TUTI

TECHNISCHE UNIVERSITAT MUNCHEN

Fakultat fiir Informatik
Lehrstuhl fiir Rechnertechnik und Rechnerorganisation

THE DCDB FRAMEWORK
A Scalable Approach for Measuring Energy Efficiency in HPC

AXEL AUWETER

Vollstandiger Abdruck der von der Fakultdt fiir Informatik der Technischen Universitat
Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende(r): Prof. Dr. Martin Bichler
Priifer der Dissertation: 1. Prof. Dr. Arndt Bode

2. Prof. Dr. Dieter Kranzlmiiller

Die Dissertation wurde am 23.10.2018 bei der Technischen Universitdt Miinchen eingereicht
und durch die Fakultit fiir Informatik am 29.01.2019 angenommen.

Axel Auweter

The DCDB Framework
A Scalable Approach for Measuring Energy Efficiency in HPC

© May 2019

ABSTRACT

During the past decades, numeric simulation has become an increas-
ingly popular tool for scientists and engineers from a broad variety
of domains. In cases where the modeling of a problem requires large
amounts of compute or memory capacity, supercomputers come into
play, which provide more than thousand times the compute and mem-
ory capacity of regular desktop computers. One of the challenges
when operating a supercomputer is power consumption, which ac-
counts for a large fraction of the total cost of ownership. Since power
needs to be delivered to the supercomputer and the generated heat
needs to be removed from the data center, the challenge of reducing
the power consumption of a supercomputer not only covers the ma-
chine itself, but also the surrounding data center. Additionally, the
selection of suited algorithms and configurable hardware parameters
such as the processor frequency contribute to the power efficiency of
a supercomputer.

Key to reducing the overall power consumption of a supercom-
puter and its surrounding data center infrastructure is the continuous
assessment of the system’s state and the associated power consump-
tion of individual system components: only with a detailed insight
into the system’s behavior, system operators and users can optimize
the system’s configuration and the application’s algorithms for re-
duced power, increased performance, and thus improved energy effi-
ciency. The system’s state comprises of physical parameters, such as
temperatures, voltages, fan speeds, etc. as well as operating param-
eters such as the application and its associated performance charac-
teristics. Reduced costs for sensor equipment and higher temporal
resolution cause more monitoring data to be generated and turn su-
percomputer monitoring into a data processing challenge.

This thesis introduces DCDB, the Data Center DataBase. DCDB is
a framework to collect, store, and analyze time series data captured
from the sensors in a supercomputer. DCDB builds on the distributed
Cassandra NoSQL database. Using an efficient way of storing time se-
ries data using the Cassandra data model, DCDB installations scale
almost linearly in performance with the addition of more database
servers. For an efficient analysis of derived metrics, DCDB provides
a feature for defining virtual sensors that combine multiple physical
sensors as well as other virtual sensors using freely definable arith-
metic expressions.

DCDB has been tested under real operating conditions on two pro-
totype systems. On these systems, DCDB collected monitoring data
using both, traditional system monitoring mechanisms such as IPMI

and SNMP, as well as mechanisms based on custom firmware, that
made use of a new push approach to collecting data at high frequency.
DCDB also integrated sensor data not only from the computer system,
but also from the cooling infrastructure of the data center. On one of
the two systems, DCDB was configured as a distributed installation
with 25 monitoring nodes. This way, DCDB could prove its scalability
claims: collecting monitoring data on all nodes in parallel was per-
forming just as fast as the collection of 1/25 of the data on a single
node.

Vi

PUBLICATIONS

The work presented in this thesis has been performed as part of the Euro-
pean research projects Mont-Blanc and DEEP. The two projects have received
funding from the European Community’s Seventh Framework Programme
[FP7/2007-2013] under grant agreement numbers 288777 and 287530. Ideas
and figures have appeared previously in the following project-related publi-
cations:

Auweter, A., Dézsa, G., Gelado, 1., Puzovic, N., Rajovic, N. & Tafani, D. Mont-Blanc Project
Deliverable 5.3: Preliminary Report on Porting and Tuning of System Software to ARM Architecture
http: // montblanc- project.eu / sites / default / files / d5.3_preliminary_report_on_porting _
system_software_to_arm_architecture_vi.pdf

Dézsa, G., Auweter, A., Tafani, D., Beltran, V., Servat, H., Judit, G., Nou, R. & Radojkovi¢, P.
Mont-Blanc Project Deliverable 5.5: Intermediate Report on Porting and Tuning of System Software to
ARM Architecture http: //montblanc-project.eu/sites /default/files/D5.5_Intermediate_report_
on_porting...._v1.0.pdf

Tafani, D. & Auweter, A. Mont-Blanc Project Deliverable 5.8: Prototype demonstration of energy
monitoring tools on a system with multiple ARM boards http: // montblanc- project.eu / sites /
default/ files/MB_Ds5.8_Prototype %20demonstration %200f % 20energy %2omonitoring...v1.0.
pdf

Mantovani, E, Ruiz, D., Vilarrubi Barri, O., Martorel, X., Nieto, D., Auweter, A., Tafani, D.,
Adeniyi-Jones, C., Gloaguen, H. & Utrera Iglesias, G. Mont-Blanc Project Deliverable 5.11: Final
report on porting and tuning of system software to ARM architecture http://montblanc-project.eu/
sites / default/ files / D5.11%20Final %20report%200n %20porting %20and %2otuning. %20V1.0.
pdf

Tafani, D. & Auweter, A. Mont-Blanc Project Deliverable 7.4: Concept for energy aware system mon-
itoring and operation http:// montblanc- project.eu / sites / default / files / D7.4_Concept _for_
energy_aware_system_monitoring_andoperation_vi_reduced.pdf

Meyer, N., Solbrig, S., Wettig, T., Auweter, A. & Huber, H. DEEP Project Deliverable 7.1: Data
centre infrastructure requirements http://www.deep-project.eu/SharedDocs/Downloads/DEEP-
PROJECT/EN/Deliverables/deliverable-D7.1.pdf

Meyer, N., Wettig, T., Solbrig, S., Auweter, A., Ott, M. & Tafani, D. DEEP Project Deliverable 7.2:
Concepts for improving energy and cooling efficiency http://www.deep-project.eu/SharedDocs /
Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.2.pdf

Auweter, A. & Ott, M. DEEP Project Deliverable 7.3: Preparation of energy and cooling experimen-
tation infrastructure http: // www.deep- project.eu/SharedDocs / Downloads /DEEP-PROJECT /
EN/Deliverables/deliverable-D7.3.pdf

Auweter, A. & Ott, M. DEEP Project Deliverable 7.4: Intermediate Report on DEEP Energy Efficiency
http: // www.deep- project.eu/SharedDocs / Downloads / DEEP-PROJECT / EN / Deliverables /
deliverable-D7.4.pdf

Ott, M. & Auweter, A. DEEP Project Deliverable 7.5: Final Report on DEEP Energy Efficiency http:
// www . deep - project. eu / SharedDocs / Downloads / DEEP - PROJECT / EN / Deliverables /
deliverable-Dy.5.pdf

Additionally, ideas and figures have appeared previously in the following
publications:

Auweter, A., Bode, A., Brehm, M., Huber, H. & Kranzlmiiller, D. in Information and Communica-
tion on Technology for the Fight against Global Warming (eds Kranzlmidiller, D. & Tjoa, A. M.) 18-25
(Springer, 2011)

Wilde, T., Auweter, A. & Shoukourian, H. The 4 Pillar Framework for energy efficient HPC data
centers. Computer Science-Research and Development 29, 241251 (2014)

Auweter, A., Bode, A., Brehm, M., Brochard, L., Hammer, N., Huber, H., Panda, R., Thomas, F.
& Wilde, T. A case study of energy aware scheduling on SuperMUC in Supercomputing (eds Kunkel,
J. M., Ludwig, T. & Meuer, H. W.) (2014), 394—409

vii

http://montblanc-project.eu/sites/default/files/d5.3_preliminary_report_on_porting_system_software_to_arm_architecture_v1.pdf
http://montblanc-project.eu/sites/default/files/d5.3_preliminary_report_on_porting_system_software_to_arm_architecture_v1.pdf
http://montblanc-project.eu/sites/default/files/D5.5_Intermediate_report_on_porting...._v1.0.pdf
http://montblanc-project.eu/sites/default/files/D5.5_Intermediate_report_on_porting...._v1.0.pdf
http://montblanc-project.eu/sites/default/files/MB_D5.8_Prototype%20demonstration%20of%20energy%20monitoring...v1.0.pdf
http://montblanc-project.eu/sites/default/files/MB_D5.8_Prototype%20demonstration%20of%20energy%20monitoring...v1.0.pdf
http://montblanc-project.eu/sites/default/files/MB_D5.8_Prototype%20demonstration%20of%20energy%20monitoring...v1.0.pdf
http://montblanc-project.eu/sites/default/files/D5.11%20Final%20report%20on%20porting%20and%20tuning.%20V1.0.pdf
http://montblanc-project.eu/sites/default/files/D5.11%20Final%20report%20on%20porting%20and%20tuning.%20V1.0.pdf
http://montblanc-project.eu/sites/default/files/D5.11%20Final%20report%20on%20porting%20and%20tuning.%20V1.0.pdf
http://montblanc-project.eu/sites/default/files/D7.4_Concept_for_energy_aware_system_monitoring_andoperation_v1_reduced.pdf
http://montblanc-project.eu/sites/default/files/D7.4_Concept_for_energy_aware_system_monitoring_andoperation_v1_reduced.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.1.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.1.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.2.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.2.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.3.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.3.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.4.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.4.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.5.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.5.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.5.pdf

ACKNOWLEDGEMENTS

While the following thesis has been assembled solely by myself, many
people have enabled and contributed to the research activities behind
it. Therefore, I would like to highlight and thank a few of them in the
following paragraphs.

First and foremost, I would like to express my sincerest thanks to
my supervisor Prof. Dr. Dr. h.c. Arndt Bode. I have met Prof. Bode
during my first year in university attending his introductory class on
Computer Architecture and Computer Engineering. Since then, Prof.
Bode has provided me unprecedented support, guidance, and trust
by employing me, first as student tutor, later as research associate. His
experience and remarkable skills in writing support letters have en-
abled my acceptance into several study abroad, internship, and schol-
arship programs. And despite being a full-time professor and head
of the Leibniz Supercomputing Centre of the Bavarian Academy of
Sciences and Humanities (LRZ) at the same time, he always found
the time for a personal consultation.

Secondly, I would like to thank all my former colleagues and man-
agers at LRZ as well as the staff members of Prof. Bode’s chair at
Technische Universitdt Miinchen (TUM). With no claim to complete-
ness, I would like to thank in particular Prof. Dr. Dieter Kranzlmidiller,
Dr. Victor Apostolescu, and Dr. Herbert Huber for providing me with
the necessary resources and guidance. Furthermore, I would like to
thank Dr. Michael Ott, Dr. Torsten Wilde, Dr. Daniele Tafani, Dr. Hayk
Shoukourian, Dr.-Ing. Carsten Trinitis, and Dr. Josef Weidendorfer for
their valuable time during many discussions on how to make super-
computers more energy efficient.

In addition, I would like to thank my managers and co-workers at
MEGWARE Computer Vertrieb und Service GmbH, namely Jiirgen
Gretzschel, Steffen Eckerscham, André Singer, Sebastian Siegert, and
Kai Lohnig for their support during my finishing of this thesis.

Finally, I would like to thank my family for all their multi-faceted
support along the way.

ix

CONTENTS

1

INTRODUCTION
1.1 The 4-Pillar Framework for Energy Efficient HPC Data
Centers
1.2 Optimized Data Center Building Infrastructures
1.2.1 Power Distribution
122 Cooling.
1.23 Monitoring oL
1.3 Optimized HPC System Hardware
1.4 Optimized HPC System Software
1.5 Optimized HPC Applications
1.6 Cross-Pillar Optimizations
METRICS FOR ENERGY EFFICIENCY IN HPC

2.1
2.2
2.3
2.4

THE
3.1

3.3
3.4

THE

4.1
4.2

FlopsperWatt
Power Usage Effectiveness
Energy to Solution
Other Metrics

HPC SYSTEM MONITORING CHALLENGE
Existing Solutions for Standard System Monitoring . .
3.1.1 Nagios oo
312 Icinga.o oL
3.1.3 Check_MK and Open Monitoring Distribution .
3.1.4 RRDTool
Performance Analysis Tools
3.2.1 Score-P Based Tools
3.22 HPCToolkit
323 ARMMAP.
3.2.4 Intel® VTune™ Amplifier and Trace Analyzer &
Collector
Limitations of Existing Solutions
Addressing the Limitations
3.4.1 Integrated Monitoring with PowerDAM
3.4.2 Smart Data Acquisition
3.4.3 Compressed Data Storage
3.4.4 Distributed Data Storage

DCDB FRAMEWORK

DCDB Overview
Apache Cassandra NoSQL Database
421 History o 0L
422 DataModel

S I N N TN

10
10
11

15
15
16
17
18

21
22
22
23
23
24
25
26
27
27

27
28
28
29
29
30
30

31
31
32
33
33

Xi

Xii CONTENTS

4.2.3 User and Application Programming Interfaces . 35

4.3 Storing Time Series of Sensor Data 36
4.3.1 Mapping Time Series to the Cassandra Data Model 37

4.3.2 Data Types and Storage Conventions 38
4.3.3 Defining Sensor Identifiers 39
4.3.4 Coping with Cassandra’s Wide Row Limits . . 40

4.4 MQ Telemetry Transport 40
45 CollectAgent 41
4.6 Sources for Sensor Data 43
4.6.1 IPMIPusher..................... 43
4.6.2 SNMPPusher 45

463 sysfsPusher 46
4.6.4 FilePusher. 47

4.7 Sensor Management 47
4.7.1 Publishing Sensors 47
472 The DCDBQuery Tool 49
4.7.3 DCDB Unit Conversion Framework 50
4.7.4 IntegrableSensors 51

4.7.5 VirtualSensors 51

5 TEST PLATFORMS 53
5.1 Mont-Blanc Prototype 53
5.1.1 System Overview 53

5.1.2 DCDB Monitoring Setup 54

5.2 DEEP Prototype 57
5.2.1 System Overview 58

5.2.2 DCDB Monitoring Setup 59

6 TESTS & PERFORMANCE OPTIMIZATIONS 65
6.1 Verifying the Mont-Blanc Power Measurement Setup . 65
6.2 Thermal Throttling on the DEEP System 67
6.3 Benchmarking DCDB'’s Insert Performance 70
6.4 Optimized Virtual Sensor Evaluation 72
7 CONCLUSION & OUTLOOK 75

BIBLIOGRAPHY 77

LIST OF FIGURES

Figure 1

Figure 2
Figure 3

Figure 4
Figure 5

Figure 6
Figure 7

Figure 8

Figure 9
Figure 10

Figure 11

Figure 12

4-Pillar Framework for Energy Efficient HPC
DataCenters
Common Air Cooling Scheme in Data Centers
Overview of the sensor data acquisition and

storage process in the DCDB Framework. . . . 32
Example of a Cassandra column family storing

the examination results of students. 34
Example of the CQL approach on mapping SQL-

like tables to the Bigtable data model. 36
Structure of DCDB sensor IDs. 39
Graphical overview of the Collect Agent tasks
anddataflow 42

Definition of the 64-bit Device Location field in
the DCDB Sensor ID on the Mont-Blanc proto-
type 56
Definition of the 64-bit Device Location field in
the DCDB Sensor ID on the DEEP prototype . 63
Power consumption during execution of the
power cycle tests on the Mont-Blanc system . . 66
Time series of selected temperature sensors and
CPU frequency during a HPL run on the DEEP
prototypeo 68
Analysis of the DCDB insert performance on
the DEEP Booster. 71

xiii

LIST OF TABLES

Table 1
Table 2

Table 3
Table 4
Table 5
Table 6
Table 7

Table 8

Xiv

Comparison of Thermal Properties: Air vs. Water 6
Power breakdown of a Intel® R1XXX server sys-

tem ... 8
History of selected parameters in different Intel® server
Processors 9
Out-of-band sensors on an Intel® S2600BP main-
board 44
Sensors of the Mont-Blanc prototype system
collected by DCDB 55
Sensors of the DEEP prototype system’s BNC
related sensors collected by DCDB 60
Sensors of the DEEP prototype system’s liquid
cooling infrastructure collected by DCDB . . . 62
Configuration of the Cassandra database ring
structure on the DEEP Booster 64

LISTINGS

Listing 1
Listing 2

Listing 3

Creation of the sensor data table with CQL. . .
CQL statement for creating the configuration
table which holds all published sensors.
Definition of the DCDB unit conversion table.

37

48
50

XV

ACRONYMS

AC Alternate Current

ASIC Application Specific Integrated Circuit
BIC Booster Interface Card

BMC Baseboard Management Controller

BNC Booster Node Card

BSD Berkeley Software Distribution

CGI Common Gateway Interface

cMC Chassis Management Controller

CRAC Computer Room Air Conditioner

DC Data Center

DCDB Data Center DataBase

DEEP Dynamical Exascale Entry Platform
DVFS Dynamic Voltage and Frequency Scaling
EMB Ethernet Mother Board

FPGA Field-Programmable Gate Array

HPC High-Performance Computing

HPL High Performance Linpack

/0 Input/Output

12C Inter-Integrated Circuit Bus

IC Integrated Circuit

IEC International Engineering Consortium
IPMI Intelligent Platform Management Interface
ITIL Information Technology Infrastructure Library
ITU International Telecommunications Union
LAN Local Area Network

LRZ Leibniz Supercomputing Centre of the Bavarian Academy of
Sciences and Humanities

Xvi

ACRONYMS

MAC Media Access Control

MSR Machine Specific Register

OoID SNMP Object Identifier

0S Operating System

PCle Peripheral Component Interconnect Express
RAPL Running Average Power Limit

RRD Round Robin Database

SDB Samsung Daughter Board

SMC System Management Controller

SNMP Simple Network Management Protocol
SoC System on Chip

SPI Serial Peripheral Interface

TDP Thermal Design Power

xvii

INTRODUCTION

The use of computers has revolutionized the way for scientists to con-
duct research today. Computers facilitate the acquisition and process-
ing of large amounts of experimental data and facilitate the sharing
and discussion of results among researchers from the same domain
across the globe. In addition, researchers in academia and industry
can rely on numeric simulation instead of conducting real-world ex-
periments for the generation of new knowledge. The use of such vir-
tual experiments is of particular interest when real experiments are
too costly, too time consuming, too dangerous, or even simply im-
possible to conduct. Replacing actual experiments with a computer-
based simulation requires that the underlying physical principles are
known, proven, and modeled with sufficient accuracy. As of today,
numerous scientific domains rely on numeric simulation: according
to the usage statistics of the Leibniz Supercomputing Centre of the
Bavarian Academy of Sciences and Humanities (LRZ), LRZ’s comput-
ers support researchers from various physics branches, meteorology,
computational fluid dynamics, material sciences, life sciences, chem-
istry, and many more [14].

High Performance Computing (HPC) or supercomputing comes
into play, when the computational or memory requirements for a
given numeric simulation exceed the capabilities of ordinary desktop
computers. In recent years, the demand for HPC resources has been
constantly increasing and according to market analysts like IDC [15]
and Intersect360 [16], this trend will likely continue. In addition, the
fact that the growth of supercomputer performance according to the
Topso0 List of Supercomputers [17] has outperformed Moore’s Law
[18] for many years can be seen as another indicator for the rapid
growth of the HPC market.

However, with the increase in supercomputer size and performance
comes an increasing demand for electrical energy. Today’s supercom-
puters already consume power in the range of megawatts. As a con-
sequence, increasing budgets have to be allocated for covering the
electricity costs. If this trend was to continue, power costs over the
lifetime of a machine could — one day — outweigh hardware invest-
ment costs. For economical and ecological reasons, it has therefore
become necessary to seek for novel techniques and approaches in re-
ducing supercomputer power consumption.

Besides the power consumption of the HPC systems themselves,
the power consumption of other equipment in the data center has
attracted the attention of data center operators. Due to the principle

INTRODUCTION

External Influences / Constraints

Data Center
Goal: Reduce Total Cost of Operation

Building HPC HPC HPC
24 Infrastructure System Hardware System Software Applications
5§
L =
o5 Goal: Reduce Goal: Reduce Hardware Goal: Optimize Resource Goal: Optimize
% @ Infrastructure Overhead Power Consumption Usage, Tune System Application Performance
Reduce power losses * Use newest * Provide workload * Use the most efficient
in the supply chain semiconductor management algorithms
» Improve cooling technologies according to site goals e Use the best libraries
- @ technologies * Use of energy saving * Exploit the energy (tuned and optimized
% 2 Reuse waste heat from processor and saving features of the for the system)
> &3 [T systems memory technologies platforms by tuning the * Use most efficient
Verify actions taken by * Consider using special systems with respect programming
monitoring all relevant hardware or to the applications’ paradigms
information accelerators designed needs
for specific scientific * Shut down idle nodes
problems * Monitor the energy
* Provide sensors for consumption of all
thorough power components in the
measurements compute systems

Figure 1: 4-Pillar Framework for Energy Efficient HPC Data Centers

of energy conservation, all electrical energy supplied to a supercom-
puter is turned entirely into heat energy. At the expense of additional
electrical energy, this excess heat has to be removed from the data
center. Additionally, electrical losses in the power supply chain that
incur in transformers or uninterruptible power supply units also add
to the final power bill.

1.1 THE 4-PILLAR FRAMEWORK FOR ENERGY EFFICIENT HPC DATA

CENTERS

To classify and structure all efforts related to energy efficiency in HPC,
a framework is needed that encompasses all domains in which opti-
mizations can be made to improve the overall energy efficiency when
solving scientific problems on a supercomputer. Not many attempts
for this can be found in the literature.

Beloglazov et al. [19] have created a taxonomy of energy-efficient
data centers and cloud computing systems. According to their work,
the contributing domains comprise of energy efficient applications,
power-aware resource management systems, and energy efficient hard-
ware. Although the data center and its infrastructure for power dis-
tribution and cooling are briefly touched in their work as part of the
hardware setup, the work of Beloglazov et al. has an IT-centric ap-
proach, omitting the links between computing systems and the data
center.

1.1 THE 4-PILLAR FRAMEWORK FOR ENERGY EFFICIENT HPC DATA CENTERS

Valentini et al. [20] created an overview on energy efficiency tech-
niques in cluster computing systems. However, their publication only
summarizes mechanisms for static and dynamic power management
and load balancing approaches. Although these have all been suc-
cessfully implemented in order to reduce supercomputer power con-
sumption, they omit the influence of the surrounding data center and
the HPC applications themselves on the overall energy efficiency.

At the Leibniz Supercomputing Centre of the Bavarian Academy of
Sciences and Humanities, first ideas for an all-encompassing frame-
work for energy efficient HPC data centers were expressed in 2011
[11]. In this work, three domains for energy efficiency in HPC were
highlighted: tools for energy monitoring and control, data center site
infrastructure aspects, and system hardware and operation aspects.
To incorporate the importance of HPC applications, this work was
refined later into the 4-Pillar Framework for Energy Efficient HPC
Data Centers [12] and is shown in Figure 1. The four pillars in the
framework are:

1. Building Infrastructure
2. HPC System Hardware
3. HPC System Software
4. HPC Applications

At first, the 4-Pillar Framework encourages for efficiency improve-
ments within each of these four pillars with the goal of reducing the
total cost of operation. It also gives some generic recommendations
such as the need for thorough system instrumentation to assist in the
analysis of the system’s energy efficiency in the first place.

However, for fully optimizing the energy efficiency in HPC, opti-
mizing within each pillar might not be sufficient. For this reason and
besides stressing the need for optimizations within each pillar, the 4-
Pillar model also explicitly encourages cross-pillar optimizations. For
example, the selection of the most efficient algorithm in a HPC appli-
cation might vary depending on the type of HPC system hardware
that is being used. Such cross-pillar optimizations are not only re-
stricted to the four pillars that are within the scope of the data center
itself but may even extend to external entities such as the electrical
utility provider or neighboring buildings that may become users of
the data center’s excess heat.

The following sections give an overview of the four pillars and their
role in the attempt to globally optimize the energy efficiency of high
performance computing.

3

INTRODUCTION

1.2 OPTIMIZED DATA CENTER BUILDING INFRASTRUCTURES

Data centers are functional buildings with the purpose of providing
an ideal environment for IT equipment. Data center building infras-
tructures thus comprise of equipment to supply IT hardware reliably
with electrical energy, to remove excess heat from IT equipment, to
provide air-conditioning including (de-)humidification, and to ensure
safe operations through physical access management and fire preven-
tion, detection, and extinguishing systems. The extent of the mea-
sures and techniques in place in a data center varies with the priori-
ties of the data center’s goals and operators have to find a trade off be-
tween computational and application performance, reliability, safety,
flexibility, and costs. Although deemed necessary for professional IT
operations, data center building infrastructures consume energy on
top of the IT equipment’s energy usage, inevitably adding energy
to the list of trade off items. Optimizing data center infrastructures
therefore aims at reducing this overhead within the possibilities of
the data center’s operational goals.

1.2.1 Power Distribution

Due to their high demand, large data centers are supplied with elec-
tricity from high voltage networks (e.g. 20 kV) and operate their own
transformers to reduce this to their lower working voltage (e.g. 400 V).
Voltage transformation is never lossless. Still, savings can be achieved
by adding or removing of parallel transformers to ensure that trans-
formers are operating within their most efficient load range.

In addition to transformers, data centers may operate uninterrupt-
ible power supply units, which filter out voltage or phase irregulari-
ties of the power grid or supply backup power in case of a power out-
age. Similar to the operation of transformers, uninterruptible power
supply units consume power on their own, resulting in a loss of effi-
ciency. This can be avoided when critically reviewing the availability
needs and service level agreements of each service. Particularly in
high performance computing, it is often advisable to abstain from
using uninterruptible power supply units. If full power outages are
rare, the additional costs over a system’s lifetime from restarting the
supercomputing applications after a power outage are lower than the
overhead costs of providing fully uninterruptible power to the super-
computer.

1.2.2 Cooling

When looking at the breakdown of power consumption in data cen-
ter buildings, cooling typically takes the largest fraction after the IT
equipment [21]. Following the second law of thermodynamics, excess

1.2 OPTIMIZED DATA CENTER BUILDING INFRASTRUCTURES

=

Computer
Room Air
Conditioning
(CRAC) Unit

- —

L - - —

“False” Floor

“Real” Floor

Figure 2: Common Air Cooling Scheme in Data Centers

heat must be removed from the data center by bringing in a coolant
at lower temperature than the equipment to be cooled. In data cen-
ters with air cooled computing equipment, this process can be done
as depicted in Figure 2. The compute equipment is located in racks
standing on a "false" floor. Through openings in the false floor, cold
air can exit from the area below. This cold air is then sucked in by
the fans mounted in the compute equipment in order to cool the com-
puter chips, power supplies, etc. The heated air then exits the rack on
the other side and rises to the ceiling. From there, it is sucked into
the Computer Room Air Conditioning (CRAC) unit which uses cold
water in a water-to-air heat exchanger in order to cool the air before
blowing it back into the area below the false floor.

Production of cold water to supply the CRAC units happens either
through compressor based chillers, or — if outside conditions permit —
directly from outside air. The latter concept is often referred to as "free
cooling” although electrical energy is still required to drive pumps
and cooling towers that emit the heat from the water to outside air.
Thus, the term "chiller-less cooling" should be preferred.

The reason for using water as medium for heat transfer between
cooling towers, chillers, and CRAC units lies in its superior thermal
characteristics. A comparison of the thermal characteristics of air and
water at 20°C is given in Table 1 [22]. The two major properties of in-
terest are the thermal conductivity A and the thermal capacity cp. Since
thermal capacity is defined as a unit relative to substance mass, it
makes sense to look at the volumetric heat capacity which takes the
density p of the substance into account. For the technical characteriza-
tion of a cooling medium, both thermal conductivity and volumetric
heat capacity play a similar role. Thus, in engineering, the definition

INTRODUCTION

Air Water | Factor

Thermal Conductivity 0.026 0.598 23 X

1.006 4.185 4 X
1.196 4178 | 3493 X
Thermal Inertia #ﬁ 5.563 1581 284 X

Thermal Capacity

gk g

Volumetric Heat Capacity

Table 1: Comparison of Thermal Properties: Air vs. Water

of thermal inertia I has become popular, which is an artificial property
defined as I = /Apcy,.

Optimizing the cooling infrastructure in data centers can be per-
formed in two ways. One option is to try extending the time period
in a year during which chiller-less cooling is possible. This can be
done either by improving the cooling tower efficiency through the
use of evaporative cooling or by raising the temperature set point for
the cooling water. The second option is to shorten or entirely remove
air from the heat transfer chain by using direct liquid cooling tech-
nologies in which water is brought straight to the hot computer com-
ponents. Also, the efficiency of compressor based chillers has been
subject to constant improvements in the past. Chillers are character-
ized by their energy efficiency ratio (EER) defined as the ratio of heat
energy removed Ey, to the electrical energy spent E.: EER = En/E..
Although the EER of a chiller also depends on external factors such
as the recooling temperature (which depends on the outside temper-
ature), modern chillers should achieve an average EER of at least 5.

1.2.3 Monitoring

Depending on the data center size and its application-specific require-
ments, building infrastructures for data centers can become extremely
complex. This results in an increased likelihood for misconfigurations
or undetected defects that lead to reduced efficiency. The best way to
cope with this complexity is a thorough monitoring infrastructure.
Being able to quickly assess the status of the building infrastructure
through a central infrastructure management system has become es-
sential for data center operators.

Monitoring of electrical energy can be performed through the use
of shunt resistors and Hall effect sensors. A shunt resistor is a resistor
with a small resistance (Rs) compared to the resistance of the electrical
load. It is placed in series with the electrical load, so that the current
flow I over the shunt resistor and the load are equal. When the voltage

1.2 OPTIMIZED DATA CENTER BUILDING INFRASTRUCTURES

drop U over Ry is measured, the current I can be derived from Ohm’s
law as:

[= - (1)

In combination with the voltage U of the power supply, the instanta-
neous power P can be derived as P = U - I and the electrical energy E
is defined as the integral of P over time: E = | Pdt.

Hall effect sensors make us of the Lorentz force that diverts elec-
trons in a conductor to one side, if the conductor is surrounded by a
perpendicular magnetic field. The diversion of electrons results in a
measurable electric potential Up:

I-B

Uy = AHT (2)

with:
* Ay material dependent hall coefficient
¢ I: electrical current
* B: magnetic flux density
¢ d: thickness of the conductor (parallel to B)

This means that for hall effect based sensors with constant Ay, B, and
d values, the measurement signal Uy is proportional to the electrical
current I. Thus, power and energy can be derived in similar fashion
to shunt resistor based measurements.

For the instrumentation of cooling loops, heat meters can be used.
Heat meters calculate the amount of thermal energy transferred from
a system based on the inlet and outlet temperatures, as well as the
flow rate of the heat transfer medium. The instantaneous heat power
Py in a cooling loop can then be calculated as:

PH :V'p‘cw‘(tout_tin) (3)

with:

V: flow rate of the coolant

p: density of the coolant

* c,,: specific heat capacity of the coolant

tout: outlet temperature

tin: inlet temperature

INTRODUCTION

Component Details Power
CPU 2x Xeon® E5-2697v3 297 W
Main board S2600WT2 64 W
Memory 8x 8GB DDR4 RDIMM 26 W
High speed interconnect FDR InfiniBand VA%
Others chassis fans, power supply, ... 151W

Table 2: Power breakdown of a Intel® R1XXX server system

The amount of thermal energy removed via a cooling loop is the inte-
gral of Py over time: E = [Py dt.

Similar to any other monitoring system, special care has to be taken
before trusting the numbers provided by any sensor. All sensors of
the infrastructure management system should be calibrated and vali-
dated in regular intervals. Instead of manually checking the sensors,
it has proven useful to provide redundant instrumentation within the
data center infrastructure. For example, when monitoring electrical
energy delivered to a computer, the amount of heat energy removed
from that computer should be monitored as well. Due to the principle
of energy conservation, the amount of electrical and thermal energy
will be equal. In case the measured values differ by more than what
is expected due to the measurement’s tolerance, further investigation
into the involved sensors has to take place.

1.3 OPTIMIZED HPC SYSTEM HARDWARE

According to the Intel® WCP Family Power Budget and Thermal Con-
fig Tool, the power consumption in an Intel® server system which is
comparable to the hardware of a compute node in the SuperMUC
Phase II supercomputer [23] can be estimated as outlined in Table 2.
This means that energy efficiency in today’s supercomputers is mostly
determined by the power consumption of the central processing units
(CPUs).

Like all computer chips, the dynamic power consumption P of a
CPU can be approximated as

P =CV?*f (1)
with:
* C: capacitance of the chip
* V: operating voltage
* f: operating frequency

For the design of the power delivery paths to the CPU and the
CPU’s cooling infrastructure, CPU manufacturers define the Thermal

1.3 OPTIMIZED HPC SYSTEM HARDWARE

Processor Year ~ Process Base Frequency Voltage Range TDP
Pentium® I Xeon® 1994 250nm 400 MHz 20V 18.6W
Xeon® 1.4 2001 180nm 14 GHz 1.75V 64 W
Itanium® 2 1600 2004 130nm 1.6 GHz n/a 122W
Xeon® 2.8 2004 20nm 28GHz 1.2875V-14125VvV 103W
Xeon® 5030 2006 65nm 2.66 GHz 1.075V-135V BW
Itanium® 2 go40 2007 20nm 1.6 GHz 1.0875V-1.25V 104W
Xeon® E5405 2007 45nm 20GHz 0.85V-1.35V sOwW
Xeon® W3670 2010 32nm 3.2GHz 0.8V-1375vV 130 W
Xeon® E5-2680 2012 32nm 2.7 GHz 0.6V-1.35vV 130W
Xeon® E5-2697v3 2014 22nm 2.6 GHz 0.65V-130V 145W
Xeon® Gold 6140 2017 14nm 2.3GHz n/a 140W

Table 3: History of selected parameters in different Intel® server processors.
Source: http: //ark.intel.com/

Design Power (TDP), which describes the maximum average power
under full load. Table 3 shows a comparison of selected Intel® server
processors over time with respect to their power-consumption related
properties. As the table shows, chip manufacturers have managed
to scale down their semiconductor manufacturing processes to allow
for smaller transistors. This reduces the chip’s capacitance and due
to the smaller gate sizes, lower operating voltages are sufficient to
switch the transistors at the same speed. According to Equation 4,
both effects lead to a reduction of power consumption as semicon-
ductors shrink. Despite these optimizations of the power consumed
per transistor, the thermal design power of CPUs has increased over
time since CPU manufacturers have stuck to the exponential growth
of the number of transistors per CPU according to Moore’s law.

To compensate for the increased TDPs, all processor manufactur-
ers nowadays provide techniques that allow for adapting processor
performance according to demand using dynamic voltage and fre-
quency scaling (DVFS). This means that a CPU can change its op-
erating frequency and supply voltage dynamically according to the
application’s needs. The power consumption of the chip thus varies
accordingly.

Finally, chip makers make extensive use of power and clock gating
which allows for shutting down entire functional units on a chip or
at least skip the supply of the clock signal in order to prevent any
logic gates from switching. Through the use of these technologies,
the power consumption of a CPU and subsequently of the entire com-
puter can vary significantly between idle and full load: An idle node
of the type mentioned in Table 2 consumes about 50 W of power.

Also, with the ability to adjust DVES, it becomes possible to trade
in application performance for power consumption. It is therefore

9

http://ark.intel.com/

10

INTRODUCTION

important to equip HPC systems with thorough and precise power
monitoring capabilities that keep track of power and energy usage
along with other relevant metrics (i.e. CPU frequency). With this in-
formation at hand, HPC system users and operators may tune the
system for individual applications.

1.4 OPTIMIZED HPC SYSTEM SOFTWARE

The goal of the HPC system software stack is to provide workload
management and to configure the system according to given policies
using the hardware tuning and monitoring capabilities. Many well-
established software solutions exist that perform workload manage-
ment for optimal resource utilization (e.g. PBS, LSF, Slurm...). Also,
many software solutions exist for monitoring the system’s state and
for analyzing the system’s performance, which will be discussed in
greater detail in Chapter 3. However, when it comes to energy aware-
ness in system management software, existing solutions today only
allow for reporting the energy consumed by an application and pro-
vide features to restrict the power consumption of a supercomputer
in order not to exceed a predefined maximum (power capping). As of
today, the Leibniz Supercomputing Centre is one of few HPC centers
that uses energy aware resource management software. On the Super-
MUC supercomputer [23], LoadLeveler is used to adapt the processor
frequencies according to the applications’ needs [13].

The area of HPC system software has large potential for future
developments in the field of energy efficient HPC. Only at the sys-
tem management software level, a global view of the many parallel
processing units of a supercomputer is available. Thus, proper orches-
tration of a HPC system’s energy-related tunables can only happen
here.

Furthermore, future HPC system software can have links from and
to the building infrastructure management software or even to the
utility providers allowing to optimize globally across all pillars of
the 4-pillar model. This facilitates building a supercomputing center,
which increases its usage and power consumption whenever there is
sufficient power available in the grid (i.e. prices are low) while lower-
ing usage and power consumption during times when less power is
available and prices are high.

1.5 OPTIMIZED HPC APPLICATIONS

Optimizing HPC applications for energy efficiency is a straightfor-
ward task because, in almost all cases, optimizations for application
performance also yield optimizations in energy efficiency.

The theory behind this claim is as follows: energy is the integral
of power over time and optimizing the application performance aims

1.6 CROSS-PILLAR OPTIMIZATIONS

at reducing the execution time of a program. Thus, reducing the ex-
ecution time of a program automatically reduces the energy, unless
the power consumption increases at the same time to the same extent.
However, the power consumption of a computer has both, a lower
boundary (i.e. the power consumption when the system is idle) and
an upper boundary (i.e. the maximum thermal design power of the
system). Thus, for any HPC program that already causes the machine
to run at or near its maximum power, the power consumption cannot
increase. Optimizing the runtime of such program will therefore re-
sult in a reduction of its energy consumption.

As a consequence, energy aware application developers should crit-
ically review their algorithms, avoid load imbalances in their parallel
codes, and rely on numerical libraries that are optimized for their sys-
tems. Additional software development techniques that specifically
target the reduction of the energy consumption of algorithms such as
significance based computing [24] are only emerging and beyond the
scope of this thesis.

1.6 CROSS-PILLAR OPTIMIZATIONS

Like other supercomputing centers, the Leibniz Supercomputing Cen-
tre of the Bavarian Academy of Sciences and Humanities has an or-
ganizational structure that resembles the 4-Pillar model in that there
are organizational units for the building infrastructure, hardware op-
erations, system software, and application support. And, it is safe
to assume that the techniques for optimizing the energy efficiency
within their scope are well known within each team. However, be-
sides these optimizations within each pillar, a global view or, ideally,
a global optimization scheme is required that acts across all pillars. If
data center operators fail to do so, optimizations performed within
one pillar may have negative impacts on the energy efficiency within
another pillar.

A prominent example for this effect is the common recommenda-
tion to raise the computer room temperatures. At first, this approach
may sound promising since a higher computer room temperature re-
sults in reduced chiller activity and longer periods in a year in which
chiller-less cooling is possible. However, although the new temper-
ature in the room might still conform to the specifications of the IT
equipment, servers, power supplies and other components with built-
in fans might increase their fan speeds as a reaction to increased tem-
peratures of their air inlets. Since the power consumption of a fan is a
cube function of the fan speed and airflow, increased fan speeds will
contribute measurably to the electricity bill.

Another example is related to the reuse of excess heat. At LRZ,
heat produced by HPC systems is being used to heat the office build-
ings in winter. As an attempt to make use of the heat during summer

11

12

INTRODUCTION

time, LRZ has deployed two prototypes (CooLMUC 1 & 2) that use
adsorption refrigerators in which the excess heat drives a chiller pro-
cess. As a consequence of the second law of thermodynamics, energy
can only be recovered from a warm medium during the process of
transferring the heat from the warm reservoir into a cold reservoir.
The Carnot theorem defines an upper bound for the efficiency of this
process:

Tc

NMmax = 1— ﬁ (5)

with:
* Nmax: Mmaximum efficiency of the excess heat reuse process
¢ Tc: temperature of the cold reservoir (in Kelvin)
¢ Ty: temperature of the hot reservoir (in Kelvin)

The theorem shows that the efficiency of every process driven by ex-
cess heat is bound by the difference between T¢ and Ty. The only
recooling medium that is commonly available in unlimited form is
outside air. This means that T¢ is determined by the outside air tem-
perature and as such beyond engineering control. The only way to in-
crease the efficiency of the heat reuse process is to increase Ty. In the
context of supercomputer waste heat, this means that the outlet tem-
perature of the computer cooling infrastructure has to be increased.
Increasing the outlet temperature can be done by either increasing
the inlet temperature or by reducing the volume flow of the coolant.
In both cases, the compute equipment that has to be cooled will run
at higher temperatures. Equation 4 gave an approximation of the dy-
namic power consumption of a processor, i.e. power that is spent to
toggle the transistors within the chip. However, in addition to that
dynamic power, computer chips consume a static amount of power
(leakage power) that mainly depends on the semiconductor manufac-
turing process and the chip temperature: higher temperatures result
in higher leakage power. Joining the leakage power challenge and the
efficiency challenge of the heat reuse process, one ends up with an op-
timization problem: On one hand, higher temperatures will improve
the heat reuse process. On the other hand, higher temperatures come
at the cost of higher power consumption of the computer. The further
analysis if this problem on the CooLMUC 2 supercomputer can be
found in [25].

Unfortunately, the extent to which the operating temperature in-
fluences the leakage power of a computer is hard to predict upfront
as it is related to the semiconductor manufacturing process and the
chip’s internal voltages among others [26]. Thus, the described opti-
mization problem can only be solved through practical experiments
which span building infrastructure components (heat reuse process),

1.6 CROSS-PILLAR OPTIMIZATIONS

HPC system hardware (leakage power characteristics), and system
software (monitoring energy balance).

Both examples in this section show that a cross-pillar view is nec-
essary for further optimizing the energy efficiency of HPC data cen-
ters. This thesis covers a fundamental requirement of generating such
cross-pillar views: a scalable system monitoring infrastructure capa-
ble of integrating sensor information from sources across all pillars.

13

METRICS FOR ENERGY EFFICIENCY IN HPC

The 4 Pillar Framework is a useful tool to map various activities in
improving the energy efficiency in HPC. It can be used to identify
the respective stakeholders and to manage cross-pillar interactions.
However, it does not provide means of quantifying the success of the
actions taken. For this purpose, different metrics have gained varying
popularity.

2.1 FLOPS PER WATT

When it comes to HPC, the Flops per Watt metric is still one of the
most widely used approaches to describe the energy efficiency of a
HPC system. As the name indicates, it puts into relation the achieved
sustained number of floating point instructions per second (Flops)
with the power consumption of the machine during the run. A widely
accepted benchmark to use as a measurement for Flops is the High
Performance Linpack (HPL) benchmark that is used for the Topso0
list. The resulting Greensoo list [27] ranks the systems listed in the
Topsoo0 list according to their Flops per Watt ratio. With 22 releases
to date (as of November 2017), the Greenso00 is a widely accepted
ranking and energy efficiency in terms of Flops per Watt has become
a deciding criteria for many supercomputer procurements.

Criticism related to the metric centers around the use of HPL as un-
derlying benchmark and the vague requirements regarding the mea-
surement granularity and accuracy. HPL is a benchmark that solves
a large system of linear equations using LU decomposition. As such,
it is easy to parallelize and mainly targets the performance of the
CPUs while other factors influencing supercomputer performance
such as network or I/O performance are not honored adequately.
It also largely benefits from single instruction multiple data (SIMD)
style architectures. While this has been seen as a typical reference
case for HPC applications years ago, modern HPC applications are
far more complex causing an increasing gap between system perfor-
mance according to HPL and the performance of real-world applica-
tion codes.

The second aspect that is often criticized concerning the Flops per
Watt metric and the Greensoo list is related to measurement quality.
In the original power measurement tutorial published in 2007 [28],
only few requirements were given regarding the measurement pro-
cedure and quality. The underlying assumption at the time was that
supercomputer power consumption is homogeneous across different

15

16

METRICS FOR ENERGY EFFICIENCY IN HPC

nodes and over time during the same workload. Thus, the original
rules allowed for measuring only a fraction of the system during a
relatively small time interval of the HPL run.

With the increasing use of power measurement equipment in super-
computers, it became evident that HPL power consumption varies
significantly over time. Therefore, the Energy Efficient High Perfor-
mance Working Group (EE HPC WG) [29] initiated a discussion on
improving the measurement methodology. The resulting guidelines
[30] address the weaknesses of the original measurement tutorial
while still recognizing that supercomputing sites and systems feature
different types of measurement instrumentation with varying degrees
of measurement quality. Thus, a key aspect of the new guidelines is
the definition of three levels of measurement quality ranging from
level 1 ("adequate") via level 2 ("moderate") to level 3 ("best") depend-
ing on aspects such as the measurement granularity, machine fraction
instrumented, and the list of subsystems included in the measure-
ment. The EE HPC WG methodology is under constant refinement
using a transparent change management process.

Despite the success of the EE HPC WG's efforts in raising aware-
ness in the field of accurate power measurement instrumentation,
most systems in the Greensoo provide a level 1 reading only. This
may, at least partly, be due to the fact that level 1 measurements
typically yield better Flops per Watt results than level 2 or level 3
measurements [31].

2.2 POWER USAGE EFFECTIVENESS

As opposed to the Flops per Watt metric, which targets the energy ef-
ficiency of a supercomputer system, Power Usage Effectiveness (PUE)
[32] is a metric for entire data centers. It was introduced by The Green
Grid [33], an industry association promoting resource and energy effi-
ciency in the information and communication technology sector. PUE
relates the total energy consumption of a data center to the energy
consumption of the IT equipment:

Total Facility Energy
IT Equipment Energy

PUE = 6)
IT Equipment Energy is the amount of the energy spent on servers,
storage and networking equipment. Total Facility Energy comprises
of the IT Equipment Energy and all other energy consumed in the
data center such as cooling equipment, power delivery equipment,
lighting, heating, and many others. Due to this, the theoretical best
PUE for a data center is 1.0 indicating that there is no energy being
spent for the data center building infrastructures and all energy is
being consumed by the IT equipment only.

At the time of introduction in 2006, many data centers would ex-
hibit a PUE of more than 2. However, due to the strong promotion

2.3 ENERGY TO SOLUTION

of PUE by The Green Grid, the necessity to lower the infrastructure
overhead in data centers is now widely known among data center
operators and modern data centers can be designed for PUE values
of 1.5 or better.

Although the definition of PUE is clear, PUE is challenging to mea-
sure in practice, mostly due to a lack of availability of measurement
points. While this may not be problematic for keeping track of im-
provements within someone’s own data center, any attempt to com-
pare the PUE values of different data centers is unlikely to withstand
a closer examination.

Another common mistake related to PUE is to use it as an encom-
passing metric for data center energy efficiency. This is wrong because
PUE makes no statement regarding the efficiency of the IT equipment
itself (e.g. Flops per Watt): putting an old supercomputer into a brand
new data center has the potential of a low PUE, yet the overall energy
efficiency might have gotten even better by renewing the machine
instead of the data center.

Finally, optimizing solely for PUE might introduce inefficiencies
elsewhere. Let’s reconsider the cross-pillar optimization example from
Chapter 1: the computer room temperature was raised to save power
in the data center infrastructures, yet the increased fan speeds within
the computer hardware caused an increase in IT power consumption.
For the PUE value, this shift from cooling power to IT power is a clear
benefit, despite the uncertainty regarding the overall benefit from the
approach. To address this problem of PUE, Patterson et al. introduced
TUE [34], which restricts the IT Equipment Energy part of the equa-
tion to the components within the IT equipment that contribute to
the computation or storage (CPUs, memory...). Unfortunately, this
makes TUE even harder to measure, because the detailed power in-
strumentation required for such measurement can only be found in
systems, which are specially designed for this purpose.

2.3 ENERGY TO SOLUTION

From a supercomputer operator’s perspective, neither Flops per Watt
nor PUE are fully satisfactory. The goal for supercomputing centers
is to maximize the scientific value of the computations while mini-
mizing computation costs. This implies that the computing resources
have to be used effectively, generating as many results with high im-
pact for the HPC users in their respective research domain as possi-
ble during a system’s lifetime. Unfortunately, none of the two metrics
Flops/Watt and PUE, nor their combination satisfy this need. The
costs for running supercomputing applications comprise mainly of
the application development costs (typically beyond the scope of the
supercomputing center), personnel costs at the supercomputing site,
machine write-off costs, and electricity costs. Assuming that the maxi-

17

18

METRICS FOR ENERGY EFFICIENCY IN HPC

mization of the scientific output is in the natural interest of the super-
computing users and restricting the total costs to their energy related
parts yields Energy To Solution: the amount of energy spent to execute
a given supercomputing application to deliver a scientific computa-
tion’s result.

Energy to Solution is a metric that allows for comparison between
different supercomputers and supercomputing centers and, thus, it is
also suited for rating the overall energy efficiency of a supercomput-
ing center for a given application.

A challenge, however, is to accurately measure Energy to Solution.
While a fraction of the total energy consumed by a supercomputing
application is easy to measure (i.e. the sum of energy consumed by all
computing nodes involved in the calculation), other components such
as background storage, or networking gear, as well as infrastructure
components such as chillers, cooling towers, or pumps can be shared
among multiple systems. In these cases, a true measurement to derive
Energy to Solution is impossible. One approach to mitigate this is to
split up the energy consumed by such shared devices using approx-
imative models that try to derive the fractional energy consumption
per supercomputing application. To attribute the networking energy
consumption to multiple programs running in parallel on the same
supercomputer over a shared network, one could, for example, use
the number of networking packets sent and received per application
as a base metric from which the fraction of energy consumed in the
networking equipment per program is derived.

The challenge of shared resources is likely the reason why all com-
mercial solutions for monitoring per-job Energy to Solution in HPC
solely rely on node-level energy measurements and ignore shared
components such as storage, networking, and the building infrastruc-
tures.

2.4 OTHER METRICS

In addition to the aforementioned metrics, one may consider other
metrics as relevant for the assessment of energy efficiency in HPC:

ENERGY REUSE EFFECTIVENESS (ERE) is an extension to PUE that
allows for subtracting any energy from the total facility energy
that is being reused, e.g. for heating. Therefore, as opposed to
PUE, ERE may take a value smaller than 1.0.

WATER USAGE EFFECTIVENESS (WUE) is another metric developed
at The Green Grid. It relates the use of water to the total facility
energy. Considering that in some geographical locations, water
is a scarce resource, the approach to evaporate water in order
to increase cooling tower efficiency may be unfavorable. And
even in regions with sufficient access to water, pre-treatment of

2.4 OTHER METRICS

the water (e.g. de-hardening) before evaporation also requires
energy.

DATA CENTER WORKLOAD POWER EFFICIENCY (DWPE) combines
Performance per Watt for arbitrary workloads with a system
and data center specific PUE [35]. With this, DWPE is highly
encompassing and honors that depending on the type of work-
load, certain computer architectures might be more efficient
than others and that the same system will behave differently
when being operated in another datacenter.

An observation that holds for all metrics related to energy effi-
ciency in HPC is that the actual assessment of the metrics requires
a combination of multiple data sources, often over long time periods.
Therefore, the following chapter analyzes the current state in system
monitoring and performance analysis for capturing, storing, and pro-
cessing information from system sensors that are necessary to derive
above metrics.

19

THE HPC SYSTEM MONITORING CHALLENGE

System monitoring for HPC imposes a multifaceted challenge. While
for some purposes the tools originating from the commercial server
domain may be applicable to HPC systems, the size of HPC systems
and the stronger need for detailed insight into application perfor-
mance often require special solutions for HPC. Traditionally, system
monitoring activities can be divided into two parts:

LIVE CHECKING comprises of all means to periodically check the
availability of a system or its services.

TIME SERIES MONITORING consists of all activities related to col-
lecting, analyzing, and storing information related to various
operational metrics of the system over time.

Time series monitoring information for IT systems covers data in-
dicating the physical conditions of the machine (i.e. temperatures,
fan speeds, bit error rates...), application performance data (cycles
per instruction, number of cache misses...), and in many recent sys-
tems also power consumption information. Means of access to system
monitoring data for generating time series can be grouped into two
categories:

IN-BAND ACCESS exposes sensor information to the system software
and possibly also to the applications running on the compute
hardware. On the hardware level, data is transferred from the
sensors to the CPU for in-band access via PCle, I?C, SPI, or
other busses. The OS kernel accesses these busses using mem-
ory mapped I/O or machine specific registers (MSR) and ex-
poses the data to the user via procfs, sysfs, or other interfaces.

OUT-OF-BAND ACCESS relies on external monitoring systems and
separate read-out paths that do not interfere with the system
software and compute hardware executing the workload. For
this purpose, server systems provide baseboard management
controllers (BMCs) that operate independently from the main
compute hardware on a node. In most cases, dedicated monitor-
ing servers access the BMCs through a distinct management net-
work using special protocols like the Intelligent Platform Man-
agement Interface (IPMI) to collect the sensor information.

21

THE HPC SYSTEM MONITORING CHALLENGE

3.1 EXISTING SOLUTIONS FOR STANDARD SYSTEM MONITORING

Standard System Monitoring consists of the activities and tools that
enable a system’s administrator to

* observe the physical operating conditions of an IT system,

* measure and analyze simple performance metrics over time,
and

* be alerted in case of system hardware errors or unavailability of
services.

This is a common requirement in the area of IT infrastructures and
services that operate 24/7. Thus, many software tools exist in this
domain. Since the goal of these tools is only to provide the system
administrator an overview over the general health condition of their
hardware and services, the spatial and temporal resolution of these
tools is coarse: monitored entities are restricted to the most relevant
ones and data is acquired in intervals of minutes. Only in case of
anomalies, it is expected that the system administrator performs a
closer inspection of the affected entities to identify any potential is-
sues.

This section introduces the most widely used tools for standard
system monitoring today: Nagios, Icinga, and CheckMK.

3.1.1 Nagios

Nagios [36] is considered the de-facto standard for IT systems moni-
toring. It is released as open-source software under the GPL vz license
backed with commercial support by Nagios Enterprises LLC [37].

In Nagios, the "Nagios Core" implements the basic functionality
such as an inventory of devices (servers, switches...) to be moni-
tored. Through a variety of publicly available "Nagios Plugins", the
Nagios Core can trigger live checks on network hosts (host check)
or network services (service check) and collect time series data from
various sources. Due to its plugin based approach, users can easily ex-
tend Nagios with their own plugins for customization. In addition to
these active checks (i.e. checks triggered by the Nagios Core), Nagios
supports passive checks in which external processes can implement
and trigger host or service checks at their own discretion and submit
their result to the Nagios Core.

Although Nagios can run several checks in parallel by forking from
the core process for each check, the centralized approach of the sin-
gle Nagios core imposes a limit on scalability in large IT environ-
ments. To mitigate this problem, Nagios implements a dependency
logic, which allows to model links between services and hosts. In ad-
dition to performing checks at regular intervals, this logic can trigger

3.1 EXISTING SOLUTIONS FOR STANDARD SYSTEM MONITORING

checks on-demand whenever a host or service status changes. System
administrators may therefore configure Nagios to only check certain
services at regular intervals and have Nagios check the hosts associ-
ated with a service only when the service status changes. In essence,
this feature can be considered as a lightweight implementation of a
CMDB".

While reducing the load on the Nagios core through dependent
checking is possible and effective for live-checking applications, it
cannot be used for collecting time series data in which all data points
are to be kept for later analysis. Thus, the base Nagios feature set for
dealing with time series data is limited, albeit various Nagios plugins
exist that store and visualize time series data through the help of
RRDTool (see Section 3.1.4).

3.1.2 Icinga

Icinga [39] originally started as a fork of Nagios. The Icinga project
integrated a series of patches originating from the community and
provided a more modern graphical user interface than Nagios. Mean-
while, Icinga 2 has been released. It has been written from scratch and
aims at modernizing the monitoring core. A notable improvement in
Icinga 2 is the support for distributed monitoring and high availabil-
ity features. Still, Icinga 2 remains compatible with the Nagios plugin
architecture for providing host and service checks and thus suffers
from the same performance limitations as Nagios when it comes to
executing these checks from a single monitoring node.

Similar to Nagios, storing and visualizing time series data is done
using RRDtool.

3.1.3 Check_MK and Open Monitoring Distribution

The scalability challenge in Nagios and Icinga lies in the centralized
core, which has to trigger all active checks. Even though the checks
are forked out and may run as separate processes in parallel to the
core, the design results in a single server having to initiate many
connections to perform the host and service checks.

The Check_MK [40] project started as a plugin to Nagios which im-
proves the case in which the Nagios core has to check for multiple ser-
vices on the same node. Instead of checking the node’s services one
after another, Check_MK relies on a node-side script that performs all
the checks locally and generates a summarized report containing all
node status reports. This summarized report can then be transferred

CMDB: Configuration Management DataBase — according to IT infrastructure guide-
lines such as ITIL® [38] or ISO 20000, a configuration management database models
all configuration items (hardware, services, applications...) and their relationships.

23

24

THE HPC SYSTEM MONITORING CHALLENGE

in a single connection, thus freeing the Nagios core from the effort of
having to initiate at least one connection per service.

Assuming a properly crafted node-side script to generate the sum-
marized report, Check_MK can automatically detect all services run-
ning on a node and configure Nagios automatically. This feature
proves very powerful in environments where nodes are re-provisioned
frequently and the need of adapting the Nagios configuration upon
each re-provisioning becomes superfluous.

The Check_MK team also develops Multisite, another web-based
graphical user interface to Nagios. Multisite integrates seamlessly
with the Check_MK approach of auto-configuring service checks and
makes the monitoring setup including users, groups, roles, and access
rights configurable through the web browser interface.

Since a full setup of a monitoring server from scratch including Na-
gios, Check_MK, and Multisite can become cumbersome due to the
numerous dependencies on external libraries and tools, the authors
of Check_MK combine all their tools including third party depen-
dencies into a single distribution, the Open Monitoring Distribution
(OMD). With OMD installed, administrators can set up entire Na-
gios/Check_MK installations with a single command line operation.

Although Check_MK improves the scalability of Nagios further, it
still relies on the central Nagios core for collecting all monitoring
information, implying that the number of monitored hosts can not
be extended indefinitely. Also, for storing and visualizing time series
data, Check_MK sticks to the use of RRDtool.

3.1.4 RRDTool

Due to its use in Nagios, Icinga, and many other applications, the
Round Robin Database tool [41] is probably the most widely used
tool to store and visualize time series data. A few key features of
RRDtool explain its popularity for system monitoring:

THE ROUND ROBIN STORAGE scheme with pre-allocated data files
causes the RRDtool disk usage to stay constant ensuring that
the monitoring servers do not run out of disk space.

AUTOMATIC AGGREGATION for older data allows for keeping aver-
aged or otherwise aggregated values at lower temporal resolu-
tion allowing to trade in resolution with storage duration under
constrained disk space.

A POWERFUL GRAPHING TOOL for generating time series graphs of
the data stored in the round robin database files.

RRDtool is licensed under the GNU General Public License and
ships as a set of command line utilities. Support for the Common

3.2 PERFORMANCE ANALYSIS TOOLS

Gateway Interface (CGI) ensures seamless integration of up-to-date
time series graphs into web based graphical user interfaces.

RRDtool works entirely file based and thus relies on the underly-
ing file system for implementation details related to concurrent access
and locking. While this simplifies the implementation of RRDtool sig-
nificantly, it means that any use of RRDtool in a larger environment
with shared file systems is automatically limited by the locking and
metadata performance of the file systems. Since all operations on the
RRD databases require the execution of a command line program that
goes through the cycle of opening, locking, writing or reading, and
closing the file, all RRDtool operations impose a significant overhead
over other database management systems that run continuously as
service daemons allowing for caching data in memory until commit-
ting a full batch of data to background storage in one single operation.
This, in conjunction with the fact that RRDtool uses Unix epoch time
stamps internally (with a temporal resolution of 1 second), makes
RRDtool unsuited for storing high-frequency time series data.

3.2 PERFORMANCE ANALYSIS TOOLS

In high performance computing, as the name implies, application per-
formance plays an important role and is therefore subject to thorough
analysis. For this purpose, processors are equipped with special regis-
ters, called hardware performance counters. Processors can be config-
ured to use the hardware performance counter registers to count the
occurrence of certain events such as retiring of instructions or cache
misses.

The combination of these hardware performance monitoring capa-
bilities with other software performance analysis techniques, such as
sampling based call graph analysis or source code instrumentation
allow for an in-depth analysis of the performance behavior of an ap-
plication. Over the years, several tools have evolved that collect and
visualize application performance data to assist HPC application de-
velopers in further optimizing their codes.

Since performance analysis tools aim at closely correlating the col-
lected data with the execution of the application, performance anal-
ysis tools traditionally collect performance data in-band. Thus, con-
ducting application performance analysis always comes with a per-
formance impact on the running application and developers of per-
formance analysis tools strive to minimize that impact.

This section briefly introduces some of the most common tools for
application performance analysis. Scalasca, Vampir, Periscope, and Tau
are based on the common Score-P framework for collecting application
performance data. HPCToolkit, ARM MAP, and Intel® VTune" Amplifier
XE ship with their own implementation for application data collec-
tion.

25

26

THE HPC SYSTEM MONITORING CHALLENGE

3.2.1 Score-P Based Tools

Score-P ("Scalable Performance Measurement Infrastructure for Par-
allel Codes") [42] is the underlying data acquisition layer for a variety
of performance analysis tools. It supports various HPC programming
paradigms ranging from traditional MPI and OpenMP to CUDA and
OpenCL.

Score-P works by instrumenting the code at compile time with calls
to a library that collects event trace data into trace files using the
OTF2 (Open Trace Format 2) file format or call-path based profiling
data using the Cube 4 profiling data format. Writing the application
performance data to files using a standard file format allows for do-
ing performance analysis of the exact same run using different tools,
meaning that application developers do not need to re-run applica-
tions multiple times under different performance analysis tools. In
addition to writing application traces and application call-path pro-
files to files, Score-P also provides an online interface over TCP/IP.

The following tools rely on Score-P for performance data acquisi-
tion:

SCALASCA [43] [44] is a BSD licensed performance analysis tool, de-
veloped at the Jiilich Supercomputing Centre, Technische Uni-
versitit Darmstadt, and the German Research School for Sim-
ulation Sciences. It is designed particularly for large-scale sys-
tems breaking down the collected data along a 3-dimensional
performance space: (M x P x S) where

M represents the set of performance metrics of interest
P represents the set of program locations (e.g. functions)
S represents a view of the system (e.g. set of nodes)

The Cube viewer (Scalasca’s graphical user interface) helps iden-
tifying performance issues by implementing a colored scheme
that quickly helps identifying the spots in the performance space
with the largest room for improvement.

VAMPIR [45] is a graphical performance analysis tool developed at
Technische Universitit Dresden. It displays the collected appli-
cation performance data either as time series or in statistical
summary charts.

PERISCOPE [46] is a performance analysis and tuning framework de-
veloped at Technische Universitit Miinchen. Instead of doing
post-run analysis of the data sets generated by Score-D, it uses
the online interface of Score-P to adapt and refine the set of mon-
itored properties during the application run. An Eclipse plugin
can be used for visualizing the generated data.

TAU (Tuning and Analysis Utilities) [47] [48] is a performance analy-
sis toolkit developed at the University of Oregon. The profiling

3.2 PERFORMANCE ANALYSIS TOOLS

capabilities of TAU are comparable to other performance analy-
sis tools, including various options for generating graphs from
the performance data. In addition, however, TAU also provides
a code analysis package that performs static code analysis.

3.2.2 HPCToolkit

HPCToolit [49] [50] is a BSD-licensed performance analysis package
developed at Rice University. It uses statistical sampling to derive
its performance metrics and, thus, does not require applications to
be recompiled for profiling. Nevertheless, if required by the appli-
cation developer, HPCToolkit provides an API to interface with the
sampling process from within the application.

In addition to these profiling features, HPCToolkit supports the
user in correlating the application’s binaries with the original source
to understand the optimizations performed by the compiler (function
inlining, loop unrolling, vectorization. ..). This is particularly useful
in identifying code sections with degraded performance due to miss-
ing optimizations of the compiler, despite the application developers
wrongly assuming the compiler to be able to optimize the given sec-
tion.

Besides providing standard metrics from hardware performance
counters and other common sources, HPCToolkit also allows for defin-
ing "derived metrics" which allows the user to define arbitrary arith-
metic expressions that combine existing metrics into new ones.

HPCToolkit also provides a graphical user interface that helps in
visualizing performance metrics either based on code and call tree or
as time series.

3.2.3 ARM MAP

ARM MAP [51] (Allinea MAP in days preceding the acquisition of
Allinea by ARM Ltd.) is a commercial profiling tool that is part of the
ARM Forge tool suite. Similar to HPCToolkit, it performs application
profiling by statistically sampling the running application. Therefore,
it also does not require the application to be recompiled or otherwise
annotated.

A recent feature in ARM MAP is the ability to correlate applica-
tion performance with power consumption. For this, ARM MAP sup-
ports various sources for power or energy measurements, such as the
Intel® RAPL interface.

3.2.4 Intel® VTune™ Amplifier and Trace Analyzer & Collector

Intel® VTune " Amplifier [52] in conjunction with the Intel® Trace An-
alyzer & Collector form another set of commercial profiling tools.

27

28

THE HPC SYSTEM MONITORING CHALLENGE

Data acquisition is performed using statistical sampling similarly to
HPCToolkit and ARM MAP. VTune " Amplifier covers node-level anal-
ysis including OpenMP parallel codes, whereas the Trace Analyzer
hook into the MPI layer to profile MPI communication.

Similar to ARM MAP, these tools now also support the correlation
of application performance with power consumption data.

3.3 LIMITATIONS OF EXISTING SOLUTIONS

As shown in this chapter, a multitude of tools exists for system and
performance monitoring and analysis. Regarding the requirements
for calculating metrics described in Chapter 2 such as Energy to So-
lution, however, limitations of these tools become apparent. All afore-
mentioned tools suffer from a limitation in scope in that they do
not natively support the integration of information from the build-
ing infrastructure domain. Additionally, while the system monitor-
ing tools can be configured to monitor multiple supercomputing sys-
tems, meaning that they can have a global system view, they do not
have an understanding of the temporal allocation of supercomputer
resources to applications or users. On the other hand, performance
analysis tools work on a per-application and per-user basis, but lack
a more global view across applications or even systems.

While in theory, application performance data captured by Score-
P or other performance analysis tools could be fed into the system
monitoring solutions, the limited scalability of the Nagios Core or
RRDTool would render such an attempt impractical. Additionally, the
performance impact of an always-on performance monitoring infras-
tructure would reduce throughput and increase operational costs be-
yond feasibility.

3.4 ADDRESSING THE LIMITATIONS

Due to the limitations of existing system and performance monitoring
solutions, research at the Leibniz Supercomputing Centre has yielded
approaches to address these limitations. The basic goal of these efforts
is to remove the spatial and temporal restrictions of existing tools

* by integrating IT and building infrastructure monitoring data,
* by accessing more information sources and sensors, and

* by researching ways of efficiently organizing data for improved
scalability.

3.4 ADDRESSING THE LIMITATIONS

3.4.1 Integrated Monitoring with PowerDAM

PowerDAM [53] is LRZ’s software for integrating conventional su-
percomputing system monitoring with building infrastructure mon-
itoring and resource management. It collects sensor data from vari-
ous sources spanning multiple HPC systems and LRZ'’s building in-
frastructure management systems for cooling and power distribution.
Data is collected from all sources once per minute and stored in a
MySQL database.

With the integration of building infrastructure data, PowerDAM
is capable of providing live PUE information for SuperMUC, LRZ'’s
Tier-o supercomputing system. In addition, the connection to LRZ’s
resource management tools LoadLeveler and Slurm, enables Energy
to Solution measurements for each application or summarized energy
consumption reports per user. For shared resources such as cooling
and networking, PowerDAM can split the energy consumed of the
shared resource according to configurable parameters.

PowerDAM has large potential in addressing the limitations of tra-
ditional system monitoring solutions when it comes to assessing the
supercomputing center’s energy efficiency. However, relying on a sin-
gle, centralized database introduces inherent scalability limitations
effectively limiting the further scale of PowerDAM to include more
systems or increase sampling frequency for sensor data.

A tool similar in functionality to PowerDAM is DataHeap [54] de-
veloped at Technische Universitdt Dresden.

3.4.2 Smart Data Acquisition

Tackling the scalability challenge for systems collecting vast amount
of data can be done in various ways. One of the smartest concepts is
to avoid the storing of unnecessary data.

The PerSyst tool [55] developed at LRZ provides always-on per-
formance monitoring for all applications running on LRZ’s super-
computers. To minimize its overhead, PerSyst acquires performance
monitoring data every 10 minutes for a 30 second period as research
has shown that this interval is sufficient for a general overview of
the performance behavior of an application. To additionally limit the
amount of storage space required for the collected data, PerSyst fea-
tures a smart data acquisition scheme. This scheme causes PerSyst
to start with monitoring only high-level performance properties (e.g.
total cache misses). In case one of the monitored properties exceeds
a configurable threshold, PerSyst automatically refines the measure-
ment to include additional properties (e.g. level 1 and level 2 cache
misses). Through this concept, data is only stored when it is relevant
due to an excursion over the predefined threshold. For fully opti-
mized applications, only a minimal set of data is stored at all whereas

29

30

THE HPC SYSTEM MONITORING CHALLENGE

for applications with performance problems, all relevant properties
are kept for later analysis.

3.4.3 Compressed Data Storage

In addition to only store relevant data, PerSyst also implements a
compression scheme for its data. Instead of storing the raw values for
each property on each node, PerSyst collects the per-property data
from all nodes, sorts the values in ascending order and only stores
the values of the deciles across the resulting distribution. Within the
PerSyst database, the deciles are associated with the accounting in-
formation of the running application. Since key aspects of the appli-
cation’s behavior are directly visible from the distribution function,
the stored data is still sufficient to generate meaningful reports for
application developers despite the "lossy compression” employed on
the performance monitoring data.

3.4.4 Distributed Data Storage

Unfortunately, the concepts of PerSyst are only partially applicable to
PowerDAM. As opposed to CPU performance counter data, power
monitoring and other system monitoring data (voltages, tempera-
tures, fan speeds. . .) is often requested in its full time series per sen-
sor. Also, omitting data at the time of acquisition requires upfront
knowledge on the expected values and dependencies between differ-
ent data sources. Since data center wide integrated monitoring for
energy efficiency is a relatively new field of research, little is known
about the dependencies and interactions. It therefore makes sense to
collect as much data as possible for later analysis.

With the centralized database being the bottleneck in PowerDAM,
the best approach to solving the scalability problem is to move to a
distributed database. Of particular interest in this context are NoSQL
database systems that give up on the traditional atomicity, consis-
tency, isolation, and durability (ACID) properties of traditional rela-
tional database management systems as the loosening of these proper-
ties allows for distributed database systems that exhibit performance
scaling almost linear to the number of database nodes.

The following chapter introduces Data Center DataBase (DCDB), a
framework that builds on the distributed Cassandra NoSQL database
for scalable collection of system monitoring data.

THE DCDB FRAMEWORK

The Data Center DataBase (DCDB) framework is a concept and sup-
porting software toolset for building highly scalable time series mon-
itoring infrastructures. DCDB can integrate an almost arbitrary num-
ber of sensors from a multitude of different sources with a temporal
resolution of up to 1 nanosecond. In the design of DCDB, scalability
has always been first priority. The following aspects of DCDB con-
tribute to its scalability:

THE APACHE CASSANDRA NOSQL DATABASE has a very restrictive
data model and loosens ACID compliance resulting in a data-
base management system that exhibits nearly linear scalability
when increasing the number of database servers.

A PUSH MODEL based on the lightweight MQ Telemetry Transport
(MQTT) protocol is used instead of the traditional pull models
for acquisition of sensor data. This eliminates the need for a
central server that initiates sensor readings at regular intervals
and allows for a change of value approach for updating sensor
values in addition to classical periodic updates.

LOCAL STORAGE — GLOBAL ANALYSIS means that DCDB promotes
setups in which the time series data is kept relatively close to its
source. E.g. supercomputers could operate one database node
per rack that stores this particular rack’s sensor data, avoid-
ing the congestion of networks with high frequency monitoring
data. Due to the distributed nature of the database, analyzing
the data across multiple database nodes, however, is no differ-
ent from analyzing data from a single database node. In appli-
cations such as system monitoring, where the number of data-
base inserts often outweighs the number of reads, this approach
significantly lowers the amount of monitoring related network
traffic.

4.1 DCDB OVERVIEW

Figure 3 provides a high level overview of the DCDB data acquisition
and storage process.

Sensor data originating from a variety of sources is sent into DCDB
via the MQTT protocol. A Collect Agent receives each sensor reading
and, if not already done at the data source, associates a time stamp

31

32

THE DCDB FRAMEWORK

Custom Monitoring Standard Server In-band System Network Device Building
(e.g. custom firmware) Monitoring Monitoring Monitoring Monitoring
A = A
o = =5
C—
IPMI over In-band SNMP over BACNet over
Ethernet SysFs reads Ethernet Ethernet
IPMI Pusher SysFS Pusher SNMP Pusher BACNet Pusher
MQTT
Protocol
Collect Agent Collect Agent

Distributed
‘té Apache Cassandra ‘tﬁ
Database

Figure 3: Overview of the sensor data acquisition and storage process in the
DCDB Framework."

to it. The Collect Agent then stores the data in one of the Cassandra
database nodes.

Whenever needed, additional instances of Collect Agents and da-
tabase nodes can be configured to distribute the load of incoming
data.

To avoid any loss of information that may result from early modi-
fication of sensor data (e.g. scaling, averaging...), users of DCDB are
encouraged to push sensor data into DCDB in its raw form. DCDB
facilitates the handling of data in raw formats by providing built-in
means of scaling the data and converting units. Through the defi-
nition of wvirtual sensors, users can create additional data series that
combine data from multiple sensor sources.

For retrieving the stored data, DCDB provides the dcdbquery com-
mand line utility. Using the dcdbplot utility, this data can be turned
into time series graphs. All DCDB command line utilities rely on the
shared dcdblib library which may also be used to develop custom
applications that work with the data stored in DCDB. All functions
provided by dcdblib will be referred to as DCDB API.

4.2 APACHE CASSANDRA NOSQL DATABASE

Apache Cassandra [56] is a cross-platform, distributed database man-
agement system. It is written in Java and licensed under the Apache
License. Cassandra development is managed by DataStax, Inc. [57],
a Santa Clara based company that also provides commercial releases
with additional features and commercial Cassandra support.

The image of Tux, the official Linux mascot used in this figure is artwork by Larry
Ewing and The GIMP.

4.2 APACHE CASSANDRA NOSQL DATABASE

4.2.1 History

The Cassandra data model was initially proposed by Google, Inc.
under the name Bigtable [58]. In 2006, Google, Inc. published the
Bigtable concept and described its use in powering various Google
services. Despite giving a clear description on the data model, Google
did not release its Bigtable software to the public.

Lacking a publicly available implementation of the Bigtable con-
cept, Cassandra development was started at Facebook, Inc. One of the
core developers, Avinash Lakshman, had previously worked for Ama-
zon’s DynamoDB NoSQL database. Probably for this reason, Cassan-
dra also provides features originally found in DynamoDB such as the
data replication model.

In 2008, Facebook, Inc. released Cassandra as open-source software.
Shortly after the release, Cassandra got accepted into the Apache Soft-
ware Foundation’s incubator program. In 2010, Cassandra graduated
into the list of top-level projects of the Apache Software Foundation.

Another attempt of reimplementing the Bigtable concept is made
in the HBase [59] project. HBase is also part of the Apache software
foundation and has a stronger focus on Bigtable compatibility than
Cassandra. Meanwhile, Google has also made their own Bigtable im-
plementation available to customers of their cloud services with an
HBase compliant APL

4.2.2 Data Model

In comparison to traditional relational database management systems,
the Cassandra data model is very restrictive. For example, Cassandra
does not support joins on different data sources. In return, all op-
erations within Cassandra are inherently scalable and performance
increases nearly linearly with the number of database nodes.

The fundamental concept of Cassandra’s data model is to store data
in rows with a unique row key. All data operations on the database
require the row key to be specified. For each row, Cassandra keeps
a list of columns consisting of a column name and value. Columns
are automatically sorted in ascending order according to their name
which enables Cassandra to perform range queries on column names.

Similar to the concept of tables in a relational database, multiple
rows and their columns are officially called a "column family" in Cas-
sandra terms. Yet, the term "table" is used synonymously with the
term "column family" in Cassandra’s syntax and documentation. For
separating different applications, Cassandra supports grouping mul-
tiple column families in keyspaces.

In addition to column name and value, each column also contains
a timestamp of when the data was written and, if needed, also a time
to live entry for automatically retiring data after a predefined period.

33

34

THE DCDB FRAMEWORK

Row Keys Columns
(Student ID) (Exam, Grade)
Calculus | Discrete Statistical
Mathematics Analysis |
2883020
B A A-
Discrete Programming
Calculus | Calculus Il Mathematics Course
2883026
A B+ A- B-

Figure 4: Example of a Cassandra column family storing the examination
results of students.

As opposed to the table model in relational databases, column names
do not need to be identical across rows.

Figure 4 provides an example of modeling the examination results
of students as a Cassandra column family. The unique student IDs
are used as row keys, the course names act as column names. Column
values contain the grades. It shows that column names do not need to
be identical across rows as well as the automatic ordering of columns
by name.

Since all data operations require the row key to be specified, data
can be split according to their row key onto different database servers.
Using a hash function that evaluates in constant time, each row key
can be mapped onto a binary value of 128 bits. This hash function
for row keys is called a partitioner since it defines the partitioning of
rows onto multiple database servers. Subsequently, the term "parti-
tion key" is used synonymously with the term "row key". For the par-
titioning, each server is assigned a certain interval in the 128 bit value
space of the hash function. In the default configuration of Cassandra,
a partitioner is used that results in a relatively random distribution
for various types of data. This setup is meant for cases where a set of
database servers shares the total load and the partitioning provides
increased storage space and throughput. Alternatively, Cassandra im-
plements a byte-ordered partitioner that does not implement a hash
function, thus, mapping unsigned integer values of row keys directly
onto the configured database server partitions. Only with the byte-
ordered partitioner, Cassandra supports range queries on row keys
in addition to range queries on column names. In return, use of the
byte-ordered partitioner requires Cassandra users to take special care
of the load balancing through data distribution within their applica-
tion logic.

4.2 APACHE CASSANDRA NOSQL DATABASE

Besides distributing data over multiple servers, Cassandra also pro-
vides means for data replication. Replication yields increased perfor-
mance in a distributed setup since multiple servers can serve the same
data in parallel. In addition, replication is an obvious approach for
increased data availability. Cassandra allows the configuration of a
replication factor for each keyspace and then automatically handles
the copying of data onto multiple nodes. Since replication does not
happen synchronously, conflicting inserts into the database can be re-
solved by comparing the time stamps associated with each column.
For retrieving data, users can configure a quorum that has to be met
from multiple database nodes before column data is returned to the
user.

4.2.3 User and Application Programming Interfaces

For interfacing with external applications, Cassandra provides mul-
tiple interfaces. Until Cassandra version 0.8, the only method for in-
teracting with Cassandra were remote procedure calls (RPC) over a
Thrift-generated interface. Apache Thrift [60] is a software that gen-
erates RPC interface bindings for different programming languages
from a common interface definition file. Through the use of Thrift,
Cassandra databases could be used in applications written in C++,
Java, Python, PHP, and many others. The Thrift API for Cassandra
was based on the direct manipulation of low level database objects.
As such, programmers had to deal with implementation details such
as the internal timestamps that Cassandra uses to resolve concurrent
conflicting inserts into the database.

To overcome the complexity of the Thrift API, Cassandra 0.8 in-
troduced the Cassandra Query Language (CQL) [61]. CQL has simi-
larities to the Structured Query Language (SQL) used by traditional
relational database management systems. However, CQL only pro-
vides a subset of the SQL syntax, restricting the syntax to functional-
ities that are available within the limits of the underlying Cassandra
data model. Still, CQL facilitates the practice of mapping SQL-like
table schemas onto the schema-less Bigtable data model using com-
pound row and column names as illustrated in Figure 5. Along with
the introduction of CQL, the Cassandra developers added a new net-
working protocol for interfacing with Cassandra databases using the
CQL language. Due to the open-source nature of Cassandra, bindings
for many programming languages (C++, Java, Python, PHP...) have
been developed that expose the new CQL-based interface to applica-
tion programmers. Following contiguous improvements of CQL, the
Thrift interface has been removed in Cassandra version 3.

Besides the application programming interfaces, Cassandra ships
with a set of command line tools for administration and data ma-
nipulation. The cqlsh tool provides a CQL shell for the immediate

35

36 THE DCDB FRAMEWORK

CQL table representation

CREATE TABLE students (
University text, StudentID int, Name text, Credits int,
PRIMARY KEY (University, StudentID)

)

University StudentID Name Credits
LMU 2883020 Eva 33
LMU 2883026 Sarah 38
TUM 1043292 John 36
TUM 1043293 Ellen 31
TUM 1043294 Chris 39

Bigtable representation

2883020: | 2883020: | 2883026: | 2883026:
Name Credits Name Credits

LMU
Eva 33 Sarah 38
1043292: | 1043292: | 1043293: | 1043293: | 1043294: | 1043294
Name Credits Name Credits Name Credits
TUM

John 36 Ellen 31 Chris 39

Figure 5: Example of the CQL approach on mapping SQL-like tables to the
Bigtable data model.

execution of CQL queries. The nodetool command provides adminis-
trative functions for Cassandra clusters such as database repairs and
load monitoring.

4.3 STORING TIME SERIES OF SENSOR DATA

Cassandra provides extreme scalability at the cost of a significantly
reduced data model. Thus, the concept of using Cassandra for storing
sensor data promises to be successful if a method is found to describe
the problem of handling time series of sensor data within the Cassan-
dra data model. The following section describes such a method and
the presumptions leading to it.

4.3 STORING TIME SERIES OF SENSOR DATA

4.3.1 Mapping Time Series to the Cassandra Data Model

For the storing of time series containing sensor data, one can make
the following assumptions on the usage pattern:

¢ Each sensor has a unique identifier S.

¢ Each entry in the database is a triplet (S, T, V) with T being the
time of the reading, and V being the sensor’s value at time T.

e Afull (S,T, V) triplet is provided for every valid insert (i.e. there
are no inserts consisting just of S and T without V).

* For a given sensor S at a given time T, there must be no more
than one value V.

® Queries into the database have the form (S, [Ty, T7]1) — (T,V)*
with S being the sensor’s identifier and [Ty, T1] being the time
interval of interest between start time Ty and end time T;7. The
query result (T, V)* is a list of timestamp-value pairs (T, V) for
the sensor S in the requested time interval.

The assumption that sensor identifiers S are unique fulfills a neces-
sary constraint for using S as row keys in Cassandra. Additionally,
according to the usage pattern described above, S is always known
for both, inserts and queries. This is a sufficient requirement for using
S as row keys. With the intrinsic ordering of columns in Cassandra
and the resulting support for range queries on column names, the
column name fields provide the best location to store timestamps T.
This leaves the column’s value field for the sensor’s value V.

To achieve this mapping of S to row keys, T to column names, and
V to column values, DCDB uses the following CQL statement for
creating the sensor data table:

Listing 1: Creation of the sensor data table with CQL.

CREATE TABLE sensordata (sid BLOB, ts BIGINT, value BIGINT, PRIMARY KEY (
sid, ts)) WITH COMPACT STORAGE;

This CQL statement creates a new table named sensordata with
three fields:

e The sensor identifier S (sid)
* The time stamp T (ts)
e The sensor value V (value)

Through the PRIMARY KEY (sid, ts) statement, Cassandra will auto-
matically use the values of the sid field as row keys and the values
of the ts field as column names.

37

38

THE DCDB FRAMEWORK

The COMPACT STORAGE directive in the statement is an optimization
flag that reduces the disk space required for the table. In return, CQL
tables created with COMPACT STORAGE directive can only contain one
field besides the primary key fields and altering the table definition
after its creation is not allowed.

4.3.2 Data Types and Storage Conventions

The CREATE TABLE statement from Listing 1 also defines the data
types used for storing sensor data within DCDB.

In DCDB, the sensor identifier S stored in the sid field is repre-
sented as a binary structure of 128 bits. Unfortunately, Cassandra
only provides data types for storing integer numbers of up to 64 bits.
It does, however, provide the BLOB data type that represents a con-
tainer for binary data of arbitrary size. Thus, in DCDB, the sid field
uses the BLOB data type and DCDB’s application logic ensures that all
values are exactly 128 bits wide. In conjunction with the byte-ordered
partitioner, the value in this field then also enables control over the
storage location of a sensor’s data row.

The time stamp T stored in the ts field is defined as data of type
BIGINT. The BIGINT data type in Cassandra holds signed integer val-
ues with 64 bits precision. In computing, processing time information
using integer values is common practice as it allows for faster oper-
ations on time data than processing time represented as character
strings. For example, UNIX timestamps are defined as integer values
representing the elapsed time in seconds since the UNIX epoch (Jan-
uary 1, 1970). To facilitate interfacing with other applications using
UNIX timestamps while, at the same time, increasing the temporal
resolution, DCDB uses nanoseconds since UNIX epoch within the ts
database field. Similar to UNIX timestamps, DCDB timestamps repre-
sent time in UTC. This ensures that the DCDB timestamp function is
monotonic rising which avoids possible issues related to time zones
and daylight savings time.

DCDB also uses the BIGINT data type for representing the sensor
values V in the value field. This is a debatable choice, since sensor
data often originates from analog sensors measuring temperatures,
voltages, etc. for which floating point data might seem more appropri-
ate. However, in current computing equipment, the conversion from
the analog measurement to a digital value is done in tiny microcon-
trollers that do not support the processing of floating point values in
hardware. To work around this hardware limitation, microcontroller
developers could implement floating point support in software which
comes with a significant performance penalty. Therefore, the use of
integers representing multiples of the actual base unit (e.g. millivolts
instead of volts, tenths of °C instead of °C, ...) is used instead.

4.3 STORING TIME SERIES OF SENSOR DATA

With the goal of collecting data directly from as many sources as
possible and with respect to the missing floating point capabilities
of most microcontrollers, DCDB uses integers for storing sensor data.
Since this yields to DCDB storing data in a variety of different units,
DCDB supports transparent conversion of units when reading data
from the database. The DCDB unit conversion framework will be ex-
plained in Section 4.7.3.

4.3.3 Defining Sensor Identifiers

128 bit

DCDB Sensor ID

64 bit 32 bit 16 bit | 16 bit
Device Location Device Identifier | RSVD SEREOr
Number

Figure 6: Structure of DCDB sensor IDs.

As explained in the previous section, DCDB sensor identifiers are
128 bits wide to match with Cassandra’s internal representation for
row keys. DCDB assumes that sensors are contained in devices (e.g.
compute nodes, network switches. . .). It also assumes that devices are
characterized by their physical location and a unique device identifier
that persists even when the device is relocated to a different physical
position.

Figure 6 shows, how DCDB sensor identifiers are composed to re-
flect this model:

DEVICE LOCATION describes the (unique) physical location of the
device. Users of DCDB are free to assign their own scheme of
encoding a physical location into this 64 bit wide field. However,
since this field makes up for the most significant bits of the
sensor identifier, it directly influences how Cassandra will split
sensor data onto different database nodes. Users must therefore
be careful in modeling device locations in a way that allows
mapping this data to nearby Cassandra database nodes.

DEVICE IDENTIFIER holds an identifier that is unique to a device
which is independent from its position, i.e. it persists even when
the device is moved to a different location. For example, device
identifiers can be derived from a device’s MAC address or se-

39

40

THE DCDB FRAMEWORK

rial number. Being able to track devices independent from their
physical location is key to an efficient analysis of data center op-
erations: for example, when tracking down issues of insufficient
cooling, it is important to know whether the problem is within
the device (i.e. broken fan) or from the device’s location (i.e. hot
spot due to turbulences in the room’s cooling air distribution).

RsvD is a reserved field. It will be described in the next paragraph.

SENSOR NUMBER is an identifier of the sensor within a device. This
number can be assigned arbitrarily by DCDB users, although it
is recommendable to use the same sensor numbering schemes
across similar devices.

4.3.4 Coping with Cassandra’s Wide Row Limits

Cassandra encourages the use of wide rows, that is rows with many
pairs of column name and value per row key. However, Cassandra
also carries a design limitation that the number of cells per row may
not exceed 2 billion. When running DCDB for a long time or when
incorporating sensors with a high read-out frequency, this limit could
be reached. In order to work around this limitation of Cassandra,
DCDB transparently inserts a time based hash into the sensor ID. This
hash, also referred to as week stamp is calculated for every insert as
the number of weeks since the UNIX epoch for the given timestamp
T. The week stamp is then imprinted into the sensor ID’s 16-bit wide
RSVD field. With this concept, the identifier S stored in the sid field for
a given sensor will change every week. Thus, the Cassandra limitation
of cells per row no longer imposes a global limit on the number of
data points per sensor. Instead, DCDB’s limitation is now 2 billion
data points per week per sensor, which is reasonably large.

Calculating the week stamp transparently upon every insertion of
a data point only consists of one division and the bit arithmetic to
insert the week stamp into the sensor ID. More work has to be done,
however, for honoring the week stamp during queries into the sensor
data store since a query may span multiple weeks and the sensor’s
time series has to be assembled from multiple rows within Cassandra.
However, DCDB has all the necessary functionality implemented to
handle inserts and queries without the need for DCDB users to be
aware of the week stamp concept.

4.4 MQ TELEMETRY TRANSPORT

To collect sensor data from various sources, DCDB relies on the MQ
Telemetry Transport (MQTT) messaging protocol [62]. MQTT was in-
vented in 1999 and originated from a collaboration between IBM and
Eurotech. In 2015, MQTT has been adopted as an OASIS standard

4.5 COLLECT AGENT

[63] and in 2016, MQTT has been adopted by the ISO/IEC technical
committee on information technology?.

The MQTT protocol is designed to be lightweight and simple to
use. Also, the small size of the reference implementation allows for
using it even on tiny microcontrollers.

In its original form, MQTT uses a publish-subscribe model in which
MQTT clients connect to a broker. A client then either publishes mes-
sages to the broker or subscribes to the broker with a list of topics
of interest. It is then the broker’s responsibility to forward all mes-
sages that it receives according to the clients” subscriptions. In the
current implementation of DCDB, however, the intermediate use of
a broker and explicit subscriptions to topics does not take place. In-
stead, any MQTT message sent into DCDB will result in an insertion
of the sensor data contained within the message into the database.
Yet, by sticking to the MQTT message format, DCDB can be extended
to interact with other MQTT-capable tools without problems in the
future.

Each MQTT message consists of a message topic and a message
body. Within the DCDB framework, the message topic is a character
string, representing the 128 bit sensor ID in hexadecimal notation.
For increased readability (e.g. to separate the device location, device
identifier, and sensor number fields), the number may be split using
forward-slash characters. The RSVD field in which DCDB will place
the week stamp can contain arbitrary data as it will be overwritten by
DCDB.

For the message body, DCDB supports two different formats, de-
pending on whether the device sending the message has the capabil-
ity to provide time stamp information or not. In case the message orig-
inates from a data source that has no access to accurate real time clock
information, the message body solely consists of a 64 bit number rep-
resenting the sensor’s current reading. Upon receiving the message,
DCDB will assign the current time to the reading and insert it into
the database. If the message originated from a data source that has
the ability to provide real time clock information, DCDB also accepts
a list of timestamp-value pairs within the message body. The list of
values will then be inserted into the database with the provided times-
tamps. The latter message format also allows for transferring multi-
ple data points within the same message, thus reducing the protocol
overhead per data point and increasing the data insertion bandwidth.

4.5 COLLECT AGENT

The previous sections explained how DCDB stores time series data
using the Cassandra database and how the MQTT protocol is used
to transmit sensor data. This section introduces Collect Agent, which

2 ISO/IEC 20922:2016

41

42

THE DCDB FRAMEWORK

: Simple Message Cassandra
MQTT Clients 2 <
MQTT Server Decoder Backend
connects to -
Collect Agent Accept Decoding of MQTT
via TCP/IP Threads message topic string
to 128-bit Sensor ID
. Topic [~
:_ﬂlstel:ufnor nMe(\DNTT g?m Issuing a series of insert
c;snect?ons B 0000 commands into the
gggg database using DCDBlib
Accept thread hands over the ~ library routines
established connection to the next
available message thread or Message Decoding of MQTT
spawns a new message thread Threads message body into TR st (D, 7,V)
timestamp-value pairs insert (ID, T, V)
Receive MQTT - e (5,7 V)

Topic

messages from insert (ID, T, V)

insert (ID, T, V)

; /

multiple connections X
Data | -¥ X
s——= | 1000 x
/ Collect Agent
MQTT clients push sensor data at
their discretion towards the Collect

X x x x

‘ Agent’s simple MQTT server

Figure 7: Graphical overview of the Collect Agent tasks and data flow

The series of insert ~ _
commands is processed by ~__ =~
the Cassandra database N)

is the software component of DCDB that receives sensor data from
MQTT messages and writes it into the Cassandra database.

Collect Agent is a C++ program designed to run as a server dae-
mon. During the startup, Collect Agent uses the DCDB API to con-
nect to the Cassandra database. Once connected, it ensures that all
keyspaces and column families are present and creates them, if nec-
essary. It then starts its internal MQTT server. The MQTT server of
Collect Agent implements a subset of MQTT commands sufficient to
receive MQTT messages with sensor data. Upon receiving of a MQTT
message, Collect Agent tries to decode the message topic string into
a 128 bit sensor ID by stripping any forward-slash characters. Once
successful, Collect Agent checks the message payload to determine
whether the message consist of just a value, a timestamp value pair,
or a series of timestamp value pairs. It then uses its existing connec-
tion to the Cassandra database to insert the data into the sensordata
column family. Figure 7 visualizes the Collect Agent’s components
and the associated data flow.

For increased performance, Collect Agent implements a threaded
design. Each socket on which Collect Agent listens for incoming con-
nections runs in its own thread. Once a client connects to the MQTT
server, the connection is being handed over to one of multiple con-
nection handling threads. In oder to optimize thread usage, each con-
nection handling thread is capable of working multiple concurrent
connections. Both Collect Agent and the underlying libraries for ac-
cessing Cassandra are implemented in a thread-safe fashion so that

4.6 SOURCES FOR SENSOR DATA

the insertion of data up until the actual database operation can be
performed in parallel.

Large DCDB installations will run multiple Cassandra database
nodes as well as multiple instances of the Collect Agent. A reason-
able approach is to run Collect Agent and its associated Cassandra
service on the same server. However, for increased performance, the
two can also be run on separate servers.

4.6 SOURCES FOR SENSOR DATA

Recent years have seen a contiguous decline in cost, size, and power
consumption in sensor technology and associated measurement elec-
tronics. This trend has enabled market growth for cyber-physical sys-
tems and is accompanied with marketing labels such as the Internet
of Things (IoT) and Smart Sensors. DCDB was designed for such en-
vironments and the deliberate choice for MQTT as the protocol for
transferring sensor data was made due to the popularity of MQTT in
the IoT scene and its generally wide support.

In an ideal DCDB monitoring setup, one would rely solely on
smart sensors that contain a microcontroller capable of establishing
IP-based connections to the Collect Agent. The sensor would then be
assigned a Sensor ID and, once it is powered up and connected to
the network, push its information autonomously towards the Collect
Agent.

On today’s high performance computers, however, any monitoring
system has to work with existing protocols and data paths for the
acquisition of sensor data. Widely used protocols are IPMI and SNMP
for accessing out-of-band data. As an example to demonstrate the
amount of information from a single compute node, Table 4 lists all
sensors on a current popular HPC platform that are available out-of-
band via IPMIL In-band data is often available from the Linux sysfs
and proc pseudo file systems.

To cope with these existing infrastructures, a set of Pushers has
been developed. The Pushers are software components within DCDB,
which interface between the existing methods for data acquisition and
the DCDB scheme of pushing data via MQTT messages.

4.6.1 IPMI Pusher

The Intelligent Platform Management Interface (IPMI) is an industry
standard for server management [64]. The IPMI standard is adminis-
tered by Intel®. Meanwhile, more than 200 companies have adopted
or contributed to the IPMI standard or are registered otherwise as
industry promoters [65].

The documents describing the IPMI standard are publicly avail-
able. They describe the hardware configuration and internal commu-

43

THE DCDB FRAMEWORK

Sensor Value Sensor Value Sensor Value
BB Inlet Temp 27 degrees C P1 Therm Margin -58 degrees C System Event Log 0x00
BB BMC Temp 33 degrees C P2 Therm Margin -61 degrees C System Event ox00
BB CPU1 VR Temp 34 degrees C P1 Therm Ctrl % o0 percent Button ox00
BB CPU2 VR Temp 32 degrees C P2 Therm Ctrl % o0 percent BMC Watchdog ox00
BB MISC VR Temp 36 degrees C P1 DTS Therm Mgn -48 degrees C VR Watchdog ox00
BB Outlet Temp 34 degrees C P2 DTS Therm Mgn -51 degrees C SSB Therm Trip ox00
System Airflow 24 CFM P1 DIMM Thrm 1 -42 degrees C BMC FW Health ox00
LSI3008 Temp 29 degrees C P1 DIMM Thrm 2 -53 degrees C NM Capabilities 0X00
SSB Temp 35 degrees C P2 DIMM Thrm 1 -44 degrees C Auto Shutdown 0X00
HSBP PSOC 27 degrees C P2 DIMM Thrm 2 -54 degrees C PS1 Status 0X00
Exit Air Temp 34 degrees C Agg Therm Mrgn 1 -26 degrees C PS2 Status 0X00
LAN NIC Temp 38 degrees C Agg Therm Mrgn 2 -33 degrees C P1 Status 0X00
Sys Fan 1A 13410 RPM HSBP Temp 24 degrees C P2 Status 0X00
Sys Fan 1B 13950 RPM Riser 1 Temp 29 degrees C CPU ERR2 0X00
Sys Fan 2A 13320 RPM Riser 2 Temp 26 degrees C CPU Missing 0Xx00
Sys Fan 2B 13857 RPM BB +12.0V 12.10 Volts VRD Hot 0X00
MTT CPU1 o percent BB +3.3V Vbat 3.02 Volts PS1 Fan1 Fail 0X00
Sys Fan 3A 12870 RPM Mem 1 VRD Temp 32 degrees C PS1 Fan2 Fail 0X00
MTT CPU2 o percent Mem 2 VRD Temp 27 degrees C PS2 Fan1 Fail 0X00
Sys Fan 3B 14043 RPM EV CPU1VR Temp 31 degrees C PS2 Fanz Fail 0X00
PS1 Input Power 299 Watts Pwr Unit Status 0X00 Mem P1 Thrm Trip 0X00
PS2 Input Power 13 Watts Pwr Unit Redund 0X00 Mem P2 Thrm Trip 0X00
PS1 Curr Out % 10 percent IPMI Watchdog 0X00 Voltage Fault 0X00
PS2 Curr Out % o percent Physical Scrty 0X00 HDD o Status 0X00
PS1 Temperature 27 degrees C FP NMI Diag Int 0X00 HDD 1 Status 0X00
PS2 Temperature 27 degrees C SMI Timeout 0X00 HDD 2 Status 0x00

Table 4: Out-of-band sensors on an Intel® S2600BP mainboard

nication paths of IPMI compliant computer systems as well as the
interface and protocol for out-of-band communication with outside
monitoring and management systems.

The central element in any implementation of the IPMI standard is
the baseboard management controller (BMC). The BMC is a system-
on-chip device running a full multi-tasking operating system. It is
connected to many of the server’s internal system management busses
and emulates common input/output devices such as a video screen
and keyboard to forward screen contents and keyboard input be-
tween the server and remote management clients. Using this, system
administrators can remotely see screen content and send commands
to the server already during the system’s early initialization phases,
even before regular networking to the server has been configured.

Multiple software development kits for developing IPMI firmware
for BMCs are available and various open-source software libraries
exist to interact with IPMI compliant BMCs over a system-internal
connection as well as remotely over a serial connection or LAN. IPMI
network connections make use of the user datagram protocol (UDP),
and thus require additional error handling means in the application
logic.

For the DCDB framework and its monitoring purposes, only the
IPMI subsystem that provides access to system sensors is relevant.
IPMI Pusher is a C++ application that accesses the IPMI sensors us-

4.6 SOURCES FOR SENSOR DATA

ing the routines provided by the OpenIPMI library [66]. It features
the ability to connect to multiple BMCs at once using a threaded de-
sign with one thread per connection. A configuration file contains the
hostnames and login credentials of all BMCs. It also contains a list of
sensors to be queried as well as the desired sensor readout frequency.
A central thread maintains a priority queue that contains all sensors
to be queried as well as the time of the next reading. Once the next
reading is due, the due entry is taken from the priority queue and
the thread handling the respective BMC is notified to initiate a read
sensor request. After this, the time of the next reading is calculated
based on the configured readout interval of the sensor and the sensor
is re-inserted into the priority queue.

Since BMC requests are performed asynchronously, response mes-
sages from the BMCs can arrive at any time. Whenever a successful
sensor reading arrives at one of the BMC connection management
threads, the thread assigns a timestamp to the reading and initiates
the creation of a MQTT message containing the sensor ID and the
value. The MQTT message is then sent to the Collect Agent.

4.6.2 SNMP Pusher

The Simple Network Management Protocol (SNMP) is an industry
standard communication protocol for managing IT devices over a
network. In contrast to IPMI, which is designed explicitly for re-
mote server management, SNMP features a simpler and more generic
design. With the exception of special SNMP trap messages, SNMP
implements a simple master-slave communications approach. In the
SNMP terminology, the master (i.e. a management server) is called
manager whereas the slaves (i.e. a SNMP capable network switch) are
called agents.

The manager communicates to the agents using get and set com-
mands to read or change values in the device. Values accessible via
SNMP can be configuration options, sensor readings, or general in-
formation such as the vendor, device type and firmware version of
a device. To access a given value, the manager needs to specify the
value’s object identifier (OID) in the request. For this, SNMP relies
on a global unique OID space as established jointly by the Interna-
tional Telecommunication Union (ITU) and the International Orga-
nization for Standardization’s International Engineering Consortium
(ISO/IEC).

The interest in supporting SNMP within the DCDB framework
is twofold: first, many IT components (such as network switches,
routers, or storage appliances) provide built-in support for monitor-
ing via SNMP. Secondly, a variety of devices exist to bridge other,
less-common protocols to SNMP. An example for such a bridge de-

45

46

THE DCDB FRAMEWORK

vice is explained in Chapter 5, where the DCDB based monitoring
system collects data from the data center’s cooling system controller.

Similar to IPMI Pusher, SNMP Pusher is a C++ application that acts
as SNMP manager to query SNMP agents and forwards the collected
information via MQTT messages into DCDB. To access SNMP agents,
SNMP Pusher relies on the functions provided by the Net-SNMP li-
brary. The Net-SNMP software suite is BSD-licensed and contains a
library and accompanying tools implementing the SNMP protocol
[67]. Similar to IPMI, SNMP communicates via UDP and additional
efforts have to be spent in the application logic to deal with the han-
dling of packet errors.

The rest of SNMP Pusher works identically to IPMI Pusher with a
priority queue to determine the next sensor and OID to be queried
via SNMP.

4.6.3 sysfs Pusher

The Linux sysfs pseudo file system is one of multiple interfaces be-
tween the Linux Kernel along with its device drivers and user space
applications. In modern Linux distributions, sysfs provides a direc-
tory structure under the /sys mount point. Obtaining information
and changing settings is performed by reading from or writing to
files in this directory structure.

An example for a driver that is accessible via sysfs is the cpufreq
driver. Intel® processors since the Pentium M series can adjust their
processor frequency during runtime to reduce the processor’s speed
and power consumption during periods in which the computational
load is low. Other processor designs, in particular in the embedded
field provide similar features. The cpufreq driver interacts with the
processor’s clock generation subsystem to control the behavior of the
CPU-internal clock selection mechanism. For this, cpufreq accepts val-
ues for minimum and maximum processor frequencies through sysfs
and allows for selecting a so called governor which controls how the
frequency is adapted based on the current workload. For system mon-
itoring, the cpufreq sysfs interface also provides information about
the actual frequency as selected by either the governor or the proces-
sor itself.

In the context of DCDB and system monitoring for energy effi-
ciency, it is also noteworthy that system integrators such as IBM,
Lenovo, Cray, and Megware provide additional hardware for fine-
grained energy monitoring. All mentioned companies provide Linux
drivers that make the values of the energy counters available through
sysfs.

DCDB's sysfs Pusher follows the ideas of the IPMI and SNMP Push-
ers by forwarding data obtained through the sysfs pseudo file system
to Collect Agent via MQTT messages. The sysfs Pusher is a C++ ap-

4.7 SENSOR MANAGEMENT

plication that runs as a daemon on each compute node. In regular,
configurable intervals, it reads a set of configured values from sysfs,
packs them as MQTT message and sends it to the Collect Agent.

4.6.4 File Pusher

As the name suggests, File Pusher is a program that reads the con-
tents of arbitrary files, and after interpretation, forwards the file con-
tents to the Collect Agent via MQTT. Its main purpose is to serve as
test application for the development of DCDB. It behaves almost iden-
tical to the sysfs Pusher which also obtains its data by simply issuing
read commands on local files. The only extra feature of File Pusher
over the sysfs Pusher is the ability to use the Linux inotify API to gen-
erate a new MQTT message whenever the contents of a file change.
Since the inotify API does not work on pseudo file systems such as
sysfs, this feature is missing from sysfs Pusher.

4.7 SENSOR MANAGEMENT

The previous sections of this chapter have covered the means by
which DCDB collects, forwards, and stores sensor data for system
monitoring. When rolling out a DCDB installation for a high perfor-
mance computing system, careful planning is required that ensures a
well-performing setup:

* Which devices shall be included in the monitoring setup?

¢ What are the best locations in the network topology to run the
Collect Agents and Cassandra servers?

* What is the scheme for assigning sensor IDs?

Unfortunately, manual planning of the DCDB setup around these
questions is unavoidable since every system is different and the fea-
tures of DCDB’s distributed data acquisition and storage approach
are only exploitable when knowledge of the system and knowledge
about DCDB’s internal structures are well aligned. However, once the
data acquisition infrastructure is in place, DCDB makes accessing the
stored data comfortable and easy.

4.7.1 Publishing Sensors

For performance reasons, DCDB stores all incoming sensor data in
raw 64-bit integer values in the sensordata column family. In partic-
ular, DCDB stores no meta information except for the sensor ID and
the timestamp along with the raw sensor data. Within DCDB, the
time series of raw data are treated as internal data without the need
for direct user access.

47

48

THE DCDB FRAMEWORK

In order to make data accessible, DCDB provides the concept of
publishing sensors. The publishing of a sensor is done for two reasons.
First, a published sensor carries additional meta data such as a freely
assignable name and the physical unit that the raw values represent.
Second, under the assigned public name, the sensor does not only
represent a single internal 128-bit sensor ID. Instead, it is associated
with a pattern which is matched against all internal sensor ids. As
explained in Section 4.3.3, the internal 128-bit sensor ID is composed
of a device location, a device identifier, and a sensor number. DCDB
assumes that, in most cases, users would want to query sensor data
either by the device’s location or by the device’s unique identifier. For
example, a user would like to know the CPU temperature of the top
most compute node in a given rack. In this case, the device identifier
(e.g. serial number of the compute node) would not matter and the
query should return the requested data independent from the actual
device operating in the location.

In return, when trying to track a faulty device across different lo-
cations, a user would want to access sensor data originating from the
device independent from the location of the device at a given time.
Due to the ability of DCDB to match against multiple internal 128-bit
sensor IDs, queries of the aforementioned type become possible.

In practice, when creating a public sensor, the user specifies a pat-
tern which consists of a raw sensor ID and allows for a wildcard (*)
character. Whenever a public sensor’s purpose is to represent a sen-
sor from a device at a given location, the device ID field would be
replaced with the wildcard. Similarly, when a public sensor’s pur-
pose is to represent a sensor from a specific device independent from
the device’s location, the device location part of the sensor ID would
be replaced with the wildcard.

For the publishing of sensors, DCDB provides a command line util-
ity: dcdbconfig. Internally, DCDB maintains a column family called
publishedsensors and any invocation of the dcdbconfig utility will
operate on this column family.

Listing 2: CQL statement for creating the configuration table which holds
all published sensors.

CREATE TABLE publishedsensors (

name VARCHAR, /* Public name */

virtual BOOLEAN, /* Whether it is a published physical sensor
or a virtual sensor */

pattern VARCHAR, /* For physical sensors: pattern for SIDs

that this will match */
scaling_factor DOUBLE, /* Optional scaling factor that will be
applied upon readout x*/

unit VARCHAR, /* Unit of the sensor (e.g. W for Watts) x/

integrable BOOLEAN, /* Indicates whether the sensor is integrable
over time */

expression VARCHAR, /* For virtual sensors: arithmetic expression

for the sensor */

4.7 SENSOR MANAGEMENT

vsensorid VARCHAR, /* For virtual sensors: sensorId in the
virtualsensors table x*/

tzero BIGINT, /* For virtual sensors: time of the first
reading x*/

frequency BIGINT, /* For virtual sensors: readout frequency for

the virtual sensor */

PRIMARY KEY(name))

WITH COMPACT STORAGE AND CACHING = all; /* Enable compact storage
and maximum caching */

While the name and pattern fields have been subject to this section,
the additional fields in this column family will be explained in the
following sections.

4.7.2 The DCDB Query Tool

Publishing a sensor by assigning a name and sensor ID pattern is
the minimum prerequisite for receiving data stored within DCDB.
Once published, time series of sensor data can be retrieved with the
dcdbquery command line utility. In its simplest invocation, dcdbquery
requires a public sensor name, a value for the start time and a value
for the end time of the time series. dcdbquery will then use the DCDB
API to connect to Cassandra, retrieve the data and output the data as
comma separated value (CSV) list.

For convenience, dcdbquery supports querying multiple sensors at
once. In addition, dcdbquery provides flexible means to specify the
start and end time for the query. Supported time formats are:

¢ Absolute time according to ISO 8601 [68]
Example: 2017-01-31 23:59:59.000

* Absolute time using POSIX time
POSIX time counts the number of seconds elapsed since the
Unix epoch (1970-01-01 00:00:00).
For increased granularity, DCDB also accepts milliseconds, mi-
croseconds and nanoseconds since the Unix epoch.
Example: 1485907199

¢ Relative time to current time
Using the keyword now, users can specify any point in time prior
to the current time by specifying an offset of days (d), hours (h),
minutes (m), or seconds (s).
Example: now-1h

To retrieve the time series data from Cassandra, DCDB performs
multiple steps. First, the specified sensor name is looked up in the
publishedsensors table to get the sensor ID pattern string. Due to
DCDB’s Cassandra database schema, queries into the database have
to specify an exact 128-bit sensor ID. While a single 128 bit sensor ID
constitutes a valid pattern, the pattern might also contain a wildcard

49

50

THE DCDB FRAMEWORK

character. Hence, patterns containing a wildcard need to be expanded
into a matching list of existing sensor IDs first. As explained in Sec-
tion 4.3.4, the sensor IDs also contain a week stamp to cope with Cas-
sandra’s wide row limits. Therefore, the list of sensor IDs needs to be
further expanded to contain one sensor ID per weekstamp per phys-
ical sensor. Finally, with the resulting set of sensor IDs, DCDB can
query the sensor data for each sensor ID in the set in the given range
to generate the resulting data set. Due to the ordering of columns
in Cassandra, the result will automatically be ordered ascending by
timestamp.

4.7.3 DCDB Unit Conversion Framework

A benefit of the concept of publishing sensors lies in the ability to aug-
ment a public sensor with additional information such as the physical
unit that the raw data represents. DCDB has a basic understanding
of physical units and is able to perform linear conversions between
units. For this, DCDB maintains a table of physical units.

Listing 3: Definition of the DCDB unit conversion table.

ConversionTableEntry conversionTable[] = {

/* Unit Name Symbol Base Unit Scaling Offset */
/* 0 %/ { Unit_None, "none", Unit_None, 1, 0},
/+* 1 %/ { Unit_Meter, “m", Unit_Meter, 1, 0},
/* 2 %/ { Unit_CentiMeter, "cm", Unit_Meter, -100, 0 },
/* 3 %/ { Unit_MilliMeter, "mm", Unit_Meter, -1000, 0 },
/* 4 %/ { Unit_MicroMeter, "um", Unit_Meter, -1000000, 0 },
/* 5 %/ { Unit_Second, s, Unit_Second, 1, 0},
/* 6 %/ { Unit_MilliSecond, "ms", Unit_Second, -1000, 0 },
/* 7 %/ { Unit_MicroSecond, "us", Unit_Second, -1000000, 0 },
/* 8 %/ { Unit_Ampere, "A", Unit_Ampere, 1, 0},
/* 9 %/ { Unit_MilliAmpere, "mA", Unit_Ampere, -1000, 0 },
/* 10 %/ { Unit_MicroAmpere, "uA", Unit_Ampere, -1000000, 0 },
/* 11 %/ { Unit_Kelvin, "K", Unit_Kelvin, 1, 0},
/* 12 x/ { Unit_MilliKelvin, "mK", Unit_Kelvin, -1000, 0 },
/+ 13 %/ { Unit_MicroKelvin, "uK", Unit_Kelvin, -1000000, 0 },
/* 14 x/ { Unit_Watt, "W, Unit_Watt, 1, 0},
/+ 15 */ { Unit_Milliwatt, "mW", Unit_Watt, -1000, 0 },
/+ 16 */ { Unit_MicroWatt, uw", Unit_Watt, -1000000, 0 },
/+ 17 */ { Unit_KiloWatt, "kW", Unit_Watt, 1000, 0 },
/+ 18 */ { Unit_MegaWatt, MW, Unit_Watt, 1000000, 0 },
/+ 19 *x/ { Unit_Volt, "y, Unit_Volt, 1, 0},
/* 20 x/ { Unit_MilliVolt, "mv", Unit_Volt, -1000, 0 },
/* 21 %/ { Unit_MicroVolt, "uv", Unit_Volt, -1000000, 0 },
/* 22 %/ { Unit_Celsius, "c", Unit_MilliKelvin, 1000, 273150 },
/* 23 %/ { Unit_DeciCelsius, "dC", Unit_Celsius, -10, 273150 },
/* 24 %/ { Unit_CentiCelsius, "cC", Unit_Celsius, -100, 0 },
/* 25 %/ { Unit_MilliCelsius, "mC", Unit_Celsius, -1000, 0 },
/* 26 x/ { Unit_MicroCelsius, "uC", Unit_Celsius, -1000000, 0 },
/* 27 %/ { Unit_Fahrenheit, "F", Unit_MilliKelvin, 555, 255116 },
/* 28 x/ { Unit_Hertz, "Hz", Unit_Hertz, 1, 0},
/* 29 %/ { Unit_KiloHertz, "kHz", Unit_Hertz, 1000, 0 },

4.7 SENSOR MANAGEMENT

/* 30 x/ { Unit_MegaHertz, "MHz", Unit_Hertz, 1000000, 0 },
/* 31 %/ { Unit_GigaHertz, "GHz", Unit_Hertz, 1000000000, 0 },
b

The unit conversion table describes a undirected graph. Each conver-
sion step consists of a scaling factor and a linear offset that will be
applied to the original value. By using a depth-first search approach,
DCDB can determine a path through this graph that describes how
to convert values between various units. The search also takes into
account that a conversion step might be applied backwards.

Access to DCDB’s unit conversion has been built into dcdbquery.
To invoke unit conversion in dcdbquery, users can specify a public
sensor name followed by a forward slash character and the target
unit. For example the command

dcdbquery node001_cpu@_temp/K now-1h now

will retrieve all values from the last hour of the node001_cpuO_temp
sensor in Kelvin.

An alternate and simpler approach for value scaling besides the
unit conversion framework is the field scaling_factor in the column
family publishedsensors. Whenever this field contains a value, it will
be multiplied with the raw sensor value upon readout.

4.7.4 Integrable Sensors

The publishedsensors column family also contains a Boolean field
integrable. With this field, users can specify whether the sensor’s
data can be integrated over time. The common usage for this fea-
ture within DCDB is to integrate sampled values of a power sensor
measured in Watts into energy measured in Joules. For published sen-
sors with this flag set, DCDB provides the dcdbquerysum command
line utility. Instead of returning the entire time series for a sensor,
dcdbquerysum integrates the sensor’s values over time in seconds and
outputs the result as a single number.

4.7.5 Virtual Sensors

DCDB supports the creation of virtual sensors. A virtual sensor is a
special type of published sensor defined by an arithmetic expression
that consists of one or more published sensors.

Exemplary use cases for virtual sensors in the context of energy
efficient high performance computing are:

¢ Calculating the total electric power used by the high perfor-
mance computer by summing up the values of individual power
meters.

51

52

THE DCDB FRAMEWORK

* Deriving the average temperature of a compute node from mul-
tiple temperature sensors within the node.

¢ Computing the efficiency of a switched mode power supply as
the fraction of AC power input and DC power output.

From a user’s perspective, a virtual sensor behaves just like any
non-virtual published sensor. Since virtual sensors are published sen-
sors, the creation of a virtual sensor is done similarly to any published
sensor by adding an entry to the publishedsensors column fam-
ily. The publishedsensors column family provides a Boolean field
virtual, which will be set to true for virtual sensors and which
remains unset or is set to false for regular published sensors. For
all virtual sensors, the expression field in the publishedsensors col-
umn family holds a string describing the arithmetic expression to be
evaluated for calculating the virtual sensor’s value. As of now, the
grammar for arithmetic expression supports the four basic arithmetic
operations (+, -, *, /), round brackets for operation precedence, and
numeric constants. Also, the grammar supports the use of any pub-
lished sensor’s name (virtual or non-virtual) as variable in the arith-
metic expression.

For physical sensors, DCDB follows a push approach, meaning
that it is at the sensor source’s discretion when to send the next
data point. Therefore, DCDB has no influence on the time and fre-
quency of incoming sensor data for physical sensors. When reading
the data, DCDB simply retrieves all data points in the given time
frame. For virtual sensors, however, DCDB needs to be configured in
order to know at which time stamps the virtual sensor is supposed
to return data during a query. For simplicity, DCDB assumes that
a virtual sensor provides data at strict, regular intervals. Hence, the
publishedsensors column family features two columns: frequency
and tzero. The frequency field contains the time between two read-
ings of the virtual sensor in nanoseconds. With the frequency being
defined, DCDB also needs information on the phase in order to fully
define the time series for a virtual sensor. Thus, the tzero field holds
the exact time stamp for one of the virtual sensor’s readings.

Evaluating the arithmetic expression for a virtual sensor at a given
time is trivial, when all inputs into the expression are either numeric
constants or are physical sensors for which a reading exists at the
exact same time stamp. Unfortunately, however, with DCDB’s tempo-
ral granularity of one nanosecond, this is rarely the case. Therefore,
whenever DCDB evaluates a virtual sensor’s value at a given time, a
linear interpolation between the neighboring data points on the phys-
ical sensors is performed.

TEST PLATFORMS

In September 2010, the European Commission opened call FPy-2011-
ICT-7 under its 7" Framework Programme for Research, Technolog-
ical Development and Demonstration Activities. This call included
the specific topic ICT-2011.9.13 ("Exa-scale computing, software and
simulation") which requested for project proposals developing "ad-
vanced computing platforms with potential for extreme performance
(100 petaflop /s in 2014 with potential for exascale by 2020)" [69]. After
evaluation, the European Commission decided to fund three projects.
Two of the three projects, namely DEEP and Mont-Blanc, had a strong
hardware focus and delivered fully operational prototype systems.
The third project (CRESTA) focused more on application code mod-
ernization for Exascale.

Under the assumption that scalability in the system monitoring
framework will be essential for future generations of high perfor-
mance computers, the DEEP and Mont-Blanc projects were consid-
ered ideal candidates for installing and evaluating DCDB in practice.
This chapter will introduce the two projects, their prototype systems
and explain the use of DCDB within the systems.

5.1 MONT-BLANC PROTOTYPE

The Mont-Blanc Project was driven by the idea to leverage technolo-
gies originating from the mobile and embedded domains for high per-
formance computing. The rationale behind this approach is that chips
for mobile and embedded devices provide high power efficiency at
relatively low cost.

To prove the concept, the Mont-Blanc project started its work in
2011 and delivered a fully working prototype in 2015. In addition to
the hardware developments, the Mont-Blanc project released a full
HPC software stack for the ARM architecture including debuggers
and performance analysis tools. Finally, a total of 11 scientific appli-
cations covering a wide range of scientific domains were ported and
evaluated on the machine.

5.1.1 System Ouverview

The Mont-Blanc prototype consists of 1080 compute nodes in the form
of a pluggable edge card [70]. Each of these so called Samsung Daugh-
ter Board (SDB) cards is powered by a Samsung Exynos 5 Dual 5250
System-on-Chip (SoC). The Exynos 5 SoC integrates two ARM Cortex-

53

54

TEST PLATFORMS

A1s general purpose compute cores at 1.7 GHz and a ARM Mali T-
604 Graphics Processing Unit (GPU). Local memory on each SDB is
provided by four onboard 1 GB LPDDR4 RAM modules. Since the
Exynos 5 SoC does not include on-chip support for external network-
ing, the SDBs also contain a USB 3.0 to Gigabit Ethernet controller.
A microSD card on the SDB contains the system’s boot image and
provides temporary scratch storage.

For physical integration, the Mont-Blanc prototype provides a blade
architecture. Each blade consists of a so called Ethernet Mother Board
(EMB) which is a circuit board with connectors for up to 15 SDBs.
The EMB has an on-board Gigabit Ethernet / 10-Gigabit Ethernet
switch to provide Gigabit network connectivity among the SDBs as
well as two 10-Gigabit up-links to the system’s central networking
switches. Besides, the EMB provides electrical power to the SDBs and
implements a detailed power monitoring system capable of capturing
high-frequency information of the power delivered to each SDB. To
handle the stream of data originating from the high frequency power
meters, a FPGA collects and averages the data before forwarding it
to the board management controller on the EMB. In addition to the
EMB, the blade contains actively managed fans for air cooling and a
backplane connector for receiving power from the chassis.

The Mont-Blanc chassis is a container for up to 9 Mont-Blanc blades.
Each chassis provides a central AC/DC power conversion for its con-
tained blades. It also contains a chassis management controller (CMC)
for remote power on/off and an Ethernet switch for the management
network that connects the BMCs and the chassis management con-
troller to the central cluster management servers.

Including two additional storage nodes and the central switches
for the compute and management networks, the entire Mont-Blanc
system fits into two standard 19" 42U cabinets.

5.1.2 DCDB Monitoring Setup

This section summarizes the sensors covered by DCDB on the Mont-
Blanc prototype system. A more detailed technical description of the
setup is given in [3] and [4].

The DCDB installation on the Mont-Blanc prototype system collects
information at SDB, EMB, and chassis levels. Table 5 lists all sensors
that are collected by DCDB.

Collection of sensors at chassis and EMB level is straightforward
since the CMC and the BMC export their sensors as regular IPMI
sensors. As such, the IPMI Pusher can be used to collect the data and
forward it into DCDB. On the SDB level, the collection of the data gen-
erated by the temperature sensor within the Samsung Exynos 5 SoC
is also straightforward since the temperature is exported to sysfs. For

5.1 MONT-BLANC PROTOTYPE

55

Scope Sensor Name Readout Path Description

SDB PWR Out-of-Band (via BMC, Mont-Blanc Pusher) SDB Power Consumption (mW)

SDB TMP In-Band (File Pusher) SDB SoC Temperature (°C)

EMB PWR Out-of-Band (via BMC, IPMI Pusher) EMB Power Consumption (W)

EMB TMP Out-of-Band (via BMC, IPMI Pusher) EMB Temperature (°C)

EMB PQIITMP Out-of-Band (via BMC, IPMI Pusher) PQII Temperature (°C)

EMB FAN1A_BMC Out-of-Band (via BMC, IPMI Pusher) Fan 1A Speed (rpm)

EMB FAN1B_BMC Out-of-Band (via BMC, IPMI Pusher) Fan 1B Speed (rpm)

EMB FAN2A_BMC Out-of-Band (via BMC, IPMI Pusher) Fan 2A Speed (rpm)

EMB FAN2B_BMC Out-of-Band (via BMC, IPMI Pusher) Fan 2B Speed (rpm)

EMB FAN3A_BMC Out-of-Band (via BMC, IPMI Pusher) Fan 3A Speed (rpm)

EMB FAN3B_BMC Out-of-Band (via BMC, IPMI Pusher) Fan 3B Speed (rpm)

EMB FAN4A_BMC Out-of-Band (via BMC, IPMI Pusher) Fan 4A Speed (rpm)

EMB FAN4B_BMC Out-of-Band (via BMC, IPMI Pusher) Fan 4B Speed (rpm)

Chassis DRAWERPOWER Out-of-Band (via CMC, IPMI Pusher) Total Chassis Power Consumption (W)
Chassis CMBTEMP Out-of-Band (via CMC, IPMI Pusher) Chassis Management Board Temperature (°C)
Chassis FPTEMP Out-of-Band (via CMC, IPMI Pusher) Front Panel Temperature (°C)
Chassis FAN1A_CMC Out-of-Band (via CMC, IPMI Pusher) Fan 1A Speed (rpm)

Chassis FAN1B_CMC Out-of-Band (via CMC, IPMI Pusher) Fan 1B Speed (rpm)

Chassis FAN2A_CMC Out-of-Band (via CMC, IPMI Pusher) Fan 2A Speed (rpm)

Chassis FAN2B_CMC Out-of-Band (via CMC, IPMI Pusher) Fan 2B Speed (rpm)

Chassis PSU1_VIN Out-of-Band (via CMC, IPMI Pusher) Power Supply 1 Voltage In (V)
Chassis PSU2_VIN Out-of-Band (via CMC, IPMI Pusher) Power Supply 2 Voltage In (V)
Chassis PSU3_VIN Out-of-Band (via CMC, IPMI Pusher) Power Supply 3 Voltage In (V)
Chassis PSU4_VIN Out-of-Band (via CMC, IPMI Pusher) Power Supply 4 Voltage In (V)
Chassis PSU1_IIN Out-of-Band (via CMC, IPMI Pusher) Power Supply 1 Current In (A)
Chassis PSU2_IIN Out-of-Band (via CMC, IPMI Pusher) Power Supply 2 Current In (A)
Chassis PSU3_IIN Out-of-Band (via CMC, IPMI Pusher) Power Supply 3 Current In (A)
Chassis PSU4_IIN Out-of-Band (via CMC, IPMI Pusher) Power Supply 4 Current In (A)
Chassis PSU1_PWRIN Out-of-Band (via CMC, IPMI Pusher) Power Supply 1 Power In (W)
Chassis PSU2_PWRIN Out-of-Band (via CMC, IPMI Pusher) Power Supply 2 Power In (W)
Chassis PSU3_PWRIN Out-of-Band (via CMC, IPMI Pusher) Power Supply 3 Power In (W)
Chassis PSU4_PWRIN Out-of-Band (via CMC, IPMI Pusher) Power Supply 4 Power In (W)
Chassis PSU1_12VOUT Out-of-Band (via CMC, IPMI Pusher) Power Supply 1 12V Voltage Out (V)
Chassis PSU2_12VOUT Out-of-Band (via CMC, IPMI Pusher) Power Supply 2 12V Voltage Out (V)
Chassis PSU3_12VOUT Out-of-Band (via CMC, IPMI Pusher) Power Supply 3 12V Voltage Out (V)
Chassis PSU4_12VOUT Out-of-Band (via CMC, IPMI Pusher) Power Supply 4 12V Voltage Out (V)
Chassis PSU1_3v30UT Out-of-Band (via CMC, IPMI Pusher) Power Supply 1 3.3V Voltage Out (V)
Chassis PSU2_3v30UT Out-of-Band (via CMC, IPMI Pusher) Power Supply 2 3.3V Voltage Out (V)
Chassis PSU3_3v30UT Out-of-Band (via CMC, IPMI Pusher) Power Supply 3 3.3V Voltage Out (V)
Chassis PSU4_3v30UT Out-of-Band (via CMC, IPMI Pusher) Power Supply 4 3.3V Voltage Out (V)
Chassis PSU1_12I0UT Out-of-Band (via CMC, IPMI Pusher) Power Supply 1 12V Current Out (A)
Chassis PSU2_12I0UT Out-of-Band (via CMC, IPMI Pusher) Power Supply 2 12V Current Out (A)
Chassis PSU3_12I0UT Out-of-Band (via CMC, IPMI Pusher) Power Supply 3 12V Current Out (A)
Chassis PSU4_12I0UT Out-of-Band (via CMC, IPMI Pusher) Power Supply 4 12V Current Out (A)
Chassis PSU1_3v3IOUT Out-of-Band (via CMC, IPMI Pusher) Power Supply 1 3.3V Current Out (A)
Chassis PSU2_3v3IOUT Out-of-Band (via CMC, IPMI Pusher) Power Supply 2 3.3V Current Out (A)
Chassis PSU3_3v3IOUT Out-of-Band (via CMC, IPMI Pusher) Power Supply 3 3.3V Current Out (A)
Chassis PSU4_3v3IOUT Out-of-Band (via CMC, IPMI Pusher) Power Supply 4 3.3V Current Out (A)

Table 5: Sensors of the Mont-Blanc prototype system collected by DCDB

56

TEST PLATFORMS

historic reasons, the respective sysfs entry is read by the File Pusher
instead of the sysfs Pusher.

In contrast to the standard implementation of the chassis and EMB
sensors via IPMI, the per-SDB power measurement in the Mont-Blanc
prototype is a custom development for the project. It features high
sampling rates to detect even short spikes in the power trace. In ad-
dition, it provides synchronized measurements for better analysis of
parallel applications.

To achieve this, the EMB carries one power measurement IC with
an I*C interface per SDB slot. Through this I*C interface, it is possible
to acquire one power reading every 70 ms. Yet, such a power reading
is the result of averaging over 128 individual voltage and current
samples performed by the IC.

For generating synchronized readings, the I*C links of the power
measurement ICs are all routed into a FPGA which ensures that the
I’C commands to trigger the power readings and the processing of
the results are performed in parallel. Since the resulting stream of
data is too much for the BMC to handle, the FPGA averages the re-
sults of 16 consecutive readings per SDB. The FPGA then implements
a FIFO buffer which is read periodically by the BMC. The BMC itself
uses a 4 MB FIFO buffer in its DRAM to store the data received from
the FPGA until the data is read by the user using custom IPMI com-
mands. Since the transfers from the FPGA to the BMC and from the
BMC to the user happen in larger packets, the throughput of this
setup is significantly higher compared to reading single values using
standard IPMI sensor commands. The BMCs have a real-time clock
that is synchronized via the Network Time Protocol (NTP). Therefore,
the data delivered by the BMC also includes the time of the reading
in addition to the power measurement data.

To capture the data blocks containing the power readings from the
BMCs via IPMI custom commands, a special pusher had to be de-
veloped: the Mont-Blanc Pusher. The Mont-Blanc Pusher connects to
the BMCs via IPMI and issues all commands required to start the
power measurement process and to read the blocks with SDB power
data back. Using the time and sensor data from those data blocks,
the Mont-Blanc Pusher then forwards all the readings to the Collect
Agent in the form of MQTT messages.

Field . . .))))
Width 8 bit 8 bit 16 bit 8 bit 8 bit 8 bit 8 bit
Content | - P2 | ciuster ID Rack ID Sub-Rack| gyvicp | spgip | Sensor

Center ID ID Type

Figure 8: Definition of the 64-bit Device Location field in the DCDB Sensor
ID on the Mont-Blanc prototype

5.2 DEEP PROTOTYPE

Despite the fact that more than 2800 different sensors are moni-
tored with DCDB on the Mont-Blanc prototype, it is still possible to
run DCDB with a single Collect Agent and a single Cassandra in-
stance only. Both components are being run on an external x86-based
management server. Yet, the DCDB setup on the Mont-Blanc system
already uses an internal sensor naming scheme that allows for scal-
ing up the number of Cassandra instances at any time. For this, the
location field of the Sensor IDs used in Mont-Blanc is used as shown
in Figure 8. Through this hierarchical splitting among clusters, racks,
sub-racks (i.e. chassis), etc. it becomes possible to split the sensor data
onto different Cassandra instances based on the sensor’s location. For
example, one could configure a setup with one Cassandra instance
per rack. Also, splitting among groups of racks would be possible
since the split onto different Cassandra instances can be done at arbi-
trary locations in the 128-bit keyspace.

5.2 DEEP PROTOTYPE

The Dynamical Exascale Entry Platform (DEEP) Project was moti-
vated by the assumption that many scientific applications consist of
multiple parts with different characteristics. On one side, many appli-
cations have code parts with reduced scalability. Those parts benefit
from superscalar processors with a high single-thread performance
and a flexible network topology. On the other side, application parts
with high scalability can benefit from high core counts and often
exhibit simpler communication patterns. For this reason, the DEEP
project introduced the Cluster-Booster concept [71]. The idea behind
the Cluster-Booster concept is that a high performance computer con-
sists of two parts. A cluster part for the codes parts with low and
medium scalability and a booster part for the highly scalable code
parts. As opposed to the traditional approach of a cluster with accel-
erators, the Cluster-Booster allows for a flexible allocation of cluster
and booster resources for each application.

In addition to a standard 128-node computer cluster, the DEEP
project delivered three prototype systems:

THE AURORA BOOSTER is the largest of the three systems and also
the actual testbed for DCDB. It is powered by 384 Intel® Xeon
Phi"" 7120X many core compute accelerators. The cards are con-
nected via an EXTOLL 3D torus network implemented on Al-
tera Stratix V FPGAs. While the Xeon Phi 7120 was originally
designed as a PCle based co-processor accelerator card, the
DEEP project developed a solution to have the Xeon Phi act
autonomously similar to a regular compute node.

THE GREENICE BOOSTER is a smaller system comprising of 32 Intel®
Xeon Phi" 7120D cards. In this system, the EXTOLL implemen-

57

58

TEST PLATFORMS

tation is provided by EXTOLL’s "Tourmalet" ASIC for improved
networking performance.

THE ENERGY EFFICIENCY EVALUATOR is a miniature replica of the
DEEP Cluster and Aurora Booster. It consists of 4 cluster nodes
and 16 booster nodes and it’s main purpose was to conduct
experiments in the field of direct liquid cooling.

Similar to the Mont-Blanc project, the DEEP project brought along
six scientific applications to test the new platform in practice. Also,
the project delivered a full system software stack including software
to boot the Xeon Phi cards over the EXTOLL network and a software
router to route MPI data transparently between the InfiniBand based
cluster and the EXTOLL based booster parts. In addition, the project
conducted research in the field of programming models and perfor-
mance analysis and prediction tools.

5.2.1 System Overview

The DEEP Aurora Booster is fully integrated system hosting all its
384 nodes in a single 21" rack. The Xeon Phi™ 7210X Coprocessor is a
61-core CPU operating at a base frequency of 1.24 GHz. In addition to
the processor, the PCle based accelerator card contains 16GB of main
memory and a system management controller (SMC) for out-of-band
management.

The usage scenario foreseen by Intel for the Xeon Phi™" x100 family
of coprocessors is to mount the PCle cards into a standard server
and to use it in parallel to the host’s CPU. In such a setup, the host
processor provides a PCle root complex and the coprocessor acts as
a slave on the PCle bus. Through memory mapped I/0O, the host
processor can supply the boot image to the coprocessor and initiate
the boot process. Even after booting, the accelerator card remains a
slave device in the system that is managed by the host.

In the DEEP Aurora Booster, the PCle lanes of the Xeon Phi'"" card
are connected to an FPGA implementing the PCle root complex and
an EXTOLL interface. This allows for transferring PCle packets over
the EXTOLL network to the accelerator card. Using this PCle over
EXTOLL setup, the boot image for the coprocessor is transferred and
the boot process is initiated. During booting, however, the coproces-
sor loads a driver for the EXTOLL network. On the PCle level, the
FPGA remains the root complex and the coprocessor remains a PCle
device. Yet, the coprocessor can now send and receive packets on the
EXTOLL network as if it was an autonomous compute node.

For physical integration, a single PCB with two FPGAs connects
to two Xeon Phi" cards. This assembly is called a Booster Node Card
(BNC). In addition to the FPGAs and the coprocessor cards, the BNC
carries a board-management controller for remote management as

5.2 DEEP PROTOTYPE

well as temperature and power sensors. The BNC plugs into a back-
plane that delivers power, EXTOLL networking, and Ethernet net-
working for the BMCs. Each backplane can host up to eight BNCs.
With two backplanes per chassis, a 21" DEEP chassis contains 16
BNCs with a total of 32 booster nodes. The entire Aurora Booster
is built as a rack with six chassis on each side for a total of 12 chassis.
Since all components of the Aurora Booster are liquid cooling using
aluminum cold plates, the chassis also features a cooling liquid dis-
tribution bar with quick disconnect couplings for the cooling water.
The mechanics of the chassis ensure that a BNC be hot-plugged with
the cooling water couplings and the electrical backplane connectors
connecting at the same time.

For bridging between the Booster’s EXTOLL fabric and the Clus-
ter’s InfiniBand fabric, each chassis also contains two Booster Interface
Cards (BIC). The BICs are powered by an Intel® Xeon™ E3 CPU. Us-
ing a PCle switch, the CPU is connected to an InfiniBand host fabric
adapter and an FPGA implementing the EXTOLL fabric. Being con-
nected to both networking fabrics, the BICs’ task is to route the net-
working traffic between the Cluster and the Booster. The second task
of the BICs is to take the role of the host processor in booting of the
Booster nodes using PCle over Extoll.

5.2.2 DCDB Monitoring Setup

The DEEP Aurora Booster is a useful test environment for DCDB for
multiple reasons:

¢ Central components such as the BNC have been under the con-
trol of the project. This includes in particular the firmware for
the BMCs on the BNCs. Thus, in DEEP it was possible to imple-
ment an actual push model for high frequency power measure-
ment data that sends MQTT messages directly to the Collect
Agent. This means that capturing data from certain sensors no
longer requires a pusher application as a workaround.

* Being a liquid cooled system, the DEEP Aurora Booster inte-
grates facility side sensors that were installed solely for the
project. The integration of those sensors in the DCDB setup is
a good proof of concept for a HPC system monitoring solution
that integrates both, HPC hardware and facility side sensor in-
formation.

¢ For a true distributed DCDB setup, the 24 BICs in the system
are an ideal candidate to run multiple instances of Cassandra
on them. For this reason, the BICs were equipped with local
solid state drives to store the sensor database.

A thorough description of the DCDB setup on the DEEP Aurora
Booster is given in [9] and [10].

59

60

TEST PLATFORMS

Sensor Name

Readout Path

Description

knc[o,1]-curcore
knc[o,1]-curmem
knc[o,1]-curuncore
knc[o,1]-pwrcax3
knc[o,1]-pwrcax4
knc[o,1]-pwrcore
knc[o,1]-pwrimax
knc[o,1]-pwrinst
knc[o,1]-pwrmem
knc[o,1]-pwrpcie
knc[o,1]-pwrtoto
knc[o,1]-pwrtot1
knc[o,1]-pwruncore
knc[o,1]-tempboard
knc[o,1]-tempdie
knc[o,1]-tempgddr
knc[o,1]-tempinlet
knc[o,1]-tempoutlet
knc[o,1]-tempvrcore
knc[o,1]-tempvrmem
knc[o,1]-tempvruncore

knc[o,1]-freq

In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)
In-Band (sysfs Pusher)

Processor Core current (mA)

Memory current (mA)

Un-core current (mA)

Power delivered via 2x3 12V connector (mW)
Power delivered via 2x4 12V connector (mW)

Core power (mW)

Maximum total instantaneous power monitored (mW)

Total instantaneous power (mW)

Memory power (mW)

Power delivered via PCle 12 V lines (mW)
Total power (averaged using window o) (mW)
Total power (averaged using window 1) (mW)
Un-core power (mW)

PCB temperature (°C)

CPU die temperature (°C)

Temperature close to memory (°C)

PCB temperature, left (°C)

PCB temperature, right (°C)

VR core temperature (°C)

VR memory temperature (°C)

VR un-core temperature(°C)

CPU clock frequency (Hz)

pwr
pwro
pwr1
tmpo
tmp1

hum

Out-of-Band (Push from BMC)
Out-of-Band (Push from BMC)
Out-of-Band (Push from BMC)
Out-of-Band (Push from BMC)
Out-of-Band (Push from BMC)
Out-of-Band (Push from BMC)

lected by DCDB

Power consumption of EXTOLL FPGAs and BMC
Power consumption of KNCo (mW)

Power consumption of KNC1 (mW)

Temperature on KNCo side of FPGA board (°C)
Temperature on KNC1 side of FPGA board (°C)
Humidity of ambient air at FPGA board (rel. %)

Table 6: Sensors of the DEEP prototype system’s BNC related sensors col-

5.2 DEEP PROTOTYPE

As explained in the previous section, at the heart of the DEEP
Aurora Booster is the Booster Node Card. The two Xeon Phi™ cards
within the BNC already provide a large selection of temperature and
power sensors. In addition, the board hosting the two EXTOLL FP-
GAs and the BMC has been equipped with additional temperature
and power sensors as well as a humidity sensor. Table 6 provides an
overview of all sensors within the BNC that are covered by DCDB.

The Xeon Phi™" x100 series of co-processor cards was codenamed
"Knight’s Corner" (KNC). Thus, the sensors have been prefixed with
knco- or knci-, depending on which of the two cards inside a BNC
they cover. Since the Xeon Phi"" cards are not connected with an out-
of-band link for system monitoring, sensors on the cards are captured
in-band by the sysfs pusher running on the Xeon Phi" processor. The
pusher uses EXTOLL's IP-over-EXTOLL implementation to establish
an MQTT connection to the nearest broker. Unfortunately, this solu-
tion implies that the system monitoring infrastructure and the user
application running on the DEEP Booster compete for bandwidth on
the EXTOLL link. Also, the sysfs pusher uses CPU cycles on the Xeon
Phi" processor that are not available for the user application. In or-
der to mitigate this effect, the sysfs pusher on the DEEP Booster is
configured to provide data only at low frequency (<1 Hz).

For the temperature sensors on the Xeon Phi™ cards, low readout
frequencies are deemed sufficient as temperature changes do not oc-
cur too quickly. Regarding the power sensors, however, higher fre-
quencies might be desirable. Thus, the decision was made to imple-
ment additional power sensors with out-of-band access. The addi-
tional sensors are mounted on the FPGA-board in the BNC at the
12V supply rail to each Xeon Phi" card. The sensors consist of Hall
effect based current meters and a separate voltage measurement cir-
cuitry connected the BMC of the BNC. After calibration of the current
sensors, the BMC provides accurate, high-frequency power measure-
ments on a per-Xeon Phi"" basis.

For the DEEP project, a special firmware was developed to run on
the BMC of the BNC. This firmware controls the power-up sequence
of the BNC including the calibration of the zero-offset for the Hall
effect based current sensors at a time when the Xeon Phi'" cards are
not powered up. Also, the firmware provides means for updating
the bit file of the EXTOLL FPGAs for convenient in-field upgrades of
the EXTOLL networking infrastructure. Most importantly, however,
the firmware implements a full MQTT pusher to send power data to
the nearest Collect Agent. For this, a separate process on the BMC
samples the current from the Hall effect sensor as well as the voltage
on the 12V rail at high frequency (~100 Hz). The BMC then constructs
the appropriate MQTT message for DCDB and sends it to the Collect
Agent. The power measurement in the BMC happens completely out-

61

62

TEST PLATFORMS

Sensor Name

Readout Path

Description

Infra_Aussentemperatur
Infra_Druck_Booster_Sekundaer
Infra_Druck_Cluster_Sekundaer
Infra_Status_Booster_Pumpe
Infra_Status_Cluster_Pumpe
Infra_Status_Dampfbefeuchter
Infra_Status_Klimaschrank_Filter
Infra_Status_Trockenkuehler
Infra_Stellsignal_Cluster_Pumpe
Infra_Stellsignal_Klimaschrank
Infra_Stellsignal_Trockenkuehler_Pumpe
Infra_Temp_Booster_Austritt
Infra_Temp_Booster_Eintritt
Infra_Temp_Booster_Ruecklauf_Sekundaer
Infra_Temp_Booster_Vorlauf_Sekundaer
Infra_Temp_Cluster_Austritt
Infra_Temp_Cluster_Eintritt
Infra_Temp_Cluster_Ruecklauf_1
Infra_Temp_Cluster_Ruecklauf_2
Infra_Temp_Cluster_Ruecklauf_3
Infra_Temp_Cluster_Ruecklauf_4
Infra_Temp_Cluster_Ruecklauf_Sekundaer
Infra_Temp_Cluster_Vorlauf_Sekundaer
Infra_Temp_Installationsraum
Infra_Temp_Klimaschrank_Ruecklauf
Infra_Temp_Klimaschrank_Vorlauf
Infra_Temp_Trockenkuehler_Austritt
Infra_Temp_Trockenkuehler_Eintritt
Infra_Volumenstrom_Cluster_1
Infra_Volumenstrom_Cluster_2
Infra_Volumenstrom_Cluster_3

Infra_Volumenstrom_Cluster_4

Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)
Out-of-Band (SNMP Pusher)

Outside air temperature (1/10°C)
Water pressure booster sec. loop

Water pressure cluster sec. loop

Booster loop pump error state

Cluster loop pump error state

Room air humidifier operational state
Room air filter error state

Dry-cooler error state

Enable signal for Cluster loop pump
Enable signal for CRAC unit

Enable signal for dry cooler loop pump
Booster outlet temp pri. loop (1/10°C)
Booster inlet temp pri. loop (1/10°C)
Booster outlet temp sec. loop (1/10°C)
Booster inlet temp sec. loop (1/10°C)
Cluster outlet temp pri. loop (1/10°C)
Cluster inlet temp pri. loop (1/10°C)
Cluster outlet temp sec. loop 1 (1/10°C)
Cluster outlet temp sec. loop 2 (1/10°C)
Cluster outlet temp sec. loop 3 (1/10°C)
Cluster outlet temp sec. loop 4 (1/10°C)
Cluster outlet (mix) temp sec. loop (1/10°C)
Cluster inlet temp sec. loop (1/10°C)
Computer room ambient air temp (1/10°C)
CRAC air outlet temperature (1/10°C)
CRAC air inlet temperature (1/10°C)
Dry-cooler water outlet temp (1/10°C)
Dry-cooler water inlet temp (1/10°C)
Water flow rate cluster sec. loop 1

Water flow rate cluster sec. loop 2

Water flow rate cluster sec. loop 3

Water flow rate cluster sec. loop 4

Table 7: Sensors of the DEEP prototype system’s liquid cooling infrastruc-
ture collected by DCDB

of-band over the separate management Ethernet network. Thus, it
does not interfere with the user application on the Booster at all.
Besides the custom monitoring on the Booster, DCDB also mon-

itors the sensors for the liquid cooling infrastructure on the DEEP
prototype system. The liquid cooling infrastructure consists of an out-
side dry-cooler and an associated water loop. Since the outside loops
need to contain anti-freeze additives, a heat-exchanger separates the
outside loop from the inner loops for Cluster and Booster. The inner
loops consist of separate loops for the Cluster and Booster parts of
the system. The Cluster loop is further divided into four legs con-
nected to individual inlets in the Cluster rack. For extended tests, the
system is also connected to the computer center’s central cold-water
distribution system as an additional option for recooling besides the
dry-cooler. In addition to the water cooling loops, the room is also
equipped with a Computer Room Air Conditioner (CRAC) that cools
the computer room’s air. A distinct humidifier in the room can in-
crease the room air’s humidity if necessary. Control of pumps and
monitoring of temperatures, water flow rates, and water pressure is

5.2 DEEP PROTOTYPE

performed by a Sauter Modus25 automation station. The automation
station is an embedded computer system with sufficient I/O ports
to connect to all sensors and actors. For configuration and monitor-
ing, the automation station provides an Ethernet port with a web-
based graphical user interface. Integration into larger monitoring se-
tups and building automation systems can be performed with the
included BACnet/IP interface.

BACnet is an ASHRAE/ANSI/ISO standard for building automa-
tion and control networks [72]. Initially, BACnet was designed to
operate on dedicated RS-232 or RS-485 based networking hardware.
Therefore, the protocol does not implement additional security mea-
sures and anyone with access to the BACnet physical network infras-
tructure can read and write data from and to BACnet devices. The
later adoption of the BACnet/IP standard for transmitting BACnet
messages over Ethernet or other IP based networks also did not add
any security layer. It is therefore common practice to operate separate
networks for building automation to prevent unauthorized access to
BACnet devices over the network.

For these security reasons, the automation station in the DEEP sys-
tem is not connected to DCDB via its Ethernet port directly. Instead,
a BACnet/IP to SNMP gateway device has been configured that pro-
vides two network interfaces and exposes the sensor data captured
on the BACnet interface to SNMP clients on the second network in-
terface. With this setup, the cooling infrastructure related monitoring
data becomes available for DCDB using the SNMP Pusher. Table 7
has the list of all infrastructure related sensors that are available to
DCDB.

Field . . . , , , ,
Width 8 bit 8 bit 16 bit 8 bit 8 bit 8 bit 8 bit
Content | ~ P2 | Ciuster ID Rack ID Chassis | gicip | BNCID | KNCID

Center ID ID

Figure 9: Definition of the 64-bit Device Location field in the DCDB Sensor
ID on the DEEP prototype

Besides the custom BMC firmware supporting the direct push of
sensor data and the integration of cooling infrastructure sensors, the
DEEP prototype system also serves as an excellent testbed for the
distributed nature of DCDB. Due to the high data rate of the power
sensors on the BNCs, a single central monitoring server is unlikely to
be sufficient. The DCDB setup on the DEEP Aurora Booster therefore
uses the BICs for storing the sensor data. As in the Mont-Blanc pro-
totype, the organization of sensors follows a hierarchical approach
within the device location field in the internal sensor IDs. In DEEP,
the sensor IDs are defined as shown in Figure 9. For configuring a

63

64

TEST PLATFORMS

Hostname Chassis ID BIC ID Sensor ID range
. 00000000 ©0O0OCC0O0 O0OOEOOOO OOEOOOOO
bicoo1 0 0
- 00000000 0AOOFFFF FFFFFFFF FFFFFFFF
. 00000000 00010000 00OOOOO0 0OOOOOOO
bicooz 0 1
- 00000000 OOFFFFFF FFFFFFFF FFFFFFFF
. 00000000 01000000 00OCOOO0 OOEOOOOO
bicoo3 1 0
- 00000000 0100FFFF FFFFFFFF FFFFFFFF
. 00000000 01010000 00000000 0OOOOOOO
bicoosq 1 1
- 00000000 O1FFFFFF FFFFFFFF FFFFFFFF
. 00000000 02000000 00000000 OOOOOOOO
bicoos 2 0
- 00000000 0200FFFF FFFFFFFF FFFFFFFF
. 00000000 0BOOOOOO OOOOOOOO OOOOOOOO
bicoz3 11 0
- 00000000 OBOOFFFF FFFFFFFF FFFFFFFF
. 00000000 O0BO10OOO 00OEOOOO OOEOOOOO
bico24 11 1
- 00000000 OBFFFFFF FFFFFFFF FFFFFFFF
00000000 0COOOOOO OOOOOOOO 0OOOOOOO
deepm n/a n/a

- FFFFFFFF FFFFFFFF FFFFFFFF FFFFFFFF

Table 8: Configuration of the Cassandra database ring structure on the
DEEP Booster

distributed Cassandra setup for DCDB, the partition key ranges for
each Cassandra instance need to be defined. This leads to the spec-
ification of partition key ranges resulting from the device location
scheme as shown in Table 8. Upon closer inspection it becomes clear
that the ranges are not equal in size. For example, the range covered
by bic002 is larger than the range covered by bic001. This is due to
the fact that the configuration ring must specify a storage location for
each possible partition key. In the case of the DEEP definition of the
sensor location field, this means that BIC ID for a sensor can go as
high as 255 and all of the sensors would be mapped the Cassandra in-
stance of the BIC with ID 1. In principal, this is not a problem because
the partition key ranges can be split at any time with the insertion of
additional monitoring nodes. Even without additional nodes, the sys-
tem would continue to work as long as the influx of sensor data per
Cassandra node can still be handled by the underlying hardware. At
the rear end of the partition key mapping, the deepm management
and login server takes all sensors that are not mapped to any of the
BICs, including those of the cooling infrastructure.

TESTS & PERFORMANCE OPTIMIZATIONS

As it has been explained in the previous chapter, the Mont-Blanc and
DEEP projects are the first test environments for the DCDB frame-
work. Yet, even before the DCDB installation on the two systems had
started, simple tests using artificial monitoring data (e.g. script gener-
ated series of values containing data from sine or rectangle functions)
have been performed to validate its basic functionality. Once most
internals of DCDB were considered stable enough, the software was
deployed on the prototype systems. On both systems, the next step
consisted of functional tests of the system specific monitoring compo-
nents. In particular, efforts have been spent on verifying the sensors
for power measurement on the two systems.

This chapter highlights some of the tests that were carried out on
the two machines in which DCDB played a prominent role. It also
summarizes the tests that were performed to demonstrate DCDB’s
performance. Whenever it is appropriate, an outlook on possible fu-
ture work will be given in this chapter.

6.1 VERIFYING THE MONT-BLANC POWER MEASUREMENT SETUP

As explained in the previous chapter, the Mont-Blanc system per-
forms power measurements using digital power metering ICs on the
EMB. Sensors such as these power metering ICs, just like any other
electronic component, are subject to production errors and failure.
Thus, the sensors had to be tested before the power monitoring data
collected by DCDB could be made publicly available. Two special as-
pects of the Mont-Blanc monitoring setup were also taken into ac-
count. First, the use of a custom data format to transfer multiple
power measurement data points at once increases the likelihood of
implementation errors (e.g. power data being attributed to the wrong
SDB). Second, the BMC on the EMB provides time stamps of the mea-
surement points making it necessary to synchronize the BMC'’s clock
accordingly.

To verify the entire measurement workflow, a small test application
was written that was executed on all SDBs, one after another. The test
program’s purpose was to perform CPU-intensive calculations for 30
seconds, followed by a 30 second period of no activity. This duty-idle
power cycle was repeated five times. With the power consumption
being high during the duty periods and low in the idle periods, the
time series graph of the power meter will resemble a square wave
pattern. The rationale behind this approach is that the pattern will be

65

TESTS & PERFORMANCE OPTIMIZATIONS

MontBlanc Power Consumption
9000 T T - T

mb3 PWR ——
8500 i

8000 1
7500

7000

Power (mW)

6500

6000

5500

5000 L L L L L
0 50 100 150 200 250 300

Time (sec)

(a) Expected power consumption pattern during test execu-
tion

MontBlanc Power Consumption
9000 . . T

mb-155-PWR —
8500 1

8000 1
7500

7000

Power (mW)

6500

6000

5500

5000
0 50 100 150 200 250 300

Time (sec)

(b) Reduced power consumption due to thermal throttling

MontBlanc Power Consumption
9000 : : -

"mb71-PWR ——
8500 i

8000 1
7500 1

7000 1

Power (mW)

6500 1
6000 r 1

5600 T

5000 - - ‘ - s
0 50 100 150 200 250 300

Time (sec)

(c) Defective measurement sensor

Figure 10: Power consumption during execution of the power cycle tests on
the Mont-Blanc system

6.2 THERMAL THROTTLING ON THE DEEP SYSTEM

prominently visible, even when looking at a longer time series graph.
Repeating the cycle five times is done to avoid confusion with other
duty-idle periods that could also originate from the execution of an
ordinary application.

After the program has run on all SDBs, the start and end times of
each job were obtained from the Slurm resource management system.
Feeding these into dcdbquery returned the power trace for the appli-
cation run. The graphs of the power traces for each of the 1080 SDBs
was then manually inspected. This inspection revealed some BMCs
for which NTP time synchronization had not been configured. After
correcting the NTP configuration on the BMCs and documenting the
faulty measurement IC, all graphs showed the square wave pattern.

Most of the graphs showed a regular pattern for the power con-
sumption of the nodes as shown in Figure 10a. On some nodes, how-
ever, the power draw during some or all of the duty cycles was sig-
nificantly lower than on other nodes. An example of this behavior is
shown in Figure 10b. Further investigation revealed that the affected
SDBs were running hotter than others resulting in a throttling of the
CPU. Following a change in the fan control policy of the chassis, all
SDBs were sufficiently cooled and a repetition of the test on all nodes
showed the expected behavior with no more anomalies except for
one: one defective power measurement IC delivered a near constant
reading despite the benchmark being executed without anomalies on
the node (Figure 10c). This node was subsequently removed from the
queuing system during power consumption related benchmarks.

The issues found during the power cycle tests emphasize the impor-
tance of thoroughly testing any measuring setup before use instead
of trusting the measurement equipment blindly. Also, tracking down
the oddities in the power consumption to a thermal root cause is a
good argument for integrated setups which combine monitoring in-
formation from IT and infrastructure into one monitoring system.

In this series of tests, evaluation of the power consumption graphs was
performed manually through human visual inspection. Since this will no
longer be feasible for systems that are significantly larger in size, future
research could explore possibilities in automating this task. For simple test
cases such as the above power cycle application, algorithms from the signal
processing domain could yield acceptable results. In case of more complex
tests with multiple sensors, machine learning technologies could be used
instead.

6.2 THERMAL THROTTLING ON THE DEEP SYSTEM

One part of the evaluation tests on the DEEP system was dedicated to
the machine’s liquid cooling infrastructure. According to the Amer-
ican Society of Heating, Refrigerating, and Air-Conditioning Engi-
neers (ASHRAE) [73], liquid cooled computers can be categorized

67

Outlook and ideas
for future work

68

130

120

110

100

90

80

70

60

140

130

50

TESTS & PERFORMANCE OPTIMIZATIONS

DEEP RAS Monitor

bn'c4—knc1—freh
bncd-kncl-tempdie
bnc4-kncl-tempinlet

bncd-kncI-tempoutlet

0 100

200 300 400 500

Time (sec)

600 700 800 900

(a) Properly cooled node — no thermal throttling

DEEP RAS Monitor

1000

bn|c4-knc0-freé1
bncd-kncO-tempdie
bnca-kncO-tempinlet

r bncd-kncQ-tempoutle

>
>
_:

s

b

i

0 100

200 300 400 500 600 700 800 900
Time (sec)

(b) Node with reduced cooling — CPU enters thermal throttling

1000

Figure 11: Time series of selected temperature sensors and CPU frequency

during a HPL run on the DEEP prototype

6.2 THERMAL THROTTLING ON THE DEEP SYSTEM

with respect to their operating temperatures into five different groups
(W1 to W5). A system certified for ASHRAE Wy operations can be
run with water inlet temperatures of up to 45 °C and is therefore qual-
ified for year-round chiller-less cooling almost anywhere on earth.
Systems certified for ASHRAE W5 operation operate at temperatures
greater than 45 °C and re-use the excess heat in the central building
heating system or for other purposes. The goal for the DEEP system
was to at least comply with the W4 standard. Since no upper temper-
ature is defined for systems complying with W5, the tests were also
trying to determine the consequences of operating beyond 45 °C.

For this test, a subset of 4 BNCs (8 nodes) was running single-
node versions of the high performance Linpack (HPL) benchmark
to generate CPU load. The water inlet temperature was then set to
values from 20 °C to 50 °C in steps of 5 K. Starting from 40 °C, one of
the eight nodes started to show longer runtimes for each iteration of
the benchmark and at 45 °C and 50 °C, two nodes of the eight nodes
exhibited longer benchmark runtimes than the other nodes.

With DCDB at hand, tracking down the cause for this behavior
was easy. In the background, DCDB had collected all information
including temperatures and CPU frequency. Figure 11 shows the time
series of the CPU frequency (scaled by 1/100), die temperature, and
two additional temperature sensors on the board during the HPL
run. The trace shows the behavior of the HPL benchmark which was
configured to perform multiple iterations on data sets of increasing
size. While the CPU frequency remains constant on the unaffected
node independent from the problem size (Figure 11a), the slow node
could avoid thermal throttling only in the first iterations (Figure 11b).
The overall temperature level on the affected node is approximately 5-
10 °C higher in idle. Under load, the die temperature of the throttled
node exceeds 130 °C whereas the unaffected node’s die temperature
never exceeds 100 °C. This clearly indicated that the cooling of the
affected node needed reworking (i.e. re-mounting of the cold plate).
Yet, in general, the BNCs were well suited for operating at cooling
water temperatures of even 50 °C.

The conclusion from these tests for the DEEP project was that the
system works well within the specifications of ASHRAE W4 and pos-
sibly W5. It is also good to see that the CPU does a good job at pro-
tecting itself from overheating. The conclusion from a system moni-
toring perspective was that being able to monitor as many parame-
ters as possible makes analysis and evaluation of high performance
computing systems very effective. Without DCDB, additional time-
consuming iterations of the tests would have been necessary to ana-
lyze the behavior. Thanks to the scalability of DCDB, however, moni-
toring all parameters at a high temporal resolution was possible and
the entire analysis of the situation was possible retrospectively.

69

70

TESTS & PERFORMANCE OPTIMIZATIONS

63 BENCHMARKING DCDB’S INSERT PERFORMANCE

The design goal for DCDB was to achieve a high insert performance
in order to being able to capture and store as much sensor data as
possible. Cassandra as the underlying database promises scalability
and the data model for storing the sensor data in DCDB can fulfil
this promise in theory. Since the entire process of inserting data into
DCDB not only concerns Cassandra but also the Collect Agent, it
was sensible to test the behavior of DCDB’s performance scalability
in practice.

The DEEP Aurora Booster with its Cassandra setup spanning the 24
BICs and the deepm management server is a good hardware platform
for this test. On the software side, the test setup consists of the stan-
dard DCDB installation on the DEEP Aurora Booster and a special
benchmark application. This benchmark application mimics a pusher
application that sends MQTT messages with sensor data as fast as
possible. The benchmark was configured to send data for 24 simu-
lated sensors. For each of the 24 simulated sensors, the benchmark
application sends 100,000 MQTT messages. The benchmark waits un-
til each MQTT message is delivered before sending the next message.
This means that any bottleneck at the Collect Agent or Cassandra
will propagate back to the benchmark application and no data will
be lost. Since the Collect Agent and Cassandra operate with multiple
threads, the benchmark application is also written to send messages
in parallel with a configurable number of threads. For this evaluation,
repeated tests were performed with 1, 2, 4, 8, and 12 threads in the
benchmark application. The performance evaluation will look at the
total number of inserts per second into DCDB per node. To avoid
noise in the test setup, the Booster Nodes were shut down during
the benchmarks and the benchmark application was started on the
Cassandra nodes themselves.

The first test’s goal was to create a baseline for the measurements.
Therefore, the benchmark was started on each node exclusively, i.e.
all nodes except for the node running the benchmark were not han-
dling any sensor data. The results of this test are shown in Figure 12a.
The chart shows that all nodes can achieve an insert performance of
over 20,000 inserts per second. It also shows that the performance
increases with the number of MQTT message threads. While this is
only a confirmation of the expected behavior, it confirms that pusher
applications handling data from multiple data sources should feature
a threaded design.

To prove the scalability of the entire solution, the benchmark appli-
cation was run again. This time, however, it was executed on all nodes
in parallel. Given the promise of linear scalability of the entire solu-
tion, the expected performance should be similar to the performance
observed when running the benchmark node by node. The results in

63 BENCHMARKING DCDB’S INSERT PERFORMANCE

DEEP DCDB Single Node Insert Performance (inserts/s)

30000

25000

20000

1Thread
15000 | 2 Threads
4 Threads
8 Threads
10000 - 412 Threads
5000
0
P o & & ® P PP PP E S E RS PP P P
& & SIS TS S LS
(a) Performance of single node inserts
DEEP DCDB Parallel Inserts (node-local, inserts/s)
30000
25000
20000
1 Thread
15000 2 Threads
4 Threads
8 Threads
10000 - 12 Threads
N | | | | I
0
PSR o 3 S P PP LD LS PP P P
& & & SIS SIS S
(b) Performance of all node parallel inserts
DEEP DCDB Parallel Inserts (neighbor node, inserts/s)
30000
25000
20000
1 Thread
15000 2 Threads
4 Threads
8 Threads
0001+——— 8033 8T 8 85 B 5 5 B F T BT T T T T T 12 Threads
5000
0
<& S\ 2 < $H Q S 9 > ¥ “J > < o Q 3 4 S » 2 ¥l D
S & & S . P FHFEFSFE S FEFY&ESS
TSI SIS F S

(c) Performance of all node parallel inserts on neighboring nodes

Figure 12: Analysis of the DCDB insert performance on the DEEP Booster.

71

72

Outlook and ideas
for future work

TESTS & PERFORMANCE OPTIMIZATIONS

Figure 12b show that the performance is indeed similar. This result
proves that a DCDB installation scales linearly with the number of
DCDB nodes running a Cassandra instance and the Collect Agent.
As a consequence, apart from the limits imposed by the 64 bits of a
sensor’s location identifier, DCDB will be capable of monitoring sys-
tems of arbitrary size. Should the performance of DCDB saturate (e.g.
by pushing too many sensors or by pushing at too high frequencies),
the situation can always be relaxed by adding more DCDB nodes.

For maximum performance, it is required to insert data into Cas-
sandra on the Cassandra node that will store the data according to
Cassandra’s configuration. As explained previously, careful planning
during the installation phase of DCDB is required to ensure that this
requirement is fulfilled. Cassandra is kind enough, however, to copy
data onto the correct node if an insert is performed on a wrong node.
Obviously, such copying of data in the background impacts the over-
all performance of Cassandra by creating additional networking traf-
fic. To estimate the maximum impact of this effect, a third experi-
ment was conducted. Again, the insertion benchmark was run on all
nodes in parallel using the smallest possible MQTT messages with a
single sensor value. This time, however, the sensor IDs used by the
benchmark were not sensor IDs that resulted in Cassandra storing
the data on the current node. Instead, each benchmark application
created data for sensor IDs that was supposed to be stored on the
next node in the Cassandra configuration. For example, the bench-
mark running on bic001 created data that was stored on bic002 and
so forth. The results are shown in Figure 12c. As expected, the over-
head created through the additional Cassandra-internal transfer of
data is significant as the insert performance shrinks to less than half
the performance of the optimal setup.

Since wrongly configuring a DCDB installation can have such signifi-
cant impact on the overall performance, future research could work out ideas
for facilitating the installation of DCDB for new users. Possible approaches
could involve the design of a proper user interface for installing and configur-
ing DCDB as well as network based auto-discovery mechanisms for sensors
and pusher applications to assign suitable sensor IDs and to find the nearest
Cassandra node.

64 OPTIMIZED VIRTUAL SENSOR EVALUATION

DCDB’s virtual sensor feature provides a powerful mechanism to con-
solidate the data of many physical sensors into aggregated values.
With the right physical sensors available inside DCDB, a virtual sen-
sor could even calculate a single data center wide metric, for example
PUE. Yet, the evaluation of virtual sensors can encounter scalability
limits.

64 OPTIMIZED VIRTUAL SENSOR EVALUATION

Section 4.7.5 explained that DCDB supports a simple grammar de-
scribing the arithmetic for evaluating the virtual sensor at a given
timestamp. Whenever the evaluation of a virtual sensor is requested,
DCDB creates an abstract syntax tree for the expression. DCDB then
recursively processes the syntax tree for each timestamp at which the
virtual sensor’s value is needed. Once the processing of the syntax
tree requires the input of a physical sensor s at time t, DCDB looks
up the time series of s to determine the reading (t1,v7) prior to t and
the reading (t,v;) following t. The value v(t) of the physical sensor
at time t is then approximated using linear interpolation:

V2=V tovi —tv2

*t+ (7)

v(t) =
t, —t t, —t

Determining the readings (t1,v7) and (t2,v2) can be done efficiently
with Cassandra and DCDB’s database scheme. Yet, the above scheme
requires 2n readings of physical sensor values when evaluating a
virtual sensor which depends on n physical sensors as inputs. For
virtual sensors whose reporting frequency is similar or greater than
the reporting frequency of its underlying physical sensors, the above
approach can also lead to repetitive readings of the same value from
the data store.

To improve the performance of virtual sensor evaluation, DCDB im-
plements a scheme of sensor data caches. After DCDB has built the
abstract syntax tree for a virtual sensor expression, it determines a list
of all physical sensors which are needed for evaluation of the virtual
sensor. The determination of the physical sensors is performed recur-
sively, taking into account also the cases in which a virtual sensor
expression refers to other virtual sensors, which in turn may refer to
more virtual or physical sensors. Once the list of physical sensors has
been determined, DCDB allocates a sensor data cache for each physi-
cal sensor. Requests for physical sensor values as well as the seeking
for data points preceding and following a certain timestamp can now
be done using the sensor data cache. Whenever a request to the sensor
data cache is made, the implementation checks whether the requested
value has previously been loaded from the database. If not, the sensor
data cache attempts to fetch a certain number of readings prior and
after the requested reading form the database and stores the values
in memory. The number of readings that are speculatively loaded by
the sensor data cache is configurable to allow for application specific
tradeoffs between lowering the number of requests to Cassandra and
the memory consumption of the sensor data caches.

The virtual sensors feature offers a variety of options for optimization and
future research. One idea that has not yet been implemented is a value cache
for virtual sensor values. DCDB is built with the assumption that sufficient
space for storing all data is available. Thus, one could conclude that it is
better to store all calculated virtual sensor values back to the sensor data
store so that they do not need to be recalculated when they get queried again.

73

Outlook and ideas
for future work

74

TESTS & PERFORMANCE OPTIMIZATIONS

Obviously, care needs to be taken to delete the values from the data store when
the definition of a virtual sensor is changed. Additionally, DCDB would need
to address situations, in which a physical sensor reading is inserted after a
virtual sensor has been evaluated that would have been based on the physical
sensor’s reading.

Further research could also address the parallel and distributed evalua-
tion of virtual sensors. For this, the underlying abstract syntax tree of a
virtual sensor expression could be reordered with the goal to distribute the
evaluation onto the database nodes while increasing data locality at the same
time. For example, the calculation of a global sum of power sensors could be
performed locally on each Cassandra node for all its local sensors before the
partial sums are sent to the requesting node where the final sum is calculated.
Reshaping the syntax tree using the commutative and distributive properties
of the supported basic arithmetic functions could be used to further optimize
such distributed approach.

Finally, the grammar of the expressions for virtual sensors could be im-
proved to implement new features. Possible features could include derivative
calculation, helper functions (e.g. to return the number of available sensors
matching a given name pattern), or even if-then-else constructs that control
the evaluation of each single data point.

CONCLUSION & OUTLOOK

In a study performed by Hyperion Research, the market for high per-
formance computing systems is projected to grow from 11.2 billion
US Dollars in 2016 to over 14.8 billion Dollars in 2021 [74]. Consider-
ing that the ratio of cost per computational capacity has been decreas-
ing throughout the history of computing, one can conclude that the
use of supercomputers will continue to grow as a valuable tool for
scientists and engineers across a multitude of domains. At the same
time, lowering the total cost of operation in high performance com-
puting will remain a means of supercomputing providers and users
to further increase their capabilities and to outperform their competi-
tion. Similar to commercial data center applications, electricity costs
make up for the largest fraction of operational costs in supercomput-
ers and the electricity costs do not only incur in the computer equip-
ment itself, but also in the surrounding data center infrastructure.

While all of this has been well understood and models, criteria, and
metrics for the evaluation of energy efficiency in high performance
computing have been defined, practical application of these models
and the actual determination of the associated metrics remained a
challenge. Several reasons for this can be named:

INSUFFICIENT OR IMPROPER INSTRUMENTATION causes a lack of
data required for full evaluation or the desired metrics. How-
ever, decreasing costs for sensors and measuring equipment
alongside a continuous renewal process in the data centers will
help overcome these issues with time.

LACK OF INTEGRATION of monitoring systems, in particular the sep-
aration of IT monitoring and building infrastructure monitoring
systems, make calculating side-wide energy efficiency metrics a
tedious task. None of the existing IT monitoring solutions pre-
sented in this thesis is ready to connect to building infrastruc-
ture management systems.

LIMITED SCALABILITY of monitoring systems is another hurdle for
any integrated monitoring approach. If the IT monitoring solu-
tion of a large system can barely handle the IT related data, op-
erators will not dare to add the building infrastructure related
data to it and vice versa.

This thesis set out to address, at the very low technical level, the
shortcomings of today’s system monitoring solutions to overcome
these limitations. With the Data Center DataBase (DCDB) framework,

75

76

CONCLUSION & OUTLOOK

a scalable approach has been presented for collecting, storing, pro-
cessing, and reporting time series of sensor data. The scalability of
DCDB allows for improving the spatial and temporal resolution of to-
day’s data center monitoring solutions to an arbitrary extent. Through
the use of simple, lightweight, and standardized interfaces, it is easy
to make DCDB the host for all monitoring data in high performance
computing data centers, no matter whether it is server monitoring
data, building infrastructure data, or application performance moni-
toring data. With the flexibility and configurability introduced by the
implementation of a virtual sensor concept, DCDB can be configured
to directly generate any energy efficiency related metric. For exam-
ple, this means that DCDB can be used to calculate the Power Usage
Effectiveness over an entire year of operation, while at the same time
providing near real-time data on particular subsystems which can be
used by the system management software to (auto-)tune certain hard-
ware parameters for optimized energy efficiency.

DCDB has proved its capability to deliver on these promises in the
European DEEP and Mont-Blanc projects. Yet, the use in both projects
has also shown that more work is needed to turn DCDB from its
proof-of-concept state into a truly valuable tool for high performance
computer operators and users. From its current state, DCDB could ei-
ther be used to replace the data collection and processing infrastruc-
tures in existing monitoring tools, or it could be further developed
into its own fully integrated monitoring solution.

To encourage the use of DCDB and to allow for a broader com-
munity to determine the future of the project, DCDB has been put
under the GNU General Public License (GPL v2 for the command
line programs and LGPL v2.1 for the DCDB library).

BIBLIOGRAPHY

10.

11.

12.

13.

14.

15.

Auweter, A. et al. Mont-Blanc Project Deliverable 5.3: Preliminary Report on Porting
and Tuning of System Software to ARM Architecture http:// montblanc-project.eu/
sites / default/files / d5.3_preliminary_report_on_porting_system_software_
to_arm_architecture_v1.pdf.

Dézsa, G. et al. Mont-Blanc Project Deliverable 5.5: Intermediate Report on Porting
and Tuning of System Software to ARM Architecture http:// montblanc-project.
eu/sites/default/files/D5.5_Intermediate_report_on_porting...._v1.0.pdf.

Tafani, D. & Auweter, A. Mont-Blanc Project Deliverable 5.8: Prototype demon-
stration of energy monitoring tools on a system with multiple ARM boards http://
montblanc-project.eu/sites/default/files/MB_D5.8_Prototype%2odemonstration%
200f%20energy%2omonitoring...v1.0.pdf.

Mantovani, F. et al. Mont-Blanc Project Deliverable 5.11: Final report on porting
and tuning of system software to ARM architecture http:// montblanc-project.eu/
sites / default / files / D5. 11 % 20Final % 2oreport % 200n % 20porting % 20and %
20tuning.%2o0V1.0.pdf.

Tafani, D. & Auweter, A. Mont-Blanc Project Deliverable 7.4: Concept for energy
aware system monitoring and operation http: // montblanc - project. eu / sites /
default/files/Dy.4_Concept_for_energy_aware_system_monitoring_andoperation_
vi_reduced.pdf.

Meyer, N., Solbrig, S., Wettig, T., Auweter, A. & Huber, H. DEEP Project De-
liverable 7.1: Data centre infrastructure requirements http:// www.deep- project.
eu/SharedDocs/Downloads/DEEP-PROJECT /EN/Deliverables/deliverable-
Dy.1.pdf.

Meyer, N. et al. DEEP Project Deliverable 7.2: Concepts for improving energy and
cooling efficiency http:// www.deep - project.eu / SharedDocs / Downloads /
DEEP-PROJECT/EN/Deliverables/deliverable-Dy.2.pdf.

Auweter, A. & Ott, M. DEEP Project Deliverable 7.3: Preparation of energy and cool-
ing experimentation infrastructure http: // www.deep-project.eu / SharedDocs /
Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.3.pdf.

Auweter, A. & Ott, M. DEEP Project Deliverable 7.4: Intermediate Report on DEEP
Energy Efficiency http:// www.deep - project.eu / SharedDocs / Downloads /
DEEP-PROJECT/EN/Deliverables/deliverable-Dy.4.pdf.

Ott, M. & Auweter, A. DEEP Project Deliverable 7.5: Final Report on DEEP Energy
Efficiency http:// www.deep - project.eu / SharedDocs / Downloads / DEEP -
PROJECT/EN/Deliverables/deliverable-D7.5.pdf.

Auweter, A., Bode, A., Brehm, M., Huber, H. & Kranzlmdiller, D. in Informa-
tion and Communication on Technology for the Fight against Global Warming (eds
Kranzlmiiller, D. & Tjoa, A. M.) 18-25 (Springer, 2011).

Wilde, T., Auweter, A. & Shoukourian, H. The 4 Pillar Framework for energy
efficient HPC data centers. Computer Science-Research and Development 29, 241~
251 (2014).

Auweter, A. et al. A case study of energy aware scheduling on SuperMUC in Super-
computing (eds Kunkel, J. M., Ludwig, T. & Meuer, H. W.) (2014), 394—409.

LRZ Usage Statistics Website https://www.lrz.de/services/compute/supermuc/
statistics/.

Joseph, E. C., Conway, S. & Sorensen, R. Worldwide HPC Server 2015-2019 Fore-
cast Market Analysis (IDC, 2015).

77

http://montblanc-project.eu/sites/default/files/d5.3_preliminary_report_on_porting_system_software_to_arm_architecture_v1.pdf
http://montblanc-project.eu/sites/default/files/d5.3_preliminary_report_on_porting_system_software_to_arm_architecture_v1.pdf
http://montblanc-project.eu/sites/default/files/d5.3_preliminary_report_on_porting_system_software_to_arm_architecture_v1.pdf
http://montblanc-project.eu/sites/default/files/D5.5_Intermediate_report_on_porting...._v1.0.pdf
http://montblanc-project.eu/sites/default/files/D5.5_Intermediate_report_on_porting...._v1.0.pdf
http://montblanc-project.eu/sites/default/files/MB_D5.8_Prototype%20demonstration%20of%20energy%20monitoring...v1.0.pdf
http://montblanc-project.eu/sites/default/files/MB_D5.8_Prototype%20demonstration%20of%20energy%20monitoring...v1.0.pdf
http://montblanc-project.eu/sites/default/files/MB_D5.8_Prototype%20demonstration%20of%20energy%20monitoring...v1.0.pdf
http://montblanc-project.eu/sites/default/files/D5.11%20Final%20report%20on%20porting%20and%20tuning.%20V1.0.pdf
http://montblanc-project.eu/sites/default/files/D5.11%20Final%20report%20on%20porting%20and%20tuning.%20V1.0.pdf
http://montblanc-project.eu/sites/default/files/D5.11%20Final%20report%20on%20porting%20and%20tuning.%20V1.0.pdf
http://montblanc-project.eu/sites/default/files/D7.4_Concept_for_energy_aware_system_monitoring_andoperation_v1_reduced.pdf
http://montblanc-project.eu/sites/default/files/D7.4_Concept_for_energy_aware_system_monitoring_andoperation_v1_reduced.pdf
http://montblanc-project.eu/sites/default/files/D7.4_Concept_for_energy_aware_system_monitoring_andoperation_v1_reduced.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.1.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.1.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.1.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.2.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.2.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.3.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.3.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.4.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.4.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.5.pdf
http://www.deep-project.eu/SharedDocs/Downloads/DEEP-PROJECT/EN/Deliverables/deliverable-D7.5.pdf
https://www.lrz.de/services/compute/supermuc/statistics/
https://www.lrz.de/services/compute/supermuc/statistics/

78

16.

17.
18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

31.

32.

33.
34.

35-

36.

37
38.

39-

BIBLIOGRAPHY

Intersect360. Worldwide High Performance Computing 2014 Total Market Model
and 2015-2019 Forecast tech. rep. (Intersect360, 2015).

Topsoo The List. Website http://tops00.0rg/.

Moore, G. Cramming More Components Onto Integrated Circuits. Electronics
38 (Apr. 1965).

Beloglazov, A., Buyya, R, Lee, Y. C. & Zomaya, A. in Advances in computers
47-111 (Elsevier, 2011).

Valentini, G. L. ef al. An overview of energy efficiency techniques in cluster
computing systems. Cluster Computing 16, 3—15 (2013).

Pelley, S., Meisner, D., Wenisch, T. F. & VanGilder, J. W. Understanding and ab-
stracting total data center power in Workshop on Energy-Efficient Design 11 (2009).

VDI Verein Deutscher Ingenieure e.V. VDI-Wirmeatlas 11. Aufl. 2013. 1SBN: 978-
3-642-19982-0 (Springer Berlin, Heidelberg, Wiesbaden, 2013).

LRZ SuperMUC Website https://www.lrz.de/services/compute/supermuc/.

Nikolopoulos, D. S. et al. Energy efficiency through significance-based comput-
ing. Computer (ed Helal, S.) 82-85 (2014).

Wilde, T. et al. CooLMUC-2: A supercomputing cluster with heat recovery for adsorp-
tion cooling in 2017 33rd Thermal Measurement, Modeling Management Symposium
(SEMI-THERM) (2017), 115-121. doi:10.1109/SEMI-THERM.2017.7896917.

Roy, K., Mukhopadhyay, S. & Mahmoodi-Meimand, H. Leakage current mech-
anisms and leakage reduction techniques in deep submicrometer CMOS cir-
cuits. Proceedings of the IEEE 91, 305-327 (2003).

Greensoo List. Website http:// greens00.org/.

Ge, R, Feng, X., Pyla, H., Cameron, K. & Feng, W. Power measurement tutorial
for the Greensoo list. The Greensoo List: Environmentally Responsible Supercom-
puting (2007).

Energy Efficient High Performance Computing Working Group Website https: //
eehpcwg lInl.gov.

The Energy Efficient HPC Working Group. Energy Efficient High Performance
Computing Power Measurement Methodology Version 2.0 RC1 (2014).

Scogland, T. R. ef al. A Power-measurement Methodology for Large-scale, High-
performance Computing in Proceedings of the sth ACM/SPEC International Con-
ference on Performance Engineering (eds Lange, K.-D., Murphy, J., Binder, W.
& José, M.) (ACM, Dublin, Ireland, 2014), 149-159. ISBN: 978-1-4503-2733-6.
doi:10.1145/2568088.2576795. http://doi.acm.org/10.1145/2568088.2576795.

Avelar, V., Azevedo, D. & French, A. PUE™: A Comprehensive Examination of
the Metric tech. rep. (2012).

The Green Grid Website http://www.thegreengrid.org/.

Patterson, M. K. et al. TUE, a new energy-efficiency metric applied at ORNL's jaguar
in Supercomputing (eds Kunkel, J. M., Ludwig, T. & Meuer, H. W.) (2013), 372-
382.

Wilde, T. et al. DWPE, a new data center energy-efficiency metric bridging the gap
between infrastructure and workload in High Performance Computing Simulation
(HPCS), 2014 International Conference on (eds Bassini, S., Nygard, M., Smari, W.
& Spalazzi, L.) (July 2014), 893—901. doi:10.1109/HPCSim.2014.6903784.

Nagios Website https://nagios.org/.

Nagios Enterprises LLC Website https://nagios.com/.
Arraj, V. ITIL™: the basics. Buckinghampshire, UK (2010).
Icinga Website https://icinga.org/ (2014).

http://top500.org/
https://www.lrz.de/services/compute/supermuc/
http://dx.doi.org/10.1109/SEMI-THERM.2017.7896917
http://green500.org/
https://eehpcwg.llnl.gov
https://eehpcwg.llnl.gov
http://dx.doi.org/10.1145/2568088.2576795
http://doi.acm.org/10.1145/2568088.2576795
http://www.thegreengrid.org/
http://dx.doi.org/10.1109/HPCSim.2014.6903784
https://nagios.org/
https://nagios.com/
https://icinga.org/

40.
41.
42.
43

44.
45.
46.
47.
48.

49

50.

51.

52.

53-

54.

55-

56.

57
58.

59-
60.
61.

62.
63.

64.

65.

66.

BIBLIOGRAPHY

Check_MK Website https: //mathias-kettner.de/check_mk.html.
Oetiker, T. RRDtool http://rrdtool.org/ (2014).
Score-P Website http://score-p.org/.

Geimer, M. et al. The Scalasca performance toolset architecture. Concurrency
and Computation: Practice and Experience 22, 702—719 (2010).

Scalasca Website http://scalasca.org/.

Vampir Website http://vampir.eu/.

Periscope Website http: //periscope.in.tum.de/.
TAU Website http://tau.uoregon.edu/.

Shende, S. S. & Malony, A. D. The TAU parallel performance system. Interna-
tional Journal of High Performance Computing Applications 20, 287-311 (2006).

HPC Toolit Website http://hpctoolkit.org.

Adhianto, L. et al. HPCTOOLKIT: tools for performance analysis of optimized
parallel programs. Concurrency and Computation: Practice and Experience 22, 685—
701. ISSN: 1532-0634 (2010).

ARM MAP Website https://www.arm.com/products/development-tools/hpc-
tools/cross-platform/forge/map.

Intel® VTune™ Amplifier Website https: // software.intel.com /en-us / intel -
vtune-amplifier-xe.

Shoukourian, H., Wilde, T., Auweter, A., Bode, A. & Piochacz, P. Towards a uni-
fied energy efficiency evaluation toolset: an approach and its implementation

at Leibniz Supercomputing Centre (LRZ). on Information and Communication
Technologies, 276 (2013).

Kluge, M., Hackenberg, D. & Nagel, W. E. Collecting distributed performance
data with dataheap: Generating and exploiting a holistic system view. Procedia
Computer Science 9, 1969—-1978 (2012).

Guillen, C., Hesse, W. & Brehm, M. in Euro-Par 2014: Parallel Processing Work-
shops: Euro-Par 2014 International Workshops, Porto, Portugal, August 25-26, 2014,
Revised Selected Papers, Part II (eds Lopes, L. et al.) 363—374 (Springer Interna-
tional Publishing, Cham, 2014). ISBN: 978-3-319-14313-2. d0i:10.1007 /978-3-
319-14313-2_31. https://doi.org/10.1007/978-3-319-14313-2_31.

Apache Cassandra Website https: //cassandra.apache.org/ (2016).

DataStax Inc. Website https://datastax.com/ (2014).

Chang, F. et al. Bigtable: A distributed storage system for structured data. ACM
Transactions on Computer Systems (TOCS) 26, 4 (2008).

Apache HBase Website https://hbase.apache.org/ (2016).
Apache Thrift Website https:// thrift.apache.org/ (2016).

Cassandra Query Language Reference version 3.3 http://docs.datastax.com/en/
cql/3.3/cql/cqlintro.html (2016).

MQTT Website https://mqtt.org/ (2014).

Banks, A. & Gupta, R. MQTT Version 3.1.1 tech. rep. (OASIS Standard., Oct.
2014).

Intel Corporation, Hewlett-Packard Company, NEC Corporation, Dell Inc. In-
telligent Platform Management Interface Specification Second Generation v2.0 Errata
7 Apr. 2015.

IPMI Adopters List https://www.intel.com / content/ www /us/en/servers /
ipmi/ipmi-adopters-list.html (2014).

OpenIPMI Website http: // openipmi.sourceforge.net/ (2006).

79

https://mathias-kettner.de/check_mk.html
http://rrdtool.org/
http://score-p.org/
http://scalasca.org/
http://vampir.eu/
http://periscope.in.tum.de/
http://tau.uoregon.edu/
http://hpctoolkit.org
https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge/map
https://www.arm.com/products/development-tools/hpc-tools/cross-platform/forge/map
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
http://dx.doi.org/10.1007/978-3-319-14313-2_31
http://dx.doi.org/10.1007/978-3-319-14313-2_31
https://doi.org/10.1007/978-3-319-14313-2_31
https://cassandra.apache.org/
https://datastax.com/
https://hbase.apache.org/
https://thrift.apache.org/
http://docs.datastax.com/en/cql/3.3/cql/cqlIntro.html
http://docs.datastax.com/en/cql/3.3/cql/cqlIntro.html
https://mqtt.org/
https://www.intel.com/content/www/us/en/servers/ipmi/ipmi-adopters-list.html
https://www.intel.com/content/www/us/en/servers/ipmi/ipmi-adopters-list.html
http://openipmi.sourceforge.net/

8o

67.
68.

69.

70.

71.

72.

73-

74-

BIBLIOGRAPHY

Net-SNMP Website http: //www.net-snmp.org/ (2013).

ISO. ISO 8601:2004. Data elements and interchange formats — Information inter-
change — Representation of dates and times 29. https: // www.iso.org/standard /
40874.html (ISO, 2004).

ICT - Information and Communications Technologies — Updated Work Programme
2011 and Work Programme 2012 http://cordis.europa.eu/fpy/ict/docs/3_2012_
wp_cooperation_update_2011_wp_ict_en.pdf.

Rajovic, N. et al. The Mont-Blanc prototype: an alternative approach for HPC sys-
tems in High Performance Computing, Networking, Storage and Analysis, SC16:
International Conference for (2016), 444—455.

Eicker, N., Lippert, T., Moschny, T. & Suarez, E. The DEEP Project An alterna-
tive approach to heterogeneous cluster-computing in the many-core era. Con-
currency and Computation: Practice and Experience 28. cpe.3562, 2394—2411. ISSN:
1532-0634 (2016).

ISO. ISO 16484-5:2017-12 Building automation and control systems (BACS) — Part
5: Data communication protocol 1312. https: // www.iso.org /standard / 71935.
html (ISO, 2017).

American Society of Heating, Refrigerating and Air-Conditioning Engineers Website
https://www.ashrae.org/.

Joseph, E. C. Worldwide HPC Server 2016—2021 Forecast Market Analysis (Hype-
rion Research, 2017).

http://www.net-snmp.org/
https://www.iso.org/standard/40874.html
https://www.iso.org/standard/40874.html
http://cordis.europa.eu/fp7/ict/docs/3_2012_wp_cooperation_update_2011_wp_ict_en.pdf
http://cordis.europa.eu/fp7/ict/docs/3_2012_wp_cooperation_update_2011_wp_ict_en.pdf
https://www.iso.org/standard/71935.html
https://www.iso.org/standard/71935.html
https://www.ashrae.org/

	Dedication
	Abstract
	Publications
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 The 4-Pillar Framework for Energy Efficient HPC Data Centers
	1.2 Optimized Data Center Building Infrastructures
	1.2.1 Power Distribution
	1.2.2 Cooling
	1.2.3 Monitoring

	1.3 Optimized HPC System Hardware
	1.4 Optimized HPC System Software
	1.5 Optimized HPC Applications
	1.6 Cross-Pillar Optimizations

	2 Metrics for Energy Efficiency in HPC
	2.1 Flops per Watt
	2.2 Power Usage Effectiveness
	2.3 Energy to Solution
	2.4 Other Metrics

	3 The HPC System Monitoring Challenge
	3.1 Existing Solutions for Standard System Monitoring
	3.1.1 Nagios
	3.1.2 Icinga
	3.1.3 Check_MK and Open Monitoring Distribution
	3.1.4 RRDTool

	3.2 Performance Analysis Tools
	3.2.1 Score-P Based Tools
	3.2.2 HPCToolkit
	3.2.3 ARM MAP
	3.2.4 Intel® VTune™ Amplifier and Trace Analyzer & Collector

	3.3 Limitations of Existing Solutions
	3.4 Addressing the Limitations
	3.4.1 Integrated Monitoring with PowerDAM
	3.4.2 Smart Data Acquisition
	3.4.3 Compressed Data Storage
	3.4.4 Distributed Data Storage

	4 The DCDB Framework
	4.1 DCDB Overview
	4.2 Apache Cassandra NoSQL Database
	4.2.1 History
	4.2.2 Data Model
	4.2.3 User and Application Programming Interfaces

	4.3 Storing Time Series of Sensor Data
	4.3.1 Mapping Time Series to the Cassandra Data Model
	4.3.2 Data Types and Storage Conventions
	4.3.3 Defining Sensor Identifiers
	4.3.4 Coping with Cassandra's Wide Row Limits

	4.4 MQ Telemetry Transport
	4.5 Collect Agent
	4.6 Sources for Sensor Data
	4.6.1 IPMI Pusher
	4.6.2 SNMP Pusher
	4.6.3 sysfs Pusher
	4.6.4 File Pusher

	4.7 Sensor Management
	4.7.1 Publishing Sensors
	4.7.2 The DCDB Query Tool
	4.7.3 DCDB Unit Conversion Framework
	4.7.4 Integrable Sensors
	4.7.5 Virtual Sensors

	5 Test Platforms
	5.1 Mont-Blanc Prototype
	5.1.1 System Overview
	5.1.2 DCDB Monitoring Setup

	5.2 DEEP Prototype
	5.2.1 System Overview
	5.2.2 DCDB Monitoring Setup

	6 Tests & Performance Optimizations
	6.1 Verifying the Mont-Blanc Power Measurement Setup
	6.2 Thermal Throttling on the DEEP System
	6.3 Benchmarking DCDB's Insert Performance
	6.4 Optimized Virtual Sensor Evaluation

	7 Conclusion & Outlook
	Bibliography

