes key functional parameters

affecting the deterministic behavior of real-time communication under IEEE 802.1Qbv. The

required constraints are derived (based on [28]) to compute schedules guaranteeing deterministic

low-jitter and end-to-end latency for time-triggered streams. Moreover, several optimization

directions and concrete configurations exposing trade-offs against the required computation

time are discussed. The significant contribution is the introduction of two additional isolation

constraints which are required to consider the order of arriving critical frames at the ingress

ports.

The time-triggered schedule synthesis is also discussed in [31]. Their main objective is to

make the SMT solving efficiently regarding run-time and memory. Moreover, an approach is

proposed to parallelize the synthesis problem. The authors conclude that the solver YICES2 is

an effective alternative tool compared to the available SMT tools.

An alternative synthesis approach using memetic-based algorithms is presented in [32]. It

derives a feasible schedule by determining the offset of frames on the time-triggered network-

on-chip. The approach is based on a memetic algorithm that incorporates local search in the

iterations of a general genetic algorithm. The results are not compared with the existing related

work using SMT solvers.

An offline synthesis tool is presented in [33], which tackles the challenge of long synthesis

time. It is capable of computing time-triggered schedules for large-scale networks consisting

14

2.1 Schedule Synthesis for Time-triggered Ethernet

of wired and wireless links. In this approach, linear arithmetic constraints are used to model

the problem and are solved using a SMT solver. The total problem is divided into solvable

scheduling problems with smaller size. The sub-solutions are combined to achieve the overall

schedule. The authors discuss optimizations to increase the size of the solvable scheduling

problems. The evaluation of the proposed approach shows that the synthesis time is reduced.

The routing optimization and worst-case delay analysis of AVB streams in TSN networks are

discussed in [34]. They aim at finding the optimal routing of the AVB streams so that the set of

all frames is feasible. Moreover, the worst-case end-to-end delay is defined as an optimization

objective which has to be minimized. The proposed approach contains a search-space reduction

technique based on a Greedy Randomized Adaptive Search Procedure (GRASP) heuristic to

formulate and solve the optimization problem.

The authors of [35] criticize that in existing network design methods, stream routing and

schedules are generated in two separated steps without considering the interrelations between

them. An exact approach is proposed to generate routing and schedules in one step. To achieve

this, the problem is formulated as a 0-1 ILP. Moreover, [35] shows that the formulation can be

used to optimize the routing and scheduling considering the impact on non-scheduled traffic or

the number of slots which have to be configured on a port. In contrast to this work, we apply

a model verification prior to synthesis to ensure that the number of port slots matches to the

hardware properties of the port.

In a similar work [36], a survey regarding the optimization of networks based on real-time

Ethernet is presented. Moreover, optimization problems related to the scheduling and routing

of time-triggered and AVB traffic in TSN are formulated. The main objective is to compute the

routing of both time-triggered and AVB streams as well as the scheduling of the time-triggered

streams. Constraints are built to guarantee, that all frames are schedulable and the AVB worst-

case end-to-end delay is minimized. The scheduling problem is formulated in ILP and for the

routing problem, a greedy randomized search heuristic is applied. Routing and scheduling of

TSN streams are also discussed in [37,38] formulated as SMT and ILP problems.

Formulation of scheduling problem as a system of constraints is not only applied for Ethernet

networks. An approach based on boolean satisfiability (SAT) problem is presented to tackle the

problem of task and message allocation of distributed real-time systems [39]. The problem is

formulated as a nonlinear integer optimization problem. The authors claim that the presented

method is applicable to industrial-size task systems.

15

2. LITERATURE REVIEW

A scheduling approach for the synthesis of time-triggered embedded systems is presented

by [40]. A priority function is introduced which considers the communication protocol. The

authors present another approach in [41] to support static priority preemptive process schedul-

ing for hard real-time time-triggered communication. The communication delays with different

message scheduling policies over a time-triggered communication channel are studied.

The schedule synthesis for PROFINET IRT is discussed in [42]. The authors formulate the

scheduling problem as ILP. The results show that the approach is slower than SIMATIC (a

commercial tool developed by SIEMENS [43] for optimizing the engineering workflow) but is

more flexible in terms of specifying the application requirements.

In [44], the schedule synthesis of the time-triggered communication protocol FlexRay [45]

is discussed. FlexRay is not based on the Ethernet and supports the transmission of periodic

messages in static segments. Priority-based scheduling of event-triggered messages is handled in

dynamic segments. The authors aim at optimizing the performance of application-related timing

metrics. The scheduling problem is formulated as Mixed Integer Linear Programming (MILP).

A framework for automotive architectures is introduced in [46] using data-centricity and

time-triggered communication paradigms. Similar to the incremental method of [28], local

schedules are first defined independently for subsystems which are further integrated into a

system-wide schedule. The main objective is to reduce integration complexity. A contribution

by [47] based on the proposed approach, formulates the scheduling problem of FlexRay in ILP.

The focus of this work is the automotive domain and schedule synthesis for different vehicle

variants.

Summary: The reviewed approaches present the state of the art in schedule synthesis

for time-triggered Ethernet. We use the existing scheduling constraints and extend them by

infrastructural constraints to verify that a network model satisfies all prerequisites for the

synthesis. For instance, we must verify that the maximum allowed number of GCL entries of a

switch port is not exceeded and also the synchronization capability which is required for IEEE

802.1Qbv is available for ports which are involved in the transmission of time-triggered streams.

Such requirements have to be verified before synthesis is started.

Moreover, and in contrast to this thesis, the mentioned contributions do not deal with

comprehensible and user-friendly network modeling (graphical elements to hide details). The

existing approaches do not address the question of how to extract relevant information from

the model to generate solver-specific constraints automatically. Additionally, we will generate

16

2.2 Timing Analysis of AVB/TSN Networks

feedback for the designer to correct the network model if it is unsatisfiable because of conflicting

constraints.

2.2 Timing Analysis of AVB/TSN Networks

Besides the synthesis approaches which aim at finding a feasible schedule and a concrete net-

work configuration, there are contributions which deal with timing analysis of AVB and TSN

networks. The main objective is to find an upper bound for end-to-end latency and jitter of

the streams. These contributions can be divided into two categories. The first category con-

tains contributions that apply network simulation for timing analysis. The second category

incorporates contributions where a formal analysis method is used to derive formally verified

worst-case latency and jitter.

Considering the simulation-based approaches, a major contribution is the extension of OM-

NeT++ INET [48] to simulate real-time Ethernet [49]. The time-triggered Ethernet protocol

is implemented and used to evaluate the timing of in-vehicle networks.

Performance comparison of AVB and IEEE 802.1Q is presented by [50], which focuses on

the automotive network architectures. The simulation results show that AVB improves the real-

time capabilities of Ethernet but it still requires advanced features to fulfill the tight timing

requirements from the automotive domain especially related to the critical control data where

low deterministic end-to-end latency and jitter are required.

AVB and time-triggered Ethernet are analyzed and compared regarding their performance

with a focus on driver assistance systems [51]. The authors conclude that the two protocols

are complementary. The time-triggered streams have to be scheduled offline and the AVB

allows dynamic stream reservation at run-time. A similar competitive evaluation of AVB and

time-triggered Ethernet is presented in [52] with similar results.

The coexistence of scheduled and non-scheduled traffic is studied in [53], where the time-

triggered frames are added to the credit-based shaper of AVB. The simulative results show that

the time-triggered schedule has a significant impact on AVB messages. The available bandwidth

between reserved time-triggered slots has to be large enough for sending of AVB frames in order

to fulfill their timing requirements. The simulations show that with smaller MTU size, delays

of AVB streams can be reduced.

A comparable study [54] shows that event-based traffic classes can increase the end-to-end

latency of AVB streams by 500% in the network. To reduce this negative impacts, the authors

17

2. LITERATURE REVIEW

propose the following measures: limiting the MTU size, limiting the event-based traffic, increas-

ing the bandwidth of the network, optimizing topology, and supporting of frame preemption

mechanisms. The optimal MTU size is studied in [55] by simulating different cases to find the

optimal bandwidth which has to be allocated to the scheduled traffic.

A simulation framework is presented in [56] to evaluate a case study considering the frame

preemption and per-stream policing standards. Based on the achieved results, the advantages

of frame preemption highly depend on the network design and configuration.

Simulations are helpful to understand the abstract properties of a system but they do not

give any guarantees that all corner cases are explored. For safety and critical systems, formal

analysis methods are required which can deliver mathematically proved guarantees.

Considering the formal analysis approaches, a formal worst-case analysis is presented by [57].

The study examines the timing of Ethernet AVB and strict-priority Ethernet IEEE 802.1Q. Safe

upper bounds of stream transmission are determined using Compositional Performance Analy-

sis (CPA) [58]. CPA is the theoretical background of the commercial tool SymTA/S. Based on

case studies including star, line, and clustered line topologies, the approach is evaluated. The

results show that by applying Ethernet AVB, the latencies for Class A traffic is substantially

increased compared to the strict-priority mechanism in IEEE 802.1Q. The authors explain this

negative effect by mentioning the traffic shaping delay.

Using network calculus, the worst-case delay of AVB streams is analyzed in [59]. Based on

an automotive case study, the authors conclude that network calculus is a suitable estimation

method for buffer and timing analysis in the automotive domain. However, the service and

arrival curves have to be optimized to reduce the pessimism of the analysis.

Another timing analysis of AVB is presented in [60], which is based on the Real-Time

Calculus (RTC) [61] methodology. The results show that a well-designed AVB network performs

better than standard Ethernet. In contrast to [57], the negative impact of shaping delays can

not be observed in the results.

The schedulability analysis of AVB is discussed in [62], where the authors aim at improving

the results achieved by [57]. The contribution of this paper is to consider AVB specific challenges

such as the number of blocks which is caused by low-priority frames and the state of the

shaper. Another improvement of AVB performance analysis is introduced in [63], where non-

preemptivness is considered for computing tight latency bounds. The experimental results show

an enhancement of 50% for a line topology.

18

2.2 Timing Analysis of AVB/TSN Networks

The authors of [64] mention the challenge of obtaining tight upper bounds for AVB streams

ifthe busy period analysis is applied. The reason is that the busy period method is based on

execution time without considering the provided bandwidth. An alternative method is proposed

by defining a so-called eligible interval.

The timing analysis of time-triggered Ethernet frames and rate-constrained traffic [2] is

significant in the context of performance analysis of TSN and AVB because these paradigms are

similar. IEEE 802.1Qbv defines a time-triggered approach similar to time-triggered Ethernet.

The credit-based shaper of the AVB standard specified in IEEE 802.1Qav has also similarities

to a rate-constrained approach.

Performance analysis of time-triggered Ethernet in the combination of rate-constrained traf-

fic is presented based on RTC by [65]. The experimental results show that the proposed ap-

proach is able to achieve tighter upper bounds for worst-case delays. In [66], a novel worst-case

end-to-end delay analysis of the rate-constrained traffic is presented. The main objective is to

reduce the pessimism of the analysis, compared to existing approaches. The major contribution

is to compute the busy period using the concept of event-triggered availability and demand [67].

The results are compared to the achievements of [25] and show considerable improvements.

Worst-case analysis of TSN traffic shapers (time-aware, peristaltic and burst-limiting shapers)

has been recently presented [68]. Based on the results, only the time-aware shaper can support

very low latency guarantees. The authors claim that peristaltic and burst-limiting shapers can

be enhanced using the frame preemption mechanism (under development in IEEE 802.1Qbu).

This approach has been improved in [69] using CPA by considering the interference of same-

priority frames. The authors assume that network nodes are not synchronized and calculate the

worst-case latency and jitter of the time-aware shaper. The applied formulation regarding the

busy period calculation is similar to [66]. The results show that the time-aware shaper achieves

the lowest latency only if network nodes are synchronized.

The impact of frame preemption in TSN networks is formulated and studied in [70] using

the CPA tool. The proposed approach is used to evaluate an exemplary automotive network.

The results show that with frame preemption the performance of strict-priority traffic shaping

specified in IEEE 802.1Q is dramatically improved and is very close to the TSN time-aware

shaper. The authors conclude that for common automotive network architectures, the latency

and jitter performance of the standard Ethernet may be sufficient. However, this conclusion

can not be generalized because the required timing guarantees always depend on concrete

application requirements.

19

2. LITERATURE REVIEW

The suitability of SDN for TSN networks is discussed in [71]. Based on CPA method, the

authors analyze the impact of SDN configuration messages on real-time traffic and vice versa.

The proposed approach is evaluated using a typical automotive network. The results show that

the worst-case network configuration latency is less than 50ms and that SDN can be used for

routing control in fail-operational use cases.

The impact of TSN time-triggered schedules on non-scheduled traffic is discussed in [72].

The presented method does not make any assumptions regarding the shape of the time-triggered

slots. This leads to long run-times. The authors present a method based on preprocessing and

extraction of related data for the worst-case timing analysis. Based on a case study, the authors

conclude that the time-triggered schedule on egress ports plays a significant role regarding the

delay of the unscheduled traffic and has to be considered at the network design time.

Similarly, [73] presents a local delay analysis of AVB frames for which both credit-based

and time-aware shaper are used. The authors study how the time-aware shaper changes the

relative order of transmission of AVB frames which causes bursts and worst-case for frames with

lower priority. However, it is also shown that the resulting bursts are upper-bounded by the

credit-based shaper. Schedulability analysis for the real-time traffic in AVB ST [74] networks

is presented in [75]. The AVB ST is an improvement of AVB standards which is a similar

concept to IEEE 802.1Qbv supporting scheduled traffic. The authors show that bandwidth

reservation based on the AVB standard increases the pessimism considerably and therefore,

a bandwidth over-reservation is needed. Moreover, a minimized bandwidth over-reservation

approach is proposed. The proposed approach is evaluated using an automotive case study

introduced by [76].

A recently published work [77] presents empirical evaluations of IEEE 802.1Q, AVB, and

TSN based on an automotive prototype. Different network combinations of communication

technologies are presented and compared. The main comparison parameters are the end-to-end

latency and verification overhead of each possible combination. The authors conclude that the

following solutions are suitable for automotive: standard IEEE 802.1Q with a pre-shaping of

the traffic, AVB with custom classes and tight idle-slope, and, finally, synchronized TSN with

AVB custom classes. The configuration of TSN gates is mentioned as a challenge that requires

more support for automated procedures. This statement additionally supports the motivation

of this thesis.

Summary: The simulation-based timing analysis approaches can be used for the analysis

of those streams without safety-relevant timing requirements such as infotainment streams.

20

2.3 Autoconfiguration Concepts for Real-time Ethernet

Because simulations do not guarantee corner worst-cases, they can not be used for safety-critical

streams. Formal timing analysis methods can be used to compute verified latency upper-bounds

for critical streams. These approaches are known to be pessimistic [78] and computationally

intensive [66]. One of the reasons for the pessimistic results is the fact that the concrete network

configurations such as TSN schedules on egress ports are not considered in the analysis. In the

reviewed formal approaches, proposed network models (except the UML diagrams in [79]) focus

more on the analysis method itself (e. g. arrival or resource curves [61]). In contrast, we aim to

hide such details in our framework applying a user-friendly graphical modeling tool. Network

verification regarding the infrastructural requirements of IEEE 802.1Qbv is not addressed in

the literature.

2.3 Autoconfiguration Concepts for Real-time Ethernet

The term Plug&Produce describes a methodology which aims at introducing a new manufac-

turing device into an existing manufacturing system easily and quickly [80, 81]. It is based on

a similar idea of plug&play in the IT world. One of the significant requirements to support

Plug&Produce is the automation of the network configuration to increase the system flexibility

at run-time. To achieve this, the underlying communication technology (e. g. industrial Eth-

ernet) and also the timing requirements from the application layer have to be considered in

the automated configuration procedure. In the following, we review contributions which aim to

reduce the configuration overhead of the Ethernet-based real-time networks.

Opportunities and challenges regarding the dynamic configuration of industrial automation

networks are discussed in [82]. The authors illustrate the capabilities of service-oriented ar-

chitectures such as Device Profile for Web Services (DPWS) to increase the flexibility in such

networks. Different sample architectures based on Programmable Logic Controllers (PLC) are

used to demonstrate the concepts and ideas.

The missing flexibility in real-time Ethernet networks was the motivation to develop the

FFT-Ethernet protocol which is presented in [83, 84]. It provides a master and multi slave

transmission control method and guarantees that timing requirements are fulfilled while dy-

namic configuration activities are executed. The slave architecture contains a real-time and a

non-real-time stack which supports user tasks without timing requirements. The FTT-Ethernet

frames are embedded in a standard Ethernet frame.

21

2. LITERATURE REVIEW

A five-step-model for the reconfiguration of Ethernet Powerlink is presented in [85]. The

device profiles of controlled and managing nodes are used in a control station to compute

the required configuration parameters. The proposed approach depends on specific properties

of the Ethernet Powerlink protocol and cannot be generalized for other industrial Ethernet

technologies.

The approach presented in [86] proposes an autoconfiguration solution for Profinet IO which

is based on DPWS. The presented approach acts as an adapter for native Profinet IO devices

and controllers. The configuration and mapping services are located in the controller devices.

The configuration service is responsible to parse the received device descriptions. The map-

ping service writes the configuration parameters in the Profinet IO stack which is a similar

procedure to [85]. The authors conclude that the approach has to be extended to consider

higher-level control applications. A further contribution in [87] considers the OPC Unified

Architecture (UA) [88] as a suitable candidate for the autoconfiguration of real-time Ethernet

networks. The authors mention that using OPC UA is a good choice for devices with limited

computing resources. Similar to [86], a Profinet IO setup is used to evaluate the presented

concept. A concept is introduced to increase the adaptability of IT systems for automation

use cases based on a model-based Plug&Play approach [89]. The proposed concept aims at

reducing changeover time and configuration efforts. To achieve this a data-centric middleware

called CHROMOSOME [90] is applied.

The configuration complexity and the requirements of future factories are discussed in [91].

The authors developed a system architecture to automate the integration of new devices and

network configuration based on OPC UA. Three general requirements are derived to support

Plug&Produce: (i) Communication links have to be set up automatically and the controller has

to be informed, (ii) the communication data (which is defined at the application layer) has to

automatically be configured for devices, and (iii) the configuration has to be distributed among

the network nodes using a software component. The proposed approach is evaluated using a

prototypical setup based on EtherCAT.

With regards to the challenge of dynamic reconfiguration of automation networks, a single-

master and a multi-master approach are presented in [92]. The approach is based on an exten-

sion of the EtherCAT state machine and aims at increasing the flexibility of the configuration

procedures. The authors mention that the single-master approach offers the advantage that no

user manipulations are required. However, each device requires a modification of the device pro-

22

2.3 Autoconfiguration Concepts for Real-time Ethernet

file which is challenging and currently not defined in the device descriptions. The multi-master

solution leads to a shorter reconfiguration time in comparison to the single-master approach.

The mentioned approaches do not fully address the generalizability issue which is also men-

tioned in [93]. The authors categorize the existing approaches into three groups and derive

general functionalities which are required for autoconfiguration of real-time Ethernet networks.

The result is a four-phase procedure including IP-Connectivity to prepare the configuration pro-

cedure, Device Discovery to register new devices in the network, Requesting real-time-specific

parameters, and uploading the new configuration to the controller. The authors also mention

the need for investigation of TSN standards which will have significant impacts on the proposed

approach.

A protocol and architecture are proposed to enable real-time Ethernet networks for self-

configuration based on OpenFlow [94]. The focus here is on communication link failure recovery

which is similar to the objectives of IEEE 802.1CB standard. The authors conclude that the

proposed approach can be adapted to TSN networks. Using randomly generated topologies,

the proposed architecture is evaluated.

Software-Defined Networking (SDN) [95] is a paradigm towards automated network config-

uration. In SDN terminology, there are two planes. The data plane deals with forwarding of

Ethernet frames and control plane is a logically centralized entity which controls the data plane

based on the network application flows. Considering the TSN standard, SDN concepts have sig-

nificant relations to IEEE 802.1Qcc where stream reservation and User Network Interface (UNI)

are discussed.

A three-step agent-based configuration approach for time-triggered networks is proposed

by [96]. In the first step, the traffic is observed to identify traffic patterns. These patterns

are characterized using the id, length, and stream arrival times. In the next step, the traffic

parameters are obtained using an extractor entity. The traffic parameters contain information

about the periods of the frames, for example, and their priorities (cf. VLAN tag in IEEE 802.1Q)

and a possible precedence order of the frames. Finally, the extracted information is used to

compute schedules. The authors plan to evaluate the approach based on simulations. The

proposed approach is further extended in [97] where network management of TSN networks is

discussed in details with a focus on the running activities in IEEE 802.1Qcc and SDN concepts.

Considering the configuration of real-time Ethernet networks, each communication technol-

ogy requires its proprietary configuration and programming tools. Examples are TwinCAT [98]

and Automation Studio [99], which are used to configure and program EtherCAT and Ethernet

23

2. LITERATURE REVIEW

Powerlink networks. These tools are used to simplify the configuration procedures using graph-

ical user interfaces where configuration parameters such as communication are set by control

engineers.

currently, the first configuration tools for TSN networks are under development. HiVi-

sion [100] is used to detect connected nodes and build a graphical network topology based on

the obtained information. It offers an interface to set the GCL entries of egress ports. However,

time-triggered schedule synthesis is not supported. It is a pure configuration tool which requires

manual entries calculated by the network designers or control engineers.

Slate XNS [101] is the nearest configuration tool to the developed modeling and synthesis

tool in this thesis. It is under development and aims to compute the time-triggered sched-

ules for TSN ports using a graphical modeling tool. Based on the latest product description,

the modeling of network topology and streams will be supported and the computed schedules

will be distributed among switches and end-stations. In contrast, our modeling tool computes

the streams automatically based on a high-level and data-centric description of the applica-

tions. Moreover, the proposed Prolog-based queries in this thesis enables the verification of

the infrastructural requirements. For example, the existence of the redundant paths to support

fail-operational or not exceeding the maximum number of allowed GCL entries can be verified

before starting the synthesis. Additionally, in the case of model unsatisfiability, our modeling

tool can produce meaningful feedback pointing to concrete hardware and applications helping

the designers to resolve conflicting scheduling constraints.

Summary: The discussed approaches focus on the Ethernet-based field bus systems with

PLCs acting as masters. PLCs are therefore responsible for application management and con-

trolling the communication in the network. Because these systems are proprietary, the proposed

autoconfiguration approaches are also significantly system-dependent when it comes to imple-

mentation. In contrast, network configuration task in TSN is done within network components

such as switches and Network Interface Controllers (NIC) of the end-stations. Although the

application requirements such as period and data size are relevant for correct network syn-

thesis and configuration, the configuration procedure itself is technologically separated from

the application layer. This kind of decoupling promotes modularity and increases the capabil-

ity for a generic autoconfiguration approach by exploiting modern middleware paradigms and

technologies.

24

2.4 Modeling of Real-time Networks

2.4 Modeling of Real-time Networks

Network modeling is used to facilitate the specification, verification, simulation, and configura-

tion of computer networks. Different simulation examples have been presented in Section 2.2.

These simulation tools use graphical modeling elements of e. g. OMNET++ INET framework

to model nodes, links, and protocols. There are modeling approaches which deal with real-time

networks focusing on specification and verification.

To characterize the automotive software architecture and to distribute processes and tasks

on processors, a graphical notation is introduced by [102]. The presented tool (AutoFocus) is

based on a client-server paradigm using a central repository and distributed client applications.

The dynamic behavior of the network components is described using state transition diagrams.

This tool is based on the Focus framework [103] which is developed for formal specification and

verification of interactive systems.

UPPAAL [104] is a toolbox based on timed automata to support modeling, simulation, and

verification of real-time systems. It offers graphical and textual modeling elements. It contains

three main parts for (i) a description language, which is used to describe network behavior based

on timed automata, (ii) a simulator, and (iii) a model checker which supports an interactive

analysis of the system behavior. To achieve this, the constraints are solved which describe

the state space of a system description. UPPAAL is one of the standard tools widely used

for exact timing analysis of distributed applications for example in the domains of industrial

automation [105,106] and avionics [107].

COMET is a methodology to design real-time and distributed applications [108]. It inte-

grates object-oriented and concurrency concepts using Unified Modeling Language (UML) [109].

Following the COMET methodology, static and dynamic models of a system are developed in

the analysis modeling phase. Furthermore, an architectural design model is developed in the

design modeling phase.

Ptolemy [110] is a simulation and prototyping environment for heterogeneous systems. It

has an object-oriented and modular design allowing the integration of subsystems. It supports

a graphical user interface to model concurrent components.

Stateflow [111] is a graphical modeling and simulation tool which can be used to model

reactive systems. The modeling elements are based on state machines and flow charts available

in MATLAB Simulink. SysML [112] is a graphical modeling language based on a subset of UML.

25

2. LITERATURE REVIEW

It is used for system engineering and supports mechanisms for system design and verification.

It can be used for the modeling of embedded systems regarding timing [113].

Based on RTC [61], [114] proposes a tool to model and analyze distributed networks with

real-time requirements. It is implemented as a MATLAB Simulink toolbox and implements

min-plus and max-plus algebra operators required for modeling of task and resource curves.

Similarly, a graphical modeling and performance analysis tool is proposed in [115] based on

deterministic network calculus and is implemented for the MATLAB Simulink environment.

It aims at providing solutions for systems containing cyclic dependencies. A set of scheduling

and arbitration mechanisms is supported such as: FIFO, TDMA, round robin, EDF, and fixed

priorities.

A modeling approach is presented for Ethernet AVB networks in [79]. Using UML class

diagrams, network elements such as switches, stations, and Ethernet ports are modeled. The

main intention of [79] is to use the presented metamodel to design model instances for formal

timing analysis based on CPA. Hence, a model transformation approach is introduced which

prepare the UML-based AVB network models for the CPA platform. In contrast to this con-

tribution, the metamodel presented in this thesis follows the data-centric publisher-subscriber

paradigm and offers a graphical editor providing drag&drop features to achieve a high degree

of user-friendliness.

Graphical visualization concepts using comprehensive notations increase the analyzability

of complex real-time networks (e. g. the industrial automation domain). A graphical modeling

approach is proposed in [116] to model Multicore Programmable Logic Controllers (MPLC) in

networked automation systems to increase the analyzability of these systems. This contribution

is an extension of the notation presented in [117] focusing on properties and requirements of

switched automation networks.

Modeling approaches are also used to design and configure dynamic networks. Based on

a data-centric paradigm, [90] proposes the middleware CHROMOSOME. It consists of a run-

time environment XME and a modeling tool XMT. The run-time environment consists of (i) a

Data Handler that offers an API to the applications to publish and subscribe their data in

the network, (ii) a Broker that monitors the availability of the data in the Data Handler and

checks if the QoS requirements are fulfilled, and (iii) an Execution Manager that executes the

applications which are enabled by the broker. To simplify the application development and

automated code generation, graphical XMT can be used. Moreover, it provides the capability

of specifying timing requirements for correct initializing of the XME. Except for the modeling

26

2.4 Modeling of Real-time Networks

tool, the concepts used in this approach are similar to other data-centric middleware imple-

mentations [118,119].

A tool for compositional analysis of real-time systems is presented in [120]. The authors

mention the importance of complexity management for high-assurance and cost-effective de-

velopment. The main objective is to divide a system into smaller components which can be

independently developed reducing the complexity [121]. A tool is implemented in [121] based

on Ptolemy [110] libraries and offers a graphical user interface to model e. g. resources and

tasks demand. The authors address the problem of compositional real-time guarantees in the

hierarchy of schedulers.

Recently, approaches have been presented which exploit the capabilities of logic program-

ming paradigm for modeling, specification and verification of Cyber-Physical Systems (CPS).

Based on the Constraint Logic Programming (CLP) concept, a framework is presented in [122]

to specify and verify CPS with timing requirements. The main objective is to bridge between

logic programming and hybrid automata as the underlying model. Different properties of a real-

time system can be verified using adequate queries against the CLP model. Moreover, novel

types of formalisms called constraint automata and timed pushdown automata are proposed

by the authors. The main ideas of the presented approach are further developed by [123, 124]

who evaluate the modeling approach using a temperature control system of a reactor as a case

study. The authors demonstrate how queries can be used to verify the specific properties of the

system.

Designing and adapting of overlay networks to desired application domains such as storage

systems and communication infrastructures, is a complex and time-consuming task for network

managers [125]. Based on this motivation, a methodology is developed to formulate overlay

networks using a variant of the Datalog (declarative logic language) called OverLog. The

applicability of the approach is demonstrated using two case studies: (i) Narada multicast

functionality, and (ii) Chord distributed lookup service with 15 OverLog rules. The authors

additionally evaluate the timing performance of the presented approach using the Emulab

network testbed.

The concept of declarative routing is presented in [126]. The authors aim to balance between

the extensibility and robustness of routing infrastructures. The main objective is to express

routing protocols based on a database query language. The computational expressive power,

the security aspects, and the language design of the proposed approach are discussed. Using

27

2. LITERATURE REVIEW

simulations and based on PlanetLab [127], it is shown that the approach is applicable to express

routing protocols and can be extended for query optimizations.

A declarative network modeling approach is proposed in [128] based on Datalog. The

Network Datalog (NDlog) language for declarative network specifications is introduced and for-

mally defined. Using a path-vector protocol example, the modeling approach is demonstrated.

Moreover, NDlog is extended with link-restricted rules to capture physical network constraints.

NDlog is also used for declarative network verification of e. g. routing protocols as proposed

in [129]. The authors present the design and development of the Declarative Network Veri-

fier (DNV). It takes a declarative model of a network protocol written in DNlog as input and

converts it to logical axioms which can be used for formal verification. The main objective is

to reduce the effort required for network and system specification.

A similar concept is proposed in [130] where a declarative policy language for manag-

ing the configuration of computer networks is presented. The Flow-based Management Lan-

guage (FML) is a restricted form of Datalog and aims to replace the traditional configuration

mechanisms to enforce network policies. Example use cases are VLANs and policy-routing

where FML can be used to express the policies. Using empirical studies, the authors demon-

strate the performance of the developed approach.

In [131], it is shown that Prolog is sufficiently expressive and suitable for the implementation

of distributed protocols. The authors claim that the declarative programming paradigm has a

promising potential to support developers of distributed systems. A Prolog-based programming

system called DAHL is presented which extends Prolog with an event-driven control mechanism

and built-in networking procedures. The presented system is evaluated by implementing (i) a

distributed hash-table data structure, (ii) a protocol to provide Byzantine fault tolerance, and

(iii) a model-checker in DAHL as case studies to ensure the approach feasibility.

The complex relations and possible conflicts between application requirements in automotive

architectures are taken as motivation to develop a formal and Prolog-based approach for network

specification and verification [132]. The proposed approach is useful when e. g. an engineer has to

carefully analyze the possible effects of adding new sensors or actuators on other existing critical

applications with timing, bandwidth, fail-operational, or routing requirements and constraints.

The network has to be configured such that the fulfilling of all requirements is guaranteed. The

main focus is on TSN where logical facts and rules are formally defined to develop adequate

verification queries. The exploitability of the approach is demonstrated using exemplary queries

to guarantee the existence of redundant and disjoint network paths. Based on the results, a

28

2.4 Modeling of Real-time Networks

graphical modeling tool for automated schedule synthesis in TSN networks is developed in [133].

These two contributions build together the basis of the modeling approach of this thesis.

Ontology-based approaches are also applied for network management tasks [134–137]. These

are relevant because ontologies and logic programming have significant similarities considering

mathematical logic which builds the basis for ontology reasoners and solving of the Horn clauses

(cf. Prolog). Advantages and shortcomings of the ontology-based approaches are investigated

by [138]. The paper claims that ontology-based interoperability frameworks can help to auto-

mate several tasks in network management.

Descriptive network management policies (e. g. firewall rules) are proposed in [139] and [140]

to show the capabilities of ontology-based network management. An ontology-based information

extraction system is presented in [141] to fill the configuration gap in hybrid SDN. One use case

is the formalization of switch and router configuration to reduce the configuration overhead for

administrators.

An ontology-based approach is proposed in [142] to improve the modeling and plug-and-

play capabilities of TSN. The main idea is to use the capabilities of ontology tools for modeling

data-centric networks. The approach is demonstrated using an automotive case study. Because

of limited and abstract graphical features of existing ontology tools which did not allow to

model the network topologies and dataflows for schedule synthesis in a user-friendly way, a new

solution is presented in [132, 133] to combine Prolog (as an inference engine) with a powerful

graphical modeling tool.

Summary: Simulation frameworks are used to model a network and to analyze specific

properties such as timing behavior. Graphical modeling elements are available e. g. in OM-

NET++ INET to create user-friendly network models. However, such graphical models cannot

be used for infrastructural model verification or for the extraction of relevant information to

generate schedule constraints. The same argumentation is valid for tools which are used for

formal timing analysis. Either there is no adequate graphical modeler (cf. RTC [114]) or

the provided graphical modeler is developed for a very specific domain (cf. UPPAAL [104])

and cannot be used for modeling and automation of schedule synthesis. Moreover, the data-

centricity paradigm is not considered in the proposed approaches (except [90] and our previous

contribution presented in [133]).

The declarative networking approaches which exploit the logic programming paradigm sup-

port network model verification especially regarding the infrastructural requirements. Regard-

ing schedule synthesis, generated network facts and pre-defined inference rules (we call this

29

2. LITERATURE REVIEW

network knowledge base) can be used as an effective instrument to query relevant information

for enabling automated schedule synthesis. Moreover, such a network knowledge base plays

an important role in making configuration decisions at run-time (e. g. whether a new synthesis

is required when a new device joins the network). There is a lack of user-friendly modeling

approaches which can be used to automate the process of generating facts to build the de-

sired network knowledge base. The presented approaches also do not provide any solution for

generating correction feedback of unsatisfiable models to help the network designers.

2.5 Discussion

Motivated by the introduced research questions (automated configuration, verification, and at

run-time re-configuration), a set of features to facilitate TSN-based developments are identified.

In the following, we explain these features more precisely and use them to evaluate the related

work.

To simplify the design process of TSN-based network architectures, a Graphical Data-

centric Network Modeler feature is beneficial. It has to provide modeling elements for

the topology, logical dataflow, and timing requirements of applications. The support of data-

centricity (publisher-subscriber paradigm) increases the flexibility of modeling such that static

definition of streams (including the sending and receiving end-stations and affected egress ports

on the path) are no longer required and can be concluded automatically by the modeler. This

is achieved by analyzing the publisher-subscriber relations and the network topology.

A Network Knowledge Base can considerably facilitate the information management

required for configuration and verification of TSN networks. For instance, it can be used to infer

the topological relevant egress ports and timing requirements of a certain real-time application

to derive schedule constraints. Moreover, it can be used to verify network properties such as

available redundant paths and synchronization capabilities.

Building the time-triggered constraints for schedule synthesis is a complex process. To fully

automate this process, a feature (Model-based Generated TT Constraints) is required

that handles the high-level graphical network models (made by network designers) and uses

them to (i) build a network knowledge base, (ii) generate the time-triggered schedule con-

straints, (iii) solve the constraints to find feasible schedules (TT Schedule Synthesis), and

(iv) distribute the schedules to switches and end-stations.

30

2.5 Discussion

There are different approaches to solve a constraint-based schedule synthesis problem. An

assisting solution has to provide an Infeasibility Analysis feature which can be used to back-

trace the conflicting constraints. Moreover, a (Correction Assistance) feature is required

to label the constraints with high-level network information (including e. g. topology and ap-

plications to localize the origin of schedule infeasibility). Moreover, it has to find minimal

unsatisfiable constraint subsets such that efficient model correction activities (e. g. relieving an

overloaded egress port) can be concluded.

To find worst-case latency and jitter values of the modeled streams, Formal Timing Anal-

ysis and Simulation features are required. Before starting the scheduling synthesis based on

IEEE 802.1Qbv, it must be verified that the prerequisites for such synthesis are fulfilled (e. g.

switch ports support synchronization and do not exceed the maximum number of GCL entries).

An Infrastructural Verification feature for IEEE 802.1Qbv is required which exploits the

network knowledge base and supports pre-synthesis verification queries.

To enable TSN for highly dynamic networking with hard real-time guarantees, a feature

(can also be used at design time) is required at run-time that analyzes the application-layer

modifications (e. g. a new end-station joins the network which publishes hard real-time periodic

data) and configures the underlying network without involving human resources. We call such

a feature Plug&Configure and compare the existing approaches for proprietary real-time

Ethernet protocols and TSN.

Despite existing concepts of applying logic-programming for modeling computer networks

(declarative networking), there is no existing solution (except [132,133] which are parts of this

thesis) to build a network knowledge base covering data-centric application layer and TSN

details. Time-triggered schedule synthesis for Ethernet and non-Ethernet networks is a well-

known and discussed the problem. However, the presented solutions (except the synthesis tool

Slate [101] which is expected to be developed in 2018) deal only with the theoretical fundamen-

tals and do not address the complex engineering challenges which are required to generate and

solve the constraints to compute IEEE 802.1Qbv-compatible schedules. In contrast, we propose

a model-based constraint-solving system providing a graphical modeling tool to fully automate

the synthesis procedure.

Evaluation of the related work shows that there are fewer contributions dealing with the

analysis of schedule infeasibility in time-triggered networks such as TTEthernet and IEEE

802.1Qbv (the infeasibility analysis is also discussed in [46, 47] without providing high-level

model correction assistance). Such an analysis is required to infer the origins of the design

31

2. LITERATURE REVIEW

problems and correct them. Our contribution in [133] is further extended in this thesis. Formal

timing analysis and simulation of TSN, AVB, and TTEthernet networks are well-discussed in

the literature and are out of the scope of this thesis. The presented formal timing analysis

approaches can use the modeling framework presented in this thesis as input and compute the

worst-case latency and jitter of network streams. Verification of infrastructural requirements

to support IEEE 802.1Qbv is a significant step before starting the synthesis. However, it has

not been addressed in the literature (to the best of our knowledge).

The evaluation also shows that there are autoconfiguration proposals for industrial Ethernet

(cf. [86]) which are helpful to understand the Plug&Configure challenges in TSN. Considering

the existing industrial Ethernet technologies, the real-time communication control mechanism

is part of the protocol itself and is coupled with the application layer. In contrast, TSN net-

work components are clearly separated from the application layer. New concepts are required

to enable TSN autoconfiguration (especially IEEE 802.1Qbv) at run-time which maintain ar-

chitecture modularity and are independent of any specific application layer.

Self-configuration of TSN is also discussed in [96,97,143] where an agent-based approach is

presented to learn the traffic and extract the required configuration parameters (with a similar

motivation to our previously published contribution in [142]). In this thesis, concepts of [142]

are further extended to incorporate TSN standards (focus on IEEE 802.1Qbv) in data-centric

environments.

Table 2.1: Overview of related work and provided features.

 : Feature provided, G# : Feature partially provided (considerable adaptation work is required),

− : Feature not provided

References
Challenges

Network Modeling &

Configuration

Model Verification & Correction

(TSN/AVB/TTEthernet)

Plug &

Configure

Author Year

G
ra

p
h

ic
a
l

D
a
ta

-c
en

tr
ic

N
et

w
o
rk

M
o
d

el
er

N
et

w
o
rk

K
n

o
w

le
d

g
e

B
a
se

M
o
d

el
-b

a
se

d

G
en

er
a
te

d

T
T

C
o
n

st
ra

in
ts

T
T

S
ch

ed
u

le

S
y
n
th

es
is

In
fe

a
si

b
il
iy

A
n

a
ly

si
s

C
o
rr

ec
ti

o
n

A
ss

is
ta

n
ce

F
o
rm

a
l

T
im

in
g

A
n

a
ly

si
s

S
im

u
la

ti
o
n

In
fr

a
st

ru
ct

u
ra

l

V
er

ifi
ca

ti
o
n

o
f

IE
E

E
8
0
2
.1

Q
b
v

R
ea

l-
ti

m
e

E
th

er
n

et

IE
E

E
8
0
2
.1

Q
b
v

Mahfuzi et al. [37]
2018

- - - - - - - - - -
Slate [101] G# - - - - - - - -

Ashjaei et al. [75]
2017

- - - - - - - - - -
Dvořák et al. [26] - - - - - - - - - -

32

2.5 Discussion

References
Challenges

Network Modeling &

Configuration

Model Verification & Correction

(TSN/AVB/TTEthernet)

Plug &

Configure

Author Year

G
ra

p
h

ic
a
l

D
a
ta

-c
en

tr
ic

N
et

w
o
rk

M
o
d

el
er

N
et

w
o
rk

K
n

o
w

le
d

g
e

B
a
se

M
o
d

el
-b

a
se

d

G
en

er
a
te

d

T
T

C
o
n

st
ra

in
ts

T
T

S
ch

ed
u

le

S
y
n
th

es
is

In
fe

a
si

b
il
iy

A
n

a
ly

si
s

C
o
rr

ec
ti

o
n

A
ss

is
ta

n
ce

F
o
rm

a
l

T
im

in
g

A
n

a
ly

si
s

S
im

u
la

ti
o
n

In
fr

a
st

ru
ct

u
ra

l

V
er

ifi
ca

ti
o
n

o
f

IE
E

E
8
0
2
.1

Q
b
v

R
ea

l-
ti

m
e

E
th

er
n

et

IE
E

E
8
0
2
.1

Q
b
v

Hashemi et al. [133]

2017

 - - - - -
Maxim and Song [73] - - - - - - - - - -

Nayak et al. [38] - - - - - - - - - -
Pérez et al. [33] - - - - - - - - - -
Shi et al. [32] - - - - - - - - - -

Smirnov et al. [72] - - - - - - - - - -
Smirnov et al. [35] - - - - - - - - - -

Stateflow [111] G# - - - - - - - - - -
SysML [112] G# - - - - - - - - - -

Wandeler and Thiele [114] - - - - - - G# - - - -
Automation Studio [99] G# - - - - - - - - - -

HiVision [100] G# - - - - - - - - - -
SymTA/S [144] G# - - - - - - - - -
TwinCAT [98] G# - - - - - - - - - -
Cao et al. [64]

2016

- - - - - - - - - -
Craciunas et al. [30] - - - - - - - - - -

Craciunas and Oliver [29] - - - - - - - - - -
Hashemi et al. [132] - - - - - - - - -

Hashemi and Knoll [142] G# - - - - - - G# -
Heise et al. [56] G# - - - - - - - - -
Heise et al. [94] - - - - - - - - - -

Laursen et al. [34] - - - - - - - - - -
Pop et al. [36] - - - - - - - - - -

Saeedloei and Gupta [124] - G# - - - - G# - - - -
Sagstetter [47] - - - - - - - G# -

Schöler et al. [31] - - - - - - - - - -
Stähle [78] G# - - - - - G# - - G# -

Steiner et al. [97] - - - - - - - - - - G#
Thiele and Ernst [70,71] - - - - - - - - - -

Dürkop et al. [93]

2015

- - - - - - - - - -
Gutiérrez et al. [96] - - - - - - - - - - G#

Hammerstingl et al. [91] - - - - - - - - - -
Ko et al. [55] G# - - - - - - - - -

Martinez et al. [141] G# - - - - - - - - G# -
Regulin et al. [92] - - - - - - - - - -

Steinbach et al. [54] G# - - - - - - - - -
Tamasselicean et al. [66] - - - - - - - - - -
Thangamuthu et al. [68] - - - - - - - - - -

Thiele et al. [69] - - - - - - - - - -

33

2. LITERATURE REVIEW

References
Challenges

Network Modeling &

Configuration

Model Verification & Correction

(TSN/AVB/TTEthernet)

Plug &

Configure

Author Year
G

ra
p

h
ic

a
l

D
a
ta

-c
en

tr
ic

N
et

w
o
rk

M
o
d

el
er

N
et

w
o
rk

K
n

o
w

le
d

g
e

B
a
se

M
o
d

el
-b

a
se

d

G
en

er
a
te

d

T
T

C
o
n

st
ra

in
ts

T
T

S
ch

ed
u

le

S
y
n
th

es
is

In
fe

a
si

b
il
iy

A
n

a
ly

si
s

C
o
rr

ec
ti

o
n

A
ss

is
ta

n
ce

F
o
rm

a
l

T
im

in
g

A
n

a
ly

si
s

S
im

u
la

ti
o
n

In
fr

a
st

ru
ct

u
ra

l

V
er

ifi
ca

ti
o
n

o
f

IE
E

E
8
0
2
.1

Q
b
v

R
ea

l-
ti

m
e

E
th

er
n

et

IE
E

E
8
0
2
.1

Q
b
v

Axer et al. [63]

2014

- - - - - - - - - -
Bordoloi et al. [62] - - - - - - - - - -

Boudjadar et al. [107] G# - - - - - G# - - - -
Buckl et al. [90] - - - - - - - - G# -

Sagstetter et al. [46] - - - - - - - G# -
Zhang et al. [27] - - - - - - - - - -
Zhao et al. [65] - - - - - - - - - -

Keddis et al. [89]

2013

- - - - - - - - - G# -
Dürkop et al. [87] - - - - - - - - - -

Hashemi et al. [116] G# - - - - - - - - - -
Meyer et al. [53] G# - - - - - - - -

Reimann et al. [60] - - - - - - - - - -
Alderisi et al. [51]

2012

G# - - - - - - - - -
Diemer et al. [57] - - - - - - - - - -
Diemer et al. [79] - - - - - - - - - -
Dürkop et al. [86] - - - - - - - - - -

Lim et al. [50] G# - - - - - - - - -
Queck [59] - - - - - - - - - -

Steinbach et al. [52] G# - - - - - - - - -
Lim et al. [76]

2011

G# - - - - - - - - -
Phan et al. [120] G# - - - - - G# - - - -

Steinbach et al. [49] G# - - - - - - - - -
Steiner [25] - - - - - - - - -

Vogel-Heuser et al. [117] G# - - - - - - - - - -
Reinhart et al. [85]

2010
- - - - - - - - - -

Steiner [28] - - - - - - - - - -
Hanzálek et al. [42]

2009

- - - - - - - - - -
Hinrichs et al. [130] - G# - - - - - - - - -

Loo et al. [128] - G# - - - - - - - - -
Wang et al. [129] - G# - - - - - - - - -
Zeng et al. [44] - - - - - - - - - -
Pop et al. [67] 2008 - - - - - - - - - -

Limal et al. [106]
2007

G# - - - - - G# - - - -
Schioler et al. [115] G# - - - - - G# - - - -
Witsch et al. [105] 2006 G# - - - - - G# - - - -

Jammes and Smit [82]
2005

- - - - - - - - - -
Loo et al. [126], [125] - G# - - - - - - - - -

Metzner et al. [39] - - - - - - - - - -

34

2.5 Discussion

References
Challenges

Network Modeling &

Configuration

Model Verification & Correction

(TSN/AVB/TTEthernet)

Plug &

Configure

Author Year

G
ra

p
h

ic
a
l

D
a
ta

-c
en

tr
ic

N
et

w
o
rk

M
o
d

el
er

N
et

w
o
rk

K
n

o
w

le
d

g
e

B
a
se

M
o
d

el
-b

a
se

d

G
en

er
a
te

d

T
T

C
o
n

st
ra

in
ts

T
T

S
ch

ed
u

le

S
y
n
th

es
is

In
fe

a
si

b
il
iy

A
n

a
ly

si
s

C
o
rr

ec
ti

o
n

A
ss

is
ta

n
ce

F
o
rm

a
l

T
im

in
g

A
n

a
ly

si
s

S
im

u
la

ti
o
n

In
fr

a
st

ru
ct

u
ra

l

V
er

ifi
ca

ti
o
n

o
f

IE
E

E
8
0
2
.1

Q
b
v

R
ea

l-
ti

m
e

E
th

er
n

et

IE
E

E
8
0
2
.1

Q
b
v

Pop et al. [41] 2004 - - - - - - - - - -
Shin and Lee [121] 2003 G# - - - - - G# - - - -
Pedreiras et al. [83] 2002 - - - - - - - - - -

Gomaa [108] 2001 G# - - - - - G# - - - -
Pop et al. [40] 1999 - - - - - - - - - -

Gupta and Pontelli [122]
1997

- G# - - - - G# - - - -
Larsen et al. [104] G# - - - - - G# - - - -
Huber et al. [102] 1996 G# - - - - - G# G# - - -
Buck et al. [110] 1994 G# - - - - - - G# - - -
Broy et al. [103] 1992 - - - - - - G# G# - - -

35

2. LITERATURE REVIEW

36

Chapter 3

Approach Overview

3.1 Framework Architecture

To address the derived challenges and develop the required features from Section 2.5, we define

the following requirements which are crucial for developing the modeling framework.

� Support for easy network modeling (R1): to design network topologies, hardware compo-

nents, application’s dataflow, timing requirements, etc., graphical and textual modeling

elements are required. Such features are used to model the network by drag&drop of

modeling elements. To develop the framework, software libraries and environments are

required which assist to overcome this challenge.

� Easy access to the elements of a created network model (R2): after a network model is

created, features are required which allow simplified access to the modeling elements by

adequate queries. The main objective here is to find a solution which reduces the need for

exhaustive programming of routines (e. g. using imperative or object-oriented languages)

for each specific query.

� Selective representation of model information (R3): a network information management

feature is required which enables efficient extraction of desired information for configura-

tion and verification tasks. The efficiency means here reducing the overhead of imperative

routine programming by following a declarative approach (which allows shorter programs

and avoids side effects because of referential transparency).

� Support for logical inference (R4): to use the available network information for verification

of desired properties and also for describing topological or application relations in the

37

3. APPROACH OVERVIEW

Network

Knowledge Base

Logic Programing

Metamodel Definitions

Used by

Object-Oriented

Metamodel Definitions

Graphical Network

Modeler

21

3

Real-time Application

Developer or TSN Manager

Interacts with

Constraints Generator
6

TSN

Inference Rules

TSN Declarative Network Management

(DNM)

Configurator (Solver)

&

Model Verifier

8

9 7

Model

Instance

Logical Fact

Generator

4 5

Created by

M
o
d

el
in

g
C

o
n

fi
g

u
ra

ti
o
n

(s
ch

ed
u

le
sy

n
th

es
is

)

&

V
er

if
ic

at
io

n

Framework design-time

Framework run-time

Figure 3.1: Overview of the modeling framework adapted from [133].

network, an inference engine is required which allows to derive logical proofs and to find

desired unknowns (via queries).

� Support for constraint-based problem solving (R5): an environment is required where

infrastructural and scheduling constraints can be formulated and solved such that the

results can be used for configuration of network components (TSN switches).

� Support for constraint labeling (R6): the ability to understand design errors of network

models and correcting them requires a feature that finds the conflicting constraints. More-

over, it has to allow labeling of constraints when they are created such that backtracing

of the errors is possible.

As depicted in Figure 3.1, the modeling approach consists of an object-oriented meta-

model (1) which builds the basis of a graphical network modeler (3) to created graphical

model instances (4). Application developers or TSN managers use the graphical modeler (with

drag&drop functionalities) to model network streams and annotate the QoS requirements of the

developing real-time applications. For example, it can be annotated that a specific application

contains periodic data transmission with tight timing constraints or it has reliability require-

ments and multiple disjoint paths (cf. IEEE 802.1CB) have to be provided. The modeling tool

is also used to define the network topology and the physical properties of the components [133].

38

3.2 Object-oriented Metamodel

Using a formal metamodel based on logic programming (2) and following our previous

work [132], the graphical model instances are transformed (5) into a network knowledge base (6).

In this framework, Prolog is used as a concrete implementation of logic programming. Therefore,

the graphical model instances are transformed into Prolog facts. Moreover, inference rules (7)

are developed to exploit the power of logical inference which are required to

� query and verify network properties such as path redundancy (9), and

� to transform the required information from the network model into time-triggered schedule

constraints (8),(9).

Using a Satisfiability Modulo Theories (SMT) solver, the constraints are solved and it will be

decided whether there is a feasible schedule for the model. The constraints can also be used

for verification of manually created schedules. The solver checks the schedule and decides if all

constraints (real-time requirements) are fulfilled. These components are grouped and we call it

TSN Declarative Network Management (DNM).

3.2 Object-oriented Metamodel

We develop a network metamodel to build the basis for the graphical modeler [133]. It consists

of a network view which contains all graphical network components. A network node is either a

switch or an end-station. Nodes consist of at least one Ethernet port. Switches and end-stations

are connected through ports. A link connects two nodes and has exactly one source and one

target port.

A real-time application is presented as a domain in the metamodel. Each domain contains

one or more data topics which are published and consumed through ports within a domain.

We distinguish between a periodic topic and a sporadic topic. The periodicity of the topics

is relevant for time-triggered schedule synthesis. In contrast to periodic topics, the sporadic

topics have an attribute minInterval for a minimum time between two consecutive frames. This

parameter is important for worst-case latency analysis of a sporadic stream.

Data topics with critical timing constraints have to be modeled as periodic to be considered

in the schedule synthesis constraints of IEEE 802.1Qbv. Each topic may have QoS requirements

such as timing or fail-operational. For instance, a fail-operational QoS specifies the number of

required redundant disjoint links. The object-oriented metamodel is presented in Figure 3.2.

39

3. APPROACH OVERVIEW

Figure 3.2: Object-oriented metamodel of the network.

3.3 Network Knowledge Base

To build a TSN knowledge base, Prolog (SWI implementation)1 is used, which is a well-known

logic programming language. The defined formal metalmodel of the knowledge base will follow

the Prolog’s syntax to define formal facts and rules. Prolog is based on Horn clauses and

consists of facts and inference rules. Each rule has the form:

α : − β1, β2, . . . , βn

which is equivalent to

β1 ∧ β2 ∧ · · · ∧ βn =⇒ α

In Prolog, α is called head and β1, β2, . . . , βn is the body of the rule. The head is true if the

body is true. Each β in the body is a call to a predicate. The predicates in the body are known

as goals. They can be either a fact (a clause with empty body) or a rule.

The knowledge base of a graphically modeled network consists of facts. Rules are defined

to be able to describe logical (in the sense of mathematical logic) relations between facts and

rules. We use rules for synthesis-related queries on the knowledge base in DNM. To present an

introductory example, we take an automotive in-vehicle network. A simple fact as

1http://www.swi-prolog.org/

40

3.3 Network Knowledge Base

p u b l i s h e s (airbagSensorRight , airbagSensorRight_p1 ,

airbagDomain ,airbagSensorRight).

describes that that the end-station airbagSensorRight uses its Ethernet port airbagSensor-

Right p1 to publish a data topic airbagSensorRight in the airbagDomain domain. Accordingly,

f i r s t P o r t (Domain ,Topic ,Port) :- p u b l i s h e s (_,Port ,Domain ,Topic).

is a rule that declares that Port is the first egress port to transmit Topic in Domain, if there

is a fact publishes in the knowledge base with the desired values. The query to find the first

egress port when publishing e. g. airbagTrigger topic is formulated as:

f i r s t P o r t (airbagDomain ,airbagTrigger ,Port).

In this case, Prolog applies the availabe facts and inference rules to find a correct value for Port

variable which is unknown. Variables always start with a capital. If there are matching options

for Port, they are found and presented as query result. If not, the result is false.

In the following, the formal semantics of the facts are described (published in our previous

work [133]). Moreover, we present the inference rules which have been developed to query the

knowledge base regarding verification and schedule synthesis.

3.3.1 Network Facts

The modeling clauses consist of the following facts: topic, qos, publishes, consumes, end-station,

switch, and isLinked.

Let NODE denote the set of all network nodes consisting of switches and end-stations denoted

by the sets ESTATION and SWITCH, respectively: NODE = SWITCH∪ESTATION. Moreover, let PORT

be the set of all Ethernet ports, which can be connected using links, where LINK denotes the

set of all links. We denote with DOMAIN the set of all domains and with TOPIC the set of all

topics.

For a better presentation, we also assume things to be named (labeled) with strings by an

injective function.

` : (NODE ∪ LINK ∪ DOMAIN ∪ TOPIC) � STRING

where STRING is the set of all possible finite words. Let N = (N,L,D) be a network topol-

ogy, where N ⊆ NODE is the set of nodes of the network and L ⊆ P × P denotes the set

41

3. APPROACH OVERVIEW

of bi-directional links between node ports, where P ⊆ PORT. Self-loops are prohibited, i. e.,

∀(p, p′) ∈ L : p 6= p′. Moreover, a port p can only be part of at most a single link, i. e.,

|{p ∈ P | (p, p′) ∈ L ∨ (p′, p) ∈ L}| ≤ 1.

Each node has a set of attached ports: ports : NODE → ℘(PORT). It holds that each port

is unique, i. e., ∀n, n′ ∈ N,n 6= n′ : ports(n) ∩ ports(n′) = ∅. Switches and end-stations use

Ethernet ports to transmit or forward data topics embedded in Ethernet frames. Moreover,

let D ⊆ DOMAIN be the set of all network domains. Each domain is assigned a set of topics

T ⊆ TOPIC: topics : DOMAIN×℘(TOPIC). Topics are injectively assigned to domains, i. e., ∀d, d′ ∈

D, d 6= d′ : topics(d) ∩ topics(d′) = ∅. Commonly used topic types are periodic (per) and

sporadic (spo); the set of all topic types is referred to as TTYPE = {per, spo}. Topic types are of

importance for network configuration.

We derive facts from (i) the network topology (in particular nodes and links), (ii) topics

and quality of service attributes, and (iii) published and consumed topics (wrt. data-centric

middleware concept in Section 6.1). The derived facts are given next.

� A switch fact f s is a pair (ν, P) where ν ∈ STRING denotes its name and P ⊆ PORT is the

set of the switch’s ports. Analogously, an end-station fact f e is defined as a tuple (ν, P)

where ν ∈ STRING denotes its name and P ⊆ PORT is the set of the end-station’s ports.

� A link fact f l is a triple (p, p′, b) where (p, p′) ∈ L and b ∈ N+
0 is the link bandwidth.

� A domain fact fd is a pair (ν, T) where ν ∈ STRING denotes the name of domain d and

T = topics(d) is the set of owned topics.

� A topic fact f t is a tuple (νd, νt, τ, ρ, σ) where νd, νt ∈ STRING denote the domain and

topic name, respectively. The topic type is denoted by τ ∈ TTYPE and its periodicity by

ρ ∈ N+
0 . Finally, σ ∈ N+

0 is the size of the topic.

� A publishes fact fp and a consumes fact f c are both tuples (νn, νp, νd, νt) ∈ STRING4

where νn, νp, νd, and νt denote the node, port, domain, and topic names.

� A Timing QoS fact fqt and Reliability QoS fact fqr are defined as tuples fqt = (νq, νd, νt, ω, %)

and fqr = (νq, νd, νt, ζ) where νq, νd, νt ∈ STRING, ω, %, ζ ∈ N+
0 denote the QoS name, do-

main name, topic name, deadline, priority, and number of redundant links. For periodic

topics, we assume ω ≥ ρ. Following IEEE 802.1Qbv with 8 priority classes, one has

0 ≤ % ≤ 7.

42

3.3 Network Knowledge Base

s t r e a m F i n d e r (Name ,Domain ,Topic ,HelperList2 ,EgressPort ,IngressPort

↪→ ,Period ,Length):-

f i r s t P o r t (Domain ,Topic ,FirstPort),

l a s t P o r t (Domain ,Topic ,LastPort),

p a t h (FirstPort ,LastPort ,PortList),

r e m o v e S w i t c h D e v i c e (PortList ,HelperList1),

removeDevice (HelperList1 ,HelperList2),

p o r t C l a s s i f i e r (HelperList2 ,IngressPort ,EgressPort),

generateStreamName (Name ,Topic ,FirstPort ,LastPort),

t o p i c (Domain ,Topic ,periodic ,Period ,Size).

Prolog 3.3: Inference rule to find periodic and critical streams caused by transmission of topics.

3.3.2 Network Rules

We developed a set of inference rules which relate the facts of the NKB and are used to extract

information from NKB and to verify e. g. network reliability requirements. For instance, to

make the isLinked fact symmetric, link rule is defined as:

l i n k (P1,P2,BW):- i s L i n k e d (P1 ,P2 ,BW).

l i n k (P1,P2,BW):- i s L i n k e d (P2 ,P1 ,BW).

Prolog 3.1: Rules for definition of bidirectional links.

To find end-stations, switches, and ports involved in transmission of a topic, path is defined:

p a t h (Start ,End ,Path) :-

t r a v e l i n g (Start ,End ,[Start],Temp),

r e v e r s e (Temp ,Path).

Prolog 3.2: Rule to find nodes on transmission paths.

where traveling and reverse are helper predicates. The rule streamFinder finds all streams

transporting a given topic and extracts all involved ingress and egress ports on the streams’

paths. Considering IEEE 802.1Qbv, the egress ports are significant for schedule synthesis of

periodic streams. It is important to find out, which periodicity ρ and data length σ a periodic

stream has. These parameters are the basis for generating the stream schedule constraints.

The streamFinder rule is presented in Prolog 3.3 where removeSwitchDevice, removeDevice,

and portClassifier are helper predicates. It checks for a given topic, all communication paths

43

3. APPROACH OVERVIEW

o v e r l a p p i n g S t r e a m s (N1,D1,T1,P1,L1,N2,D2,T2,P2,L2,SharedEP):-

s t r e a m F i n d e r (N1,D1,T1,_,EP1 ,_,P1,L1),

s t r e a m F i n d e r (N2,D2,T2,_,EP2 ,_,P2,L2), N1\== N2,

l i s t I n t e r s e c t (EP1 ,EP2 ,SharedEP).

Prolog 3.4: Rule to find which topics lead to overlapping streams.

a l l O v e r l a p p i n g S t r e a m s (T1 ,T2 ,Out) :-

f i n d a l l ({"domain1":DStr1 ,"stream1":N1 ,"period1":P1 ,"length1":

↪→ L1,"domain2":DStr2 ,"stream2":N2,"period2":P2,"length2":

↪→ L2},(o v e r l a p p i n g S t r e a m s (N1 ,D1 ,T1 ,P1 ,L1 ,N2,D2,T2,P2,L2,_

↪→),atom_string(D1,DStr1),atom_string(D2,DStr2)),Out).

Prolog 3.5: Rule to find all overlapping streams.

from a publisher of the topic to its consumers including all ingress and egress ports on these

paths. To each given pair of two topics, Prolog 3.4 is developed to find out streams with non-

overlapping requirements that carry these topics where listIntersect is a developed helper

rule to find the intersection of the egress port lists of each stream. Two streams have to be

non-overlapping if they share at least one egress port. to find out non-overlapping streams

carrying these topics where listIntersect is a developed helper rule to find the intersection of

the egress port lists of each stream. Two streams have to be non-overlapping if they share at

least one shared egress port. Using the rule allOverlappingStreams (Prolog 3.5), we collect all

non-overlapping stream pairs in the network. These rules are used in Algorithm 2 to extracted

all required input information to generate the constraints.

3.3.3 Model-based Generation of the TSN Knowledge Base

Using the defined logic programming metamodel, we transform the graphical model instance of

a network into a knowledge base (Prolog facts). An excerpt of the transformation algorithm is

demonstrated in Algorithm 1. The graphical model is analyzed to extract all periodic topics in

the network dataflow which are used to build the developed Network Knowledge Base (NKB).

The automated synthesis algorithm use NKB and inference rules to obtain information required

for generating stream constraints.

The generated NKB is used for verification of desired network properties. Using adequate

queries, network managers and application developers can, for example, verify that there are

44

3.3 Network Knowledge Base

at least two disjoint paths between two given network nodes. Such a property is significant if

there are fail-operational or redundancy requirements in the network. An example for such a

use case is presented by [132].

The NKB can also be used as a network database which helps the network managers or

application developers to obtain arbitrary information about the network architecture. Such

information is helpful when e. g. new applications are developed or the network architecture has

to be modified.

Algorithm 1 Adding periodic topics to the knowledge base

Input: N = (N,L,D) . Network derived from the model

Output: NKB . Network knowledge base

1: for all d ∈ D do

2: νd ← d.getName()

3: for all t ∈ topics(d) do

4: if periodic(t) then

5: νt ← t.getName(), τ ← per

6: ρ← t.getPeriod(), σ ← t.getSize()

7: f t ← (νd, νt, τ, ρ, σ).

8: NKB .assertz (f t) . Add f t to NKB
return NKB . Returns the updated NKB

3.3.4 Exemplary Use Cases

In this section, a concrete example of an in-vehicle NKB is introduced from the automotive

application domain. Using this example, different use cases are introduced where the pre-

sented logic-programming approach is very supportive. As a simple demonstration, an Ad-

vanced Driver Assistance System (ADAS) example from [145] is used. This example is further

extended [132] to also consider tight real-time requirements for critical applications such as

airbag. Two sensors are responsible for collecting collision information and an ECU, responsi-

ble for processing those data. The last node is an airbag trigger which will act according to the

messages it gets from ECU. An excerpt of a simple NKB based on Prolog with focus on airbag

domain is presented in Figure 3.3 and explained in the following.

The first topic fact is a predicate, describing that airbagSensorLeft is a periodic topic and

belongs to airbagDomain domain with a period value of 125µs and a size of 10 Bytes. The

first qosLatency fact (named dom1 t1 q1) indicates that there is a latency requirement on topic

airbagSensorLeft. It has the VLAN priority of 7 and the maximum transmission latency is not

45

3. APPROACH OVERVIEW

switch(sw1, [sw1_p1, sw1_p2, sw1_p3, sw1_p4, sw1_p5, sw1_p6, sw1_p7, sw1_p8]).

switch(sw2, [sw2_p1, sw2_p2, sw2_p3, sw2_p4, sw2_p5, sw2_p6, sw2_p7, sw2_p8]).

domain(airbagDomain).

estation(airbagSensorRight, [es1_p1]).

estation(airbagSensorLeft, [es4_p1]).

estation(ecu, [es5_p1]).

estation(airbag, [es9_p1]).

isLinked(es1_p1, sw1_p1, 1000000000).

isLinked(es4_p1, sw1_p6, 1000000000).

isLinked(es5_p1, sw1_p2, 1000000000).

isLinked(es9_p1, sw2_p6, 1000000000).

isLinked(sw1_p8, sw2_p3, 1000000000).

topic(airbagDomain, airbagSensorLeft, periodic, 125, 10).

topic(airbagDomain, airbagSensorRight, periodic, 125, 10).

topic(airbagDomain, airbagTrigger, periodic, 125, 10).

qosLatency(dom1_t1_q1, airbagDomain, airbagSensorLeft, 100, 7).

qosLatency(airbagSensorRight_q2, airbagDomain, airbagSensorRight, 100, 7).

qosLatency(airbagTrigger_q1, airbagDomain, airbagTrigger, 100, 7).

qosReliability(airbagSensorLeft_q2, airbagDomain, airbagSensorLeft, 2).

qosReliability(dom1_t2_q1, airbagDomain, airbagSensorRight, 2).

qosReliability(airbagTrigger_q2, airbagDomain, airbagTrigger, 2).

publishes(airbagSensorLeft, es4_p1, airbagDomain, airbagSensorLeft).

publishes(airbagSensorRight, es1_p1, airbagDomain, airbagSensorRight).

publishes(ecu, es5_p1, airbagDomain, airbagTrigger).

consumes(ecu, es5_p1, airbagDomain, airbagSensorLeft).

consumes(ecu, es5_p1, airbagDomain, airbagSensorRight).

consumes(airbag, es9_p1, airbagDomain, airbagTrigger).

Figure 3.3: An excerpt of the LP-based model of an in-vehicle network using the formally defined

facts. Using inference rules, interesting properties of the network can be verified. The example is

adapted from [145] and further developed in [132].

allowed to exceed 100µs. Considering the first publishes fact, it declares that airbagSensorLeft

end-station publishes the topic via its Ethernet port es4 p1. The published topic (airbagSen-

sorLeft) is consumed by end-station ecu.

The predicate switch describes that e. g. sw2 has eight ports {sw2 p1,sw2 p2,. . . ,sw2 p8}.

Similar to switch predicate, the estation facts are used to name the network end-station devices

and their Ethernet ports which they provide for communication. To declare that there is a

1 Gigabit/s link between two switches, the Ethernet ports sw1 p8 and sw2 p3 are linked using

the corresponding isLinked fact.

3.3.4.1 Network Configuration and Management

Using adequate queries, the configuration overhead for the network manager or application

developer can be reduced. An imaginary example scenario: The end-station airbagSensorRight

is panned to be integrated into the network considering the airbag application. Because of the

highest criticality level, its data must be scheduled using time-aware shaper IEEE 802.1Qbv.

The network manager requires to find out which egress ports are on the path of the new

publishing device to its consumers. Such information is crucial e. g. to avoid a bottleneck in the

46

3.3 Network Knowledge Base

Topological

configuration decisions

required

Real-time Application

Developer or TSN Manager

Network

Knowledge Base

TSN

Inference Rules

Prolog Query Interface

Used by

Interacts with

Network Tasks

Creates adequate

queries on NKB

Figure 3.4: Using a Prolog query interface, required information for network configuration deci-

sions are extracted from the network knowledge base.

% Prolog Query

:- s t r e a m F i n d e r (_,airbagDomain ,airbagTrigger ,APorts ,EPorts ,_,_,_).

% Prolog Response

APorts = [es5_p1 , sw1_p2 , sw1_p8 , sw2_p3 , sw2_p6 , es9_p1],

EPorts = [es5_p1 , sw1_p8 , sw2_p6];

Prolog 3.6: Query to find all ports and egress ports involved in transmission of airbagTraigger

topic. Prolog responds with all ports and including all egress ports on the stream’s path.

topology or to ensure that the affected egress ports support the required timing (features such

as GCL and synchronization).

As the depicted in Figure 3.4, when new configuration tasks arrive, the network manager

creates queries and interacts with the NKB using the Prolog query interface. Such an inter-

face has access to the facts and rules of the network model and executes the Prolog inference

engine where the queries can be processed. Using Prolog 3.6 query, streams which transport

airbagTrigger topic are found. All involved Ethernet ports including egress ports are extracted

which are on the path between publisher and consumer end-stations. These extracted ports

must be considered when updating the GCL entries. With the help of the Prolog queries,

complicated questions can be answered. For instance, the question of which data topics have

the highest priority, go through switch sw1, and which period values do they have? With an

appropriate Prolog query such as Prolog 3.7 the knowledge base is analyzed to find a solution.

3.3.4.2 Network Property Verification

Similar to the configuration use case, verification of the network properties can be supported

by adequate queries. As depicted in Figure 3.5, safety experts use the Prolog query interface

47

3. APPROACH OVERVIEW

% Prolog Query

:- t o p i c (Domain ,Topic ,periodic ,Period ,_),

q o s L a t e n c y (_,Domain ,Topic ,_,7), p u b l i s h e s (_,Port ,Domain ,Topic),

l i n k (Port ,SwitchPort ,_), s w i t c h (sw1 ,PortList),

member(SwitchPort ,PortList).

% Prolog Response

% First found topic

Topic = airbagSensorLeft , Period = 125,

Port = es4_p1 , SwitchPort = sw1_p6;

% Second found topic

Topic = airbagSensorRight , Period = 125,

Port = es1_p1 , SwitchPort = sw1_p1;

% Third found topic

Topic = airbagTrigger , Period = 125,

Port = es5_p1 , SwitchPort = sw1_p2;

Prolog 3.7: An example for more complicated queries on NKB. Prolog responds with three found

topics presenting the required information.

to verify the correctness of desired network properties. For this purpose, rules must be cre-

ated only once based on the safety specification standards such as ISO 26262. Using available

network facts and the created safety rules, verification queries are built. For instance, a re-

quirement for critical applications is the support of a seamless redundancy mechanism such as

IEEE 802.1CB. As an example, the airbag domain is highly critical and has fail-operational

requirements. To verify that e. g. there are at least two disjoint paths between end-stations ecu

and airbagSensorLeft a suitable query and the corresponding negative response are depicted

in Prolog 3.8. Using this information, the safety expert sends a network design correction re-

quest to the designers or application developers. The model has to be modified such that the

required property is fulfilled following an iterative approach. Other examples of infrastructural

verification are presented in Section 4.4.

3.3.4.3 Time-triggered Schedule Synthesis

TSN time-triggered schedules are computed using specific application and network constraints

such as the non-overlapping requirement of competing time-triggered streams. One challenging

step to calculate a valid schedule is to build all relevant constraints which must be solved.

It requires expert knowledge about the network and its application streams (including their

48

3.3 Network Knowledge Base

Real-time Application

Developer or TSN Manager

Graphical Network Model

Safety Expert

Network

Requirements

Network

Knowledge Base

TSN

Inference Rules

Prolog Query Interface

Used by

Interacts with

Creates

Is transformed to

Figure 3.5: Using Prolog queries, network designers and safety experts work together to ver-

ify the required network properties to support real-time applications with e. g. fail-operational

requirements iteratively.

% Prolog Query

:- f i n d a l l (PL , p a t h (es4_p1 ,es5_p1 ,PL),Z), l e n g t h (Z,N),N>=2.

% Prolog Response

false;

Prolog 3.8: Verifiying of existing two physical disjoint paths between the left airbag sensor and

the corresponding ECU.

timing requirements), details of TSN mechanisms such as GCL management, and expertise in

a concrete constraint solving framework. Using Prolog queries, the required information from

the network model is retrieved and automatically translated into constraints which are solved.

This use case is further discussed in Section 4.3.

3.3.4.4 Model Optimization

The Prolog-based network knowledge base can be used to optimize the network model. For

instance, long schedule synthesis for time-triggered streams can be avoided if expert knowledge

is used and translated into Prolog rules. Such expert knowledge contains information about

the fact that a highly divergent period value of streams which travel through the same egress

ports increases the solving time. To avoid it, tradeoff values are defined as constraints (e. g. the

standard deviation of streams’ periods on an egress port is not allowed to be bigger than

49

3. APPROACH OVERVIEW

1 ms). These constraints are verified by queries. This feature gets even more important

when different engineers work simultaneously on different parts of the network model. In

such scenarios, bottlenecks occur if streams travel between subnetworks (model segments).

As an example, Figure 3.6 presents an in-vehicle network architecture following an domain-

oriented approach (cf. [132,146]) where multiple network segments communicate over integration

modules using TSN. Reducing synthesis time decreases the development time for architectures

modifications.

TSN

Central Computing

Unit

TSN

Integration

Unit

Peripherals

Peripherals

Integration

Unit

TSN

TSN

Integration

Unit

Peripherals

Peripherals

Integration

Unit

TSN

TSN

CAN, CAN FD, FlexRay, 10 Mbit ETH, …

Backbone

Application Domain

Figure 3.6: Minimizing of schedule synthesis time in cross-domain network architectures is

required to accelerate the development process. Integration modules use the peripheral interfaces

and communicate through a TSN backbone.

3.3.4.5 Plug-and-Play and Dynamic Reconfiguration

Dynamic configuration and verification for TSN networks at run-time are crucial to support

features such as Plug&Produce. In a dynamic network, events occur at arbitrary times. For

instance, if a new timing-critical actuator joins the network (e. g. a new robotic arm), new

streams can come to the existence which can affect directly the current network schedule or

bandwidth capacities of the network links. Using the Prolog-based knowledge base, events can

be analyzed efficiently (in linear time because of Horn clauses [147]). Based on the analysis

results (verifications), decisions can be made for further network management steps. This use

case is the main topic of Chapter 6.

50

Chapter 4

Model-based Schedule Synthesis

4.1 Satisfiability Modulo Theories

Following the definitions in [148], in many mathematical problems, not all possible value assign-

ments to variables are allowed. Using constraints, the legal combinations of value-to-variable

assignments are specified. Let scope be a set of variables. A tuple on a scope S is defined as

an assignment of a value to each variable in S. A constraint c is defined as a set of tuples on

S. Constraints involve all variables in their scopes. For a set of variables S′ where S ⊆ S′ and

a tuple t on S′, c satisfies t if t ∈ c (restricted to S). For example, let S′ = {x1 , x2 , x3} and

S = {x1 , x2} where x1 , x2 , x3 ∈ N. A constraint c on S considering the variable order (x1 , x2)

is defined as:

c = {t1 = (9, 7), t2 = (8, 8), t3 = (8, 9), t4 = (9, 9)}

which simply describes x1 + x2 ≥ 16. The constraint satisfies tuple t5 = (9, 7, x3 = 5) because

t assigns legal values to x1 , x2 .

A Constraint Satisfaction Problem (CSP) [148, 149] consists of (i) a set of variables, (ii) a

value domain for each variable, and (iii) a set of constraints. To find a solution for a CSP,

a value-to-variable assignment has to be found such that all constraints are satisfied. In this

thesis, the schedule synthesis problem of TSN is formulated as a CSP using Satisfiability Modulo

Theories (SMT). The variables which have the domain N express the time variable to open a

port gate. Constraints express the timing constraints of the streams. The solution is used to

configure TSN switches and end-stations. Satisfiability Modulo Theories (SMT) is a form

of CSP and is about deciding the satisfiability of a first-order logic formula considering a

background theory. Many applications do not require general first-order satisfiability, but rather

51

4. MODEL-BASED SCHEDULE SYNTHESIS

satisfiability considering the underlying theory [150]. Using such theories, the interpretation

of specific predicate and function symbols are fixed. For example, considering the following

formula:

x > y + 2 ∨ ¬(x < y)

applications using the linear integer arithmetic are not interested in satisfiability with nonstan-

dard symbol interpretations but rather interested in deciding if the formula is satisfiable in an

interpretation where < is the usual ordering, and + refers to addition function. Examples of

theories of interests are equality, uninterpreted functions, bitvectors, and arrays. In this thesis,

linear integer arithmetic is used as basic theory to solve scheduling constraints. The goal of a

SMT solver is to find a model satisfying a given set of constraints or to prove that the con-

straints are unsatisfiable by returning an unsatisfiable core. SMT solvers find applications in

e. g. software and hardware verification, planning, and network schedule synthesis. We use the

model found by the solver to configure the network switches and end-stations. If no model is

found, the returned unsatisfiable core is used to enhance the network design to find a model

(cf. Chapter 5).

There is a set of various SMT solver implementations such as Yices [151] and Z3 [152].

We use Z3 to solve the schedule synthesis problem. As an introductory example, given the

following constraints:
C1 :(x ≥ 0 ∧ y ≥ 0),

C2 :y < 6,

C3 :x > 2,

C4 :y > x− 2,

C5 :¬(y ≥ −x+ 8)

We aim to find a model that satisfy all constraints which are modeled in Z3 as follows:

1 (declare−const x Int)

2 (declare−const y Int)

3 (assert (and (>= x 0)(>= y 0)))

4 (assert (< y 6))

5 (assert (> x 2))

6 (assert(> y (− x 2)))

7 (assert (not (>= y (+ (* x −1) 8))))

8 (check−sat)

9 (get−model)

The Z3 solves the constraints and assigns the integer value 2 to y and 3 to x producing the

following output:

52

4.2 Constraints Overview

1 sat (model (de f ine−fun y () Int 2) (de f ine−fun x () Int 3))

4.2 Constraints Overview Page 1 of 1

18-Aug-18file:///C:/Users/iros2015_spc6/Desktop/report/modeling/figures/constraintHierarchie.svg

Figure 4.1: Constraint overview for TSN scheduling: Constraints in gray are discussed in the

literature which we further extend in this thesis (white).

Considering the 802.1Qbv standard, there are multiple constraints which have to be consid-

ered. Following [27], these constraints can be divided into network and application constraints.

The time-triggered constraints are defined by [28]. The non-overlapping constraints for streams

ensure that there are no collisions of time-triggered reserved slots at egress ports on the path

of the streams. This type of constraint is discussed in Section 4.3 and further extended to

consider frame fragmentation. For larger streams than MTU, the fragmentation introduces

more delay which must be considered in the synthesis procedure. Path-dependency constraints

at network and application layers describe the following situation: considering a stream which

travels through multiple network links, the scheduled time of this stream on each egress port

has to be increased on the way from sender to receiver. In other words, a stream has to be first

received before it can be sent out through an egress port. We use a more simplified approach

in Algorithm 2 where gates remain open until a stream passes the last egress port. The offset

of each time-triggered stream has to be less than its period. This constraint is defined by [30]

53

4. MODEL-BASED SCHEDULE SYNTHESIS

as frame constraint. Similar to network constraints, application-related constraints for time-

triggered communication are presented [27] who discuss data dependency and collision-freeness

constraints in applications. In contrast to the existing application layer constraints, we intro-

duce stream arrival time constraint which is crucial for synchronized actions in the network. It

is discussed and presented in Section 4.4.3 with more details.

Before starting the generation of scheduling constraints, specific infrastructural properties

and requirements must be verified. In this thesis, a set of infrastructural constraints are consid-

ered as presented in Section 4.4. They deal with synchronization ability, guaranteed precision,

support of GCL mechanism, and GCL memory size constraints as discussed in Section 4.4.2.

To support modularity and further extensibility, the constraint types are modeled as hierar-

chical class diagrams. Following this approach new upcoming standards can be integrated into

the framework (such as 802.1Qbu for frame preemption or 802.1CB to support redundancy).

4.3 Non-overlapping Constraints and Packet Fragmenta-

tion

Schedule constraints have to be generated which guarantee the fulfillment of hard real-time

stream requirements. Non-overlapping constraints guarantee the latency and jitter require-

ments if IEEE 802.1Qbv mechanism is applied and the involved end-stations and switches are

synchronized. Because these streams have the exclusive time-triggered link access, the inter-

ference with other traffic classes is avoided. Using the NKB, schedule synthesis constraints are

generated. Generating these non-overlapping constraints are described in Algorithm 2.

The required network facts are obtained using adequate queries on KNB. Each topic f t is

always carried by a stream St from publisher St.pub to consumer St.con end-stations. Topics

can be carried by multiple streams. The stream’s variable for gate opening time St.tas (Line 10)

is added to the solver which is required for the configuration and must be found by the

solver. To calculate the transmission delay, the stream length is divided by the available band-

width (Line 13).

In each network node, there is a processing delay which required to analyze the packet

headers. The processing delay of each stream depends on the number of hops (Line 16). The

interpacket gap delay of a specific stream is calculated using the number of MTU-sized frames

of a stream multiplied with the defined interpacket gap α divided by the available bandwidth

b (Line 17).

54

4.3 Non-overlapping Constraints and Packet Fragmentation

Algorithm 2 Periodic topics and non-overlapping constraints

1: SMT : Solver

2: lcm(x, x′) . Least Common Multiple of x, x′

3: α . Specified Minimum Interpacket Gap (8 Bytes for Gigabit Ethernet)

4: MTU . Maximum Transmission Unit

5: Φproc . Switch processing delay

6: Φprop . Propagation delay

7: St . Stream carrying topic f t

8: for all St ∈ N = (N,L,D) do

9: St.tas . Desired gate opening time variable of St

10: SMT .assert(St.tas) . Add variable to the solver

11: b . Available bandwidth

12: Φtrans . Transmission delay

13: St.Φtrans ← (S
t.σ
b)

14: St.pub, St.con . Publisher and consumer of St

15: St.hops . # of hops from St.pub to St.con

16: St.Φproc ← ΦprocS
t.hops

17: St.Φipg ←
(⌊

St.σ
MTU

⌋
+ 1
)
α
b . Interpacket gap delay

18: St.Φall ← St.ΦtransS
t.hops + St.Φproc + St.Φipg + Φprop

19: SMT .assert (St.tas ≥ 0 ∧ St.tas ≤ St.ρ− St.Φall)

20: NOS . List of all non-overlapping stream pairs

21: for all pair = {St
i , S

t
j}, pair ∈ NOS ∧ St

i 6= St
j do

22: Ψi ←
[
0,

lcm(St
i.ρ,S

t
j .ρ))

St
i.ρ

− 1
]

23: Ψj ←
[
0,

lcm(St
i.ρ,S

t
j .ρ))

St
j .ρ

− 1
]

24: for all ψi ∈ Ψi, ψj ∈ Ψj do

25: γ ≡ ((ψiS
t
i .ρ+ St

i .tas + St
i .Φall <

26: ψjS
t
j .ρ+ St

j .tas) ∨
27: (ψjS

t
j .ρ+ St

j .tas + St
j .Φall <

28: ψiS
t
i .ρ+ St

i .tas))

29: SMT .assert (γ)

30: if SMT .check() == SAT then . If constraints satisfied

31: C = SMT .model() . TAS Configuration

32: else

33: U = SMT .unsatCore() . Conflicting constraints

In [27,28,30], the gate opening times of a periodic stream are different for each egress port

on the path. In contrast, we sum all relevant delays (Line 18) and keep the gate open for the

worst-case delay St.Φall . This way, the St.tas is the same for all egress ports on the path. It

reduces the number of constraints but also reduces bandwidth utilization. The gate opening

55

4. MODEL-BASED SCHEDULE SYNTHESIS

interval for a stream has to fit inside its period (Line 19).

We extract all non-overlapping stream pairs using allOverlappingStreams rule (Line 20).

The non-overlapping constraints are generated and asserted (Line 29). When all constraints

are generated and asserted to the solver context, the solving process starts (Line 30) to find a

correct configuration (Line 31) or a proof that the constraints are not satisfiable (Line 33).

We can also use the automated synthesis procedure for timing verification of existing sched-

ules. In this case, network managers or application evaluate use their manually (or using other

tools) prepared schedule containing gate opening times for all streams. They use the modeling

tool to generate schedule constrains and input the available gate opening times. The SMT

solver tries to satisfy the constraints using the input data. If all constraints are satisfied, the

manually generated gate opening times are verified. If the solver is not able to satisfy all con-

straint, it returns an unsatisfiable core indicating which stream constraints are unsatisfiable.

We exploited this feature and demonstrate it in Chapter 5. As discussed in Algorithm 2, the

overall delay of a stream St.Φall is equal to:

St.ΦtransS
t.hops + St.Φproc + St.Φipg + Φprop

It corresponds to the window size which has to be exclusively reserved for St.Φall . However,

St.Φtrans and St.Φipg require further refinements considering the following issues:

� For the calculation of the stream size St.σ, packet headers of e. g. Ethernet, IP, UDP, etc.

have to be considered too and not only the topic size σ.

� A topic f t can travel through links providing different bandwidth b. It means the term

St.hops has to be further refined.

� St.Φipg contains only the specified (according to IEEE 802.3) minimum interpacket gap

delay. It does not consider the application or middleware specifications which could define

larger St.Φipg values. For instance, a data-centric middleware could have a larger St.Φipg

when e. g. frame fragmentation is required (this is the case if the topic size plus frame

headers is greater than the network MTU size). Not considering this, leads to under

provisioning for slot reservation which causes deadline misses.

� The MTU size can be different for each link.

Let St.L be the set of all physical Ethernet links involved in transmission of stream St. For each

link l ∈ St.L, we define lmtu as the mtu size and lb as the provided link bandwidth. To consider

56

4.3 Non-overlapping Constraints and Packet Fragmentation

the transmission delays caused by packet headers, H is defined as the sum of the Ethernet

header Heth = 18 Bytes (includes also the VLAN header of 4 Bytes) and IP header Hip = 20

Bytes, and the middleware or application specific headers defined as Happ :

H = Heth +Hip +Happ

The number of packet fragmentations on each link depends on its MTU size, the sum of packet

headers, and the topic size of the stream (payload). A publisher has to send H + St.σ amount

of data to a consumer. While Happ is sent only once, the number of fragmentations on a link

is calculated as:

lfn =

⌈
Happ + St.σ

lmtu − (Heth +Hip)

⌉
Using lfn , the amount of data caused by fragmentations (packet headers) on a link is:

lfrag = (Heth +Hip) lfn

Based on the fragmentation overhead consideration of the packet headers, the transmission

delay on each link is calculated using the respective bandwidth of the link:

St
l .Φtrans =

(
Happ + St.σ + lfrag

lb

)
The overall transmission delay of St is consequently equal to:

St.Φtrans =
∑
l∈St.L

St
l .Φtrans

Complementary to Algorithm 2, the interpacket gap delay St.Φipg from publisher to subscriber

is computed based on the link bandwidth lb of the publisher end-station and fragmentations

number lfn as:

St.Φipg = max

(
Γ ,

α

lb

)
(lfn − 1) +

α

lb

where Γ presents the application or middleware specific interpacket gap delay. It depends on

the application implementation and hardware capabilities of the publisher end-station. It deals

with the question how a topic σ bigger than the allowed MTU is fragmented on the publisher

side. More precisely, how long does the publisher delays the sending of topic fragments each

after each other. We take the maximum (worst-case) value and multiply it with the number

57

4. MODEL-BASED SCHEDULE SYNTHESIS

of fragmentations lfn . After sending the last fragment, the standard interpacket delay (αlb) is

added which is required to avoid frame interference of different streams. As a summary, Line 18

of Algorithm 2 is updated (underlined terms) by:

St.Φall = St.Φtrans + St.Φproc + St.Φipg + Φprop

4.4 Infrastructural Constraints

In addition to the defined basic constraints in [28] including the non-overlapping constraints,

we consider infrastructural constraints which are directly related to the hardware capabilities

of the switch ports and network topology required for IEEE 802.1Qbv.

4.4.1 Node Capability Constraints

Each device involved in transmission of time-triggered streams must support the synchroniza-

tion approach defined in IEEE 802.1AS Rev which is based on IEEE 1588 (PTP). Not only the

synchronization ability is important but also the synchronization precision. For instance, if an

end-station is on the path of a stream with a period of St.ρ = 100µs, the required synchro-

nization precision can be set for at least 100µs. These can be verified using adequate facts and

rules. Hence, the facts defined in Section 3.3.1 are extended as follows:

A ptp fact fptp is a tuple (νn, νp, y) where νn, νp ∈ STRING and y ∈ N+
0 denote node name,

port name, and the synchronization precision in ns. More detailed and considering the PTP

synchronization protocol, y is defined as the maximum offset value of a slave from its master

which can be guaranteed. Considering Figure 3.3, exemplary implementation of this fact in

Prolog is depicted in Prolog 4.1:

ptp(ecu ,es5_p1 ,50).

ptp(airbagSensorLeft ,es4_p1 ,10000).

ptp(airbagSensorRight ,es1_p1 ,10000).

Prolog 4.1: Synchronization capability and precision of TSN nodes.

Using a new rule verifyPTP presented in Prolog 4.2, it can be verified if synchronitation re-

quirements are fulfilled for a time-triggered stream carrying a specific topic (cf. Prolog 3.3):

58

4.4 Infrastructural Constraints

verifyPTP(Domain ,Topic ,EgressPort):-

% Find streams and involved egress ports

% carying a topic of an application domain

s t r e a m F i n d e r (Name ,Domain ,Topic ,_,EgressPort ,_,Period ,_),

%for any port in egress ports on the stream 's path

member(Port ,EgressPort),

% ptp has to be suppoted and e.g. must be

% better than the stream 's period

ptp(_,Port ,Precision), Precision =< Period.

Prolog 4.2: Rule for verification of synchronization capabilities.

4.4.2 Port Programming Memory Constraints

Synchronization capability is not alone enough for transmission of IEEE 802.1Qbv streams.

Each node involved in transmitting of such streams, has to support the GCL mechanism as

explained in Section 1.1.2. To verify it before starting the synthesis, a new fact is defined. A

gcl fact fgcl is a tuple (νn, νp, z) where νn, νp ∈ STRING and z ∈ N+
0 denote the node name ,

port name, and the maximum allowed GCL entries which depends on the hardware memory

size. In Prolog 4.3, the implementation of this fact is exemplary demonstrated for two different

TSN switches.

gcl(sw1 ,sw1_p1 ,250).

gcl(sw2 ,sw2_p1 ,1000).

Prolog 4.3: Facts for verification of support of GCL mechanism and the maximum available

GCL entries.

With an adequate rule presented in Prolog 4.4, it can be verified if all nodes (ports) on the

path of a IEEE 802.1Qbv stream provide the GCL mechanism. The GCL configuration of the

time-triggered slots has to be written in the memory of the relevant Ethernet port (not to

be confused with port egress queue buffer). The amount of such a memory for each port has

a significant impact on the overall switch cost. Also increasing such memory can lead to an

increase in the hardware size which has disadvantages for space-limited application fields such

as in-vehicle networks. Thus, this memory is limited and can store a defined maximum number

of GCL entries.

To consider this limitation during the modeling phase, adequate constraints must be created.

59

4. MODEL-BASED SCHEDULE SYNTHESIS

verifyGCL(Domain ,Topic ,EgressPort):-

% Find streams and involved egress ports

% carrying a topic of an application domain

s t r e a m F i n d e r (Name ,Domain ,Topic ,_,EgressPort ,_,_,_),

%for any port in egress ports on the stream 's path

member(Port ,EgressPort),

% gcl has to be supported and e.g. must

%provide e.g. at least 256 GCL entries

gcl(_,Port ,Z), Z >= 256.

Prolog 4.4: Rule for verification of GCL capabilities.

For each Ethernet port in the model, its competing time-triggered streams have to be queried

by the NKB. Let hp be the hyper period of all time-triggered (cf. Algorithm 3) streams LS t to

be sent out from an egress port ep. For all St, the sum of maximum numbers of the required

time-triggered slots i. e. GCL entries is:

Θ(ep) =
∑

St∈LS t

[
hp

St.ρ

]
(4.1)

Each guard-band window also causes an entry in GCL and there is one gurad-band per time-

triggered slot. We add the following constraint for each egress port to stay below the maximum

number of allowed GCL entries:

2 ∗Θ(ep) + Θ′(ep) ≤ z (4.2)

where Θ′(ep) is defined as the maximum number of best effort slots. The value Θ′(ep) depends

on the synthesized schedule: 0 ≤ Θ′(ep) ≤ Θ(ep). It can be reduced by trying to find a more

compact time-triggered schedule where the remaining space between time-triggered slots are

small enough to merge them and save extra GCL entries.

We note, that the infrastructural constraints can be verified either by NKB (using Prolog

queries) or be formulating them as SMT constraints which are processed at schedule synthesis

time. Using SMT to solve this kind of constraints together with other (e. g. non-overlapping)

constraints could lead to inefficient network developing time, because of mixing a NP-complete

problem (scheduling) with a problem (infrastructural verification) which can be solved efficiently

by e. g. backward chaining approach (Prolog paradigm). However, if such a constraint is a

very optimization objective for the schedule, it has to be formulated as a synthesis constraint.

60

4.4 Infrastructural Constraints

Another reason to use Prolog approach is to increase the modularity of the framework. If a new

(better) solver is supposed to be used, the NKB can remain unchanged. Only the constraint

generator which uses NKB has to be modified to build specific constraints for different solver

technologies.

4.4.3 Synchronized Actions

The topology plays an important role in considering the transmission delay of streams. Using

the Store-and-Forward mechanism, the arrival times of synchronized streams will be different.

Responsible factors for this are e. g. clock synchronization error, sending offset, and the number

of hops from sender to receiver. For specific real-time applications which require synchronized

physical actions such as motor and axis control applications, there is a maximum tolerable devi-

ation in arrival times of synchronized streams. Figure 4.2 demonstrates an example application

where the importance of synchronization errors is explained. Two step motors (stepMotor 1 and

stepMotor 2) have to be driven synchronously by synchNode using a periodic synchronization

message. The line topology of the network consists of six switches. The motor end-stations are

connected to two different switches. The synchronization messages are transmitted using two

different streams. Ideally, the streams have to arrive at the same time, however considering the

time-triggered paradigm, streams have different sending offsets to avoid overlapping. Moreover,

one stream (to stepMotor 1) can reach its receiver sooner because of the line topology and the

closer location of the synchronization node.

There is another control application which monitors the positions of the step motors and

trigger an emergency stop if the physical behavior of the motors exceeds a tolerable safety-

critical limit. To implement this application, step motor end-stations send periodically position

values to the emergencyStop node. The control application compares the position values and

stops them if needed by sending a stream including stopMessage to each motor. The synchro-

nization errors in both directions could lead to safety-critical situations. Figure 4.3 depicts the

different arrival times considering the exemplary GCL cycle time.

In contrast to [27, 28], where end-to-end latency constraints are considered in the schedule

synthesis, we formulate the arrival constraints to cover the allowed deviations. The synthesis

procedure considers these constraints and checks if there are conflicts. One possible approach

is to define these as soft constraints. Following this approach, the solver tries to satisfy the soft

constraints while solving standard (hard) constraints, however, it does not stop when there are

61

4. MODEL-BASED SCHEDULE SYNTHESIS Page 1 of 1

11-Jul-18file:///C:/Users/iros2015_spc6/Desktop/report/optimization/figures/arrivalConstraints.svg

Figure 4.2: Store-and-Forward mechanism introduce extra transmission delay dependent on the

topology and physical location of the end-stations. Variations in arrival times of synchronizing

streams can have significant impact on synchronized actions (e. g. motor and axis control).

conflicting soft constraints. After the solving procedure ends, it can be checked which of these

constraints are not satisfiable.

The developers should know about such a problem and have to find a solution to the

application layer to implement synchronized actions successfully. For example, after receiving

a stream, the start of the next cycle is calculated and the application code is executed directly

when the next cycle starts (cf. Figure 4.3). Such a solution can be applied when waiting for

the next cycle do not conflict with other application requirements. For instance, we consider a

long line topology where one receiver is very close and the other one very far from the sender.

In such a situation, the size of slots for time-triggered streams can be dramatically increased

(because soft constraints are tolerated and do not stop synthesis) which leads to wasting of

network bandwidth (which is required for bandwidth-intensive low-priority streams).

To avoid this, the arrival constraints can be formulated as hard constraints. In this case,

the solver will stop and return conflicting constraints. Network designers have to analyze the

labels of the conflicting streams and can further improve the network model. For example, the

location of the far receiver can be modified and positioned closer to the sender. Let Async be

a set of synchronized streams where Async .e is the maximum allowed synchronization error

62

4.5 Preparing the Synthesis Result for 802.1Qbv

GCL Cycle = 1ms

positionValue_2

positionValue_1

Sending offset

Synchronization Error Synchronization Error Synchronization Error

Arrival Time by emergencyStop end-station

Figure 4.3: Different sending offsets and transmission delays based on the network topology cause

synchronization errors. The maximum tolerable synchronization error can and must be formulated

as scheduling constraints. The streams which transmit position values of the motors have the same

size but position value of motor 1 later than position value of motor 2 (cf. Figure 4.2).

considering the arrival times. For each stream St ∈ Async , we define its arrival time as St.a:

St.a = St.tas + St.Φall (4.3)

To guarantee that the maximum synchronization error is considered in the synthesis, the fol-

lowing constraint has to be added for each two arbitrary streams St
i , S

t
j ∈ Async :

|St
i .a− St

j .a| ≤ Async .e (4.4)

4.5 Preparing the Synthesis Result for 802.1Qbv

After all required verification queries are executed the synthesis can be started. The final

result of the synthesis procedure is valid offset values for each IEEE 802.1Qbv stream provided

the solver does not find any conflicting constraints or the synthesis terminates (NP-complete

problem). Having the offsets of streams in a feasible schedule, Algorithm 3 can be used to

transfer these to the relevant network nodes. The algorithm takes the list of all time-triggered

streams of a specific port as input which is called LS t. A list of streams periods Lp is defined

that collects all periods to build the hyper period of the GCL for the given port hp. The GCL

table consists of individual intervals i. Our objective is to compute these intervals and sort

them by their starting time. For each interval its starting time istart and duration iduration

are computed based on Algorithm 2 and the resulting offsets (St.tas). All computed intervals

are appended to a list Li and sorted based on istart values. The sorted entries are the desired

GCL entries with switching the gates for different priorities on and off. The GCL preparation

approach is visually demonstrated in Figure 4.4.

63

4. MODEL-BASED SCHEDULE SYNTHESIS

Algorithm 3 Creating GCL entries for TSN ports (time-triggered priority is set to 7).

Input: LS t . List of all time-triggered streams of a specific port

Output: GCL

1: lcm(x, x′) . Least Common Multiple of x, x′

2: for all St ∈ LS t do

3: Lp .append(St.ρ) . List of all periods

4: hp← lcm(Lp)

5: i . A time-triggered interval

6: Li . list of intervals

7: for all St ∈ LS t do

8: for k ∈ {0 , . . . , (hp
S t.ρ)− 1} do

9: istart ← kS t.ρ+ S t.tas

10: iduration ← S t.Φall

11: Li .append(i)

12: Si ← sort(Li) . Sort the intervals by their start times

13: ei . GCL entry

14: gb . guard band

15: for all i ∈ Si do

16: ei ← (istart−gb ; 00000000)

17: GCL.append(ei) . Append the new entry to GCL

18: ei ← (istart ; 00000001)

19: GCL.append(ei)

20: ei ← (istart + iduration ; 11111110) . Opening gates for non-scheduled traffic

21: GCL.append(ei)

return GCL

To communicate the computed GCL tables to relevant nodes, the standard IEEE 802.1Qcc

is highly relevant where configuration approaches for TSN networks are discussed. According

to this standard draft [20], a User/Network Interface (UNI) is specified where the user side

represents stream Talkers and Listeners on the end-stations and the network side deals with

switches in the network. It proposes distributed and centralized configuration approaches. The

difference between two approaches is that the distributed one is designed to support credit-

based shaper of AVB where dynamic stream reservation can be processed. Such a dynamic

behavior is significant to reduce manual configuration where streams appear and disappear

very often at the run-time. Considering automotive applications, infotainment streams are

examples which require acceptable quality of service which can be handled by an adequate

stream and bandwidth reservation.

64

4.5 Preparing the Synthesis Result for 802.1Qbv

𝑖1

𝑖2 𝑖5

GCL Cycle = Hyperperiod

Guard-band

𝑖3

𝑖4S1

S2

S3

11111110

00000001

𝑖𝑠𝑡𝑎𝑟𝑡

𝑖𝑠𝑡𝑎𝑟𝑡 + 𝑖𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛

11111110 11111110 11111110 11111110

00000001

11111110 Gate closed for priority 7

00000001 Gate opened for priority 7

Figure 4.4: Using the computed offsets the GCL entries are created and communicated to the

relevant TSN nodes for each affected port.

In contrast, the Centralized Network Configuration (CNC) is used to configure the following

TSN features: (i) Credit-Based Shaper, (ii) Frame preemption, (iii) Time-triggered scheduled

traffic, (iv) Frame replication and elimination for reliability, (v) Per-stream filtering and polic-

ing, and (vi) Cyclic queuing and forwarding. The draft mentions TSN use cases which require

significant user configuration in the end-stations. For instance, in automotive applications and

industrial automation with control applications, the timing requirements for TSN are derived

from the I/O timing which depend on the physical environment under control e. g. closed loop

sensor-actuator applications. The draft defines a Centralized User Configuration (CUC) entity

to discover end-stations, capabilities, and requirements. The protocols that implement CUC

are specific to user application and outside the scope of this draft. Our framework with its

modeling and configuration features serves as a CUC/CNC implementation.

Moreover, the draft specified the YANG data modeling language to model configuration

information in TSN networks. YANG is a remote network management protocol which exploits

XML and JSON as encoding technologies. As future work, we plan to translate the output of

our framework (computed schedules and GCL tables) in this modeling language. At the time

of writing this thesis, this draft is still work in progress and the information mentioned here

have to be checked with the current state of the document.

65

4. MODEL-BASED SCHEDULE SYNTHESIS

4.6 Time-Critical Sporadic Streams

In contrast to the periodic streams, time-sensitive event-based sporadic streams are sent at any

given time. However, two successive streams must be separated by a specific and pre-defined

time interval. The worst-case network load generated by a specific sporadic stream occurs when

it sends with the highest frequency (the gap between sending times of two successive streams

is minimum). In this case, such sporadic streams behave similarly to periodic streams. In

this section, the focus is on sporadic streams with critical timing requirements. Representative

applications for such streams are event-based critical user input devices (e. g. controlling a

surgical device by surgeons) or alarming sensors with unknown triggering time.

In the previous section, the non-overlapping constraints of time-triggered streams with

harmonic periods have been discussed. In this section, the integration of hard real-time re-

quirements of both periodic and sporadic streams (defined by the deadlines) in the synthesis

procedure is intended.

We assume that all sporadic streams will achieve their highest frequency. A sporadic stream

spi is defined as a tuple spi = (spi.ρ, spi.σ, spi.d) including the minimum time interval between

two consecutive stream appearance, the size, and the deadline. To avoid unnecessary constraints

building for the sporadic streams, we propose the following rapid test method to guarantee that

all sporadic frames can hold their deadlines. If the test is successfully passed, there is no need to

consider the sporadic streams in the synthesis process because it is formally verified that they

do not exceed their deadlines independent from the time-triggered schedules on egress ports.

Considering the competing time-triggered streams LS t , we use the notation of Algorithm 2.

For each given spi, the worst-case delay caused by time-triggered streams TW (spi) is calculated

as follows:

TW (spi) =
∑

St∈LS t

(⌈
spi.d

St.ρ

⌉
(St.Φall + guardBand)

)
(4.5)

where
⌈
spi.d
St.ρ

⌉
is the maximum possible number of time-triggered slots of St in ∆ = [t, t+spi.d].

Note that, all competing streams (sporadic and periodic) which have a shared egress port with

spi are relevant.

Each sporadic stream can be delayed by maximal a lower priority frame (according to IEEE

802.1Q VLAN priority mechanism) at each hop from the sender to the receiver of spi. We

calculate the maximum delay caused by theses as a result of multiplication of mtu and number

66

4.6 Time-Critical Sporadic Streams

of hops:

LW (spi) = mtu(spi.hops) (4.6)

Adding all together, the worst-case delay of the low-priority and sporadic traffic is:

SW (spi) =
∑

∀spj∈SP
spj 6=spi

(⌈
spi.ρ

spj .ρ

⌉
spj .Φall

)
+ spi.Φall + LW (spi) (4.7)

Considering all competing sporadic streams SP , the minimum deadline, maximum deadline,

and the maximum worst-case delay caused by sporadic streams are defined as:

Dmin = spi.d⇔ ∀spi, spj ∈ SP , spj 6= spi : spi.d ≤ spj .d (4.8)

Dmax = spi.d⇔ ∀spi, spj ∈ SP , spj 6= spi : spi.d ≥ spj .d (4.9)

SWmax = SW (spi)⇔ ∀spi, spj ∈ SP , spj 6= spi : SW (spi) ≥ SW (spj) (4.10)

Similarly, the maximum worst-case delay caused by time-triggered streams can be calculated:

TWmax(spi) =
∑

St∈LS t

(⌈
Dmax

St.ρ

⌉
(St.Φall + guardBand)

)
(4.11)

Theorem 1. No sporadic stream will exceed its deadline if (SWmax + TWmax) ≤ Dmin.

Proof. Assume there is a sporadic stream spi that exceeds its deadline:

∃spi : spi.d < SW (spi) + TW (spi) (4.12)

spi.d < SW (spi) + TW (spi) ≤ SWmax + TWmax ≤ Dmin ⇒ (4.13)

spi.d < Dmin E (4.14)

The presented test is easy to implement and verify. However, it is significantly conservative

depending on the number time-triggered and sporadic streams. Moreover If it fails, Backtracing

of the problem is difficult because Theorem 1 considers all streams together and does not point

to specific problematic streams. To overcome this issue, we propose the following test for each

sporadic stream spi to find out which streams exactly can have a missed deadline in worst-case:

TW (spi) + SW (spi) ≤ spi.d (4.15)

The more complex the network, the bigger is the advantage of this method. In more complex

network where many streams fulfill their timing constraints, designers are interested to find

67

4. MODEL-BASED SCHEDULE SYNTHESIS

those small fractions which may have a timing problem in worst-case. To guarantee that

sporadic streams do not miss their deadlines, we need to consider the sporadic streams and

their deadlines in the synthesis procedure while shaping the time-triggered slots. In other

words, it is required to generate constraints to consider and adapt the distance between time

triggered slots such that there is enough time for periodic and sporadic streams to arrive before

their deadlines.

To generate adequate constraints expressing the requirements of sporadic streams, a param-

eter is required, which describes the distance between time-triggered slots. For this purpose,

we define α as minimum time between the end of a time-triggered slot and the start of the

next consecutive time-triggered slot (similar concept to [25] where blank slots are introduced

to transport rate constrained streams in the TTethernet protocol). We intend to calculate the

correct α value such that the deadlines of all sporadic streams are respected. The number of

α-slots in ∆ is calculated as:

∑
St∈LS t

(⌈
spi.d

St.ρ

⌉)
− 1 (4.16)

Hence the time available for sporadic streams in ∆ = [t, t+ spi.d] is:

α

(∑
St∈LS t

(⌈
spi.d

St.ρ

⌉)
− 1

)
(4.17)

We assume the worst-case order of sporadic streams which is formulated in Equation (4.7).

Taking Equation (4.17) into account, we derive the following constraint for each sporadic stream

spi:

γ′ ≡ α


∑

St∈LS t

(⌈
spi.d

St.ρ

⌉)
− 1︸ ︷︷ ︸

N

− SW (spi) ≥ 0 (4.18)

which means that the sum of α-slots has to be large enough for transmission of spi and all other

sporadic streams (worst-case scenario).

Theorem 2. If γ′ is satisfied for a sporadic stream, its payload will be transmitted before its

deadline.

Proof. Assume γ′ is satisfied for all streams but one stream spi misses its deadline. We will

have two cases:

68

4.6 Time-Critical Sporadic Streams

Case 1:

∃spk : αN − SW (spi)− spk.Φall < 0⇒

spk delays spi ⇒

spk arrived before spi

spk ∈ SW (spi)⇒

SW (spi)was not the worst-case delays caused by sporadic streams E

Case 2:

∃I : I delays spi, where I is a not considered time-triggered slot⇒

α (N + 1)− SW (spi) < 0⇒

αN + α− SW (spi) < 0 (4.19)

without I :

αN − SW (spi) ≥ 0⇒

−αN + SW (spi) < 0 (4.20)

Equations (4.19) and (4.20)⇒ α < 0 E

To consider α in the schedule of the time-triggered periodic streams, γ from Algorithm 2

has to be reformulated as:

γ ≡
(
(ψiS

t
i .ρ+ St

i .tas + St
i .Φall + α < ψjS

t
j .ρ+ St

j .tas)

∨

(ψjS
t
j .ρ+ St

j .tas + St
j .Φall + α < ψiS

t
i .ρ+ St

i .tas)
)

69

4. MODEL-BASED SCHEDULE SYNTHESIS Page 1 of 1

10-Apr-17file:///C:/Users/iros2015_spc6/Desktop/ETFA2017/figures/topology.svg

Figure 4.5: Modeling network topology using the graphical editor.

4.7 Implementation

In this section, the prototypical implementation of the framework components is discussed.

Moreover, the synthesis results of an exemplary TSN network with two switches are presented.

4.7.1 Framework Components

Two roles (taken by a human) are defined to interact with the framework. Network designers

who create and optimize graphical network models and safety experts who verify whether the

model satisfies the infrastructural and safety requirements (e. g. related to IEEE 802.1Qbv and

IEEE 802.1CB).

The graphical network modeler is implemented based on the Eclipse Modeling Framework

(EMF)1 using Java programming language. The object oriented-meta model of the modeler is

discussed in Section 3.2. To demonstrate the modeling tool capabilities, a modified in-vehicle

automotive network example from [132] is used. It consists of 5 TSN switches with each 8

ports. End-stations are connected to these switches and build together the hardware topology

as demonstrated in Figure 4.5. To derive the topology facts correctly, infinite loops in the

1http://www.eclipse.org/modeling/emf/

70

4.7 Implementation

p a t h (Start ,End ,Path) :- p a t h H e l p e r (Start ,End ,[Start],Temp),

r e v e r s e (Temp ,Path).

p a t h H e l p e r (X,Y,P,[Y|P]) :- l i n k (X,Y,_).

p a t h H e l p e r (X,Y,Visited ,Path) :- \+member(Z,Visited),

Z \== Y, l i n k (X,Z,_),

p a t h H e l p e r (Z,Y,[Z|Visited],Path).

Prolog 4.5: Rule to consider infinite loops. Page 1 of 1

10-Apr-17file:///C:/Users/iros2015_spc6/Desktop/ETFA2017/figures/dataflow.svg

Figure 4.6: Modeling dataflow and QoS requirements using the graphical editor

topology has to be determined and considered. Such loops are caused by cycles in e. g. ring

structures. A solution for this problem is implemented in Prolog 4.5 where the visited nodes

will be remembered. The end-stations belong to different domains (applications). The cameras

are e. g. used in driver assistance system domain, airbag sensors and actuators are involved

in the real-time airbag domain, and multimedia end-stations belong to the entertainment do-

main. Having a closer look in the dataflow of the airbag domain as depicted in Figure 4.6,

airbagSensorRight and airbagSensorLeft data topics are published by the sensors and by ecu

end-station. It controls the sensors’ data and publishes airbagTrigger topic which is consumed

by airbag actuator. The QoS requirements are inside the topics. For instance, airbagTrigger

topic is a periodic topic and has both timing and reliability requirements. The appropriate pa-

71

4. MODEL-BASED SCHEDULE SYNTHESIS

rameter values such as period and size, and etc. are entered textually in the modeling tool (not

demonstrated here).

The presented graphical modeler also offers a feature to filter (hide) uninteresting visual

information in the model. It is very useful for more complex network designs where multiple

designers work on different segments of the network model. For instance, teams can work

on different application domains and are not interested in the visual details of other domains.

Without the filtering feature, the probability for design mistakes will be increased and slow down

the network developments. Moreover, it is advantageous for model optimization (e. g. avoiding

bottlenecks), when designers can use the selective visual information to reduce cross-domain

communication (if not necessary) to increase the locality in the model and mitigate model

complexity. An example for such a scenario is presented in Figure 3.6 where different automotive

application developers focus on different parts of the network defined as integration units.

Considering large networked production lines in factories and application of TSN networks in

many automation domains, this modeling framework offers a scalable solution for modeling,

configuration, and verification.

An overview of these components and roles and the temporal interactions between them

is depicted in Figure 4.7. The created graphical model is sent to a Java-to-Prolog model

transformer where adequate Prolog facts are created. These components are implemented in

Java and traverse the graphical model to build the facts. Network designers can formulate

optimization queries to check the existence of e. g. bottlenecks (competitive streams on a single

egress port with high deviation in period length) to decrease synthesis time. These queries are

sent to the model verifier where the defined optimization rules are used to check the trueness

of the queries. It is an iterative procedure where the graphical model is modified and checked

until the model satisfies the designer’s desires. The optimized model is sent to the network

safety expert for safety verification. For this purpose, a set of network safety rules are (already)

created based on general application requirements such as redundant links (e. g. ISO 26262) or

based on network properties which have to exist to support TSN standards. The safety expert

formulates verification queries and lets them be checked by the model verifier. An example

related to this verification step is given in Section 3.3.4.2.

72

4.7 Implementation

:N
et

w
or

k
D

es
ig

n
er

:G
ra

p
h
ic

al
M

o
d
el

er
:M

o
d
el

T
ra

n
sf

or
m

er
:M

o
d
el

V
er

ifi
er

:N
et

w
or

k
S
af

et
y

E
x
p

er
t

:C
on

st
ra

in
t

G
en

er
at

or
:Z

3
S
ol

ve
r

:S
ch

ed
u
le

D
is

tr
ib

u
to

r

cr
ea

te
M

o
d
el

()

gr
ap

h
ic

al
M

o
d
el

cr
ea

te
P

ro
lo

gF
ac

ts
()

v
is

u
al

iz
ed

S
ta

tu
s

fo
rm

u
la

te
O

p
ti

m
iz

at
io

n
Q

u
er

ie
s(

)

ve
ri

fy
O

p
ti

m
iz

at
io

n
Q

u
er

ie
s(

)

S
ta

tu
s

op
ti

m
iz

eM
o
d
el

()

gr
ap

h
ic

al
M

o
d
el

lo
op

lo
op

[u
n
ti

l
d
es

ig
n
er

is
sa

ti
sfi

ed
]

st
ar

tS
af

et
y
V

er
ifi

ca
ti

on
()

fo
rm

u
la

te
S
af

et
y
Q

u
er

ie
s(

)

ve
ri

fy
S
af

et
y
Q

u
er

ie
s(

)

n
et

w
or

k
S
af

et
y
S
ta

tu
s

n
et

w
or

k
S
af

et
y
S
ta

tu
s

st
ar

tS
y
n
th

es
is

()

cr
ea

te
S
M

T
C

on
st

ra
in

ts
()

sc
h
ed

u
li
n
gC

on
st

ra
in

ts so
lv

e(
)

sy
n
th

es
is

R
es

u
lt

s

v
is

u
al

iz
eR

es
u
lt

s(
)

an
al

y
ze

R
es

u
lt

s(
)

m
o
d
if

y
M

o
d
el

()

gr
ap

h
ic

al
M

o
d
el

op
t

op
t

[i
f

n
o

fe
a
si

b
le

sc
h
ed

u
le

fo
u
n
d
]

lo
op

lo
op

[u
n
ti

l
b

o
th

d
es

ig
n
er

a
n
d

sa
fe

ty
ex

p
er

ts
a
re

sa
ti

sfi
ed

]

d
is

tr
ib

u
te

S
ch

ed
u
le

()

v
is

u
al

iz
ed

S
ta

tu
s

F
ig
u
re

4
.7
:

S
eq

u
en

ce
d
ia

g
ra

m
o
f

th
e

fr
a
m

ew
o
rk

fr
o
m

m
o
d
el

in
g

to
th

e
d
is

tr
ib

u
ti

o
n

o
f

th
e

sy
n
th

es
iz

ed
sc

h
ed

u
le

.

73

4. MODEL-BASED SCHEDULE SYNTHESIS

PropertiesGraphical ModelModeling Elements

Figure 4.8: An excerpt of the modeling elements, created graphical model, and node properties

of the case study (published in [133]).

If the verification results are satisfying, the network designer starts the schedule synthesis by

interacting with the graphical modeler. The modeler calls the constraint generator functionality

which is Python script to build adequate constraints for a Z3 solver1. The solver module is also

implemented in Python and use the Z3 interfaces. When the synthesis is finished, the results

are visualized for the designer. There are two possible situations. If the model is not satisfiable

(which means no feasible schedule has been found by the solver), the designer will analyze

the labels of the conflicting constraints to find out the possible reasons for unsatisfiability.

Iteratively, the model is modified by the designer until a feasible schedule is found. Exploiting

unsatisfiability cores of the model is discussed in Chapter 5. However, if a feasible schedule is

found, the computed offsets for the time-triggered streams are sent to a Python script which

implements Algorithm 3. The schedule distributor calculates the GCL tables which are required

for configuration. It executes shell commands to connect to nodes (e. g. TSN switches) and send

them the GCL updates.

4.7.2 Demonstration

The objective of this demonstration is to show the capability of the graphical modeling tool to

synthesize a feasible schedule based on IEEE 802.1Qbv. In Figure 4.8, an exemplary network

1https://github.com/Z3Prover/z3

74

4.7 Implementation

Table 4.1: Stream properties and schedule synthesis results of the demonstration use case [133].

Stream Non-overlapping withDomainTopicPublisherConsumerPeriod (ns)Length (Byte)First Gate Opening Time (ns)

s1 s2 dom1 t1 es1 p1 es2 p1 500.000 400 38.072

s2 s1 dom1 t2 es1 p1 es2 p1 2.000.000 1000 0

s3 s4 , s5 , s6 dom1 t3 es2 p1 es1 p1 8.000.000 3000 0

s4 s3 dom1 t4 es2 p1 es3 p1 16.000.000 6000 8.103.096

s5 s3 , s7 , s8 , s6 dom2 t7 es7 p1 es1 p1 500.000 400 186.480

s6 s13 , s3 , s5 , s12 dom2 t12 es11 p1 es1 p1 100.000.000 5000 7.705.352

s7 s8 , s5 dom2 t7 es7 p1 es8 p1 500.000 400 0

s8 s5 , s7 , s9 , s10 , s12 , s13 dom2 t7 es7 p1 es12 p1 500.000 400 167.608

s9 s8 , s14 , s10 , s11 , s12 , s13 dom2 t8 es8 p1 es12 p1 500.000 400 186.480

s10 s8 , s9 , s11 , s12 , s13 dom2 t9 es9 p1 es12 p1 5.000.000 5000 0

s11 s8 , s9 , s10 , s12 , s13 dom2 t10 es9 p1 es12 p1 100.000.000 10000 99.205.352

s12 s11 , s10 , s9 , s8 , s13 , s6 dom2 t11 es11 p1 es12 p1 100.000.000 5000 205.352

s13 s6 , s8 , s9 , s10 , s11 , s12 dom2 t12 es11 p1 es12 p1 100.000.000 5000 481.128

s14 s9 dom2 t8 es8 p1 es7 p1 500.000 400 0

model is presented which is generated using the graphical modeler. Two TSN switches with each

8 ports connect 12 end-stations that are physically separated by the switches. All links have an

available bandwidth of 1 Gbit/s. Two application domains are defined which contain 12 topics.

Using the Prolog 3.3 rule, 14 streams are derived which carry these topics from publishers

to consumers. The modeled topics are all periodic and have timing requirements and must be

scheduled using the IEEE 802.1Qbv mechanism. The timing and reliability features are visually

represented with a clock and paired symbols. This and other information such as the size and

period of the topics can be set in adequate dialog boxes when clicking on each topic.

To avoid design mistakes, specific mechanisms are implemented to avoid logically impossible

situations. For instance, when a new Ethernet link is being created via drag&drop, it is not

allowed to connect it to an already connected port. The details about streams, topics, non-

overlapping relations of the streams, and the synthesized schedule driver from the framework

are presented in Table 4.1. The stream’s gate opening values are all in a correct range between

0 and the streams’ periods. The computed first gate opening time is used in combination

with Algorithm 3 to compute the GCL tables. For this case study, the framework is installed

on a desktop PC with an Intel Core i7 CPU and 4GB RAM. For the synthesis, the SMT solver

Z3 Version 4.5.0 ist used.

4.7.3 Discussion

The presented framework consists of different architectural modules (Figure 4.9) in order to

address the mentioned challenges. The modularity and extensibility are essential requirements

75

4. MODEL-BASED SCHEDULE SYNTHESIS

Network Modeler

TSN Declarative Network

Management

Constraint Solver

TSN Configurator

Framework Modules

Graphical Modeling

(Drag&Drop)

Logic Programing (Prolog)

SMT Solver

Proprietary Switch

Commands (SSH)

Applied Technologies

Textual Modeling

(XML, Relational Database)

Ontologies and Reasoners

Integer Linear Programing

NETCONF, SNMP,

IEEE 802.1Qcc

Possible Extensions/Variations

(User-based Requirements)

Figure 4.9: Modularity and extensibility of the developed framework

for future TSN developments. It has to be guaranteed that the implemented modules can be

modified, enhanced or replaced separately with minimum impact on the rest of the modules.

Considering the network modeling module, there can be other requirements coming from frame-

work users. Although the graphical modeling approach can is helpful for small to medium sized

networks, for very large networks textual or table-based modeling could be required. Such ex-

tensions can be easily implemented and added to the framework. It is possible because of the

plug-in-based nature of EMF, which is used for implementation of the framework in this thesis.

To implement the TSN declarative network management module, Prolog is applied. Based

on framework user requirements, the presented approach can be extended by the integration of

ontologies and reasoners. To build an ontology, a transformation module has to be implemented

to convert the graphical object-oriented model to an ontology. An ontology-based approach for

modeling of TSN networks has been developed and presented in our previous work [142].

The scheduling constraints can be solved by different solver implementations such as SMT

(which is used in our framework) or ILP solvers. Factors such as licensing costs, performance

(synthesis speed), and additional features such as constraint labeling (a required feature in this

thesis) are significant to select an adequate solver. The SMT solver used in this thesis can be

easily replaced by other solvers. To achieve this, only the constraint generation algorithm and

its implementation (cf. Algorithm 2) has to be adapted.

After the scheduling synthesis is done, the results should be used to configure the GCL tables

(cf. Algorithm 3). Such a configuration has to be distributed among all relevant TSN switches

in the network where the schedule of egress ports have to updated. There are different options

to execute this task. An initial approach is to use the proprietary configuration commands

76

4.7 Implementation

which can be executed via Secure Shell (SSH). Alternatives are NETCONF protocol [153] and

Simple Network Management Protocol (SNMP) [154] which are being integrated into the TSN

standard IEEE 802.1Qcc to simplify and automate the configuration procedure. As soon as the

switch manufacturers provide these option for TSN switch ports, the schedule synthesis results

can be distributed by these protocols.

77

4. MODEL-BASED SCHEDULE SYNTHESIS

78

Chapter 5

Model Correction and

Optimization

In this chapter, the focus is on situations where a designed network model is not satisfiable and

no feasible schedules are found by the solver. In contrast to simple network models, localization

and correcting unsatisfiability of complex network models is time-consuming and increases the

development costs. To tackle this problem, a constraint labeling approach is presented which

aims to assist the designers to better understand where in the model the unsatisfiability occurs

i. e. there are conflicting constraints that cannot be satisfied at the same time.

Only if the solving procedure terminates within acceptable time (depending on engineering

requirements), network configuration or model correction can be started. To optimize the model

before synthesis, Prolog-based queries are presented which aim at reducing the synthesis time by

optimizing the network model. The presented solution exploits the power of logic programming

to formulate adequate queries before schedule synthesis where the responses can be used to

optimize the model and avoid e. g. bottlenecks.

5.1 Problem Localization in Unsatisfiable Models

The goal of schedule synthesis for IEEE 802.1Qbv is to find a feasible time-triggered schedule.

To solve this problem, scheduling constraints (based on the designed network model) must be

satisfied and stream offsets have to be calculated. A network model consisting of constraints

is unsatisfiable if it contains at least two conflicting constraints. We call a network model

infeasible if the conflicting constraints are generated because of scheduling requirements. To

79

5. MODEL CORRECTION AND OPTIMIZATION

find network and application segments causing the infeasibility in the model, we exploit the

concept of unsatisfiable cores which can be produced by SMT solvers.

5.1.1 Background: Unsatisfiable Cores

A formula in Conjunctive Normal Form (CNF) is defined a set of clauses, where each clause

itself contains literals [155]. A literal is a variable or the negation of it. A CNF formula

is satisfied under an variable assignment, if each clause is satisfied. Accordingly, a clause is

satisfied if at least one of its literals can be satisfied. The task of a SAT solver is to prove the

unsatisfiability of a CNF formula or to compute a satisfying variable assignment (e. g. finding

time-triggered stream offsets of a feasible schedule). If a CNF is unsatisfiable, the formula is

called contradictory. Any subset of the clauses in such a CNF formula that is still unsatisfiable is

defined as an unsatisfiable core (unsat − core). We consider the following formula with integer

interpretation in SMT as an example.

(x ≥ 0)︸ ︷︷ ︸
C1

∧ (y ≥ 0)︸ ︷︷ ︸
C2

∧ (y < 6)︸ ︷︷ ︸
C3

∧ (x > 2)︸ ︷︷ ︸
C4

∧ (y > x− 2)︸ ︷︷ ︸
C5

∧¬(y ≥ −x+ 8)︸ ︷︷ ︸
C6

∧ (x < 3)︸ ︷︷ ︸
C7

The unsat − core can be extracted using the following:

1 (set−option : produce−unsat−cores t rue)

2 (declare−const x Int)

3 (declare−const y Int)

4 (assert (! (>= x 0) :named C1))

5 (assert (! (>= y 0) :named C2))

6 (assert (! (< y 6) :named C3))

7 (assert (! (> x 2) :named C4))

8 (assert (! (> y (− x 2)) :named C5))

9 (assert (! (not (>= y (+ (* x −1) 8))) :named C6))

10 (assert (! (< x 3) :named C7))

11 (check−sat)

12 (get−unsat−core)

13

The satisfiability is checked with the following output indicating that the formula is contradic-

tory because of conflicting C4 and C7 clauses.

1 unsat (C4 C7)

Many applications of constraint systems deal with finding satisfying variable assignments for

satisfiable constraint sets. Hence, a big number of algorithms aiming at finding satisfying assign-

ments [156]. For unsatisfiable constraint sets, tools and algorithms are required for infeasibility

80

5.1 Problem Localization in Unsatisfiable Models

analysis. According to [156], there are two interesting questions which have to be answered by

such algorithms: (i) How many constraints can be satisfied? and (ii) Where is the origin of the

unsatisfiability in the set of constraints?

The second question is the interesting one in the context of this thesis. Solutions presented

for this question intend to find Minimally Unsatisfiable Core (MUC) or Minimally Unsatisfiable

Subsets (MUSes) for a given constraint set. A new algorithm for infeasibility analysis that

quickly enumerates MUSes is called MARCO and implemented in [157].

Z3 produces an unsatisfiable core but does not try to minimize it. A method and tool called

HSMTMUC are presented by [158] aims at finding MUC for Z3. The presented approach is

based on the deletion-based MUC extraction method [159]. It is implemented and available

on [160]. The performance of the approach is evaluated using hundreds of benchmarks [158].

5.1.2 Approach

The presented approach consists of two parts. The first part deals with an adequate constraint

labeling approach. The second part introduces an iterative correction method which exploits

the labels of the conflicting constraints to localize the design errors in the model. Designers who

work on an erroneous segment of the model (considering both network topology and application)

must to check the labels and estimate how to modify the model towards satisfiability.

5.1.2.1 Constraint Labeling

Considering an unsatisfiable set of constraints, user-friendly feedback is required when it comes

to detecting the high-level modeling decisions which cause the low-level constraint contradic-

tions [161].

The main goal of the constraint labeling approach is to identify fragments of the network

which are involved in the conflicting constraints. Answering the following questions are required:

� Why is a specific constraint generated?

� Which topological hardware components (e. g. switch ports) are involved?

� Which software components are involved?

To answer the first question, a classification of TSN constraint types is required which is pre-

sented in Figure 4.1. It helps to understand which TSN standard caused the problem. Based

81

5. MODEL CORRECTION AND OPTIMIZATION

on the available expert knowledge about each standard and its details, the designer can get

closer to the origin of the problem.

For example, all non-overlapping constraints generated based on IEEE 802.1Qbv belong

to the same constraint class. Considering e. g. the non-overlapping constraint, a large stream

with arbitrary period together with a smaller stream with a very short period can lead to

unsatisfiability. The reason is that the transmission time of the large stream can take longer

than the period of the smaller stream. In this case, the smaller stream misses its reserved

time-triggered slot. Using such an expert knowledge, developer(s) who are working on time-

triggered streams, can modify the model e. g. by re-routing of streams or topology changes, to

find a feasible schedule. In contrast, developers working on reliability features regarding IEEE

802.1CB are not supposed to be involved in the model correction procedures at this step when

no conflicting constraints are labeled by this constraint class.

Responding to the second question about the involved hardware components, it is required

for model correction to find out which nodes cause the problem and whether it is a distributed

problem (many nodes and links are affected). It helps also to estimate the correction effort.

For instance, if nodes in different network segments and application domains are involved,

many developers are supposed to collaborate for model correction. For local and domain-

specific problems, the correction overhead is less. Considering the time-triggered streams as

an example, two or more streams can have conflicting non-overlapping constraints. Knowing

on which network links (egress ports) these streams have conflict is significant to understand

where exactly a topology modification in the model is helpful.

The information about the involved software components is required to backtrace appli-

cations that are producing conflicting constraints. Using this information together with in-

formation about the involved nodes, model correction steps can be derived by the developers

(e. g. migrate an application from one node to another one or modification of the period or size

of the application streams).

The labeling structure of the constraints has to be defined based on the expert knowledge

about each specific TSN standard. For this purpose, a workflow is proposed in Figure 5.1.

The main target group of the labeling approach is developers who model the network and must

modify an unsatisfiable model. To understand each generated constraint required for correcting

modifications, the most crucial information has to be selected from the model and be used to

create adequate labels. These labels must be reviewed and tested by experts (TSN standard

experts which deal with modeling and developing). If there are missing information or deceptive

82

5.1 Problem Localization in Unsatisfiable Models

Collect all constraints

Which TSN standard?

For each constraint: select all

important information for labeling

(hardware, software)

Review and test

Select a visualization approach

Evaluate

Select a label encoding approach

Figure 5.1: Work flow for developers to identify and label significant information for each con-

straint type which help to better understanding of model unsatisfiability.

information in the labels, the information selection for labeling has to be improved iteratively.

The labels must be encoded to be readable for computers. For instance, JSON or XML encoding

technologies can be applied. The encoded labels are used for visualization purposes and help

to analyze the constraints and backtracing the design errors of the model.

Taking IEEE 802.1Qbv and the non-overlapping constraint as an example, the information

related to the time-triggered streams is required to build the labels. The labels related to this

constraint are expected to contain information about the data topic and application domain

which are transmitted, the period and size of the data topic, the name of the publisher and

consumer end-stations, and the name of all egress ports on the path. Demonstrating examples

are presented in Section 5.1.3.

5.1.2.2 Iterative Correction

Based on the constraint labeling approach and the available algorithms to compute minimal

satisfiable cores, a general approach for iterative model correction is proposed in Figure 5.2.

The generated network model is the input for three SMT solver algorithms which can com-

pute (minimal) unsat − cores: (i) MARCO [156], (ii) HsmtMuc [158], and (iii) standard Z3

implementation (the computed unsat − core is not necessarily minimal). As the computation

time of these algorithms is unknown, a specific amount of time is defined as a timeout to avoid

infinite run-time. If all constraints are satisfied, the correction process terminates and net-

work configuration process will be started based on the synthesized configuration parameters

such as time-triggered offsets for IEEE 802.1Qbv. However, if the mentioned algorithms find

83

5. MODEL CORRECTION AND OPTIMIZATION

Start Synthesis

(Call MUC Algorithms)

MARCO HSmtMuc Z3

Collect MUCs

Put disjoint MUCs in DMUCS_LIST

Put intersected MUCs in IMUCS_LIST

Localize the Origin

Of Unsatisfiability

Select a MUC

Network Model

Start

Is

DMUCS_LIST

Empty?

No Is

IMUCS_LIST

Empty?

Yes

Yes

Build a histogram of intersected

constraints in IMUC_LIST

No

Localize the Origin Of

Unsatisfiability

Constraint Classification and

Labeling

Correct Model

Correct Model

Wait for a specific amount of time

(computation timeout)

All

constratints

satisfied?

End
Yes

No

Figure 5.2: Overview of the model correction approach using the unsatisfiable cores.

unsat − cores for the model, the conflicting constraints have to be analyzed. Different algo-

rithms may find different unsat − cores for the same model. Some of these cores are disjoint,

which means they do not share any constraint with other cores, or they are intersected (cores

which share at least one constraint). Disjoint cores are put into a list called DMUCS LIST,

and the intersected cores are collected in IMUCS LIST.

We start with DMUCS LIST because disjoint cores are rather pointing to a local problem

(do not share any constraints which can mean they come from different network segments). For

each core in this list, the developers try to localize the problem and derive correcting actions.

It will be repeated until the list is empty.

To analyze the intersected cores in IMUCS LIST, we propose to build a histogram of con-

straint labels as a tool to measure the importance of the intersected constraints. Constraints

with a high number of incidence can point to a major problem in the model. It must be localized

and corrected with higher priority. After correcting the model, the synthesis process is started

84

5.1 Problem Localization in Unsatisfiable Models

st
re

am
1

sh
ar

ed
E

g
re

ss
P

o
rt

s

C
o
n
st

ra
in

t

st
re

am
2

T
S

N
_
S

ta
n
d
ar

d

d
o
m

ai
n

to
p
ic

p
er

io
d

le
n
g
th

se
n
d
er

_
p
o
rt

re
ce

iv
er

_
p
o
rt

d
o
m

ai
n

to
p
ic

p
er

io
d

le
n
g
th

se
n
d
er

_
p
o
rt

re
ce

iv
er

_
p
o
rt

Figure 5.3: Label structure (variables) of non-overlapping constraint in TSN IEEE 802.1Qbv

standard.

again. As model corrections themselves can lead to new satisfiability problems, the correction

is iteratively executed until the model is satisfied.

For instance, we consider the (i) offset < period and (ii) non-overlapping constraints which

are presented in Figure 4.1. The label of the first constraint contains information about the

TSN standard name TSN Standard, the identification of the Constraint, and stream information

i. e. application domain, topic, period, length, and the ports name of the receiving and sending

end-stations. The non-overlapping constraints always contain two streams which have conflicts

(no feasible schedule found that guaranteed the non-overlapping requirement). Moreover, it

contains a list of shared egress ports sharedEgressPorts between two conflicting streams which

can help to better understand the unsatisfiability of the model. In Figure 5.3, the structure of

non-overlapping labels are visualized.

The localization of the problem can be achieved with the analysis of the labels pointing to

hardware and application segments in the network. After localization, the problematic model

configuration must be inferred (by the developers). For simple and obvious problems where

e. g. only two network streams and few nodes are affected, reviewing the labels can directly

lead to a good problem explanation. For more complex problems with many affected segments,

this process can be more complicated and extra information about the model is required. A

constraint label cannot contain information about all other network components which can play

a role regarding the model unsatisfiability.

85

5. MODEL CORRECTION AND OPTIMIZATION

Visualized Labels of

Conflicting

Constraints (MUC)

Start

Developers review the

constraints

Problem identified?
Localize the Origin Of

Unsatisfiability

Correct Model

(adequate modifications

towards satisfiability)

Yes

End

Formulate adequate queries

on NKB for additionl

information No

Analyze obtained additional

information

Figure 5.4: Overview of the model correction approach using the unsatisfiable cores.

Hence, the developed Prolog-based NKB can be used (Figure 5.4). If the developers localize

the problem for instance in a specific egress port of a switch, adequate Prolog queries can be

formulated to obtain additional information about other network components close or relevant

to this egress port. For each specific TSN standard, a different type of additional information

is required.

5.1.3 Evaluation

To evaluate the usage of the labeled constraints for model correction, a complex network model

is developed which contains four main application domains (Figure 5.5). Each domain has a set

of periodic topics with real-time requirements which are transmitted within separated network

segments. The objective is to compute a feasible schedule for all relevant egress ports in the

network. The details about the topics are presented in Prolog A.3. For the sake of convenience,

only the native Z3 feature is used to produce the unsatisfiable core. (unsat − core). Following

the presented approach in Figure 5.1, JSON is used to encode and decode the labels.

86

5.1 Problem Localization in Unsatisfiable Models

A
p

p
li

c
a

ti
o

n
D

o
m

a
in

 1
A

p
p

li
c
a

ti
o

n
D

o
m

a
in

 2

A
p

p
li

c
a

ti
o

n
D

o
m

a
in

 3
A

p
p

li
c
a

ti
o

n
D

o
m

a
in

 4

F
ig
u
re

5
.5
:

A
co

m
p
le

x
u
n
sa

ti
sfi

a
b
le

n
et

w
o
rk

m
o
d
el

is
d
es

ig
n
ed

.
T

h
e

u
n
sa

ti
sfi

a
b
il
it

y
re

a
so

n
s

a
re

lo
ca

te
d

in
a
p
p
li
ca

ti
o
n

d
o
m

a
in

s
1

a
n
d

4
.

T
h
e

m
o
d
el

ca
n

b
e

co
rr

ec
te

d
u
si

n
g

th
e

la
b

el
ed

co
n
st

ra
in

ts
.

F
o
r

m
o
re

d
et

a
il
s

se
e

P
ro

lo
g

A
.3

,
F

ig
u
re

A
.1

,
a
n
d

F
ig

u
re

A
.2

.

.

87

5. MODEL CORRECTION AND OPTIMIZATION

After the execution of the synthesis algorithm, the framework indicates that the model is not

satisfiable and produces an unsatisfiable core pointing to a problem in the application domain

1. Two streams have conflicts. One stream has a length of 6000 Bytes, a period of 2 ms and

transports the topic sensor5 from es7 to es5. The second stream, however, has a period of

125µs and a length of 40 Bytes from es8 to es5. These two streams have five shared egress

ports on their path. Based on expert knowledge, the transmission delay caused by the stream

of bigger size is too long for the short period of the second stream. In other words, the stream

with a shorter period does not have any chance to get a free slot while the other stream is

transmitted. Thus, it exceeds its period which leads to unsatisfiability.

Considering the domain application 1 and its topology, different possible solutions can be

suggested for model correction. The first solution is to check if the high frequency of sensor6 is

required or it can be modified (increasing the period and less frequent transmission) such that

the probability of finding a free slot is increased (the solution space for the synthesis algorithm

is bigger). The second solution is a to check if the stream with bigger length can be divided into

smaller streams with adequate gaps to allow the more frequent stream to transmit its small data

in these gaps. A third solution is a topological solution where two modifications are required.

First, es5 obtains an additional Ethernet port and second, es7 is moved and connected to the

switch where es5 is also connected to. Following this approach, both streams do not require to

compete at any egress ports. The last solution, however, is bounded to higher costs regarding

the additional hardware. Hence, first, it should be tested if only the movement of es7 can solve

the problem.

As presented in Figure 5.2, the correction process is iterative. After correcting the problem

in application domain 1, the synthesis is started again and the result shows that the model is still

unsatisfiable. A similar problem can be identified and corrected in application domain 4. The

resulting unsatisfiable cores encoded in JSON are depicted in Figure 5.6. For more complicated

unsatisfiable models with a high number of conflicting constraints, graphical visualization of

the cores is significantly helpful to reduce the cognitive analysis effort in case of large JSON

files. However, the graphical visualization of the cores is out of the scope of this thesis.

5.2 Shortening Synthesis Time

Because the presented synthesis problem is NP-complete, it is necessary to mention the synthesis

time challenges for network developments [162]. The network development can be further

88

5.2 Shortening Synthesis Time

S
y

n
th

es
is

 R
es

u
lt

:

u
n
sa

ti
sf

ia
b
le

S
te

p
 1

:
C

o
rr

ec
ti

o
n
 o

f

ap
p
li

ca
ti

o
n
 d

o
m

ai
n
 1

:

A
g
ai

n
 u

n
sa

ti
sf

ia
b

le

S
te

p
 2

:
C

o
rr

ec
ti

o
n

 o
f

ap
p
li

ca
ti

o
n
 d

o
m

ai
n
 4

:

M
o
d
el

 s
at

is
fi

ed

Figure 5.6: Step-by-Step analysis of unsatisfiable cores produced by Z3 solver and correcting the

model towards satisfiability. The cores indicates that the problem lies on application domains 1

and 4 where time-triggered streams cannot be scheduled.

progress, if and only if the designers get an answer from the framework regarding the synthesis

results. Depending on the results (satisfied/unsatisfiable) the designers can either configure the

network nodes or try to understand the design errors. However, if the synthesis takes undefined

long time intervals, the development cost increases for dynamic network architectures where

nodes join and leave the network frequently. Thus, we first discuss the decelerating factors and

also propose how the NKB (Section 3.3) can be used to optimize the network model regarding

the synthesis time.

5.2.1 Decelerating Factors

Considering Algorithm 2, the most expensive operations are located in Line 21 where non-

overlapping slots must be found for each stream. The number of non-overlapping streams

89

5. MODEL CORRECTION AND OPTIMIZATION

increases when the overall number of streams increases in the model. Although it does not nec-

essarily lead to more non-overlapping streams in all network segments, however, the probability

of more competition between streams will be increased depending on the concrete configura-

tion. Each new stream at any egress port will increase the synthesis time, because it has to be

considered for a correct schedule.

The difference of streams’ periods (i. e. streams with long period compete with streams with

a short period) are directly relevant for computation of hyper period at any egress port. It

leads to the expansion of search space for a feasible schedule (Line 24). It must be noticed that

increasing the search space does not mean also a higher probability of finding a feasible schedule.

Similarly, long hyper periods at egress ports increase the number of iterations (cf. [30]).

Another factor which shrinks the solution space and extends the synthesis time is a situation

wherein a set of competing streams, the size and period of these streams have major deviations

similar to the mentioned example of application domain 1 and 4 in Section 5.1.3. In those

scenarios, the deviation is too big and leads directly to unsatisfiability because the stream with

shorter period do not match in any slots (slots all are occupied because of the large size of

the competing stream). However, for lower deviations, where a solution could be possible, the

solution space can be extremely constricted and the algorithm requires more time to find a

solution or indicates that the model is unsatisfiable.

To test the effect of the mentioned factors, the example presented in Figure 5.5 is used.

We first start with the synthesis of application domain 1 and add the other domains step-by-

step which increase the number of streams and also competitions on egress ports in the overall

network architecture. The result of this initial benchmark is depicted in Table 5.1 where the

relation between the number of streams and the synthesis time is presented.

Table 5.1: The synthesis time is increased with the increasing complexity of the competing

streams based on the network model in Figure 5.5.

Application domain
Number of competing

stream pairs

Number of generated

scheduling constraints
Synthesis time (s)

1 17 97 0.2039

2 57 792 1.625

3 14 168 0.3359

4 18 235 0.4900

1,2,3,4 106 1292 2.7039

90

5.2 Shortening Synthesis Time

%Rule to find the list of all overloaded ports

v e r i f y O v e r l o a d i n g (AllowedNumber ,AllOverloadedPorts):-

f i n d a l l (OverloadedPort ,(l i s t A l l P o r t s (AllPorts),

c h e c k A l l P o r t s (AllPorts ,AllowedNumber ,OverloadedPort)),

AllOverloadedPorts).

%Rule to go recursively through all network ports

c h e c k A l l P o r t s ([H|T],AllowedNumber ,Ports):-

i s P o r t O v e r l o a d e d (H,AllowedNumber ,Ports);

c h e c k A l l P o r t s (T,AllowedNumber ,Ports).

%Rule to check if a given port is overloaded

i s P o r t O v e r l o a d e d (Port ,AllowedNumber ,Ports):-

f i n d a l l (Name ,(s t r e a m F i n d e r (Name ,_,_,_,EgressPorts ,_,_,_),

member(Port ,EgressPorts)),EgressStreams),

l e n g t h (EgressStreams ,Nr), Nr > AllowedNumber ,Ports=Port.

Prolog 5.1: Rules for verification of exisitng of overloaded egress ports. Overloading leads to

longer synthesis time.

5.2.2 Model Optimization

Considering the mentioned situations decelerating the synthesis, the NKB can be exploited to

avoid them. We present two new rules which verify the model to ensure specific model qualities

dealing with (i) controlling and limiting the number of competing streams at egress ports and

(ii) avoiding major deviations in streams’ periods and size at any egress ports. The presented

logic rule in Prolog 5.1 targets at finding the overloaded ports with a high number of outgoing

(egress) streams. For each specific port in the network model, all streams are extracted which

contain that port in their paths. The number of maximum allowed outgoing streams is defined

as AllowedNumber. The result of traversing the model with verifyOverloading rule is a list

of all ports which have a number of outgoing streams higher than AllowedNumber. The rule

checkAllPorts recursively traverses all nodes using a logical or (;≡ ∨) to avoid early stopping the

search. Developers exploit this information and achieve a better load balancing to reduce the

overall density of the competing streams at ports. Fewer competitions mean fewer constraints

which have to be solved and leads to shorter synthesis time.

A next optimization objective before starting the synthesis is to avoid the shrinking of

solution space because of significant deviations of period and size of competing streams at

egress ports. For each two competing streams St
i , S

t
j with periods of St

i .ρ, S
t
j .ρ and transmission

91

5. MODEL CORRECTION AND OPTIMIZATION

delay of St
i .Φtrans , S

t
j .Φtrans , we define the the link occupation ratio Or as:

Or = Max

((
St
i .Φtrans + St

j .Φtrans

St
i .ρ

)
,

(
St
i .Φtrans + St

j .Φtrans

St
j .ρ

))
(5.1)

Note that St
i , S

t
j are not feasible, if:

(
St
i .Φtrans + St

j .Φtrans > St
i .ρ
)
∨
(
St
i .Φtrans + St

j .Φtrans > St
j .ρ
)

(5.2)

which means 0 ≤ Or ≤ 1.

To increase the solution space and higher probability for a shorter synthesis time, developers

can define a threshold value for Or which must not be exceeded. The inference rules presented

in Prolog 5.2, can be used to verify that all egress ports hold the defined threshold.

% Helper math rule to calulate the max value

s toreMax (X,Y,Max) :- Max i s max(X,Y) .

%Rule to find all ports with a critical link occupation ratio

v e r i f y A l l L i n k O c c u p a t i o n s (Threshold ,CriticalPorts):-

f i n d a l l (P,(v e r i f y L i n k O c c u p a t i o n (Threshold ,P)),AllPorts),

sort(AllPorts ,CriticalPorts).

%Rule check the ratio for each two competing streams

v e r i f y L i n k O c c u p a t i o n (Threshold ,Port):-

o v e r l a p p i n g S t r e a m s (N1,D1,T1,P1,L1,N2,D2,T2,P2,L2,SharedEP),

member(Port ,SharedEP),

s toreMax (((L1+L2)*8/P1) ,((L1+L2)*8/P2),O_Ratio),

O_Ratio > Threshold.

Prolog 5.2: Rules for verification of link occupation ratio by each competing stream pair.

92

Chapter 6

AutoTSN: Plug&Configure

Concept for TSN

Increasing the number of distributed applications, sensors, actuators and computing units e. g. in

the factory automation and automotive domain, where TSN is a potential backbone technology

candidate, causes high network engineering overhead. Considering e. g. in-vehicle E/E architec-

tures and timing requirements, network reconfiguration can be necessary if a new device must

be integrated into the network architecture [142]. The presented modeling tool in this thesis

automates parts of the TSN network management (scheduling and configuration). To configure

the network, if a device publishes periodic and time-triggered data, a network engineer has to

use the synthesis tool for rescheduling of the streams based on the IEEE 802.1Qbv standard.

Considering the current state of the TSN standards, three steps are defined towards a fully

automated network configuration [163]. In the first step, the configuration of the streams must

be calculated manually. The calculated parameters such as stream offsets are transmitted to

the switches and end-stations using a centralized network management software interface. In

the next step, tools and algorithms are expected which are used to automate the configuration

tasks partially (e. g. the contribution of this thesis regarding the model-based synthesis). In a

final step, all of the configuration steps must be automated. It means the vision will be that

developers only plug devices containing their profiles which describe the devices’ properties,

their applications and timing requirements. This information is automatically collected and

analyzed to compute a valid configuration (Figure 6.1).

To achieve a fully-automated configuration, it is essential that the configuring components

of the network understand the application logic between the connected devices based on the

93

6. AUTOTSN: PLUG&CONFIGURE CONCEPT FOR TSN

Developer

Device

Profile

Uses Network

Management Software

For Distribution

Calculates

Configuration

Device

Profile

Device

Profile

Developer

Device

Profile

Uses Modeling Tools for

Automated Configuration and

Distribution

Device

Profile

Device

Profile Device

Profile

Device

Device

Profile

Device

Device

Profile

Device

Plug&Play

TSN

Network

• Collects Device Profiles

• Builds/Updates Network Model

• Calculates Configuration

• Distributes Configuration

Step 1 Step 2 Step 3

Figure 6.1: Three steps towards fully-automated configuration of TSN networks.

collected profiles. The challenge here is the fact that each device contains only a part of the

application logic. For example, a new plugged monitoring device knows only that it requires/re-

ceives data from temperature or pressure sensors to monitor the system to avoid exceeding

defined safe ranges. However, it does not know where the sensors are located physically in the

network. Similarly, a sensor only knows that it has to send temperature values periodically but

without knowing which concrete device or application intends to receive it. Putting all this

information together, logical streams can be derived and used for an adequate configuration.

In this chapter, a general approach based on the publisher-subscriber paradigm is proposed

to deal with the autoconfiguration of the TSN networks at run-time. It is shown, how the

network knowledge base can be exploited to make configuration decisions.

6.1 Background: Publisher-Subscriber Paradigm

Mission-critical distributed applications have been traditionally implemented using a message-

centric approach to transmit data between nodes of the network. This approach leads to

significant inefficiencies, increases application development costs, and causes high maintenance

overhead [118]. In contrast, a data-centric approach e. g. the OMG’s Data Distribution Service

specification follows an elementary different approach, which is explained in the following.

A major difference between message-centric and data-centric paradigm is about the state of

the changes in the network. Following the message-centric approach, maintaining the state of

the data objects is part of the application and the developers have to deal with it. In contrast

94

6.2 Approach Overview

Topic A

Topic E
Topic FTopic D

Topic C
Topic B

App 3

App 4

App 2

App 5

App 1

App 6

Publisher App

Subscriber App

Figure 6.2: Location transparency provided by publishing and subscribing data topics by dis-

tributed applications.

and based on the data-centric concept, the networking infrastructure is responsible for data state

consolidation and maintenance of changes. This complexity is hidden from the application and

also the application developers. For example, considering a temperature regulation application,

a developer who implements the control algorithm is only interested in the current value of

the sensor temperature. Using a message-centric approach, the developer must create and send

request messages to the sensor periodically and de-serialize the received responses. However,

following the data-centric approach, the developer only subscribes for the current temperature

value and uses it for the control application.

To provide location transparency, the publisher-subscriber concept (Figure 6.2) defines data

topics which can be published or subscribed in the network. A middleware resolves the valid

routes from the publisher to the subscriber(s) and takes responsibility for transmission of the

data topics.

6.2 Approach Overview

The main concept of the proposed approach is to use a data-centric middleware at the applica-

tion layer for dynamic networking and to combine it with the developed model-based synthesis

in this thesis for configuration of the underlying TSN network.

To achieve an automated reconfiguration in TSN networks, two services are defined. A

Topology Discovery Service is required to

� update the list of the Ethernet links after a new device joins,

95

6. AUTOTSN: PLUG&CONFIGURE CONCEPT FOR TSN

:New Device :TSN Configuration Service :Topology Discovery Service :Middleware

sendProfile()

startMiddleware()

updateNKB()

updateEthernetLinks()

updateTopology()

getNewEthernetLinkFact()

f l

getNewMiddlewareRoutes()

verifyNewMiddlewareRoutes()

updateNKB()

queryAffectedTSNStandards()

queryAffectedNodes()

callSpecificConfigurators()

generateNewConfigurations()

distributeNewConfigurations()

ConfigurationStatus

startScheduledCommunication()

Figure 6.3: A general approach for automated reconfiguration of TSN networks.

� verify the calculated routes by the middleware, and

� retrieve all Ethernet link facts f l as defined in Section 3.3.1.

A TSN Configuration Service receives the device profile consisting of its facts as defined

in Section 3.3.1 describing the device and its intentions (such as publishing or subscribing

topics). It calls the topology discovery service to get an update of all link facts. In the next

step, the service tries to figure out which TSN standards require reconfiguration using queries

on the NKB. These queries are very specific for each standard.

For example, to check whether the IEEE 802.1Qbv schedule must be reconfigured for some

egress ports, the configuration service creates a query to check if a newly joined device caused

new periodic and time-triggered streams. If the device publishes a periodic topic with timing

requirements and there is a device in the network which subscribes for this topic, then the

configuration service must find the affected egress ports and call the SMT solver for a schedule

synthesis. Moreover, this service has to communicate with the middleware to verify the newly

96

6.3 Autoconfiguration of IEEE 802.1Qbv

calculated routes in the network. It means, using the NKB, it has to be checked if the derived

streams from the NKB go through the same nodes compared to the calculated routes by the

middleware for the same streams. This can be the case if there are cycles in the topology and

middleware selects a route which differs route derived from the TSN model. Such a conflict

leads to incorrect timing of the streams.

The new configurations are distributed to the related network nodes including end-stations

and switches. If the configuration process is successful, the device starts the middleware instance

which manages the application. From this point, the middleware takes control. The sequence

diagram in Figure 6.3 presents the general reconfiguration steps.

6.3 Autoconfiguration of IEEE 802.1Qbv

In this section, a concrete approach for automatic reconfiguration of the TSN time-triggered

mechanism is proposed and demonstrated using an example.

While a data-centric middleware is responsible for the dynamic data routing at the appli-

cation layer based on a publisher-subscriber model, the developed modeling tool is used for

reconfiguration of the GCL tables of th relevant TSN egress ports.

The main objective is to configure the TSN layer before starting the data transmission by

the middleware. This approach provides a modular network configuration at the middleware

and TSN layers. Different middleware implementations can be used based on the requirements

of the network.

The assumption in this approach is: There exists a running TSN network supporting IEEE

802.1Qbv mechanism and nodes are synchronized based on the IEEE 1588-2008 protocol. End-

stations may contain multiple applications with time-triggered streams publishing or consuming

topics.

The assumption of data-centricity in dataflows is a key concept in the developed modeling

tool (cf. Figure 3.2). Following Figure 6.3 , each device must announce its profile before it starts

executing the middleware instance and the applications which send or receive time-triggered

streams. A device profile is defined as a tuple DP = (f e, F t, F qt, F qr, F p, F c) where F t contains

the set of new topics, F qt, F qr refer to sets of timing and reliability requirements, and F c, F p

contain all new consuming and publishing facts. As demonstrated in Figure 6.4, a new device

joins the network and starts its middleware instance. The device sends its profile DP to the

IEEE 802.1Qbv Configuration Server. This server updates the NKB adding the new facts.

97

6. AUTOTSN: PLUG&CONFIGURE CONCEPT FOR TSN

:New Device :802.1Qbv Configuration Server :LLDP Server :802.1Qbv Synthesis Server :Middleware

DP = (f e, F t, F qt, F qr, F p, F c)

startMiddleware()

updateNKB()

updateEthernetLinks()

updateTopology()

getNewEthernetLinkFact()

f l

getNewMiddlewareRoutes()

verifyNewMiddlewareRoutes()

updateNKB()

getNewCriticalStreams()

synthesize()

generateNewConstraints()

startSMTSolver()

updateSchedule()

AdminControlList

distributeNewConfiguration()

optopt [# of new critical streams > 0]

ConfigurationStatus

startScheduledCommunication()

Figure 6.4: Plug&Play Procedure for the 802.1Qbv

Using e. g. Link Layer Discovery Protocol (LLDP) [165], the topology is discovered and the

newly added Ethernet links are returned to the configuration server for updating the NKB

after routes are verified.

After updating the NKB, the configuration server has to decide whether 802.1Qbv standard

is affected for reconfiguration (cf. Figure 6.3) or not. To decide this, the following questions

have to be answered:

� Does the new device have any periodic topics in its profile(F t)?

� Do they have any timing requirements (F qt)?

� If the new device publishes a time-triggered topic, is there any consumers for it in the

network (F p, F c)?

98

6.3 Autoconfiguration of IEEE 802.1Qbv

Are there any

periodic topics?

Any timing QoS

requirements?
To be published?

All topics

handled?

To be consumed?
Is there any

publisher?

Start synthesis

End

Take a periodic

topic

Are there any

consumers?

Yes

No

Yes

No

Yes

Yes

No

NoNo

Yes

Yes

No

No

Return response

Yes

Start

Received DP

Figure 6.5: Decision procedure whether a new synthesis and reconfiguration of 802.1Qbv is

required.

� If the new device consumes time-triggered topics, are they available in the network

(F p, F c)?

Figure 6.5 depicts the flow chart explaining the decision procedure. For each new device, its

profile is analyzed to find out if there are any periodic topics. For each periodic topic with

timing requirement, it has to be clarified whether it must be published or be consumed. For

publisher topics, there have to be active consumers in the network to have a reason for new

synthesis and reconfiguration. Similarly, there has to be an active publisher of the consumed

topics in the network.

If new time-triggered streams are available which compete with any other existing stream,

new scheduling constraints are generated by the synthesis server and solved by the SMT solver.

The synthesis server updates the schedule and sends the updated AdminControlList to the

configuration server. It distributes the new configuration among the affected egress ports in

the network.

For publisher end-stations, the ConfigurationStatus consists of the hyper period of the com-

peting streams hyperPeriod, the synthesized offset and delay (St.tas, St.Φall) of the stream, and

99

6. AUTOTSN: PLUG&CONFIGURE CONCEPT FOR TSN

its period St.ρ. Using these parameters, the end-station calculates the sending intervals:

Startk = kSt.ρ+ St.tas,

k ∈ [0, . . . , (
hyperPeriod

St.ρ
)− 1]

If there are no new time-triggered periodic streams, the NKB is updated using the new device

profile and the configuration status is returned to the device as approval to further executes

the middleware’s procedures.

6.3.1 Adequate Prolog Rule

To decide if a new device profile causes a new synthesis or not (Figure 6.5), the NKB is exploited

to avoid unnecessary and timely expensive synthesis. Even if there are new streams because of

the new device, it must be verified if they have any competition with other streams on their

paths. If the new device has more than one topic to publish, a new synthesis is required because

of the egress port of the device itself. The outgoing streams must not overlap.

All derived new streams from the model are stored. After updating the NKB with the profile

of the new device, the rule overlappingStreams (as explained in Prolog 3.4) is exploited and

embedded in a new (rule Prolog 6.1) to verify the existence of new competing streams. The

only required input for this rule consists of the domains and topics of the new device which is

available in its profile.

n e w S y n t h e s i s R e u q i r e d (Domain ,Topic):-

o v e r l a p p i n g S t r e a m s (N1,Domain ,Topic ,P1,L1,N2,

D2 ,T2,P2,L2,SharedEP).

Prolog 6.1: Rule to verify if new devices cause new competing streams in the network.

This efficient and short formulation justifies the feasibility and effectiveness of logic program-

ming in modeling and querying complex relations in the network.

6.3.2 Demonstration

In this section, we demonstrate the steps of the proposed approach using a concrete example.

The example consists of three applications using time-triggered streams for communication. A

Hardware Status application is responsible to read and publish the status of its hardware with

different periods. The hardware status contains the CPU load, CPU temperature, available

RAM memory, and the remaining free space of its permanent memory.

100

6.3 Autoconfiguration of IEEE 802.1Qbv

Figure 6.6: The topology of the network model before and after the critical node is plugged in.

A Real-time Status Monitoring application verifies that critical nodes in the network are

working appropriately and do not exceed pre-defined hardware limits such as CPU temperature.

It monitors the status of the CPU load, temperature, and the RAM. Accordingly, it consumes

status data of the critical nodes and publishes an overall system status (e. g. alarms) which

are displayed on system monitors. The Status Display application consumes the system status.

The applications are distributed in the network and use a data-centric middleware to manage

sending and receiving the streams.

As a starting point, the monitoring and display applications are running on two embedded

computing units in the network. These applications are in alert domain where the time-triggered

system status topic is published by the monitoring end-station and is consumed by the display

end-station. The NKB details at this point is depicted in Prolog A.1.

After the critical end-station is plugged, it first registers its profile. It is physically connected

to the existing end-stations over three switches (hops) supporting IEEE 802.1Qbv on their

Ethernet ports. The time-triggered topics are available for potential consumers such as the

monitoring application. The network model before and after plugging the critical node are

demonstrated in Figure 6.6. The details of the topics such as period, size, and traffic priority

(with possible values from 0 to 7 as defined in IEEE 802.1p) are depicted in Table 6.1. An

excerpt of corresponding new network facts are shown in Prolog A.2.

101

6. AUTOTSN: PLUG&CONFIGURE CONCEPT FOR TSN

Table 6.1: Topics properties of the Plug&Play example.

Topic Size(Byte)Period(ns)Priority

alert domain cpu load 200 1000000 6

alert domain freemem 200 20000000 6

alert domain disk status 200 100000000 6

alert domain cpu temperature 200 1000000 6

alert domain system status 800 20000000 6

To check if there is a need for reconfiguration, all new topics are checked with the presented

Prolog rule. For instance, alert domain disk status topic is checked and the NKB responds with

false. which means that no new competing streams are derived and therefore no synthesis is

required. However, verifying the topic alert domain cpu load results in a new competing stream

pair. The queries and results are presented in Prolog 6.2.

%Verify alert_domain_disk_status

n e w S y n t h e s i s R e u q i r e d (alert_domain ,alert_domain_disk_status).

%Prolog tells no synthesis required

false.

%Verify alert_domain_cpu_load

n e w S y n t h e s i s R e u q i r e d (alert_domain ,alert_domain_cpu_load).

%Prolog tells new synthesis is required

t r u e .

%Query to get more precise information

o v e r l a p p i n g S t r e a m s (N1,alert_domain ,alert_domain_cpu_load ,_,_,N2,_

↪→ ,_,_,_,_).

% Prolog tells N1 and N2 streams are competing

N1 = "'stream ':{'topic ':'alert_domain_cpu_load ','domain ':'

↪→ alert_domain ',

'sender_port ':'es2_p1 ','receiver_port ':'es4_p1 ','period

↪→ ':'1000000',' length ':'200'}",

N2 = "'stream ':{'topic ':'alert_domain_freemem ','domain ':'

↪→ alert_domain ',

'sender_port ':'es2_p1 ','receiver_port ':'es4_p1 ','period

↪→ ':'20000000',' length ':'200'}".

Prolog 6.2: Applying the Prolog rule to decide if new topics from a new device in the network

cause a new synthesis for the network configuration.

102

6.4 Implications for Future Implementation

The synthesis server is called to generate the constraints and solve them Figure 6.4). Ade-

quately, the GCL entries are updated using Algorithm 3 and the result (AdminControlList) is

returned to the configuration server. The configuration server generates Secure Shell (SSH) [166]

commands to configure the GCL tables of the affected switch ports. After the new configura-

tion is finalized the configuration server notifies it to the new device and it starts the scheduled

communication.

6.4 Implications for Future Implementation

Considering a concrete middleware implementation to realize the AutoTSN concept, the mid-

dleware must offer adequate interfaces such that the TSN configuration services obtain the

required information such as the computed routes by the middleware. It is highly relevant for

the egress port configuration regarding IEEE 802.1Qbv. Such interfaces have to be offered by

the middleware providers.

Middleware implementations provide also their specific quality of service mechanisms. It

must be investigated whether this information can be used directly to derive the required NKB

facts for schedule synthesis. Moreover, the middleware must provide additional networking

features to modify e. g. the VLAN tag in the Ethernet frames on demand based on the stream

criticality.

Another major challenge is the timing precision of the middleware especially regarding time

synchronization and precise firing of a time-triggered stream. There are internal processes

of the middleware and are executed to handle specific events such as discovery service etc.

The scheduling of such processes affects the timing of the processes which are responsible for

sending time-triggered streams. To avoid high inaccuracy, the real-time scheduling mechanism

have to be applied to fully control the behavior of all middleware processes. It is even more

challenging when there are also other additional processes running on an end-station apart from

the middleware processes. To provide the desired determinism, real-time operating systems can

be used. In this case, it has to be investigated how such real-time operating systems and

middleware implementations can be executed on hardware with limited resources considering

also the boundaries of development costs.

The AutoTSN concept can be offered as a service to be integrated into the existing com-

mercial and open-source data-centric middleware implementations.

103

6. AUTOTSN: PLUG&CONFIGURE CONCEPT FOR TSN

104

Chapter 7

Experimental Evaluation

The objectives of this section are:

� The ability of the framework to implement a highly model-based TSN configuration is

demonstrated where constraint building, schedule synthesis, and switch configuration are

fully automated. We present a proof of concept that highlights how the manual work

required for TSN configuration is minimized.

� The developed framework is used to model and configure an experimental setup consisting

of prototypical implementation of IEEE 802.1Qbv switches. The latency and jitter of

time-triggered streams are measured and analyzed regarding the expectations from IEEE

802.1Qbv.

7.1 Setup

The presented setup in this section is adapted from our previous work [167]. It is motivated

by typical mixed-critical applications e. g. from automotive domain. Two synchronized step

motors communicating through the network are representative for hard real-time applications

with periodic behavior. Such applications require guaranteed lowest latency and jitter values.

A drowsiness detection application uses the video stream of a camera to analyze the drivers’

eyes and triggers alarm if it estimates that the driver has fallen asleep. An infotainment video

streaming application represents that kind of applications which generate high traffic load and

occupy the available bandwidth but do not have hard timing requirements. In the following,

implemented applications are introduced. The details of the setup are shown in Figure 7.1.

105

7. EXPERIMENTAL EVALUATION

E1
E4

Real-time Sender

(Step Motors)

Real-time Receiver

(Step Motors)

RSP35

IEEE 802.1Qbv

Network Load

Generator

Video Receiver Video Sender

(Infotainment & Drowsiness Detection)

E2

E3

Figure 7.1: Three industrial RSP35 switches with each two prototypical FPGA-based IEEE

802.1Qbv ports are used. Automotive exemplary applications (drowsiness detection, step motor

control, and infotainment video streams) are implemented on end-stations based on RaspberryPi

3 and Odroid C1 embedded hardware. The notebook generates the desired unscheduled network

load to challenge the time-triggered streams.

7.1.1 Step Motor Control Application

The objective of this application is to demonstrate the importance of deterministic, low-latency,

and low-jitter communication for synchronized motion control. Two Odroid-C1 (CPU: Quad-

Core Amlogic S805 Cortex A5 1.5 GHz, 1GB RAM) mini-computers (with Ubuntu 14.04) are

used as end-stations (E1 and E4) to control the step motors. Between these end-stations, there

are three RSP35 industrial switches with prototypical FPGA-based Ethernet ports (1Gbit/s)

supporting the time-triggered features of IEEE 802.1Qbv. They also support the IEEE 1588 v2

for synchronization in the nanosecond range.

After each rotation step of the right motor (E1), it sends a stream to the left motor (E4).

It is time-stamped in the ingress port of the first switch (most right) and the egress port of

the last switch (most left). For an initial test, the rotation and the frames are set to send data

periodically each 10 ms. The frames are time-stamped by hardware in the switches. These

timestamps are used to measure the latency of the received stream at E4. The clocks are

synchronized using software-based (IEEE 1588 v2) at end-stations. To demonstrate the impact

of correct timing in cyber-physical systems, the application is configured as follows: If the

latency value is less than 6.3 µs, it is accepted by the left motor and it also rotates for one step.

106

7.1 Setup

Figure 7.2: Drowsiness detector based on eye aspect ration.

This is a minimum latency we measured between the first switch ingress port and last switch

egress port when no other traffic exists. Using this tight tolerable latency, the disturbance of

motor movements can be demonstrated visually and acoustically if other traffic is sent through

the network. As soon as other traffic (from other applications) are sent through the network

and compete with the step motor streams, the step motor frames experience some delay (above

6.3 µs) which lead to misbehavior of the motors. However, when IEEE 802.1Qbv time slot

reservation and guard-band mechanisms are applied, the motors rotate correctly (synchronized

without any disturbance).

7.1.2 Drowsiness Detection Application

Using the video frames of a video camera which is connected to E2, a drowsiness detection

application is implemented on E3. It simulates a classical video streaming application in the

automotive domain. We used a prototypical implementation which is presented in [168]. It

is adapted in our setup to increase the speed of detection procedure on E3. The applications

run on a Raspberry Pi mini-computer (Pi 3 Model B) with a ARM Cortex-A53 CPU (1200

MHz) and 1GB RAM. The video streams occupy 2 Mbit/s of the available bandwidth of 100

Mbit/s between E2 and the first switch. The video streams and a considerable amount of

additional network load are used to challenge the step motor application. Two screenshots of

E3 demonstrate drowsiness application in Figure 7.2.

107

7. EXPERIMENTAL EVALUATION

Port Configurations Stream and Load

Configurations

Current Load Statistics

Figure 7.3: Network load generator Ostinato [169]. Ethernet frames including flags can be

configured based on experiment requirements.

7.1.3 Infotainment Video Streaming Application

Infotainment video applications can generate considerable network traffic load especially when

videos with high resolution are transmitted between end-stations. Such streams have usually

moderate timing requirements but require high bandwidth. The frames can be buffered without

any critical consequences. If IEEE 802.1Qbv is applied, it has to be guaranteed that there

is enough bandwidth for transmission of such video traffic to provide a minimum quality of

service guarantee (e.g. the video on the displays should be very fluent while some artifacts can

be tolerated). Such streams can destabilize the timing behavior of the critical frames when

no traffic control mechanism is available. It decreases the determinism of latency and jitter of

time-critical streams.

The developed application can start an arbitrary number of video streams with different

resolutions from E2 to E3. The maximum achieved transmission rate is, however, bounded by

the link capacity of 100 Mbit/s.

7.1.4 Network Load Generator

The presented drowsiness and infotainment applications together can generate theoretical max-

imum traffic of 100 Mbit/s which is equal to link capacity of E2 and E3. However, the TSN

switch ports provide a bandwidth of 1 Gbit/s. To achieve a higher load challenge at TSN switch

ports, a traffic generator software called Ostinato [169] is used.

108

7.1 Setup

Figure 7.4: Central user interface to control applications.

It runs on a PC (cf. Figure 7.1) armed with an Intel i7 CPU (2.67 GHz) and 4 GB RAM.

The software can be configured to generate an arbitrary network load up to 1 Gbit/s. The

stream size and VLAN tags can be modified for different experiment scenarios. An excerpt of

the software is depicted in Figure 7.3.

7.1.5 Central User Interface

A central web-based user interface is developed to start and stop the demo applications. It is

also used to set up different TSN GCL configurations (it does not have anything to do with

the modeling framework. It is only used for a basic GCL configuration). The user interface

application is executed on node E3 which is a Raspberry Pi mini-computer (Pi 3 Model B)

with an ARM Cortex-A53 CPU (1200 MHz) and 1GB RAM. The hardware provides a 100

Mbit/s Ethernet interface. Using the control application, the video streams can be turned on

and off. The drowsiness application itself is also controlled by the user interface. Regarding

109

7. EXPERIMENTAL EVALUATION

the infotainment demo, the video file streamer (on E2) and player application (on E3) are also

controlled by the interface. A screenshot of the user interface is depicted in Figure 7.4.

7.2 Initial Observations

Before starting with latency measurements, the setup is tested by starting the developed appli-

cations. In a first step, switches are configured with simple IEEE 802.1Q capability without any

time-triggered features. First, the motor application (VLAN priority 6 and size of 200 Bytes)

is started and the motors rotate synchronously as expected. Secondly, we start the webcam

stream and the drowsiness application (VLAN priority 5). Both applications work without

any disturbance. Thirdly, the infotainment application is started with multiple video streams

(also VLAN priority 5) generating a maximum load of 100 Mbit/s traffic. Similar to the last

two steps, the motor application works very well as expected. However, sometimes, a mini-

mum acoustic disturbance can be perceived by the motor rotations indicating a minimum delay

which is caused by the video transmission. Fourthly, we increase the network traffic (VLAN

priority 5) to around 120 Mbit/s where the mentioned network load generator is used. The

perceived acoustical and visual disturbance of the motor rotation is major while only 12% of

the available bandwidth (1 Gbit/s) is used. In contrast to the motor application, drowsiness

and infotainment applications are very stable when network load is increased. Artifacts in the

videos can only be observed when we increase the network load to 1 Gbit/s with frames of

priority 5 or higher.

To demonstrate how to protect critical stream with IEEE 802.1Qbv even in worst-case

network load situations, we define a roughly estimated GCL table as depicted in Table 7.1.

The first 20µs are blocked as a guard-band to avoid transmission of any streams which can

have an interference with the step motor streams. The second GCL entry shows that 60µs

are reserved to transmit the critical streams (conservatively estimated value) with the VLAN

priority 6. The rest of the cycle is reserved for all other traffic except 6 and especially, we

protect the SSH connections (priority 0) to the end-stations with the last entry.

To test the GCL configuration, disturbing traffic with the highest priority (7) is generated

which tries to occupy all available 1 Gbit/s network bandwidth. It can be observed, that the

motor application is executed without any misbehavior. For testing purposes, we modified

entry 2 to 00000011 allowing the priority 7 traffic interfere with priority 6 (step motors). As a

110

7.3 Model-based Configuration

Table 7.1: A roughly estimated GCL table for TSN ports of the switches (GCL cycle time is

10 ms which comes from the step motor application as mentioned). The transmission of critical

step motor frames is protected against all other traffic. A guard-band in the beginning avoid any

interferences.

Entry No. Time Interval (µs) Prio 0 Prio 1 Prio 2 Prio 3 Prio 4 Prio 5 Prio 6 Prio 7 Reserved for

1 20 0 0 0 0 0 0 0 0 Guard-band

2 60 0 0 0 0 0 0 1 0 Step motors

3 9900 1 1 1 1 1 1 0 1 All other traffic

4 20 1 0 0 0 0 0 0 0 SSH Connections

result, the step motors fail directly because of the too-long latencies (> 6.3 µs). By modifying

the entry to the original value (00000010), the step motors again rotate properly.

7.3 Model-based Configuration

Motivated by the introduced automotive demo applications, the developed framework is used to

model parts of the experimental setup as depicted in Figure 7.5. We only focus on time-critical

parts which are relevant for time-triggered scheduling and relevant for the next experiments.

The rest of the applications (topics and streams) are scheduled for the best effort slot (similar

to the streams between load generator and receiver) and do not require to be considered for

the time-triggered scheduling.

To simulate more complex overlapping streams and challenge the framework, we add addi-

tional time-triggered topics (6) causing further competing streams. It simulates the existence

of imaginary step motors which have to be considered for scheduling. The topics are pub-

lished by two publishers stepMotorPublisher 1 and stepMotorPublisher 2 which are sent to the

stepMotorConsumer end-station.

A GCL schedule visualizer is developed (Figure 7.6) where time-triggered slots (red), the

guard-bands (black), and helper lines (blue) are presented to verify that: (i) the number of

slots for each stream is equal to GCL hyper period divided by stream’s period and (ii) there is

no overlapped slots. Moreover, the analysis of the density of the computed schedule is possible.

The density of the schedule is defined as how compact or distributed are the time-triggered

slots positioned in the hyper period. It can have an important impact on fulfilling the deadline

requirements of event-based sporadic streams.

111

7. EXPERIMENTAL EVALUATION

Period(µs): 500

Size(Byte): 200

Period(µs): 3000

Size(Byte): 200

Period(µs): 6000

Size(Byte): 300

Period(µs): 2000

Size(Byte): 100

Period(µs): 4000

Size(Byte): 200

Period(µs): 12000

Size(Byte): 300

Figure 7.5: The network model of the experimental setup.

Period(µs): 500

Size(Byte): 100
Guard band

Period(µs): 6000

Size(Byte): 300

Period(µs): 2000

Size(Byte): 100

Period(µs): 4000

Size(Byte): 200

Period(µs): 12000

Size(Byte): 300

GCL Hyper Period = 12000000(ns)

Period(µs): 3000

Size(Byte): 200

Time-triggered Slot

Figure 7.6: The implemented schedule visualizer depicts the position of the scheduled slots. Blue

lines show that there are no overlapped slots. The space between red slots can be used to transmit

best-effort traffic.

112

7.4 IEEE 802.1Qbv: Test Cases

7.4 IEEE 802.1Qbv: Test Cases

The subject of the investigations here is periodic real-time frames in the network which will

compete with the unscheduled traffic. The switches are configured fully automated by the

framework.

Using hardware-based time stamping features of the switches (in range of few nanoseconds),

the latency of the streams are measured with high precision. Because hardware-based times-

tamps are only available in the switches and not in the end-stations, we measure the latency of

a stream as tlatency = tout − tin where tin is the arriving time of the stream in the first ingress

switch port and tout is the time when the stream leaves the last egress switch port towards the

receiver end-station. This approach is used in all experiments to avoid measuring disturbance

caused by the end-stations.

According to the specification, there is no time-triggered scheduling mechanism in IEEE

802.1Q. Hence, the expectation is that the frames with the highest priority are transmitted

faster on average which reduces their experienced average latency and jitter.

Test Case 1. Maximum and average latency of a real-time periodic stream, when applying

802.1Q, depends on the priority and network load generated by other competing frames.

The missing time-triggered control mechanism in IEEE 802.1Q is introduced in IEEE

802.1Qbv. However, if there is no synchronization between the end-stations, the sender of

a periodic stream will miss its slot with high probability and has to wait for its next slot. This

phenomenon may increase the average latency and jitter compared to the situation when all

nodes are synchronized. However, it guarantees transmission in the next slot which is an upper

bound for the worst-case latency.

Test Case 2. By applying IEEE 802.1Qbv without synchronization of the end-stations, a de-

terministic latency upper bound for a periodic time-triggered stream is guaranteed if and only

if there are no other unscheduled frames with the same priority (higher or lower priorities are

allowed).

Synchronization in TSN is described in IEEE 802.1AS-Rev which exploits Precision Time

Protocol (PTP) described in IEEE 1588-2008. The PTP functionality is implemented either

software-based or hardware-based. A hardware-based time stamping leads to synchronization

with higher precision. In spite of this advantage, it narrows down the choice of network de-

signers regarding the embedded hardware and may cause additional hardware costs. This costs

113

7. EXPERIMENTAL EVALUATION

������ ���
�� ������ ������ �������
�����
��
��
�����
�����
������
�$�"$�&)�"���" #�&�!���&$�� %����&("$���"��

�

�

��

	�

�

���

���

���

���

��
�

���

��
&�
!�
)�
�μ
s�

��&�!�)���%&$��'&�"!��)�������

Figure 7.7: Higher traffic load and priority of the unscheduled traffic leads to higher latency and

jitter for the time-triggered stream.

may be significant when network components are used in serial productions such as in the au-

tomotive domain. We intend to investigate the capabilities of the cheaper software-based PTP

implementation.

Test Case 3. IEEE 802.1Qbv with software-based PTP synchronization achieves the lowest

latency and jitter values for a periodic stream compared to Test Case 1 if and only if all other

competing streams with the same priority are scheduled and synchronized.

Note: The subject of investigation in the following experiments is the latency and jitter

behavior of a time-triggered periodic stream with a period of 500µs, a size of 200 Bytes,

and an exclusive QoS priority 6 which competes with other traffic.

7.4.1 Experiment 1: IEEE 802.1Q

In this experiment, we measure the timing impact of the priority and load of the unscheduled

traffic on the time-critical stream to validate Test Case 1 where no time-triggered control

mechanism is available. The latency is measured by increasing the unscheduled network load

114

7.4 IEEE 802.1Qbv: Test Cases

with data rates of 200, 400, 600, 800 and 1080 Mbit/s (to create network congestion) once with

lower priority 5 and once with higher priority 7.

The results as depicted in Figure 7.7 show, that increasing the network load leads to a higher

maximum and average latency values. The impact is maximum if the unscheduled traffic has

a higher priority than the critical stream and the network is congested (cf. 7, 100%). If all

unscheduled stream has a priority less than the priority of the critical stream, lower average

latencies can be achieved even if the network is congested (cf. 5, 100%). As expected, it can

be observed that the achieved worst-case and average latency of periodic streams when using

IEEE 802.1Q, depends on the shape of unscheduled network traffic.

7.4.2 Experiment 2: IEEE 802.1Qbv without synchronization

In this experiment, the gate controlling feature of 802.1Qbv is examined. The GCL computed

based on the network model is used to configure time slots defining when and how long the gates

of an egress port are open for a given QoS priority class. We use priority 5 and 7 and assign

them to the unscheduled traffic and measure the worst-case latency for our critical stream with

priority 6.

The cycle time of the GCL is set to 500µs equal to the period of the critical stream. We

reserve the first 25µs of the cycle for the transmission of the critical stream exclusively and

use the remaining slot for the unscheduled traffic. In this experiment, the end-stations are

not synchronized. Thus, they measure the current time based on their CPU clock. In this

experiment, 20000 samples of the critical stream are fired once competing with priority 5 and

once competing with priority 7 traffic. The network is congested and there is a random waiting

time between two consequent samples. The waiting time is required to assure varying sending

times for the samples causing different latencies. Independent from the random sending time,

the expectation is that the maximum measured latency has to be less than 500µs according to

the specification.

The results are presented in Figure 7.8 and show that as expected in Test Case 2, the

maximum latency is bounded by 500µs. The latencies in this experiment are higher than the

latencies from the last experiment when only IEEE 802.1Q is applied. This is because of the

missing clock synchronization in the network. The sender end-station has a different time than

the rest of the network. It cannot hit its reserved slot and misses it and has to wait for maximum

one GCL cycle. However, in contrast to IEEE 802.1Q, the latency is bounded independent from

the load and priority of the unscheduled traffic.

115

7. EXPERIMENTAL EVALUATION

� �	�� 	���
	�� ����� ��	�� �	��� �
	�� �����
�!��*�"���� #��%

�
�

�
	

���

��	

���

��	

	��

��
&�
!�
+�
�μ
s�

�"'!������*� ' ���&�!�+��500μs���+��������(�)�&�"'&��+!��$"!�,�&�"!
��&)"$���"��
����

�$�"$�&+
	
�$�"$�&+

Figure 7.8: Independent from the priority of unscheduled traffic, the maximum latency of the

time-triggered stream is guaranteed even when the network is congested.

The timing guarantee can be given if and only if there are no unscheduled streams with the

priority 6 (a priority equal to the priority of the critical stream) in the network. Unscheduled

or scheduled streams with the same priority will occupy the reserved time slot and increase the

latency. Thus, to use IEEE 802.1Qbv without clock synchronization, formal timing analysis is

required to verify if streams can fulfill their timing requirements [69].

Considering the measurements, IEEE 802.1Qbv can fulfill the requirements of latency-

sensitive applications e. g. the before-mentioned drowsiness detection application with flexible

jitter requirements.

7.4.3 Experiment 3: 802.1Qbv with PTP

In contrast to experiment 2, the end-stations are synchronized using a software-based imple-

mentation of PTP (Test Case 3). Similar to experiment 2, the assumption is that unscheduled

traffic does not have the same priority as the critical streams. To configure the network the

modeling framework is used as explained in Section 7.3. Based on the IEEE 802.1Qbv specifica-

116

7.4 IEEE 802.1Qbv: Test Cases

Stream Period = 500µs

Priority 6 Priority 0,1,2,3,4,5,7

Gurad band

13µs 51,2µs 435,8µs

Start of the exclusive slot

(stream offset)

Guard Band

Figure 7.9: The computed schedule presents the configuration of the GCL for a single period of

the time-triggered stream with priority 6.

tion, an end-station has to calculate its periodic sending time tsend to transmit stream instances

correctly. It requires information about the OperBaseTime (tbase) which is the same value for

all network nodes to calculate the starting time of the next GCL cycle, OperCycleTime (tcycle)

which is the cycle length and equal to the hyper period of all periodic streams traveling through

an egress port, and its own Offset (toffset) computed by the developed framework. It describes

the exact position within a cycle reserved for the stream.

Figure 7.9 depicts the details of one period of the time-triggered stream. It is only a small

part of the whole GCL cycle which is computed for this experiment (cf. Figure 7.6). The

periodic stream has to arrive 13µs (Guard band) after the cycle starts. An important factor

for correct timing calculation of tsend is the PTP offset values δ from slave to master. They are

available in the statistics of the software-based PTP implementation. Based on measurements,

we have δmedian = −561 nanoseconds (Figure 7.10). The median value which has the highest

expected value is selected for further calculation of the sending time. To calculate tsend , an

end-station reads its own synchronized clock time tcurrent . Using the current time, it calculates

the next sending time tsend :

α = d tcurrent − tbase

tcycle
e

tsend = (α ∗ tcycle + toffset)− δmedian

The results (Figure 7.11) show that the average latency and jitter are considerably lower in

comparison to the previous experiments according to the expectations. Even if the network is

overloaded and unscheduled streams have higher priority, IEEE 802.1Qbv scheduling mechanism

117

7. EXPERIMENTAL EVALUATION

���
������������������

�����

�����

�

����

����

����

����

�����

�����

��
��
��
��
��

��
�

����	����������������
���������
�����
������δ

Figure 7.10: Observation of precision of the software-based PTP.

guarantees the highest degree of determinism. The measured values also contain the delay

which is caused by the networking stack of the end-station. Without any conflicting traffic in

the network, the measured latency for the critical stream is ∼ 6.3µs. Values close to this have

been expected because of IEEE 802.1Qbv control mechanism (no streams can compete with

the critical stream because it has an exclusive slot). However, the results in Figure 7.11 show

that the median of the latency is around ∼ 13µs. The initial assumption is that this deviation

is caused by a non-deterministic delay in the libpcap networking library of the Linux operating

system. We plan to investigate this deviation in future work.

Although the end-stations are synchronized, in very rare cases (two extreme outlier values

in 20000 cycles), the sender misses one GCL cycle. It leads to a worst-case latency equal to the

cycle length (500µs). These latency outliers are caused by the inaccuracy of the PTP software

which does not support hardware-based time stamping and the non-deterministic networking

stack delay of the application on the end-stations. To avoid the problem of missing the period,

two solutions can be proposed. A first conservative solution is to send the streams earlier than

the planned tsend for example 48µs (Figure 7.11). It guarantees that the frames will be available

in the egress queues of the corresponding ports for transmission when the gates open. This

approach solves the problem of outliers, however, the streams’ latency in average is increased to

∼ 31µs because they arrive too early (cf. Figures 7.11 and 7.12) and must wait longer. Based on

the application logic and requirements, it can be decided if such this solution is suitable. The

second solution is to arm the end-stations with a real-time operating system and hardware-

based PTP support to have full control of the network stack and the hardware interrupts.

Following this approach, outliers can be eliminated with respective additional hardware or

other developing costs.

118

7.4 IEEE 802.1Qbv: Test Cases

	 �
�$�#$&�)�#��&����"%����' ����$�����

���&(#$�� #��
����

�

�

��

�

���

�	

	��

����

��
&�

"�
)�

�μ
s�

������&�"�)���%&$��'&�#"��"���'& ��$%�
tsend= tsend− δmedian�

	 �
�$�#$&�)�#��&����"%����' ����$�����

���&(#$�� #��
����

���

����

�����

�����

�����

�
���

��
&�

"�
)�

�"
�"

#%
��

#"
�%

�

�����##!����"

Figure 7.11: PTP-synchronized 802.1Qbv minimizes the latency values for the time-triggered

stream. There are two extreme outliers from 20000 samples caused by not deterministic network

stack of the sending end-station.

	 �
�(!&(*!/�&��* ���%)� ��+#����(���!�

���*-&("�#&��
����

��

�

���

�	

	��

����

��
*�
%�
/�
�μ
s�

�����,&!�!%����*�%�/��+*#!�()��/�
��.!$�#��(�'&%!%��&����%�!%���!$��

�tsend= tsend− (Δ=48μsΔ

	 �
�(!&(*!/�&��* ���%)� ��+#����(���!�

���*-&("�#&��
����

��	��

�����

��	��

�	���

��	��

�����

��	��

�	���

��
*�
%�
/�
�%
�%
&)
��
&%

�)
�

�����&&$����%

Figure 7.12: By increasing ∆, no stream misses its GCL slot and latency outliers remain below

32µs.

119

7. EXPERIMENTAL EVALUATION

120

Chapter 8

Conclusion and Future Work

8.1 Discussion of the Research Questions

The developed concepts in this thesis aim at answering three research questions dealing with

(i) model-based automation of configuration procedures in TSN networks, (ii) backtracing

of network design errors, and (iii) dynamic configuration at run-time. In the following, the

achieved results for each research question are summarized.

How can the complexity of TSN schedule synthesis be reduced?

To automate the steps required for time-triggered schedule synthesis, a unique, graphical

modeling approach is introduced and based on that, a framework is developed. It combines

the strengths of the object-oriented modeling approach, the logic programming paradigm, and

Satisfiability Modulo Theories. Network designers can use the developed modeling framework

to create a graphical network model including information about hardware, software, and time

requirements. The information is used by the framework to compute correct schedules and to

configure the network nodes (GCL tables of egress ports) automatically. The implementation

details of the framework and a modeling example is presented. However, it is also possible that

network design errors cause model infeasibility. Moreover, inefficient models can significantly

increase the synthesis time which decelerates application development.

How to facilitate model verification before schedule synthesis and support infeasibility anal-

ysis after synthesis?

To verify the infrastructural requirements for networking based on TSN standards, ade-

quate inference rules and queries are developed. These Prolog-based rules are used to avoid

network configurations which lead to long scheduling synthesis time. For back-tracing of infeasi-

121

8. CONCLUSION AND FUTURE WORK

ble network models, a constraint labeling approach is developed. While building the scheduling

constraints for IEEE 802.1Qbv time-triggered streams, the constraints are labeled with addi-

tional information about the streams. If the solving procedure fails, it produces an unsatisfiable

core containing conflicting constraints. The labels of these constraints assist in finding those

network fractions where the design error(s) must be corrected. The iterative developed ap-

proach is demonstrated by an exemplary complex network model consisting of four application

domains.

How to facilitate autoconfiguration of TSN networks with a focus on IEEE 802.1Qbv stan-

dard?

A data-centric-based approach is proposed to enable the TSN networks for dynamic config-

uration at run-time. The proposed approach acts as a bridge between the networking (MAC)

and middleware/application layer. The middleware layer provides dynamic networking services

(such as device discovery and the transmission of data between publishers and subscribers)

and the underlying TSN mechanisms such as IEEE 802.1Qbv guarantee the tight timing of the

application streams by the adequate configuration of the egress ports. Any new changes in

the application layer are communicated to the developed model-based synthesis approach. It

decides if re-scheduling of the network is required. In this case, the middleware waits for the

required synthesis steps until the configuration at TSN layer is successfully finished.

8.2 Limitations

The developed framework is the first step towards fully-automated configuration and verification

of TSN networks. In the following, the limitations of the framework are discussed.

� Formulation of adequate Prolog queries

In this thesis, network facts are automatically generated from the graphical model. A

set of rules and queries is developed to handle verification and configuration tasks. How-

ever, the developed rules and queries do not cover all possible networking use-cases and

scenarios. Formulation of correct Prolog queries for specific configuration and verifica-

tion tasks (which considers all available TSN standards including their details) requires

a background in logic programming. Moreover, the current implementation only allows

for generating network knowledge base from a graphically created network model, but

122

8.3 Future Work

not the other way around. The implementation of a model generation in both direc-

tions is required to increase the automation level of model capturing and modifications

at run-time.

� Software verification

The developed framework is modular and exploits existing software artifacts such as Z3

solver, Eclipse modeling framework, etc. These software modules are used for the synthesis

of the schedule of hard, real-time streams which may have safety relevance. The quality

and correctness of the synthesis results depend highly on the correct implementation of

these software modules. Verification of the software components has a direct impact on

the certification of the safety-relevant parts of the network which are configured using the

framework.

� Understanding of unsatisfiability

The presented constraint-labeling approach for back-tracing and iterative correction of the

design errors contains only the information which aids in localizing the erroneous network

segments. However, it does not produce any explanations or correcting recommendations.

There is also no guarantee of how many iterations are required to achieve satisfiability

of the network model. The number of iterations depends on the correction actions and

modifications of the model. Incorrect modifications can also cause more conflicting con-

straints. Thus, networking expertise and application understanding are required to derive

adequate modifications in the topology or application logic.

8.3 Future Work

For future work, experts and users from the field of industrial networking will evaluate the

features of the developed graphical modeling tool. Based on the results, challenges for future

improvements of the framework can be identified and investigated. In particular, alternative

visualizations of the model elements can be investigated and evaluated by adequate surveys.

Developing of configuration constraints is an ongoing topic within the TSN communities

and different scheduling, routing, and constraint solving approaches are expected to appear

soon. Considering this, one significant challenge is the long synthesis times for time-triggered

streams. This issue is tackled with an assisting tool for better network management. However,

this solution is more suitable for flexible network topologies (e. g. fewer limitations on the

123

8. CONCLUSION AND FUTURE WORK

number of available switches) such as in factories. For very compact network topologies with

a very low number of TSN switches and a high number of critical streams (e. g. in-vehicle

networks), the problem of long synthesis time remains challenging. Future work will investigate

heuristic-based approaches to mitigate this problem which has a significant impact on very

dynamic networks.

With a valid TSN configuration (e. g. correctly synthesized time-triggered schedules), the

desired behavior is guaranteed based on underlying mathematical backgrounds such as logic-

programming. However, if the network nodes have deviations in their expected behavior, the

impact on the whole system will be unknown. This challenge is not negligible concerning safety-

related applications. In future work, different approaches including Fault Tree Analysis (FTA)

will be investigated for their feasibility to tackle this problem. The results are expected to flow

into the framework to verify for example system safety for the probability of deviation in node

behavior.

8.4 Industrial Practice

The features of the developed framework are unique in the automated configuration of TSN

networks. The implemented functionality offers an initial tool which can be applied and tested

by switch manufacturers, network designers, and application developers in the automation

industry. These developed novel features could also be extended based on a prioritization of

industry requirements in both configuration and infrastructural verification directions.

In addition to the TSN use-case, the logic-based modeling approach and the constraint-

labeling methodology presented in this thesis could also be applied to many other diverse

application fields. Any system that can be described in mathematical logic (facts) and is

required to be verified against specifications (rules and queries) is a potential use-case. This

modeling tool automatically generates the required knowledge base (Prolog facts) for desired

applications and, enables an analysis of design errors.

124

Appendix A

Appendix

125

A. APPENDIX

s
w

it
c

h
(
s
w
1
,

[
s
w
1
_
p
1
,

s
w
1
_
p
2
,

s
w
1
_
p
3
,

s
w
1
_
p
4
,

s
w
1
_
p
5
,

s
w
1
_
p
6
,

s
w
1
_
p
7
,

s
w
1
_
p
8
]
)
.

s
w

it
c

h
(
s
w
2
,

[
s
w
2
_
p
1
,

s
w
2
_
p
2
,

s
w
2
_
p
3
,

s
w
2
_
p
4
,

s
w
2
_
p
5
,

s
w
2
_
p
6
,

s
w
2
_
p
7
,

s
w
2
_
p
8
]
)
.

s
w

it
c

h
(
s
w
3
,

[
s
w
3
_
p
1
,

s
w
3
_
p
2
,

s
w
3
_
p
3
,

s
w
3
_
p
4
,

s
w
3
_
p
5
,

s
w
3
_
p
6
,

s
w
3
_
p
7
,

s
w
3
_
p
8
]
)
.

d
o

m
a

in
(
a
l
e
r
t
_
d
o
m
a
i
n
)
.

e
s

t
a

t
io

n
(
d
i
s
p
l
a
y
_
n
o
d
e
,

[
e
s
3
_
p
1
]
)
.

e
s

t
a

t
io

n
(
m
o
n
i
t
o
r
i
n
g
_
n
o
d
e
,

[
e
s
4
_
p
1
]
)
.

e
s

t
a

t
io

n
(
n
e
t
w
o
r
k
_
l
o
a
d
_
g
e
n
e
r
a
t
o
r
,

[
e
s
4
_
p
1
]
)
.

is
L

in
k

e
d
(
s
w
1
_
p
1
,

s
w
2
_
p
2
,

1
0
0
0
0
0
0
0
0
0
)
.

is
L

in
k

e
d
(
s
w
2
_
p
1
,

s
w
3
_
p
1
,

1
0
0
0
0
0
0
0
0
0
)
.

is
L

in
k

e
d
(
e
s
3
_
p
1
,

s
w
3
_
p
5
,

1
0
0
0
0
0
0
0
0
0
)
.

is
L

in
k

e
d
(
e
s
4
_
p
1
,

s
w
3
_
p
7
,

1
0
0
0
0
0
0
0
0
0
)
.

is
L

in
k

e
d
(
e
s
4
_
p
1
,

s
w
1
_
p
2
,

1
0
0
0
0
0
0
0
0
0
)
.

t
o

p
ic

(
a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
s
y
s
t
e
m
_
s
t
a
t
u
s
,

p
e
r
i
o
d
i
c
,

2
0
0
0
0
0
0
0
,

8
0
0
)
.

q
o

s
L

a
te

n
c

y
(
a
l
e
r
t
_
d
o
m
a
i
n
_
s
y
s
t
e
m
_
s
t
a
t
u
s
_
q
1
,

a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
s
y
s
t
e
m
_
s
t
a
t
u
s
,

↪→
4
0
0
0
0
0
0
0
,

7
)
.

p
u

b
li

s
h

e
s
(
m
o
n
i
t
o
r
i
n
g
_
n
o
d
e
,

e
s
4
_
p
1
,

a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
s
y
s
t
e
m
_
s
t
a
t
u
s
)
.

c
o

n
s
u

m
e

s
(
d
i
s
p
l
a
y
_
n
o
d
e
,

e
s
3
_
p
1
,

a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
s
y
s
t
e
m
_
s
t
a
t
u
s
)
.

P
ro

lo
g
A
.1
:

N
K

B
b

ef
o
re

cr
it
ic
a
l
n
od
e

jo
in

s
th

e
n
et

w
o
rk

.

126

e
s

t
a

t
io

n
(
c
r
i
t
i
c
a
l
_
n
o
d
e
,

[
e
s
2
_
p
1
]
)
.

is
L

in
k

e
d
(
e
s
2
_
p
1
,

s
w
1
_
p
5
,

1
0
0
0
0
0
0
0
0
0
)
.

t
o

p
ic

(
a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
c
p
u
_
l
o
a
d
,

p
e
r
i
o
d
i
c
,

1
0
0
0
0
0
0
,

2
0
0
)
.

t
o

p
ic

(
a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
f
r
e
e
m
e
m
,

p
e
r
i
o
d
i
c
,

2
0
0
0
0
0
0
0
,

2
0
0
)
.

t
o

p
ic

(
a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
d
i
s
k
_
s
t
a
t
u
s
,

p
e
r
i
o
d
i
c
,

1
0
0
0
0
0
0
0
0
,

2
0
0
)
.

t
o

p
ic

(
a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
c
p
u
_
t
e
m
p
e
r
a
t
u
r
e
,

p
e
r
i
o
d
i
c
,

1
0
0
0
0
0
0
,

2
0
0
)
.

q
o

s
L

a
te

n
c

y
(
a
l
e
r
t
_
d
o
m
a
i
n
_
c
p
u
_
l
o
a
d
_
q
1
,

a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
c
p
u
_
l
o
a
d
,

2
0
0
0
0
0
0
,

7
)
.

q
o

s
L

a
te

n
c

y
(
a
l
e
r
t
_
d
o
m
a
i
n
_
f
r
e
e
m
e
m
_
q
1
,

a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
f
r
e
e
m
e
m
,

4
0
0
0
0
0
0
0
,

7
)
.

q
o

s
L

a
te

n
c

y
(
a
l
e
r
t
_
d
o
m
a
i
n
_
d
i
s
k
_
s
t
a
t
u
s
_
q
1
,

a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
d
i
s
k
_
s
t
a
t
u
s
,

↪→
2
0
0
0
0
0
0
0
0
,

7
)
.

q
o

s
L

a
te

n
c

y
(
a
l
e
r
t
_
d
o
m
a
i
n
_
c
p
u
_
t
e
m
p
e
r
a
t
u
r
e
_
q
1
,

a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
c
p
u
_
t
e
m
p
e
r
a
t
u
r
e

↪→
,

2
0
0
0
0
0
0
,

7
)
.

p
u

b
li

s
h

e
s
(
c
r
i
t
i
c
a
l
_
n
o
d
e
,

e
s
2
_
p
1
,

a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
c
p
u
_
l
o
a
d
)
.

p
u

b
li

s
h

e
s
(
c
r
i
t
i
c
a
l
_
n
o
d
e
,

e
s
2
_
p
1
,

a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
f
r
e
e
m
e
m
)
.

p
u

b
li

s
h

e
s
(
c
r
i
t
i
c
a
l
_
n
o
d
e
,

e
s
2
_
p
1
,

a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
d
i
s
k
_
s
t
a
t
u
s
)
.

p
u

b
li

s
h

e
s
(
c
r
i
t
i
c
a
l
_
n
o
d
e
,

e
s
2
_
p
1
,

a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
c
p
u
_
t
e
m
p
e
r
a
t
u
r
e
)
.

c
o

n
s
u

m
e

s
(
m
o
n
i
t
o
r
i
n
g
_
n
o
d
e
,

e
s
4
_
p
1
,

a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
c
p
u
_
l
o
a
d
)
.

c
o

n
s
u

m
e

s
(
m
o
n
i
t
o
r
i
n
g
_
n
o
d
e
,

e
s
4
_
p
1
,

a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
f
r
e
e
m
e
m
)
.

c
o

n
s
u

m
e

s
(
m
o
n
i
t
o
r
i
n
g
_
n
o
d
e
,

e
s
4
_
p
1
,

a
l
e
r
t
_
d
o
m
a
i
n
,

a
l
e
r
t
_
d
o
m
a
i
n
_
c
p
u
_
t
e
m
p
e
r
a
t
u
r
e
)
.

P
ro

lo
g
A
.2
:

N
K

B
a
ft

er
th

e
cr
it
ic
a
l
n
od
e

jo
in

s
th

e
n
et

w
o
rk

.

127

A. APPENDIX

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
1
,

s
e
n
s
o
r
1
,

p
e
r
i
o
d
i
c
,

2
5
0
0
0
0
,

4
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
1
,

s
e
n
s
o
r
2
,

p
e
r
i
o
d
i
c
,

1
2
5
0
0
0
,

1
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
1
,

s
e
n
s
o
r
3
,

p
e
r
i
o
d
i
c
,

5
0
0
0
0
0
,

2
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
1
,

s
e
n
s
o
r
4
,

s
p
o
r
a
d
i
c
,

1
0
0
0
0
0
0
0
,

1
5
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
1
,

s
e
n
s
o
r
5
,

p
e
r
i
o
d
i
c
,

2
0
0
0
0
0
0
,

6
0
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
1
,

s
e
n
s
o
r
6
,

p
e
r
i
o
d
i
c
,

1
2
5
0
0
0
,

4
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
1
,

a
c
t
u
a
t
o
r
1
,

p
e
r
i
o
d
i
c
,

5
0
0
0
0
0
,

2
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
1
,

a
c
t
u
a
t
o
r
2
,

p
e
r
i
o
d
i
c
,

5
0
0
0
0
0
,

1
5
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
1
,

a
c
t
u
a
t
o
r
3
,

p
e
r
i
o
d
i
c
,

5
0
0
0
0
0
,

3
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
a
m
i
n
2
,

s
e
n
s
o
r
1
,

p
e
r
i
o
d
i
c
,

2
5
0
0
0
0
,

2
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
a
m
i
n
2
,

s
e
n
s
o
r
2
,

p
e
r
i
o
d
i
c
,

5
0
0
0
0
0
,

2
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
a
m
i
n
2
,

s
e
n
s
o
r
3
,

p
e
r
i
o
d
i
c
,

5
0
0
0
0
0
,

2
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
a
m
i
n
2
,

s
e
n
s
o
r
4
,

p
e
r
i
o
d
i
c
,

2
0
0
0
0
0
0
,

5
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
a
m
i
n
2
,

s
e
n
s
o
r
5
,

p
e
r
i
o
d
i
c
,

5
0
0
0
0
0
0
,

1
2
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
a
m
i
n
2
,

s
e
n
s
o
r
6
,

p
e
r
i
o
d
i
c
,

1
0
0
0
0
0
0
0
,

5
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
a
m
i
n
2
,

s
e
n
s
o
r
7
,

p
e
r
i
o
d
i
c
,

2
0
0
0
0
0
0
0
,

1
4
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
a
m
i
n
2
,

a
c
t
u
a
t
o
r
1
,

p
e
r
i
o
d
i
c
,

2
5
0
0
0
0
,

2
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
a
m
i
n
2
,

a
c
t
u
a
t
o
r
2
,

p
e
r
i
o
d
i
c
,

5
0
0
0
0
0
,

5
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
3
,

s
e
n
s
o
r
1
,

p
e
r
i
o
d
i
c
,

2
5
0
0
0
0
,

2
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
3
,

s
e
n
s
o
r
2
,

p
e
r
i
o
d
i
c
,

5
0
0
0
0
0
,

1
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
3
,

s
e
n
s
o
r
3
,

p
e
r
i
o
d
i
c
,

1
0
0
0
0
0
0
0
,

1
5
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
3
,

a
c
t
u
a
t
o
r
1
,

p
e
r
i
o
d
i
c
,

2
5
0
0
0
0
,

2
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
3
,

a
c
t
u
a
t
o
r
2
,

p
e
r
i
o
d
i
c
,

5
0
0
0
0
0
,

4
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
3
,

a
c
t
u
a
t
o
r
3
,

p
e
r
i
o
d
i
c
,

1
0
0
0
0
0
0
0
,

2
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
4
,

s
e
n
s
o
r
1
,

p
e
r
i
o
d
i
c
,

1
2
5
0
0
0
,

4
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
4
,

s
e
n
s
o
r
2
,

p
e
r
i
o
d
i
c
,

1
0
0
0
0
0
0
,

5
0
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
4
,

s
e
n
s
o
r
3
,

p
e
r
i
o
d
i
c
,

1
0
0
0
0
0
0
0
,

5
0
0
)
.

t
o

p
ic

(
a
p
p
l
i
c
a
t
i
o
n
D
o
m
a
i
n
4
,

a
c
t
u
a
t
o
r
2
,

p
e
r
i
o
d
i
c
,

2
5
0
0
0
0
,

5
0
)
.

P
ro

lo
g
A
.3
:

M
o
d
el

co
rr

ec
ti

o
n

ex
a
m

p
le

in
cl

u
d
in

g
st

re
a
m

p
er

io
d

(n
s)

a
n
d

si
ze

(B
y
te

).

128

F
ig
u
re

A
.1
:

D
o
m

a
in

a
p
p
li
ca

ti
o
n

1
in

d
et

a
il
s.

129

A. APPENDIX

F
ig
u
re

A
.2
:

D
o
m

a
in

a
p
p
li
ca

ti
o
n

4
in

d
et

a
il
s.

130

References

[1] Hermann Kopetz, Astrit Ademaj, Petr Grillinger, and Klaus Steinham-

mer. The time-triggered ethernet (TTE) design. In Object-Oriented Real-Time

Distributed Computing, 2005. ISORC 2005. Eighth IEEE International Symposium on,

pages 22–33. IEEE, 2005. 1

[2] Time-triggered Ethernet. http://standards.sae.org/as6802/. Accessed: 22.01.2018. 1,

19

[3] Dirk Jansen and Holger Buttner. Real-time Ethernet: the EtherCAT solu-

tion. Computing and Control Engineering, 15(1):16–21, 2004. 1

[4] Open Powerlink - An Open Source Powerlink protocol stack.

http://openpowerlink.sourceforge.net/. Accessed: 22.01.2018. 1

[5] Morteza Hashemi Farzaneh, Suraj Nair, Mohammad Ali Nasseri, and Alois

Knoll. Reducing communication-related complexity in heterogeneous net-

worked medical systems considering non-functional requirements. In Advanced

Communication Technology (ICACT), 2014 16th International Conference on, pages 547–

552. IEEE, 2014. 1

[6] Audio Video Bridging. http://www.ieee802.org/. Accessed: 14.06.2016. 1

[7] IEEE Standard for Local and Metropolitan Area Networks - Virtual Bridged

Local Area Networks Amendment 12: Forwarding and Queuing Enhance-

ments for Time-Sensitive Streams. IEEE Std 802.1Qav-2009 (Amendment to IEEE

Std 802.1Q-2005), pages C1–72, Jan 2009. 2, 7

[8] IEEE Standard for Local and Metropolitan Area Networks—Virtual Bridged

Local Area Networks Amendment 14: Stream Reservation Protocol (SRP).

131

REFERENCES

IEEE Std 802.1Qat-2010 (Revision of IEEE Std 802.1Q-2005), pages 1–119, Sept 2010.

2

[9] IEEE Standard for Local and Metropolitan Area Networks - Timing and Syn-

chronization for Time-Sensitive Applications in Bridged Local Area Networks.

IEEE Std 802.1AS-2011, pages 1–292, March 2011. 2

[10] Time-Sensitive Networking. http://www.ieee802.org/. Accessed 10.04.2017. 2

[11] IEEE Standard for Local and metropolitan area networks– Timing and

Synchronization for Time-Sensitive Applications in Bridged Local Area

Networks– Corrigendum 2: Technical and Editorial Corrections. IEEE Std

802.1AS-2011/Cor 2-2015 (Corrigendum to IEEE Std 802.1AS-2011), pages 1–13, April

2016. 3

[12] Time Sensitive Networking: Deep Impact oder Mission Impossible?

https://www.pc-control.net. Accessed: 22.01.2018. 3

[13] IEEE Standard for Local and metropolitan area networks – Bridges and

Bridged Networks - Amendment 25: Enhancements for Scheduled Traffic.

IEEE Std 802.1Qbv-2015 (Amendment to IEEE Std 802.1Q-2014 as amended by IEEE

Std 802.1Qca-2015, IEEE Std 802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor 1-2015),

pages 1–57, March 2016. 3

[14] IEEE Standard for Local and metropolitan area networks – Bridges and

Bridged Networks – Amendment 26: Frame Preemption. IEEE Std 802.1Qbu-

2016 (Amendment to IEEE Std 802.1Q-2014), pages 1–52, Aug 2016. 3

[15] IEEE Standard for Local and metropolitan area networks–Bridges and

Bridged Networks–Amendment 29: Cyclic Queuing and Forwarding. IEEE

802.1Qch-2017 (Amendment to IEEE Std 802.1Q-2014 as amended by IEEE Std

802.1Qca-2015, IEEE Std 802.1Qcd(TM)-2015, IEEE Std 802.1Q-2014/Cor 1-2015,

IEEE Std 802.1Qbv-2015, IEEE Std 802.1Qbu-2016, IEEE Std 802.1Qbz-2016, and IEEE

Std 802.1Qci-2017), pages 1–30, June 2017. 3

[16] Bridges and Bridged Networks Amendment: Asynchronous Traffic Shapingl.

https://1.ieee802.org/tsn/802-1qcr/. Accessed: 22.01.2018. 4

132

REFERENCES

[17] IEEE Standard for Local and metropolitan area networks–Frame Replication

and Elimination for Reliability. IEEE Std 802.1CB-2017, pages 1–102, Oct 2017. 4

[18] IEEE Standard for Local and metropolitan area networks– Bridges and

Bridged Networks - Amendment 24: Path Control and Reservation. IEEE Std

802.1Qca-2015 (Amendment to IEEE Std 802.1Q— as amended by IEEE Std 802.1Qcd-

2015 and IEEE Std 802.1Q—/Cor 1-2015), pages 1–120, March 2016. 4

[19] Erich Bockard. Everything You Need To Know About TSN Sub-Standards.

http://blog.ebv.com. Accessed: 26.12.2017. 4

[20] IEEE Draft Standard for Local and metropolitan area networks–Media Access

Control (MAC) Bridges and Virtual Bridged Local Area Networks Amend-

ment: Stream Reservation Protocol (SRP) Enhancements and Performance

Improvements. IEEE P802.1Qcc/D2.0, October 2017, pages 1–207, Jan 2017. 4, 64

[21] Bridges and Bridged Networks Amendment: YANG Data Model.

https://1.ieee802.org/tsn/802-1qcp/. Accessed: 22.01.2018. 4

[22] Bridges and Bridged Networks Amendment: YANG Data Model. Automatic

Attachment to Provider Backbone Bridging (PBB) services. Accessed: 22.01.2018. 4

[23] IEEE Standard for Local and metropolitan area networks–Bridges and

Bridged Networks–Amendment 28: Per-Stream Filtering and Policing. IEEE

Std 802.1Qci-2017 (Amendment to IEEE Std 802.1Q-2014 as amended by IEEE Std

802.1Qca-2015, IEEE Std 802.1Qcd-2015, IEEE Std 802.1Q-2014/Cor 1-2015, IEEE Std

802.1Qbv-2015, IEEE Std 802.1Qbu-2016, and IEEE Std 802.1Qbz-2016), pages 1–65,

Sept 2017. 4

[24] IEEE Draft Time-Sensitive Networking for Fronthaul. IEEE P802.1CM/D2.0,

January 2018, pages 1–72, Jan 2018. 4

[25] Wilfried Steiner. Synthesis of static communication schedules for mixed-

criticality systems. In Object/Component/Service-Oriented Real-Time Distributed

Computing Workshops (ISORCW), 2011 14th IEEE International Symposium on, pages

11–18. IEEE, 2011. 13, 19, 34, 68

133

REFERENCES

[26] Jan Dvořák, Martin Heller, and Zdeněk Hanzálek. Makespan minimization

of Time-Triggered traffic on a TTEthernet network. In Factory Communication

Systems (WFCS), 2017 IEEE 13th International Workshop on, pages 1–10. IEEE, 2017.

13, 32

[27] L. Zhang, D. Goswami, R. Schneider, and S. Chakraborty. Task- and network-

level schedule co-synthesis of Ethernet-based time-triggered systems. In 19th

Asia and South Pacific Design Automation Conference (ASP-DAC), pages 119–124, 2014.

14, 34, 53, 54, 55, 61

[28] W. Steiner. An Evaluation of SMT-Based Schedule Synthesis for Time-

Triggered Multi-hop Networks. In 31st IEEE Real-Time Systems Symposium, pages

375–384, 2010. 14, 16, 34, 53, 55, 58, 61

[29] Silviu S. Craciunas and Ramon Serna Oliver. Combined task- and network-

level scheduling for distributed time-triggered systems. Real-Time Systems,

52(2):161–200, 2016. 14, 33

[30] Silviu S. Craciunas, Ramon Serna Oliver, Martin Chmeĺık, and Wilfried

Steiner. Scheduling Real-Time Communication in IEEE 802.1Qbv Time Sen-

sitive Networks. In Proc. of the 24th International Conference on Real-Time Networks

and Systems, RTNS ’16, pages 183–192. ACM, 2016. 14, 33, 53, 55, 90

[31] Christian Schöler, René Krenz-Bå̊ath, Ayman Murshed, and Roman Ober-

maisser. Computing optimal communication schedules for time-triggered net-

works using an SMT solver. In Industrial Embedded Systems (SIES), 2016 11th IEEE

Symposium on, pages 1–9. IEEE, 2016. 14, 33

[32] Heyuan Shi, Kun Tang, Chengbao Liu, Xiaoyu Song, Chao Hu, and Ji-

aguang Sun. Memetic-based schedule synthesis for communication on time-

triggered embedded systems. International Journal of Distributed Sensor Networks,

13(10):1550147717738167, 2017. 14, 33

[33] Francisco Manuel Pozo Pérez, Guillermo Rodriguez-Navas, Hans Hans-

son, and Wilfried Steiner. Schedule Synthesis for Next Generation Time-

Triggered Networks, 2017. 14, 33

134

REFERENCES

[34] Sune Mølgaard Laursen, Paul Pop, and Wilfried Steiner. Routing optimiza-

tion of AVB streams in TSN networks. ACM SIGBED Review, 13(4):43–48, 2016.

15, 33

[35] Fedor Smirnov, Michael Glaß, Felix Reimann, and Jürgen Teich. Op-

timizing message routing and scheduling in automotive mixed-criticality

time-triggered networks. In Design Automation Conference (DAC), 2017 54th

ACM/EDAC/IEEE, pages 1–6. IEEE, 2017. 15, 33

[36] Paul Pop, Michael Lander Raagaard, Silviu S Craciunas, and Wilfried

Steiner. Design optimisation of cyber-physical distributed systems using

IEEE time-sensitive networks. IET Cyber-Physical Systems: Theory & Applications,

1(1):86–94, 2016. 15, 33

[37] Rouhollah Mahfuzi, Amir Aminifar, Soheil Samii, Ahmed Rezine, Petru Eles,

and Zebo Peng. Stability-Aware Integrated Routing and Scheduling for Con-

trol Applications in Ethernet Networks. In Design, Automation and Test in Europe

(DATE), number EPFL-CONF-232889, 2018. 15, 32

[38] Naresh Ganesh Nayak, Frank Duerr, and Kurt Rothermel. Routing Algo-

rithms for IEEE802. 1Qbv Networks. In RTN workshop, ECRTS, 2017. 15, 33

[39] Alexander Metzner, Martin Franzle, Christian Herde, and Ingo Stierand.

Scheduling distributed real-time systems by satisfiability checking. In Embed-

ded and Real-Time Computing Systems and Applications, 2005. Proceedings. 11th IEEE

International Conference on, pages 409–415. IEEE, 2005. 15, 34

[40] Paul Pop, Petru Eles, and Zebo Peng. An improved scheduling technique for

time-triggered embedded systems. In EUROMICRO Conference, 1999. Proceedings.

25th, 1, pages 303–310. IEEE, 1999. 16, 35

[41] Paul Pop, Petru Eles, and Zebo Peng. Schedulability-driven communication

synthesis for time triggered embedded systems. Real-Time Systems, 26(3):297–

325, 2004. 16, 35

[42] Zdenek Hanzálek, Pavel Burget, and Premysl Šucha. Profinet IO IRT mes-

sage scheduling. In Real-Time Systems, 2009. ECRTS’09. 21st Euromicro Conference

on, pages 57–65. IEEE, 2009. 16, 34

135

REFERENCES

[43] Everything You Need To Know About TSN Sub-Standards.

https://www.siemens.com. Accessed: 30.12.2017. 16

[44] Haibo Zeng, Wei Zheng, Marco Di Natale, Arkadeb Ghosal, Paolo Giusto,

and Alberto Sangiovanni-Vincentelli. Scheduling the FlexRay bus using op-

timization techniques. In Proceedings of the 46th Annual Design Automation Confer-

ence, pages 874–877. ACM, 2009. 16, 34

[45] FlexRay Consortium et al. FlexRay communications system-protocol speci-

fication. Version, 2(1):198–207, 2005. 16

[46] Florian Sagstetter, Sidharta Andalam, Peter Waszecki, Martin

Lukasiewycz, Hauke Stähle, Samarjit Chakraborty, and Alois Knoll.

Schedule integration framework for time-triggered automotive architectures.

In Proceedings of the 51st Annual Design Automation Conference, pages 1–6. ACM,

2014. 16, 31, 34

[47] Florian Sagstetter. Schedule Synthesis for Time-Triggered Automotive Architectures.

PhD thesis, Universitätsbibliothek der TU München, 2016. 16, 31, 33

[48] INET Framework. https://inet.omnetpp.org/. Accessed: 02.01.2018. 17

[49] Till Steinbach, Hermand Dieumo Kenfack, Franz Korf, and Thomas C

Schmidt. An extension of the OMNeT++ INET framework for simulating

real-time ethernet with high accuracy. In Proceedings of the 4th International ICST

Conference on Simulation Tools and Techniques, pages 375–382. ICST (Institute for Com-

puter Sciences, Social-Informatics and Telecommunications Engineering), 2011. 17, 34

[50] Hyung-Taek Lim, Daniel Herrscher, and Firas Chaari. Performance compar-

ison of ieee 802.1 q and ieee 802.1 avb in an ethernet-based in-vehicle network.

In Computing Technology and Information Management (ICCM), 2012 8th International

Conference on, 1, pages 1–6. IEEE, 2012. 17, 34

[51] Giuliana Alderisi, Alfio Caltabiano, Giancarlo Vasta, Giancarlo Ianniz-

zotto, Till Steinbach, and Lucia Lo Bello. Simulative assessments of IEEE

802.1 Ethernet AVB and time-triggered Ethernet for advanced driver assis-

tance systems and in-car infotainment. In Vehicular Networking Conference (VNC),

2012 IEEE, pages 187–194. IEEE, 2012. 17, 34

136

REFERENCES

[52] Till Steinbach, Hyung-Taek Lim, Franz Korf, Thomas C Schmidt, Daniel

Herrscher, and Adam Wolisz. Tomorrow’s in-car interconnect? A competi-

tive evaluation of IEEE 802.1 AVB and Time-Triggered Ethernet (AS6802).

In Vehicular Technology Conference (VTC Fall), 2012 IEEE, pages 1–5. IEEE, 2012. 17,

34

[53] Philipp Meyer, Till Steinbach, Franz Korf, and Thomas C Schmidt. Extend-

ing IEEE 802.1 AVB with time-triggered scheduling: A simulation study of

the coexistence of synchronous and asynchronous traffic. In Vehicular Networking

Conference (VNC), 2013 IEEE, pages 47–54. IEEE, 2013. 17, 34

[54] Till Steinbach, Hyung-Taek Lim, Franz Korf, Thomas C Schmidt, Daniel

Herrscher, and Adam Wolisz. Beware of the hidden! How cross-traffic af-

fects quality assurances of competing real-time Ethernet standards for in-car

communication. In Local Computer Networks (LCN), 2015 IEEE 40th Conference on,

pages 1–9. IEEE, 2015. 17, 33

[55] Jaewoong Ko, Ju-ho Lee, Chulsun Park, and Sung-kwon Park. Research on

optimal bandwidth allocation for the scheduled traffic in IEEE 802.1 AVB.

In Vehicular Electronics and Safety (ICVES), 2015 IEEE International Conference on,

pages 31–35. IEEE, 2015. 18, 33

[56] Peter Heise, Fabien Geyer, and Roman Obermaisser. TSimNet: An Industrial

Time Sensitive Networking Simulation Framework Based on OMNeT++. In

New Technologies, Mobility and Security (NTMS), 2016 8th IFIP International Confer-

ence on, pages 1–5. IEEE, 2016. 18, 33

[57] Jonas Diemer, Daniel Thiele, and Rolf Ernst. Formal worst-case timing

analysis of Ethernet topologies with strict-priority and AVB switching. In

Industrial Embedded Systems (SIES), 2012 7th IEEE International Symposium on, pages

1–10. IEEE, 2012. 18, 34

[58] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst. System

level performance analysis - the SymTA/S approach. IEEE Proc. - Computers

and Digital Techniques, 152(2):148–166, 2005. 18

137

REFERENCES

[59] Rene Queck. Analysis of ethernet avb for automotive networks using net-

work calculus. In Vehicular Electronics and Safety (ICVES), 2012 IEEE International

Conference on, pages 61–67. IEEE, 2012. 18, 34

[60] Felix Reimann, Sebastian Graf, Fabian Streit, Michael Glaß, and Jürgen

Teich. Timing analysis of Ethernet AVB-based automotive E/E architectures.

In Emerging Technologies & Factory Automation (ETFA), 2013 IEEE 18th Conference

on, pages 1–8. IEEE, 2013. 18, 34

[61] L. Thiele, S. Chakraborty, and M. Naedele. Real-time calculus for scheduling

hard real-time systems. In Circuits and Systems, 2000. Proc.. ISCAS 2000 Geneva.

The 2000 IEEE International Symposium on, 4, pages 101–104 vol.4, 2000. 18, 21, 26

[62] Unmesh D Bordoloi, Amir Aminifar, Petru Eles, and Zebo Peng. Schedula-

bility analysis of Ethernet AVB switches. In Embedded and Real-Time Computing

Systems and Applications (RTCSA), 2014 IEEE 20th International Conference on, pages

1–10. IEEE, 2014. 18, 34

[63] Philip Axer, Daniel Thiele, Rolf Ernst, and Jonas Diemer. Exploiting shaper

context to improve performance bounds of ethernet avb networks. In Proceed-

ings of the 51st Annual Design Automation Conference, pages 1–6. ACM, 2014. 18, 34

[64] Jingyue Cao, Pieter JL Cuijpers, Reinder J Bril, and Johan J Lukkien. Tight

worst-case response-time analysis for ethernet AVB using eligible intervals. In

Factory Communication Systems (WFCS), 2016 IEEE World Conference on, pages 1–8.

IEEE, 2016. 19, 33

[65] LuXi Zhao, Huagang Xiong, Zhong Zheng, and Qiao Li. Improving worst-

case latency analysis for rate-constrained traffic in the time-triggered ethernet

network. IEEE Communications Letters, 18(11):1927–1930, 2014. 19, 34

[66] Domitian TamasSelicean, Paul Pop, and Wilfried Steiner. Timing analysis

of rate constrained traffic for the TTEthernet communication protocol. In

Real-Time Distributed Computing (ISORC), 2015 IEEE 18th International Symposium

on, pages 119–126. IEEE, 2015. 19, 21, 33

138

REFERENCES

[67] Traian Pop, Paul Pop, Petru Eles, and Zebo Peng. Analysis and optimisation

of hierarchically scheduled multiprocessor embedded systems. International

Journal of Parallel Programming, 36(1):37–67, 2008. 19, 34

[68] Sivakumar Thangamuthu, Nicola Concer, Pieter JL Cuijpers, and Johan J

Lukkien. Analysis of ethernet-switch traffic shapers for in-vehicle network-

ing applications. In Design, Automation & Test in Europe Conference & Exhibition

(DATE), 2015, pages 55–60. IEEE, 2015. 19, 33

[69] Daniel Thiele, Rolf Ernst, and Jonas Diemer. Formal worst-case timing

analysis of Ethernet TSN’s time-aware and peristaltic shapers. In Vehicular

Networking Conference (VNC), 2015 IEEE, pages 251–258. IEEE, 2015. 19, 33, 116

[70] Daniel Thiele and Rolf Ernst. Formal worst-case performance analysis of

time-sensitive ethernet with frame preemption. In Emerging Technologies and

Factory Automation (ETFA), 2016 IEEE 21st International Conference on, pages 1–9.

IEEE, 2016. 19, 33

[71] Daniel Thiele and Rolf Ernst. Formal analysis based evaluation of software

defined networking for time-sensitive ethernet. In Design, Automation & Test in

Europe Conference & Exhibition (DATE), 2016, pages 31–36. IEEE, 2016. 20, 33

[72] Fedor Smirnov, Michael Glaß, Felix Reimann, and Jürgen Teich. Formal

timing analysis of non-scheduled traffic in automotive scheduled TSN net-

works. In 2017 Design, Automation & Test in Europe Conference & Exhibition (DATE),

pages 1643–1646. IEEE, 2017. 20, 33

[73] Dorin Maxim and Ye-Qiong Song. Delay Analysis of AVB traffic in Time-

Sensitive Networks (TSN). In RTNS 2017-International Conference on Real-Time

Networks and Systems, page 10, 2017. 20, 33

[74] Giuliana Alderisi, Gaetano Patti, and Lucia Lo Bello. Introducing support

for scheduled traffic over IEEE audio video bridging networks. In Emerging

Technologies & Factory Automation (ETFA), 2013 IEEE 18th Conference on, pages 1–9.

IEEE, 2013. 20

139

REFERENCES

[75] Mohammad Ashjaei, Gaetano Patti, Moris Behnam, Thomas Nolte, Giuliana

Alderisi, and Lucia Lo Bello. Schedulability analysis of Ethernet Audio Video

Bridging networks with scheduled traffic support. Real-Time Systems, 53(4):526–

577, 2017. 20, 32

[76] Hyung-Taek Lim, Kay Weckemann, and Daniel Herrscher. Performance

Study of an In-Car Switched Ethernet Network without Prioritization. In

Nets4Cars/Nets4Trains, pages 165–175. Springer, 2011. 20, 34

[77] Jörn Migge, France RealTime-at Work, and Nicolas Navet. Insights on the

Performance and Configuration of AVB and TSN in Automotive Ethernet

Networks. 2017. 20

[78] Hauke Stähle. A Model-Based Framework for System-Wide Plug-and-Play with Flexible

Timing Verification for Automotive Systems. PhD thesis, Universitätsbibliothek der TU

München, 2016. 21, 33

[79] Jonas Diemer, Jonas Rox, and Rolf Ernst. Modeling of ethernet avb networks

for worst-case timing analysis. IFAC Proceedings Volumes, 45(2):848–853, 2012. 21,

26, 34

[80] Takero Arai, Y Aiyama, Y Maeda, M Sugi, and J Ota. Agile assembly system

by plug and produce. CIRP Annals-Manufacturing Technology, 49(1):1–4, 2000. 21

[81] Tamio Arai, Yasumichi Aiyama, Masao Sugi, and Jun Ota. Holonic assembly

system with Plug and Produce. Computers in Industry, 46(3):289–299, 2001. 21

[82] François Jammes and Harm Smit. Service-oriented paradigms in industrial

automation. IEEE Transactions on Industrial Informatics, 1(1):62–70, 2005. 21, 34

[83] Paulo Pedreiras, Luis Almeida, and Paolo Gai. The FTT-Ethernet protocol:

Merging flexibility, timeliness and efficiency. In Proceedings of the 14th Euromicro

Conference on Real-Time Systems, page 152. IEEE Computer Society, 2002. 21, 35

[84] Paulo Pedreiras, Paolo Gai, Lúıs Almeida, and Giorgio C Buttazzo. FTT-

Ethernet: A flexible real-time communication protocol that supports dynamic

QoS management on Ethernet-based systems. IEEE Transactions on industrial

informatics, 1(3):162–172, 2005. 21

140

REFERENCES

[85] G Reinhart, S Krug, S Hüttner, Z Mari, F Riedelbauch, and M Schlögel.

Automatic configuration (plug & produce) of industrial ethernet networks. In

Industry Applications (INDUSCON), 2010 9th IEEE/IAS International Conference on,

pages 1–6. IEEE, 2010. 22, 34

[86] Lars Dürkop, Henning Trsek, Jürgen Jasperneite, and Lukasz Wisniewski.

Towards autoconfiguration of industrial automation systems: A case study

using Profinet IO. In Emerging Technologies & Factory Automation (ETFA), 2012

IEEE 17th Conference on, pages 1–8. IEEE, 2012. 22, 32, 34

[87] Lars Dürkop, Jahanzaib Imtiaz, Henning Trsek, Lukasz Wisniewski, and

Jürgen Jasperneite. Using opc-ua for the autoconfiguration of real-time eth-

ernet systems. In Industrial Informatics (INDIN), 2013 11th IEEE International Con-

ference on, pages 248–253. IEEE, 2013. 22, 34

[88] Wolfgang Mahnke, Stefan-Helmut Leitner, and Matthias Damm. OPC unified

architecture. Springer Science & Business Media, 2009. 22

[89] Nadine Keddis, Gerd Kainz, Christian Buckl, and Alois Knoll. Towards

adaptable manufacturing systems. In Industrial Technology (ICIT), 2013 IEEE In-

ternational Conference on, pages 1410–1415. IEEE, 2013. 22, 34

[90] Christian Buckl, Michael Geisinger, Dhiraj Gulati, Fran J Ruiz-Bertol,

and Alois Knoll. CHROMOSOME: A run-time environment for plug & play-

capable embedded real-time systems. ACM SIGBED Review, 11(3):36–39, 2014. 22,

26, 29, 34

[91] Veit Hammerstingl and Gunther Reinhart. Unified Plug&Produce architec-

ture for automatic integration of field devices in industrial environments. In

Industrial Technology (ICIT), 2015 IEEE International Conference on, pages 1956–1963.

IEEE, 2015. 22, 33

[92] Daniel Regulin, Amelia Glaese, Stefan Feldmann, Daniel Schütz, and Bir-

git Vogel-Heuser. Enabling flexible automation system hardware: Dynamic

reconfiguration of a real-time capable field-bus. In Industrial Informatics (INDIN),

2015 IEEE 13th International Conference on, pages 1198–1205. IEEE, 2015. 22, 33

141

REFERENCES

[93] Lars Durkop, Jurgen Jasperneite, and Alexander Fay. An analysis of real-

time ethernets with regard to their automatic configuration. In IEEE World

Conference on Factory Communication Systems (WFCS, pages 1–8. IEEE, 2015. 23, 33

[94] Peter Heise, Marc Lasch, Fabien Geyer, and Roman Obermaisser. Self-

configuring real-time communication network based on OpenFlow. In Local

and Metropolitan Area Networks (LANMAN), 2016 IEEE International Symposium on,

pages 1–6. IEEE, 2016. 23, 33

[95] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Es-

teve Rothenberg, Siamak Azodolmolky, and Steve Uhlig. Software-defined

networking: A comprehensive survey. Proceedings of the IEEE, 103(1):14–76, 2015.

23

[96] Marina Gutiérrez, Wilfried Steiner, Radu Dobrin, and Sasikumar Pun-

nekkat. A configuration agent based on the time-triggered paradigm for

real-time networks. In Factory Communication Systems (WFCS), 2015 IEEE World

Conference on, pages 1–4. IEEE, 2015. 23, 32, 33

[97] Wilfried Steiner, Pablo Gutiérrez Peón, Marina Gutiérrez, Ayhan

Mehmed, Guillermo Rodriguez-Navas, Elena Lisova, and Francisco Pozo.

Next generation real-time networks based on it technologies. In Emerging Tech-

nologies and Factory Automation (ETFA), 2016 IEEE 21st International Conference on,

pages 1–8. IEEE, 2016. 23, 32, 33

[98] TwinCAT. http://www.beckhoff.de/. Accessed: 02.01.2018. 23, 33

[99] Automation Studio. https://www.br-automation.com/. Accessed: 02.01.2018. 23, 33

[100] Introducing Hirschmann Industrial HiVision. http://www.hivision.de/. Accessed:

02.01.2018. 24, 33

[101] Network Scheduler Slate XNS. https://www.tttech.com/. Accessed: 02.01.2018. 24,

31, 32

[102] Franz Huber, Bernhard Schätz, Alexander Schmidt, and Katharina Spies.

AutoFocus — A tool for distributed systems specification, pages 467–470. Springer Berlin

Heidelberg, Berlin, Heidelberg, 1996. 25, 35

142

REFERENCES

[103] Manfred Broy, Frank Dederichs, Claus Dendorfer, Max Fuchs, Thomas F

Gritzner, and Rainer Weber. The design of distributed systems: an introduction to

focus. Citeseer, 1992. 25, 35

[104] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell. Inter-

national Journal on Software Tools for Technology Transfer, 1(1):134–152, 1997. 25, 29,

35

[105] Daniel Witsch, Birgit Vogel-Heuser, Jean-Marc Faure, and Gaëlle Marsal.

Performance analysis of industrial Ethernet networks by means of timed

model-checking. IFAC Proceedings Volumes, 39(3):101–106, 2006. 25, 34

[106] Steve Limal, Stéphane Potier, Bruno Denis, and Jean-Jacques Lesage. For-

mal verification of redundant media extension of Ethernet PowerLink. In

Emerging Technologies and Factory Automation, 2007. ETFA. IEEE Conference on,

pages 1045–1052. IEEE, 2007. 25, 34

[107] Jalil Boudjadar, Kim Guldstrand Larsen, Jin Hyun Kim, and Ulrik Nyman.

Compositional schedulability analysis of an avionics system using UPPAAL.

In International Conference on Advanced Aspects of Software Engineering, 2014. 25, 34

[108] Hassan Gomaa. Designing Concurrent, Distributed, and Real-time Applica-

tions with UML. In IEEE Proc. of the 23rd International Conference on Software

Engineering, ICSE ’01, pages 737–738, 2001. 25, 35

[109] James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language

Reference Manual, The (2Nd Edition). Pearson Higher Education, 2004. 25

[110] Joseph T Buck, Soonhoi Ha, Edward A Lee, and David G Messerschmitt.

Ptolemy: A framework for simulating and prototyping heterogeneous systems.

1994. 25, 27, 35

[111] Stateflow. https://de.mathworks.com/. (Accessed: 10.04.2017). 25, 33

[112] Tim Weilkiens. Systems engineering with SysML/UML: modeling, analysis, design.

Morgan Kaufmann, 2011. 25, 33

143

REFERENCES

[113] Ermeson Andrade, Paulo Maciel, Gustavo Callou, and Bruno Nogueira. A

methodology for mapping sysml activity diagram to time petri net for re-

quirement validation of embedded real-time systems with energy constraints.

In Digital Society, 2009. ICDS’09. Third International Conference on, pages 266–271.

IEEE, 2009. 26

[114] Ernesto Wandeler and Lothar Thiele. Real-Time Calculus (RTC) Toolbox.

http://www.mpa.ethz.ch/Rtctoolbox. 26, 29, 33

[115] Henrik Schioler, Hans P Schwefel, and Martin B Hansen. Cync: a mat-

lab/simulink toolbox for network calculus. In Proceedings of the 2nd international

conference on Performance evaluation methodologies and tools, page 60. ICST (Institute

for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2007.

26, 34

[116] Morteza Hashemi Farzaneh, Stefan Feldmann, Christoph Legat, Jens

Folmer, and Birgit Vogel-Heuser. Modeling Multicore Programmable Logic

Controllers in Networked Automation Systems. In Industrial Electronics Society,

IECON 2013-39th Annual Conference of the IEEE, pages 4398–4403. IEEE, 2013. 26, 34

[117] Birgit Vogel-Heuser, Stefan Feldmann, Thomas Werner, and Christian

Diedrich. Modeling network architecture and time behavior of Distributed

Control Systems in industrial plant automation. In IECON 2011-37th Annual

Conference on IEEE Industrial Electronics Society, pages 2232–2237. IEEE, 2011. 26, 34

[118] Data-Centric Middleware - Real-Time Innovations. https://www.rti.com/. Ac-

cessed: 22.09.2017. 27, 94

[119] OpenDDS. http://opendds.org/. Accessed: 22.09.2017. 27

[120] Linh TX Phan, Jaewoo Lee, Arvind Easwaran, Vinay Ramaswamy, Sanjian

Chen, Insup Lee, and Oleg Sokolsky. CARTS: a tool for compositional anal-

ysis of real-time systems. ACM SIGBED Review, 8(1):62–63, 2011. 27, 34

[121] Insik Shin and Insup Lee. Periodic resource model for compositional real-time

guarantees. In Real-Time Systems Symposium, 2003. RTSS 2003. 24th IEEE, pages

2–13. IEEE, 2003. 27, 35

144

http://www.mpa.ethz.ch/Rtctoolbox

REFERENCES

[122] G. Gupta and E. Pontelli. A constraint-based approach for specification and

verification of real-time systems. In Proc. Real-Time Systems Symposium, pages

230–239, 1997. 27, 35

[123] Neda Saeedloei and Gopal Gupta. A Logic-based Modeling and Verification

of CPS. SIGBED Rev., 8(2):31–34, 2011. 27

[124] Neda Saeedloei and Gopal Gupta. A Methodology for Modeling and Verifi-

cation of Cyber-physical Systems Based on Logic Programming. SIGBED Rev.,

13(2):34–42, 2016. 27, 33

[125] Boon Thau Loo, Tyson Condie, Joseph M Hellerstein, Petros Maniatis, Tim-

othy Roscoe, and Ion Stoica. Implementing declarative overlays. In ACM

SIGOPS Operating Systems Review, 39, pages 75–90. ACM, 2005. 27, 34

[126] Boon Thau Loo, Joseph M Hellerstein, Ion Stoica, and Raghu Ramakrish-

nan. Declarative routing: extensible routing with declarative queries. In ACM

SIGCOMM Computer Communication Review, 35, pages 289–300. ACM, 2005. 27, 34

[127] Brent Chun, David Culler, Timothy Roscoe, Andy Bavier, Larry Peterson,

Mike Wawrzoniak, and Mic Bowman. Planetlab: an overlay testbed for broad-

coverage services. ACM SIGCOMM Computer Communication Review, 33(3):3–12,

2003. 28

[128] Boon Thau Loo, Tyson Condie, Minos Garofalakis, David E. Gay, Joseph M.

Hellerstein, Petros Maniatis, Raghu Ramakrishnan, Timothy Roscoe, and

Ion Stoica. Declarative Networking. Commun. ACM, 52(11):87–95, 2009. 28, 34

[129] Anduo Wang, Prithwish Basu, Boon Thau Loo, and Oleg Sokolsky. Declara-

tive network verification. In International Symposium on Practical Aspects of Declar-

ative Languages, pages 61–75. Springer, 2009. 28, 34

[130] Timothy L. Hinrichs, Natasha S. Gude, Martin Casado, John C. Mitchell,

and Scott Shenker. Practical Declarative Network Management. In Proc. of

the 1st ACM Workshop on Research on Enterprise Networking, WREN ’09, New York,

NY, USA, 2009. ACM. 28, 34

145

REFERENCES

[131] Nuno P Lopes, Juan A Navarro, Andrey Rybalchenko, and Atul Singh. Ap-

plying prolog to develop distributed systems. Theory and Practice of Logic Pro-

gramming, 10(4-6):691–707, 2010. 28

[132] Morteza Hashemi Farzaneh, Sina Shafaei, and Alois Knoll. Formally ver-

ifiable modeling of in-vehicle time-sensitive networks (TSN) based on logic

programming. In Vehicular Networking Conference (VNC), 2016 IEEE, pages 1–4.

IEEE, 2016. 28, 29, 31, 33, 39, 45, 46, 50, 70

[133] Morteza Hashemi Farzaneh, Stefan Kugele, and Alois Knoll. A graphical

modeling tool supporting automated schedule synthesis for time-sensitive net-

working. In 2017 22nd IEEE International Conference on Emerging Technologies and

Factory Automation (ETFA), pages 1–8, Sept 2017. 29, 31, 32, 33, 38, 39, 41, 74, 75

[134] Antonio Guerrero, V́ıctor A Villagrá, Jorge E López De Vergara, and

Julio Berrocal. Ontology-based integration of management behaviour and

information definitions using SWRL and OWL. In Ambient Networks, pages 12–

23. Springer, 2005. 29

[135] Sven Van der Meer, Brendan Jennings, Declan O’Sullivan, David Lewis, and

Nazim Agoulmine. Ontology based policy mobility for pervasive computing.

2005. 29

[136] John Keeney, David Lewis, Declan O’Sullivan, Antoine Roelens, Vincent

Wade, Aidan Boran, and Ray Richardson. Runtime semantic interoperabil-

ity for gathering ontology-based network context. In 10th IEEE/IFIP Network

Operations and Management Symposium (NOMS), pages 56–65, 2006. 29

[137] Pradeep Ray, N Parameswaran, John Strassner, et al. Ontology mapping for

the interoperability problem in network management. IEEE Journal on Selected

Areas in Communications, 23(10):2058–2068, 2005. 29

[138] Jorge E López De Vergara, Antonio Guerrero, V́ıctor A Villagrá, and

Julio Berrocal. Ontology-based network management: study cases and

lessons learned. Journal of Network and Systems Management, 17(3):234–254, 2009.

29

146

REFERENCES

[139] Arosha K Bandara, Antonis Kakas, Emil C Lupu, and Alessandra Russo.

Using argumentation logic for firewall policy specification and analysis. In

Large Scale Management of Distributed Systems, pages 185–196. Springer, 2006. 29

[140] Torsten Klie, Felix Gebhard, and Stefan Fischer. Towards automatic com-

position of network management web services. In 10th IFIP/IEEE International

Symposium on Integrated Network Management, pages 769–772, 2007. 29

[141] A Martinez, M Yannuzzi, JE Lopez de Vergara, R Serral-Gracia, and

W Ramirez. An Ontology-Based Information Extraction System for bridging

the configuration gap in hybrid SDN environments. In IFIP/IEEE International

Symposium on Integrated Network Management (IM), pages 441–449, 2015. 29, 33

[142] Morteza Hashemi Farzaneh and Alois Knoll. An ontology-based plug-and-

play approach for in-vehicle Time-Sensitive Networking (TSN). In Information

Technology, Electronics and Mobile Communication Conference (IEMCON), 2016 IEEE

7th Annual, pages 1–8. IEEE, 2016. 29, 32, 33, 76, 93

[143] M. GutiÃ©rrez, A. Ademaj, W. Steiner, R. Dobrin, and S. Punnekkat. Self-

configuration of IEEE 802.1 TSN networks. In 2017 22nd IEEE International

Conference on Emerging Technologies and Factory Automation (ETFA), pages 1–8, Sept

2017. 32

[144] Symtavision. https://auto.luxoft.com/. Accessed: 22.01.2018. 33

[145] Giuliana Alderisi, Giancarlo Iannizzotto, and Lucia Lo Bello. Towards

IEEE 802.1 Ethernet AVB for Advanced Driver Assistance Systems: a pre-

liminary assessment. Proc. of 2012 IEEE 17th International Conference on Emerging

Technologies & Factory Automation (ETFA 2012), page 4, 2012. 45, 46

[146] Martin Buechel, Jelena Frtunikj, Klaus Becker, Stephan Sommer, Chris-

tian Buckl, Michael Armbruster, Andre Marek, Andreas Zirkler, Cornel

Klein, and Alois Knoll. An automated electric vehicle prototype showing new

trends in automotive architectures. In 18th International Conference on Intelligent

Transportation Systems (ITSC), pages 1274–1279. IEEE, 2015. 50

147

REFERENCES

[147] William F. Dowling and Jean H. Gallier. Linear-time algorithms for testing

the satisfiability of propositional horn formulae. The Journal of Logic Program-

ming, 1(3):267 – 284, 1984. 50

[148] David L Poole and Alan K Mackworth. Artificial Intelligence: foundations of

computational agents. Cambridge University Press, 2010. 51

[149] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.

Pearson Higher Ed, 2016. 51

[150] Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli.

Satisfiability Modulo Theories. Handbook of satisfiability, 185:825–885, 2009. 52

[151] Bruno Dutertre and Leonardo De Moura. The yices smt solver. Tool paper at

http://yices. csl. sri. com/tool-paper. pdf, 2(2):1–2, 2006. 52

[152] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In

International conference on Tools and Algorithms for the Construction and Analysis of

Systems, pages 337–340. Springer, 2008. 52

[153] Rob Enns. NETCONF configuration protocol. 2006. 77

[154] William Stallings. SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison-Wesley

Longman Publishing Co., Inc., 1998. 77

[155] Andre Suelflow, Goerschwin Fey, Roderick Bloem, and Rolf Drechsler.

Using unsatisfiable cores to debug multiple design errors. In Proceedings of the

18th ACM Great Lakes symposium on VLSI, pages 77–82. ACM, 2008. 80

[156] Mark H Liffiton and Ammar Malik. Enumerating infeasibility: Finding mul-

tiple MUSes quickly. In International Conference on AI and OR Techniques in Cons-

triant Programming for Combinatorial Optimization Problems, pages 160–175. Springer,

2013. 80, 81, 83

[157] Mark Liffiton. MARCO. https://sun.iwu.edu/ mliffito/marco/. Accessed:

25.08.2018. 81

[158] Ofer Guthmann, Ofer Strichman, and Anna Trostanetski. Minimal unsat-

isfiable core extraction for SMT. In Formal Methods in Computer-Aided Design

(FMCAD), 2016, pages 57–64. IEEE, 2016. 81, 83

148

http://www.sciencedirect.com/science/article/pii/0743106684900141
http://www.sciencedirect.com/science/article/pii/0743106684900141

REFERENCES

[159] John W Chinneck and Erik W Dravnieks. Locating minimal infeasible con-

straint sets in linear programs. ORSA Journal on Computing, 3(2):157–168, 1991.

81

[160] HSmtMuc. https://github.com/HSmtMuc/HSmtMuc. Accessed: 25.08.2018. 81

[161] Narendra Jussien and Samir Ouis. User-friendly explanations for constraint

programming. arXiv preprint cs/0111037, 2001. 81

[162] Francisco Pozo. Synthesis of Extremely Large Time-Triggered Network Schedules. PhD

thesis, Mälardalen University, 2017. 88

[163] Stefan Kehrer. What Does TSN Configuration Look Like Today and In the

Future? https://www.belden.com/. Accessed: 08.09.2018. 93

[164] Gerardo Pardo-Castellote. Omg data-distribution service: Architectural

overview. In Proc. 23rd International Conference on Distributed Computing Systems

Workshops, pages 200–206. IEEE, 2003.

[165] Iwan Schafer and Max Felser. Topology discovery in PROFINET. In IEEE

Conference on Emerging Technologies and Factory Automation (ETFA), pages 704–707.

IEEE, 2007. 98

[166] Tatu Ylonen and Chris Lonvick. The secure shell (SSH) protocol architecture.

2006. 103

[167] Morteza Hashemi Farzaneh and Alois Knoll. Time-sensitive networking

(TSN): An experimental setup. In 2017 IEEE Vehicular Networking Conference

(VNC), pages 23–26, Nov 2017. 105

[168] Rosebrock Adrian. Facial landmarks and drowsiness detection with OpenCV

and dlib. https://www.pyimagesearch.com. Accessed: 08.09.2018. 107

[169] Ostinato Network Traffic Generator. https://ostinato.org/. Accessed: 22.01.2018.

108

149

	List of Figures
	List of Tables
	1 Introduction
	1.1 Background
	1.1.1 Time-Sensitive Networking
	1.1.2 Time-Aware Shaper IEEE 802.1Qbv

	1.2 Motivation and Research Questions
	1.3 Contribution
	1.4 Structure

	2 Literature Review
	2.1 Schedule Synthesis for Time-triggered Ethernet
	2.2 Timing Analysis of AVB/TSN Networks
	2.3 Autoconfiguration Concepts for Real-time Ethernet
	2.4 Modeling of Real-time Networks
	2.5 Discussion

	3 Approach Overview
	3.1 Framework Architecture
	3.2 Object-oriented Metamodel
	3.3 Network Knowledge Base
	3.3.1 Network Facts
	3.3.2 Network Rules
	3.3.3 Model-based Generation of the TSN Knowledge Base
	3.3.4 Exemplary Use Cases
	3.3.4.1 Network Configuration and Management
	3.3.4.2 Network Property Verification
	3.3.4.3 Time-triggered Schedule Synthesis
	3.3.4.4 Model Optimization
	3.3.4.5 Plug-and-Play and Dynamic Reconfiguration

	4 Model-based Schedule Synthesis
	4.1 Satisfiability Modulo Theories
	4.2 Constraints Overview
	4.3 Non-overlapping Constraints and Packet Fragmentation
	4.4 Infrastructural Constraints
	4.4.1 Node Capability Constraints
	4.4.2 Port Programming Memory Constraints
	4.4.3 Synchronized Actions

	4.5 Preparing the Synthesis Result for 802.1Qbv
	4.6 Time-Critical Sporadic Streams
	4.7 Implementation
	4.7.1 Framework Components
	4.7.2 Demonstration
	4.7.3 Discussion

	5 Model Correction and Optimization
	5.1 Problem Localization in Unsatisfiable Models
	5.1.1 Background: Unsatisfiable Cores
	5.1.2 Approach
	5.1.2.1 Constraint Labeling
	5.1.2.2 Iterative Correction

	5.1.3 Evaluation

	5.2 Shortening Synthesis Time
	5.2.1 Decelerating Factors
	5.2.2 Model Optimization

	6 AutoTSN: Plug&Configure Concept for TSN
	6.1 Background: Publisher-Subscriber Paradigm
	6.2 Approach Overview
	6.3 Autoconfiguration of IEEE 802.1Qbv
	6.3.1 Adequate Prolog Rule
	6.3.2 Demonstration

	6.4 Implications for Future Implementation

	7 Experimental Evaluation
	7.1 Setup
	7.1.1 Step Motor Control Application
	7.1.2 Drowsiness Detection Application
	7.1.3 Infotainment Video Streaming Application
	7.1.4 Network Load Generator
	7.1.5 Central User Interface

	7.2 Initial Observations
	7.3 Model-based Configuration
	7.4 IEEE 802.1Qbv: Test Cases
	7.4.1 Experiment 1: IEEE 802.1Q
	7.4.2 Experiment 2: IEEE 802.1Qbv without synchronization
	7.4.3 Experiment 3: 802.1Qbv with PTP

	8 Conclusion and Future Work
	8.1 Discussion of the Research Questions
	8.2 Limitations
	8.3 Future Work
	8.4 Industrial Practice

	A Appendix
	References

