
Ingenieurfakultät Bau Geo Umwelt

Lehrstuhl für Computergestützte Modellierung und Simulation

Prof. Dr.-Ing. André Borrmann

Development of an integrated data manage-

ment in civil engineering with the help of

methods of the Systems Engineering

Barth, Alexander

Masterthesis

for the Master of Science in Civil Engineering

Author: Barth, Alexander

Student number:

Advisor: Prof. Dr.-Ing. André Borrmann

Maciej Trzeciak, M.Sc.

Cornelius Preidel, M.Sc.

Date of issuance: 01. March 2018

Date of submission: 10. July 2018

Zusammenfassung

In den nächsten Jahren werden die Bauvorhaben immer komplexer und größer. Hierdurch

wächst auch die Menge der zu verarbeitenden Daten und Informationen. Gleichzeitig erhöht

sich dadurch die Komplexität. Eine sehr große Vielfalt an Informationen macht es schwierig,

verschiedene Planer zusammenzubringen. Die Qualität und Aktualität von Informationen

kann unter einem häufigen Informationsaustausch leiden.

Die Herausforderung bei dem Entwickeln eines ganzheitlichen Datenmanagement im Inge-

nieurbau ist die sinnvolle Strukturierung und Verknüpfung von Informationen und Daten.

Diese Arbeit schlägt die Kombination des Semantic Webs und der Methoden des System

Engineerings vor. Die Umsetzung dieses Ansatzes mit Hilfe eines Prototypen zeigt, dass es

Alternativen zu einem Common Data Environment gibt.

Dieser Ansatz wird in dieser Thesis zunächst theoretisch betrachtet: Wie können Projekte mit

Hilfe von Breakdown Strukturen strukturiert werden und wie können die einzelne Struktur-

knoten mit Hilfe der Idee des Semantic Webs miteinander verbunden werden. Anschließend

wird das 3D Modell einer Brücke als Fallbeispiel verwendet. Hiermit wird die Umsetzbarkeit

des theoretische Ansatz überprüft und evaluiert.

Dieses Fallbeispiel zeigt, dass es möglich ist, ein Projekt mittels Breakdown Strukturen zu

analysieren und nach verschiedenen Gesichtpunkten zu gruppieren. Des Weiteren wird an

Hand von diesem Beispiel gezeigt, wie verschiedene Strukturknoten miteinander verbunden

werden können. Bei kleinen Projekten kann dieser Ansatz die Zusammenarbeit und den

Datenaustausch fördern. Bei größeren und komplexen Projekten muss jedoch viel Zeit für

die Strukturierung und das Verknüpfen von Informationen und die damit verbundenen Kosten

investiert werden.

Abstract

Over the next few years, construction projects will increasingly become more complex and

large. This also increases the amount of data and information to be processed. At the same

time, this increases complexity. A very wide variety of information makes it difficult to bring

together different planners. The quality and timeliness of information can suffer from a fre-

quent exchange of information.

The challenge in developing integrated data management in civil engineering is the sensible

structuring and linking of information and data. This thesis proposes the combination of the

Semantic Web and the methods of system engineering. The implementation of this approach

with the help of a prototype shows that there are alternatives to a common data environment.

This approach is initially considered theoretically in this thesis: How can projects be struc-

tured with the help of Breakdown Structures and how can the individual structure nodes be

linked together with the help of the idea of the Semantic Web. The 3D model of a bridge is

then used as a case study. This is used to check and evaluate the realizability of the theoret-

ical approach.

This case study shows that it is possible to analyze a project using Breakdown Structures

and group them according to different aspects. This example also shows how different struc-

ture nodes can be connected to each other. For small projects, this approach can promote

cooperation and data exchange. For larger and complex projects, however, a lot of time must

be invested in structuring and linking information and the associated costs.

IV

Contents

1 Introduction and Motivation 1

1.1 Motivation . 1

1.2 Goal of the thesis . 1

1.3 Structure of the thesis . 2

2 Digital Methods in the building environment 3

2.1 BIM . 3

2.2 BIM for infrastructure . 3

2.3 IFC . 5

2.4 IFC Model View Definition . 6

2.5 OKSTRA . 7

3 Technical Background 8

3.1 Semantic Web . 8

3.1.1 Ontologies . 8

3.1.2 Linked Data . 11

3.1.3 Sparql . 13

3.2 Classification systems . 14

3.2.1 DIN 32705 . 14

3.2.2 ISO 12006-2:2015 . 16

3.2.3 OmniClass . 16

3.2.4 Uniclass . 18

3.3 Systems Engineering . 19

3.3.1 Definition . 19

3.3.2 Breakdown Structure . 21

4 State of the art 23

4.1 BIM . 23

4.2 Semantic Web . 26

4.2.1 Progression of the web . 26

4.2.2 Database services . 26

4.2.3 Using SPARQL for BIM . 28

4.2.4 PANDORA . 29

5 Approach & Methodology 30

5.1 Introduction . 30

5.2 Approach . 31

6 Case Study & Evaluation 35

6.1 Case Study . 35

6.2 Evaluation . 44

7 Development of a software prototype 46

7.1 Introduction . 46

7.2 Approach to the implementation of the prototype 46

7.3 Functionality . 47

7.4 Programming language and libraries . 51

7.4.1 JavaScript . 51

7.4.2 TypeScript . 51

7.4.3 Node.js . 52

7.4.4 EXPRESS . 52

7.4.5 Docker . 52

7.5 Building the Prototype . 53

7.5.1 Front-end . 53

7.5.2 RESTful API . 55

7.6 Deploy and Hosting . 57

8 Summary, Conclusion and Outlook 61

8.1 Summary . 61

8.2 Conclusion . 64

8.3 Outlook . 65

A Disk 66

VI

List of Figures

2.1 Schematic representation of the step-by-step plan [1] 4

2.2 Example for different Model View Definitions [2] 7

3.1 RDF triple [3] . 10

3.2 OWL sub languages [3] . 10

3.3 ifcOWL Ontologie [4] . 13

3.4 Table 11 – Construction Entities by Function - OmniClass [5] 18

3.5 Coordinated processing of subtasks in every phase of life [6] 20

3.6 WBS for an automobile project [7] . 22

4.1 Data model IFC-Alignment [8] . 24

4.2 Supported file formats [9] . 24

4.3 Timeline of the Internet [10] . 26

4.4 Amazon Neptun knowledge diagram [11] . 27

6.1 Bridge Model . 35

6.2 SBS - Bridge . 36

6.3 WBS - Electricians . 37

6.4 WBS - Shell builder . 38

6.5 SBS - Assigned Objects . 40

6.6 Assigned Objects: WBS - Shell builder . 40

6.7 Assigned Objects: WBS - Electrican . 41

6.8 Properties: WBS - Electrican . 41

6.9 Connection List: SBS - WBS Shell Builder 42

6.10 Matrix: SBS - WBS Electricans . 43

6.11 Properties: SBS . 44

7.1 Connect Structure Nodes . 48

7.2 Properties of a Structure Nodes . 49

7.3 Assign of Building Elements to a Structure Nodes 50

VII

Listings

3.1 Example Query [13] . 14

4.1 Example Query [14] . 28

4.2 Example Query [15] . 28

6.1 JSON: SBS - Solid Bridge . 38

7.1 Hello World API . 52

7.2 Example docker file . 53

7.3 Router File for Structure Connecitons . 55

7.4 Controller File for Structure Connecitons . 56

7.5 Controller File for BimPlus Queries . 57

7.6 Bash Command to execute a docker container 58

7.7 Docker file RESTful API server . 58

7.8 Bash Command to execute a mysql and redis docker container 58

7.9 Nginx configuration . 59

7.10 Docker file RESTful API server . 59

VIII

List of abbreviations

KIF Knowledge Interchange Format

RDF Resource Description Framework

OWL Web Ontology Language

URI Universal Resource Identifier

W3C World Wide Web Consortium

IFC Industry Foundation Classes

CAD Computer Aided Design

BIM Building Information Modeling

BMVI Federal Ministry of Transport and Digital Infrastructure

OKSTRA Object catalogue for road and traffic engineering

SBS System Breakdown Structure

PBS Product Breakdown Structure

WBS Work Breakdown Structure

OBS Organization Breakdown Structure

1

Chapter 1

Introduction and Motivation

1.1 Motivation

According to various studies, digital change is one of the major challenges facing the con-

struction industry at international and national level [16]. An essential background for this

change is that the complexity of construction tasks is also growing continuously. In partic-

ular the production and construction sectors, which are important for the industry, have an

increased potential to benefit from such digitization.

With the increasing complexity of a construction project the amount of data and information

that needs to be processed is also growing. At the same time this increases the complexity. A

large variety of information makes it difficult to bring together different planners. The quality

and timeliness of information can suffer from a frequent exchange of information. This can

be for example because information is no longer up-to-date or is lost.

For this reason, a way must be found to store the amount of data and information that has to

be processed in a clear and structured manner. Not only the storage is of great interest, but

also the exchange of information is important. In order not to lose the quality and timeliness

of data in a frequent exchange of information, a way must be found to solve this problem.

1.2 Goal of the thesis

In this work a basic structure for cross-domain cooperation is being developed using the exam-

ple of an infrastructure structure. The exchange and linking of information from individual

points of view will be examined in more detail using the example of a bridge construction.

1.3. Structure of the thesis 2

A prototype based on the RESTful API from Allplan Bimplus, which is a digital platform

for collaboration in construction projects, is to be developed in order to demonstrate to

demonstrate the realizability of this thesis.

1.3 Structure of the thesis

This Masters thesis is structured as follows: First, chapter 2 deals with the digital meth-

ods of the construction sector. This includes the definition of BIM and then how BIM is

implemented in infrastructure projects. The terms IFC and Model View Definition are also

briefly described. The standard OKSTRA, which is related to linked data and infrastructure

projects, is also presented. The next chapter (chapter 3) describes the technical basis for

the implementation of this Masters thesis. The corresponding topics are Semantic Web and

System Engineering. Since this thesis deals with the structuring of data, this chapter also

describes how classification is defined in the German standard and which other standards are

available for this purpose. The actual state of the art concerning the used methods will be

described in the chapter 4. The chapter 5 contains a solution for the optimal structuring of

data in infrastructure projects. In chapter 6 a case study on the solution approach is carried

out and evaluated. The 7th chapter (chapter 7) finally explains the implementation of a

prototype. The individual components that are necessary for the conversion are described

here. The Masters thesis is completed with chapter 8 (chapter 8). This should once again

reflect the complete thesis. In addition, the Outlook section will describe how the prototype

can be expanded.

3

Chapter 2

Digital Methods in the building

environment

2.1 BIM

The basic idea concerning Building Information Modeling (BIM) exists since 1970. It is a

method of mapping buildings with all their relevant information using a consistent, digital

building model over their entire life cycle. These include not only physical but also functional

properties. If all these properties are combined in a database, each component can be precisely

identified and described with the stored information during the entire life cycle of a building.

Furthermore, this information database helps to make decisions regarding the building [17].

2.2 BIM for infrastructure

On behalf of the Federal Ministry of Transport and Digital Infrastructure (BMVI) the planen-

bauen 4.0 creates a step-by-step plan. This should define a common understanding of the

BIM method. Cooperation with BIM is a prerequisite, that the data exchanged between

the different parties is compatible. A corresponding standard already exists for building

construction. It is called Industry Foundation Classes (IFC) (see also section 2.3).

In infrastructure projects the national Object catalogue for road and traffic engineering

(OKSTRA) is currently used for a uniform data exchange. In the following section the

concept of OKSTRA will be descriped more precisely. To ensure the comprehensive applica-

bility of the international standard IFC also in the infrastructure sector, the object catalogue

is currently being expanded with support from the BMVI. Since mid-2017 more and more

transport infrastructure projects have to fulfill the BIM requirements of performance level 1.

2.2. BIM for infrastructure 4

Performance level 1 includes the following minimum requirements:

- The principal must specify in the Auftraggeber-Informations-Anforderungen (AIA) ex-

actly which data he needs and when

- All services to be provided are to be delivered in digital form on the basis of 3D model-

based work

- The data supplied by the contractors must be checked for compliance with the AIA

- Manufacturer-neutral data formats must be required in the tender to ensure data ex-

change

- The required hardware and software must be generally available

- BIM must be included in the contract as an applicable planning instrument

The step-by-step plan, which was mentioned before, provides for various phases. The indi-

vidual phases of the step-by-step plan can be seen in Figure 2.1.

The first phase is described as a preparatory phase and will last from 2015 to 2017. The

second one is descriped as extended pilot phase and will last from 2017 to 2020. In this phase,

the number of pilot projects is to be significantly increased in order to collect experience

across all planning and construction phases. Numerous guidelines, checklists and samples

will also be developed, which can be used by all projects in the future.

The last phase is described as BIM Level I for new projects to be planned and is to apply

as of 2020. As soon as the basic conditions are met, BIM with a performance level is to be

regularly applied in all transport infrastructure construction projects to be planned from the

end of 2020 according to the step-by-step plan [1].

5Grundlagen

len Methoden. Die Auftraggeber müssen in der Lage sein,
die BIM-Anforderungen bei der Vergabe der Planungs- und
Bauleistungen zu definieren. Hier ist es notwendig, dass die
öffentlichen Auftraggeber rechtzeitig das nötige Know-
how erwerben. Entsprechendes gilt für die Auftragnehmer.

Hinsichtlich der rechtlichen Rahmenbedingungen wird
kein zwingender Anpassungsbedarf gesehen, um das hier
vorgestellte Leistungsniveau 1 umsetzen zu können. Auch
jetzt können Projekte mit BIM – ohne Rechtsänderungen –
bereits realisiert werden. Allerdings sollten die rechtlichen
Rahmenbedingungen daraufhin überprüft werden, inwie-
weit Änderungen für eine erleichterte Anwendung von
BIM sinnvoll sind. Es sollten zudem Handreichungen für
die Marktteilnehmer entwickelt werden, worauf z. B. bei
der Vertragsgestaltung oder bei einer BIM-Ausschreibung
zu achten ist.

Zusammenfassend lässt sich feststellen, dass vor einer brei-
teren Anwendung von BIM von allen Beteiligten noch zahl-
reiche Aufgaben erledigt werden müssen. Auch sind finan-
zielle Ressourcen notwendig, um die nötigen Kenntnisse zu
erwerben und die technischen Voraussetzungen zu schaf-
fen. Darüber hinaus müssen die neuen Planungs- und Bau-
prozesse in Pilotprojekten erprobt und die gewonnenen Er-
kenntnisse gestreut werden.

2.3 Struktur des Stufenplans

Der Stufenplan ist ein Modell, das den Weg zur Anwendung
des digitalen Planens, Bauens und Betreibens transparent
beschreibt und Auftraggeber und Auftragnehmer auffor-
dert, diesen Weg zu beschreiten. Ziel des Stufenplans ist
die schrittweise Einführung von BIM im Zuständigkeits-
bereich des BMVI. Er gilt damit in erster Linie für den In-
frastrukturbau und den infrastrukturbezogenen Hochbau,
kann aber auch in anderen Bereichen als Modell genutzt
werden. Das BMVI als Federführer für die Digitalisierung in
der Bundesregierung und größter Bauinvestor des Bundes
wird mit gutem Beispiel vorangehen und den Stufenplan
umsetzen.

Die Einführung von BIM wird umgesetzt über eine zeitbe-
zogene, schrittweise ansteigende Anwendung des in Kapi-
tel 4 definierten Leistungsniveaus 1 für BIM in konkreten
Projekten. Außerdem werden die zu dessen Realisierung

notwendigen vorbereitenden Maßnahmen für alle Betei-
ligten beschrieben und festgelegt, ab wann und in welchem
Umfang es Anwendung finden soll. Allen Beteiligten wird
genügend Zeit eingeräumt, sich auf die neue Methode vor-
zubereiten. Das heißt:

 � Ab Mitte 2017 wird im Rahmen einer erweiterten Pi-
lotphase eine systematisch ansteigende Zahl von Ver-
kehrsinfrastrukturprojekten mit den BIM-Anforderun-
gen des Leistungsniveaus 1 durchgeführt.

 � Nachdem die grundlegenden Voraussetzungen vorlie-
gen, soll ab Ende 2020 BIM mit Leistungsniveau 1 regel-
mäßig im gesamten Verkehrsinfrastrukturbau bei neu
zu planenden Projekten Anwendung finden.

Die erste Stufe erstreckt sich damit von heute bis ins Jahr
2017 und beschreibt die Vorbereitungsphase, die z. B. der
Durchführung von Pilotprojekten und Standardisierungs-
maßnahmen, der Aus- und Weiterbildung, der Klärung
rechtlicher Fragen und der Entwicklung von BIM-Leitfä-
den für effektive Vorgehensweisen (Prozesse) beim Planen,
Bauen und Betreiben mit BIM gewidmet ist. Im Jahr 2017
beginnt die zweite Stufe mit dem systematischen Hochlauf
des Leistungsniveaus 1 in einer größeren Zahl von Pilot-
projekten. Ab Ende 2020 beginnt mit der dritten Stufe die
breite Implementierung des Leistungsniveaus 1.

Ein weiter fortgeschrittenes Niveau von BIM wird im Kapi-
tel 6 als Ausblick dargestellt, da hier konkrete Festlegungen
gegenwärtig nicht realistisch sind.

Daraus ergibt sich für den Stufenplan folgendes Bild:

Abbildung 1: Schematische Darstellung des Stufenplans
(eigene Darstellung)

Im
plem

entierungsgrad

2015 – 2017

Vorbereitungs
phase

2017 – 2020

Erweiterte
Pilotphase
(Niveau I)

ab 2020

BIM Niveau I
für neu zu
planende
Projekte

Figure 2.1: Schematic representation of the step-by-step plan [1]

2.3. IFC 5

In October 2016 the BMVI commissioned the BIM4INFRA 2020 working group to create the

conditions for the implementation of the step-by-step plan. The most important prerequisites

for this are [18]:

- The development of an achievable performance level for the introduction of BIM

- Monitoring of the pilot projects and expansion of the pilot phase

- Investigation of legal issues and preparation of recommendations for future contracts,

- Provision of relevant guidelines and samples for the award and processing of BIM ser-

vices, in particular BIM applications

- Identification of requirements for uniform data structures for the infrastructure sector,

development of a uniform database concept and BIM library

- Information and Public Relations

In January 2017 the BMVI published a first progress report on the gradual plan. It describes

that four pilot projects on BIM have been funded since 2015. Two of these projects are

railway projects: a tunnel in Rastatt and a bridge in Filstal. The other two projects are road

construction projects: a bridge on Lake Petersdorf and one in the Auenbach valley.

Since 2016, one year after its introduction, two further road construction projects have been

supported. These pilot projects help to describe, analyse and evaluate structures, processes

and interactions of project participants in the application of BIM.

The conclusion of the progress report is that important areas of BIM in infrastructure con-

struction can already be implemented very well. To further develop standardization in the

area of infrastructure construction, the BMVI supports a German participation in the devel-

opment of the IFC for road, rail and bridge. The next version of IFC (IFC 5) should contain

the Infrastructure area [19].

2.3 IFC

IFC is a acronym for Industry Foundation Classes. It represents an open standard that makes

it possible to digitally describe building models. This standard is published by buildingS-

MART International. It became necessary because more and more data had to be exchanged

between different systems. In the beginning any changes were entered into the system man-

ually. As the buildings and the time pressure increased over time, the organization designed

this standard.

2.4. IFC Model View Definition 6

Today, numerous systems support this standard, which has greatly facilitated the exchange

of building data. The standard is used in various areas, such as CAD systems, static and

energy calculations or quantity and cost calculations.

In contrast to classic CAD programs, the IFC file contains information about the building in

terms of walls, windows or rooms with their respective properties. Classic CAD programs only

export lines, points or blocks without their explicit properties. IFC has been an international

standard under ISO 16739 since Release IFC4.

With IFC, a distinction must be made between the IFC file and the IFC data schema. The

IFC file is used as a container for the transfer in step format. The IFC data schema defines

the specifications in the EXPRESS format [20].

The IFC data schema is modelled in the EXPRESS language. EXPRESS is defined in ISO

10303. It displays the information using file types, entities, rules and relationships, and other

objects. Thus it is possible to describe an IFC data schema object-oriented. In the further

development of the IFC standard, it is particularly important to add and update further

objects. Since 2014 the IFC standard version 4 is available.

2.4 IFC Model View Definition

A IFC Model View Definition, also called Model View Definition, is a subset of an IFC

schema. It is required to meet one or more exchange requirements in the construction in-

dustry. BuildingSMART uses the Information Delivery Manual (ISO 29481) to define such

exchange requirements [21]. The Information Delivery Manual contains the information,

which each project participant in each part of the development process should provide [22].

An official Model View Definition was published by buildingSMART in the mvdXML format.

With a new version of the mvdXML format it is also possible to validate the data content of

an IFC file using an mvdXML file. In such an mvdXML file different exchange requirements

are written down [23].

The manual creation of such exchange requirements is complex and complicated. For this

reason there are a number of MVDs specified as legal subsets of the IFC scheme according

to general use cases or purposes. Furthermore there are only a few software solutions for

writing such a MVD File. Figure 2.2 shows an example of different Model View Definitions.

With the first Model View Definition shown in the figure, the user only gets a coordinate view

of the structure. The second Model View Definition is particularly interesting for structural

engineers, since a IFC Structual Analysis View is generated here. The last Model View

Definition is for the energy analysis of a building. Here the The IFC Thermal Analysis View

is being displayed.

2.5. OKSTRA 7

Chapter 2. USE AND EXCHANGE OF INFORMATION IN BIM-BASED PROJECTS

46

(MVD) to support requirements, (2) Information Delivery Manual (IDM) to support
processes, (3) buildingSMART Data Dictionaries (bSDD) to support the mapping of
terms, and (4) BIM Collaboration Format (BCF) to support the coordination and
management. These standards are considered the core components of the
buildingSMART technology. Moreover, there are other open standards such as
Construction Operations Building Information Exchange (COBie) and Product Data
Templates (PDT) that are being adopted in countries like the United States and the United
Kingdom. These standards are described below.

2.4.3. Model View Definitions (MVD)

The purpose of Model View Definitions49 is to facilitate data exchange through the IFC
standard (including geometry and non-geometry data) by generating a view of the data
which is specific to the needs of those who will use the information. Carrying out the
specification of these requirements manually is complex and cumbersome. To facilitate
this task, there is a set of MVDs specified as legal subsets of the IFC schema according
to general use cases or purposes. For example, in an MVD addressed to meet the needs
for visualization, the geometry of the BIM model is exported as “Boundary
Representations” (BRep)50, while in an MVD addressed to meet the needs for
coordination (e.g., clash detection, location of components), part of the geometry is
parameterized. Some examples are illustrated in Figure 2.16.

Figure 2.16: Example of different model view definitions (Liebich, 2014).

In recent years, buildingSMART has developed a set of MVDs for different versions of
the IFC standard which are known as official buildingSMART model view definitions.
Among them, the “Coordination View” was the first MVD implemented to facilitate the
coordination among the disciplines involved in a building project: architectural, structural
and mechanical. This coordination is mainly done at geometry level. A new version was

49 The concept of MVD was originally introduced by Hietanen in 2006 to define the scope and details of
IFC implementations.
50 Boundary Representation (BRep) is a method used in solid modelling for representing the shapes using
the limits. Namely, information about solids is represented through basic topology elements (faces, edges,
and vertices). This representation is usually compared with the constructive solid geometry (CSG)
representation, which is based on the representation of solids using primitives and through Boolean
operations between them.

Figure 2.2: Example for different Model View Definitions [2]

2.5 OKSTRA

OKSTRA stands for Objektkatalog für das Straßen- und Verkehrswesen and is a collection of

objects from the field of road and transport. This object catalog was created in order to have

a uniform understanding of the objects contained in the corresponding departments. The

Federal Highway Research Institute is in charge of this project. A component in the object

catalog is formally described with its attributes and relations in a data schema. This object

catalogue is an open standard and is continuously developed further [24].

8

Chapter 3

Technical Background

3.1 Semantic Web

Besides the classic Web of Documents, the World Wide Web Consortium (W3C) helps to

set up a new standard to support a Web of Data, as you find it in databases, for example.

The goal of Web of Data is to exchange data across the local network. The W3C is an

international community that develops open standards to ensure a continuous development

of the web. It was founded in 1994 by Tim Berners-Lee at the MIT Laboratory for Computer

Science in Cambridge.

The term Semantic Web refers to the vision of the W3C from the web of linked data. This

technology makes it possible for users to create data storage on the web and to write rules for

the handling of your data. Linked data is supported by technologies such as RDF, SPARQL,

OWL and SKOS [25]. By linking data it is possible to prove their origin clearly and to check

the credibility of data.

3.1.1 Ontologies

The term ontology is often used nowadays; especially in connection with Semantic Web.

Originally it comes from philosophy and means teaching of being. A clear definition does not

exist in philosophy since many different philosophers use this term. They define the ontology

in a different way, depending on the point of view. Some philosophical problems can be

considered problems of ontology.

The purpose of ontology in philosophy is to represent the world with its objects and connec-

tions between them [3].

3.1. Semantic Web 9

In the Stanford Encyclopedia of Philosophy four parts of the great discipline of ontology were

finished [26]:

- The study of ontological commitment, i.e. what we or others strive for

- The study of what there is

- The study of the most general characteristics of what exists and how the things that

exist are metaphysically connected in the most general way

- The study of meta ontology, that is, to say what task it is that the discipline of ontology

should aim, if anything, to understand how the questions it wants to answer should be

understood and with what methodology they can be answered

In computer science, ontology is understood as an analogy or metaphor. An ontology is often

used to formalize and utilize a meaning of information [27]. Tim Berners-Lee has summarized

the following requirements that can apply to the description languages of ontology [28]. These

languages must:

- have a relatively compact syntax

- have a well-defined syntax so that you can say exactly what is displayed

- have enough expressiveness to represent human knowledge

- have an efficient, powerful and understandable argumentation mechanism

- can be used to build up large knowledge bases

In connection with Semantic Web, ontologies should enable and improve communication be-

tween different applications, but also between people. Ontologies are encoded using different

languages. The most common languages are: Knowledge Interchange Format (KIF), Resource

Description Framework (RDF) and Web Ontology Language (OWL). In the following both

chapters only the current languages are being defined that are used in the Semantic Web area

and have become a standard.

RDF

RDF stands for Resource Description Framework and is a standard model for data exchange

on the Web. It was introduced by the W3C and contains functions that, among other things,

facilitate the merging of data. This is possible even if the existing schemes are different. It also

supports the possibility of updating schemas without having to change all data consumers.

3.1. Semantic Web 10

It extends the connection structure of the web by an Universal Resource Identifier (URI) to

name the relationship between two elements and additionally their ends. The combination of

two elements and their combination is called RDF triple. Each triple has a subject, predicate

and object. An example represents Figure 3.1. Both structured and unstructured data can

be linked via these connections.

All connections combined result in a directed, labeled graph. This graphical representa-

tion is the simplest mental model for RDF and is often used in easy-to-understand visual

explanations [29].

Chapter 3 Ontology-based modeling 68

Resource Description Framework

The Resource Description Framework (RDF) is a standard model for the data inter-
change on the Web proposed by World Wide Web Consortium (W3C). It provides a
standard form for representing metadata in the XML format. The main notion in the RDF
description model is a triple or a statement. With triples it can provide a description
model and syntax for representing different resources. Each triple consists of three ele-
ments interrelated with each other: Subject, Predicate and Object. The statement “Se-

mantic Web is published by Springer” is represented in RDF in Figure 3-5.

Figure 3-5: RDF triple

The RDF data model is an example of the classic conceptual model presented in the
previous sections. The main modeling concepts of RDF are:

� Each resource has a unique identifier - URI (Universal Resource Identifier).
� Property (or predicate) can be seen as a special kind of resource describing

relations between resources. They are also identified by URI.
� Statement (or triple) asserts the properties of resources.
� Each statement consists of a resource (subject), a property (predicate) and a

value (object).
� Values can be resources or literals.

Nowadays there are different serialization formats for the RDF. The most widely used is
an RDF/XML format, which also was defined as a main format for the RDF. In addition
there are also two not-XML serializations that were designed to be easier written and
understand by human such as Notation316 and Turtle17.

16 http://www.w3.org/TeamSubmission/n3/ Retrieved 2013-07-01
17 http://www.w3.org/TeamSubmission/turtle/ Retrieved 2013-07-01

Subject Predicate Object

Figure 3.1: RDF triple [3]

Web Ontology Language

The field of application of RDF is quite limited, since it only allows the representation of

ontological knowledge. With this language it is possible to express subclasses and property

hierarchies with their domain and area definitions. However, there is no way to express

specific properties of classes such as symmetry or Boolean combinations.

The Web Ontology Language OWL is an extension of RDF. It is a standard of the W3C and

is currently (as of 2017) the most widely used ontology language. It was published in 2004 by

the W3C. OWL extends the RDF by defining additional vocabulary to describe properties

and classes. It contains some logical primitives such as universal or existential quantifiers

and ways to limit properties [3].

OWL has three sub-languages with different expressiveness. Each individual language fulfils

different requirements. Figure 3.2 shows the different levels.

Chapter 3 Ontology-based modeling 71

OWL and RDF look very similar, but OWL is a stronger language with greater machine
interpretability than RDF/S. OWL is built on top of RDF/S, but it comes with a larger
vocabulary and stronger syntax than RDF/S.

OWL has three sublanguages with different level of expressiveness and each of them is
specified to fulfill a various set of requirements (Figure 3-7).

Figure 3-7: OWL sublanguages

OWL Full - is the entire language and it uses all the OWL primitives. It is fully upward-
compatible with RDF, therefore every legal RDF document is also an OWL Full docu-
ment. OWL Full was designed to preserve compatibility with RDF Schema. However,
the language is so powerful, that it is undecidable and, hence, there is no reasoning
software, that can be able to support every feature of OWL Full.

OWL DL - (stands for OWL Description Logic) is a sublanguage of OWL Full. It should be
used when the maximum expressiveness without losing computational completeness
and decidability is needed. The disadvantage is that the full compatibility with RDF is
lost.

OWL Lite - restricts OWL DL to a subset of the language constructors. It supports a
classification hierarchy and simple constraint features, but excludes arbitrary cardinality,
disjointness statements and enumerated classes. The advantage of OWL Lite is that it is
easy to implement, but we have to pay for this by its limited expressivity. It is the sim-
plest language from the OWL family, but it is still more expressive than RDF/S.

These three sublanguages are upward compatible (McGuinness & van Harmelen, 2004):

� Each legal OWL Lite ontology is a legal OWL DL ontology.
� Each legal OWL DL ontology is a legal OWL Full ontology.
� Each valid OWL Lite conclusion is a valid OWL DL conclusion.

Figure 3.2: OWL sub languages [3]

3.1. Semantic Web 11

OWL Full is intended for the user who wants to use the whole variety of OWL. It has been

developed to be compatible with RDF documents.

OWL Description Logic (OWL DL) is a subset of OWL Full. It contains the maximum

expressiveness, but is not fully compatible with RDF documents.

OWL Lite represents an even smaller subset of OWL Full. It should support those users

who require a classification hierarchy and simple restrictions. For example, it allows

cardinality restrictions, but only cardinality values 0 and 1; it should be easier to develop

tools for OWL Lite than for its more expressive relatives; and OWL Lite provides a

quick way to migrate thesauri and other taxonomies. OWL Lite also has a lower formal

complexity than OWL DL [3].

A second version was released in 2012. OWL 2 is an extension and revision of the old version

[30].

3.1.2 Linked Data

The internet is a network of websites. Linked Data, on the other hand, describes a complex

network of data. The methods of such a network has already been described in subsec-

tion 3.1.1. The concept behind Linked Data was developed by Tim Berners Lee. He laid

down four rules [31]:

- URI to describe objects,

- HTTP use URIs to look up names,

- When someone looks up a URI, useful information should be presented using the stan-

dards (RDF *, SPARQL),

- Add links to other URIs so that more objects can be detected.

Each component includes URIs, HTTP, RDF, and XML to retrieve information. In connec-

tion with linked data one can often read the term linked open data. Linked Open Data is a

powerful combination of Linked Data and Open Data. Open Data is data that can be freely

used and distributed by anyone. The requirement for this data is usually only to provide it

with attributes and to share it with others. This open data can be made available to anyone

without being linked to other data. In addition, they can also be linked internally so that

they are not freely available to the public.

3.1. Semantic Web 12

To counter internal linking, the W3C community and all data openness advocates have sought

to provide a Linked Open Data Cloud. The Linked Open Data Cloud uses both linked data

and open data sources. A graph database1 as an example is able to process large amounts

of raw data from different sources and link them to open data. This enables more extensive

queries and results in data management and analysis [32].

An example for Linked Open Data is DBpedia2. It is a crowdsourcing community that tries to

extract structured content from Wikimedia projects. The data is provided as Linked Data and

can be viewed via the web page and via SQL similar queries, such as Sparql (subsection 3.1.3)

[33].

As the topics of Semantic Web Technologies and Linked Data in Architecture, Engineering

and Construction (AEC) become more and more interesting, a number of research institutions

and initiatives have been established. One of these initiatives is the workshop series Linked

Data in Architecture and Construction (LDAC). They have created two different commu-

nity groups, the W3C Community Group on Linked Building Data and the BuildingSMART

Linked Data Working Group.

The W3C Community Group on Linked Building Data is managed by the W3C and aims

to define existing and future use cases and requirements for Linked Data based applications

over the life cycle of buildings. Participants in this group are experts from the fields of BIM

and Web of Data Technologies.

The buildingSMART Linked Data Working Group is responsible for creating and maintaining

an ifcOWL ontology as a derivation of the IFC STEP EXPRESS schema. This group is part

of the Technical Room of buildingSMART and works closely with the other working groups

within this organization [34].

ifcOWL

In 2013 a new version of the IFC schema was published (IFC 4) and became also as ISO

standard. Not only the EXPRESS scheme was developed, but also a XSD scheme. One

goal of the XSD schema should be that IFC4 can be used more flexibly in XML-based

environments.

Through the development of the Semantic Webs, various authors proposed an ontology for

the IFC schema. It is known as ifcOWL. The essential point in the development of this

ontology was to develop it as close as possible to the EXPRESS scheme of IFC [35].

1https://ontotext.com/products/graphdb/
2http://wiki.dbpedia.org

https://ontotext.com/products/graphdb/
http://wiki.dbpedia.org

3.1. Semantic Web 13

In the meantime, the proposed ifcOWL ontology of buildingSMART International has been

taken up and further developed. With the help of this ontology building data can be displayed

using Semantic Web. The resulting IFC data is thus available in linked and labeled graphics.

With such a graph and the underlying data, building data can be easily linked with other

graphs, for example material data, manufacturer data of products.

The result is a very large network of linked data, which offers great possibilities for data

management and exchange in the building industry and beyond [36]. In Figure 3.3 you can

see an example for ifcOWL. This figure demonstrates how complex a linked data network can

become.

guage level, “unresolved” references to nodes may be treated
as anonymous resources while still being valid RDF. On the
ontological level, however, anonymous resources may not be
used in statements that compose a DL-complex OWL ontol-
ogy. This means that at least the particular class, property or re-
striction has to be resolved, that is, pulled from the external
ontology. The problem with the current language specifica-
tion of OWL is, however, that the mechanism designed to
interweave several ontologies only allows the inclusion of
complete ontologies via the owl:imports statement. To make
a truly interwoven semantic net possible, however, mecha-
nisms and standards will have to be developed that allow
the retrieval of only parts of certain ontologies without having
to work on the complete set of nodes and edges.

In the current design of the compartments of the IFC
model, the many, partly cyclic, references through ENTITY
attributes that point to external resources (see Fig. 2) prevent
the easy extraction of completely autonomous subparts. Al-
though in most cases the references to external resources
only include a few or even a single edge to an external
node, the effects are dramatic. For example, the Entity IfcPro-
ductType defined in the IfcKernel subschema has an attribute
RepresentationMaps that stores references to one or more
IfcRepresentationMap entities that are defined in the IfcGeo-

metryResource subschema. Because most interdependencies
between the subschemas that enable geometric and topologi-
cal representations are cyclic in nature, that is, cannot be sep-
arated in an easy manner, the single property edge Represen-
tationMaps results in the inclusion of a few hundred
additional definitions. A clear advantage of encoding the
model using RDF triplets is the global scope of statements
over the local scope definitions of attributes within entities.
Here, it is possible to move triplets (or nodes and edges of
the graph) to an arbitrary external resource. For the case of
IfcOWL we eliminated a number of interdependencies mov-
ing edges like RepresentationMaps into separate partial
ontologies, we refer to as pivot ontologies: the aim here is
to reduce the out-degree of nodes representing sets of con-
cepts, for example, the namespace IfcKernel, which is refer-
enced by many namespaces and whose use results in long
chains of transitive ontology inclusions (see Fig. 2). By creat-
ing a separate namespace that attributes IfcProductType with
the RepresentationMaps owl:ObjectProperty (and its accord-
ing restrictions) we create independent semantic clusters that
can be used in cases where, for example, representational ge-
ometry is not of interest (see Fig. 3).

Even greater impact on the capability and performance of
reasoning and query tasks than the compartmentalization of

Fig. 1. The resulting ontologies of IfcOWL, which are configured here for the logical compartments according to the original IAI archi-
tecture. The IfcMeasureResource namespace is left out for layout reasons.

IfcOWL 95

Figure 3.3: ifcOWL Ontologie [4]

3.1.3 Sparql

SPARQL is a W3C standard and a generic query language. It is used to express queries

across different data sources. It is not important whether the data is saved natively as

RDF or viewed as an RDF graph via links. The SPARQL query language also contains

functions for querying required and optional diagram patterns as well as their conjunctions

and disjunctions. It also supports aggregation, subqueries, negation and the generation of

values using expressions [13].

Compared to domain-specific languages, such as MySQL, SPARQL is particularly suitable

for scenarios in which data from multiple sources is required. Examples of this are:

3.2. Classification systems 14

- All building objects should be classified according to a certain type

- Where are the locations of the companies that produce the materials for the walls in

the hall?

These two examples not only require building data as the source, but also data from other

fields or documents. They are easier to implement with RDF and SPARQL technologies

without the need for proprietary systems [14]. The example (Listing 3.1) shows a SPARQL

query to find the title of a book from the given data graph. The query consists of two parts:

SELECT identifies the variables to be displayed in the result,

WHERE provides the basic diagram pattern corresponding to the data graph.

The basic diagram pattern in this example consists of a single triple pattern with a single

variable (? title) in the object position.

1 SELECT ? t i t l e

2 WHERE

3 {
4 <http :// example . org /book/book1> <http :// pur l . org /dc/ e lements /1 .1/

t i t l e > ? t i t l e .

5 }

Listing 3.1: Example Query [13]

If SPARQL is applied to the construction industry, it reaches its limits. Typing, properties,

spatial relationships and many other things that are defined or described in a building model

are difficult or impossible to find using this query language.

3.2 Classification systems

3.2.1 DIN 32705

The DIN 32705 is a DIN standard that descripes rules for the creation and further develop-

ment of classification systems. It defines the classification system as follows [37]:

classification system is the structured representation of classes and the conceptual rela-

tionships between them

class is the summary of those terms that have at least one identical characteristic

3.2. Classification systems 15

characteristic is a term element that is defined by a statement about the property of an

object

notation in the classification system is a character string formed according to certain rules,

which represents a class, a term or a combination of terms and maps their position in

a systematic context.

As already described above, a classification system is a tool to sort objects or even information

about them. The DIN 32705 distinguishes three types of sorting:

1. technical-practical: Arrange, Classify, Group

2. scientific: Use logical tools to adequately represent statements about objects

3. cognitive: pointing out connections

A classification system is structured by the relationship between classes and terms. There

are also two different types of relationships: The formal relationship that connects things

based on external characteristics and the material relationship that connects things based on

content characteristics. A structure is developed from top to bottom. At the top is the main

class, which groups the whole system in a certain way.

The system is specified further and further down. When specifying, it is important that

the individual classes are mutually exclusive so that a unique structure is created. Such a

structure could look like this [37]:

- office machines

· typewriter

· calculator

· copying machine

This structure describes the office machines. The first level groups the next level. In the

second level, the machines are titled more precisely. The third level could be a further

refinement of the individual machines.

3.2. Classification systems 16

3.2.2 ISO 12006-2:2015

The ISO 12006 is an international standard dealing with the structuring of information for the

construction industry. It consists of three parts, of which part one has never been published.

Part two of this standard was published in 2015. It defines a framework for the development

of classification systems for structures by defining a framework and a set of recommended

table titles supported by definitions. It identifies classes for the organization of information

and specifies how these classes are related. Part three of the ISO 12006 contains a framework

for object-oriented information.

The second part of the ISO 12006 lists the tables recommended for the development of built

environment classification systems. There are tables for the different object classes according

to particular views. For example, there are some by form or function. In addition this

standard describes how the individual object classes are related [38].

This Standard does not constitute a complete operational classification system, nor does

it provide the contents of the tables. Nevertheless it includes some examples. It is rather

intended for organizations that develop and publish such classification systems and tables at

national or regional level. Classification tables may vary in detail to meet local needs [38].

The definitions included apply to the entire life cycle of structures, including design, produc-

tion, maintenance and demolition, as well as to building construction and civil engineering.

3.2.3 OmniClass

The OmniClass Construction Classification System, also called OmniClass, is a new classi-

fication system for the construction industry. It is helpful for various applications, such as:

Organizing book or project information or developing a classification structure for electronic

databases.

This system was developed to provide a standardized basis for the classification of infor-

mation created and used by the North American architecture, engineering and construction

industries over the entire life cycle of the structure. The concept for OmniClass is based on

the international framework ISO 12006-2 (see subsection 3.2.2). This international frame-

work has a direct impact on OmniClass, as the OCCS Development Committee has closely

followed this standard.

3.2. Classification systems 17

The following guidelines were drawn up by the OCCS Development Committee:

- It is an open and extensible standard available to the AEC industry in general

- There is a comprehensive and open exchange of information between participants of

development of OmniClass.

- It is being developed and updated with the broad participation of industry

- Development is open to any person or organisation willing to actively participate in

development

- The industry as a whole and not just one organization will control the development and

deployment of OmniClass

- It focuses on North American terminology and practice

- It is compatible with the relevant international standards for classification systems

- Efforts being made in other parts of the world will be reviewed and, if necessary, adapted

- Existing classification systems, references and research materials relevant to the devel-

opment of OmniClass are taken into account in the formulation of OmniClass

The development of OmniClass is an ongoing process that is accessible to all interested parties

and whose content can be expanded over time to meet unmet needs as they arise [39].

The idea behind the OmniClass was to combine the various existing classification systems

such as MasterFormat, Uniformat, Uniclass and other classifications. Today it contains 15

tables covering the complete building life cycle, from building design to building dismantling.

The high degree of detail in the individual tables of the classification systems makes it difficult

to combine the various classification systems [40].

The following figure shows one page of the OmniClass Tables which can be found in the Table

11 - Construction Entities by Function.

3.2. Classification systems 18

Figure 3.4: Table 11 – Construction Entities by Function - OmniClass [5]

3.2.4 Uniclass

UniClass was originally released in 1997. It can be used to structure project information

according to a recognized standard. In 2015, a new version was released by NBS as part of

the BIM Toolkit project.

NBS stands for National Building Specification and is a UK-based system of building spec-

ifications used by architects and other construction professionals to describe the materials,

standards and execution of a building project [41].

This original version of the UniClass has been extensively revised to make it more suitable

for use in modern construction practice. It should also be compatible with BIM. The original

version was only available in book form and had to be bought. The new version, on the other

hand, has now been made available digitally [42].

3.3. Systems Engineering 19

Uniclass (Version 2015) is a uniform classification system for British industry covering the

entire construction sector. Similar to OmniClass (see subsection 3.2.3), it contains different

tables, each dealing with a different object class. According to the NBS, the current version

of UniClass offers the following advantages [43]:

- A uniform classification system for the construction industry. For the first time, build-

ings, landscape and infrastructure can be classified in a uniform scheme

- A hierarchical set of tables that support classification from a university campus or street

network to a floor tile or curb unit.

- A numbering system that is flexible enough to meet future classification requirements

- A system according to ISO 12006-2 that is mapped to NRM1 and will support mapping

to other classification systems in the future.

- A classification system maintained and updated by NBS

- The BIM toolkit contains a database of synonyms to make it as easy as possible to find

the required classification using industry-standard terminology.

3.3 Systems Engineering

3.3.1 Definition

Systems Engineering is an interdisciplinary approach to develop and realize complex systems

in large projects. Large projects can no longer be managed by individuals. For this reason a

new methodology was sought.

The Methodology for Systems Engineering, which was published by Arthur Hall in 1962,

received much attention. A few years later, Professor A. Büchel of the ETH Zurich adopted

and reinterpreted this approach [44]. In the early 1970s this reinterpretation was further

developed into an independent System Engineering methodology.

It is a structured methodology for controlling problem-solving processes in the context of

complex issues. All in all, it makes sense to use this system engineering methodology for

projects with large project complexity and scope in which many participants are involved.

The aim of this methodology is to gain a holistic view of the problem situation from different

perspectives in order to subsequently transfer the initial situation into an optimal target

state[6].

3.3. Systems Engineering 20

The System Engineering methodology is based on two basic methodological concepts: the

life phase model and the problem-solving cycle. Its main goal is the optimal interaction of

both basic concepts.

The life phase model is a rough grid that describes the purpose for the individual phases.

In each of these phases the results to be expected are specified. In technical systems the

individual phases are divided as follows:

- Development

- Realization

- Use

- Disposal

The problem-solving cycle describes several steps that are important to get from the task to

the solution in a questionnaire. The three main steps are:

- Target search (target formulation)

- Solution search (concept analysis)

- Selection (decision)

If the life-cycle model is combined with the problem-solving cycle, it can be seen that some

tasks need to be solved in each individual phase. An example for coordinated processing of

tasks is shown in Figure 3.5. The hatched arrows represent the coordination.

Figure 3.5: Coordinated processing of subtasks in every phase of life [6]

3.3. Systems Engineering 21

3.3.2 Breakdown Structure

When working with complex projects, it is crucial to understand the relationship between

the product and the division of labor. This makes it possible to overcome the uncertainties

regarding the effects on the project. They also help to balance the resources needed to develop

and implement the system [45].

These relationships are often defined in the project as System Breakdown Structure (SBS),

Product Breakdown Structure (PBS), Work Breakdown Structure (WBS) and Organization

Breakdown Structure (OBS) [46].

System Breakdown Structure

The SBS is a logical decomposition of the system. At definition of the SBS it is necessary to

consider:

- How the system is procured

- How the system is designed

- What the system has to do

- How they manage the critical interfaces of the system

The SBS helps to document and communicate the functionality of the system. As soon as the

project has developed towards the implementation, the individual points of SBS are traced

back to the corresponding points of the PBS.

Product Breakdown Structure

The PBS is created to ensure that all required products are considered in the planning. It

starts with the end product at the top of the hierarchy and describes the products that are

to be manufactured and delivered. Furthermore, it serves to communicate the results of a

project and to show exactly what the project will achieve.

Work Breakdown Structure

The WBS is a hierarchical decomposition of the work necessary for the completion of a

project. Together with PBS the WBS addresses how each part of system or product defined

in PBS should be finished. The WBS serves the overall planning of the project and supports

the project management, the cost estimation, the project status reporting as well as the

3.3. Systems Engineering 22

deadline and resource management. As a rule the WBS is made in early phases of a project

life cycle.

In Figure 3.6 the first two level of a WBS for an automobile project is represented as an

example. The first level describes the overall task: Complete a automobile. The following

level specifies the individual tasks to complete this automobile: Body and styling, Central

electrics, Chassis and suspensions, Engine and fuel system, Gears and transmission.

Figure 3.6: WBS for an automobile project [7]

Organization Breakdown Structure

The OBS used in connection with the WBS represents the organizational structure for the

project on the way to completion. OBS covers the organization or persons carrying out the

works defined in WBS. When creating a OBS it is important that the organizational structure

takes into account the required resources and connected team members. Under the definition

of an OBS the WBS should be connected with the lowest level of project responsibility within

the OBS hierarchy.

Each of the structures described above can, if used separately, be used to analyze the com-

plexity of the project and help with system and project analysis. Once the SBS, PBS, WBS

and OBS are applied together, the weak points in the project become visible that need to be

adjusted to achieve a better balance between cost, resources and planning [47].

23

Chapter 4

State of the art

4.1 BIM

Open interfaces are particularly important for the topicality and success of BIM. Up to version

4.0, the IFC exchange format only supports building models.

Only with the next version of IFC it will be possible to descripe buildings of the infrastructure

such as roads, bridges and tunnels [48]. To be able to work in the infrastructure area before

the release of IFC 5, the IFC alignment project was carried out. The goal of this project was

to develop a data model for the description of a route.

Researchers at the TU Munich and the French CSTB, as well as companies such as AEC3

Germany and Bentley Systems, have been involved in the implementation of this project.

Over time, three new data models were created from this data model:

- IFC-Road

- IFC-Bridge

- IFC-Tunnel

The following image (Figure 4.1) shows how the standards IFC-Road, IFC-Bridge and IFC-

Tunnel will form the basis for data model IFC-Alignment.

4.1. BIM 24

Figure 4.1: Data model IFC-Alignment [8]

An adaptation of the data format standard OKSTRA (see section 2.5) is also relevant for the

further development in the area of infrastructure. This is especially necessary to establish

compatibility between this data format standard and the IFC alignment project.

In order to create this compatibility the Federal Highway Research Institute has commissioned

the Lehrstuhl für Computergestützte Modellierung und Simulation at the Technical University

of Munich. The idea is to develop a way to convert between these two formats.

The TU Munich has developed the Open Infra Platform as a solution approach. With this

platform the routing data can be viewed in different file formats. Furthermore, it is possible to

convert the data between different file formats [49]. Figure 4.2 shows the currently supported

file formats.

Figure 4.2: Supported file formats [9]

According to a study [50], the measures to create databases with different types of information

generated in construction projects and their linking are still inadequate. The aim of this study

is to establish a construction information database system based on BIM technology. This

database system is intended to enable comprehensive management of information generated

4.1. BIM 25

during the construction phase. The result of this study is that such a database system can

be used for the collection and use of construction information.

The study also presents the problems of information diversity. Documents contain numerous

and diverse information that often overlap. Examples of this are work reports and safety

instructions. Work reports contain a lot of general information about the project that is

recurring. However, they also contain information during construction, such as information on

construction progress. The information is categorized using the Space Breakdown Structure

and the Information Breakdown Structure. They are also connected to the BIM model for

easy management.

A similar approach is described in the paper by Jaehyun Park and Hubo Caib [51]. The

integration of construction documents into BIM is a challenge due to their heterogeneous

and unstructured data formats. Jaehyun Park and Hubo Caib present a database design

based on a project structure plan in their paper. It should enable the creation of a dynamic

and multi-dimensional BIM database for the timely integration of construction records. The

design records are defined as an additional dimension. In addition, an automatic linking

mechanism between construction projects and BIM objects is created to generate the multi-

dimensional BIM database. The aim is to develop a WBS-based BIM database structure to

ensure that the entire as-built documentation contains all construction documents during the

construction phases in a timely manner. The implemented WBS coding structure is based

on the MasterFormat and UniFormat. This makes it easy to generate WBS codes using the

reference tables. The result of this paper is that this method makes it possible to integrate

the construction documents collected during the construction phase into a dynamic BIM

database to create a complete inventory documentation.

Building Information Modeling, in both four- and five-dimensional forms, has recently at-

tracted much attention in the architecture, engineering and construction industries. Al-

though current 5D models link cost items and scheduling activities to BIM elements, it is

still necessary to link and integrate cost and scheduling data manually. The paper by Su-Ling

Fan, Chen-Hua Wu and Chien-Chun Hun [52] proposes a model for the automatic linking

of cost and appointment data after their linking with BIM elements. The dependency be-

tween schedule and costs is obvious, as costs and schedules are closely linked in terms of their

management process, as they share common data such as costs, resources and quantities. In

practice, however, they often remain two independent functions and use two different control

structures: the Work Breakdown Structure and the cost break structure. The different level

of detail of the individual structures leads to a fundamental difference in the maintenance

of cost and schedule data. The data must be connected manually by the project manager.

The proposed solution in this paper is to link cost items and schedule activities with BIM

elements. This approach provides a simplified cost and schedule integration process. The

system can thus automatically define the relationship between schedule and costs.

4.2. Semantic Web 26

4.2 Semantic Web

4.2.1 Progression of the web

In 2007 Nova Spivack published a timeline on his web page (see Figure 4.3) in which he

presents the development of the Internet.

Figure 4.3: Timeline of the Internet [10]

He describes Web 3.0 as the third decade of the Internet in which several key technologies

will be widely used. According to Nova Spivack the focus is on RDF and the technologies of

the emerging Semantic Web [10]. According to the timeline Nova Spivack sees Web 4.0 as

the WebOS. Key technologies are in Distributed Search and Intelligent personal agents. He

predicts Web 4.0 in 2020 - 2030.

4.2.2 Database services

Since the introduction of the RDF in 2004, several service providers have provided graphic

database services. One of the newest is Amazon Neptune1. Released in November 2017, it is

a fast, reliable, fully managed graphic database service.

1https://aws.amazon.com/de/neptune

https://aws.amazon.com/de/neptune

4.2. Semantic Web 27

According to the product page, this service makes it very easy to create and run applications

that work with highly related records. Amazon Neptune supports the most common diagram

models, such as RDF from W3C and the associated query languages TinkerPop Gremlin and

SPARQL. An example of an application is a knowledge diagram application. These can be

used to store information in a diagram model. This allows the user to navigate through data

records that are linked together in a complex manner.

Figure 4.4 shows how a knowledge diagram could look schematically. As you can see on

following figure, the individual nodes are linked with a predicate. This corresponds exactly

to the RDF schema.

Figure 4.4: Amazon Neptun knowledge diagram [11]

Another platform is Mobi2. It is a free and open platform. With this platform it is possible

to link native data sources to a knowledge graph. Mobi was built with Apache Karaf and

uses OWL 2 to create ontologies. Like Amazon Neptun, Mobi uses SPARQL query language

for data search [53].

Other useful applications for creating RDF graphics are:

- D2RQ3

- ontop4

- Karma5

2https://mobi.inovexcorp.com
3http://d2rq.org
4http://ontop.inf.unibz.it
5http://usc-isi-i2.github.io/karma/

https://mobi.inovexcorp.com
http://d2rq.org
http://ontop.inf.unibz.it
http://usc-isi-i2.github.io/karma/

4.2. Semantic Web 28

4.2.3 Using SPARQL for BIM

In the chapter 3 it was described that SPARQL in connection with the construction industry

reaches its limits. To counteract this C. Zhang and J. Beetz describe in their research report,

Querying Linked Building Data Using SPARQL with Functional Extensions [14] a way to

extend the query language SPARQL.

They extend SPARQL with new words from the construction industry, so that the query (see

Listing 4.1) becomes possible. The query in Listing 4.1 calculates the ratio between the area

of protected openings and the area of all external walls of a floor.

1 SELECT (SUM(? windowArea) /(SUM(? wal lArea)))

2 WHERE

3 {
4 ? wa l l qrw : i sConta inedIn ? s to r ey .

5 ? wa l l a i f c : I f cWal l .

6 ? wa l l pse t : i s E x t e r n a l true .

7 ? wa l l pdt : hasGrossWallArea

8 ? wal lArea .

9 OPTIONAL {
10 ?window qrw : i sP l a c ed In

11 ? wa l l .

12 ?window pset : p ro tec ted true .

13 ?window pdt : hasWindowArea ?windowArea

14 }
15 }

Listing 4.1: Example Query [14]

SPARQL has also been expanded in other areas of the construction industry. The Open

Geospatial Consortium (OGC), for example, has published Geo-SPARQL as a series of ex-

tended functions for geodata [54]. It is a representation and query of spatial data. This

makes it possible to query which sights are within a defined range.

1 SELECT ?a

2 WHERE {
3 ?a a ex : Att rac t i on ;

4 geo : hasGeometry ? ageo .

5 FILTER(geo f : with in (? ageo ,

6 ”POLYGON((

7 −77.089005 38 .913574 ,

8 −77.029953 38 .913574 ,

9 −77.029953 38 .886321 ,

10 −77.089005 38 .886321 ,

11 −77.089005 38.913574

12)) ”ˆˆ s f : wktL i t e ra l))

4.2. Semantic Web 29

13 }

Listing 4.2: Example Query [15]

4.2.4 PANDORA

In connection with the long-term project Johann Friedrich Blumenbach - online, which is a

project within the framework of the Academy Program of the Union of German Academies

of Sciences in Götting, the software architecture PANDORA LOD Framework is developed.

PANDORA stands for Presentation (of) Annotations (and) Notations (in a) Digital Object

Repository Architecture. The basis for this framework are digital images of texts and objects

which are stored in a Fedora Commons repository. The Fedora Commons Repository is an

open source repository that allows you to manage and access digital objects in electronic

archives. This is primarily used in libraries and universities [55].

The PANDORA project itself is a collection of open source applications that use a common

document, called a manifesto, to organize the presentation of data to the user. This manifest

consists of a JSON-LD document and is generated from a digital object repository through

the dynamic use of SPARQL queries [56].

30

Chapter 5

Approach & Methodology

5.1 Introduction

The amount of data and information that needs to be processed is increasing when construc-

tion projects become more complex. It is difficult to bring different planers together because

of the very large variety of information. The quality and timeliness of information can suf-

fer from a frequent exchange of information, for example because information is no longer

up-to-date or is lost.

A promising approach is the creation and use of domain models as a primary means of infor-

mation exchange between engineers without the need for a purely document-based exchange

of information. The information of the individual models must be linked together in order

to create a holistic digital image of the project or product to be created. For this linkage of

the information the Linked Data approach is suitable.

This represents an approach for the construction industry, with the help of which data can

be structured and linked. In this way data is connected holistically and allows information

to be queried comprehensively when required. This methodology is originally derived from

the Linked Open Data. The difference between these two is the access rights. Linked Open

Data are informations or data that are freely accessible [32]. The data in the Linked Data

however represent a kind of closed project space, so that only authorized persons can access

them.

Compared to the common data environment, this approach is intended to be another way

of making information available to the entire team at a common point. In the following the

chosen solution approach and how it differs from a common data environment is described

in more detail.

5.2. Approach 31

5.2 Approach

The previous chapters explained a lot about the basics of the Semantic Web and System

Engineering. The question now arises as to how and why these two systems can now be

linked together.

In addition it must be explained why a new approach is being developed, although there is

already a comparable approach with the Common Data Environment.

A common data environment is a central storage location for all project information. Because

all project information is stored centrally, previous projects can always be accessed. An

administrator assigns different access rights to the storage folders. In addition a workflow for

distributing and publishing data must be defined beforehand in a common data environment.

The responsibility and management of such a system are defined in so-called Employer’s

Information Requirements. These requirements define the information that an employer

needs for a successful project.

On the other hand there is this approach. Complex and large projects are first broken

down into their individual components and then classified using structures. The individual

components are sorted, for example, by function for a System Breakdown Structure or by work

packages for a Work Breakdown Structure. The division or structuring according to functions

is carried out by the project manager. The Work Breakdown Structures, on the other hand,

are created by the individual disciplines that work on the construction site. Each discipline

creates its own structure. They classify and structure their tasks on the construction site

according to work packages. This classification originally comes from project management

and describes a method of System Engineering. Besides the Breakdown Structures mentioned

above, there are other types, as already described in subsection 3.3.2.

By structuring and classifying the project, individual areas become visible and can be viewed

and edited in detail. As soon as a complex and large construction project is classified into

the individual Breakdown Structures according to this method, these structures are linked

together. The procedure of Semantic Web is particularly well suited for this. The individual

nodes of the different structures are connected with a kind of RDF triple. This means that

the node of the first structure represents the subject and the node of the other associated

structure represents the object. In order to be able to describe such a connection clearly, it

must be provided with a predicate.

For example, a node of a Work Breakdown Structure that represents a particular work package

is linked to a node of a System Breakdown Structure that describes a particular functionality.

This link is established because a certain work package fulfils a certain function of the project.

Additional work packages may also be required for this particular function. This link shows

which tasks are necessary to perform this function. This is of great interest for cost estimation

5.2. Approach 32

or time planning, for example. Another link could be between two nodes of a Work Breakdown

Structure and a Product Breakdown Structure. The connection visualizes which products

are necessary to fulfill the corresponding work package.

The connection is only described Requirements in a one-directional way, since the connection

in the opposite direction could have a different meaning. This means that if a bidirectional

connection is to be established, an additional connection must be established. This precise

description of the connection makes it possible for the creator or third parties to trace it

again and again. With Semantic Web it is possible to connect data over a large network.

Even here there is a difference to the Common Data Environment. The CDE creates only a

document structure with different access rights. With the solution approach described here

the project is broken down into its individual components and then classified according to

requirements using structures.

However, it is not sufficient to structure a project in such a way that it makes sense to work

with it, since only a breakdown by functions or work packages is available up to now. The

actual data exchange between one or more disciplines has not yet taken place. To do this,

the required information or data must also be assigned to the individual nodes. This can be

done by adding attributes or tasks, but also by assigning different project components to the

node.

Since the nodes of two or more Breakdown Structures have been interconnected, the properties

or information need not be exchanged directly. This prevents the loss or falsification of

information. As already described above, this could be information on costs in the form of a

service specifications or also on the time sequence in the form of a Gantt chart. This exchange

is also one of the advantages of the Common Data Environment.

As soon as the user views a structure, the system displays the other structure nodes to which

the selected node is connected. In addition to the linked nodes, he also sees the properties and

information that are bound to the other nodes. The user himself can only edit or delete his

own data. He does not have the necessary rights to delete external properties or information.

Likewise the user himself can only remove his own links. In order to be able to delete

information from others, he can make a kind of request. This indicates to the other side that

the attached information should be removed if necessary. This request may be accepted by

the other party and the information may be deleted or rejected.

By linking the Breakdown Structures of a large and complex building, a large information

network is created. This leads to a smooth and fast exchange of properties and information,

since files can also be attached to a structure node. These can be contracts or expert opinions,

for example.

5.2. Approach 33

In order not to be overwhelmed by the amount of information, a kind of filter must also be

included. It determines which information is visible to whom. For example, a contract is only

important for one particular counterparty. However, a third person might see this or not.

This type of model view definition is also comparable to a type of rights management. The

user who appends information to a node determines who is allowed to see this information.

The approach described above describes file exchange from a different perspective than a

common data environment. In the Common Data Environment, files are stored in a large

folder structure and protected by access rights. With this proposed solution the data and

information is sorted much more precisely because it is attached to individual structure nodes.

These structure nodes can represent a function or a work package, for example. The actual

exchange of information only takes place when these two nodes are connected.

The solution described above is to be implemented using a RESTful API and a correspond-

ing front-end. When implementing the RESTful API, the existing functions of the RESTful

API of BimPlus are to be integrated. REST stands for REpresentational State Transfer and

API for Application Programming Interface. This is a programming interface based on the

paradigms and behavior of the World Wide Web and describes an approach for communica-

tion between client and server in networks.

Allplan Bimplus is an open and cloud-based platform for BIM and can be used in all disciplines

to work together efficiently and quickly in construction projects. 3D models, information,

documents and tasks can be managed centrally over the entire life cycle of a building.

Since the BimPlus frontend only meets a few requirements for the implementation of the

prototype, a new frontend is implemented. Front-end is the website that is made available

to the user.

BimPlus offers the possibility to work in a team with 3D models as described above. In

addition, structures can be created and attachments or components from the loaded 3D

model can be attached to them. It is not possible to link structures and append tasks or free

attributes to a structure node to describe the node with additional information.

For these reasons and also for legal reasons, a new frontend is programmed and a RESTful

API is also created. All functions that are called via the frontend should also be able to be

executed independently with the RESTful API. This has the advantage that the RESTful API

can also be used with another frontend. The RESTful API of the BimPlus is implemented

despite the lack of possibilities, as it already contains functions such as team collaboration and

the ability to upload buildings or similar model data. This means that the newly programmed

RESTful API should embed the functions of the RESTful API of BimPlus and add new or

existing functions. In order to gain access to the functions of BimPlus, the user only needs

a BimPlus user account and an application ID. This is also necessary in order to work in a

team and with 3D models.

5.2. Approach 34

In the following chapter the implementation of the solution described above is checked using a

3D model. This is followed by a description of the implementation and the exact functioning

of the prototype. The programming languages and libraries used in the front-end and the

RESTful API are also explained. The chapter also describes how the two systems are made

available on the Internet.

35

Chapter 6

Case Study & Evaluation

6.1 Case Study

The solution approach from the chapter 5 is to be tested with the help of a bridge model.

The model used was created by Keshan P. and is freely available via the 3D Warehouse of

Google Sketchup1. It represents the Kalutara bridge over Kalu Ganga river.

The 3D model used is a massive bridge with two lanes. For this approach it is assumed that

this bridge will have to be build new. The method described in the previous chapter should

therefore be applied to this 3D model. In Figure 6.1 the used model is shown:

Figure 6.1: Bridge Model

1https://3dwarehouse.sketchup.com/model/e231c69bf1a66c16cabf5a7f1ed5cec3/
Kalutara-Bridge-Sri-Lanka

https://3dwarehouse.sketchup.com/model/e231c69bf1a66c16cabf5a7f1ed5cec3/Kalutara-Bridge-Sri-Lanka
https://3dwarehouse.sketchup.com/model/e231c69bf1a66c16cabf5a7f1ed5cec3/Kalutara-Bridge-Sri-Lanka

6.1. Case Study 36

First, this construction project is broken down into its individual functions or properties using

a System Breakdown Structure, which has been explained in subsection 3.3.2. The project

manager takes over this structuring, since he knows the exact function of the construction

project and can thus structure the project very well. This is structured as follows. At the top

of the structure, the system itself is the construction of a new bridge. The next level is the Sub

Systems. The project is classified into an electrical, mechanical and constructional system.

The individual components come after the sub-system level. These are in the electrical

system for this project: the power supply for the construction site, any lighting systems,

communication lines and sensors for the road surface.

The next sub-items for the mechanical system are: Bridge supports, expansion joints and

water drains. Most components are available for the constructional system, since they rep-

resent the essential part of the construction. These include: All foundations, piers, bridge

superstructure, road surface and road safety measures. Figure 6.2 shows the Breakdown

Structure described above.

Figure 6.2: SBS - Bridge

After the construction project has been broken down into its individual functions, it is now

broken down into the individual work steps required to build the bridge. These individual

steps are classified using one or more work breakdown structures. In contrast to the system

Breakdown Structure, several Work Breakdown Structures are generated. Each individual

discipline that is active on the construction site creates its own Breakdown Structure. They

classify and structure their tasks, which must be carried out on the construction site, ac-

6.1. Case Study 37

cording to work packages. For this solution approach, the structures of two disciplines are

considered as examples: The electrician and the shell builder.

The shell builder in this project will take over any construction work that is necessary for

the construction of the bridge. The electrician takes care of any services that have to do with

electricity or communication according to his description.

The second level of these the two Work Breakdown Structures represents the different con-

struction phases. The individual phases are: Planning phase, preparation phase, construction

phase and final phase.

The Work Breakdown Structure for the electrician is as follows: During the planning phase,

the architect draws up any plans for laying and installing the pipes based on the architect’s

plans. In the preparation phase the power supply on the construction site and a basic supply

must be provided by means of light and distribution boxes. During the actual construction

phase, the various cables and sensors must be installed. As soon as the construction site is

completed, the electrician must disconnect the power supply on the construction site in the

final phase. In the following picture (Figure 6.3) the structure described above can be seen:

Figure 6.3: WBS - Electricians

In the planning phase the shell builder also draws up his plans based on the architect’s

plans. In the following preparatory phase he prepares the site for his work. This includes

clearing trees or levelling the required areas. During the actual construction phase the shell

builder builds the foundations and piers required for the subsequent bridge construction. The

expansion joints must also be installed in this phase before the bridge structure can be placed

and the road surface can be paved. Once the previous work has been carried out the water

drains and any road safety work must be carried out. In the final phase all areas necessary

6.1. Case Study 38

for the construction of the bridge will be cleared. In the following picture (Figure 6.4) the

structure described above is shown.

Figure 6.4: WBS - Shell builder

In order to be able to continue working with the structures without problems and effort,

they are generated using the JSON format. This format is easy for the creator to read and

understand. Such a structure can be written in this format with little effort. In addition

structures in JSON format can be interpreted easily and very quickly by computer systems.

The following figure (Listing 6.1) shows an extract from the JSON file for the System Break-

down Structure described above. The complete JSON files for the generated structures can

be found in the appendix.

1 {
2 ”name” : ”SBS − Bridge ” ,

3 ” type ” : ” St ruc ture ” ,

4 ” c h i l d r e n ” : [

5 {
6 ”name” : ” Construct ion System” ,

7 ” type ” : ” St ructure ” ,

8 ” c h i l d r e n ” : [

9 {
10 ”name” : ” Foundations ” ,

11 ” type ” : ” St ruc ture ” ,

12 ”number” : 1

13 } ,

14 {
15 ”name” : ” Pylons ” ,

6.1. Case Study 39

16 ” type ” : ” St ruc ture ” ,

17 ”number” : 2

18 } ,

19 {
20 ”name” : ” Bridge Construct ion ” ,

21 ” type ” : ” St ruc ture ” ,

22 ”number” : 3

23 } ,

24 {
25 ”name” : ”Road s u r f a c e ” ,

26 ” type ” : ” St ruc ture ” ,

27 ”number” : 4

28 } ,

29 {
30 ”name” : ”Measures f o r road s a f e t y ” ,

31 ” type ” : ” St ruc ture ” ,

32 ”number” : 5

33 }
34] ,

35 ”number” : 1

36 } , {
37 ”name” : ” E l e c t r o n i c a l System” ,

38 ” type ” : ” St ructure ” ,

39 ” c h i l d r e n ” : [. . .] ,

40 ”number” : 2

41 } , {
42 ”name” : ” Mechanical System” ,

43 ” type ” : ” St ructure ” ,

44 ” c h i l d r e n ” : [. . .] ,

45 ”number” : 3

46 } ,

47]

48 }

Listing 6.1: JSON: SBS - Solid Bridge

Each node of the structure consists of four properties: Name, type, children and number.

The number is important for the correct sequence of the nodes. The type indicates that it is

a structure. The name contains the name of the node. In the code example can be seen, the

nodes of the next level are attached to the children property.

After the structures have been successfully created, the individual nodes must be provided

with information and properties. As described above, these can be components, contracts,

site plans or attributes and tasks.

6.1. Case Study 40

In the Figure 6.5 can be seen the System Breakdown Structure with assigned objects from

the 3D model. The corresponding components from the 3D model were assigned to each

structure node. In the above mentioned picture only exemplary connections between the

model and the structure are shown. Many components, such as the electrician’s, are not

visible in this model. These can still be selected in the programmed tool, since the individual

components can be added via a list.

Figure 6.5: SBS - Assigned Objects

Similar to the System Breakdown structure, the corresponding components are also attached

to the Work Breakdown structure by the shell builder. In addition, information about the

schedule and costs is appended to the nodes. The following figure (Figure 6.6) shows the

structure for the shell builder. Here you can see the assigned parts from the 3D model.

Figure 6.6: Assigned Objects: WBS - Shell builder

6.1. Case Study 41

A separate model was uploaded for the electrician’s discipline. As with the Work Breakdown

Structure of the shell builder, the corresponding components are also assigned to the struc-

ture of the electrician. In the figure (Figure 6.7) the connections between components and

structure are visible.

Figure 6.7: Assigned Objects: WBS - Electrican

In addition, the figure (Figure 6.8) shows that the nodes are assigned information about the

time required and the possible costs.

Figure 6.8: Properties: WBS - Electrican

Once all the required information and data have been assigned to each node, the nodes of

two structures are connected to each other. To see the costs and also the time required for

each function, the work packages are linked to the individual functions. This means that

the individual nodes of the Work Breakdown Structure are linked to those of the System

Breakdown Structure. The Figure 6.9 shows a list how the individual nodes of the System

6.1. Case Study 42

Breakdown structure are connected to the Work Breakdown structure of the shell builder.

Furthermore, the predicate is to be seen to describe the connection exactly and to generate

a kind of RDF triple.

Figure 6.9: Connection List: SBS - WBS Shell Builder

These created links can also be displayed with a matrix, since the Work Breakdown structure

can be arranged on the left side and the System Breakdown structure on the upper side. The

Figure 6.10 shows the Work Breakdown structure of the electrician on the left side and the

System Breakdown structure on the top side. The Installation of various cables node was

connected to four different nodes. The laying of cables is necessary for the function of the

sensors, the communication and the light. In addition cables are needed to provide the power

supply.

6.1. Case Study 43

Figure 6.10: Matrix: SBS - WBS Electricans

By connecting two nodes, it is possible, as already described above, to see the information

or data, such as costs or even assigned objects from the 3D model, from the other node.

This establishes the actual cooperation, since the attached information does not have to be

exchanged directly. Instead they are made available indirectly by connecting two nodes of the

opposite side. The following figure (Figure 6.11) shows the properties of the node Sensors of

the System Breakdown Structure. This shows that this node is connected to the Installation

of various cables node. Furthermore, the user is shown the attached information of all linked

nodes. Here, for example, the costs incurred and the time required are displayed as attributes.

6.2. Evaluation 44

Figure 6.11: Properties: SBS

6.2 Evaluation

In this case study a 3D bridge model was used to divide the project for the construction of

a new bridge into the individual Breakdown Structures. The next step was to append the

required information and data to the respective nodes. The nodes of two structures were

then connected to each other.

The time required to disassemble this project into individual parts is not big. However,

attaching the individual information and data to the structure nodes involves more effort.

The individual data must not only be stored digitally in the form of documents, but must

also be individually assigned to the corresponding nodes in the form of attributes. Depending

on how detailed and extensive the variety of data and information should be, a large amount

of data comes together. If there is a large amount of data at a node, there is also the risk of

losing the overview. To avoid this, additional sorting and grouping would be necessary. In

addition to this risk, a larger and more complex project means that more storage space and

performance is needed on the servers that provide this programmed tool.

The next step also involves a lot of time, namely connecting two structure nodes. As already

described above, the effort for small and not so complex projects, as in this example, is

limited. If this approach is applied to a larger and more complex project, a lot of time must

be taken into account to connect all nodes together.

6.2. Evaluation 45

Another problematic point is that links between parts and structure could be lost if a new

state of a 3D model is uploaded. This depends on whether the component ID changes for

a new model or not. Nevertheless, it was shown that it is possible to work with several 3D

models.

In summary, this is an interesting further development to the Common Data Environment.

The data and information are stored in a work package or in a function of the project itself.

This makes it possible to see the required data of a work package and function at a glance and,

if necessary, to directly optimize it. However, it should not be forgotten that, depending on

the size of the project, the time required is very long, which also increases the costs required

to carry out the project. Nevertheless, time and costs can also be saved, as this approach

makes more structured work possible.

46

Chapter 7

Development of a software

prototype

7.1 Introduction

This chapter will describe how the approach of chapter 5 can be implemented by means of

a prototype. At first it describes how to approach the implementation of the prototype and

what functionality both the front-end and the RESTful API should have.

Afterwards the different programming languages, libraries and services will be described.

Once the basics have been defined, the development from the prototype and the RESTful

API will be described. In addition it will be described how and where the prototype is to be

put online.

7.2 Approach to the implementation of the prototype

When implementing the solution approach in a prototype, consideration must be given to

which functions should be made available to the user. As already described in the solution

approach, the Cloud Platform BimPlus already provides some functions and only the new

functions would need to be implemented. Because the source code of BimPlus is not openly

available a new platform must be created. However, since the RESTful API of BimPlus is

freely accessible, the existing functions can be used. To maintain this separation between

front-end and RESTful API and to maintain the current state of the art in such architectures,

a RESTful API is also programmed in addition to the front-end.

This has the advantage that the RESTful API can also be used independently from the

front-end, as it should be done with the RESTful API of BimPlus in this case.

7.3. Functionality 47

A web framework is to be used to create the prototype of the front-end. BimPlus is pro-

grammed with the Javascript Framework Ember. Currently there are several web frameworks

that can be used to implement such a application. The author of this Masters thesis would

like to use Angular for this purpose. This is a TypeScript based framework for single web page

applications. It is developed by a community of individuals and companies led by Google

and published as open source software. Angular is one of the best-known frameworks.

There are also several ways to implement a RESTful API. Since the author has a very

good understanding of JavaScript, the Node.js-Framework Express is chosen. Express is

implemented in a Node.js application. This makes it possible to quickly and easily provide a

RESTful API.

The provision of the front-end and the RESTful API also play an important role in the

selection of the system. Since both can be made quickly available online and securely with

the container solution of Docker, the selection was only strengthened.

The functionality of the implemented system is described below.

7.3 Functionality

The user should be able to log in with the access data of BimPlus via an upstream login.

Then he must select his team in which he wants to work. The RESTful API of BimPlus allows

you to work in different teams at the same time. Once the user has selected a team, he must

determine on which project he wants to work. Only by selecting the team and the project all

functions are available to the user. The data is provided by the implemented RESTful API.

Any data stored in BimPlus, such as user data or project data, is passed by the RESTful

API of BimPlus to the newly implemented RESTful API. This has the advantage that no

separate authentication is required.

After the team and project selection has been made, the user is redirected to a page on which

the implemented functions are displayed.

To create a new structure in the project, which represents a very large role in the imple-

mentation of this Masters thesis, the user either clicks on the corresponding button on the

overview page or he clicks in the top menu on Structures → New structure.

A new structure can be created on this newly loaded page. This must be entered in the text

field in the form of a JSON structure. The schema according to which it must be written

is displayed above the text field. Once the corresponding structures have been created, the

user can decide whether he wants to create the various links between the structure nodes

or whether he wants to define the properties or information at the corresponding structure

nodes first.

7.3. Functionality 48

If he wants to create the connections first, he must either click on the corresponding button

on the overview page or in the Top Menu. The corresponding menu item in the Top Menu is:

Structure → Connections. On this page the user has the option of selecting a structure from

two menus. The structures are created by means of different possibilities: Via the method

described above, via the RESTful API of BimPlus or via its cloud platform. If the user has

selected two structures, they are displayed in the form of a tree structure. On this page the

user can now select a node in each structure that he wants to connect to form a triple. In

the following image (Figure 7.1) you can see that the user has selected only one structure.

To complete the triple he must specify the predicate in a text field. Unlike the RDF scheme,

the user can enter more than one word. For example, this could be a complete sentence

describing this connection.

Figure 7.1: Connect Structure Nodes

As soon as the user clicks on Create, the existing links and the new connection between the

two selected structures are displayed at the end of the page. If the user clicks on the subject

or object in another connection, the tree structure opens at the appropriate position and the

node is selected in the structure. This makes it possible to quickly and easily create a new

connection for the selected node.

7.3. Functionality 49

As already described in the solution approach, the connection between two nodes is only in

one direction. If the creator wants the connection to be valid in the opposite direction, he

must select the structures in the opposite direction.

As soon as all connections have been created, the user can use the Top Menu to switch to

the page via which he can adjust the properties that are attached to a respective structure

node. The corresponding menu item is called Structures → Properties. On this page you

have to select the structure that you want to view or edit. As on the previous page, the

structure is displayed in a tree structure. When a node is selected, the general properties of

the selected point are displayed in the right panel. These are the name, ID, and type of the

selected structure node. In the following image (Figure 7.2) you can see that the user has

selected the Construction Site Logistics node.

Figure 7.2: Properties of a Structure Nodes

The RESTful API of BimPlus allows you to specify different types for a node. The following

types are available to the user: Apartment, Activity, Energy, Schedule, Structure. Depending

on whether additional nodes are attached to the point, a different type can be selected during

the creation to uniquely describe the node.

In addition to the display of general information, further menu tabs are available. The Issues

button to the right of the details allows the user to add existing tasks to a node. If he wants

to create a new task, he can do this in a dialog box. They also have the option of creating

them via the Cloud Platform BimPlus.

If tasks have already been assigned to the selected node, they are displayed in this tab. If

the node was linked to another node in the previous page, the tasks of the connected node

are also displayed in this tab as long as a task has already been assigned to it.

Since these structures are also available to other team members, they can also bind tasks to

the node. Nevertheless an existing task can only be removed by the producer himself.

7.3. Functionality 50

A deletion request to remove a task, as described in the solution approach, is provided. It is

however not yet available to the user.

The next tab allows the agent to freely add properties to a node. Two text fields are available.

It uses the first text field to specify the name of the property and the second one to specify

the value. As in the previous tab, the existing properties are displayed. The properties of

the connected structure nodes are also displayed. The possibility to delete a property, is of

course, also available.

The last two tabs are for adding parts that are present in the 3D model of the selected project

and for adding files. If the user wants to connect a new part to the nodes, a dialog box opens

and grays the remaining background of the page. In this dialog window all existing parts

are sorted and structured according to part types in the form of a tree structure. If the user

selects a component to add, the properties of this component are displayed. In addition the

component is visualized in a viewer. This allows the user to view the selected object. As

you can see in the following image (Figure 7.3) the user has selected a foundation to get the

visualization and properties of this building element.

Figure 7.3: Assign of Building Elements to a Structure Nodes

The next step is to click on Assign to Structure to assign this building element to the struc-

ture node. Only when the user has finished adding building elements and closes the dialog

window, he returns to the overview of the already and newly assigned building elements. The

functionalities available to the previous tabs are also available at this point.

7.4. Programming language and libraries 51

In the attachments tab, the user can upload files and bind them to the structure node. The

attachments would be stored on the server where the RESTful API is hosted. As with the

other tabs, the system displays the information, or in this case the files that are attached to

the selected node and to those of the connected structures.

The following describes the programming languages and libraries used to create the prototype.

7.4 Programming language and libraries

7.4.1 JavaScript

JavaScript is a scripting language originally developed by Netscape in 1995 for dynamic

HTML in web browsers to evaluate user interactions, modify, reload, or generate content to

extend the capabilities of HTML and CSS. Today JavaScript is also used outside of browsers,

for example on servers [57].

In the course of time some JavaScript frameworks have also developed. The best known

frameworks are ReactJS 1, Vue.js2.

Frameworks serve as a skeleton for single page applications, allowing developers to focus less

on code structure or maintenance while focusing on creating complex interface elements [58].

7.4.2 TypeScript

TypeScript is a programming language developed by Microsoft. It is based on the future

ECMAScript-6 standard. TypeScript is similar in structure to JavaScript. A particular

advantage of TypeScript over JavaScript is its security type. When initializing variables a

corresponding type can be specified. When programming with TypeScript it is possible to

include JavaScript libraries.

If a program written in TypeScript is compiled, JavaScript files are available to the user

again.

Like JavaScript, TypeScript provides the programmer with various Web frameworks. One of

the best-known frameworks is Angular3.

1https://reactjs.org
2https://vuejs.org
3https://angular.io/

https://reactjs.org
https://vuejs.org
https://angular.io/

7.4. Programming language and libraries 52

7.4.3 Node.js

Node.js is a JavaScript runtime built on Chrome’s V8 JavaScript engine. It uses an event-

driven, non-blocking I/O model that makes it lightweight and efficient. It is an open source

server framework and it runs on various platforms like Windows, Linux, Unix, Mac OS X,

etc.

Descriped before it uses JavaScript on the server. To write Node.js applications you can use

npm. It is the package manager for JavaScript and the world’s largest software registry.

7.4.4 EXPRESS

Express is a simple and flexible Node.js framework of web applications that provides numerous

powerful features and functions for web and mobile applications. It can be installed using the

npm Package Manager. Using countless HTTP utility methods and middleware functions,

creating a powerful API is quick and easy [59].

The following (Listing 7.1) shows an example application for an API server. In the first line

the library EXPRESS is implemented and included. Then a server instance of the variable

app is assigned. The following line defines what happens when the user sends a Get Request

to the API server. The server returns a Hello World.

Finally, the programmer must define which port the server should listen to. In this case it is

port 3000.

1 const expre s s = r e q u i r e (’express’) ;

2 const app = expre s s () ;

3

4 app . get (’/’ , (req , r e s) => r e s . send (’Hello World!’)) ;

5

6 app . l i s t e n (3000 , () => conso l e . l og (’Example app listening on port

3000!’)) ;

Listing 7.1: Hello World API

7.4.5 Docker

Docker brings the concept of apps to the server. A Docker container contains an application,

but also all the resources that it requires at runtime. Docker is particularly well suited for

cluster environments and data centers.

7.5. Building the Prototype 53

Docker is a kind of virtualization. The exact name is containerization. It is an implementation

of container technology which is characterized by particularly user-friendly features and has

made the term container popular as an alternative to virtual machines in the first place.

A container combines a single application with all its dependencies, such as libraries, utilities

and static data, into one image file without including a complete operating system. Therefore

containers can be compared to a lightweight virtualization.

Containers require fewer resources than virtual machines because they do not need to start

their own operating system. Instead they run in the context of the host operating system

instead. Nevertheless, the containers are sealed off from each other and from the host system

[60].

To start a container in Docker, a finished image or a self-compiled image is required. On the

Docker website you will find some ready-made images that are published by companies and

other users.

A self-written image can be read in the Listing 7.2. The creator must first define a basic

image on which he wants to build. The user can then define that required packages are to be

installed or that files are to be copied.

1 FROM httpd

2 COPY . / publ ic−html/ / usr / l o c a l /apache2/ htdocs /

Listing 7.2: Example docker file

Once the image is defined, it can be created and executed by the Docker instance. So that

the container can also be reached from outside, corresponding ports must be defined when

the container is executed.

7.5 Building the Prototype

As already described above, the prototype consists of two systems, the front-end and a REST-

ful API. The following describes how the front-end and the RESTful API are programmed.

7.5.1 Front-end

The Web Framework Angular is structured according to the MVC scheme. MVC stands for

Model View Controller. This means that the individual components are divided into the

corresponding areas. The Model area includes the provision of data. The View area displays

the data and the controller provides the functions necessary to handle the available files.

7.5. Building the Prototype 54

The individual pages are created as components in Angular. This means that a large number

of components are created at the beginning. The services are then created. These contain the

requests to the RESTful API. For a better overview different services are created according

to the functionality. The following services are created:

- service for authentication with the RESTful API

- service for the requests passed through the RESTful API of BimPlus

- Service for processing connections between two structures and

- Service for managing the properties and information of a structure node

These services can be integrated into the components as required. For example, all services

except that for authentication are included in the component for viewing and adding prop-

erties and information to a structure node. To ensure that the required data is available

directly after the individual components have been called, it is loaded automatically when

the services are called. Angular provides the function OnInit for this.

The open source toolkit Bootstrap is integrated in order to have little to do with the design of

the application. This toolkit helps to develop with HTML, CSS and JS. With Sass variables

and mixins, a responsive grid system, extensive pre-built components and powerful plug-ins

based on jQuery, applications can be created quickly and easily.

Each individual page or component consists of three files: The controller, which is pro-

grammed in TypeScript, the view in the form of an HTML document and the corresponding

CSS file to adapt the style of the view.

Angular provides the possibility that a component can be integrated into another component.

This makes it possible to make the source code clearer and to store recurring functions. This

method is used in the view of the properties and information of a structure node, since the

different tabs are structured almost identically.

As soon as the application is programmed, it is compiled and put online with the help of

Docker. The section 7.6 describes in detail how this is implemented with the container

solution.

The following chapter describes how the services are provided with the data via a RESTful

API. It also describes how the RESTful API is structured.

7.5. Building the Prototype 55

7.5.2 RESTful API

The RESTful API is the heart of the prototype. It processes and provides all kinds of

information that the individual components require. This encapsulation is especially carried

out because the RESTful API can be used independently.

As described above, the Node.js framework EXPRESS is used to create the RESTful API.

Before the actual creation of the RESTful API can be started, the required packages and

libraries must be included.

In addition to EXPRESS, the following libraries, for example, are included: MySQL to access

a MySQL database, Passport to provide authentication, Redis to temporarily store the data

of a session or body-parser to process the data sent to the RESTful API.

To get a better overview when creating the RESTful API, the routers and controllers are

separated from each other. The files for the routers describe which function of the controller

is to be called via which address.

The following code example (Listing 7.3) shows the router for processing the connections

between two structures.

1 const expre s s = r e q u i r e (’express’) ;

2

3 const route r = expre s s . Router () ;

4 const s t ructureConnect = r e q u i r e (’../controllers/

structureConnectController’) ;

5

6 route r . route (’/:rootSubjectStructureId’)

7 . get (s t ructureConnect . getConnect ions)

8 . post (s t ructureConnect . postConnect ion) ;

9

10 route r . route (’/:subjectStructureId/:connectionId’)

11 . get (s t ructureConnect . getConnect ion)

12 . put (s t ructureConnect . ed i tConnect ion)

13 . d e l e t e (s t ructureConnect . de l e teConnect ion) ;

14

15 module . export s = route r ;

Listing 7.3: Router File for Structure Connecitons

First, the EXPRESS package must be included in order to access the functions it contains.

Then the corresponding controller must be integrated, which contains the respective func-

tions.

The following lines define which function of the controller can be called via which address.

A distinction is made between which type of request is sent: POST, GET, DELETE. POST

7.5. Building the Prototype 56

means that data is sent to the RESTful API. GET returns data to the client and DELETE

deletes information. :rootSubjectStructureId is a placeholder. As the name already indicates,

the id of the subject structure is expected here.

A separate function must be created in the controller for each different type of request. A

corresponding example for a function or how a controller is constructed shows Listing 7.4.

1 const db = r e q u i r e (’../../config/db’) ;

2 const boom = r e q u i r e (’boom’) ;

3 const uuidv4 = r e q u i r e (’uuid/v4’) ;

4 const he lpe r = r e q u i r e (’../helper/helperFunctions’) ;

5

6 export s . getConnect ions = function getConnect ions (req , res , next) {
7 i f (! req . params . r oo tSub j e c tS t ruc tu r e Id | | he lpe r . checkValidUUID (

req . params . r oo tSub j e c tS t ruc tu r e Id) === fa l se) {
8 return next (boom . badRequest (’Please enter a valid root

structure id’)) ;

9 }
10

11 db . get () . query (’SELECT * FROM structureConnect WHERE

rootSubjectStructureId = ?’ , [req . params . r oo tSub j e c tS t ruc tu r e Id

] , (err , rows) => {
12 i f (e r r) return next (boom . badImplementation (e r r)) ;

13 r e s . j s on (rows) ;

14 }) ;

15 } ;

Listing 7.4: Controller File for Structure Connecitons

As with the router, the required packages must first be imported. In this case you have to

interact with the MySQL database, so you have to import it with the function from the first

line 1. The boon package helps to process query errors. The uuuid/v4 package provides a

UUID in version 4. Each time this function is called, a new UUID is returned. To avoid

having to rewrite recurring functions every time, they are swapped out in a helper function

and imported with the function in line 4. The function shown in line 6 returns all existing

connections of a certain structure. The function can access the ID of the subject structure

via the placeholder in the router. To avoid incorrect requests, the system first checks whether

an ID has been transferred and whether it is valid. Only then is a query sent to the database.

So that not all functions have to be reprogrammed, some of them are reused which are already

available via the RESTful API of BimPlus. This includes, for example, authentication. The

created RESTful API does not provide its own user administration. Rather it uses those of

BimPlus. If the user logs in via the RESTful API, the user name, password and application

ID are forwarded to BimPlus. If a token is returned by BimPlus, a new token in the form of

a JWT token is also created. This contains the BimPlus token and user data.

7.6. Deploy and Hosting 57

With this newly created token, the user can authenticate himself to the RESTful API and

also to that of BimPlus. The following short excerpt (Listing 7.5) shows the function for

querying all existing team members. The information is retrieved via the RESTful API of

BimPlus.

1 export s . getTeams = function getTeams (req , res , next) {
2 const a l lp lanData = req . user ;

3

4 i f (! req . s e s s i o n . a l lp lanData | | ! req . s e s s i o n . a l lp lanData [

a l lp lanData . body . c l i e n t i d]) {
5 return next (boom . unauthor ized (’Please login again’)) ;

6 }
7 const opt ions = {
8 u r l : ’https://api-dev.bimplus.net/v2/teams’ ,

9 j s on : true ,

10 headers : {
11 ’Content-Type’ : ’application/json’ ,

12 Author i zat ion : ‘ BimPlus ${ a l lp lanData . a l lp lanToken } ‘ ,

13 } ,

14 } ;

15 r eque s t (opt ions , (e r ror , response , body) => {
16 i f (e r r o r) {
17 return next (boom . badImplementation (e r r o r)) ;

18 }
19 r e s . j s on ({ s u c c e s s : true , data : body }) ;

20 }) ;

21 }

Listing 7.5: Controller File for BimPlus Queries

If the user sends a request to the server, the token sent is interpreted and stored in the

variable req.user. To send an HTTP request to a RESTful API, the package request is used.

The necessary information is defined in the variable options, including the token in line 12,

which is necessary to authorize the BimPlus RESTful API.

As soon as all functions are written in the respective controllers and the corresponding routers,

the RESTful API can be published. The container solution Docker is also used for this

purpose.

7.6 Deploy and Hosting

The container solution of Docker is used for publishing the front-end and the RESTful API.

The subsection 7.4.5 already explained the idea behind Docker.

7.6. Deploy and Hosting 58

This solution is selected because it makes it possible to quickly make Web services available

online in a simple manner. All you need is a Dockerfile. The Docker container solution takes

care of the rest. No server needs to be installed separately.

Because the individual containers are separated from each other, there is more security against

attacks from outside. The MySQL and Redis containers are connected directly to the RESTful

API container. The two containers have no real interface to the outside world. The RESTful

API could also be connected to the front-end. This is not done because the RESTful API

should work independently.

1 docker run −d −P −−name web −−l i n k db : db t r a i n i n g /webapp python app . py

Listing 7.6: Bash Command to execute a docker container

Listing 7.6 shows both how a container can be executed via the command line and how a

container, in this case db, is linked into that container.

The Docker container for the RESTful API is created with the following Dockerfile (List-

ing 7.7):

1 FROM node

2 WORKDIR / usr / s r c /app

3 COPY package ∗ . j s on . /

4 RUN npm i n s t a l l −−only=product ion

5 COPY . .

6 EXPOSE 3000

7 CMD ["npm" , "start"]

Listing 7.7: Docker file RESTful API server

In the first line of the Dockerfile the base image is defined. In this case it is the node Image. In

the next line, the directory in which the server is to be executed is defined. For performance

reasons, the file in which the server defines which packages it needs is copied separately and

then the packages are installed with the command in line 4. Only then are the remaining

files copied to the server.

The reasons for this separation are that Docker temporarily stores individual steps for creating

the image. As long as the file package.json does not change, the state up to this command

can be taken over from the old image. This makes it possible to create an image faster.

Before this container can be started, the containers for MySQL and Redis must be started.

A finished Dockerfile is available for both containers.

Both containers are started with the following command (Listing 7.8):

1 docker run −−name db −e MYSQL ROOT PASSWORD=my−s e c r e t−pw −d mysql

2 docker run −−name r e d i s −d r e d i s

Listing 7.8: Bash Command to execute a mysql and redis docker container

7.6. Deploy and Hosting 59

When starting the MySQL Container, a root password is also defined. Without it, it is not

possible to access the database.

Compiling and starting the front-end is also done with Docker. This is based on an existing

manual4

Putting the front-end online is done by a Nginx server. For this a separate configuration file

(Listing 7.9) must be created in the project:

1 s e r v e r {
2 l i s t e n 80 ;

3 l o c a t i o n / {
4 root / usr / share / nginx /html ;

5 index index . html index . htm ;

6 t r y f i l e s $u r i $u r i / / index . html =404;

7 }
8 }

Listing 7.9: Nginx configuration

Then it is possible to start the container with the following (Listing 7.10) Dockerfile:

1 # Stage 0, based on Node.js, to build and compile Angular

2 FROM node as node

3 WORKDIR /app

4 COPY package . j son /app/

5 RUN npm i n s t a l l

6 COPY . / /app/

7 ARG env=prod

8 RUN npm run bu i ld −− −−prod −−environment $env

9

10 # Stage 1, based on Nginx, to have only the compiled app, ready for

production with Nginx

11 FROM nginx

12 COPY −−from=node /app/ d i s t / / usr / share / nginx /html

13 COPY . / nginx−custom . conf / e t c / nginx / conf . d/ d e f a u l t . conf

Listing 7.10: Docker file RESTful API server

4https://medium.com/@tiangolo/angular-in-docker-with-nginx-supporting-environments-built-with-multi-stage-docker-builds-bb9f1724e984

https://medium.com/@tiangolo/angular-in-docker-with-nginx-supporting-environments-built-with-multi-stage-docker-builds-bb9f1724e984

7.6. Deploy and Hosting 60

The special feature of this Dockerfile is that the front-end is first compiled and then put

online with the Nginx Server.

The advantage of Docker Containers is the simple and fast provision of the entire system

as well as that the API server can be arbitrarily scaled by Docker’s own means in case

performance problems occur.

The Docker instance required for the containers was installed on the DigitalOcean cloud com-

puting platform. This platform was chosen because the author already had a corresponding

server there.

61

Chapter 8

Summary, Conclusion and Outlook

8.1 Summary

The topic of this Master’s thesis is the development of a holistic data management in civil

engineering with the help of methods of the System Engineering.

After the introduction in the chapter 2 the digital methods in the building environment which

are necessary for the implementation of this Masters thesis were explained. The term BIM was

explained and how it is currently being implemented in infrastructure projects. It has been

described that Federal Ministry of Transport and Digital Infrastructure has developed a step-

by-step plan to gradually implement more and more projects in infrastructure construction

with BIM. This phased plan provides for the mandatory use of BIM in federal infrastructure

projects from 2020. To further promote this implementation, the BIM4INFRA working group

was also set up.

As the exchange of data through larger projects becomes more and more important, the

topics IFC and IFC Model View Definition were also explained. Since a uniform definition

of components is required for file exchange, the object catalog OKSTRA was also explained.

In the following chapter (chapter 3) the three technical bases Semantic Web, Classification

and System Engineering were described. Semantic Web describes the idea of linking data

and information via the web to a large network. To better understand this idea, the term

ontology was described in this chapter. Originally it comes from philosophy, but it can also

be applied to many other areas. In computer science, for example, as already described in the

technical basics, an ontology is often used to formalize and use as a meaning of information.

The co-founder of the Internet Berners-Lee has defined various requirements for the use of

the term ontology in computer science.

8.1. Summary 62

Since ontologies can be coded differently in computer science, the most important methods

are also described in this chapter. These include RDF and Web Ontology Language. Three

components are required to link two pieces of information in RDF. The two information are,

respectively, the subject and the object. The third component is the predicate. These three

components form an RDF triple. The Web Ontology Language is an extension of RDF and

is available in three versions. These differ depending on the complexity and diversity of the

information.

The term Semantic Web also includes the term Linked Data. This method describes connect-

ing information across the Internet. Each connection requires several components according

to the Linked Data methodology. These include RDF and URI. URI stands for Universal

Resource Identifier and is an identifier for corresponding information. Along with Linked

Data there is in addition Open Data. Open Data is information that is publicly accessible,

but not necessarily linked to each other. The combination of Linked Data and Open Data is

Linked Open Data.

Through the development of Linked Open Data various working groups have developed. One

of them develops an extension of OWL to be able to use the IFC scheme in connection with

Semantic Web. This extension is called ifcOWL. Not only about this but also about SPARQL

was written in this chapter. SPARQL is similar to MySQL and is a query language for RDF.

The next major technical basis reported in the chapter 3 is classification. Germany has its own

standard on classification systems. In addition to this standard, there is also the International

Standard ISO 12006-2:2015, both of which are described in this chapter. In connection with

DIN, the structure of a classification system and how the different terms are defined in a

classification system were described. Furthermore, it was shown how a classification of office

machines could look like.

The International Standard ISO 12006-2:2015 has shown that it contains tables to help de-

velop classification systems for the construction industry. There are different tables for the dif-

ferent object classes, divided according to different views. In addition, this standard describes

how the individual object classes are related. In addition to this standard, the OmniClass

and Uniclass are also available. Both are classification systems based on an International

Standard.

The OmniClass is used by the North American architecture, engineering and construction

industries throughout the entire life cycle of the structure. The UniClass, on the other hand,

is used by UK-based construction companies.

Last important technical basis represents System Engineering. It takes up the previous basis,

since it describes that large and extensive projects are to be classified into structures. The best

known method is to divide projects into Breakdown Structures. Different types of Breakdown

Structures are available to the user, for example: The System Breakdown Structure, the Work

8.1. Summary 63

Breakdown Structure or the Organization Breakdown Structure. The System Breakdown

Structure classifies the project according to the functions. As the name suggests, the Work

Breakdown Structure describes the system using work packages. It structures the project on

the basis of the work steps that are necessary for completion.

In chapter 4 current developments and research projects concerning the methods used were

described. This includes, for example, the current development status of IFC or topics of the

Semantic Webs.

The chapter 5 describes how a holistic data management can be implemented with the help

of System Engineering. This makes it particularly important that data and information can

be distributed and exchanged freely and without loss throughout the project. The solution

approach in this Master’s thesis is a combination of the two components System Engineering

and Semantic Web as already mentioned.

As described above, projects can be classified in Breakdown Structures. This helps to high-

light individual points in the project. If individual structure nodes of the Breakdown Struc-

ture are connected to each other, an extensive network of information is created. When

connecting individual structures the technique of Semantic Web is applied. One structure

node represents the subject and the other node represents the object. For the RDF schema,

it is important that the two nodes are additionally described with a predicate. This results

in a valid RDF triple.

Additional information is assigned to the individual nodes. The information can be com-

ponents of the 3D model of the project or also file, attributes or tasks. Because individual

structure nodes are connected to each other, the various information of the object node can

be viewed at the subject node. The connection between two nodes is only in one direction

and not in both, since the opposite connection could have a different meaning. This means

that an additional connection must be created to establish a bidirectional connection. If in-

formation is changed or added to a node, it does not have to be exchanged from one structure

to another.

After the solution approach has been presented in chapter 5, it is checked for applicability

in this chapter with the help of a 3D model. For this review it is assumed that this model

will have to be newly build. The new construction project in the form of this 3D model

will initially be divided into three Breakdown Structures: one System Breakdown Structure

and two Work Breakdown Structures. The two Work Breakdown structures are for the two

construction companies: Electrician and shell builder. In a productive application, many

more construction companies will carry out the project. Nevertheless an exemplary focus

was placed on these two construction companies.

After division into the structures, the information and data is assigned to the individual

nodes. These are both components from the 3D model, as well as information, for example,

8.2. Conclusion 64

about the costs or the time required. Finally, the individual nodes are interconnected so that

information can be exchanged. In addition to the usability check, evaluation also has been

done in this chapter.

In the last chapter (chapter 7) the implementation of the solution approach is described

by means of a prototype. First, the planning of the conversion is described, namely that

there should be a RESTful API together with a front-end. The RESTful API should include

functions from the RESTful API of BimPlus from Allplan. Because the BimPlus code is

not openly accessible, no prototype can be implemented here. For the RESTful API only

an useraccount and an application id for BimPlus are required, after which all implemented

functions can be accessed.

The RESTful API was implemented as a Node.js application with the EXPRESS frame-

work. This combination allows to create a well structured and understandable RESTful API.

The implemented functions in the RESTful API of BimPlus are passed through by the new

RESTful API. Only the response was adapted according to requirements. The front-end

was implemented with the Angular Framework, since this is one of the most current and

well-known frameworks based on TypeScript. The individual web pages were programmed as

component. Because Angular Framework is for single page applications, the user can navigate

smoothly through the prototype without reloading the web page. Data processing has been

separated from the front-end and takes over the RESTful API. This has the advantage that

the RESTful API can work independently.

In addition to the planning and implementation of the prototype, the libraries and services

used were also described.

8.2 Conclusion

In this Master’s thesis, a prototype was used to show how a holistic data management in

civil engineering can function with the help of the Systems Engineer methods. To do this

the project must be broken down or structured into its individual parts. If all information,

such as attributes or components of the 3D model are assigned to the corresponding nodes,

a uniform and sorted system is created. If the user connects a structure node to a node of

another structure, an all-encompassing network of information is gradually formed. As the

information no longer has to be exchanged directly, no information can be lost, unless data is

lost due to a technical problem. In this case there are backups that restore the corresponding

data. Data loss or falsification of the information is not possible due to human error.

An important factor is that the project must be classified into individual Breakdown Struc-

tures and the information must be assigned to the nodes. Once the individual structure nodes

are connected according to their dependencies, data can be distributed without loss.

8.3. Outlook 65

As already mentioned in the evaluation of the case study, this procedure is possible for small

projects without problems. As these projects grow and become more complex, this approach

is no longer easily applicable as it is too costly. The individual Breakdown Structures would

be too large to be able to see them right away. Adding information and data would also be

too time-consuming.

However, once building individual structures and assigning information can be automated, it

is a very good alternative to a common data environment, since the required information is

much more precisely linked to a work package or function of the project.

8.3 Outlook

As already mentioned, the individual Breakdown Structures must be connected manually.

This is no longer possible for larger projects. In this context, it is conceivable that a possibility

could be created to automatically interconnect the individual nodes. This automation could

gradually become more intelligent through existing connections.

Another possibility to extend this prototype is the native embedding of Allplan’s Cloud

Platform BimPlus, since some functions already exist in this Cloud Platform and are only

passed through by the new RESTful API.

To facilitate the setup of the Breakdown Structures, a kind of template function would also

be conceivable. This provides the user with a template to classify the project. As long as the

structure is general, these structures could also be copied from one project to the next.

In the solution approach, the topic of IFC Model View Definition has already been addressed.

This topic was only partially integrated into the prototype. This topic would be another way

to expand the project.

66

Appendix A

Disk

The following documents are on the enclosed disk:

- This thesis [PDF]

- Files of the prototype (compressed) [ZIP]

- Created Breakdown Structures [JSON]

BIBLIOGRAPHY 67

Bibliography

[1] Bundesministerium für Verkehr und digitale Infrastruktur, “Stufenplan Digitales Planen

und Bauen,” 2015.

[2] T. Liebich, “IFC overview presentation,” http://www.bre.co.uk/filelibrary/events/

BREEvents/BIMConferenceSeason/DeliveryofIFC/2-Thomas-Liebich.pdf, accessed:

2018-06-09.

[3] A. Benevolenskiy, Ontology-based modeling and configuration of construction processes

using process patterns. Technischen Universität Dresden, 2015.

[4] J. Beetz, J. Van Leeuwen, and B. De Vries, “IfcOWL: A case of transforming EXPRESS

schemas into ontologies,” Artificial Intelligence for Engineering Design, Analysis and

Manufacturing: AIEDAM, vol. 23, no. 1, pp. 89–101, 2009.

[5] OmniClass, “Tables - OmniClass.”

[6] R. Züst, Einstieg ins Systems Engineering: optimale, nachhaltige Lösungen entwickeln

und umsetzen, 3rd ed. Zürich: Verl. Industrielle Organisation, 2004, oCLC: 76620803.

[7] D. Lock, Project Management, 10th ed. Burlington, VT: Gower, 2013.

[8] J. Amann and A. Borrmann, “Analyse zur Erstellung eines 3D-BIM-konformen Straße-

nentwurfs auf Basis von IFC-Alignment aus einem OKSTRA konformen 2D- Straßenen-

twurf unter Einsatz der TUM Open Infra Platform in Verbindung mit der OKSTRA-

Klassenbibliothek,” Lehrstuhl für Computergestützte Modellierung und Simulation,

Tech. Rep., 2016.

[9] J. Amann, F. Schöttl, D. Singer, M. Kern, A. Widner, P. Geisler, D. Below, H. Hecht,

N. Gupta, A. Mustafa, v. Marǩıc, and A. Borrmann, “TUM Open Infra Platform 2017,”

2016.

[10] Nova Spivack, “Web 3.0 - The Best Official Definition Imaginable,” http://www.

novaspivack.com/technology/web-3-0-the-best-official-definition-imaginable, accessed:

2018-06-09.

http://www.bre.co.uk/filelibrary/events/BRE Events/BIM Conference Season/Delivery of IFC/2-Thomas-Liebich.pdf
http://www.bre.co.uk/filelibrary/events/BRE Events/BIM Conference Season/Delivery of IFC/2-Thomas-Liebich.pdf
http://www.novaspivack.com/technology/web-3-0-the-best-official-definition-imaginable
http://www.novaspivack.com/technology/web-3-0-the-best-official-definition-imaginable

BIBLIOGRAPHY 68

[11] Randall Hunt, “Amazon Neptune,” http:://aws.amazon.com/de/neptune/, accessed:

2018-06-09.

[12] Lehrstuhl für Computergestützte Modellierung und Simulation der TU München,

“SEEBridge,” https://www.cms.bgu.tum.de/de/31-forschung/projekte/473-seebridge,

accessed: 2018-06-09.

[13] W3C, “SPARQL 1.1 Query Language,” https://www.w3.org/TR/sparql11-query/, ac-

cessed: 2018-06-09.

[14] C. Zhang and J. Beetz, “Querying Linked Building Data Using SPARQL with Func-

tional Extensions,” eWork and eBusiness in Architecture, Engineering and Construc-

tion (ECPPM 2016) - Proceedings of 11th European Conference on Product and Process

Modelling. - S.l. : s.n., 2016, no. October, p. 9, 2016.

[15] R. Battle and D. Kolas, “Enabling the Geospatial SemanticWeb with Parliament and

GeoSPARQL,” Semantic Web Journal, vol. 0, no. 0, pp. 1–17, 2012.

[16] D. Thasarathar, “Die Digitalisierung der Bauindustrie,” https://www.autodesk.de/

campaigns/the-power-of-digital-for-construction, 2016, accessed: 2018-06-09.

[17] A. Borrmann, M. König, C. Koch, and J. Beetz, Building Information Modeling: Tech-

nologische Grundlagen Und Industrielle Praxis, ser. VDI-Buch. Springer Vieweg, 2015.

[18] ARGE BIM4INFRA2020, “BIM4INFRA2020,” http://bim4infra.de/, accessed: 2018-

06-09.

[19] Bundesministerium für Verkehr und digitale Infrastruktur, “Umetzung des Stufenplans

Digitales Planen und Bauen,” p. 28, 2017.

[20] buildingSMART e.V., “Besser Planen mit BIM,” https://www.buildingsmart.de, ac-

cessed: 2018-06-09.

[21] buildingSMART, “Model View Definition Summary,” http://www.buildingsmart-tech.

org/specifications/ifc-view-definition, accessed: 2018-06-09.

[22] G. Costa, “Integration of building product data with BIM modelling,” Ph.D. disserta-

tion, Universitat Ramon Llull. ETS d’Arquitectura La Salle, Barcelona, 2017.

[23] buildingSMART, “mvdXML 1.1,” http://www.buildingsmart-tech.org/specifications/

mvd-overview/mvdxml-releases/mvdxml-1.1, accessed: 2018-06-09.

[24] OKSTRA, “Einführung,” http://www.okstra.de/, accessed: 2018-06-09.

[25] W3C, “Semantic Web,” https://www.w3.org/standards/semanticweb/, accessed: 2018-

06-09.

http:://aws.amazon.com/de/neptune/
https://www.cms.bgu.tum.de/de/31-forschung/projekte/473-seebridge
https://www.w3.org/TR/sparql11-query/
https://www.autodesk.de/campaigns/the-power-of-digital-for-construction
https://www.autodesk.de/campaigns/the-power-of-digital-for-construction
http://bim4infra.de/
https://www.buildingsmart.de
http://www.buildingsmart-tech.org/specifications/ifc-view-definition
http://www.buildingsmart-tech.org/specifications/ifc-view-definition
http://www.buildingsmart-tech.org/specifications/mvd-overview/mvdxml-releases/mvdxml-1.1
http://www.buildingsmart-tech.org/specifications/mvd-overview/mvdxml-releases/mvdxml-1.1
http://www.okstra.de/
https://www.w3.org/standards/semanticweb/

BIBLIOGRAPHY 69

[26] E. N. Zalta, “The Stanford Encyclopedia of Philosophy,” 2013.

[27] J. Busse, B. Humm, C. Lübbert, F. Moelter, A. Reibold, M. Rewald, V. Schlüter,

B. Seiler, E. Tegtmeier, and T. Zeh, “Was bedeutet eigentlich Ontologie?: Ein Begriff

aus der Philosophie im Licht verschiedener Disziplinen,” Informatik-Spektrum, vol. 37,

no. 4, pp. 286–297, 2014.

[28] T. Berners-Lee, “The Semantic Web as a language of logic,” https://www.w3.org/

DesignIssues/Logic.html, accessed: 2018-06-09.

[29] W3C, “RDF - Semantic Web Standards,” https://www.w3.org/2001/sw/wiki/RDF, ac-

cessed: 2018-06-09.

[30] OWL Working Group, “OWL - Semantic Web Standards,” https://www.w3.org/OWL/,

accessed: 2018-03-14.

[31] T. Berners-Lee, “Linked Data - Design Issues,” https://www.w3.org/DesignIssues/

LinkedData.html, accessed: 2018-06-09.

[32] Ontotext, “What are Linked Data and Linked Open Data?” https://ontotext.com/

knowledgehub/fundamentals/linked-data-linked-open-data/, accessed: 2018-06-09.

[33] DBpedia, “About dBpedia,” http://wiki.dbpedia.org/about, accessed: 2018-06-09.

[34] P. Pauwels, S. Törmä, J. Beetz, M. Weise, and T. Liebich, “Linked Data in Architecture

and Construction,” Automation in Construction, vol. 57, no. September, pp. 175–177,

2015.

[35] P. Pauwels, T. Krijnen, W. Terkaj, and J. Beetz, “Enhancing the ifcOWL ontology with

an alternative representation for geometric data,” Automation in Construction, vol. 80,

pp. 77–94, 2017. [Online]. Available: http://dx.doi.org/10.1016/j.autcon.2017.03.001

[36] P. Pauwels, “ifcOWL – openBIMstandards.org,” http://openbimstandards.org/

standards/ifcowl/, accessed: 2018-06-09.

[37] Deutsche Norm, “Klassifikationssysteme DIN 32705,” 1987.

[38] ISO 12006-2, “Building construction - Organization of information about construction

works - Part 2: Framework for classification,” 2015.

[39] OCCS Development Committee, “OmniClassTM Introduction and User’s Guide,”

http://www.omniclass.org/tables/OmniClass{ }Main{ }Intro{ }2006-03-28.pdf, ac-

cessed: 2018-06-09.

[40] A. Benevolenskiy, K. Roos, P. Katranuschkov, and R. J. Scherer, “Ontologiebasiertes

Framework für Referenzprozesse und Prozesskonfiguration,” in Informationssysteme im

Bauwesen 1, ser. VDI-Buch. Springer Vieweg, Berlin, Heidelberg, 2014, pp. 273–287.

https://www.w3.org/DesignIssues/Logic.html
https://www.w3.org/DesignIssues/Logic.html
https://www.w3.org/2001/sw/wiki/RDF
https://www.w3.org/OWL/
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://ontotext.com/knowledgehub/fundamentals/linked-data-linked-open-data/
https://ontotext.com/knowledgehub/fundamentals/linked-data-linked-open-data/
http://wiki.dbpedia.org/about
http://dx.doi.org/10.1016/j.autcon.2017.03.001
http://openbimstandards.org/standards/ifcowl/
http://openbimstandards.org/standards/ifcowl/
http://www.omniclass.org/tables/OmniClass{_}Main{_}Intro{_}2006-03-28.pdf

BIBLIOGRAPHY 70

[41] Designing Buildings Wiki, “NBS,” https://www.designingbuildings.co.uk/wiki/NBS, ac-

cessed: 2018-06-09.

[42] J. Gelder, “The principles of a classification system for BIM: Uniclass 2015,” 49th Inter-

national Conference of the Architectural Science Association 2015, vol. 1, pp. 287–297,

2015.

[43] S. Delany, “Uniclass 2015,” https://toolkit.thenbs.com/articles/classification#

classificationtables, accessed: 2018-06-09.

[44] R. Haberfellner, O. L. d. Weck, E. Fricke, and S. Vössner, Systems Engineering: Grund-

lagen und Anwendung. Orell Füssli Verlage, 2015.

[45] G. Drews and N. Hillebrand, Lexikon der Projektmanagement-Methoden, ser. GPM

Projektmanagement bei Haufe. Haufe-Mediengruppe, 2010. [Online]. Available:

https://books.google.de/books?id=Z06ItH4vb0gC

[46] D. Lock, Project Management. Gower, 2013. [Online]. Available: https://books.google.

de/books?id=9b3XCQAAQBAJ

[47] M. Rich, “Defining Project Breakdown Structures,” http://community.vitechcorp.com/

index.php/defining-project-breakdown-structures.aspx, accessed: 2018-06-09.

[48] buildingSMART, “Summary of IFC Releases,” http://www.buildingsmart-tech.org/

specifications/ifc-releases/summary, accessed: 2018-06-09.

[49] J. Amann and A. Borrmann, “Open BIM for Infrastructure - mit OKSTRA und IFC

Alignment zur internationalen Standardisierung des Datenaustauschs,” Tagungsband

zum 6. OKSTRA-Symposium, no. April 2014, pp. 1–10, 2015.

[50] D.-G. Lee, J.-Y. Park, and S.-H. Song, “Bim-based construction information manage-

ment framework for site information management,” Advances in Civil Engineering, vol.

2018, p. 15, 2018.

[51] J. Park and H. Cai, “Wbs-based dynamic multi-dimensional bim database for total

construction as-built documentation,” Automation in Construction, vol. 77, pp. 15

– 23, 2017. [Online]. Available: http://www.sciencedirect.com/science/article/pii/

S0926580517300663

[52] S.-L. Fan, C.-H. Wu, and C.-C. Hun, “Integration of cost and schedule using bim,”

Journal of Applied Science and Engineering, vol. 18, pp. 223–232, 2015.

[53] Mobi, “User Manual,” https://mobi.inovexcorp.com/docs/, accessed: 2018-06-09.

[54] Open Geospatial Consortium, “GeoSPARQL - A Geographic Query Language for RDF

Data — OGC,” http://www.opengeospatial.org/standards/geosparql, accessed: 2018-

06-09.

https://www.designingbuildings.co.uk/wiki/NBS
https://toolkit.thenbs.com/articles/classification#classificationtables
https://toolkit.thenbs.com/articles/classification#classificationtables
https://books.google.de/books?id=Z06ItH4vb0gC
https://books.google.de/books?id=9b3XCQAAQBAJ
https://books.google.de/books?id=9b3XCQAAQBAJ
http://community.vitechcorp.com/index.php/defining-project-breakdown-structures.aspx
http://community.vitechcorp.com/index.php/defining-project-breakdown-structures.aspx
http://www.buildingsmart-tech.org/specifications/ifc-releases/summary
http://www.buildingsmart-tech.org/specifications/ifc-releases/summary
http://www.sciencedirect.com/science/article/pii/S0926580517300663
http://www.sciencedirect.com/science/article/pii/S0926580517300663
https://mobi.inovexcorp.com/docs/
http://www.opengeospatial.org/standards/geosparql

BIBLIOGRAPHY 71

[55] Jonathan Markow, “Fedora Repository Home,” https://wiki.duraspace.org/display/FF,

accessed: 2018-06-09.

[56] C. Johnson, “Einführung in das PANDORA Linked Open Data Framework,”

https://www.researchgate.net/publication/304560904 Einfuhrung in das PANDORA

Linked Open Data Framework, accessed: 2018-06-09.

[57] S. Koch, JavaScript: Einführung, Programmierung und Referenz - inklusive Ajax,

5th ed., ser. iX-Edition. Heidelberg: dpunkt-Verl, 2009, oCLC: 391434094.

[58] E. Korotya, “5 Best JavaScript Frameworks in 2017,” https://hackernoon.com/

5-best-javascript-frameworks-in-2017-7a63b3870282, accessed: 2018-06-09.

[59] StrongLoop, “Express - Node.js web application framework,” http://expressjs.com/, ac-

cessed: 2018-06-09.

[60] Stephan Augsten, “Was sind Docker-Container?” https://www.dev-insider.de/

was-sind-docker-container-a-597762/, accessed: 2018-06-09.

https://wiki.duraspace.org/display/FF
https://www.researchgate.net/publication/304560904_Einfuhrung_in_das_PANDORA_Linked_Open_Data_Framework
https://www.researchgate.net/publication/304560904_Einfuhrung_in_das_PANDORA_Linked_Open_Data_Framework
https://hackernoon.com/5-best-javascript-frameworks-in-2017-7a63b3870282
https://hackernoon.com/5-best-javascript-frameworks-in-2017-7a63b3870282
http://expressjs.com/
https://www.dev-insider.de/was-sind-docker-container-a-597762/
https://www.dev-insider.de/was-sind-docker-container-a-597762/

Declaration of Authorship

With this statement I declare that I have independently completed this Masters thesis. The

thoughts taken directly or indirectly from external sources are properly marked as such. The

submitted code is entirely mine and any part which has not been written by me is properly

marked.

This thesis was not previously submitted to another academic institution and has also not

yet been published.

München, 10. July 2018

Barth, Alexander

Barth, Alexander

	Introduction and Motivation
	Motivation
	Goal of the thesis
	Structure of the thesis

	Digital Methods in the building environment
	BIM
	BIM for infrastructure
	IFC
	IFC Model View Definition
	OKSTRA

	Technical Background
	Semantic Web
	Ontologies
	Linked Data
	Sparql

	Classification systems
	DIN 32705
	ISO 12006-2:2015
	OmniClass
	Uniclass

	Systems Engineering
	Definition
	Breakdown Structure

	State of the art
	BIM
	Semantic Web
	Progression of the web
	Database services
	Using SPARQL for BIM
	PANDORA

	Approach & Methodology
	Introduction
	Approach

	Case Study & Evaluation
	Case Study
	Evaluation

	Development of a software prototype
	Introduction
	Approach to the implementation of the prototype
	Functionality
	Programming language and libraries
	JavaScript
	TypeScript
	Node.js
	EXPRESS
	Docker

	Building the Prototype
	Front-end
	RESTful API

	Deploy and Hosting

	Summary, Conclusion and Outlook
	Summary
	Conclusion
	Outlook

	Disk

